Sample records for central zn atom

  1. Molecular layers of ZnPc and FePc on Au(111) surface: Charge transfer and chemical interaction

    NASA Astrophysics Data System (ADS)

    Ahmadi, Sareh; Shariati, M. Nina; Yu, Shun; Göthelid, Mats

    2012-08-01

    We have studied zinc phthalocyanine (ZnPc) and iron phthalocyanine (FePc) thick films and monolayers on Au(111) using photoelectron spectroscopy and x-ray absorption spectroscopy. Both molecules are adsorbed flat on the surface at monolayer. ZnPc keeps this orientation in all investigated coverages, whereas FePc molecules stand up in the thick film. The stronger inter-molecular interaction of FePc molecules leads to change of orientation, as well as higher conductivity in FePc layer in comparison with ZnPc, which is reflected in thickness-dependent differences in core-level shifts. Work function changes indicate that both molecules donate charge to Au; through the π-system. However, the Fe3d derived lowest unoccupied molecular orbital receives charge from the substrate when forming an interface state at the Fermi level. Thus, the central atom plays an important role in mediating the charge, but the charge transfer as a whole is a balance between the two different charge transfer channels; π-system and the central atom.

  2. Fluorination of Metal Phthalocyanines: Single-Crystal Growth, Efficient N-Channel Organic Field-Effect Transistors, and Structure-Property Relationships

    PubMed Central

    Jiang, Hui; Ye, Jun; Hu, Peng; Wei, Fengxia; Du, Kezhao; Wang, Ning; Ba, Te; Feng, Shuanglong; Kloc, Christian

    2014-01-01

    The fluorination of p-type metal phthalocyanines produces n-type semiconductors, allowing the design of organic electronic circuits that contain inexpensive heterojunctions made from chemically and thermally stable p- and n-type organic semiconductors. For the evaluation of close to intrinsic transport properties, high-quality centimeter-sized single crystals of F16CuPc, F16CoPc and F16ZnPc have been grown. New crystal structures of F16CuPc, F16CoPc and F16ZnPc have been determined. Organic single-crystal field-effect transistors have been fabricated to study the effects of the central metal atom on their charge transport properties. The F16ZnPc has the highest electron mobility (~1.1 cm2 V−1 s−1). Theoretical calculations indicate that the crystal structure and electronic structure of the central metal atom determine the transport properties of fluorinated metal phthalocyanines. PMID:25524460

  3. Ordering of Zn-centered porphyrin and phthalocyanine on TiO2(011): STM studies

    PubMed Central

    Godlewski, Szymon; Such, Bartosz; Pawlak, Rémy; Hinaut, Antoine; Jöhr, Res; Glatzel, Thilo; Meyer, Ernst; Szymonski, Marek

    2017-01-01

    Zn(II)phthalocyanine molecules (ZnPc) were thermally deposited on a rutile TiO2(011) surface and on Zn(II)meso-tetraphenylporphyrin (ZnTPP) wetting layers at room temperature and after elevated temperature thermal processing. The molecular homo- and heterostructures were characterized by high-resolution scanning tunneling microscopy (STM) at room temperature and their geometrical arrangement and degree of ordering are compared with the previously studied copper phthalocyanine (CuPc) and ZnTPP heterostructures. It was found that the central metal atom may play some role in ordering and growth of phthalocyanine/ZnTPP heterostructures, causing differences in stability of upright standing ZnPc versus CuPc molecular chains at given thermal annealing conditions. PMID:28144569

  4. Investigation of the abnormal Zn diffusion phenomenon in III-V compound semiconductors induced by the surface self-diffusion of matrix atoms

    NASA Astrophysics Data System (ADS)

    Tang, Liangliang; Xu, Chang; Liu, Zhuming

    2017-01-01

    Zn diffusion in III-V compound semiconductorsare commonly processed under group V-atoms rich conditions because the vapor pressure of group V-atoms is relatively high. In this paper, we found that group V-atoms in the diffusion sources would not change the shaped of Zn profiles, while the Zn diffusion would change dramatically undergroup III-atoms rich conditions. The Zn diffusions were investigated in typical III-V semiconductors: GaAs, GaSb and InAs. We found that under group V-atoms rich or pure Zn conditions, the double-hump Zn profiles would be formed in all materials except InAs. While under group III-atoms rich conditions, single-hump Zn profiles would be formed in all materials. Detailed diffusion models were established to explain the Zn diffusion process; the surface self-diffusion of matrix atoms is the origin of the abnormal Zn diffusion phenomenon.

  5. Synthesis, crystal structures, spectral, thermal and antimicrobial properties of new Zn(II) 5-iodo- and 5-bromosalicylates

    NASA Astrophysics Data System (ADS)

    Košická, Petra; Győryová, Katarína; Smolko, Lukáš; Gyepes, Róbert; Hudecová, Daniela

    2018-03-01

    Two new analogous zinc(II) complexes containing 5-iodo- and 5-bromosalicylate ligands, respectively, were prepared in single-crystal form and characterized by IR spectroscopy, thermal analysis and elemental analysis. The solid-state structures of prepared complexes were determined by single crystal X-ray crystallography. Both complexes are isostructural and their crystal structures composed of neutral molecules [Zn(5-Xsal)2(H2O)2] (where X = Br, I, sal = salicylato). Central Zn(II) atom is in both complexes coordinated by six oxygen atoms, four of which are from two chelate bonded 5-halosalicylates and remaining two from coordinated water molecules. The found chelate binding mode is in line with the Δ values calculated from IR spectral data. Antimicrobial activity of prepared complexes was studied against selected bacteria, yeast and filamentous fungi. Obtained results indicate that 5-iodosalicylate complex is more antimicrobially active than its 5-bromo substituted analogue.

  6. Structural evolutions and hereditary characteristics of icosahedral nano-clusters formed in Mg70Zn30 alloys during rapid solidification processes

    NASA Astrophysics Data System (ADS)

    Liang, Yong-Chao; Liu, Rang-Su; Xie, Quan; Tian, Ze-An; Mo, Yun-Fei; Zhang, Hai-Tao; Liu, Hai-Rong; Hou, Zhao-Yang; Zhou, Li-Li; Peng, Ping

    2017-02-01

    To investigate the structural evolution and hereditary mechanism of icosahedral nano-clusters formed during rapid solidification, a molecular dynamics (MD) simulation study has been performed for a system consisting of 107 atoms of liquid Mg70Zn30 alloy. Adopting Honeycutt-Anderson (HA) bond-type index method and cluster type index method (CTIM-3) to analyse the microstructures in the system it is found that for all the nano-clusters including 2~8 icosahedral clusters in the system, there are 62 kinds of geometrical structures, and those can be classified, by the configurations of the central atoms of basic clusters they contained, into four types: chain-like, triangle-tailed, quadrilateral-tailed and pyramidal-tailed. The evolution of icosahedral nano-clusters can be conducted by perfect heredity and replacement heredity, and the perfect heredity emerges when temperature is slightly less than Tm then increase rapidly and far exceeds the replacement heredity at Tg; while for the replacement heredity, there are three major modes: replaced by triangle (3-atoms), quadrangle (4-atoms) and pentagonal pyramid (6-atoms), rather than by single atom step by step during rapid solidification processes.

  7. Analysis of Etched CdZnTe Substrates

    NASA Astrophysics Data System (ADS)

    Benson, J. D.; Bubulac, L. O.; Jaime-Vasquez, M.; Lennon, C. M.; Arias, J. M.; Smith, P. J.; Jacobs, R. N.; Markunas, J. K.; Almeida, L. A.; Stoltz, A.; Wijewarnasuriya, P. S.; Peterson, J.; Reddy, M.; Jones, K.; Johnson, S. M.; Lofgreen, D. D.

    2016-09-01

    State-of-the-art as-received (112)B CdZnTe substrates have been examined for surface impurity contamination and polishing residue. Two 4 cm × 4 cm and one 6 cm × 6 cm (112)B state-of-the-art as-received CdZnTe wafers were analyzed. A maximum surface impurity concentration of Al = 1.7 × 1015 atoms cm-2, Si = 3.7 × 1013 atoms cm-2, Cl = 3.12 × 1015 atoms cm-2, S = 1.7 × 1014 atoms cm-2, P = 1.1 × 1014 atoms cm-2, Fe = 1.0 × 1013 atoms cm-2, Br = 1.2 × 1014 atoms cm-2, and Cu = 4 × 1012 atoms cm-2 was observed on the as-received CdZnTe wafers. CdZnTe particulates and residual SiO2 polishing grit were observed on the surface of the as-received (112)B CdZnTe substrates. The polishing grit/CdZnTe particulate density on CdZnTe wafers was observed to vary across a 6 cm × 6 cm wafer from ˜4 × 107 cm-2 to 2.5 × 108 cm-2. The surface impurity and damage layer of the (112)B CdZnTe wafers dictate that a molecular beam epitaxy (MBE) preparation etch is required. The contamination for one 4 cm × 4 cm and one 6 cm × 6 cm CdZnTe wafer after a standard MBE Br:methanol preparation etch procedure was also analyzed. A maximum surface impurity concentration of Al = 2.4 × 1015 atoms cm-2, Si = 4.0 × 1013 atoms cm-2, Cl = 7.5 × 1013 atoms cm-2, S = 4.4 × 1013 atoms cm-2, P = 9.8 × 1013 atoms cm-2, Fe = 1.0 × 1013 atoms cm-2, Br = 2.9 × 1014 atoms cm-2, and Cu = 5.2 × 1012 atoms cm-2 was observed on the MBE preparation-etched CdZnTe wafers. The MBE preparation-etched surface contamination consists of Cd(Zn)Te particles/flakes. No residual SiO2 polishing grit was observed on the (112)B surface.

  8. Zn or O? An Atomic Level Comparison on Antibacterial Activities of Zinc Oxides.

    PubMed

    Yu, Fen; Fang, Xuan; Jia, Huimin; Liu, Miaoxing; Shi, Xiaotong; Xue, Chaowen; Chen, Tingtao; Wei, Zhipeng; Fang, Fang; Zhu, Hui; Xin, Hongbo; Feng, Jing; Wang, Xiaolei

    2016-06-06

    For the first time, the influence of different types of atoms (Zn and O) on the antibacterial activities of nanosized ZnO was quantitatively evaluated with the aid of a 3D-printing-manufactured evaluation system. Two different outermost atomic layers were manufactured separately by using an ALD (atomic layer deposition) method. Interestingly, we found that each outermost atomic layer exhibited certain differences against gram-positive or gram-negative bacterial species. Zinc atoms as outermost layer (ZnO-Zn) showed a more pronounced antibacterial effect towards gram-negative E. coli (Escherichia coli), whereas oxygen atoms (ZnO-O) showed a stronger antibacterial activity against gram-positive S. aureus (Staphylococcus aureus). A possible antibacterial mechanism has been comprehensively discussed from different perspectives, including Zn(2+) concentrations, oxygen vacancies, photocatalytic activities and the DNA structural characteristics of different bacterial species. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Infiltrated Zinc Oxide in Poly(methyl methacrylate): An Atomic Cycle Growth Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ocola, Leonidas E.; Connolly, Aine; Gosztola, David J.

    We have investigated the growth of zinc oxide in a polymer matrix by sequential infiltration synthesis (SiS). The atomic cycle-by-cycle self-terminating reaction growth investigation was done using photoluminescence (PL), Raman, and X-ray photoemission spectroscopy (XPS). Results show clear differences between Zn atom configurations at the initial stages of growth. Mono Zn atoms (O-Zn and O-Zn-O) exhibit pure UV emission with little evidence of deep level oxygen vacancy states (VO). Dimer Zn atoms (O-Zn-O-Zn and O-Zn-O-Zn-O) show strong UV and visible PL emission from VO states 20 times greater than that from the mono Zn atom configuration. After three precursor cycles,more » the PL emission intensity drops significantly exhibiting first evidence of crystal formation as observed with Raman spectroscopy via the presence of longitudinal optical phonons. We also report a first confirmation of energy transfer between polymer and ZnO where the polymer absorbs light at 241 nm and emits at 360 nm, which coincides with the ZnO UV emission peak. Our work shows that ZnO dimers are unique ZnO configurations with high PL intensity, unique O1s oxidation states, and sub-10 ps absorption and decay, which are interesting properties for novel quantum material applications.« less

  10. The low coherence Fabry-Pérot interferometer with diamond and ZnO layers

    NASA Astrophysics Data System (ADS)

    Majchrowicz, D.; Den, W.; Hirsch, M.

    2016-09-01

    The authors present a fiber-optic Fabry-Pérot interferometer built with the application of diamond and zinc oxide (ZnO) thin layers. Thin ZnO films were deposited on the tip of a standard telecommunication single-mode optical fiber (SMF- 28) while the diamond layer was grown on the plate of silicon substrate. Investigated ZnO layers were fabricated by atomic layer deposition (ALD) and the diamond films were deposited using Microwave Plasma Enhanced Chemical Vapor Deposition (μPE CVD) system. Different thickness of layers was examined. The measurements were performed for the fiber-optic Fabry-Pérot interferometer working in the reflective mode. Spectra were registered for various thicknesses of ZnO layer and various length of the air cavity. As a light source, two superluminescent diodes (SLD) with central wavelength of 1300 nm and 1550 nm were used in measurement set-up.

  11. Effect of Ligand Substitution around the Dy(III) on the SMM Properties of Dual-Luminescent Zn-Dy and Zn-Dy-Zn Complexes with Large Anisotropy Energy Barriers: A Combined Theoretical and Experimental Magnetostructural Study.

    PubMed

    Costes, Jean Pierre; Titos-Padilla, Silvia; Oyarzabal, Itziar; Gupta, Tulika; Duhayon, Carine; Rajaraman, Gopalan; Colacio, Enrique

    2016-05-02

    The new dinuclear Zn(II)-Dy(III) and trinuclear Zn(II)-Dy(III)-Zn(II) complexes of formula [(LZnBrDy(ovan) (NO3)(H2O)](H2O)·0.5(MeOH) (1) and [(L(1)ZnBr)2Dy(MeOH)2](ClO4) (3) (L and L(1) are the dideprotonated forms of the N,N'-2,2-dimethylpropylenedi(3-methoxysalicylideneiminato and 2-{(E)-[(3-{[(2E,3E)-3-(hydroxyimino)butan-2-ylidene ]amino}-2,2-dimethylpropyl)imino]methyl}-6-methoxyphenol Schiff base compartmental ligands, respectively) have been prepared and magnetostructurally characterized. The X-ray structure of 1 indicates that the Dy(III) ion exhibits a DyO9 coordination sphere, which is made from four O atoms coming from the compartmental ligand (two methoxy terminal groups and two phenoxido bridging groups connecting Zn(II) and Dy(III) ions), other four atoms belonging to the chelating nitrato and ovanillin ligands, and the last one coming to the coordinated water molecule. The structure of 3 shows the central Dy(III) ion surrounded by two L(1)Zn units, so that the Dy(III) and Zn(II) ions are linked by phenoxido/oximato bridging groups. The Dy ion is eight-coordinated by the six O atoms afforded by two L(1) ligands and two O atoms coming from two methanol molecules. Alternating current (AC) dynamic magnetic measurements of 1, 3, and the previously reported dinuclear [LZnClDy(thd)2] (2) complex (where thd = 2,2,6,6-tetramethyl-3,5-heptanedionato ligand) indicate single molecule magnet (SMM) behavior for all these complexes with large thermal energy barriers for the reversal of the magnetization and butterfly-shaped hysteresis loops at 2 K. Ab initio calculations on 1-3 show a pure Ising ground state for all of them, which induces almost completely suppressed quantum tunnelling magnetization (QTM), and thermally assisted quantum tunnelling magnetization (TA-QTM) relaxations via the first excited Kramers doublet, leading to large energy barriers, thus supporting the observation of SMM behavior. The comparison between the experimental and theoretical magnetostructural data for 1-3 has allowed us to draw some conclusions about the influence of ligand substitution around the Dy(III) on the SMM properties. Finally, these SMMs exhibit metal- and ligand-centered dual emissions in the visible region, and, therefore, they can be considered as magnetoluminescent bifunctional molecular materials.

  12. Determination of the number density of excited and ground Zn atoms during rf magnetron sputtering of ZnO target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maaloul, L.; Gangwar, R. K.; Stafford, L., E-mail: luc.stafford@umontreal.ca

    2015-07-15

    A combination of optical absorption spectroscopy (OAS) and optical emission spectroscopy measurements was used to monitor the number density of Zn atoms in excited 4s4p ({sup 3}P{sub 2} and {sup 3}P{sub 0}) metastable states as well as in ground 4s{sup 2} ({sup 1}S{sub 0}) state in a 5 mTorr Ar radio-frequency (RF) magnetron sputtering plasma used for the deposition of ZnO-based thin films. OAS measurements revealed an increase by about one order of magnitude of Zn {sup 3}P{sub 2} and {sup 3}P{sub 0} metastable atoms by varying the self-bias voltage on the ZnO target from −115 to −300 V. Over themore » whole range of experimental conditions investigated, the triplet-to-singlet metastable density ratio was 5 ± 1, which matches the statistical weight ratio of these states in Boltzmann equilibrium. Construction of a Boltzmann plot using all Zn I emission lines in the 200–500 nm revealed a constant excitation temperature of 0.33 ± 0.04 eV. In combination with measured populations of Zn {sup 3}P{sub 2} and {sup 3}P{sub 0} metastable atoms, this temperature was used to extrapolate the absolute number density of ground state Zn atoms. The results were found to be in excellent agreement with those obtained previously by actinometry on Zn atoms using Ar as the actinometer gas [L. Maaloul and L. Stafford, J. Vac. Sci. Technol., A 31, 061306 (2013)]. This set of data was then correlated to spectroscopic ellipsometry measurements of the deposition rate of Zn atoms on a Si substrate positioned at 12 cm away from the ZnO target. The deposition rate scaled linearly with the number density of Zn atoms. In sharp contrast with previous studies on RF magnetron sputtering of Cu targets, these findings indicate that metastable atoms play a negligible role on the plasma deposition dynamics of Zn-based coatings.« less

  13. Coordination-Driven Dimerization of Zinc Chlorophyll Derivatives Possessing a Dialkylamino Group.

    PubMed

    Watanabe, Hiroaki; Kamatani, Yusuke; Tamiaki, Hitoshi

    2017-04-04

    Zinc chlorophyll derivatives Zn-1-3 possessing a tertiary amino group at the C3 1 position have been synthesized through reductive amination of methyl pyropheophorbide-d obtained from naturally occurring chlorophyll-a. In a dilute CH 2 Cl 2 solution as well as in a dilute 10 %(v/v) CH 2 Cl 2 /hexane solution, Zn-1 possessing a dimethylamino group at the C3 1 position showed red-shifted UV/Vis absorption and intensified exciton-coupling circular dichroism (CD) spectra at room temperature owing to its dimer formation via coordination to the central zinc by the 3 1 -N atom of the dimethylamino group. However, Zn-2/3 bearing 3 1 -ethylmethylamino/diethylamino groups did not. The difference was dependent on the steric factor of the substituents in the tertiary amino group, where an increase of the carbon numbers on the N atom reduced the intermolecular N⋅⋅⋅Zn coordination. UV/Vis, CD, and 1 H NMR spectroscopic analyses including DOSY measurements revealed that Zn-1 formed closed-type dimers via an opened dimer by single-to-double axial coordination with an increase in concentration and a temperature decrease in CH 2 Cl 2 , while Zn-2/3 gave open and flexible dimers in a concentrated CH 2 Cl 2 solution at low temperature. The supramolecular closed dimer structures of Zn-1 were estimated by molecular modelling calculations, which showed these structures were promising models for the chlorophyll dimer in a photosynthetic reaction center. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synergistic mechanism of Ag+-Zn2+ in anti-bacterial activity against Enterococcus faecalis and its application against dentin infection.

    PubMed

    Fan, Wei; Sun, Qing; Li, Yanyun; Tay, Franklin R; Fan, Bing

    2018-01-31

    Ag + and Zn 2+ have already been used in combinations to obtain both enhanced antibacterial effect and low cytotoxicity. Despite this, it is still unclear how the Zn 2+ co-works with Ag + in the synergistic antibacterial activity. The main purposes of this study were to investigate the co-work pattern and optimum ratio between Ag + and Zn 2+ in their synergistic antibacterial activity against E. faecalis, the possible mechanisms behind this synergy and the primary application of optimum Ag + -Zn 2+ co-work pattern against the E. faecalis biofilm on dentin. A serial of Ag + -Zn 2+ atomic combination ratios were tested on both planktonic and biofilm-resident E. faecalis on dentin, their antibacterial efficiency was calculated and optimum ratio determined. And the cytotoxicity of various Ag + -Zn 2+ atomic ratios was tested on MC3T3-E1 Cells. The role of Zn 2+ in Ag + -Zn 2+ co-work was evaluated using a Zn 2+ pretreatment study and membrane potential-permeability measurement. The results showed that the synergistically promoted antibacterial effect of Ag + -Zn 2+ combinations was Zn 2+ amount-dependent with the 1:9 and 1:12 Ag + -Zn 2+ atomic ratios showing the most powerful ability against both planktonic and biofilm-resident E. faecalis. This co-work could likely be attributed to the depolarization of E. faecalis cell membrane by the addition of Zn 2+ . The cytotoxicity of the Ag + -Zn 2+ atomic ratios of 1:9 and 1:12 was much lower than 2% chlorhexidine. The Ag + -Zn 2+ atomic ratios of 1:9 and 1:12 demonstrated similar strong ability against E. faecalis biofilm on dentin but much lower cytotoxicity than 2% chlorhexidine. New medications containing optimum Ag + -Zn 2+ atomic ratios higher than 1:6, such as 1:9 or 1:12, could be developed against E. faecalis infection in root canals of teeth or any other parts of human body.

  15. Effects of Al-Impurity Type on Formation Energy, Crystal Structure, Electronic Structure, and Optical Properties of ZnO by Using Density Functional Theory and the Hubbard-U Method.

    PubMed

    Wu, Hsuan-Chung; Chen, Hsing-Hao; Zhu, Yu-Ren

    2016-08-01

    We systematically investigated the effects of Al-impurity type on the formation energy, crystal structure, charge density, electronic structure, and optical properties of ZnO by using density functional theory and the Hubbard-U method. Al-related defects, such as those caused by the substitution of Zn and O atoms by Al atoms (Al s(Zn) and Al s(O) , respectively) and the presence of an interstitial Al atom at the center of a tetrahedron (Al i(tet) ) or an octahedron (Al i(oct) ), and various Al concentrations were evaluated. The calculated formation energy follows the order E f (Al s(Zn) ) < E f (Al i(tet) ) < E f (Al i(oct) ) < E f (Al s(O) ). Electronic structure analysis showed that the Al s(Zn) , Al s(O) , Al i(tet) , and Al i(oct) models follow n -type conduction, and the optical band gaps are higher than that of pure ZnO. The calculated carrier concentrations of the Al s(O) and Al i(tet) /Al i(oct) models are higher than that of the Al s(Zn) model. However, according to the curvature of the band structure, the occurrence of interstitial Al atoms or the substitution of O atoms by Al atoms results in a high effective mass, possibly reducing the carrier mobility. The average transmittance levels in the visible light and ultraviolet (UV) regions of the Al s(Zn) model are higher than those of pure ZnO. However, the presence of an interstitial Al atom within the ZnO crystal reduces transmittance in the visible light region; Al s(O) substantially reduces the transmittance in the visible light and UV regions. In addition, the properties of ZnO doped with various Al s(Zn) concentrations were analyzed.

  16. Stability and band offsets between c-plane ZnO semiconductor and LaAlO3 gate dielectric

    NASA Astrophysics Data System (ADS)

    Wang, Jianli; Chen, Xinfeng; Wu, Shuyin; Tang, Gang; Zhang, Junting; Stampfl, C.

    2018-03-01

    Wurtzite-perovskite heterostructures composed of a high dielectric constant oxide and a wide bandgap semiconductor envision promising applications in field-effect transistors. In the present paper, the structural and electronic properties of LaAlO3/ZnO heterojunctions are investigated by first-principles calculations. We study the initial adsorption of La, Al, and oxygen atoms on ZnO (0001) and (000 1 ¯ ) surfaces and find that La atoms may occupy interstitial sites during the growth of stoichiometric ZnO (0001). The band gap of the stoichiometric ZnO (0001) surface is smaller than that of the stoichiometric ZnO (000 1 ¯ ) surface. The surface formation energy indicates that La or Al atoms may substitute Zn atoms at the nonstoichiometric ZnO (0001) surface. The atomic charges, electronic density of states, and band offsets are analyzed for the optimized LaAlO3/ZnO heterojunctions. There is a band gap for the LaAlO3/ZnO (000 1 ¯ ) heterostructures, and the largest variation in charge occurs at the surface or interface. Our results suggest that the Al-terminated LaAlO3/ZnO (000 1 ¯ ) interfaces are suitable for the design of metal oxide semiconductor devices because the valence and conduction band offsets are both larger than 1 eV and the interface does not produce any in-gap states.

  17. An ab-initio density functional theory investigation of fullerene/Zn-phthalocyanine (C60/ZnPc) interface with face-on orientation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Javaid, Saqib; National Centre of Physics, Islamabad; Javed Akhtar, M., E-mail: javedakhtar6@gmail.com

    2015-07-28

    We have employed density functional theory to study the C60/ZnPc interface with face-on orientation, which has recently been tailored experimentally. For this purpose, adsorption of ZnPc on C60 has been studied, while taking into account different orientations of C60. Out of various adsorption sites investigated, 6:6 C-C bridge position in apex configuration of C60 has been found energetically the most favourable one with C60-ZnPc adsorption distance of ∼2.77 Å. The adsorption of ZnPc on C60 ensues both charge re-organization and charge transfer at the interface, resulting in the formation of interface dipole. Moreover, by comparing results with that of C60/CuPc interface,more » we show that the direction of interface dipole can be tuned by the change of the central atom of the phthalocyanine molecule. These results highlight the complexity of electronic interactions present at the C60/Phthalocyanine interface.« less

  18. Band-gap bowing and p-type doping of (Zn, Mg, Be)O wide-gap semiconductor alloys: a first-principles study

    NASA Astrophysics Data System (ADS)

    Shi, H.-L.; Duan, Y.

    2008-12-01

    Using a first-principles band-structure method and a special quasirandom structure (SQS) approach, we systematically calculate the band gap bowing parameters and p-type doping properties of (Zn, Mg, Be)O related random ternary and quaternary alloys. We show that the bowing parameters for ZnBeO and MgBeO alloys are large and dependent on composition. This is due to the size difference and chemical mismatch between Be and Zn(Mg) atoms. We also demonstrate that adding a small amount of Be into MgO reduces the band gap indicating that the bowing parameter is larger than the band-gap difference. We select an ideal N atom with lower p atomic energy level as dopant to perform p-type doping of ZnBeO and ZnMgBeO alloys. For N doped in ZnBeO alloy, we show that the acceptor transition energies become shallower as the number of the nearest neighbor Be atoms increases. This is thought to be because of the reduction of p- d repulsion. The NO acceptor transition energies are deep in the ZnMgBeO quaternary alloy lattice-matched to GaN substrate due to the lower valence band maximum. These decrease slightly as there are more nearest neighbor Mg atoms surrounding the N dopant. The important natural valence band alignment between ZnO, MgO, BeO, ZnBeO, and ZnMgBeO quaternary alloy is also investigated.

  19. Bis(acetato-κ2 O,O′)(4,4′-dimethyl-2,2′-bipyridine-κ2 N,N′)­zinc

    PubMed Central

    Harvey, Miguel A.; Suarez, Sebastian A.; Ibañez, Andres; Doctorovich, Fabio; Baggio, Ricardo

    2012-01-01

    The mol­ecular structure of the title compound, [Zn(CH3COO)2(C12H12N2)], consists of isolated mol­ecules bis­ected by a twofold rotation axis which goes through the ZnII cation and halves the organic base through the central C—C bond. The ZnII ion is coordinated by two N atoms from one mol­ecule of the aromatic base and four O atoms from two bidentate, symmetry-related acetate anions, which coordinate asym­metrically [Zn—O distances of 2.058 (2) and 2.362 (3) Å], while the two Zn—N bond distances are equal as imposed by symmetry [2.079 (2) Å]. The crystal structure is supported by a number of weak C—H⋯O inter­actions and C—H⋯π contacts, with no π–π inter­actions present, mainly hindered by the substituent methyl groups and the relative mol­ecular orientation. The result is a three-dimensional structure in which each mol­ecule is linked to eight different neighbors. PMID:23284355

  20. Dopant Distribution in Atomic Layer Deposited ZnO:Al Films Visualized by Transmission Electron Microscopy and Atom Probe Tomography.

    PubMed

    Wu, Yizhi; Giddings, A Devin; Verheijen, Marcel A; Macco, Bart; Prosa, Ty J; Larson, David J; Roozeboom, Fred; Kessels, Wilhelmus M M

    2018-02-27

    The maximum conductivity achievable in Al-doped ZnO thin films prepared by atomic layer deposition (ALD) is limited by the low doping efficiency of Al. To better understand the limiting factors for the doping efficiency, the three-dimensional distribution of Al atoms in the ZnO host material matrix has been examined on the atomic scale using a combination of high-resolution transmission electron microscopy (TEM) and atom probe tomography (APT). Although the Al distribution in ZnO films prepared by so-called "ALD supercycles" is often presented as atomically flat δ-doped layers, in reality a broadening of the Al-dopant layers is observed with a full-width-half-maximum of ∼2 nm. In addition, an enrichment of the Al at grain boundaries is observed. The low doping efficiency for local Al densities > ∼1 nm -3 can be ascribed to the Al solubility limit in ZnO and to the suppression of the ionization of Al dopants from adjacent Al donors.

  1. Dopant Distribution in Atomic Layer Deposited ZnO:Al Films Visualized by Transmission Electron Microscopy and Atom Probe Tomography

    PubMed Central

    2018-01-01

    The maximum conductivity achievable in Al-doped ZnO thin films prepared by atomic layer deposition (ALD) is limited by the low doping efficiency of Al. To better understand the limiting factors for the doping efficiency, the three-dimensional distribution of Al atoms in the ZnO host material matrix has been examined on the atomic scale using a combination of high-resolution transmission electron microscopy (TEM) and atom probe tomography (APT). Although the Al distribution in ZnO films prepared by so-called “ALD supercycles” is often presented as atomically flat δ-doped layers, in reality a broadening of the Al-dopant layers is observed with a full-width–half-maximum of ∼2 nm. In addition, an enrichment of the Al at grain boundaries is observed. The low doping efficiency for local Al densities > ∼1 nm–3 can be ascribed to the Al solubility limit in ZnO and to the suppression of the ionization of Al dopants from adjacent Al donors. PMID:29515290

  2. Identification of F impurities in F-doped ZnO by synchrotron X-ray absorption near edge structures

    NASA Astrophysics Data System (ADS)

    Na-Phattalung, Sutassana; Limpijumnong, Sukit; Min, Chul-Hee; Cho, Deok-Yong; Lee, Seung-Ran; Char, Kookrin; Yu, Jaejun

    2018-04-01

    Synchrotron X-ray absorption near edge structure (XANES) measurements of F K-edge in conjunction with first-principles calculations are used to identify the local structure of the fluorine (F) atom in F-doped ZnO. The ZnO film was grown by pulsed laser deposition with an Nd:YAG laser, and an oxyfluoridation method was used to introduce F ions into the ZnO films. The measured XANES spectrum of the sample was compared against the first-principles XANES calculations based on various models for local atomic structures surrounding F atoms. The observed spectral features are attributed to ZnF2 and FO defects in wurtzite bulk ZnO.

  3. NH3 molecule adsorption on spinel-type ZnFe2O4 surface: A DFT and experimental comparison study

    NASA Astrophysics Data System (ADS)

    Zou, Cong-yang; Ji, Wenchao; Shen, Zhemin; Tang, Qingli; Fan, Maohong

    2018-06-01

    Ammonia (NH3) is a caustic environment pollutant which contributes to haze formation and water pollution. Zinc ferrite (ZnFe2O4) exhibits good catalytic activity in NH3 removal. The density functional theory (DFT) was applied to explore the interaction mechanism of NH3 molecule adsorption on spinel-type ZnFe2O4 (1 1 0) surface with GGA-PW91 method in atomic and electronic level. The results indicated that NH3 molecule preferred to adsorb on surface Zn atom with the formation of H3Nsbnd Zn coordinate bond over ZnFe2O4 (1 1 0) surface. The H3Nsbnd Zn state was exothermic process with adsorption energy of -203.125 kJ/mol. About 0.157e were transferred from NH3 molecule to the surface which resulted in strong interaction. Higher activation degree occurred in H3Nsbnd Zn configuration with two Nsbnd H bonds elongated and NH3 structure became more flat on the surface. The PDOS change of NH3 molecule was consistent with the result of adsorption energy. It was concluded that s orbital of NH3 (N) and s, p orbitals of Zn atom overlapped at -0.619 Ha. The p orbital of NH3 (N) has interaction with d orbital of Zn atom suggesting the hybridization between them. Based on NH3 removal experimental and XPS spectra results, NH3sbnd ZnFe2O4 interaction was mainly depended on the coordination between Zn atom and NH3 molecule. The DFT calculations have deepened our understanding on NH3sbnd ZnFe2O4 interaction system.

  4. Synthesis, crystal structure and optical properties of a new fluorocarbonate with an interesting sandwich-like structure.

    PubMed

    Tang, Changcheng; Jiang, Xingxing; Guo, Shu; Xia, Mingjun; Liu, Lijuan; Wang, Xiaoyang; Lin, Zheshuai; Chen, Chuangtian

    2018-05-08

    A new fluorocarbonate, Na3Zn2(CO3)3F, was synthesized using a subcritical hydrothermal method. Na3Zn2(CO3)3F crystallizes in the space group C2/c with a sandwich-like framework in which the stacked [Zn(CO3)]∞ layers are connected with one another by bridging F atoms and [CO3] groups alternately. Interestingly, each Zn atom is surrounded by one F atom and four O atoms, forming a distorted [ZnO4F] trigonal bipyramid, which is observed for the first time in the carbonate system. Na3Zn2(CO3)3F has high transparency in a wide spectral region ranging from UV to mid IR with a short ultraviolet absorption edge (∼213 nm). First-principles calculations revealed that Na3Zn2(CO3)3F possesses a large birefringence (Δn = 0.11, λ = 589 nm), which is mainly contributed by the coplanar arrangement of [CO3] groups in the ab plane. Na3Zn2(CO3)3F might find applications as a UV birefringence crystal.

  5. Atomic Scale Study on Growth and Heteroepitaxy of ZnO Monolayer on Graphene.

    PubMed

    Hong, Hyo-Ki; Jo, Junhyeon; Hwang, Daeyeon; Lee, Jongyeong; Kim, Na Yeon; Son, Seungwoo; Kim, Jung Hwa; Jin, Mi-Jin; Jun, Young Chul; Erni, Rolf; Kwak, Sang Kyu; Yoo, Jung-Woo; Lee, Zonghoon

    2017-01-11

    Atomically thin semiconducting oxide on graphene carries a unique combination of wide band gap, high charge carrier mobility, and optical transparency, which can be widely applied for optoelectronics. However, study on the epitaxial formation and properties of oxide monolayer on graphene remains unexplored due to hydrophobic graphene surface and limits of conventional bulk deposition technique. Here, we report atomic scale study of heteroepitaxial growth and relationship of a single-atom-thick ZnO layer on graphene using atomic layer deposition. We demonstrate atom-by-atom growth of zinc and oxygen at the preferential zigzag edge of a ZnO monolayer on graphene through in situ observation. We experimentally determine that the thinnest ZnO monolayer has a wide band gap (up to 4.0 eV), due to quantum confinement and graphene-like structure, and high optical transparency. This study can lead to a new class of atomically thin two-dimensional heterostructures of semiconducting oxides formed by highly controlled epitaxial growth.

  6. Characterization of local atomic structure in Co/Zn based ZIFs by XAFS

    NASA Astrophysics Data System (ADS)

    Podkovyrina, Yulia; Butova, Vera; Bulanova, Elena; Budnyk, Andriy; Kremennaya, Maria; Soldatov, Alexander; Lamberti, Carlo

    2018-03-01

    The local atomic structure in bimetallic Co/Zn zeolitic imidazolate frameworks (ZIFs) was studied using X-ray Absorption Fine Structure (XAFS) spectroscopy and theoretical calculations. The experimental Co K-edge and Zn K-edge XANES (X-ray Absorption Near Edge Structure) spectra of Zn1-xCoxC8H10N4 samples (x = 0.05, 0.25, 0.75) synthesized by microwave synthesis were compared with the data for the ZIF-67 (x=1) and ZIF-8 (x=0). Theoretical XANES spectra for the bimetallic ZIFs were calculated. It was shown that in bimetallic ZIFs the Co and Zn atoms have the similar local environment.

  7. The new barium zinc mercurides Ba3ZnHg10 and BaZn0.6Hg3.4 - Synthesis, crystal and electronic structure

    NASA Astrophysics Data System (ADS)

    Schwarz, Michael; Wendorff, Marco; Röhr, Caroline

    2012-12-01

    The title compounds Ba3ZnHg10 and BaZn0.6Hg3.4 were synthesized from stoichiometric ratios of the elements in Ta crucibles. Their crystal structures, which both represent new structure types, have been determined using single crystal X-ray data. The structure of Ba3ZnHg10 (orthorhombic, oP28, space group Pmmn, a=701.2(3), b=1706.9(8), c=627.3(3)pm, Z=2, R1=0.0657) contains folded 44 Hg nets, where the meshes form the bases of flat rectangular pyramids resembling the structure of BaAl4. The flat pyramids are connected via Hg-Zn/Hg bonds, leaving large channels at the folds, in which Ba(1) and Hg(2) atoms alternate. Whereas the remaining Hg/Zn atoms form a covalent 3D network of three- to five-bonded atoms with short M-M distances (273-301 pm; CN 9-11), the Hg(2) atoms in the channels adopt a comparatively large coordination number of 12 and increased distances (317-348 pm) to their Zn/Hg neighbours. In the structure of BaZn0.6Hg3.4 (cubic, cI320, space group I4bar3d, a=2025.50(7) pm, Z=64, R1=0.0440), with a chemical composition not much different from that of Ba3ZnHg10, the Zn/Hg atoms of the mixed positions M(1/2) are arranged in an slightly distorted primitive cubic lattice with a 4×4×4 subcell relation to the unit cell. The 24 of the originating 64 cubes contain planar cis tetramers Hg(5,6)4 with Hg in a nearly trigonal planar or tetrahedral coordination. In another 24 of the small cubes, two opposing faces are decorated by Hg(3,4)2 dumbbells, two by Ba(2) atoms respectively. The third type of small cubes are centered by Ba(1) atoms only. The complex 3D polyanionic Hg/Zn network thus formed is compared with the Hg partial structure in Rb3Hg20 applying a group-subgroup relation. Despite their different overall structures, the connectivity of the negatively charged Hg atoms, the rather metallic Zn bonding characteristic (as obtained from FP-LAPW band structure calculations) and the coordination number of 16 for all Ba cations relate the two title compounds.

  8. Intrinsic point-defect balance in self-ion-implanted ZnO.

    PubMed

    Neuvonen, Pekka T; Vines, Lasse; Svensson, Bengt G; Kuznetsov, Andrej Yu

    2013-01-04

    The role of excess intrinsic atoms for residual point defect balance has been discriminated by implanting Zn or O ions into Li-containing ZnO and monitoring Li redistribution and electrical resistivity after postimplant anneals. Strongly Li-depleted regions were detected in the Zn-implanted samples at depths beyond the projected range (R(p)) upon annealing ≥ 600 °C, correlating with a resistivity decrease. In contrast, similar anneals of the O-implanted samples resulted in Li accumulation at R(p) and an increased resistivity. Control samples implanted with Ar or Ne ions, yielding similar defect production as for the Zn or O implants but with no surplus of intrinsic atoms, revealed no Li depletion. Thus, the depletion of Li shows evidence of excess Zn interstitials (Zn(I)) being released during annealing of the Zn-implanted samples. These Zn(I)'s convert substitutional Li atoms (Li(Zn)) into highly mobile interstitial ones leading to the strongly Li-depleted regions. In the O-implanted samples, the high resistivity provides evidence of stable O(I)-related acceptors.

  9. Ultraviolet electroluminescence from nitrogen-doped ZnO-based heterojuntion light-emitting diodes prepared by remote plasma in situ atomic layer-doping technique.

    PubMed

    Chien, Jui-Fen; Liao, Hua-Yang; Yu, Sheng-Fu; Lin, Ray-Ming; Shiojiri, Makoto; Shyue, Jing-Jong; Chen, Miin-Jang

    2013-01-23

    Remote plasma in situ atomic layer doping technique was applied to prepare an n-type nitrogen-doped ZnO (n-ZnO:N) layer upon p-type magnesium-doped GaN (p-GaN:Mg) to fabricate the n-ZnO:N/p-GaN:Mg heterojuntion light-emitting diodes. The room-temperature electroluminescence exhibits a dominant ultraviolet peak at λ ≈ 370 nm from ZnO band-edge emission and suppressed luminescence from GaN, as a result of the decrease in electron concentration in ZnO and reduced electron injection from n-ZnO:N to p-GaN:Mg because of the nitrogen incorporation. The result indicates that the in situ atomic layer doping technique is an effective approach to tailoring the electrical properties of materials in device applications.

  10. Investigations into the impact of various substrates and ZnO ultra thin seed layers prepared by atomic layer deposition on growth of ZnO nanowire array

    PubMed Central

    2012-01-01

    The impact of various substrates and zinc oxide (ZnO) ultra thin seed layers prepared by atomic layer deposition on the geometric morphology of subsequent ZnO nanowire arrays (NWs) fabricated by the hydrothermal method was investigated. The investigated substrates included B-doped ZnO films, indium tin oxide films, single crystal silicon (111), and glass sheets. Scanning electron microscopy and X-ray diffraction measurements revealed that the geometry and aligment of the NWs were controlled by surface topography of the substrates and thickness of the ZnO seed layers, respectively. According to atomic force microscopy data, we suggest that the substrate, fluctuate amplitude and fluctuate frequency of roughness on ZnO seed layers have a great impact on the alignment of the resulting NWs, whereas the influence of the seed layers' texture was negligible. PMID:22759838

  11. Transition metal decorated graphene-like zinc oxide monolayer: A first-principles investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Jie; School of Science, Qilu University of Technology, Jinan, Shandong 250353; Xu, Ming-Chun

    Transition metal (TM) atoms have been extensively employed to decorate the two-dimensional materials, endowing them with promising physical properties. Here, we have studied the adsorption of TM atoms (V, Cr, Mn, Fe, and Co) on graphene-like zinc oxide monolayer (g-ZnO) and the substitution of Zn by TM using first-principles calculations to search for the most likely configurations when TM atoms are deposited on g-ZnO. We found that when a V atom is initially placed on the top of Zn atom, V will squeeze out Zn from the two-dimensional plane then substitute it, which is a no barrier substitution process. Formore » heavier elements (Cr to Co), although the substitution configurations are more stable than the adsorption ones, there is an energy barrier for the adsorption-substitution transition with the height of tens to hundreds meV. Therefore, Cr to Co prefers to be adsorbed on the hollow site or the top of oxygen, which is further verified by the molecular dynamics simulations. The decoration of TM is revealed to be a promising approach in terms of tuning the work function of g-ZnO in a large energy range.« less

  12. Transition metal decorated graphene-like zinc oxide monolayer: A first-principles investigation

    NASA Astrophysics Data System (ADS)

    Lei, Jie; Xu, Ming-Chun; Hu, Shu-Jun

    2015-09-01

    Transition metal (TM) atoms have been extensively employed to decorate the two-dimensional materials, endowing them with promising physical properties. Here, we have studied the adsorption of TM atoms (V, Cr, Mn, Fe, and Co) on graphene-like zinc oxide monolayer (g-ZnO) and the substitution of Zn by TM using first-principles calculations to search for the most likely configurations when TM atoms are deposited on g-ZnO. We found that when a V atom is initially placed on the top of Zn atom, V will squeeze out Zn from the two-dimensional plane then substitute it, which is a no barrier substitution process. For heavier elements (Cr to Co), although the substitution configurations are more stable than the adsorption ones, there is an energy barrier for the adsorption-substitution transition with the height of tens to hundreds meV. Therefore, Cr to Co prefers to be adsorbed on the hollow site or the top of oxygen, which is further verified by the molecular dynamics simulations. The decoration of TM is revealed to be a promising approach in terms of tuning the work function of g-ZnO in a large energy range.

  13. Structural, chemical and optical evaluation of Cu-doped ZnO nanoparticles synthesized by an aqueous solution method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iribarren, A., E-mail: augusto@imre.oc.uh.cu; Hernández-Rodríguez, E.; Maqueira, L.

    Highlights: • Cu-doped ZnO nanoparticles obtained by chemical synthesis. • Substitutional or interstitial Cu into ZnO lead specific structural, chemical, and optical changes. • Incorporation efficiency of Cu atoms in ZnO as a function of the Cu concentration in the precursor dissolution. - Abstract: In this work a study of ZnO and Cu-doped ZnO nanoparticles obtained by chemical synthesis in aqueous media was carried out. Structural analysis gave the dominant presence of wurtzite ZnO phase forming a solid solution Zn{sub 1−x}Cu{sub x}O. For high Cu doping CuO phase is also present. For low Cu concentration the lattice shrinks due tomore » Cu atoms substitute Zn atoms. For high Cu concentration the lattice enlarges due to predominance of interstitial Cu. From elemental analysis we determined and analyzed the incorporation efficiency of Cu atoms in Zn{sub 1−x}Cu{sub x}O as a function of the Cu concentration in the precursor dissolution. Combining structural and chemical results we described the Cu/Zn precursor concentrations r{sub w} in which the solid solution of Cu in ZnO is predominant. In the region located at r{sub w} ≈ 0.2–0.3 it is no longer valid. For Cu/Zn precursor concentration r{sub w} > 0.3 interstitial Cu dominates, and some amount of copper oxide appears. As the Cu concentration increases, the effective size of nanoparticles decreases. Photoluminescence (PL) measurements of the Cu-doped ZnO nanoparticles were carried out and analyzed.« less

  14. Quantum-chemical, NMR, FT IR, and ESI MS studies of complexes of colchicine with Zn(II).

    PubMed

    Jankowski, Wojciech; Kurek, Joanna; Barczyński, Piotr; Hoffmann, Marcin

    2017-04-01

    Colchicine is a tropolone alkaloid from Colchicinum autumnale. It shows antifibrotic, antimitotic, and anti-inflammatory activities, and is used to treat gout and Mediterranean fever. In this work, complexes of colchicine with zinc(II) nitrate were synthesized and investigated using DFT, 1 H and 13 C NMR, FT IR, and ESI MS. The counterpoise-corrected and uncorrected interaction energies of these complexes were calculated. We also calculated their 1 H, 13 C NMR, and IR spectra and compared them with the corresponding experimentally obtained data. According to the ESI MS mass spectra, colchicine forms stable complexes with zinc(II) nitrate that have various stoichiometries: 2:1, 1:1:1, and 2:1:1 with respect to colchichine, Zn(II), and nitrate ion. All of the complexes were investigated using the quantum theory of atoms in molecules (QTAIM). The calculated and the measured spectra showed differences before and after the complexation process. Calculated electron densities and bond critical points indicated the presence of bonds between the ligands and the central cation in the investigated complexes that satisfied the quantum theory of atoms in molecules. Graphical Abstract DFT, NMR, FT IR, ESI MS, QTAIM and puckering studies of complexes of colchicine with Zn(II).

  15. Phase transformation from cubic ZnS to hexagonal ZnO by thermal annealing

    NASA Astrophysics Data System (ADS)

    Mahmood, K.; Asghar, M.; Amin, N.; Ali, Adnan

    2015-03-01

    We have investigated the mechanism of phase transformation from ZnS to hexagonal ZnO by high-temperature thermal annealing. The ZnS thin films were grown on Si (001) substrate by thermal evaporation system using ZnS powder as source material. The grown films were annealed at different temperatures and characterized by X-ray diffraction (XRD), photoluminescence (PL), four-point probe, scanning electron microscope (SEM) and energy dispersive X-ray diffraction (EDX). The results demonstrated that as-deposited ZnS film has mixed phases but high-temperature annealing leads to transition from ZnS to ZnO. The observed result can be explained as a two-step process: (1) high-energy O atoms replaced S atoms in lattice during annealing process, and (2) S atoms diffused into substrate and/or diffused out of the sample. The dissociation energy of ZnS calculated from the Arrhenius plot of 1000/T versus log (resistivity) was found to be 3.1 eV. PL spectra of as-grown sample exhibits a characteristic green emission at 2.4 eV of ZnS but annealed samples consist of band-to-band and defect emission of ZnO at 3.29 eV and 2.5 eV respectively. SEM and EDX measurements were additionally performed to strengthen the argument.

  16. Electronic structure and chemical bonding of the electron-poor II-V semiconductors ZnSb and ZnAs

    NASA Astrophysics Data System (ADS)

    Benson, Daryn; Sankey, Otto F.; Häussermann, Ulrich

    2011-09-01

    The binary compounds ZnSb and ZnAs with the CdSb structure are semiconductors (II-V), although the average electron concentration (3.5 per atom) is lower than that of the tetrahedrally bonded III-V and II-VI archetype systems (four per atom). We report a detailed electronic structure and chemical bonding analysis for ZnSb and ZnAs based on first-principles calculations. ZnSb and ZnAs are compared to the zinc blende-type semiconductors GaSb, ZnTe, GaAs, and ZnSe, as well as the more ionic, hypothetical, II-V systems MgSb and MgAs. We establish a clearly covalent bonding scenario for ZnSb and ZnAs where multicenter bonded structural entities (rhomboid rings Zn2Sb2 and Zn2As2) are connected to each other by classical two-center, two-electron bonds. This bonding scenario is only compatible with a weak ionicity in II-V semiconductor systems, and weak ionicity appears as a necessary condition for the stability of the CdSb structure type. It is argued that a chemical bonding scenario with mixed multicenter and two-center bonding resembles that of boron and boron-rich compounds and is typical of electron-poor sp-bonded semiconductors with average valence electron concentrations below four per atom.

  17. Zinc(II) complexes with potent cyclin-dependent kinase inhibitors derived from 6-benzylaminopurine: synthesis, characterization, X-ray structures and biological activity.

    PubMed

    Trávnícek, Zdenek; Krystof, Vladimír; Sipl, Michal

    2006-02-01

    The synthesis, characterization and biological activity of the first zinc(II) complexes with potent inhibitors of cyclin-dependent kinases (CDKs) derived from 6-benzylaminopurine are described. Based on the results following from elemental analyses, infrared, NMR and ES+MS (electrospray mass spectra in the positive ion mode) spectroscopies, conductivity data, thermal analysis and X-ray structures, the tetrahedral Zn(II) complexes of the compositions [Zn(Olo)Cl(2)](n) (1), [Zn(iprOlo)Cl(2)](n) (2), [Zn(BohH(+))Cl(3)] x H(2)O (3) and [Zn(iprOloH(+))Cl(3)] x H(2)O (4) have been prepared, where Olo=2-(2-hydroxyethylamino)-6-benzylamino-9-methylpurine (Olomoucine), iprOlo=2-(2-hydroxyethylamino)-6-benzylamino-9-isopropylpurine (i-propyl-Olomoucine), Boh=2-(3-hydroxypropylamino)-6-benzylamino-9-isopropylpurine (Bohemine). The 1D-polymeric chain structure for [Zn(Olo)Cl(2)](n) (1) as well as the monomeric one for [Zn(BohH(+))Cl(3)] x H(2)O (3) and [Zn(iprOloH(+))Cl(3)] x H(2)O (4) have been revealed unambiguously by single crystal X-ray analyses. The 1D-polymeric chain of 1 consists of Zn(Olo)Cl(2) monomeric units in which the Zn(II) ion is coordinated by two chlorine atoms and one oxygen atom of the 2-hydroxyethylamino group of Olomoucine. The next monomeric unit is bonded to Zn(II) through the N7 atom of a purine ring. Thus, each of Zn(II) ions is tetrahedrally coordinated and a ZnCl(2)NO chromophore occurs in the complex 1. The complexes 3 and 4 are mononuclear species with a distorted tetrahedral arrangement of donor atoms around the Zn(II) ion with a ZnCl(3)N chromophore. The corresponding CDK inhibitor, i.e., both Boh and iprOlo, is coordinated to Zn(II) via the N7 atom of the purine ring in 3 and 4. The cytotoxicity of the zinc(II) complexes against human melanoma, sarcoma, leukaemia and carcinoma cell lines has been determined as well as the inhibition of the CDK2/cyclin E kinase. A relationship between the structure and biological activity of the complexes is also discussed.

  18. Scanning Auger Microprobe and atomic absorption studies of lunar volcanic volatiles

    NASA Technical Reports Server (NTRS)

    Cirlin, E. H.; Housley, R. M.

    1979-01-01

    Results on lunar volatile transport processes have been obtained by studying green and brown glass droplets, orange and black core tube samples and the surface sample 74241 with the Scanning Auger Microprobe (SAM) and by Flameless Atomic Absorption Analysis (FLAA). SAM analyses show that the most dominant volatiles in the top few atomic layers of droplets are Zn and S, confirming that the surface Zn and S are good indicators of pyroclastic origin, and they are not entirely present as ZnS. In addition, FLAA thermal release profiles show that almost all the Zn and Cd are on grain surfaces, indicating that Zn and Cd were completely outgassed from lava fountain products during the volcanic eruption, were recondensed during or after the eruptions, and are thus present as surface coating.

  19. New Co–Pd–Zn γ-Brasses with Dilute Ferrimagnetism and Co 2Zn 11 Revisited: Establishing the Synergism between Theory and Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Weiwei; Miller, Gordon J

    2014-04-22

    A synergism between electronic structure theory and the targeted synthesis of new ternary γ-brass compounds is demonstrated in the Co–Zn system. Co 2Zn 11, which adopts a cubic γ-brass structure, is shown to be at the Zn-rich end of a homogeneity range that varies from 15.4 to 22.1 atom % Co. Four samples were examined by single-crystal diffraction, all of which crystallize in space group I43¯m with the lattice parameter ranging from 8.9851(1) to 8.8809(1) Å as the Co content increases. In the 26-atom γ-brass clusters, Co atoms preferentially occupy the outer tetrahedron (OT) sites and then replace Zn atomsmore » at the octahedron (OH) sites at higher Co concentrations. In addition, a small fraction of vacancies occurs on the inner tetrahedron (IT) sites. The electronic structure of Co 2Zn 11 shows two distinct pseudogaps near the Fermi level: one at 292 valence electrons per primitive unit cell and the other at 302–304 valence electrons per primitive unit cell. Using molecular orbital arguments applied to the body-centered cubic packing of the 26-atom Co 4Zn 22 γ-brass cluster, these pseudogaps arise from (i) splitting among the valence s and p orbitals, which gives rise to the Hume–Rothery electron counting rule, and (ii) splitting within the manifold of Co 3d orbitals via Co–Zn orbital interactions. Co 2Zn 11 is Pauli paramagnetic, although the density of states at the Fermi level is large, whereas Curie–Weiss behavior emerges for higher Co concentrations. Because Pd has a size and an electronegativity similar to those of Zn, and inspired by the pseudogaps in the electronic density of states curve of Co 2Zn 11, Pd-doped γ-brass compounds were designed and two new γ-brass compounds were obtained: Co 0.92(2)Pd 1.08Zn 11 and Co 2.50(1)Pd 2.50Zn 8. In these, the site preferences for Co and Pd can be rationalized by electronic structure calculations. The densities of states indicate that Co 3d states are the major contributors near their Fermi levels, with the Pd 4d band lying ~2–3 eV below this. The magnetic properties of the Co–Pd–Zn γ-brasses are quite different from those of Co 2Zn 11: a giant magnetic moment on the Co atom is induced by the Pd atom, and Co 2.50(1)Pd 2.50Zn 8 shows magnetization consistent with a dilute ferrimagnet. The results of first-principles calculations on two different models of the 26-atom γ-brass clusters indicate that intracluster Co–Co exchange is ferromagnetic, whereas intercluster Co–Co exchange is antiferromagnetic. These different magnetic exchange interactions provide rationalization for the high-temperature magnetization behavior of Co 2.50(1)Pd 2.50Zn 8.« less

  20. Crystal Structure and Magnetic Properties of New Cubic Quaternary Compounds RT2Sn2Zn18 (R = La, Ce, Pr, and Nd, and T = Co and Fe)

    NASA Astrophysics Data System (ADS)

    Isikawa, Yosikazu; Mizushima, Toshio; Ejiri, Jun-ichi; Kitayama, Shiori; Kumagai, Keigou; Kuwai, Tomohiko; Bordet, Pierre; Lejay, Pascal

    2015-07-01

    The new cubic quaternary intermetallic compounds RT2Sn2Zn18 (R = La, Ce, Pr, and Nd, and T = Co and Fe) were synthesized by the mixture-metal flux method using Zn and Sn. The crystal structure was investigated by powder X-ray diffraction and with a four-circle X-ray diffractometer using single crystals. The space group of the compounds is Fdbar{3}m (No. 227). The rare-earth atom is at the cubic site which is the center of a cage composed of Zn and Sn atoms. The crystal structure is the same as the CeCr2Al20-type crystal structure except the atoms at the 16c site, i.e., the Zn atoms at the 16c site are completely replaced by Sn atoms, indicating that the compounds are crystallographically new ordered quaternary compounds. The lattice parameter a and the physical properties of the magnetic susceptibility χ, the magnetization M, and the specific heat C of these cubic caged compounds were investigated. LaCo2Sn2Zn18 and LaFe2Sn2Zn18 are enhanced Pauli paramagnets that originate from the Co and Fe itinerant 3d electrons. CeCo2Sn2Zn18 and CeFe2Sn2Zn18 are also enhanced Pauli paramagnets that originate from both the 3d electrons and Ce 4f electrons. PrCo2Sn2Zn18 and PrFe2Sn2Zn18 are nonmagnetic materials with huge values of C divided by temperature, which indicates that the ground state of Pr ions is a non-Kramers' doublet. NdCo2Sn2Zn18 and NdFe2Sn2Zn18 are magnetic materials with the Néel temperatures of 1.0 and 3.8 K, respectively. All eight compounds have large magnetic moments of Co/Fe in the paramagnetic temperature region, and thus their magnetic moments are inferred to be magnetically frustrating owing to the pyrochlore lattice in the low-temperature region.

  1. Designing optical metamaterial with hyperbolic dispersion based on Al:ZnO/ZnO nano-layered structure using Atomic Layer Deposition technique

    DOE PAGES

    Kelly, Priscilla; Liu, Mingzhao; Kuznetsova, Lyuba

    2016-04-07

    In this study, nano-layered Al:ZnO/ZnO hyperbolic dispersion metamaterial with a large number of layers was fabricated using the atomic layer deposition (ALD) technique. Experimental dielectric functions for Al:ZnO/ZnO structures are obtained by an ellipsometry technique in the visible and near-infrared spectral ranges. The theoretical modeling of the Al:ZnO/ZnO dielectric permittivity is done using effective medium approximation. A method for analysis of spectroscopic ellipsometry data is demonstrated to extract the optical permittivity for this highly anisotropic nano-layered metamaterial. The results of the ellipsometry analysis show that Al:ZnO/ZnO structures with a 1:9 ALD cycle ratio exhibit hyperbolic dispersion transition change near 1.8more » μm wavelength.« less

  2. Copper and zinc levels in soil, water, wheat, and hair of inhabitants of three areas of the Orenburg region, Russia.

    PubMed

    Salnikova, Elena V; Burtseva, Tatiana I; Skalnaya, Margarita G; Skalny, Anatoly V; Tinkov, Alexey A

    2018-06-07

    The objective of the present study was to assess the level of zinc and copper in soil, water, wheat and hair of inhabitants of the western, central, and eastern areas of the Orenburg region. A total of 525 water, soil, and wheat samples, as well as 420 hair samples were assessed using atomic absorption spectrometry (water, soil, wheat) and inductively-coupled plasma mass spectrometry (hair). The highest levels of Zn and Cu in water (4.9(4.2-5.1) and 1.0(0.9-1.1) mg/l), soil (23.8(20.7-27.0) and 2.6(1.9-3.1) mg/kg), and wheat (24.7(20.5-31.0) and 4.8(4.2-5.5) mg/kg) were observed in the eastern area (p < 0.001). Hair zinc levels in inhabitants of the western (184(165-198) µg/g) and eastern (224(211-253) µg/g) areas of the region exceeded the respective values from the central area by 32% and 61% (p < 0.001). In turn, hair Cu levels in the central (16.4(14.3-17.8) µg/g) and eastern (17.9(16.4-19.0) µg/g) areas exceeded the values from the western area by 10% and 20%, respectively. Correlation analysis demonstrated that hair Zn levels were positively correlated with water and soil content, whereas wheat Zn levels were associated with soil and water content. For copper significant direct correlation was observed only between soil and water Cu content. In multiple regression models, only water zinc level was significantly associated with hair Zn content, although the general model accounted for 55% of variability of hair Zn content. Higher zinc and copper exposure in the eastern area is presumably associated with higher activity of metal-processing industry. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Understanding the Cu-Zn brass alloys using a short-range-order cluster model: significance of specific compositions of industrial alloys

    PubMed Central

    Hong, H. L.; Wang, Q.; Dong, C.; Liaw, Peter K.

    2014-01-01

    Metallic alloys show complex chemistries that are not yet understood so far. It has been widely accepted that behind the composition selection lies a short-range-order mechanism for solid solutions. The present paper addresses this fundamental question by examining the face-centered-cubic Cu-Zn α-brasses. A new structural approach, the cluster-plus-glue-atom model, is introduced, which suits specifically for the description of short-range-order structures in disordered systems. Two types of formulas are pointed out, [Zn-Cu12]Zn1~6 and [Zn-Cu12](Zn,Cu)6, which explain the α-brasses listed in the American Society for Testing and Materials (ASTM) specifications. In these formulas, the bracketed parts represent the 1st-neighbor cluster, and each cluster is matched with one to six 2nd-neighbor Zn atoms or with six mixed (Zn,Cu) atoms. Such a cluster-based formulism describes the 1st- and 2nd-neighbor local atomic units where the solute and solvent interactions are ideally satisfied. The Cu-Ni industrial alloys are also explained, thus proving the universality of the cluster-formula approach in understanding the alloy selections. The revelation of the composition formulas for the Cu-(Zn,Ni) industrial alloys points to the common existence of simple composition rules behind seemingly complex chemistries of industrial alloys, thus offering a fundamental and practical method towards composition interpretations of all kinds of alloys. PMID:25399835

  4. Understanding the Cu-Zn brass alloys using a short-range-order cluster model: Significance of specific compositions of industrial alloys

    DOE PAGES

    Hong, H. L.; Wang, Q.; Dong, C.; ...

    2014-11-17

    Metallic alloys show complex chemistries that are not yet understood so far. It has been widely accepted that behind the composition selection lies a short-range-order mechanism for solid solutions. The present paper addresses this fundamental question by examining the face-centered-cubic Cu-Zn α-brasses. A new structural approach, the cluster-plus-glue-atom model, is introduced, which suits specifically for the description of short-range-order structures in disordered systems. Two types of formulas are pointed out, [Zn-Cu 12]Zn 1~6 and [Zn-Cu 12](Zn,Cu) 6, which explain the α-brasses listed in the American Society for Testing and Materials (ASTM) specifications. In these formulas, the bracketed parts represent themore » 1 st-neighbor cluster, and each cluster is matched with one to six 2 nd-neighbor Zn atoms or with six mixed (Zn,Cu) atoms. Such a cluster-based formulism describes the 1 st- and 2 nd-neighbor local atomic units where the solute and solvent interactions are ideally satisfied. The Cu-Ni industrial alloys are also explained, thus proving the universality of the cluster-formula approach in understanding the alloy selections. As a result, the revelation of the composition formulas for the Cu-(Zn,Ni) industrial alloys points to the common existence of simple composition rules behind seemingly complex chemistries of industrial alloys, thus offering a fundamental and practical method towards composition interpretations of all kinds of alloys.« less

  5. Site specific interaction between ZnO nanoparticles and tyrosine: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Singh, Satvinder; Singh, Janpreet; Singh, Baljinder; Singh, Gurinder; Kaura, Aman; Tripathi, S. K.

    2018-05-01

    First Principles Calculations have been performed on ZnO/Tyrosine atomic complex to study site specific interaction of Tyrosine and ZnO nanoparticles. Calculated results shows that -COOH group present in Tyrosine is energetically more favorable than -NH2 group. Interactions show ionic bonding between ZnO and Tyrosine. All the calculations have been performed under the Density Functional Theory (DFT) framework. Structural and electronic properties of (ZnO)3/Tyrosine complex have been studied. Gaussian basis set approach has been adopted for the calculations. A ring type most stable (ZnO)3 atomic cluster has been modeled, analyzed and used for the calculations.

  6. Nondestructive atomic compositional analysis of BeMgZnO quaternary alloys using ion beam analytical techniques

    NASA Astrophysics Data System (ADS)

    Zolnai, Z.; Toporkov, M.; Volk, J.; Demchenko, D. O.; Okur, S.; Szabó, Z.; Özgür, Ü.; Morkoç, H.; Avrutin, V.; Kótai, E.

    2015-02-01

    The atomic composition with less than 1-2 atom% uncertainty was measured in ternary BeZnO and quaternary BeMgZnO alloys using a combination of nondestructive Rutherford backscattering spectrometry with 1 MeV He+ analyzing ion beam and non-Rutherford elastic backscattering experiments with 2.53 MeV energy protons. An enhancement factor of 60 in the cross-section of Be for protons has been achieved to monitor Be atomic concentrations. Usually the quantitative analysis of BeZnO and BeMgZnO systems is challenging due to difficulties with appropriate experimental tools for the detection of the light Be element with satisfactory accuracy. As it is shown, our applied ion beam technique, supported with the detailed simulation of ion stopping, backscattering, and detection processes allows of quantitative depth profiling and compositional analysis of wurtzite BeZnO/ZnO/sapphire and BeMgZnO/ZnO/sapphire layer structures with low uncertainty for both Be and Mg. In addition, the excitonic bandgaps of the layers were deduced from optical transmittance measurements. To augment the measured compositions and bandgaps of BeO and MgO co-alloyed ZnO layers, hybrid density functional bandgap calculations were performed with varying the Be and Mg contents. The theoretical vs. experimental bandgaps show linear correlation in the entire bandgap range studied from 3.26 eV to 4.62 eV. The analytical method employed should help facilitate bandgap engineering for potential applications, such as solar blind UV photodetectors and heterostructures for UV emitters and intersubband devices.

  7. Crystal structure of [NaZn(BTC)(H2O)4]·1.5H2O (BTC = benzene-1,3,5-tri-carb-oxy-l-ate): a heterometallic coordination compound.

    PubMed

    Ni, Min; Li, Quanle; Chen, Hao; Li, Shengqing

    2015-07-01

    The title coordination polymer, poly[[μ-aqua-tri-aqua-(μ3-benzene-1,3,5-tri-carboxyl-ato)sodiumzinc] sesquihydrate], {[NaZn(C9H3O6)(H2O)4]·1.5H2O} n , was obtained in ionic liquid microemulsion at room temperture by the reaction of benzene-1,3,5-tri-carb-oxy-lic acid (H3BTC) with Zn(NO3)2·6H2O in the presence of NaOH. The asymmetric unit comprises two Na(+) ions (each located on an inversion centre), one Zn(2+) ion, one BTC ligand, four coordinating water mol-ecules and two solvent water molecules, one of which is disordered about an inversion centre and shows half-occupation. The Zn(2+) cation is five-coordinated by two carboxyl-ate O atoms from two different BTC ligands and three coordinating H2O mol-ecules; the Zn-O bond lengths are in the range 1.975 (2)-2.058 (3) Å. The Na(+) cations are six-coordinated but have different arrangements of the ligands: one is bound to two carboxyl-ate O atoms of two BTC ligands and four O atoms from four coordinating H2O mol-ecules while the other is bound by four carboxyl-ate O atoms from four BTC linkers and two O atoms of coordinating H2O mol-ecules. The completely deprotonated BTC ligand acts as a bridging ligand binding the Zn(2+) atom and Na(+) ions, forming a layered structure extending parallel to (100). An intricate network of O-H⋯O hydrogen bonds is present within and between the layers.

  8. Novel optical properties of CdS:Zn rocksalt system (a theoretical study)

    NASA Astrophysics Data System (ADS)

    Khan, M. Junaid Iqbal; Nauman Usmani, M.; Kanwal, Zarfishan

    2017-11-01

    In present computational study, we focus on optical properties of Zn doped CdS for 1  ×  1  ×  2 and 2  ×  2  ×  2 supercell configurations. Cd atoms are substituted with Zn atoms and results for optical properties demonstrate different trends due to interaction of Zn with S atoms. The study has been performed by PBE-GGA approach using Wien2K within framework of DFT. TDOS and PDOS represent that S-3p states are responsible for conduction. For large supercell configuration, a tremendous change in optical properties has been observed due to different bonding. Optical absorption tends to increase in visible range which supports candidacy of Zn doped CdS for enhanced optoelectronic and nanotechnology applications.

  9. Electronic and Optical Properties of Atomic Layer-Deposited ZnO and TiO2

    NASA Astrophysics Data System (ADS)

    Ates, H.; Bolat, S.; Oruc, F.; Okyay, A. K.

    2018-05-01

    Metal oxides are attractive for thin film optoelectronic applications. Due to their wide energy bandgaps, ZnO and TiO2 are being investigated by many researchers. Here, we have studied the electrical and optical properties of ZnO and TiO2 as a function of deposition and post-annealing conditions. Atomic layer deposition (ALD) is a novel thin film deposition technique where the growth conditions can be controlled down to atomic precision. ALD-grown ZnO films are shown to exhibit tunable optical absorption properties in the visible and infrared region. Furthermore, the growth temperature and post-annealing conditions of ZnO and TiO2 affect the electrical properties which are investigated using ALD-grown metal oxide as the electron transport channel on thin film field-effect devices.

  10. The properties of plasma-enhanced atomic layer deposition (ALD) ZnO thin films and comparison with thermal ALD

    NASA Astrophysics Data System (ADS)

    Kim, Doyoung; Kang, Hyemin; Kim, Jae-Min; Kim, Hyungjun

    2011-02-01

    Zinc oxide (ZnO) thin films were prepared by plasma-enhanced atomic layer deposition (PE-ALD) using oxygen plasma as a reactant and the properties were compared with those of thermal atomic layer deposition (TH-ALD) ZnO thin films. While hexagonal wurzite phase with preferential (0 0 2) orientation was obtained for both cases, significant differences were observed in various aspects of film properties including resistivity values between these two techniques. Photoluminescence (PL) measurements have shown that high resistivity of PE-ALD ZnO thin films is due to the oxygen interstitials at low growth temperature of 200 °C, whose amount decreases with increasing growth temperature. Thin film transistors (TFT) using TH- and PE-ALD ZnO as an active layer were also fabricated and the device properties were evaluated comparatively.

  11. Growth of 3-D flower/grass-like metal oxide nanoarchitectures based on catalyst-assisted oxidation method

    NASA Astrophysics Data System (ADS)

    Hu, Lijiao; Ju, Yang; Hosoi, Atsushi

    2014-03-01

    Cu2O grass-like and ZnO flower-like nanoarchitectures were fabricated directly on Cu powders and Zn powders using a novel thermal oxidation stress-induced (TOS) method based on catalyst assistance at a low temperature of 150°C under moderate humid atmosphere. The experiments of Al powder were also carried out based on TOS method. Overlapping migration (OLM) of Cu and Zn atoms and toothpaste squeezing migration (TSM) of Al atoms caused by different atom densities in metal oxide materials were studied.

  12. Growth parameter dependent structural and optical properties of ZnO nanostructures on Si substrate by a two-zone thermal CVD.

    PubMed

    Lee, Hee Kwan; Yu, Jae Su

    2012-04-01

    We investigated the effect of growth parameters on the structural and optical properties of the ZnO nanostructures (NSs) grown on Au-coated Si substrate by a two-zone thermal chemical vapor deposition. The morphologies of ZnO NSs were controlled by various growth parameters, such as growth temperature, O2 flow rate, and working pressure, for different thicknesses of Au layer. The nanorod-like ZnO NSs were formed at 915 degrees C and the growth of two-dimensional structures, i.e., nanosheets, was enhanced with the increase of growth temperature up to 965 degrees C. It was found that the low working pressure contributed to improvement in vertical alignment and uniformity of ZnO NSs. The Zn/O atomic % ratio, which plays a key role in the growth mechanism of ZnO NSs, was changed by the growth parameters. The Zn/O atomic % ratio was increased with increasing the growth temperature, while it was decreased with increasing the working pressure. Under proper O2 flow rate, the ZnO nanorods with good crystallinity were fabricated with a Zn/O atomic % ratio of -0.9. For various growth parameters, the photoluminescence emission was slightly shifted with the ultraviolet emission related to the near band edge transition.

  13. Influence of valence electron concentration on Laves phases: Structures and phase stability of pseudo-binary MgZn 2-xPd x

    DOE PAGES

    Thimmaiah, Srinivasa; Miller, Gordon J.

    2015-06-03

    A series of pseudo-binary compounds MgZn 2-xPd x (0.15 ≤ x ≤ 1.0) were synthesized and structurally characterized to understand the role of valence electron concentration (vec) on the prototype Laves phase MgZn 2 with Pd-substitution. Three distinctive phase regions were observed with respect to Pd content, all exhibiting fundamental Laves phase structures: 0.1 ≤ x ≤ 0.3 (MgNi 2-type, hP24; MgZn 1.80Pd 0.20(2)), 0.4 ≤ x ≤ 0.6 (MgCu 2-type, cF24; MgZn 1.59Pd 0.41(2)), and 0.62 ≤ x ≤ 0.8 (MgZn 2-type, hP12: MgZn 1.37Pd 0.63(2)). Refinements from single-crystal X-ray diffraction indicated nearly statistical distributions of Pd and Znmore » atoms among the majority atom sites in these structures. Interestingly, the MgZn 2-type structure re-emerges in MgZn 2–xPd x at x ≈ 0.7 with the refined composition MgZn 1.37(2)Pd 0.63 and a c/a ratio of 1.59 compared to 1.64 for binary MgZn 2. Electronic structure calculations on a model “MgZn 1.25Pd 0.75” yielded a density of states (DOS) curve showing enhancement of a pseudogap at the Fermi level as a result of electronic stabilization due to the Pd addition. Moreover, integrated crystal orbital Hamilton population values show significant increases of orbital interactions for (Zn,Pd)–(Zn,Pd) atom pairs within the majority atom substructure, i.e., within the Kagomé nets as well as between a Kagomé net and an apical site, from binary MgZn 2 to the ternary “MgZn 1.25Pd 0.75”. Multi-centered bonding is evident from electron localization function plots for “MgZn 1.25Pd 0.75”, an outcome which is in accordance with analysis of other Laves phases.« less

  14. Lattice Transparency of Graphene.

    PubMed

    Chae, Sieun; Jang, Seunghun; Choi, Won Jin; Kim, Youn Sang; Chang, Hyunju; Lee, Tae Il; Lee, Jeong-O

    2017-03-08

    Here, we demonstrated the transparency of graphene to the atomic arrangement of a substrate surface, i.e., the "lattice transparency" of graphene, by using hydrothermally grown ZnO nanorods as a model system. The growth behaviors of ZnO nanocrystals on graphene-coated and uncoated substrates with various crystal structures were investigated. The atomic arrangements of the nucleating ZnO nanocrystals exhibited a close match with those of the respective substrates despite the substrates being bound to the other side of the graphene. By using first-principles calculations based on density functional theory, we confirmed the energetic favorability of the nucleating phase following the atomic arrangement of the substrate even with the graphene layer present in between. In addition to transmitting information about the atomic lattice of the substrate, graphene also protected its surface. This dual role enabled the hydrothermal growth of ZnO nanorods on a Cu substrate, which otherwise dissolved in the reaction conditions when graphene was absent.

  15. Effect of nickel diffusion and oxygen behavior on heterojunction Schottky diodes of Au/NiO/ZnO with a NiO interlayer prepared by radio-frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Hwang, Jun-Dar; Chen, Hsin-Yu; Chen, Yu-Huang; Ho, Ting-Hsiu

    2018-07-01

    The rectifying characteristic of Au/ZnO Schottky diodes (SDs) was remarkably improved by introducing a NiO layer in-between the Au and ZnO layers. Compared with the Au/ZnO SDs, the introduction of the NiO layer significantly enhanced the rectification ratio from 1.38 to 1300, and reduced the ideality factor from 5.78 to 2.14. The NiO and ZnO layers were deposited on an indium-tin-oxide/glass substrate by radio-frequency magnetron sputtering. Secondary ion mass spectroscopy showed that Ni atoms diffused from NiO to ZnO, leading to a graded distribution of Ni in ZnO. X-ray diffraction demonstrated that the diffusion of Ni atoms increased the grain size and electron concentration of ZnO. X-ray photoelectron spectroscopy showed that the interstitial oxygen (Oi) atoms in NiO and ZnO compensated the oxygen vacancies (OV) at the NiO/ZnO interface; the amount of OV was significantly reduced, while Oi vanished at the interface. The band diagram revealed a potential drop in the bulk ZnO, owing to the graded distribution of Ni in ZnO, which accelerated the carriers, collected by the outer circuit. The carriers at the NiO/ZnO interface easily crossed over the barrier height, instead of being recombined by OV, owing to the lower amount of OV at the interface.

  16. Zn3Sb4O6F6: Hydrothermal synthesis, crystal structure and nonlinear optical properties

    NASA Astrophysics Data System (ADS)

    Ali, Sk Imran; Zhang, Weiguo; Halasyamani, P. Shiv; Johnsson, Mats

    2017-12-01

    Zn3Sb4O6F6 has been synthesized hydrothermally at 230 °C. The crystal structure was determined from single crystal X-ray diffraction data. It crystallizes in the cubic non-centrosymmetric space group I-43m with the unit cell parameter a = 8.1291(4) Å and is isostructural with M3Sb4O6F6 (M = Co, Ni). The new compound is the first oxofluoride containing Zn2+ and a p-element cation with a stereochemically active lone pair. The crystal structure is made up by [ZnO2F4] octahedra forming a network via corner sharing at F-atoms and [SbO3] trigonal pyramids that form [Sb4O6] cages that connect via the O-atoms to the Zn-atoms. Powder second-harmonic generation (SHG) measurements using 1064 nm radiation on Zn3Sb4O6F6 indicate an SHG intensity of approximately 40 × α-SiO2.

  17. The investigation of Ag/ZnO interface system by first principle: The structural, electronic and optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Hai-Xia; Wang, Xiao-Xu; Beijing Computing Center, Beijing 100094

    Ag/ZnO interfaces have been investigated for both of Zn-termination and O-termination by the first principle based on density functional theory. Our calculations demonstrate that the Ag atoms go inward from the Ag/ZnO interface, and the Zn and O atoms are all move outward bulk in the Zn-termination interface, and the changes are just opposite for O-termination. These behaviors are in agreement with the other studies in literatures. Furthermore, an expansion situation is observed in the first two Zn-O bilayer and first three Ag monolayers for both of Zn-termination and O-termination interfaces by comparing with the pure ZnO(0001) and Ag(111) surfaces.more » Moreover, the valence-band both of O-2p and Zn-3d states of Ag/ZnO interface gradual close to Femi level as the Zn, O atoms locate at the deeper layer for Zn-termination, but it is the other way round for O-termination. Calculated absorption spectrum indicates that the absorption intensity of Zn-termination interface is stronger than that of O-termination in the lower energy range (visible light region). These properties of ZnO surfaces are also evaluated for comparison with interfaces. - Graphical abstract: The structures of Ag/ZnO interface: Zn-termination (left) and O-termination (right). In this Ag/ZnO interface system, the ZnO (0001) surface is rotated 30°(R30), and Ag (111) surface is built (2×2) supercell, then a (2×√3) R30 Ag/ZnO interface is constructed using the supercell method (i.e. periodically repeated slabs). The lattice mismatch of (2×√3) R30 Ag/ZnO (2.6% mismatch) is smaller than that of (1×1) Ag/ZnO (11% mismatch).« less

  18. Ligand induced ferromagnetism in ZnO nanostructures.

    PubMed

    Wang, Qian; Sun, Qiang; Jena, P

    2008-10-28

    Complementary to the experimental finding that ZnO nanoparticles become ferromagnetic when coated with N and S containing ligands such as dodecylamine and dodecanethiol [Garcia et al., Nano Lett. 7, 1489 (2007)], we provide the first theoretical understanding of the origin of magnetism in ligated ZnO nanoparticles as well as the structural properties of the ligated systems by using density functional theory and generalized gradient approximation for exchange and correlation, and a cluster model for the nanoparticles. We show that N or S atoms of the ligand bind to the Zn sites. The accompanying changes in the Zn-O bond length, hybridization between Zn 4s orbitals with N 2p or S 3p orbitals, and consequently the redistribution of charges between Zn and O atoms result in a magnetic system where the 2p electrons in O and N, and 3p electrons in S sites are spin polarized. Furthermore, the sites nearest to the Zn atom attached to the ligand carry bulk of the magnetic moment. Studies, as a function of cluster size, also illustrate that magnetism resides only on the surface. Our results confirm that the use of ligands can pave a new way for introducing magnetism in ZnO nanostructures, which can be used to develop magnetic sensors to detect N and S containing molecules.

  19. Nonempirical calculations of the structure and stability of ALi/sub 2k/ lithium clusters of group-two elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimenko, N.M.; Musaev, D.G.; Gorbik, A.A.

    Nonempirical Hartree-Fock calculations of the geometric and relative energetic characteristics of linear ALi/sub 2/ molecules and square ALi/sub 4/ molecules, where A = Be, Mg, Ca, and Zn, have been performed. The results for BeLi/sup +/, BeLi/sup 2/, BeLi/sub 4/, and MgLi/sub 2/ have been refined with consideration of the electron correlation in the framework of the theory of self-consistent electron pairs (SCEP). It has been shown that the stability of ALi/sub 2k/ increases with increasing size of the cluster and that the energy of the singlet-triplet transitions does not exceed 0.5-1.5 eV in all cases. The interactions between themore » atoms in the clusters have a cooperative character: the overlapping Q(Li-Li) between the Li atoms is no less significant than the overlapping Q(A-Li) between the Li atoms and the central atom A.« less

  20. Rhombohedrally Distorted γ-Au 5–x Zn 8+y Phases in the Au–Zn System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thimmaiah, Srinivasa; Miller, Gordon J.

    2013-02-04

    The region of the Au–Zn phase diagram encompassing γ-brass-type phases has been studied experimentally from 45 to 85 atom % Zn. The γ phases were obtained directly from the pure elements by heating to 680 °C in evacuated silica tubes, followed by annealing at 300 °C. Powder X-ray and single-crystal diffraction studies show that γ-“Au5Zn8” phases adopt a rhombohedrally distorted Cr5Al8 structure type rather than the cubic Cu5Zn8 type. The refined compositions from two single crystals extracted from the Zn- and Au-rich loadings are Au4.27(3)Zn8.26(3)γ0.47 (I) and Au4.58(3)Zn8.12(3)γ0.3 (II), respectively (γ = vacancy). These (I and II) refinements indicated bothmore » nonstatistical mixing of Au and Zn atoms as well as partially ordered vacancy distributions. The structures of these γ phases were solved in the acentric space group R3m (No. 160, Z = 6), and the observed lattice parameters from powder patterns were found to be a = 13.1029(6) and 13.1345(8) Å and c = 8.0410(4) and 8.1103(6) Å for crystals I and II, respectively. According to single-crystal refinements, the vacancies were found on the outer tetrahedron (OT) and octahedron (OH) of the 26-atom cluster. Single-crystal structural refinement clearly showed that the vacancy content per unit cell increases with increasing Zn, or valence-electron concentration. Electronic structure calculations, using the tight-binding linear muffin-tin orbital method with the atomic-sphere approximation (TB-LMTO-ASA) method, indicated the presence of a well-pronounced pseudogap at the Fermi level for “Au5Zn8” as the representative composition, an outcome that is consistent with the Hume–Rothery interpretation of γ brass.« less

  1. Single-walled carbon nanotubes coated with ZnO by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Pal, Partha P.; Gilshteyn, Evgenia; Jiang, Hua; Timmermans, Marina; Kaskela, Antti; Tolochko, Oleg V.; Kurochkin, Alexey V.; Karppinen, Maarit; Nisula, Mikko; Kauppinen, Esko I.; Nasibulin, Albert G.

    2016-12-01

    The possibility of ZnO deposition on the surface of single-walled carbon nanotubes (SWCNTs) with the help of an atomic layer deposition (ALD) technique was successfully demonstrated. The utilization of pristine SWCNTs as a support resulted in a non-uniform deposition of ZnO in the form of nanoparticles. To achieve uniform ZnO coating, the SWCNTs first needed to be functionalized by treating the samples in a controlled ozone atmosphere. The uniformly ZnO coated SWCNTs were used to fabricate UV sensing devices. An UV irradiation of the ZnO coated samples turned them from hydrophobic to hydrophilic behaviour. Furthermore, thin films of the ZnO coated SWCNTs allowed us switch p-type field effect transistors made of pristine SWCNTs to have ambipolar characteristics.

  2. Single-walled carbon nanotubes coated with ZnO by atomic layer deposition.

    PubMed

    Pal, Partha P; Gilshteyn, Evgenia; Jiang, Hua; Timmermans, Marina; Kaskela, Antti; Tolochko, Oleg V; Karppinen, Maarit; Nisula, Mikko; Kauppinen, Esko I; Nasibulin, Albert G

    2016-12-02

    The possibility of ZnO deposition on the surface of single-walled carbon nanotubes (SWCNTs) with the help of an atomic layer deposition (ALD) technique was successfully demonstrated. The utilization of pristine SWCNTs as a support resulted in a non-uniform deposition of ZnO in the form of nanoparticles. To achieve uniform ZnO coating, the SWCNTs first needed to be functionalized by treating the samples in a controlled ozone atmosphere. The uniformly ZnO coated SWCNTs were used to fabricate UV sensing devices. An UV irradiation of the ZnO coated samples turned them from hydrophobic to hydrophilic behaviour. Furthermore, thin films of the ZnO coated SWCNTs allowed us switch p-type field effect transistors made of pristine SWCNTs to have ambipolar characteristics.

  3. Atomic layer deposition of Al-incorporated Zn(O,S) thin films with tunable electrical properties

    NASA Astrophysics Data System (ADS)

    Park, Helen Hejin; Jayaraman, Ashwin; Heasley, Rachel; Yang, Chuanxi; Hartle, Lauren; Mankad, Ravin; Haight, Richard; Mitzi, David B.; Gunawan, Oki; Gordon, Roy G.

    2014-11-01

    Zinc oxysulfide, Zn(O,S), films grown by atomic layer deposition were incorporated with aluminum to adjust the carrier concentration. The electron carrier concentration increased up to one order of magnitude from 1019 to 1020 cm-3 with aluminum incorporation and sulfur content in the range of 0 ≤ S/(Zn+Al) ≤ 0.16. However, the carrier concentration decreased by five orders of magnitude from 1019 to 1014 cm-3 for S/(Zn+Al) = 0.34 and decreased even further when S/(Zn+Al) > 0.34. Such tunable electrical properties are potentially useful for graded buffer layers in thin-film photovoltaic applications.

  4. Treatment of delocalized electron transfer in periodic and embedded cluster DFT calculations: The case of Cu on ZnO (10(1)0).

    PubMed

    Hellström, Matti; Spångberg, Daniel; Hermansson, Kersti

    2015-12-15

    We assess the consequences of the interface model-embedded-cluster or periodic-slab model-on the ability of DFT calculations to describe charge transfer (CT) in a particularly challenging case where periodic-slab calculations indicate a delocalized charge-transfer state. Our example is Cu atom adsorption on ZnO(10(1)0), and in fact the periodic slab calculations indicate three types of CT depending on the adsorption site: full CT, partial CT, and no CT. Interestingly, when full CT occurs in the periodic calculations, the calculated Cu atom adsorption energy depends on the underlying ZnO substrate supercell size, since when the electron enters the ZnO it delocalizes over as many atoms as possible. In the embedded-cluster calculations, the electron transferred to the ZnO delocalizes over the entire cluster region, and as a result the calculated Cu atom adsorption energy does not agree with the value obtained using a large periodic supercell, but instead to the adsorption energy obtained for a periodic supercell of roughly the same size as the embedded cluster. Different density functionals (of GGA and hybrid types) and basis sets (local atom-centered and plane-waves) were assessed, and we show that embedded clusters can be used to model Cu adsorption on ZnO(10(1)0), as long as care is taken to account for the effects of CT. © 2015 Wiley Periodicals, Inc.

  5. Ag@ZnO core-shell nanoparticles study by first principle: The structural, magnetic and optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Hai-Xia; Wang, Xiao-Xu; Beijing Computing Center, Beijing 100094

    Ag@ZnO core-shell nanoparticles of around 72 atoms have been investigated by the density functional theory, revealing proving for the first time that the core-shell structure exhibits a shrinkage phenomenon from outer shell in agreement with the other studies in literatures. Our calculations predict that the Ag@ZnO core-shell structure is a ferromagnetic spin polarized state, and the magnetism mainly stems from the spin splitting of 2p electrons of O atoms. In addition, the total and partial DOS of Ag@ZnO indicate that the nanostructure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. Furthermore, the optical properties calculations showmore » that the absorption edge of Ag@ZnO have a red shift and good photocatalysis compare to that of the bulk ZnO. These results of the Ag@ZnO core-shell structure obtain a well agreement with the experimental measurement. - Graphical abstract: Geometric structure of (a) Ag@ZnO core-shell nanostructure; (b) the core of Ag; (c) the shell of ZnO The core-shell nanoparticle Ag@ZnO contains Ag inner core of radius of 4 Å and ZnO outer shell with thickness of 2 Å. Ag@ZnO core-shell nanoparticles of around 72 atoms have been proved for the first time that the core-shell structure exhibit a shrinkage phenomenon from outer shell. Our calculations predict that the Ag@ZnO core-shell structure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. The absorption edge of Ag@ZnO have a red shift and get good photo-catalysis compare to that of the bulk ZnO.« less

  6. Effect of nickel diffusion and oxygen behavior on heterojunction Schottky diodes of Au/NiO/ZnO with a NiO interlayer prepared by radio-frequency magnetron sputtering.

    PubMed

    Hwang, Jun-Dar; Chen, Hsin-Yu; Chen, Yu-Hung; Ho, Ting-Hsiu

    2018-05-03

    The rectifying characteristic of Au/ZnO Schottky diodes (SDs) was remarkably improved by introducing a NiO layer in-between the Au and ZnO layers. Compared with the Au/ZnO SDs, the introduction of the NiO layer significantly enhanced the rectification ratio from 1.38 to 1,300, and reduced the ideality factor from 5.78 to 2.14. The NiO and ZnO layers were deposited on an indium-tin-oxide/glass substrate by radio-frequency magnetron sputtering. Secondary ion mass spectroscopy showed that Ni atoms diffused from NiO to ZnO, leading to a graded distribution of Ni in ZnO. X-ray diffraction demonstrated that the diffusion of Ni atoms increased the grain size and electron concentration of ZnO. X-ray photoelectron spectroscopy showed that the interstitial oxygen (Oi) atoms in NiO and ZnO compensated the oxygen vacancies (OV) at the NiO/ZnO interface; the amount of OV was significantly reduced, while Oi vanished at the interface. The band diagram revealed a potential drop in the bulk ZnO, owing to the graded distribution of Ni in ZnO, which accelerated the carriers, collected by the outer circuit. The carriers at the NiO/ZnO interface easily crossed over the barrier height, instead of being recombined by OV, owing to the lower amount of OV at the interface. © 2018 IOP Publishing Ltd.

  7. Thickness dependence of crystal and optical characterization on ZnO thin film grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Baek, Seung-Hye; Lee, Hyun-Jin; Lee, Sung-Nam

    2018-06-01

    We studied the thickness dependence of the crystallographic and optical properties of ZnO thin films grown on c-plane sapphire substrate using atomic layer deposition. High-resolution X-ray diffraction (HR-XRD) revealed two peaks at 34.5° and 36.2° in the initial growth stage of ZnO on the sapphire substrate, corresponding to the (002) and (101) ZnO planes, respectively. However, as the thickness of the ZnO film increased, the XRD intensity of the (002) ZnO peak increased drastically, compared with that of the (101) ZnO peak. This indicated that (002) and (101) ZnO were simultaneously grown on the c-plane sapphire substrate in the initial growth stage, and that (002) ZnO was predominantly grown with the increase in the thickness of ZnO film. The ZnO thin film presented an anisotropic surface structure at the initial stage, whereas the isotropic surface morphology was developed with an increase in the film thickness of ZnO. These observations were consistent with the HR-XRD results.

  8. Structure refinement of the δ1p phase in the Fe-Zn system by single-crystal X-ray diffraction combined with scanning transmission electron microscopy.

    PubMed

    Okamoto, Norihiko L; Tanaka, Katsushi; Yasuhara, Akira; Inui, Haruyuki

    2014-04-01

    The structure of the δ1p phase in the iron-zinc system has been refined by single-crystal synchrotron X-ray diffraction combined with scanning transmission electron microscopy. The large hexagonal unit cell of the δ1p phase with the space group of P63/mmc comprises more or less regular (normal) Zn12 icosahedra, disordered Zn12 icosahedra, Zn16 icosioctahedra and dangling Zn atoms that do not constitute any polyhedra. The unit cell contains 52 Fe and 504 Zn atoms so that the compound is expressed with the chemical formula of Fe13Zn126. All Fe atoms exclusively occupy the centre of normal and disordered icosahedra. Iron-centred normal icosahedra are linked to one another by face- and vertex-sharing forming two types of basal slabs, which are bridged with each other by face-sharing with icosioctahedra, whereas disordered icosahedra with positional disorder at their vertex sites are isolated from other polyhedra. The bonding features in the δ1p phase are discussed in comparison with those in the Γ and ζ phases in the iron-zinc system.

  9. Ultraviolet/visible photodiode of nanostructure Sn-doped ZnO/Si heterojunction

    NASA Astrophysics Data System (ADS)

    Kheirandish, N.; Mortezaali, A.

    2013-05-01

    Sn doped ZnO nanostructures deposited on Si substrate with (100) orientation by spray pyrolysis method at temperature 450 °C. Sn/Zn atomic ratio varies from 0% to 5%. The scanning electron microscope measurements showed that size of particles reduce with increasing the doping concentration. The X-ray diffraction analysis revealed formation of the wurtzite phase of ZnO. I-V curves of Sn doped ZnO/Si were investigated in dark and shows diode-like rectifying behavior. Among doped ZnO/Si, sample with atomic ratio of Sn/Zn = 5% is a good candidate to study photodiode properties in UV/visible range. Photoelectric effects have been observed under illumination monochromatic laser light with a wavelength of 325 nm and halogen lamp. Measurements demonstrate that the photodiode has high sensitivity and reproducibility to halogen light respect to laser light.

  10. ZnO-based ultra-violet light emitting diodes and nanostructures fabricated by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Chen, Miin-Jang; Yang, Jer-Ren; Shiojiri, Makoto

    2012-07-01

    We have investigated ZnO-based light-emitting diodes (LEDs) fabricated by atomic layer deposition (ALD), demonstrating that ALD is one of the noteworthy techniques to prepare high-quality ZnO required for ultraviolet (UV) photonic devices. Here, we review our recent investigations on different ZnO-based heterojunction LEDs such as n-ZnO/p-GaN LEDS, n-ZnO:Al/ZnO nanodots-SiO2 composite/p-GaN LEDS, n-ZnO/ZnO nanodots-SiO2 composite/p-AlGaN LEDs, n-ZnO:Al/i-ZnO/p-SiC(4H) LEDs, and also on ZnO-based nanostructures including ZnO quantum dots embedded in SiO2 nanoparticle layer, ZnO nanopillars on sapphire substrates, Al-doped ZnO films on sapphire substrate and highly (0 0 0 1)-oriented ZnO films on amorphous glass substrate. The latest investigation also demonstrated p-type ZnO:P films prepared on amorphous silica substrates, which allow us to fabricate ZnO-based homojunction LEDs. These devices and structures were studied by x-ray diffraction and various analytical electron microscopy observations as well as electric and electro-optical measurements.

  11. Cs promoted oxidation of Zn and CuZn surfaces: a combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Sanjay; Rodriguez, JoséA.; Hrbek, Jan

    1997-07-01

    The interaction of O 2 with Zn, {Cs}/{Zn} and {Cs}/{CuZn} surfaces was investigated using photoemission and ab initio self-consistent-field (SCF) calculations. On zinc films, the sticking probability of O 2 is extremely low (10 -3-10 -2), and O 2 exposures in the range of 10 3 to 10 4 langmuirs are necessary to produce a significant adsorption of oxygen and the transformation of metallic zinc into zinc oxide. The presence of sub monolayer coverages of cesium enhances the oxidation rate of zinc by 2-3 orders of magnitude. In the {Cs}/{Zn} system, the alkali atom donates electrons to zinc. This charge transfer facilitates the formation of Zn→O 2 dative bonds and breaking of the OO bond. For the coadsorption of Cs and O 2 on Zn(001), the larger the electron transfer from Zn into the O 2 (1 πg) orbitals, the bigger the adsorption energy of the molecule and the elongation of the OO bond. In general, cesium does not promote the oxidation of copper. In the {Cs}/{CuZn} system, copper withdraws electrons from zinc. The presence of copper in the {Cs}/{CuZn} system inhibits the oxidation of the Zn component compared with the {Cs}/{Zn} system by lowering the electron density on the Zn atoms. After exposing the {Cs}/{CuZn} system to O 2, zinc is oxidized at a rate that is larger than that found for clean CuZn surfaces and smaller than seen in {Cs}/{Zn} surfaces. Molecular hydrogen is found to have no effect on oxidized Cu, Zn and CuZn films. However, atomic hydrogen reduces ZnO to metallic zinc and CuO to Cu 2O. In the oxidized CuZn alloy, CuO is reduced first followed by the reduction of ZnO. A comparison of the behavior of O 2/Cs/Zn and H 2O/Cs/Zn systems shows that while O 2 causes severe oxidation of Cs promoted Zn surfaces, H 2O has little or no effect.

  12. Synthesis and anion exchange properties of a Zn/Ni double hydroxide salt with a guarinoite structure

    NASA Astrophysics Data System (ADS)

    Delorme, F.; Seron, A.; Licheron, M.; Veron, E.; Giovannelli, F.; Beny, C.; Jean-Prost, V.; Martineau, D.

    2009-09-01

    In this study, the first route to synthesize a compound with the guarinoite structure (Zn,Co,Ni) 6(SO 4)(OH,Cl) 10·5H 2O is reported. Zn/Ni guarinoite is obtained from the reaction of NiSO 4·7H 2O with solid ZnO in aqueous solution. The resulting green Zn/Ni guarinoite ((Zn 3.52Ni 1.63)(SO 4) 1.33(OH 7.64)·4.67H 2O) was characterized by X-ray diffraction, infrared spectrometry, UV-Visible spectrometry and thermal analysis. It is shown that its structure is similar to the one described for the layered Zn sulfate hydroxide hydrate, i.e. brucite layers with {1}/{4} empty octahedra presenting tetrahedrally coordinated divalent atoms above and below the empty octahedra. Ni atoms are located in the octahedra and zinc atoms in tetrahedra and octahedra. In this structure the exchangeable anions are located at the apex of tetrahedra. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations show that the Zn/Ni guarinoite is composed of aggregates of hexagonal plates of several hundreds of nanometers. Due to its interest for industrial or environmental applications, the exchange of sulfate groups by carbonates has been investigated. Results show a limited exchange and a higher affinity of the Zn/Ni guarinoite for sulfates compared to carbonates.

  13. Ultrathin ZnS and ZnO Interfacial Passivation Layers for Atomic-Layer-Deposited HfO2 Films on InP Substrates.

    PubMed

    Kim, Seung Hyun; Joo, So Yeong; Jin, Hyun Soo; Kim, Woo-Byoung; Park, Tae Joo

    2016-08-17

    Ultrathin ZnS and ZnO films grown by atomic layer deposition (ALD) were employed as interfacial passivation layers (IPLs) for HfO2 films on InP substrates. The interfacial layer growth during the ALD of the HfO2 film was effectively suppressed by the IPLs, resulting in the decrease of electrical thickness, hysteresis, and interface state density. Compared with the ZnO IPL, the ZnS IPL was more effective in reducing the interface state density near the valence band edge. The leakage current density through the film was considerably lowered by the IPLs because the film crystallization was suppressed. Especially for the film with the ZnS IPL, the leakage current density in the low-voltage region was significantly lower than that observed for the film with the ZnO IPL, because the direct tunneling current was suppressed by the higher conduction band offset of ZnS with the InP substrate.

  14. Carbon-coated ZnO mat passivation by atomic-layer-deposited HfO2 as an anode material for lithium-ion batteries.

    PubMed

    Jung, Mi-Hee

    2017-11-01

    ZnO has had little consideration as an anode material in lithium-ion batteries compared with other transition-metal oxides due to its inherent poor electrical conductivity and large volume expansion upon cycling and pulverization of ZnO-based electrodes. A logical design and facile synthesis of ZnO with well-controlled particle sizes and a specific morphology is essential to improving the performance of ZnO in lithium-ion batteries. In this paper, a simple approach is reported that uses a cation surfactant and a chelating agent to synthesize three-dimensional hierarchical nanostructured carbon-coated ZnO mats, in which the ZnO mats are composed of stacked individual ZnO nanowires and form well-defined nanoporous structures with high surface areas. In order to improve the performance of lithium-ion batteries, HfO 2 is deposited on the carbon-coated ZnO mat electrode via atomic layer deposition. Lithium-ion battery devices based on the carbon-coated ZnO mat passivation by atomic layer deposited HfO 2 exhibit an excellent initial discharge and charge capacities of 2684.01 and 963.21mAhg -1 , respectively, at a current density of 100mAg -1 in the voltage range of 0.01-3V. They also exhibit cycle stability after 125 cycles with a capacity of 740mAhg -1 and a remarkable rate capability. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Synchrotron radiation microbeam X-ray fluorescence analysis of zinc concentration in remineralized enamel in situ.

    PubMed

    Matsunaga, Tsunenori; Ishizaki, Hidetaka; Tanabe, Shuji; Hayashi, Yoshihiko

    2009-05-01

    Remineralization is an indispensable phenomenon during the natural healing process of enamel decay. The incorporation of zinc (Zn) into enamel crystal could accelerate this remineralization. The present study was designed to investigate the concentration and distribution of Zn in remineralized enamel after gum chewing. The experiment was performed at the Photon Factory. Synchrotron radiation was monochromatized and X-rays were focused into a small beam spot. The X-ray fluorescence (XRF) from the sample was detected with a silicon (Si) (lithium (Li)) detector. X-ray beam energy was tuned to detect Zn. The examined samples were small enamel fragments remineralized after chewing calcium phosphate-containing gum in situ. The incorporation of Zn atom into hydroxyapatite (OHAP), the main component of enamel, was measured using Zn K-edge extended X-ray absorption fine structure (EXAFS) with fluorescence mode at the SPring-8. A high concentration of Zn was detected in a superficial area 10-microm deep of the sectioned enamel after gum chewing. This concentration increased over that in the intact enamel. The atomic distance between Zn and O in the enamel was calculated using the EXAFS data. The analyzed atomic distances between Zn and O in two sections were 0.237 and 0.240 nm. The present experiments suggest that Zn is effectively incorporated into remineralized enamel through the physiological processes of mineral deposition in the oral cavity through gum-chewing and that Zn substitution probably occurred at the calcium position in enamel hydroxyapatite.

  16. First principles calculations for interaction of tyrosine with (ZnO)3 cluster

    NASA Astrophysics Data System (ADS)

    Singh, Satvinder; Singh, Gurinder; Kaura, Aman; Tripathi, S. K.

    2018-04-01

    First Principles Calculations have been performed to study interactions of Phenol ring of Tyrosine (C6H5OH) with (ZnO)3 atomic cluster. All the calculations have been performed under the Density Functional Theory (DFT) framework. Structural and electronic properties of (ZnO)3/C6H5OH have been studied. Gaussian basis set approach has been adopted for the calculations. A ring type most stable (ZnO)3 atomic cluster has been modeled, analyzed and used for the calculations. The compatibility of the results with previous studies has been presented here.

  17. Observation of interface carrier states in no-common-atom heterostructures ZnSe/BeTe.

    PubMed

    Gurevich, A S; Kochereshko, V P; Bleuse, J; Mariette, H; Waag, A; Akimoto, R

    2011-09-07

    The existence of intrinsic carrier interface states in heterostructures with no common atom at the interface (such as ZnSe/BeTe) is shown experimentally by ellipsometry and photoluminescence spectroscopy. These states are located on interfaces and lie inside the effective bandgap of the structure; they are characterized by a high density and a long lifetime. A tight binding model confirms theoretically the existence of these states in ZnSe/BeTe heterostructures for a ZnTe-type interface, in contrast to the case of the BeSe-type interface for which they do not exist.

  18. Observation of interface carrier states in no-common-atom heterostructures ZnSe/BeTe

    NASA Astrophysics Data System (ADS)

    Gurevich, A. S.; Kochereshko, V. P.; Bleuse, J.; Mariette, H.; Waag, A.; Akimoto, R.

    2011-09-01

    The existence of intrinsic carrier interface states in heterostructures with no common atom at the interface (such as ZnSe/BeTe) is shown experimentally by ellipsometry and photoluminescence spectroscopy. These states are located on interfaces and lie inside the effective bandgap of the structure; they are characterized by a high density and a long lifetime. A tight binding model confirms theoretically the existence of these states in ZnSe/BeTe heterostructures for a ZnTe-type interface, in contrast to the case of the BeSe-type interface for which they do not exist.

  19. Bi-layer Channel AZO/ZnO Thin Film Transistors Fabricated by Atomic Layer Deposition Technique

    NASA Astrophysics Data System (ADS)

    Li, Huijin; Han, Dedong; Liu, Liqiao; Dong, Junchen; Cui, Guodong; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2017-03-01

    This letter demonstrates bi-layer channel Al-doped ZnO/ZnO thin film transistors (AZO/ZnO TFTs) via atomic layer deposition process at a relatively low temperature. The effects of annealing in oxygen atmosphere at different temperatures have also been investigated. The ALD bi-layer channel AZO/ZnO TFTs annealed in dry O2 at 300 °C exhibit a low leakage current of 2.5 × 10-13A, I on/ I off ratio of 1.4 × 107, subthreshold swing (SS) of 0.23 V/decade, and high transmittance. The enhanced performance obtained from the bi-layer channel AZO/ZnO TFT devices is explained by the inserted AZO front channel layer playing the role of the mobility booster.

  20. Dynamic probe of ZnTe(110) surface by scanning tunneling microscopy

    PubMed Central

    Kanazawa, Ken; Yoshida, Shoji; Shigekawa, Hidemi; Kuroda, Shinji

    2015-01-01

    The reconstructed surface structure of the II–VI semiconductor ZnTe (110), which is a promising material in the research field of semiconductor spintronics, was studied by scanning tunneling microscopy/spectroscopy (STM/STS). First, the surface states formed by reconstruction by the charge transfer of dangling bond electrons from cationic Zn to anionic Te atoms, which are similar to those of IV and III–V semiconductors, were confirmed in real space. Secondly, oscillation in tunneling current between binary states, which is considered to reflect a conformational change in the topmost Zn–Te structure between the reconstructed and bulk-like ideal structures, was directly observed by STM. Third, using the technique of charge injection, a surface atomic structure was successfully fabricated, suggesting the possibility of atomic-scale manipulation of this widely applicable surface of ZnTe. PMID:27877752

  1. Reduction of surface leakage current by surface passivation of CdZn Te and other materials using hyperthermal oxygen atoms

    DOEpatents

    Hoffbauer, Mark A.; Prettyman, Thomas H.

    2001-01-01

    Reduction of surface leakage current by surface passivation of Cd.sub.1-x Zn.sub.x Te and other materials using hyperthermal oxygen atoms. Surface effects are important in the performance of CdZnTe room-temperature radiation detectors used as spectrometers since the dark current is often dominated by surface leakage. A process using high-kinetic-energy, neutral oxygen atoms (.about.3 eV) to treat the surface of CdZnTe detectors at or near ambient temperatures is described. Improvements in detector performance include significantly reduced leakage current which results in lower detector noise and greater energy resolution for radiation measurements of gamma- and X-rays, thereby increasing the accuracy and sensitivity of measurements of radionuclides having complex gamma-ray spectra, including special nuclear materials.

  2. Synthesis of p-type ZnO films

    NASA Astrophysics Data System (ADS)

    Ryu, Y. R.; Zhu, S.; Look, D. C.; Wrobel, J. M.; Jeong, H. M.; White, H. W.

    2000-06-01

    p-Type ZnO obtained by arsenic (As) doping is reported for the first time. Arsenic-doped ZnO (ZnO : As) films have been deposited on (0 0 1)-GaAs substrates by pulsed laser ablation. The process of synthesizing p-type ZnO : As films was performed in an ambient gas of ultra-pure (99.999%) oxygen. The ambient gas pressure was 35 mTorr with the substrate temperature in the range 300-450°C. ZnO films grown at 400°C and 450°C are p-type and As is a good acceptor. The acceptor peak is located at 3.32 eV and its binding energy is about 100 meV. Acceptor concentrations of As atoms in ZnO films were in the range from high 10 17 to high 10 21 atoms/cm 3 as determined by secondary ion mass spectroscopy (SIMS) and Hall effect measurements.

  3. Investigation of intrinsic defect magnetic properties in wurtzite ZnO materials

    NASA Astrophysics Data System (ADS)

    Fedorov, A. S.; Visotin, M. A.; Kholtobina, A. S.; Kuzubov, A. A.; Mikhaleva, N. S.; Hsu, Hua Shu

    2017-10-01

    Theoretical and experimental investigations of the ferromagnetism induced by intrinsic defects inside wurtzite zinc oxide structures are performed using magnetic field-dependent circular dichroism (MCD-H), direct magnetization measurement (M-H) by superconducting quantum interference device (SQUID) as well as by generalized gradient density functional theory (GGA-DFT). To investigate localized magnetic moments of bulk material intrinsic defects - vacancies, interstitial atoms and Frenkel defects, various-size periodic supercells are calculated. It is shown that oxygen interstitial atoms (Oi) or zinc vacancies (Znv) generate magnetic moments of 1,98 и 1,26 μB respectively, however, the magnitudes are significantly reduced when the distance between defects increases. At the same time, the magnetic moments of oxygen Frenkel defects are large ( 1.5-1.8 μB) and do not depend on the distance between the defects. It is shown that the origin of the induced ferromagnetism in bulk ZnO is the extra spin density on the oxygen atoms nearest to the defect. Also dependence of the magnetization of ZnO (10 1 ̅ 0) and (0001) thin films on the positions of Oi and Znv in subsurface layers were investigated and it is shown that the magnetic moments of both defects are significantly different from the values inside bulk material. In order to check theoretical results regarding the defect induced ferromagnetism in ZnO, two thin films doped by carbon (C) and having Zn interstitials and oxygen vacancies were prepared and annealed in vacuum and air, respectively. According to the MCD-H and M-H measurements, the film, which was annealed in air, exhibits a ferromagnetic behavior, while the other does not. One can assume annealing of ZnO in vacuum should create oxygen vacancies or Zn interstitial atoms. At that annealing of the second C:ZnO film in air leads to essential magnetization, probably by annihilation of oxygen vacancies, formation of interstitial oxygen atoms or zinc vacancies. Thus, our experimental results confirm our theoretical conclusions that ZnO magnetization origin are Oi or Znv defects.

  4. Effects of Substrate and Post-Growth Treatments on the Microstructure and Properties of ZnO Thin Films Prepared by Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Haseman, Micah; Saadatkia, P.; Winarski, D. J.; Selim, F. A.; Leedy, K. D.; Tetlak, S.; Look, D. C.; Anwand, W.; Wagner, A.

    2016-12-01

    Aluminum-doped zinc oxide (ZnO:Al) thin films were synthesized by atomic layer deposition on silicon, quartz and sapphire substrates and characterized by x-ray diffraction (XRD), high-resolution scanning electron microscopy, optical spectroscopy, conductivity mapping, Hall effect measurements and positron annihilation spectroscopy. XRD showed that the as-grown films are of single-phase ZnO wurtzite structure and do not contain any secondary or impurity phases. The type of substrate was found to affect the orientation and degree of crystallinity of the films but had no effect on the defect structure or the transport properties of the films. High conductivity of 10-3 Ω cm, electron mobility of 20 cm2/Vs and carrier density of 1020 cm-3 were measured in most films. Thermal treatments in various atmospheres induced a large effect on the thickness, structure and electrical properties of the films. Annealing in a Zn and nitrogen environment at 400°C for 1 h led to a 16% increase in the thickness of the film; this indicates that Zn extracts oxygen atoms from the matrix and forms new layers of ZnO. On the other hand, annealing in a hydrogen atmosphere led to the emergence of an Al2O3 peak in the XRD pattern, which implies that hydrogen and Al atoms compete to occupy Zn sites in the ZnO lattice. Only ambient air annealing had an effect on film defect density and electrical properties, generating reductions in conductivity and electron mobility. Depth-resolved measurements of positron annihilation spectroscopy revealed short positron diffusion lengths and high concentrations of defects in all as-grown films. However, these defects did not diminish the electrical conductivity in the films.

  5. Syntheses, structures and properties of homo- and heterobimetallic complexes of the type [Zn(tren)NCS] 2[M(NCS) 4] [tren = tris(2-aminoethyl)amine; M = Zn, Cu

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Soumi; Bhar, Kishalay; Das, Sumitra; Chantrapromma, Suchada; Fun, Hoong-Kun; Ghosh, Barindra Kumar

    2010-04-01

    A 2:2:1:6 molar ratio of Zn(ClO 4) 2·6H 2O, tris(2-aminoethyl)amine (tren), Zn(ClO 4) 2·6H 2O/Cu(ClO 4) 2·6H 2O and NH 4NCS in methanol-water solution mixtures affords homo-/heterobimetallic compounds of the type [Zn(tren)NCS] 2[M(NCS) 4] (M = Zn, 1; M = Cu, 2) which have been characterized using microanalytical, spectroscopic, magnetic and other physicochemical results. The structures of the compounds are determined by X-ray diffraction measurements. Structural analyses reveal that 1 and 2 are isomorphous and consist of two discrete [Zn(tren)NCS] + cations and a [M(NCS) 4] 2- (M = Zn/Cu) anion. Zinc(II) centers in the [Zn(tren)NCS] + units adopt distorted trigonal bipyramidal geometry with ZnN 5 chromophores coordinated through four N atoms of tren and one N atom of terminal thiocyanate. Each metal(II) center in [M(NCS) 4] 2- has a distorted tetrahedral coordination environment with an MN 4 chromophore ligated by four N atoms of the terminal thiocyanates. In solid state, doubly N-H…S hydrogen bonded 1D chains of [Zn(tren)NCS] + cations are interconnected by tetrahedral [Zn(NCS) 4] 2-/[Cu(NCS) 4] 2- anions through cooperative N-H…S and N-H…N (in 1) and N-H…S and C-H…S (in 2) hydrogen bonds resulting in 3D network structures. Establishment of such networks seems to be aiding the crystallization.

  6. Analysis of ultraviolet photo-response of ZnO nanostructures prepared by electrodeposition and atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Makhlouf, Houssin; Karam, Chantal; Lamouchi, Amina; Tingry, Sophie; Miele, Philippe; Habchi, Roland; Chtourou, Radhouane; Bechelany, Mikhael

    2018-06-01

    In this work, ZnO nanowires (ZnO NWs) and urchin-like ZnO nanowires (U-ZnO NWs) based on self-assembled ordered polystyrene sphere (PS) were successfully prepared by combining atomic layer deposition (ALD) and electrochemical deposition (ECD) processes to build UV photosensors. The photo-response of the prepared samples was investigated and compared. The growth of the nanowires on self-assembled, ordered PS introduces a significant modification on the morphology, crystal orientation and grain size of U-ZnO NWs compared to randomly, vertically aligned ZnO NWs, and therefore improves the photo-response of U-ZnO NWs. The photocurrent may be produced by either a surface or bulk-related process. For ZnO NW-based photosensors, the photocurrent was monitored by a surface related process, whereas, it was mainly governed by a bulk related process for U-ZnO NWs, resulting in a higher and faster photo-response. The study of the rise and decay time constants for both materials showed that these parameters were strikingly sensitive to the optical properties.

  7. Detection of Cu2Zn5SnSe8 and Cu2Zn6SnSe9 phases in co-evaporated Cu2ZnSnSe4 thin-films

    NASA Astrophysics Data System (ADS)

    Schwarz, Torsten; Marques, Miguel A. L.; Botti, Silvana; Mousel, Marina; Redinger, Alex; Siebentritt, Susanne; Cojocaru-Mirédin, Oana; Raabe, Dierk; Choi, Pyuck-Pa

    2015-10-01

    Cu2ZnSnSe4 thin-films for photovoltaic applications are investigated using combined atom probe tomography and ab initio density functional theory. The atom probe studies reveal nano-sized grains of Cu2Zn5SnSe8 and Cu2Zn6SnSe9 composition, which cannot be assigned to any known phase reported in the literature. Both phases are considered to be metastable, as density functional theory calculations yield positive energy differences with respect to the decomposition into Cu2ZnSnSe4 and ZnSe. Among the conceivable crystal structures for both phases, a distorted zinc-blende structure shows the lowest energy, which is a few tens of meV below the energy of a wurtzite structure. A band gap of 1.1 eV is calculated for both the Cu2Zn5SnSe8 and Cu2Zn6SnSe9 phases. Possible effects of these phases on solar cell performance are discussed.

  8. NASA Astrophysics Data System (ADS)

    Yao, Jinhuan; Li, Yanwei; Li, Xuanhai; Le, Shiru

    2014-07-01

    The geometric structure, electronic structure, and stability of In-substituted ZnFe2O4 (Zn7InFe16O32 and Zn8Fe15InO32) are investigated by the density functional theory at generalized gradient approximation level. Compared with the perfect ZnFe2O4 (Zn8Fe16O32), the unit cell volume of In-substituted ZnFe2O4 increases and the structure deforms slightly. The formation energy of In substitution for Zn is smaller than that of In substitution for Fe, indicating that Zn7InFe16O32 is easier to be formed than Zn8Fe15InO32. In substitution changes the properties of ZnFe2O4 from semiconducting character to metallic character. For ZnFe2O4 and In-substituted ZnFe2O4, the strength of O-Zn bond is stronger than O-Fe bond and both of them have a covalent bond character. The strength of O-In bond is similar to that of O-Zn bond in Zn7InFe16O32, but weaker than O-Fe in Zn8Fe15InO32. In substitution for Zn causes the strength of O-Fe bonds around In atom to weaken. In substitution for Fe causes the strength of O-Zn bonds around In atom to weaken obviously, while the strength of O-Fe bonds strengthen slightly.

  9. Hybrid Organic/ZnO p-n Junctions with n-Type ZnO Grown by Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Łuka, G.; Krajewski, T.; Szczerbakow, A.; Łusakowska, E.; Kopalko, K.; Guziewicz, E.; Wachnicki, Ł.; Szczepanik, A.; Godlewski, M.; Fidelus, J. D.

    2008-11-01

    We report on fabrication of hybrid inorganic-on-organic thin film structures with polycrystalline zinc oxide films grown by atomic layer deposition technique. ZnO films were deposited on two kinds of thin organic films, i.e. pentacene and poly(dimethylosiloxane) elastomer with a carbon nanotube content (PDMS:CNT). Surface morphology as well as electrical measurements of the films and devices were analyzed. The current density versus voltage (I-V) characteristics of ITO/pentacene/ZnO/Au structure show a low-voltage switching phenomenon typical of organic memory elements. The I-V studies of ITO/PDMS:CNT/ZnO/Au structure indicate some charging effects in the system under applied voltages.

  10. Control of conduction type in ferromagnetic (Zn,Sn,Mn)As2 thin films by changing Mn content and effect of annealing on thin films with n-type conduction

    NASA Astrophysics Data System (ADS)

    Minamizawa, Yuto; Kitazawa, Tomohiro; Hidaka, Shiro; Toyota, Hideyuki; Nakamura, Shin-ichi; Uchitomi, Naotaka

    2018-04-01

    The conduction type in (Zn,Sn,Mn)As2 thin films grown by molecular beam epitaxy (MBE) on InP substrates was found to be controllable from p-type to n-type as a function of Mn content. n-type (Zn,Sn,Mn)As2 thin films were obtained by Mn doping of more than approximately 11 cat.%. It is likely that Mn interstitials (MnI) incorporated by excess Mn doping are located at tetrahedral hollow spaces surrounded by Zn and Sn cation atoms and four As atoms, which are expected to act as donors in (Zn,Sn,Mn)As2, resulting in n-type conduction. The effect of annealing on the structural, electrical and magnetic properties of n-type (Zn,Sn,Mn)As2 thin films was investigated as functions of annealing temperature and time. It was revealed that even if the annealing temperature is considerably higher than the growth temperature of 320 °C, the magnetic properties of the thin films remain stable. This suggests that a MnI complex surrounded by Zn and Sn atoms is thermally stable during high-temperature annealing. The n-type (Zn,Sn,Mn)As2 thin films may be suitable for application as n-type spin-polarized injectors.

  11. High Performance and Highly Reliable ZnO Thin Film Transistor Fabricated by Atomic Layer Deposition for Next Generation Displays

    DTIC Science & Technology

    2011-08-19

    zinc oxide ( ZnO ) thin film as an active channel layer in TFT has become of great interest owing to their specific...630-0192 Japan Phone: +81-743-72-6060 Fax: +81-743-72-6069 E-mail: uraoka@ms.naist.jp Keywords: zinc oxide , thin film transistors , atomic layer...deposition Symposium topic: Transparent Semiconductors Oxides [Abstract] In this study, we fabricated TFTs using ZnO thin film as the

  12. Growth and structural, optical, and electrical properties of zincite crystals

    NASA Astrophysics Data System (ADS)

    Kaurova, I. A.; Kuz'micheva, G. M.; Rybakov, V. B.

    2013-03-01

    An X-ray diffraction study of ZnO crystals grown by the hydrothermal method has revealed reflections that give grounds to assign them to the sp. gr. P3 rather than to P63 mc. The distribution of Zn1, Zn2, O1, and O2 over structural positions, along with vacancies and incorporated zinc atoms, explains the dissymmetrization observed in terms of the kinetic (growth) phase transition of the order-disorder type, which is caused by ordering Zn and O atoms over structural positions. The color of crystals of refined compositions (Zn0.975□0.025)Zn i(0.015)(O0.990□0.010) (green) and (Zn0.965□0.035)Zn i(0.035)O (bright green) is related to different oxygen contents, which is confirmed by the results of electron probe X-ray microanalysis and absorption spectroscopy. The degree of the structural quality of crystals, their resistivity, and activation energy are also related to oxygen vacancies.

  13. Bi-layer Channel AZO/ZnO Thin Film Transistors Fabricated by Atomic Layer Deposition Technique.

    PubMed

    Li, Huijin; Han, Dedong; Liu, Liqiao; Dong, Junchen; Cui, Guodong; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2017-12-01

    This letter demonstrates bi-layer channel Al-doped ZnO/ZnO thin film transistors (AZO/ZnO TFTs) via atomic layer deposition process at a relatively low temperature. The effects of annealing in oxygen atmosphere at different temperatures have also been investigated. The ALD bi-layer channel AZO/ZnO TFTs annealed in dry O 2 at 300 °C exhibit a low leakage current of 2.5 × 10 -13 A, I on /I off ratio of 1.4 × 10 7 , subthreshold swing (SS) of 0.23 V/decade, and high transmittance. The enhanced performance obtained from the bi-layer channel AZO/ZnO TFT devices is explained by the inserted AZO front channel layer playing the role of the mobility booster.

  14. Shallow doping effect of ZnO treatment using atomic layer deposition process on p-type In0.53Ga0.47As

    NASA Astrophysics Data System (ADS)

    Lee, Changmin; An, Youngseo; Choi, Sungho; Kim, Hyoungsub

    2018-06-01

    The number of atomic layer deposition (ALD) cycles for ZnO treatment was changed to study its merits and demerits as a passivation layer prior to the deposition of a HfO2 film on a p-type In0.53Ga0.47As substrate. Even a few cycles of ZnO ALD treatment was effective in improving the capacitance–voltage (C–V) characteristics by suppressing strong Fermi-level pinning, which occurred because of a high interface state density near the lower half of the In0.53Ga0.47As band gap. Increases in the number of ZnO ALD cycles induced an increase in the minimum capacitance and response of minority carriers at higher frequencies in the inversion region of the C–V characteristics. According to various temperature- and frequency-dependent C–V analyses, these changes were explained by the shallow p-type doping effect of Zn atoms in the In0.53Ga0.47As substrate. As a disadvantage, ZnO ALD treatment caused a slight increase in the dielectric leakage current.

  15. Comparison of sticking probabilities of metal atoms in magnetron sputtering deposition of CuZnSnS films

    NASA Astrophysics Data System (ADS)

    Sasaki, K.; Kikuchi, S.

    2014-10-01

    In this work, we compared the sticking probabilities of Cu, Zn, and Sn atoms in magnetron sputtering deposition of CZTS films. The evaluations of the sticking probabilities were based on the temporal decays of the Cu, Zn, and Sn densities in the afterglow, which were measured by laser-induced fluorescence spectroscopy. Linear relationships were found between the discharge pressure and the lifetimes of the atom densities. According to Chantry, the sticking probability is evaluated from the extrapolated lifetime at the zero pressure, which is given by 2l0 (2 - α) / (v α) with α, l0, and v being the sticking probability, the ratio between the volume and the surface area of the chamber, and the mean velocity, respectively. The ratio of the extrapolated lifetimes observed experimentally was τCu :τSn :τZn = 1 : 1 . 3 : 1 . This ratio coincides well with the ratio of the reciprocals of their mean velocities (1 /vCu : 1 /vSn : 1 /vZn = 1 . 00 : 1 . 37 : 1 . 01). Therefore, the present experimental result suggests that the sticking probabilities of Cu, Sn, and Zn are roughly the same.

  16. Sulfur K-edge extended X-ray absorption fine structure spectroscopy of homoleptic thiolato complexes with Zn(II) and Cd(II).

    PubMed

    Matsunaga, Yuki; Fujisawa, Kiyoshi; Ibi, Naoko; Fujita, Mitsuharu; Ohashi, Tetuya; Amir, Nagina; Miyashita, Yoshitaro; Aika, Ken-Ichi; Izumi, Yasuo; Okamoto, Ken-Ichi

    2006-02-01

    The sulfur K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy is applied to homoleptic thiolato complexes with Zn(II) and Cd(II), (Et(4)N)[Zn(SAd)(3)] (1), (Et(4)N)(2)[{Zn(ScHex)(2)}(2)(mu-ScHex)(2)] (2), (Et(4)N)(2)[{Cd(ScHex)(2)}(2)(mu-ScHex)(2)] (3), (Et(4)N)(2)[{Cd(ScHex)}(4)(mu-ScHex)(6)] (4), [Zn(mu-SAd)(2)](n) (5), and [Cd(mu-SAd)(2)](n) (6) (HSAd=1-adamantanethiol, HScHex=cyclohexanethiol). The EXAFS results are consistent with the X-ray crystal data of 1-4. The structures of 5 and 6, which have not been determined by X-ray crystallography, are proposed to be polynuclear structures on the basis of the sulfur K-edge EXAFS, far-IR spectra, and elemental analysis. Clear evidences of the S...S interactions (between bridging atoms or neighboring sulfur atoms) and the S...C(far) interactions (in which C(far) atom is next to carbon atom directly bonded to sulfur atom) were observed in the EXAFS data for all complexes and thus lead to the reliable determination of the structures of 5 and 6 in combination with conventional zinc K-edge EXAFS analysis for 5. This new methodology, sulfur K-edge EXAFS, could be applied for the structural determination of in vivo metalloproteins as well as inorganic compounds.

  17. The role of ion exchange in the passivation of In(Zn)P nanocrystals with ZnS

    PubMed Central

    Cho, Deok-Yong; Xi, Lifei; Boothroyd, Chris; Kardynal, Beata; Lam, Yeng Ming

    2016-01-01

    We have investigated the chemical state of In(Zn)P/ZnS core/shell nanocrystals (NCs) for color conversion applications using hard X-ray absorption spectroscopy (XAS) and photoluminescence excitation (PLE). Analyses of the edge energies as well as the X-ray absorption fine structure (XAFS) reveal that the Zn2+ ions from ZnS remain in the shell while the S2− ions penetrate into the core at an early stage of the ZnS deposition. It is further demonstrated that for short growth times, the ZnS shell coverage on the core was incomplete, whereas the coverage improved gradually as the shell deposition time increased. Together with evidence from PLE spectra, where there is a strong indication of the presence of P vacancies, this suggests that the core-shell interface in the In(Zn)P/ZnS NCs are subject to substantial atomic exchanges and detailed models for the shell structure beyond simple layer coverage are needed. This substantial atomic exchange is very likely to be the reason for the improved photoluminescence behavior of the core-shell particles compare to In(Zn)P-only NCs as S can passivate the NCs surfaces. PMID:26972936

  18. Atomic-scale evidence for displacive disorder in bismuth zinc niobate pyrochlore.

    PubMed

    Jia, Chun-Lin; Jin, Lei; Chen, Yue-Hua; Urban, Knut W; Wang, Hong

    2018-05-30

    Pyrochlores characterized by the chemical formula A 2 B 2 O 7 form an extended class of materials with interesting physical and chemical properties. The compound Bi 1.5 ZnNb 1.5 O 7 is prototypical. Its excellent dielectric properties make it attractive, e.g. for capacitors, tunable microwave devices and electric-energy storage equipment. Bi 1.5 ZnNb 1.5 O 7 shows an intriguing frequency-dispersive dielectric relaxation at 50 K ≤ T ≤ 250 K, which has been studied intensively but is still not fully understood. In this first study on a pyrochlore by atomic-resolution transmission electron microscopy we observe the Bi atoms on A sites since, due to their low nuclear charge, the contribution of Zn atoms to the contrast of these sites is negligible. We find in our [1¯00]and [112] oriented images that the position of the atomic intensity maxima do not coincide with the projected Wyckoff positions of the basic pyrochlore lattice. This supplies atomic-scale evidence for displacive disorder on split A-type sites. The Bi atoms are sessile, only occasionally we observe in time sequences of images jumps between individual split-site positions. The apertaining jump rate of the order of 0.1-1 Hz is by ten orders of magnitude lower than the values derived in the literature from Arrhenius plots of the low-temperature dielectric relaxation data. It is argued that these jumps are radiation induced. Therefore our observations are ruling out a contribution of Bi-atom jumps to low-temperature dielectric A sites-related relaxation. It is suggested that this relaxation is mediated by jumps of Zn atoms. Copyright © 2018. Published by Elsevier B.V.

  19. Modeling the thermal conductivities of the zinc antimonides ZnSb and Zn4Sb3

    NASA Astrophysics Data System (ADS)

    Bjerg, Lasse; Iversen, Bo B.; Madsen, Georg K. H.

    2014-01-01

    ZnSb and Zn4Sb3 are interesting as thermoelectric materials because of their low cost and low thermal conductivity. We introduce a model of the lattice thermal conductivity which is independent of fitting parameters and takes the full phonon dispersions into account. The model is found to give thermal conductivities with the correct relative magnitudes and in reasonable quantitative agreement with experiment for a number of semiconductor structures. The thermal conductivities of the zinc antimonides are reviewed and the relatively large effect of nanostructuring on the zinc antimonides is rationalized in terms of the mean free paths of the heat carrying phonons. The very low thermal conductivity of Zn4Sb3 is found to be intrinsic to the structure. However, the low-lying optical modes are observed in both Zn-Sb structures and involve both Zn and Sb vibrations, thereby strongly questioning dumbbell rattling. A mechanism for the very low thermal conductivity observed in Zn4Sb3 is identified. The large Grüneisen parameter of this compound is traced to the Sb atoms which coordinate only Zn atoms.

  20. The initial stages of ZnO atomic layer deposition on atomically flat In0.53Ga0.47As substrates.

    PubMed

    Skopin, Evgeniy V; Rapenne, Laetitia; Roussel, Hervé; Deschanvres, Jean-Luc; Blanquet, Elisabeth; Ciatto, Gianluca; Fong, Dillon D; Richard, Marie-Ingrid; Renevier, Hubert

    2018-06-21

    InGaAs is one of the III-V active semiconductors used in modern high-electron-mobility transistors or high-speed electronics. ZnO is a good candidate material to be inserted as a tunneling insulator layer at the metal-semiconductor junction. A key consideration in many modern devices is the atomic structure of the hetero-interface, which often ultimately governs the electronic or chemical process of interest. Here, a complementary suite of in situ synchrotron X-ray techniques (fluorescence, reflectivity and absorption) as well as modeling is used to investigate both structural and chemical evolution during the initial growth of ZnO by atomic layer deposition (ALD) on In0.53Ga0.47As substrates. Prior to steady-state growth behavior, we discover a transient regime characterized by two stages. First, substrate-inhibited ZnO growth takes place on InGaAs terraces. This leads eventually to the formation of a 1 nm-thick, two-dimensional (2D) amorphous layer. Second, the growth behavior and its modeling suggest the occurrence of dense island formation, with an aspect ratio and surface roughness that depends sensitively on the growth condition. Finally, ZnO ALD on In0.53Ga0.47As is characterized by 2D steady-state growth with a linear growth rate of 0.21 nm cy-1, as expected for layer-by-layer ZnO ALD.

  1. Chemical synthesis and structural characterization of small AuZn nanoparticles

    NASA Astrophysics Data System (ADS)

    Juárez-Ruiz, E.; Pal, U.; Lombardero-Chartuni, J. A.; Medina, A.; Ascencio, J. A.

    2007-03-01

    In this paper, we report the aqueous synthesis of bimetallic Au-Zn nanoparticles of different compositions by the simultaneous reduction technique. The stability and atomic configuration of the particles are studied through high-resolution transmission electron microscopy (HRTEM) and UV-Vis optical absorption techniques. Depending on the composition, small bimetallic nanoparticles of 1 15 nm in size were obtained. The average size and size distribution of the bimetallic nanoparticles are seen to be critically dependent on the atomic ratio of the constituting elements Au and Zn. While a 1:1 atomic proportion of Au and Zn produced most stable nanoparticles of smallest average size, nanoparticles produced with higher content of either of the component elements are unstable, inducing agglomeration and coalescence to form elongated structures with uneven morphologies. Au3Zn1 nanoparticles followed a directional growth pattern, producing bimetallic nanorods with multiple crystalline domains. Interestingly, in these rod-like nanostructures, the domains are in well array of solid solution-like bimetallic and pure mono-metallic regions alternatively. Such nanostructures with uneven morphology and compositions might show distinct catalytic selectivity in chemical reactions.

  2. Electrical properties of films of zinc oxide nanoparticles and its hybrid with reduced graphene oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madhuri, K. Priya; Bramhaiah, K.; John, Neena S., E-mail: jsneena@cnsms.res.in

    Free-standing films of ZnO nanoparticles (NPs) and reduced graphene oxide (rGO)-ZnO NPs hybrid are prepared at a liquid/liquid interface. The films are characterized by UV-visible spectroscopy, X-ray diffraction, scanning electron microscopy and atomic force microscopy. ZnO film consists of spherical aggregated NPs while the hybrid film contains folded sheets of rGO with embedded ZnO NPs. Electrical properties of the films and its photoresponse in presence of UV radiation are investigated using current sensing atomic force microscopy (CSAFM) at nanoscale and bulk measurements using two probe methods. Enhancement in photocurrent is observed in both cases and the current imaging reveals anmore » inhomogeneous contribution by different ZnO grains in the film.« less

  3. Atomic level characterization of cadmium selenide nanocrystal systems using atomic number contrast scanning transmission electron microscopy and Rutherford backscattering spectroscopy

    NASA Astrophysics Data System (ADS)

    McBride, James R.

    This project involved the characterization of CdSe nanocrystals. Through the use of Atomic Number Contrast Scanning Transmission Electron Microscopy (Z-STEM) and Rutherford Backscattering Spectroscopy (RBS), atomic level structure and chemical information was obtained. Specifically, CdSe nanocrystals produced using a mixture of hexadecylamine (HDA) and trioctylphosphine oxide (TOPO) were determined to be spherical compared to nanocrystals produced in TOPO only, which had elongated (101) facets. Additionally, the first Z-STEM images of CdSe/ZnS core/shell nanocrystals were obtained. From these images, the growth mechanism of the ZnS shell was determined and the existence of non-fluorescent ZnS particles was confirmed. Through collaboration with Quantum Dot Corp., core/shell nanocrystals with near unity quantum yield were developed. These core/shell nanocrystals included a US intermediate layer to improve shell coverage.

  4. Solar Absorber Cu 2 ZnSnS 4 and its Parent Multilayers ZnS/SnS 2 /Cu 2 S Synthesized by Atomic Layer Deposition and Analyzed by X-ray Photoelectron Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baryshev, Sergey V.; Riha, Shannon C.; Zinovev, Alexander V.

    2015-06-01

    Presented here are results of x-ray photoelectron spectroscopy (XPS) on multilayers of metal-sulfide binaries ZnS, SnS2, and Cu2S grown by atomic layer deposition (ALD) on Si substrates, and of Cu2ZnSnS4 (CZTS) formed upon 450 °C annealing of the parent multilayer ZnS/SnS2/Cu2S. Survey and detailed spectral analysis of the multilayer ZnS/SnS2/Cu2S are presented step-wise, as each layer was sequentially added by ALD. The set of data is finalized with spectra of the resulting alloy CZTS. XPS analyses indicate significant mixing between SnS2 and Cu2S, which favors CZTS formation within the ALD approach.

  5. Growth mechanism, surface and optical properties of ZnO nanostructures deposited on various Au-seeded thickness obtained by mist-atomization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afaah, A. N., E-mail: afaahabdullah@yahoo.com; Aadila, A., E-mail: aadilaazizali@gmail.com; Asib, N. A. M., E-mail: amierahasib@yahoo.com

    2016-07-06

    In this paper, growth mechanisms of ZnO nanostructures on non-seeded glass, 6 nm and 12 nm Au seed layer obtained by mist-atomization was proposed. ZnO films were successfully deposited on glass substrate with different thickness of Au seed layer i.e. 6 nm and 12 nm. The surface and optical properties of the prepared samples were investigated using Field emission scanning electron microscopy (FESEM) and photoluminescence (PL). FESEM micrograph show that ZnO nanostructure deposited on 6 nm Au seed layer has uniform formation and well distributed. From PL spectroscopy, the UV emission shows that ZnO deposited on 6 nm Au seedmore » layer has the more intense UV intensity which proved that high crystal quality of nanostructured ZnO deposited on 6 nm Au seed layer.« less

  6. Heavy metal (As, Cd, Hg, Pb, Cu, Zn, Se) concentrations in muscle and bone of four commercial fish caught in the central Adriatic Sea, Italy.

    PubMed

    Perugini, Monia; Visciano, Pierina; Manera, Maurizio; Zaccaroni, Annalisa; Olivieri, Vincenzo; Amorena, Michele

    2014-04-01

    Heavy metal (As, Cd, Cu, Pb, Zn, Hg and Se) concentrations in the muscle and bone of four fish species (Mullus barbatus, Merluccius merluccius, Micromesistius poutassou, and Scomber scombrus) from the central Adriatic Sea were measured and the relationships between fish size (length and weight) and metal concentrations in the tissues were investigated. Samples were analyzed by inductively coupled plasma-atomic emission spectrophotometry with automatic dual viewing. In the muscle, results of linear regression analysis showed that, except for mercury, significant relationships between metal concentrations and fish size were negative. Only mercury levels were positively correlated with Atlantic mackerel size (p < 0.05). No significant variations of heavy metal concentrations were observed in muscles of the examined species, but a significant difference (p < 0.01) was found for As, Cd, Pb, and Se concentrations in bone. All the investigated metals showed higher values in the muscle than in bone, except for lead and zinc. Regarding cadmium, lead, and mercury maximum levels, set for the edible portion by European legislation, several samples exceeded these values, confirming the heavy metal presence in species caught near the Jabuka Pit.

  7. Level and Contamination Assessment of Soil along an Expressway in an Ecologically Valuable Area in Central Poland

    PubMed Central

    Radziemska, Maja; Fronczyk, Joanna

    2015-01-01

    Express roads are a potential source of heavy metal contamination in the surrounding environment. The Warsaw Expressway (E30) is one of the busiest roads in the capital of Poland and cuts through the ecologically valuable area (Mazowiecki Natural Landscape Park). Soil samples were collected at distances of 0.5, 4.5 and 25 m from the expressway. The concentrations of cadmium (Cd), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) were determined in the soils by the flame atomic absorption spectrometry method (FAAS). Soils located in the direct proximity of the analyzed stretch of road were found to have the highest values of pH and electrical conductivity (EC), which decreased along with an increase in the distance from the expressway. The contents of Cd, Cu and Zn were found to be higher than Polish national averages, whereas the average values of Ni and Pb were not exceeded. The pollution level was estimated based on the geo-accumulation index (Igeo), and the pollution index (PI). The results of Igeo and PI indexes revealed the following orders: Cu < Zn < Ni < Cd < Pb and Cu < Ni < Cd < Zn < Pb, and comparison with geochemical background values showed higher concentration of zinc, lead and cadmium. PMID:26512684

  8. Level and Contamination Assessment of Soil along an Expressway in an Ecologically Valuable Area in Central Poland.

    PubMed

    Radziemska, Maja; Fronczyk, Joanna

    2015-10-23

    Express roads are a potential source of heavy metal contamination in the surrounding environment. The Warsaw Expressway (E30) is one of the busiest roads in the capital of Poland and cuts through the ecologically valuable area (Mazowiecki Natural Landscape Park). Soil samples were collected at distances of 0.5, 4.5 and 25 m from the expressway. The concentrations of cadmium (Cd), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) were determined in the soils by the flame atomic absorption spectrometry method (FAAS). Soils located in the direct proximity of the analyzed stretch of road were found to have the highest values of pH and electrical conductivity (EC), which decreased along with an increase in the distance from the expressway. The contents of Cd, Cu and Zn were found to be higher than Polish national averages, whereas the average values of Ni and Pb were not exceeded. The pollution level was estimated based on the geo-accumulation index (Igeo), and the pollution index (PI). The results of Igeo and PI indexes revealed the following orders: Cu < Zn < Ni < Cd < Pb and Cu < Ni < Cd < Zn < Pb, and comparison with geochemical background values showed higher concentration of zinc, lead and cadmium.

  9. On the interplay of point defects and Cd in non-polar ZnCdO films

    NASA Astrophysics Data System (ADS)

    Zubiaga, A.; Reurings, F.; Tuomisto, F.; Plazaola, F.; García, J. A.; Kuznetsov, A. Yu.; Egger, W.; Zúñiga-Pérez, J.; Muñoz-Sanjosé, V.

    2013-01-01

    Non-polar ZnCdO films, grown over m- and r-sapphire with a Cd concentration ranging between 0.8% and 5%, have been studied by means of slow positron annihilation spectroscopy (PAS) combined with chemical depth profiling by secondary ion mass spectroscopy and Rutherford back-scattering. Vacancy clusters and Zn vacancies with concentrations up to 1017 cm-3 and 1018 cm-3, respectively, have been measured inside the films. Secondary ion mass spectroscopy results show that most Cd stays inside the ZnCdO film but the diffused atoms can penetrate up to 1.3 μm inside the ZnO buffer. PAS results give an insight to the structure of the meta-stable ZnCdO above the thermodynamical solubility limit of 2%. A correlation between the concentration of vacancy clusters and Cd has been measured. The concentration of Zn vacancies is one order of magnitude larger than in as-grown non-polar ZnO films and the vacancy cluster are, at least partly, created by the aggregation of smaller Zn vacancy related defects. The Zn vacancy related defects and the vacancy clusters accumulate around the Cd atoms as a way to release the strain induced by the substitutional CdZn in the ZnO crystal.

  10. Effect of cobalt doping on the mechanical properties of ZnO nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vahtrus, Mikk; Šutka, Andris

    In this work, we investigate the influence of doping on the mechanical properties of ZnO nanowires (NWs) by comparing the mechanical properties of pure and Co-doped ZnO NWs grown in similar conditions and having the same crystallographic orientation [0001]. The mechanical characterization included three-point bending tests made with atomic force microscopy and cantilever beam bending tests performed inside scanning electron microscopy. It was found that the Young's modulus of ZnO NWs containing 5% of Co was approximately a third lower than that of the pure ZnO NWs. Bending strength values were comparable for both materials and in both cases weremore » close to theoretical strength indicating high quality of NWs. Dependence of mechanical properties on NW diameter was found for both doped and undoped ZnO NWs. - Highlights: •Effect of Co doping on the mechanical properties of ZnO nanowires is studied. •Co substitutes Zn atoms in ZnO crystal lattice. •Co addition affects crystal lattice parameters. •Co addition results in significantly decreased Young's modulus of ZnO. •Bending strength for doped and undoped wires is close to the theoretical strength.« less

  11. Atomic layer deposition of Nb-doped ZnO for thin film transistors

    NASA Astrophysics Data System (ADS)

    Shaw, A.; Wrench, J. S.; Jin, J. D.; Whittles, T. J.; Mitrovic, I. Z.; Raja, M.; Dhanak, V. R.; Chalker, P. R.; Hall, S.

    2016-11-01

    We present physical and electrical characterization of niobium-doped zinc oxide (NbZnO) for thin film transistor (TFT) applications. The NbZnO films were deposited using atomic layer deposition. X-ray diffraction measurements indicate that the crystallinity of the NbZnO films reduces with an increase in the Nb content and lower deposition temperature. It was confirmed using X-ray photoelectron spectroscopy that Nb5+ is present within the NbZnO matrix. Furthermore, photoluminescence indicates that the band gap of the ZnO increases with a higher Nb content, which is explained by the Burstein-Moss effect. For TFT applications, a growth temperature of 175 °C for 3.8% NbZnO provided the best TFT characteristics with a saturation mobility of 7.9 cm2/Vs, the current On/Off ratio of 1 × 108, and the subthreshold swing of 0.34 V/decade. The transport is seen to follow a multiple-trap and release mechanism at lower gate voltages and percolation thereafter.

  12. Direct evidence for As as a Zn-site impurity in ZnO.

    PubMed

    Wahl, U; Rita, E; Correia, J G; Marques, A C; Alves, E; Soares, J C

    2005-11-18

    Arsenic has been reported in the literature as one of the few p-type dopants in the technologically promising II-VI semiconductor ZnO. However, there is an ongoing debate whether the p-type character is due to As simply replacing O atoms or to the formation of more complicated defect complexes, possibly involving As on Zn sites. We have determined the lattice location of implanted As in ZnO by means of conversion-electron emission channeling from radioactive (73)As. In contrast to what one might expect from its nature as a group V element, we find that As does not occupy substitutional O sites but in its large majority substitutional Zn sites. Arsenic in ZnO (and probably also in GaN) is thus an interesting example for an impurity in a semiconductor where the major impurity lattice site is determined by atomic size and electronegativity rather than its position in the periodic system.

  13. Evaluation of Alternative Atomistic Models for the Incipient Growth of ZnO by Atomic Layer Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Manh-Hung; Tian, Liang; Chaker, Ahmad

    ZnO thin films are interesting for applications in several technological fields, including optoelectronics and renewable energies. Nanodevice applications require controlled synthesis of ZnO structures at nanometer scale, which can be achieved via atomic layer deposition (ALD). However, the mechanisms governing the initial stages of ALD had not been addressed until very recently. Investigations into the initial nucleation and growth as well as the atomic structure of the heterointerface are crucial to optimize the ALD process and understand the structure-property relationships for ZnO. We have used a complementary suite of in situ synchrotron x-ray techniques to investigate both the structural andmore » chemical evolution during ZnO growth by ALD on two different substrates, i.e., SiO2 and Al2O3, which led us to formulate an atomistic model of the incipient growth of ZnO. The model relies on the formation of nanoscale islands of different size and aspect ratio and consequent disorder induced in the Zn neighbors' distribution. However, endorsement of our model requires testing and discussion of possible alternative models which could account for the experimental results. In this work, we review, test, and rule out several alternative models; the results confirm our view of the atomistic mechanisms at play, which influence the overall microstructure and resulting properties of the final thin film.« less

  14. Assessment of the Zinc and Copper Status in Alpaca.

    PubMed

    Pechová, A; Husáková, T; Pavlata, L; Holasová, M; Hauptmanová, K

    2018-02-01

    This study was performed with the aim of investigating the concentration of zinc and copper in the blood of healthy alpacas (Vicugna pacos) kept in central Europe and to compare the concentration of Zn and Cu in plasma and in whole blood. A further objective was to evaluate blood Zn and Cu in relation to different micromineral supplementation, age and sex groups of alpacas. A total of 299 alpacas (224 adults and 75 crias) from 18 farms were included in this study. The concentrations of copper and zinc in plasma/whole blood were measured by flame atomic absorption spectrometry. The results of this study show high individual variability in plasma Zn (median 3.54, range 1.56-8.01 μmol/l), whole blood Zn (median 10.01, range 6.23-75.0 μmol/l), plasma Cu (median 7.53, range 2.93-16.41 μmol/l) and whole blood Cu (median 6.33, range 3.02-13.95 μmol/l). Plasma Zn was not significantly influenced by sex, age or feeding group. Whole blood Zn was only significantly higher in females than in males. The intake of Zn in all groups was equal to or higher than the nutritional recommendation. During excessive supplementation, Zn absorption decreased and thus blood Zn did not reflect the higher intake. Only a weak correlation was found (Spearman correlation coefficient r = 0.384; p > 0.01; n = 204) between plasma and whole blood Zn concentrations. Plasma copper concentration was significantly influenced by age, sex and feeding; whole blood Cu by age and feeding. However, neither plasma Cu nor whole blood Cu reflected the intake of the element. We found a close correlation between plasma and blood copper concentrations (Spearman correlation coefficient r = 0.9043; p ≤ 0.01; n = 99). According to our results, copper in plasma or blood is not a good indicator of copper intake.

  15. Fabrication of GaN doped ZnO nanocrystallines by laser ablation.

    PubMed

    Gopalakrishnan, N; Shin, B C; Bhuvana, K P; Elanchezhiyan, J; Balasubramanian, T

    2008-08-01

    Here, we present the fabrication of pure and GaN doped ZnO nanocrystallines on Si(111) substrates by KrF excimer laser. The targets for the ablation have been prepared by conventional ceramic method. The fabricated nanocrystallines have been investigated by X-ray diffraction, photoluminescence and atomic force microscopy. The X-ray diffraction analysis shows that the crystalline size of pure ZnO is 36 nm and it is 41 nm while doped with 0.8 mol% of GaN due to best stoichiometry between Zn and O. Photoluminescence studies reveal that intense deep level emissions have been observed for pure ZnO and it has been suppressed for the GaN doped ZnO structures. The images of atomic force microscope show that the rms surface roughness is 27 nm for pure ZnO and the morphology is improved with decrease in rms roughness, 18 nm with fine crystallines while doped with 1 mol% GaN. The improved structural, optical and morphological properties of ZnO nanocrystalline due to GaN dopant have been discussed in detail.

  16. Surface compositions of atomic layer deposited Zn{sub 1−x}Mg{sub x}O thin films studied using Auger electron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Ting; Romero, Danilo; Gomez, Romel D., E-mail: rdgomez@umd.edu

    2015-09-15

    In this paper, the authors present Auger electron spectroscopy (AES) studies of Zn{sub 1−x}Mg{sub x}O (ZMO) films grown via interrupted atomic-layer deposition (ALD) techniques. The ZMO films were fabricated by alternating ALD deposition of ZnO and MgO layers up to 1000 cycles. Zn{sub 1−x}Mg{sub x}O films with progressively decreasing Mg/Zn ratios (Mg/Zn = 1/1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/9, and 2/8, 3/12, 4/16, and 5/20) were fabricated for this study. The AES results exhibit an abrupt drop of Mg composition on the ZMO surface when the Mg/Zn < 1/3. Additionally, the surface composition ratios of O to Mg, O to Zn, and Mgmore » to Zn were estimated with known Auger sensitivity factors. The results indicate that Mg ions diffuse into the bulk, forming Zn{sub 1−x}Mg{sub x}O alloys.« less

  17. Uniform Fe3O4 coating on flower-like ZnO nanostructures by atomic layer deposition for electromagnetic wave absorption.

    PubMed

    Wan, Gengping; Wang, Guizhen; Huang, Xianqin; Zhao, Haonan; Li, Xinyue; Wang, Kan; Yu, Lei; Peng, Xiange; Qin, Yong

    2015-11-21

    An elegant atomic layer deposition (ALD) method has been employed for controllable preparation of a uniform Fe3O4-coated ZnO (ZnO@Fe3O4) core-shell flower-like nanostructure. The Fe3O4 coating thickness of the ZnO@Fe3O4 nanostructure can be tuned by varying the cycle number of ALD Fe2O3. When serving as additives for microwave absorption, the ZnO@Fe3O4-paraffin composites exhibit a higher absorption capacity than the ZnO-paraffin composites. For ZnO@500-Fe3O4, the effective absorption bandwidth below -10 dB can reach 5.2 GHz and the RL values below -20 dB also cover a wide frequency range of 11.6-14.2 GHz when the coating thickness is 2.3 mm, suggesting its potential application in the treatment of the electromagnetic pollution problem. On the basis of experimental observations, a mechanism has been proposed to understand the enhanced microwave absorption properties of the ZnO@Fe3O4 composites.

  18. Morphology and crystallinity of ZnS nanocolumns prepared by glancing angle deposition.

    PubMed

    Lu, Lifang; Zhang, Fujun; Xu, Zheng; Zhao, Suling; Wang, Yongsheng

    2010-03-01

    ZnS films with different morphologies and nanometer structures were fabricated via high vacuum electron beam deposition by changing the oblique angle alpha between the incoming particle flux and the substrate normal. The morphology and crystallinity of ZnS nanocrystalline films prepared on the substrates at alpha = 0 degrees and 80 degrees were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction. These experimental results show that the ZnS nanocolumn structure was formed at the situation of alpha = 80 degrees. The incidence angle also strongly influenced the crystallinity of thin films. The most intensive diffraction peaks changed from (220) to (111) when the incidence angle was set to 0 degrees and 80 degrees. The dynamic growth process of ZnS films at alpha = 0 degrees and 80 degrees has been analyzed by shadow effect and atomic surface diffusion. The transmittance spectra of the ZnS thin films prepared at different oblique angles were measured, and the transmissivity of ZnS nanocolumn thin films was enhanced compared with ZnS thin films prepared by normal deposition in the visible light range.

  19. Development of nanostructured ZnO thin film via electrohydrodynamic atomization technique and its photoconductivity characteristics.

    PubMed

    Duraisamy, Navaneethan; Kwon, Ki Rin; Jo, Jeongdai; Choi, Kyung-Hyun

    2014-08-01

    This article presents the non-vacuum technique for the preparation of nanostructured zinc oxide (ZnO) thin film on glass substrate through electrohydrodynamic atomization (EHDA) technique. The detailed process parameters for achieving homogeneous ZnO thin films are clearly discussed. The crystallinity and surface morphology of ZnO thin film are investigated by X-ray diffraction and field emission scanning electron microscopy. The result shows that the deposited ZnO thin film is oriented in the wurtzite phase with void free surface morphology. The surface roughness of deposited ZnO thin film is found to be ~17.8 nm. The optical properties of nanostructured ZnO thin films show the average transmittance is about 90% in the visible region and the energy band gap is found to be 3.17 eV. The surface chemistry and purity of deposited ZnO thin films are analyzed by fourier transform infrared and X-ray photoelectron spectroscopy, conforming the presence of Zn-O in the deposited thin films without any organic moiety. The photocurrent measurement of nanostructured ZnO thin film is examined in the presence of UV light illumination with wavelength of 365 nm. These results suggest that the deposited nanostructured ZnO thin film through EHDA technique possess promising applications in the near future.

  20. Structural Identification of Zn xZr yO z Catalysts for Cascade Aldolization and Self-Deoxygenation Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baylon, Rebecca A. L.; Sun, Junming; Kovarik, Libor

    Here, complementary characterizations, such as nitrogen sorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), visible Raman, scanning transmission electron microscopy (STEM) coupled with elemental mapping, NH 3/CO 2 temperature programmed desorption (NH 3/CO 2-TPD), infrared spectroscopic analysis of adsorbed pyridine (Py-IR), and CO 2-IR, have been employed to identify the structure and surface chemistry (i.e., acid-base) of mixed Zn xZr yO z oxide catalysts of varied ratios of Zn/Zr. Atomically dispersed Zn 2+ species are present in the framework within a thin surface shell (1.5-2.0 nm) of ZrO 2 particles when the Zn/Zr ratio is smaller than 1/10; when the ratio is above this, both atomically dispersed Zn 2+ and ZnO clusters coexist in mixed Zn xZr yO z oxide catalysts. The presence of ZnO clusters shows no significant side effect but only a slight increase of selectivity to CO 2, caused by steam reforming. The incorporation of atomic Zn 2+ into the ZrO 2 framework was found to not only passivate strong Lewis acid sites (i.e., Zr-O-Zr) on ZrO 2, but to also generate new Lewis acid-base site pairs with enhanced Lewis basicity on the bridged O (i.e., Zr—omore » $$\\curvearrowleft\\atop{e\\atop—}$$Zn). In the mixed ketone (i.e., acetone and methyl ethyl ketone (MEK)) reactions, while the passivation of strong acid sites can be correlated to the inhibition of side reactions, such as ketone decomposition and coking, the new Lewis acid-base pairs introduced enhance the cascade aldolization and self-deoxygenation reactions involved in olefin (C 3 =-C 6 =) production. More importantly, the surface acid-base properties change with varying Zn/Zr ratios, which in turn affect the cross- and self-condensation reactivity and subsequent distribution of olefins.« less

  1. Structural Identification of Zn xZr yO z Catalysts for Cascade Aldolization and Self-Deoxygenation Reactions

    DOE PAGES

    Baylon, Rebecca A. L.; Sun, Junming; Kovarik, Libor; ...

    2018-04-22

    Here, complementary characterizations, such as nitrogen sorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), visible Raman, scanning transmission electron microscopy (STEM) coupled with elemental mapping, NH 3/CO 2 temperature programmed desorption (NH 3/CO 2-TPD), infrared spectroscopic analysis of adsorbed pyridine (Py-IR), and CO 2-IR, have been employed to identify the structure and surface chemistry (i.e., acid-base) of mixed Zn xZr yO z oxide catalysts of varied ratios of Zn/Zr. Atomically dispersed Zn 2+ species are present in the framework within a thin surface shell (1.5-2.0 nm) of ZrO 2 particles when the Zn/Zr ratio is smaller than 1/10; when the ratio is above this, both atomically dispersed Zn 2+ and ZnO clusters coexist in mixed Zn xZr yO z oxide catalysts. The presence of ZnO clusters shows no significant side effect but only a slight increase of selectivity to CO 2, caused by steam reforming. The incorporation of atomic Zn 2+ into the ZrO 2 framework was found to not only passivate strong Lewis acid sites (i.e., Zr-O-Zr) on ZrO 2, but to also generate new Lewis acid-base site pairs with enhanced Lewis basicity on the bridged O (i.e., Zr—omore » $$\\curvearrowleft\\atop{e\\atop—}$$Zn). In the mixed ketone (i.e., acetone and methyl ethyl ketone (MEK)) reactions, while the passivation of strong acid sites can be correlated to the inhibition of side reactions, such as ketone decomposition and coking, the new Lewis acid-base pairs introduced enhance the cascade aldolization and self-deoxygenation reactions involved in olefin (C 3 =-C 6 =) production. More importantly, the surface acid-base properties change with varying Zn/Zr ratios, which in turn affect the cross- and self-condensation reactivity and subsequent distribution of olefins.« less

  2. High spatial resolution correlated investigation of Zn segregation to stacking faults in ZnTe/CdSe nanostructures

    NASA Astrophysics Data System (ADS)

    Bonef, Bastien; Grenier, Adeline; Gerard, Lionel; Jouneau, Pierre-Henri; André, Regis; Blavette, Didier; Bougerol, Catherine

    2018-02-01

    The correlative use of atom probe tomography (APT) and energy dispersive x-ray spectroscopy in scanning transmission electron microscopy (STEM) allows us to characterize the structure of ZnTe/CdSe superlattices at the nanometre scale. Both techniques reveal the segregation of zinc along [111] stacking faults in CdSe layers, which is interpreted as a manifestation of the Suzuki effect. Quantitative measurements reveal a zinc enrichment around 9 at. % correlated with a depletion of cadmium in the stacking faults. Raw concentration data were corrected so as to account for the limited spatial resolution of both STEM and APT techniques. A simple calculation reveals that the stacking faults are almost saturated in Zn atoms (˜66 at. % of Zn) at the expense of Cd that is depleted.

  3. Hydrothermal synthesis of zinc(II)-phosphonate coordination polymers with different dimensionality (0D, 2D, 3D) and dimensionality change in the solid phase (0D→3D) induced by temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernández-Zapico, Eva; Montejo-Bernardo, Jose; Fernández-González, Alfonso

    2015-05-15

    Three new zinc(II) coordination polymers, [Zn(HO{sub 3}PCH{sub 2}CH{sub 2}COO)(C{sub 12}H{sub 8}N{sub 2})(H{sub 2}O)] (1), [Zn{sub 3}(O{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2})](H{sub 2}O){sub 3.40} (2) and [Zn{sub 5}(HO{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(O{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2}){sub 4}](H{sub 2}O){sub 0.32} (3), with different structural dimensionality (0D, 2D and 3D, respectively) have been prepared by hydrothermal synthesis, and their structures were determined by single-crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic system (P2{sub 1}/c) forming discrete dimeric units bonded through H-bonds, while compounds 2 and 3 crystallize in the triclinic (P−1) and the monoclinic (C2/c) systems, respectively.more » Compound 3, showing three different coordination numbers (4, 5 and 6) for the zinc atoms, has also been obtained by thermal treatment of 1 (probed by high-temperature XRPD experiments). The crystalline features of these compounds, related to the coordination environments for the zinc atoms in each structure, provoke the increase of the relative fluorescence for 2 and 3, compared to the free phenanthroline. Thermal analysis (TG and DSC) and XPS studies have been also carried out for all compounds. - Graphical abstract: Three new coordination compounds of zinc with 2-carboxyethylphosphonic acid (H{sub 2}PPA) and phenanthroline have been obtained by hydrothermal synthesis. The crystalline structure depends on the different coordination environments of the zinc atoms (see two comparative Zn{sub 6}-moieties). The influence of the different coordination modes of H{sub 2}PPA with the central atom in all structures have been studied, being found new coordination modes for this ligand. Several compounds show a significant increase in relative fluorescence with respect to the free phenanthroline. - Highlights: • Compounds have been obtained modifying the reaction time and the rate of reagents. • Dimensionality and crystalline structure is a function of the zinc environments. • New coordination modes for 2-carboxyethylphosphonic acid are reported. • 3D-compound presents three different coordination environments for the zinc atoms. • Fluorescence properties are related to the structural dimensionality.« less

  4. Low-Temperature Preparation of Ag-Doped ZnO Nanowire Arrays, DFT Study, and Application to Light-Emitting Diode.

    PubMed

    Pauporté, Thierry; Lupan, Oleg; Zhang, Jie; Tugsuz, Tugba; Ciofini, Ilaria; Labat, Frédéric; Viana, Bruno

    2015-06-10

    Doping ZnO nanowires (NWs) by group IB elements is an important challenge for integrating nanostructures into functional devices with better and tuned performances. The growth of Ag-doped ZnO NWs by electrodeposition at 90 °C using a chloride bath and molecular oxygen precursor is reported. Ag acts as an electrocatalyst for the deposition and influences the nucleation and growth of the structures. The silver atomic concentration in the wires is controlled by the additive concentration in the deposition bath and a content up to 3.7 atomic % is reported. XRD analysis shows that the integration of silver enlarges the lattice parameters of ZnO. The optical measurements also show that the direct optical bandgap of ZnO is reduced by silver doping. The bandgap shift and lattice expansion are explained by first principle calculations using the density functional theory (DFT) on the silver impurity integration as an interstitial (Ag(i)) and as a substitute of zinc atom (Ag(Zn)) in the crystal lattice. They notably indicate that Ag(Zn) doping forms an impurity band because of Ag 4d and O 2p orbital interactions, shifting the Fermi level toward the valence band. At least, Ag-doped ZnO vertically aligned nanowire arrays have been epitaxially grown on GaN(001) substrate. The heterostructure has been inserted in a light emitting device. UV-blue light emission has been achieved with a low emission threshold of 5 V and a tunable red-shifted emission spectrum related to the bandgap reduction induced by silver doping of the ZnO emitter material.

  5. A Novel and Functional Single-Layer Sheet of ZnSe

    DOE PAGES

    Zhou, Jia; Sumpter, Bobby G.; Kent, Paul R. C.; ...

    2014-12-23

    In this Communication, we report a novel singlelayer sheet of ZnSe, with a three-atomic thickness, which demonstrates a strong quantum confinement effect by exhibiting a large blue shift of 2.0 eV in its absorption edge relative to the zinc blende (ZB) bulk phase. Theoretical optical absorbance shows that the largest absorption of this ultrathin single-layer sheet of ZnSe occurs at a wavelength similar to its four-atom-thick doublelayer counterpart but with higher photoabsorption efficiency, suggesting a superior behavior on incident photon-to-current conversion efficiency for solar water splitting, among other potential applications. The results presented herein for ZnSe may be generalized tomore » other group II-VI analogues.« less

  6. Synthesis of ALD zinc oxide and thin film materials optimization for UV photodetector applications

    NASA Astrophysics Data System (ADS)

    Tapily, Kandabara Nouhoum

    Zinc oxide (ZnO) is a direct, wide bandgap semiconductor material. It is thermodynamically stable in the wurtzite structure at ambient temperature conditions. ZnO has very interesting optical and electrical properties and is a suitable candidate for numerous optoelectronic applications such as solar cells, LEDs and UV-photodetectors. ZnO is a naturally n-type semiconductor. Due to the lack of reproducible p-type ZnO, achieving good homojunction ZnO-based photodiodes such as UV-photodetectors remains a challenge. Meanwhile, heterojunction structures of ZnO with p-type substrates such as SiC, GaN, NiO, AlGaN, Si etc. are used; however, those heterojunction diodes suffer from low efficiencies. ZnO is an n-type material with numerous intrinsic defect levels responsible for the electrical and optical behaviors. Presently, there is no clear consensus about the origin of those defects. In this work, ZnO was synthesized by atomic layer deposition (ALD). ALD is a novel deposition technique suitable for nanotechnology engineering that provides unique features such as precise control of ZnO thin film with atomic resolution, high uniformity, good conformity and high aspect ratio. Using this novel deposition technique, the ALD ZnO deposition process was developed and optimized using diethyl zinc as the precursor for zinc and water vapor as the oxygen source. In order to optimize the film quality for use in electronic applications, the physical, mechanical and electrical properties were investigated. The structural and mechanical properties of the ALD ZnO thin films were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM), scanning electron microscopy (SEM), spectroscopic Ellipsometry, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV-VIS absorption and nanoindentation. The electrical characterizations were performed using C-V, I-V, DLTS, Hall Effect, and four-point probe. The intrinsic defects responsible for the electrical and optical properties of the ALD ZnO films were analyzed and identified. ALD ZnO based electronic devices were fabricated, optimized and their electrical characteristics measured. The photocurrent characteristics of ALD ZnO were also optimized, and high efficiency UV-photodetectors were achieved.

  7. Distribution of Dissolved Zinc in the Western and Central Subarctic North Pacific

    NASA Astrophysics Data System (ADS)

    Kim, Taejin; Obata, Hajime; Nishioka, Jun; Gamo, Toshitaka

    2017-09-01

    We investigated the biogeochemical cycling of dissolved zinc (Zn) in the western and central subarctic North Pacific during the GEOTRACES GP 02 cruise. The relationship between dissolved Zn and silicate in the subarctic North Pacific plotted as a concave curve. Values of Zn* were strongly positive in the intermediate waters (26.6-27.5 σθ) of both the western and the central subarctic North Pacific. There was a distinct kink in the relationship between dissolved Zn and soluble reactive phosphorus (SRP) at the transition from shallow to intermediate water, which is similar to what has been reported for other open oceans. The high Zn:SRP ratio and high Zn* in the intermediate water suggest that intermediate water masses play an important role in the decoupling of dissolved Zn and silicate in the subarctic North Pacific, which implies that the biogeochemical processes that control dissolved Zn and silicate in the intermediate water are different from those in other oceanic regions.

  8. On the state of Mn in Mn{sub x}Zn{sub 1−x}O nanoparticles and their surface modification with isonipecotic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiménez-Hernández, L.; Estévez-Hernández, O.; Instituto de Ciencia y Tecnología de Materiales

    Mn-doped ZnO (Mn{sub x}Zn{sub 1−x}O) nanoparticles were synthesized by the co-precipitation method and coated with isonipecotic acid as capping ligand. The structure, composition and morphology of the resulting nanomaterial were investigated by energy disperse X-ray analysis, X-ray diffraction, and transmission electron microscopy data. Such measurements showed that the solid obtained contains 6 at% of Mn and it is formed by a highly crystalline material with 3–5 nm range of crystallite size, and only a small elongation of its cell parameter with respect to undoped ZnO wurtzite unit cell. Information on the state of manganese atom in the Mn{sub x}Zn{sub 1−x}Omore » nanostructures formed was obtained from X-ray photoelectron (XPS) and electron energy loss (EELS) spectroscopies. XPS and EELS spectra are composed of four peaks, corresponding to two species of Mn(II) and signals from Mn(III) and Mn(IV). Such spectral data on the state of Mn in the material studied is consistent with the mapping of Mn distribution observed in recorded transmission electron microscopy images, which reveal presence of clusters of Mn atoms. Only a fraction of doping Mn atoms were found forming a solid solution with the host ZnO structure. The functionalization of the nanoparticles system with Isonipecotic acid shows that this molecule remains anchored to the nanoparticles surface mainly through its N basic site. The availability of free carboxylate groups in the capping molecule was tested by conjugation to type IV horseradish peroxidase. - Graphical abstract: State of Mn atoms in Mn-doped ZnO nanostructures prepared by the precipitation method, their capping with isonipecotic acid and subsequent conjugation to peroxidase. - Highlights: • State of manganese in manganese-doped zinc oxide nanoparticles. • Isonipecotic acid as surface modifier of ZnO nanoparticles. • Peroxidase conjugation to ZnO nanoparticles modified with isonipecotic acid.« less

  9. Effect of Mg doping in ZnO buffer layer on ZnO thin film devices for electronic applications

    NASA Astrophysics Data System (ADS)

    Giri, Pushpa; Chakrabarti, P.

    2016-05-01

    Zinc Oxide (ZnO) thin films have been grown on p-silicon (Si) substrate using magnesium doped ZnO (Mg: ZnO) buffer layer by radio-frequency (RF) sputtering method. In this paper, we have optimized the concentration of Mg (0-5 atomic percent (at. %)) ZnO buffer layer to examine its effect on ZnO thin film based devices for electronic and optoelectronic applications. The crystalline nature, morphology and topography of the surface of the thin film have been characterized. The optical as well as electrical properties of the active ZnO film can be tailored by varying the concentration of Mg in the buffer layer. The crystallite size in the active ZnO thin film was found to increase with the Mg concentration in the buffer layer in the range of 0-3 at. % and subsequently decrease with increasing Mg atom concentration in the ZnO. The same was verified by the surface morphology and topography studies carried out with scanning electron microscope (SEM) and atomic electron microscopy (AFM) respectively. The reflectance in the visible region was measured to be less than 80% and found to decrease with increase in Mg concentration from 0 to 3 at. % in the buffer region. The optical bandgap was initially found to increase from 3.02 eV to 3.74 eV by increasing the Mg content from 0 to 3 at. % but subsequently decreases and drops down to 3.43 eV for a concentration of 5 at. %. The study of an Au:Pd/ZnO Schottky diode reveals that for optimum doping of the buffer layer the device exhibits superior rectifying behavior. The barrier height, ideality factor, rectification ratio, reverse saturation current and series resistance of the Schottky diode were extracted from the measured current voltage (I-V) characteristics.

  10. Structural identification of Zn xZr yO z catalysts for Cascade aldolization and self-deoxygenation reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baylon, Rebecca A. L.; Sun, Junming; Kovarik, Libor

    Complementary characterizations, such as nitrogen sorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), visible Raman, scanning transmission electron microscopy (STEM) coupled with elemental mapping, NH3/CO2 temperature programmed desorption (NH3/CO2-TPD), infrared spectroscopic analysis of adsorbed pyridine (Py-IR), and CO2-IR, have been employed to identify the structure and surface chemistry (i.e., acid-base) of mixed Zn xZr yO z oxide catalysts of varied ratios of Zn/Zr. Atomically dispersed Zn2+ species are present in the framework within a thin surface shell (1.5-2.0 nm) of ZrO2 particles when the Zn/Zr ratio is smaller than 1/10; when the ratio is above this, both atomically dispersed Zn2+more » and ZnO clusters coexist in mixed Zn xZr yO z oxide catalysts. The presence of ZnO clusters shows no significant side effect but only a slight increase of selectivity to CO2, caused by steam reforming. The incorporation of atomic Zn2+ into the ZrO2 framework was found to not only passivate strong Lewis acid sites (i.e., Zr-O-Zr) on ZrO2, but to also generate new Lewis acid-base site pairs with enhanced Lewis basicity on the bridged O (i.e., ). In the mixed ketone (i.e., acetone and methyl ethyl ketone (MEK)) reactions, while the passivation of strong acid sites can be correlated to the inhibition of side reactions, such as ketone decomposition and coking, the new Lewis acid-base pairs introduced enhance the cascade aldolization and self-deoxygenation reactions involved in olefin (C3=-C6=) production. More importantly, the surface acid-base properties change with varying Zn/Zr ratios, which in turn affect the cross- and self-condensation reactivity and subsequent distribution of olefins.« less

  11. Atomic Layer Deposition of Electron Selective SnOx and ZnO Films on Mixed Halide Perovskite: Compatibility and Performance.

    PubMed

    Hultqvist, Adam; Aitola, Kerttu; Sveinbjörnsson, Kári; Saki, Zahra; Larsson, Fredrik; Törndahl, Tobias; Johansson, Erik; Boschloo, Gerrit; Edoff, Marika

    2017-09-06

    The compatibility of atomic layer deposition directly onto the mixed halide perovskite formamidinium lead iodide:methylammonium lead bromide (CH(NH 2 ) 2 , CH 3 NH 3 )Pb(I,Br) 3 (FAPbI 3 :MAPbBr 3 ) perovskite films is investigated by exposing the perovskite films to the full or partial atomic layer deposition processes for the electron selective layer candidates ZnO and SnO x . Exposing the samples to the heat, the vacuum, and even the counter reactant of H 2 O of the atomic layer deposition processes does not appear to alter the perovskite films in terms of crystallinity, but the choice of metal precursor is found to be critical. The Zn precursor Zn(C 2 H 5 ) 2 either by itself or in combination with H 2 O during the ZnO atomic layer deposition (ALD) process is found to enhance the decomposition of the bulk of the perovskite film into PbI 2 without even forming ZnO. In contrast, the Sn precursor Sn(N(CH 3 ) 2 ) 4 does not seem to degrade the bulk of the perovskite film, and conformal SnO x films can successfully be grown on top of it using atomic layer deposition. Using this SnO x film as the electron selective layer in inverted perovskite solar cells results in a lower power conversion efficiency of 3.4% than the 8.4% for the reference devices using phenyl-C 70 -butyric acid methyl ester. However, the devices with SnO x show strong hysteresis and can be pushed to an efficiency of 7.8% after biasing treatments. Still, these cells lacks both open circuit voltage and fill factor compared to the references, especially when thicker SnO x films are used. Upon further investigation, a possible cause of these losses could be that the perovskite/SnO x interface is not ideal and more specifically found to be rich in Sn, O, and halides, which is probably a result of the nucleation during the SnO x growth and which might introduce barriers or alter the band alignment for the transport of charge carriers.

  12. Non-toxic novel route synthesis and characterization of nanocrystalline ZnS{sub x}Se{sub 1−x} thin films with tunable band gap characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agawane, G.L., E-mail: agawaneganesh@gmail.com; Shin, Seung Wook; Vanalakar, S.A.

    2014-07-01

    Highlights: • A simple, inexpensive, and non-toxic CBD route is used to deposit ZnS thin films. • The ZnS{sub x}Se{sub 1−x} thin films formation takes place via annealing of ZnS thin films in Se atmosphere. • S/(S + Se) ratio found to be temperature dependent and easy tuning of band gap has been done by Se atom deposition. - Abstract: An environmentally benign chemical bath deposition (CBD) route was employed to deposit zinc sulfide (ZnS) thin films. The CBD-ZnS thin films were further selenized in a furnace at various temperatures viz. 200, 300, 400, and 500 °C and the S/(Smore » + Se) ratio was found to be dependent on the annealing temperature. The effects of S/(S + Se) ratio on the structural, compositional and optical properties of the ZnS{sub x}Se{sub 1−x} (ZnSSe) thin films were investigated. EDS analysis showed that the S/(S + Se) ratio decreased from 0.8 to 0.6 when the film annealing temperature increased from 200 to 500 °C. The field emission scanning electron microscopy and atomic force microscopy studies showed that all the films were uniform, pin hole free, smooth, and adhered well to the glass substrate. The X-ray diffraction study on the ZnSSe thin films showed the formation of the cubic phase, except for the unannealed ZnSSe thin film, which showed an amorphous phase. The X-ray photoelectron spectroscopy revealed Zn-S, Zn-Se, and insignificant Zn-OH bonds formation from the Zn 2p{sub 3/2}, S 2p, Se 3d{sub 5/2}, and O 1s atomic states, respectively. The ultraviolet–visible spectroscopy study showed ∼80% transmittance in the visible region for all the ZnSSe thin films having various absorption edges. The tuning of the band gap energy of the ZnSSe thin films was carried out by selenizing CBD-ZnS thin films, and as the S/(S + Se) ratio decreased from 0.8 to 0.6, the band gap energy decreased from 3.20 to 3.12 eV.« less

  13. A comprehensive picture in the view of atomic scale on piezoelectricity of ZnO tunnel junctions: The first principles simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Genghong; Zhu, Jia; Jiang, Gelei

    Piezoelectricity is closely related with the performance and application of piezoelectric devices. It is a crucial issue to understand its detailed fundamental for designing functional devices with more peculiar performances. Basing on the first principles simulations, the ZnO piezoelectric tunnel junction is taken as an example to systematically investigate its piezoelectricity (including the piezopotential energy, piezoelectric field, piezoelectric polarization and piezocharge) and explore their correlation. The comprehensive picture of the piezoelectricity in the ZnO tunnel junction is revealed at atomic scale and it is verified to be the intrinsic characteristic of ZnO barrier, independent of its terminated surface but dependentmore » on its c axis orientation and the applied strain. In the case of the ZnO c axis pointing from right to left, an in-plane compressive strain will induce piezocharges (and a piezopotential energy drop) with positive and negative signs (negative and positive signs) emerging respectively at the left and right terminated surfaces of the ZnO barrier. Meanwhile a piezoelectric polarization (and a piezoelectric field) pointing from right to left (from left to right) are also induced throughout the ZnO barrier. All these piezoelectric physical quantities would reverse when the applied strain switches from compressive to tensile. This study provides an atomic level insight into the fundamental behavior of the piezoelectricity of the piezoelectric tunnel junction and should have very useful information for future designs of piezoelectric devices.« less

  14. Two-dimensional Zn(II) and one-dimensional Co(II) coordination polymers based on benzene-1,4-dicarboxylate and pyridine ligands.

    PubMed

    Zhou, Li-Juan; Han, Chang-Bao; Wang, Yu-Ling

    2016-02-01

    Coordination polymers constructed from metal ions and organic ligands have attracted considerable attention owing to their diverse structural topologies and potential applications. Ligands containing carboxylate groups are among the most extensively studied because of their versatile coordination modes. Reactions of benzene-1,4-dicarboxylic acid (H2BDC) and pyridine (py) with Zn(II) or Co(II) yielded two new coordination polymers, namely, poly[(μ4-benzene-1,4-dicarboxylato-κ(4)O:O':O'':O''')(pyridine-κN)zinc(II)], [Zn(C8H4O2)(C5H5N)]n, (I), and catena-poly[aqua(μ3-benzene-1,4-dicarboxylato-κ(3)O:O':O'')bis(pyridine-κN)cobalt(II)], [Co(C8H4O2)(C5H5N)2(H2O)]n, (II). In compound (I), the Zn(II) cation is five-coordinated by four carboxylate O atoms from four BDC(2-) ligands and one pyridine N atom in a distorted square-pyramidal coordination geometry. Four carboxylate groups bridge two Zn(II) ions to form centrosymmetric paddle-wheel-like Zn2(μ2-COO)4 units, which are linked by the benzene rings of the BDC(2-) ligands to generate a two-dimensional layered structure. The two-dimensional layer is extended into a three-dimensional supramolecular structure with the help of π-π stacking interactions between the aromatic rings. Compound (II) has a one-dimensional double-chain structure based on Co2(μ2-COO)2 units. The Co(II) cations are bridged by BDC(2-) ligands and are octahedrally coordinated by three carboxylate O atoms from three BDC(2-) ligands, one water O atom and two pyridine N atoms. Interchain O-H...O hydrogen-bonding interactions link these chains to form a three-dimensional supramolecular architecture.

  15. Effect of Fe incorporation on the optical behavior of ZnO thin films prepared by sol-gel derived spin coating techniques

    NASA Astrophysics Data System (ADS)

    Rakkesh, R. Ajay; Malathi, R.; Balakumar, S.

    2013-02-01

    In this work, Fe doped Zinc Oxide (ZnO) thin films were fabricated on the glass substrate by sol-gel derived spin coating technique. X-ray Diffraction studies revealed that the obtained pure and Fe doped ZnO thin films were in the wurtzite and spinel phase respectively. The three well defined Raman lines at 432, 543 and 1091 cm-1 also confirmed the lattice structure of the ZnO thin film has wurtzite symmetry. While doping Fe atoms in the ZnO, there was a significant change in the phase from wurtzite to spinel structure; owing to Fe (III) ions being incorporated into the lattice through substitution of Zn (II) ions. Room temperature PL spectra showed that the role of defect mediated red emissions at 612 nm was due to radial recombination of a photogenerated hole with an electron that belongs to the Fe atoms, which were discussed in detail.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napari, Mari, E-mail: mari.napari@jyu.fi; Malm, Jari; Lehto, Roope

    ZnO films were grown by atomic layer deposition at 35 °C on poly(methyl methacrylate) substrates using diethylzinc and water precursors. The film growth, morphology, and crystallinity were studied using Rutherford backscattering spectrometry, time-of-flight elastic recoil detection analysis, atomic force microscopy, scanning electron microscopy, and x-ray diffraction. The uniform film growth was reached after several hundreds of deposition cycles, preceded by the precursor penetration into the porous bulk and island-type growth. After the full surface coverage, the ZnO films were stoichiometric, and consisted of large grains (diameter 30 nm) with a film surface roughness up to 6 nm (RMS). The introduction of Al{sub 2}O{submore » 3} seed layer enhanced the initial ZnO growth substantially and changed the surface morphology as well as the crystallinity of the deposited ZnO films. Furthermore, the water contact angles of the ZnO films were measured, and upon ultraviolet illumination, the ZnO films on all the substrates became hydrophilic, independent of the film crystallinity.« less

  17. Compositional tuning of atomic layer deposited MgZnO for thin film transistors

    NASA Astrophysics Data System (ADS)

    Wrench, J. S.; Brunell, I. F.; Chalker, P. R.; Jin, J. D.; Shaw, A.; Mitrovic, I. Z.; Hall, S.

    2014-11-01

    Thin film transistors (TFTs) have been fabricated using magnesium zinc oxide (MgZnO) layers deposited by atomic layer deposition at 200 °C. The composition of the MgZnO is systematically modified by varying the ratio of MgO and ZnO deposition cycles. A blue-shift of the near band-edge photoluminescence after post-deposition annealing at 300 °C indicates significant activation of the Mg dopant. A 7:1 ratio of ZnO:MgO deposition cycles was used to fabricate a device with a TFT channel width of 2000 μm and a channel length of 60 μm. This transistor yielded an effective saturation mobility of 4 cm2/V s and a threshold voltage of 7.1 V, respectively. The on/off ratio was 1.6 × 10 6 and the maximum interface state density at the ZnO/SiO2 interface is ˜ 6.5 × 10 12 cm-2.

  18. Fundamental studies of desulfurization processes: reaction of methanethiol on ZnO and Cs/ZnO

    NASA Astrophysics Data System (ADS)

    Dvorak, Joseph; Jirsak, Tomas; Rodriguez, José A.

    2001-05-01

    The reaction of methanethiol on ZnO and Cs promoted ZnO surfaces has been studied with synchrotron based photoemission and thermal desorption spectroscopy. On ZnO, methanethiol undergoes selective reaction to produce carbon monoxide (37-58%), methane (23-38%), formaldehyde (12-15%), ethane (1-11%), and a mixture of ethylene and acetylene (3-13%). At low temperatures (<100 K), methanethiol reacts to yield thiolate intermediate bound to Zn 2+ cations. The thiolate is stable to 500 K. Above this temperature, C-S bond cleavage occurs to yield methyl intermediate and atomic S. Carbon is removed from the surface as gaseous products above 500 K, and atomic sulfur remains bound to the zinc sites of the surface. Submonolayer amounts of cesium do not have a significant promotional effect on C-S bond cleavage, whereas Cs multilayers are found to significantly lower the activation barrier for C-S bond cleavage. This study illustrates the chemistry associated with the desulfurization of thiols on a catalytically relevant oxide surface.

  19. TiO2/ZnO and ZnO/TiO2 core/shell nanofibers prepared by electrospinning and atomic layer deposition for photocatalysis and gas sensing

    NASA Astrophysics Data System (ADS)

    Boyadjiev, Stefan I.; Kéri, Orsolya; Bárdos, Péter; Firkala, Tamás; Gáber, Fanni; Nagy, Zsombor K.; Baji, Zsófia; Takács, Máté; Szilágyi, Imre M.

    2017-12-01

    In the present work, core TiO2 and ZnO oxide nanofibers were prepared by electrospinning, then shell oxide (ZnO, TiO2) layers were deposited on them by atomic layer deposition (ALD). The aim of preparing ZnO and TiO2 nanofibers, as well as ZnO/TiO2 and TiO2/ZnO nanocomposites is to study the interaction between the oxide materials when a pure oxide fiber is covered with thin film of the other oxide, and explore the influence of exchanging the core and shell materials on their photocatalytic and gas sensing properties. The composition, structure and morphology of the pure and composite nanofibers were studied by SEM-EDX, TEM, XRD, FTIR, UV-vis and Raman. The photocatalytic activity of the as-prepared materials was analyzed by UV-vis spectroscopy through decomposing aqueous methyl orange under UV irradiation. The gas sensing of the nanofibers was investigated by detecting 100 ppm NH3 at 150 and 220 °C using interdigital electrode based sensors.

  20. [Effects of annealing temperature on the structure and optical properties of ZnMgO films prepared by atom layer deposition].

    PubMed

    Sun, Dong-Xiao; Li, Jin-Hua; Fang, Xuan; Chen, Xin-Ying; Fang, Fang; Chu, Xue-Ying; Wei, Zhi-Peng; Wang, Xiao-Hua

    2014-07-01

    In the present paper, we report the research on the effects of annealing temperature on the crystal quality and optical properties of ZnMgO films deposited by atom layer deposition(ALD). ZnMgO films were prepared on quartz substrates by ALD and then some of the samples were treated in air ambient at different annealing temperature. The effects of annealing temperature on the crystal quality and optical properties of ZnMgO films were characterized by X-ray diffraction (XRD), photoluminescence (PL) and ultraviolet-visible (UV-Vis) absorption spectra. The XRD results showed that the crystal quality of ZnMgO films was significantly improved when the annealing temperature was 600 degrees C, meanwhile the intensity of(100) diffraction peak was the strongest. Combination of PL and UV-Vis absorption measurements showed that it can strongly promote the Mg content increasing in ZnMgO films and increase the band gap of films. So the results illustrate that suitable annealing temperature can effectively improve the crystal quality and optical properties of ZnMgO films.

  1. Low-frequency zone boundary phonons in Li doped ZnO ceramics

    NASA Astrophysics Data System (ADS)

    Yadav, Harish Kumar; Sreenivas, K.; Gupta, Vinay; Katiyar, R. S.

    2008-09-01

    Room temperature Raman spectra of Li doped ZnO (Zn1-xLixO) ceramics with varying Li concentrations (x =0.0, 0.05, 0.10, and 0.15) are investigated in this study. Four peaks were identified at 96.6, 127, 157, and 194 cm-1 in the Li doped samples. The peaks at 127, 157, and 194 cm-1 are assigned to zone boundary phonons in ZnO [J. M. Calleja and M. Cardona, Phys. Rev. B 16, 3753 (1977)], and appear due to disorder in ZnO lattice with Li incorporation. Lithium, owing to its smaller radius, adjusts itself anywhere in the ZnO lattice and breaks the crystal translational symmetry to a large extent, compared to other dopants. Disorder in the lattice is seen to be finely modulated with varying Li content. The peak at 96.6 cm-1 is hypothesized to be a projection of the vibrational motion of Li atoms at lower frequencies, which contributes in a major fashion at higher frequencies, due to its lighter mass than Zn or O atoms.

  2. Hydroquinone-ZnO nano-laminate deposited by molecular-atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Huang, Jie; Lucero, Antonio T.; Cheng, Lanxia; Hwang, Hyeon Jun; Ha, Min-Woo; Kim, Jiyoung

    2015-03-01

    In this study, we have deposited organic-inorganic hybrid semiconducting hydroquinone (HQ)/zinc oxide (ZnO) superlattices using molecular-atomic layer deposition, which enables accurate control of film thickness, excellent uniformity, and sharp interfaces at a low deposition temperature (150 °C). Self-limiting growth of organic layers is observed for the HQ precursor on ZnO surface. Nano-laminates were prepared by varying the number of HQ to ZnO cycles in order to investigate the physical and electrical effects of different HQ to ZnO ratios. It is indicated that the addition of HQ layer results in enhanced mobility and reduced carrier concentration. The highest Hall mobility of approximately 2.3 cm2/V.s and the lowest n-type carrier concentration of approximately 1.0 × 1018/cm3 were achieved with the organic-inorganic superlattice deposited with a ratio of 10 ZnO cycles to 1 HQ cycle. This study offers an approach to tune the electrical transport characteristics of ALD ZnO matrix thin films using an organic dopant. Moreover, with organic embedment, this nano-laminate material may be useful for flexible electronics.

  3. Electrochemically assisted localized etching of ZnO single crystals in water using a catalytically active Pt-coated atomic force microscopy probe

    NASA Astrophysics Data System (ADS)

    Shibata, Takayuki; Yamamoto, Kota; Sasano, Junji; Nagai, Moeto

    2017-09-01

    This paper presents a nanofabrication technique based on the electrochemically assisted chemical dissolution of zinc oxide (ZnO) single crystals in water at room temperature using a catalytically active Pt-coated atomic force microscopy (AFM) probe. Fabricated grooves featured depths and widths of several tens and several hundreds of nanometers, respectively. The material removal rate of ZnO was dramatically improved by controlling the formation of hydrogen ions (H+) on the surface of the catalytic Pt-coated probe via oxidation of H2O molecules; this reaction can be enhanced by applying a cathodic potential to an additional Pt-wire working electrode in a three-electrode configuration. Consequently, ZnO can be dissolved chemically in water as a soluble Zn2+ species via a reaction with H+ species present in high concentrations in the immediate vicinity of the AFM tip apex.

  4. LEED and AES characterization of the GaAs(110)-ZnSe interface

    NASA Technical Reports Server (NTRS)

    Tu, D.-W.; Kahn, A.

    1984-01-01

    In this paper, a study is conducted of the composition and structure of epitaxial ZnSe films grown by congruent evaporation on GaAs(110) at a rate of 2 A/min. It is found that the films grown on 300 C GaAs are nearly stoichiometric and form an abrupt interface with the substrate. Films grown at higher temperature (T greater than 350-400 C) are Se rich. The crystallinity of films grown at 300 C is good and their surface atomic geometry is identical to that of a ZnSe crystal. The GaAs-ZnSe interface geometry seems to be dominated by the Se-substrate bonds. The adsorption of Se, during the formation of very thin ZnSe films (2-3 A), produces a (1 x 2) LEED pattern and modifications of the LEED I-V profiles, which probably indicate a change in the substrate atomic relaxation.

  5. High sensitive formaldehyde graphene gas sensor modified by atomic layer deposition zinc oxide films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Haichuan; Zhang, Zhiqiang; Wang, Keke

    2014-07-21

    Zinc oxide (ZnO) thin films with various thicknesses were fabricated by Atomic Layer Deposition on Chemical Vapor Deposition grown graphene films and their response to formaldehyde has been investigated. It was found that 0.5 nm ZnO films modified graphene sensors showed high response to formaldehyde with the resistance change up to 52% at the concentration of 9 parts-per-million (ppm) at room temperature. Meanwhile, the detection limit could reach 180 parts-per-billion (ppb) and fast response of 36 s was also obtained. The high sensitivity could be attributed to the combining effect from the highly reactive, top mounted ZnO thin films, and high conductivemore » graphene base network. The dependence of ZnO films surface morphology and its sensitivity on the ZnO films thickness was also investigated.« less

  6. Distribution and enrichment of heavy metals in Sabratha coastal sediments, Mediterranean Sea, Libya

    NASA Astrophysics Data System (ADS)

    Nour, Hamdy E.; El-Sorogy, Abdelbaset S.

    2017-10-01

    In order to assess heavy metal pollutants in Sabratha coastal sediments, Mediterranean Sea, Libya, 30 sediment samples were collected for Fe, Cu, Pb, Mn, Cd, Co, Ni and Zn analysis using Atomic Absorption Spectrometry. The analysis indicated that, the Sabratha 's coastal sediments were enriched with Cd, Pb, Cu, Ni, Co and Zn (EF = 81.48, 17.26, 12.80, 11.42, 9.85 and 8.56 respectively). The highest levels of Mn, Cu, Ni, Pb and Co were recorded nearby the Mellitah complex oil and gas station in the western Libyan region, while the highest levels of Zn and Cd were recorded at the central part of the study area nearby fishing port and Sabratha hospital. Average values of Cd, Pb and Co were mostly higher than the ones recorded from the Arabian and Oman gulfs, the Red Sea, the Gulf of Aqaba, the Caspian Sea, coast of Tanzania and the background shale and the earth's crust. The high levels of most of the studied heavy metals suggested significant anthropogenic sources along Sabratha coast. The results of the present study provide a useful background for further marine studies on the Mediterranean area.

  7. Structure and properties of ZnSxSe1-x thin films deposited by thermal evaporation of ZnS and ZnSe powder mixtures

    NASA Astrophysics Data System (ADS)

    Valeev, R. G.; Romanov, E. A.; Vorobiev, V. L.; Mukhgalin, V. V.; Kriventsov, V. V.; Chukavin, A. I.; Robouch, B. V.

    2015-02-01

    Interest to ZnSxSe1-x alloys is due to their band-gap tunability varying S and Se content. Films of ZnSxSe1-x were grown evaporating ZnS and ZnSe powder mixtures onto SiO2, NaCl, Si and ITO substrates using an original low-cost method. X-ray diffraction patterns and Raman spectroscopy, show that the lattice structure of these films is cubic ZnSe-like, as S atoms replace Se and film compositions have their initial S/Se ratio. Optical absorption spectra show that band gap values increase from 2.25 to 3 eV as x increases, in agreement with the literature. Because S atomic radii are smaller than Se, EXAFS spectra confirm that bond distances and Se coordination numbers decrease as the Se content decreases. The strong deviation from linearity of ZnSe coordination numbers in the ZnSxSe1-x indicate that within this ordered crystal structure strong site occupation preferences occur in the distribution of Se and S ions. The behavior is quantitatively confirmed by the strong deviation from the random Bernoulli distribution of the three sight occupation preference coefficients of the strained tetrahedron model. Actually, the ternary ZnSxSe1-x system is a bi-binary (ZnS+ZnSe) alloy with evanescent formation of ternary configurations throughout the x-range.

  8. Photoexcited ZnO nanoparticles with controlled defects as a highly sensitive oxygen sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goto, Taku; Ito, Tsuyohito, E-mail: tsuyohito@ppl.eng.osaka-u.ac.jp; Shimizu, Yoshiki

    Conductance of photoexcited ZnO nanoparticles with various defects has been investigated in oxygen. ZnO nanoparticles, which show strong photoluminescence peaks originating from interstitial zinc atom (Zn{sub i}) and singly charged oxygen vacancy (V{sub O}{sup +}), show oxygen-pressure-dependent conductance changes caused by photoexcitation. Herein, a model is proposed to simulate the conductance changes.

  9. Diffusion Mechanisms of Ag atom in ZnO crystal: A First Principles Study

    NASA Astrophysics Data System (ADS)

    Masoumi, Saeed; Noori, Amirreza; Nadimi, Ebrahim

    2017-12-01

    Zinc oxide (ZnO) is currently under intensive investigation, as a result of its various applications in micro, nano and optoelectronics. However, a stable and reproducible p-type doping of ZnO is still a main challenging issue. Group IB elements such as Au, Cu and Ag, are promising candidates for p-type doping. Particularly, Ag atoms has been shown to be able to easily diffuse through the crystal structure of ZnO and lead to the p-type doping of the host crystal. However, the current understanding of Ag defects and their mobility in the ZnO crystal is still not fully explored. In this work, we report the results of our first-principles calculations based on density functional theory for Ag defects, particularly the interstitial and substitutional defects in ZnO crystal. Defect formation energies are calculated in different charged states as a function of Fermi energy in order to clarify the p-type behaviour of Ag-doped ZnO. We also investigate the diffusion behaviour and migration paths of Ag in ZnO crystal in the framework of density functional theory applying climbing image (CI) nudged elastic band method (NEB).

  10. Synthesis and Conductometric Property of Sol-Gel-Derived ZnO/PVP Nano Hybrid Films

    NASA Astrophysics Data System (ADS)

    Ilegbusi, Olusegun J.; Trakhtenberg, Leonid

    2013-03-01

    ZnO nanoparticles immobilized in polyvinylpyrrolidone (PVP) were prepared using sol-gel dip-coating technique with varying Zn2+/PVP ratios. The films were characterized using atomic force microscopy, x-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy for chemical analysis. The size and concentration of ZnO particles decreased as the Zn/PVP ratio decreased. Under low Zn2+/PVP molar ratios, ZnO particles were clearly well separated and capped in the PVP polymer matrix. Electrical resistivity of 108 Ω cm was achieved under these deposition conditions.

  11. Impact of hydrogen and oxygen defects on the lattice parameter of chemical vapor deposited zinc sulfide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCloy, John S.; Wolf, Walter; Wimmer, Erich

    2013-01-09

    The lattice parameter of cubic chemical vapor deposited (CVD) ZnS with measured oxygen concentrations < 0.6 at.% and hydrogen impurities of < 0.015 at.% have been measured and found to vary between -0.10% and +0.09% relative to the reference lattice parameter (5.4093 Å) of oxygen-free cubic ZnS as reported in the literature. Defects other than substitutional O must be invoked to explain these observed volume changes. The structure and thermodynamic stability of a wide range of native and impurity induced defects in ZnS have been determined by Ab initio calculations. Lattice contraction is caused by S-vacancies, substitutional O on Smore » sites, Zn vacancies, H in S vacancies, peroxy defects, and dissociated water in S-vacancies. The lattice is expanded by interstitial H, H in Zn vacancies, dihydroxy defects, interstitial oxygen, Zn and [ZnHn] complexes (n=1,…,4), interstitial Zn, and S2 dumbbells. Oxygen, though present, likely forms substitutional defects for sulfur resulting in lattice contraction rather than as interstitial oxygen resulting in lattice expansion. It is concluded based on measurement and calculations that excess zinc atoms either at anti-sites (i.e. Zn atoms on S-sites) or possibly as interstitial Zn are responsible for the relative increase of the lattice parameter of commercially produced CVD ZnS.« less

  12. Narrowing the gap: from semiconductor to semimetal in the homologous series of rare-earth zinc arsenides RE(2-y)Zn4As4·n(REAs) and Mn-substituted derivatives RE(2-y)Mn(x)Zn(4-x)As4·n(REAs) (RE = La-Nd, Sm, Gd).

    PubMed

    Lin, Xinsong; Tabassum, Danisa; Mar, Arthur

    2015-12-14

    A homologous series of ternary rare-earth zinc arsenides, prepared by reactions of the elements at 750 °C, has been identified with the formula RE(2-y)Zn4As4·n(REAs) (n = 2, 3, 4) for various RE members. They adopt trigonal structures: RE(4-y)Zn4As6 (RE = La-Nd), space group R3̄m1, Z = 3; RE(5-y)Zn4As7 (RE = Pr, Nd, Sm, Gd), space group P3̄m1, Z = 1; RE(6-y)Zn4As8 (RE = La-Nd, Sm, Gd), space group R3̄m1, Z = 3. The Zn atoms can be partially substituted by Mn atoms, resulting in quaternary derivatives RE(2-y)Mn(x)Zn(4-x)As4·n(REAs). Single-crystal structures were determined for nine ternary and quaternary arsenides RE(2-y)M4As4·n(REAs) (M = Mn, Zn) as representative examples of these series. The structures are built by stacking close-packed nets of As atoms, sometimes in very long sequences, with RE atoms occupying octahedral sites and M atoms occupying tetrahedral sites, resulting in an intergrowth of [REAs] and [M2As2] slabs. The recurring feature of all members of the homologous series is a sandwich of [M2As2]-[REAs]-[M2As2] slabs, while rocksalt-type blocks of [REAs] increase in thickness between these sandwiches with higher n. Similar to the previously known related homologous series REM(2-x)As2·n(REAs) which is deficient in M, this new series RE(2-y)M4As4·n(REAs) exhibits deficiencies in RE to reduce the electron excess that would be present in the fully stoichiometric formulas. Enthalpic and entropic factors are considered to account for the differences in site deficiencies in these two homologous series. Band structure calculations indicate that the semiconducting behaviour of the parent n = 0 member (with CaAl2Si2-type structure) gradually evolves, through a narrowing of the gap between valence and conduction bands, to semimetallic behaviour as the number of [REAs] blocks increases, to the limit of n = ∞ for rocksalt-type REAs.

  13. Synthesis of ZnO:As Films Using Off-Axis Sputtering Deposition

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Lehoczky, S. L.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    As a novel oxide semiconductor material, ZnO is interesting for use in many applications. For fabricating electronic devices, it is important to have n- and p- type ZnO materials. Arsenic has been proven to be one of the p-type dopants for ZnO materials. However, information in studying the ZnAsO ternary compound films has been scarce. In order to investigate the morphology, structure and electrical properties of ZnAsO ternary compounds, ZnO:As films have been synthesized using off-axis sputtering deposition on various substrates including (100) Si and (0001) sapphire crystals. Films are grown under various growth conditions. ZnO:As targets with the atomic weight ratios of arsenic to zinc from 0.01 to 0.10 are used for film synthesis. The growth temperatures and pressures range from 350 to 550C and 5 to 150 mTorr, respectively. Argon to oxygen gas ratio for film growth is varied to examine the film quality as well. Film surface morphology, crystal structure, and compositions, are characterized using atomic force microscopy, x-ray diffraction, and energy dispersive spectroscopy, respectively. The compositions of target material and ZnO:As films grown under various conditions are then assessed. The electrical properties were also measured. The detail of these measurements will be discussed in the presentation.

  14. Enhanced Performance in Al-Doped ZnO Based Transparent Flexible Transparent Thin-Film Transistors Due to Oxygen Vacancy in ZnO Film with Zn-Al-O Interfaces Fabricated by Atomic Layer Deposition.

    PubMed

    Li, Yang; Yao, Rui; Wang, Huanhuan; Wu, Xiaoming; Wu, Jinzhu; Wu, Xiaohong; Qin, Wei

    2017-04-05

    Highly conductive and optical transparent Al-doped ZnO (AZO) thin film composed of ZnO with a Zn-Al-O interface was fabricated by thermal atomic layer deposition (ALD) method. The as-prepared AZO thin film exhibits excellent electrical and optical properties with high stability and compatibility with temperature-sensitive flexible photoelectronic devices; film resistivity is as low as 5.7 × 10 -4 Ω·cm, the carrier concentration is high up to 2.2 × 10 21 cm -3 . optical transparency is greater than 80% in a visible range, and the growth temperature is below 150 °C on the PEN substrate. Compared with the conventional AZO film containing by a ZnO-Al 2 O 3 interface, we propose that the underlying mechanism of the enhanced electrical conductivity for the current AZO thin film is attributed to the oxygen vacancies deficiency derived from the free competitive growth mode of Zn-O and Al-O bonds in the Zn-Al-O interface. The flexible transparent transistor based on this AZO electrode exhibits a favorable threshold voltage and I on /I off ratio, showing promising for use in high-resolution, fully transparent, and flexible display applications.

  15. Identification of substitutional Li in n-type ZnO and its role as an acceptor

    NASA Astrophysics Data System (ADS)

    Johansen, K. M.; Zubiaga, A.; Makkonen, I.; Tuomisto, F.; Neuvonen, P. T.; Knutsen, K. E.; Monakhov, E. V.; Kuznetsov, A. Yu.; Svensson, B. G.

    2011-06-01

    Monocrystalline n-type zinc oxide (ZnO) samples prepared by different techniques and containing various amounts of lithium (Li) have been studied by positron annihilation spectroscopy (PAS) and secondary ion mass spectrometry. A distinct PAS signature of negatively charged Li atoms occupying a Zn-site (LiZn-), so-called substitutional Li, is identified and thus enables a quantitative determination of the content of LiZn. In hydrothermally grown samples with a total Li concentration of ~2×1017cm-3,LiZn is found to prevail strongly, with only minor influence, by other possible configurations of Li. Also in melt grown samples doped with Li to a total concentration as high as 1.5×1019cm-3, a considerable fraction of the Li atoms (at least 20%) is shown to reside on the Zn-site, but despite the corresponding absolute acceptor concentration of ⩾(2-3)×1018cm-3, the samples did not exhibit any detectable p-type conductivity. The presence of LiZn is demonstrated to account for the systematic difference in positron lifetime of 10-15 ps between Li-rich and Li-lean ZnO materials as found in the literature, but further work is needed to fully elucidate the role of residual hydrogen impurities and intrinsic open volume defects.

  16. Study of Cu2O\\ZnO nanowires heterojunction designed by combining electrodeposition and atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Makhlouf, Houssin; Weber, Matthieu; Messaoudi, Olfa; Tingry, Sophie; Moret, Matthieu; Briot, Olivier; Chtoutou, Radhouane; Bechelany, Mikhael

    2017-12-01

    Cu2O/ZnO nanowires (NWs) heterojunctions were successfully prepared by combining Atomic layer Deposition (ALD) and Electrochemical Deposition (ECD) processes. The crystallinity, morphology and photoconductivity properties of the Cu2O/ZnO nanostructures have been investigated. The properties of the Cu2O absorber layer and the nanostructured heterojunction were studied in order to understand the mechanisms lying behind the low photoconductivity measured. It has been found that the interface state defects and the high resistivity of Cu2O film were limiting the photovoltaic properties of the prepared devices. The understanding presented in this work is expected to enable the optimization of solar cell devices based on Cu2O/ZnO nanomaterials and improve their overall performance.

  17. Spectroscopy peculiarities of thermal plasma of electric arc discharge between electrodes with Zn admixtures

    NASA Astrophysics Data System (ADS)

    Semenyshyn, R. V.; Veklich, A. N.; Babich, I. L.; Boretskij, V. F.

    2014-10-01

    Plasma of the free burning electric arc between Ag-SnO2-ZnO composite electrodes as well as brass electrodes were investigated. The plasma temperature distributions were obtained by Boltzmann plot method involving Cu I, Ag I or Zn I spectral line emissions. The electron density distributions were obtained from the width and from absolute intensity of spectral lines. The laser absorption spectroscopy was used for measurement of copper atom concentration in plasma. Plasma equilibrium composition was calculated using two independent groups of experimental values (temperature and copper atom concentration, temperature and electron density). It was found that plasma of the free burning electric arc between brass electrodes is in local thermodynamical equilibrium. The experimental verification of the spectroscopic data of Zn I spectral lines was carried out.

  18. ZnO Functionalization of Multi-walled Carbon Nanotubes for Methane Sensing at Single Parts Per Million Concentration Levels

    EPA Science Inventory

    This paper presents a novel atomic layer deposition (ALD) based ZnO functionalization of surface pre-treated multi-walled carbon nanotubes (MWCNTs) for highly sensitive methane chemoresistive sensors. The temperature optimization of the ALD process leads to enhanced ZnO nanopart...

  19. Experimental study of the Ca-Mg-Zn system using diffusion couples and key alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-Nan; Kevorkov, Dmytro; Bridier, Florent; Medraj, Mamoun

    2011-03-01

    Nine diffusion couples and 32 key samples were prepared to map the phase diagram of the Ca-Mg-Zn system. Phase relations and solubility limits were determined for binary and ternary compounds using scanning electron microscopy, electron probe microanalysis and x-ray diffraction (XRD). The crystal structure of the ternary compounds was studied by XRD and electron backscatter diffraction. Four ternary intermetallic (IM) compounds were identified in this system: Ca3MgxZn15-x (4.6<=x<=12 at 335 °C, IM1), Ca14.5Mg15.8Zn69.7 (IM2), Ca2Mg5Zn13 (IM3) and Ca1.5Mg55.3Zn43.2 (IM4). Three binary compounds were found to have extended solid solubility into ternary systems: CaZn11, CaZn13 and Mg2Ca form substitutional solid solutions where Mg substitutes for Zn atoms in the first two compounds, and Zn substitutes for both Ca and Mg atoms in Mg2Ca. The isothermal section of the Ca-Mg-Zn phase diagram at 335 °C was constructed on the basis of the obtained experimental results. The morphologies of the diffusion couples in the Ca-Mg-Zn phase diagram at 335 °C were studied. Depending on the terminal compositions of the diffusion couples, the two-phase regions in the diffusion zone have either a tooth-like morphology or contain a matrix phase with isolated and/or dendritic precipitates.

  20. Electronic and chemical structure of an organic light emitter embedded in an inorganic wide-bandgap semiconductor: Photoelectron spectroscopy of layered and composite structures of Ir(BPA) and ZnSe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimamay, Mariel; Laboratoire de Chimie des Polymères Organiques, CNRS, Université de Bordeaux, UMR 5629-16 Avenue Pey-Berland, 33607 Pessac; Mayer, Thomas

    Luminescent organic phases embedded in conductive inorganic matrices are proposed for hybrid organic-inorganic light-emitting diodes. In this configuration, the organic dye acts as the radiative recombination site for charge carriers injected into the inorganic matrix. Our investigation is aimed at finding a material combination where the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the organic dye are situated in between the valence and conduction bands of the inorganic matrix in order to promote electron and hole transfer from the matrix to the dye. Bilayer and composite thin films of zinc selenide (ZnSe) and a redmore » iridium complex (Ir(BPA)) organic light emitter were prepared in situ via UHV thermal evaporation technique. The electronic and atomic structures were studied applying X-ray and ultraviolet photoelectron spectroscopies. The measured energy band alignments for the ZnSe/Ir(BPA) bilayer and ZnSe+Ir(BPA) composite reveal that the HOMO and LUMO of the organic dye are positioned in the ZnSe bandgap. For the initial steps of ZnSe deposition on a dye film to form Ir(BPA)/ZnSe bilayers, zinc atoms intercalate into the dye film leaving behind an excess of selenium at the interface that partly reacts with dye molecules. Photoelectron spectroscopy of the composites shows the same species suggesting a similar mechanism. This mechanism leads to composite films with increased content of amorphous phases in the inorganic matrix, thereby affecting its conductivity, as well as to the presence of nonradiative recombination sites provided by the intercalated Zn atoms.« less

  1. A theoretical model describing the one-dimensional growth of single crystals on free sustained substrates

    NASA Astrophysics Data System (ADS)

    Ye, Ziran; Wang, Ke; Lu, Chenxi; Jin, Ying; Sui, Chenghua; Yan, Bo; Gao, Fan; Cai, Pinggen; Lv, Bin; Li, Yun; Chen, Naibo; Sun, Guofang; Xu, Fengyun; Ye, Gaoxiang

    2018-03-01

    We develop a theoretical model that interprets the growth mechanism of zinc (Zn) crystal nanorods on a liquid substrate by thermal evaporation. During deposition, Zn atoms diffuse randomly on an isotropic and quasi-free sustained substrate, the nucleation of the atoms results in the primary nanorod (or seed crystal) growth. Subsequently, a characteristic one-dimensional atomic aggregation is proposed, which leads to the accelerating growth of the crystal nanorod along its preferential growth direction until the growth terminates. The theoretical results are in good agreement with the experimental findings.

  2. Correlation and nuclear distortion effects of Cr-substituted ZnSe.

    PubMed

    Tablero, C

    2007-04-28

    There is a great deal of interest in the effect of the correlation and effect of the atomic distortion in materials with a metallic intermediate band. This band, situated within the semiconductor band gaps, would be split, thus creating two bands, a full one below the Fermi energy and an empty one above it, i.e., a metal-insulator transition. This basic electronic band structure corresponds to intermediate band materials and is characteristic of transparent-conducting oxides, up and down converters, and intermediate band solar cells. A sufficiently high density of Cr in ZnSe substituting the Zn atoms leads to a microscopic intermediate band, in which these effects will be analyzed. A Hubbard term has been included to improve the description of the many-body effect. This term modifies the bandwidth of the intermediate band, the Fermi energy, and breaks the orbital-occupation degeneracy. From the results, the intermediate band is not split within the range of Hubbard term values analyzed and for Cr substituting Zn from 0.463% to 3.125% of Cr atomic concentration.

  3. Unoccupied states in Cu and Zn octaethyl-porphyrin and phthalocyanine.

    PubMed

    Cook, Peter L; Yang, Wanli; Liu, Xiaosong; García-Lastra, Juan María; Rubio, Angel; Himpsel, F J

    2011-05-28

    Copper and zinc phthalocyanines and porphyrins are used in organic light emitting diodes and dye-sensitized solar cells. Using near edge x-ray absorption fine structure (NEXAFS) spectroscopy at the Cu 2p and Zn 2p edges, the unoccupied valence states at the Cu and Zn atoms are probed and decomposed into 3d and 4s contributions with the help of density functional calculations. A comparison with the N 1s edge provides the 2p states of the N atoms surrounding the metal, and a comparison with inverse photoemission provides a combined density of states. © 2011 American Institute of Physics

  4. Evolution of crystal structure during the initial stages of ZnO atomic layer deposition

    DOE PAGES

    Boichot, R.; Tian, L.; Richard, M. -I.; ...

    2016-01-05

    In this study, a complementary suite of in situ synchrotron X-ray techniques is used to investigate both structural and chemical evolution during ZnO growth by atomic layer deposition. Focusing on the first 10 cycles of growth, we observe that the structure formed during the coalescence stage largely determines the overall microstructure of the film. Furthermore, by comparing ZnO growth on silicon with a native oxide with that on Al 2O 3(001), we find that even with lattice-mismatched substrates and low deposition temperatures, the crystalline texture of the films depend strongly on the nature of the interfacial bonds.

  5. Alternative Dielectric Films for rf MEMS Capacitive Switches Deposited using Atomic Layer Deposited Al2O3/ZnO Alloys

    DTIC Science & Technology

    2006-07-02

    A s c c s r t h s l © K 1 b c A a e t s C t o 0 d Sensors and Actuators A 135 (2007) 262–272 Alternative dielectric films for rf MEMS capacitive...Zn concentrations in the alloy films , which was lower than expected. Atomic force microscopy images evealed an average surface roughness of 0.27 nm...that was independent of deposition temperature and film composition. The dielectric constants of he Al2O3/ZnO ALD alloys films were calculated to be

  6. Essential and toxic elements in honeys from a region of central Italy.

    PubMed

    Meli, M A; Desideri, D; Roselli, C; Benedetti, C; Feduzi, L

    2015-01-01

    Levels of iron (Fe), manganese (Mn), chromium (Cr), copper (Cu), zinc (Zn), mercury (Hg), cadmium (Cd), and lead (Pb) in several types of honey produced in a region of Central Italy were determined by atomic absorption spectroscopy (AAS). The degree of humidity, sugar content, pH, free acidity, combined acidity (lactones), and total acidity were also measured. These elements were found to be present in honey in various proportions depending upon (1) the area foraged by bees, (2) flower type visited for collection of nectar, and (3) quality of water in the vicinity of the hive. Strong positive correlations occurred between Pb and Hg, Pb and Cd, Pb and Fe, Pb and Cr, Hg and Cd, and Hg and Fe. The honey products synthesized in Central Italy were of good quality, but not completely free of heavy metal contamination. Compared with established recommended daily intakes, heavy metals or trace element intoxication following honey consumption in Italy was found not to be a concern for human health.

  7. Icosahedral quasicrystals as twins of cubic crystals containing large icosahedral clusters of atoms: The 1012-atom primitive cubic structure of Al(6)CuLi(3), the C-phase Al(37)Cu(3)Li(21)Mg(3), and GaMg(2)Zn(3).

    PubMed

    Pauling, L

    1988-06-01

    Single-grain precession x-ray diffraction photographs of Al(6)CuLi(3) have been successfully indexed on the basis of icosahedral twinning of cubic crystals with a 1012-atom primitive cubic unit with edge 25.70 A, giving support to the proposal that the so-called icosahedral quasicrystals are twins of crystals containing eight large icosahedral clusters in the beta-W arrangement. In this compound two of the clusters consist of 104 atoms and six consist of 136 atoms, with 24 atoms shared. The same structure is assigned to the C-phase, Al(37)Cu(3)Li(21)Mg(3), and to GaMg(2)Zn(3). A theory of icosahedral quasicrystals and amorphous metals is described.

  8. Icosahedral quasicrystals as twins of cubic crystals containing large icosahedral clusters of atoms: The 1012-atom primitive cubic structure of Al6CuLi3, the C-phase Al37Cu3Li21Mg3, and GaMg2Zn3

    PubMed Central

    Pauling, Linus

    1988-01-01

    Single-grain precession x-ray diffraction photographs of Al6CuLi3 have been successfully indexed on the basis of icosahedral twinning of cubic crystals with a 1012-atom primitive cubic unit with edge 25.70 Å, giving support to the proposal that the so-called icosahedral quasicrystals are twins of crystals containing eight large icosahedral clusters in the β-W arrangement. In this compound two of the clusters consist of 104 atoms and six consist of 136 atoms, with 24 atoms shared. The same structure is assigned to the C-phase, Al37Cu3Li21Mg3, and to GaMg2Zn3. A theory of icosahedral quasicrystals and amorphous metals is described. PMID:16593929

  9. Hydrogen induced electric conduction in undoped ZnO and Ga-doped ZnO thin films: Creating native donors via reduction, hydrogen donors, and reactivating extrinsic donors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akazawa, Housei, E-mail: akazawa.housei@lab.ntt.co.jp

    2014-09-01

    The manner in which hydrogen atoms contribute to the electric conduction of undoped ZnO and Ga-doped ZnO (GZO) films was investigated. Hydrogen atoms were permeated into these films through annealing in an atmospheric H{sub 2} ambient. Because the creation of hydrogen donors competes with the thermal annihilation of native donors at elevated temperatures, improvements to electric conduction from the initial state can be observed when insulating ZnO films are used as samples. While the resistivity of conductive ZnO films increases when annealing them in a vacuum, the degree of increase is mitigated when they are annealed in H{sub 2}. Hydrogenationmore » of ZnO crystals was evidenced by the appearance of OH absorption signals around a wavelength of 2700 nm in the optical transmittance spectra. The lowest resistivity that was achieved by H{sub 2} annealing was limited to 1–2 × 10{sup −2} Ω cm, which is one order of magnitude higher than that by native donors (2–3 × 10{sup −3} Ω cm). Hence, all native donors are converted to hydrogen donors. In contrast, GZO films that have resistivities yet to be improved become more conductive after annealing in H{sub 2} ambient, which is in the opposite direction of GZO films that become more resistive after vacuum annealing. Hydrogen atoms incorporated into GZO crystals should assist in reactivating Ga{sup 3+} donors.« less

  10. Transparent Oxide TFTs Fabricated by Atomic Layer Deposition

    DTIC Science & Technology

    2014-04-17

    Transparent Oxide TFTs Fabricated by Atomic Layer Deposition(FA2386-11-1-114052) Yukiharu Uraoka, Nara Institute of Science and Technology Term...2011.5.1-2012.4.30 Purpose and Background: In recent years, the application of zinc oxide (ZnO) thin films as an active channel layer in TFTs has...or other flexible substrates. Higher field-effect mobility of ZnO TFTs than a-Si:H TFTs has been recently demonstrated. However, reliability for

  11. Synthesis of ZnTe dendrites on multi-walled carbon nanotubes/polyimide nanocomposite membrane by electrochemical atomic layer deposition and photoelectrical property research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Yimin; Kou, Huanhuan; Li, Jiajia

    2012-10-15

    We report on the electrochemical atomic layer deposition (EC-ALD) of ZnTe dendrites on the carboxyl-functionalized multi-walled carbon nanotubes/polyimide (COOH-MWCNTs/PI) membrane. Electrochemical characteristics were studied by cyclic voltammetry (CV) and the deposition of ZnTe dendrites was completed using amperometric method (I-t). The prepared ZnTe dendrites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The growth mechanism of ZnTe dendrites was elucidated to give a deep understanding of crystal growth. The concentration of reagents and deposition cycle had a significant effect on the morphology and structure of deposits. UV-vis transmission study indicated a direct bandmore » gap of 2.26 eV. Photoelectrical measurement confirmed the p-type conductivity of ZnTe dendrites, which indicated that the dendritic ZnTe crystals may have potential practical application in optoelectronic devices. - Graphical abstract: Representative SEM images of ZnTe dendrites. (a) Panorama of ZnTe dendrites; (b) a single dendrite. The regular branches appeared like leaves and showed a parallel arrangement layer upon layer between each other. Highlights: Black-Right-Pointing-Pointer ZnTe dendrites were successfully synthesized on CNTs/PI membrane by electrodeposition. Black-Right-Pointing-Pointer The growth mechanism of ZnTe dendritic structures was investigated in detail. Black-Right-Pointing-Pointer The concentration and deposition cycle greatly affected the morphology of ZnTe. Black-Right-Pointing-Pointer OCP and I-t studies showed that ZnTe can be beneficial to photoelectric applications.« less

  12. A trimetallic strategy towards ZnDyCr and ZnDyCo single-ion magnets.

    PubMed

    Hu, Kong-Qiu; Jiang, Xiang; Wu, Shu-Qi; Liu, Cai-Ming; Cui, Ai-Li; Kou, Hui-Zhong

    2015-09-21

    Two cyano- and phenoxo-bridged octanuclear complexes ZnDyCo (complex ) and ZnDyCr (complex ) with diamagnetic Zn(ii) and Co(iii) are reported. Dy(iii) is surrounded by nine oxygen atoms of two [Zn(Me2valpn)] (Me2valpn(2-) = dianion of N,N'-2,2-dimethylpropylenebis(3-methoxysalicylideneimine)) and one water molecule. Magnetic studies reveal that both exhibit single-ion magnet (SIM) behavior with the energy barrier of 85.9 K for complex and 100.9 K for complex .

  13. Investigation on structure, electronic and magnetic properties of Cr doped (ZnO)12 clusters: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Liu, Huan; Zhang, Jian-Min

    2018-05-01

    The structural, electronic, and magnetic properties of (ZnO)12 clusters doped with Cr atoms have been investigated by using spin-polarized first-principles calculations. The exohedral a3 isomer is favorable than endohedral a2 isomer. The isomer a1 and a5 respectively have the narrowest and biggest gap between highest unoccupied molecular orbital and the lowest unoccupied molecular orbital (HOMO-LUMO) of 0.473 and 1.291 eV among these five monodoped isomers. The magnetic moment may be related to the local environment around the Cr atom that the a2 isomer whose total magnetic moment is 6 μB while the other monodoped isomers which all isomers have nearly total magnetic moments 4 μB . For Cr-doped (ZnO)12 on a1 or a3 isomer, the DOS of spin-up channel cross the Fermi level EF showing a finite magnitude near the Fermi level which might be useful for half metallic character. For the bidoped cases, the exohedral isomers are found to be most favorable. Including all bipoed isomers of substitutional, exohedral and endohedral bidoped clusters, the total magnetic moment of the ferromagnetic (antiferromagnetic) state is 8 (0) μB and the HOMO-LUMO gap of antiferromagnetic state is slightly larger than that of ferromagnetic state. The magnetic coupling between the Cr atoms in bidoped configurations is mainly governed by the competition between direct Cr and Cr atoms antiferromagnetic interaction and the ferromagnetic interaction between two Cr atoms via O atom due to strong p-d hybridization. Most importantly, we show that the exohedral bidoped (ZnO)12 clusters favor the ferromagnetic state, which may have the future applications in spin-dependent magneto-optical and magneto-electrical devices.

  14. Determination of Zn-citrate in human milk by CIM monolithic chromatography with atomic and mass spectrometry detection.

    PubMed

    Milačič, Radmila; Ajlec, Dejan; Zuliani, Tea; Žigon, Dušan; Ščančar, Janez

    2012-11-15

    In human milk zinc (Zn) is bound to proteins and low molecular mass (LMM) ligands. Numerous investigations demonstrated that Zn bioavailability in human milk is for infant much higher than in cow's milk. It was presumed that in the LMM human milk fraction highly bioavailable Zn-citrate prevails. However, literature data are controversial regarding the amount of Zn-citrate in human milk since analytical procedures reported were not quantitative. So, complex investigation was carried out to develop analytical method for quantitative determination of this biologically important molecule. Studies were performed within the pH range 5-7 by the use of synthetic solutions of Zn-citrate prepared in HEPES, MOPS and MES buffers. Zn-citrate was separated on weak anion-exchange convective interaction media (CIM) diethylaminoethyl (DEAE) monolithic chromatographic column using NH(4)NO(3) as an eluent. Separated Zn species were determined by flame atomic absorption spectrometry (FAAS) or inductively coupled plasma mass spectrometry (ICP-MS). Quantitative separation of Zn-citrate complexes ([Zn(Cit)](-) and [Zn(Cit)(2)](4-); column recoveries 94-102%) and good repeatability and reproducibility of results with relative standard deviation (RSD±3.0%) were obtained. In fractions under the chromatographic peaks Zn-binding ligand was identified by electrospray ionization tandem mass spectrometry (ESI-MS-MS). Limits of detection (LOD) for determination of Zn-citrate species by CIM DEAE-FAAS and CIM DEAE-ICP-MS were 0.01 μg Zn mL(-1) and 0.0005 μg Zn mL(-1), respectively. Both techniques were sensitive enough for quantification of Zn-citrate in human milk. Results demonstrated that about 23% of total Zn was present in the LMM milk fraction and that LMM-Zn corresponded to Zn-citrate. The developed speciation method represents a reliable analytical tool for investigation of the percentage and the amount of Zn-citrate in human milk. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Electronegativity calculation of bulk modulus and band gap of ternary ZnO-based alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Keyan; Kang, Congying; Xue, Dongfeng, E-mail: dongfeng@ciac.jl.cn

    2012-10-15

    In this work, the bulk moduli and band gaps of M{sub x}Zn{sub 1−x}O (M = Be, Mg, Ca, Cd) alloys in the whole composition range were quantitatively calculated by using the electronegativity-related models for bulk modulus and band gap, respectively. We found that the change trends of bulk modulus and band gap with an increase of M concentration x are same for Be{sub x}Zn{sub 1−x}O and Cd{sub x}Zn{sub 1−x}O, while the change trends are reverse for Mg{sub x}Zn{sub 1−x}O and Ca{sub x}Zn{sub 1−x}O. It was revealed that the bulk modulus is related to the valence electron density of atoms whereasmore » the band gap is strongly influenced by the detailed chemical bonding behaviors of constituent atoms. The current work provides us a useful guide to compositionally design advanced alloy materials with both good mechanical and optoelectronic properties.« less

  16. Analysis of heavy metals concentration in water and sediment in the Hara biosphere reserve, southern Iran.

    PubMed

    Nowrouzi, Mohsen; Mansouri, Borhan; Nabizadeh, Sahar; Pourkhabbaz, Alireza

    2014-02-01

    This study determined the concentration of heavy metals (Al, Cr, Cu, and Zn) in water and sediments at nine sites in the Hara biosphere reserve of southern Iran during the summer and winter 2010. Determination of Al, Cr, Cu, and Zn in water was carried out by graphite furnace atomic absorption spectrometer (Shimadzu, AA 610s) and in sediment by flame atomic absorption spectrometer (Perkin Elmer, AA3030). Results showed that the heavy metal concentrations in the water samples decreased in the sequence of Zn > Al > Cu > Cr, while in sediment samples were Cr > Zn > Cu > Al. Data analysis indicated that with the exception of Al, there was a Pearson's correlation coefficient between pH and Cu, Zn, and Cr at α = 0.01, 0.05, and 0.001 in sediment (in winter), respectively. There were also significant differences between heavy metals of Cr, Cu, and Zn during the two seasons (p < 0.001) in the water and sediment.

  17. Analyzing ZnO clusters through the density-functional theory.

    PubMed

    Zaragoza, Irineo-Pedro; Soriano-Agueda, Luis-Antonio; Hernández-Esparza, Raymundo; Vargas, Rubicelia; Garza, Jorge

    2018-06-16

    The potential energy surface of Zn n O n clusters (n = 2, 4, 6, 8) has been explored by using a simulated annealing method. For n = 2, 4, and 6, the CCSD(T)/TZP method was used as the reference, and from here it is shown that the M06-2X/TZP method gives the lowest deviations over PBE, PBE0, B3LYP, M06, and MP2 methods. Thus, with the M06-2X method we predict isomers of Zn n O n clusters, which coincide with some isomers reported previously. By using the atoms in molecules analysis, possible contacts between Zn and O atoms were found for all structures studied in this article. The bond paths involved in several clusters suggest that Zn n O n clusters can be obtained from the zincite (ZnO crystal), such an observation was confirmed for clusters with n = 2 - 9,18 and 20. The structure with n = 23 was obtained by the procedure presented here, from crystal information, which could be important to confirm experimental data delivered for n = 18 and 23.

  18. Growth, intermixing, and surface phase formation for zinc tin oxide nanolaminates produced by atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hägglund, Carl, E-mail: carl.hagglund@angstrom.uu.se; Grehl, Thomas; Brongersma, Hidde H.

    2016-03-15

    A broad and expanding range of materials can be produced by atomic layer deposition at relatively low temperatures, including both oxides and metals. For many applications of interest, however, it is desirable to grow more tailored and complex materials such as semiconductors with a certain doping, mixed oxides, and metallic alloys. How well such mixed materials can be accomplished with atomic layer deposition requires knowledge of the conditions under which the resulting films will be mixed, solid solutions, or laminated. The growth and lamination of zinc oxide and tin oxide is studied here by means of the extremely surface sensitivemore » technique of low energy ion scattering, combined with bulk composition and thickness determination, and x-ray diffraction. At the low temperatures used for deposition (150 °C), there is little evidence for atomic scale mixing even with the smallest possible bilayer period, and instead a morphology with small ZnO inclusions in a SnO{sub x} matrix is deduced. Postannealing of such laminates above 400 °C however produces a stable surface phase with a 30% increased density. From the surface stoichiometry, this is likely the inverted spinel of zinc stannate, Zn{sub 2}SnO{sub 4}. Annealing to 800 °C results in films containing crystalline Zn{sub 2}SnO{sub 4}, or multilayered films of crystalline ZnO, Zn{sub 2}SnO{sub 4}, and SnO{sub 2} phases, depending on the bilayer period.« less

  19. In Situ STM Observation of Nonmagnetic Impurity Effect in MBE-grown CeCoIn5 Films

    NASA Astrophysics Data System (ADS)

    Haze, Masahiro; Torii, Yohei; Peters, Robert; Kasahara, Shigeru; Kasahara, Yuichi; Shibauchi, Takasada; Terashima, Takahito; Matsuda, Yuji

    2018-03-01

    Local electronic effects in the vicinity of an impurity provide pivotal insight into the origin of unconventional superconductivity, especially when the materials are located on the edge of magnetic instability. In high-temperature cuprate superconductors, a strong suppression of superconductivity and appearance of low-energy bound states are clearly observed near nonmagnetic impurities. However, whether these features are common to other strongly correlated superconductors has not been established experimentally. Here, we report the in situ scanning tunneling microscopy observation of electronic structure around a nonmagnetic Zn impurity in heavy-fermion CeCo(In1-xZnx)5 films, which are epitaxially grown by the state-of-the-art molecular beam epitaxy technique. The films have very wide atomically flat terraces and Zn atoms residing on two different In sites are clearly resolved. Remarkably, no discernible change is observed for the superconducting gap at and around the Zn atoms. Moreover, the local density of states around Zn atoms shows little change inside the c-f hybridization gap, which is consistent with calculations for a periodic Anderson model without local magnetic order. These results indicate that no nonsuperconducting region is induced around a Zn impurity and do not support the scenario of antiferromagnetic droplet formation suggested by indirect measurements in Cd-doped CeCoIn5. These results also highlight a significant difference of the impurity effect between cuprates and CeCoIn5, in both of which d-wave superconductivity arises from the non-Fermi liquid normal state near antiferromagnetic instabilities.

  20. Quantitative analysis of doped/undoped ZnO nanomaterials using laser assisted atom probe tomography: Influence of the analysis parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amirifar, Nooshin; Lardé, Rodrigue, E-mail: rodrigue.larde@univ-rouen.fr; Talbot, Etienne

    2015-12-07

    In the last decade, atom probe tomography has become a powerful tool to investigate semiconductor and insulator nanomaterials in microelectronics, spintronics, and optoelectronics. In this paper, we report an investigation of zinc oxide nanostructures using atom probe tomography. We observed that the chemical composition of zinc oxide is strongly dependent on the analysis parameters used for atom probe experiments. It was observed that at high laser pulse energies, the electric field at the specimen surface is strongly dependent on the crystallographic directions. This dependence leads to an inhomogeneous field evaporation of the surface atoms, resulting in unreliable measurements. We showmore » that the laser pulse energy has to be well tuned to obtain reliable quantitative chemical composition measurements of undoped and doped ZnO nanomaterials.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolyniuk, Juli-Anna; Zaikina, Julia V.; Kaseman, Derrick C.

    A new clathrate type has been discovered in the Ba/Cu/Zn/P system. The crystal structure of the Ba 8M 24P 28+δ (M=Cu/Zn) clathrate is composed of the pentagonal dodecahedra common to clathrates along with a unique 22-vertex polyhedron with two hexagonal faces capped by additional partially occupied phosphorus sites. This is the first example of a clathrate compound where the framework atoms are not in tetrahedral or trigonal-pyramidal coordination. In Ba 8M 24P 28+δ a majority of the framework atoms are five- and six-coordinated, a feature more common to electron-rich intermetallics. The crystal structure of this new clathrate was determined bymore » a combination of X-ray and neutron diffraction and was confirmed with solid-state 31P NMR spectroscopy. Based on chemical bonding analysis, the driving force for the formation of this new clathrate is the excess of electrons generated by a high concentration of Zn atoms in the framework. The rattling of guest atoms in the large cages results in a very low thermal conductivity, a unique feature of the clathrate family of compounds.« less

  2. Distribution of dissolved zinc in the western and central subarctic North Pacific

    NASA Astrophysics Data System (ADS)

    Kim, T.; Obata, H.; Gamo, T.

    2016-02-01

    Zinc (Zn) is an essential micronutrient for bacteria and phytoplankton in the ocean as it plays an important role in numerous enzyme systems involved in various metabolic processes. However, large-scale distributions of total dissolved Zn in the subarctic North Pacific have not been investigated yet. In this study, we investigated the distributions of total dissolved Zn to understand biogeochemical cycling of Zn in the western and central subarctic North Pacific as a Japanese GEOTRACES project. Seawater samples were collected during the R/V Hakuho-maru KH-12-4 GEOTRACES GP 02 cruise (from August to October 2012), by using acid-cleaned Teflon-coated X-type Niskin samplers. Total dissolved Zn in seawater was determined using cathodic stripping voltammetry (CSV) after UV-digestion. In this study, total dissolved Zn concentrations in the western and central subarctic North Pacific commonly showed Zn increase from surface to approximately 400-500 m, just above the oxygen minimum layer. However, in the western subarctic North Pacific, relatively higher Zn concentrations have also been observed at intermediate depths (800-1200 m), in comparison with those observed in deep waters. The relationship between Zn and Si in the western subarctic North Pacific showed that Zn is slightly enriched at intermediate depths. These results may indicate that there are additional sources of Zn to intermediate water of the western subarctic North Pacific.

  3. Experimental and theoretical analysis of a rare nitrato bridged 3d-4f complex containing LaZn2 core synthesized from a Zn(II) metalloligand

    NASA Astrophysics Data System (ADS)

    Sreejith, S. S.; Mohan, Nithya; Kurup, M. R. Prathapachandra

    2018-02-01

    A trinulcear Zn2La Schiff base complex was synthesized using slow-solvent evaporation technique from a Zn(II) mononuclear metalloligand by 2:1 addition with La(NO3)3 salt. Single crystal XRD analysis revealed a rare nitrato bridged trinuclear entity which is seldom seen in these class of ligand systems. Qualitative and quantitative analysis of intermolecular interactions/short contacts were done using Hirshfeld surface and 2D finger print analysis. The thermally stable, blue luminescent compound exhibits internal heavy atom effect thereby quenching the emission intensity of the ligand. DFT calculations were performed on the compound to analyze frontier orbitals and also ESP plots were used to monitor nucleophilic/electrophilic regions on the compound and its implications on hydrogen bonding. A comparison of the bond orders and atomic charges on the trinuclear compound and the Zn(II) metalloligand precursor was performed to substantiate the formation of the trinuclear product through ligand exchange.

  4. Studies on morphology, electrical and optical characteristics of Al-doped ZnO thin films grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Chen, Li; Chen, Xinliang; Zhou, Zhongxin; Guo, Sheng; Zhao, Ying; Zhang, Xiaodan

    2018-03-01

    Al doped ZnO (AZO) films deposited on glass substrates through the atomic layer deposition (ALD) technique are investigated with various temperatures from 100 to 250 °C and different Zn : Al cycle ratios from 20 : 0 to 20 : 3. Surface morphology, structure, optical and electrical properties of obtained AZO films are studied in detail. The Al composition of the AZO films is varied by controlling the ratio of Zn : Al. We achieve an excellent AZO thin film with a resistivity of 2.14 × 10‑3 Ω·cm and high optical transmittance deposited at 150 °C with 20 : 2 Zn : Al cycle ratio. This kind of AZO thin films exhibit great potential for optoelectronics device application. Project supported by the State Key Development Program for Basic Research of China (Nos. 2011CBA00706, 2011CBA00707) and the Tianjin Applied Basic Research Project and Cutting-Edge Technology Research Plan (No. 13JCZDJC26900).

  5. Structural, electronic, magnetic and optical properties of semiconductor Zn1-xMoxTe compound

    NASA Astrophysics Data System (ADS)

    Feng, Zhong-Ying; Zhang, Jian-Min

    2018-03-01

    The structural, electronic, magnetic and optical properties of the Zn1-xMoxTe (x = 0.00, 0.25, 0.50, 0.75, 1.00) have been investigated by the spin-polarized first-principles calculations. The Zn0.50Mo0.50Te has tetragonal structure while the Zn1-xMoxTe (x = 0.00, 0.25, 0.75, 1.00) crystallize in cubic structures. For Zn1-xMoxTe (x = 0.25, 0.50, 0.75, 1.00) alloys, the lattice constant and the volume are found larger than those of pure ZnTe alloy. The Zn1-xMoxTe (x = 0.25, 0.50, 0.75, 1.00) is magnetic and the Mo element is found dominant in the bands crossing the Fermi level in the spin-up channel. The Zn0.75Mo0.25Te and MoTe have half-metallic (HM) behavior. In spin-down channel of the Zn0.75Mo0.25Te, the Zn atom mainly contributed to the conduction band minimum (CBM), while the valence band maximum (VBM) appears mainly due to contribution of Te element. A positive spin splitting and crystal field splitting of d-states of Mo atom has been observed for Zn0.75Mo0.25Te alloy. The maximum values of the absorption coefficients αMAX(ω) of the Zn0.50Mo0.50Te alloy along a or b axes are smaller than the absorption coefficient along c axis. The first absorption peak appearing in the energy range of 0.000-1.000 eV for Zn1-xMoxTe (x = 0.25, 0.50, 0.75 or 1.00) alloys is the new peak which is not observed in ZnTe.

  6. Aqueous chemical growth of free standing vertical ZnO nanoprisms, nanorods and nanodiskettes with improved texture co-efficient and tunable size uniformity

    NASA Astrophysics Data System (ADS)

    Ram, S. D. Gopal; Ravi, G.; Athimoolam, A.; Mahalingam, T.; Kulandainathan, M. Anbu

    2011-12-01

    Tuning the morphology, size and aspect ratio of free standing ZnO nanostructured arrays by a simple hydrothermal method is reported. Pre-coated ZnO seed layers of two different thicknesses (≈350 nm or 550 nm) were used as substrates to grow ZnO nanostructures for the study. Various parameters such as chemical ambience, pH of the solution, strength of the Zn2+ atoms and thickness of seed bed are varied to analyze their effects on the resultant ZnO nanostructures. Vertically oriented hexagonal nanorods, multi-angular nanorods, hexagonal diskette and popcorn-like nanostructures are obtained by altering the experimental parameters. All the produced nanostructures were analysed by X-ray powder diffraction analysis and found to be grown in the (002) orientation of wurtzite ZnO. The texture co-efficient of ZnO layer was improved by combining a thick seed layer with higher cationic strength. Surface morphological studies reveal various nanostructures such as nanorods, diskettes and popcorn-like structures based on various preparation conditions. The optical property of the closest packed nanorods array was recorded by UV-VIS spectrometry, and the band gap value simulated from the results reflect the near characteristic band gap of ZnO. The surface roughness profile taken from the Atomic Force Microscopy reveals a roughness of less than 320 nm.

  7. ZnO Schottky barriers and Ohmic contacts

    NASA Astrophysics Data System (ADS)

    Brillson, Leonard J.; Lu, Yicheng

    2011-06-01

    ZnO has emerged as a promising candidate for optoelectronic and microelectronic applications, whose development requires greater understanding and control of their electronic contacts. The rapid pace of ZnO research over the past decade has yielded considerable new information on the nature of ZnO interfaces with metals. Work on ZnO contacts over the past decade has now been carried out on high quality material, nearly free from complicating factors such as impurities, morphological and native point defects. Based on the high quality bulk and thin film crystals now available, ZnO exhibits a range of systematic interface electronic structure that can be understood at the atomic scale. Here we provide a comprehensive review of Schottky barrier and ohmic contacts including work extending over the past half century. For Schottky barriers, these results span the nature of ZnO surface charge transfer, the roles of surface cleaning, crystal quality, chemical interactions, and defect formation. For ohmic contacts, these studies encompass the nature of metal-specific interactions, the role of annealing, multilayered contacts, alloyed contacts, metallization schemes for state-of-the-art contacts, and their application to n-type versus p-type ZnO. Both ZnO Schottky barriers and ohmic contacts show a wide range of phenomena and electronic behavior, which can all be directly tied to chemical and structural changes on an atomic scale.

  8. Lithium Assisted “Dissolution–Alloying” Synthesis of Nanoalloys from Individual Bulk Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barkholtz, Heather M.; Gallagher, James R.; Li, Tao

    2016-04-12

    We report new fundamental chemistry involved in the synthesis of bimetallic nanoalloys via dissolving the pure bulk transition metals in molten lithium. It is revealed at the atomic level that when two pure bulk transition metals such as Pd and Pt are placed in molten lithium (similar to 200 degrees C), they undergo a dissolution process in which the metal-metal bonds in pure bulk transition metals are completely ruptured, which results in the existence of individual Pd and Pt atoms surrounded by lithium atoms, as is evident by synchrotron X-ray adsorption techniques. Then, upon the conversion of metal lithium tomore » LiOH in humid air, the Pd and Pt atoms undergo an alloying process to aggregate into nanoalloys. This method was further expanded to include PdZn, which is notoriously difficult to prepare via traditional nanoalloy synthesis methods due to the easily oxidizable Zn component. The constantly reducing environment of metallic Li allowed for preparation of PdZn nanoalloys with minimal Zn oxidation via dissolution-alloying of individual bulk transition metals in molten lithium. Additionally, this lithium assisted "dissolution-alloying" method bypasses many complications intrinsic to conventional ion reduction-based nanoalloy synthesis including the necessity of ligated metal ions, the use of proper reducing agents and dispersing surfactants, and the presence of segregated phases due to different reduction potentials of the constituent metal ions.« less

  9. Lithium assisted “dissolution–alloying” synthesis of nanoalloys from individual bulk metals

    DOE PAGES

    Barkholtz, Heather M.; Gallagher, James R.; Li, Tao; ...

    2016-03-27

    Here, we report new fundamental chemistry involved in the synthesis of bimetallic nanoalloys via dissolving the pure bulk transition metals in molten lithium. It is revealed at the atomic level that when two pure bulk transition metals such as Pd and Pt are placed in molten lithium (~200°C), they undergo a dissolution process in which the metal-metal bonds in pure bulk transition metals are completely ruptured, resulting in the existence of individual Pd and Pt atoms surrounded by lithium atoms, as is evident by synchrotron Xray adsorption techniques. Then, upon the conversion of metal lithium to LiOH in humid air,more » the Pd and Pt atoms undergo an alloying process, to aggregate into nanoalloys. This method was further expanded to include PdZn, which is notoriously difficult to prepare via traditional nanoalloy synthesis methods due to the easily oxidizable Zn component. The constantly reducing environment of metallic Li allowed for preparation of PdZn nanoalloys with minimal Zn oxidation via dissolution-alloying of individual bulk transition metals in molten lithium. Additionally, this lithium assisted “dissolutionalloying” method bypasses many complications intrinsic to conventional ion reductionbased nanoalloy synthesis including the necessity of ligated metal ions, the use of proper reducing agents and dispersing surfactants, and the presence of segregated phases due to different reduction potentials of the constituent metal ions.« less

  10. Oxygen vacancy mediated enhanced photo-absorption from ZnO(0001) nanostructures fabricated by atom beam sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solanki, Vanaraj; Joshi, Shalik R.; Mishra, Indrani

    2016-08-07

    The nanoscale patterns created on the ZnO(0001) surfaces during atom beam irradiation have been investigated here for their photo absorption response. Preferential sputtering, during irradiation, promotes Zn-rich zones that serve as the nucleation centers for the spontaneous creation of nanostructures. Nanostructured surfaces with bigger (78 nm) nanodots, displaying hexagonal ordering and long ranged periodic behavior, show higher photo absorption and a ∼0.09 eV reduced bandgap. These nanostructures also demonstrate higher concentration of oxygen vacancies which are crucial for these results. The enhanced photo-response, as observed here, has been achieved in the absence of any dopant elements.

  11. Manipulation of surface morphology of flower-like Ag/ZnO nanorods to enhance photocatalytic performance

    NASA Astrophysics Data System (ADS)

    U-thaipan, Kasira; Tedsree, Karaked

    2018-06-01

    The surface morphology of flower-like Ag/ZnO nanorod can be manipulated by adopting different synthetic routes and also loading different levels of Ag in order to alter their surface structures to achieve the maximum photocatalytic efficiency. In a single-step preparation method Ag/ZnO was prepared by heating directly a mixture of Zn2+ and Ag+ precursors in an aqueous NaOH-ethylene glycol solution, while in the two-step preparation method an intermediate of flower-shaped ZnO nanorod was obtained by a hydrothermal process before depositing Ag particles on the ZnO surfaces by chemical reduction. The structure, morphology and optical properties of the synthesized samples were characterized using TEM, SEM, XRD, DRS and PL techniques. The sample prepared by single-step method are characterized with agglomeration of Ag atoms as clusters on the surface of ZnO, whereas in the sample prepared by two-step method Ag atoms are found uniformly dispersed and deposited as discrete Ag nanoparticles on the surface of ZnO. A significant enhancement in the adsorption of visible light was evident for Ag/ZnO samples prepared by two-step method especially with low Ag content (0.5 mol%). The flower-like Ag/ZnO nanorod prepared with 0.5 mol% Ag by two-step process was found to be the most efficient photocatalyst for the degradation of phenol, which can decompose 90% of phenol within 120 min.

  12. Band Offset Measurements in Atomic-Layer-Deposited Al2O3/Zn0.8Al0.2O Heterojunction Studied by X-ray Photoelectron Spectroscopy.

    PubMed

    Yan, Baojun; Liu, Shulin; Heng, Yuekun; Yang, Yuzhen; Yu, Yang; Wen, Kaile

    2017-12-01

    Pure aluminum oxide (Al 2 O 3 ) and zinc aluminum oxide (Zn x Al 1-x O) thin films were deposited by atomic layer deposition (ALD). The microstructure and optical band gaps (E g ) of the Zn x Al 1-x O (0.2 ≤ x ≤ 1) films were studied by X-ray diffractometer and Tauc method. The band offsets and alignment of atomic-layer-deposited Al 2 O 3 /Zn 0.8 Al 0.2 O heterojunction were investigated in detail using charge-corrected X-ray photoelectron spectroscopy. In this work, different methodologies were adopted to recover the actual position of the core levels in insulator materials which were easily affected by differential charging phenomena. Valence band offset (ΔE V ) and conduction band offset (ΔE C ) for the interface of the Al 2 O 3 /Zn 0.8 Al 0.2 O heterojunction have been constructed. An accurate value of ΔE V  = 0.82 ± 0.12 eV was obtained from various combinations of core levels of heterojunction with varied Al 2 O 3 thickness. Given the experimental E g of 6.8 eV for Al 2 O 3 and 5.29 eV for Zn 0.8 Al 0.2 O, a type-I heterojunction with a ΔE C of 0.69 ± 0.12 eV was found. The precise determination of the band alignment of Al 2 O 3 /Zn 0.8 Al 0.2 O heterojunction is of particular importance for gaining insight to the design of various electronic devices based on such heterointerface.

  13. Effect of Silver Dopants on the ZnO Thin Films Prepared by a Radio Frequency Magnetron Co-Sputtering System

    PubMed Central

    Liu, Fang-Cheng; Li, Jyun-Yong; Chen, Tai-Hong; Chang, Chun-How; Lee, Ching-Ting; Hsiao, Wei-Hua; Liu, Day-Shan

    2017-01-01

    Ag-ZnO co-sputtered films at various atomic ratios of Ag (Ag/(Ag + Zn) at.%) were prepared by a radio frequency magnetron cosputtering system, using the co-sputtered targets of Ag and ZnO. The activation of the Ag acceptors (AgZn) and the formation of the Ag aggregations (Ag0) in the ZnO matrix were investigated from XRD, Raman scattering, and XPS measurements. The Ag-ZnO co-sputtered film behaving like a p-type conduction was achievable after annealing at 350 °C under air ambient for 1 h. PMID:28773159

  14. Ab-initio atomic level stress and role of d-orbitals in CuZr, CuZn and CuY

    NASA Astrophysics Data System (ADS)

    Ojha, Madhusudan; Nicholson, Don M.; Egami, Takeshi

    2015-03-01

    Atomic level stress offers a new tool to characterize materials within the local approximation to density functional theory (DFT). Ab-initio atomic level stresses in B2 structures of CuZr, CuZn and CuY are calculated and results are explained on the basis of d-orbital contributions to Density of States (DOS). The overlap of d-orbital DOS plays an important role in the relative magnitude of atomic level stresses in these structures. The trends in atomic level stresses that we observed in these simple B2 structures are also seen in complex structures such as liquids, glasses and solid solutions. The stresses are however modified by the different coordination and relaxed separation distances in these complex structures. We used the Locally Self-Consistent Multiple Scattering (LSMS) code and Vienna Ab-initio Simulation Package (VASP) for ab-initio calculations.

  15. [Determination of metal elements in Achyranthis bidentatae radix from various habitats].

    PubMed

    Tu, Wan-Qian; Zhang, Liu-Ji

    2011-12-01

    To establish an atomic absorption spectrometry method for determination of the contents of metal elements in Achyranthis Bidentatae Radix and analyze 21 batches of samples from different areas. Fe, Mn, Ca, Mg, K, Zn and Cu were detected by atomic absorption spectrometry with hydrogen flame detector, Pb, As and Cd were detected by graphite furnace atomic absorption, Hg was detected by cold atomic absorption. The heavy metal contents met the requirement of Chinese Pharmacopoeia. The contents of K, Mg, Cu and Mn in the samples of geo-authentic areas were higher,while the contents of Fe, Zn, Hg and Pb in the samples of non-authentic areas were higher. This method is sample, accurate, repeatable and could be used to evaluate the quality of Achyranthis Bidentatae Radix.

  16. Structure and electronic properties of grain boundaries in earth-abundant photovoltaic absorber Cu2ZnSnSe4.

    PubMed

    Li, Junwen; Mitzi, David B; Shenoy, Vivek B

    2011-11-22

    We have studied the atomic and electronic structure of Cu(2)ZnSnSe(4) and CuInSe(2) grain boundaries using first-principles calculations. We find that the constituent atoms at the grain boundary in Cu(2)ZnSnSe(4) create localized defect states that promote the recombination of photon-excited electron and hole carriers. In distinct contrast, significantly lower density of defect states is found at the grain boundaries in CuInSe(2), which is consistent with the experimental observation that CuInSe(2) solar cells exhibit high conversion efficiency without the need for deliberate passivation. Our investigations suggest that it is essential to effectively remove these defect states in order to improve the conversion efficiency of solar cells with Cu(2)ZnSnSe(4) as photovoltaic absorber materials. © 2011 American Chemical Society

  17. The Antibacterial Polyamide 6-ZnO Hierarchical Nanofibers Fabricated by Atomic Layer Deposition and Hydrothermal Growth

    NASA Astrophysics Data System (ADS)

    Wang, Zhengduo; Zhang, Li; Liu, Zhongwei; Sang, Lijun; Yang, Lizhen; Chen, Qiang

    2017-06-01

    In this paper, we report the combination of atomic layer deposition (ALD) with hydrothermal techniques to deposit ZnO on electrospun polyamide 6 (PA 6) nanofiber (NF) surface in the purpose of antibacterial application. The micro- and nanostructures of the hierarchical fibers are characterized by field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), and scanning transmission electron microscopy (STEM). We find that NFs can grow into "water lily"- and "caterpillar"-like shapes, which depend on the number of ALD cycles and the hydrothermal reaction period. It is believed that the thickness of ZnO seed layer by ALD process and the period in hydrothermal reaction have the same importance in crystalline growth and hierarchical fiber formation. The tests of antibacterial activity demonstrate that the ZnO/PA 6 core-shell composite fabricated by the combination of ALD with hydrothermal are markedly efficient in suppressing bacteria survivorship.

  18. Segregation formation, thermal and electronic properties of ternary cubic CdZnTe clusters: MD simulations and DFT calculations

    NASA Astrophysics Data System (ADS)

    Kurban, Mustafa; Erkoç, Şakir

    2017-04-01

    Surface and core formation, thermal and electronic properties of ternary cubic CdZnTe clusters are investigated by using classical molecular dynamics (MD) simulations and density functional theory (DFT) calculations. In this work, MD simulations of the CdZnTe clusters are performed by means of LAMMPS by using bond order potential (BOP). MD simulations are carried out at different temperatures to study the segregation phenomena of Cd, Zn and Te atoms, and deviation of clusters and heat capacity. After that, using optimized geometries obtained, excess charge on atoms, dipole moments, highest occupied molecular orbitals, lowest unoccupied molecular orbitals, HOMO-LUMO gaps (Eg) , total energies, spin density and the density of states (DOS) have been calculated with DFT. Simulation results such as heat capacity and segregation formation are compared with experimental bulk and theoretical results.

  19. Revealing hole trapping in zinc oxide nanoparticles by time-resolved X-ray spectroscopy

    DOE PAGES

    Penfold, Thomas J.; Szlachetko, Jakub; Santomauro, Fabio G.; ...

    2018-02-02

    Nanostructures of transition metal oxides (TMO), such as ZnO, have attracted considerable interest for solar-energy conversion and photocatalysis. For the latter, trapping of charge carriers has an essential role. The probing of electron trapping in the conduction band of room temperature photoexcited TMOs has recently become possible owing to the emergence of time-resolved element-sensitive methods, such as X-ray spectroscopy. However, because the valence band of TMOs is dominated by the oxygen 2p orbitals,holes have so far escaped observation. Herein we use a novel dispersive X-ray emission spectrometer combined with X-ray absorption spectroscopy to directly probe the charge carrier relaxation andmore » trapping pro-cesses in ZnO nanoparticles after above band-gap photoexcitation. Here, our results, supported by simulations, demonstrate that within our temporal resolution of 80 ps, photo-excited holes are trapped at singly charged oxygen vacancies, turning them into doubly charged vacancies, which causes an outward displacement by approximately 15% of the four surrounding Zn atoms away from the central vacancy. These traps recombine radiatively with the delocalised electrons of the conduction band yielding the commonly observed green luminescence. This identification of the hole traps and their evolution provides new insight for future developments of TMO-based nanodevices.« less

  20. Revealing hole trapping in zinc oxide nanoparticles by time-resolved X-ray spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penfold, Thomas J.; Szlachetko, Jakub; Santomauro, Fabio G.

    Nanostructures of transition metal oxides (TMO), such as ZnO, have attracted considerable interest for solar-energy conversion and photocatalysis. For the latter, trapping of charge carriers has an essential role. The probing of electron trapping in the conduction band of room temperature photoexcited TMOs has recently become possible owing to the emergence of time-resolved element-sensitive methods, such as X-ray spectroscopy. However, because the valence band of TMOs is dominated by the oxygen 2p orbitals,holes have so far escaped observation. Herein we use a novel dispersive X-ray emission spectrometer combined with X-ray absorption spectroscopy to directly probe the charge carrier relaxation andmore » trapping pro-cesses in ZnO nanoparticles after above band-gap photoexcitation. Here, our results, supported by simulations, demonstrate that within our temporal resolution of 80 ps, photo-excited holes are trapped at singly charged oxygen vacancies, turning them into doubly charged vacancies, which causes an outward displacement by approximately 15% of the four surrounding Zn atoms away from the central vacancy. These traps recombine radiatively with the delocalised electrons of the conduction band yielding the commonly observed green luminescence. This identification of the hole traps and their evolution provides new insight for future developments of TMO-based nanodevices.« less

  1. Synthesis, crystal structure, and luminescent properties of two coordination polymers based on 1,4-phenylenediacetic acid

    NASA Astrophysics Data System (ADS)

    Zhang, Meili; Ren, Yixia; Ma, Zhenzhen; Qiao, Lei

    2017-06-01

    Two coordination polymers, [Zn(pda)(bib)]n (1) and [Cd(pda)0.5(bib)Cl]n (2)]. (H2pda = 1,4-phenylenediacetic acid, bib = 1,2-bis(imidazol-1-ylmethyl)benzene), have been synthesized by using Zn(II)/Cd(II) salts with two flexible ligands pda and bib under hydrothermal conditions. Their structures have been characterized by elemental analysis, IR spectroscopy, single-crystal X-ray crystallography and powder X-ray diffraction (PXRD) analysis. Due to the coordination geometry around the metal ions and the diverse coordination modes of the flexible ligands, the obtained complex show diverse structures. In the structure of 1, a pair of bib ligands connect two Zn(II) atoms give rise a 22-membered ring, which is further extended by pda ligands in bidentate coordination mode leading a ring-containing 2D layer. In 2, bib ligands join [Cd2Cl2]2+ dimmers generate 1D polymeric ribbon, the pda ligands further extend such ribbon forming a 2D layer network containing rectangular windows, which discovers the effect of the central metal ions on the formation of metal-organic frameworks. In additional, luminescent properties of two complexes have also been studied, they could be potential fluorescence materials.

  2. Synthesis of Fe-based core@ZnO shell nanopowders by laser pyrolysis for biomedical applications

    NASA Astrophysics Data System (ADS)

    Gavrila-Florescu, Lavinia; Dumitrache, Florian; Balas, Mihaela; Fleaca, Claudiu Teodor; Scarisoreanu, Monica; Morjan, Iuliana P.; Dutu, Elena; Ilie, Alina; Banici, Ana-Maria; Locovei, Claudiu; Prodan, Gabriel

    2017-12-01

    Nano-sized Fe-based (metallic, carbidic and/or oxidic) core@ZnO shell particles have been successfully synthesized in one step by the laser-induced pyrolysis method in an oxygen-deficient environment. The specific precursors were separately introduced through a three concentric nozzles injector: Fe(CO)5 vapors carried by C2H4 sensitizer (central flow), Zn(C2H5)2 vapors carried and diluted with Ar (middle annular coflow) and Ar containing low amount of O2 (external flow). Keeping constant the ethylene-carried Fe(CO)5 and O2 flows, while diminishing the Zn(C2H5)2 flow, we observed an increase of the Fe/Zn ratio in the resulted nanopowders. Also, using the same metal precursor flows, a nonlinear correlation between O2 external flow and nanocomposite atomic oxygen content is evidenced, indicating a possible interference of supplementary oxidation after air exposure. However, the lowest oxygen content along with metallic zinc was found in the sample synthesized in the most oxygen-deficient environment. Transmission electron microscopy (TEM), high-resolution electron microscopy (HRTEM), selected area electron diffraction (SAED), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDS), X-ray photoelectron spectroscopy (XPS) and magnetic analyses were performed for a comprehensive characterization. The aqueous Fe-based@ZnO nanoparticles (NPs) suspensions were prepared using L-Dopa ( l-3,4-dihydroxy-phenylalanine) as stabilizing agent in physiologic media. Also, a biocompatibility in vitro study was performed for PBS (phosphate buffered saline)-dispersed L-Dopa-stabilized Fe-based@ZnO nanoparticles with the best core-shell structural features on both human normal lung fibroblasts and tumoral colorectal cells. Our results proved the ability of these newly synthesized nanostructures to target cancer cells in order to induce cytotoxicity and to exhibit biocompatibility on normal cells for maintaining the proper function of healthy tissue.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marimuthu, T.; Anandhan, N., E-mail: anandhan-kn@rediffmail.com; Mummoorthi, M.

    Zinc oxide (ZnO) and zinc oxide/eosin yellow (ZnO/EY) thin films were potentiostatically deposited onto fluorine doped tin oxide (FTO) glass substrate. Effect of eosin yellow dye on structural, morphological and optical properties was studied. X-ray diffraction patterns, micro Raman spectra and photoluminescence (PL) spectra reveal hexagonal wurtzite structure with less atomic defects in 101 plane orientation of the ZnO/EY film. Scanning electron microscopy (SEM) images show flower for ZnO and porous like structure for ZnO/EY thin film, respectively. DSSC was constructed and evaluated by measuring the current density verses voltage curve.

  4. Effects of multiple pathways on excited-state energy flow in self-assembled wheel-and-spoke light-harvesting architectures.

    PubMed

    Song, Hee-eun; Kirmaier, Christine; Schwartz, Jennifer K; Hindin, Eve; Yu, Lianhe; Bocian, David F; Lindsey, Jonathan S; Holten, Dewey

    2006-10-05

    Static and time-resolved optical measurements are reported for three cyclic hexameric porphyrin arrays and their self-assembled complexes with guest chromophores. The hexameric hosts contain zinc porphyrins and 0, 1, or 2 free base (Fb) porphyrins (denoted Zn(6), Zn(5)Fb, or Zn(4)Fb(2), respectively). The guest is a core-modified (O replacing one of the four N atoms) dipyridyl-substituted Fb porphyrin (DPFbO) that coordinates to zinc porphyrins of a host via pyridyl-zinc dative bonding. Each architecture is designed to have a gradient of excited-state energies for excitation funneling among the weakly coupled constituents of the host to the guest. Energy transfer to the lowest-energy chromophore(s) (coordinated zinc porphyrins or Fb porphyrins) within a hexameric host occurs primarily via a through-bond (TB) mechanism, is rapid ( approximately 40 ps), and is essentially quantitative (>or=98%). Energy transfer from a pyridyl-coordinated zinc porphyrin of the host to the guest in the Zn(6)*DPFbO complex has a yield of approximately 75%, a rate constant of approximately (0.7 ns)(-1), and significant Förster through-space (TS) character. In the case of Zn(5)Fb*DPFbO, which has an additional TS route via the Fb porphyrin with a rate constant of approximately (20 ns)(-1), the yield of energy transfer to the guest is somewhat lower ( approximately 50%) than that for Zn(6)*DPFbO. Complex Zn(4)Fb(2)*DPFbO has an identical TS pathway via the Fb porphyrin plus an additional TS pathway involving the second Fb porphyrin (closer to the guest) with a rate constant of approximately (0.5 ns)(-1). This complex exhibits an energy-transfer yield to the guest that is significantly enhanced over that for Zn(5)Fb*DPFbO and comparable to that for Zn(6)*DPFbO. Collectively, the results for the various arrays suggest designs for similar host-guest complexes that are expected to exhibit much more efficient light harvesting and excitation trapping at the central guest chromophore.

  5. Mechanism of γ-irradiation induced phase transformations in nanocrystalline Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jagadeesha Angadi, V.; Anupama, A.V.; Choudhary, Harish K.

    The structural, infrared absorption and magnetic property transformations in nanocrystalline Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} samples irradiated with different doses (0, 15, 25 and 50 kGy) of γ-irradiation were investigated in this work and a mechanism of phase transformation/decomposition is provided based on the metastable nature of the Mn-atoms in the spinel lattice. The nano-powder sample was prepared by solution combustion route and the pellets of the sample were exposed to γ-radiation. Up to a dose of 25 kGy of γ-radiation, the sample retained the single phase cubic spinel (Fd-3m) structure, but the disorder in the sample increased. On irradiatingmore » the sample with 50 kGy γ-radiation, the spinel phase decomposed into new stable phases such as α-Fe{sub 2}O{sub 3} and ZnFe{sub 2}O{sub 4} phases along with amorphous MnO phase, leading to a change in the surface morphology of the sample. Along with the structural transformations the magnetic properties deteriorated due to breakage of the ferrimagnetic order with higher doses of γ-irradiation. Our results are important for the understanding of the stability, durability and performance of the Mn-Zn ferrite based devices used in space applications. - Graphical abstract: The nanocrystalline Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} ceramic sample transforms to crystalline α-Fe{sub 2}O{sub 3} and ZnFe{sub 2}O{sub 4} phases (and amorphous MnO phase) at a γ-irradiation dose of 50 kGy, as MnO goes out of the spinel lattice. The high energy γ-irradiation causes structural damage to the nanomaterials leading to change in morphology of the sample as seen in the SEM images. - Highlights: • Mn atoms are more unstable in the Mn-Zn ferrite spinel lattice than Zn-atoms. • Displacement of Mn atoms by γ-radiation from the lattice renders phase transformation. • In Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}, Mn-ferrite cell transforms to crystalline α-Fe{sub 2}O{sub 3} and amorphous MnO. • The stable ZnFe{sub 2}O{sub 4} phase retains its structure even after 50 KGy γ-irradiation. • The γ-irradiation degrades the magnetic properties of Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} ceramics.« less

  6. Band alignment of atomic layer deposited MgO/Zn0.8Al0.2O heterointerface determined by charge corrected X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Yan, Baojun; Liu, Shulin; Yang, Yuzhen; Heng, Yuekun

    2016-05-01

    Pure magnesium (MgO) and zinc oxide doped with aluminum oxide (Zn0.8Al0.2O) were prepared via atomic layer deposition. We have studied the structure and band gap of bulk Zn0.8Al0.2O material by X-ray diffractometer (XRD) and Tauc method, and the band offsets and alignment of atomic layer deposited MgO/Zn0.8Al0.2O heterointerface were investigated systematically using X-ray photoelectron spectroscopy (XPS) in this study. Different methodologies, such as neutralizing electron gun, the use of C 1s peak recalibration and zero charging method, were applied to recover the actual position of the core levels in insulator materials which were easily influenced by differential charging phenomena. Schematic band alignment diagram, valence band offset (ΔEV) and conduction band offset (ΔEC) for the interface of the MgO/Zn0.8Al0.2O heterostructure have been constructed. An accurate value of ΔEV = 0.72 ± 0.11 eV was obtained from various combinations of core levels of heterojunction with varied MgO thickness. Given the experimental band gaps of 7.83 eV for MgO and 5.29 eV for Zn0.8Al0.2O, a type-II heterojunction with a ΔEC of 3.26 ± 0.11 eV was found. Band offsets and alignment studies of these heterojunctions are important for gaining deep consideration to the design of various optoelectronic devices based on such heterointerface.

  7. Polymorphic one-dimensional (N2H4)2ZnTe: soluble precursors for the formation of hexagonal or cubic zinc telluride.

    PubMed

    Mitzi, David B

    2005-10-03

    Two hydrazine zinc(II) telluride polymorphs, (N2H4)2ZnTe, have been isolated, using ambient-temperature solution-based techniques, and the crystal structures determined: alpha-(N2H4)2ZnTe (1) [P21, a = 7.2157(4) Angstroms, b = 11.5439(6) Angstroms, c = 7.3909(4) Angstroms, beta = 101.296(1) degrees, Z = 4] and beta-(N2H4)2ZnTe (2) [Pn, a = 8.1301(5) Angstroms, b = 6.9580(5) Angstroms, c = 10.7380(7) Angstroms, beta = 91.703(1) degrees, Z = 4]. The zinc atoms in 1 and 2 are tetrahedrally bonded to two terminal hydrazine molecules and two bridging tellurium atoms, leading to the formation of extended one-dimensional (1-D) zinc telluride chains, with different chain conformations and packings distinguishing the two polymorphs. Thermal decomposition of (N2H4)2ZnTe first yields crystalline wurtzite (hexagonal) ZnTe at temperatures as low as 200 degrees C, followed by the more stable zinc blende (cubic) form at temperatures above 350 degrees C. The 1-D polymorphs are soluble in hydrazine and can be used as convenient precursors for the low-temperature solution processing of p-type ZnTe semiconducting films.

  8. Atomic Layer Deposition of Nickel on ZnO Nanowire Arrays for High-Performance Supercapacitors.

    PubMed

    Ren, Qing-Hua; Zhang, Yan; Lu, Hong-Liang; Wang, Yong-Ping; Liu, Wen-Jun; Ji, Xin-Ming; Devi, Anjana; Jiang, An-Quan; Zhang, David Wei

    2018-01-10

    A novel hybrid core-shell structure of ZnO nanowires (NWs)/Ni as a pseudocapacitor electrode was successfully fabricated by atomic layer deposition of a nickel shell, and its capacitive performance was systemically investigated. Transmission electron microscopy and X-ray photoelectron spectroscopy results indicated that the NiO was formed at the interface between ZnO and Ni where the Ni was oxidized by ZnO during the ALD of the Ni layer. Electrochemical measurement results revealed that the Ti/ZnO NWs/Ni (1500 cycles) electrode with a 30 nm thick Ni-NiO shell layer had the best supercapacitor properties including ultrahigh specific capacitance (∼2440 F g -1 ), good rate capability (80.5%) under high current charge-discharge conditions, and a relatively better cycling stability (86.7% of the initial value remained after 750 cycles at 10 A g -1 ). These attractive capacitive behaviors are mainly attributed to the unique core-shell structure and the combined effect of ZnO NW arrays as short charge transfer pathways for ion diffusion and electron transfer as well as conductive Ni serving as channel for the fast electron transport to Ti substrate. This high-performance Ti/ZnO NWs/Ni hybrid structure is expected to be one of a promising electrodes for high-performance supercapacitor applications.

  9. Self-organized semiconductor nano-network on graphene

    NASA Astrophysics Data System (ADS)

    Son, Dabin; Kim, Sang Jin; Lee, Seungmin; Bae, Sukang; Kim, Tae-Wook; Kang, Jae-Wook; Lee, Sang Hyun

    2017-04-01

    A network structure consisting of nanomaterials with a stable structural support and charge path on a large area is desirable for various electronic and optoelectronic devices. Generally, network structures have been fabricated via two main strategies: (1) assembly of pre-grown nanostructures onto a desired substrate and (2) direct growth of nanomaterials onto a desired substrate. In this study, we utilized the surface defects of graphene to form a nano-network of ZnO via atomic layer deposition (ALD). The surface of pure and structurally perfect graphene is chemically inert. However, various types of point and line defects, including vacancies/adatoms, grain boundaries, and ripples in graphene are generated by growth, chemical or physical treatments. The defective sites enhance the chemical reactivity with foreign atoms. ZnO nanoparticles formed by ALD were predominantly deposited at the line defects and agglomerated with increasing ALD cycles. Due to the formation of the ZnO nano-network, the photocurrent between two electrodes was clearly changed under UV irradiation as a result of the charge transport between ZnO and graphene. The line patterned ZnO/graphene (ZnO/G) nano-network devices exhibit sensitivities greater than ten times those of non-patterned structures. We also confirmed the superior operation of a fabricated flexible photodetector based on the line patterned ZnO/G nano-network.

  10. Plasma-enhanced atomic layer deposition of highly transparent zinc oxy-sulfide thin films

    NASA Astrophysics Data System (ADS)

    Bugot, C.; Schneider, N.; Lincot, D.; Donsanti, F.

    2018-05-01

    The potential of Plasma Enhanced Atomic Layer Deposition (PEALD) for the synthesis of zinc oxy-sulfide Zn(O,S) thin films was explored for the first time, using a supercycle strategy and DEZ, Ar/O2 plasma and H2S as precursors. The growth and the properties of the material were studied by varying the pulse ratio on the full range of composition and the process temperature from Tdep = 120 °C to 220 °C. PEALD-Zn(O,S) films could be grown from pure ZnO to pure ZnS compositions by varying the H2S/(O2 plasma + H2S) pulse ratio. Three distinct growth modes were identified depending on the nature of exchange mechanisms at the film surface during the growth. Films globally have an amorphous structure, except for the extremely sulfur-rich or sulfur-poor ones. High transmission values (up to 85% for Zn(O,S) for 500 < λ < 2500 nm) and optical band gaps (3.3-3.8 eV) have been obtained. The PEALD-Zn(O,S) process and the thin film properties were compared with ALD-Zn(O,S) to highlight the specificities, disadvantages and benefits of plasma enhancement for the synthesis of multi-element materials.

  11. Analysis of the Role of Peripheral Ligands Coordinated to Zn(II) in Enhancing the Energy Barrier in Luminescent Linear Trinuclear Zn-Dy-Zn Single-Molecule Magnets.

    PubMed

    Costes, Jean Pierre; Titos-Padilla, Silvia; Oyarzabal, Itziar; Gupta, Tulika; Duhayon, Carine; Rajaraman, Gopalan; Colacio, Enrique

    2015-10-26

    Three new Dy complexes have been prepared according to a complex-as-ligand strategy. Structural determinations indicate that the central Dy ion is surrounded by two LZn units (L(2-) is the di-deprotonated form of the N2 O2 compartmental N,N'-2,2-dimethylpropylenedi(3-methoxysalicylideneiminato) Schiff base. The Dy ions are nonacoordinate to eight oxygen atoms from the two L ligands and to a water molecule. The Zn ions are pentacoordinate in all cases, linked to the N2 O2 atoms from L, and the apical position of the Zn coordination sphere is occupied by a water molecule or bromide or chloride ions. These resulting complexes, formulated (LZnX)-Dy-(LZnX), are tricationic with X=H2 O and monocationic with X=Br or Cl. They behave as field-free single-molecule magnets (SMMs) with effective energy barriers (Ueff ) for the reversal of the magnetization of 96.9(6) K with τ0 =2.4×10(-7)  s, 146.8(5) K with τ0 =9.2×10(-8)  s, and 146.1(10) K with τ0 =9.9×10(-8)  s for compounds with ZnOH2 , ZnBr, and ZnCl motifs, respectively. The Cole-Cole plots exhibit semicircular shapes with α parameters in the range of 0.19 to 0.29, which suggests multiple relaxation processes. Under a dc applied magnetic field of 1000 Oe, the quantum tunneling of magnetization (QTM) is partly or fully suppressed and the energy barriers increase to Ueff =128.6(5) K and τ0 =1.8×10(-8)  s for 1, Ueff =214.7 K and τ0 =9.8×10(-9)  s for 2, and Ueff =202.4 K and τ0 =1.5×10(-8)  s for 3. The two pairs of largely negatively charged phenoxido oxygen atoms with short DyO bonds are positioned at opposite sides of the Dy(3+) ion, which thus creates a strong crystal field that stabilizes the axial MJ =±15/2 doublet as the ground Kramers doublet. Although the compound with the ZnOH2 motifs possesses the larger negative charges on the phenolate oxygen atoms, as confirmed by using DFT calculations, it exhibits the larger distortions of the DyO9 coordination polyhedron from ideal geometries and a smaller Ueff value. Ab initio calculations support the easy-axis anisotropy of the ground Kramers doublet and predict zero-field SMM behavior through Orbach and TA-QTM relaxations via the first excited Kramers doublet, which leads to large energy barriers. In accordance with the experimental results, ab initio calculations have also shown that, compared with water, the peripheral halide ligands coordinated to the Zn(2+) ions increase the barrier height when the distortions of the DyO9 have a negative effect. All the complexes exhibit metal-centered luminescence after excitation into the UV π-π* absorption band of ligand L(2-) at λ=335 nm, which results in the appearance of the characteristic Dy(III) ((4) F9/2 →(6) HJ/2 ; J=15/2, 13/2) emission bands in the visible region. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Effect of substrates and thickness on optical properties in atomic layer deposition grown ZnO thin films

    NASA Astrophysics Data System (ADS)

    Pal, Dipayan; Singhal, Jaya; Mathur, Aakash; Singh, Ajaib; Dutta, Surjendu; Zollner, Stefan; Chattopadhyay, Sudeshna

    2017-11-01

    Atomic Layer Deposition technique was used to grow high quality, very low roughness, crystalline, Zinc Oxide (ZnO) thin films on silicon (Si) and fused quartz (SiO2) substrates to study the optical properties. Spectroscopic ellipsometry results of ZnO/Si system, staggered type-II quantum well, demonstrate that there is a significant drop in the magnitudes of both the real and imaginary parts of complex dielectric constants and in near-band gap absorption along with a blue shift of the absorption edge with decreasing film thickness at and below ∼20 nm. Conversely, UV-vis absorption spectroscopy of ZnO/SiO2, thin type-I quantum well, consisting of a narrower-band gap semiconductor grown on a wider-band gap (insulator) substrate, shows the similar thickness dependent blue-shift of the absorption edge but with an increase in the magnitude of near-band gap absorption with decreasing film thickness. Thickness dependent blue shift, energy vs. 1/d2, in two different systems, ZnO/Si and ZnO/SiO2, show a difference in their slopes. The observed phenomena can be consistently explained by the corresponding exciton (or carrier/s) deconfinement and confinement effects at the ZnO/Si and ZnO/SiO2 interface respectively, where Tanguy-Elliott amplitude pre-factor plays the key role through the electron-hole overlap factor at the interface.

  13. Inducing and manipulating magnetization in 2D zinc–oxide by strain and external voltage

    NASA Astrophysics Data System (ADS)

    Taivansaikhan, P.; Tsevelmaa, T.; Rhim, S. H.; Hong, S. C.; Odkhuu, D.

    2018-04-01

    Two-dimensional (2D) structures that exhibit intriguing magnetic phenomena such as perpendicular magnetic anisotropy and its switchable feature are of great interests in spintronics research. Herein, the density functional theory studies reveal the critical impacts of strain and external gating on vacancy-induced magnetism and its spin direction in a graphene-like single layer of zinc oxide (ZnO). In contrast to the pristine and defective ZnO with an O-vacancy, the presence of a Zn-vacancy induces significant magnetic moments to its first neighboring O and Zn atoms due to the charge deficit. We further predict that the direction of magnetization easy axis reverses from an in-plane to perpendicular orientation under a practically achievable biaxial compressive strain of only ~1–2% or applying an electric field by means of the charge density modulation. This magnetization reversal is mainly driven by the strain- and electric-field-induced changes in the spin–orbit coupled d states of the first-neighbor Zn atom to a Zn-vacancy. These findings open interesting prospects for exploiting strain and electric field engineering to manipulate magnetism and magnetization orientation of 2D materials.

  14. Nonequilibrium BN-ZnO: Optical properties and excitonic effects from first principles

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Schleife, André

    2018-03-01

    The nonequilibrium boron nitride (BN) phase of zinc oxide (ZnO) has been reported for thin films and nanostructures, however, its properties are not well understood due to a persistent controversy that prevents reconciling experimental and first-principles results for its atomic coordinates. We use first-principles theoretical spectroscopy to accurately compute electronic and optical properties, including single-quasiparticle and excitonic effects: Band structures and densities of states are computed using density functional theory, hybrid functionals, and the G W approximation. Accurate optical absorption spectra and exciton binding energies are computed by solving the Bethe-Salpeter equation for the optical polarization function. Using this data we show that the band-gap difference between BN-ZnO and wurtzite (WZ) ZnO agrees very well with experiment when the theoretical lattice geometry is used, but significantly disagrees for the experimental atomic coordinates. We also show that the optical anisotropy of BN-ZnO differs significantly from that of WZ-ZnO, allowing us to optically distinguish both polymorphs. By using the transfer-matrix method to solve Maxwell's equations for thin films composed of both polymorphs, we illustrate that this opens up a promising route for tuning optical properties.

  15. Low-Temperature-Processed Zinc Oxide Thin-Film Transistors Fabricated by Plasma-Assisted Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Kawamura, Yumi; Tani, Mai; Hattori, Nozomu; Miyatake, Naomasa; Horita, Masahiro; Ishikawa, Yasuaki; Uraoka, Yukiharu

    2012-02-01

    We investigated zinc oxide (ZnO) thin films prepared by plasma assisted atomic layer deposition (PA-ALD), and thin-film transistors (TFTs) with the ALD ZnO channel layer for application to next-generation displays. We deposited the ZnO channel layer by PA-ALD at 100 or 300 °C, and fabricated TFTs. The transfer characteristic of the 300 °C-deposited ZnO TFT exhibited high mobility (5.7 cm2 V-1 s-1), although the threshold voltage largely shifted toward the negative (-16 V). Furthermore, we deposited Al2O3 thin film as a gate insulator by PA-ALD at 100 °C for the low-temperature TFT fabrication process. In the case of ZnO TFTs with the Al2O3 gate insulator, the shift of the threshold voltage improved (-0.1 V). This improvement of the negative shift seems to be due to the negative charges of the Al2O3 film deposited by PA-ALD. On the basis of the experimental results, we confirmed that the threshold voltage of ZnO TFTs is controlled by PA-ALD for the deposition of the gate insulator.

  16. Temperature dependent dielectric properties of Au/ZnO/n-Si heterojuntion

    NASA Astrophysics Data System (ADS)

    Kocyigit, Adem; Orak, İkram; Turut, Abdulmecit

    2018-03-01

    Owing to importance of ZnO in electronics, Au/ZnO/n-type Si device was fabricated to investigate its dielectric properties by aid of capacitance-conductance-voltage measurements. While the ZnO thin film layer on the n-type Si was formed by atomic layer deposition (ALD) technique, the rectifying and ohmic contacts were obtained by thermal evaporation. The surface morphology of ZnO thin film was characterized using atomic force microscopy (AFM) to show its compatibility as interfacial layer in the Au/ZnO/n-type Si device. The dielectric properties of the device were examined in terms of dielectric parameters such as dielectric constant (ɛ‧), dielectric loss (ɛ″), loss tangent (tan δ), the real and imaginary parts of electric modulus (M ‧ and M ″) and ac electrical conductivity (σ) depending on applied voltages (from -1 to 2 V) and temperatures (from 140 K to 360 K) ranges. The results have revealed that interfacial polarization and charge carriers are the important parameters to affect the dielectric properties of the device with changing temperature. The device can be used at wide range temperatures for diode applications.

  17. Synthesis and characterization of novel 4-Tetra-4-Tolylsulfonyl ZnPc thin films for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Khalil, Salah; Tazarki, Helmi; Souli, Mehdi; Guasch, Cathy; Jamoussi, Bassem; Kamoun, Najoua

    2017-11-01

    Novel 4-Tetra-4-Tolylsulfonyl:zinc phthalocyanine and simple zinc phthalocyanine were synthesized. Our materials were grown on glass substrates by spin coating technique. Thin films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electronic micrograph (SEM), atomic force microscopy (AFM), spectrophotometer and Hall effect measurement. X-ray spectra reveal that 4-Tetra-4-Tolylsulfonyl:zinc phthalocyanine (4T4TS:ZnPc) and zinc phthalocyanine (ZnPc) thin films have a monoclinic crystalline structure in β phase. The surface properties and chemical composition were detailed using XPS measurement. SEM were used to investigate the surface morphology for 4T4TS:ZnPc and ZnPc thin films. Atomic force microscopy images have shown a decrease in surface roughness after substitution. Optical properties were investigated by measuring transmission and reflection spectra. Electrical properties were studied and the different electrical parameters was measured and compared on glass, silicon and tin dioxide substrates by Hall Effect technique. All obtained results indicate an improvement in physical properties of 4T4TS:ZnPc which allows used it in optoelectronic applications.

  18. Synthesis optimisation and characterisation of the organic-inorganic layered materials ZnS(m-xylylenediamine){sub 1/2} and ZnS(p-xylylenediamine){sub 1/2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luberda-Durnaś, K.; Guillén, A. González; Łasocha, W., E-mail: lasocha@chemia.uj.edu.pl

    2016-06-15

    Hybrid organic-inorganic layered materials of the type ZnS(amine){sub 1/2}, where amine=m-xylylenediamine (MXDA) or p-xylylenediamine (PXDA), were synthesised using a simple solvothermal method. Since the samples crystallised in the form of very fine powder, X-ray powder diffraction techniques were used for structural characterisation. The crystal structure studies, involving direct methods, show that both compounds crystallised in the orthorhombic crystal system, but in different space groups: ZnS(MXDA){sub 1/2} in non-centrosymmetric Ccm2{sub 1}, ZnS(PXDA){sub 1/2} in centrosymmetric Pcab. The obtained materials are built according to similar orders: semiconducting monolayers with the formula ZnS, parallel to the (010) plane, are separated by diamines. Themore » organic and inorganic fragments are connected by covalent bonds between metal atoms of the layers and nitrogen atoms of the amino groups. The optical properties of the hybrid materials differ from those of their bulk counterpart. In both compounds a blue-shift of about 0.8 or 0.9 eV was observed with reference to the bulk phase of ZnS. - Highlights: • New hybrid compounds: ZnS(MXDA){sub 1/2} and ZnS(PXDA){sub 1/2} were obtained. • Hybrids were studied using XRD, TG/DSC, XRK, SEM, UV–vis spectroscopy. • Structures of both materials were solved by powder diffraction methods.« less

  19. Growth process optimization of ZnO thin film using atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Weng, Binbin; Wang, Jingyu; Larson, Preston; Liu, Yingtao

    2016-12-01

    The work reports experimental studies of ZnO thin films grown on Si(100) wafers using a customized thermal atomic layer deposition. The impact of growth parameters including H2O/DiethylZinc (DEZn) dose ratio, background pressure, and temperature are investigated. The imaging results of scanning electron microscopy and atomic force microscopy reveal that the dose ratio is critical to the surface morphology. To achieve high uniformity, the H2O dose amount needs to be at least twice that of DEZn per each cycle. If the background pressure drops below 400 mTorr, a large amount of nanoflower-like ZnO grains would emerge and increase surface roughness significantly. In addition, the growth temperature range between 200 °C and 250 °C is found to be the optimal growth window. And the crystal structures and orientations are also strongly correlated to the temperature as proved by electron back-scattering diffraction and x-ray diffraction results.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Joongoo; Park, Ji -Sang; Stradins, Pauls

    In this paper, nonequilibrium growth of Si-III-V or Si-II-VI alloys is a promising approach to obtaining optically more active Si-based materials. We propose a new class of nonisovalent Si 2AlP (or Si 2ZnS) alloys in which the Al-P (or Zn-S) atomic chains are as densely packed as possible in the host Si matrix. As a hybrid of the lattice-matched parent phases, Si2AlP (or Si2ZnS) provides an ideal material system with tunable local chemical orders around Si atoms within the same composition and structural motif. Here, using first-principles hybrid functional calculations, we discuss how the local chemical orders affect the electronicmore » and optical properties of the nonisovalent alloys.« less

  1. Spray pyrolysis of ZnO-TFTs utilizing a perfume atomizer

    NASA Astrophysics Data System (ADS)

    Ortel, Marlis; Trostyanskaya, Yulia Sergeeva; Wagner, Veit

    2013-08-01

    Successful deposition of ZnO layers from non-toxic solvent by utilizing a perfume atomizer is demonstrated. The adsorption edge of the zinc oxide films was found to be 3.22 eV which is in good agreement with literature. In addition it is found that the homogeneity of the films increases in side geometry with increasing distance to the perfume atomizer due to the droplet size distribution along the x-axis of the aerosol. The films were used to fabricate ZnO-TFTs. A dominating influence of the grain sizes can be excluded by correlating atomic force microscopy (AFM) images to the electrical properties of the transistors deposited in different geometries but a strong influence of the transistor performance on the growth rate was found. The increase in performance with decreasing growth rate was attributed to a longer reaction time decreasing the impurity level in the films. The linear mobility, the on-set voltage and the on-off current ratio are found to be 5 cm2 V-1 s-1, 0 V and 106 for small growth rates, respectively. Hence the transistors show high mobility and an excellent switching behavior.

  2. Revealing the Bonding Environment of Zn in ALD Zn(O,S) Buffer Layers through X-ray Absorption Spectroscopy

    PubMed Central

    2017-01-01

    Zn(O,S) buffer layer electronic configuration is determined by its composition and thickness, tunable through atomic layer deposition. The Zn K and L-edges in the X-ray absorption near edge structure verify ionicity and covalency changes with S content. A high intensity shoulder in the Zn K-edge indicates strong Zn 4s hybridized states and a preferred c-axis orientation. 2–3 nm thick films with low S content show a subdued shoulder showing less contribution from Zn 4s hybridization. A lower energy shift with film thickness suggests a decreasing bandgap. Further, ZnSO4 forms at substrate interfaces, which may be detrimental for device performance. PMID:29083141

  3. Zn nanoparticle formation in FIB irradiated single crystal ZnO

    NASA Astrophysics Data System (ADS)

    Pea, M.; Barucca, G.; Notargiacomo, A.; Di Gaspare, L.; Mussi, V.

    2018-03-01

    We report on the formation of Zn nanoparticles induced by Ga+ focused ion beam on single crystal ZnO. The irradiated materials have been studied as a function of the ion dose by means of atomic force microscopy, scanning electron microscopy, Raman spectroscopy and transmission electron microscopy, evidencing the presence of Zn nanoparticles with size of the order of 5-30 nm. The nanoparticles are found to be embedded in a shallow amorphous ZnO matrix few tens of nanometers thick. Results reveal that ion beam induced Zn clustering occurs producing crystalline particles with the same hexagonal lattice and orientation of the substrate, and could explain the alteration of optical and electrical properties found for FIB fabricated and processed ZnO based devices.

  4. Hydrothermal Synthesis of Nanoclusters of ZnS Comprised on Nanowires

    PubMed Central

    Ibupoto, Zafar Hussain; Khun, Kimleang; Liu, Xianjie; Willander, Magnus

    2013-01-01

    Cetyltrimethyl ammonium bromide cationic (CTAB) surfactant was used as template for the synthesis of nanoclusters of ZnS composed of nanowires, by hydrothermal method. The structural and morphological studies were performed by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) techniques. The synthesized ZnS nanoclusters are composed of nanowires and high yield on the substrate was observed. The ZnS nanocrystalline consists of hexagonal phase and polycrystalline in nature. The chemical composition of ZnS nanoclusters composed of nanowires was studied by X-ray photo electron microscopy (XPS). This investigation has shown that the ZnS nanoclusters are composed of Zn and S atoms. PMID:28348350

  5. Hydrothermal Synthesis of Nanoclusters of ZnS Comprised on Nanowires.

    PubMed

    Ibupoto, Zafar Hussain; Khun, Kimleang; Liu, Xianjie; Willander, Magnus

    2013-09-09

    Cetyltrimethyl ammonium bromide cationic (CTAB) surfactant was used as template for the synthesis of nanoclusters of ZnS composed of nanowires, by hydrothermal method. The structural and morphological studies were performed by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) techniques. The synthesized ZnS nanoclusters are composed of nanowires and high yield on the substrate was observed. The ZnS nanocrystalline consists of hexagonal phase and polycrystalline in nature. The chemical composition of ZnS nanoclusters composed of nanowires was studied by X-ray photo electron microscopy (XPS). This investigation has shown that the ZnS nanoclusters are composed of Zn and S atoms.

  6. Tululite, Ca14(Fe3+,Al)(Al,Zn,Fe3+,Si,P,Mn,Mg)15O36: a new Ca zincate-aluminate from combustion metamorphic marbles, central Jordan

    NASA Astrophysics Data System (ADS)

    Khoury, Hani N.; Sokol, Ella V.; Kokh, Svetlana N.; Seryotkin, Yurii V.; Nigmatulina, Elena N.; Goryainov, Sergei V.; Belogub, Elena V.; Clark, Ian D.

    2016-02-01

    Tululite (Ca14(Fe3+,Al)(Al,Zn,Fe3+,Si,P,Mn,Mg)15O36 (the hypothetical end-member formula Ca14{Fe3+O6}[SiO4][Zn5Al9]O26) (IMA2014-065) is a new natural Ca zincate-aluminate, identified in medium-temperature (800-850 °C) combustion metamorphic (CM) spurrite-fluorellestadite marbles from central Jordan. The type locality (Tulul Al Hammam area) is situated in the northern part of the Siwaqa complex, the largest area of the "Mottled Zone" Formation in the Dead Sea region. The marbles originated from bitumen-rich chalky marine sediments of the Maastrichtian-Paleogene Muwaqqar Chalk Marl Formation, which have low clay content (and, consequently, low Al) and high Zn, Cd, and U enrichments. The bulk CM rocks derived from the low-Al protolith have unusually high (Zn + Cd)/Al ratios ( 0.2) and, as a result, a mineralogy with negligibly small percentages of Ca aluminates having low Ca:Al molar ratios (minerals of mayenite supergroup, Ca:Al = 6:7) common to most of calcareous CM rocks in the Mottled Zone. Instead, the mineral assemblage of the Zn-rich marbles contains tululite, with high Ca:Al = 2.55 molar ratios and Zn substituting for a large portion of Al (Zn:Al = 1.1). Tululite occurs in thin clusters as irregular grains with indented outlines (20-100 μm in size), having typical open-work textures associated with rock-forming calcite, fluorellestadite, spurrite, and accessory Zn-rich periclase, lime-monteponite solid solutions, calcium uranates, and zincite. Marbles also bear brownmillerite, dorrite, fluormayenite, high-fluorine Ca aluminate, and lakargiite. Secondary phases are brucite, gel-like calcium silicate hydrates and calcium silicate aluminate hydrates, including Zn- and U-bearing and Cd-rich compounds, Si-bearing hydrated compounds after calcium uranates, and basic Cd chlorides. The empirical formula of the holotype tululite (a mean of 32 analyses) is (Ca13.29Cd0.75)Σ14.04(Al5.46Zn5.20Fe3+ 2.23Si0.95Mn3+ 1.01Mg0.78P0.41)Σ16.04O36. Tululite is cubic, space group F23; a = 14.9346(4) Å; V = 3331.07(15) Å3, Z = 4. The strongest lines of the X-ray powder-diffraction pattern [ d, Å - ( I obs )] are: 2.874(57), 2.640 (100), 2.524(42), 2.278(41), 1.760(54), 1.725(25), 1.524(33), 1.500(33). The crystal structure was solved from single-crystal X-ray diffraction data and refined to wR2 = 0.0672 on the basis of 913 unique reflections with I 0 > 2σ( I). Tululite belongs to a group of compounds with the general formula Ca14 MT 15O35+ x (0 ≤ x ≤ 1), and is a new structure type. The tetrahedral framework of tululite structure is formed by T7O13 secondary building units (SBU), which consist of four corner-linked tetrahedra sharing a common oxygen atom and three tetrahedra sharing two O atoms with the neighbor SBU. Ca2+ cations occupy three positions; two of them also contain a minor amount of Cd2+. The Ca sites surround an island (Fe3+,Al)O6 octahedron and a (Si,P)O4 tetrahedron in the centers of framework cages at the junction of eight SBUs. The (Fe3+,Al)O6 octahedron is coordinated by fourteen Ca positions into a 6-capped cube, whereas the (Si,P)O4 tetrahedron is coordinated by six Ca positions into a regular octahedron. The structural formula of tululite is Ca14{Fe3+O6}M1[(Si,P)O4]T1[(Al,Zn)7O13]2 T2-T4. The mineral is yellow with greenish tint, transparent with vitreous luster, non-fluorescent under ultraviolet light, and showing neither parting nor cleavage; Mohs hardness is 6.5. The density calculated on the basis of the empirical formula is 3.826 g/cm3. Its Raman spectrum shows strong bands at 522, 550 and 636 cm-1 and weak bands at 199, 260, 295, 456, and 754 cm-1.

  7. X-ray photoemission studies of Zn doped Cu 1- xTl xBa 2Ca 2Cu 3- yZn yO 10- δ ( y = 0, 2.65) superconductors

    NASA Astrophysics Data System (ADS)

    Khan, Nawazish A.; Mumtaz, M.; Ahadian, M. M.; Iraji-zad, Azam

    2007-03-01

    The X-ray photoemission (XPS) measurements of Cu 1- xTl xBa 2Ca 2Cu 3- yZn yO 10- δ ( y = 0, 2.65) superconductors have been performed and compared. These studies revealed that the charge state of thallium in the Cu 0.5Tl 0.5Ba 2O 4- δ charge reservoir layer in Zn doped samples is Tl 1+, while it is a mix of Tl 1+ and Tl 2+ in Zn free samples. The binding energy of Ba atoms in the Zn doped samples is shifted to higher energy, which when considered along with the presence of Tl 1+ suggested that it more efficiently directed the carriers to ZnO 2 and CuO 2 planes. The evidence of improved inter-plane coupling witnessed in X-ray diffraction is also confirmed by XPS measurements of Ca atoms in the Zn doped samples. The shift of the valance band spectrum in these Zn doped samples to higher energies suggested that the electrons at the top edge of the valance band were tied to a higher binding energy (relative to samples without Zn doping), which most likely resulted in a much lower energy state of the system in the superconducting state. The stronger superconducting state arising out of these effects is witnessed in the form of increased Tc( R = 0), Jc and the extent of diamagnetism in the final compound.

  8. Electronic structure of stoichiometric and reduced ZnO from periodic relativistic all electron hybrid density functional calculations using numeric atom-centered orbitals.

    PubMed

    Viñes, Francesc; Illas, Francesc

    2017-03-30

    The atomic and electronic structure of stoichiometric and reduced ZnO wurtzite has been studied using a periodic relativistic all electron hybrid density functional (PBE0) approach and numeric atom-centered orbital basis set with quality equivalent to aug-cc-pVDZ. To assess the importance of relativistic effects, calculations were carried out without and with explicit inclusion of relativistic effects through the zero order regular approximation. The calculated band gap is ∼0.2 eV smaller than experiment, close to previous PBE0 results including relativistic calculation through the pseudopotential and ∼0.25 eV smaller than equivalent nonrelativistic all electron PBE0 calculations indicating possible sources of error in nonrelativistic all electron density functional calculations for systems containing elements with relatively high atomic number. The oxygen vacancy formation energy converges rather fast with the supercell size, the predicted value agrees with previously hybrid density functional calculations and analysis of the electronic structure evidences the presence of localized electrons at the vacancy site with a concomitant well localized peak in the density of states ∼0.5 eV above the top of the valence band and a significant relaxation of the Zn atoms near to the oxygen vacancy. Finally, present work shows that accurate results can be obtained in systems involving large supercells containing up to ∼450 atoms using a numeric atomic-centered orbital basis set within a full all electron description including scalar relativistic effects at an affordable cost. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Photoluminescence of vapor and solution grown ZnTe single crystals

    NASA Astrophysics Data System (ADS)

    Biao, Y.; Azoulay, M.; George, M. A.; Burger, A.; Collins, W. E.; Silberman, E.; Su, C.-H.; Volz, M. E.; Szofran, F. R.; Gillies, D. C.

    1994-04-01

    ZnTe single crystals grown by horizontal physical vapor transport (PVT) and by vertical traveling heater method (THM) from a Te solution were characterized by photoluminescence (PL) at 10.6 K and by atomic force microscopy (AFM). Copper was identified by PL as a major impurity existing in both crystals, forming a substitutional acceptor, Cu Zn. The THM ZnTe crystals were found to contain more Cu impurity than the PVT ZnTe crystals. The formation of Cu Zn-V Te complexes and the effects of annealing, oxygen contamination and intentional Cu doping were also studied. Finally, the surface morphology analyzed by AFM was correlated to the PL results.

  10. Ultraviolet photodetector based on Mg{sub x}Zn{sub 1-x}O films using plasma-enhanced atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yu-Chang; Lee, Hsin-Ying, E-mail: hylee@ee.ncku.edu.tw; Lee, Ching-Ting

    2016-01-15

    A plasma-enhanced atomic layer deposition (PE-ALD) system was used to deposit magnesium zinc oxide (Mg{sub x}Zn{sub 1−x}O) films with various Mg content (x). The Mg{sub x}Zn{sub 1-x}O films were applied to metal–semiconductor–metal ultraviolet (UV) photodetectors (MSM-UPDs) as an active layer. The Mg content in the Mg{sub x}Zn{sub 1-x}O films was modulated by adjusting the ZnO–MgO cycle ratios to 15:1, 12:1, and 9:1. Correspondingly, the Mg content in the Mg{sub x}Zn{sub 1-x}O films characterized using an energy dispersive spectrometer was 0.10, 0.13, and 0.16, respectively. The optical bandgap of the Mg{sub x}Zn{sub 1-x}O films increased from 3.56 to 3.66 eV withmore » an increase in Mg content from 0.10 to 0.16. The peak position of photoresponsivity for the Mg{sub x}Zn{sub 1-x}O MSM-UPDs was also shifted from 350 to 340 nm. The UV-visible rejection ratios of the Mg{sub x}Zn{sub 1-x}O MSM-UPDs were higher than 3 orders of magnitude. In addition, excellent detectivity and noise equivalent power for the Mg{sub x}Zn{sub 1-x}O MSM-UPDs were observed at a bias voltage of 5 V. The high performance of the Mg{sub x}Zn{sub 1-x}O MSM-UPDs was achieved by PE-ALD at a low temperature.« less

  11. Efficiencies of Eu{sup 3+} ions and hydrogen atoms as donors in ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akazawa, Housei, E-mail: akazawa.housei@lab.ntt.co.jp

    2016-09-15

    The donor efficiencies of Eu{sup 3+} ions and hydrogen atoms in ZnO crystalline films were investigated with reference to that of Ga{sup 3+} ions. It was found that Eu{sup 3+} ions acted as extrinsic donors in ZnO:Eu films, yielding a resistivity of 1.8 × 10{sup −3} Ω cm at a doping level of 1 at. %. This value is comparable to one for intrinsic donors in undoped ZnO films. The conductivity was maintained as the deposition temperature was increased to 200 °C, and this is evidence for the contribution of extrinsic donors. Deposition of Ga-doped and Eu-doped ZnO films in an H{sub 2}O gasmore » flow produced oxyhydrogenated ZnO:(Ga, H) and ZnO:(Eu, H) films in which the Ga{sup 3+} and Eu{sup 3+} donors were deactivated by oxidization. Nevertheless, hydrogen donors contributed to electrical conduction yielding a resistivity of 1 × 10{sup −2} Ω cm. Postannealing in an H{sub 2} gas ambient alleviated the excessive oxidization of the films and thereby reactivated the donor action of Ga{sup 3+} and Eu{sup 3+} ions, causing the resistivity to recover to 10{sup −3} Ω cm for ZnO:(Ga, H) and 10{sup −2} Ω cm for ZnO:(Eu, H). In contrast, vacuum annealing of ZnO:(Ga, H) and ZnO:(Eu, H) films increased resistivity through removal of hydrogen donors while not affecting the oxidized condition of the samples.« less

  12. First-principles studies on 3d transition metal atom adsorbed twin graphene

    NASA Astrophysics Data System (ADS)

    Li, Lele; Zhang, Hong; Cheng, Xinlu; Miyamoto, Yoshiyuki

    2018-05-01

    Twin graphene is a new two-dimensional semiconducting carbon allotrope which is proposed recently. The structural, magnetic and electronic properties are investigated for 3d transition metal (TM) atom adsorbed twin graphene by means of GGA+U calculations. The results show most of single 3d transition metal atom except Zn can make twin graphene magnetization. The adsorption of single TM atom can also make the twin graphene systems turn to half metal (V adsorption), half-semiconductor (Fe adsorption) or metal (Sc, Cr, Mn, Co and Cu adsorption). The semiconducting nature still exists for Ti, Ni and Zn adsorption. All the 3d TM adatoms belong to n-type doping for transferring charge to the neighboring C atoms and have strong covalent bond with these C atoms. The influence of Hubbard U value on half-metallic V adsorbed system is also considered. As the U increases, the system can gradually transform from metal to half metal and metal. The effect of the coverage is investigated for two TM atoms (Sc-Fe) adsorption, too. We can know TM atoms adsorbed twin graphene have potentials to be spintronic device and nanomagnets from the results.

  13. Syntheses and crystal structures of two new hydrated borates, Zn{sub 8}[(BO{sub 3}){sub 3}O{sub 2}(OH){sub 3}] and Pb[B{sub 5}O{sub 8}(OH)].1.5H{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Xuean; Zhao Yinghua; Chang Xinan

    Two new hydrated borates, Zn{sub 8}[(BO{sub 3}){sub 3}O{sub 2}(OH){sub 3}] and Pb[B{sub 5}O{sub 8}(OH)].1.5H{sub 2}O, have been prepared by hydrothermal reactions at 170 {sup o}C. Single-crystal X-ray structural analyses showed that Zn{sub 8}[(BO{sub 3}){sub 3}O{sub 2}(OH){sub 3}] crystallizes in a non-centrosymmetric space group R32 with a=8.006(2) A, c=17.751(2) A, Z=3 and Pb[B{sub 5}O{sub 8}(OH)].1.5H{sub 2}O in a triclinic space group P1-bar with a=6.656(2) A, b=6.714(2) A, c=10.701(2) A, {alpha}=99.07(2){sup o}, {beta}=93.67(2){sup o}, {gamma}=118.87(1){sup o}, Z=2. Zn{sub 8}[(BO{sub 3}){sub 3}O{sub 2}(OH){sub 3}] represents a new structure type in which Zn-centered tetrahedra are connected via common vertices leading to helical ribbons {submore » {infinity}} {sup 1}[Zn{sub 8}O{sub 15}(OH){sub 3}]{sup 17-} that pack side by side and are further condensed through sharing oxygen atoms to form a three-dimensional {sub {infinity}} {sup 3}[Zn{sub 8}O{sub 11}(OH){sub 3}]{sup 9-} framework. The boron atoms are incorporated into the channels in the framework to complete the final structure. Pb[B{sub 5}O{sub 8}(OH)].1.5H{sub 2}O is a layered compound containing double ring [B{sub 5}O{sub 8}(OH)]{sup 2-} building units that share exocyclic oxygen atoms to form a two-dimensional layer. Symmetry-center-related layers are stacked along the c-axis and held together by interlayer Pb{sup 2+} ions and water molecules via electrostatic and hydrogen bonding interactions. The IR spectra further confirmed the existence of both triangular BO{sub 3} and OH groups in Zn{sub 8}[(BO{sub 3}){sub 3}O{sub 2}(OH){sub 3}], and BO{sub 3}, BO{sub 4}, OH groups as well as guest water molecules in Pb[B{sub 5}O{sub 8}(OH)].1.5H{sub 2}O. -- Zn{sub 8}[(BO{sub 3}){sub 3}O{sub 2}(OH){sub 3}] represents a new structure type in which Zn-centered tetrahedra are connected via common vertices to form a three-dimensional framework. The boron atoms are incorporated into the channels in the framework to strengen the structure via B-O bonds. Pb[B{sub 5}O{sub 8}(OH)].1.5H{sub 2}O is a new layered material containing double ring [B{sub 5}O{sub 8}(OH)]{sup 2-} building units that share exocyclic oxygen atoms to form a two-dimensional layer.« less

  14. Electronic and Magnetic Properties of Ni-Doped Zinc-Blende ZnO: A First-Principles Study.

    PubMed

    Xue, Suqin; Zhang, Fuchun; Zhang, Shuili; Wang, Xiaoyang; Shao, Tingting

    2018-04-26

    The electronic structure, band structure, density of state, and magnetic properties of Ni-doped zinc-blende (ZB) ZnO are studied by using the first-principles method based on the spin-polarized density-functional theory. The calculated results show that Ni atoms can induce a stable ferromagnetic (FM) ground state in Ni-doped ZB ZnO. The magnetic moments mainly originate from the unpaired Ni 3 d orbitals, and the O 2 p orbitals contribute a little to the magnetic moments. The magnetic moment of a supercell including a single Ni atom is 0.79 μ B . The electronic structure shows that Ni-doped ZB ZnO is a half-metallic FM material. The strong spin-orbit coupling appears near the Fermi level and shows obvious asymmetry for spin-up and spin-down density of state, which indicates a significant hybrid effects from the Ni 3 d and O 2 p states. However, the coupling of the anti-ferromagnetic (AFM) state show metallic characteristic, the spin-up and spin-down energy levels pass through the Fermi surface. The magnetic moment of a single Ni atom is 0.74 μ B . Moreover, the results show that the Ni 3 d and O 2 p states have a strong p - d hybridization effect near the Fermi level and obtain a high stability. The above theoretical results demonstrate that Ni-doped zinc blende ZnO can be considered as a potential half-metal FM material and dilute magnetic semiconductors.

  15. Crystal Growth of Undoped and Doped ZnSe

    NASA Technical Reports Server (NTRS)

    Davis, Swanson L.; Chen, K.-T.; George, M. A.; Shi, D. T.; Collins, W. E.; Burger, Arnold

    1997-01-01

    The surface morphology of freshly cleaved ZnSe single crystal grown by the physical vapor transport (PVT) method was investigated by Atomic Force Microscopy (AFM) and the results were correlated with Differential Scanning Calorimetry (DSC) data. Selenium precipitates have been revealed in undoped doped ZnSe crystals having a size of about 50 nm. A transition temperature around 221 C in the DSC measurements is interpreted as the eutectic temperature of Se-saturated ZnSe. The AFM images of doped ZnSe also show that possible Cr clusters are uniformly distributed and they have an estimated size of about 6 nm.

  16. Density functional theory calculations on transition metal atoms adsorbed on graphene monolayers

    NASA Astrophysics Data System (ADS)

    Dimakis, Nicholas; Flor, Fernando Antonio; Salgado, Andres; Adjibi, Kolade; Vargas, Sarah; Saenz, Justin

    2017-11-01

    Transition metal atom adsorption on graphene monolayers has been elucidated using periodic density functional theory under hybrid and generalized gradient approximation functionals. More specifically, we examined the adsorption of Cu, Fe, Zn, Ru, and Os on graphene monolayers by calculating, among others, the electronic density-of-states spectra of the adatom-graphene system and the overlap populations of the adatom with the nearest adsorbing graphene carbon atoms. These calculations reveal that Cu form primarily covalent bonds with graphene atoms via strong hybridization between the adatom orbitals and the sp band of the graphene substrate, whereas the interaction of the Ru and Os with graphene also contain ionic parts. Although the interaction of Fe with graphene atoms is mostly covalent, some charge transfer to graphene is also observed. The interaction of Zn with graphene is weak. Mulliken population analysis and charge contour maps are used to elucidate charge transfers between the adatom and the substrate. The adsorption strength is correlated with the metal adsorption energy and the height of the metal adatom from the graphene plane for the geometrically optimized adatom-graphene system. Our analysis shows that show that metal adsorption strength follows the adatom trend Ru ≈ Os > Fe > Cu > Zn, as verified by corresponding changes in the adsorption energies. The increased metal-carbon orbital overlap for the Ru relative to Os adatom is attributed to hybridization defects.

  17. Mysteries of icosahedral quasicrystals: how are the atoms arranged?

    PubMed

    Ishimasa, Tsutomu

    2016-07-01

    Higher-dimensional structure analysis of quasicrystals is now possible. Yamada et al. [IUCrJ (2016), 3, 247-258] have solved the atomic structure of icosahedral ScZn7.33 including the characteristic imperfections.

  18. Reducing interface recombination for Cu(In,Ga)Se{sub 2} by atomic layer deposited buffer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hultqvist, Adam; Bent, Stacey F.; Li, Jian V.

    2015-07-20

    Partial CuInGaSe{sub 2} (CIGS) solar cell stacks with different atomic layer deposited buffer layers and pretreatments were analyzed by photoluminescence (PL) and capacitance voltage (CV) measurements to investigate the buffer layer/CIGS interface. Atomic layer deposited ZnS, ZnO, and SnO{sub x} buffer layers were compared with chemical bath deposited CdS buffer layers. Band bending, charge density, and interface state density were extracted from the CV measurement using an analysis technique new to CIGS. The surface recombination velocity calculated from the density of interface traps for a ZnS/CIGS stack shows a remarkably low value of 810 cm/s, approaching the range of single crystallinemore » II–VI systems. Both the PL spectra and its lifetime depend on the buffer layer; thus, these measurements are not only sensitive to the absorber but also to the absorber/buffer layer system. Pretreatment of the CIGS prior to the buffer layer deposition plays a significant role on the electrical properties for the same buffer layer/CIGS stack, further illuminating the importance of good interface formation. Finally, ZnS is found to be the best performing buffer layer in this study, especially if the CIGS surface is pretreated with potassium cyanide.« less

  19. Reducing interface recombination for Cu(In,Ga)Se 2 by atomic layer deposited buffer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hultqvist, Adam; Li, Jian V.; Kuciauskas, Darius

    2015-07-20

    Partial CuInGaSe2 (CIGS) solar cell stacks with different atomic layer deposited buffer layers and pretreatments were analyzed by photoluminescence (PL) and capacitance voltage (CV) measurements to investigate the buffer layer/CIGS interface. Atomic layer deposited ZnS, ZnO, and SnOx buffer layers were compared with chemical bath deposited CdS buffer layers. Band bending, charge density, and interface state density were extracted from the CV measurement using an analysis technique new to CIGS. The surface recombination velocity calculated from the density of interface traps for a ZnS/CIGS stack shows a remarkably low value of 810 cm/s, approaching the range of single crystalline II-VImore » systems. Both the PL spectra and its lifetime depend on the buffer layer; thus, these measurements are not only sensitive to the absorber but also to the absorber/buffer layer system. Pretreatment of the CIGS prior to the buffer layer deposition plays a significant role on the electrical properties for the same buffer layer/CIGS stack, further illuminating the importance of good interface formation. Finally, ZnS is found to be the best performing buffer layer in this study, especially if the CIGS surface is pretreated with potassium cyanide.« less

  20. Reducing interface recombination for Cu(In,Ga)Se 2 by atomic layer deposited buffer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hultqvist, Adam; Li, Jian V.; Kuciauskas, Darius

    2015-07-20

    Partial CuInGaSe2 (CIGS) solar cell stacks with different atomic layer deposited buffer layers and pretreatments were analyzed by photoluminescence (PL) and capacitance voltage (CV) measurements to investigate the buffer layer/CIGS interface. Atomic layer deposited ZnS, ZnO, and SnOx buffer layers were compared with chemical bath deposited CdS buffer layers. Band bending, charge density, and interface state density were extracted from the CV measurement using an analysis technique new to CIGS. The surface recombination velocity calculated from the density of interface traps for a ZnS/CIGS stack shows a remarkably low value of 810 cm/s, approaching the range of single crystalline II–VImore » systems. Both the PL spectra and its lifetime depend on the buffer layer; thus, these measurements are not only sensitive to the absorber but also to the absorber/buffer layer system. Pretreatment of the CIGS prior to the buffer layer deposition plays a significant role on the electrical properties for the same buffer layer/CIGS stack, further illuminating the importance of good interface formation. Finally, ZnS is found to be the best performing buffer layer in this study, especially if the CIGS surface is pretreated with potassium cyanide.« less

  1. Photocatalytic hollow TiO2 and ZnO nanospheres prepared by atomic layer deposition.

    PubMed

    Justh, Nóra; Bakos, László Péter; Hernádi, Klára; Kiss, Gabriella; Réti, Balázs; Erdélyi, Zoltán; Parditka, Bence; Szilágyi, Imre Miklós

    2017-06-28

    Carbon nanospheres (CNSs) were prepared by hydrothermal synthesis, and coated with TiO 2 and ZnO nanofilms by atomic layer deposition. Subsequently, through burning out the carbon core templates hollow metal oxide nanospheres were obtained. The substrates, the carbon-metal oxide composites and the hollow nanospheres were characterized with TG/DTA-MS, FTIR, Raman, XRD, SEM-EDX, TEM-SAED and their photocatalytic activity was also investigated. The results indicate that CNSs are not beneficial for photocatalysis, but the crystalline hollow metal oxide nanospheres have considerable photocatalytic activity.

  2. Stability Enhancement of Silver Nanowire Networks with Conformal ZnO Coatings Deposited by Atmospheric Pressure Spatial Atomic Layer Deposition.

    PubMed

    Khan, Afzal; Nguyen, Viet Huong; Muñoz-Rojas, David; Aghazadehchors, Sara; Jiménez, Carmen; Nguyen, Ngoc Duy; Bellet, Daniel

    2018-06-06

    Silver nanowire (AgNW) networks offer excellent electrical and optical properties and have emerged as one of the most attractive alternatives to transparent conductive oxides to be used in flexible optoelectronic applications. However, AgNW networks still suffer from chemical, thermal, and electrical instabilities, which in some cases can hinder their efficient integration as transparent electrodes in devices such as solar cells, transparent heaters, touch screens, and organic light emitting diodes. We have used atmospheric pressure spatial atomic layer deposition (AP-SALD) to fabricate hybrid transparent electrode materials in which the AgNW network is protected by a conformal thin layer of zinc oxide. The choice of AP-SALD allows us to maintain the low-cost and scalable processing of AgNW-based transparent electrodes. The effects of the ZnO coating thickness on the physical properties of AgNW networks are presented. The composite electrodes show a drastic enhancement of both thermal and electrical stabilities. We found that bare AgNWs were stable only up to 300 °C when subjected to thermal ramps, whereas the ZnO coating improved the stability up to 500 °C. Similarly, ZnO-coated AgNWs exhibited an increase of 100% in electrical stability with respect to bare networks, withstanding up to 18 V. A simple physical model shows that the origin of the stability improvement is the result of hindered silver atomic diffusion thanks to the presence of the thin oxide layer and the quality of the interfaces of hybrid electrodes. The effects of ZnO coating on both the network adhesion and optical transparency are also discussed. Finally, we show that the AP-SALD ZnO-coated AgNW networks can be effectively used as very stable transparent heaters.

  3. Improving precipitation hardening behavior of Mg−Zn based alloys with Ce−Ca microalloying additions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langelier, B., E-mail: langelb@mcmaster.ca

    2016-10-15

    The precipitation hardening behavior of newly developed Mg−Zn−Ca−Ce alloys, with modified texture and improved ductility, is studied to delineate the microstructural characteristics that lead to effective hardening upon ageing treatments. Advanced electron microscopy and atom probe techniques are used to analyze the structural characteristics in relevance to the hardening potential. It has been found that the formation of a new basal precipitate phase, which evolves from a single atomic layer GP zone, and is finely distributed in both under-aged and peak-aged microstructures, has a significant impact in the improvement of the hardening response compared with the base Mg−Zn alloys. Itmore » has also been found that the β′{sub 1} rod precipitates, commonly formed during ageing treatments of Mg−Zn alloys, have their size and distribution significantly refined in the Ca−Ce containing alloys. The role of alloy chemistry in the formation of the fine basal plate GP zones and the refinement in β′{sub 1} precipitation and their relationships to the hardening behavior are discussed. It is proposed that Ca microalloying governs the formation of the GP zones and the enhancement of hardening, particularly in the under-aged conditions, but that this is aided by a beneficial effect from Ce. - Highlights: • Ce−Ca microalloying additions improve hardening in Mg−Zn, over Ce or Ca alone. • Improved hardening is due to refined β′{sub 1} rods, and fine basal plate precipitates. • Atom probe tomography identifies Ca in both β′{sub 1} and the fine basal plates. • The fine basal plates originate as ordered monolayer GP zones with 1:1 Zn:Ca (at.%). • With ageing GP zones become more Zn-rich and transform to the fine basal plates.« less

  4. Effect of atomic layer deposited Al2O3:ZnO alloys on thin-film silicon photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Abdul Hadi, Sabina; Dushaq, Ghada; Nayfeh, Ammar

    2017-12-01

    In this work, we present the effects of the Al2O3:ZnO ratio on the optical and electrical properties of aluminum doped ZnO (AZO) layers deposited by atomic layer deposition, along with AZO application as the anti-reflective coating (ARC) layer and in heterojunction configurations. Here, we report complex refractive indices for AZO layers with different numbers of aluminum atomic cycles (ZnO:Al2O3 = 1:0, 39:1, 19:1, and 9:1) and we confirm their validity by fitting models to experimental data. Furthermore, the most conductive layer (ZnO:Al2O3 = 19:1, conductivity ˜4.6 mΩ cm) is used to fabricate AZO/n+/p-Si thin film solar cells and AZO/p-Si heterojunction devices. The impact of the AZO layer on the photovoltaic properties of these devices is studied by different characterization techniques, resulting in the extraction of recombination and energy band parameters related to the AZO layer. Our results confirm that AZO 19:1 can be used as a low cost and effective conductive ARC layer for solar cells. However, AZO/p-Si heterojunctions suffer from an insufficient depletion region width (˜100 nm) and recombination at the interface states, with an estimated potential barrier of ˜0.6-0.62 eV. The work function of AZO (ZnO:Al2O3 = 19:1) is estimated to be in the range between 4.36 and 4.57 eV. These material properties limit the use of AZO as an emitter in Si solar cells. However, the results imply that AZO based heterojunctions could have applications as low-cost photodetectors or photodiodes, operating under relatively low reverse bias.

  5. Stellar Laboratories II. New Zn Iv and Zn v Oscillator Strengths and Their Validation in the Hot White Dwarfs G191-B2B and RE0503-289

    NASA Technical Reports Server (NTRS)

    Rauch, T.; Werner, K.; Quinet, P.; Kruk, J. W.

    2014-01-01

    Context. For the spectral analysis of high-resolution and high-signal-to-noise (SN) spectra of hot stars, state-of-the-art non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These are strongly dependent on the reliability of the atomic data that is used for their calculation. In a recent analysis of the ultraviolet (UV) spectrum of the DA-type white dwarf G191B2B,21 Zn iv lines were newly identified. Because of the lack of Zn iv data, transition probabilities of the isoelectronic Ge vi were adapted for a first, coarse determination of the photospheric Zn abundance.Aims. Reliable Zn iv and Zn v oscillator strengths are used to improve the Zn abundance determination and to identify more Zn lines in the spectra of G191B2B and the DO-type white dwarf RE 0503289. Methods. We performed new calculations of Zn iv and Zn v oscillator strengths to consider their radiative and collisional bound-bound transitions in detail in our NLTE stellar-atmosphere models for the analysis of the Zn iv v spectrum exhibited in high-resolution and high-SN UV observations of G191B2B and RE 0503289. Results. In the UV spectrum of G191B2B, we identify 31 Zn iv and 16 Zn v lines. Most of these are identified for the first time in any star. We can reproduce well almost all of them at log Zn 5.52 0.2 (mass fraction, about 1.7 times solar). In particular, the Zn iv Zn v ionization equilibrium, which is a very sensitive Teff indicator, is well reproduced with the previously determined Teff 60 000 2000 K and log g 7.60 0.05. In the spectrum of RE 0503289, we identified 128 Zn v lines for the first time and determined log Zn 3.57 0.2 (155 times solar). Conclusions. Reliable measurements and calculations of atomic data are a pre-requisite for stellar-atmosphere modeling. Observed Zn iv and Zn v line profiles in two white dwarf (G191B2B and RE 0503289) ultraviolet spectra were well reproduced with our newly calculated oscillator strengths. This allowed us to determine the photospheric Zn abundance of these two stars precisely.

  6. Sensing mechanism of SnO2/ZnO nanofibers for CH3OH sensors: heterojunction effects

    NASA Astrophysics Data System (ADS)

    Tang, Wei

    2017-11-01

    SnO2/ZnO composite nanofibers were synthesized by a simple electrospinning method. The prepared SnO2/ZnO gas sensors exhibited good linear and high response to methanol. The enhanced sensing behavior of SnO2/ZnO might be associated with the homotypic heterojunction effects formed in n-SnO2/n-ZnO nanograins boundaries. In addition, the possible sensing mechanisms of methanol on SnO2/ZnO surface were investigated by density functional theory in order to make the methanol adsorption and desorption process clear. Zn doped SnO2 model was adopted to approximate the SnO2/ZnO structure because of the calculation power limitations. Calculation results showed that when exposed to methanol, the methanol would react with bridge oxygen O2c , planar O3c and pre adsorbed oxygen vacancy on the lattice surface. The -CH3 and -OH of methanol molecule would both lose one H atom. The lost H atoms bonded with oxygen at the adsorption sites. The final products were HCHO and H2O. Electrons were transferred from methanol to the lattice surface to reduce the resistance of semiconductor gas sensitive materials, which is in agreement with the experimental phenomena. More adsorption models of other interfering gases, such as ethanol, formaldehyde and acetone will be built and calculated to explain the selectivity issue from the perspective of adsorption energy, transferred charge and density of states in the future work.

  7. The structural, electronic and optical properties of Au-ZnO interface structure from the first-principles calculation

    NASA Astrophysics Data System (ADS)

    Huo, Jin-Rong; Li, Lu; Cheng, Hai-Xia; Wang, Xiao-Xu; Zhang, Guo-Hua; Qian, Ping

    2018-03-01

    The interface structure, electronic and optical properties of Au-ZnO are studied using the first-principles calculation based on density functional theory (DFT). Given the interfacial distance, bonding configurations and terminated surface, we built the optimal interface structure and calculated the electronic and optical properties of the interface. The total density of states, partial electronic density of states, electric charge density and atomic populations (Mulliken) are also displayed. The results show that the electrons converge at O atoms at the interface, leading to a stronger binding of interfaces and thereby affecting the optical properties of interface structures. In addition, we present the binding energies of different interface structures. When the interface structure of Au-ZnO gets changed, furthermore, varying optical properties are exhibited.

  8. Nonisovalent Si-III-V and Si-II-VI alloys: Covalent, ionic, and mixed phases

    NASA Astrophysics Data System (ADS)

    Kang, Joongoo; Park, Ji-Sang; Stradins, Pauls; Wei, Su-Huai

    2017-07-01

    Nonequilibrium growth of Si-III-V or Si-II-VI alloys is a promising approach to obtaining optically more active Si-based materials. We propose a new class of nonisovalent S i2AlP (or S i2ZnS ) alloys in which the Al-P (or Zn-S) atomic chains are as densely packed as possible in the host Si matrix. As a hybrid of the lattice-matched parent phases, S i2AlP (or S i2ZnS ) provides an ideal material system with tunable local chemical orders around Si atoms within the same composition and structural motif. Here, using first-principles hybrid functional calculations, we discuss how the local chemical orders affect the electronic and optical properties of the nonisovalent alloys.

  9. Heterogeneous in-situ nanostructure contributes to the thermoelectric performance of Zn{sub 4}Sb{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jianping; Ma, Lingzhi; Yang, Baifeng

    Single-phase Zn{sub 4}Sb{sub 3} and ZnSb-containing samples were prepared by Plasma Activated Sintering. An abrupt decrease of thermal conductivity was found at about 400 K, which is attributed to the microstructure change of Zn{sub 4}Sb{sub 3}. Nanoscale inclusions and compositional inhomogeneities were found in Zn{sub 4}Sb{sub 3} sample at 473 K by high-resolution transmission electron microscopy. The phonon scattering is enhanced by increasing grain boundaries and chaotic structure, which reduces the thermal conductivity and increases the thermoelectric performance of Zn{sub 4}Sb{sub 3} at elevated temperature. The Rietveld refinement results show that large ZnSb grains in ZnSb-containing samples will accommodate excessmore » Zn atoms, and then reduce thermoelectric performance.« less

  10. Effect of hydrogen peroxide pretreatment on ZnO-based metal–semiconductor–metal ultraviolet photodetectors deposited using plasma-enhanced atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yu-Chang; Lee, Hsin-Ying, E-mail: hylee@ee.ncku.edu.tw; Lee, Tsung-Hsin

    2016-01-15

    In this study, zinc oxide (ZnO) films were deposited on sapphire substrates using a plasma-enhanced atomic layer deposition system. Prior to deposition, the substrates were treated with hydrogen peroxide (H{sub 2}O{sub 2}) in order to increase nucleation on the initial sapphire surface and, thus, enhance the quality of deposited ZnO films. Furthermore, x-ray diffraction spectroscopy measurements indicated that the crystallinity of ZnO films was considerably enhanced by H{sub 2}O{sub 2} pretreatment, with the strongest (002) diffraction peak occurring for the film pretreated with H{sub 2}O{sub 2} for 60 min. X-ray photoelectron spectroscopy also was used, and the results indicated that amore » high number of Zn–O bonds was generated in ZnO films pretreated appropriately with H{sub 2}O{sub 2}. The ZnO film deposited on a sapphire substrate with H{sub 2}O{sub 2} pretreatment for 60 min was applied to metal–semiconductor–metal ultraviolet photodetectors (MSM-UPDs) as an active layer. The fabricated ZnO MSM-UPDs showed improvements in dark current and ultraviolet–visible rejection ratios (0.27 μA and 1.06 × 10{sup 3}, respectively) compared to traditional devices.« less

  11. A Thermally Stable NiZn/Ta/Ni Scheme to Replace AuBe/Au Contacts in High-Efficiency AlGaInP-Based Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Hyun; Park, Jae-Seong; Kang, Daesung; Seong, Tae-Yeon

    2017-08-01

    We developed NiZn/(Ta/)Ni ohmic contacts to replace expensive AuBe/Au contacts commonly used in high-efficiency AlGaInP-based light-emitting diodes (LEDs), and compared the electrical properties of the two contact types. Unlike the AuBe/Au (130 nm/100 nm) contact, the NiZn/Ta/Ni (130 nm/20 nm/100 nm) contact shows improved electrical properties after being annealed at 500°C, with a contact resistivity of 5.2 × 10-6 Ω cm2. LEDs with the NiZn/Ta/Ni contact exhibited a 4.4% higher output power (at 250 mW) than LEDs with the AuBe/Au contact. In contrast to the trend for the AuBe/Au contact, the Ga 2 p core level for the NiZn/Ta/Ni contact shifted toward lower binding energies after being annealed at 500°C. Auger electron spectroscopy (AES) depth profiles showed that annealing the AuBe/Au samples caused the outdiffusion of both Be and P atoms into the metal contact, whereas in the NiZn/Ta/Ni samples, Zn atoms indiffused into the GaP layer. The annealing-induced electrical degradation and ohmic contact formation mechanisms are described and discussed on the basis of the results of x-ray photoemission spectroscopy and AES.

  12. Effects of substrate conductivity on cell morphogenesis and proliferation using tailored, atomic layer deposition-grown ZnO thin films

    PubMed Central

    Choi, Won Jin; Jung, Jongjin; Lee, Sujin; Chung, Yoon Jang; Yang, Cheol-Soo; Lee, Young Kuk; Lee, You-Seop; Park, Joung Kyu; Ko, Hyuk Wan; Lee, Jeong-O

    2015-01-01

    We demonstrate that ZnO films grown by atomic layer deposition (ALD) can be employed as a substrate to explore the effects of electrical conductivity on cell adhesion, proliferation, and morphogenesis. ZnO substrates with precisely tunable electrical conductivity were fabricated on glass substrates using ALD deposition. The electrical conductivity of the film increased linearly with increasing duration of the ZnO deposition cycle (thickness), whereas other physical characteristics, such as surface energy and roughness, tended to saturate at a certain value. Differences in conductivity dramatically affected the behavior of SF295 glioblastoma cells grown on ZnO films, with high conductivity (thick) ZnO films causing growth arrest and producing SF295 cell morphologies distinct from those cultured on insulating substrates. Based on simple electrostatic calculations, we propose that cells grown on highly conductive substrates may strongly adhere to the substrate without focal-adhesion complex formation, owing to the enhanced electrostatic interaction between cells and the substrate. Thus, the inactivation of focal adhesions leads to cell proliferation arrest. Taken together, the work presented here confirms that substrates with high conductivity disturb the cell-substrate interaction, producing cascading effects on cellular morphogenesis and disrupting proliferation, and suggests that ALD-grown ZnO offers a single-variable method for uniquely tailoring conductivity. PMID:25897486

  13. Effect of Pressure on the Stability and Electronic Structure of ZnO0.5S0.5 and ZnO0.5Se0.5

    NASA Astrophysics Data System (ADS)

    Manotum, R.; Klinkla, R.; Phaisangittisakul, N.; Pinsook, U.; Bovornratanaraks, T.

    2017-12-01

    Structures and high-pressure phase transitions in ZnO0.5S0.5 and ZnO0.5Se0.5 have been investigated using density functional theory calculations. The previously proposed structures of ZnO0.5S0.5 and ZnO0.5Se0.5 which are chalcopyrite ( I\\bar{4}2d ), rocksalt ( Fm3m ), wurtzite ( P63 mc ) and CuAu-I ( P\\bar{4}m2 ) have been fully investigated. Stabilities of these materials have been systematically studied up to 40 GPa using various approaches. We have confirmed the stability of the chalcopyrite structure up to 30 GPa for which the CuAu-I structure has been previously proposed. However, our calculation revealed that CuAu-I is not a stable structure under 32 GPa and 33 GPa for both ZnO0.5S0.5 and ZnO0.5Se0.5, respectively, which could explain the failure in several attempts to fabricate these materials under such conditions. We have also examined the pressure-dependence of the bandgap and electronic structure up to 30 GPa. We can conclude from our PDOS analysis that the applied pressure does not change the atomic state characters of electronic states near the top of valence and the bottom of conduction bands, but mainly modifies the dominant Zn-3d atomic state of the deep Bloch state at -1 eV below Fermi level.

  14. Investigation on microstructure characterization and property of rapidly solidified Mg-Zn-Ca-Ce-La alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou Tao, E-mail: tzhou1118@163.com; Chen Zhenhua, E-mail: chenzhenhua45@hotmail.com; Yang Mingbo, E-mail: yangmingbo@cqit.edu.cn

    2012-01-15

    Rapidly solidified (RS) Mg-Zn-Ca-Ce-La (wt.%) alloys have been produced via atomizing the alloy melt and subsequent splat-quenching on the water-cooled copper twin-rollers in the form of flakes. Microstructure characterization, phase compositions and thermal stability of the alloys have been systematically investigated. The results showed that with addition of RE (Ce and La) to the Mg-6Zn-5Ca alloy, the stable intermetallic compounds i.e. the Mg{sub x}Zn{sub y}RE{sub z} phase with a few Ca (about 3 at.%), shortened as the T Prime phase, were formed at the expense of the binary Mg-Zn and Ca{sub 2}Mg{sub 6}Zn{sub 3} phases, which was possibly beneficial tomore » the enhanced thermal stability of the alloy. In the Mg-6Zn-5Ca-3Ce-0.5La alloy, the composition of the T Prime phase in the grain interior was different from that at the grain boundaries, in which the segregation of the La elements was found, and the atomic percentage ratio of Zn to Ce in the T Prime phase within the grains was close to 2. Moreover, the stable Mg{sub 2}Ca phases were detected around the T Prime phases at the grain boundaries in the alloy. - Research Highlights: Black-Right-Pointing-Pointer The phase constitution of RS Mg-6Zn-5Ca alloy can be improved by RE additions. Black-Right-Pointing-Pointer In the Mg-Zn-Ca-Ce-La alloys, the Mg{sub x}Zn{sub y}RE{sub z} phase with a few Ca (T Prime phase) is formed. Black-Right-Pointing-Pointer The formation of the T Prime phase leads to the loss of the Mg-Zn and Ca{sub 2}Mg{sub 6}Zn{sub 3} phases. Black-Right-Pointing-Pointer The composition of the T Prime phase differs from the grain interior to the grain boundary.« less

  15. High Zn Content Single-phase RS-MgZnO Suitable for Solar-blind Frequency Applications

    NASA Astrophysics Data System (ADS)

    Liang, H. L.; Mei, Z. X.; Liu, Z. L.; Guo, Y.; Azarov, A. Yu.; Kuznetsov, A. Yu.; Hallen, A.; Du, X. L.

    2010-11-01

    Single-phase rock-salt MgZnO films with high Zn content were successfully fabricated on the templates of MgO (111)/α-sapphire (0001) by radio-frequency plasma assisted molecular beam epitaxy. The influence of growth temperature on epitaxy of MgZnO alloy films was investigated by the combined studies of crystal structures, compositions, and optical properties. It is found that the incorporation of Zn atoms into the rock-salt MgZnO films is greatly enhanced at low temperature, confirmed by in-situ reflection high-energy electron diffraction observations and ex-situ X-ray diffraction characterization. Zn fraction in the single-phase rock-salt Mg0.53Zn0.47O film was determined by Rutherford backscattering spectrometry. Optical properties of the films were investigated by transmittance spectroscopy and reflectance spectroscopy, both of which demonstrate the solar-blind band gap and its dependence on Zn content.

  16. Influence of Dopants in ZnO Films on Defects

    NASA Astrophysics Data System (ADS)

    Peng, Cheng-Xiao; Weng, Hui-Min; Zhang, Yang; Ma, Xing-Ping; Ye, Bang-Jiao

    2008-12-01

    The influence of dopants in ZnO films on defects is investigated by slow positron annihilation technique. The results show S that parameters meet SAl > Sun > SAg for Al-doped ZnO films, undoped and Ag-doped ZnO films. Zinc vacancies are found in all ZnO films with different dopants. According to S parameter and the same defect type, it can be induced that the zinc vacancy concentration is the highest in the Al-doped ZnO film, and it is the least in the Ag-doped ZnO film. When Al atoms are doped in the ZnO films grown on silicon substrates, Zn vacancies increase as compared to the undoped and Ag-doped ZnO films. The dopant concentration could determine the position of Fermi level in materials, while defect formation energy of zinc vacancy strongly depends on the position of Fermi level, so its concentration varies with dopant element and dopant concentration.

  17. Field evaporation of ZnO: A first-principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Yu, E-mail: yuxia@dal.ca; Karahka, Markus; Kreuzer, H. J.

    2015-07-14

    With recent advances in atom probe tomography of insulators and semiconductors, there is a need to understand high electrostatic field effects in these materials as well as the details of field evaporation. We use density functional theory to study field effects in ZnO clusters calculating the potential energy curves, the local field distribution, the polarizability, and the dielectric constant as a function of field strength. We confirm that, as in MgO, the HOMO-LUMO gap of a ZnO cluster closes at the evaporation field strength signaling field-induced metallization of the insulator. Following the structural changes in the cluster at the evaporationmore » field strength, we can identify the field evaporated species, in particular, we show that the most abundant ion, Zn{sup 2+}, is NOT post-ionized but leaves the surface as 2+ largely confirming the experimental observations. Our results also help to explain problems related to stoichiometry in the mass spectra measured in atom probe tomography.« less

  18. Point defects in ZnO: an approach from first principles

    PubMed Central

    Oba, Fumiyasu; Choi, Minseok; Togo, Atsushi; Tanaka, Isao

    2011-01-01

    Recent first-principles studies of point defects in ZnO are reviewed with a focus on native defects. Key properties of defects, such as formation energies, donor and acceptor levels, optical transition energies, migration energies and atomic and electronic structure, have been evaluated using various approaches including the local density approximation (LDA) and generalized gradient approximation (GGA) to DFT, LDA+U/GGA+U, hybrid Hartree–Fock density functionals, sX and GW approximation. Results significantly depend on the approximation to exchange correlation, the simulation models for defects and the post-processes to correct shortcomings of the approximation and models. The choice of a proper approach is, therefore, crucial for reliable theoretical predictions. First-principles studies have provided an insight into the energetics and atomic and electronic structures of native point defects and impurities and defect-induced properties of ZnO. Native defects that are relevant to the n-type conductivity and the non-stoichiometry toward the O-deficient side in reduced ZnO have been debated. It is suggested that the O vacancy is responsible for the non-stoichiometry because of its low formation energy under O-poor chemical potential conditions. However, the O vacancy is a very deep donor and cannot be a major source of carrier electrons. The Zn interstitial and anti-site are shallow donors, but these defects are unlikely to form at a high concentration in n-type ZnO under thermal equilibrium. Therefore, the n-type conductivity is attributed to other sources such as residual impurities including H impurities with several atomic configurations, a metastable shallow donor state of the O vacancy, and defect complexes involving the Zn interstitial. Among the native acceptor-type defects, the Zn vacancy is dominant. It is a deep acceptor and cannot produce a high concentration of holes. The O interstitial and anti-site are high in formation energy and/or are electrically inactive and, hence, are unlikely to play essential roles in electrical properties. Overall defect energetics suggests a preference for the native donor-type defects over acceptor-type defects in ZnO. The O vacancy, Zn interstitial and Zn anti-site have very low formation energies when the Fermi level is low. Therefore, these defects are expected to be sources of a strong hole compensation in p-type ZnO. For the n-type doping, the compensation of carrier electrons by the native acceptor-type defects can be mostly suppressed when O-poor chemical potential conditions, i.e. low O partial pressure conditions, are chosen during crystal growth and/or doping. PMID:27877390

  19. Synthesis of nanocrystalline NiO/ZnO heterostructured composite powders by sol-gel auto combustion method and their characterizations

    NASA Astrophysics Data System (ADS)

    Tangcharoen, Thanit; Klysubun, Wantana; Kongmark, Chanapa

    2018-03-01

    Nanocrystalline NiO/ZnO heterostructured composite powders were prepared by the sol-gel auto combustion method, based on nickel and zinc nitrate precursors and using diethanolamine (DEA) as novel fuel. The composition of different NiO and ZnO ratios, ranging from 100/0, 95/5, 90/10, 80/20, 60/40, 50/50, 40/60, 20/80, 10/90, 5/95 to 0/100, were studied. The structural, chemical bonding, morphological, optical, and fluorescence properties including the local atomic structure of each calcined sample were systematically investigated by means of X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), UV-visible diffuse reflectance spectroscopy (UV-DRS), photoluminescence (PL) spectroscopy, and synchrotron X-ray absorption spectroscopy (XAS), respectively. For the ZnO concentration below 20%, both XRD and Raman spectroscopy results revealed only the NiO phase. This conformed to the observation of Zn K-edge and Ni K-edge X-ray absorption near edge structure (XANES). The Zn ions found in the samples of low ZnO concentration exhibited six-fold coordination with oxygen atoms rather than the four-fold coordination found in the wurtzite (WZ) structure of ZnO. In contrast, the Ni ions which are found in the samples of low NiO concentration (≤10%) are coordinated both tetrahedrally and octahedrally by four or six oxygen atoms, respectively, rather than the six-fold coordination which is usually observed for Ni ions in the rock salt (RS) form of NiO. All analytical results obtained from experimental XANES spectra were verified by the theoretical calculation of absorption spectra using the FEFF9.7 code. The UV-DRS results showed that there was an increase in the reflectance efficiency for both infrared and visible light conditions as the content of ZnO increases; meanwhile, the values for the energy gap (Eg) of all composite samples were higher than that of pure NiO and ZnO. In addition, the PL spectra revealed major blue emission bands observed at 490 nm when the excitation wavelength was 300 nm. As the ZnO phase developed, a variety of violet emission bands occurred within the range of 400 nm-450 nm, which was obviously related to the change in Eg. The intrinsic defects occurred in the NiO/ZnO composite powders were probably responsible for this phenomenon.

  20. Optimized hydrogen sensing characteristic of Pd/ZnO nanoparticles based Schottky diode on glass substrate

    NASA Astrophysics Data System (ADS)

    Chandra, Lalit; Sahu, Praveen Kumar; Dwivedi, R.; Mishra, V. N.

    2017-10-01

    The present work deals with the development of the Pd/ZnO naoparticles based sensor for detection of hydrogen (H2) gas at relatively low temperature (75-110 °C). Pd/ZnO Schottky diode was fabricated by ZnO nanoparticles based thin film on glass substrate using sol-gel spin coating technique. These ZnO nanoparticles have been characterized by x-ray diffraction (XRD), atomic force microscopy (AFM), energy dispersive x-ray spectroscope (EDS), and field emission scanning electron microscope (FE-SEM) which reveals the ZnO film having particles size in the range of ~25 to ~110 nm with ~52.73 nm surface roughness. Gas dependent diode parameters such as barrier height and ideality factor have been evaluated upon exposure of H2 gas concentration in the range from 200-2000 ppm over the temperature range from 75 to 110 °C. The sensitivity of the Pd/ZnO sensor has been studied in terms of change in diode forward current upon exposure to H2 gas. Experimental result shows the optimized sensitivity ~246.22% for H2 concentration of 2000 ppm at temperature 90 °C. The hydrogen sensing mechanism has been explained by surface and subsurface adsorption of H2 molecules on Pd surface; subsequently, dissociation of H2 molecules into H  +  H atoms and diffusion to trap sites (oxygen ions) available on ZnO surface, resulting in formation of dipole moments at Pd/ZnO interface. The variation in the sensitivity, response and recovery time with temperature of Pd/ZnO sensor has also been studied.

  1. Electrical degradation of double-Schottky barrier in ZnO varistors

    NASA Astrophysics Data System (ADS)

    He, Jinliang; Cheng, Chenlu; Hu, Jun

    2016-03-01

    Researches on electrical degradation of double-Schottky barrier in ZnO varistors are reviewed, aimed at the constitution of a full picture of universal degradation mechanism within the perspective of defect. Recent advances in study of ZnO materials by atomic-scale first-principles calculations are partly included and discussed, which brings to our attention distinct cognition on the native point defects and their profound impact on degradation.

  2. Electrical degradation of double-Schottky barrier in ZnO varistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Jinliang, E-mail: hejl@tsinghua.edu.cn; Cheng, Chenlu; Hu, Jun

    2016-03-15

    Researches on electrical degradation of double-Schottky barrier in ZnO varistors are reviewed, aimed at the constitution of a full picture of universal degradation mechanism within the perspective of defect. Recent advances in study of ZnO materials by atomic-scale first-principles calculations are partly included and discussed, which brings to our attention distinct cognition on the native point defects and their profound impact on degradation.

  3. N doped ZnO and ZnO nanorods based p-n homojunction fabricated by ion implantation

    NASA Astrophysics Data System (ADS)

    Chakraborty, Mohua; Thangavel, R.; Asokan, K.

    2018-05-01

    Nitrogen (N) doped and undoped Zinc Oxide (ZnO) nanorod p-n homojunctions were fabricated by ion implantation method. The structural and optical characterizations showed that the N atoms doped into the ZnO crystal lattice. The UV-Vis absorption spectra revealed shift in optical absorption edge towards higher wavelength with ion implantation on ZnO, which attributed N acceptor levels above the valence band. The current-voltage (I-V) measurements exhibit a typical semiconductor rectification characteristic indicating the electrical conductivity of the N-doped ZnO nanorod have p-type conductivity. Moreover, a high photocurrent response has been observed with these p-n homojunctions.

  4. Simulation of field-induced molecular dissociation in atom-probe tomography: Identification of a neutral emission channel

    NASA Astrophysics Data System (ADS)

    Zanuttini, David; Blum, Ivan; Rigutti, Lorenzo; Vurpillot, François; Douady, Julie; Jacquet, Emmanuelle; Anglade, Pierre-Matthieu; Gervais, Benoit

    2017-06-01

    We investigate the dynamics of dicationic metal-oxide molecules under large electric-field conditions, on the basis of ab initio calculations coupled to molecular dynamics. Applied to the case of ZnO2 + in the field of atom probe tomography (APT), our simulation reveals the dissociation into three distinct exit channels. The proportions of these channels depend critically on the field strength and on the initial molecular orientation with respect to the field. For typical field strength used in APT experiments, an efficient dissociation channel leads to emission of neutral oxygen atoms, which escape detection. The calculated composition biases and their dependence on the field strength show remarkable consistency with recent APT experiments on ZnO crystals. Our work shows that bond breaking in strong static fields may lead to significant neutral atom production, and therefore to severe elemental composition biases in measurements.

  5. Spatial atomic layer deposition of ZnO/TiO{sub 2} nanolaminates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Rong, E-mail: rongchen@mail.hust.edu.cn; Lin, Ji-Long; He, Wen-Jie

    2016-09-15

    Spatial atomic layer deposition (S-ALD) is a potential high-throughput manufacturing technique offering fast and large scale ultrathin films deposition. Here, an S-ALD system with modular injectors is introduced for fabricating binary oxides and their nanolaminates. By optimizing the deposition conditions, both ZnO and TiO{sub 2} films demonstrate linear growth and desired surface morphology. The as-deposited ZnO film has high carrier mobility, and the TiO{sub 2} film shows suitable optical transmittance and band gap. The ZnO/TiO{sub 2} nanolaminates are fabricated by alternating substrate movement between each S-ALD modular units of ZnO and TiO{sub 2}. The grazing incidence x-ray diffraction spectra ofmore » nanolaminates demonstrating the signature peaks are weaker for the same thickness nanolaminates with more bilayers, suggesting tuning nanolaminates from crystalline to amorphous. Optical transmittances of ZnO/TiO{sub 2} laminates are enhanced with the increase of the bilayers' number in the visible range. Refractive indices of nanolaminates increase with the thickness of each bilayer decreasing, which demonstrates the feasibility of obtaining desired refractive indices by controlling the bilayer number. The electronic properties, including mobility, carrier concentration, and conductivity, are also tunable with different bilayers.« less

  6. Enhancement of piezoelectric constants induced by cation-substitution and two-dimensional strain effects on ZnO predicted by density functional perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Kaoru, E-mail: n-kaoru@criepi.denken.or.jp; Higuchi, Sadao; Ohnuma, Toshiharu

    2016-03-21

    Using density functional perturbation theory, we investigated the effect of various substitutional dopant elements and in-plane strain on the piezoelectric properties of ZnO. The piezoelectric stress constant e{sub 33} of doped ZnO was found to depend on the formal charge of the substitutional dopant. By decomposing the piezoelectric stress constant e{sub 33} into the individual atomic contributions, the change in the piezoelectric properties was found to originate from a change in the coupling between the atomic displacement and the strain. Furthermore, we found that in-plane tensile strain along the a axis, which is specific to the thin film, can enhancemore » the piezoelectric constant of ZnO. A phase transition from wurtzite to h-BN-type structure was found to occur with increasing in-plane tensile. The piezoelectric strain constant d{sub 33} was predicted to reach ∼200 pC/N for 2.78 at. % V-substituted ZnO at 5.5% in-plane strain, just before the phase transition. These theoretical results suggest that the piezoelectric constant of ZnO can be enhanced by controlling the in-plane strain via selection of the substrate material and dopant element.« less

  7. Simultaneous multielement atomic absorption spectrometry with graphite furnace atomization

    NASA Astrophysics Data System (ADS)

    Harnly, James M.; Miller-Ihli, Nancy J.; O'Haver, Thomas C.

    The extended analytical range capability of a simultaneous multielement atomic absorption continuum source spectrometer (SIMAAC) was tested for furnace atomization with respect to the signal measurement mode (peak height and area), the atomization mode (from the wall or from a platform), and the temperature program mode (stepped or ramped atomization). These parameters were evaluated with respect to the shapes of the analytical curves, the detection limits, carry-over contamination and accuracy. Peak area measurements gave more linear calibration curves. Methods for slowing the atomization step heating rate, the use of a ramped temperature program or a platform, produced similar calibration curves and longer linear ranges than atomization with a stepped temperature program. Peak height detection limits were best using stepped atomization from the wall. Peak area detection limits for all atomization modes were similar. Carry-over contamination was worse for peak area than peak height, worse for ramped atomization than stepped atomization, and worse for atomization from a platform than from the wall. Accurate determinations (100 ± 12% for Ca, Cu, Fe, Mn, and Zn in National Bureau of Standards' Standard Reference Materials Bovine Liver 1577 and Rice Flour 1568 were obtained using peak area measurements with ramped atomization from the wall and stepped atomization from a platform. Only stepped atomization from a platform gave accurate recoveries for K. Accurate recoveries, 100 ± 10%, with precisions ranging from 1 to 36 % (standard deviation), were obtained for the determination of Al, Co, Cr, Fe, Mn, Mo, Ni. Pb, V and Zn in Acidified Waters (NBS SRM 1643 and 1643a) using stepped atomization from a platform.

  8. Self Assembled Semiconductor Quantum Dots for Spin Based All Optical and Electronic Quantum Computing

    DTIC Science & Technology

    2008-04-17

    resolution TEM images (see Fig. 10) also show that ZnO nanocrystals nucleate on Fig. 9 SEM images of ZnO nanorods grown on (a) Si(001) and b) GaN/Al2O3... electrodeposition in a non-aqueous solution. The solution consisted of ZnClO4 (10.5 gm), LiClO4 (2.5 gm) and dimethyl sulfoxide (250 ml). The porous...valent Zn atoms which were selectively electrodeposited within the pores since they offered the least impedance path for the ac current

  9. Synthesis, crystal structure and spectroscopic and electrochemical properties of bridged trisbenzoato copper-zinc heterobinuclear complex of 2,2‧-bipyridine

    NASA Astrophysics Data System (ADS)

    Koch, Angira; Kumar, Arvind; Singh, Suryabhan; Borthakur, Rosmita; Basumatary, Debajani; Lal, Ram A.; Shangpung, Sankey

    2015-03-01

    The synthesis of the heterobinuclear copper-zinc complex [CuZn(bz)3(bpy)2]ClO4 (bz = benzoate) from benzoic acid and bipyridine is described. Single crystal X-ray diffraction studies of the heterobinuclear complex reveals the geometry of the benzoato bridged Cu(II)-Zn(II) centre. The copper or zinc atom is pentacoordinate, with two oxygen atoms from bridging benzoato groups and two nitrogen atoms from one bipyridine forming an approximate plane and a bridging oxygen atom from a monodentate benzoate group. The Cu-Zn distance is 3.345 Å. The complex is normal paramagnetic having μeff value equal to 1.75 BM, ruling out the possibility of Cu-Cu interaction in the structural unit. The ESR spectrum of the complex in CH3CN at RT exhibit an isotropic four line spectrum centred at g = 2.142 and hyperfine coupling constants Aav = 63 × 10-4 cm-1, characteristic of a mononuclear square-pyramidal copper(II) complexes. At LNT, the complex shows an isotropic spectrum with g|| = 2.254 and g⊥ = 2.071 and A|| = 160 × 10-4 cm-1. The Hamiltonian parameters are characteristic of distorted square pyramidal geometry. Cyclic voltammetric studies of the complex have indicated quasi-reversible behaviour in acetonitrile solution.

  10. Mulliken's populations and electron momentum densities of transition metal tungstates using LCAO scheme

    NASA Astrophysics Data System (ADS)

    Meena, B. S.; Heda, N. L.; Ahuja, B. L.

    2018-05-01

    We have computed the Mulliken's populations (MP) and electron momentum densities (EMDs) for TMWO4 (TM=Co, Ni, Cu and Zn) using linear combination of atomic orbitals (LCAO) scheme. The latest hybridization of Hartree-Fock (HF) and density functional theory (DFT) under the framework of LCAO approximations (so called WC1LYP and B1WC) have been employed. The theoretical EMDs have been compared with the available experimental data which show that WC1LYP scheme gives slightly better agreement with the experimental data for all the reported tungstates. Such trend shows the applicability of Lee-Yang-Parr (LYP) correlation energies within hybrid approximations in predicting the electronic properties of these compounds. Further, the MP data show the charge transfer from Co/Ni/Cu/Zn and W to O atoms. In addition, we have plotted the total EMDs at the same normalized area which show almost similar type of localization of 3d electrons (in real space) of Cu and Zn, which is lower than that of Ni and Co atoms in their tungstates environment.

  11. Synthesis of ZnO Nanocrystal-Graphene Composite by Mechanical Milling and Sonication-Assisted Exfoliation

    NASA Astrophysics Data System (ADS)

    Arora, Sweety; Srivastava, Chandan

    2017-02-01

    A ZnO nanocrystal-graphene composite was synthesized by a two-step method involving mechanical milling and sonication-assisted exfoliation. Zn metal powder was first ball-milled with graphite powder for 30 h in water medium. This ball-milled mixture was then subjected to exfoliation by sonication in the presence of sodium lauryl sulfate surfactant to produce graphene decorated with spherical agglomerates of ultrafine nanocrystalline ZnO. The presence of a few layers of graphene was confirmed by Raman spectroscopy and atomic force microscopy measurements. The size, phase identity and composition of the ZnO nanocrystals was determined by transmission electron microscopy measurements.

  12. Synthesis, structural and optical properties of silver nanoparticles uniformly decorated ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Zhang, Ke-Xin; Wen, Xing; Yao, Cheng-Bao; Li, Jin; Zhang, Meng; Li, Qiang-Hua; Sun, Wen-Jun; Wu, Jia-Da

    2018-04-01

    Silver (Ag) nanoparticles decorated Zinc oxide (A-ZnO) nanowires have been successfully synthesized by two-step chemical vapour deposition and magnetron sputtering method. The X-ray diffraction patterns revealed their hexagonal wurtzite structure. SEM images indicated the Ag nanoparticles are distributed uniformly on the surface of A-ZnO nanowires. By extending the sputtering time, the atomic percent of Ag increased gradually. Moreover, the photoluminescence results demonstrated two major emission peaks for the A-ZnO nanowires. Where, the visible emission peaks were stronger than those of unmodified ZnO nanowires. These studies promise their potential applications in multifunctional optical devices.

  13. Defects in paramagnetic Co-doped ZnO films studied by transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovacs, Andras; Ney, A.; Duchamp, Martial

    2013-12-23

    We have studied planar defects in epitaxial Co:ZnO dilute magnetic semiconductor thin films deposited on c-plane sapphire (Al2O3) and the Co:ZnO/Al2O3 interface structure at atomic resolution using aberration-corrected transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS). Comparing Co:ZnO samples deposited by pulsed laser deposition and reactive magnetron sputtering, both exhibit extrinsic stacking faults, incoherent interface structures, and compositional variations within the first 3-4 Co:ZnO layers at the interface.. In addition, we have measured the local strain which reveals the lattice distortion around the stacking faults.

  14. Synthesis of nanocrystalline ZnO thin films by electron beam evaporation

    NASA Astrophysics Data System (ADS)

    Kondkar, V.; Rukade, D.; Bhattacharyya, V.

    2018-05-01

    Nanocrystalline ZnO thin films have potential for applications in variety of optoelectronic devices. In the present study, nanocrystalline thin films of ZnO are grown on fused silica substrate using electron beam (e-beam) evaporation technique. Phase identification is carried out using Glancing angle X-ray diffraction (GAXRD) and Raman spectroscopy. Ultraviolet-Visible (UV-Vis) spectroscopic analysis is carried out to calculate energy band gap of the ZnO film. Surface morphology of the film is investigated using atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). Highly quality nanocrystalline thin films of hexagonal wurtzite ZnO are synthesized using e-beam evaporation technique.

  15. Copper-Zinc-Tin-Sulfur Thin Film Using Spin-Coating Technology

    PubMed Central

    Yeh, Min-Yen; Lei, Po-Hsun; Lin, Shao-Hsein; Yang, Chyi-Da

    2016-01-01

    Cu2ZnSnS4 (CZTS) thin films were deposited on glass substrates by using spin-coating and an annealing process, which can improve the crystallinity and morphology of the thin films. The grain size, optical gap, and atomic contents of copper (Cu), zinc (Zn), tin (Sn), and sulfur (S) in a CZTS thin film absorber relate to the concentrations of aqueous precursor solutions containing copper chloride (CuCl2), zinc chloride (ZnCl2), tin chloride (SnCl2), and thiourea (SC(NH2)2), whereas the electrical properties of CZTS thin films depend on the annealing temperature and the atomic content ratios of Cu/(Zn + Sn) and Zn/Sn. All of the CZTS films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDXS), Raman spectroscopy, and Hall measurements. Furthermore, CZTS thin film was deposited on an n-type silicon substrate by using spin-coating to form an Mo/p-CZTS/n-Si/Al heterostructured solar cell. The p-CZTS/n-Si heterostructured solar cell showed a conversion efficiency of 1.13% with Voc = 520 mV, Jsc = 3.28 mA/cm2, and fill-factor (FF) = 66%. PMID:28773647

  16. Effects of Sm addition on electromagnetic interference shielding property of Mg-Zn-Zr alloys

    NASA Astrophysics Data System (ADS)

    Yang, Chubin; Pan, Fusheng; Chen, Xianhua; Luo, Ning

    2017-06-01

    The electromagnetic interference (EMI) shielding of Sm-containing magnesium alloys in the 30-1500 MHz testing frequency range was investigated by coaxial cable method. The results demonstrated that Mg-3Zn alloys displayed the best electromagnetic shielding property. When 0.5 wt% of Zr was added for crystal grain refinement, the shielding effectiveness (SE) was apparently reduced. The addition of the rare earth element Sm in ZK magnesium alloys can improve the electromagnetic interference shielding of magnesium alloys. The main reason for the differences in electromagnetic interference shielding of magnesium alloys was the change in conductivity. The addition of Zr in Mg-Zn alloys can refine the grains and consequently improve the grain boundary area significantly. Therefore, the number of irregularly arranged atoms at the grain boundaries increased, decreasing the conductivity of magnesium alloys and leading to a decrease in the electromagnetic interference shielding. Following the Sm addition, the Mg-Zn-Sm phase was precipitated at the grain boundaries and in cores. The precipitation of Sm-containing rare earth phases could consume the solid-soluted Zn atoms within the Mg, resulting in an increase in electrical conductivity and electromagnetic interference shielding improvement.

  17. Ultrathin ZnO interfacial passivation layer for atomic layer deposited ZrO2 dielectric on the p-In0.2Ga0.8As substrate

    NASA Astrophysics Data System (ADS)

    Liu, Chen; Lü, Hongliang; Yang, Tong; Zhang, Yuming; Zhang, Yimen; Liu, Dong; Ma, Zhenqiang; Yu, Weijian; Guo, Lixin

    2018-06-01

    Interfacial and electrical properties were investigated on metal-oxidesemiconductor capacitors (MOSCAPs) fabricated with bilayer ZnO/ZrO2 films by atomic layer deposition (ALD) on p-In0.2Ga0.8As substrates. The ZnO passivated In0.2Ga0.8As MOSCAPs have exhibited significantly improved capacitance-voltage (C-V) characteristics with the suppressed "stretched out" effect, increased accumulation capacitance and reduced accumulation frequency dispersion as well as the lower gate leakage current. In addition, the interface trap density (Dit) estimated by the Terman method was decreased dramatically for ZnO passivated p-In0.2Ga0.8As. The inherent mechanism is attributed to the fact that an ultrathin ZnO IPL employed by ALD prior to ZrO2 dielectric deposition can effectively suppress the formation of defect-related low-k oxides and As-As dimers at the interface, thus effectively improving the interface quality by largely removing the border traps aligned near the valence band edge of the p-In0.2Ga0.8As substrate.

  18. Interface Engineering through Atomic Layer Deposition towards Highly Improved Performance of Dye-Sensitized Solar Cells

    PubMed Central

    Lu, Hao; Tian, Wei; Guo, Jun; Li, Liang

    2015-01-01

    A composite photoanode comprising ultralong ZnO nanobelts and TiO2 nanoparticles was prepared and its performance in dye-sensitized solar cells (DSSCs) was optimized and compared to the photoanode consisting of conventional TiO2 nanoparticles. The ultralong ZnO nanobelts were synthesized in high yield by a facile solution approach at 90 oC followed by annealing at 500 oC. The effect of the ratio of ZnO nanobelts to TiO2 nanoparticles on the light scattering, specific surface area, and interface recombination were investigated. An optimum amount of ZnO nanobelts enhanced the photon-conversion efficiency by 61.4% compared to that of the conventional TiO2 nanoparticles. To further reduce the recombination rate and increase the carrier lifetime, Atomic Layer Deposition (ALD) technique was utilized to coat a continuous TiO2 film surrounding the ZnO nanobelts and TiO2 nanoparticles, functioning as a barrier-free access of all electrons to conductive electrodes. This ALD treatment improved the interface contact within the whole photoanode system, finally leading to significant enhancement (137%) in the conversion efficiency of DSSCs. PMID:26238737

  19. Magnesium effects on CdSe self-assembled quantum dot formation on Zn xCd yMg 1-x-ySe layers

    NASA Astrophysics Data System (ADS)

    Noemi Perez-Paz, M.; Lu, Hong; Shen, Aidong; Jean Mary, F.; Akins, Daniel; Tamargo, Maria C.

    2006-09-01

    Optical and morphological studies are used to investigate the effects of chemical composition and, in particular, the magnesium content of the Zn xCd yMg 1-x-ySe barrier layers on the size, density and uniformity of CdSe self-assembled quantum dots (QDs). A reduction of the uncapped QD size, as well as a blue shift of the capped QD photoluminescence peak position by increasing Mg concentration in the Zn xCd yMg 1-x-ySe barrier has been demonstrated by changing the Mg cell temperature during growth. In addition, a more uniform and more densely packed QD layer has been observed with an increase of the MgSe fraction in the Zn xCd yMg 1-x-ySe barrier layer using three-dimensional topographic atomic force microscopy images of the surface of uncapped QDs. Results point to Mg as a chemical factor that induces QD formation, either by increasing the density of atomic steps or/and by changing the energy of the Zn xCd yMg 1-x-ySe surface.

  20. Observation of dopant-profile independent electron transport in sub-monolayer TiO{sub x} stacked ZnO thin films grown by atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, D., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Misra, P., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Joshi, M. P.

    2016-01-18

    Dopant-profile independent electron transport has been observed through a combined study of temperature dependent electrical resistivity and magnetoresistance measurements on a series of Ti incorporated ZnO thin films with varying degree of static-disorder. These films were grown by atomic layer deposition through in-situ vertical stacking of multiple sub-monolayers of TiO{sub x} in ZnO. Upon decreasing ZnO spacer layer thickness, electron transport smoothly evolved from a good metallic to an incipient non-metallic regime due to the intricate interplay of screening of spatial potential fluctuations and strength of static-disorder in the films. Temperature dependent phase-coherence length as extracted from the magnetotransport measurementmore » revealed insignificant role of inter sub-monolayer scattering as an additional channel for electron dephasing, indicating that films were homogeneously disordered three-dimensional electronic systems irrespective of their dopant-profiles. Results of this study are worthy enough for both fundamental physics perspective and efficient applications of multi-stacked ZnO/TiO{sub x} structures in the emerging field of transparent oxide electronics.« less

  1. Effect of copper and nickel doping on the optical and structural properties of ZnO

    NASA Astrophysics Data System (ADS)

    Muǧlu, G. Merhan; Sarıtaş, S.; ćakıcı, T.; Şakar, B.; Yıldırım, M.

    2017-02-01

    The present study is focused on the Cu doped ZnO and Ni doped ZnO dilute magnetic semiconductor thin films. ZnO:Cu and ZnO:Ni thin films were grown by Chemically Spray Pyrolysis (CSP) method on glass substrates. Optical analysis of the films was done spectral absorption and transmittance measurements by UV-Vis double beam spectrophotometer technique. The structure, morphology, topology and elemental analysis of ZnO:Cu and ZnO:Ni dilute magnetic thin films were investigated by X-ray diffraction (XRD), Raman Analysis, field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM) techniques, respectively. Also The magnetic properties of the ZnO:Ni thin film was investigated by vibrating sample magnetometer (VSM) method. VSM measurements of ZnO:Ni thin film showed that the ferromagnetic behavior.

  2. Quaternary rare-earth arsenides REAg{sub 1−x}Zn{sub y}As{sub 2} (RE=La–Nd, Sm, Gd–Dy) with tetragonal SrZnBi{sub 2}- and HfCuSi{sub 2}-type structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramachandran, Krishna K.; Genet, Clément; Mar, Arthur, E-mail: arthur.mar@ualberta.ca

    2015-11-15

    Reactions of the elements at 800 °C with the nominal compositions REAg{sub 1−x}Zn{sub x}As{sub 2} resulted in quaternary arsenides REAg{sub 1−x}Zn{sub y}As{sub 2} in which the combined Ag and Zn content deviates increasingly from unity in the Zn-richer phases, reflecting the transition from the fully stoichiometric ternary silver-containing arsenides REAgAs{sub 2} to the substoichiometric zinc-containing ones REZn{sub 0.67}As{sub 2}. Powder X-ray diffraction analysis indicated SrZnBi{sub 2}-type (space group I4/mmm, Z=4; RE=La, Ce) and HfCuSi{sub 2}-type structures (space group P4/nmm, Z=2; RE=Pr, Nd, Sm, Gd, Tb, Dy). Single-crystal X-ray diffraction analysis performed on LaAg{sub 0.5}Zn{sub 0.5}As{sub 2}, PrAg{sub 0.5}Zn{sub 0.5}As{sub 2},more » and NdAg{sub 0.5}Zn{sub 0.5}As{sub 2} indicated that the Ag and Zn atoms are disordered within metal-centred tetrahedra and provided no evidence for distortion of the square As nets. The small electron excess tolerated in these quaternary arsenides and the absence of distortion in the square nets can be traced to the occurrence of As–As states that are only weakly antibonding near the Fermi level. PrAg{sub 0.5}Zn{sub 0.5}As{sub 2} and NdAg{sub 0.5}Zn{sub 0.5}As{sub 2} are paramagnetic with effective magnetic moments consistent with trivalent RE species. - Graphical abstract: On proceeding from fully stoichiometric REAgAs{sub 2} to substoichiometric REZn{sub 0.67}As{sub 2}, deficiencies in Zn content become increasingly prominent in quaternary arsenides REAg{sub 1−x}Zn{sub y}As{sub 2}. - Highlights: • Ag and Zn atoms are disordered within quaternary arsenides REAg{sub 1−x}Zn{sub y}As{sub 2}. • In Zn-richer phases, Zn deficiencies develop to counteract electron excess. • Distortions of square As net appear to be suppressed.« less

  3. Two-dimensional wide-band-gap II-V semiconductors with a dilated graphene-like structure

    NASA Astrophysics Data System (ADS)

    Zhang, Xue-Jing; Liu, Bang-Gui

    2016-12-01

    Since the advent of graphene, two-dimensional (2D) materials have become very attractive and there is growing interest in exploring new 2D materials beyond graphene. Here, through density-functional theory (DFT) calculations, we predict 2D wide-band-gap II-V semiconductor materials of M3X2 (M = Zn, Cd and X = N, P, As) with a dilated graphene-like honeycomb structure. In this structure the group-V X atoms form two X-atomic planes symmetrically astride the centering group-IIB M atomic plane. Our DFT calculation shows that 2D Zn3N2, Zn3P2 and Zn3As2 have direct band gaps of 2.87, 3.81 and 3.55 eV, respectively, and 2D Cd3N2, Cd3P2 and Cd3As2 exhibit indirect band gaps of 2.74, 3.51 and 3.29 eV, respectively. Each of the six 2D materials is shown to have effective carrier (either hole or electron) masses down to 0.03m 0-0.05m 0. The structural stability and feasibility of experimental realization of these 2D materials has been shown in terms of DFT phonon spectra and total energy comparison with related existing bulk materials. On the experimental side, there already are many similar two-coordinate structures of Zn and other transition metals in various organic materials. Therefore, these 2D semiconductors can enrich the family of 2D electronic materials and may have promising potential for achieving novel transistors and optoelectronic devices.

  4. Nonisovalent Si-III-V and Si-II-VI alloys: Covalent, ionic, and mixed phases

    DOE PAGES

    Kang, Joongoo; Park, Ji -Sang; Stradins, Pauls; ...

    2017-07-13

    In this paper, nonequilibrium growth of Si-III-V or Si-II-VI alloys is a promising approach to obtaining optically more active Si-based materials. We propose a new class of nonisovalent Si 2AlP (or Si 2ZnS) alloys in which the Al-P (or Zn-S) atomic chains are as densely packed as possible in the host Si matrix. As a hybrid of the lattice-matched parent phases, Si2AlP (or Si2ZnS) provides an ideal material system with tunable local chemical orders around Si atoms within the same composition and structural motif. Here, using first-principles hybrid functional calculations, we discuss how the local chemical orders affect the electronicmore » and optical properties of the nonisovalent alloys.« less

  5. Highly transparent and thermal-stable silver nanowire conductive film covered with ZnMgO by atomic-layer-deposition

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Huang, Dongchen; Li, Min; Xu, Hua; Zou, Jianhua; Tao, Hong; Peng, Junbiao; Xu, Miao

    2017-12-01

    Solution-processed silver nanowires (AgNWs) have been considered as a promising material for next generation flexible transparent conductive electrodes. However AgNWs films have several intrinsic drawbacks, such as thermal stability and storage stability. Herein, we demonstrate a laminated ZnO/MgO (ZnMgO, ZMO) as a protective layer on the AgNWs films using atomic layer deposition (ALD). The fabricated films exhibited a low sheet resistance of 16 Ω/sq with high transmittance of 91% at 550 nm, an excellent thermal stability and bending property. The ZMO film grows perpendicularly on the surface of the AgNWs, making a perfect coverage of bulk silver nanowires and junction, which can effectively prompt the electrical transport behavior and enhance stability of the silver nanowires network.

  6. LED Die-Bonded on the Ag/Cu Substrate by a Sn-BiZn-Sn Bonding System

    NASA Astrophysics Data System (ADS)

    Tang, Y. K.; Hsu, Y. C.; Lin, E. J.; Hu, Y. J.; Liu, C. Y.

    2016-12-01

    In this study, light emitting diode (LED) chips were die-bonded on a Ag/Cu substrate by a Sn-BixZn-Sn bonding system. A high die-bonding strength is successfully achieved by using a Sn-BixZn-Sn ternary system. At the bonding interface, there is observed a Bi-segregation phenomenon. This Bi-segregation phenomenon solves the problems of the brittle layer-type Bi at the joint interface. Our shear test results show that the bonding interface with Bi-segregation enhances the shear strength of the LED die-bonding joints. The Bi-0.3Zn and Bi-0.5Zn die-bonding cases have the best shear strength among all die-bonding systems. In addition, we investigate the atomic depth profile of the deposited Bi-xZn layer by evaporating Bi-xZn E-gun alloy sources. The initial Zn content of the deposited Bi-Zn alloy layers are much higher than the average Zn content in the deposited Bi-Zn layers.

  7. Structural and optical characterization of ZnO/Mg(x)Zn(1-x)O multiple quantum wells based random laser diodes.

    PubMed

    Jiang, Qike; Zheng, He; Wang, Jianbo; Long, Hao; Fang, Guojia

    2012-12-01

    Two kinds of laser diodes (LDs) comprised of ZnO/Mg(x)Zn(1-x)O (ZnO/MZO) multiple quantum wells (MQWs) grown on GaN (MQWs/GaN) and Si (MQWs/Si) substrates, respectively, have been constructed. The LD with MQWs/GaN exhibits ultraviolet random lasing under electrical excitation, while that with MQWs/Si does not. In the MQWs/Si, ZnO/MZO MQWs consist of nanoscaled crystallites, and the MZO layers undergo a phase separation of cubic MgO and hexagonal ZnO. Moreover, the Mg atom predominantly locates in the MZO layers along with a significant aggregation at the ZnO/MZO interfaces; in sharp contrast, the ZnO/MZO MQWs in the MQWs/GaN show a well-crystallized structure with epitaxial relationships among GaN, MZO, and ZnO. Notably, Mg is observed to diffuse into the ZnO well layers. The structure-optical property relationship of these two LDs is further discussed.

  8. ANTS-anchored Zn-Al-CO3-LDH particles as fluorescent probe for sensing of folic acid

    NASA Astrophysics Data System (ADS)

    Liu, Pengfei; Liu, Dan; Liu, Yanhuan; Li, Lei

    2016-09-01

    A novel fluorescent nanosensor for detecting folic acid (FA) in aqueous media has been developed based on 8-aminonaphthalene-1,3,6-trisulfonate (ANTS) anchored to the surface of Zn-Al-CO3-layered double hydroxides (LDH) particles. The nanosensor showed high fluorescence intensity and good photostability due to a strong coordination interaction between surface Zn2+ ions of Zn-Al-CO3-LDH and N atoms of ANTS, which were verified by result of X-ray photoelectron spectroscopy (XPS). ANTS-anchored on the surface of Zn-Al-CO3-LDH restricted the intra-molecular rotation leading to ANTS-anchored J-type aggregation emission enhancement. ANTS-anchored Zn-Al-CO3-LDH particles exhibited highly sensitive and selective response to FA over other common metal ions and saccharides present in biological fluids. The proposed mechanism was that oxygen atoms of -SO3 groups in ANTS-anchored on the surface of Zn-Al-CO3-LDH were easily collided by FA molecules to form potential hydrogen bonds between ANTS-anchored and FA molecules, which could effectively quench the ANTS-anchored fluorescence. Under the simulated physiological conditions (pH of 7.4), the fluorescence quenching was fitted to Stern-Volmer equation with a linear response in the concentration range of 1 μM to 200 μM with a limit of detection of 0.1 μM. The results indicate that ANTS-anchored Zn-Al-CO3-LDH particles can afford a very sensitive system for the sensing FA in aqueous solution.

  9. Magnesium, zinc, arsenic, selenium and platinum urinary excretion from cancer patients of Antofagasta region, Chile: multi-metal approach

    PubMed Central

    Pizarro, I; Rivera, L; Ávila, J; Cortés, P

    2016-01-01

    Objectives To evaluate the short-term 24 h urinary excretion of platinum, arsenic, selenium, magnesium and zinc in patients with lung cancer and with cancer other than lungs treated with cisplatin or/and carboplatin from Antofagasta, Chile. Design Urine measurements of Pt and Se were made by inductively coupled plasma optical emission spectrometry, As by hydride-generation atomic absorption spectrometry and Mg and Zn by means of flame furnace atomic absorption spectrometry. Setting All samples were provided by the Oncological Centre of Antofagasta Regional Hospital (Region of Antofagasta, Chile). Participants Ninety 24-h urine samples from cancer patients after the infusion of Pt-base drugs and 10 24-h urine samples from cancer patients not treated with metal-base drugs. Main outcome measures Concentrations of Pt, Se, As, Zn and Mg coming from 24-h urine samples. Results Pt excreted was not significantly different between patients with lung and other cancers treated with cisplatin. The excretion of Mg, Zn and Se was greater than As. Then, Pt favours the excretion of essential elements. For lung and other types of cancers treated with drugs without Pt, excretion of Mg, Zn and Se was also greater than that of As, suggesting antagonism Mg-Zn-Se–anti-cancer drug relationship. Conclusions The amounts of Mg, Zn and Se excreted were greater than for As either with or without Pt-containing drugs, suggesting antagonist Mg-Zn-Se–anti-cancer drug relationships. The excretion of As, Mg, Zn and Se is induced by Pt. Knowledge obtained can contribute to understanding the arsenic cancer mechanism and the As-Mg-Zn-Se-Pt inter-element association for lung cancer and other types of cancer. PMID:27757244

  10. Behavior and impact of sulfur incorporation in Zinc Oxysulfide alloy grown by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Ma, Jingrui; Tang, Kun; Mao, Haoyuan; Ye, Jiandong; Zhu, Shunming; Xu, Zhonghua; Yao, Zhengrong; Gu, Shulin; Zheng, Youdou

    2018-03-01

    Highly mismatched ZnO1-xSx:N alloy films with various x were deposited on c-plane sapphire substrates by a near-equilibrium method, metal-organic chemical vapor deposition. The sulfur concentration in the films could be tuned by changing the flow rate of H2S during the growth process. The films that could maintain single phase have an upper limit for x ∼ 0.15, which is smaller than the x values obtained from other non-equilibrium-grown samples (x ∼ 0.23). When x > 0.15, phases other than the wurtzite ZnO (W-ZnO) one appeared. Those phases were ascribed to the sulfur-diluted W-ZnO like phase, low x W-ZnO like phase, and high x W-ZnS like phase. The S contents in different phase has been determined by using Vegard's law and the X-ray photoelectron spectroscopy. Meanwhile, the compositional dependence of the bandgap energy in the ZnO1-xSx alloyed material has been investigated and studied comparing with other reported results. The dispersed bowing parameter b and the mechanism of the phase separation in samples grown by both the near-equilibrium method and the non-equilibrium one have also been discussed based on the difference of the atomic radius and electronegativity of the oxygen and sulfur atoms. Furthermore, the Raman and photoluminescence spectra have shown that the sulfur incorporation may suppress zinc interstitials related defects, while the oxygen vacancies related defects may be easily formed at the same time. These results indicate that ZnO1-xSx films could be beneficial to the realization of p-type doping in ZnO, although no obvious p-type characteristic has been attained in the work yet.

  11. Synthesis, characterization, crystal structure, DNA- and HSA-binding studies of a dinuclear Schiff base Zn(II) complex derived from 2-hydroxynaphtaldehyde and 2-picolylamine

    NASA Astrophysics Data System (ADS)

    Kazemi, Zahra; Rudbari, Hadi Amiri; Mirkhani, Valiollah; Sahihi, Mehdi; Moghadam, Majid; Tangestaninejad, Sharam; Mohammadpoor-Baltork, Iraj

    2015-09-01

    A tridentate Schiff base ligand NNO donor (HL: 1-((E)-((pyridin-2-yl)methylimino)methyl)naphthalen-2-ol was synthesized from condensation of 2-hydroxynaphtaldehyde and 2-picolylamine. Zinc complex, Zn2L2(NO3)2, was prepared from reaction of Zn(NO3)2 and HL at ambient temperature. The ligand and complex were characterized by FT-IR, 1H NMR, 13C NMR and elemental analysis (CHN). Furthermore, the structure of dinuclear Zn(II) complex was determined by single crystal X-ray analysis. The complex, Zn2L2(NO3)2, is centrosymmetric dimer in which deprotonated phenolates bridge the two Zn(II) atoms and link the two halves of the dimer. In the structure, Zinc(II) ions have a highly distorted six-coordinate structure bonded to two oxygen atoms from a bidentate nitrate group, the pyridine nitrogen, an amine nitrogen and phenolate oxygens. The interaction of dinuclear Zn(II) complex with fish sperm DNA (FS-DNA) and HSA was investigated under physiological conditions using fluorescence quenching, UV-Vis spectroscopy, molecular dynamics simulation and molecular docking methods. The estimated binding constants for the DNA-complex and HSA-complex were (3.60 ± 0.18) × 104 M-1 and (1.35 ± 0.24) × 104 M-1, respectively. The distance between dinuclear Zn(II) complex and HSA was obtained based on the Förster's theory of non-radiative energy transfer. Molecular docking studies revealed the binding of dinuclear Zn(II) complex to the major groove of FS-DNA and IIA site of protein by formation of hydrogen bond, π-cation and hydrophobic interactions.

  12. Synthesis, characterization, and chiral properties of CoIII2AgI3 pentanuclear, CoIII4ZnII4 octanuclear, and CoIII mononuclear complexes with aza-capped hexadentate-N3S3 thiolate ligands: crystal structures of.

    PubMed

    Tokuda, K; Okamoto, K; Konno, T

    2000-01-24

    The reaction of an S-bridged Co2(III)Ag3(I) pentanuclear complex, [Ag3[Co(aet)3]2][BF4]3 (aet = NH2CH2CH2S-), with paraformaldehyde in basic acetonitrile, followed by adding aqueous ammonia, produced an aza-capped Co2(III)-Ag3(I) complex, [Ag3[Co(L)]2]3+ ([1]3+) (L = N(CH2NHCH2CH2S-)3). The crystal structure of [1]3+ was determined by X-ray crystallography. [1][PF6]3 x H2O, empirical formula C18H44Ag3Co2F18N8OP3S6, crystallizes in the tetragonal space group 142m with a = 13.012(1) A, c = 24.707(2) A, and Z = 4. In [1]3+ the two aza-capped [Co(L)] units are linked by three Ag(I) atoms, such that the two Co(III) atoms are encapsulated in a macrobicyclic metallocage, [Ag3(I)(L)2]3-. [1]3+ was converted to an aza-capped Co4(III)Zn4(II) octanuclear complex, [Zn4O[Co(L)]4]6+ ([2]6+), by reaction with I- in the presence of Zn2+ and ZnO in water. The crystal structure of [2]6+ was also determined by X-ray crystallography. [2][PF6]6 x 8H2O, empirical formula C36H100Co4F36N16O9P6S12Zn4, crystallizes in the monoclinic space group P2(1/n) with a = 14.33(7) A, b = 25.67(10) A, c = 24.83(6) A, beta = 101.3(3) degrees , and Z = 4. In [2]6+ each of four [Co(L)] units is bound to each trigonal Zn3(II) face of the tetrahedral [Zn4(II)O]6+ core, such that each Co(III) atom is encapsulated in a macrobicyclic [Zn4(II)O(L)] fragment. Treatment of [2]6+ with a basic aqueous solution resulted in a cleavage of the Zn-S bonds to produce an aza-capped Co(III) mononuclear complex, [Co(L)] ([3]), from which [1]3+ is readily reproduced by the reaction with Ag+ in water. All the reactions were found to proceed with retention of the absolute configuration (delta or lambda) of the Co(III) chiral centers; deltadelta-[1]3+, deltadeltadeltadelta-[2]6+, and A-[3] were derived from deltadelta-[Ag3[Co(aet)3]2]3+. The contributions to circular dichroism (CD) from the triple helicity in [1]3+, besides from the asymmetric N and S donor atoms and the Co(III) chiral centers in [1]3+ and [2]6+, were estimated by comparing the CD spectra of deltadelta-[1]3+, deltadeltadeltadelta-[2]6+, and delta-[3].

  13. Internal Stress and Microstructure of Zinc Oxide Films Sputter-Deposited with Carbon Dioxide Gas

    NASA Astrophysics Data System (ADS)

    Toru Ashida,; Kazuhiro Kato,; Hideo Omoto,; Atsushi Takamatsu,

    2010-06-01

    The internal stress and microstructure of ZnO films were investigated as a function of carbon dioxide (CO2) gas flow ratio [CO2/(O2+CO2)] during sputter deposition. The internal stress of the ZnO films decreased with increasing CO2 gas flow ratio. The carbon concentration in the films deposited using CO2 gas increased by up to 4.0 at. %. Furthermore, the ZnO films deposited without CO2 gas exhibited a preferred orientation of (002); however, the C-doped ZnO films exhibited random orientations. These findings suggest that the C atoms incorporated in the ZnO crystal lattice induce this random orientation, thereby relaxing the internal stress of C-doped ZnO films.

  14. First-principles study on half-metallic ferromagnetic properties of Zn1- x V x Se ternary alloys

    NASA Astrophysics Data System (ADS)

    Khatta, Swati; Tripathi, S. K.; Prakash, Satya

    2017-09-01

    The spin-polarised density functional theory along with self-consistent plane-wave pseudopotential is used to investigate the half-metallic ferromagnetic properties of ternary alloys Zn1- x V x Se. The generalized gradient approximation is used for exchange-correlation potential. The equilibrium lattice constants, bulk modulus, and its derivatives are calculated. The calculated spin-polarised energy-band structures reveal that these alloys are half-metallic for x = 0.375 and 0.50 and nearly half-metallic for other values of x. The estimated direct and indirect bandgaps may be useful for the magneto-optical absorption experiments. It is found that there is strong Zn 4s, Se 4p, and V 3d orbital hybridization in the conduction bands of both the spins, while Se 4p and V 3d orbital hybridization predominates in the valence bands of both the spins. The s, p-d, and p-d orbital hybridization reduces the local magnetic moment of V atoms and small local magnetic moments are produced on Zn and Se atoms which get coupled with V atoms in ferromagnetic and antiferromagnetic phases, respectively. The conduction and valence-band-edge splittings and exchange constants predict the ferromagnetism in these alloys. The conduction band-impurity (s and p-d) exchange interaction is more significant for ferromagnetism in these alloys than the valence band-impurity (p-d) exchange interaction.

  15. Enhanced photocatalytic property of hybrid graphitic C3N4 and graphitic ZnO nanocomposite: the effects of interface and doping

    NASA Astrophysics Data System (ADS)

    Cui, Jie; Liang, Shuhua; Sun, Shaodong; Zheng, Xing; Zhang, Jianmin

    2018-05-01

    Using first-principles calculations, we present a potential new way to improve the photocatalytic efficiency of the g-C3N4 sheet by coupling with the g-ZnO sheet to form heterojunction nanostructure followed by the addition of N atom at an atomic level. The result indicates the g-C3N4/g-ZnO heterojunction is a staggered band alignment (type II) structure and a polarized field is generated by the electrons transfer across the interface simultaneously, which facilitate the separation of e‑–h+ pairs and promote the photocatalytic activity. Furthermore, a great difference in energy levels between redox potentials and band edges of the C3N4/g-ZnO nanocomposite ensures that the water splitting/CO2 reduction reaction is energetically favored. In addition, through the incorporation of nitrogen dopant, the g-C3N4/N-g-ZnO nanocomposite displays desirable properties. The N-derived doping peak causes a decrease of the band gap width of the g-C3N4/g-ZnO nanocomposite, resulting in the enhanced optical absorption from UV into visible light. This theoretical predictions provide insightful outlooks in understanding the effects of interface and doping on the enhanced photocatalytic property of the g-C3N4/g-ZnO nanocomposites, which will assist in engineering highly efficient g-C3N4-based photocatalysts.

  16. Study of silicon doped with zinc ions and annealed in oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Privezentsev, V. V., E-mail: v.privezentsev@mail.ru; Kirilenko, E. P.; Goryachev, A. N.

    2017-02-15

    The results of studies of the surface layer of silicon and the formation of precipitates in Czochralski n-Si (100) samples implanted with {sup 64}Zn{sup +} ions with an energy of 50 keV and a dose of 5 × 10{sup 16} cm{sup –2} at room temperature and then oxidized at temperatures from 400 to 900°C are reported. The surface is visualized using an electron microscope, while visualization of the surface layer is conducted via profiling in depth by elemental mapping using Auger electron spectroscopy. The distribution of impurity ions in silicon is analyzed using a time-of-flight secondary-ion mass spectrometer. Using X-raymore » photoelectron spectroscopy, the chemical state of atoms of the silicon matrix and zinc and oxygen impurity atoms is studied, and the phase composition of the implanted and annealed samples is refined. After the implantation of zinc, two maxima of the zinc concentration, one at the wafer surface and the other at a depth of 70 nm, are observed. In this case, nanoparticles of the Zn metal phase and ZnO phase, about 10 nm in dimensions, are formed at the surface and in the surface layer. After annealing in oxygen, the ZnO · Zn{sub 2}SiO{sub 4} and Zn · ZnO phases are detected near the surface and at a depth of 50 nm, respectively.« less

  17. Improved Heterojunction Quality in Cu2O-based Solar Cells Through the Optimization of Atmospheric Pressure Spatial Atomic Layer Deposited Zn1-xMgxO

    PubMed Central

    Ievskaya, Yulia; Hoye, Robert L. Z.; Sadhanala, Aditya; Musselman, Kevin P.; MacManus-Driscoll, Judith L.

    2016-01-01

    Atmospheric pressure spatial atomic layer deposition (AP-SALD) was used to deposit n-type ZnO and Zn1-xMgxO thin films onto p-type thermally oxidized Cu2O substrates outside vacuum at low temperature. The performance of photovoltaic devices featuring atmospherically fabricated ZnO/Cu2O heterojunction was dependent on the conditions of AP-SALD film deposition, namely, the substrate temperature and deposition time, as well as on the Cu2O substrate exposure to oxidizing agents prior to and during the ZnO deposition. Superficial Cu2O to CuO oxidation was identified as a limiting factor to heterojunction quality due to recombination at the ZnO/Cu2O interface. Optimization of AP-SALD conditions as well as keeping Cu2O away from air and moisture in order to minimize Cu2O surface oxidation led to improved device performance. A three-fold increase in the open-circuit voltage (up to 0.65 V) and a two-fold increase in the short-circuit current density produced solar cells with a record 2.2% power conversion efficiency (PCE). This PCE is the highest reported for a Zn1-xMgxO/Cu2O heterojunction formed outside vacuum, which highlights atmospheric pressure spatial ALD as a promising technique for inexpensive and scalable fabrication of Cu2O-based photovoltaics. PMID:27500923

  18. Enhanced photocatalytic property of hybrid graphitic C3N4 and graphitic ZnO nanocomposite: the effects of interface and doping.

    PubMed

    Cui, Jie; Liang, Shuhua; Sun, Shaodong; Zheng, Xing; Zhang, Jianmin

    2018-05-02

    Using first-principles calculations, we present a potential new way to improve the photocatalytic efficiency of the g-C 3 N 4 sheet by coupling with the g-ZnO sheet to form heterojunction nanostructure followed by the addition of N atom at an atomic level. The result indicates the g-C 3 N 4 /g-ZnO heterojunction is a staggered band alignment (type II) structure and a polarized field is generated by the electrons transfer across the interface simultaneously, which facilitate the separation of e - -h + pairs and promote the photocatalytic activity. Furthermore, a great difference in energy levels between redox potentials and band edges of the C 3 N 4 /g-ZnO nanocomposite ensures that the water splitting/CO 2 reduction reaction is energetically favored. In addition, through the incorporation of nitrogen dopant, the g-C 3 N 4 /N-g-ZnO nanocomposite displays desirable properties. The N-derived doping peak causes a decrease of the band gap width of the g-C 3 N 4 /g-ZnO nanocomposite, resulting in the enhanced optical absorption from UV into visible light. This theoretical predictions provide insightful outlooks in understanding the effects of interface and doping on the enhanced photocatalytic property of the g-C 3 N 4 /g-ZnO nanocomposites, which will assist in engineering highly efficient g-C 3 N 4 -based photocatalysts.

  19. Microstructure, electronic structure and optical properties of combustion synthesized Co doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Srinatha, N.; Nair, K. G. M.; Angadi, Basavaraj

    2015-10-01

    We report on the microstructure, electronic structure and optical properties of nanocrystalline Zn1-xCoxO (x=0, 0.01, 0.03, 0.05 and 0.07) particles prepared by solution combustion technique using L-Valine as fuel. The detailed structural and micro-structural studies were carried out by XRD, HRTEM and TEM-SAED respectively, which confirms the formation of single phased, nano-sized particles. The electronic structure was determined through NEXAFS and atomic multiplet calculations/simulations performed for various symmetries and valence states of 'Co' to determine the valance state, symmetry and crystal field splitting. The correlations between the experimental NEXAFS spectra and atomic multiplet simulations, confirms that, 'Co' present is in the 2+ valence state and substituted at the 'Zn' site in tetrahedral symmetry with crystal field splitting, 10Dq =-0.6 eV. The optical properties and 'Co' induced defect formation of as-synthesized materials were examined by using diffuse reflectance and Photoluminescence spectroscopy, respectively. Red-shift of band gap energy (Eg) was observed in Zn1-xCoxO samples due to Co (0.58 Å) substitution at Zn (0.60 Å) site of the host ZnO. Also, in PL spectra, a prominent pre-edge peak corresponds to ultraviolet (UV) emission around 360-370 nm was observed with Co concentration along with near band edge emission (NBE) of the wide band gap ZnO and all samples show emission in the blue region.

  20. Band gap modulation of mono and bi-layer hexagonal ZnS under transverse electric field and bi-axial strain: A first principles study

    NASA Astrophysics Data System (ADS)

    Rai, D. P.; Kaur, Sumandeep; Srivastava, Sunita

    2018-02-01

    Density functional theory has been employed to study the electronic and mechanical properties of the monolayer and bilayer ZnS. AB stacked ZnS bilayer is found to be energetically more favorable over the AA stacked ZnS bilayer. The electronic bandgap decreases on moving from monolayer to bilayer. Application of positive transverse electric field in AA/AB stacked bilayers leads to a semiconductor to metal transition at 1.10 V/Å. Reversed polarity of electric field, on the other hand, leads to an asymmetric behavior of the bandgap for AB stacking while the behavior of the bandgap in AA stacking is polarity independent. The strong dependency of bandgap on polarity of electric field in AB stacked ZnS bilayer is due to the balancing of external field with the induced internal field which arises due the electronegativity and heterogeneity in the arrangements of atoms. The electronic structure varies with the variation of applied biaxial strain (compression/tensile). We report an increase in band gap in both single and double layers under compression up to -8.0%, which can be attributed to greater superposition of atomic orbitals (Zn-d and S-p hybridization). We expect that our results may stimulate more theoretical and experimental work on hexagonal multi-layers of ZnS employing external field (temperature, pressure, field etc.) for future applications of our present work.

  1. Ultrahigh-resolution crystal structures of Z-DNA in complex with Mn(2+) and Zn(2+) ions.

    PubMed

    Drozdzal, Pawel; Gilski, Miroslaw; Kierzek, Ryszard; Lomozik, Lechoslaw; Jaskolski, Mariusz

    2013-06-01

    X-ray crystal structures of the spermine(4+) form of the Z-DNA duplex with the self-complementary d(CG)3 sequence in complexes with Mn(2+) and Zn(2+) cations have been determined at the ultrahigh resolutions of 0.75 and 0.85 Å, respectively. Stereochemical restraints were only used for the sperminium cation (in both structures) and for nucleotides with dual conformation in the Zn(2+) complex. The Mn(2+) and Zn(2+) cations at the major site, designated M(2+)(1), bind at the N7 position of G6 by direct coordination. The coordination geometry of this site was octahedral, with complete hydration shells. An additional Zn(2+)(2) cation was bis-coordinated in a tetrahedral fashion by the N7 atoms of G10 and G12 from a symmetry-related molecule. The coordination distances of Zn(2+)(1) and Zn(2+)(2) to the O6 atom of the guanine residues were 3.613 (6) and 3.258 (5) Å, respectively. Moreover, a chloride ion was also identified in the coordination sphere of Zn(2+)(2). Alternate conformations were observed in the Z-DNA-Zn(2+) structure not only at internucleotide linkages but also at the terminal C3'-OH group of G12. The conformation of the sperminium chain in the Z-DNA-Mn(2+) complex is similar to the spermine(4+) conformation in analogous Z-DNA-Mg(2+) structures. In the Z-DNA-Zn(2+) complex the sperminium cation is disordered and partially invisible in electron-density maps. In the Z-DNA-Zn(2+) complex the sperminium cation only interacts with the phosphate groups of the Z-DNA molecules, while in the Z-DNA-Mn(2+) structure it forms hydrogen bonds to both the phosphate groups and DNA bases.

  2. Structural and electronic properties of CdSe/ZnS and ZnS/CdSe core/shell nanowires via first principles study

    NASA Astrophysics Data System (ADS)

    Rehman, Shafiq Ur; Li, H. M.; Ding, Z. J.

    2018-05-01

    First principles calculations have been performed to predict the structural stability and electronic structures of hydrogen passivated wurtzite CdSe/ZnS and ZnS/CdSe core/shell nanowires (CSNWs) in the [0001] direction. The calculated binding energy shows that ZnS/CdSe CSNWs are more stable than CdSe/ZnS CSNWs and the stability of ZnS/CdSe CSNWs increases with increasing the thickness of ZnS shell. The modulated electronic band gap demonstrates an increase when the size of both CSNWs is reduced, as a result of the quantum confinement effect. The core-to-shell chemical composition of atoms shows that a strong composition effect also exists in these CSNWs, which in turn affects their electronic properties. Our simulated results show that the photoemission spectra of the CSNWs can be significantly improved by tuning the energy gap of CSNWs.

  3. Toward blue emission in ZnO based LED

    NASA Astrophysics Data System (ADS)

    Viana, Bruno; Pauporté, Thierry; Lupan, Oleg; Le Bahers, Tangui; Ciofini, Ilaria

    2012-03-01

    The bandgap engineering of ZnO nanowires by doping is of great importance for tunable light emitting diode (LED) applications. We present a combined experimental and computational study of ZnO doping with Cd or Cu atoms in the nanomaterial. Zn1-xTMxO (TM=Cu, Cd) nanowires have been epitaxially grown on magnesium-doped p-GaN by electrochemical deposition. The Zn1-xTMxO/p-GaN heterojunction was integrated in a LED structure. Nanowires act as the light emitters and waveguides. At room temperature, TM-doped ZnO based LEDs exhibit low-threshold emission voltage and electroluminescence emission shifted from ultraviolet to violet-blue spectral region compared to pure ZnO LEDs. The emission wavelength can be tuned by changing the transition metal (TM) content in the ZnO nanomaterial and the shift is discussed, including insights from DFT computational investigations.

  4. Au/Zn Contacts to rho-InP: Electrical and Metallurgical Characteristics and the Relationship Between Them

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.; Korenyi-Both, Andras L.

    1994-01-01

    The metallurgical and electrical behavior of Au/Zn contacting metallization on p-type InP was investigated as a function of the Zn content in the metallization. It was found that ohmic behavior can be achieved with Zn concentrations as small as 0.05 atomic percent Zn. For Zn concentrations between 0.1 and 36 at. percent, the contact resistivity rho(sub c) was found to be independent of the Zn content. For low Zn concentrations the realization of ohmic behavior was found to require the growth of the compound Au2P3 at the metal-InP interface. The magnitude of rho(sub c) is shown to be very sensitive to the growth rate of the interfacial Au2P3 layer. The possibility of exploiting this sensitivity to provide low resistance contacts while avoiding the semiconductor structural damage that is normally attendant to contact formation is discussed.

  5. Investigations on the structural, morphological, optical and electrical properties of undoped and nanosized Zn-doped CdS thin films prepared by a simplified spray technique

    NASA Astrophysics Data System (ADS)

    Anbarasi, M.; Nagarethinam, V. S.; Balu, A. R.

    2014-12-01

    CdS and Zn-doped CdS (CdS:Zn) thin films have been deposited on glass substrates by spray pyrolysis technique using a perfume atomizer. The influence of Zn incorporation on the structural, morphological, optical and electrical properties of the films has been studied. All the films exhibit hexagonal phase with (0 0 2) as preferential orientation. A shift of the (0 0 2) diffraction peak towards higher diffraction angle is observed with increased Zn doping. The optical studies confirmed that the transparency increases as Zn doping level increases and the film coated with 2 at.% Zn doping has the maximum transmittance of about 90 %. The sheet resistance (R sh ) decreases as the Zn-doping level increases and a minimum value of 1.113 × 103 Ω/sq is obtained for the film coated with 8 at.% Zn dopant. The CdS film coated with 8 at.% Zn dopant has the best structural, morphological and electrical properties.

  6. Synthesis, structure, and characterization of two Zn(II) complex containing two-dimensional bilayer structure

    NASA Astrophysics Data System (ADS)

    Zhang, Meili; Ren, Yixia; Chen, Xiaoli

    2014-10-01

    Two new Zn(II) complexes, [Zn2(L)(H2O)3]ṡH2O (1) and [Zn3(HL)2(bpp)2(Hbpp)2]ṡ10H2Oṡ2ClO4 (2) (H4L = cis,cis,cis,cis-1,2,3,4-cyclopentanetracarboxylic acid, bpp = 1,3-bis(4-pyridyl)propane), have been synthesized and characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction techniques. The structure indicates that the complex 1 crystallizes in triclinic, space group Pī, in which, the four carboxylate groups of L ligand adopt μ2-η1:η0, μ2-η1:η1, μ1-η1:η1 coordination modes, respectively, bridging Zn(II) atoms to generate a (4,6)-connected 2D bilayer network. The structure indicates that the complex 2 crystallizes in monoclinic, space group C2/c, in which, three deprotonated carboxylate groups of L ligand adopt uniform μ1-η1:η0 coordination mode linking Zn(II) atoms to form a 1D polymeric ribbon, the bpp ligands further extend such ribbon giving rised to a (3,4)-connected 2D bilayer network. The most striking feature of 1 and 2 is that both of bilayer networks contain 1D solvent channel, where water molecules are located. In additional, luminescent properties of two complexes have also been studied.

  7. Detection of isolated protein-bound metal ions by single-particle cryo-STEM.

    PubMed

    Elad, Nadav; Bellapadrona, Giuliano; Houben, Lothar; Sagi, Irit; Elbaum, Michael

    2017-10-17

    Metal ions play essential roles in many aspects of biological chemistry. Detecting their presence and location in proteins and cells is important for understanding biological function. Conventional structural methods such as X-ray crystallography and cryo-transmission electron microscopy can identify metal atoms on protein only if the protein structure is solved to atomic resolution. We demonstrate here the detection of isolated atoms of Zn and Fe on ferritin, using cryogenic annular dark-field scanning transmission electron microscopy (cryo-STEM) coupled with single-particle 3D reconstructions. Zn atoms are found in a pattern that matches precisely their location at the ferroxidase sites determined earlier by X-ray crystallography. By contrast, the Fe distribution is smeared along an arc corresponding to the proposed path from the ferroxidase sites to the mineral nucleation sites along the twofold axes. In this case the single-particle reconstruction is interpreted as a probability distribution function based on the average of individual locations. These results establish conditions for detection of isolated metal atoms in the broader context of electron cryo-microscopy and tomography.

  8. Detection of isolated protein-bound metal ions by single-particle cryo-STEM

    PubMed Central

    Elad, Nadav; Bellapadrona, Giuliano; Houben, Lothar; Sagi, Irit; Elbaum, Michael

    2017-01-01

    Metal ions play essential roles in many aspects of biological chemistry. Detecting their presence and location in proteins and cells is important for understanding biological function. Conventional structural methods such as X-ray crystallography and cryo-transmission electron microscopy can identify metal atoms on protein only if the protein structure is solved to atomic resolution. We demonstrate here the detection of isolated atoms of Zn and Fe on ferritin, using cryogenic annular dark-field scanning transmission electron microscopy (cryo-STEM) coupled with single-particle 3D reconstructions. Zn atoms are found in a pattern that matches precisely their location at the ferroxidase sites determined earlier by X-ray crystallography. By contrast, the Fe distribution is smeared along an arc corresponding to the proposed path from the ferroxidase sites to the mineral nucleation sites along the twofold axes. In this case the single-particle reconstruction is interpreted as a probability distribution function based on the average of individual locations. These results establish conditions for detection of isolated metal atoms in the broader context of electron cryo-microscopy and tomography. PMID:28973937

  9. Effect of growth temperature on the epitaxial growth of ZnO on GaN by ALD

    NASA Astrophysics Data System (ADS)

    Särkijärvi, Suvi; Sintonen, Sakari; Tuomisto, Filip; Bosund, Markus; Suihkonen, Sami; Lipsanen, Harri

    2014-07-01

    We report on the epitaxial growth of ZnO on GaN template by atomic layer deposition (ALD). Diethylzinc (DEZn) and water vapour (H2O) were used as precursors. The structure and the quality of the grown ZnO layers were studied with scanning electron microscope (SEM), X-ray diffraction (XRD), photoluminescence (PL) measurements and positron annihilation spectroscopy. The ZnO films were confirmed epitaxial, and the film quality was found to improve with increasing deposition temperature in the vicinity of the threshold temperature of two dimensional growth. We conclude that high quality ZnO thin films can be grown by ALD. Interestingly only separate Zn-vacancies were observed in the films, although ZnO thin films typically contain fairly high density of surface pits and vacancy clusters.

  10. Exploring a wider range of Mg–Ca–Zn metallic glass as biocompatible alloys using combinatorial sputtering

    DOE PAGES

    Li, Jinyang; Gittleson, Forrest S.; Liu, Yanhui; ...

    2017-06-30

    In order to bypass the limitation of bulk metallic glasses fabrication, we synthesized thin film metallic glasses to study the corrosion characteristics of a wide atomic% composition range, Mg(35.9-63%)Ca(4.1-21%)Zn(17.9-58.3%), in simulated body fluid. We highlight a clear relationship between Zn content and corrosion current such that Zn-medium metallic glasses exhibit minimum corrosion. In addition, we found higher Zn content leads to a poor in vitro cell viability. Finally, these results showcase the benefit of evaluating a larger alloy compositional space to probe the limits of corrosion resistance and prescreen for biocompatible applications.

  11. Synthesis and spectroscopic studies on the new Schiff base derived from the 1:2 condensation of 2,6-diformyl-4-methylphenol with 5-aminouracil (BDF5AU) and its transition metal complexes. Influence on biologically active peptides-regulating aminopeptidases.

    PubMed

    Hueso-Ureña, Francisco; Illán-Cabeza, Nuria A; Moreno-Carretero, Miguel N; Martínez-Martos, José M; Ramírez-Expósito, María J

    2003-04-01

    The synthesis, spectroscopic (IR, 1H and 13C NMR, UV-Vis-NIR, EPR), magnetic measurements and biological studies of a number of complexes of Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Au(III) and Hg(II) of the Schiff base derived from the 1:2 condensation of 2,6-diformyl-4-methylphenol and 5-aminouracil, ((5-[[(3-[[(2,4-dioxopyrimidin-5(1H,3H)-yl)imino]methyl]-2-hydroxy-5-methylphenyl)methylene]amino]pyrimidine-2,4(1H,3H)-dione, hereafter denoted as BDF5AU) are reported. In all cases, the complexes appear to be monomeric. The deprotonated ligand in the phenolic oxygen atom shows a tridentate coordination mode through the two azomethine nitrogen atoms and the phenolic oxygen atom. The coordination of the neutral ligand takes place through the phenolic oxygen atom and one azomethine nitrogen atom and the carbonylic oxygen atom in fourth position of one uracil ring. The biological properties of some perchlorate complexes on the activity of some neutral, acid, basic and omega aminopeptidases (AP) are assayed, demonstrating a general inhibitory effect. Neutral and basic AP are mainly inhibited by Cu(II), Ni(II) and Cd(II) complexes, although tyrosyl-AP is activated by Zn(II) complex. Glutamyl-AP but not aspartyl-AP is inhibited by all the complexes assayed excepting Zn(II) complex. Finally, omega AP is inhibited by Ni(II) and Cd(II) complexes. Copyright 2003 Elsevier Science Inc.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jae-Min; Kim, Doyoung; Kim, Hyungjun

    We investigated the ultraviolet (UV) light photostability of plasma-enhanced and thermal atomic layer deposition of ZnO thin film transistor (TFT). The negative shift of threshold voltage was similarly observed in both cases by UV exposure due to the increment of carrier concentration. Additionally, the transfer curves of TFT using thermal ALD ZnO:N active layer were exhibited recovery characteristics.

  13. Effects of Rapid Thermal Annealing on the Structural, Electrical, and Optical Properties of Zr-Doped ZnO Thin Films Grown by Atomic Layer Deposition.

    PubMed

    Wu, Jingjin; Zhao, Yinchao; Zhao, Ce Zhou; Yang, Li; Lu, Qifeng; Zhang, Qian; Smith, Jeremy; Zhao, Yongming

    2016-08-13

    The 4 at. % zirconium-doped zinc oxide (ZnO:Zr) films grown by atomic layer deposition (ALD) were annealed at various temperatures ranging from 350 to 950 °C. The structural, electrical, and optical properties of rapid thermal annealing (RTA) treated ZnO:Zr films have been evaluated to find out the stability limit. It was found that the grain size increased at 350 °C and decreased between 350 and 850 °C, while creeping up again at 850 °C. UV-vis characterization shows that the optical band gap shifts towards larger wavelengths. The Hall measurement shows that the resistivity almost keeps constant at low annealing temperatures, and increases rapidly after treatment at 750 °C due to the effect of both the carrier concentration and the Hall mobility. The best annealing temperature is found in the range of 350-550 °C. The ZnO:Zr film-coated glass substrates show good optical and electrical performance up to 550 °C during superstrate thin film solar cell deposition.

  14. Effects of Rapid Thermal Annealing on the Structural, Electrical, and Optical Properties of Zr-Doped ZnO Thin Films Grown by Atomic Layer Deposition

    PubMed Central

    Wu, Jingjin; Zhao, Yinchao; Zhao, Ce Zhou; Yang, Li; Lu, Qifeng; Zhang, Qian; Smith, Jeremy; Zhao, Yongming

    2016-01-01

    The 4 at. % zirconium-doped zinc oxide (ZnO:Zr) films grown by atomic layer deposition (ALD) were annealed at various temperatures ranging from 350 to 950 °C. The structural, electrical, and optical properties of rapid thermal annealing (RTA) treated ZnO:Zr films have been evaluated to find out the stability limit. It was found that the grain size increased at 350 °C and decreased between 350 and 850 °C, while creeping up again at 850 °C. UV–vis characterization shows that the optical band gap shifts towards larger wavelengths. The Hall measurement shows that the resistivity almost keeps constant at low annealing temperatures, and increases rapidly after treatment at 750 °C due to the effect of both the carrier concentration and the Hall mobility. The best annealing temperature is found in the range of 350–550 °C. The ZnO:Zr film-coated glass substrates show good optical and electrical performance up to 550 °C during superstrate thin film solar cell deposition. PMID:28773816

  15. Structure and spectroscopic properties of neutral and cationic tetratomic [C,H,N,Zn] isomers: A theoretical study

    NASA Astrophysics Data System (ADS)

    Redondo, Pilar; Largo, Antonio; Vega-Vega, Álvaro; Barrientos, Carmen

    2015-05-01

    The structure and spectroscopic parameters of the most relevant [C,H,N,Zn] isomers have been studied employing high-level quantum chemical methods. For each isomer, we provide predictions for their molecular structure, thermodynamic stabilities as well as vibrational and rotational spectroscopic parameters which could eventually help in their experimental detection. In addition, we have carried out a detailed study of the bonding situations by means of a topological analysis of the electron density in the framework of the Bader's quantum theory of atoms in molecules. The analysis of the relative stabilities and spectroscopic parameters suggests two linear isomers of the neutral [C,H,N,Zn] composition, namely, cyanidehydridezinc HZnCN (1Σ) and hydrideisocyanidezinc HZnNC (1Σ), as possible candidates for experimental detections. For the cationic [C,H,N,Zn]+ composition, the most stable isomers are the ion-molecule complexes arising from the direct interaction of the zinc cation with either the nitrogen or carbon atom of either hydrogen cyanide or hydrogen isocyanide, namely, HCNZn+ (2Σ) and HCNZn+ (2Σ).

  16. Mg Content Dependence of EML-PVD Zn-Mg Coating Adhesion on Steel Strip

    NASA Astrophysics Data System (ADS)

    Jung, Woo Sung; Lee, Chang Wook; Kim, Tae Yeob; De Cooman, Bruno C.

    2016-09-01

    The effect of coating thickness and Mg concentration on the adhesion strength of electromagnetic levitation physical vapor deposited Zn-Mg alloy coatings on steel strip was investigated. The phase fraction of Zn, Mg2Zn11, and MgZn2 was determined for a coating Mg concentration in the 0 to 15 wt pct range. Coatings with a Mg content less than 5 pct consisted of an Zn and Mg2Zn11 phase mixture. The coatings showed good adhesion strength and ductile fracture behavior. Coatings with a higher Mg concentration, which consisted of a Mg2Zn11 and MgZn2 phase mixture, had a poor adhesion strength and a brittle fracture behavior. The adhesion strength of PVD Zn-Mg alloy coatings was found to be related to the pure Zn phase fraction. The effect of coating thickness on adhesion strength was found to be negligible. The microstructure of the interface between steel and Zn-Mg alloy coatings was investigated in detail by electron microscopy, electron diffraction, and atom probe tomography.

  17. Tunable UV- and Visible-Light Photoresponse Based on p-ZnO Nanostructures/n-ZnO/Glass Peppered with Au Nanoparticles.

    PubMed

    Hsu, Cheng-Liang; Lin, Yu-Hong; Wang, Liang-Kai; Hsueh, Ting-Jen; Chang, Sheng-Po; Chang, Shoou-Jinn

    2017-05-03

    UV- and visible-light photoresponse was achieved via p-type K-doped ZnO nanowires and nanosheets that were hydrothermally synthesized on an n-ZnO/glass substrate and peppered with Au nanoparticles. The K content of the p-ZnO nanostructures was 0.36 atom %. The UV- and visible-light photoresponse of the p-ZnO nanostructures/n-ZnO sample was roughly 2 times higher than that of the ZnO nanowires. The Au nanoparticles of various densities and diameter sizes were deposited on the p-ZnO nanostructures/n-ZnO samples by a simple UV photochemical reaction method yielding a tunable and enhanced UV- and visible-light photoresponse. The maximum UV and visible photoresponse of the Au nanoparticle sample was obtained when the diameter size of the Au nanoparticle was approximately 5-35 nm. On the basis of the localized surface plasmon resonance effect, the UV, blue, and green photocurrent/dark current ratios of Au nanoparticle/p-ZnO nanostructures/n-ZnO are ∼1165, ∼94.6, and ∼9.7, respectively.

  18. Characterization of ternary bivalent metal complexes with bis(2-hydroxyethyl)iminotris(hydroxymethy)methane (Bis?Tris) and the comparison of five crystal structures of Bis?Tris complexes*1

    NASA Astrophysics Data System (ADS)

    Inomata, Yoshie; Gochou, Yoshihiro; Nogami, Masanobu; Howell, F. Scott; Takeuchi, Toshio

    2004-09-01

    Eleven bivalent metal complexes with bis(2-hydroxyethyl)iminotris(hydroxymethy)methane (Bis-Tris:hihm): [M(hihm)(H 2O)]SO 4· nH 2O (M: Co, Ni, Cu, Zn), [MCl(hihm)]Cl· nH 2O (M: Co, Ni, Cu), and [M(HCOO)(hihm)](HCOO) (M: Co, Ni, Cu, Zn) have been prepared and characterized by using their infrared absorption and powder diffuse reflection spectra, magnetic susceptibility, thermal analysis and powder X-ray diffraction analysis. The crystal structures of [Ni(hihm)(H 2O)]SO 4·H 2O ( 2), [Cu(hihm)(H 2O)]SO 4 ( 3), [NiCl(hihm)]Cl·H 2O ( 6), [CuCl(hihm)]Cl ( 7) and [Co(HCOO)(hihm)](HCOO) ( 8) have been determined by single crystal X-ray diffraction analysis. The crystals of [Ni(hihm)(H 2O)]SO 4·H 2O ( 2) and [Cu(hihm)(H 2O)]SO 4 ( 3) are each orthorhombic with the space group P2 12 12 1 and Pna2 1. For both complexes, the metal atom is in a distorted octahedral geometry, ligated by four hydroxyl oxygen atoms, a nitrogen atom and a water molecule. [NiCl(hihm)]Cl·H 2O ( 6) is monoclinic with the space group P2 1/ n. For complex ( 6), the nickel atom is in a distorted octahedral geometry, ligated by four hydroxyl oxygen atoms, a nitrogen atom and a chloride ion. [CuCl(hihm)]Cl ( 7) is orthorhombic with the space group P2 12 12 1. Although in this copper(II) complex the copper atom is ligated by six atoms, it is more reasonable to think that the copper atom is in a trigonal bipyramidal geometry coordinated with five atoms: three hydroxyl oxygen atoms, a nitrogen atom and a chloride ion if the bond distances and angles surrounding the copper atom are taken into consideration. [Co(HCOO)(hihm)](HCOO) ( 8) is monoclinic with the space group P2 1. In cobalt(II) complex ( 8), the cobalt atom is in a distorted octahedral geometry, ligated by four hydroxyl oxygen atoms, a nitrogen atom and an oxygen atom of a formate ion. The structure of complex ( 8) is the same as the structure of [NiCl(hihm)]Cl·H 2O ( 6) except for the formate ion coordinating instead of the chloride ion. [M(hihm)(H 2O)]SO 4·H 2O (M: Co, Zn) ( 1, 4), [CoCl(hihm)]Cl·H 2O ( 5) and [M(HCOO)(hihm)](HCOO) (M: Ni, Cu, Zn) ( 9- 11) seem to have the same structures as the structures of [Ni(hihm)(H 2O)]SO 4·H 2O ( 2), [NiCl(hihm)]Cl·H 2O ( 6) and [Co(HCOO)(hihm)](HCOO) ( 8), respectively, judging by the results of IR and powder diffuse reflection spectra and powder X-ray diffraction analysis. Bis-Tris has coordinated to the metal atoms as a pentadentate ligand in all complexes of which the structures have been determined by single crystal X-ray diffraction analysis in this work.

  19. Enhanced electrical properties of dual-layer channel ZnO thin film transistors prepared by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Li, Huijin; Han, Dedong; Dong, Junchen; Yu, Wen; Liang, Yi; Luo, Zhen; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2018-05-01

    The thin film transistors (TFTs) with a dual-layer channel structure combing ZnO thin layer grown at 200 °C and ZnO film grown at 120 °C by atomic layer deposition are fabricated. The dual-layer channel TFT exhibits a low leakage current of 2.8 × 10-13 A, Ion/Ioff ratio of 3.4 × 109, saturation mobility μsat of 12 cm2 V-1 s-1, subthreshold swing (SS) of 0.25 V/decade. The SS value decreases to 0.18 V/decade after the annealing treatment in O2 due to the reduction of the trap states at the channel/dielectric interface and in the bulk channel layer. The enhanced performance obtained from the dual-layer channel TFTs is due to the ability of maintaining high mobility and suppressing the increase in the off-current at the same time.

  20. Understanding Pt-ZnO:In Schottky nanocontacts by conductive atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Chirakkara, Saraswathi; Choudhury, Palash Roy; Nanda, K. K.; Krupanidhi, S. B.

    2016-04-01

    Undoped and In doped ZnO (IZO) thin films are grown on Pt coated silicon substrates Pt/Si by pulsed laser deposition to fabricate Pt/ZnO:In Schottky diodes. The Schottky diodes were investigated by conventional two-probe current-voltage (I-V) measurements and by the I-V spectroscopy tool of conductive atomic force microscopy (C-AFM). The large deviation of the ideality factor from unity and the temperature dependent Schottky barrier heights (SBHs) obtained from the conventional method imply the presence of inhomogeneous interfaces. The inhomogeneity of SBHs is confirmed by C-AFM. Interestingly, the I-V curves at different points are found to be different, and the SBHs deduced from the point diodes reveal inhomogeneity at the nanoscale at the metal-semiconductor interface. A reduction in SBH and turn-on voltage along with enhancement in forward current are observed with increasing indium concentration.

  1. Hybrid inorganic–organic superlattice structures with atomic layer deposition/molecular layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tynell, Tommi; Yamauchi, Hisao; Karppinen, Maarit, E-mail: maarit.karppinen@aalto.fi

    2014-01-15

    A combination of the atomic layer deposition (ALD) and molecular layer deposition (MLD) techniques is successfully employed to fabricate thin films incorporating superlattice structures that consist of single layers of organic molecules between thicker layers of ZnO. Diethyl zinc and water are used as precursors for the deposition of ZnO by ALD, while three different organic precursors are investigated for the MLD part: hydroquinone, 4-aminophenol and 4,4′-oxydianiline. The successful superlattice formation with all the organic precursors is verified through x-ray reflectivity studies. The effects of the interspersed organic layers/superlattice structure on the electrical and thermoelectric properties of ZnO are investigatedmore » through resistivity and Seebeck coefficient measurements at room temperature. The results suggest an increase in carrier concentration for small concentrations of organic layers, while higher concentrations seem to lead to rather large reductions in carrier concentration.« less

  2. Single Cobalt Atoms with Precise N-Coordination as Superior Oxygen Reduction Reaction Catalysts.

    PubMed

    Yin, Peiqun; Yao, Tao; Wu, Yuen; Zheng, Lirong; Lin, Yue; Liu, Wei; Ju, Huanxin; Zhu, Junfa; Hong, Xun; Deng, Zhaoxiang; Zhou, Gang; Wei, Shiqiang; Li, Yadong

    2016-08-26

    A new strategy for achieving stable Co single atoms (SAs) on nitrogen-doped porous carbon with high metal loading over 4 wt % is reported. The strategy is based on a pyrolysis process of predesigned bimetallic Zn/Co metal-organic frameworks, during which Co can be reduced by carbonization of the organic linker and Zn is selectively evaporated away at high temperatures above 800 °C. The spherical aberration correction electron microscopy and extended X-ray absorption fine structure measurements both confirm the atomic dispersion of Co atoms stabilized by as-generated N-doped porous carbon. Surprisingly, the obtained Co-Nx single sites exhibit superior ORR performance with a half-wave potential (0.881 V) that is more positive than commercial Pt/C (0.811 V) and most reported non-precious metal catalysts. Durability tests revealed that the Co single atoms exhibit outstanding chemical stability during electrocatalysis and thermal stability that resists sintering at 900 °C. Our findings open up a new routine for general and practical synthesis of a variety of materials bearing single atoms, which could facilitate new discoveries at the atomic scale in condensed materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Size-dependent Young’s modulus in ZnO nanowires with strong surface atomic bonds

    NASA Astrophysics Data System (ADS)

    Fan, Shiwen; Bi, Sheng; Li, Qikun; Guo, Qinglei; Liu, Junshan; Ouyang, Zhongliang; Jiang, Chengming; Song, Jinhui

    2018-03-01

    The mechanical properties of size-dependent nanowires are important in nano-electro-mechanical systems (NEMSs), and have attracted much research interest. Characterization of the size effect of nanowires in atmosphere directly to broaden their practical application instead of just in high vacuum situations, as reported previously, is desperately needed. In this study, we systematically studied the Young’s modulus of vertical ZnO nanowires in atmosphere. The diameters ranged from 48 nm to 239 nm with a resonance method using non-contact atomic force microscopy. The values of Young’s modulus in atmosphere present extremely strong increasing tendency with decreasing diameter of nanowire due to stronger surface atomic bonds compared with that in vacuum. A core-shell model for nanowires is proposed to explore the Young’s modulus enhancement in atmosphere, which is correlated with atoms of oxygen occurring near the nanowire surface. The modified model is more accurate for analyzing the mechanical behavior of nanowires in atmosphere compared with the model in vacuum. Furthermore, it is possible to use this characterization method to measure the size-related elastic properties of similar wire-sharp nanomaterials in atmosphere and estimate the corresponding mechanical behavior. The study of the size-dependent Young’s modulus in ZnO nanowires in atmosphere will improve the understanding of the mechanical properties of nanomaterials as well as providing guidance for applications in NEMSs, nanogenerators, biosensors and other related areas.

  4. Origin of subgap states in amorphous In-Ga-Zn-O

    NASA Astrophysics Data System (ADS)

    Körner, Wolfgang; Urban, Daniel F.; Elsässer, Christian

    2013-10-01

    We present a density functional theory analysis of stoichiometric and nonstoichiometric, crystalline and amorphous In-Ga-Zn-O (c-IGZO, a-IGZO), which connects the recently experimentally discovered electronic subgap states to structural features of a-IGZO. In particular, we show that undercoordinated oxygen atoms create electronic defect levels in the lower half of the band gap up to about 1.5 eV above the valence band edge. As a second class of fundamental defects that appear in a-IGZO, we identify mainly pairs of metal atoms which are not separated by oxygen atoms in between. These defects cause electronic defect levels in the upper part of the band gap. Furthermore, we show that hydrogen doping can suppress the deep levels due to undercoordinated oxygen atoms while those of metal defects just undergo a shift within the band gap. Altogether our results provide an explanation for the experimentally observed effect that hydrogen doping increases the transparency and improves the conductivity of a-IGZO.

  5. A gadolinium(III) complex of a carboxylic-phosphorus acid derivative of diethylenetriamine covalently bound to inulin, a potential macromolecular MRI contrast agent.

    PubMed

    Lebdusková, Petra; Kotek, Jan; Hermann, Petr; Vander Elst, Luce; Muller, Robert N; Lukes, Ivan; Peters, Joop A

    2004-01-01

    A novel conjugate of a polysaccharide and a Gd(III) chelate with potential as contrast agent for magnetic resonance imaging (MRI) was synthesized. The structure of the chelate was derived from H5DTPA by replacing the central pendant arm by a phosphinic acid functional group, which was covalently bound to the polysaccharide inulin. On the average, each monosaccharide unit of the inulin was attached to approximately one (0.9) chelate moiety. The average molecular weight is 23110 and the average number of Gd3+ ions per molecule is 24. The ligand binds the Gd3+ ion in an octadentate fashion via three nitrogen atoms, four carboxylate oxygen atoms, and one P-O oxygen atom, and its first coordination sphere is completed by a water molecule. This compound shows promising properties for application as a contrast agent for MRI thanks to a favorable residence lifetime of this water molecule (170 ns at 298 K), a relatively long rotational correlation time (866 ps at 298 K), and the presence of two water molecules in the second coordination sphere of the Gd3+ ion. Furthermore, its stability toward transmetalation with Zn(II) is as high as that of the clinically used [Gd(DTPA)(H2O)]2-.

  6. ZnO thin-film transistors with a polymeric gate insulator built on a polyethersulfone substrate

    NASA Astrophysics Data System (ADS)

    Hyung, Gun Woo; Park, Jaehoon; Koo, Ja Ryong; Choi, Kyung Min; Kwon, Sang Jik; Cho, Eou Sik; Kim, Yong Seog; Kim, Young Kwan

    2012-03-01

    Zinc oxide (ZnO) thin-film transistors (TFTs) with a cross-linked poly(vinyl alcohol) (c-PVA) insulator are fabricated on a polyethersulfone substrate. The ZnO film, formed by atomic layer deposition, shows a polycrystalline hexagonal structure with a band gap energy of about 3.37 eV. The fabricated ZnO TFT exhibits a field-effect mobility of 0.38 cm2/Vs and a threshold voltage of 0.2 V. The hysteresis of the device is mainly caused by trapped electrons at the c-PVA/ZnO interface, whereas the positive threshold voltage shift occurs as a consequence of constant positive gate bias stress after 5000 s due to an electron injection from the ZnO film into the c-PVA insulator.

  7. Dichloridobis(phenanthridine-κN)zinc(II).

    PubMed

    Khoshtarkib, Zeinab; Ebadi, Amin; Alizadeh, Robabeh; Ahmadi, Roya; Amani, Vahid

    2009-06-06

    In the mol-ecule of the title compound, [ZnCl(2)(C(13)H(9)N)(2)], the Zn(II) atom is four-coordinated in a distorted tetra-hedral configuration by two N atoms from two phenanthridine ligands and by two terminal Cl atoms. The dihedral angle between the planes of the phenanthridine ring systems is 69.92 (3)°. An intra-molecular C-H⋯Cl inter-action results in the formation of a planar five-membered ring, which is oriented at a dihedral angle of 8.32 (3)° with respect to the adjacent phenanthridine ring system. In the crystal structure, π-π contacts between the phenanthridine systems [centroid-centroid distances = 3.839 (2), 3.617 (1) and 3.682 (1) Å] may stabilize the structure. Two weak C-H⋯π inter-actions are also found.

  8. The effect of doping on global lattice properties of magnetite Fe{sub 3-x}Me{sub x}O{sub 4} (Me=Zn, Ti and Al)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kakol, Z.; Owoc, D.; Przewoznik, J.

    2012-08-15

    X-ray powder diffraction was measured in Fe{sub 3-x}Me{sub x}O{sub 4} (Me=Zn, Ti, Al; x<0.065), in T range 70-300 K to see the effect of different doping on global lattice properties. The experimental results have shown that some lattice properties (e.g., the cell volume) are dopand specific. This can be attributed to the difference in preferential sites occupation by dopants. As confirmed by EXAFS, Zn enters tetrahedral, while Ti octahedral lattice sites, differently affecting crucial octahedral iron positions in the spinel lattice. However, despite this fact, it was found that T dependence of both monoclinic angle and lattice parameters is universalmore » for studied samples above and below the Verwey transition temperature T{sub V}. So, not the iron atoms in octahedral positions individually, but interactions between them are responsible for the Verwey transition character change with doping. - Graphical abstract: A low temperature magnetite cell volume vs. dopants content. Apparently, Zn, Ti and Al atoms have different effect on the global lattice properties at individual temperatures. However, the Verwey transition reacts to dopants in a similar manner, despite the different way the octahedral iron positions are affected. Highlights: Black-Right-Pointing-Pointer We measure powder diffraction and EXAFS on Fe{sub 3-x}Me{sub x}O{sub 4}, Me=Zn, Ti, Al (x<0.065), in T range 70-300 K. Black-Right-Pointing-Pointer XRD: atom-type independent changes of lattice parameters with T. Black-Right-Pointing-Pointer EXAFS: Zn replaces Fe on tetrahedral positions, Ti on octahedral positions. Black-Right-Pointing-Pointer Thus, some secondary interactions between ordering orbitals, not the primary one driving the Verwey transition, control the transition order.« less

  9. Solution and fluorescence properties of symmetric dipicolylamine-containing dichlorofluorescein-based Zn2+ sensors.

    PubMed

    Wong, Brian A; Friedle, Simone; Lippard, Stephen J

    2009-05-27

    The mechanism by which dipicolylamine (DPA) chelate-appended fluorophores respond to zinc was investigated by the synthesis and study of five new analogues of the 2',7'-dichlorofluorescein-based Zn(2+) sensor Zinpyr-1 (ZP1). With the use of absorption and emission spectroscopy in combination with potentiometric titrations, a detailed molecular picture has emerged of the Zn(2+) and H(+) binding properties of the ZP1 family of sensors. The two separate N(3)O donor atom sets on ZP1 converge to form binding pockets in which all four heteroatoms participate in coordination to either Zn(2+) or protons. The position of the pyridyl group nitrogen atom, 2-pyridyl or 4-pyridyl, has a large impact on the fluorescence response of the dyes to protons despite relatively small changes in pK(a) values. The fluorescence quenching effects of such multifunctional electron-donating units are often taken as a whole. Despite the structural complexity of ZP1, however, we provide evidence that the pyridyl arms of the DPA appendages participate in the quenching process, in addition to the contribution from the tertiary nitrogen amine atom. Potentiometric titrations reveal ZP1 dissociation constants (K(d)) for Zn(2+) of 0.04 pM and 1.2 nM for binding to the first and second binding pockets of the ligand, respectively, the second of which correlates with the value observed by fluorescence titration. This result demonstrates that both binding pockets of this symmetric, ditopic sensor need to be occupied in order for full fluorescence turn-on to be achieved. These results have significant implications for the design and implementation of fluorescent sensors for studies of mobile zinc ions in biology.

  10. Anisotropy of atomic bonds formed by p-type dopants in bulk GaN crystals

    NASA Astrophysics Data System (ADS)

    Lawniczak-Jablonska, K.; Suski, T.; Gorczyca, I.; Christensen, N. E.; Libera, J.; Kachniarz, J.; Lagarde, P.; Cortes, R.; Grzegory, I.

    The anisotropy of atomic bonds formed by acceptor dopants with nitrogen in bulk wurtzite GaN crystals was studied by means of linearly polarized synchrotron radiation used in measurements of X-ray-absorption spectra for the K-edgeof Mg and Zn dopants. These spectra correspond to i) a single acceptor N bond along the c-axis and ii) three bonds realized with N atoms occupying the ab-plane perpendicular to the c-axis. The Zn dopant formed resonant spectra similar to that characteristic for Ga cations. In the case of the Mg dopant, similarity to Ga cations was observed for triple bonds in the ab-plane, only. Practically no resonant structure for spectra detected along the c-axis was observed. The absorption spectra were compared with ab initio calculations using the full-potential linear muffin-tin-orbital method. These calculations were also used for determination of the bond length for Mg-N and Zn-N in wurtzite GaN crystals and show that introducing dopants causes an increase of the lengths of the bonds formed by both dopants. Extended X-ray-absorption fine-structure measurements performed for bulk GaN:Zn confirmed the prediction of the theory in the case of the Zn-N bond. Finally, it is suggested that the anisotropy in the length of the Mg-N bonds, related to their larger strength in the case of bonds in the ab-plane, can explain preferential formation of a superlattice consisting of Mg-rich layers arranged in ab-planes of several bulk GaN:Mg crystals observed by transmission electron microscopy. Within the sensitivity of the method used, no parasitic metallic clusters or oxide compounds formed by the considered acceptors in GaN crystals were found.

  11. Orientation of Zn3P2 films via phosphidation of Zn precursors

    NASA Astrophysics Data System (ADS)

    Katsube, Ryoji; Nose, Yoshitaro

    2017-02-01

    Orientation of solar absorber is an important factor to achieve high efficiency of thin film solar cells. In the case of Zn3P2 which is a promising absorber of low-cost and high-efficiency solar cells, (110)/(001) orientation was only reported in previous studies. We have successfully prepared (101)-oriented Zn3P2 films by phosphidation of (0001)-oriented Zn films at 350 °C. The phosphidation mechanism of Zn is discussed through STEM observations on the partially-reacted sample and the consideration of the relationship between the crystal structures of Zn and Zn3P2 . We revealed that (0001)-oriented Zn led to nucleation of (101)-oriented Zn3P2 due to the similarity in atomic arrangement between Zn and Zn3P2 . The electrical resistivity of the (101)-oriented Zn3P2 film was lower than those of (110)/(001)-oriented films, which is an advantage of the phosphidation technique to the growth processes in previous works. The results in this study demonstrated that well-conductive Zn3P2 films could be obtained by controlling orientations of crystal grains, and provide a guiding principle for microstructure control in absorber materials.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Ling, E-mail: qinling0924013@163.com; Wang, Yan-Qing; Ni, Gang

    The title complex, ([Zn(ODIB){sub 1/2}(bpdc)]·2DMF){sub n} was prepared under hydrothermal conditions (dimethylformamide and water) based on two ligands, namely, 1,1′-oxy-bis[3,5-diimidazolyl-benzene] (ODIB) and biphenyldicarboxylic acid (H{sub 2}bpdc). ODIB ligands link Zn cations to give layers in crystal. bpdc{sup 2–} anions coordinate to Zn atoms, however, their introduction does not increase the dimension of the structure. Each layer is partially passes through the adjacent layers in the offset ABAB manner.

  13. Seeded Physical Vapor Transport of Cadmium-Zinc Telluride Crystals: Growth and Characterization

    NASA Technical Reports Server (NTRS)

    Palosz, W.; George, M. A.; Collins, E. E.; Chen, K.-T.; Zhang, Y.; Burger, A.

    1997-01-01

    Crystals of Cd(1-x)Zn(x)Te with x = 0.2 and 40 g in weight were grown on monocrystalline cadmium-zinc telluride seeds by closed-ampoule physical vapor transport with or without excess (Cd + Zn) in the vapor phase. Two post-growth cool-down rates were used. The crystals were characterized using low temperature photoluminescence, atomic force microscopy, chemical etching, X-ray diffraction and electrical measurements. No formation of a second, ZnTe-rich phase was observed.

  14. Wheat flour confectionery products as a source of inorganic nutrients: zinc and copper contents in hard biscuits.

    PubMed

    Sebecić, Blazenka; Vedrina-Dragojević, Irena

    2004-04-01

    Cereal-based confectionery products being consumed through whole human life are considered mainly to be a source of carbohydrates, that is energy, although cereals are a rich source of minerals as well. To evaluate some hard biscuits produced in Croatia as a source of different trace elements in nutrition, in this study Zn and Cu contents were determined in classic wheat flour biscuits and in dietetic biscuits enriched with whole wheat grain flour or whole wheat grain grits, soya flour and skimmed milk. Zn was determined by flame atomic absorption spectrometry (AAS); Cu was determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The results show that the Zn content in different kinds of biscuits ranges from 5.89 up to 17.64 mg/kg and the Cu content ranges from 1.15 up to 2.79 mg/kg depending on the type of wheat milling products and mineral content of other ingredients used. Enriched dietetic biscuits produced from wheat flour type 850 and whole wheat grain flour and/or soya flour and skimmed milk were almost 200% and 150% higher in Zn and Cu, respectively, in comparison to classic white wheat flour biscuits and can be considered as good sources of Zn and Cu in nutrition.

  15. Effect of atomic layer deposition temperature on the performance of top-down ZnO nanowire transistors

    PubMed Central

    2014-01-01

    This paper studies the effect of atomic layer deposition (ALD) temperature on the performance of top-down ZnO nanowire transistors. Electrical characteristics are presented for 10-μm ZnO nanowire field-effect transistors (FETs) and for deposition temperatures in the range 120°C to 210°C. Well-behaved transistor output characteristics are obtained for all deposition temperatures. It is shown that the maximum field-effect mobility occurs for an ALD temperature of 190°C. This maximum field-effect mobility corresponds with a maximum Hall effect bulk mobility and with a ZnO film that is stoichiometric. The optimized transistors have a field-effect mobility of 10 cm2/V.s, which is approximately ten times higher than can typically be achieved in thin-film amorphous silicon transistors. Furthermore, simulations indicate that the drain current and field-effect mobility extraction are limited by the contact resistance. When the effects of contact resistance are de-embedded, a field-effect mobility of 129 cm2/V.s is obtained. This excellent result demonstrates the promise of top-down ZnO nanowire technology for a wide variety of applications such as high-performance thin-film electronics, flexible electronics, and biosensing. PMID:25276107

  16. A two-dimensional Zn coordination polymer with a three-dimensional supra-molecular architecture.

    PubMed

    Liu, Fuhong; Ding, Yan; Li, Qiuyu; Zhang, Liping

    2017-10-01

    The title compound, poly[bis-{μ 2 -4,4'-bis-[(1,2,4-triazol-1-yl)meth-yl]biphenyl-κ 2 N 4 : N 4' }bis-(nitrato-κ O )zinc(II)], [Zn(NO 3 ) 2 (C 18 H 16 N 6 ) 2 ] n , is a two-dimensional zinc coordination polymer constructed from 4,4'-bis-[(1 H -1,2,4-triazol-1-yl)meth-yl]-1,1'-biphenyl units. It was synthesized and characterized by elemental analysis and single-crystal X-ray diffraction. The Zn II cation is located on an inversion centre and is coordinated by two O atoms from two symmetry-related nitrate groups and four N atoms from four symmetry-related 4,4'-bis-[(1 H -1,2,4-triazol-1-yl)meth-yl]-1,1'-biphenyl ligands, forming a distorted octa-hedral {ZnN 4 O 2 } coordination geometry. The linear 4,4'-bis-[(1 H -1,2,4-triazol-1-yl)meth-yl]-1,1'-biphenyl ligand links two Zn II cations, generating two-dimensional layers parallel to the crystallographic (132) plane. The parallel layers are connected by C-H⋯O, C-H⋯N, C-H⋯π and π-π stacking inter-actions, resulting in a three-dimensional supra-molecular architecture.

  17. Flexibility of the Cu,Zn superoxide dismutase structure investigated at 0.57 GPa.

    PubMed

    Ascone, Isabella; Savino, Carmelinda; Kahn, Richard; Fourme, Roger

    2010-06-01

    The 2 A resolution crystal structure of bovine erythrocyte Cu,Zn superoxide dismutase (CuZnSOD) has been determined by X-ray diffraction at high pressure (0.57 GPa) and room temperature. At 0.57 GPa the secondary, tertiary and quaternary structures are similar to other previously determined bovine erythrocyte CuZnSOD structures. Nevertheless, pressure has a localized impact on the atomic coordinates of C(alpha) atoms and on side chains. The compression of the crystal and of the protein backbone is anisotropic. This anisotropy is discussed, taking into account intermolecular contacts and protein conformation. Pressure perturbation highlights the more flexible zones in the protein such as the electrostatic loop. At 0.57 GPa, a global shift of the dimetallic sites in both subunits and changes in the oxidation state of Cu were observed. The flexibility of the electrostatic loop may be useful for the interaction of different metal carriers in the copper-uptake process, whereas the flexibility of the metal sites involved in the activity of the protein could contribute to explaining the ubiquitous character of CuZnSODs, which are found in organisms living in very different conditions, including the deep-sea environment. This work illustrates the potential of combining X-ray crystallography with high pressure to promote and stabilize higher energy conformational substates.

  18. An attempt to diagnose cancer by PIXE

    NASA Astrophysics Data System (ADS)

    Uda, M.; Maeda, K.; Sasa, Y.; Kusuyama, H.; Yokode, Y.

    1987-03-01

    PIXE is suitable especially for trace elemental analysis for atoms with high atomic numbers, which are contained in matrices composed mainly of light elements such as biological materials. An attempt has been made to distinguish elemental concentrations of cancer tissues from those of normal ones. Kidney, testis and urinary bladder cancer tissues were examined by PIXE. Key elements to diagnose these cancers were Ca, Ti, Cr, Fe and Zn. Enrichment of Fe and Ti, and deficiency of Zn could be seen in the kidney cancer. An opposite tendency was observed in the testicular cancer. Imbalance of these elemental concentrations in characteristic organs might give us a possibility for cancer diagnosis.

  19. Cobalt-doped ZnO nanocrystals: quantum confinement and surface effects from ab initio methods.

    PubMed

    Schoenhalz, Aline L; Dalpian, Gustavo M

    2013-10-14

    Cobalt-doped ZnO nanocrystals were studied through ab initio methods based on the Density Functional Theory. Both quantum confinement and surface effects were explicitly taken into account. When only quantum confinement effects are considered, Co atoms interact through a superexchange mechanism, stabilizing an antiferromagnetic ground state. Usually, this is the case for high quality nanoparticles with perfect surface saturation. When the surfaces were considered, a strong hybridization between the Co atoms and surfaces was observed, strongly changing their electronic and magnetic properties. Our results indicated that the surfaces might qualitatively change the properties of impurities in semiconductor nanocrystals.

  20. Transfer of Wire Arc-Sprayed Metal Coatings onto Plastic Parts

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.; Knoch, M. A.; Liao, X.; Hopmann, Ch.; Ochotta, P.

    2018-01-01

    By means of In-Mold-Metal-Spraying (IMMS), metal coatings deposited by means of arc spraying process (ASP) can be transferred onto plastic parts during injection molding, thus realizing an efficient production of metallized plastic parts. Parts produced by means of IMMS can be used in electrical applications. In the current study, the electrical resistivity of coatings applied with different feedstock materials was determined. As a starting point, pressurized air is used as atomizing gas for ASP. In contrast to Zn coatings, Cu coatings applied with pressurized air exhibit a significantly higher electrical resistivity in comparison with massive material. One possible reason is the more pronounced oxidation of Cu particles during ASP. Therefore, N2 and a mixture of N2 and H2 were used as atomizing gas. As a result, the electrical resistivity of coatings applied by means of IMMS could be significantly reduced. Furthermore, standoff distance, current and pressure of the atomizing gas were varied to investigate the influence of these process parameters on the electrical resistivity of Zn coatings using a full factorial experiment design with center point. It can be observed that the electrical resistivity of the Zn coatings increases with decreasing current and increasing standoff distance and pressure.

  1. Transfer of Wire Arc-Sprayed Metal Coatings onto Plastic Parts

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.; Knoch, M. A.; Liao, X.; Hopmann, Ch.; Ochotta, P.

    2017-12-01

    By means of In-Mold-Metal-Spraying (IMMS), metal coatings deposited by means of arc spraying process (ASP) can be transferred onto plastic parts during injection molding, thus realizing an efficient production of metallized plastic parts. Parts produced by means of IMMS can be used in electrical applications. In the current study, the electrical resistivity of coatings applied with different feedstock materials was determined. As a starting point, pressurized air is used as atomizing gas for ASP. In contrast to Zn coatings, Cu coatings applied with pressurized air exhibit a significantly higher electrical resistivity in comparison with massive material. One possible reason is the more pronounced oxidation of Cu particles during ASP. Therefore, N2 and a mixture of N2 and H2 were used as atomizing gas. As a result, the electrical resistivity of coatings applied by means of IMMS could be significantly reduced. Furthermore, standoff distance, current and pressure of the atomizing gas were varied to investigate the influence of these process parameters on the electrical resistivity of Zn coatings using a full factorial experiment design with center point. It can be observed that the electrical resistivity of the Zn coatings increases with decreasing current and increasing standoff distance and pressure.

  2. Ensemble modeling of very small ZnO nanoparticles.

    PubMed

    Niederdraenk, Franziska; Seufert, Knud; Stahl, Andreas; Bhalerao-Panajkar, Rohini S; Marathe, Sonali; Kulkarni, Sulabha K; Neder, Reinhard B; Kumpf, Christian

    2011-01-14

    The detailed structural characterization of nanoparticles is a very important issue since it enables a precise understanding of their electronic, optical and magnetic properties. Here we introduce a new method for modeling the structure of very small particles by means of powder X-ray diffraction. Using thioglycerol-capped ZnO nanoparticles with a diameter of less than 3 nm as an example we demonstrate that our ensemble modeling method is superior to standard XRD methods like, e.g., Rietveld refinement. Besides fundamental properties (size, anisotropic shape and atomic structure) more sophisticated properties like imperfections in the lattice, a size distribution as well as strain and relaxation effects in the particles and-in particular-at their surface (surface relaxation effects) can be obtained. Ensemble properties, i.e., distributions of the particle size and other properties, can also be investigated which makes this method superior to imaging techniques like (high resolution) transmission electron microscopy or atomic force microscopy, in particular for very small nanoparticles. For the particles under study an excellent agreement of calculated and experimental X-ray diffraction patterns could be obtained with an ensemble of anisotropic polyhedral particles of three dominant sizes, wurtzite structure and a significant relaxation of Zn atoms close to the surface.

  3. First-principles calculations of the interaction between hydrogen and 3d alloying atom in nickel

    NASA Astrophysics Data System (ADS)

    Liu, Wenguan; Qian, Yuan; Zhang, Dongxun; Liu, Wei; Han, Han

    2015-10-01

    Knowledge of the behavior of hydrogen (H) in Ni-based alloy is essential for the prediction of Tritium behavior in Molten Salt Reactor. First-principles calculations were performed to investigate the interaction between H and 3d transition metal (TM) alloying atom in Ni-based alloy. H prefers the octahedral interstitial site to the tetrahedral interstitial site energetically. Most of the 3d TM elements (except Zn) attract H. The attraction to H in the Ni-TM-H system can be mainly attributed to the differences in electronegativity. With the large electronegativity, H and Ni gain electrons from the other TM elements, resulting in the enhanced Ni-H bonds which are the source of the attraction to H in the Ni-TM-H system. The obviously covalent-like Cr-H and Co-H bindings are also beneficial to the attraction to H. On the other hand, the repulsion to H in the Ni-Zn-H system is due to the stable electronic configuration of Zn. We mainly utilize the results calculated in 32-atom supercell which corresponds to the case of a relatively high concentration of hydrogen. Our results are in good agreement with the experimental ones.

  4. Sub-4 nm PtZn Intermetallic Nanoparticles for Enhanced Mass and Specific Activities in Catalytic Electrooxidation Reaction

    DOE PAGES

    Qi, Zhiyuan; Xiao, Chaoxian; Liu, Cong; ...

    2017-03-08

    Atomically ordered intermetallic nanoparticles (iNPs) have sparked considerable interest in fuel cell applications by virtue of their exceptional electronic and structural properties. However, the synthesis of small iNPs in a controllable manner remains a formidable challenge because of the high temperature generally required in the formation of intermetallic phases. Here in this paper we report a general method for the synthesis of PtZn iNPs (3.2 ± 0.4 nm) on multiwalled carbon nanotubes (MWNT) via a facile and capping agent free strategy using a sacrificial mesoporous silica (mSiO 2) shell. The as-prepared PtZn iNPs exhibited ca. 10 times higher mass activitymore » in both acidic and basic solution toward the methanol oxidation reaction (MOR) compared to larger PtZn iNPs synthesized on MWNT without the mSiO 2 shell. Density functional theory (DFT) calculations predict that PtZn systems go through a “non-CO” pathway for MOR because of the stabilization of the OH* intermediate by Zn atoms, while a pure Pt system forms highly stable COH* and CO* intermediates, leading to catalyst deactivation. Experimental studies on the origin of the backward oxidation peak of MOR coincide well with DFT predictions. Moreover, the calculations demonstrate that MOR on smaller PtZn iNPs is energetically more favorable than larger iNPs, due to their high density of corner sites and lower-lying energetic pathway. Therefore, smaller PtZn iNPs not only increase the number but also enhance the activity of the active sites in MOR compared with larger ones. This work opens a new avenue for the synthesis of small iNPs with more undercoordinated and enhanced active sites for fuel cell applications.« less

  5. Sub-4 nm PtZn Intermetallic Nanoparticles for Enhanced Mass and Specific Activities in Catalytic Electrooxidation Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Zhiyuan; Xiao, Chaoxian; Liu, Cong

    2017-03-22

    Atomically ordered intermetallic nanoparticles (iNPs) have sparked considerable interest in fuel cell applications by virtue of their exceptional electronic and structural properties. However, the synthesis of small iNPs in a controllable manner remains a formidable challenge because of the high temperature generally required in the formation of intermetallic phases. Here we report a general method for the synthesis of PtZn. iNPs (3.2 +/- 0.4 nm) on multiwalled carbon nanotubes (MWNT) via a facile and capping agent free strategy using a sacrificial mesoporous silica (mSiO(2)) shell. The as-prepared PtZn iNPs exhibited ca. 10 times higher mass activity in both acidic andmore » basic solution toward the methanol oxidation reaction (MOR) compared to larger PtZn iNPs synthesized on MWNT without the mSiO2 shell. Density functional theory (DFT) calculations predict that PtZn systems go through a "non-CO" pathway for MOR because of the stabilization of the OH* intermediate by Zn atoms, while a pure Pt system forms highly stable COH* and CO* intermediates, leading to catalyst deactivation. Experimental studies on the origin of the backward oxidation peak of MOR coincide well with DFT predictions. Moreover, the calculations demonstrate that MOR on smaller PtZn iNPs is energetically more favorable than larger iNPs, due to their high density of corner sites and lower-lying energetic pathway. Therefore, smaller PtZn iNPs not only increase the number but also enhance the activity of the active sites in MOR compared with larger ones. This work opens a new avenue for the synthesis of small iNPs with more undercoordinated and enhanced active sites for fuel cell applications.« less

  6. Deep donor state of the copper acceptor as a source of green luminescence in ZnO

    NASA Astrophysics Data System (ADS)

    Lyons, J. L.; Alkauskas, A.; Janotti, A.; Van de Walle, C. G.

    2017-07-01

    Copper impurities have long been linked with green luminescence (GL) in ZnO. Copper is known to introduce an acceptor level close to the conduction band of ZnO, and the GL has conventionally been attributed to transitions involving an excited state which localizes holes on neighboring oxygen atoms. To date, a theoretical description of the optical properties of such deep centers has been difficult to achieve due to the limitations of functionals in the density functional theory. Here, we employ a screened hybrid density functional to calculate the properties of Cu in ZnO. In agreement with the experiment, we find that CuZn features an acceptor level near the conduction band of ZnO. However, we find that CuZn also gives rise to a deep donor level 0.46 eV above the valence band of ZnO; the calculated optical transitions involving this state agree well with the GL observed in ZnO:Cu.

  7. Mineralogical and geochemical studies on the Central Seruyan Pb-Zn deposits in Central Kalimantan, Indonesia

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Lee, I.; Choi, B.; KIM, Y.; Moon, I.

    2017-12-01

    The Central Seruyan Pb-Zn deposit is located in Seruyan, Central Kalimantan Province in Indonesia. This deposit has been developed since last year and is still being investigated. The Pb-Zn deposit consists of two formations, Pinoh and Kuayan formation. The former is a metamorphic unit hosting schist, phyllite and gneiss, and the latter is a pyroclastic and volcanic unit includes intermediate volcanic rocks such as dacite, tuff and breccia. Most host rocks of the deposit is composed of the silicified porphyritic dacite and silicified phyllite and covered by silicified tuff. The joints and fractures within the wall rock has E-W trends. The Seruyan Pb-Zn deposit is considered as hydrothermal breccia type.In this study, we observe ore minerals and host rocks to understand the genesis of the Pb-Zn deposit with geochemical data. Pyrite, chalcopyrite, sphalerite and galena are major ore minerals and covellite and bornite are also observed as minor sulfide minerals. These ore minerals, except pyrite, usually occur within quartz or calcite veins indicating the influence of hydrothermal fluid. In the host rocks, dacite, has the altered minerals like sericite, chlorite, epidote and some clay minerals of hydrothermal origin. All minerals occur as massive form. Only some pyrites have an euhedral form. Small amount of Au, Ag and Mo are detected in major ore minerals in the EPMA (electron probe X-ray microanalyzer) analyses.

  8. Atomic Linkage Flexibility Tuned Isotropic Negative, Zero, and Positive Thermal Expansion in MZrF 6 (M = Ca, Mn, Fe, Co, Ni, and Zn)

    DOE PAGES

    Hu, Lei; Chen, Jun; Xu, Jiale; ...

    2016-10-26

    The controllable isotropic thermal expansion with a broad coefficient of thermal expansion (CTE) window is intriguing but remains challenge. Herein we report a cubic MZrF 6 series (M = Ca, Mn, Fe, Co, Ni and Zn), which exhibit controllable thermal expansion over a wide temperature range and with a broader CTE window (–6.69 to +18.23 × 10 –6/K). In particular, an isotropic zero thermal expansion (ZTE) is achieved in ZnZrF 6, which is one of the rarely documented hightemperature isotropic ZTE compounds. By utilizing temperature dependent high-energy synchrotron X-ray total scattering diffraction, it is found that the flexibility of metal···Fmore » atomic linkages in MZrF 6 plays a critical role in distinct thermal expansions. The flexible metal···F atomic linkages induce negative thermal expansion (NTE) for CaZrF 6, whereas the stiff ones bring positive thermal expansion (PTE) for 6. Thermal expansion could be transformed from striking negative, to zero, and finally to considerable positive though tuning the flexibility of metal···F atomic linkages by substitution with a series of cations on M sites of MZrF 6. In conclusion, the present study not only extends the scope of NTE families and rare high-temperature isotropic ZTE compounds but also proposes a new method to design systematically controllable isotropic thermal expansion frameworks from the perspective of atomic linkage flexibility.« less

  9. Atomic Linkage Flexibility Tuned Isotropic Negative, Zero, and Positive Thermal Expansion in MZrF 6 (M = Ca, Mn, Fe, Co, Ni, and Zn)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Lei; Chen, Jun; Xu, Jiale

    The controllable isotropic thermal expansion with a broad coefficient of thermal expansion (CTE) window is intriguing but remains challenge. Herein we report a cubic MZrF 6 series (M = Ca, Mn, Fe, Co, Ni and Zn), which exhibit controllable thermal expansion over a wide temperature range and with a broader CTE window (–6.69 to +18.23 × 10 –6/K). In particular, an isotropic zero thermal expansion (ZTE) is achieved in ZnZrF 6, which is one of the rarely documented hightemperature isotropic ZTE compounds. By utilizing temperature dependent high-energy synchrotron X-ray total scattering diffraction, it is found that the flexibility of metal···Fmore » atomic linkages in MZrF 6 plays a critical role in distinct thermal expansions. The flexible metal···F atomic linkages induce negative thermal expansion (NTE) for CaZrF 6, whereas the stiff ones bring positive thermal expansion (PTE) for 6. Thermal expansion could be transformed from striking negative, to zero, and finally to considerable positive though tuning the flexibility of metal···F atomic linkages by substitution with a series of cations on M sites of MZrF 6. In conclusion, the present study not only extends the scope of NTE families and rare high-temperature isotropic ZTE compounds but also proposes a new method to design systematically controllable isotropic thermal expansion frameworks from the perspective of atomic linkage flexibility.« less

  10. Effect of N2 flow during deposition on p-type ZnO film

    NASA Astrophysics Data System (ADS)

    Lin, Chiung-Wei; Liu, Bor-Chang

    2017-01-01

    In this study, the influence of a nitrogen source on p-type conductive ZnO films was studied. Rapid thermal oxidation was conducted to oxidize ZnN films and convert them to ZnO films. When an as-deposited ZnN film was prepared at a high nitrogen gas flow rate, the converted ZnO film possessed many acceptors and showed stable p-type conduction. This p-type conduction was attributed to the nitrogen gas flow providing many “No” states, which act as acceptors within the processed ZnO film. It was found that the as-deposited ZnN film prepared at a high nitrogen gas flow rate is oxidized slightly so that only a few nitrogen atoms were replaced by oxygen. The carrier concentration and mobility of the optimized oxidized ZnN film were 9.76 × 1017 cm-3 and 62.78 cm2 V-1 s-1, respectively. A good rectified current-voltage characteristic with a turn-on voltage of 3.65 V was achieved for the optimized ZnO:N/ZnO junction.

  11. Structural and optical properties of nanocrystalline ZnS and ZnS:Al films

    NASA Astrophysics Data System (ADS)

    Hurma, T.

    2018-06-01

    ZnS and ZnS:Al films have been deposited by ultrasonic spray pyrolysis (USP) method. Three different atomic ratios of aluminium were used as the dopant element. The effects of aluminum incorporation on structural and optical properties of the ZnS films have been investigated. The XRD analysis showed that the cubic structure of the ZnS was not much affected by Al doping. The crystal size of the films decreased, as the Al ratio increased. Al incorporation caused an increase in the intensity of ZnS films' peaks observed in Raman spectra and nearly symmetrical peaks were observed. Al doping caused a small decrease in optical band gap of the ZnS film. The coating of ZnS:Al films on the surface was quite good and there were not any deformation in their crystallization levels. Reflectance values of films are about 5% in the visible region but a little decrease is seen with aluminum doping. We can say that Al doping tends to improve the optical properties of the ZnS:Al films when compared with the undoped ZnS.

  12. Chemical precursor impact on the properties of Cu{sub 2}ZnSnS{sub 4} absorber layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vashistha, Indu B., E-mail: indu-139@yahoo.com; Sharma, S. K.; Sharma, Mahesh C.

    2016-04-13

    In present work impact of different chemical precursor on the deposition of solar absorber layer Cu{sub 2}ZnSnS{sub 4} (CZTS) were studied by Chemical Bath Deposition (CBD) method without using expensive vacuum facilities and followed by annealing. As compared to the other deposition methods, CBD method is interesting one because it is simple, reproducible, non-hazardous, cost effective and well suited for producing large-area thin films at low temperatures, although effect of precursors and concentration plays a vital role in the deposition. So, the central theme of this work is optimizing and controlling of chemical reactions for different chemical precursors. Further Effectmore » of different chemical precursors i.e. sulphate and chloride is analyzed by structural, morphological, optical and electrical properties. The X-ray diffraction (XRD) of annealed CZTS thin film revealed that films were polycrystalline in nature with kestarite tetragonal crystal structure. The Atomic Force micrographs (AFM) images indicated total coverage compact film and as well as growth of crystals. The band gap of annealed CZTS films was found in the range of optimal band gap by absorption spectroscopy.« less

  13. Selective isolation of the electron or hole in photocatalysis: ZnO-TiO2 and TiO2-ZnO core-shell structured heterojunction nanofibers via electrospinning and atomic layer deposition.

    PubMed

    Kayaci, Fatma; Vempati, Sesha; Ozgit-Akgun, Cagla; Donmez, Inci; Biyikli, Necmi; Uyar, Tamer

    2014-06-07

    Heterojunctions are a well-studied material combination in photocatalysis studies, the majority of which aim to improve the efficacy of the catalysts. Developing novel catalysts begs the question of which photo-generated charge carrier is more efficient in the process of catalysis and the associated mechanism. To address this issue we have fabricated core-shell heterojunction (CSHJ) nanofibers from ZnO and TiO2 in two combinations where only the 'shell' part of the heterojunction is exposed to the environment to participate in the photocatalysis. Core and shell structures were fabricated via electrospinning and atomic layer deposition, respectively which were then subjected to calcination. These CSHJs were characterized and studied for photocatalytic activity (PCA). These two combinations expose electrons or holes selectively to the environment. Under suitable illumination of the ZnO-TiO2 CSHJ, e/h pairs are created mainly in TiO2 and the electrons take part in catalysis (i.e. reduce the organic dye) at the conduction band or oxygen vacancy sites of the 'shell', while holes migrate to the core of the structure. Conversely, holes take part in catalysis and electrons diffuse to the core in the case of a TiO2-ZnO CSHJ. The results further revealed that the TiO2-ZnO CSHJ shows ∼1.6 times faster PCA when compared to the ZnO-TiO2 CSHJ because of efficient hole capture by oxygen vacancies, and the lower mobility of holes.

  14. Adenosine/guanosine-3',5'-bis-phosphates as biocompatible and selective Zn2+-ion chelators. Characterization and comparison with adenosine/guanosine-5'-di-phosphate.

    PubMed

    Sayer, Alon Haim; Blum, Eliav; Major, Dan Thomas; Vardi-Kilshtain, Alexandra; Levi Hevroni, Bosmat; Fischer, Bilha

    2015-04-28

    Although involved in various physiological functions, nucleoside bis-phosphate analogues and their metal-ion complexes have been scarcely studied. Hence, here, we explored the solution conformation of 2′-deoxyadenosine- and 2′-deoxyguanosine-3′,5′-bisphosphates, 3 and 4, d(pNp), as well as their Zn(2+)/Mg(2+) binding sites and binding-modes (i.e. inner- vs. outer-sphere coordination), acidity constants, stability constants of their Zn(2+)/Mg(2+) complexes, and their species distribution. Analogues 3 and 4, in solution, adopted a predominant Southern ribose conformer (ca. 84%), gg conformation around C4'-C5' and C5'-O5' bonds, and glycosidic angle in the anti-region (213-270°). (1)H- and (31)P-NMR experiments indicated that Zn(2+)/Mg(2+) ions coordinated to P5' and P3' groups of 3 and 4 but not to N7 nitrogen atom. Analogues 3 and 4 formed ca. 100-fold more stable complexes with Zn(2+)vs. Mg(2+)-ions. Complexes of 3 and 4 with Mg(2+) at physiological pH were formed in minute amounts (11% and 8%, respectively) vs. Zn(2+) complexes (46% and 44%). Stability constants of Zn(2+)/Mg(2+) complexes of analogues 3 and 4 (log KML(M) = 4.65-4.75/2.63-2.79, respectively) were similar to those of the corresponding complexes of ADP and GDP (log KML(M) = 4.72-5.10/2.95-3.16, respectively). Based on the above findings, we hypothesized that the unexpectedly low log K values of Zn(2+)-d(pNp) as compared to Zn(2+)-NDP complexes, are possibly due to formation of outer-sphere coordination in the Zn(2+)-d(pNp) complex vs. inner-sphere in the NDP-Zn(2+) complex, in addition to loss of chelation to N7 nitrogen atom in Zn(2+)-d(pNp). Indeed, explicit solvent molecular dynamics simulations of 1 and 3 for 100 ns supported this hypothesis.

  15. Synthesis of Ag-ZnO with multiple rods (multipods) morphology and its application in the simultaneous photo-catalytic degradation of methyl orange and methylene blue.

    PubMed

    Arab Chamjangali, M; Bagherian, G; Javid, A; Boroumand, S; Farzaneh, N

    2015-11-05

    In this study, the photo-decolorization of a mixture of methylene blue (MB) and methyl orange (MO) was investigated using Ag-ZnO multipods. The photo-catalyst used, ZnO multipods, was successfully synthesized. The surface of ZnO microstructure was modified by deposition of different amounts of Ag nanoparticles (Ag NPs) using the photo-reduction method. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-Vis and atomic absorption spectroscopy. The photo-catalytic efficiency of Ag-ZnO is mainly controlled by the amount of Ag NPs deposited on the ZnO surface. The results obtained suggest that Ag-ZnO containing 6.5% Ag NPs, has the highest photo-catalytic performance in the simultaneous photo-degradation of dyes at a shorter time. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Low-temperature solution-processed zinc oxide field effect transistor by blending zinc hydroxide and zinc oxide nanoparticle in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Shin, Hyeonwoo; Kang, Chan-mo; Baek, Kyu-Ha; Kim, Jun Young; Do, Lee-Mi; Lee, Changhee

    2018-05-01

    We present a novel methods of fabricating low-temperature (180 °C), solution-processed zinc oxide (ZnO) transistors using a ZnO precursor that is blended with zinc hydroxide [Zn(OH)2] and zinc oxide hydrate (ZnO • H2O) in an ammonium solution. By using the proposed method, we successfully improved the electrical performance of the transistor in terms of the mobility (μ), on/off current ratio (I on/I off), sub-threshold swing (SS), and operational stability. Our new approach to forming a ZnO film was systematically compared with previously proposed methods. An atomic forced microscopic (AFM) image and an X-ray photoelectron spectroscopy (XPS) analysis showed that our method increases the ZnO crystallite size with less OH‑ impurities. Thus, we attribute the improved electrical performance to the better ZnO film formation using the blending methods.

  17. H passivation of Li on Zn-site in ZnO: Positron annihilation spectroscopy and secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Johansen, K. M.; Zubiaga, A.; Tuomisto, F.; Monakhov, E. V.; Kuznetsov, A. Yu.; Svensson, B. G.

    2011-09-01

    The interaction of hydrogen (H) with lithium (Li) and zinc vacancies (VZn) in hydrothermally grown n-type zinc oxide (ZnO) has been investigated by positron annihilation spectroscopy (PAS) and secondary ion mass spectrometry. Li on Zn-site (LiZn) is found to be the dominant trap for migrating H atoms, while the trapping efficiency of VZn is considerably smaller. After hydrogenation, where the LiZn acceptor is passivated via formation of neutral LiZn-H pairs, VZn occurs as the prime PAS signature and with a concentration similar to that observed in nonhydrogenated Li-poor samples. Despite a low efficiency as an H trap, the apparent concentration of VZn in Li-poor samples decreases after hydrogenation, as detected by PAS, and evidence for formation of the neutral VZnH2 complex is presented.

  18. Crystal structure of tris­(trans-1,2-cyclo­hexa­ne­diamine-κ2 N,N′)chromium(III) tetra­chlorido­zincate chloride trihydrate from synchrotron data

    PubMed Central

    Moon, Dohyun; Choi, Jong-Ha

    2016-01-01

    The structure of the title double salt, [Cr(rac-chxn)3][ZnCl4]Cl·3H2O (chxn is trans-1,2-cyclo­hexa­nedi­amine; C6H14N2), has been determined from synchrotron data. The CrIII ion is coordinated by six N atoms of three chelating chxn ligands, displaying a slightly distorted octa­hedral coordination environment. The distorted tetra­hedral [ZnCl4]2− anion, the isolated Cl− anion and three lattice water mol­ecules remain outside the coordination sphere. The Cr—N(chxn) bond lengths are in a narrow range between 2.0737 (12) and 2.0928 (12) Å; the mean N—Cr—N bite angle is 82.1 (4)°. The crystal packing is stabilized by hydrogen-bonding inter­actions between the amino groups of the chxn ligands and the water mol­ecules as donor groups, and O atoms of the water mol­ecules, chloride anions and Cl atoms of the [ZnCl4]2− anions as acceptor groups, leading to the formation of a three-dimensional network. The [ZnCl4]2− anion is disordered over two sets of sites with an occupancy ratio of 0.94:0.06. PMID:27308016

  19. Determination of a brass alloy concentration composition using calibration-free laser-induced breakdown spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achouri, M.; Baba-Hamed, T.; Beldjilali, S. A., E-mail: sidahmed.beldjilali@univ-usto.dz

    2015-09-15

    Laser-induced breakdown spectroscopy (LIBS) is a technique that can provide qualitative and quantitative measurements of the characteristics of irradiated metals. In the present work, we have calculated the parameters of the plasma produced from a brass alloy sample under the action of a pulsed Nd: YAG laser operating at 1064 nm. The emission lines of copper atoms (Cu I), zinc atoms (Zn I), and lead atoms (Pb I), which are elements of a brass alloy composition, were used to investigate the parameters of the brass plasma. The spectral profiles of Cu, Zn, and Pb lines have been used to extractmore » the electron temperature and density of the brass alloy plasma. The characteristics of Cu, Zn, and Pb were determined quantatively by the calibration-free LIBS (CF-LIBS) method considering for accurate analysis that the laser-induced ablated plasma is optically thin in local thermodynamic equilibrium conditions and the plasma ablation is stoichiometric. The Boltzmann plot method was used to evaluate the plasma temperature, and the Stark broadened profiles were used to determine the electron density. An algorithm based on the experimentally measured values of the intensity of spectral lines and the basic laws of plasma physics was developed for the determination of Cu, Zn, and Pb concentrations in the brass sample. The concentrations C{sub CF-LIBS} calculated by CF-LIBS and the certified concentrations C{sub certified} were very close.« less

  20. Gas sensing performance of nano zinc oxide sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Shiva, E-mail: shivasharmaau@gmail.com; Chauhan, Pratima, E-mail: mangu167@yahoo.co.in

    We report nano Zinc Oxide (ZnO) synthesized by sol-gel method possessing the crystallite size which varies from 25.17 nm to 47.27 nm. The Scanning electron microscope (SEM) image confirms the uniform distribution of nanograins with high porosity. The Energy dispersion X-ray (EDAX) spectrum gives the atomic composition of Zn and O in ZnO powders and confirms the formation of nano ZnO particles. These factors reveals that Nano ZnO based gas sensors are highly sensitive to Ammonia gas (NH{sub 3}) at room temperature, indicating the maximum response 86.8% at 800 ppm with fast response time and recovery time of 36 sec and 23 secmore » respectively.« less

  1. Comparative Study of Zn(O,S) Buffer Layers and CIGS Solar Cells Fabricated by CBD, ALD, and Sputtering: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramanathan, K.; Mann, J.; Glynn, S.

    2012-06-01

    Zn(O,S) thin films were deposited by chemical bath deposition (CBD), atomic layer deposition, and sputtering. Composition of the films and band gap were measured and found to follow the trends described in the literature. CBD Zn(O,S) parameters were optimized and resulted in an 18.5% efficiency cell that did not require post annealing, light soaking, or an undoped ZnO layer. Promising results were obtained with sputtering. A 13% efficiency cell was obtained for a Zn(O,S) emitter layer deposited with 0.5%O2. With further optimization of process parameters and an analysis of the loss mechanisms, it should be possible to increase the efficiency.

  2. Synthesis, structure, luminescent, and magnetic properties of carbonato-bridged Zn(II)2Ln(III)2 complexes [(μ4-CO3)2{Zn(II)L(n)Ln(III)(NO3)}2] (Ln(III) = Gd(III), Tb(III), Dy(III); L(1) = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato, L(2) = N,N'-bis(3-ethoxy-2-oxybenzylidene)-1,3-propanediaminato).

    PubMed

    Ehama, Kiyomi; Ohmichi, Yusuke; Sakamoto, Soichiro; Fujinami, Takeshi; Matsumoto, Naohide; Mochida, Naotaka; Ishida, Takayuki; Sunatsuki, Yukinari; Tsuchimoto, Masanobu; Re, Nazzareno

    2013-11-04

    Carbonato-bridged Zn(II)2Ln(III)2 complexes [(μ4-CO3)2{Zn(II)L(n)Ln(III)(NO3)}2]·solvent were synthesized through atmospheric CO2 fixation reaction of [Zn(II)L(n)(H2O)2]·xH2O, Ln(III)(NO3)3·6H2O, and triethylamine, where Ln(III) = Gd(III), Tb(III), Dy(III); L(1) = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato, L(2) = N,N'-bis(3-ethoxy-2-oxybenzylidene)-1,3-propanediaminato. Each Zn(II)2Ln(III)2 structure possessing an inversion center can be described as two di-μ-phenoxo-bridged {Zn(II)L(n)Ln(III)(NO3)} binuclear units bridged by two carbonato CO3(2-) ions. The Zn(II) ion has square pyramidal coordination geometry with N2O2 donor atoms of L(n) and one oxygen atom of a bridging carbonato ion at the axial site. Ln(III) ion is coordinated by nine oxygen atoms consisting of four from the deprotonated Schiff-base L(n), two from a chelating nitrate, and three from two carbonate groups. The temperature-dependent magnetic susceptibilities in the range 1.9-300 K, field-dependent magnetization from 0 to 5 T at 1.9 K, and alternating current magnetic susceptibilities under the direct current bias fields of 0 and 1000 Oe were measured. The magnetic properties of the Zn(II)2Ln(III)2 complexes are analyzed on the basis of the dicarbonato-bridged binuclear Ln(III)-Ln(III) structure, as the Zn(II) ion with d(10) electronic configuration is diamagnetic. ZnGd1 (L(1)) and ZnGd2 (L(2)) show a ferromagnetic Gd(III)-Gd(III) interaction with J(Gd-Gd) = +0.042 and +0.028 cm(-1), respectively, on the basis of the Hamiltonian H = -2J(Gd-Gd)ŜGd1·ŜGd2. The magnetic data of the Zn(II)2Ln(III)2 complexes (Ln(III) = Tb(III), Dy(III)) were analyzed by a spin Hamiltonian including the crystal field effect on the Ln(III) ions and the Ln(III)-Ln(III) magnetic interaction. The Stark splitting of the ground state was so evaluated, and the energy pattern indicates a strong easy axis (Ising type) anisotropy. Luminescence spectra of Zn(II)2Tb(III)2 complexes were observed, while those of Zn(II)2Dy(III)2 were not detected. The fine structure assignable to the (5)D4 → (7)F6 transition of ZnTb1 and ZnTb2 is in good accord with the energy pattern from the magnetic analysis. The Zn(II)2Ln(III)2 complexes (Ln(III) = Tb(III), Dy(III)) showed an out-of-phase signal with frequency-dependence in alternating current susceptibility, indicative of single molecule magnet. Under a dc bias field of 1000 Oe, the signals become significantly more intense and the energy barrier, Δ/kB, for the magnetic relaxation was estimated from the Arrhenius plot to be 39(1) and 42(8) K for ZnTb1 and ZnTb2, and 52(2) and 67(2) K for ZnDy1 and ZnDy2, respectively.

  3. Prediction of ore fluid metal concentrations from solid solution concentrations in ore-stage calcite: Application to the Illinois-Kentucky and Central Tennessee Mississippi Valley-type districts

    NASA Astrophysics Data System (ADS)

    Smith-Schmitz, Sarah E.; Appold, Martin S.

    2018-03-01

    Knowledge of the concentrations of Zn and Pb in Mississippi Valley-type (MVT) ore fluids is fundamental to understanding MVT deposit origin. Most previous attempts to quantify the concentrations of Zn and Pb in MVT ore fluids have focused on the analysis of fluid inclusions. However, these attempts have yielded ambiguous results due to possible contamination from secondary fluid inclusions, interferences from Zn and Pb in the host mineral matrix, and uncertainties about whether the measured Zn and Pb signals represent aqueous solute or accidental solid inclusions entrained within the fluid inclusions. The purpose of the present study, therefore, was to try to determine Zn and Pb concentrations in MVT ore fluids using an alternate method that avoids these ambiguities by calculating Zn and Pb concentrations in MVT ore fluids theoretically based on their solid solution concentrations in calcite. This method was applied to the Illinois-Kentucky and Central Tennessee districts, which both contain ore-stage calcite. Experimental partition coefficient (D) values from Rimstidt et al. (1998) and Tsusue and Holland (1966), and theoretical thermodynamic distribution coefficient (KD) values were employed in the present study. Ore fluid concentrations of Zn were likely most accurately predicted by Rimstidt et al. (1998) D values, based on their success in predicting known fluid inclusion concentrations of Mg and Mn, and likely also most accurately predicted ore fluid concentrations of Fe. All four of these elements have a divalent ionic radius smaller than that of Ca2+ and form carbonate minerals with the calcite structure. For both the Illinois-Kentucky and the Central Tennessee district, predicted ore fluid Zn and Fe concentrations were on the order of up to 10's of ppm. Ore fluid concentrations of Pb could only be predicted using Rimstidt et al. (1998) D values. However, these concentrations are unlikely to be reliable, as predicted ore fluid concentrations of Sr and Ba, which like Pb also have a divalent ionic radius larger than that of Ca2+ and form carbonate minerals with the aragonite structure, did not consistently agree well with known concentrations of Sr and Ba in fluid inclusions. The ore fluid Zn concentrations predicted in the present study lie within the range of Zn concentrations typical of modern sedimentary brines and are high enough to allow deposition of the observed amounts of Zn in the Illinois-Kentucky and Central Tennessee districts within ranges of geologically reasonable times and ore fluid flow velocities. If the pH of the Illinois-Kentucky and Central pH ore fluids was as low as current evidence suggests to be possible, then these ore fluids could simultaneously have transported enough sulfide with their Zn to account for the observed amounts of sphalerite in the districts.

  4. Codoped direct-gap semiconductor scintillators

    DOEpatents

    Derenzo, Stephen Edward [Pinole, CA; Bourret-Courchesne, Edith [Berkeley, CA; Weber, Marvin J [Danville, CA; Klintenberg, Mattias K [Berkeley, CA

    2008-07-29

    Fast, bright inorganic scintillators at room temperature are based on radiative electron-hole recombination in direct-gap semiconductors, e.g. CdS and ZnO. The direct-gap semiconductor is codoped with two different impurity atoms to convert the semiconductor to a fast, high luminosity scintillator. The codopant scheme is based on dopant band to dopant trap recombination. One dopant provides a significant concentration of carriers of one type (electrons or holes) and the other dopant traps carriers of the other type. Examples include CdS:In,Te; CdS:In,Ag; CdS:In,Na; ZnO:Ga,P; ZnO:Ga,N; ZnO:Ga,S; and GaN:Ge,Mg.

  5. Codoped direct-gap semiconductor scintillators

    DOEpatents

    Derenzo, Stephen E.; Bourret-Courchesne, Edith; Weber, Marvin J.; Klintenberg, Mattias K.

    2006-05-23

    Fast, bright inorganic scintillators at room temperature are based on radiative electron-hole recombination in direct-gap semiconductors, e.g. CdS and ZnO. The direct-gap semiconductor is codoped with two different impurity atoms to convert the semiconductor to a fast, high luminosity scintillator. The codopant scheme is based on dopant band to dopant trap recombination. One dopant provides a significant concentration of carriers of one type (electrons or holes) and the other dopant traps carriers of the other type. Examples include CdS:In,Te; CdS:In,Ag; CdS:In,Na; ZnO:Ga,P; ZnO:Ga,N; ZnO:Ga,S; and GaN:Ge,Mg.

  6. Spectrum lines of highly ionized zinc, germanium, selenium, zirconium, molybdenum, and silver injected into Princeton Large Torus and Tokamak Fusion Test Reactor tokamak discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinnov, E.; Boody, F.; Cohen, S.

    1986-10-01

    Measured wavelengths of a number of highly ionized atoms are reported. These include the 3s/sup 2/3p--3s3p/sup 2/ and 3s/sup 2/3p--3s/sup 2/3d transitions in the aluminum isoelectronic sequence of Zn XVIII, Ge XX, Se XXII, Zr XXVIII, Mo XXX, and Ag XXXV; several transitions in the n = 2 shell of Zn XXII, Zn XXIII, and Zn XXIV; and the resonance and intercombination lines of Ag XXXVI--Ag XXXVII and of Ge XXIX--Ge XXX.

  7. Dimensional crossover of electron weak localization in ZnO/TiO{sub x} stacked layers grown by atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, D., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Misra, P., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Joshi, M. P.

    2016-01-25

    We report on the dimensional crossover of electron weak localization in ZnO/TiO{sub x} stacked layers having well-defined and spatially-localized Ti dopant profiles along film thickness. These films were grown by in situ incorporation of sub-monolayer TiO{sub x} on the growing ZnO film surface and subsequent overgrowth of thin conducting ZnO spacer layer using atomic layer deposition. Film thickness was varied in the range of ∼6–65 nm by vertically stacking different numbers (n = 1–7) of ZnO/TiO{sub x} layers of nearly identical dopant-profiles. The evolution of zero-field sheet resistance (R{sub ◻}) versus temperature with decreasing film thickness showed a metal to insulator transition. Onmore » the metallic side of the metal-insulator transition, R{sub ◻}(T) and magnetoresistance data were found to be well corroborated with the theoretical framework of electron weak localization in the diffusive transport regime. The temperature dependence of both R{sub ◻} and inelastic scattering length provided strong evidence for a smooth crossover from 2D to 3D weak localization behaviour. Results of this study provide deeper insight into the electron transport in low-dimensional n-type ZnO/TiO{sub x} stacked layers which have potential applications in the field of transparent oxide electronics.« less

  8. Direct Electrical Probing of Periodic Modulation of Zinc-Dopant Distributions in Planar Gallium Arsenide Nanowires.

    PubMed

    Choi, Wonsik; Seabron, Eric; Mohseni, Parsian K; Kim, Jeong Dong; Gokus, Tobias; Cernescu, Adrian; Pochet, Pascal; Johnson, Harley T; Wilson, William L; Li, Xiuling

    2017-02-28

    Selective lateral epitaxial (SLE) semiconductor nanowires (NWs), with their perfect in-plane epitaxial alignment, ability to form lateral complex p-n junctions in situ, and compatibility with planar processing, are a distinctive platform for next-generation device development. However, the incorporation and distribution of impurity dopants in these planar NWs via the vapor-liquid-solid growth mechanism remain relatively unexplored. Here, we present a detailed study of SLE planar GaAs NWs containing multiple alternating axial segments doped with Si and Zn impurities by metalorganic chemical vapor deposition. The dopant profile of the lateral multi-p-n junction GaAs NWs was imaged simultaneously with nanowire topography using scanning microwave impedance microscopy and correlated with infrared scattering-type near-field optical microscopy. Our results provide unambiguous evidence that Zn dopants in the periodically twinned and topologically corrugated p-type segments are preferentially segregated at twin plane boundaries, while Si impurity atoms are uniformly distributed within the n-type segments of the NWs. These results are further supported by microwave impedance modulation microscopy. The density functional theory based modeling shows that the presence of Zn dopant atoms reduces the formation energy of these twin planes, and the effect becomes significantly stronger with a slight increase of Zn concentration. This implies that the twin formation is expected to appear when a threshold planar concentration of Zn is achieved, making the onset and twin periodicity dependent on both Zn concentration and nanowire diameter, in perfect agreement with our experimental observations.

  9. Evaluation of dog bones in the indirect assessment of environmental contamination with trace elements.

    PubMed

    Lanocha, Natalia; Kalisinska, Elzbieta; Kosik-Bogacka, Danuta I; Budis, Halina

    2012-06-01

    The aim of this paper was to determine the level of five elements, two essential for life [zinc (Zn) and copper (Cu)] and three distinctly toxic [lead (Pb), cadmium (Cd), and mercury (Hg)], in four types of biological material in bones of the dog Canis lupus familiaris. The experiment was carried out on bones from the hip joints of dogs. The samples of cartilage, compact bone, spongy bone, and cartilage with adjacent compact bone came from 26 domestic dogs from northwestern Poland. Concentrations of Cu, Zn, Pb, and Cd were determined by ICP-AES (atomic absorption spectrophotometry) in inductively coupled argon plasma, using a Perkin-Elmer Optima 2000 DV. Determination of Hg concentration was performed by atomic absorption spectroscopy. In the examined bone material from the dog, the greatest concentrations (median) were observed for Zn and the lowest for Hg (98 mg Zn/kg and 0.0015 mg Hg/kg dw, respectively). In cartilage and spongy bone, metal concentrations could be arranged in the following descending order: Zn > Pb > Cu > Cd > Hg. In compact bone, the order was slightly different: Zn > Pb > Cd > Cu > Hg (from median 70 mg/kg dw to 0.002 mg/kg dw). The comparisons of metal concentrations between the examined bone materials showed distinct differences only in relation to Hg: between concentrations in spongy bone, compact bone, and in cartilage, being greater in cartilage than in compact bone, and lower again in spongy bone.

  10. On the tin impurity in the thermoelectric compound ZnSb: Charge-carrier generation and compensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokofieva, L. V., E-mail: lprokofieva496@gmail.com; Konstantinov, P. P.; Shabaldin, A. A.

    2016-06-15

    The technique for measuring the Hall coefficient and electrical conductivity in the thermal cycling mode is used to study the effect of the Sn impurity on the microstructure and properties of pressed ZnSb samples. Tin was introduced as an excess component (0.1 and 0.2 at %) and as a substitutional impurity for Zn and Sb atoms in a concentration of (2–2.5) at % The temperature dependences of the parameters of lightly doped samples are fundamentally like similar curves for ZnSb with 0.1 at % of Cu. The highest Hall concentration, 1.4 × 10{sup 19} cm{sup –3} at 300 K, ismore » obtained upon the introduction of 0.1 at % of Sn; the dimensionless thermoelectric figure of merit attains its maximum value of 0.85 at 660 K. The experimental data are discussed under the assumption of two doping mechanisms, which are effective in different temperature ranges, with zinc vacancies playing the decisive role of acceptor centers. In two ZnSb samples with SnSb and ZnSn additives, the charge-carrier compensation effect is observed; this effect depends on temperature and markedly changes with doping type. As in p-type A{sup IV}–B{sup VI} materials with a low Sn content, hole compensation can be attributed to atomic recharging Sn{sup 2+} → Sn{sup 4+}. Types of compensating complexes are considered.« less

  11. Zinc complexes of the biomimetic N,N,O ligand family of substituted 3,3-bis(1-alkylimidazol-2-yl)propionates: the formation of oxalate from pyruvate

    PubMed Central

    Bruijnincx, Pieter C. A.; Lutz, Martin; den Breejen, Johan P.; van Koten, Gerard

    2007-01-01

    The coordination chemistry of the 2-His-1-carboxylate facial triad mimics 3,3-bis(1-methylimidazol-2-yl)propionate (MIm2Pr) and 3,3-bis(1-ethyl-4-isopropylimidazol-2-yl) propionate (iPrEtIm2Pr) towards ZnCl2 was studied both in solution and in the solid state. Different coordination modes were found depending both on the stoichiometry and on the ligand that was employed. In the 2:1 ligand-to-metal complex [Zn(MIm2Pr)2], the ligand coordinates in a tridentate, tripodal N,N,O fashion similar to the 2-His-1-carboxylate facial triad. However, the 1:1 ligand-to-metal complexes [Zn(MIm2Pr)Cl(H2O)] and [Zn(iPrEtIm2Pr)Cl] were crystallographically characterized and found to be polymeric in nature. A new, bridging coordination mode of the ligands was observed in both structures comprising N,N-bidentate coordination of the ligand to one zinc atom and O-monodentate coordination to a zinc second atom. A rather unique transformation of pyruvate into oxalate was found with [Zn(MIm2Pr)Cl], which resulted in the isolation of the new, oxalato bridged zinc coordination polymer [Zn2(MIm2Pr)2(ox)]·6H2O, the structure of which was established by X-ray crystal structure determination. PMID:17828423

  12. Synthesis, characterization and modelling of zinc and silicate co-substituted hydroxyapatite

    PubMed Central

    Friederichs, Robert J.; Chappell, Helen F.; Shepherd, David V.; Best, Serena M.

    2015-01-01

    Experimental chemistry and atomic modelling studies were performed here to investigate a novel ionic co-substitution in hydroxyapatite (HA). Zinc, silicate co-substituted HA (ZnSiHA) remained phase pure after heating to 1100°C with Zn and Si amounts of 0.6 wt% and 1.2 wt%, respectively. Unique lattice expansions in ZnSiHA, silicate Fourier transform infrared peaks and changes to the hydroxyl IR stretching region suggested Zn and silicate co-substitution in ZnSiHA. Zn and silicate insertion into HA was modelled using density functional theory (DFT). Different scenarios were considered where Zn substituted for different calcium sites or at a 2b site along the c-axis, which was suspected in singly substituted ZnHA. The most energetically favourable site in ZnSiHA was Zn positioned at a previously unreported interstitial site just off the c-axis near a silicate tetrahedron sitting on a phosphate site. A combination of experimental chemistry and DFT modelling provided insight into these complex co-substituted calcium phosphates that could find biomedical application as a synthetic bone mineral substitute. PMID:26040597

  13. Solubilization of insoluble zinc compounds by Gluconacetobacter diazotrophicus and the detrimental action of zinc ion (Zn2+) and zinc chelates on root knot nematode Meloidogyne incognita.

    PubMed

    Saravanan, V S; Kalaiarasan, P; Madhaiyan, M; Thangaraju, M

    2007-03-01

    To examine the zinc (Zn) solubilization potential and nematicidal properties of Gluconacetobacter diazotrophicus. Atomic Absorption Spectrophotometer, Differential Pulse Polarography and Gas Chromatography Coupled Mass Spectrometry were used to estimate the total Zn and Zn(2+) ions and identify the organic acids present in the culture supernatants. The effect of culture filtrate of Zn-amended G. diazotrophicus PAl5 on Meloidogyne incognita in tomato was examined under gnotobiotic conditions. Gluconacetobacter diazotrophicus PAl5 effectively solubilized the Zn compounds tested and 5-ketogluconic acid was identified as the major organic acid aiding the solubilization of zinc oxide. The presence of Zn compounds in the culture filtrates of G. diazotrophicus enhanced the mortality and reduced the root penetration of M. incognita under in vitro conditions. 5-ketogluconic acid produced by G. diazotrophicus mediated the solubilization process and the available Zn(2+) ions enhanced the nematicidal activity of G. diazotrophicus against M. incognita. Zn solubilization and enhanced nematicidal activity of Zn-amended G. diazotrophicus provides the possibility of exploiting it as a plant growth promoting bacteria.

  14. Complete Prevention of Dendrite Formation in Zn Metal Anodes by Means of Pulsed Charging Protocols.

    PubMed

    Garcia, Grecia; Ventosa, Edgar; Schuhmann, Wolfgang

    2017-06-07

    Zn metal as anode in rechargeable batteries, such as Zn/air or Zn/Ni, suffers from poor cyclability. The formation of Zn dendrites upon cycling is the key limiting step. We report a systematic study of the influence of pulsed electroplating protocols on the formation of Zn dendrites and in turn on strategies to completely prevent Zn dendrite formation. Because of the large number of variables in electroplating protocols, a scanning droplet cell technique was adapted as a high-throughput methodology in which a descriptor of the surface roughness can be in situ derived by means of electrochemical impedance spectroscopy. Upon optimizing the electroplating protocol by controlling nucleation, zincate ion depletion, and zincate ion diffusion, scanning electron microscopy and atomic force microscopy confirmed the growth of uniform and homogenous Zn deposits with a complete prevention of dendrite growth. The implementation of pulsed electroplating as the charging protocol for commercially available Ni-Zn batteries leads to substantially prolonged cyclability demonstrating the benefits of pulsed charging in Zn metal-based batteries.

  15. Observation of ZnS nanoparticles sputtered from ZnS films under 2 MeV Au irradiation

    NASA Astrophysics Data System (ADS)

    Kuiri, P. K.; Joseph, B.; Ghatak, J.; Lenka, H. P.; Sahu, G.; Acharya, B. S.; Mahapatra, D. P.

    2006-07-01

    ZnS nanoparticles have been observed on catcher foils due to 2 MeV Au ion irradiation of ZnS films thermally evaporated on Si(1 0 0) substrates. The structure and size distribution of nanoclusters collected were studied using transmission electron microscopy for irradiation fluences in the range of 1 × 10 11-1 × 10 15 ions cm -2. The nanoclusters were found to have a hexagonal wurtzite structure. Optical absorption measurements on similarly deposited ZnS on silica glass indicate the film to be also composed of hexagonal wurtzite ZnS. Based on this and available data we argue that the observed nanoparticles on the catcher foils are the results of shock waves induced emission of material chunks with the same atomic coordination as in the target.

  16. Contrasting emission behaviour of phenanthroimidazole with ZnO nanoparticles.

    PubMed

    Karunakaran, C; Jayabharathi, J; Sathishkumar, R; Jayamoorthy, K; Vimal, K

    2013-11-01

    A new fluorophore 2-(4-fluorophenyl)-1-phenyl-1H-phenanthro [9,10-d]imidazole has been synthesized and characterized by spectroscopic techniques. Nanoparticulate ZnO enhances the fluorescence of the synthesised fluorophore. The absorption, fluorescence, lifetime, cyclic voltammetry and infrared studies reveal that fluorophore is attached to the surface of ZnO semiconductor. Photo-induced electron transfer (PET) explains the enhancement of fluorescence by nanoparticulate ZnO and the apparent binding constant has been obtained. Adsorption of the fluorophore on ZnO nanoparticle lowers the HOMO and LUMO energy levels of the fluorophore. The strong adsorption of the phenanthrimidazole derivative on the surface of ZnO nanocrystals is likely due to the chemical affinity of the nitrogen atom of the organic molecule to the zinc ion on the surface of nanocrystal. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Local atomic and magnetic structure of dilute magnetic semiconductor (Ba ,K ) (Zn,Mn ) 2As2

    NASA Astrophysics Data System (ADS)

    Frandsen, Benjamin A.; Gong, Zizhou; Terban, Maxwell W.; Banerjee, Soham; Chen, Bijuan; Jin, Changqing; Feygenson, Mikhail; Uemura, Yasutomo J.; Billinge, Simon J. L.

    2016-09-01

    We have studied the atomic and magnetic structure of the dilute ferromagnetic semiconductor system (Ba ,K )(Zn ,Mn )2As2 through atomic and magnetic pair distribution function analysis of temperature-dependent x-ray and neutron total scattering data. We detected a change in curvature of the temperature-dependent unit cell volume of the average tetragonal crystallographic structure at a temperature coinciding with the onset of ferromagnetic order. We also observed the existence of a well-defined local orthorhombic structure on a short length scale of ≲5 Å , resulting in a rather asymmetrical local environment of the Mn and As ions. Finally, the magnetic PDF revealed ferromagnetic alignment of Mn spins along the crystallographic c axis, with robust nearest-neighbor ferromagnetic correlations that exist even above the ferromagnetic ordering temperature. We discuss these results in the context of other experiments and theoretical studies on this system.

  18. Dichloridobis(phenanthridine-κN)zinc(II)

    PubMed Central

    Khoshtarkib, Zeinab; Ebadi, Amin; Alizadeh, Robabeh; Ahmadi, Roya; Amani, Vahid

    2009-01-01

    In the mol­ecule of the title compound, [ZnCl2(C13H9N)2], the ZnII atom is four-coordinated in a distorted tetra­hedral configuration by two N atoms from two phenanthridine ligands and by two terminal Cl atoms. The dihedral angle between the planes of the phenanthridine ring systems is 69.92 (3)°. An intra­molecular C—H⋯Cl inter­action results in the formation of a planar five-membered ring, which is oriented at a dihedral angle of 8.32 (3)° with respect to the adjacent phenanthridine ring system. In the crystal structure, π–π contacts between the phenanthridine systems [centroid–centroid distances = 3.839 (2), 3.617 (1) and 3.682 (1) Å] may stabilize the structure. Two weak C—H⋯π inter­actions are also found. PMID:21582680

  19. Interatomic interactions in M2(C8H4O4)2C6H12N2 (M = Zn, Cu, Co, Ni) metal-organic framework polymers: X-ray photoelectron spectroscopy, QTAIM and ELF study

    NASA Astrophysics Data System (ADS)

    Kozlova, S. G.; Ryzhikov, M. R.; Samsonenko, D. G.; Kalinkin, A. V.

    2017-12-01

    Interatomic interactions in M2(C8H4O4)2C6H12N2 (M = Co, Ni, Cu, Zn) metal-organic framework polymers have been studied with the methods of quantum chemistry and X-ray photoelectron spectroscopy. Interactions of C6H12N2 molecules and C8H4O42- anions with metal atoms are shown to be of closed-shell type. C6H12N2 molecules are positively charged, the value of the charge slightly depends on the type of the metal atoms. Msbnd M interactions are described as "intermediate interactions" with some covalence contribution which reaches maximum for the interactions between cobalt atoms. The obtained quantum-chemical data agree with those obtained from photoelectron spectroscopy measurements.

  20. Order-disorder antiferroelectric phase transition in a hybrid inorganic-organic framework with the perovskite architecture.

    PubMed

    Jain, Prashant; Dalal, Naresh S; Toby, Brian H; Kroto, Harold W; Cheetham, Anthony K

    2008-08-13

    [(CH3)2NH2]Zn(HCOO)3, 1, adopts a structure that is analogous to that of a traditional perovskite, ABX3, with A = [(CH3)2NH2], B = Zn, and X = HCOO. The hydrogen atoms of the dimethyl ammonium cation, which hydrogen bond to oxygen atoms of the formate framework, are disordered at room temperature. X-ray powder diffraction, dielectric constant, and specific heat data show that 1 undergoes an order-disorder phase transition on cooling below 156 K. We present evidence that this is a classical paraelectric to antiferroelectric phase transition that is driven by ordering of the hydrogen atoms. This sort of electrical ordering associated with order-disorder phase transition is unprecedented in hybrid frameworks and opens up an exciting new direction in rational synthetic strategies to create extended hybrid networks for applications in ferroic-related fields.

  1. Structural and optoelectronic properties of ZnGaO thin film by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Han, Xiaowei; Wang, Li; Li, Shufeng; Gao, Dongwen; Pan, Yong

    2018-01-01

    ZnO has attracted much attention because of its high-energy gap and exciton binding energy at room temperature. Compared to ZnO thin films, ZnGaO thin films are more resistive to oxidation and have smaller deformation of lattice. In this study, the high purity ZnSe and Ga2O3 powders were weighted at a molar ratio of 18:1. Se was oxidized to Se2O3 and separated from the mixture powders by using conventional solid state reaction method in air, and the ZnGaO ceramic target was prepared. We fabricated the ZnGaO films on silica glass by pulsed laser deposition (PLD) method under different oxygen pressure at room temperature. The as-grown films were tested by X-ray diffraction and atomic force microscope (AFM) to diagnose the crystal structure and surface morphology. Moreover, we obtained the optical transmittance of ZnGaO film and found that the electrical conductivity capacity varied with the increase of oxygen pressure.

  2. ZnO synthesis by high vacuum plasma-assisted chemical vapor deposition using dimethylzinc and atomic oxygen

    NASA Astrophysics Data System (ADS)

    Barnes, Teresa M.; Hand, Steve; Leaf, Jackie; Wolden, Colin A.

    2004-09-01

    Zinc oxide thin films were produced by high vacuum plasma-assisted chemical vapor deposition (HVP-CVD) from dimethylzinc (DMZn) and atomic oxygen. HVP-CVD is differentiated from conventional remote plasma-enhanced CVD in that the operating pressures of the inductively coupled plasma (ICP) source and the deposition chamber are decoupled. Both DMZn and atomic oxygen effuse into the deposition chamber under near collisionless conditions. The deposition rate was measured as a function of DMZn and atomic oxygen flux on glass and silicon substrates. Optical emission spectroscopy and quadrupole mass spectrometry (QMS) were used to provide real time analysis of the ICP source and the deposition chamber. The deposition rate was found to be first order in DMZn pressure and zero order in atomic oxygen density. All films demonstrated excellent transparency and were preferentially orientated along the c-axis. The deposition chemistry occurs exclusively through surface-mediated reactions, since the collisionless transport environment eliminates gas-phase chemistry. QMS analysis revealed that DMZn was almost completely consumed, and desorption of unreacted methyl radicals was greatly accelerated in the presence of atomic oxygen. Negligible zinc was detected in the gas phase, suggesting that Zn was efficiently consumed on the substrate and walls of the reactor.

  3. Mode of bindings of zinc oxide nanoparticles to myoglobin and horseradish peroxidase: A spectroscopic investigations

    NASA Astrophysics Data System (ADS)

    Mandal, Gopa; Bhattacharya, Sudeshna; Ganguly, Tapan

    2011-07-01

    The interactions between two heme proteins myoglobin (HMb) and horseradish peroxidase (HRP) with zinc oxide (ZnO) nanoparticles are investigated by using UV-vis absorption, steady state fluorescence, synchronous fluorescence, time-resolved fluorescence, FT-IR, atomic force microscopy (AFM) and circular dichroism (CD) techniques under physiological condition of pH˜7.4. The presence of mainly static mode in fluorescence quenching mechanism of HMb and HRP by ZnO nanoparticle indicates the possibility of formation of ground state complex. The processes of bindings of ZnO nanoparticles with the two proteins are spontaneous molecular interaction procedures. In both cases hydrogen bonding plays a major role. The circular dichroism (CD) spectra reveal that a helicity of the proteins is reduced by increasing ZnO nanoparticle concentration although the α-helical structures of HMb and HRP retain their identity. On binding to the ZnO nanoparticles the secondary structure of HRP molecules (or HMb molecules) remains unchanged while there is a substantial change in the environment of the tyrosin active site in case of HRP molecules and tryptophan active site in case of HMb molecules. Tapping mode atomic force microscopy (AFM) was applied for the investigation the structure of HRP adsorbed in the environment of nanoparticles on the silicon and on the bare silicon. HRP molecules adsorb and aggregate on the mica with ZnO nanoparticle. The aggregation indicates an attractive interaction among the adsorbed molecules. The molecules are randomly distributed on the bare silicon wafer. The adsorption of HRP in the environment of ZnO nanoparticle changes drastically the domains due to a strong interaction between HRP and ZnO nanoparticles. Similar situation is observed in case of HMb molecules. These findings demonstrate the efficacy of biomedical applications of ZnO nanoparticles as well as in elucidating their mechanisms of action as drugs in both human and plant systems.

  4. Substitution of Li for Cu in Cu2ZnSnS4: Toward Wide Band Gap Absorbers with Low Cation Disorder for Thin Film Solar Cells.

    PubMed

    Lafond, A; Guillot-Deudon, C; Vidal, J; Paris, M; La, C; Jobic, S

    2017-03-06

    The substitution of lithium for copper in Cu 2 ZnSnS 4 (CZTS) has been experimentally and theoretically investigated. Formally, the (Cu 1-x Li x )ZnSnS 4 system exhibits two well-defined solid solutions. Indeed, single crystal structural analyses demonstrate that the low (x < 0.4) and high (x > 0.6) lithium-content compounds adopt the kesterite structure and the wurtz-kesterite structure, respectively. For x between 0.4 and 0.6, the two aforementioned structure types coexist. Moreover, 119 Sn NMR analyses carried out on a (Cu 0.7 Li 0.3 ) 2 ZnSnS 4 sample clearly indicate that lithium replaces copper preferentially on two of the three available 2-fold crystallographic sites commonly occupied by Cu and Zn in disordered kesterite. Furthermore, the observed individual lines in the NMR spectrum suggest that the propensity of Cu and Zn atoms to be randomly distributed over the 2c and 2d crystallographic sites is lowered when lithium is partially substituted for copper. Additionally, the first-principles calculations provide insights into the arrangement of Li atoms as a function of the Cu/Zn disorder and its effect on the structural (lattice parameters) and optical properties of CZTS (band gap evolution). Those calculations agree with the experimental observations and account for the evolutions of the unit cell parameters as well as for the increase of band gap when the Li-content increases. The calculation of the formation enthalpy of point defect unambiguously indicates that Li modifies the Cu/Zn disorder in a manner similar to the change of Cu/Zn disorder induced by Ag alloying. Overall, it was found that Li alloying is a versatile way of tuning the optoelectronic properties of CZTS making it a good candidate as wide band gap materials for the top cells of tandem solar cells.

  5. Study on the effects of Ga-2N high co-doping and preferred orientation on the stability, bandgap and absorption spectrum of ZnO

    NASA Astrophysics Data System (ADS)

    Hou, Qing-Yu; Li, Wen-Cai; Qu, Ling-Feng; Zhao, Chun-Wang

    2017-06-01

    Currently, the stability and visible light properties of Ga-2N co-doped ZnO systems have been studied extensively by experimental analysis and theoretical calculations. However, previous theoretical calculations arbitrarily assigned Ga- and 2N-doped sites in ZnO. In addition, the most stable and possible doping orientations of doped systems have not been fully and systematically considered. Therefore, in this paper, the electron structure and absorption spectra of the unit cells of doped and pure systems were calculated by first-principles plane-wave ultrasoft pseudopotential with the GGA+U method. Calculations were performed for pure ZnO, Ga-2N supercells heavily co-doped with Zn1-xGaxO1-yNy (x = 0.03125 - 0.0625, y = 0.0625 - 0.125) under different co-doping orientations and conditions, and the Zn16GaN2O14 interstitial model. The results indicated that under different orientations and constant Ga-2N co-doping concentrations, the systems co-doped with Ga-N atoms vertically oriented to the c-axis and with another N atom located in the nearest-neighboring site exhibited higher stability over the others, thus lowering formation energy and facilitating doping. Moreover, Ga-interstitial- and 2N-co-doped ZnO systems easily formed chemical compounds. Increasing co-doping concentration while the co-doping method remained constant decreased doped system volume and lowered formation energies. Meantime, co-doped systems were more stable and doping was facilitated. The bandgap was also narrower and red shifting of the absorption spectrum was more significant. These results agreed with previously reported experimental results. In addition, the absorption spectra of Ga-interstitial- and 2N-co-doped ZnO both blue shifted in the UV region compared with that of the pure ZnO system.

  6. Tunable magnetism of 3d transition metal doped BiFeO3

    NASA Astrophysics Data System (ADS)

    Lu, S.; Li, C.; Zhao, Y. F.; Gong, Y. Y.; Niu, L. Y.; Liu, X. J.; Wang, T.

    2017-10-01

    Electronic polarization or bond relaxation can effectively alter the electronic and magnetic behavior of materials by doping impurity atom. For this aim, the thermodynamic, electronic and magnetic performances of cubic BiFeO3 have been modulated by the 3d transition metal (TM) dopants (Sc, Ti, V, Cr, Mn, Co, Ni, Cu and Zn) based on the density functional theory. Results show that the doped specimen with low impurity concentration is more stable than that with high impurity concentration. The Mulliken charge values and spin magnetic moments of TM element are making major changes, while those of all host atoms are making any major changes. Especially, it is the linear relation between the spin magnetic moments of TM dopants and the total magnetic moment of doped specimens; thus, the variations of total magnetic moment of doped specimens are decided by the spin magnetic moments of TM dopants, thought the total magnetic moments of doped specimens mainly come from Fe atom and TM dopants. Besides, as double TM atoms substitution the Fe atoms, the Sc-, Ti-, Mn-, Co- and Zn-doped specimens show AFM state, while the V-, Cr-, Ni- and Cu-doped specimens show FM state.

  7. Study of morphology effects on magnetic interactions and band gap variations for 3d late transition metal bi-doped ZnO nanostructures by hybrid DFT calculations

    NASA Astrophysics Data System (ADS)

    Datta, Soumendu; Kaphle, Gopi Chandra; Baral, Sayan; Mookerjee, Abhijit

    2015-08-01

    Using density functional theory (DFT) based electronic structure calculations, the effects of morphology of semiconducting nanostructures on the magnetic interaction between two magnetic dopant atoms as well as a possibility of tuning band gaps have been studied in the case of the bi-doped (ZnO)24 nanostructures with the impurity dopant atoms of the 3d late transition metals—Mn, Fe, Co, Ni, and Cu. To explore the morphology effect, three different structures of the host (ZnO)24 nano-system, having different degrees of spatial confinement, have been considered: a two dimensional nanosheet, a one dimensional nanotube, and a finite cage-shaped nanocluster. The present study employs hybrid density functional theory to accurately describe the electronic structure of all the systems. It is shown here that the magnetic coupling between the two dopant atoms remains mostly anti-ferromagnetic in the course of changing the morphology from the sheet geometry to the cage-shaped geometry of the host systems, except for the case of energetically most stable bi-Mn doping, which shows a transition from ferromagnetic to anti-ferromagnetic coupling with decreasing aspect ratio of the host system. The effect of the shape change, however, has a significant effect on the overall band gap variations of both the pristine as well as all the bi-doped systems, irrespective of the nature of the dopant atoms and provides a means for easy tunability of their optoelectronic properties.

  8. Catalytic Conversion of Short-Chain Alcohols on Atomically Dispersed Au and Pd Supported on Nanoscale Metal Oxides

    NASA Astrophysics Data System (ADS)

    Wang, Chongyang

    With the development of technologies for cellulosic biomass conversion to fuels and chemicals, bio-alcohols are among the main alternative feedstocks to fossil fuels. The research pursued in my thesis was the investigation of gold and palladium as catalysts for the application of short aliphatic alcohols to hydrogen generation and value-added chemicals production. Specifically, selective methanol steam reforming and non-oxidative ethanol dehydrogenation to hydrogen and acetaldehyde were investigated in this thesis work. A major aim of the thesis was to develop atomically efficient catalysts with tuned surface chemistry for the desired reactions, using suitable synthesis methods. Methanol steam reforming (SRM) for hydrogen production has recently been investigated on gold catalysts to overcome the drawbacks of copper catalysts (deactivation, pyrophoricity). Previous work at Tufts University has shown that both CeO2 and ZnO are suitable supports for gold. In this thesis, nanoscale composite oxides ZnZrOx were prepared by a carbon hard-template method, which resulted in homogeneous distribution of Zn species in the matrix of ZrO2. Tunable surface chemistry of ZnZrO x was demonstrated by varying the Zn/Zr ratio to suppress the strong Lewis acidity of ZrO2, which leads to undesired production of CO through methanol decomposition. With atomic dispersion of gold, Au/ZnZrO x catalyzes the SRM reaction exclusively via the methanol self-coupling pathway up to 375°C. The activity of Au/ZnZrOx catalysts was compared to Au/TiO2, which is another catalyst system demonstrating atomic dispersion of gold. Similarity in the apparent activation energy of SRM on all the supported gold catalysts studied in this thesis and in the literature further confirms the same single-site Au-Ox-MO centers as active sites for SRM with indirect effects of the supports exploited. With this fundamental understanding of gold-catalyzed C1 alcohol reforming, the Au/ZnZrOx catalyst was evaluated for the dehydrogenation of ethanol. Bare ZnZrOx activate ethanol conversion in the range of 280-300°C and produce undesired ethylene as product of ethanol dehydration, whereas, addition of small amount of gold (<1wt.%) was found to significantly change the product distribution in the low-temperature range (200°C-350°C). As gold passivates the strong Bronsted acid sites of ZrO2 and selectively facilitates the dehydrogenation of ethanol at low-temperature, a wide temperature range was found between the production of acetaldehyde (dehydrogenation products) and ethylene (dehydration product), which can be harnessed for the industrial application. Interestingly, the steam reforming of ethanol did not take place in the low-temperature region, thus the selectivity to acetaldehyde and hydrogen was 100% even in the presence of water. In addition to gold, palladium was also studied in this thesis work on the ZnZrOx composite oxides, and its activity and selectivity were compared to Au/ZnZrOx. Monometallic Pd catalyzes the decomposition of methanol and ethanol, resulting in different product distribution for C 1-C2 alcohol reactions. With ZnZrOx employed as the catalyst support in this thesis work, the finely dispersed ZnO species in ZrO2 were found to alloy with the supported palladium under reduction treatment. Alloying with Zn tunes the chemistry of Pd to catalyze the SRM reaction through the methanol coupling mechanism, shutting off the undesired methanol decomposition pathway. A preliminary study of the Pd/ZnZrO x system for ethanol dehydrogenation also demonstrated the modification of Pd when in the PdZn alloy form. Different from the monometallic Pd catalyst, which primarily catalyzes the C-C bond scission of ethanol, high selectivity to ethanol dehydrogenation products was found on PdZn, over the temperature range of 200-400°C. Formation of the PdZn alloy broadens the application of Pd and potentially other Group VIII metals for selective alcohol conversion reactions. In summary, this thesis work has investigated two noble metals Au and Pd from Group IB and Group VIII, respectively, for methanol and ethanol alcohol reforming reactions employing a novel ZnZrOx composite oxide as a platform catalyst support. Comprehensive study of Au catalyst has deepened our understanding of atomically dispersed Au anchored on various supports through oxygen bonds as the active sites for alcohol reforming reactions, and showed the support effect to be indirect, serving as the carrier and stabilizer of the gold species. For Pd, the Zn species of the composite oxide is necessary to modify the Pd catalyst and the PdZn alloy gives it the desired Au-like properties. Full characterization of the catalysts used here by ICP, XPS, XRD, FTIR and STEM imaging was conducted throughout the thesis to identify the stable species and correlate the catalyst performance with its composition and morphology. Surface acidity titration by isopropanol temperature-programmed desorption/mass spectrometry (IPA-TPD/MS) and pyridine-IR adsorption/desorption was conducted in parallel to temperature-programmed surface reaction (TPSR) studies and products from isothermal steady-state reactions were monitored online by mass spectrometry.

  9. Evidence for Space Charge in Atomic Layer Epitaxy ZnS:Mn Alternating- Current Thin-Film Electroluminescent Devices,

    DTIC Science & Technology

    1993-01-01

    exists wior with ra hho agop io model within the bulk portion of the phosphor layer. Although tAon to obtin alteratinbilarplses with mp del this...field region within the ZnS. emission with a peak at 460 nm and which exhibited ther- Postulating the existence of such a low-field region mal

  10. Air-stable flexible organic light-emitting diodes enabled by atomic layer deposition.

    PubMed

    Lin, Yuan-Yu; Chang, Yi-Neng; Tseng, Ming-Hung; Wang, Ching-Chiun; Tsai, Feng-Yu

    2015-01-16

    Organic light-emitting diodes (OLED) are an energy-efficient light source with many desirable attributes, besides being an important display of technology, but its practical application has been limited by its low air-stability. This study demonstrates air-stable flexible OLEDs by utilizing two atomic-layer-deposited (ALD) films: (1) a ZnO film as both a stable electron-injection layer (EIL) and as a gas barrier in plastics-based OLED devices, and (2) an Al2O3/ZnO (AZO) nano-laminated film for encapsulating the devices. Through analyses of the morphology and electrical/gas-permeation properties of the films, we determined that a low ALD temperature of 70 °C resulted in optimal EIL performance from the ZnO film and excellent gas-barrier properties [water vapor transmission rate (WVTR) <5 × 10(-4) g m(-2) day(-1)] from both the ZnO EIL and the AZO encapsulating film. The low-temperature ALD processes eliminated thermal damage to the OLED devices, which were severe when a 90 °C encapsulation process was used, while enabling them to achieve an air-storage lifetime of >10,000 h.

  11. Air-Stable flexible organic light-emitting diodes enabled by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Lin, Yuan-Yu; Chang, Yi-Neng; Tseng, Ming-Hung; Wang, Ching-Chiun; Tsai, Feng-Yu

    2015-01-01

    Organic light-emitting diodes (OLED) are an energy-efficient light source with many desirable attributes, besides being an important display of technology, but its practical application has been limited by its low air-stability. This study demonstrates air-stable flexible OLEDs by utilizing two atomic-layer-deposited (ALD) films: (1) a ZnO film as both a stable electron-injection layer (EIL) and as a gas barrier in plastics-based OLED devices, and (2) an Al2O3/ZnO (AZO) nano-laminated film for encapsulating the devices. Through analyses of the morphology and electrical/gas-permeation properties of the films, we determined that a low ALD temperature of 70 °C resulted in optimal EIL performance from the ZnO film and excellent gas-barrier properties [water vapor transmission rate (WVTR) <5 × 10-4 g m-2 day-1] from both the ZnO EIL and the AZO encapsulating film. The low-temperature ALD processes eliminated thermal damage to the OLED devices, which were severe when a 90 °C encapsulation process was used, while enabling them to achieve an air-storage lifetime of >10 000 h.

  12. CoFe2O4-TiO2 and CoFe2O4-ZnO thin film nanostructures elaborated from colloidal chemistry and atomic layer deposition.

    PubMed

    Clavel, Guylhaine; Marichy, Catherine; Willinger, Marc-Georg; Ravaine, Serge; Zitoun, David; Pinna, Nicola

    2010-12-07

    CoFe(2)O(4)-TiO(2) and CoFe(2)O(4)-ZnO nanoparticles/film composites were prepared from directed assembly of colloidal CoFe(2)O(4) in a Langmuir-Blodgett monolayer and atomic layer deposition (ALD) of an oxide (TiO(2) or ZnO). The combination of these two methods permits the use of well-defined nanoparticles from colloidal chemistry, their assembly on a large scale, and the control over the interface between a ferrimagnetic material (CoFe(2)O(4)) and a semiconductor (TiO(2) or ZnO). Using this approach, architectures can be assembled with a precise control from the Angstrom scale (ALD) to the micrometer scale (Langmuir-Blodgett film). The resulting heterostructures present well-calibrated thicknesses. Electron microscopy and magnetic measurement studies give evidence that the size of the nanoparticles and their intrinsic magnetic properties are not altered by the various steps involved in the synthesis process. Therefore, the approach is suitable to obtain a layered composite with a quasi-monodisperse layer of ferrimagnetic nanoparticles embedded in an ultrathin film of semiconducting material.

  13. Crystal structure, Hirshfeld surface analysis, quantum mechanical study and spectroscopic characterization of the non-centrosymmetric coordination compound bis(4-fluoroaniline)dichloridozincate

    NASA Astrophysics Data System (ADS)

    Ben Nasr, M.; Soudani, S.; Lefebvre, F.; Jelsch, C.; Ben Nasr, C.

    2017-06-01

    The Zn(II) complex with the monodentate ligand 4-fluoroaniline, ZnCl2(C6H4FNH2)2, has been prepared and characterized by single crystal X-ray diffraction, solid state nuclear magnetic resonance, infrared spectroscopy and differential scanning calorimetry. The Zn(II) ion is tetracoordinated by two nitrogen atoms of two monodentate 4-fluoroaniline ligands and two chlorine atoms. In the molecular arrangement, the ZnCl2(C6H4FNH2)2 entities are interconnected via Nsbnd H⋯Cl hydrogen bonds to form layers parallel to the (a, b) plane. The nature and proportion of contacts in the crystal packing were investigated through the Hirshfeld surfaces. The crystal is mainly maintained by electrostatic attractions Cl- … Hsbnd N and by extensive hydrophobic contacts as revealed by the Hirshfeld 2D fingerprint plots and statistical analysis. The13C and 19F CP-MAS NMR spectra are in agreement with the X-ray structure and confirm the phase purity of the crystalline sample. The vibrational absorption bands were identified by infrared spectroscopy. A calorimetric study shows that the title compound is stable until 262.5 °C.

  14. Transparent ALD-grown Ta2O5 protective layer for highly stable ZnO photoelectrode in solar water splitting.

    PubMed

    Li, Chengcheng; Wang, Tuo; Luo, Zhibin; Zhang, Dong; Gong, Jinlong

    2015-04-30

    This communication describes a highly stable ZnO/Ta2O5 photoanode with Ta2O5 deposited by atomic layer deposition. The ultrathin Ta2O5 protective layer prevents corrosion of ZnO and reduces surface carrier recombination, leading to a nearly two-fold increase of photo-conversion efficiency. The transparency of Ta2O5 to sunlight is identified as the main reason for the excellent stability of the photoelectrode for 5 hours.

  15. Quantitative Scanning Transmission Electron Microscopy of Electronic and Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Yankovich, Andrew B.

    Electronic and nanostructured materials have been investigated using advanced scanning transmission electron microscopy (STEM) techniques. The first topic is the microstructure of Ga and Sb-doped ZnO. Ga-doped ZnO is a candidate transparent conducting oxide material. The microstructure of GZO thin films grown by MBE under different growth conditions and different substrates were examined using various electron microscopy (EM) techniques. The microstructure, prevalent defects, and polarity in these films strongly depend on the growth conditions and substrate. Sb-doped ZnO nanowires have been shown to be the first route to stable p-type ZnO. Using Z-contrast STEM, I have showed that an unusual microstructure of Sb-decorated head-to-head inversion domain boundaries and internal voids contain all the Sb in the nanowires and cause the p-type conduction. InGaN thin films and InGaN / GaN quantum wells (QW) for light emitting diodes are the second topic. Low-dose Z-contrast STEM, PACBED, and EDS on InGaN QW LED structures grown by MOCVD show no evidence for nanoscale composition variations, contradicting previous reports. In addition, a new extended defect in GaN and InGaN was discovered. The defect consists of a faceted pyramid-shaped void that produces a threading dislocation along the [0001] growth direction, and is likely caused by carbon contamination during growth. Non-rigid registration (NRR) and high-precision STEM of nanoparticles is the final topic. NRR is a new image processing technique that corrects distortions arising from the serial nature of STEM acquisition that previously limited the precision of locating atomic columns and counting the number of atoms in images. NRR was used to demonstrate sub-picometer precision in STEM images of single crystal Si and GaN, the best achieved in EM. NRR was used to measure the atomic surface structure of Pt nanoacatalysts and Au nanoparticles, which revealed new bond length variation phenomenon of surface atoms. In addition, NRR allowed for measuring the 3D atomic structure of the nanoparticles with less than 1 atom uncertainty, a long-standing problem in EM. Finally, NRR was adapted to EDS spectrum images, significantly enhancing the signal to noise ratio and resolution of an EDS spectrum image of Ca-doped NdTiO3 compared to conventional methods.

  16. Local Structures Around Co Atoms in Wurtzite ZnO Nano-Composites Probed by Fluorescence XAFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi Tongfei; National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029; Liu Wenhan

    2007-02-02

    The local structures around Co ions in the Zn1-xCoxO nano-composites prepared by the sol-gel method have been investigated by fluorescence X-ray absorption fine structure (XAFS) technique. The results indicate that for dilute Co-doped ZnO (x=0.02, 0.05), the Co2+ ions are incorporated into the ZnO lattice, and are located at the position of the substitutional Zn2+ ions. As the Co content increases to 0.10 or higher, only part of the Co ions enter the lattice of the wurtzite and the others exist in the form of a Co3O4 phase whose content increases with the doped Co concentration. In the substitutional Zn0.98Co0.02Omore » sample, the bond length of the first shell RCo-O and the second shell RCo-Zn is smaller than the second shell Zn-Zn distance in ZnO by about 0.01{approx}0.02 A. These results imply that only small local lattice deformation is induced by dilute Co2+ substituting into the Zn2+ sites.« less

  17. Controlled growth of ZnO/Zn₁-xPbxSe core-shell nanowires and their interfacial electronic energy alignment.

    PubMed

    Chen, Z H; Yeung, S Y; Li, H; Qian, J C; Zhang, W J; Li, Y Y; Bello, I

    2012-05-21

    ZnO/Zn(1-x)Pb(x)Se core-shell nanowires (NWs) have been synthesized by a solution based surface ion transfer method at various temperatures. The energy dispersive spectroscopic (EDS) mapping of single NWs suggests that the Zn, Pb and Se atoms are uniformly distributed in their shell layers. The ternary Zn(1-x)Pb(x)Se layers with tunable bandgaps extend the band-edge of optical absorption from 450 nm to 700 nm contrasting with the binary ZnSe layers. The ultraviolet photoelectron spectroscopic (UPS) analysis reveals a transition from the type I to type II band alignment when the x fraction decreases from 0.66 to the value of 0.36 in the nanoshell layers. This quantitative investigation of electronic energy levels at ZnO and Zn(1-x)Pb(x)Se interfaces indicates that the proper type II band alignment is well suited for photovoltaic energy conversion. The photovoltaic cells comprising a ZnO/Zn(1-x)Pb(x)Se nano-heterojunction with the optimized Pb content are expected to be more efficient than the devices sensitized by binary ZnSe or PbSe.

  18. High-quality ZnO inverse opals and related heterostructures as photocatalysts produced by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Long, Jie; Fu, Ming; Li, Caixia; Sun, Cuifeng; He, Dawei; Wang, Yongsheng

    2018-10-01

    ZnO with various nanostructures is widely investigated for high photoelectrochemical (PEC) catalysis performances due to its abundant and inert semiconducting properties with elevated electronic mobility and variable morphologies. Because the solar energy conversion efficiencies could possibly be further enhanced by the introduction of nanophotonic structures with larger surface ratios, high-quality ZnO inverse opals (IOs) were achieved by ALD method using O3 as the oxidant. The intrinsic UV emission peaks and PEC currents of ZnO IOs produced by O3 atomic layer deposition (ALD) method were much improved when compared to those made by H2O ALD and electrodeposition. ALD at higher temperatures (240 °C) can further enhance the crystalline quality and PEC performances. The optimal ALD thickness and filling fraction obtained by controlling ALD cycles, as well as the optimal photonic stop band position obtained by colloidal crystals with different sphere diameters were also discussed. It was found that conformally coated samples with TiO2 protection layers by ALD method using titanium tetrachloride as a precursor enhanced the photochemical stability of ZnO IOs. The photocorrosion was further reduced by inserting ALD Al2O3 inside the TiO2 protection layers. Heterostructured photonic crystals with double-layer IO structures with different pore periodicities were also developed for enhancing the PEC performances.

  19. Stable and High-Performance Flexible ZnO Thin-Film Transistors by Atomic Layer Deposition.

    PubMed

    Lin, Yuan-Yu; Hsu, Che-Chen; Tseng, Ming-Hung; Shyue, Jing-Jong; Tsai, Feng-Yu

    2015-10-14

    Passivation is a challenging issue for the oxide thin-film transistor (TFT) technologies because it requires prolonged high-temperature annealing treatments to remedy defects produced in the process, which greatly limits its manufacturability as well as its compatibility with temperature-sensitive materials such as flexible plastic substrates. This study investigates the defect-formation mechanisms incurred by atomic layer deposition (ALD) passivation processes on ZnO TFTs, based on which we demonstrate for the first time degradation-free passivation of ZnO TFTs by a TiO2/Al2O3 nanolaminated (TAO) film deposited by a low-temperature (110 °C) ALD process. By combining the TAO passivation film with ALD dielectric and channel layers into an integrated low-temperature ALD process, we successfully fabricate flexible ZnO TFTs on plastics. Thanks to the exceptional gas-barrier property of the TAO film (water vapor transmission rate (WVTR)<10(-6) g m(-2) day(-1)) as well as the defect-free nature of the ALD dielectric and ZnO channel layers, the TFTs exhibit excellent device performance with high stability and flexibility: field-effect mobility>20 cm2 V(-1) s(-1), subthreshold swing<0.4 V decade(-1) after extended bias-stressing (>10,000 s), air-storage (>1200 h), and bending (1.3 cm radius for 1000 times).

  20. Acid-free co-operative self-assembly of graphene-ZnO nanocomposites and its defect mediated visible light photocatalytic activities

    NASA Astrophysics Data System (ADS)

    Parameshwari, R.; Jothivenkatachalam, K.; Banks, Craig E.; Jeganathan, K.

    2017-02-01

    We propose an acid-free and environmental friendly surfactant based approach to anchor zinc oxide (ZnO) nanoparticles on graphene. Herein, liquid-phase exfoliated graphene in water by ultrasonic waves has been used to prepare graphene-ZnO (G-ZnO) nanocomposites that circumvent the use of various toxic acids and chemicals which are generally used in the preparation of graphene-based nanocomposites. Oxygen vacancy related defect peaks observed by Raman and photoluminescence confirm the formation of C-O-Zn bond due to the synergistic interaction of carbon and zinc via oxygen atoms in G-ZnO nanocomposites. The enhanced photocatalytic behavior of G-ZnO under visible light as evaluated using the dye Rhodamine B holds its genesis from the intrinsic oxygen defects in G-ZnO. Furthermore, graphene acts as electron sink for accumulation of charges from defect levels of ZnO, which controls recombination of charge carriers. It is envisaged that the acid-free and facile strategy can be a potential route for the preparation of graphene-based hybrid materials using liquid-phase exfoliation methodology.

  1. [The quantitative changes of bioelements (Ca, Zn, Mg, Cu, Mn) in crystalline lenses under the influence of hypodynamic stress and zinc].

    PubMed

    Kusleika, Saulius

    2002-01-01

    The aim of the study was to investigate and estimate quantitative changes of bioelements (Ca, Zn, Mg, Cu, Mn) in the lenses on the influence of hypodynamic stress and zinc (Zn). Hypodynamic stress of 48 days duration was provoked for Chinchilla rabbits (n = 20) by placing them in metal hutches. Every day (48 days) 10 rabbits, which had intervention received 0.3 mg/kg body wt. doses of Zn (in form of Zn acetate). The rabbits (n = 10) of the control group, which had no intervention were kept in vivarium conditions. Concentration of bioelements in the lenses of rabbits was detected by atomic absorption spectrophotometry 503 "Perkin-Elmer" (USA). The investigation revealed that hypodynamic stress of 48 days duration caused the increase in amount of Ca, Zn, Mn in lenses as compared with that in control rabbits and in rabbits receiving Zn. The concentration of bioelements (Ca, Zn, Mg, Cu, Mn) in lenses of rabbits receiving Zn in case of hypodynamic stress did not change significantly.

  2. Anchoring transition metal elements on graphene-like ZnO monolayer by CO molecule to obtain spin gapless semiconductor

    NASA Astrophysics Data System (ADS)

    Lei, Jie; Xu, Ming-Chun; Hu, Shu-Jun

    2017-09-01

    Graphene-like zinc oxide monolayer (g-ZnO) is a newfound two-dimensional material. Here we utilize the transition metal (TM) elements (Cr, Mn, Fe, Co, Ni, and Cu) to functionalize the g-ZnO with the aim of designing novel spintronics materials by using first-principles calculations. Our results show that although the adsorption of TM atoms can endow g-ZnO with magnetization and impurity states in the bandgap, the interaction between TM elements and g-ZnO is weak. We found that the attachment of CO molecule on TM is able to stabilize the TM elements on g-ZnO based on the 'donation and back-donation' mechanism. As a result, the adsorption energy of the CO-TM complex on g-ZnO is as high as 1.41-2.11 eV. Furthermore, the incorporation of CO molecule modulates the magnetic and electronic properties of the TM-decorated g-ZnO. In particular, the CO-Mn-g-ZnO is predicted to be a spin gapless semiconductor.

  3. Codoping characteristics of Zn with Mg in GaN

    NASA Astrophysics Data System (ADS)

    Kim, K. S.; Han, M. S.; Yang, G. M.; Youn, C. J.; Lee, H. J.; Cho, H. K.; Lee, J. Y.

    2000-08-01

    The doping characteristics of Mg-Zn codoped GaN films grown by metalorganic chemical vapor deposition are investigated. By means of the concept of Mg-Zn codoping technique, we have grown p-GaN showing a low electrical resistivity (0.72 Ω cm) and a high hole concentration (8.5×1017cm-3) without structural degradation of the film. It is thought that the codoping of Zn atoms with Mg raises the Mg activation ratio by reducing the hydrogen solubility in p-GaN. In addition, the measured specific contact resistance of Mg-Zn codoped GaN film is 5.0×10-4 Ω cm2, which is one order of magnitude lower than that of Mg doped only GaN film (1.9×10-3 Ω cm2).

  4. Influence of the applied potentials difference on structural and conductive properties of CoZnO nanotubes

    NASA Astrophysics Data System (ADS)

    Ibragimova, M. A.; Kozlovskiy, A. L.; Kenzhina, I. E.; Zdorovets, M. V.

    2018-04-01

    A series of CoZnO nanotubes was obtained by electrochemical deposition, with different atomic metal coefficients, due to a change in the applied potential difference. A systematic study of the morphology, structural and conductive properties of nanotubes was also carried out. It is established that the samples synthesized at the applied potentials difference of 1.5 and 1.75 V are three-component systems consisting of two oxide phases of ZnO and CoO1.92 cubic system and a phase of a solid solution of substitution Co0.65Zn0.35 of hexagonal type. The samples synthesized at a potential difference of 2.0 V represent an alloy of two oxide phases, ZnO and CoO1.92.

  5. Defect propagation in one-, two-, and three-dimensional compounds doped by magnetic atoms

    DOE PAGES

    Furrer, A.; Podlesnyak, A.; Krämer, K. W.; ...

    2014-10-29

    Inelastic neutron scattering experiments were performed to study manganese(II) dimer excitations in the diluted one-, two-, and three-dimensional compounds CsMn xMg 1-xBr 3, K 2Mn xZn 1-xF 4, and KMn xZn 1-xF 3 (x≤0.10), respectively. The transitions from the ground-state singlet to the excited triplet, split into a doublet and a singlet due to the single-ion anisotropy, exhibit remarkable fine structures. These unusual features are attributed to local structural inhomogeneities induced by the dopant Mn atoms which act like lattice defects. Statistical models support the theoretically predicted decay of atomic displacements according to 1/r 2, 1/r, and constant (for three-,more » two-, and one-dimensional compounds, respectively) where r denotes the distance of the displaced atoms from the defect. In conclusion, the observed fine structures allow a direct determination of the local exchange interactions J, and the local intradimer distances R can be derived through the linear law dJ/dR.« less

  6. Unique coordination of pyrazine in T[Ni(CN){sub 4}].2pyz with T=Mn, Zn, Cd

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemus-Santana, A.A.; Rodriguez-Hernandez, J.; Castillo, L.F. del, E-mail: lfelipe@servidor.unam.m

    2009-04-15

    The materials under study, T[Ni(CN){sub 4}].2pyz with T=Mn, Zn, Cd, were prepared by separation of T[Ni(CN){sub 4}] layers in citrate aqueous solution to allow the intercalation of the pyrazine molecules. The obtained solids were characterized from chemical analyses, X-ray diffraction, infrared, Raman, thermogravimetry, UV-Vis, magnetic and adsorption data. Their crystal structure was solved from ab initio using direct methods and then refined by the Rietveld method. A unique coordination for pyrazine to metal centers at neighboring layers was observed. The pyrazine molecule is found forming a bridge between Ni and T atoms, quite different from the proposed structures for T=Fe,more » Ni where it remains coordinated to two T atoms to form a vertical pillar between neighboring layers. The coordination of pyrazine to both Ni and T atoms minimizes the material free volume and leads to form a hydrophobic framework. On heating the solids remain stable up to 140 deg. C. No CO{sub 2} and H{sub 2} adsorption was observed in the small free spaces of their frameworks. - Graphical abstract: Framework for T[Ni(CN){sub 4}].2pyz with T=Mn, Zn, Cd.« less

  7. Photoemission and x-ray absorption studies of the isostructural to Fe-based superconductors diluted magnetic semiconductor Ba1 -xKx(Zn1 -yMny)2As2

    NASA Astrophysics Data System (ADS)

    Suzuki, H.; Zhao, K.; Shibata, G.; Takahashi, Y.; Sakamoto, S.; Yoshimatsu, K.; Chen, B. J.; Kumigashira, H.; Chang, F.-H.; Lin, H.-J.; Huang, D. J.; Chen, C. T.; Gu, Bo; Maekawa, S.; Uemura, Y. J.; Jin, C. Q.; Fujimori, A.

    2015-04-01

    The electronic and magnetic properties of a new diluted magnetic semiconductor (DMS) Ba1 -xKx (Zn1 -yMny )2As2 , which is isostructural to so-called 122-type Fe-based superconductors, are investigated by x-ray absorption spectroscopy (XAS) and resonance photoemission spectroscopy (RPES). Mn L2 ,3-edge XAS indicates that the doped Mn atoms have a valence 2+ and strongly hybridize with the 4 p orbitals of the tetrahedrally coordinating As ligands. The Mn 3 d partial density of states obtained by RPES shows a peak around 4 eV and is relatively high between 0 and 2 eV below the Fermi level (EF) with little contribution at EF, similar to that of the archetypal DMS Ga1 -xMnxAs . This energy level creates a d5 electron configuration with S =5 /2 local magnetic moments at the Mn atoms. Hole carriers induced by K substitution for Ba atoms go into the top of the As 4 p valence band and are weakly bound to the Mn local spins. The ferromagnetic correlation between the local spins mediated by the hole carriers induces ferromagnetism in Ba1 -xKx (Zn1 -yMny )2As2 .

  8. Self-assembled Ag nanoparticle network passivated by a nano-sized ZnO layer for transparent and flexible film heaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Ki-Won; Kim, Han-Ki, E-mail: imdlhkkim@khu.ac.kr; Kim, Min-Yi

    2015-12-15

    We investigated a self-assembled Ag nanoparticle network electrode passivated by a nano-sized ZnO layer for use in high-performance transparent and flexible film heaters (TFFHs). The low temperature atomic layer deposition of a nano-sized ZnO layer effectively filled the uncovered area of Ag network and improved the current spreading in the self-assembled Ag network without a change in the sheet resistance and optical transmittance as well as mechanical flexibility. The time-temperature profiles and heat distribution analysis demonstrate that the performance of the TFTH with the ZnO/Ag network is superior to that of a TFFH with Ag nanowire electrodes. In addition, themore » TFTHs with ZnO/Ag network exhibited better stability than the TFFH with a bare Ag network due to the effective current spreading through the nano-sized ZnO layer.« less

  9. Development and surface characterization of a glucose biosensor based on a nanocolumnar ZnO film

    NASA Astrophysics Data System (ADS)

    Rodrigues, A.; Castegnaro, M. V.; Arguello, J.; Alves, M. C. M.; Morais, J.

    2017-04-01

    Highly oriented nanostructured ZnO films were grown on the surface of stainless steel plates (ZnO/SS) by chemical bath deposition (CBD). The films consisted of vertically aligned ZnO nanocolumns, ∼1 μm long and ∼80 nm wide, as observed by SEM (scanning electron microscopy) and FIB (focused ion beam). XRD (X-ray diffraction) confirmed the c-axis preferred orientation of the ZnO columns, which were functionalized with the glucose oxidase (GOx) enzyme into a biosensor of glucose. The electrochemical response studied by CV (cyclic voltammetry) proved that the biosensor was capable of detecting glucose from 1.5 up to 16 mM concentration range. XPS (X-ray photoelectron spectroscopy) analysis, excited with synchrotron radiation, probed the atom specific chemical environment at the electrode's surface and shed some light on the nature of the ZnO-GOx interaction.

  10. Effects of Piezoelectric Potential of ZnO on Resistive Switching Characteristics of Flexible ZnO/TiO2 Heterojunction Cells

    NASA Astrophysics Data System (ADS)

    Li, Hongxia; Zhou, You; Du, Gang; Huang, Yanwei; Ji, Zhenguo

    2018-03-01

    Flexible resistance random access memory (ReRAM) devices with a heterojunction structure of PET/ITO/ZnO/TiO2/Au were fabricated on polyethylene terephthalate/indium tin oxide (PET/ITO) substrates by different physical and chemical preparation methods. X-ray diffraction, scanning electron microscopy and atomic force microscopy were carried out to investigate the crystal structure, surface topography and cross-sectional structure of the prepared films. X-ray photoelectron spectroscopy was also used to identify the chemical state of Ti, O and Zn elements. Theoretical and experimental analyses were conducted to identify the effect of piezoelectric potential of ZnO on resistive switching characteristics of flexible ZnO/TiO2 heterojunction cells. The results showed a pathway to enhance the performance of ReRAM devices by engineering the interface barrier, which is also feasible for other electronics, optoelectronics and photovoltaic devices.

  11. Nucleant layer effect on nanocolumnar ZnO films grown by electrodeposition

    NASA Astrophysics Data System (ADS)

    Tolosa, Maria D. Reyes; Damonte, Laura C.; Brine, Hicham; Bolink, Henk J.; Hernández-Fenollosa, María A.

    2013-03-01

    Different ZnO nanostructured films were electrochemically grown, using an aqueous solution based on ZnCl2, on three types of transparent conductive oxides grow on commercial ITO (In2O3:Sn)-covered glass substrates: (1) ZnO prepared by spin coating, (2) ZnO prepared by direct current magnetron sputtering, and (3) commercial ITO-covered glass substrates. Although thin, these primary oxide layers play an important role on the properties of the nanostructured films grown on top of them. Additionally, these primary oxide layers prevent direct hole combination when used in optoelectronic devices. Structural and optical characterizations were carried out by scanning electron microscopy, atomic force microscopy, and optical transmission spectroscopy. We show that the properties of the ZnO nanostructured films depend strongly on the type of primary oxide-covered substrate used. Previous studies on different electrodeposition methods for nucleation and growth are considered in the final discussion.

  12. Nucleant layer effect on nanocolumnar ZnO films grown by electrodeposition.

    PubMed

    Tolosa, Maria D Reyes; Damonte, Laura C; Brine, Hicham; Bolink, Henk J; Hernández-Fenollosa, María A

    2013-03-23

    Different ZnO nanostructured films were electrochemically grown, using an aqueous solution based on ZnCl2, on three types of transparent conductive oxides grow on commercial ITO (In2O3:Sn)-covered glass substrates: (1) ZnO prepared by spin coating, (2) ZnO prepared by direct current magnetron sputtering, and (3) commercial ITO-covered glass substrates. Although thin, these primary oxide layers play an important role on the properties of the nanostructured films grown on top of them. Additionally, these primary oxide layers prevent direct hole combination when used in optoelectronic devices. Structural and optical characterizations were carried out by scanning electron microscopy, atomic force microscopy, and optical transmission spectroscopy. We show that the properties of the ZnO nanostructured films depend strongly on the type of primary oxide-covered substrate used. Previous studies on different electrodeposition methods for nucleation and growth are considered in the final discussion.

  13. Nucleant layer effect on nanocolumnar ZnO films grown by electrodeposition

    PubMed Central

    2013-01-01

    Different ZnO nanostructured films were electrochemically grown, using an aqueous solution based on ZnCl2, on three types of transparent conductive oxides grow on commercial ITO (In2O3:Sn)-covered glass substrates: (1) ZnO prepared by spin coating, (2) ZnO prepared by direct current magnetron sputtering, and (3) commercial ITO-covered glass substrates. Although thin, these primary oxide layers play an important role on the properties of the nanostructured films grown on top of them. Additionally, these primary oxide layers prevent direct hole combination when used in optoelectronic devices. Structural and optical characterizations were carried out by scanning electron microscopy, atomic force microscopy, and optical transmission spectroscopy. We show that the properties of the ZnO nanostructured films depend strongly on the type of primary oxide-covered substrate used. Previous studies on different electrodeposition methods for nucleation and growth are considered in the final discussion. PMID:23522332

  14. X-ray photoelectron spectroscopy and friction studies of nickel-zinc and manganese-zinc ferrites in contact with metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    X-ray photoelectron spectroscopy analysis and sliding friction experiments were conducted with hot-pressed, polycrystalline Ni-Zn and Mn-Zn ferrites in sliding contact with various transition metals at room temperature in a vacuum of 30 nPa. The results indicate that the coefficients of friction for Ni-Zn and Mn-Zn ferrites in contact with metals are related to the relative chemical activity in these metals: the more active the metal, the higher is the coefficient of friction. The coefficients of friction for the ferrites correlate with the free energy of formation of the lowest metal oxide. The interfacial bond can be regarded as a chemical bond between the metal atoms and the oxygen anions in the ferrite surfaces. The adsorption of oxygen on clean metal and ferrite surfaces increases the coefficients of friction for the Ni-Zn and Mn-Zn ferrite-metal interfaces.

  15. Au sensitized ZnO nanorods for enhanced liquefied petroleum gas sensing properties

    NASA Astrophysics Data System (ADS)

    Nakate, U. T.; Bulakhe, R. N.; Lokhande, C. D.; Kale, S. N.

    2016-05-01

    The zinc oxide (ZnO) nanorods have grown on glass substrate by spray pyrolysis deposition (SPD) method using zinc acetate solution. The phase formation, surface morphology and elemental composition of ZnO films have been investigated using X-ray diffraction, field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and energy dispersive X-ray (EDX) techniques. The liquefied petroleum gas (LPG) sensing response was remarkably improved by sensitization of gold (Au) surface noble metal on ZnO nanorods film. Maximum LPG response of 21% was observed for 1040 ppm of LPG, for pure ZnO nanorods sample. After Au sensitization on ZnO nanorods film sample, the LPG response greatly improved up to 48% at operating temperature 623 K. The improved LPG response is attributed Au sensitization with spill-over mechanism. Proposed model for LPG sensing mechanism discussed.

  16. Long range ferromagnetism in (Zn, Mn, Li)Se with competition between double exchange and p-d exchange

    NASA Astrophysics Data System (ADS)

    Zhu, Y.; Liu, T.; Zhang, X. Y.; Pan, Y. F.; Wei, X. Y.; Ma, C. L.; Shi, D. N.; Fan, J. Y.

    2017-04-01

    In this paper, we elucidate the mechanism for Li co-dopant induced enhancement of the ferromagnetism in 2 × 2 × 2 and 3 × 3 × 3 cubic (Zn, Mn)Se using density functional calculations. The doping atoms tend to congregate together according to the ferromagnetic (FM) energy. All configurations are strongly FM ones due to double exchange (DE) and p-d exchange (PE). DE and PE are shown in the partial density of states. The hole is uniformly distributed in the cubic (Zn, Mn, Li)Se, and it is the one and only parameter to decide the exchange energy, when impurity atoms stay further away from each other. The average exchange energy of these configurations is considered to be a function of the square root of the hole concentration. The fitting data to a polynomial function shows that DE and PE have roles of similar importance in the exchange energy.

  17. Molecular dynamics simulations and photoluminescence measurements of annealed ZnO surfaces

    NASA Astrophysics Data System (ADS)

    Min, Tjun Kit; Yoon, Tiem Leong; Ling, Chuo Ann; Mahmud, Shahrom; Lim, Thong Leng; Saw, Kim Guan

    2017-06-01

    The effect of thermal annealing on wurtzite ZnO, terminated by two surfaces, (000 1 bar) (which is oxygen-terminated) and (0 0 0 1) (which is Zn-terminated), is investigated via molecular dynamics simulation using reactive force field (ReaxFF). As a result of annealing at a threshold temperature range of 700 K

  18. The Influence of Hafnium Doping on Density of States in Zinc Oxide Thin-Film Transistors Deposited via Atomic Layer Deposition.

    PubMed

    Ding, Xingwei; Qin, Cunping; Song, Jiantao; Zhang, Jianhua; Jiang, Xueyin; Zhang, Zhilin

    2017-12-01

    Thin-film transistors (TFTs) with atomic layer deposition (ALD) HfZnO (HZO) as channel layer and Al 2 O 3 as gate insulator were successfully fabricated. Compared with ZnO-TFT, the stability of HZO-TFT was obviously improved as Hf doping can suppress the generation of oxygen related defects. The transfer characteristics of TFTs at different temperatures were also investigated, and temperature stability enhancement was observed for the TFT with Hf doping. The density of states (DOS) was calculated based on the experimentally obtained E a , which can explain the experimental observation. A high-field effect mobility of 9.4 cm 2 /Vs, a suitable turn-on voltage of 0.26 V, a high on/off ratio of over 10 7 and a steep sub-threshold swing of 0.3 V/decade were obtained in HZO-TFT. The results showed that temperature stability enhancement in HfZnO thin-film transistors are attributed to the smaller DOS.

  19. The Influence of Hafnium Doping on Density of States in Zinc Oxide Thin-Film Transistors Deposited via Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Ding, Xingwei; Qin, Cunping; Song, Jiantao; Zhang, Jianhua; Jiang, Xueyin; Zhang, Zhilin

    2017-01-01

    Thin-film transistors (TFTs) with atomic layer deposition (ALD) HfZnO (HZO) as channel layer and Al2O3 as gate insulator were successfully fabricated. Compared with ZnO-TFT, the stability of HZO-TFT was obviously improved as Hf doping can suppress the generation of oxygen related defects. The transfer characteristics of TFTs at different temperatures were also investigated, and temperature stability enhancement was observed for the TFT with Hf doping. The density of states (DOS) was calculated based on the experimentally obtained E a, which can explain the experimental observation. A high-field effect mobility of 9.4 cm2/Vs, a suitable turn-on voltage of 0.26 V, a high on/off ratio of over 107 and a steep sub-threshold swing of 0.3 V/decade were obtained in HZO-TFT. The results showed that temperature stability enhancement in HfZnO thin-film transistors are attributed to the smaller DOS.

  20. Crystal structures and theoretical studies of polyphosphate LiZnP3O9 for nonlinear optical applications

    NASA Astrophysics Data System (ADS)

    Xie, Zhiqing; Su, Xin; Ding, Hanqin; Li, Hongyi

    2018-06-01

    Nonlinear optical materials have attracted worldwide attention owing to their wide range of applications, specially in the laser field. Phosphates with noncentrosymmetric structures are potential candidates for novel ultraviolet (UV)-NLO materials, because they usually display short UV cut-off edges. In this work, a polyphosphate, the LiZnP3O9 polyphosphate crystals were grown through spontaneous crystallization from high-temperature melts. It crystallizes in the orthorhombic space group P212121 with unit cell parameters a = 8.330(3) Å, b = 8.520(3) Å, c = 8.635(3) Å, and Z = 4. In the structure, all the P atoms are coordinated by four oxygen atoms forming the [PO4] tetrahedra and further connected to generate a zig-zag [PO3]∞ anionic framework. Thermal analysis, IR spectroscopy, UV-vis-NIR diffuse reflectance spectrum and powder second harmonic generation measurements are performed. In addition, the first-principles calculation was employed for better understanding the structure-property relationships of LiZnP3O9.

  1. Synthesis and magnetic properties of Zr doped ZnO Nanoparticles.

    PubMed

    Zhang, Jing; Gao, Daqiang; Yang, Guijin; Zhang, Jinlin; Shi, Zhenhua; Zhang, Zhaohui; Zhu, Zhonghua; Xue, Desheng

    2011-11-10

    Zr doped ZnO nanoparticles are prepared by the sol-gel method with post-annealing. X-ray diffraction results show that all samples are the typical hexagonal wurtzite structure without any other new phase, as well as the Zr atoms have successfully entered into the ZnO lattices instead of forming other lattices. Magnetic measurements indicate that all the doping samples show room temperature ferromagnetism and the pure ZnO is paramagneism. The results of Raman and X-ray photoelectron spectroscopy indicate that there are a lot of oxygen vacancies in the samples by doping element of Zr. It is considered that the observed ferromagnetism is related to the doping induced oxygen vacancies.

  2. Surface Morphology of Undoped and Doped ZnSe Films

    NASA Technical Reports Server (NTRS)

    George, T.; Hayes, M.; Chen, H.; Chattopadhyay, K.; Thomas E.; Morgan, S.; Burger, A.

    1998-01-01

    Rare-earth doped ions in polar II-VI semiconductors have recently played an important role in the optical properties of materials and devices. In this study, undoped ZnSe and erbium doped ZnSe films were grown by radio frequency (RF) magnetron sputtering method. Atomic Force Microscopy (AFM) was used together with optical microscopy and UV-Vis spectroscopy to characterize the films. Doped samples were found to have higher surface roughness and quite different surface morphology compared to that of undoped samples. The grown films generally show a relatively smooth and uniform surface indicating that they are of overall good quality. The impact of plasma etching on ZnSe:Er film examined under AFM is also discussed.

  3. Stellar laboratories. II. New Zn iv and Zn v oscillator strengths and their validation in the hot white dwarfs G191-B2B and RE 0503-289

    NASA Astrophysics Data System (ADS)

    Rauch, T.; Werner, K.; Quinet, P.; Kruk, J. W.

    2014-04-01

    Context. For the spectral analysis of high-resolution and high-signal-to-noise (S/N) spectra of hot stars, state-of-the-art non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These are strongly dependent on the reliability of the atomic data that is used for their calculation. In a recent analysis of the ultraviolet (UV) spectrum of the DA-type white dwarf G191-B2B, 21 Zn iv lines were newly identified. Because of the lack of Zn iv data, transition probabilities of the isoelectronic Ge vi were adapted for a first, coarse determination of the photospheric Zn abundance. Aims: Reliable Zn iv and Zn v oscillator strengths are used to improve the Zn abundance determination and to identify more Zn lines in the spectra of G191-B2B and the DO-type white dwarf RE 0503-289. Methods: We performed new calculations of Zn iv and Zn v oscillator strengths to consider their radiative and collisional bound-bound transitions in detail in our NLTE stellar-atmosphere models for the analysis of the Zn iv - v spectrum exhibited in high-resolution and high-S/N UV observations of G191-B2B and RE 0503-289. Results: In the UV spectrum of G191-B2B, we identify 31 Zn iv and 16 Zn v lines. Most of these are identified for the first time in any star. We can reproduce well almost all of them at log Zn = -5.52 ± 0.2 (mass fraction, about 1.7 times solar). In particular, the Zn iv / Zn v ionization equilibrium, which is a very sensitive Teff indicator, is well reproduced with the previously determined and log g = 7.60 ± 0.05. In the spectrum of RE 0503-289, we identified 128 Zn v lines for the first time and determined log Zn = -3.57 ± 0.2 (155 times solar). Conclusions: Reliable measurements and calculations of atomic data are a pre-requisite for stellar-atmosphere modeling. Observed Zn iv and Zn v line profiles in two white dwarf (G191-B2B and RE 0503-289) ultraviolet spectra were well reproduced with our newly calculated oscillator strengths. This allowed us to determine the photospheric Zn abundance of these two stars precisely. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26666.Based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer.Tables 1 and 2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/564/A41

  4. The Attenuation of Central Angiotensin II-dependent Pressor Response and Intra-neuronal Signaling by Intracarotid Injection of Nanoformulated Copper/Zinc Superoxide Dismutase

    PubMed Central

    Rosenbaugh, Erin G.; Roat, James; Gao, Lie; Yang, Rui-Fang; Manickam, Devika S.; Yin, Jing-Xiang; Schultz, Harold D.; Bronich, Tatiana K.; Batrakova, Elena V.; Kabanov, Alexander V.; Zucker, Irving H.; Zimmerman, Matthew C.

    2010-01-01

    Adenoviral-mediated overexpression of the intracellular superoxide (O2•−) scavenging enzyme copper/zinc superoxide dismutase (CuZnSOD) in the brain attenuates central angiotensin II (AngII)-induced cardiovascular responses. However, the therapeutic potential for adenoviral vectors is weakened by toxicity and the inability of adenoviral vectors to target the brain following peripheral administration. Therefore, we developed a non-viral delivery system in which CuZnSOD protein is electrostatically bound to a synthetic poly(ethyleneimine)-poly(ethyleneglycol) (PEI-PEG) polymer to form a polyion complex (CuZnSOD nanozyme). We hypothesized that PEI-PEG polymer increases transport of functional CuZnSOD to neurons, which inhibits AngII intra-neuronal signaling. The AngII-induced increase in O2•−, as measured by dihydroethidium fluorescence and electron paramagnetic resonance spectroscopy, was significantly inhibited in CuZnSOD nanozyme-treated neurons compared to free CuZnSOD- and non-treated neurons. CuZnSOD nanozyme also attenuated the AngII-induced inhibition of K+ current in neurons. Intracarotid injection of CuZnSOD nanozyme into rabbits significantly inhibited the pressor response of intracerebroventricular-delivered AngII; however, intracarotid injection of free CuZnSOD or PEI-PEG polymer alone failed to inhibit this response. Importantly, neither the PEI-PEG polymer alone nor the CuZnSOD nanozyme induced neuronal toxicity. These findings indicate that CuZnSOD nanozyme inhibits AngII intra-neuronal signaling in vitro and in vivo. PMID:20378166

  5. Central composite design and genetic algorithm applied for the optimization of ultrasonic-assisted removal of malachite green by ZnO Nanorod-loaded activated carbon.

    PubMed

    Ghaedi, M; Azad, F Nasiri; Dashtian, K; Hajati, S; Goudarzi, A; Soylak, M

    2016-10-05

    Maximum malachite green (MG) adsorption onto ZnO Nanorod-loaded activated carbon (ZnO-NR-AC) was achieved following the optimization of conditions, while the mass transfer was accelerated by ultrasonic. The central composite design (CCD) and genetic algorithm (GA) were used to estimate the effect of individual variables and their mutual interactions on the MG adsorption as response and to optimize the adsorption process. The ZnO-NR-AC surface morphology and its properties were identified via FESEM, XRD and FTIR. The adsorption equilibrium isotherm and kinetic models investigation revealed the well fit of the experimental data to Langmuir isotherm and pseudo-second-order kinetic model, respectively. It was shown that a small amount of ZnO-NR-AC (with adsorption capacity of 20mgg(-1)) is sufficient for the rapid removal of high amount of MG dye in short time (3.99min). Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Central composite design and genetic algorithm applied for the optimization of ultrasonic-assisted removal of malachite green by ZnO Nanorod-loaded activated carbon

    NASA Astrophysics Data System (ADS)

    Ghaedi, M.; Azad, F. Nasiri; Dashtian, K.; Hajati, S.; Goudarzi, A.; Soylak, M.

    2016-10-01

    Maximum malachite green (MG) adsorption onto ZnO Nanorod-loaded activated carbon (ZnO-NR-AC) was achieved following the optimization of conditions, while the mass transfer was accelerated by ultrasonic. The central composite design (CCD) and genetic algorithm (GA) were used to estimate the effect of individual variables and their mutual interactions on the MG adsorption as response and to optimize the adsorption process. The ZnO-NR-AC surface morphology and its properties were identified via FESEM, XRD and FTIR. The adsorption equilibrium isotherm and kinetic models investigation revealed the well fit of the experimental data to Langmuir isotherm and pseudo-second-order kinetic model, respectively. It was shown that a small amount of ZnO-NR-AC (with adsorption capacity of 20 mg g- 1) is sufficient for the rapid removal of high amount of MG dye in short time (3.99 min).

  7. Geochemical background of zinc, cadmium and mercury in anthropically influenced soils in a semi-arid zone (SE, Spain)

    NASA Astrophysics Data System (ADS)

    García-Lorenzo, M. L.; Pérez-Sirvent, C.; Martínez-Sánchez, M. J.; Molina, J.; Tudela, M. L.; Hernández-Córdoba, M.

    2009-04-01

    This work seeks to establish the geochemical background for three potentially toxic trace elements (Zn, Cd and Hg) in a pilot zone included in the DesertNet project in the province of Murcia. The studied area, known as Campo de Cartagena, Murcia (SE Spain) is an area of intensive agriculture and has been much affected over the years by anthropic activity. The zone can be considered an experimental pilot zone for establishing background levels in agricultural soils. Sixty four samples were collected and corresponded to areas subjected to high and similar agricultural activity or soils with natural vegetation, which correspond to abandoned agricultural areas. The Zn content was determined by flame atomic absorption spectrometry. The Cd content was determined by electrothermal atomization atomic absorption spectrometry and mercury content was determined by atomic fluorescence spectrometry. Geostatistical analysis consisting of kriging and mapping was performed using the geostatistical analyst extension of ArcGIS 8.3. Zinc values ranged from 10 mg kg-1 to 151 mg kg-1, with an average value of 45 mg kg-1. Cadmium values ranged between 0.1 mg kg-1 and 0.9mg kg-1, with a mean value of 0.3 mg kg-1 and mercury values ranged from 0.1 mg kg-1 to 2.3 mg kg-1, with a mean value of 0.5 mg kg-1. At a national level, the Spanish Royal Decree 9/2005 proposes toxicological and statistical approaches to establish background values. According to the statistical approach, background values consist of the median value for the selected element. The background values for Zn, Cd and Hg in the studied area were 40 mg kg-1 for Zn, 0.3 mg kg-1 for Cd and 0.4 mg kg-1 for Hg.

  8. The Environment Quality, Speciation and their Origins of Heavy Metals in Surficial Sediments in Central Bohai Sea, China

    NASA Astrophysics Data System (ADS)

    Liu, M.; Fan, D.; Han, Z.; Liao, Y.; Chen, B.; Yang, Z.

    2016-02-01

    The concentrations and speciations of heavy metals (Cu, Co, Ni, Zn, Pb, Cr and Cd) in surface and core sediments collected from the central Bohai Sea were analyzed by ICP-MS, to evaluate their distribution / fractionation, pollution status and sources. The results showed that Cd exhibited gradual increasing vertically, while others were stable or declined slightly in core sediments. Metals showed higher values in `central mud area of the Bohai Sea' and the coastal area of the Bohai Bay in surface sediments. Residual fractions were the dominant forms of Cu, Co, Ni, Zn and Cr in the surface sediments, while Cd and Pb had large proportions of the total concentration in the non-residual fractions. Both the contamination factors and the geo-accumulation index indicated that Cu, Co, Ni, Cr were not polluted, while Pb, Zn, Cd were in moderate contamination. The ecological risk assessment (by sepeciations) indicated that the sediments were unpolluted with respect to the heavy metals Co, Ni and Cr and unpolluted to moderately polluted with respect to Cu, Zn, Cd and Pb. Compared with sediment quality guidelines (SQGs), Cu, Zn, Cr, Pb, Cd were likely to produce occasional adverse biological effects, while Ni showed possible ecotoxicological risks. The combined levels of the metals have a 21% probability of being toxic. Elements Cr, Co and Ni were mainly natural origined and significantly affected by the composition of sediments. Cu, Zn, Pb and especially Cd may be influenced by human activities.

  9. Site Selective Binding of Zn(ll) ot Metallo-b-Lactamase L1 from Stenotrophomonas Maltophilia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costello,A.; Periyannan, G.; Yang, K.

    2006-01-01

    Extended X-ray absorption fine structure studies of the metallo-{beta}-lactamase L1 from Stenotrophomonas maltophilia containing 1 and 2 equiv of Zn(II) and containing 2 equiv of Zn(II) plus hydrolyzed nitrocefin are presented. The data indicate that the first, catalytically dominant metal ion is bound by L1 at the consensus Zn1 site. The data further suggest that binding of the first metal helps preorganize the ligands for binding of the second metal ion. The di-Zn enzyme displays a well-defined metal-metal interaction at 3.42 Angstroms. Reaction with the {beta}-lactam antibiotic nitrocefin results in a product-bound species, in which the ring-opened lactam rotates inmore » the active site to present the S1 sulfur atom of nitrocefin to one of the metal ions for coordination. The product bridges the two metal ions, with a concomitant lengthening of the Zn-Zn interaction to 3.62 Angstroms.« less

  10. Nanoheterostructures with CdTe/ZnMgSeTe Quantum Dots for Single-Photon Emitters Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Sorokin, S. V.; Sedova, I. V.; Belyaev, K. G.; Rakhlin, M. V.; Yagovkina, M. A.; Toropov, A. A.; Ivanov, S. V.

    2018-03-01

    Data on the molecular beam epitaxy (MBE) technology, design, and luminescent properties of heterostructures with CdTe/Zn(Mg)(Se)Te quantum dots on InAs(001) substrates are presented. X-ray diffraction has been used to study short-period ZnTe/MgTe/MgSe superlattices used as wide-bandgap barriers in structures with CdTe/ZnTe quantum dots for the effective confinement of holes. It is shown that the design of these superlattices must take into account the replacement of Te atoms by selenium on MgSe/ZnTe and MgTe/MgSe heterointerfaces. Heterostructures with CdTe/Zn(Mg)(Se)Te quantum dots exhibit photoluminescence at temperatures up to 300 K. The spectra of microphotoluminescence at T = 10 K display a set of emission lines from separate CdTe/ZnTe quantum dots, the surface density of which is estimated at 1010 cm-2.

  11. Zn1-xAlxO:Cu2O transparent metal oxide composite thin films by sol gel method

    NASA Astrophysics Data System (ADS)

    AlHammad, M. S.

    2017-05-01

    We have synthesized undoped zinc oxide (ZnO) and Cu2O doped Zn1-XAlXO (AZO; Al/Zn = 1.5 at.%) metal oxide films by sol-gel spin coating method. Atomic force microscopy results indicate that the Zn1-xAlxO:Cu2O is are formed form the fibers. The surface morphology of the films is found to depend on the concentration of Cu2O. The optical constants such as band gap, Urbach energy, refractive index, extinction coefficient and dielectric constants of the films were determined. The transmittance spectra shows that all the films are highly transparent. The study revealed that undoped ZnO film has direct bang gap of 3.29 eV and the optical band gap of films is increased with doping content. The hot probe measurements indicate that Zn1-xAlxO:Cu2O transparent metal oxide composite thin films exhibited p-type electrical conductivity.

  12. Effect of Eu3+ doping on the structural, morphological and luminescence properties ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Vinoditha, U.; Balakrishna, K. M.; Sarojini, B. K.; Narayana, B.; Kumara, K.

    2018-05-01

    Pure and Eu3+ ions (1, 3, 5 atomic wt%) doped ZnO nanostructures are synthesized by a surfactant assisted hydrothermal method. The effect of doping concentrations on structural, morphological and optical properties of ZnO nanostructures is studied. The XRD analysis shows good crystallinity and the phase purity of the ZnO nanostructures. A shift in the standard Zn-O stretching mode after Eu3+ doping is observed in the FTIR spectra. The images of FESEM demonstrate the morphological variations from hexagonal nanorods to nanoflowers on varying the dopant concentrations. Substitution of Eu3+ ions into Zn2+ sites is confirmed by EDX analysis. The dominance of particle shape over the UV-Visible absorption properties of the prepared samples is noticed. The photoluminescence (PL) emission of undoped and doped ZnO nanostructures show dominant near band edge emission (NBE) in the UV region and minor defect induced deep level emissions in the visible region.

  13. Effects of ZnO Nanoparticle on the Gas Separation Performance of Polyurethane Mixed Matrix Membrane

    PubMed Central

    Soltani, Banafsheh

    2017-01-01

    Polyurethane (PU)-ZnO mixed matrix membranes (MMM) were fabricated and characterized for gas separation. A thermogravimetric analysis (TGA), a scanning electron microscope (SEM) test and an atomic-force microscopy (AFM) revealed that the physical properties and thermal stability of the membranes were improved through filler loading. Hydrogen Bonding Index, obtained from the Fourier transform infrared spectroscopy (FTIR), demonstrate that the degree of phase separation in PU-ZnO 0.5 wt % MMM was more than the neat PU, while in PU-ZnO 1.0 wt % MMM, the phase mixing had increased. Compared to the neat membrane, the CO2 permeability of the MMMs increased by 31% for PU-ZnO 0.5 wt % MMM and decreased by 34% for 1.0 wt % ZnO MMM. The CO2/CH4 and CO2/N2 selectivities of PU-ZnO 0.5 wt % were 18.75 and 64.75, respectively. PMID:28800109

  14. Plasma-enhanced atomic layer deposition zinc oxide for multifunctional thin film electronics

    NASA Astrophysics Data System (ADS)

    Mourey, Devin A.

    A novel, weak oxidant, plasma-enhanced atomic layer deposition (PEALD) process has been used to fabricate stable, high mobility ZnO thin film transistors (TFTs) and fast circuits on glass and polyimide substrates at 200°C. Weak oxidant PEALD provides a simple, fast deposition process which results in uniform, conformal coatings and highly crystalline, dense ZnO thin films. These films and resulting devices have been compared with those prepared by spatial atomic layer deposition (SALD) throughout the work. Both PEALD and SALD ZnO TFTs have high field-effect mobility (>20 cm 2/V·s) and devices with ALD Al2O3 passivation can have excellent bias stress stability. Temperature dependent measurements of PEALD ZnO TFTs revealed a mobility activation energy < 5 meV and can be described using a simple percolation model with a Gaussian distribution of near-conduction band barriers. Interestingly, both PEALD and SALD devices operate with mobility > 1 cm2/V·s even at temperatures < 10 K. The effects of high energy irradiation have also been investigated. Devices exposed to 1 MGy of gamma irradiation showed small threshold voltage shifts (<2 V) which were fully recoverable with short (1 min) low-temperature (200°C) anneals. ZnO TFTs exhibit a range of non-ideal behavior which has direct implications on how important parameters such as mobility and threshold voltage are quantified. For example, the accumulation-dependent mobility and contact effects can lead to significant overestimations in mobility. It is also found that self-heating plays and important role in the non-ideal behavior of oxide TFTs on low thermal conductivity substrates. In particular, the output conductance and a high current device runaway breakdown effect can be directly ascribed to self-heating. Additionally, a variety of simple ZnO circuits on glass and flexible substrates were demonstrated. A backside exposure process was used to form gate-self-aligned structures with reduced parasitic capacitance and circuits with propagation delay < 10 ns/stage. Finally, to combat some of the self-heating and design challenges associated with unipolar circuits, a simple 4-mask organic-inorganic hybrid CMOS process was demonstrated.

  15. Compositional ratio effect on the surface characteristics of CuZn thin films

    NASA Astrophysics Data System (ADS)

    Choi, Ahrom; Park, Juyun; Kang, Yujin; Lee, Seokhee; Kang, Yong-Cheol

    2018-05-01

    CuZn thin films were fabricated by RF co-sputtering method on p-type Si(100) wafer with various RF powers applied on metallic Cu and Zn targets. This paper aimed to determine the morphological, chemical, and electrical properties of the deposited CuZn thin films by utilizing a surface profiler, atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), UV photoelectron spectroscopy (UPS), and a 4-point probe. The thickness of the thin films was fixed at 200 ± 8 nm and the roughness of the thin films containing Cu was smaller than pure Zn thin films. XRD studies confirmed that the preferred phase changed, and this tendency is dependent on the ratio of Cu to Zn. AES spectra indicate that the obtained thin films consisted of Cu and Zn. The high resolution XPS spectra indicate that as the content of Cu increased, the intensities of Zn2+ decreased. The work function of CuZn thin films increased from 4.87 to 5.36 eV. The conductivity of CuZn alloy thin films was higher than pure metallic thin films.

  16. Effect of the Low-Temperature Annealing on Zn-Doped Indium-Tin-Oxide Films for Silicon Heterojunction Solar Cells

    NASA Astrophysics Data System (ADS)

    Lee, Seunghun; Lee, Jong-Han; Tark, Sung Ju; Choi, Suyoung; Kim, Chan Seok; Lee, Jeong Chul; Kim, Won Mok; Kim, Donghwan

    2012-10-01

    The effects of the low-temperature annealing on Zn-doped indium-tin-oxide (ITO) films such as the electrical, optical and structural properties were investigated. Zn-doped ITO films were fabricated by rf magnetron sputtering of ITO and Al-doped ZnO (AZO) targets on corning glass at room temperature. The content of Zn increased with increasing the power of AZO target. The carrier concentration of films shows the decreasing behaviour with increasing the content of Zn, due to a carrier compensation originating from the substitution of a doped Zn for an In or interstitial site. After the low-temperature annealing at 180 °C in vacuum, all films were slightly decreased a carrier concentration and increased the hall mobility because of the absorption of oxygen on the surface films. In addition, the average transmittance did not show a considerable change and had a high values over 80%. Especially, the Zn-doped ITO with atomic ratio of Zn/(In+Zn) of 6.8 at. % had the resistivity of 4×10-4 Ω cm, the highest hall mobility of 41 cm2 V-1 s-1, and the average transmittance of 82%.

  17. Synthesis, characterization and modelling of zinc and silicate co-substituted hydroxyapatite.

    PubMed

    Friederichs, Robert J; Chappell, Helen F; Shepherd, David V; Best, Serena M

    2015-07-06

    Experimental chemistry and atomic modelling studies were performed here to investigate a novel ionic co-substitution in hydroxyapatite (HA). Zinc, silicate co-substituted HA (ZnSiHA) remained phase pure after heating to 1100 °C with Zn and Si amounts of 0.6 wt% and 1.2 wt%, respectively. Unique lattice expansions in ZnSiHA, silicate Fourier transform infrared peaks and changes to the hydroxyl IR stretching region suggested Zn and silicate co-substitution in ZnSiHA. Zn and silicate insertion into HA was modelled using density functional theory (DFT). Different scenarios were considered where Zn substituted for different calcium sites or at a 2b site along the c-axis, which was suspected in singly substituted ZnHA. The most energetically favourable site in ZnSiHA was Zn positioned at a previously unreported interstitial site just off the c-axis near a silicate tetrahedron sitting on a phosphate site. A combination of experimental chemistry and DFT modelling provided insight into these complex co-substituted calcium phosphates that could find biomedical application as a synthetic bone mineral substitute. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  18. Optimization Photodetectors from Zinc Sulfide Deposited on Porous Silicon with Different Doping Metals

    NASA Astrophysics Data System (ADS)

    Nayef, Uday Muhsin; Khalaf, Haider Amer

    In this work, the structural properties of the zinc sulfide (ZnS) films have been investigated using X-ray diffraction (XRD) analysis which show an enhancement in the crystallite degree after doping with copper (Cu). Good matching between the ZnS and porous silicon (PS) structure was noted from the atomic force microscope (AFM) results. The reflectivity gave a clear observation of anti-reflected coating improvement for PS layer and more enhancements after the ZnS deposition. The optical properties show a blue shift in the bandgap for the ZnS deposited with higher substrate temperature and a red shift after doped with different elements. For ZnS/PS heterojunction, the electrical resistivity has been increased after PS layer formed and changed with the variation of the pore size and it was much higher after ZnS deposited on the PS. However, use of ZnS:Cu/PS photodetector showed much higher output current at the ultraviolet (UV) region compared to ZnS/PS. The ZnS:Cu/PS photodetector showed higher output current value than that of the ZnS/PS leading to improvement in the quantum efficiency of 42%.

  19. Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil.

    PubMed

    Li, X; Christie, P

    2001-01-01

    Red clover plants inoculated with Glomus mosseae were grown in a sterile pasture soil containing 50 mg Zn kg(-1) in 'Plexiglas' (acrylic) containers with nylon net partitions (30 microm mesh) designed to separate the soil into a central root zone and two outer zones for hyphal growth with no root penetration. Two porous plastic soil moisture samplers were installed in each pot, one in the root compartment and the other in one of the hyphal compartments. The soil in the outer compartments was amended with one of the four application rates of Zn (as ZnSO4) ranging from 0 to 1000 mg kg(-1). Non-mycorrhizal controls were included, and there were five replicates of each treatment in a randomised block in a glasshouse. Uninoculated plants received supplementary P to avoid yield limitation due to low soil P status. Plants grew in the central compartment for nine weeks. Soil moisture samples were collected 4, 24 and 62 days after sowing to monitor changes in the Zn concentration and pH of the soil solution. At harvest, the mean mycorrhizal infection rate of inoculated plants ranged from 29% to 34% of total root length and was little affected by Zn application. Root and shoot yields were not affected by mycorrhizal infection. Plant Zn concentration and uptake were lower in mycorrhizal plants than non-mycorrhizal controls, and this effect was more pronounced with increasing Zn application rate to the soil. Soil solution Zn concentrations were lower and pH values were higher in mycorrhizal treatments than non-mycorrhizal controls and the mycorrhiza effect was more pronounced at higher Zn application rates. The protective effect of mycorrhiza against plant Zn uptake may have been associated with changes in Zn solubility mediated by changes in the soil solution pH, or by immobilisation of Zn in the extraradical mycelium.

  20. The photocatalytic properties of hollow (GaN)1-x(ZnO)x composite nanofibers synthesized by electrospinning

    NASA Astrophysics Data System (ADS)

    Wang, Ding; Zhang, Minglu; Zhuang, Huaijuan; Chen, Xu; Wang, Xianying; Zheng, Xuejun; Yang, Junhe

    2017-02-01

    (GaN)1-x(ZnO)x composite nanofibers with hollow structure were prepared by initial electrospinning, and the subsequent calcination and nitridation. The structure and morphology characteristics of samples were investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). The characterization results showed the phase transition from ZnGa2O4 to (GaN)1-x(ZnO)x solid-solution under ammonia atmosphere. The preparation conditions were explored and the optimum nitridation temperature and holding time are 750 °C and 2 h, respectively. The photocatalytic properties of (GaN)1-x(ZnO)x with different Ga:Zn atomic ratios were investigated by degrading Rhodamine B under the visible light irradiation. The photocatalytic activity sequence is (GaN)1-x(ZnO)x (Ga:Zn = 1:2) > (GaN)1-x(ZnO)x (Ga:Zn = 1:3) > ZnO nanofibers > (GaN)1-x(ZnO)x (Ga:Zn = 1:4) > (GaN)1-x(ZnO)x (Ga:Zn = 1:1). The photocatalytic mechanism of the (GaN)1-x(ZnO)x hollow nanofibers was further studied by UV-vis diffuse reflectance spectra. The excellent photocatalytic performance of (GaN)1-x(ZnO)x hollow nanofibers was attributed to the narrow band gap and high surface area of porous nanofibers with hollow structure.

  1. Fabrication of Well-Aligned ZnO Nanorods Using a Composite Seed Layer of ZnO Nanoparticles and Chitosan Polymer.

    PubMed

    Khun, Kimleang; Ibupoto, Zafar Hussain; AlSalhi, Mohamad S; Atif, Muhammad; Ansari, Anees A; Willander, Magnus

    2013-09-30

    In this study, by taking the advantage of both inorganic ZnO nanoparticles and the organic material chitosan as a composite seed layer, we have fabricated well-aligned ZnO nanorods on a gold-coated glass substrate using the hydrothermal growth method. The ZnO nanoparticles were characterized by the Raman spectroscopic techniques, which showed the nanocrystalline phase of the ZnO nanoparticles. Different composites of ZnO nanoparticles and chitosan were prepared and used as a seed layer for the fabrication of well-aligned ZnO nanorods. Field emission scanning electron microscopy, energy dispersive X-ray, high-resolution transmission electron microscopy, X-ray diffraction, and infrared reflection absorption spectroscopic techniques were utilized for the structural characterization of the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods on a gold-coated glass substrate. This study has shown that the ZnO nanorods are well-aligned, uniform, and dense, exhibit the wurtzite hexagonal structure, and are perpendicularly oriented to the substrate. Moreover, the ZnO nanorods are only composed of Zn and O atoms. An optical study was also carried out for the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods, and the obtained results have shown that the fabricated ZnO nanorods exhibit good crystal quality. This study has provided a cheap fabrication method for the controlled morphology and good alignment of ZnO nanorods, which is of high demand for enhancing the working performance of optoelectronic devices.

  2. Fabrication of Well-Aligned ZnO Nanorods Using a Composite Seed Layer of ZnO Nanoparticles and Chitosan Polymer

    PubMed Central

    Khun, Kimleang; Ibupoto, Zafar Hussain; AlSalhi, Mohamad S.; Atif, Muhammad; Ansari, Anees A.; Willander, Magnus

    2013-01-01

    In this study, by taking the advantage of both inorganic ZnO nanoparticles and the organic material chitosan as a composite seed layer, we have fabricated well-aligned ZnO nanorods on a gold-coated glass substrate using the hydrothermal growth method. The ZnO nanoparticles were characterized by the Raman spectroscopic techniques, which showed the nanocrystalline phase of the ZnO nanoparticles. Different composites of ZnO nanoparticles and chitosan were prepared and used as a seed layer for the fabrication of well-aligned ZnO nanorods. Field emission scanning electron microscopy, energy dispersive X-ray, high-resolution transmission electron microscopy, X-ray diffraction, and infrared reflection absorption spectroscopic techniques were utilized for the structural characterization of the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods on a gold-coated glass substrate. This study has shown that the ZnO nanorods are well-aligned, uniform, and dense, exhibit the wurtzite hexagonal structure, and are perpendicularly oriented to the substrate. Moreover, the ZnO nanorods are only composed of Zn and O atoms. An optical study was also carried out for the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods, and the obtained results have shown that the fabricated ZnO nanorods exhibit good crystal quality. This study has provided a cheap fabrication method for the controlled morphology and good alignment of ZnO nanorods, which is of high demand for enhancing the working performance of optoelectronic devices. PMID:28788336

  3. Ab initio investigation on hydrogen adsorption capability in Zn and Cu-based metal organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanuwijaya, V. V., E-mail: viny.veronika@gmail.com; Hidayat, N. N., E-mail: avantgarde.vee@gmail.com; Agusta, M. K., E-mail: kemal@fti.itb.ac.id

    2015-09-30

    One of the biggest challenge in material technology for hydrogen storage application is to increase hydrogen uptake in room temperature and pressure. As a class of highly porous material, Metal-Organic Frameworks (MOF) holds great potential with its tunable structure. However, little is known about the effect of metal cluster to its hydrogen storage capability. Investigation on this matter has been carried out carefully on small cluster of Zn and Cu-based MOF using first principles method. The calculation of two distinct building units of MOFs, namely octahedral and paddle-wheel models, have been done with B3LYP density functional method using 6-31G(d,p) andmore » LANL2DZ basis sets. From geometry optimization of Zn-based MOF linked by benzene-dicarboxylate (MOF-5), it is found that hydrogen tends to keep distance from metal cluster group and stays above benzene ring. In the other hand, hydrogen molecule prefers to stay atop of the exposed Cu atom in Cu-based MOF system linked by the same linker group (Cu-bdc). Calculated hydrogen binding enthalpies for Zn and Cu octahedral cages at ZnO{sub 3} sites are 1.64kJ/mol and 2.73kJ/mol respectively, while hydrogen binding enthalpies for Zn and Cu paddle-wheel cages calculated on top of metal atoms are found to be at 6.05kJ/mol and 6.10kJ/mol respectively. Major difference between Zn-MOF-5 and Cu-bdc hydrogen uptake performance might be caused by unsaturated metal sites present in Cu-bdc system and the influence of their geometric structures, although a small difference on binding energy in the type of transition metal used is also observed. The comparison between Zn and Cu-based MOF may contribute to a comprehensive understanding of metal clusters and the importance of selecting best transition metal for design and synthesis of metal-organic frameworks.« less

  4. Near-IR core-substituted naphthalenediimide fluorescent chemosensors for zinc ions: ligand effects on PET and ICT channels.

    PubMed

    Lu, Xinyu; Zhu, Weihong; Xie, Yongshu; Li, Xin; Gao, Yuan; Li, Fuyou; Tian, He

    2010-07-26

    Near-IR (NIR) emission can offer distinct advantages for both in vitro and in vivo biological applications. Two NIR fluorescent turn-on sensors N,N'-di-n-butyl-2-(N-{2-[bis(pyridin-2-ylmethyl)amino]ethyl})-6-(N-piperidinyl)naphthalene-1,4,5,8-tetracarboxylic acid bisimide and N,N'-di- n-butyl-2-[N,N,N'-tri(pyridin-2-ylmethyl)amino]ethyl-6-(N-piperidinyl)naphthalene-1,4,5,8-tetracarboxylic acid bisimide (PND and PNT) for Zn(2+) based on naphthalenediimide fluorophore are reported. Our strategy was to choose core-substituted naphthalenediimide (NDI) as a novel NIR fluorophore and N,N-di(pyridin-2-ylmethyl)ethane-1,2-diamine (DPEA) or N,N,N'-tri(pyridin-2-ylmethyl)ethane-1,2-diamine (TPEA) as the receptor, respectively, so as to improve the selectivity to Zn(2+). In the case of PND, the negligible shift in absorption and emission spectra is strongly suggestive that the secondary nitrogen atom (directly connected to the NDI moiety, N(1)) is little disturbed with Zn(2+). The fluorescence enhancement of PND with Zn(2+) titration is dominated with a typical photoinduced electron-transfer (PET) process. In contrast, the N(1) atom for PNT can participate in the coordination of Zn(2+) ion, diminishing the electron delocalization of the NDI moiety and resulting in intramolecular charge-transfer (ICT) disturbance. For PNT, the distinct blueshift in both absorbance and fluorescence is indicative of a combination of PET and ICT processes, which unexpectedly decreases the sensitivity to Zn(2+). Due to the differential binding mode caused by the ligand effect, PND shows excellent selectivity to Zn(2+) over other metal ions, with a larger fluorescent enhancement centered at 650 nm. Also both PND and PNT were successfully used to image intracellular Zn(2+) ions in the living KB cells.

  5. ANTS-anchored Zn-Al-CO{sub 3}-LDH particles as fluorescent probe for sensing of folic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Pengfei; Liu, Dan; Liu, Yanhuan

    2016-09-15

    A novel fluorescent nanosensor for detecting folic acid (FA) in aqueous media has been developed based on 8-aminonaphthalene-1,3,6-trisulfonate (ANTS) anchored to the surface of Zn-Al-CO{sub 3}-layered double hydroxides (LDH) particles. The nanosensor showed high fluorescence intensity and good photostability due to a strong coordination interaction between surface Zn{sup 2+} ions of Zn-Al-CO{sub 3}-LDH and N atoms of ANTS, which were verified by result of X-ray photoelectron spectroscopy (XPS). ANTS-anchored on the surface of Zn-Al-CO{sub 3}-LDH restricted the intra-molecular rotation leading to ANTS-anchored J-type aggregation emission enhancement. ANTS-anchored Zn-Al-CO{sub 3}-LDH particles exhibited highly sensitive and selective response to FA over othermore » common metal ions and saccharides present in biological fluids. The proposed mechanism was that oxygen atoms of -SO{sub 3} groups in ANTS-anchored on the surface of Zn-Al-CO{sub 3}-LDH were easily collided by FA molecules to form potential hydrogen bonds between ANTS-anchored and FA molecules, which could effectively quench the ANTS-anchored fluorescence. Under the simulated physiological conditions (pH of 7.4), the fluorescence quenching was fitted to Stern-Volmer equation with a linear response in the concentration range of 1 μM to 200 μM with a limit of detection of 0.1 μM. The results indicate that ANTS-anchored Zn-Al-CO{sub 3}-LDH particles can afford a very sensitive system for the sensing FA in aqueous solution. - Highlights: • A novel fluorescent nanosensor has been developed. • The sensor exhibited highly sensitive and selective response to FA. • The fluorescence quenching was fitted to Stern–Volmer equation. • The linear response range was 1–200 μM with a limit of detection of 0.1 μM.« less

  6. Structural and Optical Studies of ZnCdSe/ZnSe/ZnMgSSe Separate Confinement Heterostructures with Different Buffer Layers

    NASA Astrophysics Data System (ADS)

    Tu, Ru-Chin; Su, Yan-Kuin; Huang, Ying-Sheng; Chen, Giin-Sang; Chou, Shu-Tsun

    1998-09-01

    Detailed structural and optical studies of ZnCdSe/ZnSe/ZnMgSSe separate confinementheterostructures (SCH) grown on ZnSe, ZnSe/ZnSSe strained-layer superlattices (SLS),and GaAs buffer layers at the II VI/GaAs interface have been carried out by employingtransmission electron microscopy, variable temperature photoluminescence (PL), andcontactless electroreflectance (CER) measurements. A significant improvement onthe defect reduction and the optical quality has been observed by using either theZnSe/ZnSSe SLS or GaAs as the buffer layers when compared to that of the sample usingonly ZnSe as the buffer layer. However, the sample grown with the SLS buffer layersreveals a room temperature PL intensity higher than that of the sample grown witha GaAs buffer layer, which may still suffer from the great ionic differences betweenthe II V and III V atoms. Using 15 K CER spectra, we have also studied variousexcitonic transitions originating from strained Zn0.80Cd0.20Se/ZnSe single quantumwell in SCH with different buffer layers. An analysis of the CER spectra has ledto the identification of various excitonic transitions, mnH (L), between the mthconduction band state and the nth heavy (light)-hole band state. An excellentagreement between experiments and theoretical calculations based on the envelopefunction approximation model has been achieved.

  7. Temperature- and frequency-dependent dielectric behaviors of insulator/semiconductor (Al2O3/ZnO) nanolaminates with various ZnO thicknesses

    NASA Astrophysics Data System (ADS)

    Li, Jin; Bi, Xiaofang

    2016-07-01

    Al2O3/ZnO nanolaminates (NLs) with various ZnO sublayer thicknesses were prepared by atomic layer deposition. The Al2O3 sublayers are characterized as amorphous and the ZnO sublayers have an oriented polycrystalline structure. As the ZnO thickness decreases to a certain value, each NL exhibits a critical temperature at which its dielectric constant starts to rise quickly. Moreover, this temperature increases as the ZnO thickness is decreased further. On the other hand, the permittivity demonstrates a large value of several hundred at a frequency  ⩽1000 Hz, followed by a steplike decrease at a higher frequency. The change in the cut-off frequency with ZnO thickness is characterized by a hook function. It is revealed that the Coulomb confinement effect becomes predominant in the dielectric behaviors of the NLs with very thin ZnO. As the ZnO thickness decreases to about the same as or even smaller than the Bohr radius of ZnO, a great change in the carrier concentration and effective mass of ZnO is induced, which is shown to be responsible for the peculiar dielectric behaviors of Al2O3/ZnO with very thin ZnO. These findings provide insight into the prevailing mechanisms to optimize the dielectric properties of semiconductor/insulator laminates with nanoscale sublayer thickness.

  8. Ab initio study of structural, electronic, optical, and vibrational properties of Zn x S y ( x + y = 2 to 5) nanoclusters

    NASA Astrophysics Data System (ADS)

    Yadav, P. S.; Pandey, D. K.; Agrawal, S.; Agrawal, B. K.

    2010-03-01

    An ab initio study of the stability, structural, electronic. and optical properties has been performed for 46 zinc sulfide nanoclusters Zn x S y ( x + y = n = 2 to 5). Five out of them are seen to be unstable as their vibrational frequencies are found to be imaginary. A B3LYP-DFT/6-311G(3df) method is employed to optimize the geometries and a TDDFT method is used for the study of the optical properties. The binding energies (BE), HOMO-LUMO gaps and the bond lengths have been obtained for all the clusters. For the ZnS2, ZnS3, and ZnS4 nanoclusters, our stable structures are seen to be different from those obtained earlier by using the effective core potentials. We have also considered the zero point energy (ZPE) corrections ignored by the earlier workers. For a fixed value of n, we designate the most stable structure the one, which has maximum final binding energy per atom. The adiabatic and vertical ionization potentials (IP) and electron affinities (EA), charges on the atoms, dipole moments, optical properties, vibrational frequencies, infrared intensities, relative infrared intensities, and Raman scattering activities have been investigated for the most stable structures. The nanoclusters containing large number of S atoms for each n is found to be most stable. The HOMO-LUMO gap decreases from n = 2-3 and then increases above n = 3. The IP and EA both fluctuate with the cluster size n. The optical absorption is quite weak in visible region but strong in the ultraviolet region in most of the nanoclusters except a few. The optical absorption spectrum or electron energy loss spectrum (EELS) is unique for every nanocluster and may be used to characterize a specific nanocluster. The growth of most stable nanoclusters may be possible in the experiments.

  9. Crystal structure and physical properties of quaternary clathrates Ba{sub 8}Zn{sub x}Ge{sub 46-x-y}Si{sub y}, Ba{sub 8}(Zn,Cu){sub x}Ge{sub 46-x} and Ba{sub 8}(Zn,Pd){sub x}Ge{sub 46-x}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasir, Navida; Grytsiv, Andriy; Melnychenko-Koblyuk, Nataliya

    2010-10-15

    Three series of vacancy-free quaternary clathrates of type I, Ba{sub 8}Zn{sub x}Ge{sub 46-x-y}Si{sub y}, Ba{sub 8}(Zn,Cu){sub x}Ge{sub 46-x}, and Ba{sub 8}(Zn,Pd){sub x}Ge{sub 46-x}, have been prepared by reactions of elemental ingots in vacuum sealed quartz at 800 {sup o}C. In all cases cubic primitive symmetry (space group Pm3n, a{approx}1.1 nm) was confirmed for the clathrate phase by X-ray powder diffraction and X-ray single crystal analyses. The lattice parameters show a linear increase with increase in Ge for Ba{sub 8}Zn{sub x}Ge{sub 46-x-y}Si{sub y}. M atoms (Zn, Pd, Cu) preferably occupy the 6d site in random mixtures. No defects were observed formore » the 6d site. Site preference of Ge and Si in Ba{sub 8}Zn{sub x}Ge{sub 46-x-y}Si{sub y} has been elucidated from X-ray refinement: Ge atoms linearly substitute Si in the 24k site whilst a significant deviation from linearity is observed for occupation of the 16i site. A connectivity scheme for the phase equilibria in the 'Ba{sub 8}Ge{sub 46}' corner at 800 {sup o}C has been derived and a three-dimensional isothermal section at 800 {sup o}C is presented for the Ba-Pd-Zn-Ge system. Studies of transport properties carried out for Ba{sub 8{l_brace}}Cu,Pd,Zn{r_brace}{sub x}Ge{sub 46-x} and Ba{sub 8}Zn{sub x}Si{sub y}Ge{sub 46-x-y} evidenced predominantly electrons as charge carriers and the closeness of the systems to a metal-to-insulator transition, fine-tuned by substitution and mechanical processing of starting material Ba{sub 8}Ge{sub 43}. A promising figure of merit, ZT {approx}0.45 at 750 K, has been derived for Ba{sub 8}Zn{sub 7.4}Ge{sub 19.8}Si{sub 18.8}, where pricey germanium is exchanged by reasonably cheap silicon. - Graphical abstract: Quaternary phase diagram of Ba-Pd-Zn-Ge system at 800 {sup o}C.« less

  10. Improvement of in vitro corrosion and cytocompatibility of biodegradable Fe surface modified by Zn ion implantation

    NASA Astrophysics Data System (ADS)

    Wang, Henan; Zheng, Yang; Li, Yan; Jiang, Chengbao

    2017-05-01

    Pure Fe was surface-modified by Zn ion implantation to improve the biodegradable behavior and cytocompatibility. Surface topography, chemical composition, corrosion resistance and cytocompatibility were investigated. Atomic force microscopy, auger electron spectroscopy and X-ray photoelectron spectroscopy results showed that Zn was implanted into the surface of pure Fe in the depth of 40-60 nm and Fe2O3/ZnO oxides were formed on the outmost surface. Electrochemical measurements and immersion tests revealed an improved degradable behavior for the Zn-implanted Fe samples. An approximately 12% reduction in the corrosion potential (Ecorr) and a 10-fold increase in the corrosion current density (icorr) were obtained after Zn ion implantation with a moderate incident ion dose, which was attributed to the enhanced pitting corrosion. The surface free energy of pure Fe was decreased by Zn ion implantation. The results of direct cell culture indicated that the short-term (4 h) cytocompatibility of MC3T3-E1 cells was promoted by the implanted Zn on the surface.

  11. X-ray photoelectron spectroscopy and atomic force microscopy characterization of the effects of etching Zn xCd 1- xTe surfaces

    NASA Astrophysics Data System (ADS)

    George, M. A.; Azoulay, M.; Jayatirtha, H. N.; Burger, A.; Collins, W. E.; Silberman, E.

    1993-10-01

    X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) was used for the first time to characterize the chemical composition of modified surfaces of Zn xCd 1- xTe single crystals. These surface treatments were selected for their relevance to device preparation procedures. The XPS peaks indicated an increase of the tellurium and a depletion of the cadmium concentrations upon etching in bromine methanol solution. AFM revealed the formation of pronounced Te inclusions. Higher x values correlated with a decrease in residual bromine left on the surface, while cut and polished samples had higher oxide concentrations and increased bromination of the surface than cleaved samples.

  12. Structure of a zinc oxide ultra-thin film on Rh(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuhara, J.; Kato, D.; Matsui, T.

    The structural parameters of ultra-thin zinc oxide films on Rh(100) are investigated using low-energy electron diffraction intensity (LEED I–V) curves, scanning tunneling microscopy (STM), and first-principles density functional theory (DFT) calculations. From the analysis of LEED I–V curves and DFT calculations, two optimized models A and B are determined. Their structures are basically similar to the planer h-BN ZnO(0001) structure, although some oxygen atoms protrude from the surface, associated with an in-plane shift of Zn atoms. From a comparison of experimental STM images and simulated STM images, majority and minority structures observed in the STM images represent the two optimizedmore » models A and B, respectively.« less

  13. Direct Electrothermal Atomic Absorption Determination of Trace Elements in Body Fluids (Review)

    NASA Astrophysics Data System (ADS)

    Zacharia, A. N.; Arabadji, M. V.; Chebotarev, A. N.

    2017-03-01

    This review is focused on the state and development of tendencies of electrothermal atomic absorption spectroscopy over the last 25 years (from 1990 to 2016) in the direct determination of Cu, Zn, Pb, Cd, Mn, Se, As, Cr, Co, Ni, Al, and Hg in body fluids such as blood, urine, saliva, and breast milk.

  14. S-induced modifications of the optoelectronic properties of ZnO mesoporous nanobelts

    PubMed Central

    Fabbri, Filippo; Nasi, Lucia; Fedeli, Paolo; Ferro, Patrizia; Salviati, Giancarlo; Mosca, Roberto; Calzolari, Arrigo; Catellani, Alessandra

    2016-01-01

    The synthesis of ZnO porous nanobelts with high surface-to-volume ratio is envisaged to enhance the zinc oxide sensing and photocatalytic properties. Yet, controlled stoichiometry, doping and compensation of as-grown n-type behavior remain open problems for this compound. Here, we demonstrate the effect of residual sulfur atoms on the optical properties of ZnO highly porous, albeit purely wurtzite, nanobelts synthesized by solvothermal decomposition of ZnS hybrids. By means of combined cathodoluminescence analyses and density functional theory calculations, we attribute a feature appearing at 2.36 eV in the optical emission spectra to sulfur related intra-gap states. A comparison of different sulfur configurations in the ZnO matrix demonstrates the complex compensating effect on the electronic properties of the system induced by S-inclusion. PMID:27301986

  15. Electrical characterization of ZnO/NiO p-n junction prepared by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Merih Akyuzlu, A.; Dagdelen, Fethi; Gultek, Ahmet; Hendi, A. A.; Yakuphanoglu, Fahrettin

    2017-04-01

    ZnO and NiO films were synthesized on fluourine-doped tin oxide (FTO) glass substrate by the sol-gel method. The surface morphology of the films was investigated by atomic force microscopy. The optical band gaps of the ZnO and NiO films were found to be 3.198 and 3.827eV, respectively. A ZnO/NiO p-n junction diode was prepared and electrical charge transport mechanism of the diode was analyzed using thermionic emission and Norde functions. The ideality factor, barrier height and series resistance of the diode were determined to be 6.46, 1.036eV and 39.1 M {Ω} , respectively. The obtained results indicate that ZnO/NiO p-n junction can be used as transparent diode for optic communications.

  16. Large scale ZnTe nanostructures on polymer micro patterns via capillary force photolithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florence, S. Sasi, E-mail: sshanmugaraj@jazanu.edu.sa; Can, N.; Adam, H.

    2016-06-10

    A novel approach to prepare micro patterns ZnTe nanostructures on Si (100) substrate using thermal evaporation is proposed by capillary Force Lithography (CFL) technique on a self-assembled sacrificial Polystyrene mask. Polystyrene thin films on Si substrates are used to fabricate surface micro-relief patterns. ZnTe nanoparticles have been deposited by thermal evaporation method. The deposited ZnTe nanoparticles properties were assessed by Atomic Force Microscope (AFM), Scanning Electron Microscope (SEM). SEM studies indicated that the particles are uniform in size and shape, well dispersed and spherical in shape. This study reports the micro-arrays of ZnTe nanoparticles on a self-assembled sacrificial PS maskmore » using a capillary flow photolithography process which showed excellent, morphological properties which can be used in photovoltaic devices for anti-reflection applications.« less

  17. Physical deoxygenation of graphene oxide paper surface and facile in situ synthesis of graphene based ZnO films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Jijun; Wang, Minqiang, E-mail: mqwang@mail.xjtu.edu.cn; Zhang, Xiangyu

    2014-12-08

    In-situ sputtering ZnO films on graphene oxide (GO) paper are used to fabricate graphene based ZnO films. Crystal structure and surface chemical states are investigated. Results indicated that GO paper can be effectively deoxygenated by in-situ sputtering ZnO on them without adding any reducing agent. Based on the principle of radio frequency magnetron sputtering, we propose that during magnetron sputtering process, plasma streams contain large numbers of electrons. These electrons not only collide with argon atoms to produce secondary electrons but also they are accelerated to bombard the substrates (GO paper) resulting in effective deoxygenation of oxygen-containing functional groups. In-situmore » sputtering ZnO films on GO paper provide an approach to design graphene-semiconductor nanocomposites.« less

  18. Nucleation, Growth Mechanism, and Controlled Coating of ZnO ALD onto Vertically Aligned N-Doped CNTs.

    PubMed

    Silva, R M; Ferro, M C; Araujo, J R; Achete, C A; Clavel, G; Silva, R F; Pinna, N

    2016-07-19

    Zinc oxide thin films were deposited on vertically aligned nitrogen-doped carbon nanotubes (N-CNTs) by atomic layer deposition (ALD) from diethylzinc and water. The study demonstrates that doping CNTs with nitrogen is an effective approach for the "activation" of the CNTs surface for the ALD of metal oxides. Conformal ZnO coatings are already obtained after 50 ALD cycles, whereas at lower ALD cycles an island growth mode is observed. Moreover, the process allows for a uniform growth from the top to the bottom of the vertically aligned N-CNT arrays. X-ray photoelectron spectroscopy demonstrates that ZnO nucleation takes place at the N-containing species on the surface of the CNTs by the formation of the Zn-N bonds at the interface between the CNTs and the ZnO film.

  19. Study of morphology effects on magnetic interactions and band gap variations for 3d late transition metal bi-doped ZnO nanostructures by hybrid DFT calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datta, Soumendu, E-mail: soumendu@bose.res.in; Baral, Sayan; Mookerjee, Abhijit

    2015-08-28

    Using density functional theory (DFT) based electronic structure calculations, the effects of morphology of semiconducting nanostructures on the magnetic interaction between two magnetic dopant atoms as well as a possibility of tuning band gaps have been studied in the case of the bi-doped (ZnO){sub 24} nanostructures with the impurity dopant atoms of the 3d late transition metals—Mn, Fe, Co, Ni, and Cu. To explore the morphology effect, three different structures of the host (ZnO){sub 24} nano-system, having different degrees of spatial confinement, have been considered: a two dimensional nanosheet, a one dimensional nanotube, and a finite cage-shaped nanocluster. The presentmore » study employs hybrid density functional theory to accurately describe the electronic structure of all the systems. It is shown here that the magnetic coupling between the two dopant atoms remains mostly anti-ferromagnetic in the course of changing the morphology from the sheet geometry to the cage-shaped geometry of the host systems, except for the case of energetically most stable bi-Mn doping, which shows a transition from ferromagnetic to anti-ferromagnetic coupling with decreasing aspect ratio of the host system. The effect of the shape change, however, has a significant effect on the overall band gap variations of both the pristine as well as all the bi-doped systems, irrespective of the nature of the dopant atoms and provides a means for easy tunability of their optoelectronic properties.« less

  20. Ternary complexes of Zn(II) and Cu(II) with 1-((2-hydroxynaphthalen-1-yl)methylene)-4-phenylthiosemicarbazide in the presence of heterocyclic bases as auxiliary ligands: Synthesis, spectroscopic and structural characterization and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Azarkish, Mohammad; Akbari, Alireza; Sedaghat, Tahereh; Simpson, Jim

    2018-03-01

    The new ternary complexes, ZnLL‧ [L = 1-((2-hydroxynaphthalen-1-yl)methylene)-4-phenylthiosemicarbazide and L‧ = imidazole (1), 2, 2‧-bipyridine (2) and 2-methyimidazole (3)], Zn2L2L‧ [L‧ = 4, 4‧-bipy (4)] and CuLL‧ [L‧ = 2, 2‧-bipy (5)] have been synthesized by the reaction of a metal(II) acetate salt with the thiosemicarbazone and in presence of heterocyclic bases as auxiliary ligands. The synthesized compounds were investigated by elemental analysis and IR, 1H NMR, and 13C NMR spectroscopy and complex 5 was structurally characterized by X-ray crystallography. The results indicate the thiosemicarbazone doubly deprotonated and coordinates to metal through the thiolate sulfur, imine nitrogen and phenolic oxygen atoms. The nitrogen atom(s) of the auxiliary ligand complete the coordination sphere. Complex 4 is binuclear with 4, 4‧-bipy acting as a bridging ligand. The structure of 5 is a distorted square pyramid with one of the bipyridine nitrogen atoms in the apical position. This compound creates an inversion dimer in solid state by intermolecular hydrogen bonds of Nsbnd H⋯S type. The in vitro antibacterial activity of the synthesized compounds were evaluated against Gram-positive (B. subtilis and S. aureus) and Gram-negative (P. aeruginosa) bacteria and is compared to that of standard antibacterial drugs. All complexes exhibit good inhibitory effects and are significantly more effective than the parent ligand.

  1. Polarization induced conductive AFM on cobalt doped ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Sahoo, Pradosh Kumar; Mangamma, G.; Rajesh, A.; Kamruddin, M.; Dash, S.

    2017-05-01

    In the present work cobalt doped ZnO (CZO) nanostructures (NS) have been synthesized by of sol-gel and spin coating process. After the crystal phase confirmation by GIXRD and Raman spectroscopy, Conductive Atomic Force Microscopy (C-AFM) measurement was performed on CZO NS which shows the random distribution of electrically conducting zones on the surface of the material exhibiting current in the range 4-170 pA. We provide the possible mechanisms for variation in current distribution essential for quantitative understanding of transport properties of ZnO NS in doped and undoped forms.

  2. Positron annihilation lifetime and photoluminescence studies on single crystalline ZnO

    NASA Astrophysics Data System (ADS)

    Sarkar, A.; Chakrabarti, Mahuya; Ray, S. K.; Bhowmick, D.; Sanyal, D.

    2011-04-01

    The room temperature positron annihilation lifetime for single crystalline ZnO has been measured as 164 ± 1 ps. The single component lifetime value is very close to but higher than the theoretically predicted value of ~ 154 ps. Photoluminescence study (at 10 K) indicates the presence of hydrogen and other defects, mainly acceptor related, in the crystal. Defects related to a lower open volume than zinc vacancies, presumably a complex with two hydrogen atoms, are the major trapping sites in the sample. The bulk positron lifetime in ZnO is expected to be a little less than 164 ps.

  3. Positron annihilation lifetime and photoluminescence studies on single crystalline ZnO.

    PubMed

    Sarkar, A; Chakrabarti, Mahuya; Ray, S K; Bhowmick, D; Sanyal, D

    2011-04-20

    The room temperature positron annihilation lifetime for single crystalline ZnO has been measured as 164 ± 1 ps. The single component lifetime value is very close to but higher than the theoretically predicted value of ~154 ps. Photoluminescence study (at 10 K) indicates the presence of hydrogen and other defects, mainly acceptor related, in the crystal. Defects related to a lower open volume than zinc vacancies, presumably a complex with two hydrogen atoms, are the major trapping sites in the sample. The bulk positron lifetime in ZnO is expected to be a little less than 164 ps.

  4. Trace Element Accumulation and Tissue Distribution in the Purpleback Flying Squid Sthenoteuthis oualaniensis from the Central and Southern South China Sea.

    PubMed

    Wu, Yan Yan; Shen, Yu; Huang, Hui; Yang, Xian Qing; Zhao, Yong Qiang; Cen, Jian Wei; Qi, Bo

    2017-01-01

    Sthenoteuthis oualaniensis is a species of cephalopod that is becoming economically important in the South China Sea. As, Cd, Cr, Cu, Hg, Pb, and Zn concentrations were determined in the mantle, arms, and digestive gland of S. oualaniensis from 31 oceanographic survey stations in the central and southern South China Sea. Intraspecific and interspecific comparisons with previous studies were made. Mean concentrations of trace elements analyzed in arms and mantle were in the following orders: Zn > Cu > Cd > Cr > As > Hg. In digestive gland, the concentrations of Cd and Cu exceed that of Zn. All the Pb concentrations were under the detected limit.

  5. Structure and magnetic properties of Fe12X clusters

    NASA Astrophysics Data System (ADS)

    Gutsev, G. L.; Johnson, L. E.; Belay, K. G.; Weatherford, C. A.; Gutsev, L. G.; Ramachandran, B. R.

    2014-02-01

    The electronic and geometrical structures of a Fe12X family of binary clusters Fe12Al, Fe12Sc, Fe12Ti, Fe12V, Fe12Cr, Fe12Mn, Fe12Co, Fe12Ni, Fe12Cu, Fe12Zn, Fe12Y, Fe12Zr, Fe12Nb, Fe12Mo, Fe12Tc, Fe12Ru, Fe12Rh, Fe12Pd, Fe12Ag, Fe12Cd, and Fe12Gd are studied using density functional theory within generalized gradient approximation. It is found that the geometrical structures corresponding to the lowest total energy states found for the Fe12X clusters possess icosahedral shape with the substituent atom occupying the central or a surface site. The only exception presents Fe12Nb where a squeezed cage structure is the energetically most favorable. The substitution of an atom in the Fe13 cluster results in the decrease of its total spin magnetic moment of 44 μB, except for Fe12Mn and Fe12Gd. The Fe12X clusters are more stable than the parent Fe13 cluster when X = Al, Sc, Ti, V, Co, Y, Zr, Nb, Mo, Tc, Ru, and Rh.

  6. Mg2+ ions: do they bind to nucleobase nitrogens?

    PubMed Central

    Leonarski, Filip; D'Ascenzo, Luigi; Auffinger, Pascal

    2017-01-01

    Given the many roles proposed for Mg2+ in nucleic acids, it is essential to accurately determine their binding modes. Here, we surveyed the PDB to classify Mg2+ inner-sphere binding patterns to nucleobase imine N1/N3/N7 atoms. Among those, purine N7 atoms are considered to be the best nucleobase binding sites for divalent metals. Further, Mg2+ coordination to N7 has been implied in several ribozyme catalytic mechanisms. We report that Mg2+ assigned near imine nitrogens derive mostly from poor interpretations of electron density patterns and are most often misidentified Na+, K+, NH4+ ions, water molecules or spurious density peaks. Consequently, apart from few documented exceptions, Mg2+ ions do not bind to N7 atoms. Without much of a surprise, Mn2+, Zn2+ and Cd2+, which have a higher affinity for nitrogens, may contact N7 atoms when present in crystallization buffers. In this respect, we describe for the first time a potential Zn2+ ribosomal binding site involving two purine N7 atoms. Further, we provide a set of guidelines to help in the assignment of Mg2+ in crystallographic, cryo-EM, NMR and model building practices and discuss implications of our findings related to ion substitution experiments. PMID:27923930

  7. (Pt1-xCux)3Cu2B and Pt9Cu3B5, the first examples of copper platinum borides. Observation of superconductivity in a novel boron filled β-Mn-type compound

    NASA Astrophysics Data System (ADS)

    Salamakha, Leonid P.; Sologub, Oksana; Stöger, Berthold; Michor, Herwig; Bauer, Ernst; Rogl, Peter F.

    2015-09-01

    New ternary copper platinum borides have been synthesized by arc melting of pure elements followed by annealing at 600 °C. The structures have been studied by X-ray single crystal and powder diffraction. (Pt1-xCux)3Cu2B (x=0.33) forms a B-filled β-Mn-type structure (space group P4132; a=0.6671(1) nm). Cu atoms are distributed preferentially on the 8c atom sites, whereas the 12d site is randomly occupied by Pt and Cu atoms (0.670(4) Pt±0.330(4) Cu). Boron is located in octahedral voids of the parent β-Mn-type structure. Pt9Cu3B5 (space group P-62m; a=0.9048(3) nm, c=0.2908(1) nm) adopts the Pt9Zn3B5-δ-type structure. It has a columnar architecture along the short translation vector exhibiting three kinds of [Pt6] trigonal prism columns (boron filled, boron semi-filled and empty) and Pt channels with a pentagonal cross section filled with Cu atoms. The striking structural feature is a [Pt6] cluster in form of an empty trigonal prism at the origin of the unit cell, which is surrounded by coupled [BPt6] and [Pt6] trigonal prisms, rotated perpendicularly to the central one. There is no B-B contact as well as Cu-B contact in the structure. The relationships of Pt9Cu3B5 structure with the structure of Ti1+xOs2-xRuB2 as well as with the structure families of metal sulfides and aluminides have been elucidated. (Pt1-xCux)3Cu2B (x=0.3) (B-filled β-Mn-type structure) is a bulk superconductor with a transition temperature of about 2.06 K and an upper critical field μ0HC2(0)WHH of 1.2 T, whereas no superconducting transition has been observed up to 0.3 K in Pt9Cu3B5 (Pt9Zn3B5-δ-type structure) from electrical resistivity measurements.

  8. Bond length variation in Zn substituted NiO studied from extended X-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Singh, S. D.; Poswal, A. K.; Kamal, C.; Rajput, Parasmani; Chakrabarti, Aparna; Jha, S. N.; Ganguli, Tapas

    2017-06-01

    Bond length behavior for Zn substituted NiO is determined through extended x-ray absorption fine structure (EXAFS) measurements performed at ambient conditions. We report bond length value of 2.11±0.01 Å for Zn-O of rock salt (RS) symmetry, when Zn is doped in RS NiO. Bond length for Zn substituted NiO RS ternary solid solutions shows relaxed behavior for Zn-O bond, while it shows un-relaxed behavior for Ni-O bond. These observations are further supported by first-principles calculations. It is also inferred that Zn sublattice remains nearly unchanged with increase in lattice parameter. On the other hand, Ni sublattice dilates for Zn compositions up to 20% to accommodate increase in the lattice parameter. However, for Zn compositions more than 20%, it does not further dilate. It has been attributed to the large disorder that is incorporated in the system at and beyond 20% of Zn incorporation in the cubic RS lattice of ternary solid solutions. For these large percentages of Zn incorporation, the Ni and the Zn atoms re-arrange themselves microscopically about the same nominal bond length rather than systematically increase in magnitude to minimize the energy of the system. This results in an increase in the Debye-Waller factor with increase in the Zn concentration rather than a systematic increase in the bond lengths.

  9. Morphology-controllable of Sn doped ZnO nanorods prepared by spray pyrolysis for transparent electrode application

    NASA Astrophysics Data System (ADS)

    Hameed, M. Shahul; Princice, J. Joseph; Babu, N. Ramesh; Zahirullah, S. Syed; Deshmukh, Sampat G.; Arunachalam, A.

    2018-05-01

    Transparent conductive Sn doped ZnO nanorods have been deposited at various doping level by spray pyrolysis technique on glass substrate. The structural, surface morphological and optical properties of these films have been investigated with the help of X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM) and UV-Vis spectrophotometer respectively. XRD patterns revealed a successful high quality growth of single crystal ZnO nanorods with hexagonal wurtzite structure having (002) preferred orientation. The scanning electron microscope (SEM) image of the prepared films exposed the uniform distribution of Sn doped ZnO nanorod shaped grains. All these films were highly transparent in the visible region with average transmittance of 90%.

  10. Synthesis of Single Crystalline ZnO Nanoparticles by Salt-Assisted Spray Pyrolysis

    NASA Astrophysics Data System (ADS)

    Panatarani, Camellia; Lenggoro, I. Wuled; Okuyama, Kikuo

    2003-04-01

    LiNO3 was used as a shield in the preparation of single crystalline ZnO particles by a spray pyrolysis process in order to prevent agglomeration and enhance the crystallinity of the ZnO. LiNO3 was added to a precursor solution of zinc acetate dihydrate prior to its atomization by means of an ultrasonic transducer. Agglomerate-free particles having a mean particle size of 26 nm were successfully obtained after washing the product. X-ray diffractometry, field-emission scanning electron micrograph and transmission electron micrograph data indicate that the size and morphology of ZnO were strongly influenced by the operating temperature used and the residence time of the particle in the reactor.

  11. Chiral zinc phenylalanine nanofibers with fluorescence.

    PubMed

    Chen, Erdan; Guo, Beidou; Zhang, Baohong; Gan, Li-Hua; Gong, Jian Ru

    2011-09-01

    Chiral Zn(II)/D-,L-phenylalanine (Phe) bio-coordination polymer nanofibers with fluorescence were prepared by fast coordination-assisted assembly. The synthetic strategy is based on the fact that the Zn2+ ions were linked to oxygen atoms from carboxylate groups of the D- or L-amino acid by coordination interactions to form the chiral polymers. The Zn(II)/D-,L-Phe nanofibers had homogeneous diameters in the range of 700-900 nm and ultra-long length in several hundred micrometers, and the surface of the fiber was extremely smooth. In addition, the enantiomers of Zn(II)/Phe nanofibers exhibited both optical activity and fluorescent property in the solid state, which has great potential for application in the field of biomimetic nanofabrication and micro-/nano-optoelectronics.

  12. Effect of Si, Mg, and Mg Zn doping on structural properties of a GaN layer grown by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Cho, H. K.; Lee, J. Y.; Kim, K. S.; Yang, G. M.

    2001-12-01

    We have studied the structural properties of undoped, Si-doped, Mg-doped, and Mg-Zn codoped GaN using high-resolution X-ray diffraction (HRXRD) and transmission electron microscopy. When compared with undoped GaN, the dislocation density at the surface of the GaN layer decreases with Si doping and increases with Mg doping. In addition, we observed a reduction of dislocation density by codoping with Zn atoms in the Mg-doped GaN layer. The full width at half maximum of HRXRD shows that Si doping and Mg-Zn codoping improve the structural quality of the GaN layer as compared with undoped and Mg-doped GaN, respectively.

  13. Synthesis of photochromic nanoparticles and determination of the mechanism of photochromism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, Shuhei, E-mail: shu18@hiroshima-u.ac.jp; Matsumura, Yukihiko; Kawamoto, Takahiro

    2016-05-15

    Photochromic nanoparticles of zinc-silicon oxide were synthesized using plasma enhanced chemical vapor deposition. These particles turned black upon irradiating with ultraviolet light. We investigated this phenomenon using density functional theory calculations. Silicon inclusions create trap levels and oxygen defects that reduce the ionization potential of ZnO. This forms a quantum potential between ZnO and zinc-silicon oxide, and the excited electron is stable. Because oxygen defects also increase the bond overlap population between the zinc atoms in a ZnO crystal, they introduce further defects and help in the formation of quantum potentials. Growth of a perfect crystal of ZnO prevents themore » formation of oxygen defects, which is not desirable for photochromism.« less

  14. Negative thermal quenching of photoluminescence in zinc oxide nanowire-core/graphene-shell complexes.

    PubMed

    Lin, S S; Chen, B G; Xiong, W; Yang, Y; He, H P; Luo, J

    2012-09-10

    Graphene is an atomic thin two-dimensional semimetal whereas ZnO is a direct wide band gap semiconductor with a strong light-emitting ability. In this paper, we report on photoluminescence (PL) of ZnO-nanowires (NWs)-core/Graphene-shell heterostructures, which shows a negative thermal quenching (NTQ) behavior both for the near band-edge and deep level emission. The abnormal PL behavior was understood through the charging and discharging processes between ZnO NWs and graphene. The NTQ properties are most possibly induced by the unique rapidly increasing density of states of graphene as a function of Fermi level, which promises a higher quantum tunneling probability between graphene and ZnO at a raised temperature.

  15. Enhanced luminescence in Eu-doped ZnO nanocrystalline films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Keigo, E-mail: ksuzuki@murata.com; Murayama, Koji; Tanaka, Nobuhiko

    We found an enhancement of Eu{sup 3+} emissions in Eu-doped ZnO nanocrystalline films fabricated by microemulsion method. The Eu{sup 3+} emission intensities were increased by reducing annealing temperatures from 633 K to 533 K. One possible explanation for this phenomenon is that the size reduction enhances the energy transfer from ZnO nanoparticles to Eu{sup 3+} ions. Also, the shift of the charge-transfer band into the low-energy side of the absorption edge is found to be crucial, which seems to expedite the energy transfer from O atoms to Eu{sup 3+} ions. These findings will be useful for the material design of Eu-doped ZnOmore » phosphors.« less

  16. ONR Tokyo Scientific Bulletin. Volume 5, Number 1, January-March 1980,

    DTIC Science & Technology

    1980-03-01

    alloys studied are in die AI-Zn, Al -Mg, Al -Si. Al - Cu . Cu - Al . and Cu -Fe... alloys Digital processing Measuring N 20. Abstract (cont.) with certain reports also being contributed by visiting stateside scientist. Occasionally a...atomic absorption spectrophotometer with tubes for the determination of Zn, Cu , Pb, Cr, Fe, Mg, Mn, Al , Co, Cd, Si, Ti, Zr, Ga, Au, Ag, Ni, Na, and

  17. Influence of stripping and cooling atmospheres on surface properties and corrosion of zinc galvanizing coatings

    NASA Astrophysics Data System (ADS)

    Yasakau, K. A.; Giner, I.; Vree, C.; Ozcan, O.; Grothe, R.; Oliveira, A.; Grundmeier, G.; Ferreira, M. G. S.; Zheludkevich, M. L.

    2016-12-01

    In this work the influence of stripping/cooling atmospheres used after withdrawal of steel sheet from Zn or Zn-alloy melt on surface properties of Zn (Z) and Zn-Al-Mg (ZM) hot-dip galvanizing coatings has been studied. The aim was to understand how the atmosphere (composed by nitrogen (N2) or air) affects adhesion strength to model adhesive and corrosive behaviour of the galvanized substrates. It was shown that the surface chemical composition and Volta potential of the galvanizing coatings prepared under the air or nitrogen atmosphere are strongly influenced by the atmosphere. The surface chemistry Z and ZM surfaces prepared under N2 contained a higher content of metal atoms and a richer hydroxide density than the specimens prepared under air atmosphere as assessed by X-ray photoelectron spectroscopy (XPS). The induced differences on the microstructure of the galvanized coatings played a key role on the local corrosion induced defects as observed by means of in situ Atomic force microscopy (AFM). Peel force tests performed on the substrates coated by model adhesive films indicate a higher adhesive strength to the surfaces prepared under nitrogen atmosphere. The obtained results have been discussed in terms of the microstructure and surface chemical composition of the galvanizing coatings.

  18. The atomic geometries of GaP(110) and ZnS(110) revisited - A structural ambiguity and its resolution

    NASA Technical Reports Server (NTRS)

    Duke, C. B.; Paton, A.; Kahn, A.

    1984-01-01

    The atomic geometries of GaP(110) and ZnS(110) are reexamined using the R-factor minimization procedure, developed for GaAs(110) and previously applied to GaSb(110), ZnTe(110), InAs(110), and AlP(110), to analyze experimental elastic low-energy electron diffraction intensities. Unlike most of the earlier cases, both GaP(110) and ZnS(110) exhibit two distinct minimum-Rx structures which cannot be distinguished by analysis of the shapes of the intensity profiles alone. One region of best-fit structures exhibits top-layer displacements normal to the surface characterized by a small bond-length-conserving, top-layer rotation (omega aproximately 2-3 deg), a small relaxation of the top layer away from the surface, and a 10 percent expansion of the top-layer bond length. The other region of best-fit structures is the conventional one: nearly bond-length-conserving rotations of omega = 26-28 deg in the top layer and a small (approximately 0.1 A) contraction of the uppermost layer spacing. This ambiguity may be removed, however, by consideration of the integrated beam intensities. The conventional region of structural parameters provides a decisively better description of the relative magnitudes of the integrated beam intensities and hence is the preferred structure.

  19. Enhanced resolution imaging of ultrathin ZnO layers on Ag(111) by multiple hydrogen molecules in a scanning tunneling microscope junction

    NASA Astrophysics Data System (ADS)

    Liu, Shuyi; Shiotari, Akitoshi; Baugh, Delroy; Wolf, Martin; Kumagai, Takashi

    2018-05-01

    Molecular hydrogen in a scanning tunneling microscope (STM) junction has been found to enhance the lateral spatial resolution of the STM imaging, referred to as scanning tunneling hydrogen microscopy (STHM). Here we report atomic resolution imaging of 2- and 3-monolayer (ML) thick ZnO layers epitaxially grown on Ag(111) using STHM. The enhanced resolution can be obtained at a relatively large tip to surface distance and resolves a more defective structure exhibiting dislocation defects for 3-ML-thick ZnO than for 2 ML. In order to elucidate the enhanced imaging mechanism, the electric and mechanical properties of the hydrogen molecular junction (HMJ) are investigated by a combination of STM and atomic force microscopy. It is found that the HMJ shows multiple kinklike features in the tip to surface distance dependence of the conductance and frequency shift curves, which are absent in a hydrogen-free junction. Based on a simple modeling, we propose that the junction contains several hydrogen molecules and sequential squeezing of the molecules out of the junction results in the kinklike features in the conductance and frequency shift curves. The model also qualitatively reproduces the enhanced resolution image of the ZnO films.

  20. Spectroscopic investigations on the interaction of thioacetamide with ZnO quantum dots and application for its fluorescence sensing

    NASA Astrophysics Data System (ADS)

    Saha, Dipika; Negi, Devendra P. S.

    2018-01-01

    The purpose of the present work was to develop a method for the sensing of thioacetamide by using spectroscopic techniques. Thioacetamide is a carcinogen and it is important to detect its presence in food-stuffs. Semiconductor quantum dots are frequently employed as sensing probes since their absorption and fluorescence properties are highly sensitive to the interaction with substrates present in the solution. In the present work, the interaction between thioacetamide and ZnO quantum dots has been investigated by using UV-visible, fluorescence and infrared spectroscopy. Besides, dynamic light scattering (DLS) has also been utilized for the interaction studies. UV-visible absorption studies indicated the bonding of the lone pair of sulphur atom of thioacetamide with the surface of the semiconductor. The fluorescence band of the ZnO quantum dots was found to be quenched in the presence of micromolar concentrations of thioacetamide. The quenching was found to follow the Stern-Volmer relationship. The Stern-Volmer constant was evaluated to be 1.20 × 105 M- 1. Infrared spectroscopic measurements indicated the participation of the sbnd NH2 group and the sulphur atom of thioacetamide in bonding with the surface of the ZnO quantum dots. DLS measurements indicated that the surface charge of the semiconductor was shielded by the thioacetamide molecules.

  1. Influence of Atomic Hydrogen, Band Bending, and Defects in the Top Few Nanometers of Hydrothermally Prepared Zinc Oxide Nanorods

    NASA Astrophysics Data System (ADS)

    Al-Saadi, Mubarak J.; Al-Harthi, Salim H.; Kyaw, Htet H.; Myint, Myo T. Z.; Bora, Tanujjal; Laxman, Karthik; Al-Hinai, Ashraf; Dutta, Joydeep

    2017-01-01

    We report on the surface, sub-surface (top few nanometers) and bulk properties of hydrothermally grown zinc oxide (ZnO) nanorods (NRs) prior to and after hydrogen treatment. Upon treating with atomic hydrogen (H*), upward and downward band bending is observed depending on the availability of molecular H2O within the structure of the NRs. In the absence of H2O, the H* treatment demonstrated a cleaning effect of the nanorods, leading to a 0.51 eV upward band bending. In addition, enhancement in the intensity of room temperature photoluminescence (PL) signals due to the creation of new surface defects could be observed. The defects enhanced the visible light activity of the ZnO NRs which were subsequently used to photocatalytically degrade aqueous phenol under simulated sunlight. On the contrary, in the presence of H2O, H* treatment created an electronic accumulation layer inducing downward band bending of 0.45 eV ( 1/7th of the bulk ZnO band gap) along with the weakening of the defect signals as observed from room temperature photoluminescence spectra. The results suggest a plausible way of tailoring the band bending and defects of the ZnO NRs through control of H2O/H* species.

  2. Electronic structure and linear optical properties of ZnSe and ZnSe:Mn.

    PubMed

    Su, Kang; Wang, Yuhua

    2010-03-01

    As an important wide band-gap II-VI semiconductor, ZnSe has attracted much attention for its various applications in photo-electronic devices such as blue light-emitting diodes and blue-green diode lasers. Mn-doped ZnSe is an excellent quantum dot material. The electronic structures of the sphalerite ZnSe and ZnSe:Mn were calculated using the Vienna ab initio Simulation Package with ultra-soft pseudo potentials and Material Studio. The calculated equilibrium lattice constants agree well with the experimental values. Using the optimized equilibrium lattice constants, the densities of states and energy band structures were further calculated. By analyzing the partial densities of states, the contributions of different electron states in different atoms were estimated. The p states of Zn mostly contribute to the top of the valence band, and the s states of Zn and the s states of Se have major effects on the bottom of the conduction band. The calculated results of ZnSe:Mn show the band gap was changed from 2.48 to 1.1 eV. The calculated linear optical properties, such as refractive index and absorption spectrum, are in good agreement with experimental values.

  3. Local atomic and magnetic structure of dilute magnetic semiconductor ( Ba , K ) ( Zn , Mn ) 2 As 2

    DOE PAGES

    Frandsen, Benjamin A.; Gong, Zizhou; Terban, Maxwell W.; ...

    2016-09-06

    We studied the atomic and magnetic structure of the dilute ferromagnetic semiconductor system (Ba,K)(Zn,Mn) 2As 2 through atomic and magnetic pair distribution function analysis of temperature-dependent x-ray and neutron total scattering data. Furthermore, we detected a change in curvature of the temperature-dependent unit cell volume of the average tetragonal crystallographic structure at a temperature coinciding with the onset of ferromagnetic order. We also observed the existence of a well-defined local orthorhombic structure on a short length scale of ≲5Å, resulting in a rather asymmetrical local environment of the Mn and As ions. Finally, the magnetic PDF revealed ferromagnetic alignment ofmore » Mn spins along the crystallographic c axis, with robust nearest-neighbor ferromagnetic correlations that exist even above the ferromagnetic ordering temperature. Finally, we discuss these results in the context of other experiments and theoretical studies on this system.« less

  4. Binding effects of Mn²⁺ and Zn²⁺ ions on the vibrational properties of guanine-cytosine base pairs in the Watson-Crick and Hoogsteen configurations.

    PubMed

    Morari, Cristian; Bogdan, Diana; Muntean, Cristina M

    2012-11-01

    The binding effects of Mn²⁺ and Zn²⁺ ions on the vibrational properties of guanine-cytosine base pairs have been performed using density functional theory investigations. The calculations were carried out on Watson-Crick and Hoogsteen configurations of the base pairs. We have found, that in Watson-Crick configuration, the metal is coordinated to N7 atom of guanine while, in the case of Hoogsteen configuration, the coordination is at N3 atom of guanine. We have pointed out the vibrational bands that can be used to detect the presence of metallic ions in the Watson-Crick and Hoogsteen structures. Our results show that the vibrational amplitudes of metallic atoms are strong for wavenumbers lower than 600 cm⁻¹. Also, we predict that the distinction between Watson-Crick and Hoogsteen configurations can be seen around 85, 170 and 310 cm⁻¹.

  5. Microscopy and microanalysis of complex nanosized strengthening precipitates in new generation commercial Al-Cu-Li alloys.

    PubMed

    Guinel, M J-F; Brodusch, N; Sha, G; Shandiz, M A; Demers, H; Trudeau, M; Ringer, S P; Gauvin, R

    2014-09-01

    Precipitates (ppts) in new generation aluminum-lithium alloys (AA2099 and AA2199) were characterised using scanning and transmission electron microscopy and atom probe tomography. Results obtained on the following ppts are reported: Guinier-Preston zones, T1 (Al2 CuLi), β' (Al3 Zr) and δ' (Al3 Li). The focus was placed on their composition and the presence of minor elements. X-ray energy-dispersive spectrometry in the electron microscopes and mass spectrometry in the atom probe microscope showed that T1 ppts were enriched in zinc (Zn) and magnesium up to about 1.9 and 3.5 at.%, respectively. A concentration of 2.5 at.% Zn in the δ' ppts was also measured. Unlike Li and copper, Zn in the T1 ppts could not be detected using electron energy-loss spectroscopy in the transmission electron microscope because of its too low concentration and the small sizes of these ppts. Indeed, Monte Carlo simulations of EEL spectra for the Zn L2,3 edge showed that the signal-to-noise ratio was not high enough and that the detection limit was at least 2.5 at.%, depending on the probe current. Also, the simulation of X-ray spectra confirmed that the detection limit was exceeded for the Zn Kα X-ray line because the signal-to-noise ratio was high enough in that case, which is in agreement with our observations. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  6. Fabrication of tantalum and nitrogen codoped ZnO (Ta, N-ZnO) thin films using the electrospay: twin applications as an excellent transparent electrode and a field emitter.

    PubMed

    Mahmood, Khalid; Park, Seung Bin; Sung, Hyung Jin

    2013-05-01

    The realization of stable p-type nitrogen-doped ZnO thin films with durable and controlled growth is important for the fabrication of nanoscale electronic and optoelectronic devices. ZnO thin films codoped with tantalum and nitrogen (Ta, N-ZnO) were fabricated by using the electrospraying method at an atmospheric pressure. X-ray diffraction (XRD) studies demonstrated that all the prepared films were polycrystalline in nature with hexagonal wurtzite structure. In addition, a shift in the XRD patterns was observed, and the crystal orientation was changed at a certain amount of nitrogen (>6 at.%) in the starting solution. Analysis of X-ray diffraction patterns and X-ray photoelectron spectra revealed that nitrogen which was combined with the zinc atom (N-Zn) was successfully doped into the ZnO crystal lattice. It was also observed that 2 at.% tantalum and 6 at.% nitrogen (2 at.% Ta and 6 at.% N) were the optimal dopant amounts to achieve the minimum resistivity of about 9.70 × 10(-5) Ω cm and the maximum transmittance of 98% in the visible region. Consequently, the field-emission characteristics of such a Ta, N-ZnO emitter can exhibit the higher current density of 1.33 mA cm(-2), larger field-enhancement factor (β) of 4706, lower turn-on field of 2.6 V μm(-1), and lower threshold field of 3.5 V μm(-1) attributed to the enhanced conductivity and better crystallinity of films. Moreover, the obtained values of resistivity were closest to the lowest resistivity values among the doped ZnO films as well as to the indium tin oxide (ITO) resistivity values that were previously studied. We confirmed that the tantalum and nitrogen atoms substitution in the ZnO lattice induced positive effects in terms of enhancing the free carrier concentration which will further improve the electrical, optical, and field-emission properties. The proposed electrospraying method was well suitable for the fabrication of Ta, N-ZnO thin films at optimum conditions with superior electrical, optical, and field-emission characteristics, implying the potential applications as both a transparent electrode and field-emission (FE) devices.

  7. Efficient optical activation of Eu3+ ions doped in ZnGa2O4 thin films: Correlation between crystalline phase and photoluminescence

    NASA Astrophysics Data System (ADS)

    Akazawa, Housei; Shinojima, Hiroyuki

    2018-06-01

    The physicochemical properties of Eu-doped zinc gallate (ZnGaxO1+1.5x:Eu) (1 < x < 6) thin films were investigated by means of photoluminescence (PL) triggered by band-to-band transitions of the host crystal at λ = 325 nm. Close correspondence between PL spectra and crystalline phases was verified by performing combinatorial measurements over four-inch substrates on which there was a spread of Ga/Zn composition ratios. The phase formation kinetics for deposition with H2O as an oxygen source gas followed by post annealing were similar to those of hydrothermal synthesis. ZnGa2O4 preferentially formed for a wide range of compositions between 1 < x < 4 and post annealing temperatures between 400 and 800 °C; intense emissions from Eu3+ ions were observed from the films. In contrast, the phase formation kinetics for deposition with O2 gas followed by post annealing were similar to those of solid-state reactions. Vacuum annealing above 500 °C caused preferential losses of Ga atoms and precipitation of Zn2Ga2O5 crystallites at x < 4, whereas ZnGa2O4 formed when a large amount of Ga (x > 6) was initially contained in the as-deposited state. The resulting PL spectra from Zn2Ga2O5 exhibited only a broad emission band from 450 to 700 nm, which was ascribed to defects in the poorly crystallized Zn:Ga = 1:1 phase. When the films deposited with O2 were post annealed in an O2 ambient, Zn atoms were lost, producing β-Ga2O3 as the primary phase accompanied with ZnGa2O4. The resulting Eu3+ emission was very weak, possibly because the Eu3+ ions attached to Ga2O3 domains were not emission-active and/or could not be efficiently excited due to wide bandgap (5 eV). When ZnGa2O4:Eu films were crystallized during deposition at elevated temperatures, weak emissions only from Eu3+ ions were observed. Taken together, these experimental results indicate that Eu3+ ions attached to ZnGa2O4 are highly emission-active; i.e., ZnGa2O4 is a particularly good host crystal with which to secure optical activation of doped Eu3+ ions.

  8. Synthesis, crystal structure and DFT studies of a Zinc(II) complex of 1,3-diaminopropane (Dap), [Zn(Dap)(NCS)2][Zn(Dap)(NCS)2]n. The additional stabilizing role of S⋯π chalcogen bond

    NASA Astrophysics Data System (ADS)

    Alotaibi, Mshari A.; Alharthi, Abdulrahman I.; Zierkiewicz, Wiktor; Akhtar, Muhammad; Tahir, Muhammad Nawaz; Mazhar, Muhammad; Isab, Anvarhusein A.; Ahmad, Saeed

    2017-04-01

    A zinc(II) complex of 1,3-diaminopropane (Dap), [Zn(Dap)(NCS)2][Zn(Dap)(NCS)2]n (1) has been prepared and characterized by elemental analysis, IR, 1H &13C NMR spectroscopy, and its crystal structure was determined by X-ray crystallography. The crystal structure of 1 consists of two types of molecules, a discrete monomer and a polymeric one. In the monomeric unit, the zinc atom is bound to one terminal Dap molecule and to two N-bound thiocyanate ions, while in the polymeric unit, Dap acts as a bridging ligand forming a linear chain. The Zn(II) ions in both assume a slightly distorted tetrahedral geometry. The structures of two systems: the [Zn(Dap)(NCS)2][Zn(Dap)(NCS)2]3 complex as a model of 1 and [Zn(Dap)(NCS)2]4 as a simple polymeric structure were optimized with the B3LYP-D3 method. The DFT results support that the experimentally determined structure (1) is more stable in comparison to a simple polymeric structure, [Zn(Dap)(NCS)2]n (2). The interaction energies (ΔE) for NCS anions obtained by B3LYP-D3 method are about -145 kcal mol-1, while the calculated ΔE values for neutral organic ligands are about twice smaller. The X-ray structure of 1 shows that the complex is stabilized mainly by hydrogen bonds. We also found that weak chalcogen bonds play an additional role in stabilization of compound 1. Some of the intermolecular S⋯N distances are smaller than the sum of the van der Waals radii of the corresponding atoms. To the best of our knowledge, this is the first study that shows the structure where the trivalent sulfur is involved in formation of a S⋯π chalcogen bond. The NBO and NCI analyses confirm the existence of this kind of interactions.

  9. Photoelectron emission yield experiments on evolution of sub-gap states in amorphous In-Ga-Zn-O thin films with post deposition hydrogen treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, Kazushi, E-mail: hayashi.kazushi@kobelco.com; Hino, Aya; Tao, Hiroaki

    Total photoyield emission spectroscopy (TPYS) was applied to study the evolution of sub-gap states in hydrogen-treated amorphous In-Ga-Zn-O (a-IGZO) thin films. The a-IGZO thin films were subjected to hydrogen radicals and subsequently annealed in ultra-high vacuum (UHV) conditions. A clear onset of the electron emission was observed at around 4.3 eV from the hydrogen-treated a-IGZO thin films. After successive UHV annealing at 300 °C, the onset in the TPYS spectra was shifted to 4.15 eV, and the photoelectron emission from the sub-gap states was decreased as the annealing temperature was increased. In conjunction with the results of thermal desorption spectrometer, it was deducedmore » that the hydrogen atoms incorporated in the a-IGZO thin films induced metastable sub-gap states at around 4.3 eV from vacuum level just after the hydrogenation. It was also suggested that the defect configuration was changed due to the higher temperature UHV annealing, and that the hydrogen atoms desorbed with the involvement of Zn atoms. These experiments produced direct evidence to show the formation of sub-gap states as a result of hydrogen incorporation into the a-IGZO thin films.« less

  10. Magnetic engineering in InSe/black-phosphorus heterostructure by transition-metal-atom Sc-Zn doping in the van der Waals gap

    NASA Astrophysics Data System (ADS)

    Ding, Yi-min; Shi, Jun-jie; Zhang, Min; Zhu, Yao-hui; Wu, Meng; Wang, Hui; Cen, Yu-lang; Guo, Wen-hui; Pan, Shu-hang

    2018-07-01

    Within the framework of the spin-polarized density-functional theory, we have studied the electronic and magnetic properties of InSe/black-phosphorus (BP) heterostructure doped with 3d transition-metal (TM) atoms from Sc to Zn. The calculated binding energies show that TM-atom doping in the van der Waals (vdW) gap of InSe/BP heterostructure is energetically favorable. Our results indicate that magnetic moments are induced in the Sc-, Ti-, V-, Cr-, Mn- and Co-doped InSe/BP heterostructures due to the existence of non-bonding 3d electrons. The Ni-, Cu- and Zn-doped InSe/BP heterostructures still show nonmagnetic semiconductor characteristics. Furthermore, in the Fe-doped InSe/BP heterostructure, the half-metal property is found and a high spin polarization of 100% at the Fermi level is achieved. The Cr-doped InSe/BP has the largest magnetic moment of 4.9 μB. The Sc-, Ti-, V-, Cr- and Mn-doped InSe/BP heterostructures exhibit antiferromagnetic ground state. Moreover, the Fe- and Co-doped systems display a weak ferromagnetic and paramagnetic coupling, respectively. Our studies demonstrate that the TM doping in the vdW gap of InSe/BP heterostructure is an effective way to modify its electronic and magnetic properties.

  11. DENSITY FUNCTIONAL STUDY OF ELEMENTAL MERCURY ADSORPTION ON X (X=Mn, Si, Ti, Al, AND Zn)-DOPED CuO (110) SURFACE

    NASA Astrophysics Data System (ADS)

    He, Ping; Peng, Xiaolong; Zhang, Zhongzhi; Wu, Jiang; Chen, Naichao; Ren, Jianxing

    Copper oxide (CuO) is proved to be a potential adsorbent for elemental mercury in the flue gas emitted from coal-fired power plant. However, the O-terminated CuO(110) surface has relatively week adsorption capacity for Hg. In this work, the doped method is applied to enhance the mercury adsorption capacity of O-terminated CuO(110). Mn, Si, Ti, Al and Zn are selected as the doped atom. It is found that only Zn-doped CuO (110) surfaces have the higher adsorption energy than the pure O-terminated CuO(110) surface. The mercury adsorption capacity is a complex issue, which depends on a combination of oxygen and doped element. The results suggest that the lower electropositive doped element is favorable for the improvement of mercury adsorption capacity. However, the lower electronegativity of oxygen atoms does not facilitate the mercury capture, which is different from the organic material. Cu and doped metal element, rather than oxygen atom, mainly determine mercury adsorption capacity of O-terminated CuO(110) surface, which leads to the lower adsorption capacity of the O-terminated CuO(110) surface than the Cu-terminated CuO(110) surface. The conclusions can also offer a valuable reference for the other metal oxide regarding mercury capture.

  12. Crossover from layering to island formation in Langmuir-Blodgett growth: Role of long-range intermolecular forces

    NASA Astrophysics Data System (ADS)

    Mukherjee, Smita; Datta, Alokmay

    2011-04-01

    Combined studies by atomic force microscopy, x-ray reflectivity, and Fourier transform infrared spectroscopy on transition-metal stearate (M-St, M = Mn, Co, Zn, and Cd) Langmuir-Blodgett films clearly indicate association of bidentate coordination of the metal-carboxylate head group to layer-by-layer growth as observed in MnSt and CoSt and partially in ZnSt. Crossover to islandlike growth, as observed in CdSt and ZnSt, is associated with the presence of unidentate coordination in the head group. Morphological evolutions as obtained from one, three, and nine monolayers (MLs) of M-St films are consistent with Frank van der Merwe, Stranski-Krastanov, and Volmer Weber growth modes for M=Mn/Co, Zn, and Cd, respectively, as previously assigned, and are found to vary with number (n) of metal atoms per head group, viz. n=1 (Mn/Co), n=0.75 (Zn), and n=0.5 (Cd). The parameter n is found to decide head-group coordination such that n=1.0 corresponds to bidentate and n=0.5 corresponds to unidentate coordination; the intermediate value in Zn corresponds to a mixture of both. The dependence of the growth mode on head-group structure is explained by the fact that in bidentate head groups, with the in-plane dipole moment being zero, intermolecular forces between adjacent molecules are absent and hence growth proceeds via layering. On the other hand, in unidentate head groups, the existence of a nonzero in-plane dipole moment results in the development of weak in-plane intermolecular forces between adjacent molecules causing in-plane clustering leading to islandlike growth.

  13. A one-dimensional zinc(II) coordination polymer with a three-dimensional supramolecular architecture incorporating 1-[(1H-benzimidazol-2-yl)methyl]-1H-tetrazole and adipate.

    PubMed

    Liu, Chun Li; Huang, Qiu Ying; Meng, Xiang Ru

    2016-12-01

    The synthesis of coordination polymers or metal-organic frameworks (MOFs) has attracted considerable interest owing to the interesting structures and potential applications of these compounds. It is still a challenge to predict the exact structures and compositions of the final products. A new one-dimensional coordination polymer, catena-poly[[[bis{1-[(1H-benzimidazol-2-yl)methyl]-1H-tetrazole-κN 3 }zinc(II)]-μ-hexane-1,6-dicarboxylato-κ 4 O 1 ,O 1' :O 6 ,O 6' ] monohydrate], {[Zn(C 6 H 8 O 4 )(C 9 H 8 N 6 ) 2 ]·H 2 O} n , has been synthesized by the reaction of Zn(Ac) 2 (Ac is acetate) with 1-[(1H-benzimidazol-2-yl)methyl]-1H-tetrazole (bimt) and adipic acid (H 2 adi) at room temperature. In the polymer, each Zn II ion exhibits an irregular octahedral ZnN 2 O 4 coordination geometry and is coordinated by two N atoms from two symmetry-related bimt ligands and four O atoms from two symmetry-related dianionic adipate ligands. Zn II ions are connected by adipate ligands into a one-dimensional chain which runs parallel to the c axis. The bimt ligands coordinate to the Zn II ions in a monodentate mode on both sides of the main chain. In the crystal, the one-dimensional chains are further connected through N-H...O hydrogen bonds, leading to a three-dimensional supramolecular architecture. In addition, the title polymer exhibits fluorescence, with emissions at 334 and 350 nm in the solid state at room temperature.

  14. Facile Synthesis of ZnO Nanoparticles on Nitrogen-Doped Carbon Nanotubes as High-Performance Anode Material for Lithium-Ion Batteries

    PubMed Central

    Li, Haipeng; Liu, Zhengjun; Yang, Shuang; Zhao, Yan; Feng, Yuting; Zhang, Chengwei; Yin, Fuxing

    2017-01-01

    ZnO/nitrogen-doped carbon nanotube (ZnO/NCNT) composite, prepared though a simple one-step sol-gel synthetic technique, has been explored for the first time as an anode material. The as-prepared ZnO/NCNT nanocomposite preserves a good dispersity and homogeneity of the ZnO nanoparticles (~6 nm) which deposited on the surface of NCNT. Transmission electron microscopy (TEM) reveals the formation of ZnO nanoparticles with an average size of 6 nm homogeneously deposited on the surface of NCNT. ZnO/NCNT composite, when evaluated as an anode for lithium-ion batteries (LIBs), exhibits remarkably enhanced cycling ability and rate capability compared with the ZnO/CNT counterpart. A relatively large reversible capacity of 1013 mAh·g−1 is manifested at the second cycle and a capacity of 664 mAh·g−1 is retained after 100 cycles. Furthermore, the ZnO/NCNT system displays a reversible capacity of 308 mAh·g−1 even at a high current density of 1600 mA·g−1. These electrochemical performance enhancements are ascribed to the reinforced accumulative effects of the well-dispersed ZnO nanoparticles and doping nitrogen atoms, which can not only suppress the volumetric expansion of ZnO nanoparticles during the cycling performance but also provide a highly conductive NCNT network for ZnO anode. PMID:28934141

  15. Facile Synthesis of ZnO Nanoparticles on Nitrogen-Doped Carbon Nanotubes as High-Performance Anode Material for Lithium-Ion Batteries.

    PubMed

    Li, Haipeng; Liu, Zhengjun; Yang, Shuang; Zhao, Yan; Feng, Yuting; Bakenov, Zhumabay; Zhang, Chengwei; Yin, Fuxing

    2017-09-21

    ZnO/nitrogen-doped carbon nanotube (ZnO/NCNT) composite, prepared though a simple one-step sol-gel synthetic technique, has been explored for the first time as an anode material. The as-prepared ZnO/NCNT nanocomposite preserves a good dispersity and homogeneity of the ZnO nanoparticles (~6 nm) which deposited on the surface of NCNT. Transmission electron microscopy (TEM) reveals the formation of ZnO nanoparticles with an average size of 6 nm homogeneously deposited on the surface of NCNT. ZnO/NCNT composite, when evaluated as an anode for lithium-ion batteries (LIBs), exhibits remarkably enhanced cycling ability and rate capability compared with the ZnO/CNT counterpart. A relatively large reversible capacity of 1013 mAh·g -1 is manifested at the second cycle and a capacity of 664 mAh·g -1 is retained after 100 cycles. Furthermore, the ZnO/NCNT system displays a reversible capacity of 308 mAh·g -1 even at a high current density of 1600 mA·g -1 . These electrochemical performance enhancements are ascribed to the reinforced accumulative effects of the well-dispersed ZnO nanoparticles and doping nitrogen atoms, which can not only suppress the volumetric expansion of ZnO nanoparticles during the cycling performance but also provide a highly conductive NCNT network for ZnO anode.

  16. Determination of the relationship between major fault and zinc mineralization using fractal modeling in the Behabad fault zone, central Iran

    NASA Astrophysics Data System (ADS)

    Adib, Ahmad; Afzal, Peyman; Mirzaei Ilani, Shapour; Aliyari, Farhang

    2017-10-01

    The aim of this study is to determine a relationship between zinc mineralization and a major fault in the Behabad area, central Iran, using the Concentration-Distance to Major Fault (C-DMF), Area of Mineralized Zone-Distance to Major Fault (AMZ-DMF), and Concentration-Area (C-A) fractal models for Zn deposit/mine classification according to their distance from the Behabad fault. Application of the C-DMF and the AMZ-DMF models for Zn mineralization classification in the Behabad fault zone reveals that the main Zn deposits have a good correlation with the major fault in the area. The distance from the known zinc deposits/mines with Zn values higher than 29% and the area of the mineralized zone of more than 900 m2 to the major fault is lower than 1 km, which shows a positive correlation between Zn mineralization and the structural zone. As a result, the AMZ-DMF and C-DMF fractal models can be utilized for the delineation and the recognition of different mineralized zones in different types of magmatic and hydrothermal deposits.

  17. Determination of iridium in mafic rocks by atomic absorption

    USGS Publications Warehouse

    Grimaldi, F.S.; Schnepfe, M.M.

    1970-01-01

    Iridium is determined in mineralized mafic rocks by atomic absorption after fire-assay concentration into a gold bead. Interelement interferences in the atomic-absorption determination are removed and Ir sensitivity is increased by buffering the solutions with a mixture of copper and sodium sulphates. Substantial amounts of Ag, Al, Au, Bi, Ca, Cd, Co, Cr, Fe, Ho, Hg, K, La, Mg, Mn, Mo, Ni, Pb, Te, Ti, V, Y, Zn and platinum metals can be tolerated in the atomic-absorption determination. The sensitivity and detection limits are 3.2 and 0.25 ppm of Ir, respectively. ?? 1970.

  18. Synthesis of ZnSnO{sub 3} nanostructure by sol gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Para, Touseef Ahmad; Reshi, Hilal Ahmad; Shelke, Vilas, E-mail: drshelke@gmail.com

    2016-05-23

    Zinc Stannate (ZST) with composition ZnSnO{sub 3} is known for high electron mobility, optical, piezoelectric and charge storage properties. ZST crystalizes in different lattice structures, which allows a wide range of tunablity. We demonstrate successful synthesis of ZnSnO{sub 3} nanomaterial by sol-gel method. ZnSnO{sub 3} nanomaterials were calcined and sintered at different temperatures. Powder X-ray diffraction confirmed the single phase of the nanomaterial with rhombohedral R-3 space group. The Rietveld refinement of diffraction pattern yielded lattice parameter values a=5.26Å, c=14.09Å. Raman spectroscopy revealed higher activity towards higher wavenumbers. Raman shift around 530cm{sup −1} was found to be highly structure dependent,more » most probably due to anharmonic atomic vibrations in ZnO{sub 6}/SnO{sub 6} octahedra around center of mass. Sharp Peak around 650cm{sup −1} is characteristic of ZnSnO{sub 3} molecule.« less

  19. Evidence of zinc superoxide formation in the gas phase: comparisons in behaviour between ligated Zn(I/II) and Cu(I/II) with regard to the attachment of O2 or H2O.

    PubMed

    Cox, Hazel; Norris, Caroline; Wu, Guohua; Guan, Jingang; Hessey, Stephen; Stace, Anthony J

    2011-11-14

    Singly and doubly charged atomic ions of zinc and copper have been complexed with pyridine and held in an ion trap. Complexes involving Zn(II) and Cu(I) (3d(10)) display a strong tendency to bind with H(2)O, whilst the Zn(I) (3d(10)4s(1)) complexes exhibit a strong preference for the attachment of O(2). DFT calculations show that this latter result can be interpreted as internal oxidation leading to the formation of superoxide complexes, [Zn(II)O(2)(-)](pyridine)(n), in the gas phase. The calculations also show that the oxidation of Zn(I) to form Zn(II)O(2)(-) is promoted by a mixing of the occupied 4s and vacant 4p orbitals on the metal cation, and that this process is facilitated by the presence of the pyridine ligands.

  20. Special quasiordered structures: Role of short-range order in the semiconductor alloy (GaN) 1 -x(ZnO) x

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Fernández-Serra, Maria V.; Allen, Philip B.

    2016-02-01

    This paper studies short-range order (SRO) in the semiconductor alloy (GaN) 1 -x(ZnO) x. Monte Carlo simulations performed on a density functional theory (DFT)-based cluster expansion model show that the heterovalent alloys exhibit strong SRO because of the energetic preference for the valence-matched nearest-neighbor Ga-N and Zn-O pairs. To represent the SRO-related structural correlations, we introduce the concept of special quasiordered structure (SQoS). Subsequent DFT calculations reveal the dramatic influence of SRO on the atomic, electronic, and vibrational properties of the (GaN) 1 -x(ZnO) x alloy. Due to the enhanced statistical presence of the energetically unfavored Zn-N bonds with the strong Zn 3 d -N 2 p repulsion, the disordered alloys exhibit much larger lattice bowing and band-gap reduction than those of the short-range ordered alloys. Lattice vibrational entropy tilts the alloy toward less SRO.

Top