Safety evaluation for packaging (onsite) concrete-lined waste packaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romano, T.
1997-09-25
The Pacific Northwest National Laboratory developed a package to ship Type A, non-transuranic, fissile excepted quantities of liquid or solid radioactive material and radioactive mixed waste to the Central Waste Complex for storage on the Hanford Site.
HANFORD SITE CENTRAL PLATEAU CLEANUP COMPLETION STRATEGY
DOE Office of Scientific and Technical Information (OSTI.GOV)
BERGMAN TB
2011-01-14
Cleanup of the Hanford Site is a complex and challenging undertaking. The U.S. Department of Energy (DOE) has developed a comprehensive vision for completing Hanford's cleanup mission including transition to post-cleanup activities. This vision includes 3 principle components of cleanup: the {approx}200 square miles ofland adjacent to the Columbia River, known as the River Corridor; the 75 square miles of land in the center of the Hanford Site, where the majority of the reprocessing and waste management activities have occurred, known as the Central Plateau; and the stored reprocessing wastes in the Central Plateau, the Tank Wastes. Cleanup of themore » River Corridor is well underway and is progressing towards completion of most cleanup actions by 2015. Tank waste cleanup is progressing on a longer schedule due to the complexity of the mission, with construction of the largest nuclear construction project in the United States, the Waste Treatment Plant, over 50% complete. With the progress on the River Corridor and Tank Waste, it is time to place increased emphasis on moving forward with cleanup of the Central Plateau. Cleanup of the Hanford Site has been proceeding under a framework defmed in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). In early 2009, the DOE, the State of Washington Department of Ecology, and the U.S. Environmental Protection Agency signed an Agreement in Principle in which the parties recognized the need to develop a more comprehensive strategy for cleanup of the Central Plateau. DOE agreed to develop a Central Plateau Cleanup Completion Strategy as a starting point for discussions. This DOE Strategy was the basis for negotiations between the Parties, discussions with the State of Oregon, the Hanford Advisory Board, and other Stakeholder groups (including open public meetings), and consultation with the Tribal Nations. The change packages to incorporate the Central Plateau Cleanup Completion Strategy were signed by the Parties on October 26,2010, and are now in the process of being implemented.« less
ICD Complex Operations and Maintenance Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibson, P. L.
2007-06-25
This Operations and Maintenance (O&M) Plan describes how the Idaho National Laboratory (INL) conducts operations, winterization, and startup of the Idaho CERCLA Disposal Facility (ICDF) Complex. The ICDF Complex is the centralized INL facility responsible for the receipt, storage, treatment (as necessary), and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation waste.
Miller, Ronald L.; Sutcliffe, Horace
1982-01-01
This report is a complilation of geologic, hydrologic, and water-quality data and information on test holes collected in the vicinity of gypsum stack complexes at two phosphate chemical plants and one phosphatic clayey waste disposal pond at a phosphate mine and beneficiation plant in central Florida. The data were collected from September 1979 to October 1980 at thee AMAX Phosphate, Inc., chemical plant, Piney Point; the USS AgriChemicals chemical plant, Bartow; and the International Minerals and Chemical Corporation Clear Springs mine, Bartow. Approximmmtely 5,400 field and laboratory water-quality determinations on water samples were collected from about 78 test holes and 31 surface-water, rainfall, and other sampling sites at phosphate industry beneficiation and chemical plant waste-disposal operations. Maps show locations of sampling sites. (USGS)
324 Building spent fuel segments pieces and fragments removal summary report
DOE Office of Scientific and Technical Information (OSTI.GOV)
SMITH, C L
2003-01-09
As part of the 324 Building Deactivation Project, all Spent Nuclear Fuel (SNF) and Special Nuclear Material were removed. The removal entailed packaging the material into a GNS-12 cask and shipping it to the Central Waste Complex (CWC).
Hazardous Waste Cleanup: HOVENSA, LLC in Christiansted, U.S. Virgin Islands
The HOVENSA facility (the facility) is located at Limetree Bay, St. Croix, U.S. Virgin Islands. It is a petroleum refinery covering 1,500 acres in what is known as South Industrial Complex, on the south central coast of St. Croix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
HOPKINS, A.M.
2005-02-23
The Plutonium Finishing Plant (PFP) and associated processing facilities are located in the 200 area of the Hanford Site in Eastern Washington. This area is part of what is now called the Central Plateau. In order to achieve closure of the contaminated facilities and waste sites at Hanford on the Central Plateau (CP), a geographic re-districting of the area into zones has been proposed in the recently published Plan for Central Plateau Closure. One of the 22 zones proposed in the Central Plateau encompasses the PFP and ancillary facilities. Approximately eighty six buildings are included in the PFP Zone. Thismore » paper addresses the approach for the closure of the PFP Zone within the Central Plateau. The PFP complex of buildings forms the bulk of the structures in the PFP Zone. For closure of the above-grade portion of structures within the PFP complex, the approach is to remove them to a state called ''slab-on-grade'' per the criteria contained in PFP End Point Criteria document and as documented in action memoranda. For below-grade portions of the structures (such as below-grade rooms, pipe trenches and underground ducts), the approach is to remove as much residual contamination as practicable and to fill the void spaces with clean fill material such as sand, grout, or controlled density fill. This approach will be modified as planning for the waste sites progresses to ensure that the actions of the PFP decommissioning projects do not negatively impact future planned actions under the CERCLA. Cribs, settling tanks, septic tanks and other miscellaneous below-grade void spaces will either be cleaned to the extent practicable and filled or will be covered with an environmental barrier as determined by further studies and CERCLA decision documents. Currently, between two and five environmental barriers are proposed to be placed over waste sites and remaining building slabs in the PFP Zone.« less
NASA Astrophysics Data System (ADS)
Song, Xiaolong; Yang, Jianxin; Lu, Bin; Yang, Dong
2017-01-01
China is now facing e-waste problems from both growing domestic generation and illegal imports. Many stakeholders are involved in the e-waste treatment system due to the complexity of e-waste life cycle. Beginning with the state of the e-waste treatment industry in China, this paper summarizes the latest progress in e-waste management from such aspects as the new edition of the China RoHS Directive, new Treatment List, new funding subsidy standard, and eco-design pilots. Thus, a conceptual model for life cycle management of e-waste is generalized. The operating procedure is to first identify the life cycle stages of the e-waste and extract the important life cycle information. Then, life cycle tools can be used to conduct a systematic analysis to help decide how to maximize the benefits from a series of life cycle engineering processes. Meanwhile, life cycle thinking is applied to improve the legislation relating to e-waste so as to continuously improve the sustainability of the e-waste treatment system. By providing an integrative framework, the life cycle management of e-waste should help to realize sustainable management of e-waste in developing countries.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-06
... Central Characterization Project's Remote-Handled Transuranic Waste Characterization Program at Sandia..., remote-handled (RH), transuranic (TRU) waste characterization program implemented by the Central Characterization Project (CCP) at Sandia National Laboratory (SNL) in Albuquerque, New Mexico. This waste is...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-08
... Central Characterization Project's Remote-Handled Transuranic Waste Characterization Program at Bettis... radioactive remote-handled (RH) transuranic (TRU) waste characterization program implemented by the Central Characterization Project (CCP) at Bettis Atomic Power Laboratory (BAPL) in West Mifflin, Pennsylvania. This waste...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-24
... Central Characterization Project's Remote-Handled Transuranic Waste Characterization Program at the...-handled (RH), transuranic (TRU) waste characterization program implemented by the Central Characterization... Criteria, EPA evaluated the characterization of RH TRU debris waste from SRS-CCP during an inspection on...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-08
... Central Characterization Project's Transuranic Waste Characterization Program at the Hanford Site AGENCY...) waste characterization program implemented by the Central Characterization Project (CCP) at the Hanford... characterization of TRU debris waste from Hanford-CCP during an inspection conducted on April 27-29, 2010. Using...
Sustainable construction in rural Guatemala.
Temple, Ericka K; Rose, Elizabeth
2011-11-01
Waste management is a significant problem in Guatemala, as elsewhere in the developing world. The inappropriate disposal of solid waste produces pollution and places the environment and human health at risk. Environmental risk factors, including inadequate disposal of solid waste, are implicated in 25-30% of disease worldwide with children bearing a disproportionate burden of those diseases. Therefore, economic development which reduces inappropriate disposal of waste and affords economic opportunities may help reduce the global burden of disease on children. In the indigenous highlands of central Guatemala, a community supported non-profit organisation called Long Way Home (http://www.longwayhomeinc.org) is employing alternative construction techniques to build a vocational school complex. The construction of the school from waste materials demonstrates the use and principles of re-purposing materials, helps clean the environment and affords further educational and vocational opportunities. This article will outline the health problems inherent in an indigenous area of a developing country and will offer an alternative solution to reverse environmental risk factors associated with solid waste pollution and also actively improve child health.
Effects of three phosphate industrial sites on ground-water quality in central Florida, 1979 to 1980
Miller, R.L.; Sutcliffe, Horace
1984-01-01
Geologic, hydrologic, and water quality data and information on test holes collected in the vicinity of gypsum stack complexes at two phosphate chemical plants and one phosphatic clayey waste disposal pond at a phosphate mine and beneficiation plant in central Florida are presented. The data were collected from September 1979 to October 1980 at the AMAX Phosphate, Inc. chemical plant, Piney Point; the USS Agri-Chemicals chemical plant, Bartow; and the International Minerals and Chemical Corporation Clear Springs mine, Bartow. Approximately 5,400 field and laboratory water quality determinations on water samples collected from about 100 test holes and 28 surface-water , 5 rainfall, and other sampling sites at phosphate industry beneficiation and chemical plant waste disposal operations are tabulated. Maps are included to show sampling sites. (USGS)
EM-21 Retrieval Knowledge Center: Waste Retrieval Challenges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fellinger, Andrew P.; Rinker, Michael W.; Berglin, Eric J.
EM-21 is the Waste Processing Division of the Office of Engineering and Technology, within the U.S. Department of Energy’s (DOE) Office of Environmental Management (EM). In August of 2008, EM-21 began an initiative to develop a Retrieval Knowledge Center (RKC) to provide the DOE, high level waste retrieval operators, and technology developers with centralized and focused location to share knowledge and expertise that will be used to address retrieval challenges across the DOE complex. The RKC is also designed to facilitate information sharing across the DOE Waste Site Complex through workshops, and a searchable database of waste retrieval technology information.more » The database may be used to research effective technology approaches for specific retrieval tasks and to take advantage of the lessons learned from previous operations. It is also expected to be effective for remaining current with state-of-the-art of retrieval technologies and ongoing development within the DOE Complex. To encourage collaboration of DOE sites with waste retrieval issues, the RKC team is co-led by the Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL). Two RKC workshops were held in the Fall of 2008. The purpose of these workshops was to define top level waste retrieval functional areas, exchange lessons learned, and develop a path forward to support a strategic business plan focused on technology needs for retrieval. The primary participants involved in these workshops included retrieval personnel and laboratory staff that are associated with Hanford and Savannah River Sites since the majority of remaining DOE waste tanks are located at these sites. This report summarizes and documents the results of the initial RKC workshops. Technology challenges identified from these workshops and presented here are expected to be a key component to defining future RKC-directed tasks designed to facilitate tank waste retrieval solutions.« less
Combined central diabetes insipidus and cerebral salt wasting syndrome in children.
Lin, Jainn-Jim; Lin, Kuang-Lin; Hsia, Shao-Hsuan; Wu, Chang-Teng; Wang, Huei-Shyong
2009-02-01
Central diabetes insipidus, a common consequence of acute central nervous system injury, causes hypernatremia; cerebral salt wasting syndrome can cause hyponatremia. The two conditions occurring simultaneous are rarely described in pediatric patients. Pediatric cases of combined diabetes insipidus and cerebral salt wasting after acute central nervous system injury between January 2000 and December 2007 were retrospectively reviewed, and clinical characteristics were systemically assessed. Sixteen patients, aged 3 months to 18 years, met study criteria: 11 girls and 5 boys. The most common etiologies were severe central nervous system infection (n = 7, 44%) and hypoxic-ischemic event (n = 4, 25%). In 15 patients, diabetes insipidus was diagnosed during the first 3 days after acute central nervous system injury. Onset of cerebral salt wasting syndrome occurred 2-8 days after the onset of diabetes insipidus. In terms of outcome, 13 patients died (81%) and 3 survived under vegetative status (19%). Central diabetes insipidus and cerebral salt wasting syndrome may occur after acute central nervous system injury. A combination of both may impede accurate diagnosis. Proper differential diagnoses are critical, because the treatment strategy for each entity is different.
Hyeda, Adriano; Costa, Elide Sbardellotto Mariano da
2015-08-01
chemotherapy is essential to treat most types of cancer. Often, there is chemotherapy waste in the preparation of drugs prescribed to the patient. Leftover doses result in toxic waste production. the aim of the study was to analyze chemotherapy waste reduction at a centralized drug preparation unit. the study was cross-sectional, observational and descriptive, conducted between 2010 and 2012. The data were obtained from chemotherapy prescriptions made by oncologists linked to a health insurance plan in Curitiba, capital of the state of Paraná, in southern Brazil. Dose and the cost of chemotherapy waste were calculated in each application, considering the dose prescribed by the doctor and the drug dosages available for sale. The variables were then calculated considering a hypothetical centralized drug preparation unit. there were 176 patients with a cancer diagnosis, 106 of which underwent treatment with intravenous chemotherapy. There were 1,284 applications for intravenous anticancer medications. There was a total of 63,824mg in chemotherapy waste, the cost of which was BRL 448,397.00. The average cost of chemotherapy waste per patient was BRL 4,607.00. In the centralized model, there was 971.80mg of chemotherapy waste, costing BRL 13,991.64. The average cost of chemotherapy waste per patient was BRL 132.00. the use of centralized drug preparation units may be a strategy to reduce chemotherapy waste.
Food waste in Central Europe - challenges and solutions
NASA Astrophysics Data System (ADS)
den Boer, Jan; Kobel, Przemysław; Dyjakon, Arkadiusz; Urbańska, Klaudia; Obersteiner, Gudrun; Hrad, Marlies; Schmied, Elisabeth; den Boer, Emilia
2017-11-01
Food waste is an important issue in the global economy. In the EU many activities aimed at this topic are carried out, however in Central Europe is still quite pristine. There is lack of reliable data on food waste quantities in this region, and not many preventive actions are taken. To improve this situation the STREFOWA (Strategies to Reduce and Manage Food Waste in Central Europe) was initiated. It is an international project (Austria, Czech Republic, Hungary, Italy, Poland), founded by the Interreg Central Europe programme, running from July 2016 to June 2019. Its main purpose is to provide solutions to prevent and manage food waste throughout the entire food supply chain. The results of STREFOWA will have positive economical, social and environmental impacts.
Gellynck, X; Jacobsen, R; Verhelst, P
2011-10-01
The competent waste authority in the Flemish region of Belgium created the 'Implementation plan household waste 2003-2007' and the 'Implementation plan sustainable management 2010-2015' to comply with EU regulation. It incorporates European and regional requirements and describes strategies, goals, actions and instruments for the collection and treatment of household waste. The central mandatory goal is to reduce and maintain the amount of residual household waste to 150 kg per capita per year between 2010-2015. In literature, a reasonable body of information has been published on the effectiveness and efficiency of a variety of policy instruments, but the information is complex, often contradictory and difficult to interpret. The objective of this paper is to identify, through the development of a binary logistic regression model, those variables of the waste collection scheme that help municipalities to reach the mandatory 150 kg goal. The model covers a number of variables for household characteristics, provision of recycling services, frequency of waste collection and charging for waste services. This paper, however, is not about waste prevention and reuse. The dataset originates from 2003. Four out of 12 variables in the model contributed significantly: income per capita, cost of residual waste collection, collection frequency and separate curbside collection of organic waste. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ma, Jing; Horii, Yuichi; Cheng, Jinping; Wang, Wenhua; Wu, Qian; Ohura, Takeshi; Kannan, Kurunthachalam
2009-02-01
Chlorinated polycyclic aromatic hydrocarbons (CIPAHs) are a class of halogenated contaminants found in the urban atmosphere; they have toxic potential similar to that of dioxins. Information on the sources of CIPAHs is limited. In this study, concentrations of 20 CIPAHs and 16 parent PAHs were measured in electronic wastes, workshop-floor dust, vegetation, and surface soil collected from the vicinity of an electronic waste (e-waste) recycling facility and in surface soil from a chemical industrial complex (comprising a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant), and agricultural areas in central and eastern China. High concentrations of SigmaCIPAHs were found in floor dust (mean, 103 ng/g dry wt), followed in order of decreasing concentration by leaves (87.5 ng/g drywt), electronic shredder waste (59.1 ng/g dry wt), and soil (26.8 ng/g dry wt) from an e-waste recycling facility in Taizhou. The mean concentration of SigmaCIPAHs in soil from the chemical industrial complex (88 ng/g dry wt) was approximately 3-fold higher than the concentration in soil from e-waste recycling facilities. The soils from e-waste sites and industrial areas contained mean concentrations of SigmaCIPAHs 2 to 3 orders of magnitude higher than the concentrations in agricultural soils (ND-0.76 ng/g), suggesting that e-waste recycling and chlorine-chemical industries are potential emission sources of CIPAHs. The profiles of CIPAHs in soil and dust were similar to a profile that has been reported previously for fly ash from municipal solid waste incinerators (6-CIBaP was the predominant compound), but the profiles in vegetation and electronic shredder waste were different from those found in fly ash. Concentrations of 16 parent PAHs were high (150-49,700 ng/g) in samples collected from the e-waste recycling facility. Significant correlation between SigmaCIPAH and SigmaPAH concentrations suggests that direct chlorination of parent PAHs is the major pathway of formation of CIPAHs during e-waste recycling operations. Dioxin-like toxic equivalency quotients (TEQs) for CIPAHs and PAHs in samples were calculated on the basis of relative potencies reported for CIPAHs and PAHs. The highest mean TEQ concentrations of CIPAHs (518 pg-TEQ/g) were found for workshop-floor dust, followed by leaves (361 pg-TEQ/g), electronic shredder waste (308 pg-TEQ/g), soil from the chemical industrial complex (146 pg-TEQ/g), and soil from the sites of the e-waste recycling facility (92.3 pg-TEQ/g). With one exception, the floor dust samples, the TEQ concentrations of CIPAHs found in multiple environmental matrices in this study were higher than the TEQ concentrations of PCDD/Fs in the same samples reported in our earlier study.
Application countermeasures of non-incineration technologies for medical waste treatment in China.
Chen, Yang; Ding, Qiong; Yang, Xiaoling; Peng, Zhengyou; Xu, Diandou; Feng, Qinzhong
2013-12-01
By the end of 2012, there were 272 modern, high-standard, centralized medical waste disposal facilities operating in various cities in China. Among these facilities nearly 50% are non-incineration treatment facilities, including the technologies of high temperature steam, chemical disinfection and microwave. Each of the non-incineration technologies has its advantages and disadvantages, and any single technology cannot offer a panacea because of the complexity of medical waste disposal. Although non-incineration treatment of medical waste can avoid the release of polychlorinated dibenzo-p-dioxins/dibenzofurans, it is still necessary to decide how to best meet the local waste management needs while minimizing the impact on the environment and public health. There is still a long way to go to establish the sustainable application and management mode of non-incineration technologies. Based on the analysis of typical non-incineration process, pollutant release, and the current tendency for technology application and development at home and abroad, this article recommends the application countermeasures of non-incineration technologies as the best available techniques and best environmental practices in China.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flynn, Karen; McCormick, Matt
Hanford's DOE offices are responsible for one of the largest nuclear cleanup efforts in the world, cleaning up the legacy of nearly five decades of nuclear weapons production. Nowhere in the DOE Complex is cleanup more challenging than at the Hanford Site in southeastern Washington. Hanford cleanup entails remediation of hundreds of large complex hazardous waste sites; disposition of nine production reactors and the preservation of one as a National Historic Landmark; demolition of hundreds of contaminated facilities including five enormous process canyons; remediation of billions of gallons of contaminated groundwater; disposition of millions of tons of low-level, mixed low-level,more » and transuranic waste; disposition of significant quantities of special nuclear material; storage and ultimate disposition of irradiated nuclear fuel; remediation of contamination deep in the soil that could impact groundwater; decontamination and decommissioning of hundreds of buildings and structures; and treatment of 56 million gallons of radioactive waste in 177 large underground tanks through the construction of a first-of-its-kind Waste Treatment Plant. Cleanup of the Hanford Site is a complex and challenging undertaking. The DOE Richland Operations Office has a vision and a strategy for completing Hanford's cleanup including the transition to post-cleanup activities. Information on the strategy is outlined in the Hanford Site Completion Framework. The framework describes three major components of cleanup - River Corridor, Central Plateau, and Tank Waste. It provides the context for individual cleanup actions by describing the key challenges and approaches for the decisions needed to complete cleanup. The U.S. Department of Energy (DOE), as regulated by the U.S. Environmental Protection Agency (EPA) and Washington State Department of Ecology (Ecology), is implementing a strategy to achieve final cleanup decisions for the River Corridor portion of the Hanford Site. The DOE Richland Operations Office (RL) and DOE Office of River Protection (ORP) have prepared this document to describe the strategy and to begin developing the approach for making cleanup decisions for the remainder of the Hanford Site. DOE's intent is that the Completion Framework document will facilitate dialogue among the Tri-Parties and with Hanford's diverse interest groups, including Tribal Nations, State of Oregon, Hanford Advisory Board, Natural Resource Trustees, and the public. Future cleanup decisions will be enhanced by an improved understanding of the challenges facing cleanup and a common understanding of the goals and approaches for cleanup completion. The overarching goals for cleanup are sevenfold. - Goal 1: Protect the Columbia River. - Goal 2: Restore groundwater to its beneficial use to protect human health, the environment, and the Columbia River. - Goal 3: Clean up River Corridor waste sites and facilities to: Protect groundwater and the Columbia River. Shrink the active cleanup footprint to the Central Plateau, and support anticipated future uses of the land. - Goal 4: Clean up Central Plateau waste sites, tank farms, and facilities to: Protect groundwater. Minimize the footprint of areas requiring long-term waste management activities. Support anticipated future uses of the land. - Goal 5: Safely manage and transfer legacy materials scheduled for off-site disposition including special nuclear material (including plutonium), spent nuclear fuel, transuranic waste, and immobilized high-level waste. - Goal 6: Consolidate waste treatment, storage, and disposal operations on the Central Plateau. - Goal 7: Develop and implement institutional controls and long-term stewardship activities that protect human health, the environment, and Hanford's unique cultural, historical and ecological resources after cleanup activities are completed. These goals embody more than 20 years of dialogue among the Tri-Party Agencies, Tribal Nations, State of Oregon, stakeholders, and the public. They carry forward key values captured in forums such as the Hanford Future Site Uses Working Group, Tank Waste Task Force, Hanford Summits, and Hanford Advisory Board Exposure Scenario Workshops, as well as more than 200 advice letters issued by the Hanford Advisory Board (http://www.hanford.gov/page.cfm/hab). These goals help guide all aspects of Hanford Site cleanup. Cleanup activities at various areas of the site support the achievement of one or more of these goals. These goals help set priorities to apply resources and sequence cleanup efforts for the greatest benefit. These goals reflect DOE's recognition that the Columbia River is a critical resource for the people and ecology of the Pacific Northwest. The 50-mile stretch of the river known as the Hanford Reach is home to the last free-flowing section of the river in the U.S. As one of the largest rivers in North America, its waters support a multitude of uses that are vital to the economic and environmental well being of the region and it is particularly important in sustaining the culture of Native Americans. Cleanup actions must protect this river. (authors)« less
Βedrock instability of underground storage systems in the Czech Republic, Central Europe
NASA Astrophysics Data System (ADS)
Novakova, Lucie; Broz, Milan; Zaruba, Jiri; Sosna, Karel; Najser, Jan; Rukavickova, Lenka; Franek, Jan; Rudajev, Vladimir
2016-06-01
Underground storage systems are currently being used worldwide for the geological storage of natural gas (CH4), the geological disposal of CO2, in geothermal energy, or radioactive waste disposal. We introduce a complex approach to the risks posed by induced bedrock instabilities in deep geological underground storage sites. Bedrock instability owing to underground openings has been studied and discussed for many years. The Bohemian Massif in the Czech Republic (Central Europe) is geologically and tectonically complex. However, this setting is ideal for learning about the instability state of rock masses. Longterm geological and mining studies, natural and induced seismicity, radon emanations, and granite properties as potential storage sites for disposal of radioactive waste in the Czech Republic have provided useful information. In addition, the Czech Republic, with an average concentration radon of 140 Bq m-3, has the highest average radon concentrations in the world. Bedrock instabilities might emerge from microscale features, such as grain size and mineral orientation, and microfracturing. Any underground storage facility construction has to consider the stored substance and the geological settings. In the Czech Republic, granites and granitoids are the best underground storage sites. Microcrack networks and migration properties are rock specific and vary considerably. Moreover, the matrix porosity also affects the mechanical properties of the rocks. Any underground storage site has to be selected carefully. The authors suggest to study the complex set of parameters from micro to macroscale for a particular place and type of rock to ensure that the storage remains safe and stable during construction, operation, and after closure.
Centralized waste treatment of industrial wastewater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saltzberg, E.R.; Cushnie, G.C. Jr.
1985-01-01
Centralized waste treatment (CWT) for industrial wastewater is described in this book. With the CWT approach, industrial firms send their wastes to a common processing plant. The book addresses the engineering and business-related problems that are encountered by private CWT firms, local governments, and industry in creating sufficient CWT capacity to meet the growing demand for CWT services.
Koski, Randolph A.; Lamons, Roberta C.; Dumoulin, Julie A.; Bouse, Robin M.
1993-01-01
The Island Mountain deposit, an anomalous massive sulfide in the Central belt of the Franciscan subduction complex, northern California Coast Ranges, formed during hydrothermal activity in a sediment-dominated paleo-sea-floor environment. Although the base of the massive sulfide is juxtaposed against a 500-m-wide melange band, its gradational upper contact within a coherent sequence of sandstone, siltstone, and mudstone indicates that hydrothermal activity was concurrent with turbidite deposition. Accumulations of sulfide breccia and clastic sulfide were produced by mass wasting of the sulfide mound prior to burial by turbidites. The bulk composition of sulfide samples (pyrrhotite rich; high Cu, As, and Au contents; radiogenic Pb isotope ratios) is consistent with a hydrothermal system dominated by fluid-sediment interaction. On the basis of a comparison with possible contemporary tectonic analogues at the southern Gorda Ridge and the Chile margin triple junction, we propose that massive sulfide mineralization in the Central belt of the Franciscan complex resulted from hydrothermal activity at a late Mesozoic sediment-covered ridge axis prior to collision with the North American plate.
NASA Astrophysics Data System (ADS)
Koski, Randolph A.; Lamons, Roberta C.; Dumoulin, Julie A.; Bouse, Robin M.
1993-02-01
The Island Mountain deposit, an anomalous massive sulfide in the Central belt of the Franciscan subduction complex, northern California Coast Ranges, formed during hydrothermal activity in a sediment-dominated paleo-sea-floor environment. Although the base of the massive sulfide is juxtaposed against a 500-m-wide melange band, its gradational upper contact within a coherent sequence of sandstone, siltstone, and mudstone indicates that hydrothermal activity was concurrent with turbidite deposition. Accumulations of sulfide breccia and clastic sulfide were produced by mass wasting of the sulfide mound prior to burial by turbidites. The bulk composition of sulfide samples (pyrrhotite rich; high Cu, As, and Au contents; radiogenic Pb isotope ratios) is consistent with a hydrothermal system dominated by fluid-sediment interaction. On the basis of a comparison with possible contemporary tectonic analogues at the southern Gorda Ridge and the Chile margin triple junction, we propose that massive sulfide mineralization in the Central belt of the Franciscan complex resulted from hydrothermal activity at a late Mesozoic sediment-covered ridge axis prior to collision with the North American plate.
Benveniste, Helene; Lee, Hedok; Volkow, Nora D
2017-01-01
The overall premise of this review is that cerebrospinal fluid (CSF) is transported within a dedicated peri-vascular network facilitating metabolic waste clearance from the central nervous system while we sleep. The anatomical profile of the network is complex and has been defined as a peri-arterial CSF influx pathway and peri-venous clearance routes, which are functionally coupled by interstitial bulk flow supported by astrocytic aquaporin 4 water channels. The role of the newly discovered system in the brain is equivalent to the lymphatic system present in other body organs and has been termed the "glymphatic pathway" or "(g)lymphatics" because of its dependence on glial cells. We will discuss and review the general anatomy and physiology of CSF from the perspective of the glymphatic pathway, a discovery which has greatly improved our understanding of key factors that control removal of metabolic waste products from the central nervous system in health and disease and identifies an additional purpose for sleep. A brief historical and factual description of CSF production and transport will precede the ensuing discussion of the glymphatic system along with a discussion of its clinical implications.
Codigestion of manure and organic wastes in centralized biogas plants: status and future trends.
Angelidaki, I; Ellegaard, L
2003-01-01
Centralized biogas plants in Denmark codigest mainly manure, together with other organic waste such as industrial organic waste, source sorted household waste, and sewage sludge. Today 22 large-scale centralized biogas plants are in operation in Denmark, and in 2001 they treated approx 1.2 million tons of manure as well as approx 300,000 of organic industrial waste. Besides the centralized biogas plants there are a large number of smaller farm-scale plants. The long-term energy plan objective is a 10-fold increase of the 1998 level of biogas production by the year 2020. This will help to achieve a target of 12-14% of the national energy consumption being provided by renewable energy by the year 2005 and 33% by the year 2030. A major part of this increase is expected to come from new centralized biogas plants. The annual potential for biogas production from biomass resources available in Denmark is estimated to be approx 30 Peta Joule (PJ). Manure comprises about 80% of this potential. Special emphasis has been paid to establishing good sanitation and pathogen reduction of the digested material, to avoid risk of spreading pathogens when applying the digested manure as fertilizer to agricultural soils.
NASA Astrophysics Data System (ADS)
Susmono
2017-03-01
Indonesia is a big country with circa 250 million population, with more than 500 Local Governments and they are going to improve their municiple solid waste dumping method from Open Dumping to Sanitary Landfill (SLF) and to promote Reduce-Reuse-Recycling (3R) since many years ago, and it is strengthened by issuing of Solid Waste Management Act No.18/2008, MSW Government Regulation No.12/2012 and other regulations which are issued by Central Government and Local Governments. During “Water and Sanitation Decade 1980-1990” through “Integrated Urban Infrastructures Development Program” some pilot project such as 30 units of 3R station were developed in the urban areas, and modified or simplification of SLF call Controlled Landfill (CLF) were implemented. In the year of 2002 about 45 units of composting pilot projects were developed under “Western Java Environmental Management Project”, and the result was notified that some of them are not sustain because many aspects. At the beginning of 2007 until now, some pilot projects of 3R were continued in some cities and since 2011 some Waste Banks are growing fast. In the year of 2014 was recorded that of 70 % of 3Rs in Java Island well developed (2014, Directorate of Environment Sanitation Report), and in the year of 2012 was recorded that development of Communal Waste Banks were growing fast during two months from 400 units to 800 units (2012, Ministry of Environment report), now more Communal Waste Banks all ready exist. After the last overview monitoring activity by Ministry of Environment and JICA (2008), because of lack of data is very difficult to give current accurate information of Municiple Solid Waste Handling in Indonesia. Nevertheless some innovation are developed because of impact of many pilot projects, Adipura City Cleanest Competition among Local Governments and growing of the spirit of autonomous policy of Local Governments, but some Local Governments still dependence on Central Government support, both technically and non technically aspects such as new appropriate technology development, new integration management especially between formal and informal organizations, acceleration of community education/empowerment, new required regulations development and law enforcement support. Political will of government. In the beginning, government and people of Indonesia follow the paradigm that municipal solid waste management could be managed by Collecting-Transferring-Dumping system only. This paradigm is appropriate if no problem increase of land providing for solid waste dumping site. Most of local governments are not able to decide it because so many aspects and complexity of problems such as choosing an appropriate technology, finding location for solid waste transfer stations and dumping site, developing of waste management, limitation of affordability, improving people behaviour to increase their low health environment consciousness, as well as lack of professional staffs. Indonesia Ministry of Environment who is responsible for solid waste handling regulations and Ministry of Public Works who is responsible for urban infrastructures development have changed their paradigm that in municipal solid waste handling it is better to reduce as soon as possible. The new approach is to introduce 3R methods from the sources to the solid waste dumping site for minimizing cost of transportation and dumping site area. The Municipal Solid Waste Management Law no 18/2008 stated that municipal solid waste handling consists of Reduction-Reuse-Recycling of waste and running waste management services such as collection of the rest to transport, treat and dumping in the end of the system. Based on the Autonomous Law, the local governments are still the main responsible governments to handle municipal solid waste management in their administrative area. Community participation. During the last few years many solid waste communal and non-governmental organizations were grown and developed, some solid waste communal leaders were born, and solid waste handling motivation and participation of community are grown. To accelerate this situation, the government introduces many training and education to produce more municipal solid waste handling facilitators. Since 2007, environment sanitation motivation activities runs through the yearly Sanitation Jamboree that educate, short train, motivate junior school children and competition among other. Technology innovation. Local governments, with or without central government support, are being to make some improvement how to handle municipal solid waste and through Sister City Program, many innovations were developed such as in Surabaya City (home Takakura composter), Depok (waste separation and composting), Bogor City (management), Malang City, Makasar City and others. The new Closing the Loops of solid waste handling approaches should be introduced in the future to break the bottle neck that always happened in the past. Integration between solid waste management and the farming activities, land plantation rehabilitations, city landscaping and gardening is very urgent to develop, including integration of 3R stakeholders in the region. The challenges. The municipal solid waste problem in urban areas is relative more complicated compared with the same problem in the rural areas. Accurate data collection and analyzing periodically is very important. Road map development and mobilizing of all stake holders both in central government and in local government such as NGOs, private sectors, education and research institutions, civil societies and the community are very urgent. New research action is required to find our new urban municipal solid waste characteristic and our appropriate technology and management to give some input to the central government, local governments and the community or others who involve in the municipal solid waste handling due to the recent fast growing of urban people income and changing of their life style. Conclusion. For the future, the strengthening of central and local governments’ political will is still required including financial mobilization, community education and/or empowerment, law enforcement, technical innovations, management development, providing required urban and regional solid waste management infrastructures, and Public Private Partnership promotion.
ERIC Educational Resources Information Center
Dung, Mohammed Dauda; Makilik, Mangut; Ozoji, Bernadette Ebele
2017-01-01
This study focused on assessment of colleges of education students' knowledge and attitudes toward solid waste management in the North Central zone of Nigeria. The cross-sectional survey design was adopted. A students' knowledge and attitudes toward solid waste management questionnaire were used to collect data from 1,800 students. The findings…
Centralized processing of contact-handled TRU waste feasibility analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-12-01
This report presents work for the feasibility study of central processing of contact-handled TRU waste. Discussion of scenarios, transportation options, summary of cost estimates, and institutional issues are a few of the subjects discussed. (JDL)
Metal recovery by bioleaching of sulfidic mining wastes — Application to a European case study
NASA Astrophysics Data System (ADS)
Guézennec, A. G.; Jacob, J.; Joulian, C.; Dupraz, S.; Menard, Y.; d'Hugues, P.
The non-energy extractive industry (NEEI) of the EU-25 generated a direct turnover of about €40 billion, and provided employment to about 250000 people in 16629 companies in 2004. The use of primary raw materials in the production of other branches of EU industry means they have a central role in guaranteeing industrial and economic sustainability. Nevertheless current demand exceeds production, and so the EU is heavily dependent on minerals and metals imports. In this context of securing access to metals, turning mining wastes into new resources of currently unexploited valuable metals is an important challenge. The mining wastes can contain base and precious metals, but also metalloids and rare earth elements that are nowadays considered as highly critical for the industrial development of the European Union. Nevertheless, the development of alternative routes to conventional processing is still required in order to decrease the cost associated to the treatment of these unconventional resources which are more complex in composition and with lower grades.
Public acceptance for centralized storage and repositories of low-level waste session (Panel)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lutz, H.R.
1995-12-31
Participants from various parts of the world will provide a summary of their particular country`s approach to low-level waste management and the cost of public acceptance for low-level waste management facilities. Participants will discuss the number, geographic location, and type of low-level waste repositories and centralized storage facilities located in their countries. Each will discuss the amount, distribution, and duration of funds to gain public acceptance of these facilities. Participants will provide an estimated $/meter for centralized storage facilities and repositories. The panel will include a brief discussion about the ethical aspects of public acceptance costs, approaches for negotiating acceptance,more » and lessons learned in each country. The audience is invited to participate in the discussion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karagiannidis, A.; Papageorgiou, A., E-mail: apapa@auth.g; Perkoulidis, G.
In Greece more than 14,000 tonnes of infectious hospital waste are produced yearly; a significant part of it is still mismanaged. Only one off-site licensed incineration facility for hospital wastes is in operation, with the remaining of the market covered by various hydroclave and autoclave units, whereas numerous problems are still generally encountered regarding waste segregation, collection, transportation and management, as well as often excessive entailed costs. Everyday practices still include dumping the majority of solid hospital waste into household disposal sites and landfills after sterilization, still largely without any preceding recycling and separation steps. Discussed in the present papermore » are the implemented and future treatment practices of infectious hospital wastes in Central Macedonia; produced quantities are reviewed, actual treatment costs are addressed critically, whereas the overall situation in Greece is discussed. Moreover, thermal treatment processes that could be applied for the treatment of infectious hospital wastes in the region are assessed via the multi-criteria decision method Analytic Hierarchy Process. Furthermore, a sensitivity analysis was performed and the analysis demonstrated that a centralized autoclave or hydroclave plant near Thessaloniki is the best performing option, depending however on the selection and weighing of criteria of the multi-criteria process. Moreover the study found that a common treatment option for the treatment of all infectious hospital wastes produced in the Region of Central Macedonia, could offer cost and environmental benefits. In general the multi-criteria decision method, as well as the conclusions and remarks of this study can be used as a basis for future planning and anticipation of the needs for investments in the area of medical waste management.« less
El Zrelli, Radhouan; Rabaoui, Lotfi; Ben Alaya, Mohsen; Daghbouj, Nabil; Castet, Sylvie; Besson, Philippe; Michel, Sylvain; Bejaoui, Nejla; Courjault-Radé, Pierre
2018-02-01
Temperature, pH and trace elements (F, P, Cr, Cu, Zn, Cd, and Pb) contents were determined in 16 stations as well as in 2 industrial and 2 domestic discharge sources, in the central coastal area of the Gulf of Gabes. Compared to the northern and southern areas of the study area, the highest contents of contaminants were reached in the central area which hosts the coastal industrial complex. The seawater in this central area was also found to be acid and of higher temperature. Based on the Water Pollution Index results, an increasing degradation gradient of the seawater quality was revealed from northern and/or southern stations to central ones, categorized as 'strongly to seriously affected'. Phosphogypsum wastes dumped by the Tunisian Chemical Group (GCT) seem to have continuously degraded the seawater quality in the study area. A rapid intervention is needed to stop the effects on the marine environment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gatemala, Harnchana; Ekgasit, Sanong; Wongravee, Kanet
2017-07-01
A simple, rapid, and environmentally friendly process using hydrogen peroxide, was developed for recovering high purity silver directly from industry and laboratory wastes. Silver ammine complex, [Ag(NH 3 ) 2 ] + Cl - , derived from AgCl were generated and then directly reduced using H 2 O 2 to reliably turn into high purity microcrystalline silver (99.99%) examined by EDS and XRD. Morphology of the recovered silver microcrystals could be selectively tuned by an addition of poly(vinyl pyrrolidone). The main parameters in the recovering process including pH, concentration of Ag + and the mole ratio of H 2 O 2 :Ag + were carefully optimized though the central composite design (CCD). The optimized condition was employed for a trial recovery of 50 L silver ammine complex prepared from a collection of silver-wastes during 3-year research on industrial nanoparticle production. The recovered silver microcrystals >700 g could be recovered with 91.27%. The remaining solution after filtering of the recovered silver microcrystals can be used repeatedly (at least 8 cycles) without losing recovery efficiency. Matrix interferences including Pb 2+ and Cl - play a minimal role in our silver recovery process. Furthermore, the direct usage of the recovered silver microcrystals was demonstrated by using as a raw material of silver clay for creating a set of wearable silver jewelries. Copyright © 2017 Elsevier Ltd. All rights reserved.
Increased memory T cell populations in Pb-exposed children from an e-waste-recycling area.
Cao, Junjun; Xu, Xijin; Zhang, Yu; Zeng, Zhijun; Hylkema, Machteld N; Huo, Xia
2018-03-01
Chronic exposure to heavy metals could affect cell-mediated immunity. The aim of this study was to explore the status of memory T cell development in preschool children from an e-waste recycling area. Blood lead (Pb) levels, peripheral T cell subpopulations, and serum levels of cytokines (IL-2/IL-7/IL-15), relevant to generation and homeostasis of memory T cells were evaluated in preschool children from Guiyu (e-waste-exposed group) and Haojiang (reference group). The correlations between blood Pb levels and percentages of memory T cell subpopulations were also evaluated. Guiyu children had higher blood Pb levels and increased percentages of CD4 + central memory T cells and CD8 + central memory T cells than in the Haojiang group. Moreover, blood Pb levels were positively associated with the percentages of CD4 + central memory T cells. In contrast, Pb exposure contributed marginally in the change of percentages of CD8 + central memory T cells in children. There was no significant difference in the serum cytokine levels between the e-waste-exposed and reference children. Taken together, preschool children from an e-waste recycling area suffer from relatively higher levels of Pb exposure, which might facilitate the development of CD4 + central memory T cells in these children. Copyright © 2017. Published by Elsevier B.V.
Ferreira, Aline A; Welch, James R; Cunha, Geraldo Marcelo; Coimbra, Carlos E A
2016-07-01
The nutritional profile of Indigenous children in Brazil is comparable to those observed in some of the least developed regions of the world. Weight and height growth curves were characterised based on longitudinal data from a local Indigenous population experiencing the double burden of child under-nutrition and adult obesity. Anthropometric data were collected in six waves from 2009-2011 for children <10 in two proximate Xavante villages in Central Brazil. Prevalence rates for stunting, wasting and thinness were calculated using WHO references. Weight and height data were adjusted for generalised additive mixed models to generate growth curves. Prevalence rates of stunting and wasting were high, but cases of thinness and excess weight were negligible. Weight and height began close to WHO medians, but fell substantially before 12 months. Boys but not girls were able to catch-up in weight before age 10. From 3-10 years, height for both sexes remained between -2 and 0 z-scores. Impaired Xavante growth before 1 year followed by inconsistent recovery before 10 years reflects health and wellbeing disparities with regard to the Brazilian national population and a complex epidemiology of growth involving rapid nutritional change.
Wang, Feng; Huisman, Jaco; Meskers, Christina E M; Schluep, Mathias; Stevels, Ab; Hagelüken, Christian
2012-11-01
E-waste is a complex waste category containing both hazardous and valuable substances. It demands for a cost-efficient treatment system which simultaneously liberates and refines target fractions in an environmentally sound way. In most developing countries there is a lack of systems covering all steps from disposal until final processing due to limited infrastructure and access to technologies and investment. This paper introduces the 'Best-of-2-Worlds' philosophy (Bo2W), which provides a network and pragmatic solution for e-waste treatment in emerging economies. It seeks technical and logistic integration of 'best' pre-processing in developing countries to manually dismantle e-waste and 'best' end-processing to treat hazardous and complex fractions in international state-of-the-art end-processing facilities. A series of dismantling trials was conducted on waste desktop computers, IT equipment, large and small household appliances, in order to compare the environmental and economic performances of the Bo2W philosophy with other conventional recycling scenarios. The assessment showed that the performance of the Bo2W scenario is more eco-efficient than mechanical separation scenarios and other local treatment solutions. For equipment containing substantial hazardous substances, it demands the assistance from domestic legislation for mandatory removal and safe handling of such fractions together with proper financing to cover the costs. Experience from Bo2W pilot projects in China and India highlighted key societal factors influencing successful implementation. These include market size, informal competitors, availability of national e-waste legislation, formal take-back systems, financing and trust between industrial players. The Bo2W philosophy can serve as a pragmatic and environmentally responsible transition before establishment of end-processing facilities in developing countries is made feasible. The executive models of Bo2W should be flexibly differentiated for various countries by adjusting to local conditions related to operational scale, level of centralized operations, dismantling depth, combination with mechanical processing and optimized logistics to international end-processors. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Truex, Michael J.; Szecsody, James E.; Qafoku, Nikolla
2014-09-01
Historically, uranium was disposed in waste solutions of varying waste chemistry at the Hanford Site Central Plateau. The character of how uranium was distributed in the vadose zone during disposal, how it has continued to migrate through the vadose zone, and the magnitude of potential impacts on groundwater are strongly influenced by geochemical reactions in the vadose zone. These geochemical reactions can be significantly influenced by the disposed-waste chemistry near the disposal location. This report provides conceptual models and supporting information to describe uranium fate and transport in the vadose zone for both acidic and alkaline wastes discharged at amore » substantial number of waste sites in the Hanford Site Central Plateau. The conceptual models include consideration of how co-disposed acidic or alkaline fluids influence uranium mobility in terms of induced dissolution/precipitation reactions and changes in uranium sorption with a focus on the conditions near the disposal site. This information, when combined with the extensive information describing uranium fate and transport at near background pH conditions, enables focused characterization to support effective fate and transport estimates for uranium in the subsurface.« less
19. CONSTRUCTION PROGRESS PHOTO SHOWING (TYPICALLY COMPLEX) WASTE HOLDING CELL ...
19. CONSTRUCTION PROGRESS PHOTO SHOWING (TYPICALLY COMPLEX) WASTE HOLDING CELL PIPING. INEEL PHOTO NUMBER NRTS-59-3212. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
FY 1996 solid waste integrated life-cycle forecast characteristics summary. Volumes 1 and 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Templeton, K.J.
1996-05-23
For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the physical waste forms, hazardous waste constituents, and radionuclides of the waste expected to be shipped to the CWC from 1996 through the remaining life cycle of the Hanford Site (assumed to extend to 2070). In previous years, forecast data has been reported for a 30-year time period; however, the life-cycle approach was adopted this year tomore » maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to two previous reports: the more detailed report on waste volumes, WHC-EP-0900, FY1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary and the report on expected containers, WHC-EP-0903, FY1996 Solid Waste Integrated Life-Cycle Forecast Container Summary. All three documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on two main characteristics: the physical waste forms and hazardous waste constituents of low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major generators for each waste category and waste characteristic are also discussed. The characteristics of low-level waste (LLW) are described in Appendix A. In addition, information on radionuclides present in the waste is provided in Appendix B. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste is expected to be received at the CWC over the remaining life cycle of the site. Based on ranges provided by the waste generators, this baseline volume could fluctuate between a minimum of about 59,720 cubic meters and a maximum of about 152,170 cubic meters. The range is primarily due to uncertainties associated with the Tank Waste Remediation System (TWRS) program, including uncertainties regarding retrieval of long-length equipment, scheduling, and tank retrieval technologies.« less
Safety evaluation for packaging transportation of equipment for tank 241-C-106 waste sluicing system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calmus, D.B.
1994-08-25
A Waste Sluicing System (WSS) is scheduled for installation in nd waste storage tank 241-C-106 (106-C). The WSS will transfer high rating sludge from single shell tank 106-C to double shell waste tank 241-AY-102 (102-AY). Prior to installation of the WSS, a heel pump and a transfer pump will be removed from tank 106-C and an agitator pump will be removed from tank 102-AY. Special flexible receivers will be used to contain the pumps during removal from the tanks. After equipment removal, the flexible receivers will be placed in separate containers (packagings). The packaging and contents (packages) will be transferredmore » from the Tank Farms to the Central Waste Complex (CWC) for interim storage and then to T Plant for evaluation and processing for final disposition. Two sizes of packagings will be provided for transferring the equipment from the Tank Farms to the interim storage facility. The packagings will be designated as the WSSP-1 and WSSP-2 packagings throughout the remainder of this Safety Evaluation for Packaging (SEP). The WSSP-1 packagings will transport the heel and transfer pumps from 106-C and the WSSP-2 packaging will transport the agitator pump from 102-AY. The WSSP-1 and WSSP-2 packagings are similar except for the length.« less
A fundamental investigation is proposed to provide a technical basis for the development of a novel, liquid-fluidized bed classification (LFBC) technology for the continuous separation of complex waste plastic mixtures for in-process recycling and waste minimization. Although ...
Canister arrangement for storing radioactive waste
Lorenzo, D.K.; Van Cleve, J.E. Jr.
1980-04-23
The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.
Canister arrangement for storing radioactive waste
Lorenzo, Donald K.; Van Cleve, Jr., John E.
1982-01-01
The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.
Hanford science and technology needs statements, 2000
DOE Office of Scientific and Technical Information (OSTI.GOV)
BERLIN, G.T.
In the aftermath of the Cold War, the United States has begun addressing the environmental consequences of five decades of nuclear weapons production. In November 1989, DOE established the Office of Environmental Restoration and Waste Management (EM) as the central authority for cleaning up the DOE weapons complex legacy of pollution, for preventing further environmental contamination, and for instituting responsible environmental management. While performing its tasks, EM found that many aspects of its large and complex mission could not be achieved using existing science and technology or without incurring unreasonable costs, risks, or schedule impacts. Consequently, a process was developedmore » to solicit needs from around the DOE complex and focus the science and technology resources of EM-50, the National Laboratories, private industry, and colleges and universities on those needs. This document describes those needs that the Hanford Site has identified as requiring additional science or technology to complete.« less
Hanford science and technology needs statements, 1999
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berlin, G.T.
In the aftermath of the Cold War, the US has begun addressing the environmental consequences of five decades of nuclear weapons production. In November 1989, DOE established the Office of Environmental Restoration and Waste Management (EM) as the central authority for cleaning up the DOE weapons complex legacy of pollution, for preventing further environmental contamination, and for instituting responsible environmental management. While performing its tasks, EM found that many aspects of its large and complex decisions could not be achieved using existing science and technology or without incurring unreasonable costs, risks, or schedule impacts. Consequently, a process was developed tomore » solicit needs from around the DOE complex and focus the science and technology resources of EM-50, the National Laboratories, private industry, and collages and universities on those needs. This document describes those needs which the Hanford Site has identified as requiring additional science or technology to complete.« less
Geophysical studies of the Syncline Ridge area, Nevada Test Site, Nye County, Nevada
Hoover, D.B.; Hanna, W.F.; Anderson, L.A.; Flanigan, V.J.; Pankratz, L.W.
1982-01-01
A wide variety of geophysical methods were employed to study a proposed nuclear waste site at Syncline Ridge on the Nevada Test Site, Nev. The proposed site was believed to be a relatively undisturbed synclinal structure containing a thick argillite unit of Misslsslppian age, the Eleana Formation unit J, which would be the emplacement medium. Data acquisition for the geophysical studies was constrained because of rugged topography in a block of Tipplpah Limestone overlying the central part of the proposed site. This study employed gravity, magnetic, seismic refraction and reflection, and four distinct electrical methods to try and define the structural integrity and shape of the proposed repository medium. Detailed and regional gravity work revealed complex structure at the site. Magnetics helped only in identifying small areas of Tertiary volcanic rocks because of low magnetization of the rocks. Seismic refraction assisted in identifying near surface faulting and bedrock structure. Difficulty was experienced in obtaining good quality reflection data. This implied significant structural complexity but also revealed the principal features that were supported by other data. Electrical methods were used for fault identification and for mapping of a thick argillaceous unit of the Eleana Formation in which nuclear waste was to be emplaced. The geophysical studies indicate that major faults along the axis of Syncline Ridge and on both margins have large vertical offsets displacing units so as not only to make mining difficult, but also providing potential paths for waste migration to underlying carbonate aquifers. The Eleana Formation appeared heterogeneous, which was inferred to be due to structural complexity. Only a small region in the northwest part of the study area was found to contain a thick and relatively undisturbed volume of host rock.
The report, in three parts, describes the characteristics of the Cleveland (OH) area electroplating industry and an approach and design for a centralized facility to treat cyanide and heavy metal wastes generated by this industry. The facility is termed the Resource Recovery Park...
Ndejjo, Rawlance; Musoke, David; Musinguzi, Geofrey; Halage, Abdullah Ali; Carpenter, David O.; Ssempebwa, John C.
2016-01-01
Poor solid waste management is among the major challenges facing urban slums in developing countries including Uganda. Understanding community concerns and willingness towards involvement in solid waste management improvement initiatives is critical for informing interventions in slums. Methods. We used a cross-sectional study to collect quantitative data from 435 residents in two urban slums in central Uganda. A semistructured questionnaire was used which assessed waste collection practices, separation and disposal methods, concerns regarding solid wastes, and willingness to participate in waste separation and composting. Data was analysed using STATA 12. Results. Food remains (38%) and plastics (37%) formed the biggest proportion of wastes generated in households. Most households (35.9%) disposed of general wastes by open dumping while 27% disposed of plastics by burning. Only 8.8% of households conducted composting while 55% carried out separation for some decomposable wastes. Separation was carried out for only banana peelings and leftover foods for feeding animals. Respondents expressed high willingness to separate (76.6%) and compost (54.9%) solid wastes. Conclusion. Practices in waste disposal and separation were poor despite high willingness to participate in initiatives to improve waste management, highlighting a need for authorities to engage residents of slums to improve their practices. PMID:27066081
Mukama, Trasias; Ndejjo, Rawlance; Musoke, David; Musinguzi, Geofrey; Halage, Abdullah Ali; Carpenter, David O; Ssempebwa, John C
2016-01-01
Poor solid waste management is among the major challenges facing urban slums in developing countries including Uganda. Understanding community concerns and willingness towards involvement in solid waste management improvement initiatives is critical for informing interventions in slums. We used a cross-sectional study to collect quantitative data from 435 residents in two urban slums in central Uganda. A semistructured questionnaire was used which assessed waste collection practices, separation and disposal methods, concerns regarding solid wastes, and willingness to participate in waste separation and composting. Data was analysed using STATA 12. Food remains (38%) and plastics (37%) formed the biggest proportion of wastes generated in households. Most households (35.9%) disposed of general wastes by open dumping while 27% disposed of plastics by burning. Only 8.8% of households conducted composting while 55% carried out separation for some decomposable wastes. Separation was carried out for only banana peelings and leftover foods for feeding animals. Respondents expressed high willingness to separate (76.6%) and compost (54.9%) solid wastes. Practices in waste disposal and separation were poor despite high willingness to participate in initiatives to improve waste management, highlighting a need for authorities to engage residents of slums to improve their practices.
Low-Level Waste Forum notes and summary reports for 1994. Volume 9, Number 3, May-June 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-06-01
This issue includes the following articles: Vermont ratifies Texas compact; Pennsylvania study on rates of decay for classes of low-level radioactive waste; South Carolina legislature adjourns without extending access to Barnwell for out-of-region generators; Southeast Compact Commission authorizes payments for facility development, also votes on petitions, access contracts; storage of low-level radioactive waste at Rancho Seco removed from consideration; plutonium estimates for Ward Valley, California; judgment issued in Ward Valley lawsuits; Central Midwest Commission questions court`s jurisdiction over surcharge rebates litigation; Supreme Court decides commerce clause case involving solid waste; parties voluntarily dismiss Envirocare case; appellate court affirms dismissal ofmore » suit against Central Commission; LLW Forum mixed waste working group meets; US EPA Office of Radiation and Indoor Air rulemakings; EPA issues draft radiation site cleanup regulation; EPA extends mixed waste enforcement moratorium; and NRC denies petition to amend low-level radioactive waste classification regulations.« less
On-site or off-site treatment of medical waste: a challenge
2014-01-01
Treating hazardous-infectious medical waste can be carried out on-site or off-site of health-care establishments. Nevertheless, the selection between on-site and off-site locations for treating medical waste sometimes is a controversial subject. Currently in Iran, due to policies of Health Ministry, the hospitals have selected on-site-treating method as the preferred treatment. The objectives of this study were to assess the current condition of on-site medical waste treatment facilities, compare on-site medical waste treatment facilities with off-site systems and find the best location of medical waste treatment. To assess the current on-site facilities, four provinces (and 40 active hospitals) were selected to participate in the survey. For comparison of on-site and off-site facilities (due to non availability of an installed off-site facility) Analytical Hierarchy Process (AHP) was employed. The result indicated that most on-site medical waste treating systems have problems in financing, planning, determining capacity of installations, operation and maintenance. AHP synthesis (with inconsistency ratio of 0.01 < 0.1) revealed that, in total, the off-site treatment of medical waste was in much higher priority than the on-site treatment (64.1% versus 35.9%). According to the results of study it was concluded that the off-site central treatment can be considered as an alternative. An amendment could be made to Iran’s current medical waste regulations to have infectious-hazardous waste sent to a central off-site installation for treatment. To begin and test this plan and also receive the official approval, a central off-site can be put into practice, at least as a pilot in one province. Next, if it was practically successful, it could be expanded to other provinces and cities. PMID:24739145
Assessment of environmental policy implementation in solid waste management in Kathmandu, Nepal.
Dangi, Mohan B; Schoenberger, Erica; Boland, John J
2017-06-01
In Nepal, full-fledged environmental legislation was rare before the democratic constitution of 1990. The first law covering the environment and sustainability was the Environment Protection Act 1997. While the Solid Waste Act was introduced in 1987, the problem of solid waste management still surfaces in Kathmandu. In order to understand the bedrock of this unrelenting failure in solid waste management, the manuscript digs deeper into policy implementation by dissecting solid waste rules, environmental legislations, relevant local laws, and solid waste management practices in Kathmandu, Nepal. A very rich field study that included surveys, interviews, site visits, and literature review provided the basis for the article. The study shows that volumes of new Nepalese rules are crafted without effective enforcement of their predecessors and there is a frequent power struggle between local government bodies and central authority in implementing the codes and allocating resources in solid waste management. The study concludes that Kathmandu does not require any new instrument to address solid waste problems; instead, it needs creation of local resources, execution of local codes, and commitment from central government to allow free exercise of these policies.
Process for the displacement of cyanide ions from metal-cyanide complexes
Smith, Barbara F.; Robinson, Thomas W.
1997-01-01
The present invention relates to water-soluble polymers and the use of such water-soluble polymers in a process for the displacement of the cyanide ions from the metal ions within metal-cyanide complexes. The process waste streams can include metal-cyanide containing electroplating waste streams, mining leach waste streams, mineral processing waste streams, and related metal-cyanide containing waste streams. The metal ions of interest are metals that give very strong complexes with cyanide, mostly iron, nickel, and copper. The physical separation of the water-soluble polymer-metal complex from the cyanide ions can be accomplished through the use of ultrafiltration. Once the metal-cyanide complex is disrupted, the freed cyanide ions can be recovered for reuse or destroyed using available oxidative processes rendering the cyanide nonhazardous. The metal ions are released from the polymer, using dilute acid, metal ion oxidation state adjustment, or competing chelating agents, and collected and recovered or disposed of by appropriate waste management techniques. The water-soluble polymer can then be recycled. Preferred water-soluble polymers include polyethyleneimine and polyethyleneimine having a catechol or hydroxamate group.
Compatibility analysis of material and energy recovery in a regional solid waste management system.
Chang, Ying-Hsi; Chang, Ni-Bin
2003-01-01
The rising prices of raw materials and concerns about energy conservation have resulted in an increasing interest in the simultaneous recovery of materials and energy from waste streams. Compatibility exists for several economic, environmental, and managerial reasons. Installing an on-site or off-site presorting facility before an incinerator could be a feasible alternative to achieve both goals if household recycling programs cannot succeed in local communities. However, the regional impacts of presorting solid waste on a waste-to-energy facility remain unclear because of the inherent complexity of solid waste compositions and properties over different areas. This paper applies a system-based approach to assess the impact of installing a refuse-derived fuel (RDF) process before an incinerator. Such an RDF process, consisting of standard unit operations of shredding, magnetic separation, trommel screening, and air classification, might be useful for integrating the recycling and presorting efforts for a large-scale municipal incinerator from a regional sense. An optimization modeling analysis is performed to characterize such integration potential so that the optimal size of the RDF process and associated shipping patterns for flow control can be foreseen. It aims at exploring how the waste inflows with different rates of generation, physical and chemical compositions, and heating values collected from differing administrative districts can be processed by either a centralized presorting facility or an incinerator to meet both the energy recovery and throughput requirements. A case study conducted in Taipei County, which is one of the most densely populated metropolitan areas in Taiwan, further confirms the application potential of such a cost-benefit analysis.
Central Plateau Cleanup at DOE's Hanford Site - 12504
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowell, Jonathan
The discussion of Hanford's Central Plateau includes significant work in and around the center of the Hanford Site - located about 7 miles from the Columbia River. The Central Plateau is the area to which operations will be shrunk in 2015 when River Corridor cleanup is complete. This work includes retrieval and disposal of buried waste from miles of trenches; the cleanup and closure of massive processing canyons; the clean-out and demolition to 'slab on grade' of the high-hazard Plutonium Finishing Plant; installation of key groundwater treatment facilities to contain and shrink plumes of contaminated groundwater; demolition of all othermore » unneeded facilities; and the completion of decisions about remaining Central Plateau waste sites. A stated goal of EM has been to shrink the footprint of active cleanup to less than 10 square miles by 2020. By the end of FY2011, Hanford will have reduced the active footprint of cleanup by 64 percent exceeding the goal of 49 percent. By 2015, Hanford will reduce the active footprint of cleanup by more than 90 percent. The remaining footprint reduction will occur between 2015 and 2020. The Central Plateau is a 75-square-mile region near the center of the Hanford Site including the area designated in the Hanford Comprehensive Land Use Plan Environmental Impact Statement (DOE 1999) and Record of Decision (64 FR 61615) as the Industrial-Exclusive Area, a rectangular area of about 20 square miles in the center of the Central Plateau. The Industrial-Exclusive Area contains the 200 East and 200 West Areas that have been used primarily for Hanford's nuclear fuel processing and waste management and disposal activities. The Central Plateau also encompasses the 200 Area CERCLA National Priorities List site. The Central Plateau has a large physical inventory of chemical processing and support facilities, tank systems, liquid and solid waste disposal and storage facilities, utility systems, administrative facilities, and groundwater monitoring wells. As a companion to the Hanford Site Cleanup Completion Framework document, DOE issued its draft Central Plateau Cleanup Completion Strategy in September 2009 to provide an outline of DOE's vision for completion of cleanup activities across the Central Plateau. As major elements of the Hanford cleanup along the Columbia River Corridor near completion, DOE believed it appropriate to articulate the agency vision for the remainder of the cleanup mission. The Central Plateau Cleanup Completion Strategy and the Hanford Site Cleanup Completion Framework were provided to the regulatory community, the Tribal Nations, political leaders, the public, and Hanford stakeholders to promote dialogue on Hanford's future. The Central Plateau Cleanup Completion Strategy describes DOE's vision for completion of Central Plateau cleanup and outlines the decisions needed to achieve the vision. The Central Plateau strategy involves steps to: (1) contain and remediate contaminated groundwater, (2) implement a geographic cleanup approach that guides remedy selection from a plateau-wide perspective, (3) evaluate and deploy viable treatment methods for deep vadose contamination to provide long-term protection of the groundwater, and (4) conduct essential waste management operations in coordination with cleanup actions. The strategy will also help optimize Central Plateau readiness to use funding when it is available upon completion of River Corridor cleanup projects. One aspect of the Central Plateau strategy is to put in place the process to identify the final footprint for permanent waste management and containment of residual contamination within the 20-square-mile Industrial-Exclusive Area. The final footprint identified for permanent waste management and containment of residual contamination should be as small as practical and remain under federal ownership and control for as long as a potential hazard exists. Outside the final footprint, the remainder of the Central Plateau will be available for other uses consistent with the Hanford Comprehensive Land-Use Plan (DOE 1999), while maintained under federal ownership and control. (author)« less
Integrated waste management system costs in a MPC system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Supko, E.M.
1995-12-01
The impact on system costs of including a centralized interim storage facility as part of an integrated waste management system based on multi-purpose canister (MPC) technology was assessed in analyses by Energy Resources International, Inc. A system cost savings of $1 to $2 billion occurs if the Department of Energy begins spent fuel acceptance in 1998 at a centralized interim storage facility. That is, the savings associated with decreased utility spent fuel management costs will be greater than the cost of constructing and operating a centralized interim storage facility.
Management of Hazardous Waste in Indonesia
NASA Astrophysics Data System (ADS)
Widyatmoko, H.
2018-01-01
Indonesia needs to build four Treatment Centrals for 229,907 tons per year produced hazardous waste. But almost all hazardous waste treatment is managed by just one company at present, namely PT. PPLI (Prasada Pamunah Limbah Industri). This research is based on collected data which identifies payback period of 0.69 years and rate of return 85 %. PT PPLI is located within the Cileungsi District of the Bogor Regency of West Java Province. Records from nearest rainfall station at Cibinong indicate that annual average rainfall for the site is about 3,600 mm. It is situated on hilly terrain and is characterized by steep slopes as well as has a very complex geological structure. The Tertiary sequence was folded to form an assymetric anticline with axis trend in an East-West direction. Three major faults cut the middle of the site in a North-South direction with a vertical displacement of about 1.5 meters and a zone width of 1 meter. The high concentration of Chemical Oxygen Demand (COD) 2500 ppm in Secondary Leachate Collection System (SLCS) indicate a possible failure of the Primary Leachate Clection System (PLCS), which need correct action to prevent groundwater contamination.
Comparative analysis of hazardous household waste in two Mexican regions.
Delgado, Otoniel Buenrostro; Ojeda-Benítez, Sara; Márquez-Benavides, Liliana
2007-01-01
Household hazardous waste (HHW) generation in two Mexican regions was examined, a northern region (bordering with the USA) and a central region. The aim of this work was to determine the dynamics of solid waste generation and to be able to compare the results of both regions, regarding consumption patterns and solid waste generation rates. In the northern region, household solid waste was analysed quantitatively. In order to perform this analysis, the population was categorized into three socioeconomic strata (lower, middle, upper). Waste characterization revealed the presence of products that give origin to household hazardous waste. In the northern region (Mexicali city), household hazardous waste comprised 3.7% of municipal solid waste, the largest categories in this fraction were home care products (29.2%), cleaning products (19.5%) and batteries and electronic equipment (15.7%). In the central region, HHW comprised 1.03% of municipal solid waste; the main categories in this fraction were represented by cleaning products (39%), self care products (27.3%), and insecticides (14.4%). In Mexicali, the socioeconomic study demonstrated that the production of HHW is independent of the income level. Furthermore, the composition of the solid waste stream in both regions suggested the influence of another set of variables such as local climate, migration patterns and marketing coverage. Further research is needed in order to establish the effect of low quantities of HHW upon the environment and public health.
Topography and Geomorphology of the Interior of Occator Crater on Ceres
NASA Astrophysics Data System (ADS)
Jaumann, Ralf
2017-04-01
With a diameter of 92km, Occator is one of the most prominent craters on Ceres. Its depth ranges from 4.8km along the crater rim to -1.1km at the crater floor with respect to a reference ellipsoid. Occator shows a set of specific features such as post impact formation crater filling including multiple flow features, a central pit with a dome in its center, extensional tectonics expressed as linear radial and concentric graben, and spectral variations indicating a complex formation process. We processed 550 LAMO stereo images from Cycle01-Cycle11 with a resolution of 35m/pixel to generate a high-resolution digital terrain model (DTM) of the Occator impact structure. Occator crater has mass wasting deposits originating from the crater rims and walls, which extend into the crater for 10 to 20km. However, in the southeast and northeast these mass wasting deposits are completely covered by crater floor plains material that extends from the crater center to the rim, ponding against the crater walls. The flows also superimpose the mass wasting deposits from the rims [1]. Furthermore, crater densities on Occator's interior deposits are slightly lower than on its ejecta blanket, indicating post-impact formation or target parameter variation between consolidated melt and unconsolidated ejecta deposits [2,3,4]. The terrain northwest of the central area is very rough, shows mass wasting deposits and is about 2km thick w.r.t the rim of the central pit. The plains to the southeast are smooth, pond against the crater wall, and are less than 500m thick w.r.t. the rim of the central pit The central pit is about 3.5km wide and 600m deep while the dome rises 250m within the pit [5]. In the northeast, multiple flows approaching the crater rim very closely. These flow plains are also less than 500m thick w.r.t. the rim of the central pit. Some of the flows seem to have been superposed on the lower parts of the crater wall and then flowed back into depressions of the plains. The flows to the northeast appear to originate from the central region and move slightly uphill. This indicates either a feeding zone that pushes the flows forward by supplying low-viscosity material or an extended subsidence of the crater center, possibly after discharging a subsurface reservoir [1,2], or lateral oscillations of an impact melt sheet during emplacement. The plains material covers an area of about 4750km2 with an average depth of about 250m resulting in a body of plains material of about 1200km3. The plains material is slightly younger than the impact event and the bright deposits are even younger than the plains material. Post impact processes might be due to impact melt, hydrothermal alteration, or cryovolcanic crater filling [1] K. Krohn et al, GRL43, 11994, (2016). [2] R. Jaumann et al., LPSC47, 1455 (2016). [3] N. Schmedemann et al, GRL43, 11987. (2016) [4] A. Neesemann, et al., Icarus, in prep. [5] P. Schenk, et al., LPSC47 (2016).
Cano-Terriza, D; Risalde, M A; Jiménez-Ruiz, S; Vicente, J; Isla, J; Paniagua, J; Moreno, I; Gortázar, C; Infantes-Lorenzo, J A; García-Bocanegra, I
2018-03-13
In recent decades, habitat change and the intensive management of wild ungulates for hunting have led to an increase in their populations in south-central Spain. This implies a higher generation of hunting waste, which can favour the transmission of infectious diseases, including tuberculosis (TB). The aim of this study was to assess the usefulness of the proper disposal of hunting waste as TB control measure in wild boar (Sus scrofa) and red deer (Cervus elaphus) during the 2008/2009 to 2016/2017 hunting seasons. Blood samples from 664 wild boar and 934 red deer were obtained in 14 game estates in two provinces in Andalusia (Area 1), where the disposal of hunting waste was implemented since the 2012/2013 hunting season. Besides, six game estates in the province of Ciudad Real, in Castilla-La Mancha (Area 2), an adjacent region where this management measure was not implemented during the studied period, were used as controls, sampling 277 wild boar and 427 red deer sera. The Mycobacterium tuberculosis complex (MTC), seroprevalence detected in wild boar from Area 1, was significantly higher before the disposal of big game hunting by-products (82.8%; 2008/2009-2012/2013) compared to the second period (61.8%; 2013/2014-2016/2017) (p < .001), after this control measure became established. By contrast, no significant differences between periods were found in wild boar (41.3% versus 44.8%; p = .33) and red deer (14.9% versus 11.6%; p = .19) from Area 2 as well as in red deer (10.8% versus 10.5%; p = .48) from Area 1. The proper disposal of hunting waste contributed to achieve a 25% reduction in MTC seroprevalence in wild boar. These results are of particular relevance regarding wild boar in the current context of re-emerging and emerging diseases such as TB and African Swine Fever in Europe. Further studies are needed to assess the effect of this measure on the health status of livestock and other wildlife species. © 2018 Blackwell Verlag GmbH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-12-01
This report assesses the water quality related benefits that would be expected if the US Environmental Protection Agency (EPA) adopts the proposed effluent limitations, guidelines and pretreatment standards for the Centralized Waste Treatment (CWT) Industry. EPA estimates that under baseline conditions 205 CWT facilities discharge approximately 5.22 million lbs/year of metal and organic pollutants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cafferty, Kara Grace
This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, Modification 1, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2015, through October 31, 2016.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory, Louis
This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of waste shipments to the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. This report summarizes the 1st quarter of fiscal year (FY) 2017 low-level radioactive waste (LLW), mixed low-level radioactive waste (MLLW) and classified non-radioactive (CNR) shipments. There were no shipments sent for offsite treatment from a NNSS facility and returned to the NNSS this quarter of FY2017.
Data Quality Objectives Process for Designation of K Basins Debris
DOE Office of Scientific and Technical Information (OSTI.GOV)
WESTCOTT, J.L.
2000-05-22
The U.S. Department of Energy has developed a schedule and approach for the removal of spent fuels, sludge, and debris from the K East (KE) and K West (KW) Basins, located in the 100 Area at the Hanford Site. The project that is the subject of this data quality objective (DQO) process is focused on the removal of debris from the K Basins and onsite disposal of the debris at the Environmental Restoration Disposal Facility (ERDF). This material previously has been dispositioned at the Hanford Low-Level Burial Grounds (LLBGs) or Central Waste Complex (CWC). The goal of this DQO processmore » and the resulting Sampling and Analysis Plan (SAP) is to provide the strategy for characterizing and designating the K-Basin debris to determine if it meets the Environmental Restoration Disposal Facility Waste Acceptance Criteria (WAC), Revision 3 (BHI 1998). A critical part of the DQO process is to agree on regulatory and WAC interpretation, to support preparation of the DQO workbook and SAP.« less
Screening tests for hazard classification of complex waste materials - Selection of methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weltens, R., E-mail: reinhilde.weltens@vito.be; Vanermen, G.; Tirez, K.
In this study we describe the development of an alternative methodology for hazard characterization of waste materials. Such an alternative methodology for hazard assessment of complex waste materials is urgently needed, because the lack of a validated instrument leads to arbitrary hazard classification of such complex waste materials. False classification can lead to human and environmental health risks and also has important financial consequences for the waste owner. The Hazardous Waste Directive (HWD) describes the methodology for hazard classification of waste materials. For mirror entries the HWD classification is based upon the hazardous properties (H1-15) of the waste which canmore » be assessed from the hazardous properties of individual identified waste compounds or - if not all compounds are identified - from test results of hazard assessment tests performed on the waste material itself. For the latter the HWD recommends toxicity tests that were initially designed for risk assessment of chemicals in consumer products (pharmaceuticals, cosmetics, biocides, food, etc.). These tests (often using mammals) are not designed nor suitable for the hazard characterization of waste materials. With the present study we want to contribute to the development of an alternative and transparent test strategy for hazard assessment of complex wastes that is in line with the HWD principles for waste classification. It is necessary to cope with this important shortcoming in hazardous waste classification and to demonstrate that alternative methods are available that can be used for hazard assessment of waste materials. Next, by describing the pros and cons of the available methods, and by identifying the needs for additional or further development of test methods, we hope to stimulate research efforts and development in this direction. In this paper we describe promising techniques and argument on the test selection for the pilot study that we have performed on different types of waste materials. Test results are presented in a second paper. As the application of many of the proposed test methods is new in the field of waste management, the principles of the tests are described. The selected tests tackle important hazardous properties but refinement of the test battery is needed to fulfil the a priori conditions.« less
A probabilistic assessment of waste water injection induced seismicity in central California
NASA Astrophysics Data System (ADS)
Goebel, T.; Hauksson, E.; Ampuero, J. P.; Aminzadeh, F.; Cappa, F.; Saleeby, J.
2014-12-01
The recent, large increase in seismic activity within the central and eastern U.S. may be connected to an increase in fluid injection activity since ~2001. Anomalous seismic sequences can easily be identified in regions with low background seismicity rates. Here, we analyze seismicity in plate boundary regions where tectonically-driven earthquake sequences are common, potentially masking injection-induced events. We show results from a comprehensive analysis of waste water disposal wells in Kern county, the largest oil-producing county in California. We focus on spatial-temporal correlations between seismic and injection activity and seismicity-density changes due to injection. We perform a probabilistic assessment of induced vs. tectonic earthquakes, which can be applied to different regions independent of background rates and may provide insights into the probability of inducing earthquakes as a function of injection parameters and local geological conditions. Our results show that most earthquakes are caused by tectonic forcing, however, waste water injection contributes to seismic activity in four different regions with several events above M4. The seismicity shows different migration characteristics relative to the injection sites, including linear and non-linear trends. The latter is indicative of diffusive processes which take advantage of reservoir properties and fault structures and can induce earthquakes at distances of up to 10 km. Our results suggest that injection-related triggering processes are complex, possibly involving creep, and delayed triggering. Pore-pressure diffusion may be more extensive in the presence of active faults and high-permeability damage zones thus altering the local seismic hazard in a non-linear fashion. As a consequence, generic "best-practices" for fluid injections like a maximum distance from the nearest active fault may not be sufficient to mitigate a potential seismic hazard increase.
2013-03-31
certainly remain comingled with other solid waste. For example, some bases provided containers for segregation of recyclables including plastic and...prevalent types of solid waste are food (19.1% by average sample weight), wood (18.9%), and plastics (16.0%) based on analysis of bases in...within the interval shown. Food and wood wastes are the largest components of the average waste stream (both at ~19% by weight), followed by plastic
7 CFR 1980.313 - Site and building requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... surface. (c) Water and water/waste disposal system. A nonfarm tract on which a loan is to be made must have an adequate water and water/waste disposal system and other related facilities. Water and water... site is served by a privately owned and centrally operated water and water/waste disposal system, the...
Okuda, Itaru; Thomson, Vivian E
2007-07-01
The proximity principle - disposing of waste close to its origin - has been a central value in municipal solid waste (MSW) management in Japan for the last 30 years and its widespread adoption has helped resolve numerous "Not in My Backyard" issues related to MSW management. However, MSW management costs have soared, in large part because of aggressive recycling efforts and because most MSW is incinerated in a country that has scarce landfill capacity. In addition, smaller, less sophisticated incinerators have been closed because of high dioxin emissions. Rising costs combined with the closure of smaller incinerators have shifted MSW management policy toward regionalization, which is the sharing of waste management facilities across municipalities. Despite the increased use of regionalized MSW facilities, the proximity principle remains the central value in Japanese MSW management. Municipal solid waste management has become increasingly regionalized in the United States, too, but different driving forces are at work in these two countries. The transition to regionalized MSW management in Japan results from strong governmental control at all levels, with the central government providing funds and policy direction and prefectures and municipalities being the primary implementing authorities. By contrast, market forces are a much stronger force with US MSW management, where local governments - with state government oversight - have primary responsibility for MSW management. We describe recent changes in Japan's MSW programs. We examine the connections between MSW facility regionalization, on the one hand, and, on the other hand, the proximity principle, coordination among local governments, central government control, and financing mechanisms.
Evapotranspiration Cover for the 92-Acre Area Retired Mixed Waste Pits:Interim CQA Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
The Delphi Groupe, Inc., and J. A. Cesare and Associates, Inc.
This Interim Construction Quality Assurance (CQA) Report is for the 92-Acre Evapotranspiration Cover, Area 5 Waste Management Division (WMD) Retired Mixed Waste Pits, Nevada National Security Site, Nevada for the period of January 20, 2011 to May 12, 2011. This Interim Construction Quality Assurance (CQA) Report is for the 92-Acre Evapotranspiration Cover, Area 5 Waste Management Division (WMD) Retired Mixed Waste Pits, Nevada National Security Site, Nevada for the period of January 20, 2011 to May 12, 2011. Construction was approved by the Nevada Division of Environmental Protection (NDEP) under the Approval of Corrective Action Decision Document/Corrective Action Plan (CADD/CAP)more » for Corrective Action Unit (CAU) 111: Area 5 WMD Retired Mixed Waste Pits, Nevada National Security Site, Nevada, on January 6, 2011, pursuant to Subpart XII.8a of the Federal Facility Agreement and Consent Order. The project is located in Area 5 of the Radioactive Waste Management Complex (RWMC) at the Nevada National Security Site (NNSS), formerly known as the Nevada Test Site, located in southern Nevada, approximately 65 miles northwest of Las Vegas, Nevada, in Nye County. The project site, in Area 5, is located in a topographically closed basin approximately 14 additional miles north of Mercury Nevada, in the north-central part of Frenchman Flat. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. The 92-Acre Area encompasses the southern portion of the Area 5 RWMS, which has been designated for the first final closure operations. This area contains 13 Greater Confinement Disposal (GCD) boreholes, 16 narrow trenches, and 9 broader pits. With the exception of two active pits (P03 and P06), all trenches and pits in the 92-Acre Area had operational covers approximately 2.4 meters thick, at a minimum, in most areas when this project began. The units within the 92-Acre Area are grouped into the following six informal categories based on physical location, waste types and regulatory requirements: (1) Pit 3 Mixed Waste Disposal Unit (MWDU); (2) Corrective Action Unit (CAU) 111; (3) CAU 207; (4) Low-level waste disposal units; (5) Asbestiform low-level waste disposal units; and (6) One transuranic (TRU) waste trench.« less
Fernandez, Mario
1983-01-01
Solid waste is defined along with various methods of disposal and the hydrogeologic factors to be considered when locating land-fills is presented. Types of solid waste, composition, and sources are identified. Generation of municipal solid waste in Florida has been estimated at 4.5 pounds per day per person or about 7.8 million tons per year. Leachate is generated when precipitation and ground water percolate through the waste. Gases, mainly carbon dioxide and methane, are also produced. Leachate generally contains high concentrations of dissolved organic and inorganic matter. The two typical hydrogeologic conditions in west-central Florida are (1) permeable sand overlying clay and limestone and (2) permeable sand overlying limestone. These conditions are discussed in relation to leachate migration. Factors in landfill site selection are presented and discussed, followed by a discussion on monitoring landfills. Monitoring of landfills includes the drilling of test holes, measuring physical properties of the corings, installation of monitoring wells, and water-quality monitoring. (USGS)
Journey to the Nevada Test Site Radioactive Waste Management Complex
None
2018-01-16
Journey to the Nevada Test Site Radioactive Waste Management Complex begins with a global to regional perspective regarding the location of low-level and mixed low-level waste disposal at the Nevada Test Site. For decades, the Nevada National Security Site (NNSS) has served as a vital disposal resource in the nation-wide cleanup of former nuclear research and testing facilities. State-of-the-art waste management sites at the NNSS offer a safe, permanent disposal option for U.S. Department of Energy/U.S. Department of Defense facilities generating cleanup-related radioactive waste.
ERIC Educational Resources Information Center
Downey-Franchuk, Andrea J.
Society has become increasingly aware of the harmful effects that the disposal of chemical waste products have on the environment and human health. Public information is central to the development of a responsible waste management plan. The activities contained in this guide are organized in sequence from kindergarten to grade 12, and provide…
Central waste processing system
NASA Technical Reports Server (NTRS)
Kester, F. L.
1973-01-01
A new concept for processing spacecraft type wastes has been evaluated. The feasibility of reacting various waste materials with steam at temperatures of 538 - 760 C in both a continuous and batch reactor with residence times from 3 to 60 seconds has been established. Essentially complete gasification is achieved. Product gases are primarily hydrogen, carbon dioxide, methane, and carbon monoxide. Water soluble synthetic wastes are readily processed in a continuous tubular reactor at concentrations up to 20 weight percent. The batch reactor is able to process wet and dry wastes at steam to waste weight ratios from 2 to 20. Feces, urine, and synthetic wastes have been successfully processed in the batch reactor.
Management of construction and demolition wastes as secondary building resources
NASA Astrophysics Data System (ADS)
Manukhina, Lyubov; Ivanova, Irina
2017-10-01
The article analyzes the methods of management of construction and demolition wastes. The authors developed suggestions for improving the management system of the turnover of construction and demolition wastes. Today the issue of improving the management of construction and demolition wastes is of the same importance as problems of protecting the life-support field from pollution and of preserving biological and land resources. The authors educed the prospective directions and methods for improving the management of the turnover processes for construction and demolition wastes, including the evaluation of potential of wastes as secondary raw materials and the formation of a centralized waste management system.
Vijayan, S.; Wong, C.F.; Buckley, L.P.
1994-11-22
In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved. 1 fig.
Vijayan, Sivaraman; Wong, Chi F.; Buckley, Leo P.
1994-01-01
In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved.
System for decision analysis support on complex waste management issues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shropshire, D.E.
1997-10-01
A software system called the Waste Flow Analysis has been developed and applied to complex environmental management processes for the United States Department of Energy (US DOE). The system can evaluate proposed methods of waste retrieval, treatment, storage, transportation, and disposal. Analysts can evaluate various scenarios to see the impacts to waste slows and schedules, costs, and health and safety risks. Decision analysis capabilities have been integrated into the system to help identify preferred alternatives based on a specific objectives may be to maximize the waste moved to final disposition during a given time period, minimize health risks, minimize costs,more » or combinations of objectives. The decision analysis capabilities can support evaluation of large and complex problems rapidly, and under conditions of variable uncertainty. The system is being used to evaluate environmental management strategies to safely disposition wastes in the next ten years and reduce the environmental legacy resulting from nuclear material production over the past forty years.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, W.
1998-12-01
This report estimates the economic and financial effects and the benefits of compliance with the proposed effluent limitations guidelines and standards for the Centralized Waste Treatment (CWT) industry. The Environmental Protection Agency (EPA) has measured these impacts in terms of changes in the profitability of waste treatment operations at CWT facilities, changes in market prices to CWT services, and changes in the quantities of waste management at CWT facilities in six geographic regions. EPA has also examined the impacts on companies owning CWT facilities (including impacts on small entities), on communities in which CWT facilities are located, and on environmentalmore » justice. EPA examined the benefits to society of the CWT effluent limitations guidelines and standards by examining cancer and non-cancer health effects of the regulation, recreational benefits, and cost savings to publicly owned treatment works (POTWs) to which indirect-discharging CWT facilities send their wastewater.« less
Jozi, S A; Majd, N Moradi
2014-10-01
This research was carried out with the aim of presenting an environmental management plan for steel production complex (SPC) in central Iran. Following precise identification of the plant activities as well as the study area, possible sources of environmental pollution and adverse impacts on the air quality, water, soil, biological environment, socioeconomic and cultural environment, and health and safety of the employees were determined considering the work processes of the steel complex. Afterwards, noise, wastewater, and air pollution sources were measured. Subsequently, factors polluting the steel complex were identified by TOPSIS and then prioritized using Excel Software. Based on the obtained results, the operation of the furnaces in hot rolling process with the score 1, effluent derived from hot rolling process with the score 0.565, nonprincipal disposal and dumping of waste at the plant enclosure with the score 0.335, walking beam process with the score 1.483 respectively allocated themselves the highest priority in terms of air, water, soil and noise pollution. In terms of habitats, land cover and socioeconomic and cultural environment, closeness to the forest area and the existence of four groups of wildlife with the score 1.106 and proximity of villages and residential areas to the plant with the score 3.771 respectively enjoyed the highest priorities while impressibility and occupational accidents with the score 2.725 and cutting and welding operations with score 2.134 had the highest priority among health and safety criteria. Finally, strategies for the control of pollution sources were identified and Training, Monitoring and environmental management plan of the SPC was prepared.
ERIC Educational Resources Information Center
Akintola, B. A.; Temowo, O. O.; Ajiboye, J. O.
2009-01-01
Environmental information has been described as central to the issues of solid waste management and disposal. This study investigated the availability and accessibility of environmental information to the solid waste policy formulators and implementors with regard to the media/channels used for disseminating environmental information to the…
Code of Federal Regulations, 2012 CFR
2012-07-01
... § 437.42(d). (e) Combined waste receipts from subparts B and C of this part: Limitations for BOD5, O&G... CENTRALIZED WASTE TREATMENT POINT SOURCE CATEGORY Multiple Wastestreams § 437.43 Effluent limitations... combines treated or untreated wastes from subparts A, B, or C of this part may be subject to Multiple...
Siting Patterns of Nuclear Waste Repositories.
ERIC Educational Resources Information Center
Solomon, Barry D.; Shelley, Fred M.
1988-01-01
Provides an inventory of international radioactive waste-management policies and repository siting decisions for North America, Central and South America, Europe, Asia, and Africa. This discussion stresses the important role of demographic, geologic, and political factors in siting decisions. (Author/BSR)
Wells, J.G.; Drellack, S.L.
1983-01-01
The H-10 borehole complex, a group of three closely spaced boreholes, is located 3 1/2 miles southeast of the proposed Waste Isolation Pilot Plant site in west-central Lea County, New Mexico. The geological data presented in this report are part of a site-characterization study for the possible storage of defense-associated radioactive wastes within salt beds of the Salado Formation of Permian age. Each borehole was designated to penetrate a distinct water-bearing zone: H-10a (total depth 1 ,318 feet) was completed just below the Magenta Dolomite Member of the Rustler Formation of Permian age; H-10b (total depth 1 ,398 feet) was completed just below the Culebra Dolomite Member of the Rustler Formation; and H-10c (total depth 1,538 feet) was completed below the Rustler Formation-Salado Formation contact. The geologic units penetrated in borehole H-10c are surficial alluvium and eolian sand of Holocene age (0-5 feet); the Mescalero caliche (5-9 feet) and the Gatuna Formation (9-90 feet) of Pleistocene age; formation in the Dockum Group (Chinle Formation, 90-482 feet and Santa Rosa Sandstone, 482-658 feet) of Late Triassic age; and the Dewey Lake Red Beds (658-1,204 feet), the Rustler Formation (1,204-1,501 feet), and part of the Salado Formation (1,501-1,538 feet), all of Permian age. The sections of the Rustler and Salado Formations penetrated by borehole H-10c are complete and contain little or no evidence of dissolution of halite and associated rocks, indicating that the eastward-moving dissolution on top of the Salado, found just to the west of the WIPP site, has not reached the H-10 site. (USGS)
NASA Technical Reports Server (NTRS)
Francis, A. J.; Dodge, C. J.
1993-01-01
A process has been developed at Brookhaven National Laboratory (BNL) for the removal of metals and radionuclides from contaminated materials, soils, and waste sites. In this process, citric acid, a naturally occurring organic complexing agent, is used to extract metals such as Ba, Cd, Cr, Ni, Zn, and radionuclides Co, Sr, Th, and U from solid wastes by formation of water soluble, metal-citrate complexes. Citric acid forms different types of complexes with the transition metals and actinides, and may involve formation of a bidentate, tridentate, binuclear, or polynuclear complex species. The extract containing radionuclide/metal complex is then subjected to microbiological degradation followed by photochemical degradation under aerobic conditions. Several metal citrate complexes are biodegraded, and the metals are recovered in a concentrated form with the bacterial biomass. Uranium forms binuclear complex with citric acid and is not biodegraded. The supernatant containing uranium citrate complex is separated and upon exposure to light, undergoes rapid degradation resulting in the formation of an insoluble, stable polymeric form of uranium. Uranium is recovered as a precipitate (polyuranate) in a concentrated form for recycling or for appropriate disposal. This treatment process, unlike others which use caustic reagents, does not create additional hazardous wastes for disposal and causes little damage to soil which can then be returned to normal use.
Lapakko, Kim A.; Wenz, Zachary J.; Olson, Michael C.; Roepke, Elizabeth W.; Novak, Paige J.; Bailey, Jake V.
2017-01-01
ABSTRACT The Duluth Complex in northeastern Minnesota hosts economically significant deposits of copper, nickel, and platinum group elements (PGEs). The primary sulfide mineralogy of these deposits includes the minerals pyrrhotite, chalcopyrite, pentlandite, and cubanite, and weathering experiments show that most sulfide-bearing rock from the Duluth Complex generates moderately acidic leachate (pH 4 to 6). Microorganisms are important catalysts for metal sulfide oxidation and could influence the quality of water from mines in the Duluth Complex. Nevertheless, compared with that of extremely acidic environments, much less is known about the microbial ecology of moderately acidic sulfide-bearing mine waste, and so existing information may have little relevance to those microorganisms catalyzing oxidation reactions in the Duluth Complex. Here, we characterized the microbial communities in decade-long weathering experiments (kinetic tests) conducted on crushed rock and tailings from the Duluth Complex. Analyses of 16S rRNA genes and transcripts showed that differences among microbial communities correspond to pH, rock type, and experimental treatment. Moreover, microbial communities from the weathered Duluth Complex rock were dominated by taxa that are not typically associated with acidic mine waste. The most abundant operational taxonomic units (OTUs) were from the genera Meiothermus and Sulfuriferula, as well as from diverse clades of uncultivated Chloroflexi, Acidobacteria, and Betaproteobacteria. Specific taxa, including putative sulfur-oxidizing Sulfuriferula spp., appeared to be primarily associated with Duluth Complex rock, but not pyrite-bearing rocks subjected to the same experimental treatment. We discuss the implications of these results for the microbial ecology of moderately acidic mine waste with low sulfide content, as well as for kinetic testing of mine waste. IMPORTANCE Economic sulfide mineral deposits in the Duluth Complex may represent the largest undeveloped source of copper and nickel on Earth. Microorganisms are important catalysts for sulfide mineral oxidation, and research on extreme acidophiles has improved our ability to manage and remediate mine wastes. We found that the microbial assemblages associated with weathered rock from the Duluth Complex are dominated by organisms not widely associated with mine waste or mining-impacted environments, and we describe geochemical and experimental influences on community composition. This report will be a useful foundation for understanding the microbial biogeochemistry of moderately acidic mine waste from these and similar deposits. PMID:28600313
Jones, Daniel S; Lapakko, Kim A; Wenz, Zachary J; Olson, Michael C; Roepke, Elizabeth W; Sadowsky, Michael J; Novak, Paige J; Bailey, Jake V
2017-08-15
The Duluth Complex in northeastern Minnesota hosts economically significant deposits of copper, nickel, and platinum group elements (PGEs). The primary sulfide mineralogy of these deposits includes the minerals pyrrhotite, chalcopyrite, pentlandite, and cubanite, and weathering experiments show that most sulfide-bearing rock from the Duluth Complex generates moderately acidic leachate (pH 4 to 6). Microorganisms are important catalysts for metal sulfide oxidation and could influence the quality of water from mines in the Duluth Complex. Nevertheless, compared with that of extremely acidic environments, much less is known about the microbial ecology of moderately acidic sulfide-bearing mine waste, and so existing information may have little relevance to those microorganisms catalyzing oxidation reactions in the Duluth Complex. Here, we characterized the microbial communities in decade-long weathering experiments (kinetic tests) conducted on crushed rock and tailings from the Duluth Complex. Analyses of 16S rRNA genes and transcripts showed that differences among microbial communities correspond to pH, rock type, and experimental treatment. Moreover, microbial communities from the weathered Duluth Complex rock were dominated by taxa that are not typically associated with acidic mine waste. The most abundant operational taxonomic units (OTUs) were from the genera Meiothermus and Sulfuriferula , as well as from diverse clades of uncultivated Chloroflexi , Acidobacteria , and Betaproteobacteria Specific taxa, including putative sulfur-oxidizing Sulfuriferula spp., appeared to be primarily associated with Duluth Complex rock, but not pyrite-bearing rocks subjected to the same experimental treatment. We discuss the implications of these results for the microbial ecology of moderately acidic mine waste with low sulfide content, as well as for kinetic testing of mine waste. IMPORTANCE Economic sulfide mineral deposits in the Duluth Complex may represent the largest undeveloped source of copper and nickel on Earth. Microorganisms are important catalysts for sulfide mineral oxidation, and research on extreme acidophiles has improved our ability to manage and remediate mine wastes. We found that the microbial assemblages associated with weathered rock from the Duluth Complex are dominated by organisms not widely associated with mine waste or mining-impacted environments, and we describe geochemical and experimental influences on community composition. This report will be a useful foundation for understanding the microbial biogeochemistry of moderately acidic mine waste from these and similar deposits. Copyright © 2017 American Society for Microbiology.
Quality Improvement Process in a Large Intensive Care Unit: Structure and Outcomes.
Reddy, Anita J; Guzman, Jorge A
2016-11-01
Quality improvement in the health care setting is a complex process, and even more so in the critical care environment. The development of intensive care unit process measures and quality improvement strategies are associated with improved outcomes, but should be individualized to each medical center as structure and culture can differ from institution to institution. The purpose of this report is to describe the structure of quality improvement processes within a large medical intensive care unit while using examples of the study institution's successes and challenges in the areas of stat antibiotic administration, reduction in blood product waste, central line-associated bloodstream infections, and medication errors. © The Author(s) 2015.
Prevalence of hepatitis C virus infection among recyclable waste collectors in Central-West Brazil
Marinho, Thaís Augusto; Lopes, Carmen Luci Rodrigues; Teles, Sheila Araújo; Reis, Nádia Rúbia Silva; Carneiro, Megmar Aparecida dos Santos; de Andrade, Andreia Alves; Martins, Regina Maria Bringel
2013-01-01
The prevalence of hepatitis C virus (HCV) in a population of recyclable waste collectors (n = 431) was assessed using a cross-sectional survey in all 15 cooperatives in the city of Goiânia, Central-West Brazil. The HCV prevalence was 1.6% (95% confidence interval: 0.6-3.6) and a history of sexually transmitted infections was independently associated with this infection. HCV RNA (corresponding to genotype 1; subtypes 1a and 1b) was detected in five/seven anti-HCV-positive samples. Although the study population reported a high rate (47.3%) of sharps and needle accidents, HCV infection was not more frequent in recyclable waste collectors than in the general Brazilian population. PMID:23828009
Prevalence of hepatitis C virus infection among recyclable waste collectors in Central-West Brazil.
Marinho, Thaís Augusto; Lopes, Carmen Luci Rodrigues; Teles, Sheila Araújo; Reis, Nádia Rúbia Silva; Carneiro, Megmar Aparecida dos Santos; de Andrade, Andreia Alves; Martins, Regina Maria Bringel
2013-06-01
The prevalence of hepatitis C virus (HCV) in a population of recyclable waste collectors (n = 431) was assessed using a cross-sectional survey in all 15 cooperatives in the city of Goiânia, Central-West Brazil. The HCV prevalence was 1.6% (95% confidence interval: 0.6-3.6) and a history of sexually transmitted infections was independently associated with this infection. HCV RNA (corresponding to genotype 1; subtypes 1a and 1b) was detected in five/seven anti-HCV-positive samples. Although the study population reported a high rate (47.3%) of sharps and needle accidents, HCV infection was not more frequent in recyclable waste collectors than in the general Brazilian population.
Aulinas Masó, Montserrat; Bonmatí Blasi, August
2008-07-01
A pilot-scale study was undertaken to evaluate alternatives to the solid waste management of a Central American municipal market located in Estelí, Nicaragua. The municipal solid waste from the local market is the second largest contributor to the municipal solid waste (MSW) stream. Waste from the market without any previous sorting or treatment is open dumped. The options evaluated in this study were windrow composting, windrow composting with yard waste, bokashi and vermicompost. Significant differences between the properties of composts produced were found; however, all of them reduce the initial waste volume and are potential useful agronomic products for a survival agrarian milieu.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Mike
2015-02-01
This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.
NASA Astrophysics Data System (ADS)
Rankin, Matthew J.
Anaerobic digestion is a microbiological process that converts biodegradable organic material into biogas, consisting primarily of methane and carbon dioxide. Anaerobic digestion technologies have been integrated into wastewater treatment facilities nationwide for many decades to increase the economic viability of the treatment process by converting a waste stream into two valuable products: biogas and fertilizer. Thus, anaerobic digestion offers potential economic and environmental benefits of organic waste diversion and renewable energy generation. The use of biogas has many applications, including cogeneration, direct combustion, upgrading for conversion to feed a fuel cell, and compression for injection into the natural gas grid or for vehicular use. The potential benefits of waste diversion and renewable energy generation are now being realized by major organic waste generators in New York State, in particular the food manufacturing and dairy industries, thus warranting an analysis of the energy generation potential for these waste products. Anaerobic codigestion of dairy manure and food-based feedstocks reflects a cradle-to- cradle approach to organic waste management. Given both of their abundance throughout New York State, waste-to-energy processes represent promising waste management strategies. The objective of this thesis was to evaluate the current technical and economic feasibility of anaerobically codigesting existing dairy manure and food manufacturing waste feedstocks in New York State to produce high quality biogas for renewable energy generation. The first element to determining the technical feasibility of anaerobic codigestion potential in New York State was to first understand the feedstock availability. A comprehensive survey of existing organic waste streams was conducted. The key objective was to identify the volume and composition of dairy manure and liquid-phase food manufacturing waste streams available in New York State to make codigestion of multiple feedstocks in centralized anaerobic codigestion facilities an economically attractive alternative to traditional waste disposal pathways (e.g. landfill and wastewater treatment facilities). A technical and environmental assessment of processing food manufacturing wastes and dairy manure for production of electricity via cogeneration, while dependent on biogas quantity and quality as well as the proximity of the waste generators to the centralized codigestion facility, suggests that a real possibility exists for integrating dairy operations with food manufacturing facilities, dependent on the values of the parameters indicated in this thesis. The results of the environmental analysis show that considerable electricity generation and greenhouse gas emissions reductions are possible, depending primarily on feedstock availability and proximity to the centralized anaerobic digester. The initial results are encouraging and future work is warranted for analyzing the site-specific technical and economic viability of codigesting dairy manure and food manufacturing wastes to produce high quality biogas for renewable energy generation in New York State.
[PRIORITY TECHNOLOGIES OF THE MEDICAL WASTE DISPOSAL SYSTEM].
Samutin, N M; Butorina, N N; Starodubova, N Yu; Korneychuk, S S; Ustinov, A K
2015-01-01
The annual production of waste in health care institutions (HCI) tends to increase because of the growth of health care provision for population. Among the many criteria for selecting the optimal treatment technologies HCI is important to provide epidemiological and chemical safety of the final products. Environmentally friendly method of thermal disinfection of medical waste may be sterilizators of medical wastes intended for hospitals, medical centers, laboratories and other health care facilities that have small and medium volume of processing of all types of waste Class B and C. The most optimal method of centralized disposal of medical waste is a thermal processing method of the collected material.
Environmental management of industrial hazardous wastes in India.
Dutta, Shantanu K; Upadhyay, V P; Sridharan, U
2006-04-01
Hazardous wastes are considered highly toxic and therefore disposal of such wastes needs proper attention so as to reduce possible environmental hazards. Industrial growth has resulted in generation of huge volume of hazardous wastes in the country. In addition to this, hazardous wastes sometimes get imported mainly from the western countries for re-processing or recycling. Inventorisation of hazardous wastes generating units in the country is not yet completed. Scientific disposal of hazardous wastes has become a major environmental issue in India. Hazardous Wastes (Management and Handling) Rules, 1989 have been framed by the Central Government and amended in 2000 and 2003 to deal with the hazardous wastes related environmental problems that may arise in the near future. This paper gives details about the hazardous wastes management in India. Health effects of the selected hazardous substances are also discussed in the paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lauch, R.P.; Mangelson, K.A.
1988-08-01
A radium-removal treatment plant was constructed for the small community of Redhill Forest in the central mountains of Colorado. The plant consists of iron removal using oxidation, filtration, and settling; radium and hardness removal using ion exchange; and radium removal from the waste brine using Dow Chemical Company's Radium Selective Complexer (RSC). The raw water comes from deep wells and has naturally occuring radium and iron concentrations of about 30-40 pC/L and 7-10 mg/L, respectively, and is aerated before entering the main treatment plant to remove radon gas and carbon dioxide. A unique feature of the plant is the processmore » that removes radium from the waste brine. The process removes only radium from the spent ion-exchange regeneration water by permanently complexing the radium on the RSC. The RSC is replaced when exhausted and sent to a final disposal site that is acceptable to state regulatory agencies. The overall plant reduces radium from about 35 pCi/L to less than 4 pCi/L. The RSC system has consistently removed over 99% of the radium from the spent ion exchange regenerant. The average inflow radium concentration to the RSC was about 1180 pCi/L, and the average effluent was about 9 pCi/L.« less
An overview of waste crime, its characteristics, and the vulnerability of the EU waste sector.
Baird, J; Curry, R; Cruz, P
2014-02-01
While waste is increasingly viewed as a resource to be globally traded, increased regulatory control on waste across Europe has created the conditions where waste crime now operates alongside a legitimate waste sector. Waste crime,is an environmental crime and a form of white-collar crime, which exploits the physical characteristics of waste, the complexity of the collection and downstream infrastructure, and the market opportunities for profit. This paper highlights some of the factors which make the waste sector vulnerable to waste crime. These factors include new legislation and its weak regulatory enforcement, the economics of waste treatment, where legal and safe treatment of waste can be more expensive than illegal operations, the complexity of the waste sector and the different actors who can have some involvement, directly or indirectly, in the movement of illegal wastes, and finally that waste can be hidden or disguised and creates an opportunity for illegal businesses to operate alongside legitimate waste operators. The study also considers waste crime from the perspective of particular waste streams that are often associated with illegal shipment or through illegal treatment and disposal. For each, the nature of the crime which occurs is shown to differ, but for each, vulnerabilities to waste crime are evident. The paper also describes some approaches which can be adopted by regulators and those involved in developing new legislation for identifying where opportunities for waste crime occurs and how to prevent it.
NASA Astrophysics Data System (ADS)
Martín-Méndez, Iván; Boixereu, Ester; Villaseca, Carlos
2016-06-01
Graphite is found dispersed in high-grade metapelitic rocks of the Anatectic Complex of Toledo (ACT) and was mined during the mid twentieth century in places where it has been concentrated (Guadamur and la Puebla de Montalbán mines). Some samples from these mines show variable but significant alteration intensity, reaching very low-T hydrothermal (supergene) conditions for some samples from the waste heap of the Guadamur site (<100 °C and 1 kbar). Micro-Raman and XRD data indicate that all the studied ACT graphite is of high crystallinity irrespective of the degree of hydrothermal alteration. Chemical differences were obtained for graphite δ13C composition. ACT granulitic graphite shows δ13CPDB values in the range of -20.5 to -27.8 ‰, indicating a biogenic origin. Interaction of graphite with hydrothermal fluids does not modify isotopic compositions even in the most transformed samples from mining sites. The different isotopic signatures of graphite from the mining sites reflect its contrasted primary carbon source. The high crystallinity of studied graphite makes this area of central Spain suitable for graphitic exploration and its potential exploitation, due to the low carbon content required for its viability and its strategic applications in advanced technologies, such as graphene synthesis.
Nuclear Waste Disposal: Alternatives to Yucca Mountain
2009-02-06
metric tons of spent fuel at the nine decommissioned sites could be shipped to a federal central storage facility by 2018 , but that DOE had no...Disposal of High- Level Radioactive Waste into the Seabed, Overview of Research and Conclusions, Volume 1, Paris , 1988, p. 60. 63 1996 Protocol to...Convention on Prevention of Marine Pollution by Dumping of Wastes, Treaty Doc. 110-5, September 4, 2007
IN-PACKAGE CHEMISTRY ABSTRACTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
E. Thomas
2005-07-14
This report was developed in accordance with the requirements in ''Technical Work Plan for Postclosure Waste Form Modeling'' (BSC 2005 [DIRS 173246]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as a function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model, which uses the EQ3/6more » geochemistry-modeling tool, and a surface complexation model, which is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials, and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed (CDSP) waste packages containing high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor diffusing into the waste package, and (2) seepage water entering the waste package as a liquid from the drift. (1) Vapor-Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H{sub 2}O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Liquid-Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package.« less
A procedure to estimate proximate analysis of mixed organic wastes.
Zaher, U; Buffiere, P; Steyer, J P; Chen, S
2009-04-01
In waste materials, proximate analysis measuring the total concentration of carbohydrate, protein, and lipid contents from solid wastes is challenging, as a result of the heterogeneous and solid nature of wastes. This paper presents a new procedure that was developed to estimate such complex chemical composition of the waste using conventional practical measurements, such as chemical oxygen demand (COD) and total organic carbon. The procedure is based on mass balance of macronutrient elements (carbon, hydrogen, nitrogen, oxygen, and phosphorus [CHNOP]) (i.e., elemental continuity), in addition to the balance of COD and charge intensity that are applied in mathematical modeling of biological processes. Knowing the composition of such a complex substrate is crucial to study solid waste anaerobic degradation. The procedure was formulated to generate the detailed input required for the International Water Association (London, United Kingdom) Anaerobic Digestion Model number 1 (IWA-ADM1). The complex particulate composition estimated by the procedure was validated with several types of food wastes and animal manures. To make proximate analysis feasible for validation, the wastes were classified into 19 types to allow accurate extraction and proximate analysis. The estimated carbohydrates, proteins, lipids, and inerts concentrations were highly correlated to the proximate analysis; correlation coefficients were 0.94, 0.88, 0.99, and 0.96, respectively. For most of the wastes, carbohydrate was the highest fraction and was estimated accurately by the procedure over an extended range with high linearity. For wastes that are rich in protein and fiber, the procedure was even more consistent compared with the proximate analysis. The new procedure can be used for waste characterization in solid waste treatment design and optimization.
Controls for Burning Solid Wastes
ERIC Educational Resources Information Center
Toro, Richard F.; Weinstein, Norman J.
1975-01-01
Modern thermal solid waste processing systems are becoming more complex, incorporating features that require instrumentation and control systems to a degree greater than that previously required just for proper combustion control. With the advent of complex, sophisticated, thermal processing systems, TV monitoring and computer control should…
Troost, K.G.; Curry, B. Brandon
1991-01-01
The Illinois Department of Nuclear Safety has characterized the Martinsville Alternative Site (MAS) for a proposed low-level radioactive waste disposal facility. The MAS is located in east-central Illinois approximately 1.6 km (1 mi) north of the city of Martinsville. Geologic investigation of the 5.5-km2 (1380-acre) site revealed a sequence of chiefly Illinoian glacigenic sediments from 6 to 60 m (20-200 ft) thick overlying two major bedrock valleys carved in Pennsylvanian strata. Relatively permeable buried units include basal, preglacial alluvium; a complex of intraglacial and subglacial sediment; englacial deposits; and supraglacial fluvial deposits. Postglacial alluvium underlies stream valleys on and adjacent to the site. In most areas, the buried sand units are confined by low-permeability till, lacustrine sediment, colluvium, and loess. The distribution and thickness of the most extensive and continuous buried sand units have been modified considerably by subglacial erosion, and their distributions have been influenced by the buried bedrock valleys. The most continuous of the various sand units were deposited as preglacial and postglacial alluvium and are the uppermost and lowermost stratigraphic units at the alternative site. Sand units that were deposited in englacial or ice-marginal environments are less continuous. Aquifer pumping tests, potentiometric head data, and groundwater geochemistry analyses indicate minimal interaction of groundwater across localized interconnections of the permeable units. ?? 1991 Springer-Verlag New York Inc.
[Purification of complicated industrial organic waste gas by complex absorption].
Chen, Ding-Sheng; Cen, Chao-Ping; Tang, Zhi-Xiong; Fang, Ping; Chen, Zhi-Hang
2011-12-01
Complicated industrial organic waste gas with the characteristics of low concentration,high wind volume containing inorganic dust and oil was employed the research object by complex absorption. Complex absorption mechanism, process flow, purification equipment and engineering application were studied. Three different surfactants were prepared for the composite absorbent to purify exhaust gas loaded with toluene and butyl acetate, respectively. Results show that the low surface tension of the composite absorbent can improve the removal efficiency of toluene and butyl acetate. With the advantages of the water film, swirl plate and fill absorption device, efficient absorption equipment was developed for the treatment of complicated industrial organic waste gas. It is with superiorities of simple structure, small size, anti-jam and high mass transfer. Based on absorption technology, waste gas treatment process integrated with heating stripping, burning and anaerobic and other processes, so that emissions of waste gas and absorption solution could meet the discharge standards. The technology has been put into practice, such as manufacturing and spraying enterprises.
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Cooperative Extension Service.
Two games are presented which demonstrate the complexity of the hazardous waste problem through an introduction to the: (1) economics of waste disposal; (2) legislation surrounding waste disposal; (3) necessity to handle wastes with care; (4) damages to the environmental and human health resulting from improper disposal; (5) correct ways to…
Redesigning Urban Carbon Cycles: from Waste Stream to Commodity
NASA Astrophysics Data System (ADS)
Brabander, D. J.; Fitzstevens, M. G.
2013-12-01
While there has been extensive research on the global scale to quantify the fluxes and reservoirs of carbon for predictive climate change models, comparably little attention has been focused on carbon cycles in the built environment. The current management of urban carbon cycles presents a major irony: while cities produce tremendous fluxes of organic carbon waste, their populations are dependent on imported carbon because most urban have limited access to locally sourced carbon. The persistence of outdated management schemes is in part due to the fact that reimagining the handling of urban carbon waste streams requires a transdisciplinary approach. Since the end of the 19th century, U.S. cities have generally relied on the same three options for managing organic carbon waste streams: burn it, bury it, or dilute it. These options still underpin the framework for today's design and management strategies for handling urban carbon waste. We contend that urban carbon management systems for the 21st century need to be scalable, must acknowledge how climate modulates the biogeochemical cycling of urban carbon, and should carefully factor local political and cultural values. Urban waste carbon is a complex matrix ranging from wastewater biosolids to municipal compost. Our first goal in designing targeted and efficient urban carbon management schemes has been examining approaches for categorizing and geochemically fingerprinting these matrices. To date we have used a combination of major and trace element ratio analysis and bulk matrix characteristics, such as pH, density, and loss on ignition, to feed multivariable statistical analysis in order to identify variables that are effective tracers for each waste stream. This approach was initially developed for Boston, MA, US, in the context of identifying components of municipal compost streams that were responsible for increasing the lead inventory in the final product to concentrations that no longer permitted its use in supporting urban agriculture. We are now extending this approach to additional large U.S. and European urban centers where different philosophical and technological approaches to managing urban waste carbon have resulted in a range of infrastructures, from highly distributed systems (Germany) to centralized mega facilities (London). Ultimately, this research will lead to a decision-making matrix model that will permit cities to customize their urban carbon waste stream facilities and transform this waste into a usable commodity.
Biomass potential resources identification in Togean Islands, Central Sulawesi
NASA Astrophysics Data System (ADS)
Bunyamin, A.; Purnomo, D.
2017-05-01
Togean Islands is one of remote area in Central Sulawesi Province, Indonesia. Togean has been already well known for its great underwater scenery which fascinating many foreign tourists stay there. The large number of visits to Togean doesn’t mean at the same time it brings much improvement to local economy. People in Togean was used to live with limited utilities. Water and electricity are the two major problems that have been faced by the communities for many years. On the other hand, Togean has a very good potential for the development of biomass as a renewable energy source. This paper evaluated the potency of each resources using some parameters including availability, social support, technology feasibilities and sustainability aspect. Biomass potential resources that were investigated are hardwoods and forestry product, agroindustrial waste and by-products, and also household waste. Advanced analysis has concluded that the most feasible resources that eligible to be considered as future biomass resources is household waste followed by agro-industrial and agricultural waste then hardwood and forestry products.
Preliminary evaluation of the Knox Group in Tennessee for receiving injected wastes
Bradley, M.W.
1986-01-01
The EPA is authorized under the Safe Drinking Water Act to protect underground sources of drinking water from contamination. However, an aquifer may be exempted from protection and used for injected wastes where the aquifer meets criteria established in the EPA 's Underground Injection Control program. The Knox Group in Middle and West Tennessee occurs primarily in the subsurface, and the top of the Knox Group ranges from about 350 to 3,000 feet below land surface. The upper part of the Knox Group (upper Knox aquifer) is an important source of drinking water in parts of the Central Basin and the Highland Rim provinces. The lower part of the Knox Group is currently being used for injected wastes at New Johnsonville on the western Highland Rim and at Mount Pleasant in the Central Basin. There is no known contamination of the upper Knox aquifer but contamination of the lower part of the Know Group is known at three waste injection well sites. (Lantz-PTT)
Effects of an incinerator project on a healthcare-waste management system.
Khammaneechan, Patthanasak; Okanurak, Kamolnetr; Sithisarankul, Pornchai; Tantrakarnapa, Kraichat; Norramit, Poonsup
2011-10-01
This evaluative research study aimed to assess the effects of the central healthcare incinerator project on waste management in Yala Province. The study data were collected twice: at baseline and during the operational phase. A combination of structured interview and observation were used during data collection. The study covered 127 healthcare facilities: government hospitals, healthcare centres, and private clinics. The results showed 63% of healthcare risk waste (HCRW) handlers attended the HCRW management training. Improvements in each stage of the HCRW management system were observed in all groups of facilities. The total cost of the HCRW management system did not change, however; the costs for hospitals decreased, whereas those for clinics increased significantly. It was concluded that the central healthcare waste incinerator project positively affected HCRW management in the area, although the costs of management might increase for a particular group. However, the benefits of changing to a more appropriately managed HCRW system will outweigh the increased costs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raphaelian, L.A.; Boparai, A.S.; Schneider, J.F.
1987-01-01
Objectives of this research project were: (1) to enhance the capabilities of analyzing the complex mixtures found in coal wastes by using gas chromatography/matrix isolation infrared spectroscopy (GC/MIIR); (2) to separate, by supercritical fluid chromatography (SFC), the complex mixtures found in coal wastes into a few, less-complex mixtures so that analysis by gas chromatography (GC/MS) and GC/MIIR would be simplified. Preliminary results are presented for the mass spectra and infrared spectra of xylene isomers, gas chromatogram of 12 C/sub 2/-Napthalenes, averaged IR spectrum and a comparison of matrix isolation with light-pipe infrared spectra. A SFC chromatogram of polynuclear aromatic hydrocarbonsmore » is also presented. 2 refs., 5 figs.« less
ERIC Educational Resources Information Center
Lord, John
The management of waste materials has become more complex with the increase in human population and the development of new substances. This illustrated booklet traces the history of waste management and provides guidelines for individuals and communities in disposing of certain hazardous wastes safely. It addresses such topics as: (1) how people…
Centralities in simplicial complexes. Applications to protein interaction networks.
Estrada, Ernesto; Ross, Grant J
2018-02-07
Complex networks can be used to represent complex systems which originate in the real world. Here we study a transformation of these complex networks into simplicial complexes, where cliques represent the simplices of the complex. We extend the concept of node centrality to that of simplicial centrality and study several mathematical properties of degree, closeness, betweenness, eigenvector, Katz, and subgraph centrality for simplicial complexes. We study the degree distributions of these centralities at the different levels. We also compare and describe the differences between the centralities at the different levels. Using these centralities we study a method for detecting essential proteins in PPI networks of cells and explain the varying abilities of the centrality measures at the different levels in identifying these essential proteins. Copyright © 2017 Elsevier Ltd. All rights reserved.
Halas, Nancy J.; Nordlander, Peter; Neumann, Oara
2017-01-17
A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.
Halas, Nancy J.; Nordlander, Peter; Neumann, Oara
2015-12-29
A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.
Going green by reducing red. New alternative medical waste treatment technologies.
Zanoni, P
1998-01-01
The field of medical waste disposal is changing rapidly. Over the past decade, there has been increasing public health concern over health care's red bag waste. The health care industry must routinely contend with a complex set of regulations covering occupational safety, transportation and packaging, medical waste disposal management, and now environmental regulations for medical waste incinerators.
USDA-ARS?s Scientific Manuscript database
Chronic wasting disease (CWD) is a fatal neurodegenerative disease, classified as a prion disease or transmissible spongiform encephalopathy (TSE) similar to bovine spongiform encephalopathy (BSE). Cervids affected by CWD accumulate an abnormal protease resistant prion protein throughout the central...
Mandal, Bablu Hira; Rahman, Md Lutfor; Yusoff, Mashitah Mohd; Chong, Kwok Feng; Sarkar, Shaheen M
2017-01-20
Corn-cob cellulose supported poly(hydroxamic acid) Cu(II) complex was prepared by the surface modification of waste corn-cob cellulose through graft copolymerization and subsequent hydroximation. The complex was characterized by IR, UV, FESEM, TEM, XPS, EDX and ICP-AES analyses. The complex has been found to be an efficient catalyst for 1,3-dipolar Huisgen cycloaddition (CuAAC) of aryl/alkyl azides with a variety of alkynes as well as one-pot three-components reaction in the presence of sodium ascorbate to give the corresponding cycloaddition products in up to 96% yield and high turn over number (TON 18,600) and turn over frequency (TOF 930h -1 ) were achieved. The complex was easy to recover from the reaction mixture and reused six times without significant loss of its catalytic activity. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mike lewis
2013-02-01
This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond WRU-I-0160-01, Modification 1 (formerly LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mike Lewis
2014-02-01
This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond WRU-I-0160-01, Modification 1 (formerly LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, G.E.; Garnas, R.L.
1983-03-01
Complex wastes from industrial and municipal outfalls were fractionated chemically and tested for toxicity with freshwater and saltwater algae and crustaceans. The organic fraction of each waste was subfractionated into acid-, base-, and neutral-extractable portions, and the inorganic fraction was subfractionated into its anion and cation components. All wastes affected growth of the algae Skeletonema costatum (saltwater) and Monoraphidium capricornutum (freshwater) or survival of Mysidopsis bahia (saltwater) and Daphnia magna (freshwater). Usually, bioactivity was limited to one or two subfractions. In some cases, algal growth was stimulated by a fraction or subfraction, whereas stimulation was not detected in whole waste.more » It is suggested that fractionation must be done in order to estimate the full potential impact of complex wastes on aquatic systems. The method can also be used to identify toxic factors before application of cost-effective control technology.« less
Plasma filtering techniques for nuclear waste remediation
Gueroult, Renaud; Hobbs, David T.; Fisch, Nathaniel J.
2015-04-24
Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma mass filtering for nuclear waste pretreatment, before ultimate disposal, are similar to those for chemical pretreatment. However, significant savings might be achieved in minimizing the waste mass. As a result, this advantage may be realized over a large range of chemical waste compositions, thereby addressing the heterogeneity of legacy nuclear waste.
Melanocortin antagonism ameliorates muscle wasting and inflammation in chronic kidney disease.
Cheung, Wai W; Mak, Robert H
2012-11-01
Aberrant melanocortin signaling has been implicated in the pathogenesis of wasting in chronic kidney disease (CKD). Previously, we demonstrated that agouti-related peptide (AgRP), a melenocortin-4 receptor antagonist, reduced CKD-associated cachexia in CKD mice. Our previous studies with AgRP utilized dual energy X-ray (DXA) densitometry to assess the body composition in mice (Cheung W, Kuo HJ, Markison S, Chen C, Foster AC, Marks DL, Mak RH. J Am Soc Nephrol 18: 2517-2524, 2007; Cheung W, Yu PX, Little BM, Cone RD, Marks DL, Mak RH. J Clin Invest 115: 1659-1665, 2005). DXA is unable to differentiate water content in mice, and fluid retention in CKD may lead to an overestimate of lean mass. In this study, we employed quantitative magnetic resonance technique to evaluate body composition change following central administration of AgRP in a CKD mouse model. AgRP treatment improved energy expenditure, total body mass, fat mass, and lean body mass in CKD mouse. We also investigated the effect of CKD-associated cachexia on the signaling pathways leading to wasting in skeletal muscle, as well as whether these changes can be ameliorated by central administration of AgRP. AgRP treatment caused an overall decrease in proinflammatory cytokines, which may be one important mechanism of its effects. Muscle wasting in CKD may be due to the activation of proteolytic pathways as well as inhibition of myogenesis and muscle regeneration processes. Our results suggest that these aberrant pathological pathways leading to muscle wasting in CKD mice were ameliorated by central administration of AgRP.
Perceptions Regarding Selected Educational Strategies Used by Extension Educators
ERIC Educational Resources Information Center
Kwaw-Mensah, David; Martin, Robert A.
2013-01-01
Purpose: The purpose of this study was to identify the perceptions that extension educators in the North Central region of the United States hold regarding selected educational strategies pertaining to livestock waste management education. Livestock waste management education has been recognized as one of extension's major initiatives in the…
Utilization of the wastes of vital activity
NASA Technical Reports Server (NTRS)
Gusarov, B. G.; Drigo, Y. A.; Novikov, V. M.; Samsonov, N. M.; Farafonov, N. S.; Chizhov, S. V.; Yazdovskiy, V. I.
1979-01-01
The recycling of wastes from the biological complex for use in life-support systems is discussed. Topics include laboratory equipment, heat treatment of waste materials, mineralization of waste products, methods for production of ammonium hydroxide and nitric acid, the extraction of sodium chloride from mineralized products, and the recovery of nutrient substances for plants from urine.
Miller, Gretchen R; Rubin, Yoram; Mayer, K Ulrich; Benito, Pascual H
2008-01-01
Land application of food-processing waste water occurs throughout California's Central Valley and may be degrading local ground water quality, primarily by increasing salinity and nitrogen levels. Natural attenuation is considered a treatment strategy for the waste, which often contains elevated levels of easily degradable organic carbon. Several key biogeochemical processes in the vadose zone alter the characteristics of the waste water before it reaches the ground water table, including microbial degradation, crop nutrient uptake, mineral precipitation, and ion exchange. This study used a process-based, multi-component reactive flow and transport model (MIN3P) to numerically simulate waste water migration in the vadose zone and to estimate its attenuation capacity. To address the high variability in site conditions and waste-stream characteristics, four food-processing industries were coupled with three site scenarios to simulate a range of land application outcomes. The simulations estimated that typically between 30 and 150% of the salt loading to the land surface reaches the ground water, resulting in dissolved solids concentrations up to sixteen times larger than the 500 mg L(-1) water quality objective. Site conditions, namely the ratio of hydraulic conductivity to the application rate, strongly influenced the amount of nitrate reaching the ground water, which ranged from zero to nine times the total loading applied. Rock-water interaction and nitrification explain salt and nitrate concentrations that exceed the levels present in the waste water. While source control remains the only method to prevent ground water degradation from saline wastes, proper site selection and waste application methods can reduce the risk of ground water degradation from nitrogen compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cau Dit Coumes, Celine; Courtois, Simone; Peysson, Sandrine
Investigations were carried out in order to solidify in cement a low-level radioactive waste of complex chemistry obtained by mixing two process streams, a slurry produced by ultra-filtration and an evaporator concentrate with a salinity of 600 gxL{sup -1}. Direct cementation with Portland cement (OPC) was not possible due to a very long setting time of cement resulting from borates and phosphates contained in the waste. According to a classical approach, this difficulty could be solved by pre-treating the waste to reduce adverse cement-waste interactions. A two-stage process was defined, including precipitation of phosphates and sulfates at 60 deg. Cmore » by adding calcium and barium hydroxide to the waste stream, and encapsulation with a blend of OPC and calcium aluminate cement (CAC) to convert borates into calcium quadriboroaluminate. The material obtained with a 30% waste loading complied with specifications. However, the pre-treatment step made the process complex and costly. A new alternative was then developed: the direct encapsulation of the waste with a blend of OPC and calcium sulfoaluminate cement (CSA) at room temperature. Setting inhibition was suppressed, which probably resulted from the fact that, when hydrating, CSA cement formed significant amounts of ettringite and calcium monosulfoaluminate hydrate which incorporated borates into their structure. As a consequence, the waste loading could be increased to 56% while keeping acceptable properties at the laboratory scale.« less
2005-05-01
form of weapons cleaning products and wastes. State of Florida and Air Force regulations have been implemented 05/31/05 Final Environmental Assessment...Forces Complex will generate hazardous materials in the form of weapons cleaning products and wastes. Break-Free CLP Liquid is a cleaner, lubricant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Michael George
This report summarizes radiological monitoring results from groundwater wells associated with the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Ponds Reuse Permit (I-161-02). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.
Incineration or autoclave? A comparative study in isfahan hospitals waste management system (2010).
Ferdowsi, Ali; Ferdosi, Masoud; Mehrani, Mohammd Javad
2013-03-01
Medical wastes are among hazardous wastes and their disposal requires special methods prior to landfilling. Medical wastes are divided into infected and non-infected wastes and the infected wastes require treatment. Incineration is one of the oldest methods for treatment of medical wastes, but their usage have faced wide objections due to emission of hazardous gases such as CO2 and CO as well as Carcinogenic gases such as Dioxins and Furans which are generated as a result of incomplete combustion of compositions like PVCs. Autoclave is one the newest methods of medical wastes treatment which works based on wet disinfection. The statistical population in this descriptive, comparative study includes hospitals located in Isfahan city and the sample hospitals were selected randomly. To environmentally evaluate the Autoclave method, TST (time, steam, temperature) and Spore tests were used. Also, samples were made from incinerator's stack gases and their analyses results were compared with WHO standards. TST and spore tests results were negative in all cases indicating the success of treatment process. The comparison of incinerator's stack gases with WHO standards showed the high concentration of CO in some samples indicating the incomplete combustion. Also, the incineration efficiency in some cases was less than 99.5 percent, which is the efficiency criterion according to the administrative regulations of wastes management law of Iran. No needle stick was observed in Autoclave method during the compaction of bags containing wastes, and the handlers were facing no danger in this respect. The comparison of costs indicated that despite higher capital investment for purchasing autoclave, its current costs (e.g. maintenance, etc) are much less than the incineration method. Totally, due to inappropriate operation of incinerators and lack of air pollution control devices, the use of incinerators doesn't seem rational anymore. Yet, despite the inefficiency of autoclaves in treatment of bulky wastes such as Anatomical wastes, their usage seems logic considering the very low amounts of such wastes. Also, considering the amount of generated wastes in Isfahan hospitals, a combination of centralized and non-centralized autoclaves is recommended for treatment of infected wastes. Mobile autoclaves may also be considered according to technical and economical conditions. It must not be forgotten that the priority must be given to the establishment of waste management systems particularly to personnel training to produce less wastes and to well separate them.
Benesova, P; Kucera, D; Marova, I; Obruca, S
2017-08-01
The chicken feather hydrolysate (FH) has been tested as a potential complex nitrogen source for the production of polyhydroxyalkanoates by Cupriavidus necator H16 when waste frying oil was used as a carbon source. The addition of FH into the mineral salt media with decreased inorganic nitrogen source concentration improved the yields of biomass and polyhydrohyalkanoates. The highest yields were achieved when 10 vol.% of FH prepared by microwave-assisted alkaline hydrolysis of 60 g l -1 feather was added. In this case, the poly(3-hydroxybutyrate) (PHB) yields were improved by more than about 50% as compared with control cultivation. A positive impact of FH was also observed for accumulation of copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) when sodium propionate was used as a precursor. The copolymer has superior processing and mechanical properties in comparison with PHB homopolymer. The application of FH eliminated the inhibitory effect of propionate and resulted in altered content of 3-hydroxyvalerate (3HV) in copolymer. Therefore, the hydrolysed feather can serve as an excellent complex source of nitrogen for the polyhydroxyalkanoates (PHA) production. Moreover, by the combination of two inexpensive types of waste, such as waste frying oil and feather hydrolysate, it is possible to produce PHA with substantially improved efficiency and sustainability. Millions of tons of feathers, important waste product of poultry-processing industry, are disposed off annually without any further benefits. Thus, there is an inevitable need for new technologies that enable ecologically and economically sensible processing of this waste. Herein, we report that alkali-hydrolysed feathers can be used as a complex nitrogen source considerably improving polyhydroxyalkanoates production on waste frying oil employing Cupriavidus necator. © 2017 The Society for Applied Microbiology.
Optimizing liquid effluent monitoring at a large nuclear complex.
Chou, Charissa J; Barnett, D Brent; Johnson, Vernon G; Olson, Phil M
2003-12-01
Effluent monitoring typically requires a large number of analytes and samples during the initial or startup phase of a facility. Once a baseline is established, the analyte list and sampling frequency may be reduced. Although there is a large body of literature relevant to the initial design, few, if any, published papers exist on updating established effluent monitoring programs. This paper statistically evaluates four years of baseline data to optimize the liquid effluent monitoring efficiency of a centralized waste treatment and disposal facility at a large defense nuclear complex. Specific objectives were to: (1) assess temporal variability in analyte concentrations, (2) determine operational factors contributing to waste stream variability, (3) assess the probability of exceeding permit limits, and (4) streamline the sampling and analysis regime. Results indicated that the probability of exceeding permit limits was one in a million under normal facility operating conditions, sampling frequency could be reduced, and several analytes could be eliminated. Furthermore, indicators such as gross alpha and gross beta measurements could be used in lieu of more expensive specific isotopic analyses (radium, cesium-137, and strontium-90) for routine monitoring. Study results were used by the state regulatory agency to modify monitoring requirements for a new discharge permit, resulting in an annual cost savings of US dollars 223,000. This case study demonstrates that statistical evaluation of effluent contaminant variability coupled with process knowledge can help plant managers and regulators streamline analyte lists and sampling frequencies based on detection history and environmental risk.
Wu, Xuehai; Zhou, Xiaolan; Gao, Liang; Wu, Xing; Fei, Li; Mao, Ying; Hu, Jin; Zhou, Liangfu
2016-04-01
Combined central diabetes insipidus and cerebral salt wasting syndrome after traumatic brain injury (TBI) is rare, is characterized by massive polyuria leading to severe water and electrolyte disturbances, and usually is associated with very high mortality mainly as a result of delayed diagnosis and improper management. We retrospectively reviewed the clinical presentation, management, and outcomes of 11 patients who developed combined central diabetes insipidus and cerebral salt wasting syndrome after traumatic brain injury to define distinctive features for timely diagnosis and proper management. The most typical clinical presentation was massive polyuria (10,000 mL/24 hours or >1000 mL/hour) refractory to vasopressin alone but responsive to vasopressin plus cortisone acetate. Other characteristic presentations included low central venous pressure, high brain natriuretic peptide precursor level without cardiac dysfunction, high 24-hour urine sodium excretion and hypovolemia, and much higher urine than serum osmolarity; normal serum sodium level and urine specific gravity can also be present. Timely and adequate infusion of sodium chloride was key in treatment. Of 11 patients, 5 had a good prognosis 3 months later (Extended Glasgow Outcome Scale score ≥6), 1 had an Extended Glasgow Outcome Scale score of 4, 2 died in the hospital of brain hernia, and 3 developed a vegetative state. For combined diabetes insipidus and cerebral salt wasting syndrome after traumatic brain injury, massive polyuria is a major typical presentation, and intensive monitoring of fluid and sodium status is key for timely diagnosis. To achieve a favorable outcome, proper sodium chloride supplementation and cortisone acetate and vasopressin coadministration are key. Copyright © 2016 Elsevier Inc. All rights reserved.
Repurposing Waste Streams: Lessons on Integrating Hospital Food Waste into a Community Garden.
Galvan, Adri M; Hanson, Ryan; George, Daniel R
2018-04-06
There have been increasing efforts in recent decades to divert institutional food waste into composting programs. As major producers of food waste who must increasingly demonstrate community benefit, hospitals have an incentive to develop such programs. In this article, we explain the emerging opportunity to link hospitals' food services to local community gardens in order to implement robust composting programs. We describe a partnership model at our hospital in central Pennsylvania, share preliminary outcomes establishing feasibility, and offer guidance for future efforts. We also demonstrate that the integration of medical students in such efforts can foster systems thinking in the development of programs to manage hospital waste streams in more ecologically-friendly ways.
Functional specifications for a radioactive waste decision support system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westrom, G.B.; Kurrasch, E.R.; Carlton, R.E.
1989-09-01
It is generally recognized that decisions relative to the treatment, handling, transportation and disposal of low-level wastes produced in nuclear power plants involve a complex array of many inter-related elements or considerations. Complex decision processes can be aided through the use of computer-based expert systems which are based on the knowledge of experts and the inferencing of that knowledge to provide advice to an end-user. To determine the feasibility of developing and applying an expert system in nuclear plant low level waste operations, a Functional Specification for a Radwaste Decision Support System (RDSS) was developed. All areas of radwaste management,more » from the point of waste generation to the disposition of the waste in the final disposal location were considered for inclusion within the scope of the RDSS. 27 figs., 8 tabs.« less
NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA, JUNE 2006
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE
This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.
Nevada Test Site Waste Acceptance Criteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office
This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.
Plasma filtering techniques for nuclear waste remediation.
Gueroult, Renaud; Hobbs, David T; Fisch, Nathaniel J
2015-10-30
Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma mass filtering for nuclear waste pretreatment, before ultimate disposal, are similar to those for chemical pretreatment. However, significant savings might be achieved in minimizing the waste mass. This advantage may be realized over a large range of chemical waste compositions, thereby addressing the heterogeneity of legacy nuclear waste. Copyright © 2015 Elsevier B.V. All rights reserved.
Nannoni, Francesco; Santolini, Riccardo; Protano, Giuseppe
2015-09-01
This paper presents the results of a biomonitoring study to evaluate the environmental impact of airborne emissions from a municipal solid waste landfill in central Italy. Concentrations of 11 heavy elements, as well as photosynthetic efficiency and cell membrane integrity were measured in Evernia prunastri lichens transplanted for 4months in 17 monitoring sites around the waste landfill. Heavy element contents were also determined in surface soils. Analytical data indicated that emissions from the landfill affected Cd, Co, Cr, Cu, Ni, Pb, Sb and Zn concentrations in lichens transplanted within the landfill and along the fallout direction. In these sites moderate to severe accumulation of these heavy elements in lichens was coupled with an increase in cell membrane damage and decrease in photosynthetic efficiency. Nevertheless, results indicated that landfill emissions had no relevant impact on lichens, as heavy element accumulation and weak stress symptoms were detected only in lichen transplants from sites close to solid waste. The appropriate management of this landfill poses a low risk of environmental contamination by heavy elements. Copyright © 2015 Elsevier Ltd. All rights reserved.
Leaching Characteristics of Hanford Ferrocyanide Wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, Matthew K.; Fiskum, Sandra K.; Peterson, Reid A.
2009-12-21
A series of leach tests were performed on actual Hanford Site tank wastes in support of the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The samples were targeted composite slurries of high-level tank waste materials representing major complex, radioactive, tank waste mixtures at the Hanford Site. Using a filtration/leaching apparatus, sample solids were concentrated, caustic leached, and washed under conditions representative of those planned for the Pretreatment Facility in the WTP. Caustic leaching was performed to assess the mobilization of aluminum (as gibbsite, Al[OH]3, and boehmite AlO[OH]), phosphates [PO43-], chromium [Cr3+] and, to a lesser extent, oxalates [C2O42-]). Ferrocyanidemore » waste released the solid phase 137Cs during caustic leaching; this was antithetical to the other Hanford waste types studied. Previous testing on ferrocyanide tank waste focused on the aging of the ferrocyanide salt complex and its thermal compatibilities with nitrites and nitrates. Few studies, however, examined cesium mobilization in the waste. Careful consideration should be given to the pretreatment of ferrocyanide wastes in light of this new observed behavior, given the fact that previous testing on simulants indicates a vastly different cesium mobility in this waste form. The discourse of this work will address the overall ferrocyanide leaching characteristics as well as the behavior of the 137Cs during leaching.« less
Measurement of actinides and strontium-90 in high activity waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maxwell, S.L. III; Nelson, M.R.
1994-08-01
The reliable measurement of trace radionuclides in high activity waste is important to support waste processing activities at SRS (F and H Area Waste Tanks, Extended Sludge Processing (ESP) and In-Tank precipitation (ITP) processing). Separation techniques are needed to remove high levels of gamma activity and alpha/beta interferences prior to analytical measurement. Using new extraction chromatographic resins from EiChrom Industries, Inc., the SRS Central Laboratory has developed new high speed separation methods that enable measurement of neptunium, thorium, uranium, plutonium, americium and strontium-90 in high activity waste solutions. Small particle size resin and applied vacuum are used to reduce analysismore » times and enhance column performance. Extraction chromatographic resins are easy to use and eliminate the generation of contaminated liquid organic waste.« less
Liu, Pingting; Huang, Zhiyu; Deng, Hao; Wang, Rongsha; Xie, Shuixiang
2014-01-01
Oil-based drilling fluid is used more and more in the field of oil and gas exploration. However, because of unrecyclable treating agent and hard treatment conditions, the traditional treating technologies of waste oil-based drilling fluid have some defects, such as waste of resource, bulky equipment, complex treatment processes, and low oil recovery rate. In this work, switchable deoiling agent (SDA), as a novel surfactant for treatment of waste oil-based drilling fluid, was synthesized by amine, formic acid, and formaldehyde solution. With this agent, the waste oil-based drilling fluid can be treated without complex process and expensive equipment. Furthermore, the agent used in the treatment can be recycled, which reduces waste of resource and energy. The switch performance, deoiling performance, structural characterization, and mechanisms of action are studied. The experimental results show that the oil content of the recycled oil is higher than 96% and more than 93% oil in waste oil-based drilling fluid can be recycled. The oil content of the solid residues of deoiling is less than 3%. PMID:25045749
Liu, Pingting; Huang, Zhiyu; Deng, Hao; Wang, Rongsha; Xie, Shuixiang
2014-01-01
Oil-based drilling fluid is used more and more in the field of oil and gas exploration. However, because of unrecyclable treating agent and hard treatment conditions, the traditional treating technologies of waste oil-based drilling fluid have some defects, such as waste of resource, bulky equipment, complex treatment processes, and low oil recovery rate. In this work, switchable deoiling agent (SDA), as a novel surfactant for treatment of waste oil-based drilling fluid, was synthesized by amine, formic acid, and formaldehyde solution. With this agent, the waste oil-based drilling fluid can be treated without complex process and expensive equipment. Furthermore, the agent used in the treatment can be recycled, which reduces waste of resource and energy. The switch performance, deoiling performance, structural characterization, and mechanisms of action are studied. The experimental results show that the oil content of the recycled oil is higher than 96% and more than 93% oil in waste oil-based drilling fluid can be recycled. The oil content of the solid residues of deoiling is less than 3%.
Tapping Resources in Municipal Solid Waste
ERIC Educational Resources Information Center
Blum, S. L.
1976-01-01
Municipal solid waste disposal is becoming complex as costs, wastes, and environmental restrictions increase. Recovery and recycling of materials presents problems of financing, ownership, and operation, technology, and marketing. Energy and materials recovery offers long-term economic and environmental incentives in terms of growing shortages and…
Simmons, J E; Yang, R S; Berman, E
1995-02-01
As part of a multidisciplinary health effects study, the nephrotoxicity of complex industrial waste mixtures was assessed. Adult, male Fischer 344 rats were gavaged with samples of complex industrial waste and nephrotoxicity evaluated 24 hr later. Of the 10 tested samples, 4 produced increased absolute or relative kidney weight, or both, coupled with a statistically significant alteration in at least one of the measured serum parameters (urea nitrogen (BUN), creatinine (CREAT), and BUN/CREAT ratio). Although the waste samples had been analyzed for a number of organic chemicals and 7 of the 10 samples were analyzed also for 12 elemental metals and metalloids, their nephrotoxicity was not readily predicted from the partial chemical characterization data. Because the chemical form or speciation of the metals was unknown, it was not possible to estimate their contribution to the observed biological response. Various experimental approaches, including use of real-world complex mixtures, chemically defined synthetic mixtures, and simple mixtures, will be necessary to adequately determine the potential human health risk from exposure to complex chemical mixtures.
Environmental Assessment: Disposition of Chiefs’ Circle Residential Structures
2012-04-27
the restrooms and kitchen when being used by the CFC and Scouts, respectively. Final - Environmental Assessment...Solid waste (not hazardous waste) associated with the Proposed Action Site includes waste such as kitchen waste, paper, plastics, metal and glass...specific soil groups (hydraquents and udor- thents), and four urban land complexes. The acreage covered by each soil type and its percentage of the
Franks, Bernard J.
1981-01-01
In Florida domestic waste water is being applied to the land for disposal and reuse. State and Federal regulations favor land-application methods over other advanced waste water treatment practices. Despite the increasing use of this alternative technology, little is known about localized effects on groundwater quality. This report documents the extent of land-application practices in Florida and summarizes case study information on some of the more adequately monitored site throughout the State. More than 2,500 sites in Florida are permitted by the Department of Environmental Regulation for applying domestic waste water to the land. The majority (more than 1,700 sites), classified as infiltration ponds, are concentrated in central and southern Florida. More than 560 sites classified as drainfields, and more than 250 sites classified as irrigation sites, are located primarily in central Florida. An estimated 150 million gallons per day of domestic waste water, after required secondary treatment, are applied to Florida soils. Despite the large numbers of sites and the considerable volume of waste water utilized, little is known about potential impact on groundwater quality. At the few sites where observation wells have been drilled and local groundwater quality monitored, no significant deterioration of water quality has been detected. (USGS)
National information network and database system of hazardous waste management in China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma Hongchang
1996-12-31
Industries in China generate large volumes of hazardous waste, which makes it essential for the nation to pay more attention to hazardous waste management. National laws and regulations, waste surveys, and manifest tracking and permission systems have been initiated. Some centralized hazardous waste disposal facilities are under construction. China`s National Environmental Protection Agency (NEPA) has also obtained valuable information on hazardous waste management from developed countries. To effectively share this information with local environmental protection bureaus, NEPA developed a national information network and database system for hazardous waste management. This information network will have such functions as information collection, inquiry,more » and connection. The long-term objective is to establish and develop a national and local hazardous waste management information network. This network will significantly help decision makers and researchers because it will be easy to obtain information (e.g., experiences of developed countries in hazardous waste management) to enhance hazardous waste management in China. The information network consists of five parts: technology consulting, import-export management, regulation inquiry, waste survey, and literature inquiry.« less
Cortina, Gerard; Hansford, Jordan R; Duke, Trevor
2016-05-01
We describe a 2-year-old female with a suprasellar primitive neuroectodermal tumor and central diabetes insipidus (DI) who developed polyuria with natriuresis and subsequent hyponatremia 36 hr after cisplatin administration. The marked urinary losses of sodium in combination with a negative sodium balance led to the diagnosis of cisplatin-induced renal salt wasting syndrome (RSWS). The subsequent clinical management is very challenging. Four weeks later she was discharged from ICU without neurological sequela. The combination of cisplatin-induced RSWS with DI can be confusing and needs careful clinical assessment as inaccurate diagnosis and management can result in increased neurological injury. © 2016 Wiley Periodicals, Inc.
Taniguchi, Satie; Colabuono, Fernanda I; Dias, Patrick S; Oliveira, Renato; Fisner, Mara; Turra, Alexander; Izar, Gabriel M; Abessa, Denis M S; Saha, Mahua; Hosoda, Junki; Yamashita, Rei; Takada, Hideshige; Lourenço, Rafael A; Magalhães, Caio A; Bícego, Márcia C; Montone, Rosalinda C
2016-05-15
High spatial variability in polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides, such as DDTs, and polybrominated diphenylethers was observed in plastic pellets collected randomly from 41 beaches (15 cities) in 2010 from the coast of state of São Paulo, southeastern Brazil. The highest concentrations ranged, in ng g(-1), from 192 to 13,708, 3.41 to 7554 and <0.11 to 840 for PAHs, PCBs and DDTs, respectively. Similar distribution pattern was presented, with lower concentrations on the relatively less urbanized and industrialized southern coast, and the highest values in the central portion of the coastline, which is affected by both waste disposal and large port and industrial complex. Additional samples were collected in this central area and PCB concentrations, in ngg(-)(1), were much higher in 2012 (1569 to 10,504) than in 2009/2010 (173 to 309) and 2014 (411), which is likely related to leakages of the PCB commercial mixture. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lausselet, Carine; Cherubini, Francesco; Del Alamo Serrano, Gonzalo; Becidan, Michael; Strømman, Anders Hammer
2016-12-01
Waste-to-Energy (WtE) plants constitute one of the most common waste management options to deal with municipal solid waste. WtE plants have the dual objective to reduce the amount of waste sent to landfills and simultaneously to produce useful energy (heat and/or power). Energy from WtE is gaining steadily increasing importance in the energy mix of several countries. Norway is no exception, as energy recovered from waste currently represents the main energy source of the Norwegian district heating system. Life-cycle assessments (LCA) of WtE systems in a Norwegian context are quasi-nonexistent, and this study assesses the environmental performance of a WtE plant located in central Norway by combining detailed LCA methodology with primary data from plant operations. Mass transfer coefficients and leaching coefficients are used to trace emissions over the various life-cycle stages from waste logistics to final disposal of the ashes. We consider different fractions of input waste (current waste mix, insertion of 10% car fluff, 5% clinical waste and 10% and 50% wood waste), and find a total contribution to Climate Change Impact Potential ranging from 265 to 637gCO 2 eq/kg of waste and 25 to 61gCO 2 eq/MJ of heat. The key drivers of the environmental performances of the WtE system being assessed are the carbon biogenic fraction and the lower heating value of the incoming waste, the direct emissions at the WtE plant, the leaching of the heavy metals at the landfill sites and to a lesser extent the use of consumables. We benchmark the environmental performances of our WtE systems against those of fossil energy systems, and we find better performance for the majority of environmental impact categories, including Climate Change Impact Potential, although some trade-offs exist (e.g. higher impacts on Human Toxicity Potential than natural gas, but lower than coal). Also, the insertion of challenging new waste fractions is demonstrated to be an option both to cope with the excess capacity of the Norwegian WtE sector and to reach Norway's ambitious political goals for environmentally friendly energy systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Z.H.I.; Xiao, Y.; Sietsma, J.
2015-01-15
Highlights: • New characterisation methodology has been established to understand an industrially processed ICT waste. • Particle size distribution, composition, thermal–chemical behaviour and occurrence of metals were considered. • The characterisation provides direct guidelines for values recovery from the waste. - Abstract: Recycling of valuable metals from electronic waste, especially complex mixtures of end-of-life information and communication technology (ICT) products, is of great difficulty due to their complexity and heterogeneity. One of the important reasons is the lack of comprehensive characterisation on such materials, i.e. accurate compositions, physical/chemical properties. In the present research, we focus on developing methodologies for themore » characterisation of metals in an industrially processed ICT waste. The morphology, particle size distribution, compositional distribution, occurrence, liberation as well as the thermo-chemical properties of the ICT waste were investigated with various characterisation techniques, including X-ray Fluorescence Spectrometry (XRF), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) with energy dispersed spectroscopy (EDS). Due to the high heterogeneity of the material, special sample preparation procedures were introduced to minimise the discrepancies during compositional analyses. As a result, a clearer overview of the ICT waste has been reached. This research provides better understanding of the extractability of each metal and improves the awareness of potential obstacles for extraction. It will lead to smarter decisions during further development of a clean and effective recovery process.« less
Radioactive Waste Management Complex low-level waste radiological performance assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maheras, S.J.; Rood, A.S.; Magnuson, S.O.
This report documents the projected radiological dose impacts associated with the disposal of radioactive low-level waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. This radiological performance assessment was conducted to evaluate compliance with applicable radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the public and the environment. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses were made for both offsitemore » receptors and individuals inadvertently intruding onto the site after closure. In addition, uncertainty and sensitivity analyses were performed. The results of the analyses indicate compliance with established radiological criteria and provide reasonable assurance that public health and safety will be protected.« less
Engineering for cover over solid hazardous waste addresses complex interactions among many technical, environmental, and economical factors. The document emphasizes the special characteristics of solid waste management as they bear on the cover system while at the same time stres...
Drellack, S.L.; Wells, J.G.
1982-01-01
The H-9 complex, a group of three closely spaced boreholes, is located 5.5 miles south of the proposed Waste Isolation Pilot Plant (WIPP) site in east-central Eddy County, New Mexico. The holes were drilled during July, August, and September 1979 to obtain geologic and hydrologic data to better define the regional ground-water-flow system. The geologic data presented in this report are part of a site-characterization study for the possible storage of defense-associated radioactive wastes within salt beds of the Salado Formation of Permian age. The geologic data include detailed descriptions of cores, cuttings, and geophysical logs. Each borehole was designed to penetrate a distinct water-bearing zone: H-9a (total depth 559 feet) was completed just below the Magenta Dolomite Member of the Rustler Formation; H-9b (total depth 708 feet) was completed just below the Culebra Dolomite Member of the Rustler Formation; H-9c (total depth 816 feet) was completed below the Rustler Formation-Salado Formation contact. The geologic units penetrated in borehole H-9c are eolian sand of Holocene age (0-5 feet); the Gatuna Formation of Pleistocene age; (5-25 feet); and the Dewey Lake Red Beds (25-455 feet), the Rustler Formation (455.791 feet), and part of the Salado Formation (791-816 feet), all of Permian age. Three sections (494-501 feet, 615-625 feet, 692-712 feet) in the Rustler Formation penetrated by borehole H-9c are composed of remnant anhydrite (locally altered to gypsum) and clay and silt residue from the dissolution of much thicker seams of argillaceous and silty halite. This indicates that the eastward-moving dissolution within the Rustler Formation, found just to the west of the WIPP site, is present at the H-9 site. (USGS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1999-06-01
In 1989, the US Department of Energy (DOE) responded to the need to redirect resources from weapons production to environmental restoration and waste management by establishing the Office of Environmental Management (EM) and delegated to this office the responsibility of cleaning up the US nuclear weapons complex. Now in its eight year, EM`s mission has three central facets: (1) to assess, remediate, and monitor contaminated sites and facilities; (2) to store, treat, and dispose of waste from past and current operations; and (3) to develop and implement innovative technologies for environmental cleanup. To this end, EM has established domestic andmore » international cooperative technology development programs, including one with the Republic of Argentina. Cooperating with Argentine scientific institutes and industries meets US cleanup objectives by: (1) identifying and accessing Argentine EM-related technologies, thereby leveraging investments and providing cost-savings; (2) improving access to technical information, scientific expertise, and technologies applicable to EM needs; and (3) fostering the development of innovative environmental technologies by increasing US private sector opportunities in Argentina in EM-related areas.« less
Grainger, Matthew James; Aramyan, Lusine; Piras, Simone; Quested, Thomas Edward; Righi, Simone; Setti, Marco; Vittuari, Matteo; Stewart, Gavin Bruce
2018-01-01
Food waste from households contributes the greatest proportion to total food waste in developed countries. Therefore, food waste reduction requires an understanding of the socio-economic (contextual and behavioural) factors that lead to its generation within the household. Addressing such a complex subject calls for sound methodological approaches that until now have been conditioned by the large number of factors involved in waste generation, by the lack of a recognised definition, and by limited available data. This work contributes to food waste generation literature by using one of the largest available datasets that includes data on the objective amount of avoidable household food waste, along with information on a series of socio-economic factors. In order to address one aspect of the complexity of the problem, machine learning algorithms (random forests and boruta) for variable selection integrated with linear modelling, model selection and averaging are implemented. Model selection addresses model structural uncertainty, which is not routinely considered in assessments of food waste in literature. The main drivers of food waste in the home selected in the most parsimonious models include household size, the presence of fussy eaters, employment status, home ownership status, and the local authority. Results, regardless of which variable set the models are run on, point toward large households as being a key target element for food waste reduction interventions.
Aramyan, Lusine; Piras, Simone; Quested, Thomas Edward; Righi, Simone; Setti, Marco; Vittuari, Matteo; Stewart, Gavin Bruce
2018-01-01
Food waste from households contributes the greatest proportion to total food waste in developed countries. Therefore, food waste reduction requires an understanding of the socio-economic (contextual and behavioural) factors that lead to its generation within the household. Addressing such a complex subject calls for sound methodological approaches that until now have been conditioned by the large number of factors involved in waste generation, by the lack of a recognised definition, and by limited available data. This work contributes to food waste generation literature by using one of the largest available datasets that includes data on the objective amount of avoidable household food waste, along with information on a series of socio-economic factors. In order to address one aspect of the complexity of the problem, machine learning algorithms (random forests and boruta) for variable selection integrated with linear modelling, model selection and averaging are implemented. Model selection addresses model structural uncertainty, which is not routinely considered in assessments of food waste in literature. The main drivers of food waste in the home selected in the most parsimonious models include household size, the presence of fussy eaters, employment status, home ownership status, and the local authority. Results, regardless of which variable set the models are run on, point toward large households as being a key target element for food waste reduction interventions. PMID:29389949
Ma, Jing; Addink, Rudolf; Yun, Sehun; Cheng, Jinping; Wang, Wenhua; Kannan, Kurunthachalam
2009-10-01
The formation and release of polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) from the incineration of electronic wastes (e-waste) that contain brominated flame retardants (BFRs) are a concern. However, studies on the determination of PBDD/Fs in environmental samples collected from e-waste recycling facilities are scarce. In this study, 11 2,3,7,8-substituted PBDD/Fs and 10 polybrominated diphenyl ether (PBDE) congeners were determined in electronic shredder waste, workshop-floor dust soil, and leaves (of plants on the grounds of the facility) from a large-scale e-waste recycling facility and in surface soil from a chemical-industrial complex (comprising a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) as well as agricultural areas in eastern China. Total PBDD/F concentrations in environmental samples were in the range of 113-818 pg/g dry wt (dw) for leaves, 392-18500 pg/g dw for electronic shredder residues, 716-800000 pg/g dw for soil samples, and 89600-pg/g dw for workshop-floor dust from the e-waste recycling facility and in a range from nondetect (ND) to 427 pg/g dw in soil from the chemical-industrial complex. The highest mean concentrations of total PBDD/Fs were found in soil samples and workshop-floor dust from the e-waste recycling facility. The dioxin-like toxic equivalent (measured as TEQ) concentrations of PBDD/Fs were greater than the TEQs of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) reported in our previous study for the same set of samples. The concentrations of PBDFs were several orders of magnitude higher than the concentrations of PBDDs in samples from the e-waste facility or from soil from the chemical-industrial complex. A significant correlation was found between the concentrations of sigmaPBDD/Fs and sigmaPBDEs (r = 0.769, p < 0.01) and between sigmaPBDD/Fs and the previously reported sigmaPCDD/F concentrations (r = 0.805, p < 0.01). The estimated daily human intakes of TEQs contributed by PBDD/Fs via soil/dust ingestion and dermal exposures in e-waste recycling facilities were higher than the intakes of TEQs contributed by PCDD/ Fs, calculated in our previous study.
Incineration or Autoclave? A Comparative Study in Isfahan Hospitals Waste Management System (2010)
Ferdowsi, Ali; Ferdosi, Masoud; Mehrani, Mohammd Javad
2013-01-01
Introduction: Medical wastes are among hazardous wastes and their disposal requires special methods prior to landfilling. Medical wastes are divided into infected and non-infected wastes and the infected wastes require treatment. Incineration is one of the oldest methods for treatment of medical wastes, but their usage have faced wide objections due to emission of hazardous gases such as CO2 and CO as well as Carcinogenic gases such as Dioxins and Furans which are generated as a result of incomplete combustion of compositions like PVCs. Autoclave is one the newest methods of medical wastes treatment which works based on wet disinfection. Methods: The statistical population in this descriptive, comparative study includes hospitals located in Isfahan city and the sample hospitals were selected randomly. To environmentally evaluate the Autoclave method, TST (time, steam, temperature) and Spore tests were used. Also, samples were made from incinerator’s stack gases and their analyses results were compared with WHO standards. Findings: TST and spore tests results were negative in all cases indicating the success of treatment process. The comparison of incinerator’s stack gases with WHO standards showed the high concentration of CO in some samples indicating the incomplete combustion. Also, the incineration efficiency in some cases was less than 99.5 percent, which is the efficiency criterion according to the administrative regulations of wastes management law of Iran. No needle stick was observed in Autoclave method during the compaction of bags containing wastes, and the handlers were facing no danger in this respect. The comparison of costs indicated that despite higher capital investment for purchasing autoclave, its current costs (e.g. maintenance, etc) are much less than the incineration method. Discussion: Totally, due to inappropriate operation of incinerators and lack of air pollution control devices, the use of incinerators doesn’t seem rational anymore. Yet, despite the inefficiency of autoclaves in treatment of bulky wastes such as Anatomical wastes, their usage seems logic considering the very low amounts of such wastes. Also, considering the amount of generated wastes in Isfahan hospitals, a combination of centralized and non-centralized autoclaves is recommended for treatment of infected wastes. Mobile autoclaves may also be considered according to technical and economical conditions. It must not be forgotten that the priority must be given to the establishment of waste management systems particularly to personnel training to produce less wastes and to well separate them. PMID:23678340
Radioactive waste management in a hospital.
Khan, Shoukat; Syed, At; Ahmad, Reyaz; Rather, Tanveer A; Ajaz, M; Jan, Fa
2010-01-01
Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance with the Atomic Energy (Safe disposal of radioactive waste) rules of 1987 promulgated by the Indian Central Government Atomic Energy Act 1962. Any prospective plan of a hospital that intends using radioisotopes for diagnostic and therapeutic procedures needs to have sufficient infrastructural and manpower resources to keep its ambient radiation levels within specified safe limits. Regular monitoring of hospital area and radiation workers is mandatory to assess the quality of radiation safety. Records should be maintained to identify the quality and quantity of radioactive waste generated and the mode of its disposal. Radiation Safety officer plays a key role in the waste disposal operations.
Research challenges in municipal solid waste logistics management.
Bing, Xiaoyun; Bloemhof, Jacqueline M; Ramos, Tania Rodrigues Pereira; Barbosa-Povoa, Ana Paula; Wong, Chee Yew; van der Vorst, Jack G A J
2016-02-01
During the last two decades, EU legislation has put increasing pressure on member countries to achieve specified recycling targets for municipal household waste. These targets can be obtained in various ways choosing collection methods, separation methods, decentral or central logistic systems, etc. This paper compares municipal solid waste (MSW) management practices in various EU countries to identify the characteristics and key issues from a waste management and reverse logistics point of view. Further, we investigate literature on modelling municipal solid waste logistics in general. Comparing issues addressed in literature with the identified issues in practice result in a research agenda for modelling municipal solid waste logistics in Europe. We conclude that waste recycling is a multi-disciplinary problem that needs to be considered at different decision levels simultaneously. A holistic view and taking into account the characteristics of different waste types are necessary when modelling a reverse supply chain for MSW recycling. Copyright © 2015 Elsevier Ltd. All rights reserved.
Papargyropoulou, Effie; Wright, Nigel; Lozano, Rodrigo; Steinberger, Julia; Padfield, Rory; Ujang, Zaini
2016-03-01
Food waste has significant detrimental economic, environmental and social impacts. The magnitude and complexity of the global food waste problem has brought it to the forefront of the environmental agenda; however, there has been little research on the patterns and drivers of food waste generation, especially outside the household. This is partially due to weaknesses in the methodological approaches used to understand such a complex problem. This paper proposes a novel conceptual framework to identify and explain the patterns and drivers of food waste generation in the hospitality sector, with the aim of identifying food waste prevention measures. This conceptual framework integrates data collection and analysis methods from ethnography and grounded theory, complemented with concepts and tools from industrial ecology for the analysis of quantitative data. A case study of food waste generation at a hotel restaurant in Malaysia is used as an example to illustrate how this conceptual framework can be applied. The conceptual framework links the biophysical and economic flows of food provisioning and waste generation, with the social and cultural practices associated with food preparation and consumption. The case study demonstrates that food waste is intrinsically linked to the way we provision and consume food, the material and socio-cultural context of food consumption and food waste generation. Food provisioning, food consumption and food waste generation should be studied together in order to fully understand how, where and most importantly why food waste is generated. This understanding will then enable to draw detailed, case specific food waste prevention plans addressing the material and socio-economic aspects of food waste generation. Copyright © 2016 Elsevier Ltd. All rights reserved.
ETR WASTE GAS EXITED THE ETR COMPLEX FROM THE NORTH ...
ETR WASTE GAS EXITED THE ETR COMPLEX FROM THE NORTH SIDE THROUGH A TUNNEL AND THEN TO A FILTER PIT. TUNNEL EXIT IS UNDER CONSTRUCTION WHILE CONTROL BUILDING IS BEING FORMED BEYOND. CAMERA FACING WEST. INL NEGATIVE NO. 56-1238. Jack L. Anderson, Photographer, 4/17/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
De-Inventory Plan for Transuranic Waste Stored at Area G
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hargis, Kenneth Marshall; Christensen, Davis V.; Shepard, Mark D.
This report describes the strategy and detailed work plan developed by Los Alamos National Laboratory (LANL) to disposition transuranic (TRU) waste stored at its Area G radioactive waste storage site. The focus at this time is on disposition of 3,706 m 3 of TRU waste stored above grade by June 30, 2014, which is one of the commitments within the Framework Agreement: Realignment of Environmental Priorities between the Department of Energy (DOE) National Nuclear Security Administration (NNSA) and the State of New Mexico Environment Department (NMED), Reference 1. A detailed project management schedule has been developed to manage this workmore » and better ensure that all required activities are aligned and integrated. The schedule was developed in conjunction with personnel from the NNSA Los Alamos Site Office (LASO), the DOE Carlsbad Field Office (CBFO), the Central Characterization Project (CCP), and Los Alamos National Security, LLC (LANS). A detailed project management schedule for the remainder of the above grade inventory and the below grade inventory will be developed and incorporated into the De-Inventory Plan by December 31, 2012. This schedule will also include all newly-generated TRU waste received at Area G in FYs 2012 and 2013, which must be removed by no later than December 31, 2014, under the Framework Agreement. The TRU waste stored above grade at Area G is considered to be one of the highest nuclear safety risks at LANL, and the Defense Nuclear Facility Safety Board has expressed concern for the radioactive material at risk (MAR) contained within the above grade TRU waste inventory and has formally requested that DOE reduce the MAR. A large wildfire called the Las Conchas Fire burned extensive areas west of LANL in late June and July 2011. Although there was minimal to no impact by the fire to LANL, the fire heightened public concern and news media attention on TRU waste storage at Area G. After the fire, New Mexico Governor Susana Martinez also requested that LANL accelerate disposition of TRU waste stored above grade at Area G. The 3,706 m 3 volume of TRU waste stored above grade consists of 4,495 containers that include all above grade non-cemented waste as well as above grade cemented waste that was ready for characterization on October 1, 2011. This volume includes all newly-generated TRU waste currently stored at Area G as of October 1, 2011. This volume does not include the Bolas Grandes spheres, mixed low level waste (MLLW) containers, empty containers, cemented waste that requires remediation, projected newly generated TRU waste from FY 2012 and later, or TRU waste stored below grade. The 3,706 m 3 volume represents about 86 per cent of the total volume of TRU waste stored above grade on October 1, 2011. The De-Inventory Plan supports the DOE Office of Environmental Management (EM) goal to disposition 90% of the Legacy TRU waste within the DOE complex by the end of 2015 as stated in its Roadmap for EM’s Journey to Excellence (Reference 2). The plan also addresses precursor actions for disposition of TRU waste that are necessary for compliance with the Compliance Order on Consent issued by the NMED in 2005 (Reference 3).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
DiSalvo, Rick; Surovchak, Scott; Spreng, Carl
2013-07-01
Cleanup and closure of DOE's Rocky Flats Site in Colorado, which was placed on the CERCLA National Priority List in 1989, was accomplished under CERCLA, RCRA, and the Colorado Hazardous Waste Act (CHWA). The physical cleanup work was completed in late 2005 and all buildings and other structures that composed the Rocky Flats industrial complex were removed from the surface, but remnants remain in the subsurface. Other remaining features include two landfills closed in place with covers, four groundwater treatment systems, and surface water and groundwater monitoring systems. Under the 2006 Corrective Action Decision/Record of Decision for Rocky Flats Plantmore » (US DOE) Peripheral Operable Unit and the Central Operable Unit (CAD/ROD), the response actions selected for the Central Operable Unit (OU) are institutional controls (ICs), physical controls, and continued monitoring and maintenance. The objectives of these ICs were to prevent unacceptable exposure to remaining subsurface contamination and to prevent contaminants from mobilizing to surface water and to prevent interfering with the proper functioning of the engineered components of the remedy. An amendment in 2011 of the 2006 CAD/ROD clarified the ICs to prevent misinterpretation that would prohibit work to manage and maintain the Central OU property. The 2011 amendment incorporated a protocol for a Soil Disturbance Review Plan for work subject to ICs that requires approval from the State and public notification by DOE prior to conducting approved soil-disturbing work. (authors)« less
Iron Phosphate Glass-Containing Hanford Waste Simulant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sevigny, Gary J.; Kimura, Marcia L.; Fischer, Christopher M.
2012-01-18
Resolution of the nation's high-level tank waste legacy requires the design, construction, and operation of large and technically complex one-of-a-kind processing waste treatment and vitrification facilities. While the ultimate limits for waste loading and melter efficiency have yet to be defined or realized, significant reductions in glass volumes for disposal and mission life may be possible with advancements in melter technologies and/or glass formulations. This test report describes the experimental results from a small-scale test using the research-scale melter (RSM) at Pacific Northwest National Laboratory (PNNL) to demonstrate the viability of iron-phosphate-based glass with a selected waste composition that ismore » high in sulfate (4.37 wt% SO3). The primary objective of the test was to develop data to support a cost-benefit analysis related to the implementation of phosphate-based glasses for Hanford low-activity waste (LAW) and/or other high-level waste streams within the U.S. Department of Energy complex. The testing was performed by PNNL and supported by Idaho National Laboratory, Savannah River National Laboratory, Missouri University of Science and Technology, and Mo-Sci Corporation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crolley, R.; Thompson, M.
There has been a need for a faster and cheaper deployment model for information technology (IT) solutions to address waste management needs at US Department of Energy (DOE) complex sites for years. Budget constraints, challenges in deploying new technologies, frequent travel, and increased job demands for existing employees have prevented IT organizations from staying abreast of new technologies or deploying them quickly. Despite such challenges, IT organizations have added significant value to waste management handling through better worker safety, tracking, characterization, and disposition at DOE complex sites. Systems developed for site-specific missions have broad applicability to waste management challenges andmore » in many cases have been expanded to meet other waste missions. Radio frequency identification (RFID) and global positioning satellite (GPS)-enabled solutions have reduced the risk of radiation exposure and safety risks. New web-based and mobile applications have enabled precision characterization and control of nuclear materials. These solutions have also improved operational efficiencies and shortened schedules, reduced cost, and improved regulatory compliance. Collaboration between US Department of Energy (DOE) complex sites is improving time to delivery and cost efficiencies for waste management missions with new information technologies (IT) such as wireless computing, global positioning satellite (GPS), and radio frequency identification (RFID). Integrated solutions developed at separate DOE complex sites by new technology Centers of Excellence (CoE) have increased material control and accountability, worker safety, and environmental sustainability. CoEs offer other DOE sister sites significant cost and time savings by leveraging their technology expertise in project scoping, implementation, and ongoing operations.« less
The importance of ligand speciation in environmental research: a case study.
Sillanpää, M; Orama, M; Rämö, J; Oikari, A
2001-02-21
The speciations of EDTA and DTPA in process, waste and river waters are modelled and simulated, specifically to the mode of occurrence in the pulp and paper mill effluents and subsequently in receiving waters. Due to relatively short residence times in bleaching process and waste water treatment and slow exchange kinetics, it is expected that the thermodynamic equilibrium is not necessarily reached. Therefore, the initial speciation plays a key role. As such, the simulations have been extended to the process waters of the pulp and paper industry taking into account estimated average conditions. The results reveal that the main species are; Mn and Ca complexes of EDTA and DTPA in pulp mill process waters; Fe(III) and Mn complexes of EDTA and DTPA in waste waters; Fe(III) and Zn complexes of EDTA and DTPA in receiving waters. It is also shown how the increasing concentration of complexing agents effects the speciation. Alkaline earth metal chelation plays a significant role in the speciation of EDTA and DTPA when there is a noticeable molar excess of complexing agents compared with transition metals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Truex, Michael J.; Oostrom, Martinus; Last, George V.
At the DOE Hanford Site, contaminants were discharged to the subsurface through engineered waste sites in the Hanford Central Plateau. Additional waste was released through waste storage tank leaks. Much of the contaminant inventory is still present within the unsaturated vadose zone sediments. The nature and extent of future groundwater contaminant plumes and the growth or decline of current groundwater plumes beneath the Hanford Central Plateau are a function of the contaminant flux from the vadose zone to the groundwater. In general, contaminant transport is slow through the vadose zone and it is difficult to directly measure contaminant flux inmore » the vadose zone. Predictive analysis, supported by site characterization and monitoring data, was applied using a structured, systems-based approach to estimate the future contaminant flux to groundwater in support of remediation decisions for the vadose zone and groundwater (Truex and Carroll 2013). The SX Tank Farm was used as a case study because of the existing contaminant inventory in the vadose zone, observations of elevated moisture content in portions of the vadose zone, presence of a limited-extent groundwater plume, and the relatively large amount and wide variety of data available for the site. Although the SX Tank Farm case study is most representative of conditions at tank farm sites, the study has elements that are also relevant to other types of disposal sites in the Hanford Central Plateau.« less
Natural food colourants derived from onion wastes: application in a yoghurt product.
Mourtzinos, Ioannis; Prodromidis, Prodromos; Grigorakis, Spyros; Makris, Dimitris P; Biliaderis, Costas G; Moschakis, Thomas
2018-06-10
The valorization of onion (Allium cepa) solid wastes, a 450,000 tonnes/year waste in Europe, by a green extraction method is presented. Polyphenols of onion solid wastes were extracted using eco-friendly solvents, such as water and glycerol. The 2-hydroxypropyl-β-cyclodextrin was also used as a co-solvent for the augmentation of the extraction yield. The process has been optimized by implementing a central composite face centered design of experiments, with two replicates in the central point, taking into consideration the following independent variables: glycerol concentration, cyclodextrin concentration and temperature. The assessment of the extraction model was based on two responses: the total pigment yield and the antiradical capacity. LC-MS analysis was also employed in order to identify polyphenols and colourants of the obtained extracts. The main polyphenols found were quercetin and quercetin derivatives and the main colourant was cyanidin 3-O-glucoside. The extract was also tested as a food colourant in a yoghurt matrix. The onion leaf extract was found to be a stable natural colourant and could be utilized as an alternative ingredient to synthetic coloring agents. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Disposal of liquid wastes by injection underground--Neither myth nor millennium
Piper, Arthur M.
1969-01-01
Injecting liquid wastes deep underground is an attractive but not necessarily practical means for disposing of them. For decades, impressive volumes of unwanted oil-field brine have been injected, currently about 10,000 acre-feet yearly. Recently, liquid industrial wastes are being injected in ever-increasing quantity. Dimensions of industrial injection wells range widely but the approximate medians are: depth, 2,660 feet; thickness of injection zone, 185 feet; injection rate, 135 gallons per minute; wellhead injection pressure, 185 pounds per square inch. Effects of deep injection are complex and not all are understood clearly. In a responsible society, injection cannot be allowed to put wastes out of mind. Injection is no more than storage--for all time in the case of the most intractable wastes--in underground space of which little is attainable in some areas and which is exhaustible in most areas. Liquid wastes range widely in character and concentration-some are incompatible one with another or with materials of the prospective injection zone; some which are reactive or chemically unstable would require pretreatment or could not be injected. Standards by which to categorize the wastes are urgently desirable. To the end that injection may be planned effectively and administered in orderly fashion, there is proposed an immediate and comprehensive canvass of all the United States to outline injection provinces and zones according to their capacities to accept waste. Much of the information needed to this end is at hand. Such a canvass would consider (1) natural zone, of groundwater circulation, from rapid to stagnant, (2) regional hydrodynamics, (3) safe injection pressures, and (4) geochemical aspects. In regard to safe pressure, definitive criteria would be sought by which to avoid recurrence of earthquake swarms such as seem to have been triggered by injection at the Rocky Mountain Arsenal well near Denver, Colo. Three of the 50 States--Missouri, .Ohio, and Texas-have statutes specifically to regulate injection of industrial wastes. Other States impose widely diverse constraints under unlike administrative authorities. Few, if any, State agencies currently have the staff skills, centralized authority, and financial resources to assure rights of the general public to be spared harm from, and to reap the benefit of accrued experience with, deep injection. Some new, fully competent institutional arrangement appears to be essential, under a unified policy. As required, such an institution might have en echelon components, respectively having nationwide, single State or major province, subprovince, or local jurisdiction.
Roles of Historical Photography in Waste Site Characterization, Closure, and Remediation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackey, H.
1998-07-01
Over 40,000 frames of vertical historical photography from 1938 to 1996 and over 10,000 frames of oblique photography from 1981 to 1991 of the 777-square kilometer Savannah River Site in south central South Carolina were reviewed, cataloged, and referenced utilizing ARCView and associated ArcInfo tools. This allows environmental reviews of over 400 potential waste units on the SRS to be conducted in a rapid fashion to support preparation of work plans, characterization, risk assessments, and closure of the waste units in a more cost effective manner.
NASA Astrophysics Data System (ADS)
Kodros, John K.; Wiedinmyer, Christine; Ford, Bonne; Cucinotta, Rachel; Gan, Ryan; Magzamen, Sheryl; Pierce, Jeffrey R.
2016-12-01
Uncontrolled combustion of domestic waste has been observed in many countries, creating concerns for air quality; however, the health implications have not yet been quantified. We incorporate the Wiedinmyer et al (2014 Environ. Sci. Technol. 48 9523-30) emissions inventory into the global chemical-transport model, GEOS-Chem, and provide a first estimate of premature adult mortalities from chronic exposure to ambient PM2.5 from uncontrolled combustion of domestic waste. Using the concentration-response functions (CRFs) of Burnett et al (2014 Environ. Health Perspect. 122 397-403), we estimate that waste-combustion emissions result in 270 000 (5th-95th: 213 000-328 000) premature adult mortalities per year. The confidence interval results only from uncertainty in the CRFs and assumes equal toxicity of waste-combustion PM2.5 to all other PM2.5 sources. We acknowledge that this result is likely sensitive to choice of chemical-transport model, CRFs, and emission inventories. Our central estimate equates to 9% of adult mortalities from exposure to ambient PM2.5 reported in the Global Burden of Disease Study 2010. Exposure to PM2.5 from waste combustion increases the risk of premature mortality by more than 0.5% for greater than 50% of the population. We consider sensitivity simulations to uncertainty in waste-combustion emission mass, the removal of waste-combustion emissions, and model resolution. A factor-of-2 uncertainty in waste-combustion PM2.5 leads to central estimates ranging from 138 000 to 518 000 mortalities per year for factors-of-2 reductions and increases, respectively. Complete removal of waste combustion would only avoid 191 000 (5th-95th: 151 000-224 000) mortalities per year (smaller than the total contributed premature mortalities due to nonlinear CRFs). Decreasing model resolution from 2° × 2.5° to 4° × 5° results in 16% fewer mortalities attributed to waste-combustion PM2.5, and over Asia, decreasing resolution from 0.5° × 0.666° to 2° × 2.5° results in 21% fewer mortalities attributed to waste-combustion PM2.5. Owing to coarse model resolution, our global estimates of premature mortality from waste-combustion PM2.5 are likely a lower bound.
Waste. Choices for Communities.
ERIC Educational Resources Information Center
Knaus, Andy; And Others
The purpose of this booklet is to provide an introduction to the many complex issues of waste management in the United States. It is designed to raise public awareness of the serious impact of current waste generation and disposal practices and to promote alternatives. It encourages citizens to involve themselves in decisions about the way waste…
Silicophosphate Sorbents, Based on Ore-Processing Plants' Waste in Kazakhstan
ERIC Educational Resources Information Center
Kubekova, Sholpan N.; Kapralova, Viktoria I.; Telkov, Shamil A.
2016-01-01
The problem of ore-processing plants' waste and man-made mineral formations (MMF) disposal is very important for the Republic of Kazakhstan. The research of various ore types (gold, polymetallic, iron-bearing) MMF from a number of Kazakhstan's deposits using a complex physical and chemical methods showed, that the waste's main components are…
TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
James T. Cobb, Jr.
2003-09-12
Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatmentmore » with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.« less
Solid waste management in Thailand: an overview and case study (Tha Khon Yang sub-district).
Yukalang, Nachalida; Clarke, Beverley Dawn; Ross, Kirstin Elizabeth
2017-09-26
Due to rapid urbanization, solid waste management (SWM) has become a significant issue in several developing countries including Thailand. Policies implemented by the Central Thai Government to manage SWM issues have had only limited success. This article reviews current municipal waste management plans in Thailand and examines municipal waste management at the local level, with focus on the Tha Khon Yang sub-district surrounding Mahasarakham University in Mahasarakham Province. Within two decades this area has been converted from a rural to an urban landscape featuring accommodation for over 45,000 university students and a range of business facilities. This development and influx of people has outpaced the government's ability to manage municipal solid waste (MSW). There are significant opportunities to improve local infrastructure and operational capacity; but there are few mechanisms to provide and distribute information to improve community participation in waste management. Many community-based waste management projects, such as waste recycling banks, the 3Rs (reduce, reuse and recycle), and waste-to-biogas projects have been abandoned. Additionally, waste from Tha Kon Yang and its surrounding areas has been transferred to unsanitary landfills; there is also haphazard dumping and uncontrolled burning of waste, which exacerbate current pollution issues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldston, W.
On April 21, 2009, the Energy Facilities Contractors Group (EFCOG) Waste Management Working Group (WMWG) provided a recommendation to the Department of Energy's Environmental Management program (DOE-EM) concerning supplemental guidance on blending methodologies to use to classify waste forms to determine if the waste form meets the definition of Transuranic (TRU) Waste or can be classified as Low-Level Waste (LLW). The guidance provides specific examples and methods to allow DOE and its Contractors to properly classify waste forms while reducing the generation of TRU wastes. TRU wastes are much more expensive to characterize at the generator's facilities, ship, and thenmore » dispose at the Waste Isolation Pilot Plant (WIPP) than Low-Level Radioactive Waste's disposal. Also the reduction of handling and packaging of LLW is inherently less hazardous to the nuclear workforce. Therefore, it is important to perform the characterization properly, but in a manner that minimizes the generation of TRU wastes if at all possible. In fact, the generation of additional volumes of radioactive wastes under the ARRA programs, this recommendation should improve the cost effective implementation of DOE requirements while properly protecting human health and the environment. This paper will describe how the message of appropriate, less expensive, less hazardous blending of radioactive waste is the 'right' thing to do in many cases, but can be confused with inappropriate 'dilution' that is frowned upon by regulators and stakeholders in the public. A proposal will be made in this paper on how to communicate this very complex and confusing technical issue to regulatory bodies and interested stakeholders to gain understanding and approval of the concept. The results of application of the proposed communication method and attempt to change the regulatory requirements in this area will be discussed including efforts by DOE and the NRC on this very complex subject.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, J.; Kannan, K.; Cheng, J.
2008-11-15
Electronic shredder waste and dust from e-waste facilities, and leaves and surface soil collected in the vicinity of a large scale e-waste recycling facility in Taizhou, Eastern China, were analyzed for total dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) including 2,3,7,8-substituted congeners. We also determined PCDD/Fs in surface agricultural soils from several provinces in China for comparison with soils from e-waste facilities. Concentrations of total PCDD/Fs were high in all of the matrices analyzed and ranged from 30.9 to 11,400 pg/g for shredder waste, 3460 to 9820 pg/g dry weight for leaves, 2560 to 148,000 pg/g dry weight for workshop-floor dust, and 854more » to 10200 pg/g dry weight for soils. We also analyzed surface soils from a chemical industrial complex (a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) in Shanghai. Concentrations of total PCDD/Fs in surface soil from the chemical industrial complex were lower than the concentrations found in soils from e-waste recycling plants, but higher than the concentrations found in agricultural soils. Agricultural soils from six cities in China contained low levels of total PCDD/Fs. Profiles of dioxin toxic equivalents (TEQs) of 2,3,7,8-PCDD/Fs in soils from e-waste facilities in Taizhou differed from the profiles found in agricultural soils. The estimated daily intakes of TEQs of PCDD/Fs via soil/dust ingestion and dermal exposure were 2 orders of magnitude higher in people at e-waste recycling facilities than in people at the chemical industrial site, implying greater health risk for humans from dioxin exposures at e-waste recycling facilities. The calculated TEQ exposures for e-waste workers from dust and soil ingestion alone were 2-3 orders of magnitude greater than the exposures from soils in reference locations. 37 refs., 1 fig., 2 tabs.« less
Wang, H Holly; Tan, Tih Koon; Schotzko, R Thomas
2007-02-01
Potato production and processing are very important activities in the agricultural economy of the Pacific Northwest. Part of the reason for the development of this industry has been the availability of water for both growing and processing. A great amount of water is used in processing potato products, such as frozen French fries, and the waste water is a pollutant because it contains high levels of nitrate and other nutrients. Using this waste water to irrigate the fields can be a suitable disposal method. Field application will reduce potato fertilizer costs, but it can also cause underground water contamination if over-applied to the field. In this econometric study, we used field data associated with current waste water applications in central Washington to examine the yield response as well as the soil nitrogen content response to waste water applications. Our results from the production model show that both water and nitrogen positively affect crop yields at the current levels of application, but potassium has been over applied. This implies that replacing some waste water with fresh water and nitrogen fertilizer will increase production. The environmental model results show that applying more nitrogen to the soil leads to more movement below the root zone. The results also suggest that higher crop yields lead to less nitrogen in the soil, and applying more water increases crop yields, which can reduce the nitrogen left in the soil. Therefore, relative to the current practice, waste water application rates should be reduced and supplemented with fresh water to enhance nitrogen use by plants and reduce residual nitrogen in the soil.
NASA Technical Reports Server (NTRS)
1977-01-01
This Jacksonville, Florida, apartment complex has a wastewater treatment system which clears the water, removes harmful microorganisms and reduces solid residue to ash. It is a spinoff from spacecraft waste management and environmental control technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jing Ma; Rudolf Addink; Sehun Yun
2009-10-01
In this study, 11 2,3,7,8-substituted PBDD/Fs and 10 polybrominated diphenyl ether (PBDE) congeners were determined in electronic shredder waste, workshop-floor dust, soil, and leaves (of plants on the grounds of the facility) from a large-scale electronic wastes (e-waste) recycling facility and in surface soil from a chemical-industrial complex (comprising a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) as well as agricultural areas in eastern China. Total PBDD/F concentrations in environmental samples were in the range of 113-818 pg/g dry wt (dw) for leaves, 392-18,500 pg/g dw for electronic shredder residues, 716-80,0000 pg/g dw for soil samples, andmore » 89,600-14,3000 pg/g dw for workshop-floor dust from the e-waste recycling facility and in a range from nondetect (ND) to 427 pg/g dw in soil from the chemical-industrial complex. The highest mean concentrations of total PBDD/Fs were found in soil samples and workshop-floor dust from the e-waste recycling facility. The dioxin-like toxic equivalent (measured as TEQ) concentrations of PBDD/Fs were greater than the TEQs of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) reported in our previous study for the same set of samples. The concentrations of PBDFs were several orders of magnitude higher than the concentrations of PBDDs in samples from the e-waste facility or from soil from the chemical-industrial complex. A significant correlation was found between the concentrations of {Sigma}PBDD/Fs and {Sigma}PBDEs (r = 0.769, p < 0.01) and between SPBDD/Fs and the previously reported SPCDD/F concentrations (r = 0.805, p < 0.01). The estimated daily human intakes of TEQs contributed by PBDD/Fs via soil/dust ingestion and dermal exposures in e-waste recycling facilities were higher than the intakes of TEQs contributed by PCDD/Fs, calculated in our previous study. 45 refs., 2 figs., 2 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasbrouck, J.C.
1992-11-01
Chem-Nuclear Geotech, Inc. (Geotech), operating contractor for the US Department of Energy Grand Junction Projects Office, is conducting the Integrated Geophysics Program for Non-Intrusive Characterization of Mixed-Waste Landfill Sites (Technical Task Plan [TTP] AL921102). The TTP is part of the Mixed-Waste Landfill Integrated Demonstration (MWLID). The objective of this task was to demonstrate that an integrated program of surface geophysics can be used to effectively and nonintrusively characterize n-mixed-waste landfill sites. To accomplish this objective, integrated field demonstrations were conducted over two previously identified areas of interest (designated Areas A and B) within the MWLID test site at the Chemicalmore » Waste Landfill (CWL), Technical Area 3, at the Sandia National Laboratories, Albuquerque, New Mexico (Figures 1 and 2). Area A was centered roughly around the Chromic Acid and Organics Pits in the southeast-central portion of the landfill and Area B was centered around the ``60`s Pits`` area in the northeast-central portion of the landfill. Pit locations were known in Area A and suspected in Area B. This progress report describes the geophysical surveys conducted by Geotech and presents preliminary displays and analyses. Volume 2 of this report contains the raw data for all the surveys conducted by Geotech for this TTP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasbrouck, J.C.
1992-11-01
Chem-Nuclear Geotech, Inc. (Geotech), operating contractor for the US Department of Energy Grand Junction Projects Office, is conducting the Integrated Geophysics Program for Non-Intrusive Characterization of Mixed-Waste Landfill Sites (Technical Task Plan [TTP] AL921102). The TTP is part of the Mixed-Waste Landfill Integrated Demonstration (MWLID). The objective of this task was to demonstrate that an integrated program of surface geophysics can be used to effectively and nonintrusively characterize n-mixed-waste landfill sites. To accomplish this objective, integrated field demonstrations were conducted over two previously identified areas of interest (designated Areas A and B) within the MWLID test site at the Chemicalmore » Waste Landfill (CWL), Technical Area 3, at the Sandia National Laboratories, Albuquerque, New Mexico (Figures 1 and 2). Area A was centered roughly around the Chromic Acid and Organics Pits in the southeast-central portion of the landfill and Area B was centered around the 60's Pits'' area in the northeast-central portion of the landfill. Pit locations were known in Area A and suspected in Area B. This progress report describes the geophysical surveys conducted by Geotech and presents preliminary displays and analyses. Volume 2 of this report contains the raw data for all the surveys conducted by Geotech for this TTP.« less
Pugin, K G; Vaĭsman, Ia I
2013-01-01
On the basis of the life cycle of materials, containing wastes of iron and steel industry, new methodological approaches to the assessment of technologies of the secondary use of wastes are developed A complex criteria for selection of the technology for the use of resource potential of solid waste of iron and steel industry are developed with taking into account environmental, technological and economic indices. The technology of the use of wastes of ferrovanadium industry as bulk solid materials at the solid waste landfill is shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mangelson, K.A.
1988-07-01
In 1984, a radium-removal treatment plant was constructed for the small community of Redhill Forest located in the central mountains of Colorado. The treatment plant consists of a process for removing iron and manganese ahead of an ion-exchange process for the removal of radium. The raw water comes from deep wells and has naturally occurring radium and iron concentrations of about 30-40 pCi/L and 7-10 mg/L, respectively. Before the raw water enters the main treatment plant, the raw water is aerated to remove radon gas and carbon dioxide. The unique features of the Redhill Forest Treatment Plant are related tomore » the ways in which the radium removed from the raw water is further treated and eventually disposed of as treatment plant waste. A separate system removes only radium from the backwash/regeneration water of the ion exchange process and the radium is permanently complexed on a Radium Selective Complexer (RSC) resin made by Dow Chemical. The RSC resin containing radium is replaced with virgin resin as needed and the resin waste transported to a permanent final disposal site in Beatty, NV. This report presents a detailed description of the Redhill Forest treatment system and the results of in-depth monitoring of the processes and other factors relating to the overall operation of the radium-removal system. Included are descriptions of modifications made in the plant operation to improve the overall system operation and of the procedures for final disposal of the RSC resin-containing radium.« less
Bakhiyi, Bouchra; Gravel, Sabrina; Ceballos, Diana; Flynn, Michael A; Zayed, Joseph
2018-01-01
Despite regulatory efforts and position papers, electrical and electronic waste (e-waste) remains ill-managed as evidenced by the extremely low rates of proper e-waste recycling (e-recycling) worldwide, ongoing illegal shipments to developing countries and constantly reported human health issues and environmental pollution. The objectives of this review are, first, to expose the complexity of e-waste problems, and then to suggest possible upstream and downstream solutions. Exploring e-waste issues is akin to opening a Pandora's box. Thus, a review of prevailing e-waste management practices reveals complex and often intertwined gaps, issues and challenges. These include the absence of any consistent definition of e-waste to date, a prevalent toxic potential still involving already banned or restricted hazardous components such as heavy metals and persistent and bioaccumulative organic compounds, a relentless growth in e-waste volume fueled by planned obsolescence and unsustainable consumption, problematic e-recycling processes, a fragile formal e-recycling sector, sustained and more harmful informal e-recycling practices, and more convoluted and unpredictable patterns of illegal e-waste trade. A close examination of the e-waste legacy contamination reveals critical human health concerns, including significant occupational exposure during both formal and informal e-recycling, and persistent environmental contamination, particularly in some developing countries. However, newly detected e-waste contaminants as well as unexpected sources and environmental fates of contaminants are among the emerging issues that raise concerns. Moreover, scientific knowledge gaps remain regarding the complexity and magnitude of the e-waste legacy contamination, specifically, a comprehensive characterization of e-waste contaminants, information on the scale of legacy contamination in developing countries and on the potential environmental damage in developed countries, and a stronger body of evidence of adverse health effects specifically ascribed to e-waste contaminants. However, the knowledge accumulated to date is sufficient to raise awareness and concern among all stakeholders. Potential solutions to curb e-waste issues should be addressed comprehensively, by focusing on two fronts: upstream and downstream. Potential upstream solutions should focus on more rational and eco-oriented consumer habits in order to decrease e-waste quantities while fostering ethical and sustained commitments from manufacturers, which include a limited usage of hazardous compounds and an optimal increase in e-waste recyclability. At the downstream level, solutions should include suitable and pragmatic actions to progressively reduce the illegal e-waste trade particularly through international cooperation and coordination, better enforcement of domestic laws, and monitoring in both exporting and receiving countries, along with the supervised integration of the informal sector into the recycling system of developing countries and global expansion of formal e-waste collection and recycling activities. Downstream solutions should also introduce stronger reverse logistics, together with upgraded, more affordable, and eco-friendly and worker-friendly e-recycling technologies to ensure that benefits are derived fully and safely from the great economic potential of e-waste. Copyright © 2017 Elsevier Ltd. All rights reserved.
Building a new waste management strategy in Puerto Rico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boltz, C.
1995-06-01
Puerto Rico traditionally has not had a centrally organized waste management system. Most municipalities have provided service for their own residents, and the island used 62 unlined landfills before 32 of those closed in April 1994. But waste management on this Caribbean island is changing as the government-a self-governing commonwealth associated voluntarily with the US government-begins implementing its strategy for developing efficient, state-of-the-art waste management. This strategy includes plans to build an integrated system of collection, transfer stations, and disposal sites whose centerpieces are market-drives recycling, partnerships between the public and private sectors, and public education. The details of thismore » plan coincide with the mission statement of the Puerto Rico Solid Waste Management Authority (SWMA, San Juan), to ``develop and implement the necessary infrastructure for the efficient management of solid waste in Puerto Rico.« less
Co-composting of green waste and food waste at low C/N ratio
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Mathava; Ou, Y.-L.; Lin, J.-G., E-mail: jglin@mail.nctu.edu.t
2010-04-15
In this study, co-composting of food waste and green waste at low initial carbon to nitrogen (C/N) ratios was investigated using an in-vessel lab-scale composting reactor. The central composite design (CCD) and response surface method (RSM) were applied to obtain the optimal operating conditions over a range of preselected moisture contents (45-75%) and C/N ratios (13.9-19.6). The results indicate that the optimal moisture content for co-composting of food waste and green waste is 60%, and the substrate at a C/N ratio of 19.6 can be decomposed effectively to reduce 33% of total volatile solids (TVS) in 12 days. The TVSmore » reduction can be modeled by using a second-order equation with a good fit. In addition, the compost passes the standard germination index of white radish seed indicating that it can be used as soil amendment.« less
Sun, Z H I; Xiao, Y; Sietsma, J; Agterhuis, H; Yang, Y
2016-11-01
Recovery of valuable metals from electronic waste has been highlighted by the EU directives. The difficulties for recycling are induced by the high complexity of such waste. In this research, copper could be selectively recovered using an ammonia-based process, from industrially processed information and communication technology (ICT) waste with high complexity. A detailed understanding on the role of ammonium salt was focused during both stages of leaching copper into a solution and the subsequent step for copper recovery from the solution. By comparing the reactivity of the leaching solution with different ammonium salts, their physiochemical behaviour as well as the leaching efficiency could be identified. The copper recovery rate could reach 95% with ammonium carbonate as the leaching salt. In the stage of copper recovery from the solution, electrodeposition was introduced without an additional solvent extraction step and the electrochemical behaviour of the solution was figured out. With a careful control of the electrodeposition conditions, the current efficiency could be improved to be 80-90% depending on the ammonia salts and high purity copper (99.9wt.%). This research provides basis for improving the recyclability and efficiency of copper recovery from such electronic waste and the whole process design for copper recycling. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sun, Z H I; Xiao, Y; Sietsma, J; Agterhuis, H; Visser, G; Yang, Y
2015-01-01
Recycling of valuable metals from electronic waste, especially complex mixtures of end-of-life information and communication technology (ICT) products, is of great difficulty due to their complexity and heterogeneity. One of the important reasons is the lack of comprehensive characterisation on such materials, i.e. accurate compositions, physical/chemical properties. In the present research, we focus on developing methodologies for the characterisation of metals in an industrially processed ICT waste. The morphology, particle size distribution, compositional distribution, occurrence, liberation as well as the thermo-chemical properties of the ICT waste were investigated with various characterisation techniques, including X-ray Fluorescence Spectrometry (XRF), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) with energy dispersed spectroscopy (EDS). Due to the high heterogeneity of the material, special sample preparation procedures were introduced to minimise the discrepancies during compositional analyses. As a result, a clearer overview of the ICT waste has been reached. This research provides better understanding of the extractability of each metal and improves the awareness of potential obstacles for extraction. It will lead to smarter decisions during further development of a clean and effective recovery process. Copyright © 2014 Elsevier Ltd. All rights reserved.
Houk, V S; Claxton, L D
1986-03-01
10 complex hazardous wastes were tested for mutagenic activity using a modified version of the TLC/Salmonella assay developed by Bjørseth et al. (1982). This fractionation/bioassay scheme couples thin-layer chromatography (TLC) with the Salmonella/mammalian-microsome (Ames) assay for the detection of mutagenic constituents in complex mixtures. Crude (unadulterated) hazardous wastes and selected hazardous waste extracts were fractionated on commercially available cellulose TLC plates. Mutagenicity testing was performed in situ by applying a single overlay of minimal growth agar, tester strain TA98 or TA100, and the optional metabolic activation system directly onto the developed chromatogram. A mutagenic effect was indicated either by the appearance of localized clusters of revertant colonies or by an increase in total revertant growth vis-à-vis control plates. 7 of 10 hazardous wastes (including tars, emulsions, sludges, and spent acids and caustics) demonstrated mutagenic activity when tested by this method. To assess the sensitivity of the modified TLC/Salmonella assay, 14 Salmonella mutagens from a wide range of chemical classes and polarities were tested. Selected compounds included heterocyclics, aromatic amines, alkylating agents, antitumor agents, a nitrosamine and a nitroaromatic. 11 of the 14 mutagens were positive in this test system. The 3 compounds refractory to analysis included a polycyclic aromatic hydrocarbon and two volatiles.
Han, Wenliang; Feng, Jialiang; Gu, Zeping; Chen, Duohong; Wu, Minghong; Fu, Jiamo
2009-12-01
Concentrations, congener profiles, gas-particle partitioning and size distributions of polybrominated diphenyl ethers (PBDEs) in the atmosphere of Taizhou were studied to evaluate the impact of e-waste recycling on the environment. Total concentration of 13 PBDEs near the e-waste dismantling area was 506 pg m(-3) in summer and 1,662 pg m(-3) in winter, about 7 times higher than that of the reference urban site, but much lower than that of Guiyu, another major e-waste dismantling area in China. This should be attributable to the centralized management measures taken in recent years in Taizhou. BDE-209 was the major congener and mainly in coarse particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, J.G.; Patterson, A.L.; Wiginton, M.C.
BWXT Y-12, L.L.C., the Maintenance and Operations (M and O) contractor at the Y-12 National Security Complex (Y-12), practices pollution prevention in daily operations because it recognizes that the implementation of pollution prevention (P2) projects impacting all waste types, discharges, and emissions at the complex saves resources across the board. Projects that reduce solid industrial waste save numerous resources, including valuable landfill space. At Y- 12, most of the solid industrial waste that is not reduced, reused, or recycled is transported to an industrial waste landfill located on the U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR). While themore » current landfill still has capacity, in the past the industrial waste generation across the ORR was impacted when the new landfill was not available to receive waste, but the old landfill was reaching capacity. The potential of having waste with absolutely nowhere to go is simply not an option for a facility with ongoing operations. Avoiding this potential scenario in the memorable past has made Y-12 very aware of the importance of reducing all waste types. While Y-12 aggressively pursues pollution prevention implementation on all waste types, this paper will highlight the use of systems, people, and pollution prevention integration in projects used by Y-12 to holistically reduce the amount of industrial waste being sent to the on-site landfill. Specifically, the design and use of Y-12's Environmental Management System (EMS), the creation of a multi-disciplinary team, and the buy-in and creativity of the site project, Infrastructure Reduction (IR), that generates the largest volumes of waste will be discussed. (authors)« less
Johnson, Kyle M; González, Miriam L; Dueñas, Lourdes; Gamero, Mario; Relyea, George; Luque, Laura E; Caniza, Miguela A
2013-07-01
Healthcare waste (HCW) management and segregation are essential to ensure safety, environmental protection and cost control. Poor HCW management increase risks and costs for healthcare institutions. On-going surveillance and training are important to maintain good HCW practices. Our objectives were to evaluate and improve HCW practices at Hospital Bloom, San Salvador, El Salvador. We studied HCW disposal practices by observing waste containers, re-segregating waste placed in biohazardous waste bags, and administering a seven-itemsknowledge survey before and after training in waste management at Hospital Bloom. The training was based on national and international standards. We followed total biohazardous waste production before and after the training. The hospital staff was knowledgeable about waste segregation practices, but had poor compliance with national policies. Re-segregating waste in biohazardous waste bags showed that 61% of this waste was common waste, suggesting that the staff was possibly unaware of the cost of mis-segregating healthcare waste. After staff training in HCW management, the correct responses increased by 44% and biohazardous waste disposal at the hospital reduced by 48%. Better segregation of biohazardous waste and important savings can be obtained by HCW management education of hospital staff. Hospitals can benefit from maximising the use of available resources by sustaining best practices of HCW, especially those in hospitals in lower-middle-income countries.
El Zrelli, Radhouan; Courjault-Radé, Pierre; Rabaoui, Lotfi; Castet, Sylvie; Michel, Sylvain; Bejaoui, Nejla
2015-12-30
In the present study, the concentrations of 6 trace metals (Hg, Cd, Cu, Pb, Cr and Zn) were assessed in the surface sediments of the central coastal area of Gabes Gulf to determine their contamination status, source, spatial distribution and ecological risks. The ranking of metal contents was found to be Zn>Cd>Cr>Pb>Cu>Hg. Correlation analysis indicated that Cd and Zn derived mainly from the Tunisian Chemical Group phosphogypsum. The other pollutants may originate from other industrial wastes. Metallic contamination was detected in the south of chemical complex, especially in the inter-harbor zone, where the ecological risk of surface sediments is the highest, implying potential negative impacts of industrial pollutants. The spatial distribution of pollutants seems to be due to the effect of harbor installations and coastal currents. The metallic pollution status of surface sediments of Gabes Gulf is obvious, very worrying and requires rapid intervention. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Frederick
2012-02-01
This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA-000160-01), for the wastewater reuse site at the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: (1) Facility and system description; (2) Permit required effluent monitoring data and loading rates; (3) Groundwater monitoring data; (4) Status of special compliance conditions; and (5) Discussion of the facility's environmental impacts. During the 2011 reporting year, an estimated 6.99 million gallons of wastewater were discharged to themore » Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. Using the dissolved iron data, the concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
David B. Frederick
2011-02-01
This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from May 1, 2010 through October 31, 2010. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2010 partial reporting year, an estimated 3.646 million gallons of wastewater were dischargedmore » to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.« less
Hernández-Hernández, Abrahan; Masich, Sergej; Fukuda, Tomoyuki; Kouznetsova, Anna; Sandin, Sara; Daneholt, Bertil; Höög, Christer
2016-06-01
The synaptonemal complex transiently stabilizes pairing interactions between homologous chromosomes during meiosis. Assembly of the synaptonemal complex is mediated through integration of opposing transverse filaments into a central element, a process that is poorly understood. We have, here, analyzed the localization of the transverse filament protein SYCP1 and the central element proteins SYCE1, SYCE2 and SYCE3 within the central region of the synaptonemal complex in mouse spermatocytes using immunoelectron microscopy. Distribution of immuno-gold particles in a lateral view of the synaptonemal complex, supported by protein interaction data, suggest that the N-terminal region of SYCP1 and SYCE3 form a joint bilayered central structure, and that SYCE1 and SYCE2 localize in between the two layers. We find that disruption of SYCE2 and TEX12 (a fourth central element protein) localization to the central element abolishes central alignment of the N-terminal region of SYCP1. Thus, our results show that all four central element proteins, in an interdependent manner, contribute to stabilization of opposing N-terminal regions of SYCP1, forming a bilayered transverse-filament-central-element junction structure that promotes synaptonemal complex formation and synapsis. © 2016. Published by The Company of Biologists Ltd.
Gullies in a Central Pit Crater
2015-10-14
Sometimes a central pit forms inside some Martian craters, especially when there substantial ground ice. Such is the case in this observation from NASA Mars Reconnaissance Orbiter spacecraft. Sometimes what we call "mass wasting" processes (think small avalanches or landslides) occur on the slopes of the central pit. We took this image to search for any recent activity that would add to or modify previously identified gullies. http://photojournal.jpl.nasa.gov/catalog/PIA20005
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC... Picolines, mixed/Condensation of acetaldehyde + formaldehyde + ammonia Organic pigments, Azo/Diazotization...
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC... Picolines, mixed/Condensation of acetaldehyde + formaldehyde + ammonia Organic pigments, Azo/Diazotization...
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC... Picolines, mixed/Condensation of acetaldehyde + formaldehyde + ammonia Organic pigments, Azo/Diazotization...
Code of Federal Regulations, 2012 CFR
2012-07-01
... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC... Picolines, mixed/Condensation of acetaldehyde + formaldehyde + ammonia Organic pigments, Azo/Diazotization...
Modeling Land Application of Food-Processing Wastewater in the Central Valley, California
NASA Astrophysics Data System (ADS)
Rubin, Y.; Benito, P.; Miller, G.; McLaughlin, J.; Hou, Z.; Hermanowicz, S.; Mayer, U.
2007-12-01
California's Central Valley contains over 640 food-processing plants, serving a multi-billion dollar agricultural industry. These processors consume approximately 7.9 x 107 m3 of water per year. Approximately 80% of these processors discharge the resulting wastewater, which is typically high in organic matter, nitrogen, and salts, to land, and many of these use land application as a treatment method. Initial investigations revealed elevated salinity levels to be the most common form of groundwater degradation near land application sites, followed by concentrations of nitrogen compounds, namely ammonia and nitrate. Enforcement actions have been taken against multiple food processors, and the regulatory boards have begun to re-examine the land disposal permitting process. This paper summarizes a study that was commissioned in support of these actions. The study has multiple components which will be reviewed briefly, including: (1) characterization of the food-processing related waste stream; (2) fate and transport of the effluent waste stream in the unsaturated zone at the land application sites; (3) fate and transport of the effluent waste stream at the regional scale; (4) predictive uncertainty due to spatial variability and data scarcity at the land application sites and at the regional scale; (5) problem mitigation through off-site and in-situ actions; (6) long-term solutions. The emphasis of the talk will be placed on presenting and demonstrating a stochastic framework for modeling the transport and attenuation of these wastes in the vadose zone and in the saturated zone, and the related site characterization needs, as affected by site conditions, water table depth, waste water application rate, and waste constituent concentrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, Timothy; Nelson, Roger
The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) manages defense nuclear material that has been determined to be excess to programmatic needs and declared waste. When these wastes contain plutonium, they almost always meet the definition of defense transuranic (TRU) waste and are thus eligible for disposal at the Waste Isolation Pilot Plant (WIPP). The DOE operates the WIPP in a manner that physical protections for attractiveness level D or higher special nuclear material (SNM) are not the normal operating condition. Therefore, there is currently a requirement to terminate safeguards before disposal of these wastes atmore » the WIPP. Presented are the processes used to terminate safeguards, lessons learned during the termination process, and how these approaches might be useful for future defense TRU waste needing safeguards termination prior to shipment and disposal at the WIPP. Also described is a new criticality control container, which will increase the amount of fissile material that can be loaded per container, and how it will save significant taxpayer dollars. Retrieval, compliant packaging and shipment of retrievably stored legacy TRU waste has dominated disposal operations at WIPP since it began operations 12 years ago. But because most of this legacy waste has successfully been emplaced in WIPP, the TRU waste clean-up focus is turning to newly-generated TRU materials. A major component will be transuranic SNM, currently managed in safeguards-protected vaults around the weapons complex. As DOE and NNSA continue to consolidate and shrink the weapons complex footprint, it is expected that significant quantities of transuranic SNM will be declared surplus to the nation's needs. Safeguards termination of SNM varies due to the wide range of attractiveness level of the potential material that may be directly discarded as waste. To enhance the efficiency of shipping waste with high TRU fissile content to WIPP, DOE designed an over-pack container, similar to the pipe component, called the criticality control over-pack, which will significantly enhance the efficiency of disposal. Hundreds of shipments of transuranic SNM, suitably packaged to meet WIPP waste acceptance criteria and with safeguards terminated have been successfully emplaced at WIPP (primarily from the Rocky Flats site clean-up) since WIPP opened. DOE expects that thousands more may eventually result from SNM consolidation efforts throughout the weapons complex. (authors)« less
DOE Waste Treatability Group Guidance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkpatrick, T.D.
1995-01-01
This guidance presents a method and definitions for aggregating U.S. Department of Energy (DOE) waste into streams and treatability groups based on characteristic parameters that influence waste management technology needs. Adaptable to all DOE waste types (i.e., radioactive waste, hazardous waste, mixed waste, sanitary waste), the guidance establishes categories and definitions that reflect variations within the radiological, matrix (e.g., bulk physical/chemical form), and regulated contaminant characteristics of DOE waste. Beginning at the waste container level, the guidance presents a logical approach to implementing the characteristic parameter categories as part of the basis for defining waste streams and as the solemore » basis for assigning streams to treatability groups. Implementation of this guidance at each DOE site will facilitate the development of technically defined, site-specific waste stream data sets to support waste management planning and reporting activities. Consistent implementation at all of the sites will enable aggregation of the site-specific waste stream data sets into comparable national data sets to support these activities at a DOE complex-wide level.« less
Stock flow diagram analysis on solid waste management in Malaysia
NASA Astrophysics Data System (ADS)
Zulkipli, Faridah; Nopiah, Zulkifli Mohd; Basri, Noor Ezlin Ahmad; Kie, Cheng Jack
2016-10-01
The effectiveness on solid waste management is a major importance to societies. Numerous generation of solid waste from our daily activities has risked for our communities. These due to rapid population grow and advance in economic development. Moreover, the complexity of solid waste management is inherently involved large scale, diverse and element of uncertainties that must assist stakeholders with deviating objectives. In this paper, we proposed a system dynamics simulation by developing a stock flow diagram to illustrate the solid waste generation process and waste recycle process. The analysis highlights the impact on increasing the number of population toward the amount of solid waste generated and the amount of recycled waste. The results show an increment in the number of population as well as the amount of recycled waste will decrease the amount of waste generated. It is positively represent the achievement of government aim to minimize the amount of waste to be disposed by year 2020.
Radioactive Waste Management in A Hospital
Khan, Shoukat; Syed, AT; Ahmad, Reyaz; Rather, Tanveer A.; Ajaz, M; Jan, FA
2010-01-01
Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance with the Atomic Energy (Safe disposal of radioactive waste) rules of 1987 promulgated by the Indian Central Government Atomic Energy Act 1962. Any prospective plan of a hospital that intends using radioisotopes for diagnostic and therapeutic procedures needs to have sufficient infrastructural and manpower resources to keep its ambient radiation levels within specified safe limits. Regular monitoring of hospital area and radiation workers is mandatory to assess the quality of radiation safety. Records should be maintained to identify the quality and quantity of radioactive waste generated and the mode of its disposal. Radiation Safety officer plays a key role in the waste disposal operations. PMID:21475524
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Michael George
This report describes conditions and information, as required by the state of Idaho, Department of Environmental Quality Reuse Permit I-161-02, for the Advanced Test Reactor Complex Cold Waste Ponds located at Idaho National Laboratory from November 1, 2014–October 31, 2015. The effective date of Reuse Permit I-161-02 is November 20, 2014 with an expiration date of November 19, 2019.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beauchesne, A.M.
1997-12-31
Topics explored through this project include: decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites in the complex; changes to the FFCA site treatment plans as a result of proposals in the EM 2006 cleanup plans and contractor integration analysis; interstate waste and materials shipments; and reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes.more » The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; and maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, DOE activities in the area of the Hazardous Waste Identification Rule, and DOE`s proposed National Dialogue.« less
Ma, Jing; Kannan, Kurunthachalam; Cheng, Jinping; Horii, Yuichi; Wu, Qian; Wang, Wenhua
2008-11-15
Environmental pollution arising from electronic waste (e-waste) disposal and recycling has received considerable attention in recent years. Treatment, at low temperatures, of e-wastes that contain polyvinylchloride and related polymers can release polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Although several studies have reported trace metals and polybrominated diphenyl ethers (PBDEs) released from e-waste recycling operations, environmental contamination and human exposure to PCDD/Fs from e-waste recycling operations are less well understood. In this study, electronic shredder waste and dust from e-waste facilities, and leaves and surface soil collected in the vicinity of a large scale e-waste recycling facility in Taizhou, Eastern China, were analyzed for total PCDD/ Fs including 2,3,7,8-substituted congeners. We also determined PCDD/Fs in surface agricultural soils from several provinces in China for comparison with soils from e-waste facilities. Concentrations of total PCDD/Fs were high in all of the matrices analyzed and ranged from 30.9 to 11400 pg/g for shredder waste, 3460 to 9820 pg/g dry weight for leaves, 2560 to 148000 pg/g dry weight for workshop-floor dust, and 854 to 10200 pg/g dry weight for soils. We also analyzed surface soils from a chemical industrial complex (a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) in Shanghai. Concentrations of total PCDD/Fs in surface soil (44.5-531 pg/g dry wt) from the chemical industrial complex were lower than the concentrations found in soils from e-waste recycling plants, but higher than the concentrations found in agricultural soils. Agricultural soils from six cities in China contained low levels (3.44-33.8 pg/g dry wt) of total PCDD/Fs. Profiles of dioxin toxic equivalents (TEQs) of 2,3,7,8-PCDD/Fs in soils from e-waste facilities in Taizhou differed from the profiles found in agricultural soils. The estimated daily intakes of TEQs of PCDD/ Fs via soil/dust ingestion and dermal exposure (2.3 and 0.363 pg TEQ/kg bw/day for children and adults, respectively) were 2 orders of magnitude higher in people at e-waste recycling facilities than in people at the chemical industrial site (0.021 and 0.0053 pg TEQ/kg bw/day for children and adults, respectively), implying greater health risk for humans from dioxin exposures at e-waste recycling facilities. The calculated TEQ exposures for e-waste workers from dust and soil ingestion alone were 2-3 orders of magnitude greater than the exposures from soils in reference locations.
RESULTS OF THE ENVIRONMENTAL MANAGEMENT (EM) CORPORATE PROJECT TEAM DISPOSING WASTE & REDUCING RISK
DOE Office of Scientific and Technical Information (OSTI.GOV)
SHRADER, T.A.; KNERR, R.
2005-01-31
In 2002, the US Department of Energy's (DOE) Office of Environmental Management (EM) released the Top-To-Bottom Review of cognizant clean-up activities around the DOE Complex. The review contained a number of recommendations for changing the way EM operates in order to reduce environmental risk by significantly accelerating clean-up at the DOE-EM sites. In order to develop and implement these recommendations, a number of corporate project teams were formed to identify, evaluate, and initiate implementation of alternatives for the different aspects of clean-up. In August 2002, a corporate team was formed to review all aspects of the management, treatment, and disposalmore » of low level radioactive waste (LLW), mixed low level radioactive waste (MLLW), transuranic waste (TRU), and hazardous waste (HW). Over the next 21 months, the Corporate Project Team: Disposing Waste, Reducing Risk, developed a number of alternatives for implementing the recommendations of the Top-To-Bottom Review based on information developed during numerous site visits and interviews with complex and industry personnel. With input from over a dozen EM sites at various stages of clean-up, the team identified the barriers to the treatment and disposal of low level waste, mixed low level waste, and transuranic waste. Once identified, preliminary design alternatives were developed and presented to the Acquisition Authority (for this project, the Assistant Secretary for Environmental Management) for review and approval. Once the preliminary design was approved, the team down selected to seven key alternatives which were subsequently fully developed in the Project Execution Plan. The seven most viable alternatives were: (1) creation of an Executive Waste Disposal Board; (2) projectizing the disposal of low level waste and mixed low level waste; (3) creation of a National Consolidation and Acceleration Facility for waste; (4) improvements to the Broad Spectrum contract; (5) improvements to the Toxic Substance Control Act (TSCA) Incinerator contract and operations; (6) development of a policy for load management of waste shipments to the Waste Isolation Pilot Plant (WIPP); and (7) development of a complex-wide fee incentive for transuranic waste disposal. The alternatives were further refined and a plan developed for institutionalizing the alternatives in various site contracts. In order to focus the team's efforts, all team activities were conducted per the principles of DOE Order 413.3, Program and Project Management for the Acquisition of Capital Assets. Although the Order was developed for construction projects, the principles were adapted for use on this ''soft'' project in which the deliverables were alternatives for the way work was performed. The results of the team's investigation and the steps taken during the project are presented along with lessons learned.« less
Hong, Chen; Haiyun, Wu
2010-07-01
Central-composite design (CCD) and response surface methodology (RSM) were used to optimize the parameters of volatile fatty acid (VFA) production from food wastes and dewatered excess sludge in a semi-continuous process. The effects of four variables (food wastes composition in the co-substrate of food wastes and excess sludge, hydraulic retention time (HRT), organic loading rate (OLR), and pH) on acidogenesis were evaluated individually and interactively. The optimum condition derived via RSM was food wastes composition, 88.03%; HRT, 8.92 days; OLR, 8.31 g VSS/ld; and pH 6.99. The experimental VFA concentration was 29,099 mg/l under this optimum condition, which was well in agreement with the predicted value of 28,000 mg/l. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Solid waste management complex site development plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greager, T.M.
1994-09-30
The main purpose of this Solid Waste Management Complex Site Development Plan is to optimize the location of future solid waste treatment and storage facilities and the infrastructure required to support them. An overall site plan is recommended. Further, a series of layouts are included that depict site conditions as facilities are constructed at the SWMC site. In this respect the report serves not only as the siting basis for future projects, but provides siting guidance for Project W-112, as well. The plan is intended to function as a template for expected growth of the site over the next 30more » years so that future facilities and infrastructure will be properly integrated.« less
Environmental projects. Volume 16: Waste minimization assessment
NASA Technical Reports Server (NTRS)
1994-01-01
The Goldstone Deep Space Communications Complex (GDSCC), located in the MoJave Desert, is part of the National Aeronautics and Space Administration's (NASA's) Deep Space Network (DSN), the world's largest and most sensitive scientific telecommunications and radio navigation network. The Goldstone Complex is operated for NASA by the Jet Propulsion Laboratory. At present, activities at the GDSCC support the operation of nine parabolic dish antennas situated at five separate locations known as 'sites.' Each of the five sites at the GDSCC has one or more antennas, called 'Deep Space Stations' (DSS's). In the course of operation of these DSS's, various hazardous and non-hazardous wastes are generated. In 1992, JPL retained Kleinfelder, Inc., San Diego, California, to quantify the various streams of hazardous and non-hazardous wastes generated at the GDSCC. In June 1992, Kleinfelder, Inc., submitted a report to JPL entitled 'Waste Minimization Assessment.' This present volume is a JPL-expanded version of the Kleinfelder, Inc. report. The 'Waste Minimization Assessment' report did not find any deficiencies in the various waste-management programs now practiced at the GDSCC, and it found that these programs are being carried out in accordance with environmental rules and regulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Mike
This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2013–October 31, 2014. The report contains the following information; Facility and system description; Permit required effluent monitoring data and loading rates; Permit required groundwater monitoring data; Status of compliance activities; Noncompliance issues; and Discussion of the facility’s environmental impacts. During the 2014 permit year, approximately 238 million gallons of wastewater were discharged to the Cold Waste Pond. Thismore » is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters are below the Ground Water Quality Rule Secondary Constituent Standards in the downgradient monitoring wells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mike Lewis
2014-02-01
This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2012–October 31, 2013. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of compliance activities • Noncompliance issues • Discussion of the facility’s environmental impacts. During the 2013 permit year, approximately 238 million gallons of wastewater was discharged to the Coldmore » Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters are below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mike Lewis
2013-02-01
This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2011 through October 31, 2012. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance issues Discussion of the facility’s environmental impacts During the 2012 permit year, approximately 183 million gallons of wastewater were discharged to the Cold Waste Pond. This ismore » well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.« less
Facility Registry Service (FRS)
This is a centrally managed database that identifies facilities either subject to environmental regulations or of environmental interest, providing an integrated source of air, water, and waste environmental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, B.
On March 31, the California Supreme Court decided the much awaited Rancho Mirage'' case (Waste Management of the Desert, Inc., and the City of Rancho Mirage v. Palm Springs Recycling Center, Inc.), and held that the California Integrated Waste Management Act of 1989 does not allow an exclusive franchise for the collection of recyclables not discarded by their owner.'' This ends a three-year slugfest between secondary materials processors in the state and municipalities and their franchised garbage haulers who also collect and process recyclables as part of their exclusive arrangement. Central to this nationally-watched litigation is a most fundamental questionmore » in waste management: at what point in time do articles in the solid waste stream become actual or potentially valuable secondary materials« less
Exploitation of Food Industry Waste for High-Value Products.
Ravindran, Rajeev; Jaiswal, Amit K
2016-01-01
A growing global population leads to an increasing demand for food production and the processing industry associated with it and consequently the generation of large amounts of food waste. This problem is intensified due to slow progress in the development of effective waste management strategies and measures for the proper treatment and disposal of waste. Food waste is a reservoir of complex carbohydrates, proteins, lipids, and nutraceuticals and can form the raw materials for commercially important metabolites. The current legislation on food waste treatment prioritises the prevention of waste generation and least emphasises disposal. Recent valorisation studies for food supply chain waste opens avenues to the production of biofuels, enzymes, bioactive compounds, biodegradable plastics, and nanoparticles among many other molecules. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nealey, S.M.; Liebow, E.B.
1988-03-01
The US Department of Energy sponsored a one-day workshop to discuss the complex dimensions of risk judgment formation and the assessment of social and economic effects of risk perceptions related to the permanent underground storage of highly radioactive waste from commercial nuclear power plants. Affected parties have publicly expressed concerns about potentially significant risk-related effects of this approach to waste management. A selective review of relevant literature in psychology, decision analysis, economics, sociology, and anthropology was completed, along with an examination of decision analysis techniques that might assist in developing suitable responses to public risk-related concerns. The workshop was organizedmore » as a forum in which a set of distinguished experts could exchange ideas and observations about the problems of characterizing the effects of risk judgments. Out of the exchange emerged the issues or themes of problems with probabilistic risk assessment techniques are evident; differences exist in the way experts and laypersons view risk, and this leads to higher levels of public concern than experts feel are justified; experts, risk managers, and decision-makers sometimes err in assessing risk and in dealing with the public; credibility and trust are important contributing factors in the formation of risk judgments; social and economic consequences of perceived risk should be properly anticipated; improvements can be made in informing the public about risk; the role of the public in risk assessment, risk management and decisions about risk should be reconsidered; and mitigation and compensation are central to resolving conflicts arising from divergent risk judgments. 1 tab.« less
NASA Astrophysics Data System (ADS)
Suyono, Joko; Sukoco, Agus; Ikhsan Setiawan, M.; Suhermin; Rahim, Robbi
2017-12-01
Indonesia a great number of populations and demand of air transportation services keep increasing by the year in line with the increasing of population and welfare its people. Need for telematics solutions to support goods transport and distribution in cities is mainly due to the complexity of the processes taking place in urban transport systems and the importance of the optimisation of transport operations via ensuring adequate availability of linear and point infrastructure, while reducing the adverse impacts of the transport system on the environment. Efficient infrastructure supports economic growth, improves quality of life, and it is important for national security. Impact of GDP Information Technology in developing of Regional Central Business especially SME Business, are very large correlations and very significant supported by Passenger Arrival and Departure, Baggage Loaded and Unloaded, Cargo Loaded and Unloaded, Separated regional asset, Grant, Capital Expenditure, Investment of Regional Gov., GDP Agriculture-Forestry-Fishing, GDP Manufacturing, GDP Electricity-Gas, GDP Water supply- Sewerage-Waste Management-Remediation Activities, GDP Financial-Insurance Activities, GDP Business Activities, GDP Public Administration and Defense-Compulsory Social Security, GDP Education and GDP Other Services Activities
Modern technologies of processing municipal solid waste: investing in the future
NASA Astrophysics Data System (ADS)
Rumyantseva, A.; Berezyuk, M.; Savchenko, N.; Rumyantseva, E.
2017-06-01
The problem of effective municipal solid waste (MSW) management is known to all the municipal entities of the Russian Federation. The problem is multifaceted and complex. The article analyzes the dynamics of municipal solid waste formation and its utilization within the territory of the EU and Russia. The authors of the paper suggest a project of a plant for processing municipal solid waste into a combustible gas with the help of high temperature pyrolysis. The main indicators of economic efficiency are calculated.
Safety analysis report for the Waste Storage Facility. Revision 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bengston, S.J.
1994-05-01
This safety analysis report outlines the safety concerns associated with the Waste Storage Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are: define and document a safety basis for the Waste Storage Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume.
Conditioning and Repackaging of Spent Radioactive Cs-137 and Co-60 Sealed Sources in Egypt - 13490
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, M.A.; Selim, Y.T.; El-Zakla, T.
2013-07-01
Radioactive Sealed sources (RSSs) are widely use all over the world in medicine, agriculture, industry, research, etc. The accidental misuse and exposure to RSSs has caused significant environmental contamination, serious injuries and many deaths. The high specific activity of the materials in many RSSs means that the spread of as little as microgram quantities can generate significant risk to human health and inhibit the use of buildings and land. Conditioning of such sources is a must to protect humans and environment from the hazard of ionizing radiation and contamination. Conditioning is also increase the security of these sources by decreasingmore » the probability of stolen and/or use in terrorist attacks. According to the law No.7/2010, Egyptian atomic energy authority represented in the hot laboratories and waste management center (centralized waste facility, HLWMC) has the responsibility of collecting, conditioning, storing and management of all types of radioactive waste from all Egyptian territory including spent radioactive sealed sources (SRSSs). This paper explains the conditioning procedures for two of the most common SRSSs, Cs{sup 137} and Co{sup 60} sources which make up more than 90% of the total spent radioactive sealed sources stored in our centralized waste facility as one of the major activities of hot laboratories and waste management center. Conditioning has to meet three main objectives, be acceptable for storage, enable their safe transport, and comply with disposal requirements. (authors)« less
Integrated management of hazardous waste generated from community sources in Thailand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yodnane, P.; Spaeder, D.J.
A system for the collection, transport, disposal and recycling of hazardous waste was developed as part of an overall master plan for the management of hazardous waste generated from community sources in Thailand. Results of a waste generation survey conducted as part of the study indicated that over 300 million kilograms per year of hazardous waste is generated from non-industrial, community sources such as automotive repair shops, gas stations, hospitals, farms, and households in Thailand. Hazardous waste from community sources consists primarily of used oils, lead-acid and dry cell batteries, cleaning chemicals, pesticides, medical wastes, solvents and fuels. Most ofmore » this waste was found to be mismanaged by codisposing with municipal waste in burning, unlined dumps, dumping directly to land or water courses, dumping into sewers, or recycling improperly, all of which pose serious threats to human health and the environment. The survey data on waste generation quantities and data from a reconnaissance survey of the conditions and operations of 86 existing waste disposal facilities was incorporated into a nationwide Geographic Information System (GIS) database. Based on this data, problems associated with hazardous waste were identified and needs for waste management systems were tabulated. A system was developed for ranking geographic regions according to hazardous waste management problems and needs, in order to prioritize implementation of waste management programs. The data were also used in developing solutions for hazardous waste management, which addressed methods for storing, collecting, transporting, disposing, and recycling the waste. It was recommended that centralized waste management facilities be utilized which included hazardous waste and medical waste incinerators, waste stabilization units, and secure landfills.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-08-01
As part of the original Hanford Federal Facility Agreement and Concent Order negotiations, US DOE, US EPA and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground to the Hanford Site are subject to permitting in the State Waste Discharge Permit Program (SWDP). This document constitutes the SWDP Application for the 200 Area TEDF stream which includes the following streams discharged into the area: Plutonium Finishing Plant waste water; 222-S laboratory Complex waste water; T Plant waste water; 284-W Power Plant waste water; PUREX chemical Sewer; B Plant chemical sewer, process condensate, steam condensate; 242-A-81more » Water Services waste water.« less
Incineration, pyrolysis and gasification of electronic waste
NASA Astrophysics Data System (ADS)
Gurgul, Agnieszka; Szczepaniak, Włodzimierz; Zabłocka-Malicka, Monika
2017-11-01
Three high temperature processes of the electronic waste processing: smelting/incineration, pyrolysis and gasification were shortly discussed. The most distinctive feature of electronic waste is complexity of components and their integration. This type of waste consists of polymeric materials and has high content of valuable metals that could be recovered. The purpose of thermal treatment of electronic waste is elimination of plastic components (especially epoxy resins) while leaving non-volatile mineral and metallic phases in more or less original forms. Additionally, the gaseous product of the process after cleaning may be used for energy recovery or as syngas.
Tank 19F Folding Crawler Final Evaluation, Rev. 0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nance, T.
2000-10-25
The Department of Energy (DOE) is committed to removing millions of gallons of high-level radioactive waste from 51 underground waste storage tanks at the Savannah River Site (SRS). The primary radioactive waste constituents are strontium, plutonium,and cesium. It is recognized that the continued storage of this waste is a risk to the public, workers, and the environment. SRS was the first site in the DOE complex to have emptied and operationally closed a high-level radioactive waste tank. The task of emptying and closing the rest of the tanks will be completed by FY28.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahm, D.
1998-12-31
Toxic waste, and the public policy that deals with it, is a complex issue. Much of the complexity stems from the science and technology embedded in the topic, but a great deal also results from the intricate interactions between the social organizations and institutions involved. The politics of toxic waste plays out within three key aspects of this complexity. The first of these is the nature of the intergovernmental relations involved. For toxic waste issues, these intergovernmental relations can be between sovereign states or between a nation and an international governing organization, or they may be restricted to a domesticmore » context. If the later is the case, the relationship can be between federal, state, and local governments or between different bureaus, departments, or agencies within the same level of government. A second feature of this complexity can be seen in the consequences of divergent organizational or institutional interests. When conflicting organizational or institutional perspectives, positions, or concerns arise, public policy outcomes are affected.The tug and pull of competing actors move policy in the direction favored by the winner. This may or may not be the most rational alternative. A third aspect of this interorganizational puzzle involves the question of where the locus of authority for decisionmaking resides and to what extent stakeholders, who do not possess direct authority, can influence policy outcomes.« less
Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview.
Vavilin, V A; Fernandez, B; Palatsi, J; Flotats, X
2008-01-01
The applicability of different kinetics to the hydrolysis of particulate organic material in anaerobic digestion is discussed. Hydrolysis has traditionally been modelled according to the first-order kinetics. For complex substrate, the first-order kinetics should be modified in order to take into account hardly degradable material. It has been shown that models in which hydrolysis is coupled to the growth of hydrolytic bacteria work well at high or at fluctuant organic loading. In particular, the surface-related two-phase and the Contois models showed good fits to experimental data from a wide range of organic waste. Both models tend to the first-order kinetics at a high biomass-to-waste ratio and, for this reason, they can be considered as more general models. Examples on different inhibition processes that might affect the degradation of solid waste are reported. Acetogenesis or methanogenesis might be the rate-limiting stages in complex waste. In such cases, stimulation of hydrolysis (mechanically, chemically or biologically) may lead to a further inhibition of these stages, which ultimately affects hydrolysis as well. Since the hydrolysis process is characterized by surface and transport phenomena, new developments in spatially distributed models are considered fundamental to provide new insights in this complex process.
Fiore, Vincenzo G; Kottler, Benjamin; Gu, Xiaosi; Hirth, Frank
2017-01-01
The central complex in the insect brain is a composite of midline neuropils involved in processing sensory cues and mediating behavioral outputs to orchestrate spatial navigation. Despite recent advances, however, the neural mechanisms underlying sensory integration and motor action selections have remained largely elusive. In particular, it is not yet understood how the central complex exploits sensory inputs to realize motor functions associated with spatial navigation. Here we report an in silico interrogation of central complex-mediated spatial navigation with a special emphasis on the ellipsoid body. Based on known connectivity and function, we developed a computational model to test how the local connectome of the central complex can mediate sensorimotor integration to guide different forms of behavioral outputs. Our simulations show integration of multiple sensory sources can be effectively performed in the ellipsoid body. This processed information is used to trigger continuous sequences of action selections resulting in self-motion, obstacle avoidance and the navigation of simulated environments of varying complexity. The motor responses to perceived sensory stimuli can be stored in the neural structure of the central complex to simulate navigation relying on a collective of guidance cues, akin to sensory-driven innate or habitual behaviors. By comparing behaviors under different conditions of accessible sources of input information, we show the simulated insect computes visual inputs and body posture to estimate its position in space. Finally, we tested whether the local connectome of the central complex might also allow the flexibility required to recall an intentional behavioral sequence, among different courses of actions. Our simulations suggest that the central complex can encode combined representations of motor and spatial information to pursue a goal and thus successfully guide orientation behavior. Together, the observed computational features identify central complex circuitry, and especially the ellipsoid body, as a key neural correlate involved in spatial navigation.
Fiore, Vincenzo G.; Kottler, Benjamin; Gu, Xiaosi; Hirth, Frank
2017-01-01
The central complex in the insect brain is a composite of midline neuropils involved in processing sensory cues and mediating behavioral outputs to orchestrate spatial navigation. Despite recent advances, however, the neural mechanisms underlying sensory integration and motor action selections have remained largely elusive. In particular, it is not yet understood how the central complex exploits sensory inputs to realize motor functions associated with spatial navigation. Here we report an in silico interrogation of central complex-mediated spatial navigation with a special emphasis on the ellipsoid body. Based on known connectivity and function, we developed a computational model to test how the local connectome of the central complex can mediate sensorimotor integration to guide different forms of behavioral outputs. Our simulations show integration of multiple sensory sources can be effectively performed in the ellipsoid body. This processed information is used to trigger continuous sequences of action selections resulting in self-motion, obstacle avoidance and the navigation of simulated environments of varying complexity. The motor responses to perceived sensory stimuli can be stored in the neural structure of the central complex to simulate navigation relying on a collective of guidance cues, akin to sensory-driven innate or habitual behaviors. By comparing behaviors under different conditions of accessible sources of input information, we show the simulated insect computes visual inputs and body posture to estimate its position in space. Finally, we tested whether the local connectome of the central complex might also allow the flexibility required to recall an intentional behavioral sequence, among different courses of actions. Our simulations suggest that the central complex can encode combined representations of motor and spatial information to pursue a goal and thus successfully guide orientation behavior. Together, the observed computational features identify central complex circuitry, and especially the ellipsoid body, as a key neural correlate involved in spatial navigation. PMID:28824390
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mike Lewis
2013-02-01
This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2011 through October 31, 2012. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2012 reporting year, an estimated 11.84 million gallons of wastewater weremore » discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Mike
This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2013 through October 31, 2014. The report contains the following information; Facility and system description; Permit required effluent monitoring data and loading rates; Groundwater monitoring data; Status of special compliance conditions; Noncompliance issues; and Discussion of the facility’s environmental impacts During the 2014 reporting year, an estimated 10.11 million gallons of wastewater were discharged tomore » the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the applicable Idaho Department of Environmental Quality’s groundwater quality standard levels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mike Lewis
This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2012 through October 31, 2013. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2013 reporting year, an estimated 9.64 million gallons of wastewater weremore » discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the applicable Idaho Department of Environmental Quality’s groundwater quality standard levels.« less
Chang, Tien-Chin; Ni, Shih-Piao; Fan, Kuo-Shuh; Lee, Ching-Hwa
2006-06-01
Before implementing the self-monitoring model programme of the Basel Convention in the Asia, Taiwan has conducted a comprehensive 4-year follow-up project to visit the governmental authorities and waste-disposal facilities in the countries that import waste from Taiwan. A total of nine treatment facilities, six of which are reported in this paper, and the five countries where the plants are located were visited in 2001-2002. France, Belgium and Finland primarily handled polychlorinated biphenyl capacitors, steel mill dust and metal waste. The United States accepted metal sludge, mainly electroplating sludge, from Taiwan. Waste printed circuit boards, waste wires and cables, and a mixture of waste metals and electronics were the major items exported to China. Relatively speaking, most treatment plants for hazardous waste paid close attention to environmental management, such as pollution control and monitoring, site zoning, system management regarding occupational safety and hygiene, data management, permits application, and image promotion. Under the tight restrictions formulated by the central environment agency, waste treatment plants in China managed the environmental issues seriously. For example, one of the treatment plants had ISO 14001 certification. It is believed that with continuous implementation of regulations, more improvement is foreseeable. Meanwhile, Taiwan and China should also continuously enhance their collaboration regarding the transboundary management of hazardous waste.
Piccoli, Giorgina Barbara; Mery, David
2017-11-01
In our high-technology, highly polluted world, medicine plays an important role balancing saving lives with the expenses of growing amounts of waste products, not only biologically dangerous (the potentially "contaminated" or "hazardous" waste) but also potentially harmful for the planet (nonrecyclable, plastic waste). Dialysis, the prototype of high-technology medicine, is central to these problems, as the present treatment of about 2 million patients produces an enormous quantity of waste (considering hazardous waste only about 2 kg per session, with 160 sessions per year, that is 320 kg per patient, or about 640,000 tons of hazardous waste per year for 2 million patients, roughly corresponding to 6 nuclear aircraft carriers). Furthermore, obsolete dialysis machines, and water treatments are discharged, adding to the "technological waste." Water produced by the reverse osmosis is also discharged; this is the only nonhazardous, nonpolluting waste, but in particular in dry areas, wasting water is a great ecologic concern. The present review is aimed at discussing strategies already in place and to be further implemented for reducing this particular "uremic toxin" for the earth: dialysis waste, including dialysis disposables, water, and dialysis machines. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Passengers waste production during flights.
Tofalli, Niki; Loizia, Pantelitsa; Zorpas, Antonis A
2017-12-20
We assume that during flights the amount of waste that is produced is limited. However, daily, approximately 8000 commercial airplanes fly above Europe's airspace while at the same time, more than 17,000 commercial flights exist in the entire world. Using primary data from airlines, which use the Larnaca's International Airport (LIA) in Cyprus, we have tried to understand why wastes are produced during a typical flight such as food waste, paper, and plastics, as well as how passengers affect the production of those wastes. The compositional analysis took place on 27 flights of 4 different airlines which used LIA as final destination. The evaluation indicated that the passenger's habits and ethics, and the policy of each airline produced different kinds of waste during the flights and especially food waste (FW). Furthermore, it was observed that the only waste management strategy that exists in place in the airport is the collection and the transportation of all those wastes from aircrafts and from the airport in the central unit for further treatment. Hence, this research indicated extremely difficulties to implement any specific waste minimization, or prevention practice or other sorting methods during the flights due to the limited time of the most flights (less than 3 h), the limited available space within the aircrafts, and the strictly safety roles that exist during the flights.
Hu, Hui; Li, Xiang; Nguyen, Anh Dung; Kavan, Philip
2015-01-01
With the rapid development of the waste incineration industry in China, top priority has been given to the problem of pollution caused by waste incineration. This study is the first attempt to assess all the waste incineration plants in Wuhan, the only national key city in central China, in terms of environmental impact, site selection, public health and public participation. By using a multi-criterion assessment model for economic, social, public health and environmental effects, this study indicates these incineration plants are established without much consideration of the local residents’ health and environment. A location analysis is also applied and some influences of waste incineration plants are illustrated. This study further introduces a signaling game model to prove that public participation is a necessary condition for improving the environmental impact assessment and increasing total welfare of different interest groups in China. This study finally offers some corresponding recommendations for improving the environmental impact assessments of waste incineration projects. PMID:26184242
Hu, Hui; Li, Xiang; Nguyen, Anh Dung; Kavan, Philip
2015-07-08
With the rapid development of the waste incineration industry in China, top priority has been given to the problem of pollution caused by waste incineration. This study is the first attempt to assess all the waste incineration plants in Wuhan, the only national key city in central China, in terms of environmental impact, site selection, public health and public participation. By using a multi-criterion assessment model for economic, social, public health and environmental effects, this study indicates these incineration plants are established without much consideration of the local residents' health and environment. A location analysis is also applied and some influences of waste incineration plants are illustrated. This study further introduces a signaling game model to prove that public participation is a necessary condition for improving the environmental impact assessment and increasing total welfare of different interest groups in China. This study finally offers some corresponding recommendations for improving the environmental impact assessments of waste incineration projects.
Aguilar Alvarez, Ronald Esteban; Bustamante Roman, Mauricio; Kirk, Dana; Miranda Chavarria, Jose Alberto; Baudrit, Daniel; Aguilar Pereira, Jose Francisco; Rodriguez Montero, Werner; Reinhold, Dawn; Liao, Wei
2016-12-15
The purpose of this study was to implement and evaluate a pilot-scale and closed-loop system that synergistically combines solar thermal collector, anaerobic digester, and constructed treatment wetland to simultaneously treat and utilize organic wastes. The system utilizes 863 kg of mixed animal and food wastes to generate 263 MJ renewable energy, produced 28 kg nitrogen and phosphorus fertilizer, and reclaimed 550 kg water per day. The net revenue considering electricity and fertilizer was $2436 annually. The payback period for the system is estimated to be 17.8 years for a relatively dilute waste stream (i.e., 2% total solids). The implemented system has successfully demonstrated a self-efficient and flexible waste utilization and treatment system. It creates a win-win solution to satisfy the energy needs of the community and address environmental concerns of organic wastes disposal in the region. Copyright © 2016 Elsevier Ltd. All rights reserved.
4. VIEW LOOKING WEST DOWN CENTRAL AVENUE AT THE INTERSECTION ...
4. VIEW LOOKING WEST DOWN CENTRAL AVENUE AT THE INTERSECTION WITH SEVENTH STREET. THE PLANT HAS MOST OF THE AMENITIES OF A SMALL TOWN - WATER SUPPLY, WASTE WATER TREATMENT, POLICE FORCE, FIRE DEPARTMENT, FOOD SERVICES, HOSPITAL, COMMUNICATIONS NETWORK, STEAM GENERATION, VEHICLE MAINTENANCE, TRANSPORTATION, AND A GOVERNMENT. - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO
Chemical control of brush in ponderosa pine forests of central Oregon.
Walter G. Dahms
1961-01-01
The many acres of forest land that are occupied by brush in central Oregon represent a large-scale waste of timber-growing capacity and a major economic loss to the area. Although large brushfields devoid of tree growth present the most spectacular examples of loss, less obvious but equally important brush problems are common in established timber stands. Brush...
Villamor, Eduardo; Saathoff, Elmar; Manji, Karim; Msamanga, Gernard; Hunter, David J; Fawzi, Wafaie W
2005-10-01
Wasting is a strong independent predictor of mortality in HIV-infected persons. Vitamin supplements delay the disease progression, but their effect on wasting is not known. Data are lacking on the risk factors for wasting in African HIV-infected persons. The objectives were to examine the effect of vitamin supplements on wasting in HIV-infected women and to assess the effects of sociodemographic characteristics, morbidity events, and immunologic progression on the risk of wasting. HIV-infected women (n = 1078) from Tanzania were randomly assigned to receive 1 of 4 daily oral regimens: multivitamins (B complex, C, and E), vitamin A plus beta-carotene, multivitamins that included vitamin A plus beta-carotene, or placebo. The endpoints of the study included first episodes of a midupper arm circumference <22 cm or a body mass index (BMI; in kg/m2) <18 and the incidence of weight loss episodes during a median 5.3 y of follow-up. Multivitamins alone significantly reduced the risk of a first episode of a midupper arm circumference <22 cm (relative risk: 0.66; 95% CI: 0.47, 0.94; P = 0.02). In multivariate-adjusted Cox models, the woman's age, education level, and height were inversely related to the incidence of wasting. Episodes of diarrhea, nausea or vomiting, lower respiratory tract infections, oral ulcers, thrush, severe anemia, and low CD4+ cell counts were each significantly related to an increased risk of wasting. Vitamins C and E and the vitamin B complex have a protective effect on wasting in HIV-infected women. Prevention of diarrhea, severe respiratory tract infections, and anemia are likely to decrease the burden of wasting.
Yamamura, Masaki; Albrecht, Marcel; Albrecht, Markus; Nishimura, Yoshinobu; Arai, Tatsuo; Nabeshima, Tatsuya
2014-02-03
A dipyrrin complex has been one of the most utilized fluorescent dyes, and a variety of dipyrrin complexes show intriguing functions based on the various coordination structures of the central element. We now report the synthesis, structure, and photophysical properties of germanium and stannane complexes of the N2O2-type tetradentate dipyrrin, L·Ge and L·Sn, which are heavier analogues of the previously reported dipyrrin silicon complex, L·Si. The central group-14 atoms of the monomeric complexes have geometries close to trigonal bipyramidal (TBP), in which the contribution of the square-pyramidal (SP) character becomes higher as the central atom is heavier. Interestingly, L·Sn formed a dimeric structure in the crystal. All complexes L·Si, L·Ge, and L·Sn showed a fluorescence in the red/NIR region. Fluorescence quantum yields of L·Ge and L·Sn are higher than that of L·Si. These results indicated that the central atom on the dipyrrin complexes contributes not only to the geometry difference but also to tuning the fluorescence properties.
Ghimire, Anish; Frunzo, Luigi; Pontoni, Ludovico; d'Antonio, Giuseppe; Lens, Piet N L; Esposito, Giovanni; Pirozzi, Francesco
2015-04-01
The Biohydrogen Potential (BHP) of six different types of waste biomass typical for the Campania Region (Italy) was investigated. Anaerobic sludge pre-treated with the specific methanogenic inhibitor sodium 2-bromoethanesulfonic acid (BESA) was used as seed inoculum. The BESA pre-treatment yielded the highest BHP in BHP tests carried out with pre-treated anaerobic sludge using potato and pumpkin waste as the substrates, in comparison with aeration or heat shock pre-treatment. The BHP tests carried out with different complex waste biomass showed average BHP values in a decreasing order from potato and pumpkin wastes (171.1 ± 7.3 ml H2/g VS) to buffalo manure (135.6 ± 4.1 ml H2/g VS), dried blood (slaughter house waste, 87.6 ± 4.1 ml H2/g VS), fennel waste (58.1 ± 29.8 ml H2/g VS), olive pomace (54.9 ± 5.4 ml H2/g VS) and olive mill wastewater (46.0 ± 15.6 ml H2/g VS). The digestate was analyzed for major soluble metabolites to elucidate the different biochemical pathways in the BHP tests. These showed the H2 was produced via mixed type fermentation pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.
40 CFR 437.16 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2010 CFR
2010-07-01
...) EFFLUENT GUIDELINES AND STANDARDS THE CENTRALIZED WASTE TREATMENT POINT SOURCE CATEGORY Metals Treatment... standards: Standards for antimony, arsenic, cadmium, chromium, cobalt, copper, lead, mercury, nickel, silver...
Richardson, Kelsey; Haynes, David; Talouli, Anthony; Donoghue, Michael
2017-03-01
Fisheries observer data recorded between 2003 and 2015 on-board purse seine and longline vessels operating in the Western and Central Pacific Ocean reported more than 10 000 pollution incidents within the exclusive economic zones (EEZs) of 25 Pacific countries and territories, and in international waters. A majority of the reported purse seine pollution incidents related to dumping of plastics waste. Other common pollution incidents related to oil spillages and to abandoned, lost or dumped fishing gear. Data analysis highlighted the need for increased monitoring, reporting, and enforcement of pollution violations by all types of fishing vessels operating in the Pacific region; a regional outreach and compliance assistance programme on marine pollution prevention and improvements in Pacific port waste reception facilities.
Benzene destruction in aqueous waste—I. Bench-scale gamma irradiation experiments
NASA Astrophysics Data System (ADS)
Cooper, William J.; Dougal, Roger A.; Nickelsen, Michael G.; Waite, Thomas D.; Kurucz, Charles N.; Lin, Kaijin; Bibler, Jane P.
1996-07-01
Destruction of the benzene component of a simulated low-level mixed aqueous waste stream by high energy irradiation was explored. This work was motivated by the fact that mixed waste, containing both radionuclides and regulated (non-radioactive) chemicals, is more difficult and more expensive to dispose of than only radioactive waste. After the benzene is destroyed, the waste can then be listed only as radiological waste instead of mixed waste, simplifying its disposal. This study quantifies the removal of benzene, and the formation and destruction of reaction products in a relatively complex waste stream matrix consisting of NO 3-, SO 42-, PO 43-, Fe 2+ and detergent at a pH of 3. All of the experiments were conducted at a bench scale using a 60Co gamma source.
Transboundary hazardous waste management. Part I: Waste management policy of importing countries.
Fan, Kuo-Shuh; Chang, Tien Chin; Ni, Shih-Piao; Lee, Ching-Hwa
2005-12-01
Mixed metal-containing waste, polychlorinated biphenyls (PCB) containing capacitors, printed circuit boards, steel mill dust and metal sludge were among the most common wastes exported from Taiwan. Before the implementation of the self-monitoring model programme of the Basel Convention (secretariat of the Basel Convention 2001) in the Asia region, Taiwan conducted a comprehensive 4-year follow-up project involving government authorities and the waste disposal facilities of the importing countries. A total of five countries and nine plants were visited in 2001-2002. The following outcomes can be drawn from these investigations. The Chinese government adopts the strategies of 'on-site processing' and 'relative centralization' on the waste management by tightening permitting and increasing site inspection. A three-level reviewing system is adopted for the import application. The United States have not signed the Basel Convention yet; the procedures of hazardous waste import rely on bilateral agreements. Importers are not required to provide official notification from the waste exporting countries. The operation, administration, monitoring and licensing of waste treatment plants are governed by the state environmental bureau. Finland, France and Belgium are members of the European Union. The procedures and policies of waste import are similar. All of the documents associated with transboundary movement require the approval of each government involved. Practically, the notification forms and tracking forms effectively manage the waste movement.
Shanmugasundaram, Jothiganesh; Soulalay, Vongdeuane; Chettiyappan, Visvanathan
2012-06-01
In Lao People's Democratic Republic (Lao PDR), a growth of healthcare centres, and the environmental hazards and public health risks typically accompanying them, increased the need for healthcare waste (HCW) management planning. An effective planning of an HCW management system including components such as the treatment plant siting and an optimized routeing system for collection and transportation of waste is deemed important. National government offices at developing countries often lack the proper tools and methodologies because of the high costs usually associated with them. However, this study attempts to demonstrate the use of an inexpensive GIS modelling tool for healthcare waste management in the country. Two areas were designed for this study on HCW management, including: (a) locating centralized treatment plants and designing optimum travel routes for waste collection from nearby healthcare facilities; and (b) utilizing existing hospital incinerators and designing optimum routes for collecting waste from nearby healthcare facilities. Spatial analysis paved the way to understand the spatial distribution of healthcare wastes and to identify hotspots of higher waste generating locations. Optimal route models were designed for collecting and transporting HCW to treatment plants, which also highlights constraints in collecting and transporting waste for treatment and disposal. The proposed model can be used as a decision support tool for the efficient management of hospital wastes by government healthcare waste management authorities and hospitals.
Geologic map of south-central Yucca Mountain, Nye County, Nevada
Dickerson, Robert P.; Drake II, Ronald M.
2004-01-01
New 1:6,000-scale geologic mapping in a 20-square-kilometer area near the south end of Yucca Mountain, Nevada, which is the proposed site of an underground repository for the storage of high-level radioactive wastes, substantially supplements the stratigraphic and structural data obtained from earlier, 1:24,000-scale mapping. Principal observations and interpretations resulting from the larger scale, more detailed nature of the recent investigation include: (1) the thickness of the Miocene Tiva Canyon Tuff decreases from north to south within the map area, and the lithophysal zones within the formation have a greater lateral variability than in areas farther north; and (2) fault relations are far more complex than shown on previous maps, with both major (block-bounding) and minor (intrablock) faults showing much lateral variation in (a) the number of splays and (b) the amount, distribution, and width of anastomosing breccia and fracture zones.
Dynamic modeling of environmental risk associated with drilling discharges to marine sediments.
Durgut, İsmail; Rye, Henrik; Reed, Mark; Smit, Mathijs G D; Ditlevsen, May Kristin
2015-10-15
Drilling discharges are complex mixtures of base-fluids, chemicals and particulates, and may, after discharge to the marine environment, result in adverse effects on benthic communities. A numerical model was developed to estimate the fate of drilling discharges in the marine environment, and associated environmental risks. Environmental risk from deposited drilling waste in marine sediments is generally caused by four types of stressors: oxygen depletion, toxicity, burial and change of grain size. In order to properly model these stressors, natural burial, biodegradation and bioturbation processes were also included. Diagenetic equations provide the basis for quantifying environmental risk. These equations are solved numerically by an implicit-central differencing scheme. The sediment model described here is, together with a fate and risk model focusing on the water column, implemented in the DREAM and OSCAR models, both available within the Marine Environmental Modeling Workbench (MEMW) at SINTEF in Trondheim, Norway. Copyright © 2015 Elsevier Ltd. All rights reserved.
In-Package Chemistry Abstraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
E. Thomas
2004-11-09
This report was developed in accordance with the requirements in ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, amore » batch reactor model that uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model that is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed waste packages that contain both high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor that diffuses into the waste package, and (2) seepage water that enters the waste package from the drift as a liquid. (1) Vapor Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H2O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Water Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package. TSPA-LA uses the vapor influx case for the nominal scenario for simulations where the waste package has been breached but the drip shield remains intact, so all of the seepage flow is diverted from the waste package. The chemistry from the vapor influx case is used to determine the stability of colloids and the solubility of radionuclides available for transport by diffusion, and to determine the degradation rates for the waste forms. TSPA-LA uses the water influx case for the seismic scenario, where the waste package has been breached and the drip shield has been damaged such that seepage flow is actually directed into the waste package. The chemistry from the water influx case that is a function of the flow rate is used to determine the stability of colloids and the solubility of radionuclides available for transport by diffusion and advection, and to determine the degradation rates for the CSNF and HLW glass. TSPA-LA does not use this model for the igneous scenario. Outputs from the in-package chemistry model implemented inside TSPA-LA include pH, ionic strength, and total carbonate concentration. These inputs to TSPA-LA will be linked to the following principle factors: dissolution rates of the CSNF and HLWG, dissolved concentrations of radionuclides, and colloid generation.« less
40 CFR 437.15 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2010 CFR
2010-07-01
...) EFFLUENT GUIDELINES AND STANDARDS THE CENTRALIZED WASTE TREATMENT POINT SOURCE CATEGORY Metals Treatment..., cadmium, chromium, cobalt, copper, lead, mercury, nickel, silver, tin, titanium, vanadium, and zinc are...
Bioremediation of Industrial Waste Through Enzyme Producing Marine Microorganisms.
Sivaperumal, P; Kamala, K; Rajaram, R
Bioremediation process using microorganisms is a kind of nature-friendly and cost-effective clean green technology. Recently, biodegradation of industrial wastes using enzymes from marine microorganisms has been reported worldwide. The prospectus research activity in remediation area would contribute toward the development of advanced bioprocess technology. To minimize industrial wastes, marine enzymes could constitute a novel alternative in terms of waste treatment. Nowadays, the evidence on the mechanisms of bioremediation-related enzymes from marine microorganisms has been extensively studied. This review also will provide information about enzymes from various marine microorganisms and their complexity in the biodegradation of comprehensive range of industrial wastes. © 2017 Elsevier Inc. All rights reserved.
Design for waste-management system
NASA Technical Reports Server (NTRS)
Guarneri, C. A.; Reed, A.; Renman, R.
1973-01-01
Study was made and system defined for water-recovery and solid-waste processing for low-rise apartment complexes. System can be modified to conform with unique requirements of community, including hydrology, geology, and climate. Reclamation is accomplished by treatment process that features reverse-osmosis membranes.
Assessment of public perception of radioactive waste management in Korea.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trone, Janis R.; Cho, SeongKyung; Whang, Jooho
2011-11-01
The essential characteristics of the issue of radioactive waste management can be conceptualized as complex, with a variety of facets and uncertainty. These characteristics tend to cause people to perceive the issue of radioactive waste management as a 'risk'. This study was initiated in response to a desire to understand the perceptions of risk that the Korean public holds towards radioactive waste and the relevant policies and policy-making processes. The study further attempts to identify the factors influencing risk perceptions and the relationships between risk perception and social acceptance.
Lloyd, O.B.; Davis, R.W.
1989-01-01
Preliminary interpretation of available hydrogeologic data suggests that some areas underlying eastern Indiana, north-central Kentucky, and western Ohio might be worthy of further study regarding the disposal of high-level radioactive waste in Precambrian crystalline rocks buried beneath Paleozoic sedimentary rocks in the area. The data indicate that (1) largest areas of deepest potential burial and thickest sedimentary rock cover occur in eastern Indiana; (2) highest concentrations of dissolved solids in the basal sandstone aquifer, suggesting the most restricted circulation, are found in the southern part of the area near the Kentucky-Ohio State line and in southeastern Indiana; (3) largest areas of lowest porosity in the basal sandstone aquifer, low porosity taken as an indicator of the lowest groundwater flow velocity and contaminant migration, are found in northeastern Indiana and northwestern Ohio, central and southeastern Indiana, and central Kentucky; (4) the thickest confining units that directly overlie the basal sandstone aquifer are found in central Kentucky and eastern Indiana where their thickness exceeds 500 ft; (5) steeply dipping faults that form potential hydraulic connections between crystalline rock, the basal sandstone aquifer, and the freshwater circulation system occur on the boundaries of the study area mainly in central Kentucky and central Indiana. Collectively, these data indicate that the hydrogeology of the sedimentary rocks in the western part of the study area is more favorably suited than that in the remainder of the area for the application of the buried crystalline-rock concept. (USGS)
Giuliano, Antonella; Astolfi, Maria Luisa; Congedo, Rossana; Masotti, Andrea; Canepari, Silvia
2018-01-01
Recent studies have shown the potential of food waste materials as low cost adsorbents for the removal of heavy metals and toxic elements from wastewater. However, the adsorption experiments have been performed in heterogeneous conditions, consequently it is difficult to compare the efficiency of the individual adsorbents. In this study, the adsorption capacities of 12 food waste materials were evaluated by comparing the adsorbents’ efficiency for the removal of 23 elements from complex multi-element solutions, maintaining homogeneous experimental conditions. The examined materials resulted to be extremely efficient for the adsorption of many elements from synthetic multi-element solutions as well as from a heavy metal wastewater. The 12 adsorbent surfaces were analyzed by Fourier transform infrared spectroscopy and showed different types and amounts of functional groups, which demonstrated to act as adsorption active sites for various elements. By multivariate statistical computations of the obtained data, the 12 food waste materials were grouped in five clusters characterized by different elements’ removal efficiency which resulted to be in correlation with the specific adsorbents’ chemical structures. Banana peel, watermelon peel and grape waste resulted the least selective and the most efficient food waste materials for the removal of most of the elements. PMID:29495363
Massimi, Lorenzo; Giuliano, Antonella; Astolfi, Maria Luisa; Congedo, Rossana; Masotti, Andrea; Canepari, Silvia
2018-02-26
Recent studies have shown the potential of food waste materials as low cost adsorbents for the removal of heavy metals and toxic elements from wastewater. However, the adsorption experiments have been performed in heterogeneous conditions, consequently it is difficult to compare the efficiency of the individual adsorbents. In this study, the adsorption capacities of 12 food waste materials were evaluated by comparing the adsorbents' efficiency for the removal of 23 elements from complex multi-element solutions, maintaining homogeneous experimental conditions. The examined materials resulted to be extremely efficient for the adsorption of many elements from synthetic multi-element solutions as well as from a heavy metal wastewater. The 12 adsorbent surfaces were analyzed by Fourier transform infrared spectroscopy and showed different types and amounts of functional groups, which demonstrated to act as adsorption active sites for various elements. By multivariate statistical computations of the obtained data, the 12 food waste materials were grouped in five clusters characterized by different elements' removal efficiency which resulted to be in correlation with the specific adsorbents' chemical structures. Banana peel, watermelon peel and grape waste resulted the least selective and the most efficient food waste materials for the removal of most of the elements.
Iron (III) Matrix Effects on Mineralization and Immobilization of Actinides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cynthia-May S. Gong; Tyler A. Sullens; Kenneth R. Czerwinski
2006-01-01
Abstract - A number of models for the Yucca Mountain Project nuclear waste repository use studies of actinide sorption onto well-defined iron hydroxide materials. In the case of a waste containment leak, however, a complex interaction between dissolved waste forms and failed containment vessel components can lead to immediate precipitation of migratory iron and uranyl in the silicate rich near-field environment. Use of the Fe(III) and UO22+ complexing agent acetohydroxamic acid (AHA) as a colorimetric agent for visible spectrophotometry is well-known. Using the second derivative of these spectra a distinct shift in iron complexation in the presence of silicate ismore » seen that is not seen with uranyl or alone. Silica also decreases the ability of uranyl and ferric solutions to absorb hydroxide, hastening precipitation. These ferric silicate precipitates are highly amorphous and soluble. Precipitates formed in the presence of uranyl below ~1 mol% exhibit lower solubility than precipitates from up to 50 mol % and of uranyl silicates alone.« less
Investigation of health care waste management in Binzhou District, China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruoyan, Gai; Xu Lingzhong; Li Huijuan
In China, national regulations and standards for health care waste management were implemented in 2003. To investigate the current status of health care waste management at different levels of health care facilities (HCF) after the implementation of these regulations, one tertiary hospital, one secondary hospital, and four primary health care centers from Binzhou District were visited and 145 medical staff members and 24 cleaning personnel were interviewed. Generated medical waste totaled 1.22, 0.77, and 1.17 kg/bed/day in tertiary, secondary, and primary HCF, respectively. The amount of medical waste generated in primary health care centers was much higher than that inmore » secondary hospitals, which may be attributed to general waste being mixed with medical waste. This study found that the level of the HCF, responsibility for medical waste management in departments and wards, educational background and training experience can be factors that determine medical staff members' knowledge of health care waste management policy. Regular training programs and sufficient provision of protective measures are urgently needed to improve occupational safety for cleaning personnel. Financing and administrative monitoring by local authorities is needed to improve handling practices and the implementation of off-site centralized disposal in primary health care centers.« less
[Hospital and environment: waste disposal].
Faure, P; Rizzo Padoin, N
2003-11-01
Like all production units, hospitals produce waste and are responsible for waste disposal. Hospital waste is particular due to the environmental risks involved, particularly concerning infection, effluents, and radionucleide contamination. Management plans are required to meet environmental, hygiene and regulatory obligations and to define reference waste products. The first step is to optimize waste sorting, with proper definition of the different categories, adequate containers (collection stations, color-coded sacks), waste circuits, intermediate then central storage areas, and finally transfer to an incineration unit. Volume and delay to elimination must be carefully controlled. Elimination of drugs and related products is a second aspect: packaging, perfusion pouches, tubing, radiopharmaceutic agents. These later products are managed with non-sealed sources whose elimination depends on the radioactive period, requiring selective sorting and specific holding areas while radioactivity declines. Elimination of urine and excreta containing anti-cancer drugs or intravesical drugs, particularly coming from protected rooms using radioactive iodine is another aspect. There is also a marginal flow of unused or expired drugs. For a health establishment, elimination of drugs is not included as part of waste disposal. This requires establishing a specific circuit with selective sorting and carefully applied safety regulations. Market orders for collecting and handling hospital wastes must be implemented in compliance with the rules of Public Health Tenders.
Pavlovič, Irena; Knez, Željko; Škerget, Mojca
2013-08-28
Hydrothermal (HT) reactions of agricultural and food-processing waste have been proposed as an alternative to conventional waste treatment technologies due to allowing several improvements in terms of process performance and energy and economical advantages, especially due to their great ability to process high moisture content biomass waste without prior dewatering. Complex structures of wastes and unique properties of water at higher temperatures and pressures enable a variety of physical-chemical reactions and a wide spectra of products. This paper's aim is to give extensive information about the fundamentals and mechanisms of HT reactions and provide state of the research of agri-food waste HT conversion.
Handling Hot Water, With a Payoff
ERIC Educational Resources Information Center
Stewart, Ronald; Mathur, S. P.
1970-01-01
Discusses methods of utilizing waste heat from the increasing number of power stations. Possible uses include agri- and mariculture, centralized urban and industrial heating, and deicing of airports and marine facilities. (AL)
NASA Astrophysics Data System (ADS)
Warner, N. R.; Menio, E. C.; Landis, J. D.; Vengosh, A.; Lauer, N.; Harkness, J.; Kondash, A.
2014-12-01
Recent public interest in high volume slickwater hydraulic fracturing (HVHF) has drawn increased interest in wastewater management practices by the public, researchers, industry, and regulators. The management of wastes, including both fluids and solids, poses many engineering challenges, including elevated total dissolved solids and elevated activities of naturally occurring radioactive materials (NORM). One management option for wastewater in particular, which is used in western Pennsylvania, USA, is treatment at centralized waste treatment facilities [1]. Previous studies conducted from 2010-2012 indicated that one centralized facility, the Josephine Brine Treatment facility, removed the majority of radium from produced water and hydraulic fracturing flowback fluid (HFFF) during treatment, but low activities of radium remained in treated effluent and were discharged to surface water [2]. Despite the treatment process and radium reduction, high activities (200 times higher than upstream/background) accumulated in stream sediments at the point of effluent discharge. Here we present new results from sampling conducted at two additional centralized waste treatment facilities (Franklin Brine Treatment and Hart Brine Treatment facilities) and Josephine Brine Treatment facility conducted in June 2014. Preliminary results indicate radium is released to surface water at very low (<50 pCi/L) to non-detectable activities, however; radium continues to accumulate in sediments surrounding the area of effluent release. Combined, the data indicate that 1) radium continues to be released to surface water streams in western Pennsylvania despite oil and gas operators voluntary ban on treatment and disposal of HFFF in centralized waste treatment facilities, 2) radium accumulation in sediments occurred at multiple brine treatment facilities and is not isolated to a single accidental release of contaminants or a single facility. [1] Wilson, J. M. and J. M. VanBriesen (2012). "Oil and Gas Produced Water Management and Surface Drinking Water Sources in Pennsylvania." Environmental Practice 14(04): 288-300. [2] Warner, N. R., C. A. Christie, R. B. Jackson and A. Vengosh (2013). "Impacts of Shale Gas Wastewater Disposal on Water Quality in Western Pennsylvania." ES&T 47(20): 11849-11857.
Chan, Yiu C; Sinha, Rajiv K; Weijin Wang
2011-05-01
This study investigated greenhouse gas (GHG) emissions from three different home waste treatment methods in Brisbane, Australia. Gas samples were taken monthly from 34 backyard composting bins from January to April 2009. Averaged over the study period, the aerobic composting bins released lower amounts of CH(4) (2.2 mg m(- 2) h(-1)) than the anaerobic digestion bins (9.5 mg m(-2) h(-1)) and the vermicomposting bins (4.8 mg m(-2) h( -1)). The vermicomposting bins had lower N(2)O emission rates (1.2 mg m(-2) h(- 1)) than the others (1.5-1.6 mg m(-2) h( -1)). Total GHG emissions including both N(2)O and CH(4) were 463, 504 and 694 mg CO(2)-e m(- 2) h(-1) for vermicomposting, aerobic composting and anaerobic digestion, respectively, with N(2)O contributing >80% in the total budget. The GHG emissions varied substantially with time and were regulated by temperature, moisture content and the waste properties, indicating the potential to mitigate GHG emission through proper management of the composting systems. In comparison with other mainstream municipal waste management options including centralized composting and anaerobic digestion facilities, landfilling and incineration, home composting has the potential to reduce GHG emissions through both lower on-site emissions and the minimal need for transportation and processing. On account of the lower cost, the present results suggest that home composting provides an effective and feasible supplementary waste management method to a centralized facility in particular for cities with lower population density such as the Australian cities.
NASA Astrophysics Data System (ADS)
Pérez Peña, José Vicente; Baldó, Mane; Acosta, Yarci; Verschueren, Laurent; Thibaud, Kenmognie; Bilivogui, Pépé; Jean-Paul Ngandu, Alain; Beavogui, Maoro
2017-04-01
In the last decade the increasing interest for public health has promoted specific regulations for the transport, storage, transformation and/or elimination of potentially toxic waste. A special concern should focus on the effective management of biomedical waste, due to the environmental and health risk associated with them. The first stage for the effective management these waste includes the selection of the best sites for the location of facilities for its storage and/or elimination. Best-site selection is accomplished by means of multi-criteria decision analyses (MCDA) that aim to minimize the social and environmental impact, and to maximize management efficiency. In this work we presented a methodology that uses open-source software and data to analyze the best location for the implantation of a centralized waste management system in a developing country (Guinea, Conakry). We applied an analytical hierarchy process (AHP) using different thematic layers such as land use (derived from up-to-date Sentinel 2 remote sensing images), soil type, distance and type of roads, hydrography, distance to dense populated areas, etc. Land-use data were derived from up-to-date Sentinel 2 remote sensing images, whereas roads and hydrography were obtained from the Open Street Map database and latter validated with administrative data. We performed the AHP analysis with the aid of QGIS open-software Geospatial Information System. This methodology is very effective for developing countries as it uses open-source software and data for the MCDA analysis, thus reducing costs in these first stages of the integrated analysis.
FIELD APPLICATIONS OF ROBOTIC SYSTEMS IN HAZARDOUS WASTE SITE OPERATIONS
The cleanup of hazardous waste sites is a challenging and complex field that offers numerous opportunities for the application of robotic technology. he contamination problem, long in the making, will take decades to resolve. ur ingenuity in developing robotic tools to assist in ...
20. VIEW OF WASTE TREATMENT CONTROL ROOM IN BUILDING 374. ...
20. VIEW OF WASTE TREATMENT CONTROL ROOM IN BUILDING 374. THE BUILDING 371/374 COMPLEX WAS DESIGNED TO EMPHASIZE AUTOMATICALLY CONTROLLED, REMOTELY OPERATED PROCESSES. (1/80) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO
Julienne, Cloé Mimsy; Tardieu, Marine; Chevalier, Stéphan; Pinault, Michelle; Bougnoux, Philippe; Labarthe, François; Couet, Charles; Servais, Stéphane; Dumas, Jean-François
2014-05-01
Cancer-induced cachexia describes the progressive skeletal muscle wasting associated with many cancers leading to shortened survival time in cancer patients. We previously reported that cardiolipin content and energy-wasting processes were both increased in liver mitochondria in a rat model of peritoneal carcinosis (PC)-induced cachexia. To increase the understanding of the cellular biology of cancer cachexia, we investigated the involvement of adenine nucleotide translocator (ANT) in mitochondrial energy-wasting processes in liver mitochondria of PC and pair-fed control rats and its interactions with cardiolipin in isolated liver mitochondria from healthy rats exposed to cardiolipin-enriched liposomes. We showed in this study that functional ANT content was decreased in liver mitochondria from PC rats but without any effects on the efficiency of ATP synthesis. Moreover, non-phosphorylating energy wasting was not affected by saturating concentrations of carboxyatractylate (CAT), a potent inhibitor of ANT, in liver mitochondria from PC rats. Decreased efficiency of ATP synthesis was found in normal liver mitochondria exposed to cardiolipin-enriched liposomes, with increased non-phosphorylating energy wasting, thus mimicking mitochondria from PC rats. However, the functional ANT content in these cardiolipin-enriched mitochondria was unchanged, although non-phosphorylating energy wasting was reduced by CAT-induced inhibition of ANT. Finally, non-phosphorylating energy wasting was increased in cardiolipin-enriched mitochondria with substrates for complexes 1 and 2, but not for complex 4. In conclusion, increased energy wasting measured in liver mitochondria from rats with cancer cachexia is dependent on cardiolipin but independent of ANT. Interactions between ANT and cardiolipin are modified when cancer cachexia occurs. Copyright © 2014 Elsevier B.V. All rights reserved.
Characterization of drilling waste from shale gas exploration in Central and Eastern Poland.
Mikos-Szymańska, Marzena; Rusek, Piotr; Borowik, Krzysztof; Rolewicz, Maciej; Bogusz, Paulina; Gluzińska, Joanna
2018-05-28
The purpose of this research was to determine and evaluate the chemical properties of drilling waste from five well sites in Central and Eastern Poland. It was found that spent drilling fluids can contain high values of nickel and mercury (270 and 8.77 mg kg -1 , respectively) and can exceed the maximum permissible limits recommended by the EC regulations for safety of soils (75 mg kg -1 for nickel and 1.5 mg kg -1 for mercury). The heavy metal concentrations in the studied drill cuttings did not exceed the maximum permissible limits recommended by the EC regulation. Drilling wastes contain macroelements (e.g., calcium, magnesium, and potassium) as well as trace elements (e.g., copper, iron, zinc, and manganese) that are essential for the plant growth. It was stated that water extracts of drilling fluids and drill cuttings, according to anions presence, had not any specific constituents of concern based on FAO irrigation guidelines, the USEPA WQC, and toxicity values. X-ray diffraction analysis was used to understand the structure and texture of waste drilling fluid solids and drill cuttings. Analysis of the mineralogical character of drilling fluid solids revealed that they contained calcite, quartz, muscovite, sylvite, barite, dolomite, and orthoclase. Drill cuttings contained calcite quartz, muscovite, barite, dolomite, and barium chloride.
40 CFR 437.40 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... portion of wastewater discharges from a centralized waste treatment facility that results from mixing any... standards) and establishes that it provides equivalent treatment as defined in § 437.2(h). (b) In order to...
Energy Corner: Heat Reclamation Rescues Wasted Heat.
ERIC Educational Resources Information Center
Daugherty, Thomas
1982-01-01
Heat reclamation systems added to pre-existing central heating systems provide maximum savings at minimum cost. The benefits of a particular appliance marketed under the brand name "Energizer" are discussed. (Author/MLF)
Introduction to the LaRC central scientific computing complex
NASA Technical Reports Server (NTRS)
Shoosmith, John N.
1993-01-01
The computers and associated equipment that make up the Central Scientific Computing Complex of the Langley Research Center are briefly described. The electronic networks that provide access to the various components of the complex and a number of areas that can be used by Langley and contractors staff for special applications (scientific visualization, image processing, software engineering, and grid generation) are also described. Flight simulation facilities that use the central computers are described. Management of the complex, procedures for its use, and available services and resources are discussed. This document is intended for new users of the complex, for current users who wish to keep appraised of changes, and for visitors who need to understand the role of central scientific computers at Langley.
Nievas, M L; Commendatore, M G; Esteves, J L; Bucalá, V
2008-06-15
The biodegradation of a hazardous waste (bilge waste), a fuel oil-type complex residue from normal ship operations, was studied in a batch bioreactor using a microbial consortium in seawater medium. Experiments with initial concentrations of 0.18 and 0.53% (v/v) of bilge waste were carried out. In order to study the biodegradation kinetics, the mass of n-alkanes, resolved hydrocarbons and unresolved complex mixture (UCM) hydrocarbons were assessed by gas chromatography (GC). Emulsification was detected in both experiments, possibly linked to the n-alkanes depletion, with differences in emulsification start times and extents according to the initial hydrocarbon concentration. Both facts influenced the hydrocarbon biodegradation kinetics. A sequential biodegradation of n-alkanes and UMC was found for the higher hydrocarbon content. Being the former growth associated, while UCM biodegradation was a non-growing process showing enzymatic-type biodegradation kinetics. For the lower hydrocarbon concentration, simultaneous biodegradation of n-alkanes and UMC were found before emulsification. Nevertheless, certain UCM biodegradation was observed after the medium emulsification. According to the observed kinetics, three main types of hydrocarbons (n-alkanes, biodegradable UCM and recalcitrant UCM) were found adequate to represent the multicomponent substrate (bilge waste) for future modelling of the biodegradation process.
Kuippers, Gina; Boothman, Christopher; Bagshaw, Heath; Ward, Michael; Beard, Rebecca; Bryan, Nicholas; Lloyd, Jonathan R
2018-06-08
Intermediate level radioactive waste (ILW) generally contains a heterogeneous range of organic and inorganic materials, of which some are encapsulated in cement. Of particular concern are cellulosic waste items, which will chemically degrade under the conditions predicted during waste disposal, forming significant quantities of isosaccharinic acid (ISA), a strongly chelating ligand. ISA therefore has the potential to increase the mobility of a wide range of radionuclides via complex formation, including Ni-63 and Ni-59. Although ISA is known to be metabolized by anaerobic microorganisms, the biodegradation of metal-ISA complexes remains unexplored. This study investigates the fate of a Ni-ISA complex in Fe(III)-reducing enrichment cultures at neutral pH, representative of a microbial community in the subsurface. After initial sorption of Ni onto Fe(III)oxyhydroxides, microbial ISA biodegradation resulted in >90% removal of the remaining Ni from solution when present at 0.1 mM, whereas higher concentrations of Ni proved toxic. The microbial consortium associated with ISA degradation was dominated by close relatives to Clostridia and Geobacter species. Nickel was preferentially immobilized with trace amounts of biogenic amorphous iron sulfides. This study highlights the potential for microbial activity to help remove chelating agents and radionuclides from the groundwater in the subsurface geosphere surrounding a geodisposal facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moak, Don J.; Grondin, Richard L.; Triner, Glen C.
CH2M Hill Plateau Remediation Company (CHRPC) is a prime contractor to the U.S. Department of Energy (DOE) focused on the largest ongoing environmental remediation project in the world at the DOE Hanford Site Central Plateau, i.e. the DOE Hanford Plateau Remediation Contract. The East Tennessee Materials and Energy Corporation (M and EC); a wholly owned subsidiary of Perma-Fix Environmental Services, Inc. (PESI), is a small business team member to CHPRC. Our scope includes project management; operation and maintenance of on-site storage, repackaging, treatment, and disposal facilities; and on-site waste management including waste receipt from generators and delivery to on-site andmore » off-site treatment, storage, and disposal facilities. As part of this scope, M and EC staffs the centralized Waste Support Services organization responsible for all waste characterization and acceptance required to support CHPRC and waste generators across the Hanford Site. At the time of the CHPRC contract award (August 2008) slightly more than 9,000 cubic meters (m{sup 3}) of legacy waste was defined as 'no-path-forward waste'. A significant portion of this waste (7,650 m{sup 3}) comprised wastes with up to 50 grams of special nuclear materials (SNM) in oversized packages recovered during retrieval operations and large glove boxes removed from the Plutonium Finishing Plant (PFP). Through a collaborative effort between the DOE, CHPRC, and Perma-Fix Environmental Services, Inc. (PESI), pathways for these problematic wastes were developed that took advantage of commercial treatment capabilities at a nearby vendor facility, Perma-Fix Northwest (PFNW). In the spring of 2009, CHPRC initiated a pilot program under which they began shipping large package, low gram suspect TRU (<15 g SNM per container), and large package contact and remote handled MLLW to the off-site PFNW facility for treatment. PFNW is restricted by the SNM limits set for the total quantity of SNM allowed at the facility in accordance with the facility's radioactive materials license(s) (RML). While both CHPRC and PFNW maintain waste databases to track all waste movements, it became evident early in the process that a tool was needed that married the two systems to better track SNM inventories and sequence waste from the point of generation, through the PFNW facility, and back to the Hanford site for final disposition. This tool, known as the Treatment Integration and Planning Tool (TIPT), has become a robust planning tool that provides real-time data to support compliant and efficient waste generation, transportation, treatment, and disposition. TIPT is developing into the next generation tool that will change the way in which legacy wastes, retrieval wastes and decontamination and decommissioning operations are conducted on the Plateau Remediation Contract (PRC). The real value of the TIPT is its predictive capability. It allows the W and FMP to map out optimal windows for processing waste through the PFNW facility, or through any process that is in some way resource limited. It allows project managers to identify and focus on problem areas before shipments are affected. It has been modified for use in broader applications to predict turnaround times and identify windows of opportunity for processing higher gram wastes through PFNW and to allow waste generators, site-wide, to accurately predict scope, cost, and schedule for waste generation to optimize processing and eliminate storage, double handling, and related costs and unnecessary safety risks. The TIPT addresses the years old problem of how to effectively predict not only what needs to be done, but when. 'When' is the key planning parameter that has been ignored by the generator and processor for many years, but has proven to be the most important parameter for both parties. While further refinement is a natural part of any development process, the current improvements on the TIPT have shown that prediction is a powerful consideration. Even in lean times expected for the foreseeable future, the improved TIPT continues to play a central role in managing our way through those times to assure facilities remain viable and available. It is recommended that other major remediation projects and waste processing facilities incorporate a tool such as TIPT to improve customer-commercial supplier communications and better optimization of resources. (authors)« less
Organic waste as a sustainable feedstock for platform chemicals.
Coma, M; Martinez-Hernandez, E; Abeln, F; Raikova, S; Donnelly, J; Arnot, T C; Allen, M J; Hong, D D; Chuck, C J
2017-09-21
Biorefineries have been established since the 1980s for biofuel production, and there has been a switch lately from first to second generation feedstocks in order to avoid the food versus fuel dilemma. To a lesser extent, many opportunities have been investigated for producing chemicals from biomass using by-products of the present biorefineries, simple waste streams. Current facilities apply intensive pre-treatments to deal with single substrate types such as carbohydrates. However, most organic streams such as municipal solid waste or algal blooms present a high complexity and variable mixture of molecules, which makes specific compound production and separation difficult. Here we focus on flexible anaerobic fermentation and hydrothermal processes that can treat complex biomass as a whole to obtain a range of products within an integrated biorefinery concept.
Organic waste as a sustainable feedstock for platform chemicals
Martinez-Hernandez, E.; Abeln, F.; Raikova, S.; Donnelly, J.; Arnot, T. C.; Allen, M. J.; Hong, D. D.; Chuck, C. J.
2017-01-01
Biorefineries have been established since the 1980s for biofuel production, and there has been a switch lately from first to second generation feedstocks in order to avoid the food versus fuel dilemma. To a lesser extent, many opportunities have been investigated for producing chemicals from biomass using by-products of the present biorefineries, simple waste streams. Current facilities apply intensive pre-treatments to deal with single substrate types such as carbohydrates. However, most organic streams such as municipal solid waste or algal blooms present a high complexity and variable mixture of molecules, which makes specific compound production and separation difficult. Here we focus on flexible anaerobic fermentation and hydrothermal processes that can treat complex biomass as a whole to obtain a range of products within an integrated biorefinery concept. PMID:28654113
NASA Astrophysics Data System (ADS)
Kostarev, S. N.; Sereda, T. G.
2018-01-01
The application of the programmable logic integrated circuits (PLC) for creating the software and hardware complexes of the medium complexity is an economically sound solution. The application of the OMRON controller to solve the monitoring and management tasks of safety of the municipal solid waste (MSW) landfill with the use of technology of the filtrate recirculation and the landfill maps irrigation is shown in the article. The article contains the technical solution connected with the implementation of the 2162059RU invention patent for the municipal solid waste landfill management in the Kurgan region of Russia. The calculation of maps and ponds was made with consideration of the limited sanitary and protection zone. The GRUNDFOS dosing and reactor equipment was proposed to use in the project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Wei; Huang, Guo H., E-mail: huang@iseis.org; Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan, S4S 0A2
2012-06-15
Highlights: Black-Right-Pointing-Pointer Inexact piecewise-linearization-based fuzzy flexible programming is proposed. Black-Right-Pointing-Pointer It's the first application to waste management under multiple complexities. Black-Right-Pointing-Pointer It tackles nonlinear economies-of-scale effects in interval-parameter constraints. Black-Right-Pointing-Pointer It estimates costs more accurately than the linear-regression-based model. Black-Right-Pointing-Pointer Uncertainties are decreased and more satisfactory interval solutions are obtained. - Abstract: To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerancemore » intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP's advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3 indicate that their solutions would be significantly different. The decreased system uncertainties in IPFP's solutions demonstrate its effectiveness for providing more satisfactory interval solutions than IPFP3. Following its first application to waste management, the IPFP can be potentially applied to other environmental problems under multiple complexities.« less
Potter, C.J.; Day, W.C.; Sweetkind, D.S.; Dickerson, R.P.
2004-01-01
Geologic mapping and fracture studies have documented the fundamental patterns of joints and faults in the thick sequence of rhyolite tuffs at Yucca Mountain, Nevada, the proposed site of an underground repository for high-level radioactive waste. The largest structures are north-striking, block-bounding normal faults (with a subordinate left-lateral component) that divide the mountain into numerous 1-4-km-wide panels of gently east-dipping strata. Block-bounding faults, which underwent Quaternary movement as well as earlier Neogene movement, are linked by dominantly northwest-striking relay faults, especially in the more extended southern part of Yucca Mountain. Intrablock faults are commonly short and discontinuous, except those on the more intensely deformed margins of the blocks. Lithologic properties of the local tuff stratigraphy strongly control the mesoscale fracture network, and locally the fracture network has a strong influence on the nature of intrablock faulting. The least faulted part of Yucca Mountain is the north-central part, the site of the proposed repository. Although bounded by complex normal-fault systems, the 4-km-wide central block contains only sparse intrablock faults. Locally intense jointing appears to be strata-bound. The complexity of deformation and the magnitude of extension increase in all directions away from the proposed repository volume, especially in the southern part of the mountain where the intensity of deformation and the amount of vertical-axis rotation increase markedly. Block-bounding faults were active at Yucca Mountain during and after eruption of the 12.8-12.7 Ma Paintbrush Group, and significant motion on these faults postdated the 11.6 Ma Rainier Mesa Tuff. Diminished fault activity continued into Quaternary time. Roughly half of the stratal tilting in the site area occurred after 11.6 Ma, probably synchronous with the main pulse of vertical-axis rotation, which occurred between 11.6 and 11.45 Ma. Studies of sequential formation of tectonic joints, in the context of regional paleostress studies, indicate that north- and northwest-striking joint sets formed coevally with the main faulting episode during regional east-northeast-west-southwest extension and that a prominent northeast-striking joint set formed later, probably after 9 Ma. These structural analyses contribute to the understanding of several important issues at Yucca Mountain, including potential hydrologic pathways, seismic hazards, and fault-displacement hazards. ?? 2004 Geological Society of America.
Method for processing aqueous wastes
Pickett, John B.; Martin, Hollis L.; Langton, Christine A.; Harley, Willie W.
1993-01-01
A method for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply.
Hazardous E-waste and its impact on soil structure
NASA Astrophysics Data System (ADS)
Dharini, K.; Cynthia, J. Bernadette; Kamalambikai, B.; Sudar Celestina, J. P. Arul; Muthu, D.
2017-07-01
E-waste disposal has been a significant issue over the past few decades with the development of technology and the plethora of electronic products produced. The inclusive term E-Waste encapsulates various forms of electrical and electronical equipment which provides no value to the current owners and it is one among the fastest growing waste streams. E-Waste is a complex, non-biodegradable waste which is generally dumped in mountain like heaps. These wastes are said to have a large quantities of lead, cadmium, arsenic etc.it is mandatory to dispose such scrupulously since they have the ability to affect the soil and water parameters. Solid waste management is a blooming field which strives to reduce the accumulation of used electronic gadgets. Rainwater gets infiltrated through the e-waste landfill and it leaches through the soil which in turn reaches the groundwater directly thereby affecting the water intended for drinking and domestic purposes. This study focuses on the consequences of toxic waste by comparing the difference in properties of the soil structure prior to and after the e-waste landfill at various concentrations.
Use of performance indicators to assess the solid waste management of health services.
Assis, Mayara C; Gomes, Vanielle A P; Balista, Wagner C; Freitas, Rodrigo R DE
2017-01-01
Modern society faces serious challenges, among them, the complexity of environmental problems. Thus, there are several possible sources of environmental degradation, however, the waste produced by health services have an important peculiarity due to its toxic or pathogenic characteristics, since when managed improperly provide also health risk public. The involvement of solid waste from healthcare services environmental impact integrates matters a little more complex, because in addition to environmental health, they also interfere with the healthiness of environments that generate, with the consequences of nosocomial infections, occupational health and public. Thus, the management has become an urgent need, especially when we see no use of performance indicators management in healthcare environments in the city of São Mateus, ES. For this, we used the Analytic Hierarchy Process Method to prioritize such indicators as the potential improvement in health services waste management process - WHS and thus environmental analysis was performed with the use of a template for SWOT analysis. The results showed that the performance indicator training strategies developed with employees has the greatest potential to assist in improvements in WHS (Health Services Waste) management process followed indicator knowledge of the regulations associated with procedures performed by employees and importance of biosafety regulations.
Lessons Learned from Radioactive Waste Storage and Disposal Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esh, David W.; Bradford, Anna H.
2008-01-15
The safety of radioactive waste disposal facilities and the decommissioning of complex sites may be predicated on the performance of engineered and natural barriers. For assessing the safety of a waste disposal facility or a decommissioned site, a performance assessment or similar analysis is often completed. The analysis is typically based on a site conceptual model that is developed from site characterization information, observations, and, in many cases, expert judgment. Because waste disposal facilities are sited, constructed, monitored, and maintained, a fair amount of data has been generated at a variety of sites in a variety of natural systems. Thismore » paper provides select examples of lessons learned from the observations developed from the monitoring of various radioactive waste facilities (storage and disposal), and discusses the implications for modeling of future waste disposal facilities that are yet to be constructed or for the development of dose assessments for the release of decommissioning sites. Monitoring has been and continues to be performed at a variety of different facilities for the disposal of radioactive waste. These include facilities for the disposal of commercial low-level waste (LLW), reprocessing wastes, and uranium mill tailings. Many of the lessons learned and problems encountered provide a unique opportunity to improve future designs of waste disposal facilities, to improve dose modeling for decommissioning sites, and to be proactive in identifying future problems. Typically, an initial conceptual model was developed and the siting and design of the disposal facility was based on the conceptual model. After facility construction and operation, monitoring data was collected and evaluated. In many cases the monitoring data did not comport with the original site conceptual model, leading to additional investigation and changes to the site conceptual model and modifications to the design of the facility. The following cases are discussed: commercial LLW disposal facilities; uranium mill tailings disposal facilities; and reprocessing waste storage and disposal facilities. The observations developed from the monitoring and maintenance of waste disposal and storage facilities provide valuable lessons learned for the design and modeling of future waste disposal facilities and the decommissioning of complex sites.« less
General survey of solid-waste management
NASA Technical Reports Server (NTRS)
Reese, T. G.; Wadle, R. C.
1974-01-01
Potential ways of providing solid-waste management for a building complex serviced by a modular integrated utility system (MIUS) were explored. Literature surveys were conducted to investigate both conventional and unusual systems to serve this purpose. The advantages and disadvantages of the systems most compatible with MIUS are discussed.
Aeration to improve biogas production by recalcitrant feedstock
USDA-ARS?s Scientific Manuscript database
Much agricultural waste is largely composed of polymers such as lignin and complex carbohydrates that are slowly or nearly completely non-degradable in anaerobic environments. An example of such a waste is chicken litter in which wood chips, rice hulls, and sawdust are commonly employed bedding mate...
Garnett, Kenisha; Cooper, Tim
2014-12-01
The complexity of municipal waste management decision-making has increased in recent years, accompanied by growing scrutiny from stakeholders, including local communities. This complexity reflects a socio-technical framing of the risks and social impacts associated with selecting technologies and sites for waste treatment and disposal facilities. Consequently there is growing pressure on local authorities for stakeholders (including communities) to be given an early opportunity to shape local waste policy in order to encourage swift planning, development and acceptance of the technologies needed to meet statutory targets to divert waste from landfill. This paper presents findings from a research project that explored the use of analytical-deliberative processes as a legitimising tool for waste management decision-making. Adopting a mixed methods approach, the study revealed that communicating the practical benefits of more inclusive forms of engagement is proving difficult even though planning and policy delays are hindering development and implementation of waste management infrastructure. Adopting analytical-deliberative processes at a more strategic level will require local authorities and practitioners to demonstrate how expert-citizen deliberations may foster progress in resolving controversial issues, through change in individuals, communities and institutions. The findings suggest that a significant shift in culture will be necessary for local authorities to realise the potential of more inclusive decision processes. This calls for political actors and civic society to collaborate in institutionalising public involvement in both strategic and local planning structures. Copyright © 2014 Elsevier Ltd. All rights reserved.
Recovery of fissile materials from nuclear wastes
Forsberg, Charles W.
1999-01-01
A process for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.
Komilis, Dimitrios; Katsafaros, Nikolaos; Vassilopoulos, Panagiotis
2011-08-01
The accurate calculation of the unit generation rates and composition of medical waste generated from medical facilities is necessary in order to design medical waste treatment systems. In this work, the unit medical waste generation rates of 95 public and private medical facilities in the Attica region were calculated based on daily weight records from a central medical waste incineration facility. The calculated medical waste generation rates (in kg bed(-1) day( -1)) varied widely with average values at 0.27 ± 113% and 0.24 ± 121%, for public and private medical facilities, respectively. The hazardous medical waste generation was measured, at the source, in the 40 bed hospital of the island of Ikaria for a period of 42 days during a 6 month period. The average hazardous medical waste generation rate was 1.204 kg occupied bed(-1) day(-1) or 0.33 kg (official) bed( -1) day(-1). From the above amounts, 54% resulted from the patients' room (solid and liquid wastes combined), 24% from the emergency department (solid waste), 17% from the clinical pathology lab and 6% from the X-ray lab. In average, 17% of the total hazardous medical waste was solely infectious. Conclusively, no correlation among the number of beds and the unit medical waste generation rate could be established. Each hospital should be studied separately, since medical waste generation and composition depends on the number and type of departments/laboratories at each hospital, number of external patients and number of occupied beds.
NASA Astrophysics Data System (ADS)
Ginocchio, Rosanna; Arellano, Eduardo; España, Helena; Gardeweg, Rosario; Bas, Fernando; Gandarillas, Mónica
2016-04-01
Remediation of large surface areas of massive mine wastes, such as tailings storage facilities (TSFs) is challenging, particularly when no topsoils have been stored for the mine closure stage. Worldwide, it has been demonstrated that the use of organic wastes as substrate amendments for remediation of hard rock mine wastes is a useful alternative to topsoils material. In the case of semi-arid climate conditions of north-central Chile, the copper mining industry has generated massive TSF (between 400 ha and 3,000 ha) which needs now to be properly closed according to recently established mine closure regulations. However, in most of the cases, there have been no topsoils savage that facilitate the initial stage of the site remediation. Industrial organic wastes (i.e. biosolids) are found in the area, but their availability is normally below the demand needed for remediation of TSFs and salt content is normally elevated, thus posing salinization risks to the substrate and negative plant growth. We focused on a large organic waste producing industry, the pork industry, whose growth has been restricted due to the limited possibilities for using pig slurries as amendments for croplands in north-central Chile and the strong odor generated, resulting in conflicts with local communities. Incorporation of pig slurries as amendments to post-operative TSFs has been scarcely evaluated at international level (i.e. Spain) and no evaluation at all exists for the solid organic fraction generated from pig slurry treatment plants (PSTP). In the present study, we evaluated the efficacy of both pig slurries (PS) and the solid fraction of PSTP (SF-PSTP) as tailings amendment for creating good plant productivity on TSFs located under semi-arid Mediterranean climate conditions in north-central Chile. A short-term greenhouse study was developed. Copper mine tailings were mixed either with PS (0, 40, 80, and 120 m3 ha-1) or SF-PSTP (0, 25, 50 and 75 t ha-1), distributed in 3 L pots, and seeded with Lolium perenne. Experimental pots were kept under controlled conditions and irrigated up to 70% field water capacity for 42 days. After this period, chemical characteristics of the substrate and productive plant variables were determined and contrasted. Results showed that both pig wastes evaluated had significant (positive) and dose-dependent effects on plant productivity (both aerial and root biomass), but an increase in copper and zinc contents in aerial tissues occurred. Metal increments in aerial plant tissues were, however, below plant toxicity thresholds and represent no risk for cattle consumption. Application of any pork waste to mine tailings increased organic matter and macronutrient contents, besides raising pH. No substrate salinization was detected under the evaluated doses. These promising results show that organic pork residues are useful amendments for remediation of TSFs in north-central Chile. Furthermore, a twofold solution for environmental problems generated by two very relevant industrial sectors of the country is thus possible. Further studies are, however needed. Study funded by Project DIP-FAIF of P. Universidad Católica de Chile and by Project FB 0002-2014 of CONICYT. CICAP is also acknowledged.
33 Shafts Category of Transuranic Waste Stored Below Ground within Area G
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hargis, Kenneth Marshall; Monk, Thomas H
This report compiles information to support the evaluation of alternatives and analysis of regulatory paths forward for the 33 shafts. The historical information includes a form completed by waste generators for each waste package (Reference 6) that included a waste description, estimates of Pu-239 and uranium-235 (U-235) based on an accounting technique, and calculations of mixed fission products (MFP) based on radiation measurements. A 1979 letter and questionnaire (Reference 7) provides information on waste packaging of hot cell waste and the configuration of disposal shafts as storage in the 33 Shafts was initiated. Tables of data by waste package weremore » developed during a review of historical documents that was performed in 2005 (Reference 8). Radiological data was coupled with material-type data to estimate the initial isotopic content of each waste package and an Oak Ridge National Laboratory computer code was used to calculate 2009 decay levels. Other sources of information include a waste disposal logbook for the 33 shafts (Reference 9), reports that summarize remote-handled waste generated at the CMR facility (Reference 10) and placement of waste in the 33 shafts (Reference 11), a report on decommissioning of the LAMPRE reactor (Reference 12), interviews with an employee and manager involved in placing waste in the 33 shafts (References 13 and 14), an interview with a long-time LANL employee involved in waste operations (Reference 15), a 2002 plan for disposition of remote-handled TRU waste (Reference 16), and photographs obtained during field surveys of several shafts in 2007. The WIPP Central Characterization Project (CCP) completed an Acceptable Knowledge (AK) summary report for 16 canisters of remote-handled waste from the CMR Facility that contains information relevant to the 33 Shafts on hot-cell operations and timeline (Reference 17).« less
NASA Astrophysics Data System (ADS)
Poeta, Gianluca; Conti, Luisa; Malavasi, Marco; Battisti, Corrado; Acosta, Alicia Teresa Rosario
2016-11-01
Litter washed ashore on the coastline, also called beach litter, constitutes one of the most obvious signs of marine litter pollution. Surveys of beach litter represent a fundamental tool for monitoring pollution in the marine environment and have been used world-wide to classify and quantify marine litter. Identifying the sources of marine and beach litter is, together with education, the prime weapon in combating this type of pollution. This work investigates the impact of three main potential land sources on litter occurrence: urban areas, rivers and beach users. Three sources were analyzed simultaneously on a broad scale (Lazio region, central Italy) using a random sampling design and fitting a generalized linear mixed-effect model. The results show that urban areas are the main drivers for the occurrence of marine litter along central Italy's coastal ecosystems, suggesting that the presence of such litter on Lazio beaches could be effectively reduced by identifying failings in recycling and waste collection procedures and by improving waste processing systems and sewage treatment in urban areas.
Hazardous waste: cleanup and prevention
Vandas, Stephen; Cronin, Nancy L.; Farrar, Frank; Serrano, Guillermo Eliezer Ávila; Yajimovich, Oscar Efraín González; Muñoz, Aurora R.; Rivera, María del C.
1996-01-01
Our lifestyles are supported by complex Industrial activities that produce many different chemicals and chemical wastes. The Industries that produce our clothing, cars, medicines, paper, food, fuels, steel, plastics, and electric components use and discard thousands of chemicals every year. At home we may use lawn chemicals, solvents, disinfectants, cleaners, and auto products to Improve our quality of life. A chemical that presents a threat or unreasonable risk to people or the environment Is a hazardous material. When a hazardous material can no longer be used, It becomes a hazardous waste. Hazardous wastes come from a variety of sources, from both present and past activities. Impacts to human health and the environment can result from Improper handling and disposal of hazardous waste.
Zhang, Xueguo; Cui, Jinjuan; Tan, Zhenjun; Jiang, Chunhui; Fogel, Ronald
2003-01-01
Using retrograde tract-tracing and electrophysiological methods, we characterized the anatomical and functional relationship between the central nucleus of the amygdala and the dorsal vagal complex. Retrograde tract-tracing techniques revealed that the central nucleus of the amygdala projects to the dorsal vagal complex with a topographic distribution. Following injection of retrograde tracer into the vagal complex, retrogradely labelled neurons in the central nucleus of the amygdala were clustered in the central portion at the rostral level and in the medial part at the middle level of the nucleus. Few labelled neurons were seen at the caudal level. Electrical stimulation of the central nucleus of the amygdala altered the basal firing rates of 65 % of gut-related neurons in the nucleus of the solitary tract and in the dorsal motor nucleus of the vagus. Eighty-one percent of the neurons in the nucleus of the solitary tract and 47 % of the neurons in the dorsal motor nucleus were inhibited. Electrical stimulation of the central nucleus of the amygdala also modulated the response of neurons in the dorsal vagal complex to gastrointestinal stimuli. The predominant effect on the neurons of the nucleus of the solitary tract was inhibition. These results suggest that the central nucleus of the amygdala influences gut-related neurons in the dorsal vagal complex and provides a neuronal circuitry that explains the regulation of gastrointestinal activity by the amygdala. PMID:14555729
Introduction to Exide Corporations`s high temperature metals recovery system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozelle, P.L.; Baranski, J.P.; Bitler, J.A.
1995-12-31
Environmental strategies concerning the processing and ultimate fate of wastes and byproducts are of ever increasing importance to the public and business sectors in the world today. Recycling materials and reusing energy from wastes and byproducts results in a reduction of environmental impacts and the cost of disposal. These are the key steps in reaching the ultimate goal of waste minimization. In response to these needs, Exide Corporation, in its vision to develop waste minimization programs, has developed the Exide High Temperature Metals Recovery (EHTMR) process. This process can treat a variety of wastes and byproducts where metals contents aremore » an issue, recover the metal values for reuse, and produce a metals-depleted slag that can be marketable under the most stringent proposed EPA regulations for leachability of contaminants. The central feature of the EHTMR process is the exposure of treated materials to a transferred arc plasma generated in an electric furnace. The process achieves a reduction in costs and liability by recovering portions of a waste that can be recycled or reclaimed and produces a slag that has beneficial use to society.« less
Hazardous waste crime: a contextual analysis of the offense and the offender
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rebovich, D.J.
The goal of this study is to analyze hazardous waste offense and offender characteristics. Criminal case data were collected from four sample states (Maine, Maryland, New Jersey, and Pennsylvania). Files of disposed criminal cases charged between 1977 and 1984 were content-analyzed, and interviews were conducted with prominent hazardous waste crime enforcement personnel from the sample states. Areas of analysis include methods of crime commission, skills required for crime commission, patterns of criminal network relationships, and degree of syndicate crime influence. While there has been some previous speculation that hazardous waste criminal behavior is directed through centralized racketeering, the present studymore » of known offenders found little evidence of syndicate crime family infiltration. Crimes occurred within small, informal networks of waste generators, waste transporters, the employees of treatment/storage/disposal (TSD) facilities and certain non-industry peripheral actors. The study concludes that, while attempts have been made by syndicate crime operatives to infiltrate, these attempts have failed largely due to features of criminal commission methods and to the inherent fragmentation of hauling and TSD firm interests.« less
Clancy, Tara M; Hayes, Kim F; Raskin, Lutgarde
2013-10-01
Water treatment technologies for arsenic removal from groundwater have been extensively studied due to widespread arsenic contamination of drinking water sources. Central to the successful application of arsenic water treatment systems is the consideration of appropriate disposal methods for arsenic-bearing wastes generated during treatment. However, specific recommendations for arsenic waste disposal are often lacking or mentioned as an area for future research and the proper disposal and stabilization of arsenic-bearing waste remains a barrier to the successful implementation of arsenic removal technologies. This review summarizes current disposal options for arsenic-bearing wastes, including landfilling, stabilization, cow dung mixing, passive aeration, pond disposal, and soil disposal. The findings from studies that simulate these disposal conditions are included and compared to results from shorter, regulatory tests. In many instances, short-term leaching tests do not adequately address the range of conditions encountered in disposal environments. Future research directions are highlighted and include establishing regulatory test conditions that align with actual disposal conditions and evaluating nonlandfill disposal options for developing countries.
Radioactive waste management treatments: A selection for the Italian scenario
DOE Office of Scientific and Technical Information (OSTI.GOV)
Locatelli, G.; Mancini, M.; Sardini, M.
2012-07-01
The increased attention for radioactive waste management is one of the most peculiar aspects of the nuclear sector considering both reactors and not power sources. The aim of this paper is to present the state-of-art of treatments for radioactive waste management all over the world in order to derive guidelines for the radioactive waste management in the Italian scenario. Starting with an overview on the international situation, it analyses the different sources, amounts, treatments, social and economic impacts looking at countries with different industrial backgrounds, energetic policies, geography and population. It lists all these treatments and selects the most reasonablemore » according to technical, economic and social criteria. In particular, a double scenario is discussed (to be considered in case of few quantities of nuclear waste): the use of regional, centralized, off site processing facilities, which accept waste from many nuclear plants, and the use of mobile systems, which can be transported among multiple nuclear sites for processing campaigns. At the end the treatments suitable for the Italian scenario are presented providing simplified work-flows and guidelines. (authors)« less
Marshall Space Flight Center solid waste characterization and recycling improvement study
NASA Technical Reports Server (NTRS)
Eley, Michael H.; Crews, Lavonne; Johnston, Ben; Lee, David; Colebaugh, James
1995-01-01
The MSFC Facilities Office, which is responsible for disposing of all waste generated by MSFC, issued a delivery order to the University of Alabama in Huntsville (UAH) to characterize current MSFC waste streams and to evaluate their existing recycling program. The purpose of the study was to define the nature, quantity, and types of waste produced and to generate ideas for improving the present recycling program. Specifically, the following tasks were to be performed: Identify various surplus and waste materials--as identified by the Contracting Officer's Technical Representative (COTR)--by source, location, and type; Analyze MSFC's current methods for handling, storage, transport, and disposition of waste and surplussed materials; Determine the composition of various surplus and waste materials as to type and quantities from various sources and locations; Analyze different methods for the disposition of various surplus and waste materials, including quality, quantity, preparation, transport cost, and value; Study possible alternatives to current methods of handling, storage, transport, and disposition of surplus and waste materials to improve the quality and quantities recycled or sold and to reduce and minimize the quantities of surplus and waste material currently being disposed of or stored; Provide recommendations for source and centralized segregation and aggregation of materials for recycling and/or disposition; and The analysis could include identification and laboratory level evaluation of methods and/or equipment, including capital costs, operating costs, maintenance requirements, life cycle and return on investment for systems to support the waste reduction program mission.
Controlling changes - lessons learned from waste management facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, B.M.; Koplow, A.S.; Stoll, F.E.
This paper discusses lessons learned about change control at the Waste Reduction Operations Complex (WROC) and Waste Experimental Reduction Facility (WERF) of the Idaho National Engineering Laboratory (INEL). WROC and WERF have developed and implemented change control and an as-built drawing process and have identified structures, systems, and components (SSCS) for configuration management. The operations have also formed an Independent Review Committee to minimize costs and resources associated with changing documents. WROC and WERF perform waste management activities at the INEL. WROC activities include storage, treatment, and disposal of hazardous and mixed waste. WERF provides volume reduction of solid low-levelmore » waste through compaction, incineration, and sizing operations. WROC and WERF`s efforts aim to improve change control processes that have worked inefficiently in the past.« less
System dynamic modeling on construction waste management in Shenzhen, China.
Tam, Vivian W Y; Li, Jingru; Cai, Hong
2014-05-01
This article examines the complexity of construction waste management in Shenzhen, Mainland China. In-depth analysis of waste generation, transportation, recycling, landfill and illegal dumping of various inherent management phases is explored. A system dynamics modeling using Stella model is developed. Effects of landfill charges and also penalties from illegal dumping are also simulated. The results show that the implementation of comprehensive policy on both landfill charges and illegal dumping can effectively control the illegal dumping behavior, and achieve comprehensive construction waste minimization. This article provides important recommendations for effective policy implementation and explores new perspectives for Shenzhen policy makers.
Review: Utilization of Waste From Coffee Production
NASA Astrophysics Data System (ADS)
Blinová, Lenka; Sirotiak, Maroš; Bartošová, Alica; Soldán, Maroš
2017-06-01
Coffee is one of the most valuable primary products in the world trade, and also a central and popular part of our culture. However, coffees production generate a lot of coffee wastes and by-products, which, on the one hand, could be used for more applications (sorbent for the removal of heavy metals and dyes from aqueous solutions, production of fuel pellets or briquettes, substrate for biogas, bioethanol or biodiesel production, composting material, production of reusable cups, substrat for mushroom production, source of natural phenolic antioxidants etc.), but, on the other hand, it could be a source of severe contamination posing a serious environmental problem. In this paper, we present an overview of utilising the waste from coffee production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, William E.; Zaher, U.; Agnew, S.
The Hanford soil inventory model (SIM) provides the basic radionuclide and chemical soil inventories from historical liquid discharges to about 400 sites at the Hanford Site. Although liquid discharge inventory for chemicals is part of the SIM implementation, only radionuclide inventory is discussed here since the focus of this ECF is on providing radionuclides inputs for the composite analysis (CA) per DOE Order 435.1, Radioactive Waste Management, requirements. Furthermore, discharged inventories are only estimated for the soluble portions of the liquid discharges to waste sites/waste management areas located on the 200 Area of the Hanford Site (Central Plateau).
Closely Spaced Independent Parallel Runway Simulation.
1984-10-01
facility consists of the Central Computer Facility, the Controller Laboratory, and the Simulator Pilot Complex. CENTRAL COMPUTER FACILITY. The Central... Computer Facility consists of a group of mainframes, minicomputers, and associated peripherals which host the operational and data acquisition...in the Controller Laboratory and convert their verbal directives into a keyboard entry which is transmitted to the Central Computer Complex, where
Code of Federal Regulations, 2011 CFR
2011-01-01
... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Provisions § 72.2 Scope. (a) Except..., packaging, and possession of: (1) Power reactor spent fuel to be stored in a complex that is designed and constructed specifically for storage of power reactor spent fuel aged for at least one year, other radioactive...
Code of Federal Regulations, 2010 CFR
2010-01-01
... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Provisions § 72.2 Scope. (a) Except..., packaging, and possession of: (1) Power reactor spent fuel to be stored in a complex that is designed and constructed specifically for storage of power reactor spent fuel aged for at least one year, other radioactive...
The Office of Solid Waste and Emergency Response (OSWER) has identified the development of improved methods for measuring, monitoring, and characterizing complex wastes in soils, sediments, biota, and groundwater as a priority under GOAL 3: LAND PRESERVATION AND RESTORATION:Prese...
Test Standards for Contingency Base Waste-to-Energy Technologies
2015-08-01
test runs are preferred to allow a more comprehensive statistical evaluation of the results. In 8 • Minimize the complexity , difficulty, and...with water or, in the case of cyanide - or sulfide-bearing wastes, when exposed to mild acidic or basic conditions; 4) explode when subjected to a
The management of municipal solid waste (MSW) in many countries throughout the world has changed significantly over the past fifty years, with a shift from uncontrolled dumping or burning to complex systems that integrate multiple processes to recover materials or energy and prov...
Wicked Waste: Helping Numeracy in the Primary Classroom
ERIC Educational Resources Information Center
Yoxon, Mark
2002-01-01
"Wicked Waste" is a powerful teaching resource and four tools in one: (1) It complements literacy and numeracy teaching for KS2/attainment levels D & E using 20 minute interactive teaching modules; (2) It manages time and, with its intelligent programming, complexity of questions; (3) It provides diagnostic information for the…
Preliminary post-emplacement safety analysis of the subseabed disposal of high-level nuclear waste
NASA Astrophysics Data System (ADS)
Kaplan, M. F.; Koplik, C. M.; Klett, R. D.
1984-09-01
The radiological hazard from the disposal of high-level nuclear waste within the deep ocean sediments is evaluated, on a preliminary basis, for locations in the central North Pacific and in the northwestern Atlantic. Radio-nuclide transport in the sediment and water column and by marine organisms is considered. Peak doses to an individual are approximately five orders of magnitude below background levels for both sites. Sensitivity analyses for most aspects of the post-emplacement systems models are included.
NASA Astrophysics Data System (ADS)
Stastnik, S.
2016-06-01
Development of materials for vertical outer building structures tends to application of hollow clay blocks filled with some appropriate insulation material. Ceramic fittings provide high thermal resistance, but the walls built from them suffer from condensation of air humidity in winter season frequently. The paper presents the computational simulation and experimental laboratory validation of moisture behaviour of such masonry with insulation prepared from waste fibres under the Central European climatic conditions.
Elements affecting food waste in the food service sector.
Heikkilä, Lotta; Reinikainen, Anu; Katajajuuri, Juha-Matti; Silvennoinen, Kirsi; Hartikainen, Hanna
2016-10-01
Avoidable food waste is produced in the food service sector, with significant ecological and economical impacts. In order to understand and explain better the complex issue of food waste a qualitative study was conducted on the reasons for its generation in restaurants and catering businesses. Research data were collected during three participatory workshops for personnel from three different catering sector companies in Finland. Based on synthesized qualitative content analysis, eight elements influencing production and reduction of food waste were identified. Results revealed the diversity of managing food waste in the food service sector and how a holistic approach is required to prevent and reduce it. It is crucial to understand that food waste is manageable and should be an integral component of the management system. The model of eight factors provides a framework for recognition and management of food waste in the food service sector. Copyright © 2016 Elsevier Ltd. All rights reserved.
Priya, Anshu; Hait, Subrata
2017-03-01
Waste electrical and electronic equipment (WEEE) or electronic waste (e-waste) is one of the fastest growing waste streams in the urban environment worldwide. The core component of printed circuit board (PCB) in e-waste contains a complex array of metals in rich quantity, some of which are toxic to the environment and all of which are valuable resources. Therefore, the recycling of e-waste is an important aspect not only from the point of waste treatment but also from the recovery of metals for economic growth. Conventional approaches for recovery of metals from e-waste, viz. pyrometallurgical and hydrometallurgical techniques, are rapid and efficient, but cause secondary pollution and economically unviable. Limitations of the conventional techniques have led to a shift towards biometallurgical technique involving microbiological leaching of metals from e-waste in eco-friendly manner. However, optimization of certain biotic and abiotic factors such as microbial species, pH, temperature, nutrients, and aeration rate affect the bioleaching process and can lead to profitable recovery of metals from e-waste. The present review provides a comprehensive assessment on the metallurgical techniques for recovery of metals from e-waste with special emphasis on bioleaching process and the associated factors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
RT Hallen; SA Bryan; FV Hoopes
A number of Hanford tanks received waste containing organic complexants, which increase the volubility of Sr-90 and transuranic (TRU) elements. Wastes from these tanks require additional pretreatment to remove Sr-90 and TRU for immobilization as low activity waste (Waste Envelope C). The baseline pretreatment process for Sr/TRU removal was isotopic exchange and precipitation with added strontium and iron. However, studies at both Battelle and Savannah River Technology Center (SRTC) have shown that the Sr/Fe precipitates were very difficult to filter. This was a result of the formation of poor filtering iron solids. An alternate treatment technology was needed for Sr/TRUmore » removal. Battelle had demonstrated that permanganate treatment was effective for decontaminating waste samples from Hanford Tank SY-101 and proposed that permanganate be examined as an alternative Sr/TRU removal scheme for complexant-containing tank wastes such as AW107. Battelle conducted preliminary small-scale experiments to determine the effectiveness of permanganate treatment with AN-107 waste samples that had been archived at Battelle from earlier studies. Three series of experiments were performed to evaluate conditions that provided adequate Sr/TRU decontamination using permanganate treatment. The final series included experiments with actual AN-107 diluted feed that had been obtained specifically for BNFL process testing. Conditions that provided adequate Sr/TRU decontamination were identified. A free hydroxide concentration of 0.5M provided adequate decontamination with added Sr of 0.05M and permanganate of 0.03M for archived AN-107. The best results were obtained when reagents were added in the sequence Sr followed by permanganate with the waste at ambient temperature. The reaction conditions for Sr/TRU removal will be further evaluated with a 1-L batch of archived AN-107, which will provide a large enough volume of waste to conduct crossflow filtration studies (Hallen et al. 2000a).« less
Subsurface waste disposal by means of wells - A selective annotated bibliography
Rima, Donald Robert; Chase, Edith B.; Myers, Beverly M.
1971-01-01
Subsurface waste disposal by means of wells is the practice of using drilled wells to inject unwanted substances into underground rock formations. The use of wells for this purpose is not a new idea. As long ago as the end of the last century, it was common practice to drill wells for the express purpose of draining swamps and small lakes to reclaim the land for agricultural purposes. A few decades later in the 1920's and 1930's many oil companies began using injection wells to dispose of oil-field brines and to repressurize oil reservoirs. During World War II, the Atomic Energy Commission began using injection wells to dispose of certain types of radioactive wastes. More recently, injection wells have been drilled to dispose of a variety of byproducts of industrial processes. The number of such wells has increased rapidly since Congress passed the Clean Streams Act of 1966, which restricted the discharge of waste into surface waters.Many scientists and public officials question the propriety of using the term "disposal" when referring to the underground injection of wastes. Their reasons are that underground injection is not, as many advocates claim, "a complete and final answer" to the waste-disposal problem. Rather, it is merely a process wherein the injected wastes are committed to the subsurface with uncertainty as to their ultimate fate or limits of confinement. In effect, the wastes, undiminished and unchanged, are removed from the custody of man and placed in the custody of nature.Although the concept of waste-injection wells is relatively simple, the effects of waste injection can be very complex, particularly when dealing with the exotic and complex components of some industrial wastes. Besides the physical forces of injection, there are many varied interactions between the injected wastes and the materials within the injection zone. Because these changes occur out of sight in the subsurface, they are difficult to assess and not generally understood. In addition, the various aspects of the problem involve a wide spectrum of science and engineering. Hence, articles published on the subject are widely dispersed in the technical and scientific literature.
Hanford Facility Dangerous Waste Permit Application for T Plant Complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
BARNES, B.M.
2002-09-01
The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating treatment, storage, and/or disposal units, such as the T Plant Complex (this document, DOE/RL-95-36). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the U.S. Environmental Protection Agencymore » (40 Code of Federal Regulations 270), with additional information needs defined by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the T Plant Complex permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents Section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the T Plant Complex permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text.« less
Radioactive Waste Management Complex performance assessment: Draft
DOE Office of Scientific and Technical Information (OSTI.GOV)
Case, M.J.; Maheras, S.J.; McKenzie-Carter, M.A.
1990-06-01
A radiological performance assessment of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory was conducted to demonstrate compliance with appropriate radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the general public. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the general public via air, ground water, and food chain pathways. Projections of doses were made for both offsite receptors and individuals intruding onto the site after closure. In addition, uncertainty analyses were performed. Resultsmore » of calculations made using nominal data indicate that the radiological doses will be below appropriate radiological criteria throughout operations and after closure of the facility. Recommendations were made for future performance assessment calculations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-01-01
Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites inmore » the complex. Changes to the FFCA site treatment plans as a result of proposals in the EM 2006 cleanup plans and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from October 1, 1997 through December 31, 1997, under the NGA project. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; and maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, DOE activities in the area of the Hazardous Waste Identification Rule, and DOE's proposed National Dialogue.« less
Wolff, Tanya; Iyer, Nirmala A; Rubin, Gerald M
2015-05-01
Insects exhibit an elaborate repertoire of behaviors in response to environmental stimuli. The central complex plays a key role in combining various modalities of sensory information with an insect's internal state and past experience to select appropriate responses. Progress has been made in understanding the broad spectrum of outputs from the central complex neuropils and circuits involved in numerous behaviors. Many resident neurons have also been identified. However, the specific roles of these intricate structures and the functional connections between them remain largely obscure. Significant gains rely on obtaining a comprehensive catalog of the neurons and associated GAL4 lines that arborize within these brain regions, and on mapping neuronal pathways connecting these structures. To this end, small populations of neurons in the Drosophila melanogaster central complex were stochastically labeled using the multicolor flip-out technique and a catalog was created of the neurons, their morphologies, trajectories, relative arrangements, and corresponding GAL4 lines. This report focuses on one structure of the central complex, the protocerebral bridge, and identifies just 17 morphologically distinct cell types that arborize in this structure. This work also provides new insights into the anatomical structure of the four components of the central complex and its accessory neuropils. Most strikingly, we found that the protocerebral bridge contains 18 glomeruli, not 16, as previously believed. Revised wiring diagrams that take into account this updated architectural design are presented. This updated map of the Drosophila central complex will facilitate a deeper behavioral and physiological dissection of this sophisticated set of structures. © 2014 Wiley Periodicals, Inc.
Prokaryotic complex of newly formed soils on nepheline-containing industrial waste
NASA Astrophysics Data System (ADS)
Evdokimova, G. A.; Kalmykova, V. V.
2010-06-01
The characteristics are given of the prokaryotic complex participating in the processes of the primary soil formation on nepheline-containing waste and depending on the time of the waste disposal and degree of reclamation. The total population density of the bacteria determined with the method of fluorescent microscopy in “pure” sand ranged within 0.34—0.60 billion CFU/g soil; in the reclaimed sand under different vegatation communities, from 2.6 to 7.2 billion CFU/g soil. Gram-positive bacteria dominate in the prokaryotic complex of the nepheline sands, whereas the Grarrmegative ones dominate in the zonal soils. The bacteria predominating in the nepheline sands were classified on the basis of the comparative analysis of the nucleotide sequences in the 16S rRNA genes within the Actinobacteria class (Arthrobacter boritolerans, A. ramosus, Rhodococcusfascians, Micrococcus luteus, and Streptomyces spp.). The evolution of the microbial community in the nepheline sands in the course of their reclamation and in the course of their overgrowing by plants proceeds in way toward the microbial communities of the zonal soils on moraine deposits.
De Michelis, Ida; Ferella, Francesco; Beolchini, Francesca; Olivieri, Agostino; Vegliò, Francesco
2009-03-15
The present work was focused on the acid leaching process for manganese extraction in reducing environment to low-grade manganiferous ore that comes from Central Italy. The aim of this study was to establish optimum leaching operating conditions to reduce treatment costs of waste or, even better, to allow a waste valorisation as raw materials for other applications. Consequently, the main focus of the work was the characterization and classification of the solid wastes coming from the process carried out at different operating conditions; at the same moment the effect of process parameters on Mn extraction was also analysed. The effect of particles size on the manganese extraction in reductive acid leaching process was investigated, by using lactose as reducing agent. Particle size did not show a large influence on the Mn extraction yields in the investigated process conditions. This aspect suggests the use of the leaching waste for civil and/or environmental application: use of leaching solid wastes like filling material is to be applied, for example, for environmental restoration. The classification of the solid wastes, according to the Italian Laws about Release Test (RT), has demonstrated that the solid waste produced by leaching can be classifiable as "hazardous special waste". An improvement of solid washing let to reduce the SO(4)(2-) and an appropriate treatment is necessary to reduce the dangerousness of these solids. Possible application of ore and waste as raw materials in the ceramic industry was demonstrated not to be feasible.
Performance of on-site Medical waste disinfection equipment in hospitals of Tabriz, Iran
Taghipour, Hassan; Alizadeh, Mina; Dehghanzadeh, Reza; Farshchian, Mohammad Reza; Ganbari, Mohammad; Shakerkhatibi, Mohammad
2016-01-01
Background: The number of studies available on the performance of on-site medical waste treatment facilities is rare, to date. The aim of this study was to evaluate the performance of onsite medical waste treatment equipment in hospitals of Tabriz, Iran. Methods: A various range of the on-site medical waste disinfection equipment (autoclave, chemical disinfection, hydroclave, and dry thermal treatment) was considered to select 10 out of 22 hospitals in Tabriz to be included in the survey. The apparatus were monitored mechanically, chemically, and biologically for a six months period in all of the selected hospitals. Results: The results of the chemical monitoring (Bowie-Dick tests) indicated that 38.9% of the inspected autoclaves had operational problems in pre-vacuum, air leaks, inadequate steam penetration into the waste, and/or vacuum pump. The biological indicators revealed that about 55.55% of the samples were positive. The most of applied devices were not suitable for treating anatomical, pharmaceutical, cytotoxic, and chemical waste. Conclusion: Although on-site medical waste treating facilities have been installed in all the hospitals, the most of infectious-hazardous medical waste generated in the hospitals were deposited into a municipal solid waste landfill, without enough disinfection. The responsible authorities should stringently inspect and evaluate the operation of on-site medical waste treating equipment. An advanced off-site central facility with multi-treatment and disinfection equipment and enough capacity is recommended as an alternative. PMID:27766238
Performance of on-site Medical waste disinfection equipment in hospitals of Tabriz, Iran.
Taghipour, Hassan; Alizadeh, Mina; Dehghanzadeh, Reza; Farshchian, Mohammad Reza; Ganbari, Mohammad; Shakerkhatibi, Mohammad
2016-01-01
Background: The number of studies available on the performance of on-site medical waste treatment facilities is rare, to date. The aim of this study was to evaluate the performance of onsite medical waste treatment equipment in hospitals of Tabriz, Iran. Methods: A various range of the on-site medical waste disinfection equipment (autoclave, chemical disinfection, hydroclave, and dry thermal treatment) was considered to select 10 out of 22 hospitals in Tabriz to be included in the survey. The apparatus were monitored mechanically, chemically, and biologically for a six months period in all of the selected hospitals. Results: The results of the chemical monitoring (Bowie-Dick tests) indicated that 38.9% of the inspected autoclaves had operational problems in pre-vacuum, air leaks, inadequate steam penetration into the waste, and/or vacuum pump. The biological indicators revealed that about 55.55% of the samples were positive. The most of applied devices were not suitable for treating anatomical, pharmaceutical, cytotoxic, and chemical waste. Conclusion: Although on-site medical waste treating facilities have been installed in all the hospitals, the most of infectious-hazardous medical waste generated in the hospitals were deposited into a municipal solid waste landfill, without enough disinfection. The responsible authorities should stringently inspect and evaluate the operation of on-site medical waste treating equipment. An advanced off-site central facility with multi-treatment and disinfection equipment and enough capacity is recommended as an alternative.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory, Louis
2014-12-02
This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to and from the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. There was one shipment of two drums sent for offsite treatment and disposal. This report summarizes the 4th quarter of Fiscal Year (FY) 2014 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. This report also includes annualmore » summaries for FY 2014.« less
Incineration and pyrolysis vs. steam gasification of electronic waste.
Gurgul, Agnieszka; Szczepaniak, Włodzimierz; Zabłocka-Malicka, Monika
2018-05-15
Constructional complexity of items and their integration are the most distinctive features of electronic wastes. These wastes consist of mineral and polymeric materials and have high content of valuable metals that could be recovered. Elimination of polymeric components (especially epoxy resins) while leaving non-volatile mineral and metallic phases is the purpose of thermal treatment of electronic wastes. In the case of gasification, gaseous product of the process may be, after cleaning, used for energy recovery or chemical synthesis. If not melted, metals from solid products of thermal treatment of electronic waste could be recovered by hydrometallurgical processing. Three basic, high temperature ways of electronic waste processing, i.e. smelting/incineration, pyrolysis and steam gasification were shortly discussed in the paper, giving a special attention to gasification under steam, illustrated by laboratory experiments. Copyright © 2017 Elsevier B.V. All rights reserved.
Composite analysis E-area vaults and saltstone disposal facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, J.R.
1997-09-01
This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potentialmore » sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public.« less
Implementation of SAP Waste Management System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frost, M.L.; LaBorde, C.M.; Nichols, C.D.
2008-07-01
The Y-12 National Security Complex (Y-12) assumed responsibility for newly generated waste on October 1, 2005. To ensure effective management and accountability of newly generated waste, Y-12 has opted to utilize SAP, Y-12's Enterprise Resource Planning (ERP) tool, to track low-level radioactive waste (LLW), mixed waste (MW), hazardous waste, and non-regulated waste from generation through acceptance and disposal. SAP Waste will include the functionality of the current waste tracking system and integrate with the applicable modules of SAP already in use. The functionality of two legacy systems, the Generator Entry System (GES) and the Waste Information Tracking System (WITS), andmore » peripheral spreadsheets, databases, and e-mail/fax communications will be replaced by SAP Waste. Fundamentally, SAP Waste will promote waste acceptance for certification and disposal, not storage. SAP Waste will provide a one-time data entry location where waste generators can enter waste container information, track the status of their waste, and maintain documentation. A benefit of the new system is that it will provide a single data repository where Y-12's Waste Management organization can establish waste profiles, verify and validate data, maintain inventory control utilizing hand-held data transfer devices, schedule and ship waste, manage project accounting, and report on waste handling activities. This single data repository will facilitate the production of detailed waste generation reports for use in forecasting and budgeting, provide the data for required regulatory reports, and generate metrics to evaluate the performance of the Waste Management organization and its subcontractors. SAP Waste will replace the outdated and expensive legacy system, establish tools the site needs to manage newly generated waste, and optimize the use of the site's ERP tool for integration with related business processes while promoting disposition of waste. (authors)« less
Method for processing aqueous wastes
Pickett, J.B.; Martin, H.L.; Langton, C.A.; Harley, W.W.
1993-12-28
A method is presented for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply. 4 figures.
E-waste issues in Sri Lanka and the Basel Convention.
Suraweera, Inoka
2016-03-01
E-waste is hazardous, complex and expensive to treat in an environmentally sound manner. The management of e-waste is considered a serious challenge in both developed and developing countries and Sri Lanka is no exception. Due to significant growth in the economy and investments and other reasons the consumption of electronic and electrical equipment in Sri Lanka has increased over the years resulting in significant generation of e-waste. Several initiatives such as introduction of hazardous waste management rules, ratification of the Basel Convention in 1992 and the introduction of a National Corporate E-waste Management Program have been undertaken in Sri Lanka to manage e-waste. Strengthening policy and legislation, introducing methods for upstream reduction of e-waste, building capacity of relevant officers, awareness raising among school children and the general public and development of an e-waste information system are vital. Research on e-waste needs to be developed in Sri Lanka. The health sector could play a leading role in the provision of occupational health and safety for e-waste workers, advocacy, capacity building of relevant staff and raising awareness among the general public about e-waste. Improper e-waste management practices carried out by informal sector workers need to be addressed urgently in Sri Lanka.
Human land use influences chronic wasting disease prevalence in mule deer
Farnsworth, Matthew L.; Wolfe, L.L.; Hobbs, N.T.; Burnham, K.P.; Williams, E.S.; Theobald, D.M.; Conner, M.M.; Miller, M.W.
2005-01-01
Human alteration of landscapes can affect the distribution, abundance, and behavior of wildlife. We explored the effects of human land use on the prevalence of chronic wasting disease (CWD) in mule deer (Odocoileus hemionus) populations residing in north-central Colorado. We chose best approximating models estimating CWD prevalence in relation to differences in human land use, sex, and geographic location. Prevalence was higher in developed areas and among male deer, suggesting anthropogenic influences on the occurrence of disease. We also found a relatively high degree of variation in prevalence across the three study sites, suggesting that spatial patterns in disease may be influenced by other factors operating at a broader, landscape scale. Our results suggest that multiple factors, including changes in land use, differences in exposure risk between sexes, and landscape-scaled heterogeneity, are associated with CWD prevalence in north-central Colorado.
The Glymphatic System in Central Nervous System Health and Disease: Past, Present, and Future.
Plog, Benjamin A; Nedergaard, Maiken
2018-01-24
The central nervous system (CNS) is unique in being the only organ system lacking lymphatic vessels to assist in the removal of interstitial metabolic waste products. Recent work has led to the discovery of the glymphatic system, a glial-dependent perivascular network that subserves a pseudolymphatic function in the brain. Within the glymphatic pathway, cerebrospinal fluid (CSF) enters the brain via periarterial spaces, passes into the interstitium via perivascular astrocytic aquaporin-4, and then drives the perivenous drainage of interstitial fluid (ISF) and its solute. Here, we review the role of the glymphatic pathway in CNS physiology, the factors known to regulate glymphatic flow, and the pathologic processes in which a breakdown of glymphatic CSF-ISF exchange has been implicated in disease initiation and progression. Important areas of future research, including manipulation of glymphatic activity aiming to improve waste clearance and therapeutic agent delivery, are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, W.
1998-12-01
EPA has proposed effluent limitations guidelines and standards for the centralized waste treatment (CWT) industry. This report investigates the cost-effectiveness of all possible combinations of proposed control options for the three subcategories of CWT operations. EPA considered three control options for metals, two for oils and two for organics, with 12 possible combinations of these options. The report measures cost-effectiveness through a comparison of compliance costs to the quantity of pollutants removed under each combination of control options. The effectiveness of the regulations is measured in terms of reductions in the pounds of pollutants discharged to surface waters, weighted tomore » account for the pollutants` toxicity. Some pollutants removed are specifically addressed by the regulation, while others and not directly regulated but are removed incidentally as a result of controlling for other pollutants.« less
Cementitious Barriers Partnership - FY2015 End-Year Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, H. H.; Flach, G. P.; Langton, C. A.
2015-09-17
The DOE-EM Office of Tank Waste Management Cementitious Barriers Partnership (CBP) is chartered with providing the technical basis for implementing cement-based waste forms and radioactive waste containment structures for long-term disposal. Therefore, the CBP ultimate purpose is to support progress in final treatment and disposal of legacy waste and closure of High-Level Waste (HLW) tanks in the DOE complex. This status report highlights the CBP 2015 Software and Experimental Program efforts and accomplishments that support DOE needs in environmental cleanup and waste disposal. DOE needs in this area include: Long-term performance predictions to provide credibility (i.e., a defensible technical basis)more » for regulator and DOE review and approvals, Facility flow sheet development/enhancements, and Conceptual designs for new disposal facilities. In 2015, the CBP developed a beta release of the CBP Software Toolbox – “Version 3.0”, which includes new STADIUM carbonation and damage models, a new SRNL module for estimating hydraulic properties and flow in fractured and intact cementitious materials, and a new LeachXS/ORCHESTRA (LXO) oxidation module. In addition, the STADIUM sulfate attack and chloride models have been improved as well as the LXO modules for sulfate attack, carbonation, constituent leaching, and percolation with radial diffusion (for leaching and transport in cracked cementitious materials). These STADIUM and LXO models are applicable to and can be used by both DOE and the Nuclear Regulatory Commission (NRC) end-users for service life prediction and long-term leaching evaluations of radioactive waste containment structures across the DOE complex.« less
Sun, Wei; Huang, Guo H; Lv, Ying; Li, Gongchen
2012-06-01
To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerance intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP's advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3 indicate that their solutions would be significantly different. The decreased system uncertainties in IPFP's solutions demonstrate its effectiveness for providing more satisfactory interval solutions than IPFP3. Following its first application to waste management, the IPFP can be potentially applied to other environmental problems under multiple complexities. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ligand-induced rapid skeletal muscle atrophy in HSA-Fv2E-PERK transgenic mice.
Miyake, Masato; Kuroda, Masashi; Kiyonari, Hiroshi; Takehana, Kenji; Hisanaga, Satoshi; Morimoto, Masatoshi; Zhang, Jun; Oyadomari, Miho; Sakaue, Hiroshi; Oyadomari, Seiichi
2017-01-01
Formation of 43S and 48S preinitiation complexes plays an important role in muscle protein synthesis. There is no muscle-wasting mouse model caused by a repressed 43S preinitiation complex assembly. The aim of the present study was to develop a convenient mouse model of skeletal muscle wasting with repressed 43S preinitiation complex assembly. A ligand-activatable PERK derivative Fv2E-PERK causes the phosphorylation of eukaryotic initiation factor 2α (eIF2α), which inhibits 43S preinitiation complex assembly. Thus, muscle atrophic phenotypes, intracellular signaling pathways, and intracellular free amino acid profiles were investigated in human skeletal muscle α-actin (HSA) promoter-driven Fv2E-PERK transgenic (Tg) mice. HSA-Fv2E-PERK Tg mice treated with the artificial dimerizer AP20187 phosphorylates eIF2α in skeletal muscles and leads to severe muscle atrophy within a few days of ligand injection. Muscle atrophy was accompanied by a counter regulatory activation of mTORC1 signaling. Moreover, intracellular free amino acid levels were distinctively altered in the skeletal muscles of HSA-Fv2E-PERK Tg mice. As a novel model of muscle wasting, HSA-Fv2E-PERK Tg mice provide a convenient tool for studying the pathogenesis of muscle loss and for assessing putative therapeutics.
USDA-ARS?s Scientific Manuscript database
Chronic wasting disease (CWD) is the transmissible spongiform encephalopathy or TSE of deer and elk, occurring primarily in North America. The TSEs are fatal neurodegenerative disorders associated with conversion of a normal cell protein to a pathogenic and potentially infectious agent by post trans...
9. DETAIL VIEW OF BRIDGE CRANE ON WEST SIDE OF ...
9. DETAIL VIEW OF BRIDGE CRANE ON WEST SIDE OF BUILDING. CAMERA FACING NORTHEAST. CONTAMINATED AIR FILTERS LOADED IN TRANSPORT CASKS WERE TRANSFERRED TO VEHICLES AND SENT TO RADIOACTIVE WASTE MANAGEMENT COMPLEX FOR STORAGE. INEEL PROOF NUMBER HD-17-1. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
Hepa filter dissolution process
Brewer, Ken N.; Murphy, James A.
1994-01-01
A process for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Mercaptan/Ethanol + Hydrogen sulfide Methanol/H.P. Synthesis from natural gas via synthetic gas Oxo Alcohols... + Ammonia n-Propyl alcohol/Hydrogenation of propionaldehyde, Oxo process SAN resin/Suspension polymerization... methanol Acetaldehyde/Oxidation of ethylene with cupric chloride catalyst Acetic acid/Catalytic oxidation...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peek, Dennis W.
The approach was to perform a document search, supplemented by a visual site inspection, to identify potential environmental contamination associated with the property. Factors evaluated included hazardous substances; petroleum products and derivatives; environmental restoration sites; areas of concern; storage tanks; oil/water separators; grease traps; wash racks; waste tanks; pesticides; military munitions/ordnance; medical or bio-hazardous waste; radioactive waste; solid/municipal waste; indoor air quality; groundwater; wastewater treatment, collection, and disposal/discharge; drinking water quality; utilities; asbestos; polychlorinated biphenyls (PCBs); radon; lead-based paint; cultural resources; floodplains; and natural/biological resources.
Hu, Howard; Shine, James; Wright, Robert O
2007-02-01
In the United States, many of the millions of tons of hazardous wastes that have been produced since World War II have accumulated in sites throughout the nation. Citizen concern about the extent of this problem led Congress to establish the Superfund Program in 1980 to locate, investigate, and clean up the worst sites nationwide. Most such waste exists as a complex mixture of many substances. This article discusses the issue of toxic mixtures and children's health by focusing on the specific example of mining waste at the Tar Creek Superfund Site in Northeast Oklahoma.
Yamamoto, Shuji; Suzuki, Kei; Araki, Yoko; Mochihara, Hiroki; Hosokawa, Tetsuya; Kubota, Hiroko; Chiba, Yusuke; Rubaba, Owen; Tashiro, Yosuke; Futamata, Hiroyuki
2014-01-01
The relationship between the bacterial communities in anolyte and anode biofilms and the electrochemical properties of microbial fuel cells (MFCs) was investigated when a complex organic waste-decomposing solution was continuously supplied to MFCs as an electron donor. The current density increased gradually and was maintained at approximately 100 to 150 mA m−2. Polarization curve analyses revealed that the maximum power density was 7.4 W m−3 with an internal resistance of 110 Ω. Bacterial community structures in the organic waste-decomposing solution and MFCs differed from each other. Clonal analyses targeting 16S rRNA genes indicated that bacterial communities in the biofilms on MFCs developed to specific communities dominated by novel Geobacter. Multidimensional scaling analyses based on DGGE profiles revealed that bacterial communities in the organic waste-decomposing solution fluctuated and had no dynamic equilibrium. Bacterial communities on the anolyte in MFCs had a dynamic equilibrium with fluctuations, while those of the biofilm converged to the Geobacter-dominated structure. These bacterial community dynamics of MFCs differed from those of control-MFCs under open circuit conditions. These results suggested that bacterial communities in the anolyte and biofilm have a gentle symbiotic system through electron flow, which resulted in the advance of current density from complex organic waste. PMID:24789988
Yamamoto, Shuji; Suzuki, Kei; Araki, Yoko; Mochihara, Hiroki; Hosokawa, Tetsuya; Kubota, Hiroko; Chiba, Yusuke; Rubaba, Owen; Tashiro, Yosuke; Futamata, Hiroyuki
2014-01-01
The relationship between the bacterial communities in anolyte and anode biofilms and the electrochemical properties of microbial fuel cells (MFCs) was investigated when a complex organic waste-decomposing solution was continuously supplied to MFCs as an electron donor. The current density increased gradually and was maintained at approximately 100 to 150 mA m(-2). Polarization curve analyses revealed that the maximum power density was 7.4 W m(-3) with an internal resistance of 110 Ω. Bacterial community structures in the organic waste-decomposing solution and MFCs differed from each other. Clonal analyses targeting 16S rRNA genes indicated that bacterial communities in the biofilms on MFCs developed to specific communities dominated by novel Geobacter. Multidimensional scaling analyses based on DGGE profiles revealed that bacterial communities in the organic waste-decomposing solution fluctuated and had no dynamic equilibrium. Bacterial communities on the anolyte in MFCs had a dynamic equilibrium with fluctuations, while those of the biofilm converged to the Geobacter-dominated structure. These bacterial community dynamics of MFCs differed from those of control-MFCs under open circuit conditions. These results suggested that bacterial communities in the anolyte and biofilm have a gentle symbiotic system through electron flow, which resulted in the advance of current density from complex organic waste.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, John Russell
The Al Tuwaitha nuclear complex near Baghdad contains a number of facilities from Saddam Hussan's nuclear weapons program. Past military operations, lack of upkeep and looting have created an enormous radioactive waste problem at the Al Tuwaitha complex, which contains various, uncharacterized radioactive wastes, yellow cake, sealed radioactive sources, and contaminated metals that must be constantly guarded. Iraq has never had a radioactive waste disposal facility and the lack of a disposal facility means that ever increasing quantities of radioactive material must be held in guarded storage. The Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) has beenmore » initiated by the U.S. Department of State (DOS) to assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials, while building human capacities so that the GOI can manage other environmental cleanups in their country. The DOS is funding the IAEA to provide technical assistance via Technical Cooperation projects. Program coordination will be provided by the DOS, consistent with GOI policies, and Sandia National Laboratories will be responsible for coordination of participants and waste management support. Texas Tech University will continue to provide in-country assistance, including radioactive waste characterization and the stand-up of the Iraq Nuclear Services Company. The GOI owns the problems in Iraq and will be responsible for implementation of the NDs Program.« less
Effect on Ca(OH)2 pretreatment to enhance biogas production of organic food waste
NASA Astrophysics Data System (ADS)
Junoh, H.; Yip, CH; Kumaran, P.
2016-03-01
This study investigated the effect of calcium hydroxide, Ca(OH)2 pretreatment in optimizing COD solubilisation and methane production through anaerobic digestion process. Two different parameters, chemical concentration (40-190 mEq/L) and pretreatment time (1-6 hours) were used to pretreat food waste. A central composite design and response surface methodology (RSM) was applied in obtaining the optimized condition for COD solubilisation. Result showed COD solubilisation was optimized at 166.98 mEq/L (equivalent to 6.1 g Ca(OH)2/L) for 1 hour. These conditions were applied through biomethane potential test with methane production of 864.19 mL/g VSdestructed and an increase of 20.0% as compared to untreated food waste.
Effect of rich-club on diffusion in complex networks
NASA Astrophysics Data System (ADS)
Berahmand, Kamal; Samadi, Negin; Sheikholeslami, Seyed Mahmood
2018-05-01
One of the main issues in complex networks is the phenomenon of diffusion in which the goal is to find the nodes with the highest diffusing power. In diffusion, there is always a conflict between accuracy and efficiency time complexity; therefore, most of the recent studies have focused on finding new centralities to solve this problem and have offered new ones, but our approach is different. Using one of the complex networks’ features, namely the “rich-club”, its effect on diffusion in complex networks has been analyzed and it is demonstrated that in datasets which have a high rich-club, it is better to use the degree centrality for finding influential nodes because it has a linear time complexity and uses the local information; however, this rule does not apply to datasets which have a low rich-club. Next, real and artificial datasets with the high rich-club have been used in which degree centrality has been compared to famous centrality using the SIR standard.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tharp, Tim; Donnelly, Jim
2012-07-01
The Y-12 National Security Complex (Y-12) is concluding a multi-year program to characterize and dispose of all legacy low-level waste (LLW). The inventory of legacy waste at Y-12 has been reduced from over 3500 containers in Fiscal Year (FY) 2000 to 6 containers at the end of FY2011. In addition, the site recently eliminated the inventory of other low-level waste that is greater than 365 days old (i.e., >365-Day LLW), to be in full compliance with DOE Order 435.1. A consistent technical characterization approach emerged for both of these populations of backlogged waste: (1) compile existing historical data and processmore » knowledge and conduct interviews with site personnel; (2) inspect the containers and any tags, labels, or other markings to confirm or glean additional data; (3) with appropriate monitoring, open the container, visually inspect and photograph the contents while obtaining preliminary radiological surveys; (4) obtain gross weight and field non-destructive assay (NDA) data as needed; (5) use the non-public Oak Ridge Reservation Haul Road to ship the container to a local offsite vendor for waste sorting and segregation; (6) sort, drain, sample, and remove prohibited items; and (7) compile final data and prepare for shipment to disposal. After disposing of this backlog, the focus has now turned to avoiding the recurrence of this situation by maintaining low inventories of low-level waste and shortening the duration between waste generation and disposal. An enhanced waste tracking system and monthly metric charts are used to monitor and report progress to contractor and federal site office management. During the past 2 years, the average age of LLW onsite at Y-12 has decreased from more than 180 days to less than 60 days. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garnett, Kenisha, E-mail: k.garnett@cranfield.ac.uk; Cooper, Tim, E-mail: t.h.cooper@ntu.ac.uk
2014-12-15
Highlights: • A review of public engagement in waste management decision-making is undertaken. • Enhanced public engagement is explored as a means to legitimise waste decisions. • Analytical–deliberative processes are explored as a tool for effective dialogue. • Considerations for integrating public values with technical analysis are outlined. • Insights into the design of appropriate public engagement processes are provided. - Abstract: The complexity of municipal waste management decision-making has increased in recent years, accompanied by growing scrutiny from stakeholders, including local communities. This complexity reflects a socio-technical framing of the risks and social impacts associated with selecting technologies andmore » sites for waste treatment and disposal facilities. Consequently there is growing pressure on local authorities for stakeholders (including communities) to be given an early opportunity to shape local waste policy in order to encourage swift planning, development and acceptance of the technologies needed to meet statutory targets to divert waste from landfill. This paper presents findings from a research project that explored the use of analytical–deliberative processes as a legitimising tool for waste management decision-making. Adopting a mixed methods approach, the study revealed that communicating the practical benefits of more inclusive forms of engagement is proving difficult even though planning and policy delays are hindering development and implementation of waste management infrastructure. Adopting analytical–deliberative processes at a more strategic level will require local authorities and practitioners to demonstrate how expert-citizen deliberations may foster progress in resolving controversial issues, through change in individuals, communities and institutions. The findings suggest that a significant shift in culture will be necessary for local authorities to realise the potential of more inclusive decision processes. This calls for political actors and civic society to collaborate in institutionalising public involvement in both strategic and local planning structures.« less
Economic and environmental optimization of a multi-site utility network for an industrial complex.
Kim, Sang Hun; Yoon, Sung-Geun; Chae, Song Hwa; Park, Sunwon
2010-01-01
Most chemical companies consume a lot of steam, water and electrical resources in the production process. Given recent record fuel costs, utility networks must be optimized to reduce the overall cost of production. Environmental concerns must also be considered when preparing modifications to satisfy the requirements for industrial utilities, since wastes discharged from the utility networks are restricted by environmental regulations. Construction of Eco-Industrial Parks (EIPs) has drawn attention as a promising approach for retrofitting existing industrial parks to improve energy efficiency. The optimization of the utility network within an industrial complex is one of the most important undertakings to minimize energy consumption and waste loads in the EIP. In this work, a systematic approach to optimize the utility network of an industrial complex is presented. An important issue in the optimization of a utility network is the desire of the companies to achieve high profits while complying with the environmental regulations. Therefore, the proposed optimization was performed with consideration of both economic and environmental factors. The proposed approach consists of unit modeling using thermodynamic principles, mass and energy balances, development of a multi-period Mixed Integer Linear Programming (MILP) model for the integration of utility systems in an industrial complex, and an economic/environmental analysis of the results. This approach is applied to the Yeosu Industrial Complex, considering seasonal utility demands. The results show that both the total utility cost and waste load are reduced by optimizing the utility network of an industrial complex. 2009 Elsevier Ltd. All rights reserved.
Eriksson, Ola; Bisaillon, Mattias; Haraldsson, Mårten; Sundberg, Johan
2016-06-15
Management of municipal solid waste is an efficient method to increase resource efficiency, as well as to replace fossil fuels with renewable energy sources due to that (1) waste to a large extent is renewable as it consists of food waste, paper, wood etc. and (2) when energy and materials are recovered from waste treatment, fossil fuels can be substituted. In this paper results from a comprehensive system study of future biological treatment of readily degradable waste in two Swedish regions are presented. Different collection and separation systems for food waste in households have been applied as well as technical improvements of the biogas process as to reduce environmental impact. The results show that central sorting of a mixed fraction into recyclables, combustibles, biowaste and inert is a competitive option compared to source separation. Use of pellets is beneficial compared to direct spreading as fertiliser. Fuel pellets seem to be the most favourable option, which to a large extent depends on the circumstances in the energy system. Separation and utilisation of nitrogen in the wet part of the digestion residue is made possible with a number of technologies which decreases environmental impact drastically, however to a substantial cost in some cases. Copyright © 2016 Elsevier Ltd. All rights reserved.
Environmental analysis Waste Isolation Pilot Plant (WIPP) cost reduction proposals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Waste Isolation Pilot Plant (WIPP) is a research and development facility to demonstrate the safe disposal of radioactive wastes resulting from the defense activities and programs of the United States government. The facility is planned to be developed in bedded salt at the Los Medanos site in southeastern New Mexico. The environmental consequences of contruction and operation of the WIPP facility are documented in ''Final Environmental Impact Statement, Waste Isolation Pilot Plant''. The proposed action addressed by this environmental analysis is to simplify and reduce the scope of the WIPP facility as it is currently designed. The proposed changesmore » to the existing WIPP design are: limit the waste storage rate to 500,000 cubic feet per year; eliminate one shaft and revise the underground ventilation system; eliminate the underground conveyor system; combine the Administration Building, the Underground Personnel Building and the Waste Handling Building office area; simplify the central monitoring system; simplify the security control systems; modify the Waste Handling Building; simplify the storage exhaust system; modify the above ground salt handling logistics; simplify the power system; reduce overall site features; simplify the Warehouse/Shops Building and eliminate the Vehicle Maintenance Building; and allow resource recovery in Control Zone IV.« less
E-waste: a problem or an opportunity? Review of issues, challenges and solutions in Asian countries.
Herat, Sunil; Agamuthu, P
2012-11-01
Safe management of electronic and electrical waste (e-waste/WEEE) is becoming a major problem for many countries around the world. In particular, developing countries face a number of issues with the generation, transboundary movement and management of e-waste. It is estimated that the world generates around 20-50 million tonnes of e-waste annually, most of it from Asian countries. Improper handling of e-waste can cause harm to the environment and human health because of its toxic components. Several countries around the world are now struggling to deal with this emerging threat. Although the current emphasis is on end-of-life management of e-waste activities, such as reuse, servicing, remanufacturing, recycling and disposal, upstream reduction of e-waste generation through green design and cleaner production is gaining much attention. Environmentally sound management (ESM) of e-waste in developing countries is absent or very limited. Transboundary movement of e-waste is a major issue throughout the region. Dealing with the informal recycling sector is a complex social and environmental issue. There are significant numbers of such challenges faced by these countries in achieving ESM of e-waste. This article aims to present a review of challenges and issues faced by Asian countries in managing their e-waste in a sustainable way.
Utilization of Information Technology for Non Domestic Waste Management in Semarang City
NASA Astrophysics Data System (ADS)
Ali, Muhammad; Hadi, Sudharto P.; Soemantri, Maman
2018-02-01
Garbage problem is often very complex in urban areas. The handling pattern of collecting, transporting and disposing that has been applied up to this day has not yet produced an appropriate solution. This is evident from the data of statistic centre institution in 2015 that 76.31% of the existing waste in the community has not been sorted, while 10.28% sorted to be used and 13.41% sorted to be discarded, showing the community amount of unsorted garbage large enough to necessitate managerial efforts at the waste sources. In designing a systematic and structured waste management system, the generations, compositions, and characteristics of the waste are indispensable. Therefore, a research is conducted on these three dimensions to the non-domestic waste in Semarang City, which involves commercial waste (from the markets, restaurants, and hotels), institutional waste (from the offices and schools). From the research result the average of 0,24kgs/person/day in weight unit of the City's non-domestical waste generation is derived. The waste composition is dominated by organic waste of around 61.95%, while the rest percentage is inorganic. The management policy is directed with the application of Management Information System model based on Information Technology because of the system's abilities to effectuate the waste management.
Wolff, Tanya; Iyer, Nirmala A; Rubin, Gerald M
2015-01-01
Insects exhibit an elaborate repertoire of behaviors in response to environmental stimuli. The central complex plays a key role in combining various modalities of sensory information with an insect's internal state and past experience to select appropriate responses. Progress has been made in understanding the broad spectrum of outputs from the central complex neuropils and circuits involved in numerous behaviors. Many resident neurons have also been identified. However, the specific roles of these intricate structures and the functional connections between them remain largely obscure. Significant gains rely on obtaining a comprehensive catalog of the neurons and associated GAL4 lines that arborize within these brain regions, and on mapping neuronal pathways connecting these structures. To this end, small populations of neurons in the Drosophila melanogaster central complex were stochastically labeled using the multicolor flip-out technique and a catalog was created of the neurons, their morphologies, trajectories, relative arrangements, and corresponding GAL4 lines. This report focuses on one structure of the central complex, the protocerebral bridge, and identifies just 17 morphologically distinct cell types that arborize in this structure. This work also provides new insights into the anatomical structure of the four components of the central complex and its accessory neuropils. Most strikingly, we found that the protocerebral bridge contains 18 glomeruli, not 16, as previously believed. Revised wiring diagrams that take into account this updated architectural design are presented. This updated map of the Drosophila central complex will facilitate a deeper behavioral and physiological dissection of this sophisticated set of structures. J. Comp. Neurol. 523:997–1037, 2015. © 2014 Wiley Periodicals, Inc. PMID:25380328
Hospital waste management in El-Beheira Governorate, Egypt.
Abd El-Salam, Magda Magdy
2010-01-01
This study investigated the hospital waste management practices used by eight randomly selected hospitals located in Damanhour City of El-Beheira Governorate and determined the total daily generation rate of their wastes. Physico-chemical characteristics of hospital wastes were determined according to standard methods. A survey was conducted using a questionnaire to collect information about the practices related to waste segregation, collection procedures, the type of temporary storage containers, on-site transport and central storage area, treatment of wastes, off-site transport, and final disposal options. This study indicated that the quantity of medical waste generated by these hospitals was 1.249tons/day. Almost two-thirds was waste similar to domestic waste. The remainder (38.9%) was considered to be hazardous waste. The survey results showed that segregation of all wastes was not conducted according to consistent rules and standards where some quantity of medical waste was disposed of with domestic wastes. The most frequently used treatment method for solid medical waste was incineration which is not accepted at the current time due to the risks associated with it. Only one of the hospitals was equipped with an incinerator which is devoid of any air pollution control system. Autoclaving was also used in only one of the selected hospitals. As for the liquid medical waste, the survey results indicated that nearly all of the surveyed hospitals were discharging it in the municipal sewerage system without any treatment. It was concluded that the inadequacies in the current hospital waste management practices in Damanhour City were mainly related to ineffective segregation at the source, inappropriate collection methods, unsafe storage of waste, insufficient financial and human resources for proper management, and poor control of waste disposal. The other issues that need to be considered are a lack of appropriate protective equipment and lack of training and clear lines of responsibilities between the departments involved in hospital waste management. Effective medical waste management programs are multisectoral and require cooperation between all levels of implementation, from national and local governments to hospital staff and private businesses. 2009 Elsevier Ltd. All rights reserved.
Zaitsev, Boris N.; Esimantovskiy, Vyacheslav M.; Lazarev, Leonard N.; Dzekun, Evgeniy G.; Romanovskiy, Valeriy N.; Todd, Terry A.; Brewer, Ken N.; Herbst, Ronald S.; Law, Jack D.
2001-01-01
Cesium and strontium are extracted from aqueous acidic radioactive waste containing rare earth elements, technetium and actinides, by contacting the waste with a composition of a complex organoboron compound and polyethylene glycol in an organofluorine diluent mixture. In a preferred embodiment the complex organoboron compound is chlorinated cobalt dicarbollide, the polyethylene glycol has the formula RC.sub.6 H.sub.4 (OCH.sub.2 CH.sub.2).sub.n OH, and the organofluorine diluent is a mixture of bis-tetrafluoropropyl ether of diethylene glycol with at least one of bis-tetrafluoropropyl ether of ethylene glycol and bis-tetrafluoropropyl formal. The rare earths, technetium and the actinides (especially uranium, plutonium and americium), are extracted from the aqueous phase using a phosphine oxide in a hydrocarbon diluent, and reextracted from the resulting organic phase into an aqueous phase by using a suitable strip reagent.
Cuetos, M J; Gómez, X; Otero, M; Morán, A
2010-10-01
Mesophilic anaerobic digestion (34+/-1 degrees C) of pre-treated (for 20 min at 133 degrees C, >3 bar) slaughterhouse waste and its co-digestion with the organic fraction of municipal solid waste (OFMSW) have been assessed. Semi-continuously-fed digesters worked with a hydraulic retention time (HRT) of 36 d and organic loading rates (OLR) of 1.2 and 2.6 kg VS(feed)/m(3)d for digestion and co-digestion, respectively, with a previous acclimatization period in all cases. It was not possible to carry out an efficient treatment of hygienized waste, even less so when OFMSW was added as co-substrate. These digesters presented volatile fatty acids (VFA), long chain fatty acids (LCFA) and fats accumulation, leading to instability and inhibition of the degradation process. The aim of applying a heat and pressure pre-treatment to promote splitting of complex lipids and nitrogen-rich waste into simpler and more biodegradable constituents and to enhance biogas production was not successful. These results indicate that the temperature and the high pressure of the pre-treatment applied favoured the formation of compounds that are refractory to anaerobic digestion. The pre-treated slaughterhouse wastes and the final products of these systems were analyzed by FTIR and TGA. These tools verified the existence of complex nitrogen-containing polymers in the final effluents, confirming the formation of refractory compounds during pre-treatment. (c) 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salgado, M.M.; Benitez, J.C.; Pernas, R.
2007-07-01
The Center for Radiation Protection and Hygiene (CPHR) is the institution responsible for the management of radioactive wastes generated from nuclear applications in medicine, industry and research in Cuba. Radioactive Waste Management Service is provided at a national level and it includes the collection and transportation of radioactive wastes to the Centralized Waste Management Facilities, where they are characterized, segregated, treated, conditioned and stored. A Quality Management System, according to the ISO 9001 Standard has been implemented for the RWM Service at CPHR. The Management System includes the radiation safety requirements established for RWM in national regulations and in themore » Licence's conditions. The role of the Regulatory Body and the Radiation Protection Officer in the Quality Management System, the authorization of practices, training and personal qualification, record keeping, inspections of the Regulatory Body and internal inspection of the Radiation Protection Officer, among other aspects, are described in this paper. The Quality Management System has shown to be an efficient tool to demonstrate that adequate measures are in place to ensure the safety in radioactive waste management activities and their continual improvement. (authors)« less
Centralized treatment of industrial wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saltzberg, E.R.
1982-08-01
A low-cost and effective alternative to on-site treatment of industrial wastes which can be used by firms in many areas of the country is described. Under the CWT approach, firms send their wastes to a common processing plant. In the right situations and with the proper kind of inexpensive retrofitting measures, CWT can drastically reduce the cost of treating industrial wastewater because of economies of scale. As well as saving money, CWT has several environmental advantages. First, these facilities are operated by professional waste handlers who should be able to treat and manage the waste more effectively than the generatingmore » firms. Second, the CWT can dramatically increase the potential for recovery of chemicals, which not only reduces the firm's wastewater costs but also the burdens of sludge handling and disposal. EPA, consultants, and local communities have been working on this concept for the last three years. During that time, they have been studying the feasibility of several CWT alternatives already in use in foreign countries for treating electroplating wastewater. In addition to waste treatment, CWT can also provide cogeneration of power, common laboratory facilities and, probably a bulk purchasing cooperative. 3 figures. (JMT)« less
Applying multi-criteria decision-making to improve the waste reduction policy in Taiwan.
Su, Jun-Pin; Hung, Ming-Lung; Chao, Chia-Wei; Ma, Hwong-wen
2010-01-01
Over the past two decades, the waste reduction problem has been a major issue in environmental protection. Both recycling and waste reduction policies have become increasingly important. As the complexity of decision-making has increased, it has become evident that more factors must be considered in the development and implementation of policies aimed at resource recycling and waste reduction. There are many studies focused on waste management excluding waste reduction. This study paid more attention to waste reduction. Social, economic, and management aspects of waste treatment policies were considered in this study. Further, a life-cycle assessment model was applied as an evaluation system for the environmental aspect. Results of both quantitative and qualitative analyses on the social, economic, and management aspects were integrated via the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method into the comprehensive decision-making support system of multi-criteria decision-making (MCDM). A case study evaluating the waste reduction policy in Taoyuan County is presented to demonstrate the feasibility of this model. In the case study, reinforcement of MSW sorting was shown to be the best practice. The model in this study can be applied to other cities faced with the waste reduction problems.
Waste in the U.S. Health care system: a conceptual framework.
Bentley, Tanya G K; Effros, Rachel M; Palar, Kartika; Keeler, Emmett B
2008-12-01
Health care costs in the United States are much higher than those in industrial countries with similar or better health system performance. Wasteful spending has many undesirable consequences that could be alleviated through waste reduction. This article proposes a conceptual framework to guide researchers and policymakers in evaluating waste, implementing waste-reduction strategies, and reducing the burden of unnecessary health care spending. This article divides health care waste into administrative, operational, and clinical waste and provides an overview of each. It explains how researchers have used both high-level and sector- or procedure-specific comparisons to quantify such waste, and it discusses examples and challenges in both waste measurement and waste reduction. Waste is caused by factors such as health insurance and medical uncertainties that encourage the production of inefficient and low-value services. Various efforts to reduce such waste have encountered challenges, such as the high costs of initial investment, unintended administrative complexities, and trade-offs among patients', payers', and providers' interests. While categorizing waste may help identify and measure general types and sources of waste, successful reduction strategies must integrate the administrative, operational, and clinical components of care, and proceed by identifying goals, changing systemic incentives, and making specific process improvements. Classifying, identifying, and measuring waste elucidate its causes, clarify systemic goals, and specify potential health care reforms that-by improving the market for health insurance and health care-will generate incentives for better efficiency and thus ultimately decrease waste in the U.S. health care system.
Residents' behaviors, attitudes, and willingness to pay for recycling e-waste in Macau.
Song, Qingbin; Wang, Zhishi; Li, Jinhui
2012-09-15
Large quantities of e-waste are presently being generated in Macau, but since recycling facilities and laws on e-waste still need to be developed, most e-waste cannot currently be properly treated. Moreover, little is known about residents' behaviors, attitudes, and their willingness to pay (WTP) for recycling e-waste. These issues are discussed in this study, based on a questionnaire survey on household electronic product usage. In 2010, "Life span completed" was the primary reason respondents abandoned their electronic products, accounting for about 37.97% of responses; the main disposal methods of e-waste in Macau were "Retailers retrieve from consumer" and "Sale to a recycling corporation." While having little understanding of e-waste disposal issues, most residents were still willing to hand their e-waste into the government for centralized collection. In addition, the respondents gave "telephone reservation" as their preferred collection method. Finally, the residents' WTP in Macau was estimated by the logistic regression method. It was found that education level, age and household income were the significant factors affecting residents' WTP. The monthly mean WTP was 20.03MOP (2.50 US dollar) per household, and the annual WTP was approximately 40,185,067 MOP (5,023,133 US dollar) for all of Macau. The results of our study can help managers develop more effective environmental management policies for e-waste disposal. Copyright © 2012 Elsevier Ltd. All rights reserved.
Scenario of solid waste reuse in Khulna city of Bangladesh
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bari, Quazi H., E-mail: qhbari@yahoo.com; Mahbub Hassan, K.; Haque, R.
2012-12-15
The reuse and recycling of waste materials are now sincerely considered to be an integral part of solid waste management in many parts of the world. In this context, a vast number of options ranging from small scale decentralized to larger scale centralized plants have been adopted. This study aimed at investigating the waste reuse schemes in Khulna city located in the southern part of Bangladesh and ranked third largest city in the country. The shops for reusable material (SRM) were mostly situated around railway, waterway, and truck station markets which provided easy transportation to further locations. For the reusesmore » of waste materials and products, a chain system was found to collect reusable wastes under a total number of 310 identified SRM with 859 persons directly or indirectly involved in the scheme. This was a decentralized waste management system with self sufficient (autonomous) management. According to mass balance, about 38.52 tons d{sup -1} solid wastes were reused in Khulna city area, accounting for 7.65% of the total generated wastes. This study revealed that apparently a silent, systematic, smooth, and clean reuse chain has been established in Khulna city area under private initiatives, whose sustainability was confirmed over the years in the country without any official or formal funds. However, proper adjustment between the higher and lower chain in the materials flow path, as well as personal hygiene training for the workers, would further improve the achievements of the established reuse scheme.« less
Scenario of solid waste reuse in Khulna city of Bangladesh.
Bari, Quazi H; Mahbub Hassan, K; Haque, R
2012-12-01
The reuse and recycling of waste materials are now sincerely considered to be an integral part of solid waste management in many parts of the world. In this context, a vast number of options ranging from small scale decentralized to larger scale centralized plants have been adopted. This study aimed at investigating the waste reuse schemes in Khulna city located in the southern part of Bangladesh and ranked third largest city in the country. The shops for reusable material (SRM) were mostly situated around railway, waterway, and truck station markets which provided easy transportation to further locations. For the reuses of waste materials and products, a chain system was found to collect reusable wastes under a total number of 310 identified SRM with 859 persons directly or indirectly involved in the scheme. This was a decentralized waste management system with self sufficient (autonomous) management. According to mass balance, about 38.52 tons d(-1) solid wastes were reused in Khulna city area, accounting for 7.65% of the total generated wastes. This study revealed that apparently a silent, systematic, smooth, and clean reuse chain has been established in Khulna city area under private initiatives, whose sustainability was confirmed over the years in the country without any official or formal funds. However, proper adjustment between the higher and lower chain in the materials flow path, as well as personal hygiene training for the workers, would further improve the achievements of the established reuse scheme. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kreitler, Charles W.; Akhter, M. Saleem; Donnelly, Andrew C. A.
1990-09-01
Hydrologic hydrochemical investigations were conducted to determine the long-term fate of hazardous chemical waste disposed in the Texas Gulf Coast Tertiary formations by deep-well injection. The study focused on the hydrostatic section of the Frio Formation because it is the host of a very large volume of injected waste and because large data bases of formation pressures and water chemistry are available. Three hydrologic regimes exist within the Frio Formation: a shallow fresh to moderately saline water section in the upper 3,000 4,000 ft (914 1,219 m); an underlying 4,000- to 5,000-ft-thick (1,219- to 1,524-m) section with moderate to high salinities: and a deeper overpressured section with moderate to high salinities. The upper two sections are normally pressured and reflect either freshwater or brine hydrostatic pressure gradients. Geopressured conditions are encountered as shallow as 6,000 ft (1,829 m). The complexity of the hydrologic environment is enhanced due to extensive depressurization in the 4,000- to 8,000-ft-depth (1,219- to 2,438-m) interval, which presumably results from the estimated production of over 10 billion barrels (208 × 106 m3) of oil equivalent and associated brines from the Frio in the past 50 yr. Because of the higher fluid density and general depressurization in the brine hydrostatic section, upward migration of these brines to shallow fresh groundwaters should not occur. Depressured oil and gas fields, however, may become sinks for the injected chemical wastes. Water samples appear to be in approximate oxygen isotopic equilibrium with the rock matrix, suggesting that active recharge of the Frio by continental waters is not occurring. In the northern Texas Gulf Coast region salt dome dissolution is a prime process controlling water chemistry. In the central and southern Frio Formation, brines from the deeper geopressured section may be leaking into the hydrostatic section. The lack of organic acids and the alteration of Frio oils from samples collected from depths shallower than approximately 7,000 ft (2,133 m) suggest microbial degradation of organic material. This has useful implications for degradation of injected chemical wastes and needs to be investigated further.
Hayes, Robert
2002-10-01
An approach is described for estimating future dose rates to Waste Isolation Pilot Plant workers processing remote handled transuranic waste. The waste streams will come from the entire U.S. Department of Energy complex and can take on virtually any form found from the processing sequences for defense-related production, radiochemistry, activation and related work. For this reason, the average waste matrix from all generator sites is used to estimate the average radiation fields over the facility lifetime. Innovative new techniques were applied to estimate expected radiation fields. Non-linear curve fitting techniques were used to predict exposure rate profiles from cylindrical sources using closed form equations for lines and disks. This information becomes the basis for Safety Analysis Report dose rate estimates and for present and future ALARA design reviews when attempts are made to reduce worker doses.
Cheng, Guanhui; Huang, Guohe; Dong, Cong; Xu, Ye; Chen, Jiapei; Chen, Xiujuan; Li, Kailong
2017-03-01
As presented in the first companion paper, distributed mixed-integer fuzzy hierarchical programming (DMIFHP) was developed for municipal solid waste management (MSWM) under complexities of heterogeneities, hierarchy, discreteness, and interactions. Beijing was selected as a representative case. This paper focuses on presenting the obtained schemes and the revealed mechanisms of the Beijing MSWM system. The optimal MSWM schemes for Beijing under various solid waste treatment policies and their differences are deliberated. The impacts of facility expansion, hierarchy, and spatial heterogeneities and potential extensions of DMIFHP are also discussed. A few of findings are revealed from the results and a series of comparisons and analyses. For instance, DMIFHP is capable of robustly reflecting these complexities in MSWM systems, especially for Beijing. The optimal MSWM schemes are of fragmented patterns due to the dominant role of the proximity principle in allocating solid waste treatment resources, and they are closely related to regulated ratios of landfilling, incineration, and composting. Communities without significant differences among distances to different types of treatment facilities are more sensitive to these ratios than others. The complexities of hierarchy and heterogeneities pose significant impacts on MSWM practices. Spatial dislocation of MSW generation rates and facility capacities caused by unreasonable planning in the past may result in insufficient utilization of treatment capacities under substantial influences of transportation costs. The problems of unreasonable MSWM planning, e.g., severe imbalance among different technologies and complete vacancy of ten facilities, should be gained deliberation of the public and the municipal or local governments in Beijing. These findings are helpful for gaining insights into MSWM systems under these complexities, mitigating key challenges in the planning of these systems, improving the related management practices, and eliminating potential socio-economic and eco-environmental issues resulting from unreasonable management.
Fiscal Year 2013 Net Zero Energy-Water-Waste Portfolio for Fort Leonard Wood
2014-12-01
rain sensor /evapotran- spiration central control system. Witnesses said they have seen the system ERDC/CERL SR-14-11 77 in use during rains so it...is possible the system settings and sensors need to be reassessed. Building 6100 The building is an administrative trainee company headquarters...CERL SR-14-11 108 ensure that each watering event is optimally performed during the day. A centrally controlled system with rain sensors should also
FLASH Technology: Full-Scale Hospital Waste Water Treatments Adopted in Aceh
NASA Astrophysics Data System (ADS)
Rame; Tridecima, Adeodata; Pranoto, Hadi; Moesliem; Miftahuddin
2018-02-01
A Hospital waste water contains a complex mixture of hazardous chemicals and harmful microbes, which can pose a threat to the environment and public health. Some efforts have been carried out in Nangroe Aceh Darussalam (Aceh), Indonesia with the objective of treating hospital waste water effluents on-site before its discharge. Flash technology uses physical and biological pre-treatment, followed by advanced oxidation process based on catalytic ozonation and followed by GAC and PAC filtration. Flash Full-Scale Hospital waste water Treatments in Aceh from different district have been adopted and investigated. Referring to the removal efficiency of macro-pollutants, the collected data demonstrate good removal efficiency of macro-pollutants using Flash technologies. In general, Flash technologies could be considered a solution to the problem of managing hospital waste water.
GFT centrality: A new node importance measure for complex networks
NASA Astrophysics Data System (ADS)
Singh, Rahul; Chakraborty, Abhishek; Manoj, B. S.
2017-12-01
Identifying central nodes is very crucial to design efficient communication networks or to recognize key individuals of a social network. In this paper, we introduce Graph Fourier Transform Centrality (GFT-C), a metric that incorporates local as well as global characteristics of a node, to quantify the importance of a node in a complex network. GFT-C of a reference node in a network is estimated from the GFT coefficients derived from the importance signal of the reference node. Our study reveals the superiority of GFT-C over traditional centralities such as degree centrality, betweenness centrality, closeness centrality, eigenvector centrality, and Google PageRank centrality, in the context of various arbitrary and real-world networks with different degree-degree correlations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singledecker, Steven J.; Jones, Scotty W.; Dorries, Alison M.
2012-07-01
In the coming fiscal years of potentially declining budgets, Department of Energy facilities such as the Los Alamos National Laboratory (LANL) will be looking to reduce the cost of radioactive waste characterization, management, and disposal processes. At the core of this cost reduction process will be choosing the most cost effective, efficient, and accurate methods of radioactive waste characterization. Central to every radioactive waste management program is an effective and accurate waste characterization program. Choosing between methods can determine what is classified as low level radioactive waste (LLRW), transuranic waste (TRU), waste that can be disposed of under an Authorizedmore » Release Limit (ARL), industrial waste, and waste that can be disposed of in municipal landfills. The cost benefits of an accurate radioactive waste characterization program cannot be overstated. In addition, inaccurate radioactive waste characterization of radioactive waste can result in the incorrect classification of radioactive waste leading to higher disposal costs, Department of Transportation (DOT) violations, Notice of Violations (NOVs) from Federal and State regulatory agencies, waste rejection from disposal facilities, loss of operational capabilities, and loss of disposal options. Any one of these events could result in the program that mischaracterized the waste losing its ability to perform it primary operational mission. Generators that produce radioactive waste have four characterization strategies at their disposal: - Acceptable Knowledge/Process Knowledge (AK/PK); - Indirect characterization using a software application or other dose to curie methodologies; - Non-Destructive Analysis (NDA) tools such as gamma spectroscopy; - Direct sampling (e.g. grab samples or Surface Contaminated Object smears) and laboratory analytical; Each method has specific advantages and disadvantages. This paper will evaluate each method detailing those advantages and disadvantages including; - Cost benefit analysis (basic materials costs, overall program operations costs, man-hours per sample analyzed, etc.); - Radiation Exposure As Low As Reasonably Achievable (ALARA) program considerations; - Industrial Health and Safety risks; - Overall Analytical Confidence Level. The concepts in this paper apply to any organization with significant radioactive waste characterization and management activities working to within budget constraints and seeking to optimize their waste characterization strategies while reducing analytical costs. (authors)« less
An Online Synchronous e-Dialogue Series on Nuclear Waste Management in Canada
ERIC Educational Resources Information Center
Dale, Ann; Newman, Lenore
2006-01-01
Online dialogues can meaningfully engage a diverse audience and provide a method to both educate and interest the public in complex environmental and social issues. This article discusses a series of e-dialogues conducted for the Nuclear Waste Management Organization of Canada in which the public engaged in discussions concerning the risk and…
HEPA filter dissolution process
Brewer, K.N.; Murphy, J.A.
1994-02-22
A process is described for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal. 4 figures.
Recycling Primer: Getting Back to Basics.
ERIC Educational Resources Information Center
Connecticut State Dept. of Environmental Protection, Hartford.
The disposal of garbage is a complex issue. Four strategies have been developed to attack the problem. They deal with: (1) waste reduction; (2) recycling; (3) energy recovery; and (4) land filling. This handbook emphasizes recycling as a method of handling the problem of dealing with solid wastes. Included are a list of the categories and uses of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Tongan; Chun, Jaehun; Dixon, Derek R.
During nuclear waste vitrification, a melter feed (generally a slurry-like mixture of a nuclear waste and various glass forming and modifying additives) is charged into the melter where undissolved refractory constituents are suspended together with evolved gas bubbles from complex reactions. Knowledge of flow properties of various reacting melter feeds is necessary to understand their unique feed-to-glass conversion processes occurring within a floating layer of melter feed called a cold cap. The viscosity of two low-activity waste (LAW) melter feeds were studied during heating and correlated with volume fractions of undissolved solid phase and gas phase. In contrast to themore » high-level waste (HLW) melter feed, the effects of undissolved solid and gas phases play comparable roles and are required to represent the viscosity of LAW melter feeds. This study can help bring physical insights to feed viscosity of reacting melter feeds with different compositions and foaming behavior in nuclear waste vitrification.« less
Waste Information Management System: One Year After Web Deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoffner, P.A.; Geisler, T.J.; Upadhyay, H.
2008-07-01
The implementation of the Department of Energy (DOE) mandated accelerated cleanup program created significant potential technical impediments. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to site waste treatment and disposal were potential critical path issues under the accelerated schedules. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast information regarding the volumes and types of waste that would be generated by DOEmore » sites over the next 30 years. Each local DOE site has historically collected, organized, and displayed site waste forecast information in separate and unique systems. However, waste information from all sites needed a common application to allow interested parties to understand and view the complete complex-wide picture. A common application allows identification of total waste volumes, material classes, disposition sites, choke points, and technological or regulatory barriers to treatment and disposal. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, has completed the deployment of this fully operational, web-based forecast system. New functional modules and annual waste forecast data updates have been added to ensure the long-term viability and value of this system. In conclusion: WIMS continues to successfully accomplish the goals and objectives set forth by DOE for this project. WIMS has replaced the historic process of each DOE site gathering, organizing, and reporting their waste forecast information utilizing different database and display technologies. In addition, WIMS meets DOE's objective to have the complex-wide waste forecast information available to all stakeholders and the public in one easy-to-navigate system. The enhancements to WIMS made over the year since its web deployment include the addition of new DOE sites, an updated data set, and the ability to easily print the forecast data tables, the disposition maps, and the GIS maps. Future enhancements will include a high-level waste summary, a display of waste forecast by mode of transportation, and a user help module. The waste summary display module will provide a high-level summary view of the waste forecast data based on the selection of sites, facilities, material types, and forecast years. The waste summary report module will allow users to build custom filtered reports in a variety of formats, such as MS Excel, MS Word, and PDF. The user help module will provide a step-by-step explanation of various modules, using screen shots and general tutorials. The help module will also provide instructions for printing and margin/layout settings to assist users in using their local printers to print maps and reports. (authors)« less
Pyramiding tumuli waste disposal site and method of construction thereof
Golden, Martin P.
1989-01-01
An improved waste disposal site for the above-ground disposal of low-level nuclear waste as disclosed herein. The disposal site is formed from at least three individual waste-containing tumuli, wherein each tumuli includes a central raised portion bordered by a sloping side portion. Two of the tumuli are constructed at ground level with adjoining side portions, and a third above-ground tumulus is constructed over the mutually adjoining side portions of the ground-level tumuli. Both the floor and the roof of each tumulus includes a layer of water-shedding material such as compacted clay, and the clay layer in the roofs of the two ground-level tumuli form the compacted clay layer of the floor of the third above-ground tumulus. Each tumulus further includes a shield wall, preferably formed from a solid array of low-level handleable nuclear wate packages. The provision of such a shield wall protects workers from potentially harmful radiation when higher-level, non-handleable packages of nuclear waste are stacked in the center of the tumulus.
Mitochondrial plasticity in cancer-related muscle wasting: potential approaches for its management.
Vitorino, Rui; Moreira-Gonçalves, Daniel; Ferreira, Rita
2015-05-01
Cancer cachexia represents a critical problem in clinical oncology due to its negative impact on patients' quality of life, therapeutic tolerance and survival. This paraneoplasic condition is characterized by significant weight loss mainly from skeletal muscle wasting. Understanding the molecular mechanisms underlying cancer cachexia is urgent in order to develop and apply efficient therapeutic strategies. Mitochondrial dysfunction is an early event in cancer-induced muscle wasting. Decreased ability for ATP synthesis, impaired mitochondrial biogenesis, increased oxidative stress, impairment of protein quality control systems, increased susceptibility to mitophagy and to apoptosis were all shown to mediate contractile dysfunction and wasting in cancer cachexia. Anti-inflammatory therapies as well as exercise training seem to counteract muscle mass loss in part by improving mitochondrial functionality. Given its central role in muscle wasting, mitochondrial plasticity should be viewed as a key therapeutic target for the preservation of muscle mass in cancer cachexia. Few studies have addressed the mitochondrial events modulated by cancer cachexia and contradictory data were reported. Scarcer studies have focused on the mitochondrial adaptation to anticancer cachexia strategies.
Contribution of anorexia to tissue wasting in cachexia.
Molfino, Alessio; Laviano, Alessandro; Rossi Fanelli, Filippo
2010-12-01
Anorexia is a severe debilitating symptom characterizing the clinical course of several chronic diseases. It negatively impacts on patient outcome by contributing to weight loss, lean body mass catabolism and adipose tissue wasting. Although disease-associated anorexia may stand alone as a clinically relevant symptom, it is now considered as a component of the cachexia syndrome. The present review discusses experimental and clinical data indicating that the pathogenic mechanisms of anorexia may also suggest a neural control of tissue wasting in cachexia. Consistent data show that selective melanocortin receptor antagonism modulates food intake and reduces wasting in experimental models of chronic disease. Consequently, ghrelin administration, whose prophagic effects are related to melanocortin antagonism, has been tested both in animal studies and human trials, with promising effects, although restoration of lean body mass has been not achieved. More interest is driven by the use of small molecules selectively antagonising hypothalamic melanocortin receptors. The 'brain-muscle axis' coordinated by the hypothalamus seems to mediate the onset of not only anorexia but also tissue wasting in cachexia, by centrally influencing energy homeostasis and the balance between anabolism and catabolism.
Brain drains: new insights into brain clearance pathways from lymphatic biology.
Bower, Neil I; Hogan, Benjamin M
2018-05-01
The lymphatic vasculature act as the drainage system for most of our tissues and organs, clearing interstitial fluid and waste and returning them to the blood circulation. This is not the case for the central nervous system (CNS), which is devoid of parenchymal lymphatic vessels. Nevertheless, the brain is responsible for 25% of the body's metabolism and only compromises 2% of the body's mass. This high metabolic load requires an efficient system to remove waste products and maintain homeostasis. Well-described mechanisms of waste clearance include phagocytic immune cell functions as well as perivascular fluid flow; however, the need for active drainage of waste from the brain is becoming increasingly appreciated. Recent developments in lymphatic vascular biology challenge the proposition that the brain lacks lymphatic drainage or an equivalent. In this review, we describe the roles of the glymphatic system (a key drainage mechanism in the absence of lymphatics), the recently characterized meningeal lymphatic vessels, and explore an enigmatic cell population found in zebrafish called mural lymphatic endothelial cells. These systems may play important individual and collective roles in draining and clearing wastes from the brain.
Ruhl, J.F.
1995-01-01
Upgradient to downgradient mean or individual nitrogen isotope δ15N values in %o (delta units in parts per thousand) determined for sampled monitoring wells along the direction of ground-water flow through the five land-use settings were: (1) 5.1 %o and 4.0 %o for the feedlot and adjacent manured field; (2) 1.1 %o and 0.9 %o for the cultivated croplands irrigated with waste water; (3) 3.8 %o and 2.7 %o for the cultivated croplands irrigated with ground water; (4) 3.4 %o and 4.9 %o for the residential development; and (5) 1.7 %o and 3.0 %o for the three waste-water lagoons. Nitrate from fertilizer appeared to have been present in ground water at the waste-water lagoons, cultivated croplands irrigated with waste water, and cultivated croplands irrigated with ground water. Nitrate from soil organic matter rather than from animal waste appeared to have been present in ground water at the feedlot and adjacent manured field.
Food waste and the food-energy-water nexus: A review of food waste management alternatives.
Kibler, Kelly M; Reinhart, Debra; Hawkins, Christopher; Motlagh, Amir Mohaghegh; Wright, James
2018-04-01
Throughout the world, much food produced is wasted. The resource impact of producing wasted food is substantial; however, little is known about the energy and water consumed in managing food waste after it has been disposed. Herein, we characterize food waste within the Food-Energy-Water (FEW) nexus and parse the differential FEW effects of producing uneaten food and managing food loss and waste. We find that various food waste management options, such as waste prevention, landfilling, composting, anaerobic digestion, and incineration, present variable pathways for FEW impacts and opportunities. Furthermore, comprehensive sustainable management of food waste will involve varied mechanisms and actors at multiple levels of governance and at the level of individual consumers. To address the complex food waste problem, we therefore propose a "food-waste-systems" approach to optimize resources within the FEW nexus. Such a framework may be applied to devise strategies that, for instance, minimize the amount of edible food that is wasted, foster efficient use of energy and water in the food production process, and simultaneously reduce pollution externalities and create opportunities from recycled energy and nutrients. Characterization of FEW nexus impacts of wasted food, including descriptions of dynamic feedback behaviors, presents a significant research gap and a priority for future work. Large-scale decision making requires more complete understanding of food waste and its management within the FEW nexus, particularly regarding post-disposal impacts related to water. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohout, E.F.; Folga, S.; Mueller, C.
1996-03-01
This paper describes the Waste Management Facility Accident Analysis (WASTE{underscore}ACC) software, which was developed at Argonne National Laboratory (ANL) to support the US Department of Energy`s (DOE`s) Waste Management (WM) Programmatic Environmental Impact Statement (PEIS). WASTE{underscore}ACC is a decision support and database system that is compatible with Microsoft{reg_sign} Windows{trademark}. It assesses potential atmospheric releases from accidents at waste management facilities. The software provides the user with an easy-to-use tool to determine the risk-dominant accident sequences for the many possible combinations of process technologies, waste and facility types, and alternative cases described in the WM PEIS. In addition, its structure willmore » allow additional alternative cases and assumptions to be tested as part of the future DOE programmatic decision-making process. The WASTE{underscore}ACC system demonstrates one approach to performing a generic, systemwide evaluation of accident risks at waste management facilities. The advantages of WASTE{underscore}ACC are threefold. First, the software gets waste volume and radiological profile data that were used to perform other WM PEIS-related analyses directly from the WASTE{underscore}MGMT system. Second, the system allows for a consistent analysis across all sites and waste streams, which enables decision makers to understand more fully the trade-offs among various policy options and scenarios. Third, the system is easy to operate; even complex scenario runs are completed within minutes.« less
40 CFR 445.1 - General applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... landfill wastewater from landfills operated in conjunction with other industrial or commercial operations... landfills operated in conjunction with other industrial or commercial operations when the landfill receives... operation. (g) This part does not apply to landfills operated in conjunction with Centralized Waste...
40 CFR 437.41 - Special definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... procedures it has adopted will ensure its treatment systems are well-operated and maintained. ... STANDARDS (CONTINUED) THE CENTRALIZED WASTE TREATMENT POINT SOURCE CATEGORY Multiple Wastestreams § 437.41 Special definitions. (a) Initial Certification Statement for this subpart means a written submission to...
40 CFR 437.41 - Special definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... procedures it has adopted will ensure its treatment systems are well-operated and maintained. ... STANDARDS (CONTINUED) THE CENTRALIZED WASTE TREATMENT POINT SOURCE CATEGORY Multiple Wastestreams § 437.41 Special definitions. (a) Initial Certification Statement for this subpart means a written submission to...
40 CFR 437.41 - Special definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... procedures it has adopted will ensure its treatment systems are well-operated and maintained. ... STANDARDS (CONTINUED) THE CENTRALIZED WASTE TREATMENT POINT SOURCE CATEGORY Multiple Wastestreams § 437.41 Special definitions. (a) Initial Certification Statement for this subpart means a written submission to...
40 CFR 437.14 - New source performance standards (NSPS).
Code of Federal Regulations, 2011 CFR
2011-07-01
... GUIDELINES AND STANDARDS THE CENTRALIZED WASTE TREATMENT POINT SOURCE CATEGORY Metals Treatment and Recovery....0522 Cobalt 0.182 0.0703 Copper 0.659 0.216 Lead 1.32 0.283 Mercury 0.000641 0.000246 Nickel 0.794 0...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mineo, Hideaki; Matsumura, Tatsuro; Takeshita, Isao
1997-03-01
The Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF) is a large complex of research facilities where transuranic (TRU) elements are used. Liquid and solid waste containing TRU elements is generated mainly in the treatment of fuel for critical experiments and in the research of reprocessing and TRU waste management in hot cells and glove boxes. The rational management of TRU wastes is a very important issue not only for NUCEF but also for Japan. An integrated TRU waste management system is being developed with NUCEF as the test bed. The basic policy for establishing the system is to classifymore » wastes by TRU concentration, to reduce waste volume, and to maximize reuse of TRU elements. The principal approach of the development program is to apply the outcomes of the research carried out in NUCEF. Key technologies are TRU measurement for classification of solid wastes and TRU separation and volume reduction for organic and aqueous wastes. Some technologies required for treating the wastes specific to the research activities in NUCEF need further development. Specifically, the separation and stabilization technologies for americium recovery from concentrated aqueous waste, which is generated in dissolution of mixed oxide when preparing fuel for critical experiments, needs further research.« less
Achillas, Charisios; Moussiopoulos, Nicolas; Karagiannidis, Avraam; Banias, Georgias; Perkoulidis, George
2013-02-01
Problems in waste management have become more and more complex during recent decades. The increasing volumes of waste produced and social environmental consciousness present prominent drivers for environmental managers towards the achievement of a sustainable waste management scheme. However, in practice, there are many factors and influences - often mutually conflicting - criteria for finding solutions in real-life applications. This paper presents a review of the literature on multi-criteria decision aiding in waste management problems for all reported waste streams. Despite limitations, which are clearly stated, most of the work published in this field is reviewed. The present review aims to provide environmental managers and decision-makers with a thorough list of practical applications of the multi-criteria decision analysis techniques that are used to solve real-life waste management problems, as well as the criteria that are mostly employed in such applications according to the nature of the problem under study. Moreover, the paper explores the advantages and disadvantages of using multi-criteria decision analysis techniques in waste management problems in comparison to other available alternatives.
Conversion of MSW (municipal solids waste) to methane in the SOLCON (solids-concentrating) digester
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biljetina, R.; Srivastava, V.J.; Isaacson, H.R.
1988-01-01
The Institute of Gas Technology (IGT) has been operating a 1200- gallon, anaerobic solids-concentrating (SOLCON) digester at the Walt Disney World Resort Complex in Lake Buena Vista, Florida since January of 1984. This digester development work is part of a larger effort, sponsored by the Gas Research Institute (GRI) Southern California Edison, that provides effective community waste treatment and disposal options while recovering a valuable methane resource from these wastes. Excellent conversions to methane have been obtained in the SOLCON digester during 4 years of uninterrupted operation. Data were collected on: (1) Wastes from experimental municipal wastewater treatment applications. Watermore » hyacinths were harvested from secondary wastewater treatment channels and combined with sludge from primary clarifiers to maximize potential methane recoveries in the digester. (2) Wastes from agricultural operations. Sorghum was selected as a candidate because it represents both a potential energy crop, as well as, a waste resource if only portions of the plant are converted after grain production. (3) Wastes from municipal waste collection.« less
Optimal waste-to-energy strategy assisted by GIS For sustainable solid waste management
NASA Astrophysics Data System (ADS)
Tan, S. T.; Hashim, H.
2014-02-01
Municipal solid waste (MSW) management has become more complex and costly with the rapid socio-economic development and increased volume of waste. Planning a sustainable regional waste management strategy is a critical step for the decision maker. There is a great potential for MSW to be used for the generation of renewable energy through waste incineration or landfilling with gas capture system. However, due to high processing cost and cost of resource transportation and distribution throughout the waste collection station and power plant, MSW is mostly disposed in the landfill. This paper presents an optimization model incorporated with GIS data inputs for MSW management. The model can design the multi-period waste-to-energy (WTE) strategy to illustrate the economic potential and tradeoffs for MSW management under different scenarios. The model is capable of predicting the optimal generation, capacity, type of WTE conversion technology and location for the operation and construction of new WTE power plants to satisfy the increased energy demand by 2025 in the most profitable way. Iskandar Malaysia region was chosen as the model city for this study.
Small terminase couples viral DNA-binding to genome-packaging ATPase activity
Roy, Ankoor; Bhardwaj, Anshul; Datta, Pinaki; Lander, Gabriel C.; Cingolani, Gino
2012-01-01
SUMMARY Packaging of viral genomes into empty procapsids is powered by a large DNA-packaging motor. In most viruses, this machine is composed of a large (L) and a small (S) terminase subunit complexed with a dodecamer of portal protein. Here, we describe the 1.75 Å crystal structure of the bacteriophage P22 S-terminase in a nonameric conformation. The structure presents a central channel ~23 Å in diameter, sufficiently large to accommodate hydrated B-DNA. The last 23 residues of S-terminase are essential for binding to DNA and assembly to L-terminase. Upon binding to its own DNA, S-terminase functions as a specific activator of L-terminase ATPase activity. The DNA-dependent stimulation of ATPase activity thus rationalizes the exclusive specificity of genome-packaging motors for viral DNA in the crowd of host DNA, ensuring fidelity of packaging and avoiding wasteful ATP hydrolysis. This posits a model for DNA-dependent activation of genome-packaging motors of general interest in virology. PMID:22771211
Waste Sampling & Characterization Facility (WSCF) Complex Safety Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
MELOY, R.T.
2002-04-01
This document was prepared to analyze the Waste Sampling and Characterization Facility for safety consequences by: Determining radionuclide and highly hazardous chemical inventories; Comparing these inventories to the appropriate regulatory limits; Documenting the compliance status with respect to these limits; and Identifying the administrative controls necessary to maintain this status. The primary purpose of the Waste Sampling and Characterization Facility (WSCF) is to perform low-level radiological and chemical analyses on various types of samples taken from the Hanford Site. These analyses will support the fulfillment of federal, Washington State, and Department of Energy requirements.
Cryolite process for the solidification of radioactive wastes
Wielang, Joseph A.; Taylor, Larry L.
1976-01-01
An improved method is provided for solidifying liquid wastes containing significant quantities of sodium or sodium compounds by calcining in a fluidized-bed calciner. The formation of sodium nitrate which will cause agglomeration of the fluidized-bed particles is retarded by adding aluminum and a fluoride to the waste in order to produce cryolite during calcination. The off-gas of the calciner is scrubbed with a solution containing aluminum in order to complex any fluoride which may be liberated by subsequent dissolution of cryolite and prevent corrosion in the off-gas cleanup system.
Nowakowski, Piotr
2016-11-01
Government agencies have implemented regulations to reduce the volume of waste electrical and electronic equipment to protect the environment and encourage recycling. The effectiveness of systems through which waste electrical and electronic equipment is collected and recycled depends on (a) the development and operation of new programmes to process this material and (b) on information dissemination programmes aimed at manufacturers, retail sellers, and the consuming public. This study analyses these two elements. The main focus is to better understand household residents' behaviour in regards to the proper methods of handling waste electrical and electronic equipment and possible storage of the obsolete equipment that brings disturbances with collection of the waste equipment. The study explores these issues depending on size of municipality and the household residents' knowledge about legal methods of post-consumer management of waste electrical and electronic equipment in Poland, where the collection rate of that type of waste is about 40% of the total mass of waste electrical and electronic equipment appearing in the market.The research was informed by various sources of information, including non-government organisations, Inspectorate of Environmental Protection and Central Statistics Office in Poland, questionnaires, and interviews with the household residents. The questionnaires were distributed to daytime and vocational students from different universities and the customers of an electronic equipment superstore. The results show that a resident's behaviour in regards to the handling of obsolete waste electrical and electronic equipment can significantly reduce the collection rate, especially when the waste is discarded improperly - mixed with municipal waste or sold in scrapyards. It is possible to identify points that are necessary to be improved to achieve a higher collection rate. © The Author(s) 2016.
Characteristics and management of domestic waste in a rural area of the Tibetan Plateau.
Han, Zhiyong; Dan, Zeng; Shi, Guozhong; Shen, Lukun; Xu, Wenlai; Xie, Yanhua
2015-11-01
In the rural area of the Tibetan Plateau (RATP), the characteristics of domestic waste, people's environmental awareness, people's willingness to pay and their influence factors were firstly studied by questionnaires, field samplings and laboratory tests. The results showed that, in the RATP, the generation of domestic waste was 85 g•d-1 per capita and it was mainly composed of plastics, inert waste, kitchen waste, glass and paper. The waste bulk density, moisture content, ash, combustible and low calorific value were 65 kg•m-3, 19.25%, 44.90%, 35.85% and 10,520 kJ•kg-1 respectively. These characteristics are influenced by income sources and geographical position to some extent. Classified collection should be promoted widely on the household and the village basis. Compost, fermentation, landfill, bioreactor landfill and semi-aerobic landfill have been approved as effective techniques to treat domestic waste, except incineration. The distance of 50-800 m between each collection facility and the disposal fee of around $0.8 per month per household are suggested. For suburbs or large population villages, it's better to treat domestic waste by the centralized way. But for the remote rural areas, a decentralized way is proposed. Significantly, the educational and economic influence should be considered into an effective domestic waste management program. The current situatio n of the environment in the rural areas of the Tibetan Plateau (RATP) was surveyed. There, the generation of organics and moisture of domestic waste were low but ash, recyclables, and combustibles were high. People's knowledge of domestic waste was absent but their participation in management was strong. Based on the current situation, compost, fermentation, and landfill were effective but incineration was inappropriate. Also, a localized mini landfill for a cluster of villages and or settlements was the best method there.
One project`s waste is another project`s resource
DOE Office of Scientific and Technical Information (OSTI.GOV)
Short, J.
1997-02-01
The author describes the efforts being made toward pollution prevention within the DOE complex, as a way to reduce overall project costs, in addition to decreasing the amount of waste to be handled. Pollution prevention is a concept which is trying to be ingrained into project planning. Part of the program involves the concept that ultimately the responsibility for waste comes back to the generator. Parts of the program involve efforts to reuse materials and equipment on new projects, to recycle wastes to generate offsetting revenue, and to increase awareness, accountability and incentives so as to stimulate action on thismore » plan. Summaries of examples are presented in tables.« less
Development studies of a novel wet oxidation process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, T.W.; Dhooge, P.M.
1995-12-01
Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides. These materials are often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. Incineration and similar combustive processes do not appear to be viable options for treatment of these waste streams due to various considerations. There is a need for non-combustion processes with a wide application range to treat the large majority of these waste forms. The non-combustion process should also be safe, effective, cost-competitive, permit-able, and preferrably mobile. This paper describes the DETOX processmore » of organic waste oxidation.« less
Energy from poultry waste: An Aspen Plus-based approach to the thermo-chemical processes.
Cavalaglio, Gianluca; Coccia, Valentina; Cotana, Franco; Gelosia, Mattia; Nicolini, Andrea; Petrozzi, Alessandro
2018-03-01
A particular approach to the task of energy conversion of a residual waste material was properly experienced during the implementation of the national funded Enerpoll project. This project is a case study developed in the estate of a poultry farm that is located in a rural area of central Italy (Umbria Region); such a farm was chosen for the research project since it is almost representative of many similar small-sized breeding realties of the Italian regional context. The purpose of the case study was the disposal of a waste material (i.e. poultry manure) and its energy recovery; this task is in agreement with the main objectives of the new Energy Union policy. Considering this background, an innovative gasification plant (300KW thermal power) was chosen and installed for the experimentation. The novelty of the investigated technology is the possibility to achieve the production of thermal energy burning just the produced syngas and not directly the solid residues. This aspect allows to reduce the quantity of nitrogen released in the atmosphere by the exhaust flue gases and conveying it into the solid residues (ashes). A critical aspect of the research program was the optimization of the pretreatment (reduction of the water content) and the dimensional homogenization of the poultry waste before its energy recovery. This physical pretreatment allowed the reduction of the complexity of the matrix to be energy enhanced. Further to the real scale plant monitoring, a complete Aspen Plus v.8.0 model was also elaborated for the prediction of the quality of the produced synthesis gas as a function of both the gasification temperature and the equivalence ratio (ER). The model is an ideal flowchart using as input material just the homogenized and dried material. On the basis of the real monitored thermal power (equal to about 200kW average value in an hour) the model was used for the estimation of the syngas energy content (i.e. LHV) that resulted in the range of 3-5MJ/m 3 for an equivalence ratio (ER) equal to 0.2. Copyright © 2017 Elsevier Ltd. All rights reserved.
Test Report for Permanganate and Cold Strontium Strike for Tank 241-AN-102
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, James B.; Huber, Heinz J.; Smalley, Colleen S.
Tanks 241-AN-102 and 241-AN-107 supernatants contain soluble Sr-90 and transuranic elements that require removal prior to vitrification to comply with the Waste Treatment and Immobilization Plant immobilized low-activity waste specification (WTP Contract, DE-AC27-01RV 14136, Specification 2.2.2.8, "Radionuclide Concentration Limitations") and the U.S. Nuclear Regulatory Commission provisional agreement on waste incidental to reprocessing (letter, Paperiello, C. J., "Classification of Hanford Low-Activity Tank Waste Fraction"). These two tanks have high concentrations of organics and organic complexants and are referred to as complexant concentrate tanks. A precipitation process using sodium permanganate (NaMnO{sub 4}) and strontium nitrate (Sr(NO{sub 3}){sub 2}) was developed and testedmore » with tank waste samples to precipitate Sr-90 and transuranic elements from the supernate (PNWD-3141, Optimization of Sr/TRU Removal Conditions with Samples of AN-102 Tank Waste). Testing documented in this report was conducted to further evaluate the use of the strontium nitrate/sodium permanganate process in tank farms with a retention time of up to 12 months. Previous testing was focused on developing a process for deployment in the ultrafiltration vessels in the Waste Treatment and Immobilization Plant. This environment is different from tank farms in two important ways: the waste is diluted in the Waste Treatment and Immobilization Plant to ~5.5 M sodium, whereas the supernate in the tank farms is ~9 M Na. Secondly, while the Waste Treatment and Immobilization Plant allows for a maximum treatment time of hours to days, the in-tank farms treatment of tanks 241-AN102 and 241-AN-107 will result in a retention time of months (perhaps up to12 months) before processing. A comparative compilation of separation processes for Sr/transuranics has been published as RPP-RPT-48340, Evaluation of Alternative Strontium and Transuranic Separation Processes. This report also listed the testing needs for the permanganate precipitation process to be field-deployable. A more comprehensive listing of future testing needs to allow the process to be field deployable are contained in RPP-PLAN-51288, Development Test Plan for Sr/TRU Precipitation Process.« less
Spectroscopic Properties of Tc(I) Tricarbonyl Species Relevant to the Hanford Tank Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levitskaia, Tatiana G.; Andersen, Amity; Chatterjee, Sayandev
2015-12-04
Technetium-99 (Tc) exists predominately in soluble forms in the liquid supernatant and salt cake fractions of the nuclear tank waste stored at the U.S. DOE Hanford Site. In the strongly alkaline environments prevalent in the tank waste, its dominant chemical form is pertechnetate (TcO4-, oxidation state +7). However, attempts to remove Tc from the Hanford tank waste using ion-exchange processes specific to TcO 4 - only met with limited success, particularly processing tank waste samples containing elevated concentrations of organic complexants. This suggests that a significant fraction of the soluble Tc can be present as non-pertechnetate low-valent Tc (oxidation statemore » < +7) (non-pertechnetate). The chemical identities of these non-pertechnetate species are poorly understood. Previous analysis of the SY-101 and SY-103 tank waste samples provided strong evidence that non-pertechnetate can be comprised of [Tc(CO) 3] + complexes containing Tc in oxidation state +1 (Lukens et al. 2004). During the last two years, our team has expanded this work and demonstrated that high-ionic-strength solutions typifying tank waste supernatants promote oxidative stability of the [Tc(CO) 3] + species (Rapko et al. 2013; Levitskaia et al. 2014). It also was observed that high-ionic-strength alkaline matrices stabilize Tc(VI) and potentially Tc(IV) oxidation states, particularly in presence organic chelators, suggesting that the relevant Tc compounds can serve as important redox intermediates facilitating the reduction of Tc(VII) to Tc(I). Designing strategies for effective Tc processing, including separation and immobilization, necessitates understanding the molecular structure of these non-pertechnetate species and their identification in the actual tank waste samples. To-date, only limited information exists regarding the nature and characterization of the Tc(I), Tc(IV), and Tc(VI) species. One objective of this project is to identify the form of non-pertechnetate in the Hanford waste. To do this, we are developing a spectral library of reference non-pertechnetate compounds that can be compared against actual waste samples. The emphasis of the fiscal year 2015 work was Tc(I) tricarbonyl [Tc(CO) 3] + compounds. The key findings are summarized below.« less
Ocak, Buğra
2012-06-15
In the world, approximately 600,000 metric tonnes of chromium-containing solid wastes are generated by the leather industry each year. Environmental concerns and escalating landfill costs are becoming increasingly serious problems to the leather industry and seeking solutions to these problems is a prime concern in much research today. In this study, solid collagen-based protein hydrolysate was isolated from chromium-tanned leather wastes and its chemical properties were determined. Microcapsules of collagen hydrolysate (CH) - chitosan (C) crosslinked with glutaraldehyde (GA) containing Lavender oil (LO) were prepared by complex coacervation method. The effects of various processing parameters, including the CH to C ratio, LO content, and GA, on the oil load (%), oil content (%), encapsulation efficiency (%) and release rate of LO from microcapsules were investigated. As the ratio of C present in the CH/C mixture and crosslinking density increased, the release rate of LO from microcapsules slowed down. Optical and scanning electron microscopy images illustrated that the LO microcapsules were spherical in shape. Fourier transform infrared spectroscopy (FTIR) studies confirmed that there was no significant interaction between CH/C complex and LO. Copyright © 2012 Elsevier Ltd. All rights reserved.
Tron, Adriana E; Comelli, Raúl N; Gonzalez, Daniel H
2005-12-27
Homeodomain-leucine zipper (HD-Zip) proteins, unlike most homeodomain proteins, bind a pseudopalindromic DNA sequence as dimers. We have investigated the structure of the DNA complexes formed by two HD-Zip proteins with different nucleotide preferences at the central position of the binding site using footprinting and interference methods. The results indicate that the respective complexes are not symmetric, with the strand bearing a central purine (top strand) showing higher protection around the central region and the bottom strand protected toward the 3' end. Binding to a sequence with a nonpreferred central base pair produces a decrease in protection in either the top or the bottom strand, depending upon the protein. Modeling studies derived from the complex formed by the monomeric Antennapedia homeodomain with DNA indicate that in the HD-Zip/DNA complex the recognition helix of one of the monomers is displaced within the major groove respective to the other one. This monomer seems to lose contacts with a part of the recognition sequence upon binding to the nonpreferred site. The results show that the structure of the complex formed by HD-Zip proteins with DNA is dependent upon both protein intrinsic characteristics and the nucleotides present at the central position of the recognition sequence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biljetina, R.; Srivastava, V.J.; Punwani, D.V.
1988-01-01
The Institute of Gas Technology (IGT) has been operating a 4.5-m/sup 3/, anaerobic solids-concentrating digester at the Walt Disney World Resort Complex in Lake Buena Vista, Florida, since January 1984. This digester development work is part of a larger effort that provides effective community waste treatment and disposal options while recovering a valuable methane resources from these wastes. Excellent conversions to methane have been obtained in the digester during 4 years of uninterrupted operation. Data were collected on wastes from experimental municipal wastewater treatment applications, that is, water hyacinths were harvested from secondary wastewater treatment channels and combined with sludgemore » from primary clarifiers to maximize potential methane recoveries in the digester; wastes from agricultural operations, that is, sorghum was selected as a candidate because it represents both a potential energy crop, as well as a waste resource if only portions of the plant are converted after grain production; and wastes from municipal waste collection. Municipal solids waste (MSW) from a commercial resource recovery center was selected. 3 refs., 4 figs., 5 tabs.« less
Korenkov, I P; Lashchenova, T N; Shandala, N K
2015-01-01
In the article there are presented materials on radiation-hygienic approaches to the treatment of very low level radioactive waste (VLLW) and industrial waste containing radionuclides. There is done detailed information on radiation-hygienic principles and criteria for the assurance ofradiation safety in the collection, transportation, storage and processing of VLLW as a category of radioactive waste.. Particular attention is paid to the problem of designing VLLW landfill site choice, system of radiation monitoring in operation and decommissioning of the landfill. There are presented data about the criteria for the release of VLLW buried at the site, from regulatory control. Also there are considered in detail the radiation-hygienic requirements for radiation safety of industrial waste containing radionuclides for which there is assumed unlimited and limited use of solid materials in economic activity, based on the requirements ofthe revised Basic Sanitary Rules for Radiation Safety - 99/2010. There are considered basic requirements for the organization of industrial waste landfill. As an example, there-are presented the hygiene requirements for industrial waste management and results of waste categorization in Northern Federal Enterprise for Radioactive Waste Management.
Waste to energy--key element for sustainable waste management.
Brunner, Paul H; Rechberger, Helmut
2015-03-01
Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of "protection of men and environment" and "resource conservation". Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together with prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wang, Jianbo; Xu, Zhenming
2015-01-20
Over the past decades, China has been suffering from negative environmental impacts from distempered e-waste recycling activities. After a decade of effort, disassembly and raw materials recycling of environmentally friendly e-waste have been realized in specialized companies, in China, and law enforcement for illegal activities of e-waste recycling has also been made more and more strict. So up to now, the e-waste recycling in China should be developed toward more depth and refinement to promote industrial production of e-waste resource recovery. Waste printed circuit boards (WPCBs), which are the most complex, hazardous, and valuable components of e-waste, are selected as one typical example in this article that reviews the status of related regulations and technologies of WPCBs recycling, then optimizes, and integrates the proper approaches in existence, while the bottlenecks in the WPCBs recycling system are analyzed, and some preliminary experiments of pinch technologies are also conducted. Finally, in order to provide directional guidance for future development of WPCBs recycling, some key points in the WPCBs recycling system are proposed to point towards a future trend in the e-waste recycling industry.
Development of the Neurochemical Architecture of the Central Complex
Boyan, George S.; Liu, Yu
2016-01-01
The central complex represents one of the most conspicuous neuroarchitectures to be found in the insect brain and regulates a wide repertoire of behaviors including locomotion, stridulation, spatial orientation and spatial memory. In this review article, we show that in the grasshopper, a model insect system, the intricate wiring of the fan-shaped body (FB) begins early in embryogenesis when axons from the first progeny of four protocerebral stem cells (called W, X, Y, Z, respectively) in each brain hemisphere establish a set of tracts to the primary commissural system. Decussation of subsets of commissural neurons at stereotypic locations across the brain midline then establishes a columnar neuroarchitecture in the FB which is completed during embryogenesis. Examination of the expression patterns of various neurochemicals in the central complex including neuropeptides, a neurotransmitter and the gas nitric oxide (NO), show that these appear progressively and in a substance-specific manner during embryogenesis. Each neuroactive substance is expressed by neurons located at stereotypic locations in a given central complex lineage, confirming that the stem cells are biochemically multipotent. The organization of axons expressing the various neurochemicals within the central complex is topologically related to the location, and hence birthdate, of the neurons within the lineages. The neurochemical expression patterns within the FB are layered, and so reflect the temporal topology present in the lineages. This principle relates the neuroanatomical to the neurochemical architecture of the central complex and so may provide insights into the development of adaptive behaviors. PMID:27630548
DOE Office of Scientific and Technical Information (OSTI.GOV)
McAdams, C.L.
1996-05-01
The commonwealth of Puerto Rico has never had a traditional, centrally organized solid waste management system. In the past, municipalities provided service for their own residents and the island used 62 unlined landfills. In April 1994, 32 of those landfills closed. A study released in 1995 found that residents of Puerto Rico generate 8,100 tons of waste each day, at a per capita rate of 4.9 pounds per day. A solid waste management strategy unveiled with much fanfare early last year included plans to build an integrated system of collection, transfer stations, and disposal sites. These sites would be market-drivenmore » by recycling and hinged on partnerships between the public and private sectors and public education. A key to Puerto Rico`s plan was investment by the private sector.« less
Riparian meadow complexes found in mountain ranges of the Central Great Basin physiographic region (western United States) are of interest to researchers as they contain significant biodiversity relative to the surrounding basin areas. These meadow complexes are currently degradi...
Sud, Dhiraj; Mahajan, Garima; Kaur, M P
2008-09-01
Heavy metal remediation of aqueous streams is of special concern due to recalcitrant and persistency of heavy metals in environment. Conventional treatment technologies for the removal of these toxic heavy metals are not economical and further generate huge quantity of toxic chemical sludge. Biosorption is emerging as a potential alternative to the existing conventional technologies for the removal and/or recovery of metal ions from aqueous solutions. The major advantages of biosorption over conventional treatment methods include: low cost, high efficiency, minimization of chemical or biological sludge, regeneration of biosorbents and possibility of metal recovery. Cellulosic agricultural waste materials are an abundant source for significant metal biosorption. The functional groups present in agricultural waste biomass viz. acetamido, alcoholic, carbonyl, phenolic, amido, amino, sulphydryl groups etc. have affinity for heavy metal ions to form metal complexes or chelates. The mechanism of biosorption process includes chemisorption, complexation, adsorption on surface, diffusion through pores and ion exchange etc. The purpose of this review article is to provide the scattered available information on various aspects of utilization of the agricultural waste materials for heavy metal removal. Agricultural waste material being highly efficient, low cost and renewable source of biomass can be exploited for heavy metal remediation. Further these biosorbents can be modified for better efficiency and multiple reuses to enhance their applicability at industrial scale.
6. VIEW LOOKING NORTH ON SIXTH STREET, ACROSS CENTRAL AVENUE. ...
6. VIEW LOOKING NORTH ON SIXTH STREET, ACROSS CENTRAL AVENUE. THE BUILDING ON THE RIGHT IS BUILDING 551, BUILT IN 1953 AS A WAREHOUSE AND METAL FABRICATION SHOP. THE BUILDING ON THE LEFT IS BUILDING 334, ALSO BUILT IN 1953, AS THE ELECTRICAL AND GENERAL MAINTENANCE SHOP. IN THE CENTER OF THE PHOTOGRAPH IN THE BACKGROUND IS BUILDING 374, THE AQUEOUS PROCESS WASTE TREATMENT PLANT. - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO
Technical area status report for waste destruction and stabilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalton, J.D.; Harris, T.L.; DeWitt, L.M.
1993-08-01
The Office of Environmental Restoration and Waste Management (EM) was established by the Department of Energy (DOE) to direct and coordinate waste management and site remediation programs/activities throughout the DOE complex. In order to successfully achieve the goal of properly managing waste and the cleanup of the DOE sites, the EM was divided into five organizations: the Office of Planning and Resource Management (EM-10); the Office of Environmental Quality Assurance and Resource Management (EM-20); the Office of Waste Operations (EM-30); the Office of Environmental Restoration (EM-40); and the Office of Technology and Development (EM-50). The mission of the Office ofmore » Technology Development (OTD) is to develop treatment technologies for DOE`s operational and environmental restoration wastes where current treatment technologies are inadequate or not available. The Mixed Waste Integrated Program (MWIP) was created by OTD to assist in the development of treatment technologies for the DOE mixed low-level wastes (MLLW). The MWIP has established five Technical Support Groups (TSGs) whose purpose is to identify, evaluate, and develop treatment technologies within five general technical areas representing waste treatment functions from initial waste handling through generation of final waste forms. These TSGs are: (1) Front-End Waste Handling, (2) Physical/Chemical Treatment, (3) Waste Destruction and Stabilization, (4) Second-Stage Destruction and Offgas Treatment, and (5) Final Waste Forms. This report describes the functions of the Waste Destruction and Stabilization (WDS) group. Specifically, the following items are discussed: DOE waste stream identification; summary of previous efforts; summary of WDS treatment technologies; currently funded WDS activities; and recommendations for future activities.« less
Waste in the U.S. Health Care System: A Conceptual Framework
Bentley, Tanya G K; Effros, Rachel M; Palar, Kartika; Keeler, Emmett B
2008-01-01
Context Health care costs in the United States are much higher than those in industrial countries with similar or better health system performance. Wasteful spending has many undesirable consequences that could be alleviated through waste reduction. This article proposes a conceptual framework to guide researchers and policymakers in evaluating waste, implementing waste-reduction strategies, and reducing the burden of unnecessary health care spending. Methods This article divides health care waste into administrative, operational, and clinical waste and provides an overview of each. It explains how researchers have used both high-level and sector- or procedure-specific comparisons to quantify such waste, and it discusses examples and challenges in both waste measurement and waste reduction. Findings Waste is caused by factors such as health insurance and medical uncertainties that encourage the production of inefficient and low-value services. Various efforts to reduce such waste have encountered challenges, such as the high costs of initial investment, unintended administrative complexities, and trade-offs among patients', payers', and providers' interests. While categorizing waste may help identify and measure general types and sources of waste, successful reduction strategies must integrate the administrative, operational, and clinical components of care, and proceed by identifying goals, changing systemic incentives, and making specific process improvements. Conclusions Classifying, identifying, and measuring waste elucidate its causes, clarify systemic goals, and specify potential health care reforms that—by improving the market for health insurance and health care—will generate incentives for better efficiency and thus ultimately decrease waste in the U.S. health care system. PMID:19120983
Hazardous Waste Cleanup: Solvents & Petroleum Incorporated in Syracuse, New York
The Solvents and Petroleum Service, Inc. (SPS) facility is located at 1405 Brewerton Road in Syracuse, New York. The current owner is a distributor of organic and chlorinated solvents to industries in the Central New York region. Solvents are stored in
Comparative Human Health Risk Analysis of Coastal Community Water and Waste Service Options
As a pilot approach to describe adverse human health effects from alternative decentralized community water systems compared to conventional centralized services (business-as-usual [BAU]), selected chemical and microbial hazards were assessed using disability adjusted life years ...
40 CFR 437.41 - Special definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... are well-operated and maintained; and (5) Explain why the procedures it has adopted will ensure its... STANDARDS THE CENTRALIZED WASTE TREATMENT POINT SOURCE CATEGORY Multiple Wastestreams § 437.41 Special definitions. (a) Initial Certification Statement for this subpart means a written submission to the...
40 CFR 437.41 - Special definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... are well-operated and maintained; and (5) Explain why the procedures it has adopted will ensure its... STANDARDS THE CENTRALIZED WASTE TREATMENT POINT SOURCE CATEGORY Multiple Wastestreams § 437.41 Special definitions. (a) Initial Certification Statement for this subpart means a written submission to the...
Cardiac cachexia: hic et nunc: "hic et nunc" - here and now.
Loncar, Goran; Springer, Jochen; Anker, Markus; Doehner, Wolfram; Lainscak, Mitja
2015-12-15
Cardiac cachexia (CC) is the clinical entity at the end of chronic natural course of heart failure (HF). Despite the efforts, even the most recent definition of cardiac cachexia has been challenged, more precisely the addition of new criteria on top of obligatory weight loss. The pathophysiology of CC is complex and multifactorial. Better understanding of pathophysiological pathways in body wasting will contribute to establish potentially novel treatment strategies. The complex biochemical network related with CC and HF pathophysiology underlines that a single biomarker cannot reflect all of the features of the disease. Biomarkers that could pick-up the changes in body composition before they convey into clinical manifestations of CC would be of great importance. The development of preventive and therapeutic strategies against cachexia, sarcopenia and wasting disorders is perceived as an urgent need by healthcare professionals. The treatment of body wasting remains an unresolved challenge to this day. As CC is a multifactorial disorder, it is unlikely that any single agent will be completely effective in treating this condition. Among all investigated therapeutic strategies, aerobic exercise training in HF patients is the most proved to counteract skeletal muscle wasting and is recommended by treatment guidelines for HF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruebelmann, K.L.
1990-01-01
Following the detection of chlorinated volatile organic compounds in the groundwater beneath the SDA in the summer of 1987, hydrogeological characterization of the Radioactive Waste Management Complex (RWMC), Idaho National Engineering Laboratory (INEL) was required by the Resource Conservation and Recovery Act (RCRA). The waste site, the Subsurface Disposal Area (SDA), is the subject of a RCRA Corrective Action Program. Regulatory requirements for the Corrective Action Program dictate a phased approach to evaluation of the SDA. In the first phase of the program, the SDA is the subject of a RCRA Facility Investigation (RIF), which will obtain information to fullymore » characterize the physical properties of the site, determine the nature and extent of contamination, and identify pathways for migration of contaminants. If the need for corrective measures is identified during the RIF, a Corrective Measures Study (CMS) will be performed as second phase. Information generated during the RIF will be used to aid in the selection and implementation of appropriate corrective measures to correct the release. Following the CMS, the final phase is the implementation of the selected corrective measures. 4 refs., 1 fig.« less
Loncar, Goran; Springer, Jochen; Anker, Markus; Doehner, Wolfram
2016-01-01
Abstract Cardiac cachexia (CC) is the clinical entity at the end of the chronic natural course of heart failure (HF). Despite the efforts, even the most recent definition of cardiac cachexia has been challenged, more precisely, the addition of new criteria on top of obligatory weight loss. The pathophysiology of CC is complex and multifactorial. A better understanding of pathophysiological pathways in body wasting will contribute to establish potentially novel treatment strategies. The complex biochemical network related with CC and HF pathophysiology underlines that a single biomarker cannot reflect all of the features of the disease. Biomarkers that could pick up the changes in body composition before they convey into clinical manifestations of CC would be of great importance. The development of preventive and therapeutic strategies against cachexia, sarcopenia, and wasting disorders is perceived as an urgent need by healthcare professionals. The treatment of body wasting remains an unresolved challenge to this day. As CC is a multifactorial disorder, it is unlikely that any single agent will be completely effective in treating this condition. Among all investigated therapeutic strategies, aerobic exercise training in HF patients is the most proved to counteract skeletal muscle wasting and is recommended by treatment guidelines for HF. PMID:27386168
NASA Astrophysics Data System (ADS)
Alpar, Bedri; Isil Cetin, Basak
2016-04-01
Estuaries are transitional areas between the land and sea and home to a large and growing proportion of the world's population. They are highly productive ecosystems which create jobs, and boosts local economic growth with a higher percentage of collective and private enterprises and a larger share of production. They serve many important socio-economic functions and therefore receive untreated urban wastes and riverine inputs and concentrate various pollutants coming from inland domestic, agricultural and industrial activities. Therefore such kinds of complex systems are highly vulnerable because they are usually the sink for the hinterlands. Due to serious environmental problems felt more intensively day by day, central and local governments must adopt an integrated policy and decision making process to promote a balance of uses. As surrounded by many historical attractions, heritage sites, buzzing cultural scenes and other natural resources, the Haliç (the Golden Horn estuary) offers great opportunities and has a vitality fed by widespread economic and cultural factors. The typical landscape of the estuary, its bridges, geomorphic features, oceanographic and hydrodynamic features of its waters, sea bottom characteristics, environmental pollution, make this estuary a critical marine environment which impacts to economy, environment and community. However, rapid urban growth and uncontrolled industrial development (1950-1985) led to a severe increase in pollution levels of its water and cohesive sediments. The siltation due to liquid and solid waste dumped by two streams caused anaerobic decomposition problems. In addition, the ecological processes occurring in the Haliç are rather complex as they are interacted with the socio-economic system. This study focuses on the essential elements of integrated coastal zone management for the Haliç, and its probable impacts to economy, environment and community. All objectives and probable impacts need to be integrated by collecting information, understanding, planning, decision making, management and monitoring of implementation.
Dubois, Maarten
2012-09-01
Although economic theory supports the use of extended producer responsibility (EPR) to stimulate prevention and recycling of waste, EPR systems implemented in Europe are often criticized as a result of weak incentives for prevention and green product design. Using a stylized economic model, this article evaluates the efficiency of European EPR systems. The model reveals that the introduction of static collection targets creates a gap between theory and implementation. Static targets lead to inefficient market outcomes and weak incentives for prevention and green product design. The minimum collection targets should be complemented with a tax on producers for the non-collected waste fraction. Because such a tax internalizes the cost of waste disposal, more efficient price signals will lead to better incentives for waste management in a complex and dynamic market.
Food waste as nutrient source in heterotrophic microalgae cultivation.
Pleissner, Daniel; Lam, Wan Chi; Sun, Zheng; Lin, Carol Sze Ki
2013-06-01
Glucose, free amino nitrogen (FAN), and phosphate were recovered from food waste by fungal hydrolysis using Aspergillus awamori and Aspergillus oryzae. Using 100g food waste (dry weight), 31.9 g glucose, 0.28 g FAN, and 0.38 g phosphate were recovered after 24h of hydrolysis. The pure hydrolysate has then been used as culture medium and nutrient source for the two heterotrophic microalgae Schizochytrium mangrovei and Chlorella pyrenoidosa, S. mangrovei and C. pyrenoidosa grew well on the complex food waste hydrolysate by utilizing the nutrients recovered. At the end of fermentation 10-20 g biomass were produced rich in carbohydrates, lipids, proteins, and saturated and polyunsaturated fatty acids. Results of this study revealed the potential of food waste hydrolysate as culture medium and nutrient source in microalgae cultivation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Waste Information Management System-2012 - 12114
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyay, H.; Quintero, W.; Shoffner, P.
2012-07-01
The Waste Information Management System (WIMS) -2012 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that wouldmore » be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. WIMS continues to successfully accomplish the goals and objectives set forth by DOE for this project. It has replaced the historic process of each DOE site gathering, organizing, and reporting their waste forecast information utilizing different databases and display technologies. In addition, WIMS meets DOE's objective to have the complex-wide waste forecast and transportation information available to all stakeholders and the public in one easy-to-navigate system. The enhancements to WIMS made since its initial deployment include the addition of new DOE sites and facilities, an updated waste and transportation information, and the ability to easily display and print customized waste forecast, the disposition maps, GIS maps and transportation information. The system also allows users to customize and generate reports over the web. These reports can be exported to various formats, such as Adobe{sup R} PDF, Microsoft Excel{sup R}, and Microsoft Word{sup R} and downloaded to the user's computer. Future enhancements will include database/application migration to the next level. A new data import interface will be developed to integrate 2012-13 forecast waste streams. In addition, the application is updated on a continuous basis based on DOE feedback. (authors)« less
Zhang, Qingfang; Feng, Chen
2017-01-01
The interaction between central and peripheral processing in written word production remains controversial. This study aims to investigate whether the effects of radical complexity and lexicality in central processing cascade into peripheral processing in Chinese written word production. The participants were asked to write characters and non-characters (lexicality) with different radical complexity (few- and many-strokes). The findings indicated that regardless of the lexicality, the writing latencies were longer for characters with higher complexity (the many-strokes condition) than for characters with lower complexity (the few-strokes condition). The participants slowed down their writing execution at the radicals' boundary strokes, which indicated a radical boundary effect in peripheral processing. Interestingly, the lexicality and the radical complexity affected the pattern of shift velocity and writing velocity during the execution of writing. Lexical processing cascades into peripheral processing but only at the beginning of Chinese characters. In contrast, the radical complexity influenced the execution of handwriting movement throughout the entire character, and the pattern of the effect interacted with the character frequency. These results suggest that the processes of the lexicality and the radical complexity function during the execution of handwritten word production, which suggests that central processing cascades over peripheral processing during Chinese characters handwriting. PMID:28348536
Waste information management system: a web-based system for DOE waste forecasting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geisler, T.J.; Shoffner, P.A.; Upadhyay, U.
2007-07-01
The implementation of the Department of Energy (DOE) mandated accelerated cleanup program has created significant potential technical impediments that must be overcome. The schedule compression will require close coordination and a comprehensive review and prioritization of the barriers that may impede treatment and disposition of the waste streams at each site. Many issues related to site waste treatment and disposal have now become potential critical path issues under the accelerated schedules. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE headquarters in Washington, D.C., need timely waste forecast information regarding the volumes andmore » types of waste that will be generated by DOE sites over the next 25 years. Each local DOE site has historically collected, organized, and displayed site waste forecast information in separate and unique systems. However, waste information from all sites needs a common application to allow interested parties to understand and view the complete complex-wide picture. A common application would allow identification of total waste volumes, material classes, disposition sites, choke points, and technological or regulatory barriers to treatment and disposal. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, has completed the development of this web-based forecast system. (authors)« less
Nuclear waste transportation: case studies of identifying stakeholder risk information needs.
Drew, Christina H; Grace, Deirdre A; Silbernagel, Susan M; Hemmings, Erin S; Smith, Alan; Griffith, William C; Takaro, Timothy K; Faustman, Elaine M
2003-01-01
The U.S. Department of Energy (DOE) is responsible for the cleanup of our nation's nuclear legacy, involving complex decisions about how and where to dispose of nuclear waste and how to transport it to its ultimate disposal site. It is widely recognized that a broad range of stakeholders and tribes should be involved in this kind of decision. All too frequently, however, stakeholders and tribes are only invited to participate by commenting on processes and activities that are near completion; they are not included in the problem formulation stages. Moreover, it is often assumed that high levels of complexity and uncertainty prevent meaningful participation by these groups. Considering the types of information that stakeholders and tribes need to be able to participate in the full life cycle of decision making is critical for improving participation and transparency of decision making. Toward this objective, the Consortium for Risk Evaluation with Stakeholder Participation (CRESP) participated in three public processes relating to nuclear waste transportation and disposal in 1997-1998. First, CRESP organized focus groups to identify concerns about nuclear waste transportation. Second, CRESP conducted exit surveys at regional public workshops held by DOE to get input from stakeholders on intersite waste transfer issues. Third, CRESP developed visual tools to synthesize technical information and allow stakeholders and tribes with varying levels of knowledge about nuclear waste to participate in meaningful discussion. In this article we share the results of the CRESP findings, discuss common themes arising from these interactions, and comment on special considerations needed to facilitate stakeholder and tribal participation in similar decision-making processes. PMID:12611653
Poggio, D; Walker, M; Nimmo, W; Ma, L; Pourkashanian, M
2016-07-01
This work proposes a novel and rigorous substrate characterisation methodology to be used with ADM1 to simulate the anaerobic digestion of solid organic waste. The proposed method uses data from both direct substrate analysis and the methane production from laboratory scale anaerobic digestion experiments and involves assessment of four substrate fractionation models. The models partition the organic matter into a mixture of particulate and soluble fractions with the decision on the most suitable model being made on quality of fit between experimental and simulated data and the uncertainty of the calibrated parameters. The method was tested using samples of domestic green and food waste and using experimental data from both short batch tests and longer semi-continuous trials. The results showed that in general an increased fractionation model complexity led to better fit but with increased uncertainty. When using batch test data the most suitable model for green waste included one particulate and one soluble fraction, whereas for food waste two particulate fractions were needed. With richer semi-continuous datasets, the parameter estimation resulted in less uncertainty therefore allowing the description of the substrate with a more complex model. The resulting substrate characterisations and fractionation models obtained from batch test data, for both waste samples, were used to validate the method using semi-continuous experimental data and showed good prediction of methane production, biogas composition, total and volatile solids, ammonia and alkalinity. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Radioactive waste management complex low-level waste radiological composite analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCarthy, J.M.; Becker, B.H.; Magnuson, S.O.
1998-05-01
The composite analysis estimates the projected cumulative impacts to future members of the public from the disposal of low-level radioactive waste (LLW) at the Idaho National Engineering and Environmental Laboratory (INEEL) Radioactive Waste Management Complex (RWMC) and all other sources of radioactive contamination at the INEEL that could interact with the LLW disposal facility to affect the radiological dose. Based upon the composite analysis evaluation, waste buried in the Subsurface Disposal Area (SDA) at the RWMC is the only source at the INEEL that will significantly interact with the LLW facility. The source term used in the composite analysis consistsmore » of all historical SDA subsurface disposals of radionuclides as well as the authorized LLW subsurface disposal inventory and projected LLW subsurface disposal inventory. Exposure scenarios evaluated in the composite analysis include all the all-pathways and groundwater protection scenarios. The projected dose of 58 mrem/yr exceeds the composite analysis guidance dose constraint of 30 mrem/yr; therefore, an options analysis was conducted to determine the feasibility of reducing the projected annual dose. Three options for creating such a reduction were considered: (1) lowering infiltration of precipitation through the waste by providing a better cover, (2) maintaining control over the RWMC and portions of the INEEL indefinitely, and (3) extending the period of institutional control beyond the 100 years assumed in the composite analysis. Of the three options investigated, maintaining control over the RWMC and a small part of the present INEEL appears to be feasible and cost effective.« less
Rovetta, Alberto; Xiumin, Fan; Vicentini, Federico; Minghua, Zhu; Giusti, Alessandro; Qichang, He
2009-12-01
The present study describes a novel application for use in the monitoring of municipal solid waste, based on distributed sensor technology and geographical information systems. Original field testing and evaluation of the application were carried out in Pudong, Shanghai (PR China). The local waste management system in Pudong features particular requirements related to the rapidly increasing rate of waste production. In view of the fact that collected waste is currently deployed to landfills or to incineration plants within the context investigated, the key aspects to be taken into account in waste collection procedures include monitoring of the overall amount of waste produced, quantitative measurement of the waste present at each collection point and identification of classes of material present in the collected waste. The case study described herein focuses particularly on the above mentioned aspects, proposing the implementation of a network of sensorized waste containers linked to a data management system. Containers used were equipped with a set of sensors mounted onto standard waste bins. The design, implementation and validation procedures applied are subsequently described. The main aim to be achieved by data collection and evaluation was to provide for feasibility analysis of the final device. Data pertaining to the content of waste containers, sampled and processed by means of devices validated on two purpose-designed prototypes, were therefore uploaded to a central monitoring server using GPRS connection. The data monitoring and management modules are integrated into an existing application used by local municipal authorities. A field test campaign was performed in the Pudong area. The system was evaluated in terms of real data flow from the network nodes (containers) as well as in terms of optimization functions, such as collection vehicle routing and scheduling. The most important outcomes obtained were related to calculations of waste weight and volume. The latter data were subsequently used as parameters for the routing optimization of collection trucks and material density evaluation.
Zhou, Qing; Li, Ziyin
2015-11-01
γ-Tubulin complex constitutes a key component of the microtubule-organizing center and nucleates microtubule assembly. This complex differs in complexity in different organisms: the budding yeast contains the γ-tubulin small complex (γTuSC) composed of γ-tubulin, gamma-tubulin complex protein (GCP)2 and GCP3, whereas animals contain the γ-tubulin ring complex (γTuRC) composed of γTuSC and three additional proteins, GCP4, GCP5 and GCP6. In Trypanosoma brucei, the composition of the γ-tubulin complex remains elusive, and it is not known whether it also regulates assembly of the subpellicular microtubules and the spindle microtubules. Here we report that the γ-tubulin complex in T. brucei is composed of γ-tubulin and three GCP proteins, GCP2-GCP4, and is primarily localized in the basal body throughout the cell cycle. Depletion of GCP2 and GCP3, but not GCP4, disrupted the axonemal central pair microtubules, but not the subpellicular microtubules and the spindle microtubules. Furthermore, we showed that the γTuSC is required for assembly of two central pair proteins and that γTuSC subunits are mutually required for stability. Together, these results identified an unusual γ-tubulin complex in T. brucei, uncovered an essential role of γTuSC in central pair protein assembly, and demonstrated the interdependence of individual γTuSC components for maintaining a stable complex. © 2015 John Wiley & Sons Ltd.
Johansson, N; Krook, J; Frändegård, P
2017-02-01
This paper examines the market potential of disposed shredder waste, a resource that is increasingly emphasized as a future mine. A framework with gate requirements of various outlets was developed and contrasted with a pilot project focusing on excavated waste from a shredder landfill, sorted in an advanced recycling facility. Only the smallest fraction by percentage had an outlet, the metals (8%), which were sold according to a lower quality class. The other fractions (92%) were not accepted for incineration, as construction materials or even for re-deposition. Previous studies have shown similar lack of marketability. This means that even if one fraction can be recovered, the outlet of the other material is often unpredictable, resulting in a waste disposal problem, which easily prevents a landfill mining project altogether. This calls for marketability and usability of deposited waste to become a central issue for landfill mining research. The paper concludes by discussing how concerned actors can enhance the marketability, for example by pre-treating the disposed waste to acclimatize it to existing sorting methods. However, for concerned actors to become interested in approaching unconventional resources such as deposited waste, greater regulatory flexibility is needed in which, for example, re-deposition could be allowed as long as the environmental benefits of the projects outweigh the disadvantages. Copyright © 2016 Elsevier Ltd. All rights reserved.
Xu, Wanying; Zhou, Chuanbin; Lan, Yajun; Jin, Jiasheng; Cao, Aixin
2015-05-01
Municipal solid waste (MSW) management (MSWM) is most important and challenging in large urban communities. Sound community-based waste management systems normally include waste reduction and material recycling elements, often entailing the separation of recyclable materials by the residents. To increase the efficiency of source separation and recycling, an incentive-based source separation model was designed and this model was tested in 76 households in Guiyang, a city of almost three million people in southwest China. This model embraced the concepts of rewarding households for sorting organic waste, government funds for waste reduction, and introducing small recycling enterprises for promoting source separation. Results show that after one year of operation, the waste reduction rate was 87.3%, and the comprehensive net benefit under the incentive-based source separation model increased by 18.3 CNY tonne(-1) (2.4 Euros tonne(-1)), compared to that under the normal model. The stakeholder analysis (SA) shows that the centralized MSW disposal enterprises had minimum interest and may oppose the start-up of a new recycling system, while small recycling enterprises had a primary interest in promoting the incentive-based source separation model, but they had the least ability to make any change to the current recycling system. The strategies for promoting this incentive-based source separation model are also discussed in this study. © The Author(s) 2015.
The Glymphatic System – A Beginner's Guide
Jessen, Nadia Aalling; Munk, Anne Sofie Finmann; Lundgaard, Iben; Nedergaard, Maiken
2015-01-01
The glymphatic system is a recently discovered macroscopic waste clearance system that utilizes a unique system of perivascular channels, formed by astroglial cells, to promote efficient elimination of soluble proteins and metabolites from the central nervous system. Besides waste elimination, the glymphatic system may also function to help distribute non-waste compounds, such as glucose, lipids, amino acids, and neurotransmitters related to volume transmission, in the brain. Intriguingly, the glymphatic system function mainly during sleep and is largely disengaged during wakefulness. The biological need for sleep across all species may therefore reflect that the brain must enter a state of activity that enables elimination of potentially neurotoxic waste products, including β-amyloid. Since the concept of the glymphatic system is relatively new, we will here review its basic structural elements, organization, regulation, and functions. We will also discuss recent studies indicating that glymphatic function is suppressed in various diseases and that failure of glymphatic function in turn might contribute to pathology in neurodegenerative disorders, traumatic brain injury and stroke. PMID:25947369
Hayes, Alexander C; Enongene Ekwe, S; Mervin, Steve; Jenson, Earl
2016-12-01
The extraction of natural resources often involves housing workers in remote work camps far from population centres. These camps are prevalent in northern Alberta where they house approximately 40,000 workers involved in oil sands processing. The central, full-service cafeterias at these camps produce a significant quantity of food and cardboard waste. Due to their remote nature, these camps face high waste disposal costs associated with trucking waste long distances to the landfill. In this study, we investigated the techno-economic feasibility of on-site treatment of food and cardboard waste in a tandem dry batch, garage-style anaerobic digestion-compost process in which the waste material is converted into renewable energy used to heat the camp water supply and a nutrient-rich soil amendment for local land reclamation projects. Dry batch digestion and windrow composting pilot trials were performed on a simulated work camp waste in order to assess technical performance. The quality of the final compost was found to meet regulatory standards. A complete mass balance was then developed for a facility treating 3000 tonnes food waste and 435 tonnes waste cardboard annually. An economic assessment of such a facility was performed and, depending on the level of capital support and recognition of carbon credits for landfill methane mitigation, would require waste disposal costs to be between $115 and $195 CAD per tonne to meet financial criteria for project selection in Alberta's oil and gas industry. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kinyoki, Damaris K; Berkley, James A; Moloney, Grainne M; Odundo, Elijah O; Kandala, Ngianga-Bakwin; Noor, Abdisalan M
2016-02-01
To determine the sub-national seasonal prevalence and trends in wasting from 2007 to 2010 among children aged 6-59 months in Somalia using remote sensing and household survey data from nutritional surveys. Bayesian hierarchical space-time model was implemented using a stochastic partial differential equation (SPDE) approach in integrated nested Laplace approximations (INLA) to produce risk maps of wasting at 1 × 1 km(2) spatial resolution and predict to seasons in each year of study from 2007 to 2010. The prevalence of wasting was generally at critical levels throughout the country, with most of the areas remaining in the upper classes of critical and very critical levels. There was minimal variation in wasting from year-to-year, but a well-defined seasonal variation was observed. The mean difference of the prevalence of wasting between the dry and wet season ranges from 0% to 5%. The risks of wasting in the South Central zone were highest in the Gedo (37%) and Bay (32%) regions. In North East zone the risk was highest in Nugaal (25%) and in the North West zone the risk was high in Awdal and Woqooyi Galbeed regions with 23%. There was a clear seasonal variation in wasting with minimal year-to-year variability from 2007 to 2010 in Somalia. The prevalence was high during the long dry season, which affects the prevalence in the preceding long rainy season. Understanding the seasonal fluctuations of wasting in different locations and at different times is important to inform timely interventions. Copyright © 2016. Published by Elsevier Ltd.
Characterisation of FOGs in grease trap waste from the processing of chickens in Thailand.
Nitayapat, Nuttakan; Chitprasert, Pakamon
2014-06-01
Industrial firms that kill and process chickens generate wastewater that contains fat, oil, and grease (FOG). The FOGs are located in the fatty waste that is collected by floatation in grease traps. Chemical and physical characterisation of FOGs would provide useful information that would help in the development of methods designed to decrease the extent of pollution caused by disposal of the waste and to utilise commercially some of its lipid constituents. Employing these methods would enhance the profitability and competitive potential of these commercial organisations. Samples of grease trap waste from 14 firms in central Thailand have been examined. Due to the very different schemes of waste management employed by these firms, the physical appearance of their fatty wastes showed considerable variation. The chemical and physical properties of the FOGs present in these wastes showed considerable variation also. Large amounts of free fatty acids (10-70% as oleic acid) were detected in most of the 14 wastes and palmitic, cis-9-oleic, cis,cis-9,12-linoleic, stearic, and palmitoleic acids were the predominant species of free and esterified acids. Most of the FOGs were solid at temperatures below 40 °C. Many of them contained traces of heavy metals (Cu and Pb) and some contained traces of the pesticides dimethoate and cypermethrin. The content of these potentially hazardous substances would have to be considered very carefully before discarding the fatty wastes and during the development of methods designed to isolate their potentially profitable lipid constituents. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, Heather; Flach, Greg; Smith, Frank
2015-01-27
The U.S. Department of Energy Environmental Management (DOE-EM) Office of Tank Waste Management-sponsored Cementitious Barriers Partnership (CBP) is chartered with providing the technical basis for implementing cement-based waste forms and radioactive waste containment structures for long-term disposal. DOE needs in this area include the following to support progress in final treatment and disposal of legacy waste and closure of High-Level Waste (HLW) tanks in the DOE complex: long-term performance predictions, flow sheet development and flow sheet enhancements, and conceptual designs for new disposal facilities. The DOE-EM Cementitious Barriers Partnership is producing software and experimental programs resulting in new methods andmore » data needed for end-users involved with environmental cleanup and waste disposal. Both the modeling tools and the experimental data have already benefited the DOE sites in the areas of performance assessments by increasing confidence backed up with modeling support, leaching methods, and transport properties developed for actual DOE materials. In 2014, the CBP Partnership released the CBP Software Toolbox –“Version 2.0” which provides concrete degradation models for 1) sulfate attack, 2) carbonation, and 3) chloride initiated rebar corrosion, and includes constituent leaching. These models are applicable and can be used by both DOE and the Nuclear Regulatory Commission (NRC) for service life and long-term performance evaluations and predictions of nuclear and radioactive waste containment structures across the DOE complex, including future SRS Saltstone and HLW tank performance assessments and special analyses, Hanford site HLW tank closure projects and other projects in which cementitious barriers are required, the Advanced Simulation Capability for Environmental Management (ASCEM) project which requires source terms from cementitious containment structures as input to their flow simulations, regulatory reviews of DOE performance assessments, and Nuclear Regulatory Commission reviews of commercial nuclear power plant (NPP) structures which are part of the overall US Energy Security program to extend the service life of NPPs. In addition, the CBP experimental programs have had a significant impact on the DOE complex by providing specific data unique to DOE sodium salt wastes at Hanford and SRS which are not readily available in the literature. Two recent experimental programs on cementitious phase characterization and on technetium (Tc) mobility have provided significant conclusions as follows: recent mineralogy characterization discussed in this paper illustrates that sodium salt waste form matrices are somewhat similar to but not the same as those found in blended cement matrices which to date have been used in long-term thermodynamic modeling and contaminant sequestration as a first approximation. Utilizing the CBP generated data in long-term performance predictions provides for a more defensible technical basis in performance evaluations. In addition, recent experimental studies related to technetium mobility indicate that conventional leaching protocols may not be conservative for direct disposal of Tc-containing waste forms in vadose zone environments. These results have the potential to influence the current Hanford supplemental waste treatment flow sheet and disposal conceptual design.« less
Waste water treatment plants (WWTPs), as well as industrial and agricultural operations release complex mixtures of anthropogenic chemicals that negatively affect surface water quality. Previous studies have shown that exposure to such complex chemical mixtures can produce adver...
ERIC Educational Resources Information Center
Feldman, Jonathan
This book presents the thesis that U.S. universities have become part of an academic-military-industrial complex that support repression and murder in Central America. Part 1 explains how U.S. policies have been based on murder in Central America and examines the responsibility of transnational corporations and U.S. war planners in this…
NASA Astrophysics Data System (ADS)
Friedlander, L. R.; Garb, Y.
2017-12-01
Electronic waste (e-waste) is one of today's fastest growing waste streams. Made up of discarded electronics, e-waste disposal is complex. However, e-waste also provides economic opportunity through the processing and extraction of precious metals. Sometimes referred to as "urban mining," this recycling operates informally or illegally and is characterized by dangerous practices such as, open-pit burning, acid leaching, and burning of low value wastes. Poorly controlled e-waste recycling releases dangerous contaminants, especially heavy metals, directly to the surface environment where they can infiltrate water resources and spread through precipitation events. Despite growing recognition of the prevalence of unregulated e-waste processing, systematic data on the extent and persistence of the released contamination is still limited. In general, contamination is established through techniques that provide only a snapshot in time and in a limited geographic area. Here we present preliminary results from attempts to combine field, laboratory, and remote sensing studies toward a systematic remote sensing methodology for e-waste contamination detection and monitoring. The ongoing work utilizes a tragic "natural experiment," in which over 500 e-waste burn sites were active over more than a decade in a variety of agricultural, residential, and natural contexts. We have collected over 100 soil samples for which we have both XRF and ICP-AES measurements showing soil Pb concentrations as high as 14000 ppm. We have also collected 480 in-situ reflectance spectra with corresponding soil samples over 4 field transects of areas with long-term burn activity. The most heavily contaminated samples come from within the burn sites and are made up of ash. Field spectra of these samples reflect their dark color with low overall reflectance and shallow spectral features. These spectra are challenging to use for image classification due to their similarity with other low-reflectance parts of the image (e.g., shadows). We have begun to distinguish shadows from the dark burn site centers by automatically detecting and masking shadows. This will allow us to utilize images taken at different times and our in-situ field spectral results to develop a method for monitoring contaminant spread from these complex point sources.
Alternative approaches for better municipal solid waste management in Mumbai, India
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rathi, Sarika
2006-07-01
Waste is an unavoidable by product of human activities. Economic development, urbanization and improving living standards in cities, have led to an increase in the quantity and complexity of generated waste. Rapid growth of population and industrialization degrades the urban environment and places serious stress on natural resources, which undermines equitable and sustainable development. Inefficient management and disposal of solid waste is an obvious cause of degradation of the environment in most cities of the developing world. Municipal corporations of the developing countries are not able to handle increasing quantities of waste, which results in uncollected waste on roads andmore » in other public places. There is a need to work towards a sustainable waste management system, which requires environmental, institutional, financial, economic and social sustainability. This study explores alternative approaches to municipal solid waste (MSW) management and estimates the cost of waste management in Mumbai, India. Two alternatives considered in the paper are community participation and public private partnership in waste management. Data for the present study are from various non-governmental organizations (NGOs) and from the private sector involved in waste management in Mumbai. Mathematical models are used to estimate the cost per ton of waste management for both of the alternatives, which are compared with the cost of waste management by Municipal Corporation of Greater Mumbai (MCGM). It is found that the cost per ton of waste management is Rs. 1518 (US$35) with community participation; Rs. 1797 (US$41) with public private partnership (PPP); and Rs. 1908 (US$44) when only MCGM handles the waste. Hence, community participation in waste management is the least cost option and there is a strong case for comprehensively involving community participation in waste management.« less
Stabilization and disposal of Argonne-West low-level mixed wastes in ceramicrete waste forms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barber, D. B.; Singh, D.; Strain, R. V.
1998-02-17
The technology of room-temperature-setting phosphate ceramics or Ceramicrete{trademark} technology, developed at Argonne National Laboratory (ANL)-East is being used to treat and dispose of low-level mixed wastes through the Department of Energy complex. During the past year, Ceramicrete{trademark} technology was implemented for field application at ANL-West. Debris wastes were treated and stabilized: (a) Hg-contaminated low-level radioactive crushed light bulbs and (b) low-level radioactive Pb-lined gloves (part of the MWIR {number_sign} AW-W002 waste stream). In addition to hazardous metals, these wastes are contaminated with low-level fission products. Initially, bench-scale waste forms with simulated and actual waste streams were fabricated by acid-base reactionsmore » between mixtures of magnesium oxide powders and an acid phosphate solution, and the wastes. Size reduction of Pb-lined plastic glove waste was accomplished by cryofractionation. The Ceramicrete{trademark} process produces dense, hard ceramic waste forms. Toxicity Characteristic Leaching Procedure (TCLP) results showed excellent stabilization of both Hg and Pb in the waste forms. The principal advantage of this technology is that immobilization of contaminants is the result of both chemical stabilization and subsequent microencapsulation of the reaction products. Based on bench-scale studies, Ceramicrete{trademark} technology has been implemented in the fabrication of 5-gal waste forms at ANL-West. Approximately 35 kg of real waste has been treated. The TCLP is being conducted on the samples from the 5-gal waste forms. It is expected that because the waste forms pass the limits set by the EPAs Universal Treatment Standard, they will be sent to a radioactive-waste disposal facility.« less
Hazardous and toxic waste management in Botswana: practices and challenges.
Mmereki, Daniel; Li, Baizhan; Meng, Liu
2014-12-01
Hazardous and toxic waste is a complex waste category because of its inherent chemical and physical characteristics. It demands for environmentally sound technologies and know-how as well as clean technologies that simultaneously manage and dispose it in an environmentally friendly way. Nevertheless, Botswana lacks a system covering all the critical steps from importation to final disposal or processing of hazardous and toxic waste owing to limited follow-up of the sources and types of hazardous and toxic waste, lack of modern and specialised treatment/disposal facilities, technical know-how, technically skilled manpower, funds and capabilities of local institutions to take lead in waste management. Therefore, because of a lack of an integrated system, there are challenges such as lack of cooperation among all the stakeholders about the safe management of hazardous and toxic waste. Furthermore, Botswana does not have a systematic regulatory framework regarding monitoring and hazardous and toxic waste management. In addition to the absence of a systematic regulatory framework, inadequate public awareness and dissemination of information about hazardous and toxic waste management, slower progress to phase-out persistent and bio-accumulative waste, and lack of reliable and accurate information on hazardous and toxic waste generation, sources and composition have caused critical challenges to effective hazardous and toxic waste management. It is, therefore, important to examine the status of hazardous and toxic waste as a waste stream in Botswana. By default; this mini-review article presents an overview of the current status of hazardous and toxic waste management and introduces the main challenges in hazardous and toxic waste management. Moreover, the article proposes the best applicable strategies to achieve effective hazardous and toxic waste management in the future. © The Author(s) 2014.
Volatile Organic Compound (VOC) Emissions from Dairy Cows and Their Waste
NASA Astrophysics Data System (ADS)
Shaw, S.; Holzinger, R.; Mitloehner, F.; Goldstein, A.
2005-12-01
Biogenic VOCs are typically defined as those directly emitted from plants, but approximately 6% of global net primary production is consumed by cattle that carry out enteric fermentation and then emit VOCs that could also be considered biogenic. Current regulatory estimates suggest that dairy cattle in central California emit VOCs at rates comparable to those from passenger vehicles in the region, and thus contribute significantly to the extreme non-attainment of ozone standards there. We report PTR-MS measurements of ammonia and VOCs, and cavity-enhanced-absorption gas analyzer (Los Gatos Research, Inc.) measurements of CH4, emitted from dairy cattle in various stages of pregnancy/lactation and their waste. Experiments were conducted in chambers at UC Davis that simulate freestall cow housing conditions. CH4 fluxes ranged from 125-374 lb/cow/year. The compounds with the highest fluxes from '3 cows+waste' treatments were: ammonia (1-18), methanol (0-2.3), acetone+propanal (0.2-0.7), dimethylsulfide (0-0.4), and mass 109 (likely ID = p-cresol; 0-0.3) in lb/cow/year. Mass 60 (likely ID = trimethylamine) and acetic acid were also abundant. There were 10s of additional compounds with detectable, but small, emissions. A few compounds that were likely emitted (i.e. ethanol, formaldehyde, and dimethylamine) were not quantified by the PTR-MS. The total flux for all measured organic gases (TOG = CH4 + PTR-MS VOCs(including acetone+propanal)) averaged 246±45 lb/cow/year for '3 cows+waste' treatments, and was dominated by methane (>98%). TOG flux for 'waste only' treatments averaged 1.1±0.1 lb/cow/year, and was instead dominated by VOC (>84%). The PTR-MS VOCs as a percent of TOG (0.6±0.2%) emitted from '3 cows+waste' treatments in chamber conditions was a factor of 10 smaller than that currently estimated by the California Air Resources Board. In addition, the ozone forming potentials of the most abundant VOCs are only about 10% those of typical combustion or plant-derived VOCs, implying dairy cattle have a smaller effect on ozone formation than currently assumed by air districts in central California.
NASA Astrophysics Data System (ADS)
Cieślik, Ewelina; Konieczny, Tomasz; Bobik, Bartłomiej
2018-01-01
One of the source of air pollutants is emission from local coal-fired boiler-houses and domestic heating boilers. The consequence of incineration of municipal waste is the introduction of additional pollutants into the atmosphere, including fly ash. The aim of this work was to evaluate the particle size distribution of fly ash emitted by coal combustion and co-incineration of coal with municipal waste in a domestic 18 kW central heating boiler equipped with an automatic fuel feeder. Mixtures of bituminous coal with different types of solid waste (5, 10 and 15% of mass fraction) were used. Solid waste types consisted of: printed, colored PE caps, fragmented cable trunking, fragmented car gaskets and shredded tires from trucks. During the incineration of a given mixture of municipal waste with bituminous coal, the velocity of exhaust gas was specified, the concentration and mass flow of fly ash were determined together with the physico-chemical parameters of the exhaust gas, the samples of emitted fly ash were taken as the test material. Particle size analysis of fly ash was performed using laser particle sizer Fritch Analysette 22. The PM10 share from all fly ashes from incineration of mixtures was about 100%. Differences were noted between PM2.5 and PM1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peace, Gerald; Goering, Timothy James
2004-03-01
The Mixed Waste Landfill occupies 2.6 acres in the north-central portion of Technical Area 3 at Sandia National Laboratories, Albuquerque, New Mexico. The landfill accepted low-level radioactive and mixed waste from March 1959 to December 1988. This report represents the Corrective Measures Study that has been conducted for the Mixed Waste Landfill. The purpose of the study was to identify, develop, and evaluate corrective measures alternatives and recommend the corrective measure(s) to be taken at the site. Based upon detailed evaluation and risk assessment using guidance provided by the U.S. Environmental Protection Agency and the New Mexico Environment Department, themore » U.S. Department of Energy and Sandia National Laboratories recommend that a vegetative soil cover be deployed as the preferred corrective measure for the Mixed Waste Landfill. The cover would be of sufficient thickness to store precipitation, minimize infiltration and deep percolation, support a healthy vegetative community, and perform with minimal maintenance by emulating the natural analogue ecosystem. There would be no intrusive remedial activities at the site and therefore no potential for exposure to the waste. This alternative poses minimal risk to site workers implementing institutional controls associated with long-term environmental monitoring as well as routine maintenance and surveillance of the site.« less
Multiresidue screening of milk withheld for sale at dairy farms in central New York State.
Pereira, R V; Siler, J D; Bicalho, R C; Warnick, L D
2014-03-01
Many of the drugs commonly used in lactating dairy cows result in residues in the milk, prohibiting its sale for human consumption. Milk withheld for sale because of drug treatment or from cows with high somatic cell counts is commonly called "waste milk." One-third of dairy farms in the United States use waste milk to feed preweaned dairy calves. Limited information is currently available on the effect of this practice on the selection and dissemination of antibiotic-resistant bacteria. Pooled waste milk samples were collected from 34 dairy farms in central New York State with the objective of detecting the presence and quantity of drug residues in these samples. Samples were collected and refrigerated using ice packs and then stored at 4°C upon arrival at the Cornell laboratory (Ithaca, NY). Screening for β-lactam, tetracycline, and sulfonamide residues in the milk was performed using commercial enzyme-linked receptor-binding assay (SNAP) tests (Idexx Laboratories Inc., Westbrook, ME). Samples with a positive SNAP test were selected for screening using a multiresidue liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. The SNAP tests revealed that 75, 14.3, and 7.1% of waste milk samples (n=34) contained β-lactam, tetracycline, and sulfamethazine residues, respectively. Of the samples sent for LC-MS/MS (n=28), half had detectable quantities of drug residues. The most prevalent drugs detected by LC-MS/MS were ceftiofur (39.2%; mean ± SE concentration=0.151 ± 0.042 μg/mL), penicillin G (14.2%; mean ± SE concentration=0.008 ± 0.001 µg/mL), and ampicillin (7.1%; mean ± SE concentration=0.472 ± 0.43 µg/mL). In addition, one sample had detectable concentrations of oxytetracycline and one sample had detectable concentrations of sulfadimethoxine. These results provide insight on drug residues present in waste milk from select farm in upstate New York, and additionally indicate the need for additional studies targeting on-farm treatments that could degrade drug residues present in waste milk and reduce the potential effects on the biosphere from the disposal and use of waste milk as a feed source. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Osborne, David T.
1993-01-01
Throughout all levels of American government, a shift is taking place from the rigid, wasteful, centralized bureaucracies of the industrial era to the more flexible, entrepreneurial, decentralized government needed to succeed in today's world. This shift has been brought about by an unprecedented, ongoing fiscal crisis that has created a sudden…
ERIC Educational Resources Information Center
Ouchi, William G.
2004-01-01
Argues that school systems are so centralized that they waste money on bureaucratic operations and lack the capacity to respond rapidly to changing circumstances. A study of nine school systems that vary dramatically in their degree of decentralization demonstrates that true decentralization yields benefits in both efficiency and performance. (MLF)
Making waste management public (or falling back to sleep)
Lougheed, Scott; Rowe, R Kerry; Kuyvenhoven, Cassandra
2014-01-01
Human-produced waste is a major environmental concern, with communities considering various waste management practices, such as increased recycling, landfilling, incineration, and waste-to-energy technologies. This article is concerned with how and why publics assemble around waste management issues. In particular, we explore Noortje Marres and Bruno Latour’s theory that publics do not exist prior to issues but rather assemble around objects, and through these assemblages, objects become matters of concern that sometimes become political. The article addresses this theory of making things public through a study of a small city in Ontario, Canada, whose landfill is closed and waste diversion options are saturated, and that faces unsustainable costs in shipping its waste to the United States, China, and other regions. The city’s officials are undertaking a cost–benefit assessment to determine the efficacy of siting a new landfill or other waste management facility. We are interested in emphasizing the complexity of making (or not making) landfills public, by exploring an object in action, where members of the public may or may not assemble, waste may or may not be made into an issue, and waste is sufficiently routinized that it is not typically transformed from an object to an issue. We hope to demonstrate Latour’s third and fifth senses of politics best account for waste management’s trajectory as a persistent yet inconsistent matter of public concern. PMID:25051590
The Direct Path To WIPP - 12471
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spoerner, M.T.; Burger, M.J.; Garcia, J.
2012-07-01
Sandia National Laboratories/New Mexico (SNL/NM), designated as a small quantity site (SQS) by the National TRU Program (NTP), generated contact-handled (CH) and remote-handled (RH) transuranic (TRU) waste primarily from the decontamination and clean-out of glove boxes at the Hot Cell Facility (HCF) at Technical Area (TA) V. All of the waste required repackaging, with the CH TRU waste being repackaged from late 2007 through 2011. Three shipments of CH were completed in October 2011, which de-inventoried SNL/NM's legacy TRU waste. In FY11, RH TRU waste was repackaged at the Auxiliary Hot Cell Facility (AHCF) located in TAV with the supportmore » of the Central Characterization Project (CCP). The waste was originally packaged in SNL/NM fabricated casks, cement or lead-lined 55-gallon drums, or 30-gallon drums. The AHCF is a small hot cell, with access only through a roof port which presented challenges for inserting and removing waste from the hot cell. The CCP provided visual examination operators (VEOs) to observe and document each waste item repackaged, removal of prohibited items, and radiological sampling. Dose-to-Curie measurements were calculated by CCP after a radiological report was prepared using scaling factors determined by the analysis of swipe samples. Finally, headspace gas samples were taken and sent to the Advanced Mixed Waste Treatment Project (AMWTP) for analysis. Despite the challenges, the RH waste is on track to be shipped to WIPP in early FY12. The processes used and procedures developed to conduct the repackaging operations, the issues identified and mitigated were challenging but the cooperation between SNL/NM and the Central Characterization Program (CCP) enabled SNL/NM to complete the repackaging and support the characterization and shipment. An inventory list, identification of the campaigns, discussion of the challenges and mitigations, and the final loading of the RH 72-B casks at TA-V for direct shipment to the Waste Isolation Pilot Plant (WIPP) will be discussed. Lessons learned from the RH campaigns are: - Some containers that were originally identified as HC-3 have been re-evaluated and became < HC-3 due to the conservative estimates made by the original generators - Operators at the AHCF were not accustomed to the detail required by the VE operators. However, they worked well together and the repackaging was completed ahead of schedule. - The AK was not always accurate as was demonstrated by the solid waste found in the drum during the first visit by EPA. That waste has since been determined to be low-level. - Two drums originally thought to be RH turned out to be CH and arrangement for RTR had to be made quickly. - Six of the original RH repacked drums became low level. - Lessons learned from the CH campaigns were helpful in avoiding many issues. The RH repackaging effort has been a success due to the expertise of the AHCF operators, supervisor, and manager, the conscientious attention to detail of the CCP VE operators, the experience of the CCP DTC and headspace gas sampling staff, and the guidance and support from CCP and CBFO. Sometimes schedules had to be adjusted, processes updated, and issues discussed, but the communication between CCP and SNL/NM was good. SNL/NM hopes to have the legacy RH TRU waste shipped off-site by early 2012. (authors)« less
Future trends which will influence waste disposal.
Wolman, A
1978-01-01
The disposal and management of solid wastes are ancient problems. The evolution of practices naturally changed as populations grew and sites for disposal became less acceptable. The central search was for easy disposal at minimum costs. The methods changed from indiscriminate dumping to sanitary landfill, feeding to swine, reduction, incineration, and various forms of re-use and recycling. Virtually all procedures have disabilities and rising costs. Many methods once abandoned are being rediscovered. Promises for so-called innovations outstrip accomplishments. Markets for salvage vary widely or disappear completely. The search for conserving materials and energy at minimum cost must go on forever. PMID:570105
U-PLANT GEOGRAPHIC ZONE CLEANUP PROTOTYPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
ROMINE, L.D.
2006-02-01
The U Plant geographic zone (UPZ) occupies 0.83 square kilometers on the Hanford Site Central Plateau (200 Area). It encompasses the U Plant canyon (221-U Facility), ancillary facilities that supported the canyon, soil waste sites, and underground pipelines. The UPZ cleanup initiative coordinates the cleanup of the major facilities, ancillary facilities, waste sites, and contaminated pipelines (collectively identified as ''cleanup items'') within the geographic zone. The UPZ was selected as a geographic cleanup zone prototype for resolving regulatory, technical, and stakeholder issues and demonstrating cleanup methods for several reasons: most of the area is inactive, sufficient characterization information is availablemore » to support decisions, cleanup of the high-risk waste sites will help protect the groundwater, and the zone contains a representative cross-section of the types of cleanup actions that will be required in other geographic zones. The UPZ cleanup demonstrates the first of 22 integrated zone cleanup actions on the Hanford Site Central Plateau to address threats to groundwater, the environment, and human health. The UPZ contains more than 100 individual cleanup items. Cleanup actions in the zone will be undertaken using multiple regulatory processes and decision documents. Cleanup actions will include building demolition, waste site and pipeline excavation, and the construction of multiple, large engineered barriers. In some cases, different cleanup actions may be taken at item locations that are immediately adjacent to each other. The cleanup planning and field activities for each cleanup item must be undertaken in a coordinated and cohesive manner to ensure effective execution of the UPZ cleanup initiative. The UPZ zone cleanup implementation plan (ZCIP) was developed to address the need for a fundamental integration tool for UPZ cleanup. As UPZ cleanup planning and implementation moves forward, the ZCIP is intended to be a living document that will provide a focal point for integrating UPZ actions, including field cleanup activities, waste staging and handling, and post-cleanup monitoring and institutional controls.« less
Hatzell, H.H.
1995-01-01
Waste-disposal areas such as chicken-house floors, litter stockpiles, fields that receive applications of litter, and dead-chicken pits are potential sources of nitrates and other chemical constituents in downward-percolating recharge water. Broiler- farms in north-central Florida are concentrated in a region where the Upper Floridan aquifer is unconfined and susceptible to contamination. Eighteen monitoring wells installed at five sites were sampled quarterly from March 1992 through January 1993. Increases in median concentrations of constituents relative to an upgradient well were used to determine the source of the nitrate at two sites. At these sites, increases in the median concentrations of nitrate as nitrogen in ground water in the vicinity of waste-disposal areas at these sites were: 5.4 mg/L for one chicken house; 9.0 mg/L for a second chicken house; 2.0 mg/L for a fallow field that received an application of litter; and, 2.0 mg/L for a dead-chicken pit. At the three remaining sites where the direction of local ground-water flow could not be ascertained, the sources of concentrations of nitrate and other constituents could not be determined. However, median nitrate concentrations in the vicinity of waste-disposal areas at these sites were: 45.5 mg/L for a set of two chicken houses; 3.0 mg/L for a stockpile area; and 2.1 mg/L for a hayfield that received an application of litter. The nitrate concentration in ground water in the vicinity of a field that had previously received heavy applications of litter increased from 3.0 mg/L to 105 mg/L approximately 4 months after receiving an application of commercial fertilizer. Increases in concentrations of organic nitrogen in ground water in the vicinity of waste-disposal areas may be related to the decomposition of litter and subsequent movement with downward percolating recharge water.(USGS)
DC graphite arc furnace, a simple system to reduce mixed waste volume
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wittle, J.K.; Hamilton, R.A.; Trescot, J.
1995-12-31
The volume of low-level radioactive waste can be reduced by the high temperature in a DC Graphite Arc Furnace. This volume reduction can take place with the additional benefit of having the solid residue being stabilized by the vitrified product produced in the process. A DC Graphite Arc Furnace is a simple system in which electricity is used to generate heat to vitrify the material and thermally decompose any organic matter in the waste stream. Examples of this type of waste are protective clothing, resins, and grit blast materials produced in the nuclear industry. The various Department of Energy (DOE)more » complexes produce similar low-level waste streams. Electro-Pyrolysis, Inc. and Svedala/Kennedy Van Saun are engineering and building small 50-kg batch and up to 3,000 kg/hr continuous feed DC furnaces for the remediation, pollution prevention, and decontamination and decommissioning segments of the treatment community. This process has been demonstrated under DOE sponsorship at several facilities and has been shown to produce stable waste forms from surrogate waste materials.« less
Sustainable Development Strategy Of Domestic Waste Infrastructure In The City Of Surakarta
NASA Astrophysics Data System (ADS)
Rezagama, Arya; Purwono; Damayanti, Verika
2018-02-01
Shifting from traditional system to large, centralised infrastructure domestic waste is widely complex challenge. Most of fhe sanitary system on household in Surakarta use on site septictank, 17% sewerage system reached and16,0% stll open defecations. Sanitation development sustained aims to develop policy and strategies waste management domestic Surakarta in the long term (20 years). The projection use quantitative method and institutional condition approach by SWOT analysis. Surakarta City get priority sanitation urban planning from Indonesian government in Presiden Joko Widodo era. The domestic waste management systems that is Surakarta divided into system on-site and system off site. Waste Water Treatment Plant (WWTP) mojosongo, WWTP pucangsawit and WWTP Semanggi will be developed to treat 30% domestic waste of Surakarta Residence. While on-site system will are served 70% residence by service programs Regular Cleaning Septictank. The toughest challenge is how to increase community participation in waste management and improve the company"s financial condition. Sanitation sustainable development is going to happen if supported by facility development also good, institutional development, the arrangement that oversees, and the public participation.
Kollikkathara, Naushad; Feng, Huan; Yu, Danlin
2010-11-01
As planning for sustainable municipal solid waste management has to address several inter-connected issues such as landfill capacity, environmental impacts and financial expenditure, it becomes increasingly necessary to understand the dynamic nature of their interactions. A system dynamics approach designed here attempts to address some of these issues by fitting a model framework for Newark urban region in the US, and running a forecast simulation. The dynamic system developed in this study incorporates the complexity of the waste generation and management process to some extent which is achieved through a combination of simpler sub-processes that are linked together to form a whole. The impact of decision options on the generation of waste in the city, on the remaining landfill capacity of the state, and on the economic cost or benefit actualized by different waste processing options are explored through this approach, providing valuable insights into the urban waste-management process. Copyright © 2010 Elsevier Ltd. All rights reserved.
[Environmental and occupational problems in the utilization of industrial and home waste].
Rusakov, N V; Rakhmanin, Iu A
2002-01-01
One of the acute hygienic problems of today is handling industrial and consumer wastes stored in Russia in the amount of 30 milliard tons; 30 million of solid garbage and 120 million tons of industrial wastes being formed. There are 4 garbage-handling and 10 garbage disposal plants built in the country. A third of them don't operate now. An absence of the initial selection in garbage collection causes the situation when only 3% of solid garbage is being processed. There is no state unified wastes recycling and utilizing system, no training of personnel to work out special technologies and do this work. Special attention should be given to medical wastes dangerous for the epidemiological situation, since they contain pathogenic microorganisms and helminth eggs; they may as well be contaminated by toxic and radioactive chemicals. A complex solution of the problems of industrial and consumer wastes handling is of vital importance for human health protection and protection of environment.
License restrictions at Barnwell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Autry, V.R.
1991-12-31
The State of South Carolina was delegated the authority by the US Nuclear Regulatory Commission to regulate the receipt, possession, use and disposal of radioactive material as an Agreement State. Since 1970, the state has been the principal regulatory authority for the Barnwell Low-Level Waste Disposal Facility operated by Chem-Nuclear Systems, Inc. The radioactive material license issued authorizing the receipt and disposal of low-level waste contains numerous restrictions to ensure environmental protection and compliance with shallow land disposal performance criteria. Low-level waste has evolved from minimally contaminated items to complex waste streams containing high concentrations of radionuclides and processing chemicalsmore » which necessitated these restrictions. Additionally, some waste with their specific radionuclides and concentration levels, many classified as low-level radioactive waste, are not appropriate for shallow land disposal unless additional precautions are taken. This paper will represent a number of these restrictions, the rationale for them, and how they are being dealt with at the Barnwell disposal facility.« less
Jaccoud, Cristiane; Magrini, Alessandra
2014-02-15
With a coastline of 8500 km, Brazil has 34 public ports and various private terminals, which together in 2012 handled 809 million tonnes of goods. The solid wastes produced (from port activities, ships and cargoes) pose a highly relevant problem, both due to the quantity and diversity, requiring a complex and integrated set of practices resulting from legal requirements and proactive initiatives. The main Brazilian law on solid waste management is recent (Law 12,305/2010) and the specific rules on solid waste in ports are badly in need of revision to meet the challenges caused by expansion of the sector and to harmonize them with the best global practices. This paper analyzes the current legal/regulatory framework for solid waste management at Brazilian ports and compares this structure with the practice in Europe. At the end, we suggest initiatives to improve the regulation of solid wastes at Brazilian ports. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kollikkathara, Naushad, E-mail: naushadkp@gmail.co; Feng Huan; Yu Danlin
2010-11-15
As planning for sustainable municipal solid waste management has to address several inter-connected issues such as landfill capacity, environmental impacts and financial expenditure, it becomes increasingly necessary to understand the dynamic nature of their interactions. A system dynamics approach designed here attempts to address some of these issues by fitting a model framework for Newark urban region in the US, and running a forecast simulation. The dynamic system developed in this study incorporates the complexity of the waste generation and management process to some extent which is achieved through a combination of simpler sub-processes that are linked together to formmore » a whole. The impact of decision options on the generation of waste in the city, on the remaining landfill capacity of the state, and on the economic cost or benefit actualized by different waste processing options are explored through this approach, providing valuable insights into the urban waste-management process.« less
Plaza, Dorota D; Strobel, Vinzent; Heer, Parminder Kaur Ks; Sellars, Andrew B; Hoong, Seng-Soi; Clark, Andrew J; Lapkin, Alexei A
2017-09-01
Development of circular economy requires significant advances in the technologies for valorisation of waste, as waste becomes new feedstock. Food waste is a particularly important feedstock, containing large variation of complex chemical functionality. Although most food waste sources are complex mixtures, waste from food processing, no longer suitable for the human food chain, may also represent relatively clean materials. One such material requiring valorisation is cocoa butter. Epoxidation of a triglyceride from a food waste source, processing waste cocoa butter, into the corresponding triglyceride epoxide was carried out using a modified Ishii-Venturello catalyst in batch and continuous flow reactors. The batch reactor achieved higher yields due to the significant decomposition of hydrogen peroxide in the laminar flow tubular reactor. Integral and differential models describing the reaction and the phase transfer kinetics were developed for the epoxidation of cocoa butter and the model parameters were estimated. Ring-opening of the epoxidised cocoa butter was undertaken to provide polyols of varying molecular weight (M w = 2000-84 000 Da), hydroxyl value (27-60 mg KOH g -1 ) and acid value (1-173 mg KOH g -1 ), using either aqueous ortho-phosphoric acid (H 3 PO 4 ) or boron trifluoride diethyl etherate (BF 3 · OEt 2 )-mediated oligomerisation in bulk, using hexane or tetrahydrofuran (THF) as solvents. The thermal and tensile properties of the polyurethanes obtained from the reaction of these polyols with 4,4'-methylene diphenyl diisocyanate (MDI) are described. The paper presents a complete valorisation scheme for a food manufacturing industry waste stream, starting from the initial chemical transformation, developing a process model for the design of a scaled-up process, and leading to synthesis of the final product, in this case a polymer. This work describes aspects of optimisation of the conversion route, focusing on clean synthesis and also demonstrates the interdisciplinary nature of the development projects, requiring input from different areas of chemistry, process modelling and process design. © 2017 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Validation of Microtox as a first screening tool for waste classification.
Weltens, R; Deprez, K; Michiels, L
2014-12-01
The Waste Framework Directive (WFD; 2008/98/EG) describes how waste materials are to be classified as hazardous or not. For complex waste materials chemical analyses are often not conclusive and the WFD provides the possibility to assess the hazardous properties by testing on the waste materials directly. As a methodology WFD refers to the protocols described in the CLP regulation (regulation on Classification, Labeling and Packaging of chemicals) but the toxicity tests on mammals are not acceptable for waste materials. The DISCRISET project was initiated to investigate the suitability of alternative toxicity tests that are already in use in pharmaceutical applications, for the toxicological hazard assessment of complex waste materials. Results indicated that Microtox was a good candidate as a first screening test in a tiered approached hazard assessment. This is now further validated in the present study. The toxic responses measured in Microtox were compared to biological responses in other bioassays for both organic and inorganic fractions of the wastes. Both fractions contribute to the toxic load of waste samples. Results show that the Microtox test is indeed a good and practical screening tool for the organic fraction. A screening threshold (ST) of 5 geq/l as the EC50 value in Microtox is proposed as this ST allows to recognize highly toxic samples in the screening test. The data presented here show that the Microtox toxicity response at this ST is not only predictive for acute toxicity in other organisms but also for sub lethal toxic effects of the organic fraction. This limit value has to be further validated. For the inorganic fraction no specific biotest can be recommended as a screening test, but the use of direct toxicity assessment is also preferable for this fraction as metal speciation is an important issue to define the toxic load of elutriate fractions. A battery of 3 tests (Microtox, Daphnia and Algae) for direct toxicity assessment of this fraction is recommended in literature, but including tests for mechanistic toxicity might be useful. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhou, Qing; Li, Ziyin
2015-01-01
The γ-tubulin complex constitutes a key component of the microtubule-organizing center and nucleates microtubule assembly. This complex differs in complexity in different organisms: the budding yeast contains the γ-tubulin small complex (γTuSC) composed of γ-tubulin, GCP2 and GCP3, whereas animals contain the γ-tubulin ring complex (γTuRC) composed of γTuSC and three additional proteins, GCP4, GCP5 and GCP6. In Trypanosoma brucei, the composition of the γ-tubulin complex remains elusive, and it is not known whether it also regulates assembly of the subpellicular microtubules and the spindle microtubules. Here we report that the γ-tubulin complex in T. brucei is composed of γ-tubulin and three GCP proteins, GCP2-GCP4, and is primarily localized in the basal body throughout the cell cycle. Depletion of GCP2 and GCP3, but not GCP4, disrupted the axonemal central pair microtubules, but not the subpellicular microtubules and the spindle microtubules. Furthermore, we showed that the γTuSC is required for assembly of two central pair proteins and that γTuSC subunits are mutually required for stability. Together, these results identified an unusual γ-tubulin complex in T. brucei, uncovered an essential role of γTuSC in central pair protein assembly, and demonstrated the interdependence of individual γTuSC components for maintaining a stable complex. PMID:26224545
Hung, Chun-Hsiung; Chang, Yi-Tang; Chang, Yu-Jie
2011-09-01
Anaerobic fermentative biohydrogen production, the conversion of organic substances especially from organic wastes to hydrogen gas, has become a viable and promising means of producing sustainable energy. Successful biological hydrogen production depends on the overall performance (results of interactions) of bacterial communities, i.e., mixed cultures in reactors. Mixed cultures might provide useful combinations of metabolic pathways for the processing of complex waste material ingredients, thereby supporting the more efficient decomposition and hydrogenation of biomass than pure bacteria species would. Therefore, understanding the relationships between variations in microbial composition and hydrogen production efficiency is the first step in constructing more efficient hydrogen-producing consortia, especially when complex and non-sterilized organic wastes are used as feeding substrates. In this review, we describe recent discoveries on bacterial community composition obtained from dark fermentation biohydrogen production systems, with emphasis on the possible roles of microorganisms that co-exist with common hydrogen producers. Copyright © 2011 Elsevier Ltd. All rights reserved.
(Note: This entry is no longer valid; the paper was rewritten and submitted to a different journal.) This paper highlights some methods that can be used at a local scale to assess whether waste disposal activities are responsible for enhanced arsenic mobility through redox-contro...
ERIC Educational Resources Information Center
Holm-Shuett, Amy; Shuett, Greg
The purpose of this 7-12 curriculum is to provide teachers and other educators with classroom lessons and home surveys that are a starting point for understanding five significant environmental issues - water, toxics, energy, transportation, and solid waste/recycling. While each of these environmental issues is complex and has far-reaching…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldston, W.T.
DOE issued Order 435.1, ''Radioactive Waste Management,'' on July 9, 1999 for immediate implementation. The requirements for Low Level Mixed, Transuranic, and High Level Waste have been completely rewritten. The entire DOE complex has been struggling with how to implement these new requirements within the one year required timeframe. This paper will chronicle the implementation strategy and actual results of the work to carry out that strategy at the Savannah River Site.
39. CALCINER CELL PLANS. TOGETHER WITH HAER ID33C37 ILLUSTRATES COMPLEXITY ...
39. CALCINER CELL PLANS. TOGETHER WITH HAER ID-33-C-37 ILLUSTRATES COMPLEXITY OF PIPING. INEEL DRAWING NUMBER 200-0633-00-287-106445. FLUOR NUMBER 5775-CPP-633-P-50 - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
40. CALCINER CELL SECTIONS. TOGETHER WITH HAER ID33C37 ILLUSTRATES COMPLEXITY ...
40. CALCINER CELL SECTIONS. TOGETHER WITH HAER ID-33-C-37 ILLUSTRATES COMPLEXITY OF PIPING. INEEL DRAWING NUMBER 200-0633-00-287-106446. FLUOR NUMBER 5775-CPP-P-51. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
Development studies of a novel wet oxidation process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, T.W.; Dhooge, P.M.
1995-10-01
Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides. These materials are often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. Incineration and similar combustive processes do not appear to be viable options for treatment of these waste streams due to various considerations. The objective of this project is to develop a novel catalytic wet oxidation process for the treatment of multi-component wastes. The DETOX process uses a unique combination of metal catalysts to increase the rate of oxidation of organic materials.
Development of a novel wet oxidation process for hazardous and mixed wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhooge, P.M.
1994-11-01
This article describes and evaluates the DETOX{sup sm} process for processing of mixed wastes. Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides, often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. The DETOX{sup sm} process, patented by Delphi Research, uses a unique combination of metal catalysts to increase the rate of oxidation of organic materials. Included are the following subject areas: project description (phases I-IV); results of all phases; and future work. 5 figs., 1 tab.
Solvent for the simultaneous recovery of radionuclides from liquid radioactive wastes
Romanovskiy, Valeriy Nicholiavich; Smirnov, Igor V.; Babain, Vasiliy A.; Todd, Terry A.; Brewer, Ken N.
2002-01-01
The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.
Method for the simultaneous recovery of radionuclides from liquid radioactive wastes using a solvent
Romanovskiy, Valeriy Nicholiavich; Smirnov, Igor V.; Babain, Vasiliy A.; Todd, Terry A.; Brewer, Ken N.
2001-01-01
The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Waste Isolation Pilot Plant (WIPP) is the nation’s only approved repository for the disposal of defense related/defense generated transuranic (TRU) and mixed hazardous TRU waste (henceforth called TRU waste). The mission of the WIPP Project is to realize the safe disposal of TRU waste from TRU waste generator sites in the Department of Energy waste complex. The WIPP Project was authorized by Title II, Section 213(a) of Public Law 96-164 (U. S. Congress 1979). Congress designated the WIPP facility “for the express purpose of providing a research and development facility to demonstrate the safe disposal of radioactive wastes resultingmore » from the defense activities and programs of the United States exempted from regulation by the Nuclear Regulatory Commission (NRC).” The WIPP facility is operated by the U. S. Department of Energy (DOE). Transuranic waste that is disposed in the WIPP facility is defined by Section 2(18) the WIPP Land Withdrawal Act of 1992 (LWA) (U. S. Congress, 1992) as: “waste containing more than 100 nanocuries of alpha-emitting transuranic isotopes per gram of waste, with half-lives greater than 20 years, except for: (A) high-level radioactive waste; (B) waste that the Secretary has determined, with the concurrence of the Administrator, does not need the degree of isolation required by the disposal regulations; or (C) waste that the NRC has approved for disposal on a case-by-case basis in accordance with part 61 of title 10, Code of Federal Regulations (CFR).« less
Roadmap for disposal of Electrorefiner Salt as Transuranic Waste.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rechard, Robert P.; Trone, Janis R.; Kalinina, Elena Arkadievna
The experimental breeder reactor (EBR-II) used fuel with a layer of sodium surrounding the uranium-zirconium fuel to improve heat transfer. Disposing of EBR-II fuel in a geologic repository without treatment is not prudent because of the potentially energetic reaction of the sodium with water. In 2000, the US Department of Energy (DOE) decided to treat the sodium-bonded fuel with an electrorefiner (ER), which produces metallic uranium product, a metallic waste, mostly from the cladding, and the salt waste in the ER, which contains most of the actinides and fission products. Two waste forms were proposed for disposal in a minedmore » repository; the metallic waste, which was to be cast into ingots, and the ER salt waste, which was to be further treated to produce a ceramic waste form. However, alternative disposal pathways for metallic and salt waste streams may reduce the complexity. For example, performance assessments show that geologic repositories can easily accommodate the ER salt waste without treating it to form a ceramic waste form. Because EBR-II was used for atomic energy defense activities, the treated waste likely meets the definition of transuranic waste. Hence, disposal at the Waste Isolation Pilot Plant (WIPP) in southern New Mexico, may be feasible. This report reviews the direct disposal pathway for ER salt waste and describes eleven tasks necessary for implementing disposal at WIPP, provided space is available, DOE decides to use this alternative disposal pathway in an updated environmental impact statement, and the State of New Mexico grants permission.« less
Quantifying the Effect of Macroeconomic and Social Factors on Illegal E-Waste Trade.
Efthymiou, Loukia; Mavragani, Amaryllis; Tsagarakis, Konstantinos P
2016-08-05
As illegal e-waste trade has been significantly growing over the course of the last few years, the consequences on human health and the environment demand immediate action on the part of the global community. Though it is argued that e-waste flows from developed to developing countries, this subject seems to be more complex than that, with a variety of studies suggesting that income per capita is not the only factor affecting the choice of regions that e-waste is illegally shipped to. How is a country's economic and social development associated with illegal e-waste trade? Is legislation an important factor? This paper aims at quantifying macroeconomic (per capita income and openness of economy) and social (human development and social progress) aspects, based on qualitative data on illegal e-waste trade routes, by examining the percentage differences in scorings in selected indicators for all known and suspected routes. The results show that illegal e-waste trade occurs from economically and socially developed regions to countries with significantly lower levels of overall development, with few exceptions, which could be attributed to the fact that several countries have loose regulations on e-waste trade, thus deeming them attractive for potential illegal activities.
NASA Astrophysics Data System (ADS)
Schneider, V. E.; Poletto, M.; Peresin, D.; Carra, S. H. Z.; Vanni, D.
2017-07-01
With the increase of population concentration in urban areas, there is an increase in the solid waste generation, which demands the search for alternatives and solutions for the environmentally correct destination of these. In this context, this work presents an evaluation on the forms of organic and selective domestic waste collection and the potential for the recyclability of the waste destined to the same, based on the physical characterization and gravimetric composition of the solid wastes generated in the town of Antônio Prado, located in the state of Rio Grande do Sul, Brazil, between 2014 and 2016. It is observed that the population has significant information regarding the correct disposal of waste in the selective collection, since 60% of the waste destined to the same is effectively recyclable. Plastic (24.8%), paper (10.9%), glass (8.8%) and cardboard (8.4%) are the most representative materials in recycled waste samples in the urban area. The importance of continuity and improvement of environmental education programs is essential, due to the evolution in the quantity and complexity of products and materials currently manufactured, and to the method of mechanized waste collection used by the municipality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mollah, A.S.
Low level radioactive waste (LLW) is generated from various nuclear applications in Bangladesh. The major sources of radioactive waste in the country are at present: (a) the 3 MW TRIGA Mark-II research reactor; (b) the radioisotope production facility; (c) the medical, industrial and research facilities that use radionuclides; and (d) the industrial facility for processing monazite sands. Radioactive waste needs to be safely managed because it is potentially hazardous to human health and the environment. According to Nuclear Safety and Radiation Control Act-93, the Bangladesh Atomic Energy Commission (BAEC) is the governmental body responsible for the receipt and final disposalmore » of radioactive wastes in the whole country. Waste management policy has become an important environmental, social, and economical issue for LLW in Bangladesh. Policy and strategies will serve as a basic guide for radioactive waste management in Bangladesh. The waste generator is responsible for on-site collection, conditioning and temporary storage of the waste arising from his practice. The Central Waste Processing and Storage Unit (CWPSU) of BAEC is the designated national facility with the requisite facility for the treatment, conditioning and storage of radioactive waste until a final disposal facility is established and becomes operational. The Regulatory Authority is responsible for the enforcement of compliance with provisions of the waste management regulation and other relevant requirements by the waste generator and the CWPSU. The objective of this paper is to present, in a concise form, basic information about the radioactive waste management infrastructure, regulations, policies and strategies including the total inventory of low level radioactive waste in the country. For improvement and strengthening in terms of operational capability, safety and security of RW including spent radioactive sources and overall security of the facility (CWPSF), the facility is expected to serve waste management need in the country and, in the course of time, the facility may be turned into a regional level training centre. It is essential for safe conduction and culture of research and application in nuclear science and technology maintaining the relevant safety of man and environment and future generations to come. (authors)« less
[Role of myostatin in wasting syndrome associated with chronic diseases].
Zamora, Elisabet; Galán, Amparo; Simó, Rafael
2008-11-01
Muscle wasting is a common process of numerous chronic diseases. Sarcopenia is associated with poor prognosis independently of the outcome of the disease. To date, the mechanisms by which sarcopenia induces these alterations are unknown, but the complexity of muscular metabolism anticipates that many factors can be involved. Myostatin, a new family member of transforming growth factor beta, was initially described from the observation of significant muscular growing in knock out mice for myostatin. Numerous experimental and clinical studies have provided insights in the physiologic knowledge of this protein and its implication in muscle wasting conditions. In recent years different substances have been described that counteract myostatin through numerous physiopathological mecanisms and, therefore, they might be novel therapeutic strategies against the wasting syndrome associated with chronic diseases. In spite of that, more studies are needed to improve the knowledge of all processes involved in muscle wasting in order to prevent its devastating consequences.
Treatment Study Plan for Nitrate Salt Waste Remediation Revision 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juarez, Catherine L.; Funk, David John; Vigil-Holterman, Luciana R.
2016-03-07
The two stabilization treatment methods that are to be examined for their effectiveness in the treatment of both the unremediated and remediated nitrate salt wastes include (1) the addition of zeolite and (2) cementation. Zeolite addition is proposed based on the results of several studies and analyses that specifically examined the effectiveness of this process for deactivating nitrate salts. Cementation is also being assessed because of its prevalence as an immobilization method used for similar wastes at numerous facilities around the DOE complex, including at Los Alamos. The results of this Treatment Study Plan will be used to provide themore » basis for a Resource Conservation and Recovery Act (RCRA) permit modification request of the LANL Hazardous Waste Facility Permit for approval by the New Mexico Environment Department-Hazardous Waste Bureau (NMED-HWB) of the proposed treatment process and the associated facilities.« less
Schoenfuss, Heiko L.; Furlong, Edward T.; Phillips, Patrick J.; Scott, Tia-Marie; Kolpin, Dana W.; Cetkovic-Cvrlje, Marina; Lesteberg, Kelsey E.; Rearick, Daniel C.
2016-01-01
Pharmaceuticals are present in low concentrations (<100 ng/L) in most municipal wastewater effluents but may be elevated locally because of factors such as input from pharmaceutical formulation facilities. Using existing concentration data, the authors assessed pharmaceuticals in laboratory exposures of fathead minnows (Pimephales promelas) and added environmental complexity through effluent exposures. In the laboratory, larval and mature minnows were exposed to a simple opioid mixture (hydrocodone, methadone, and oxycodone), an opioid agonist (tramadol), a muscle relaxant (methocarbamol), a simple antidepressant mixture (fluoxetine, paroxetine, venlafaxine), a sleep aid (temazepam), or a complex mixture of all compounds. Larval minnow response to effluent exposure was not consistent. The 2010 exposures resulted in shorter exposed minnow larvae, whereas the larvae exposed in 2012 exhibited altered escape behavior. Mature minnows exhibited altered hepatosomatic indices, with the strongest effects in females and in mixture exposures. In addition, laboratory-exposed, mature male minnows exposed to all pharmaceuticals (except the selective serotonin reuptake inhibitor mixture) defended nest sites less rigorously than fish in the control group. Tramadol or antidepressant mixture exposure resulted in increased splenic T lymphocytes. Only male minnows exposed to whole effluent responded with increased plasma vitellogenin concentrations. Female minnows exposed to pharmaceuticals (except the opioid mixture) had larger livers, likely as a compensatory result of greater prominence of vacuoles in liver hepatocytes. The observed alteration of apical endpoints central to sustaining fish populations confirms that effluents containing waste streams from pharmaceutical formulation facilities can adversely impact fish populations but that the effects may not be temporally consistent. The present study highlights the importance of including diverse biological endpoints spanning levels of biological organization and life stages when assessing contaminant interactions.
Blanchong, Julie A.; Joly, D.O.; Samuel, M.D.; Langenberg, J.A.; Rolley, R.E.; Sausen, J.F.
2006-01-01
Chronic wasting disease (CWD) was discovered in free-ranging white-tailed deer (Odocoileus virginianus) in south-central Wisconsin in 2002. The current control method for CWD in the state is the harvest of deer from affected areas to reduce population density and lower CWD transmission. We used spatial regression methods to identify factors associated with deer harvest across south-central Wisconsin. Harvest of deer by hunters was positively related to deer density (slope=0.003, 95% CI=0.0001-0.006), the number of landowners that requested harvest permits (slope=0.071, 95% CI=0.037-0.105), and proximity to the area of highest CWD infection (slope=-0.041, 95% CI=-0.056- -0.027). Concomitantly, harvest was not impacted in areas where landowners signed a petition protesting intensive deer reduction (slope=-0.00006, 95% CI=-0.0005-0.0003). Our results suggest that the success of programs designed to reduce deer populations for disease control or to reduce overabundance in Wisconsin are dependent on landowner and hunter participation. We recommend that programs or actions implemented to eradicate or mitigate the spread of CWD should monitor and assess deer population reduction and evaluate factors affecting program success to improve methods to meet management goals.
The public health significance of trace chemicals in waste water utilization
Shuval, Hillel I.
1962-01-01
The practice of waste water utilization has grown considerably in recent years, owing to the growing demand for water for agricultural, industrial and domestic purposes. Such utilization presents certain problems in respect of the quality of the reclaimed water, on account of the presence of certain trace chemicals in the waste waters to be re-used. The presence of these trace chemicals may have important consequences in the agricultural or industrial utilization of waste waters, but from the public health point of view it is in the re-use of waste waters for domestic purposes that their presence has most importance, owing to their possible toxic effects. This paper discusses the public health significance of trace chemicals in water, with special reference to some of the newer complex synthetic organic compounds that are appearing in ever-increasing numbers in industrial wastes. Current information on the acute and chronic toxicity of these substances is reviewed and related to possible methods of treatment of waste waters. In conclusion, the author points out that the problem of trace chemicals is not confined only to direct waste-water reclamation projects, but arises in all cases where surface waters polluted with industrial wastes are used as a source of domestic supply. PMID:13988826
Utilization of Solid Waste as a Substrate for Production of Oil from Oleaginous Microorganisms.
Laker, Fortunate; Agaba, Arnold; Akatukunda, Andrew; Gazet, Robert; Barasa, Joshua; Nanyonga, Sarah; Wendiro, Deborah; Wacoo, Alex Paul
2018-01-01
The overwhelming demand of oil and fats to meet the ever increasing needs for biofuel, cosmetics production, and other industrial purposes has enhanced a number of innovations in this industry. One such innovation is the use of microorganisms as alternative sources of oil and fats. Organic solid waste that is causing a big challenge of disposal worldwide is biodegradable and can be utilized as substrate for alternative oil production. The study evaluated the potential of isolated yeast-like colonies to grow and accumulate oil by using organic solid waste as substrate. Of the 25 yeast-like colonies isolated from the soil samples collected from three different suburbs in Kampala district, Uganda, 20 were screened positive for accumulation of lipid but only 2 were oleaginous. The NHC isolate with the best oil accumulation potential of 48.8% was used in the central composite design (CCD) experiments. The CCD experimental results revealed a maximum oil yield of 61.5% from 1.25 g/L cell biomass at 10 g/L of solid waste and temperature of 25°C. The study revealed that organic solid waste could be used as a substrate for microbial oil production.
Hu, Biao; Hui, Wenlong
2017-09-01
Waste cathode ray tube (CRT) funnel glass is the key and difficult points in waste electrical and electronic equipment (WEEE) disposal. In this paper, a novel and effective process for the detoxification and reutilization of waste CRT funnel glass was developed by generating lead sulfide precipitate via a high-temperature melting process. The central function in this process was the generation of lead sulfide, which gathered at the bottom of the crucible and was then separated from the slag. Sodium carbonate was used as a flux and reaction agent, and sodium sulfide was used as a precipitating agent. The experimental results revealed that the lead sulfide recovery rate initially increased with an increase in the amount of added sodium carbonate, the amount of sodium sulfide, the temperature, and the holding time and then reached an equilibrium value. The maximum lead sulfide recovery rate was approximately 93%, at the optimum sodium carbonate level, sodium sulfide level, temperature, and holding time of 25%, 8%, 1200°C, and 2h, respectively. The glass slag can be made into sodium and potassium silicate by hydrolysis in an environmental and economical process. Copyright © 2017 Elsevier Ltd. All rights reserved.