Space Technology for Patient Monitoring
NASA Technical Reports Server (NTRS)
1989-01-01
A contract for the development of an astronaut monitoring system in the early days of the space program provided Mennen Medical, Inc. with a foundation in telemetry that led to the development of a computerized medical electronic system used by hospitals. Mennen was the first company to adopt solid state design in patient monitoring and to offer multipatient telemetry monitoring. Telemetry converts instrument data to electrical signals and relays them to a remote receiver where they are displayed. From a central station, a nurse can monitor several patients. Company products include VISTA systems and Horizon 2000 Monitor.
Astaras, Alexander; Arvanitidou, Marina; Chouvarda, Ioanna; Kilintzis, Vassilis; Koutkias, Vassilis; Sanchez, Eduardo Monton; Stalidis, George; Triantafyllidis, Andreas; Maglaveras, Nicos
2008-01-01
A flexible, scaleable and cost-effective medical telemetry system is described for monitoring sleep-related disorders in the home environment. The system was designed and built for real-time data acquisition and processing, allowing for additional use in intensive care unit scenarios where rapid medical response is required in case of emergency. It comprises a wearable body area network of Zigbee-compatible wireless sensors worn by the subject, a central database repository residing in the medical centre and thin client workstations located at the subject's home and in the clinician's office. The system supports heterogeneous setup configurations, involving a variety of data acquisition sensors to suit several medical applications. All telemetry data is securely transferred and stored in the central database under the clinicians' ownership and control.
Satellite relay telemetry of seismic data in earthquake prediction and control
Jackson, Wayne H.; Eaton, Jerry P.
1971-01-01
The Satellite Telemetry Earthquake Monitoring Program was started in FY 1968 to evaluate the applicability of satellite relay telemetry in the collection of seismic data from a large number of dense seismograph clusters laid out along the major fault systems of western North America. Prototype clusters utilizing phone-line telemetry were then being installed by the National Center for Earthquake Research (NCER) in 3 regions along the San Andreas fault in central California; and the experience of installing and operating the clusters and in reducing and analyzing the seismic data from them was to provide the raw materials for evaluation in the satellite relay telemetry project.
Spacecraft operations automation: Automatic alarm notification and web telemetry display
NASA Astrophysics Data System (ADS)
Short, Owen G.; Leonard, Robert E.; Bucher, Allen W.; Allen, Bryan
1999-11-01
In these times of Faster, Better, Cheaper (FBC) spacecraft, Spacecraft Operations Automation is an area that is targeted by many Operations Teams. To meet the challenges of the FBC environment, the Mars Global Surveyor (MGS) Operations Team designed and quickly implemented two new low-cost technologies: one which monitors spacecraft telemetry, checks the status of the telemetry, and contacts technical experts by pager when any telemetry datapoints exceed alarm limits, and a second which allows quick and convenient remote access to data displays. The first new technology is Automatic Alarm Notification (AAN). AAN monitors spacecraft telemetry and will notify engineers automatically if any telemetry is received which creates an alarm condition. The second new technology is Web Telemetry Display (WTD). WTD captures telemetry displays generated by the flight telemetry system and makes them available to the project web server. This allows engineers to check the health and status of the spacecraft from any computer capable of connecting to the global internet, without needing normally-required specialized hardware and software. Both of these technologies have greatly reduced operations costs by alleviating the need to have operations engineers monitor spacecraft performance on a 24 hour per day, 7 day per week basis from a central Mission Support Area. This paper gives details on the design and implementation of AAN and WTD, discusses their limitations, and lists the ongoing benefits which have accrued to MGS Flight Operations since their implementation in late 1996.
NASA Technical Reports Server (NTRS)
1978-01-01
In photo above, the electrocardiogram of a hospitalized patient is being transmitted by telemetry. Widely employed in space operations, telemetry is a process wherein instrument data is converted to electrical signals and sent to a receiver where the signals are reconverted to usable information. In this instance, heart readings are picked up by the electrode attached to the patient's body and delivered by wire to the small box shown, which is a telemetry transmitter. The signals are relayed wirelessly to the console in the background, which converts them to EKG data. The data is displayed visually and recorded on a printout; at the same time, it is transmitted to a central control station (upper photo) where a nurse can monitor the condition of several patients simultaneously. The Patient Monitoring System was developed by SCI Systems, Inc., Huntsville, Alabama, in conjunction with Abbott Medical Electronics, Houston, Texas. In developing the system, SCI drew upon its extensive experience as a NASA contractor. The company applied telemetry technology developed for the Saturn launch vehicle and the Apollo spacecraft; instrumentation technology developed for heart, blood pressure and sleep monitoring of astronauts aboard NASA's Skylab long duration space station; and communications technology developed for the Space Shuttle.
Telemetry methods for monitoring physiological parameters
NASA Technical Reports Server (NTRS)
Fryer, T. B.; Sandler, H.
1982-01-01
The use of telemetry to monitor various physiological functions is discussed. The advantages of the technique and the parameters that it can monitor are assessed, and the main telemetry systems, including pressure telemetry, flow telemetry, and multichannel telemetry, are detailed. Human applications of implanted flow transducers, total implant versus backpack telemetry, the use of power sources and integrated circuits in telemetry, and the future prospects of the technique in hypertension treatment and research are discussed.
NASA Technical Reports Server (NTRS)
1978-01-01
Telemetry is the process whereby physiological or other data is acquired by instruments, translated into radio signals and j sent to a receiving station where the signals are decoded and recorded. Extensively used in I space operations, it is finding new Earth applications, among them transmission of medical data between emergency vehicles and hospitals. For example, transmission of an electrocardiogram from an ambulance to a hospital enables a physician to read the telemetered EKG and advise ambulance attendants on emergency procedures. Central Medical Emergency Dispatch (CMED) operates as a regional emergency medical communications center for Cleveland, Ohio and Cuyahoga County. The CMED system includes radio and telephone communications from hospital-to-hospital and from ambulance-to-hospital, but for improved emergency life support CMED sought to add a county-wide telemetry capability. The problem was that there were only eight radio frequencies available for telemetry and there were more than 30 potential users in Cleveland alone. NASA's Lewis Research Center volunteered its expert assistance. The Center's engineers studied the systems of other telemetry using cities, surveyed area hospitals to assure compatibility of telemetry equipment, and advised what types of equipment would be needed in emergency vehicles and at the various hospitals. The Lewis plan suggested that CMED be designated the central coordinating agency for the Cuyahoga County system, monitoring all telemetry frequencies and, when requested, assigning one not in use or one to be used at a sufficient distance that it would create no interference problem.
Satellite Relay Telemetry of Seismic Data in Earthquake Prediction and Control
NASA Technical Reports Server (NTRS)
Jackson, W. H.; Eaton, J. P.
1971-01-01
The Satellite Telemetry Earthquake Monitoring Program was started to evaluate the applicability of satellite relay telemetry in the collection of seismic data from a large number of dense seismograph clusters laid out along the major fault systems of western North America. Prototype clusters utilizing phone-line telemetry were then being installed by the National Center for Earthquake Research in 3 regions along the San Andreas fault in central California; and the experience of installing and operating the clusters and in reducing and analyzing the seismic data from them was to provide the raw materials for evaluation in the satellite relay telemetry project. The principal advantages of the satellite relay system over commercial telephone or microwave systems were: (1) it could be made less prone to massive failure during a major earthquake; (2) it could be extended readily into undeveloped regions; and (3) it could provide flexible, uniform communications over large sections of major global tectonic zones. Fundamental characteristics of a communications system to cope with the large volume of raw data collected by a short-period seismograph network are discussed.
Restoration and Reexamination of Apollo Lunar Dust Detector Data from Original Telemetry Files
NASA Technical Reports Server (NTRS)
McBride, M. J.; Williams, David R.; Hills, H. Kent
2012-01-01
We are recovering the original telemetry (Figure I) from the Apollo Dust, Thermal, Radiation Environment Monitor (DTREM) experiment, more commonly known as the Dust Detector, and producing full time resolution (54 second) data sets for release through the Planetary Data System (PDS). The primary objective of the experiment was to evaluate the effect of dust deposition, temperature, and radiation damage on solar cells on the lunar surface. The monitor was a small box consisting of three solar cells and thermistors mounted on the ALSEP (Apollo Lunar Surface Experiments Package) central station. The Dust Detector was carried on Apollo's 11, 12, 14 and 15. The Apollo 11 DTREM was powered by solar cells and only operated for a few months as planned. The Apollo 12, 14, and 15 detectors operated for 5 to 7 years, returning data every 54 seconds, consisting of voltage outputs from the three solar cells and temperatures measured by the three thermistors. The telemetry was received at ground stations and held on the Apollo Housekeeping (known as "Word 33") tapes. made available to the National Space Science Data Center (NSSDC) by Yosio Nakamura (University of Texas Institute for Geophysics). We have converted selected parts of the telemetry into uncalibrated and calibrated output voltages and temperatures.
Leveraging constraints and biotelemetry data to pinpoint repetitively used spatial features
Brost, Brian M.; Hooten, Mevin B.; Small, Robert J.
2016-01-01
Satellite telemetry devices collect valuable information concerning the sites visited by animals, including the location of central places like dens, nests, rookeries, or haul‐outs. Existing methods for estimating the location of central places from telemetry data require user‐specified thresholds and ignore common nuances like measurement error. We present a fully model‐based approach for locating central places from telemetry data that accounts for multiple sources of uncertainty and uses all of the available locational data. Our general framework consists of an observation model to account for large telemetry measurement error and animal movement, and a highly flexible mixture model specified using a Dirichlet process to identify the location of central places. We also quantify temporal patterns in central place use by incorporating ancillary behavioral data into the model; however, our framework is also suitable when no such behavioral data exist. We apply the model to a simulated data set as proof of concept. We then illustrate our framework by analyzing an Argos satellite telemetry data set on harbor seals (Phoca vitulina) in the Gulf of Alaska, a species that exhibits fidelity to terrestrial haul‐out sites.
Eliminating Inappropriate Telemetry Monitoring: An Evidence-Based Implementation Guide.
Yeow, Raymond Y; Strohbehn, Garth W; Kagan, Calvin M; Petrilli, Christopher M; Krishnan, Jamuna K; Edholm, Karli; Sussman, L Scott; Blanck, Jaime F; Popa, Remus I; Pahwa, Amit K
2018-06-04
In-hospital continuous electrocardiographic monitoring, commonly referred to as telemetry, has allowed for rapid recognition of life-threatening conditions, including complex arrhythmias and myocardial ischemia. However, inappropriate use can lead to unnecessary downstream testing from "false alarms," which in turn affects clinician efficiency and increases health care costs without benefiting patients. For these reasons, the Society of Hospital Medicine's Choosing Wisely campaign recommended use of a protocol-driven discontinuation of telemetry. The American Heart Association (AHA) developed a set of Practice Standards for the appropriate use of telemetry monitoring in 2004, which they updated in 2017. Unfortunately, the AHA Practice Standards have not been widely adopted-with as many as 43% of monitored patients lacking a recommended indication for monitoring. Thus, we created an overview discussing the safety and efficacy of incorporating the AHA Practice Standards and a review of studies highlighting their successful incorporation within patient care workflow. We conclude by outlining an "implementation blueprint" for health system professionals and administrators seeking to change their institution's culture of telemetry use. As the health care landscape continues to shift, enacting high-value initiatives that improve patient safety and efficiency of care will be critical.
A graphic system for telemetry monitoring and procedure performing at the Telecom SCC
NASA Technical Reports Server (NTRS)
Loubeyre, Jean Philippe
1994-01-01
The increasing amount of telemetry parameters and the increasing complexity of procedures used for the in-orbit satellite follow-up has led to the development of new tools for telemetry monitoring and procedures performing. The name of the system presented here is Graphic Server. It provides an advanced graphic representation of the satellite subsystems, including real-time telemetry and alarm displaying, and a powerful help for decision making with on line contingency procedures. Used for 2.5 years at the TELECOM S.C.C. for procedure performing, it has become an essential part of the S.C.C.
Dias, C A R; Queirogas, V L; Pedersoli, M A
2015-01-01
Two groups of pygmy marmoset (Cebuella pygmaea) were rescued along the left bank of the Madeira River during the formation of Santo Antônio Hydroelectric Dam reservoir in the state of Rondônia, Northern Brazil. Reintroduction of both groups occurred in areas of open Tropical rainforest located within the project´s Permanent Preservation Area. A post-release monitoring was conducted for three months using radio-telemetry. Individuals of each group remained together and settled in stable home ranges near their respective release sites. The mortality rate of translocated animals was about 7%. This seems to be the first report documenting the complete group translocation of C. pygmaea and the first to successfully employ radio-telemetry techniques in monitoring this species. This study demonstrated the feasibility of translocation and the use of radio-telemetry in monitoring C. pygmaea.
Lessons Learned During Implementation and Early Operations of the DS1 Beacon Monitor Experiment
NASA Technical Reports Server (NTRS)
Sherwood, Rob; Wyatt, Jay; Hotz, Henry; Schlutsmeyer, Alan; Sue, Miles
1998-01-01
A new approach to mission operations will be flight validated on NASA's New Millennium Program Deep Space One (DS1) mission which launched in October 1998. The Beacon Monitor Operations Technology is aimed at decreasing the total volume of downlinked engineering telemetry by reducing the frequency of downlink and the volume of data received per pass. Cost savings are achieved by reducing the amount of routine telemetry processing and analysis performed by ground staff. The technology is required for upcoming NASA missions to Pluto, Europa, and possibly some other missions. With beacon monitoring, the spacecraft will assess its own health and will transmit one of four beacon messages each representing a unique frequency tone to inform the ground how urgent it is to track the spacecraft for telemetry. If all conditions are nominal, the tone provides periodic assurance to ground personnel that the mission is proceeding as planned without having to receive and analyze downlinked telemetry. If there is a problem, the tone will indicate that tracking is required and the resulting telemetry will contain a concise summary of what has occurred since the last telemetry pass. The primary components of the technology are a tone monitoring technology, AI-based software for onboard engineering data summarization, and a ground response system. In addition, there is a ground visualization system for telemetry summaries. This paper includes a description of the Beacon monitor concept, the trade-offs with adapting that concept as a technology experiment, the current state of the resulting implementation on DS1, and our lessons learned during the initial checkout phase of the mission. Applicability to future missions is also included.
Krasowski, Michael J; Prokop, Norman F; Flatico, Joseph M; Greer, Lawrence C; Jenkins, Phillip P; Neudeck, Philip G; Chen, Liangyu; Spina, Danny C
2013-01-01
The Communications Interface Board (CIB) is an improved communications architecture that was demonstrated on the International Space Station (ISS). ISS communication interfaces allowing for real-time telemetry and health monitoring require a significant amount of development. The CIB simplifies the communications interface to the ISS for real-time health monitoring, telemetry, and control of resident sensors or experiments. With a simpler interface available to the telemetry bus, more sensors or experiments may be flown. The CIB accomplishes this by acting as a bridge between the ISS MIL-STD-1553 low-rate telemetry (LRT) bus and the sensors allowing for two-way command and telemetry data transfer. The CIB was designed to be highly reliable and radiation hard for an extended flight in low Earth orbit (LEO) and has been proven with over 40 months of flight operation on the outside of ISS supporting two sets of flight experiments. Since the CIB is currently operating in flight on the ISS, recent results of operations will be provided. Additionally, as a vehicle health monitoring enabling technology, an overview and results from two experiments enabled by the CIB will be provided. Future applications for vehicle health monitoring utilizing the CIB architecture will also be discussed.
Krasowski, Michael J.; Prokop, Norman F.; Flatico, Joseph M.; Greer, Lawrence C.; Jenkins, Phillip P.; Neudeck, Philip G.; Chen, Liangyu; Spina, Danny C.
2013-01-01
The Communications Interface Board (CIB) is an improved communications architecture that was demonstrated on the International Space Station (ISS). ISS communication interfaces allowing for real-time telemetry and health monitoring require a significant amount of development. The CIB simplifies the communications interface to the ISS for real-time health monitoring, telemetry, and control of resident sensors or experiments. With a simpler interface available to the telemetry bus, more sensors or experiments may be flown. The CIB accomplishes this by acting as a bridge between the ISS MIL-STD-1553 low-rate telemetry (LRT) bus and the sensors allowing for two-way command and telemetry data transfer. The CIB was designed to be highly reliable and radiation hard for an extended flight in low Earth orbit (LEO) and has been proven with over 40 months of flight operation on the outside of ISS supporting two sets of flight experiments. Since the CIB is currently operating in flight on the ISS, recent results of operations will be provided. Additionally, as a vehicle health monitoring enabling technology, an overview and results from two experiments enabled by the CIB will be provided. Future applications for vehicle health monitoring utilizing the CIB architecture will also be discussed. PMID:23983621
Evaluation of the appropriateness and outcome of in-hospital telemetry monitoring.
Fålun, Nina; Nordrehaug, Jan Erik; Hoff, Per Ivar; Langørgen, Jørund; Moons, Philip; Norekvål, Tone M
2013-10-15
The American Heart Association classifies monitored patients into 3 categories. The aims of this study were to (1) investigate how patients are assigned according to the American Heart Association classification, (2) determine the number and type of arrhythmic events experienced by these patients, and (3) describe subsequent changes in management. A prospective observational study design was used. All patients assigned to telemetry during a 3-month period were consecutively enrolled in our study. Data were collected 24/7. Only arrhythmias that might require a change in management were recorded. Monitor watchers at the central monitoring station completed a standard data sheet assessing 64 variables. These data, as well as medical records, were reviewed by the investigator. Overall, 1,194 patients were included. Eighteen percent of the patients were assigned to American Heart Association class I (monitoring indicated), 71% to class II (monitoring may be of benefit), and 11% to class III (monitoring not indicated). The overall arrhythmia event rate was 33%. Forty-three percent of class I patients, 28% of class II patients, and 47% of class III patients experienced arrhythmia events. Change in management occurred in 25% of class I patients, 14% of class II patients, and 29% of class III patients. Although the number of class III indications should have been reduced, nearly 1/2 of class III patients experienced arrhythmia events and 1/3 of them received management changes. This outcome challenges existing guidelines. In conclusion, most patients in this study were monitored appropriately, according to class I and II indications. Copyright © 2013 Elsevier Inc. All rights reserved.
Hollander, Judd E; Sites, Frank D; Pollack, Charles V; Shofer, Frances S
2004-01-01
Low-risk patients with chest pain are often admitted to monitored beds; however, the use of telemetry beds in this cohort is not evidence based. We tested the hypothesis that monitoring admitted low-risk patients with chest pain for dysrhythmia is low yield (<1% detection of life-threatening dysrhythmias requiring treatment). We conducted a prospective cohort study of emergency department (ED) patients with chest pain with a Goldman risk score of less than 8%, a normal initial creatine kinase-MB level, and a negative initial troponin I level admitted to non-ICU monitored beds. Investigators followed the hospital course daily. The main outcome was cardiovascular death and life-threatening ventricular dysrhythmia during telemetry. Of 3,681 patients with chest pain who presented to the ED, 1,750 patients were admitted to non-ICU monitored beds. Of these, 1,029 patients had a Goldman risk score of less than 8%, a troponin I level of less than 0.3 ng/mL, and a creatine kinase-MB level of less than 5 ng/mL (accounting for 59% of all chest pain telemetry admissions). During hospitalization, there were no patients with sustained ventricular tachycardia/ventricular fibrillation requiring treatment on the telemetry service (0%; 95% confidence interval [CI] 0% to 0.3%). There were 2 deaths: neither was cardiovascular in nature or preventable by monitoring (cardiovascular preventable death rate=0%; 95% CI 0.0% to 0.3%). The routine use of telemetry monitoring for low-risk patients with chest pain is of limited utility. Admission to nonmonitored beds might help alleviate ED crowding without increasing risk of adverse events caused by dysrhythmia in patients with a Goldman risk of less than 8%, an initial troponin I level of less than 0.3 ng/mL, and a creatine kinase-MB level of less than 5 ng/mL.
Monitoring Heart Disease and Diabetes with Mobile Internet Communications
Mulvaney, David; Woodward, Bryan; Datta, Sekharjit; Harvey, Paul; Vyas, Anoop; Thakker, Bhaskar; Farooq, Omar; Istepanian, Robert
2012-01-01
A telemedicine system is described for monitoring vital signs and general health indicators of patients with cardiac and diabetic conditions. Telemetry from wireless sensors and readings from other instruments are combined into a comprehensive set of measured patient parameters. Using a combination of mobile device applications and web browser, the data can be stored, accessed, and displayed using mobile internet communications to the central server. As an extra layer of security in the data transmission, information embedded in the data is used in its verification. The paper highlights features that could be enhanced from previous systems by using alternative components or methods. PMID:23213330
Analysis of the Appropriateness of the Use of Peltier Cells as Energy Sources.
Hájovský, Radovan; Pieš, Martin; Richtár, Lukáš
2016-05-25
The article describes the possibilities of using Peltier cells as an energy source to power the telemetry units, which are used in large-scale monitoring systems as central units, ensuring the collection of data from sensors, processing, and sending to the database server. The article describes the various experiments that were carried out, their progress and results. Based on experiments evaluated, the paper also discusses the possibilities of using various types depending on the temperature difference of the cold and hot sides.
NASA Astrophysics Data System (ADS)
Roberts, P. M.; House, L. S.; Greene, M.; Ten Cate, J. A.; Schultz-Fellenz, E. S.; Kelley, R.
2012-12-01
From the first data recorded in the fall of 1973 to now, the Los Alamos Seismograph Network (LASN) has operated for nearly 40 years. LASN data have been used to locate more than 2,500 earthquakes in north-central New Mexico. The network was installed for seismic verification research, as well as to monitor and locate earthquakes near Los Alamos National Laboratory (LANL). LASN stations are the only earthquake monitoring stations in New Mexico north of Albuquerque. In the late 1970s, LASN included 22 stations spread over a geographic area of 150 km (N-S) by 350 km (E-W), of northern New Mexico. In the early 1980s, the available funding limited the stations that could be operated to a set of 7, located within an area of about 15 km (N-S) by 15 km (E-W), centered on Los Alamos. Over the last 3 years, 6 additional stations have been installed, which have considerably expanded the spatial coverage of the network. These new stations take advantage of broadband state-of-the-art sensors as well as digital recording and telemetry technology. Currently, 7 stations have broadband, three-component seismometers with digital telemetry, and the remaining 6 have traditional 1 Hz short-period seismometers with analog telemetry. In addition, a vertical array of accelerometers was installed in a wellbore on LANL property. This borehole station has 3-component digital strong-motion sensors. In addition, four forensic strong-motion accelerometers (SMA) are operated at LANL facilities. With 3 of the new broadband stations in and around the nearby Valles Caldera, LASN is now able to monitor any very small volcano-seismic events that may be associated with the caldera. We will present a complete description of the current LASN station, instrumentation and telemetry configurations, as well as the data acquisition and event-detection software structure used to record events in Earthworm. More than 2,000 earthquakes were detected and located in north-central New Mexico during the first 11 years of LASN's operation (1973 to 1984). With the subsequent downsizing of the network, only 1-2 earthquakes per month were detected and located within about 150 km of Los Alamos. Over 850 of these nearby earthquakes have been located from 1973 to present. We recently updated the LASN earthquake catalog for north-central New Mexico up through 2011 and most of 2012. This involved re-assessing phase picks and ensuring that all locations are derived using updated station locations and the best available velocity model. We are also looking at subsets of the catalog that include earthquake swarms and clusters and applying relative location techniques to obtain high-precision re-locations for these events. Most events that were detected and located by LASN have magnitudes less than 1.5 and do not appear in the catalogs of any other network. We will present a newly updated map of north-central New Mexico seismicity based on these recent efforts.
Monitoring Agents for Assisting NASA Engineers with Shuttle Ground Processing
NASA Technical Reports Server (NTRS)
Semmel, Glenn S.; Davis, Steven R.; Leucht, Kurt W.; Rowe, Danil A.; Smith, Kevin E.; Boeloeni, Ladislau
2005-01-01
The Spaceport Processing Systems Branch at NASA Kennedy Space Center has designed, developed, and deployed a rule-based agent to monitor the Space Shuttle's ground processing telemetry stream. The NASA Engineering Shuttle Telemetry Agent increases situational awareness for system and hardware engineers during ground processing of the Shuttle's subsystems. The agent provides autonomous monitoring of the telemetry stream and automatically alerts system engineers when user defined conditions are satisfied. Efficiency and safety are improved through increased automation. Sandia National Labs' Java Expert System Shell is employed as the agent's rule engine. The shell's predicate logic lends itself well to capturing the heuristics and specifying the engineering rules within this domain. The declarative paradigm of the rule-based agent yields a highly modular and scalable design spanning multiple subsystems of the Shuttle. Several hundred monitoring rules have been written thus far with corresponding notifications sent to Shuttle engineers. This chapter discusses the rule-based telemetry agent used for Space Shuttle ground processing. We present the problem domain along with design and development considerations such as information modeling, knowledge capture, and the deployment of the product. We also present ongoing work with other condition monitoring agents.
Radio telemetry devices to monitor breathing in non-sedated animals.
Samson, Nathalie; Dumont, Sylvain; Specq, Marie-Laure; Praud, Jean-Paul
2011-12-15
Radio telemetry equipment has significantly improved over the last 10-15 years and is increasingly being used in research for monitoring a variety of physiological parameters in non-sedated animals. The aim of this review is to provide an update on the current state of development of radio telemetry for recording respiration. Our literature review found only rare reports of respiratory studies via radio telemetry. Much of this article will hence report our experience with our custom-built radio telemetry devices designed for recording respiratory signals, together with numerous other physiological signals in lambs. Our current radio telemetry system allows to record 24 simultaneous signals 24h/day for several days. To our knowledge, this is the highest number of physiological signals, which can be recorded wirelessly. Our devices have been invaluable for studying respiration in our ovine models of preterm birth, reflux laryngitis, postnatal exposure to cigarette smoke, respiratory syncytial virus infection and nasal ventilation, all of which are relevant to neonatal respiratory problems. Copyright © 2011 Elsevier B.V. All rights reserved.
Acoustic Telemetry Validates a Citizen Science Approach for Monitoring Sharks on Coral Reefs
Vianna, Gabriel M. S.; Meekan, Mark G.; Bornovski, Tova H.; Meeuwig, Jessica J.
2014-01-01
Citizen science is promoted as a simple and cost-effective alternative to traditional approaches for the monitoring of populations of marine megafauna. However, the reliability of datasets collected by these initiatives often remains poorly quantified. We compared datasets of shark counts collected by professional dive guides with acoustic telemetry data from tagged sharks collected at the same coral reef sites over a period of five years. There was a strong correlation between the number of grey reef sharks (Carcharhinus amblyrhynchos) observed by dive guides and the telemetry data at both daily and monthly intervals, suggesting that variation in relative abundance of sharks was detectable in datasets collected by dive guides in a similar manner to data derived from telemetry at these time scales. There was no correlation between the number or mean depth of sharks recorded by telemetry and the presence of tourist divers, suggesting that the behaviour of sharks was not affected by the presence of divers during our study. Data recorded by dive guides showed that current strength and temperature were important drivers of the relative abundance of sharks at monitored sites. Our study validates the use of datasets of shark abundance collected by professional dive guides in frequently-visited dive sites in Palau, and supports the participation of experienced recreational divers as contributors to long-term monitoring programs of shark populations. PMID:24760081
Acoustic telemetry validates a citizen science approach for monitoring sharks on coral reefs.
Vianna, Gabriel M S; Meekan, Mark G; Bornovski, Tova H; Meeuwig, Jessica J
2014-01-01
Citizen science is promoted as a simple and cost-effective alternative to traditional approaches for the monitoring of populations of marine megafauna. However, the reliability of datasets collected by these initiatives often remains poorly quantified. We compared datasets of shark counts collected by professional dive guides with acoustic telemetry data from tagged sharks collected at the same coral reef sites over a period of five years. There was a strong correlation between the number of grey reef sharks (Carcharhinus amblyrhynchos) observed by dive guides and the telemetry data at both daily and monthly intervals, suggesting that variation in relative abundance of sharks was detectable in datasets collected by dive guides in a similar manner to data derived from telemetry at these time scales. There was no correlation between the number or mean depth of sharks recorded by telemetry and the presence of tourist divers, suggesting that the behaviour of sharks was not affected by the presence of divers during our study. Data recorded by dive guides showed that current strength and temperature were important drivers of the relative abundance of sharks at monitored sites. Our study validates the use of datasets of shark abundance collected by professional dive guides in frequently-visited dive sites in Palau, and supports the participation of experienced recreational divers as contributors to long-term monitoring programs of shark populations.
Normann, R.A.; Kadlec, E.R.
1994-11-08
A downhole telemetry system is described for optically communicating to the surface operating parameters of a drill bit during ongoing drilling operations. The downhole telemetry system includes sensors mounted with a drill bit for monitoring at least one operating parameter of the drill bit and generating a signal representative thereof. The downhole telemetry system includes means for transforming and optically communicating the signal to the surface as well as means at the surface for producing a visual display of the optically communicated operating parameters of the drill bit. 7 figs.
Normann, Randy A.; Kadlec, Emil R.
1994-01-01
A downhole telemetry system is described for optically communicating to the surface operating parameters of a drill bit during ongoing drilling operations. The downhole telemetry system includes sensors mounted with a drill bit for monitoring at least one operating parameter of the drill bit and generating a signal representative thereof. The downhole telemetry system includes means for transforming and optically communicating the signal to the surface as well as means at the surface for producing a visual display of the optically communicated operating parameters of the drill bit.
Heart Rate and Electrocardiography Monitoring in Mice
Ho, David; Zhao, Xin; Gao, Shumin; Hong, Chull; Vatner, Dorothy E.; Vatner, Stephen F.
2011-01-01
The majority of current cardiovascular research involves studies in genetically engineered mouse models. The measurement of heart rate is central to understanding cardiovascular control under normal conditions, with altered autonomic tone, superimposed stress or disease states, both in wild type mice as well as those with altered genes. Electrocardiography (ECG) is the “gold standard” using either hard wire or telemetry transmission. In addition, heart rate is measured or monitored from the frequency of the arterial pressure pulse or cardiac contraction, or by pulse oximetry. For each of these techniques, discussions of materials and methods, as well as advantages and limitations are covered. However, only the direct ECG monitoring will determine not only the precise heart rates but also whether the cardiac rhythm is normal or not. PMID:21743842
RFID Technology for Continuous Monitoring of Physiological Signals in Small Animals.
Volk, Tobias; Gorbey, Stefan; Bhattacharyya, Mayukh; Gruenwald, Waldemar; Lemmer, Björn; Reindl, Leonhard M; Stieglitz, Thomas; Jansen, Dirk
2015-02-01
Telemetry systems enable researchers to continuously monitor physiological signals in unrestrained, freely moving small rodents. Drawbacks of common systems are limited operation time, the need to house the animals separately, and the necessity of a stable communication link. Furthermore, the costs of the typically proprietary telemetry systems reduce the acceptance. The aim of this paper is to introduce a low-cost telemetry system based on common radio frequency identification technology optimized for battery-independent operational time, good reusability, and flexibility. The presented implant is equipped with sensors to measure electrocardiogram, arterial blood pressure, and body temperature. The biological signals are transmitted as digital data streams. The device is able of monitoring several freely moving animals housed in groups with a single reader station. The modular concept of the system significantly reduces the costs to monitor multiple physiological functions and refining procedures in preclinical research.
NASA Technical Reports Server (NTRS)
Schneider, Michelle
2003-01-01
This viewgraph representation provides an overview of the Telescience Resource Kit. The Telescience Resource Kit is a pc-based telemetry and command system that will be used by scientists and engineers to monitor and control experiments located on-board the International Space Station (ISS). Topics covered include: ISS Payload Telemetry and Command Flow, kit computer applications, kit telemetry capabilities, command capabilities, and training/testing capabilities.
Bluetooth telemetry system for a wearable electrocardiogram
NASA Astrophysics Data System (ADS)
Green, Ryan B.
The rise of wireless networks has led to a new market in medicine: remote patient monitoring. Practitioners now desire to monitor the health conditions of their patients after hospital release. With the large number of cardiac related deaths and this new demand in medicine being the motivation, this study developed a BluetoothRTM telemetry system for a wearable Electrocardiogram. This study also developed a compression t-shirt to hold the ECG and telemetry system. This device communicates the ECG signal of a patient to an Android device within the ISM frequency bands (2.4-2.48 GHz) where the data is displayed and stored in real time. This study is a stepping stone toward more portable heart monitoring that can communicate with the doctor in real time from remote locations.
Application of harmonic detection technology in methane telemetry
NASA Astrophysics Data System (ADS)
Huo, Yuehua; Fan, Weiqiang
2017-08-01
Methane telemetry plays a vital role in ensuring the safe production of coal mines and monitoring the leakage of natural gas pipelines. Harmonic detection is the key technology of methane telemetry accuracy and sensitivity, but the current telemetry distance is short, the relationship between different modulation parameters is complex, and the harmonic signal is affected by noise interference. These factors seriously affect the development of harmonic detection technology. In this paper, the principle of methane telemetry based on harmonic detection technology is introduced. The present situation and characteristics of harmonic detection technology are expounded. The problems existing in harmonic detection are analyzed. Finally, the future development trend is discussed.
Analysis of the Appropriateness of the Use of Peltier Cells as Energy Sources
Hájovský, Radovan; Pieš, Martin; Richtár, Lukáš
2016-01-01
The article describes the possibilities of using Peltier cells as an energy source to power the telemetry units, which are used in large-scale monitoring systems as central units, ensuring the collection of data from sensors, processing, and sending to the database server. The article describes the various experiments that were carried out, their progress and results. Based on experiments evaluated, the paper also discusses the possibilities of using various types depending on the temperature difference of the cold and hot sides. PMID:27231913
A coded tracking telemetry system
Howey, P.W.; Seegar, W.S.; Fuller, M.R.; Titus, K.; Amlaner, Charles J.
1989-01-01
We describe the general characteristics of an automated radio telemetry system designed to operate for prolonged periods on a single frequency. Each transmitter sends a unique coded signal to a receiving system that encodes and records only the appropriater, pre-programmed codes. A record of the time of each reception is stored on diskettes in a micro-computer. This system enables continuous monitoring of infrequent signals (e.g. one per minute or one per hour), thus extending operation life or allowing size reduction of the transmitter, compared to conventional wildlife telemetry. Furthermore, when using unique codes transmitted on a single frequency, biologists can monitor many individuals without exceeding the radio frequency allocations for wildlife.
Tail-Cuff Technique and Its Influence on Central Blood Pressure in the Mouse.
Wilde, Elena; Aubdool, Aisah A; Thakore, Pratish; Baldissera, Lineu; Alawi, Khadija M; Keeble, Julie; Nandi, Manasi; Brain, Susan D
2017-06-27
Reliable measurement of blood pressure in conscious mice is essential in cardiovascular research. Telemetry, the "gold-standard" technique, is invasive and expensive and therefore tail-cuff, a noninvasive alternative, is widely used. However, tail-cuff requires handling and restraint during measurement, which may cause stress affecting blood pressure and undermining reliability of the results. C57Bl/6J mice were implanted with radio-telemetry probes to investigate the effects of the steps of the tail-cuff technique on central blood pressure, heart rate, and temperature. This included comparison of handling techniques, operator's sex, habituation, and influence of hypertension induced by angiotensin II. Direct comparison of measurements obtained by telemetry and tail-cuff were made in the same mouse. The results revealed significant increases in central blood pressure, heart rate, and core body temperature from baseline following handling interventions without significant difference among the different handling technique, habituation, or sex of the investigator. Restraint induced the largest and sustained increase in cardiovascular parameters and temperature. The tail-cuff readings significantly underestimated those from simultaneous telemetry recordings; however, "nonsimultaneous" telemetry, obtained in undisturbed mice, were similar to tail-cuff readings obtained in undisturbed mice on the same day. This study reveals that the tail-cuff technique underestimates the core blood pressure changes that occur simultaneously during the restraint and measurement phases. However, the measurements between the 2 techniques are similar when tail-cuff readings are compared with telemetry readings in the nondisturbed mice. The differences between the simultaneous recordings by the 2 techniques should be recognized by researchers. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Mens, Lucas H. M.
2007-01-01
During the last decade, cochlear implantation has evolved into a well-established treatment of deafness, predominantly because of many improvements in speech processing and the controlled excitation of the auditory nerve. Cochlear implants now also feature telemetry, which is highly useful to monitor the proper functioning of the implanted electronics and electrode contacts. Telemetry can also support the clinical management in young children and difficult cases where neural unresponsiveness is suspected. This article will review recent advances in the telemetry of the electrically evoked compound action potential that have made these measurements simple and routine procedures in most cases. The distribution of the electrical stimulus itself sampled by “electrical field imaging” reveals general patterns of current flow in the normal cochlea and gross abnormalities in individual patients; models have been developed to derive more subtle insights from an individual electrical field imaging. Finally, some thoughts are given to the extended application of telemetry, for example, in monitoring the neural responses or in combination with other treatments of the deaf ear. PMID:17709572
Pettersen, Trond R; Fålun, Nina; Norekvål, Tone M
2014-12-01
In-hospital telemetry monitoring is important for diagnosis and treatment of patients at risk of developing life-threatening arrhythmias. It is widely used in critical and non-critical care wards. Nurses are responsible for correct electrode placement, thus ensuring optimal quality of the monitoring. The aims of this study were to determine whether a complex educational intervention improves (a) optimal electrode placement, (b) hygiene, and (c) delivery of critical information to patients (reason for monitoring, limitations in cellular phone use, and not to leave the ward without informing a member of staff). A prospective interventional study design was used, with data collection occurring over two six-week periods: before implementation of the intervention (n=201) and after the intervention (n=165). Standard abstraction forms were used to obtain data on patients' clinical characteristics, and 10 variables related to electrode placement and attachment, hygiene and delivery of critical information. At pre-intervention registration, 26% of the electrodes were misplaced. Twelve per cent of the patients received information about limiting their cellular phone use while monitored, 70% were informed of the purpose of monitoring, and 71% used a protective cover for their unit. Post-intervention, outcome measures for the three variables improved significantly: use of protective cover (p<0.001), information about the purpose of monitoring (p=0.005) and information about limitations in cellular phone use (p=0.003). Nonetheless, 23% of the electrodes were still misplaced. The study highlights the need for better, continued education for in-hospital telemetry monitoring in coronary care units, and other units that monitor patients with telemetry. © The European Society of Cardiology 2013.
NASA Astrophysics Data System (ADS)
Royer, P.; De Ridder, J.; Vandenbussche, B.; Regibo, S.; Huygen, R.; De Meester, W.; Evans, D. J.; Martinez, J.; Korte-Stapff, M.
2016-07-01
We present the first results of a study aimed at finding new and efficient ways to automatically process spacecraft telemetry for automatic health monitoring. The goal is to reduce the load on the flight control team while extending the "checkability" to the entire telemetry database, and provide efficient, robust and more accurate detection of anomalies in near real time. We present a set of effective methods to (a) detect outliers in the telemetry or in its statistical properties, (b) uncover and visualise special properties of the telemetry and (c) detect new behavior. Our results are structured around two main families of solutions. For parameters visiting a restricted set of signal values, i.e. all status parameters and about one third of all the others, we focus on a transition analysis, exploiting properties of Poincare plots. For parameters with an arbitrarily high number of possible signal values, we describe the statistical properties of the signal via its Kernel Density Estimate. We demonstrate that this allows for a generic and dynamic approach of the soft-limit definition. Thanks to a much more accurate description of the signal and of its time evolution, we are more sensitive and more responsive to outliers than the traditional checks against hard limits. Our methods were validated on two years of Venus Express telemetry. They are generic for assisting in health monitoring of any complex system with large amounts of diagnostic sensor data. Not only spacecraft systems but also present-day astronomical observatories can benefit from them.
TDRSS momentum unload planning
NASA Technical Reports Server (NTRS)
Cross, George R.; Potter, Mitchell A.; Whitehead, J. Douglass; Smith, James T.
1991-01-01
A knowledge-based system is described which monitors TDRSS telemetry for problems in the momentum unload procedure. The system displays TDRSS telemetry and commands in real time via X-windows. The system constructs a momentum unload plan which agrees with the preferences of the attitude control specialists and the momentum growth characteristics of the individual spacecraft. During the execution of the plan, the system monitors the progress of the procedure and watches for unexpected problems.
Wireless powering and data telemetry for biomedical implants.
Young, Darrin J
2009-01-01
Wireless powering and data telemetry techniques for two biomedical implant studies based on (1) wireless in vivo EMG sensor for intelligent prosthetic control and (2) adaptively RF powered implantable bio-sensing microsystem for real-time genetically engineered mice monitoring are presented. Inductive-coupling-based RF powering and passive data telemetry is effective for wireless in vivo EMG sensing, where the internal and external RF coils are positioned with a small separation distance and fixed orientation. Adaptively controlled RF powering and active data transmission are critical for mobile implant application such as real-time physiological monitoring of untethered laboratory animals. Animal implant studies have been successfully completed to demonstrate the wireless and batteryless in vivo sensing capabilities.
Communication strategies and timeliness of response to life critical telemetry alarms.
Bonzheim, Kimberly A; Gebara, Rani I; O'Hare, Bridget M; Ellis, R Darin; Brand, Monique A; Balar, Salil D; Stockman, Rita; Sciberras, Annette M; Haines, David E
2011-05-01
A centralized electrocardiogram telemetry monitoring system (TMS) facilitates early identification of critical arrhythmias and acute medical decompensation. Timely intervention can only be performed if abnormalities are communicated rapidly to the direct caregiver. The study objectives were to measure effectiveness of bi-directional voice communication badges versus one-way alphanumeric pagers for telemetry alarm response and communication loop closure. A sequential observational pilot study of nursing response to TMS alarms compared communication technologies on four nursing units in a 1,061 bed tertiary care hospital with 264 TMS channels of telemetry over a 2-year period. Subsequently, the communication technologies were compared in a randomized fashion on a 68-bed progressive cardiac care unit. Caregivers were blinded to the protocol. All alarm responses were recorded during two periods using either pagers or voice communication devices. Alarm response time and closure of the communication loop were analyzed in a blinded fashion. The direct communication functionality of the badge significantly shortened the time to first contact, time to completion, and rate of closure of the communication loop in both the pilot and study phases. Median time to first contact with the communication badge was 0.5 min, compared to 1.6 min with pager communication (p < 0.0003). Communication loop closure was achieved in 100% of clinical alarms using the badge versus 19% with the pager (p < 0.0001). Communication badge technology reduced alarm time to first contact and completion as well as facilitated communication loop closures. Immediate two-way communication significantly impacted practice, alarm management, and resulted in faster bedside care.
NASA Technical Reports Server (NTRS)
Rosatino, S. A.; Westbrook, R. M.
1979-01-01
Miniature, individual crystal-controlled RF transmitters located in EMG pressure sensors simplifies multichannel EMG telemetry for electronic gait monitoring. Transmitters which are assigned operating frequencies within 174 - 216 MHz band have linear frequency response from 20 - 2000 Hz and operate over range of 15 m.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-01-01
This conference presents papers in the fields of airborne telemetry, measurement technology, video instrumentation and monitoring, tracking and receiving systems, and real-time processing in telemetry. Topics presented include packet telemetry ground station simulation, a predictable performance wideband noise generator, an improved drone tracking control system transponder, the application of neural networks to drone control, and an integrated real-time turbine engine flight test system.
Evolution of the LBT Telemetry System
NASA Astrophysics Data System (ADS)
Summers, K.; Biddick, C.; De La Peña, M. D.; Summers, D.
2014-05-01
The Large Binocular Telescope (LBT) Telescope Control System (TCS) records about 10GB of telemetry data per night. Additionally, the vibration monitoring system records about 9GB of telemetry data per night. Through 2013, we have amassed over 6TB of Hierarchical Data Format (HDF5) files and almost 9TB in a MySQL database of TCS and vibration data. The LBT telemetry system, in its third major revision since 2004, provides the mechanism to capture and store this data. The telemetry system has evolved from a simple HDF file system with MySQL stream definitions within the TCS, to a separate system using a MySQL database system for the definitions and data, and finally to no database use at all, using HDF5 files.
An Overview of the Beacon Monitor Operations Technology
NASA Technical Reports Server (NTRS)
Sue, Miles K.; Wyatt, E. Jay; Foster, Mike; Schlutsmeyer, Alan; Sherwood, Rob
1997-01-01
This paper summarizes the end-to-end design of a technology for low cost mission operations. Cost savings is achieved by reducing the total volume of downlinked engineering telemetry by decreasing the frequency of telemetry acquisition and the volume of data received per pass.
NASA Technical Reports Server (NTRS)
Lee, Daren; Pomerantz, Marc
2015-01-01
Live monitoring and post-flight analysis of telemetry data play a vital role in the development, diagnosis, and deployment of components of a space flight mission. Requirements for such a system include low end-to-end latency between data producers and visualizers, preserved ordering of messages, data stream archiving with random access playback, and real-time creation of derived data streams. We evaluate the RabbitMQ and Kafka message brokering systems, on how well they can enable a real-time, scalable, and robust telemetry framework that delivers telemetry data to multiple clients across heterogeneous platforms and flight projects. In our experiments using an actively developed robotic arm testbed, Kafka yielded a much higher message throughput rate and a consistent publishing rate across the number of topics and consumers. Consumer message rates were consistent across the number of topics but can exhibit bursty behavior with an increase in the contention for a single topic partition with increasing number of consumers.
Lucisano, Joseph Y; Routh, Timothy L; Lin, Joe T; Gough, David A
2017-09-01
The use of a fully implanted first-generation prototype sensor/telemetry system is described for long-term monitoring of subcutaneous tissue glucose in a small cohort of people with diabetes. Sensors are based on a membrane containing immobilized glucose oxidase and catalase coupled to oxygen electrodes and a telemetry system, integrated as an implant. The devices remained implanted for up to 180 days, with signals transmitted every 2 min to external receivers. The data include signal recordings from glucose clamps and spontaneous glucose excursions, matched, respectively, to reference blood glucose and finger-stick values. The sensor signals indicate dynamic tissue glucose, for which there is no independent standard, and a model describing the relationship between blood glucose and the signal is, therefore, included. The values of all model parameters have been estimated, including the permeability of adjacent tissues to glucose, and equated to conventional mass transfer parameters. As a group, the sensor calibration varied randomly at an average rate of -2.6%/week. Statistical correlation indicated strong association between the sensor signals and reference glucose values. Continuous long-term glucose monitoring in individuals with diabetes is feasible with this system. All therapies for diabetes are based on glucose control, and therefore, require glucose monitoring. This fully implanted long-term sensor/telemetry system may facilitate a new era of management of the disease.
Lucisano, Joseph Y.; Routh, Timothy L.; Lin, Joe T.; Gough, David A.
2017-01-01
Objective The use of a fully implanted, first-generation prototype sensor/telemetry system is described for long-term monitoring of subcutaneous tissue glucose in a small cohort of people with diabetes. Methods Sensors are based on a membrane containing immobilized glucose oxidase and catalase coupled to oxygen electrodes and a telemetry system, integrated as an implant. The devices remained implanted for up to 180 days, with signals transmitted every 2 minutes to external receivers. Results The data include signal recordings from glucose clamps and spontaneous glucose excursions, matched respectively to reference blood glucose and finger-stick values. The sensor signals indicate dynamic tissue glucose, for which there is no independent standard, and a model describing the relationship between blood glucose and the signal is therefore included. The values of all model parameters have been estimated, including the permeability of adjacent tissues to glucose, and equated to conventional mass transfer parameters. As a group, the sensor calibration varied randomly at an average rate of −2.6%/week. Statistical correlation indicated strong association between the sensor signals and reference glucose values. Conclusions Continuous, long-term glucose monitoring in individuals with diabetes is feasible with this system. Significance All therapies for diabetes are based on glucose control and therefore require glucose monitoring. This fully implanted, long-term sensor/telemetry system may facilitate a new era of management of the disease. PMID:27775510
LANDSAT-D flight segment operations manual. Appendix B: OBC software operations
NASA Technical Reports Server (NTRS)
Talipsky, R.
1981-01-01
The LANDSAT 4 satellite contains two NASA standard spacecraft computers and 65,536 words of memory. Onboard computer software is divided into flight executive and applications processors. Both applications processors and the flight executive use one or more of 67 system tables to obtain variables, constants, and software flags. Output from the software for monitoring operation is via 49 OBC telemetry reports subcommutated in the spacecraft telemetry. Information is provided about the flight software as it is used to control the various spacecraft operations and interpret operational OBC telemetry. Processor function descriptions, processor operation, software constraints, processor system tables, processor telemetry, and processor flow charts are presented.
NASA Technical Reports Server (NTRS)
1994-01-01
The heavy, cumbersome body protection suits worn by members of hazardous materials response teams cause marked elevation of body temperatures, which can reduce effectiveness and lead to heat stress and injury. The CorTemp System, marketed by Human Technologies, Inc., provides the basis for a body temperature monitoring alarm system. Encased in a three-quarter-inch ingestible capsule, the system includes a mini-thermometer, miniature telemetry system, a microbattery and temperature sensor. It makes its way through the digestive system, continuously monitoring temperature. Findings are sent to the recorder by telemetry, and then displayed and stored for transfer to a computer.
Exploding Head Syndrome in the Epilepsy Monitoring Unit: Case Report and Literature Review.
Gillis, Kara; Ng, Marcus C
2017-01-01
Diagnosis of paroxysmal events in epilepsy patients is often made through video-telemetry electroencephalography in the epilepsy monitoring unit. This case report describes the first-ever diagnosis of exploding head syndrome in a patient with longstanding epilepsy and novel nocturnal events. In this report, we describe the presentation of exploding head syndrome and its prevalence and risk factors. In addition, the prevalence of newly diagnosed sleep disorders through video-telemetry electroencephalography in the epilepsy monitoring unit is briefly reviewed. This report also illustrates the novel use of clobazam for the treatment of exploding head syndrome.
Monitoring fetal pH by telemetry
NASA Technical Reports Server (NTRS)
Blum, A.; Donahoe, T.; Jhabvala, M. D.; Ryan, W.
1980-01-01
Telemetry unit has been developed for possible use in measuring scalp-tissue pH and heart rate of unborn infant. Unit radius data to receiver as much as 50 ft. away. Application exists during hours just prior to childbirth to give warning of problems that might require cesarean delivery.
Remote Diagnosis of the International Space Station Utilizing Telemetry Data
NASA Technical Reports Server (NTRS)
Deb, Somnath; Ghoshal, Sudipto; Malepati, Venkat; Domagala, Chuck; Patterson-Hine, Ann; Alena, Richard; Norvig, Peter (Technical Monitor)
2000-01-01
Modern systems such as fly-by-wire aircraft, nuclear power plants, manufacturing facilities, battlefields, etc., are all examples of highly connected network enabled systems. Many of these systems are also mission critical and need to be monitored round the clock. Such systems typically consist of embedded sensors in networked subsystems that can transmit data to central (or remote) monitoring stations. Moreover, many legacy are safety systems were originally not designed for real-time onboard diagnosis, but a critical and would benefit from such a solution. Embedding additional software or hardware in such systems is often considered too intrusive and introduces flight safety and validation concerns. Such systems can be equipped to transmit the sensor data to a remote-processing center for continuous health monitoring. At Qualtech Systems, we are developing a Remote Diagnosis Server (RDS) that can support multiple simultaneous diagnostic sessions from a variety of remote subsystems.
Launch Commit Criteria Monitoring Agent
NASA Technical Reports Server (NTRS)
Semmel, Glenn S.; Davis, Steven R.; Leucht, Kurt W.; Rowe, Dan A.; Kelly, Andrew O.; Boeloeni, Ladislau
2005-01-01
The Spaceport Processing Systems Branch at NASA Kennedy Space Center has developed and deployed a software agent to monitor the Space Shuttle's ground processing telemetry stream. The application, the Launch Commit Criteria Monitoring Agent, increases situational awareness for system and hardware engineers during Shuttle launch countdown. The agent provides autonomous monitoring of the telemetry stream, automatically alerts system engineers when predefined criteria have been met, identifies limit warnings and violations of launch commit criteria, aids Shuttle engineers through troubleshooting procedures, and provides additional insight to verify appropriate troubleshooting of problems by contractors. The agent has successfully detected launch commit criteria warnings and violations on a simulated playback data stream. Efficiency and safety are improved through increased automation.
Kallmünzer, Bernd; Breuer, Lorenz; Hering, Christiane; Raaz-Schrauder, Dorette; Kollmar, Rainer; Huttner, Hagen B; Schwab, Stefan; Köhrmann, Martin
2012-04-01
Anticoagulation is a highly effective secondary prevention in patients with cardioembolic stroke and atrial fibrillation/flutter (AF). However, the condition remains underdiagnosed, because paroxysmal AF may be missed by diagnostic tests in the acute phase. In this study, the sensitivity of AF detection was assessed for serial electrocardiographic recordings and continuous stroke unit telemetric monitoring with or without a structured algorithm to analyze telemetric data (SEA-AF). Three hundred forty-six consecutive patients with acute ischemic stroke were prospectively included and subjected to standard telemetric monitoring. In addition, telemetric data were separately analyzed following SEA-AF, consisting of a structured evaluation of episodes with high risk for AF and a chronological beat-to-beat screening of the full registration. Serial electrocardiograms were conducted in 24-hour intervals. Median effective telemetry monitoring time was 75.5 hours (interquartile range 64-86 hours). Overall, AF was diagnosed in 119 of 346 patients (34.4%). The structured reading algorithm was the most sensitive method to detected AF. Conventional telemetry and serial electrocardiographic assessments were less effective. However, only 35% of patients with previously documented paroxysmal AF and negative baseline electrocardiogram demonstrated AF episodes during monitoring. Continuous stroke unit telemetry using SEA-AF shows a significantly higher detection rate for AF compared with daily electrocardiographic assessments and standard telemetry without structured reading. The low overall probability to detect paroxysmal AF with either method during the first days after stroke demonstrates the urgent need for complementary diagnostic strategies such as long-term monitoring and frequent follow-up assessments. Clinical Trial Registration- URL: www.clinicaltrials.gov. Unique identifier: NCT01177748.
[Telemetry in the clinical setting].
Hilbel, Thomas; Helms, Thomas M; Mikus, Gerd; Katus, Hugo A; Zugck, Christian
2008-09-01
Telemetric cardiac monitoring was invented in 1949 by Norman J Holter. Its clinical use started in the early 1960s. In the hospital, biotelemetry allows early mobilization of patients with cardiovascular risk and addresses the need for arrhythmia or oxygen saturation monitoring. Nowadays telemetry either uses vendor-specific UHF band broadcasting or the digital ISM band (Industrial, Scientific, and Medical Band) standardized Wi-Fi network technology. Modern telemetry radio transmitters can measure and send multiple physiological parameters like multi-channel ECG, NIPB and oxygen saturation. The continuous measurement of oxygen saturation is mandatory for the remote monitoring of patients with cardiac pacemakers. Real 12-lead ECG systems with diagnostic quality are an advantage for monitoring patients with chest pain syndromes or in drug testing wards. Modern systems are light-weight and deliver a maximum of carrying comfort due to optimized cable design. Important for the system selection is a sophisticated detection algorithm with a maximum reduction of artifacts. Home-monitoring of implantable cardiac devices with telemetric functionalities are becoming popular because it allows remote diagnosis of proper device functionality and also optimization of the device settings. Continuous real-time monitoring at home for patients with chronic disease may be possible in the future using Digital Video Broadcasting Terrestrial (DVB-T) technology in Europe, but is currently not yet available.
Toward a national animal telemetry network for aquatic observations in the United States
Block, Barbara A.; Holbrook, Christopher; Simmons, Samantha E; Holland, Kim N; Ault, Jerald S.; Costa, Daniel P.; Mate, Bruce R; Seitz, Andrew C.; Arendt, Michael D.; Payne, John; Mahmoudi, Behzad; Moore, Peter L.; Price, James; J. J. Levenson,; Wilson, Doug; Kochevar, Randall E
2016-01-01
Animal telemetry is the science of elucidating the movements and behavior of animals in relation to their environment or habitat. Here, we focus on telemetry of aquatic species (marine mammals, sharks, fish, sea birds and turtles) and so are concerned with animal movements and behavior as they move through and above the world’s oceans, coastal rivers, estuaries and great lakes. Animal telemetry devices (“tags”) yield detailed data regarding animal responses to the coupled ocean–atmosphere and physical environment through which they are moving. Animal telemetry has matured and we describe a developing US Animal Telemetry Network (ATN) observing system that monitors aquatic life on a range of temporal and spatial scales that will yield both short- and long-term benefits, fill oceanographic observing and knowledge gaps and advance many of the U.S. National Ocean Policy Priority Objectives. ATN has the potential to create a huge impact for the ocean observing activities undertaken by the U.S. Integrated Ocean Observing System (IOOS) and become a model for establishing additional national-level telemetry networks worldwide.
Remote down-hole well telemetry
Briles, Scott D [Los Alamos, NM; Neagley, Daniel L [Albuquerque, NM; Coates, Don M [Santa Fe, NM; Freund, Samuel M [Los Alamos, NM
2004-07-20
The present invention includes an apparatus and method for telemetry communication with oil-well monitoring and recording instruments located in the vicinity of the bottom of gas or oil recovery pipes. Such instruments are currently monitored using electrical cabling that is inserted into the pipes; cabling has a short life in this environment, and requires periodic replacement with the concomitant, costly shutdown of the well. Modulated reflectance, a wireless communication method that does not require signal transmission power from the telemetry package will provide a long-lived and reliable way to monitor down-hole conditions. Normal wireless technology is not practical since batteries and capacitors have to frequently be replaced or recharged, again with the well being removed from service. RF energy generated above ground can also be received, converted and stored down-hole without the use of wires, for actuating down-hole valves, as one example. Although modulated reflectance reduces or eliminates the loss of energy at the sensor package because energy is not consumed, during the transmission process, additional stored extra energy down-hole is needed.
NASA Technical Reports Server (NTRS)
Layland, J. W.
1986-01-01
Acquiring telemetry data from the International Cometary Explorer (ICE) at its encounter with the comet Giacobini-Zinner on September 11, 1985 proved to be among the more difficult challenges the DSN has met in recent years. The ICE spacecraft began its life as an Earth orbiting monitor of the Solar Wind. At the comet, ICE was nearly 50 times as distant as in its initial role, with its signal strength diminished nearly 2500 times. Collecting enough of that weak signal to provide meaningful scientific data about the comet required unique new telemetry capabilities and special handling by the DSN. This article describes the development and validation of the DSN telemetry capability for ICE from its early planning stages through the successful comet encounter.
Flight Avionics Sequencing Telemetry (FAST) DIV Latching Display
NASA Technical Reports Server (NTRS)
Moore, Charlotte
2010-01-01
The NASA Engineering (NE) Directorate at Kennedy Space Center provides engineering services to major programs such as: Space Shuttle, Inter national Space Station, and the Launch Services Program (LSP). The Av ionics Division within NE, provides avionics and flight control syste ms engineering support to LSP. The Launch Services Program is respons ible for procuring safe and reliable services for transporting critical, one of a kind, NASA payloads into orbit. As a result, engineers mu st monitor critical flight events during countdown and launch to asse ss anomalous behavior or any unexpected occurrence. The goal of this project is to take a tailored Systems Engineering approach to design, develop, and test Iris telemetry displays. The Flight Avionics Sequen cing Telemetry Delta-IV (FAST-D4) displays will provide NASA with an improved flight event monitoring tool to evaluate launch vehicle heal th and performance during system-level ground testing and flight. Flight events monitored will include data from the Redundant Inertial Fli ght Control Assembly (RIFCA) flight computer and launch vehicle comma nd feedback data. When a flight event occurs, the flight event is ill uminated on the display. This will enable NASA Engineers to monitor c ritical flight events on the day of launch. Completion of this project requires rudimentary knowledge of launch vehicle Guidance, Navigatio n, and Control (GN&C) systems, telemetry, and console operation. Work locations for the project include the engineering office, NASA telem etry laboratory, and Delta launch sites.
XTCE (XML Telemetric and Command Exchange) Standard Making It Work at NASA. Can It Work For You?
NASA Technical Reports Server (NTRS)
Munoz-Fernandez, Michela; Smith, Danford S.; Rice, James K.; Jones, Ronald A.
2017-01-01
The XML Telemetric and Command Exchange (XTCE) standard is intended as a way to describe telemetry and command databases to be exchanged across centers and space agencies. XTCE usage has the potential to lead to consolidation of the Mission Operations Center (MOC) Monitor and Control displays for mission cross-support, reducing equipment and configuration costs, as well as a decrease in the turnaround time for telemetry and command modifications during all the mission phases. The adoption of XTCE will reduce software maintenance costs by reducing the variation between our existing mission dictionaries. The main objective of this poster is to show how powerful XTCE is in terms of interoperability across centers and missions. We will provide results for a use case where two centers can use their local tools to process and display the same mission telemetry in their MOC independently of one another. In our use case we have first quantified the ability for XTCE to capture the telemetry definitions of the mission by use of our suite of support tools (Conversion, Validation, and Compliance measurement). The next step was to show processing and monitoring of the same telemetry in two mission centers. Once the database was converted to XTCE using our tool, the XTCE file became our primary database and was shared among the various tool chains through their XTCE importers and ultimately configured to ingest the telemetry stream and display or capture the telemetered information in similar ways.Summary results include the ability to take a real mission database and real mission telemetry and display them on various tools from two centers, as well as using commercially free COTS.
Real-Time Telemetry System for Monitoring Motion of Ships Based on Inertial Sensors.
Núñez, José M; Araújo, Marta G; García-Tuñón, I
2017-04-25
A telemetry system for real-time monitoring of the motions, position, speed and course of a ship at sea is presented in this work. The system, conceived as a subsystem of a radar cross-section measurement unit, could also be used in other applications as ships dynamics characterization, on-board cranes, antenna stabilizers, etc. This system was designed to be stand-alone, reliable, easy to deploy, low-cost and free of requirements related to stabilization procedures. In order to achieve such a unique combination of functionalities, we have developed a telemetry system based on redundant inertial and magnetic sensors and GPS (Global Positioning System) measurements. It provides a proper data storage and also has real-time radio data transmission capabilities to an on-shore station. The output of the system can be used either for on-line or off-line processing. Additionally, the system uses dual technologies and COTS (Commercial Off-The-Shelf) components. Motion-positioning measurements and radio data link tests were successfully carried out in several ships of the Spanish Navy, proving the compliance with the design targets and validating our telemetry system.
Mission Evaluation Room Intelligent Diagnostic and Analysis System (MIDAS)
NASA Technical Reports Server (NTRS)
Pack, Ginger L.; Falgout, Jane; Barcio, Joseph; Shnurer, Steve; Wadsworth, David; Flores, Louis
1994-01-01
The role of Mission Evaluation Room (MER) engineers is to provide engineering support during Space Shuttle missions, for Space Shuttle systems. These engineers are concerned with ensuring that the systems for which they are responsible function reliably, and as intended. The MER is a central facility from which engineers may work, in fulfilling this obligation. Engineers participate in real-time monitoring of shuttle telemetry data and provide a variety of analyses associated with the operation of the shuttle. The Johnson Space Center's Automation and Robotics Division is working to transfer advances in intelligent systems technology to NASA's operational environment. Specifically, the MER Intelligent Diagnostic and Analysis System (MIDAS) project provides MER engineers with software to assist them with monitoring, filtering and analyzing Shuttle telemetry data, during and after Shuttle missions. MIDAS off-loads to computers and software, the tasks of data gathering, filtering, and analysis, and provides the engineers with information which is in a more concise and usable form needed to support decision making and engineering evaluation. Engineers are then able to concentrate on more difficult problems as they arise. This paper describes some, but not all of the applications that have been developed for MER engineers, under the MIDAS Project. The sampling described herewith was selected to show the range of tasks that engineers must perform for mission support, and to show the various levels of automation that have been applied to assist their efforts.
NASA Astrophysics Data System (ADS)
Roberts, P. M.; Ten Cate, J. A.; House, L. S.; Greene, M. K.; Morton, E.; Kelley, R. E.
2013-12-01
The Los Alamos Seismic Network (LASN) has operated for 41 years, and provided the data to locate more than 2,500 earthquakes in north-central New Mexico. The network was installed for seismic verification research, as well as to monitor and locate earthquakes near Los Alamos National Laboratory (LANL). LASN stations are the only monitoring stations in New Mexico north of Albuquerque. The original network once included 22 stations in northern Mew Mexico. With limited funding in the early 1980's, the network was downsized to 7 stations within an area of about 15 km (N-S) by 15 km (E-W), centered on Los Alamos. Over the last four years, eight additional stations have been installed, which have considerably expanded the spatial coverage of the network. Currently, 7 stations have broadband, three-component seismometers with digital telemetry, and the remaining 8 have traditional 1 Hz short-period seismometers with either analog telemetry or on-site digital recording. A vertical array of accelerometers was also installed in a wellbore on LANL property. This borehole array has 3-component digital strong-motion sensors. Recently we began upgrading the local strong-motion accelerometer (SMA) network as well, with the addition of high-resolution digitizers and high-sensitivity force-balance accelerometers (FBA). We will present an updated description of the current LASN station, instrumentation and telemetry configurations, as well as the data acquisition and event-detection software structure used to record events in Earthworm. Although more than 2,000 earthquakes were detected and located in north-central New Mexico during the first 11 years of LASN's operation (1973 to 1984), currently only 1-2 earthquakes per month are detected and located within about 150 km of Los Alamos. Over 850 of these nearby earthquakes have been located from 1973 to present. We recently updated the LASN earthquake catalog for north-central New Mexico up through 2012 and most of 2013. Locations for these earthquakes are based on new, consistently picked arrival times, updated station locations, and the best available velocity model. Most have magnitudes less than 1.5 and are not contained in the catalogs of any other network. With 3 of the new broadband stations in and around the nearby Valles Caldera, LASN is now able to monitor even very small volcano-seismic events that may be associated with the caldera. The expanded station coverage and instrument sensitivity has also allowed detection of smaller, more distant events and new types of peculiar, non-earthquake signals we had not previously seen (e.g., train noise). These unusual signals have complicated our event discrimination efforts. We will show an updated map of north-central New Mexico seismicity based on these recent efforts, as well as examples of some the new types of data LASN is now picking up. Although the network and data are generally not accessible to the public, requests for data can be granted on a case-by-case basis.
Telemetry data via communications relay
NASA Astrophysics Data System (ADS)
Strock, O. J.; Witchey, Michael
This paper responds to a test range engineer's need to relay one or more channels of various types of telemetry data from a remotely-located receiving station to the central telemetry station at range headquarters for real-time processing and display. Several types of data are identified, and specific equipment and technology for multiplexing, transmission, and demultiplexing up to eight streams from a variety of sources is discussed. The widely-used T3 communications link, also known as DS-3, can relay data via satellite, microwave link, or other high-speed path at 44.736 megabits per second, of which about 95 percent can be actual telemetry data; other standard links operate at lower aggregate rates. Several links and rates are discussed, with emphasis in the high-rate T3 link.
A knowledge-based system for monitoring the electrical power system of the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Eddy, Pat
1987-01-01
The design and the prototype for the expert system for the Hubble Space Telescope's electrical power system are discussed. This prototype demonstrated the capability to use real time data from a 32k telemetry stream and to perform operational health and safety status monitoring, detect trends such as battery degradation, and detect anomalies such as solar array failures. This prototype, along with the pointing control system and data management system expert systems, forms the initial Telemetry Analysis for Lockheed Operated Spacecraft (TALOS) capability.
Hubble Space Telescope on-line telemetry archive for monitoring scientific instruments
NASA Astrophysics Data System (ADS)
Miebach, Manfred P.
2002-12-01
A major milestone in an effort to update the aging Hubble Space Telescope (HST) ground system was completed when HST operations were switched to a new ground system, a project called "Vision 2000 Control Center System CCS)", at the time of the third Servicing Mission in December 1999. A major CCS subsystem is the Space Telescope Engineering Data Store, the design of which is based on modern Data Warehousing technology. In fact, the Data Warehouse (DW) as implemented in the CCS Ground System that operates and monitors the Hubble Space Telescope represents, the first use of a commercial Data Warehouse to manage engineering data. By the end of February 2002, the process of populating the Data Warehouse with HST historical telemetry data had been completed, providing access to HST engineering data for a period of over 12 years with a current data volume of 2.8 Terabytes. This paper describes hands-on experience from an end user perspective, using the CCS system capabilities, including the Data Warehouse as an HST engineering telemetry archive. The Engineering Team at the Space Telescope Science Institute is using HST telemetry extensively for monitoring the Scientific Instruments, in particular for · Spacecraft anomaly resolutions · Scientific Instrument trending · Improvements of Instrument operational efficiency The overall idea is to maximize science output of the space observatory. Furthermore, the CCS provides a powerful feature to build, save, and recall real-time display pages customized to specific subsystems and operational scenarios. Engineering teams are using the real-time monitoring capabilities intensively during Servicing Missions and real time commanding to handle anomaly situations, while the Flight Operations Team (FOT) monitors the spacecraft around the clock.
Miniature infrared data acquisition and telemetry system
NASA Technical Reports Server (NTRS)
Stokes, J. H.; Ward, S. M.
1985-01-01
The Miniature Infrared Data Acquisition and Telemetry (MIRDAT) Phase 1 study was performed to determine the technical and commercial feasibility of producing a miniaturized electro-optical telemetry system. This system acquires and transmits experimental data from aircraft scale models for realtime monitoring in wind tunnels. During the Phase 1 study, miniature prototype MIRDAT telemetry devices were constructed, successfully tested in the laboratory and delivered to the user for wind tunnel testing. A search was conducted for commercially available components and advanced hybrid techniques to further miniaturize the system during Phase 2 development. A design specification was generated from laboratory testing, user requirements and discussions with component manufacturers. Finally, a preliminary design of the proposed MIRDAT system was documented for Phase 2 development.
Implementation of PLUTO Buoy for Monitoring Water Quality in Indonesia, Reflection and Future Plans
NASA Astrophysics Data System (ADS)
Chandra, H.; Krismono, K.; Kusumaningrum, P. D.; Sianturi, D.; Firdaus, Y.; Taukhid, I.; Borneo, B. B.
2016-02-01
Research and development of PLUTO (Perairan Selalu Termonitor/Waters Always Monitored) buoy has reached its fourth year in 2015. Try out has been done in coastal waters, fishponds, fishing port ponds, and reservoirs. In the first year (2010) try out has been performed on coastal waters with off line measurement system. The buoy used temperature, salinity, DO and pH sensors. In the second year (2013) try out was carried out on fishponds and fishing port ponds using telemetry measurement system. In the third year (2014) try out was carried out on water reservoir with telemetry measurement system. In the fourth year (2015) android application is developed to monitor 4 water reservoirs and 1 lake. Beside that, observation point is added to 3 point depth for one buoy. Parameters used are temperature, DO, and turbidity. Three PLUTO buoys are placed in each reservoir, at inlet, outlet, and at center of fish cultivation. Through Ocean Science Meeting in New Orleans it is hoped that there will be input and suggestion from the experts for future development of the monitoring system for public inland waters (especially reservoir and lake) in Indonesia. Keywords: buoy PLUTO, salinity, temperature, Dissolved Oxygen (DO), pH, turbidity, telemetry
Accelerometer telemetry system
NASA Technical Reports Server (NTRS)
Konigsberg, E. (Inventor)
1976-01-01
An accelerometer telemetry system incorporated in a finger ring is used for monitoring the motor responses of a subject. The system includes an accelerometer, battery, and transmitter and provides information to a remote receiver regarding hand movements of a subject wearing the ring, without the constraints of wires. Possible applications include the detection of fatigue from the hand movements of the wearer.
X-33 Telemetry Best Source Selection, Processing, Display, and Simulation Model Comparison
NASA Technical Reports Server (NTRS)
Burkes, Darryl A.
1998-01-01
The X-33 program requires the use of multiple telemetry ground stations to cover the launch, ascent, transition, descent, and approach phases for the flights from Edwards AFB to landings at Dugway Proving Grounds, UT and Malmstrom AFB, MT. This paper will discuss the X-33 telemetry requirements and design, including information on fixed and mobile telemetry systems, best source selection, and support for Range Safety Officers. A best source selection system will be utilized to automatically determine the best source based on the frame synchronization status of the incoming telemetry streams. These systems will be used to select the best source at the landing sites and at NASA Dryden Flight Research Center to determine the overall best source between the launch site, intermediate sites, and landing site sources. The best source at the landing sites will be decommutated to display critical flight safety parameters for the Range Safety Officers. The overall best source will be sent to the Lockheed Martin's Operational Control Center at Edwards AFB for performance monitoring by X-33 program personnel and for monitoring of critical flight safety parameters by the primary Range Safety Officer. The real-time telemetry data (received signal strength, etc.) from each of the primary ground stations will also be compared during each nu'ssion with simulation data generated using the Dynamic Ground Station Analysis software program. An overall assessment of the accuracy of the model will occur after each mission. Acknowledgment: The work described in this paper was NASA supported through cooperative agreement NCC8-115 with Lockheed Martin Skunk Works.
The X-33 range Operations Control Center
NASA Technical Reports Server (NTRS)
Shy, Karla S.; Norman, Cynthia L.
1998-01-01
This paper describes the capabilities and features of the X-33 Range Operations Center at NASA Dryden Flight Research Center. All the unprocessed data will be collected and transmitted over fiber optic lines to the Lockheed Operations Control Center for real-time flight monitoring of the X-33 vehicle. By using the existing capabilities of the Western Aeronautical Test Range, the Range Operations Center will provide the ability to monitor all down-range tracking sites for the Extended Test Range systems. In addition to radar tracking and aircraft telemetry data, the Telemetry and Radar Acquisition and Processing System is being enhanced to acquire vehicle command data, differential Global Positioning System corrections and telemetry receiver signal level status. The Telemetry and Radar Acquisition Processing System provides the flexibility to satisfy all X-33 data processing requirements quickly and efficiently. Additionally, the Telemetry and Radar Acquisition Processing System will run a real-time link margin analysis program. The results of this model will be compared in real-time with actual flight data. The hardware and software concepts presented in this paper describe a method of merging all types of data into a common database for real-time display in the Range Operations Center in support of the X-33 program. All types of data will be processed for real-time analysis and display of the range system status to ensure public safety.
NASA Astrophysics Data System (ADS)
Stubailo, I.; Watkins, M.; Devora, A.; Bhadha, R. J.; Hauksson, E.; Thomas, V. I.
2016-12-01
The USGS/Caltech Southern California Seismic Network (SCSN) is a modern digital ground motion seismic network. It develops and maintains Earthquake Early Warning (EEW) data collection and delivery systems in southern California as well as real-time EEW algorithms. Recently, Behr et al., SRL, 2016 analyzed data from several regional seismic networks deployed around the globe. They showed that the SCSN was the network with the smallest data communication delays or latency. Since then, we have reduced further the telemetry delays for many of the 330 current sites. The latency has been reduced on average from 2-6 sec to 0.4 seconds by tuning the datalogger parameters and/or deploying software upgrades. Recognizing the latency data as one of the crucial parameters in EEW, we have started archiving the per-packet latencies in mseed format for all the participating sites in a similar way it is traditionally done for the seismic waveform data. The archived latency values enable us to understand and document long-term changes in performance of the telemetry links. We can also retroactively investigate how latent the waveform data were during a specific event or during a specific time period. In addition the near-real time latency values are useful for monitoring and displaying the real-time station latency, in particular to compare different telemetry technologies. A future step to reduce the latency is to deploy the algorithms on the dataloggers at the seismic stations and transmit either the final solutions or intermediate parameters to a central processing center. To implement this approach, we are developing a stand-alone version of the OnSite algorithm to run on the dataloggers in the field. This will increase the resiliency of the SCSN to potential telemetry restrictions in the immediate aftermath of a large earthquake, either by allowing local alarming by the single station, or permitting transmission of lightweight parametric information rather than continuous waveform data to the central processing facility. State-of-the-art development of Internet of Things (IoT) tools and platforms, which can be used to distribute and maintain software on a large number of remote devices are making this approach to earthquake early warning more feasible.
Real-Time Telemetry System for Monitoring Motion of Ships Based on Inertial Sensors
Núñez, José M.; Araújo, Marta G.; García-Tuñón, I.
2017-01-01
A telemetry system for real-time monitoring of the motions, position, speed and course of a ship at sea is presented in this work. The system, conceived as a subsystem of a radar cross-section measurement unit, could also be used in other applications as ships dynamics characterization, on-board cranes, antenna stabilizers, etc. This system was designed to be stand-alone, reliable, easy to deploy, low-cost and free of requirements related to stabilization procedures. In order to achieve such a unique combination of functionalities, we have developed a telemetry system based on redundant inertial and magnetic sensors and GPS (Global Positioning System) measurements. It provides a proper data storage and also has real-time radio data transmission capabilities to an on-shore station. The output of the system can be used either for on-line or off-line processing. Additionally, the system uses dual technologies and COTS (Commercial Off-The-Shelf) components. Motion-positioning measurements and radio data link tests were successfully carried out in several ships of the Spanish Navy, proving the compliance with the design targets and validating our telemetry system. PMID:28441330
Development of a biosensor telemetry system for monitoring fermentation in craft breweries.
Farina, Donatella; Zinellu, Manuel; Fanari, Mauro; Porcu, Maria Cristina; Scognamillo, Sergio; Puggioni, Giulia Maria Grazia; Rocchitta, Gaia; Serra, Pier Andrea; Pretti, Luca
2017-03-01
The development and applications of biosensors in the food industry has had a rapid grown due to their sensitivity, specificity and simplicity of use with respect to classical analytical methods. In this study, glucose and ethanol amperometric biosensors integrated with a wireless telemetry system were developed and used for the monitoring of top and bottom fermentations in beer wort samples. The collected data were in good agreement with those obtained by reference methods. The simplicity of construction, the low cost and the short time of analysis, combined with easy interpretation of the results, suggest that these devices could be a valuable alternative to conventional methods for monitoring fermentation processes in the food industry. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kiourti, Asimina; Psathas, Konstantinos A; Nikita, Konstantina S
2014-01-01
Wireless medical telemetry permits the measurement of physiological signals at a distance through wireless technologies. One of the latest applications is in the field of implantable and ingestible medical devices (IIMDs) with integrated antennas for wireless radiofrequency (RF) communication (telemetry) with exterior monitoring/control equipment. Implantable medical devices (MDs) perform an expanding variety of diagnostic and therapeutic functions, while ingestible MDs receive significant attention in gastrointestinal endoscopy. Design of such wireless IIMD telemetry systems is highly intriguing and deals with issues related to: operation frequency selection, electronics and powering, antenna design and performance, and modeling of the wireless channel. In this paper, we attempt to comparatively review the current status and challenges of IIMDs with wireless telemetry functionalities. Full solutions of commercial IIMDs are also recorded. The objective is to provide a comprehensive reference for scientists and developers in the field, while indicating directions for future research. © 2013 Wiley Periodicals, Inc.
UAV telemetry communications using ZigBee protocol
NASA Astrophysics Data System (ADS)
Nasution, T. H.; Siregar, I.; Yasir, M.
2017-10-01
Wireless communication has been widely used in various fields or disciplines such as agriculture, health, engineering, military, and aerospace so as to support the work in that field. The communication technology is typically used for controlling devices and data monitoring. One development of wireless communication is the widely used telemetry system used to reach areas that cannot be reached by humans using UAV (Unmanned Aerial Vehicle) or unmanned aircraft. In this paper we discuss the design of telemetry system in UAV using ZigBee protocol. From the test obtained the system can work well with visualization displays without pause is 20 data per second with a maximum data length of 120 characters.
An inductively powered telemetry system for temperature, EKG, and activity monitoring
NASA Technical Reports Server (NTRS)
Fryer, T. B.; Lund, G. F.; Williams, B. A.
1978-01-01
An implant telemetry system for the simultaneous monitoring of temperature, activity, and EKG from small animals, such as rats, was designed with the feature that instead of a battery the system is energized by an inductive field. A 250 kHz resonant coil surrounds the cage (30 x 30 x 20 cm) and provides the approximately 100 microns of power required to operate the implant transmitter while allowing the animal unrestrained movement in the cage. The implant can also be battery operated if desired. RF transmission is in the 8-10 MHz band, which allows the use of a simple, essentially single IC chip, receiver.
An inductively powered telemetry system for temperature, EKG, and activity monitoring
NASA Technical Reports Server (NTRS)
Fryer, T. B.; Lund, G. F.; Williams, B. A.
1978-01-01
An implant telemetry system for the simultaneous monitoring of temperature, activity, and EKG from small animals, such as rats, has recently been designed with the novel feature that instead of a battery the system is energized by an inductive field. A 250 kHz resonant coil surrounds the cage (30 x 30 x 20 cm) and provides the approximately 100 microwatt of power required to operate the implant transmitter while allowing the animal unrestrained movement in the cage. The implant can also be battery operated if desired. RF transmission is in the 8-10 MHz band, which allows the use of a simple, essentially single IC chip, receiver.
NASA Technical Reports Server (NTRS)
Douard, Stephane
1994-01-01
Known as a Graphic Server, the system presented was designed for the control ground segment of the Telecom 2 satellites. It is a tool used to dynamically display telemetry data within graphic pages, also known as views. The views are created off-line through various utilities and then, on the operator's request, displayed and animated in real time as data is received. The system was designed as an independent component, and is installed in different Telecom 2 operational control centers. It enables operators to monitor changes in the platform and satellite payloads in real time. It has been in operation since December 1991.
The Deep Space Network information system in the year 2000
NASA Technical Reports Server (NTRS)
Markley, R. W.; Beswick, C. A.
1992-01-01
The Deep Space Network (DSN), the largest, most sensitive scientific communications and radio navigation network in the world, is considered. Focus is made on the telemetry processing, monitor and control, and ground data transport architectures of the DSN ground information system envisioned for the year 2000. The telemetry architecture will be unified from the front-end area to the end user. It will provide highly automated monitor and control of the DSN, automated configuration of support activities, and a vastly improved human interface. Automated decision support systems will be in place for DSN resource management, performance analysis, fault diagnosis, and contingency management.
Quantifying, Visualizing, and Monitoring Lead Optimization.
Maynard, Andrew T; Roberts, Christopher D
2016-05-12
Although lead optimization (LO) is by definition a process, process-centric analysis and visualization of this important phase of pharmaceutical R&D has been lacking. Here we describe a simple statistical framework to quantify and visualize the progression of LO projects so that the vital signs of LO convergence can be monitored. We refer to the resulting visualizations generated by our methodology as the "LO telemetry" of a project. These visualizations can be automated to provide objective, holistic, and instantaneous analysis and communication of LO progression. This enhances the ability of project teams to more effectively drive LO process, while enabling management to better coordinate and prioritize LO projects. We present the telemetry of five LO projects comprising different biological targets and different project outcomes, including clinical compound selection, termination due to preclinical safety/tox, and termination due to lack of tractability. We demonstrate that LO progression is accurately captured by the telemetry. We also present metrics to quantify LO efficiency and tractability.
NASA Astrophysics Data System (ADS)
Lee, Jun Kyu; Seung, Hong Min; Park, Chung Il; Lee, Joo Kyung; Lim, Do Hyeong; Kim, Yoon Young
2018-02-01
Real-time uninterrupted measurement for torsional vibrations of rotating shafts is crucial for permanent health monitoring. So far, strain gauge systems with telemetry units have been used for real-time monitoring. However, they have a critical disadvantage in that shaft operations must be stopped intermittently to replace telemetry unit batteries. To find an alternative method to carry out battery-less real-time measurement for torsional vibrations of rotating shafts, a magnetostrictive patch sensor system was proposed in the present study. Since the proposed sensor does not use any powered telemetry system, no battery is needed and thus there is no need to stop rotating shafts for battery replacement. The proposed sensor consists of magnetostrictive patches and small magnets tightly bonded onto a shaft. A solenoid coil is placed around the shaft to convert magnetostrictive patch deformation by shaft torsional vibration into electric voltage output. For sensor design and characterization, investigations were performed in a laboratory on relatively small-sized stationary solid shaft. A magnetostrictive patch sensor system was then designed and installed on a large rotating propulsion shaft of an LPG carrier ship in operation. Vibration signals were measured using the proposed sensor system and compared to those measured with a telemetry unit-equipped strain gauge system.
NASA Astrophysics Data System (ADS)
Sakai, H.
1985-09-01
The SCRIBE experiments were conducted for the purpose of observing the atmospheric infrared emission by using a cryogenic interferometer spectrometer mounted on a balloon-borne platform. The data collected during the flight by the spectrometer were transmitted through the radio telemetry link and were received at the ground station of Holloman AFB where these flights were monitored. They were recorded on analog 1/2 in magnetic tapes running at 60 ips. By playing back these tapes, the telemetry signal transmitted from the balloon-borne package was reporduced at our site for processing efforts to retrieve the interferogram data out of the played-back telemetry signal, and to recover the spectral data corresponding to radiation emitted by the atmosphere were the main objective of this work. In addition to the Holloman tapes, a mobile telemetry signal-receiving unit of AFGL was used to record the flight data on similar analog tapes for the Jul-05-1984 flight launched from Roswell, New Mexico.
Electromagnetic limits to radiofrequency (RF) neuronal telemetry.
Diaz, R E; Sebastian, T
2013-12-18
The viability of a radiofrequency (RF) telemetry channel for reporting individual neuron activity wirelessly from an embedded antenna to an external receiver is determined. Comparing the power at the transmitting antenna required for the desired Channel Capacity, to the maximum power that this antenna can dissipate in the body without altering or damaging surrounding tissue reveals the severe penalty incurred by miniaturization of the antenna. Using both Specific Absorption Rate (SAR) and thermal damage limits as constraints, and 300 Kbps as the required capacity for telemetry streams 100 ms in duration, the model shows that conventional antennas smaller than 0.1 mm could not support human neuronal telemetry to a remote receiver (1 m away.) Reducing the antenna to 10 microns in size to enable the monitoring of single human neuron signals to a receiver at the surface of the head would require operating with a channel capacity of only 0.3 bps.
Implementation of an Antenna Array Signal Processing Breadboard for the Deep Space Network
NASA Technical Reports Server (NTRS)
Navarro, Robert
2006-01-01
The Deep Space Network Large Array will replace/augment 34 and 70 meter antenna assets. The array will mainly be used to support NASA's deep space telemetry, radio science, and navigation requirements. The array project will deploy three complexes in the western U.S., Australia, and European longitude each with 400 12m downlink antennas and a DSN central facility at JPL. THis facility will remotely conduct all real-time monitor and control for the network. Signal processing objectives include: provide a means to evaluate the performance of the Breadboard Array's antenna subsystem; design and build prototype hardware; demonstrate and evaluate proposed signal processing techniques; and gain experience with various technologies that may be used in the Large Array. Results are summarized..
NASA Astrophysics Data System (ADS)
Carlton, A.; Cahoy, K.
2015-12-01
Reliability of geostationary communication satellites (GEO ComSats) is critical to many industries worldwide. The space radiation environment poses a significant threat and manufacturers and operators expend considerable effort to maintain reliability for users. Knowledge of the space radiation environment at the orbital location of a satellite is of critical importance for diagnosing and resolving issues resulting from space weather, for optimizing cost and reliability, and for space situational awareness. For decades, operators and manufacturers have collected large amounts of telemetry from geostationary (GEO) communications satellites to monitor system health and performance, yet this data is rarely mined for scientific purposes. The goal of this work is to acquire and analyze archived data from commercial operators using new algorithms that can detect when a space weather (or non-space weather) event of interest has occurred or is in progress. We have developed algorithms, collectively called SEER (System Event Evaluation Routine), to statistically analyze power amplifier current and temperature telemetry by identifying deviations from nominal operations or other events and trends of interest. This paper focuses on our work in progress, which currently includes methods for detection of jumps ("spikes", outliers) and step changes (changes in the local mean) in the telemetry. We then examine available space weather data from the NOAA GOES and the NOAA-computed Kp index and sunspot numbers to see what role, if any, it might have played. By combining the results of the algorithm for many components, the spacecraft can be used as a "sensor" for the space radiation environment. Similar events occurring at one time across many component telemetry streams may be indicative of a space radiation event or system-wide health and safety concern. Using SEER on representative datasets of telemetry from Inmarsat and Intelsat, we find events that occur across all or many of telemetry files at certain dates. We compare these system-wide events to known space weather storms, such as the 2003 Halloween storms, and to spacecraft operational events, such as maneuvers. We also present future applications and expansions of SEER for robust space environment sensing and system health and safety monitoring.
Sherfy, Mark H.; Anteau, Michael J.; Shaffer, Terry L.; Sovada, Marsha A.; Stucker, Jennifer H.
2012-01-01
Federally listed least terns (Sternula antillarum) and piping plovers (Charadrius melodus) nest on riverine sandbars on many major midcontinent river systems. On the Central Platte River, availability of sandbar habitat is limited, and both species nest on excavated sandpits in the river's floodplain. However, the extent to which sandpit-nesting birds use riverine habitats for foraging is unknown. We evaluated use of foraging habitats by least terns and piping plovers by collecting data on movements, behavior, foraging habitat, and productivity. We radiomarked 16 piping plovers and 23 least terns in 2009-2010 and monitored their movements using a network of fixed telemetry dataloggers. Piping plovers were detected primarily by the datalogger located in their nesting sandpit, whereas least terns were more frequently detected on dataloggers outside of the nesting sandpit. Telemetry data and behavioral observations showed that least terns tended to concentrate at the Kearney Canal Diversion Gates, where forage fish were apparently readily available. Fish sampling data suggested that forage fish were more abundant in riverine than in sandpit habitats, and behavioral observations showed that least terns foraged more frequently in riverine than in sandpit habitats. Piping plovers tended to forage in wet substrates along sandpit shorelines, but also used dry substrates and sandpit interior habitats. The greater mobility of least terns makes a wider range of potential foraging habitats available during brood rearing, making them able to exploit concentrations of fish outside the nesting colony. Thus, our data suggest that different spatial scales should be considered in managing nesting and foraging habitat complexes for piping plovers and least terns.
NASA Technical Reports Server (NTRS)
1977-01-01
A transducer originally used to measure air pressure in aircraft wind tunnel tests is the basis for a development important in diagnosis and treatment of certain types of brain damage. A totally implantable device, tbe intracranial pressure monitor measures and reports brain pressure by telemetry.
A Volcano Monitoring Seismo-Acoustic Network in the CNMI
NASA Astrophysics Data System (ADS)
Howard, J. E.; Crippen, S. E.; Hayward, C.; Quick, J. E.
2011-12-01
In late spring and early summer of 2011, a seismo-acoustic network was installed in the Commonwealth of the Northern Mariana Islands (CNMI) for volcano monitoring. The network consists of a seismo-acoustic array on Saipan, an acoustic array on Sarigan with one seismometer, and a seismic network on Anatahan. On Saipan the array consists of a central site and 3 embedded triangular arrays with apertures of 100 m, 300 m and 1000 m. Four 50-foot porous hoses in a clover-leaf arrangement are used for spatial filtering at each acoustic site. Broadband seismometers were installed at the central site and the 1000 m sites. The Sarigan Array consists of a central acoustic site with 5 surrounding sites evenly spaced at 50 m radius, and one broadband seismic station. Two hoses were used for each site on Sarigan. Four broadband seismic stations were also installed on Anatahan which last erupted in 2005. Data from each array is sent by radio telemetry to the Emergency Management Office on Saipan, where it is routed to the USGS and SMU. Data will be used for volcano monitoring which will allow the CNMI to resume economic activity in the uninhabited northern islands. Initial data streams show high seismic noise levels as expected for an island installation. The Sarigan acoustic sites are also noisy as a result of being more exposed to wind than the Saipan sites. Many small events have already been observed in the infrasound data. This network was installed through the collaborative efforts of CNMI, USGS and SMU.
NASA Technical Reports Server (NTRS)
1984-01-01
L & M Electronics, Inc.'s telemetry system is used to measure degree and location of abnormal muscle activity. This telemetry was originally used to monitor astronauts vital functions. Leg sensors send wireless signals to computer which develops pictures of gait patterns. System records, measures and analyzes muscle activities in limbs and spine. Computer developed pictures of gait patterns help physicians determine potential of corrective surgery, evaluate various types of braces, or decide whether physical therapy may improve motor functions.
Controlling basins of attraction in a neural network-based telemetry monitor
NASA Technical Reports Server (NTRS)
Bell, Benjamin; Eilbert, James L.
1988-01-01
The size of the basins of attraction around fixed points in recurrent neural nets (NNs) can be modified by a training process. Controlling these attractive regions by presenting training data with various amount of noise added to the prototype signal vectors is discussed. Application of this technique to signal processing results in a classification system whose sensitivity can be controlled. This new technique is applied to the classification of temporal sequences in telemetry data.
Bass, Nathan Charles; Guttridge, Tristan L.; Day, Joanna; Brown, Culum
2017-01-01
Accurately estimating contacts between animals can be critical in ecological studies such as examining social structure, predator–prey interactions or transmission of information and disease. While biotelemetry has been used successfully for such studies in terrestrial systems, it is still under development in the aquatic environment. Acoustic telemetry represents an attractive tool to investigate spatio-temporal behaviour of marine fish and has recently been suggested for monitoring underwater animal interactions. To evaluate the effectiveness of acoustic telemetry in recording interindividual contacts, we compared co-occurrence matrices deduced from three types of acoustic receivers varying in detection range in a benthic shark species. Our results demonstrate that (i) associations produced by acoustic receivers with a large detection range (i.e. Vemco VR2W) were significantly different from those produced by receivers with smaller ranges (i.e. Sonotronics miniSUR receivers and proximity loggers) and (ii) the position of individuals within their network, or centrality, also differed. These findings suggest that acoustic receivers with a large detection range may not be the best option to represent true social networks in the case of a benthic marine animal. While acoustic receivers are increasingly used by marine ecologists, we recommend users first evaluate the influence of detection range to depict accurate individual interactions before using these receivers for social or predator–prey studies. We also advocate for combining multiple receiver types depending on the ecological question being asked and the development of multi-sensor tags or testing of new automated proximity loggers, such as the Encounternet system, to improve the precision and accuracy of social and predator–prey interaction studies. PMID:28989756
Monitoring Spacecraft Telemetry Via Optical or RF Link
NASA Technical Reports Server (NTRS)
Fielhauer, K. B.; Boone, B. G.
2011-01-01
A patent disclosure document discusses a photonic method for connecting a spacecraft with a launch vehicle upper-stage telemetry system as a means for monitoring a spacecraft fs health and status during and right after separation and deployment. This method also provides an efficient opto-coupled capability for prelaunch built-in-test (BIT) on the ground to enable more efficient and timely integration, preflight checkout, and a means to obviate any local EMI (electromagnetic interference) during integration and test. Additional utility can be envisioned for BIT on other platforms, such as the International Space Station (ISS). The photonic telemetry system implements an optical free-space link with a divergent laser transmitter beam spoiled over a significant cone angle to accommodate changes in spacecraft position without having to angle track it during deployment. Since the spacecraft may lose attitude control and tumble during deployment, the transmitted laser beam interrogates any one of several low-profile meso-scale retro-reflective spatial light modulators (SLMs) deployed over the surface of the spacecraft. The return signal beam, modulated by the SLMs, contains health, status, and attitude information received back at the launch vehicle. Very compact low-power opto-coupler technology already exists for the received signal (requiring relatively low bandwidths, e.g., .200 kbps) to enable transfer to a forward pass RF relay from the launch vehicle to TDRSS (Tracking and Data Relay Satellite System) or another recipient. The link would be active during separation and post-separation to monitor spacecraft health, status, attitude, or other data inventories until attitude recovery and ground control can be re-established. An optical link would not interfere with the existing upper stage telemetry and beacon systems, thus meeting launch vehicle EMI environmental constraints.
Wang, B; Sun, G; Qiao, W; Liu, Y; Qiao, J; Ye, W; Wang, H; Wang, X; Lindquist, R; Wang, Y; Xiao, Y-F
2017-09-01
Continuous blood glucose monitoring, especially long-term and remote, in diabetic patients or research is very challenging. Nonhuman primate (NHP) is an excellent model for metabolic research, because NHPs can naturally develop Type 2 diabetes mellitus (T2DM) similarly to humans. This study was to investigate blood glucose changes in conscious, moving-free cynomolgus monkeys (Macaca fascicularis) during circadian, meal, stress and drug exposure. Blood glucose, body temperature and physical activities were continuously and simultaneously recorded by implanted HD-XG telemetry device for up to 10 weeks. Blood glucose circadian changes in normoglycemic monkeys significantly differed from that in diabetic animals. Postprandial glucose increase was more obvious after afternoon feeding. Moving a monkey from its housing cage to monkey chair increased blood glucose by 30% in both normoglycemic and diabetic monkeys. Such increase in blood glucose declined to the pre-procedure level in 30 min in normoglycemic animals and >2 h in diabetic monkeys. Oral gavage procedure alone caused hyperglycemia in both normoglycemic and diabetic monkeys. Intravenous injection with the stress hormones, angiotensin II (2 μg/kg) or norepinephrine (0.4 μg/kg), also increased blood glucose level by 30%. The glucose levels measured by the telemetry system correlated significantly well with glucometer readings during glucose tolerance tests (ivGTT or oGTT), insulin tolerance test (ITT), graded glucose infusion (GGI) and clamp. Our data demonstrate that the real-time telemetry method is reliable for monitoring blood glucose remotely and continuously in conscious, stress-free, and moving-free NHPs with the advantages highly valuable to diabetes research and drug discovery.
NASA Astrophysics Data System (ADS)
Jia, Zhiwei; Yan, Guozheng; Zhu, Bingquan
2015-04-01
An implanted telemetry system for experimental animals with or without anaesthesia can be used to continuously monitor physiological parameters. This system is significant not only in the study of organisms but also in the evaluation of drug efficacy, artificial organs, and auxiliary devices. The system is composed of a miniature electronic capsule, a wireless power transmission module, a data-recording device, and a processing module. An electrocardiograph, a temperature sensor, and a pressure sensor are integrated in the miniature electronic capsule, in which the signals are transmitted in vitro by wireless communication after filtering, amplification, and A/D sampling. To overcome the power shortage of batteries, a wireless power transmission module based on electromagnetic induction was designed. The transmitting coil of a rectangular-section solenoid and a 3D receiving coil are proposed according to stability and safety constraints. Experiments show that at least 150 mW of power could pick up on the load in a volume of Φ10.5 mm × 11 mm, with a transmission efficiency of 2.56%. Vivisection experiments verified the feasibility of the integrated radio-telemetry system.
51. VIEW OF LORAL ADS 100A COMPUTERS LOCATED CENTRALLY ON ...
51. VIEW OF LORAL ADS 100A COMPUTERS LOCATED CENTRALLY ON NORTH WALL OF TELEMETRY ROOM (ROOM 106). SLC-3W CONTROL ROOM IS VISIBLE IN BACKGROUND THROUGH WINDOW IN NORTH WALL. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Tracking Three-Dimensional Fish Behavior with a New Marine Acoustic Telemetry System
NASA Technical Reports Server (NTRS)
Brosnan, Ian G.; McGarry, Louise P.; Greene, Charles H.; Steig, Tracey W.; Johnston, Samuel V.; Ehrenberg, John E.
2015-01-01
The persistent monitoring capability provided by acoustic telemetry systems allows us to study behavior, movement, and resource selection of mobile marine animals. Current marine acoustic telemetry systems are challenged by localization errors and limits in the number of animals that can be tracked simultaneously. We designed a new system to provide detection ranges of up to 1 km, to reduce localization errors to less than 1 m, and to increase to 500 the number of unique tags simultaneously tracked. The design builds on HTIs experience of more than a decade developing acoustic telemetry systems for freshwater environments. A field trial of the prototype system was conducted at the University of Washingtons Friday Harbor Marine Laboratory (Friday Harbor, WA). Copper rockfish (Sebastes caurinus) were selected for field trials of this new system because their high site-fidelity and small home ranges provide ample opportunity to track individual fish behavior while testing our ability to characterize the movements of a species of interest to management authorities.
SMS-Based Medical Diagnostic Telemetry Data Transmission Protocol for Medical Sensors
Townsend, Ben; Abawajy, Jemal; Kim, Tai-Hoon
2011-01-01
People with special medical monitoring needs can, these days, be sent home and remotely monitored through the use of data logging medical sensors and a transmission base-station. While this can improve quality of life by allowing the patient to spend most of their time at home, most current technologies rely on hardwired landline technology or expensive mobile data transmissions to transmit data to a medical facility. The aim of this paper is to investigate and develop an approach to increase the freedom of a monitored patient and decrease costs by utilising mobile technologies and SMS messaging to transmit data from patient to medico. To this end, we evaluated the capabilities of SMS and propose a generic communications protocol which can work within the constraints of the SMS format, but provide the necessary redundancy and robustness to be used for the transmission of non-critical medical telemetry from data logging medical sensors. PMID:22163845
Knowledge representation in space flight operations
NASA Technical Reports Server (NTRS)
Busse, Carl
1989-01-01
In space flight operations rapid understanding of the state of the space vehicle is essential. Representation of knowledge depicting space vehicle status in a dynamic environment presents a difficult challenge. The NASA Jet Propulsion Laboratory has pursued areas of technology associated with the advancement of spacecraft operations environment. This has led to the development of several advanced mission systems which incorporate enhanced graphics capabilities. These systems include: (1) Spacecraft Health Automated Reasoning Prototype (SHARP); (2) Spacecraft Monitoring Environment (SME); (3) Electrical Power Data Monitor (EPDM); (4) Generic Payload Operations Control Center (GPOCC); and (5) Telemetry System Monitor Prototype (TSM). Knowledge representation in these systems provides a direct representation of the intrinsic images associated with the instrument and satellite telemetry and telecommunications systems. The man-machine interface includes easily interpreted contextual graphic displays. These interactive video displays contain multiple display screens with pop-up windows and intelligent, high resolution graphics linked through context and mouse-sensitive icons and text.
A Programmable SDN+NFV Architecture for UAV Telemetry Monitoring
NASA Technical Reports Server (NTRS)
White, Kyle J. S.; Pezaros, Dimitrios P.; Denney, Ewen; Knudson, Matt D.
2017-01-01
With the explosive growth in UAV numbers forecast worldwide, a core concern is how to manage the ad-hoc network configuration required for mobility management. As UAVs migrate among ground control stations, associated network services, routing and operational control must also rapidly migrate to ensure a seamless transition. In this paper, we present a novel, lightweight and modular architecture which supports high mobility, resilience and flexibility through the application of SDN and NFV principles on top of the UAV infrastructure. By combining SDN programmability and Network Function Virtualization we can achieve resilient infrastructure migration of network services, such as network monitoring and anomaly detection, coupled with migrating UAVs to enable high mobility management. Our container-based monitoring and anomaly detection Network Functions (NFs) can be tuned to specific UAV models providing operators better insight during live, high-mobility deployments. We evaluate our architecture against telemetry from over 80flights from a scientific research UAV infrastructure.
Ground equipment for the support of packet telemetry and telecommand
NASA Technical Reports Server (NTRS)
Hell, Wolfgang
1994-01-01
This paper describes ground equipment for packet telemetry and telecommand which has been recently developed by industry for the European Space Agency. The architectural concept for this type of equipment is outlined and the actual implementation is presented. Focus is put on issues related to cross support and telescience as far as they affect the design of the interfaces to the users of the services provided by the equipment and to the management entities in charge of equipment control and monitoring.
Telemetry link for an automatic salmon migration monitor
NASA Technical Reports Server (NTRS)
Baldwin, H. A.; Freyman, R. W.
1973-01-01
The antenna and transmitter described in this report were designed for integration into the remote acoustic assessment system for detection of sockeye salmon in the Bristol Bay region of the Bering Sea. The assessment system configuration consists of an upward directed sonar buoy anchored 150 ft below the surface and attached by cable to a spar buoy tethered some 300 ft laterally. The spar buoy contains a telemetry transmitter, power supply, data processing electronics, an antenna and a beacon light.
The U.S. Animal Telemetry Network: A Plan for Implementation
NASA Astrophysics Data System (ADS)
Weise, M. J.; Simmons, S. E.
2016-02-01
The U.S. is a global leader in animal telemetry, with tremendous animal telemetry infrastructure and considerable technical expertise in telemetry operations. However, these research assets are often owned and operated independently by multiple agencies and institutions with limited to no connectivity. This prevents the scientific community from efficiently coordinating data and thereby best serving societal needs. In this talk we will describe how the U.S. Animal Telemetry Network (ATN), under the auspices of the U.S. Integrated Ocean Observing System (IOOS), will provide a mechanism to facilitate and empower an alliance among federal, industry, academic, state, local, tribal, and non-federal organizations. Animal telemetry technology is now considered mature and operational, and these observing data and products are ready to be integrated into the U.S. IOOS. The ATN data management approach involves receiving, handling, and distributing diverse data types from archival, satellite, and acoustic tag platforms that originate from a variety of individual researchers and large programs using consistent metadata standards and best practices. The core of the ATN data management system will be a quasi-centralized national ATN Data Assembly Center that will receive and distribute data and data products to U.S. IOOS RAs and other partner organizations. The integration of biological resources into ocean observation will address U.S. IOOS needs regarding societal benefits by, for example, aiming to improve predictions of climate change, to more effectively protect and restore healthy coastal ecosystems, and to enable the sustained use of ocean and coastal resources. We will describe the plan for how the ATN will maximize the benefit of existing investments by providing a mechanism for sustained operations and consistent delivery of animal telemetry data across the U.S. and in conjunction with international ocean observing systems.
Using Geostationary Communications Satellites as a Sensor: Telemetry Search Algorithms
NASA Astrophysics Data System (ADS)
Cahoy, K.; Carlton, A.; Lohmeyer, W. Q.
2014-12-01
For decades, operators and manufacturers have collected large amounts of telemetry from geostationary (GEO) communications satellites to monitor system health and performance, yet this data is rarely mined for scientific purposes. The goal of this work is to mine data archives acquired from commercial operators using new algorithms that can detect when a space weather (or non-space weather) event of interest has occurred or is in progress. We have developed algorithms to statistically analyze power amplifier current and temperature telemetry and identify deviations from nominal operations or other trends of interest. We then examine space weather data to see what role, if any, it might have played. We also closely examine both long and short periods of time before an anomaly to determine whether or not the anomaly could have been predicted.
NASA Astrophysics Data System (ADS)
Hamilton, Marvin J.; Sutton, Stewart A.
A prototype integrated environment, the Advanced Satellite Workstation (ASW), which was developed and delivered for evaluation and operator feedback in an operational satellite control center, is described. The current ASW hardware consists of a Sun Workstation and Macintosh II Workstation connected via an ethernet Network Hardware and Software, Laser Disk System, Optical Storage System, and Telemetry Data File Interface. The central objective of ASW is to provide an intelligent decision support and training environment for operator/analysis of complex systems such as satellites. Compared to the many recent workstation implementations that incorporate graphical telemetry displays and expert systems, ASW provides a considerably broader look at intelligent, integrated environments for decision support, based on the premise that the central features of such an environment are intelligent data access and integrated toolsets.
Compact telemetry package for remote monitoring of neutron responses in animals
NASA Technical Reports Server (NTRS)
Baker, C. D.
1974-01-01
Battery-powered telemeter includes FM transmitter and is light enough to be mounted on animal's head. Animal has complete freedom of movement while its neuron responses are transmitted to receiver in laboratory. Construction may also be applied to monitor blood pressure, body temperature, and different muscular signals.
NASA Technical Reports Server (NTRS)
Cronin, A. G.; Delaney, J. R.
1973-01-01
The system is discussed which was developed to process digitized telemetry data from the intensity monitoring spectrometer flown on the Orbiting Geophysical Observatory (OGO-F) Satellite. Functional descriptions and operating instructions are included for each program in the system.
Seafloor Geodetic Monitoring of the Central Andean Subduction Zone: The Geosea Array
NASA Astrophysics Data System (ADS)
Kopp, H.; Lange, D.; Contreras Reyes, E.; Behrmann, J. H.; McGuire, J. J.; Flueh, E. R.
2014-12-01
Seafloor geodesy has been identified as one of the central tools in marine geosciences to monitor seafloor deformation at high resolution. To quantify strain accumulation and assess the resultant hazard potential we urgently need systems to resolve seafloor crustal deformation. The GeoSEA (Geodetic Earthquake Observatory on the Seafloor) array consists of a seafloor transponder network comprising a total of 35 units and a wave glider acting as a surface unit (GeoSURF) to ensure satellite correspondence, data transfer and monitor system health. For horizontal direct path measurements, the system utilizes acoustic ranging techniques with a ranging precision better than 15 mm and long term stability over 2 km distance. Vertical motion is obtained from pressure gauges. Integrated inclinometers monitor station settlement in two horizontal directions. Travel time between instruments and the local water sound velocity will be recorded autonomously subsea without system or human intervention for up to 3.5 years. Data from the autonomous network on the seafloor can be retrieved via the integrated high-speed acoustic telemetry link without recovering the seafloor units. In late 2015 GeoSEA will be installed on the Iquique segment of the South America - Nazca convergent plate boundary to monitor crustal deformation. The Iquique seismic gap experienced the 2014 Mw 8.1 Pisagua earthquake, which apparently occurred within a local locking minimum. It is thus crucial to better resolve resolve strain in the forearc between the mainland and the trench in order to improve our understanding of forearc deformation required for hazard assessment. Mobile autonomous seafloor arrays for continuous measurement of active seafloor deformation in hazard zones have the potential to lead to transformative discoveries of plate boundary/fault zone tectonic processes and address a novel element of marine geophysical research.
Barcia, C; De Pablos, V; Bautista-Hernández, V; Sanchez-Bahillo, A; Fernández-Barreiro, A; Poza, M; Herrero, M T
2004-03-15
The parkinsonian symptoms of primates after MPTP exposure can be measured by several visual methods (classical motor scores). However, these methods have a subjective bias, especially as regards the evaluation of the motor activity. Computerized monitoring systems represent an unbiased method for measuring the motor disability of monkeys after MPTP administration. In this work the motor activity of monkeys before and after MPTP administration is measured and compared with the activity of a control intact group by means of a telemetry system. A pronounced decrease in motor activity was observed after MPTP administration. These results suggest the monitoring method used is suited for characterizing the motor incapacity and possible improvements following treatments to test different therapies to control Parkinson's disease in MPTP models involving primates.
Rutz, Gary L.; Sholtis, Matthew D.; Adams, Noah S.; Beeman, John W.
2014-01-01
Acoustic telemetry equipment was installed at three sites in the Willamette River during October 2012 to test the effectiveness of using the Juvenile Salmon Acoustic Telemetry System to monitor the movements of fish in a high-flow, high-velocity riverine environment. Hydrophones installed on concrete blocks were placed on the bottom of the river, and data cables were run from the hydrophones to shore where they were attached to anchor points. Under relatively low-flow conditions (less than approximately 10,000 cubic feet per second) the monitoring system remained in place and could be used to detect tagged fish as they traveled downstream during their seaward migration. At river discharge over approximately 10,000 cubic feet per second, the hydrophones were damaged and cables were lost because of the large volume of woody debris in the river and the increase in water velocity. Damage at two of the sites was sufficient to prevent data collection. A limited amount of data was collected from the equipment at the third site. Site selection and deployment strategies were re-evaluated, and an alternate deployment methodology was designed for implementation in 2013.
Advanced Biotelemetry Systems for Space Life Sciences: PH Telemetry
NASA Technical Reports Server (NTRS)
Hines, John W.; Somps, Chris; Ricks, Robert; Kim, Lynn; Connolly, John P. (Technical Monitor)
1995-01-01
The SENSORS 2000! (S2K!) program at NASA's Ames Research Center is currently developing a biotelemetry system for monitoring pH and temperature in unrestrained subjects. This activity is part of a broader scope effort to provide an Advanced Biotelemetry System (ABTS) for use in future space life sciences research. Many anticipated research endeavors will require biomedical and biochemical sensors and related instrumentation to make continuous inflight measurements in a variable-gravity environment. Since crew time is limited, automated data acquisition, data processing, data storage, and subject health monitoring are required. An automated biochemical and physiological data acquisition system based on non invasive or implantable biotelemetry technology will meet these requirements. The ABTS will ultimately acquire a variety of physiological measurands including temperature, biopotentials (e.g. ECG, EEG, EMG, EOG), blood pressure, flow and dimensions, as well as chemical and biological parameters including pH. Development activities are planned in evolutionary, leveraged steps. Near-term activities include 1) development of a dual channel pH/temperature telemetry system, and 2) development of a low bandwidth, 4-channel telemetry system, that measures temperature, heart rate, pressure, and pH. This abstract describes the pH/temperature telemeter.
A strategy for recovering continuous behavioral telemetry data from Pacific walruses
Fischbach, Anthony S.; Jay, Chadwick V.
2016-01-01
Tracking animal behavior and movement with telemetry sensors can offer substantial insights required for conservation. Yet, the value of data collected by animal-borne telemetry systems is limited by bandwidth constraints. To understand the response of Pacific walruses (Odobenus rosmarus divergens) to rapid changes in sea ice availability, we required continuous geospatial chronologies of foraging behavior. Satellite telemetry offered the only practical means to systematically collect such data; however, data transmission constraints of satellite data-collection systems limited the data volume that could be acquired. Although algorithms exist for reducing sensor data volumes for efficient transmission, none could meet our requirements. Consequently, we developed an algorithm for classifying hourly foraging behavior status aboard a tag with limited processing power. We found a 98% correspondence of our algorithm's classification with a test classification based on time–depth data recovered and characterized through multivariate analysis in a separate study. We then applied our algorithm within a telemetry system that relied on remotely deployed satellite tags. Data collected by these tags from Pacific walruses across their range during 2007–2015 demonstrated the consistency of foraging behavior collected by this strategy with data collected by data logging tags; and demonstrated the ability to collect geospatial behavioral chronologies with minimal missing data where recovery of data logging tags is precluded. Our strategy for developing a telemetry system may be applicable to any study requiring intelligent algorithms to continuously monitor behavior, and then compress those data into meaningful information that can be efficiently transmitted.
Guerreiro, Carlos A M; Montenegro, Maria Augusta; Kobayashi, Eliane; Noronha, Ana Lúcia A; Guerreiro, Marilisa M; Cendes, Fernando
2002-06-01
Video-EEG monitoring documentation of seizure localization is one of the most important aspects of a presurgical investigation in refractory temporal lobe epilepsy (TLE) patients. The objective of this study was to evaluate the efficacy of inpatient versus daytime outpatient telemetry. The authors evaluated prospectively 73 patients with medically intractable TLE. Ninety-one telemetry sessions were performed: 35 as inpatients and 56 as outpatients. Outpatient monitoring was performed in the EEG laboratory. They used 18-channel digital EEG. Medications were not changed in the outpatient group. For analysis of the data, time was counted in periods (12 hours = 1 period). Statistical analyses were performed using Student's t-test and the chi2 test. There were no differences between the two groups (outpatient versus inpatient) with respect to age and mean seizure frequency before monitoring, mean time to record the first seizure (1.1 versus 1.4 periods), mean number of seizures per period (0.6 for both groups), lateralization by interictal spiking (46% versus 57%), and lateralization by ictal EEG (59% versus 77%). Daytime outpatient video-EEG monitoring for presurgical evaluation is efficient and comparable with inpatient monitoring. Therefore, the improved cost benefit of outpatient monitoring may increase the access to surgery for individuals with intractable TLE.
Acoustic telemetry and fisheries management
Crossin, Glenn T.; Heupel, Michelle R.; Holbrook, Christopher; Hussey, Nigel E.; Lowerre-Barbieri, Susan K.; Nguyen, Vivian M.; Raby, Graham D.; Cooke, Steven J.
2017-01-01
This paper reviews the use of acoustic telemetry as a tool for addressing issues in fisheries management, and serves as the lead to the special Feature Issue of Ecological Applications titled “Acoustic Telemetry and Fisheries Management”. Specifically, we provide an overview of the ways in which acoustic telemetry can be used to inform issues central to the ecology, conservation, and management of exploited and/or imperiled fish species. Despite great strides in this area in recent years, there are comparatively few examples where data have been applied directly to influence fisheries management and policy. We review the literature on this issue, identify the strengths and weaknesses of work done to date, and highlight knowledge gaps and difficulties in applying empirical fish telemetry studies to fisheries policy and practice. We then highlight the key areas of management and policy addressed, as well as the challenges that needed to be overcome to do this. We conclude with a set of recommendations about how researchers can, in consultation with stock assessment scientists and managers, formulate testable scientific questions to address and design future studies to generate data that can be used in a meaningful way by fisheries management and conservation practitioners. We also urge the involvement of relevant stakeholders (managers, fishers, conservation societies, etc.) early on in the process (i.e. in the co-creation of research projects), so that all priority questions and issues can be addressed effectively.
Autonomous Science Operations Technologies for Deep Space Gateway
NASA Astrophysics Data System (ADS)
Barnes, P. K.; Haddock, A. T.; Cruzen, C. A.
2018-02-01
Autonomous Science Operations Technologies for Deep Space Gateway (DSG) is an overview of how the DSG would benefit from autonomous systems utilizing proven technologies performing telemetry monitoring and science operations.
Popescu, Viorel D; Valpine, Perry; Sweitzer, Rick A
2014-04-01
Wildlife data gathered by different monitoring techniques are often combined to estimate animal density. However, methods to check whether different types of data provide consistent information (i.e., can information from one data type be used to predict responses in the other?) before combining them are lacking. We used generalized linear models and generalized linear mixed-effects models to relate camera trap probabilities for marked animals to independent space use from telemetry relocations using 2 years of data for fishers (Pekania pennanti) as a case study. We evaluated (1) camera trap efficacy by estimating how camera detection probabilities are related to nearby telemetry relocations and (2) whether home range utilization density estimated from telemetry data adequately predicts camera detection probabilities, which would indicate consistency of the two data types. The number of telemetry relocations within 250 and 500 m from camera traps predicted detection probability well. For the same number of relocations, females were more likely to be detected during the first year. During the second year, all fishers were more likely to be detected during the fall/winter season. Models predicting camera detection probability and photo counts solely from telemetry utilization density had the best or nearly best Akaike Information Criterion (AIC), suggesting that telemetry and camera traps provide consistent information on space use. Given the same utilization density, males were more likely to be photo-captured due to larger home ranges and higher movement rates. Although methods that combine data types (spatially explicit capture-recapture) make simple assumptions about home range shapes, it is reasonable to conclude that in our case, camera trap data do reflect space use in a manner consistent with telemetry data. However, differences between the 2 years of data suggest that camera efficacy is not fully consistent across ecological conditions and make the case for integrating other sources of space-use data.
Telemetry experiments with a hibernating black bear
NASA Technical Reports Server (NTRS)
Craighead, J. J.; Varney, J. R.; Sumner, J. S.; Craighead, F. C., Jr.
1972-01-01
The objectives of this research were to develop and test telemetry equipment suitable for monitoring physiological parameters and activity of a hibernating bear in its den, to monitor this data and other environmental information with the Nimbus 3 IRLS data collection system, and to refine immobilizing, handling, and other techniques required in future work with wild bears under natural conditions. A temperature-telemetering transmitter was implanted in the abdominal cavity of a captive black bear and body temperature data was recorded continuously during a 3 month hibernation period. Body temperatures ranging between 37.5 and 31.8 C were observed. Body temperature and overall activity were influenced by disturbances and ambient den temperature. Nychthemeral temperature changes were not noticable. A load cell weight recording device was tested for determining weight loss during hibernation. Monitoring of data by satellite was not attempted. The implanted transmitter was removed and the bear was released with a radiolocation collar at the conclusion of the experiment.
NASA Technical Reports Server (NTRS)
Leucht, David K.; Koslosky, Marie J.; Kobe, David L.; Wu, Jya-Chang C.; Vavra, David A.
2011-01-01
The Space Environments Testbed (SET) is a flight controller data system for the Common Carrier Assembly. The SET-1 flight software provides the command, telemetry, and experiment control to ground operators for the SET-1 mission. Modes of operation (see dia gram) include: a) Boot Mode that is initiated at application of power to the processor card, and runs memory diagnostics. It may be entered via ground command or autonomously based upon fault detection. b) Maintenance Mode that allows for limited carrier health monitoring, including power telemetry monitoring on a non-interference basis. c) Safe Mode is a predefined, minimum power safehold configuration with power to experiments removed and carrier functionality minimized. It is used to troubleshoot problems that occur during flight. d) Operations Mode is used for normal experiment carrier operations. It may be entered only via ground command from Safe Mode.
Dawson, David G; Bower, Kristin A; Burnette, Candace N; Holt, Rebecca K; Swearengen, James R; Dabisch, Paul A; Scorpio, Angelo
2017-11-01
We used a continuous-monitoring digital telemetry system to investigate temperature response in New Zealand White rabbits after inhalation or subcutaneous challenge with Bacillus anthracis. Two spore preparations of B. anthracis Ames A2084 were evaluated by using a nose-only inhalation model, and 2 strains, B. anthracis Ames A2084 and B. anthracis UT500, were evaluated in a subcutaneous model. Animal body temperature greater than 3 SD above the mean baseline temperature was considered a significant increase in body temperature (SIBT). All rabbits that exhibited SIBT after challenge by either route of infection or bacterial strain eventually died or were euthanized due to infection, and all rabbits that died or were euthanized due to infection exhibited SIBT during the course of disease. The time at onset of SIBT preceded clinical signs of disease in 94% of the rabbits tested by as long as 2 days. In addition, continuous temperature monitoring facilitated discrimination between the 2 B. anthracis strains with regard to the time interval between SIBT and death. These data suggest that for the New Zealand White rabbit anthrax model, SIBT is a reliable indicator of infection, is predictive of experimental outcome in the absence of treatment, and is measurable prior to the appearance of more severe signs of disease. The use of digital telemetry to monitor infectious disease course in animal models of anthrax can potentially be used in conjunction with other clinical score metrics to refine endpoint euthanasia criteria.
Growth and survival of Mountain Plovers
Miller, Brian J.; Knopf, Fritz L.
1993-01-01
Growth and survival rates of Mountain Plovers (Charadrius montanus) were monitored using radiotelemetry from hatching until birds left the breeding grounds on the Pawnee National Grassland, Weld County, Colorado. Chick weights increased logarithmically (r) = 0.961) and tarsus length linearly (r = 0.948) with age. Using the average fledgling weight of 69.8 g and an age/weight regression we predicted that the average age at fledging was 36 d. Fourteen Mountain Plover nests each had three effs; an average of 2.6 eggs hatched in seven nests, whereas remaining nests were lost to predation, storms, or trampling by a cow. Twenty-four adult Mountain Plovers were monitored for 275 telemetry days with no mortalities. Twenty flightless chicks had a calculated daily survival rate of 0.979 for 233 telemetry-days. Mortalities of flightless chicks were due to predation or unknown causes. The daily survival rate predicted that 1.2 of the 2.6 chicks hatched per nest lived to fly. Eight fledged chicks were monitored for 74 telemetry-days, with a daily survival rate of 0.974. Mortalities of fledglings were all attributed to predation. The combined survival rates predicted that 0.7 or the 2.6 hatched chicks lived to leave the nesting area. Survival rates of flightless chicks were similar to those reported 20 yr ago, implying that recent declines in Mountain Plover numbers on the continent are not attributable to either longer-term declines in nesting productivity or phenomena occurring at non-breeding locales.
Gotvald, Anthony J.; McCallum, Brian E.; Painter, Jaime A.
2014-01-01
The U.S. Geological Survey (USGS), in cooperation with other Federal, State, and local agencies, operates a flood-monitoring system in the Withlacoochee and Little River Basins. This system is a network of automated river stage stations (ten are shown on page 2 of this publication) that transmit stage data through satellite telemetry to the USGS in Atlanta, Georgia and the National Weather Service (NWS) in Peachtree City, Georgia. During floods, the public and emergency response agencies use this information to make decisions about road closures, evacuations, and other public safety issues. This Withlacoochee and Little River Basins flood-tracking chart can be used by local citizens and emergency response personnel to record the latest river stage and predicted flood-crest information along the Withlacoochee River, Little River, and Okapilco Creek in south-central Georgia and northern Florida. By comparing the current stage (water-surface level above a datum) and predicted flood crest to the recorded peak stages of previous floods, emergency response personnel and residents can make informed decisions concerning the threat to life and property.
Improved Real-Time Monitoring Using Multiple Expert Systems
NASA Technical Reports Server (NTRS)
Schwuttke, Ursula M.; Angelino, Robert; Quan, Alan G.; Veregge, John; Childs, Cynthia
1993-01-01
Monitor/Analyzer of Real-Time Voyager Engineering Link (MARVEL) computer program implements combination of techniques of both conventional automation and artificial intelligence to improve monitoring of complicated engineering system. Designed to support ground-based operations of Voyager spacecraft, also adapted to other systems. Enables more-accurate monitoring and analysis of telemetry, enhances productivity of monitoring personnel, reduces required number of such personnel by performing routine monitoring tasks, and helps ensure consistency in face of turnover of personnel. Programmed in C language and includes commercial expert-system software shell also written in C.
Video electroencephalogram telemetry in temporal lobe epilepsy
Mani, Jayanti
2014-01-01
Temporal lobe epilepsy (TLE) is the most commonly encountered medically refractory epilepsy. It is also the substrate of refractory epilepsy that gives the most gratifying results in any epilepsy surgery program, with a minimum use of resources. Correlation of clinical behavior and the ictal patterns during ictal behavior is mandatory for success at epilepsy surgery. Video electroencephalogram (EEG) telemetry achieves this goal and hence plays a pivotal role in pre-surgical assessment. The role of telemetry is continuously evolving with the advent of digital EEG technology, of high-resolution volumetric magnetic resonance imaging and other functional imaging techniques. Most of surgical selection in patients with TLE can be done with a scalp video EEG monitoring. However, the limitations of the scalp EEG technique demand invasive recordings in a selected group of TLE patients. This subset of the patients can be a challenge to the epileptologist. PMID:24791089
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.
Pacific Northwest National Laboratory (PNNL) and subcontractors conducted an acoustic-telemetry study of juvenile salmonid fish passage and survival at Bonneville Dam in 2010. The study was conducted to assess the readiness of the monitoring system for official compliance studies under the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a single-release model. This also was the last year of evaluation of effects of a behavioral guidance device installed in the Powerhouse 2 forebay. The study relied on releases of live Juvenile Salmon Acoustic Telemetry System taggedmore » smolts in the Columbia River and used acoustic telemetry to evaluate the approach, passage, and survival of passing juvenile salmon. This study supports the U.S. Army Corps of Engineers continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.« less
Survival and Passage of Juvenile Chinook Salmon and Steelhead Passing through Bonneville Dam, 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ploskey, Gene R.; Batten, G.; Cushing, Aaron W.
Pacific Northwest National Laboratory (PNNL) and subcontractors conducted an acoustic-telemetry study of juvenile salmonid fish passage and survival at Bonneville Dam in 2011. The study was conducted to assess the readiness of the monitoring system for official compliance studies under the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a virtual/paired-release model. The study relied on releases of live Juvenile Salmon Acoustic Telemetry System tagged smolts in the Columbia River and used acoustic telemetry to evaluate the approach, passage, and survival of passing juvenile salmon usingmore » a virtual release, paired reference release survival model. This study supports the U.S. Army Corps of Engineers’ continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.« less
Survival and Passage of Juvenile Chinook Salmon and Steelhead Passing Through Bonneville Dam, 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.
Pacific Northwest National Laboratory (PNNL) and subcontractors conducted an acoustic-telemetry study of juvenile salmonid fish passage and survival at Bonneville Dam in 2010. The study was conducted to assess the readiness of the monitoring system for official compliance studies under the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a single-release model. This also was the last year of evaluation of effects of a behavioral guidance device installed in the Powerhouse 2 forebay. The study relied on releases of live Juvenile Salmon Acoustic Telemetry System taggedmore » smolts in the Columbia River and used acoustic telemetry to evaluate the approach, passage, and survival of passing juvenile salmon. This study supports the U.S. Army Corps of Engineers continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.« less
Hierarchical animal movement models for population-level inference
Hooten, Mevin B.; Buderman, Frances E.; Brost, Brian M.; Hanks, Ephraim M.; Ivans, Jacob S.
2016-01-01
New methods for modeling animal movement based on telemetry data are developed regularly. With advances in telemetry capabilities, animal movement models are becoming increasingly sophisticated. Despite a need for population-level inference, animal movement models are still predominantly developed for individual-level inference. Most efforts to upscale the inference to the population level are either post hoc or complicated enough that only the developer can implement the model. Hierarchical Bayesian models provide an ideal platform for the development of population-level animal movement models but can be challenging to fit due to computational limitations or extensive tuning required. We propose a two-stage procedure for fitting hierarchical animal movement models to telemetry data. The two-stage approach is statistically rigorous and allows one to fit individual-level movement models separately, then resample them using a secondary MCMC algorithm. The primary advantages of the two-stage approach are that the first stage is easily parallelizable and the second stage is completely unsupervised, allowing for an automated fitting procedure in many cases. We demonstrate the two-stage procedure with two applications of animal movement models. The first application involves a spatial point process approach to modeling telemetry data, and the second involves a more complicated continuous-time discrete-space animal movement model. We fit these models to simulated data and real telemetry data arising from a population of monitored Canada lynx in Colorado, USA.
The INTELSAT VI SSTDMA network diagnostic system
NASA Astrophysics Data System (ADS)
Tamboli, Satish P.; Zhu, Xiaobo; Wilkins, Kim N.; Gupta, Ramesh K.
The system-level design of an expert-system-based, near-real-time diagnostic system for INTELSAT VI satellite-switched time-division multiple access (SSTDMA) network is described. The challenges of INTELSAT VI diagnostics are discussed, along with alternative approaches for network diagnostics and the rationale for choosing a method based on burst unique-word detection. The focal point of the diagnostic system is the diagnostic processor, which resides in the central control and monitoring facility known as the INTELSAT Operations Center TDMA Facility (IOCTF). As real-time information such as burst unique-word detection data, reference terminal status data, and satellite telemetry alarm data are received at the IOCTF, the diagnostic processor continuously monitors the data streams. When a burst status change is detected, a 'snapshot' of the real-time data is forwarded to the expert system. Receipt of the change causes a set of rules to be invoked which associate the traffic pattern with a set of probable causes. A user-friendly interface allows a graphical view of the burst time plan and provides the ability to browse through the knowledge bases.
Space Telemetry for the Energy Industry
NASA Technical Reports Server (NTRS)
1983-01-01
Space telemetry is the process whereby information acquired in orbit is relayed to Earth. In 1981, Bill Sheen, President of Nu-Tech Industries, Inc., saw a need for a better way of monitoring flow, due to high costs of oil and gas, increasing oil field theft and a mounting requirement for more timely information to speed up accounting procedures. Sheen turned to NASA for assistance which was provided by Kerr Industrial Applications Center (KIAC). The system that emerged from two years of research, now in production at Nu-Tech's Fort Worth Texas facility, is known as the Remote Measurement and Control Network.
ISTAR: Intelligent System for Telemetry Analysis in Real-time
NASA Technical Reports Server (NTRS)
Simmons, Charles
1994-01-01
The intelligent system for telemetry analysis in real-time (ISTAR) is an advanced vehicle monitoring environment incorporating expert systems, analysis tools, and on-line hypermedia documentation. The system was developed for the Air Force Space and Missile Systems Center (SMC) in Los Angeles, California, in support of the inertial upper stage (IUS) booster vehicle. Over a five year period the system progressed from rapid prototype to operational system. ISTAR has been used to support five IUS missions and countless mission simulations. There were a significant number of lessons learned with respect to integrating an expert system capability into an existing ground system.
NASA Astrophysics Data System (ADS)
Tanioka, Noritaka; Yoshida, Yasunori; Obi, Shinzo; Chiba, Ryoichi; Nakai, Kazumoto
The development of a PCM telemetry system for the Japanese H-II launch vehicle is discussed. PCM data streams acquire and process data from remote terminals which can be located at any place near the data source. The data are synchronized by a clock and are individually controlled by a central PCM data processing unit. The system allows the launch vehicle to acquire data from many different areas of the rocket, with a total of 879 channels. The data are multiplexed and processed into one PCM data stream and are down-linked on a phase-modulated RF carrier.
Browser-Based Application for Telemetry Monitoring of Robotic Assets
NASA Technical Reports Server (NTRS)
Breed, Kelly S.; Powell, Mark W.; Shams, Khawaja S.; Petras, Richard D.
2010-01-01
AEGSE Virtuoso Charting is an application that enables animated, real-time charting of telemetry streams of data from a rover. These automatically scaled charts are completely interactive, and allow users to choose the variables that they want to monitor. The charts can process data from streams with many variables. This application allows for the simultaneous viewing of up to four individually configured charts on a small touch-screen laptop. The charting application has been tested and found to be extremely robust during long operations. It was left running overnight, with incoming telemetry at 100 Hz, and it did not experience any signs of lost functionality or memory leaks. This robustness is critical for an application that will be used to support vital tests for the Mars Science Laboratory rover. The charting component also provides an interactive interface that allows the engineers to decide how many charts they want on their screen, and which attributes should be plotted on each chart. The application is optimized to make the charts on display take up as much of the available space as possible to maximize the use of the screen real estate. Engineers are also able to plot multiple attributes on the same chart, which enables them to observe the correlation between various attributes.
Wireless pilot monitoring system for extreme race conditions.
Pino, Esteban J; Arias, Diego E; Aqueveque, Pablo; Melin, Pedro; Curtis, Dorothy W
2012-01-01
This paper presents the design and implementation of an assistive device to monitor car drivers under extreme conditions. In particular, this system is designed in preparation for the 2012 Atacama Solar Challenge to be held in the Chilean desert. Actual preliminary results show the feasibility of such a project including physiological and ambient sensors, real-time processing algorithms, wireless data transmission and a remote monitoring station. Implementation details and field results are shown along with a discussion of the main problems found in real-life telemetry monitoring.
Simplifying operations with an uplink/downlink integration toolkit
NASA Technical Reports Server (NTRS)
Murphy, Susan C.; Miller, Kevin J.; Guerrero, Ana Maria; Joe, Chester; Louie, John J.; Aguilera, Christine
1994-01-01
The Operations Engineering Lab (OEL) at JPL has developed a simple, generic toolkit to integrate the uplink/downlink processes, (often called closing the loop), in JPL's Multimission Ground Data System. This toolkit provides capabilities for integrating telemetry verification points with predicted spacecraft commands and ground events in the Mission Sequence Of Events (SOE) document. In the JPL ground data system, the uplink processing functions and the downlink processing functions are separate subsystems that are not well integrated because of the nature of planetary missions with large one-way light times for spacecraft-to-ground communication. Our new closed-loop monitoring tool allows an analyst or mission controller to view and save uplink commands and ground events with their corresponding downlinked telemetry values regardless of the delay in downlink telemetry and without requiring real-time intervention by the user. An SOE document is a time-ordered list of all the planned ground and spacecraft events, including all commands, sequence loads, ground events, significant mission activities, spacecraft status, and resource allocations. The SOE document is generated by expansion and integration of spacecraft sequence files, ground station allocations, navigation files, and other ground event files. This SOE generation process has been automated within the OEL and includes a graphical, object-oriented SOE editor and real-time viewing tool running under X/Motif. The SOE toolkit was used as the framework for the integrated implementation. The SOE is used by flight engineers to coordinate their operations tasks, serving as a predict data set in ground operations and mission control. The closed-loop SOE toolkit allows simple, automated integration of predicted uplink events with correlated telemetry points in a single SOE document for on-screen viewing and archiving. It automatically interfaces with existing real-time or non real-time sources of information, to display actual values from the telemetry data stream. This toolkit was designed to greatly simplify the user's ability to access and view telemetry data, and also provide a means to view this data in the context of the commands and ground events that are used to interpret it. A closed-loop system can prove especially useful in small missions with limited resources requiring automated monitoring tools. This paper will discuss the toolkit implementation, including design trade-offs and future plans for enhancing the automated capabilities.
Simplifying operations with an uplink/downlink integration toolkit
NASA Astrophysics Data System (ADS)
Murphy, Susan C.; Miller, Kevin J.; Guerrero, Ana Maria; Joe, Chester; Louie, John J.; Aguilera, Christine
1994-11-01
The Operations Engineering Lab (OEL) at JPL has developed a simple, generic toolkit to integrate the uplink/downlink processes, (often called closing the loop), in JPL's Multimission Ground Data System. This toolkit provides capabilities for integrating telemetry verification points with predicted spacecraft commands and ground events in the Mission Sequence Of Events (SOE) document. In the JPL ground data system, the uplink processing functions and the downlink processing functions are separate subsystems that are not well integrated because of the nature of planetary missions with large one-way light times for spacecraft-to-ground communication. Our new closed-loop monitoring tool allows an analyst or mission controller to view and save uplink commands and ground events with their corresponding downlinked telemetry values regardless of the delay in downlink telemetry and without requiring real-time intervention by the user. An SOE document is a time-ordered list of all the planned ground and spacecraft events, including all commands, sequence loads, ground events, significant mission activities, spacecraft status, and resource allocations. The SOE document is generated by expansion and integration of spacecraft sequence files, ground station allocations, navigation files, and other ground event files. This SOE generation process has been automated within the OEL and includes a graphical, object-oriented SOE editor and real-time viewing tool running under X/Motif. The SOE toolkit was used as the framework for the integrated implementation. The SOE is used by flight engineers to coordinate their operations tasks, serving as a predict data set in ground operations and mission control. The closed-loop SOE toolkit allows simple, automated integration of predicted uplink events with correlated telemetry points in a single SOE document for on-screen viewing and archiving. It automatically interfaces with existing real-time or non real-time sources of information, to display actual values from the telemetry data stream. This toolkit was designed to greatly simplify the user's ability to access and view telemetry data, and also provide a means to view this data in the context of the commands and ground events that are used to interpret it. A closed-loop system can prove especially useful in small missions with limited resources requiring automated monitoring tools. This paper will discuss the toolkit implementation, including design trade-offs and future plans for enhancing the automated capabilities.
StarPlan: A model-based diagnostic system for spacecraft
NASA Technical Reports Server (NTRS)
Heher, Dennis; Pownall, Paul
1990-01-01
The Sunnyvale Division of Ford Aerospace created a model-based reasoning capability for diagnosing faults in space systems. The approach employs reasoning about a model of the domain (as it is designed to operate) to explain differences between expected and actual telemetry; i.e., to identify the root cause of the discrepancy (at an appropriate level of detail) and determine necessary corrective action. A development environment, named Paragon, was implemented to support both model-building and reasoning. The major benefit of the model-based approach is the capability for the intelligent system to handle faults that were not anticipated by a human expert. The feasibility of this approach for diagnosing problems in a spacecraft was demonstrated in a prototype system, named StarPlan. Reasoning modules within StarPlan detect anomalous telemetry, establish goals for returning the telemetry to nominal values, and create a command plan for attaining the goals. Before commands are implemented, their effects are simulated to assure convergence toward the goal. After the commands are issued, the telemetry is monitored to assure that the plan is successful. These features of StarPlan, along with associated concerns, issues and future directions, are discussed.
Using LabVIEW for Telemetry Monitoring and Display
NASA Technical Reports Server (NTRS)
Wells, G.; Baroth, E.
1994-01-01
Part of the Jet Propulsion Laboratory's (JPL's) Instrumentation Section, the Measurement Technology Center (MTC) evaluates data acquisition hardware and software products for inclusion into the Instrument Loan Pool, which are the made available to JPL experimenters.
Implantable telemetry capsule for monitoring arterial oxygen saturation and heartbeat.
Kuwana, K; Dohi, T; Hashimoto, Y; Matsumoto, K; Shimoyama, I
2008-01-01
In this study, we have developed an implantable telemetry capsule for monitoring heartbeat. The capsule has three main functions, monitoring vital signs, transmitting the vital signs, and receiving energy for driving the capsule without wires. We used two wavelengths of LEDs and a photodiode sensitive to the two wavelengths for heartbeat sensor. The arterial oxygen saturation is calculated from the amplitude of the heartbeat signal. We fabricated an FM transmitter whose carrier frequency was 80 MHz. Though the GHz range frequency is generally used in transmission, the attenuation in the human body is large. The size of a common linear antenna is about a quarter of its operating wavelength. We employed a coil-based antenna which can reduce size below the quarter of the wavelength. We fabricated a miniaturized transmitter with the coil-based antenna at lower frequency. Our capsule was driven intermittently. We used a rechargeable battery. When the battery ran down, the battery was charged by wireless using the induced electromotive force. This means that the capsule is capable of monitoring vital signs over the long term. We measured the heartbeat from the middle finger of hand in a water tank as a model of a human body.
Mouthguard biosensor with telemetry system for monitoring of saliva glucose: A novel cavitas sensor.
Arakawa, Takahiro; Kuroki, Yusuke; Nitta, Hiroki; Chouhan, Prem; Toma, Koji; Sawada, Shin-Ichi; Takeuchi, Shuhei; Sekita, Toshiaki; Akiyoshi, Kazunari; Minakuchi, Shunsuke; Mitsubayashi, Kohji
2016-10-15
We develop detachable "Cavitas sensors" to apply to the human oral cavity for non-invasive monitoring of saliva glucose. A salivary biosensor incorporating Pt and Ag/AgCl electrodes on a mouthguard support with an enzyme membrane is developed and tested. Electrodes are formed on the polyethylene terephthalate glycol (PETG) surface of the mouthguard. The Pt working electrode is coated with a glucose oxidase (GOD) membrane. The biosensor seamlessly is integrated with a glucose sensor and a wireless measurement system. When investigating in-vitro performance, the biosensor exhibits a robust relationship between output current and glucose concentration. In artificial saliva composed of salts and proteins, the glucose sensor is capable of highly sensitive detection over a range of 5-1000µmol/L of glucose, which encompasses the range of glucose concentrations found in human saliva. We demonstrate the ability of the sensor and wireless communication module to monitor saliva glucose in a phantom jaw imitating the structure of the human oral cavity. Stable and long-term real-time monitoring (exceeding 5h) with the telemetry system is achieved. The mouthguard biosensor will be useful as a novel method for real-time non-invasive saliva glucose monitoring for better management of dental patients. Copyright © 2015 Elsevier B.V. All rights reserved.
Telemetry-based mortality estimates of juvenile spot in two North Carolina estuarine creeks
Friedl, Sarah E.; Buckel, Jeffery A.; Hightower, Joseph E.; Scharf, Frederick S.; Pollock, Kenneth H.
2013-01-01
We estimated natural mortality rates (M) of age-1 Spot Leiostomus xanthurus by using a sonic telemetry approach. Sonic transmitters were surgically implanted into a total of 123 age-1 Spot in two North Carolina estuarine creeks during spring 2009 and 2010, and the fish were monitored by using a stationary acoustic receiver array and manual tracking. Fates of telemetered Spot were inferred based on telemetry information from estimated locations and swimming speeds. Potential competitors of age-1 Spot were assessed through simultaneous otter trawl sampling, while potential predators of Spot were collected using gill nets and trammel nets. The number of inferred natural mortalities was zero in 2009 (based on 29 telemetered Spot at risk) and four in 2010 (based on 52 fish at risk), with fish being at risk for up to about 70 d each year. Catches of potential competitors or predators did not differ between years, and age-1 Spot were not found in analyzed stomach contents of potential predators. Our estimated 30-d M of 0.03 (95% credible interval = 0.01–0.07) was lower than that predicted from weight-based (M = 0.07) and life-history-based (M = 0.06–0.36) estimates. Our field-based estimate of M for age-1 Spot in this estuarine system can assist in the assessment and management of Spot by allowing a direct comparison with M-values predicted from fish size or life history characteristics. The field telemetry and statistical analysis techniques developed here provide guidance for future telemetry studies of relatively small fish in open, dynamic habitat systems, as they highlight strengths and weaknesses of using a telemetry approach to estimate M.
Recording EEG in immature rats with a novel miniature telemetry system
Zayachkivsky, A.; Lehmkuhle, M. J.; Fisher, J. H.; Ekstrand, J. J.
2013-01-01
Serial EEG recordings from immature rat pups are extremely difficult to obtain but important for analyzing animal models of neonatal seizures and other pediatric neurological conditions as well as normal physiology. In this report, we describe the features and applications of a novel miniature telemetry system designed to record EEG in rat pups as young as postnatal day 6 (P6). First, we have recorded electrographic seizure activity in two animal models of neonatal seizures, hypoxia- and kainate-induced seizures at P7. Second, we describe a viable approach for long-term continuous EEG monitoring of naturally reared rat pups implanted with EEG at P6. Third, we have used serial EEG recordings to record age-dependent changes in the background EEG signal as the animals matured from P7 to P11. The important advantages of using miniature wireless EEG technology are: 1) minimally invasive surgical implantation; 2) a device form-factor that is compatible with housing of rat pups with the dam and littermates; 3) serial recordings of EEG activity; and 4) low power consumption of the unit, theoretically allowing continuous monitoring for up to 2 yr without surgical reimplantation. The miniature EEG telemetry system provides a technical advance that allows researchers to record continuous and serial EEG recordings in neonatal rodent models of human neurological disorders, study the progression of the disease, and then assess possible therapies using quantitative EEG as an outcome measure. This new technical approach should improve animal models of human conditions that rely on EEG monitoring for diagnosis and therapy. PMID:23114207
Gulizia, Michele Massimo; Casolo, Giancarlo; Zuin, Guerrino; Morichelli, Loredana; Calcagnini, Giovanni; Ventimiglia, Vincenzo; Censi, Federica; Caldarola, Pasquale; Russo, Giancarmine; Leogrande, Lorenzo; Franco Gensini, Gian
2017-05-01
The electrocardiogram (ECG) signal can be derived from different sources. These include systems for surface ECG, Holter monitoring, ergometric stress tests, and telemetry systems and bedside monitoring of vital parameters, which are useful for rhythm and ST-segment analysis and ECG screening of electrical sudden cardiac death predictors. A precise ECG diagnosis is based upon correct recording, elaboration, and presentation of the signal. Several sources of artefacts and potential external causes may influence the quality of the original ECG waveforms. Other factors that may affect the quality of the information presented depend upon the technical solutions employed to improve the signal. The choice of the instrumentations and solutions used to offer a high-quality ECG signal are, therefore, of paramount importance. Some requirements are reported in detail in scientific statements and recommendations. The aim of this consensus document is to give scientific reference for the choice of systems able to offer high quality ECG signal acquisition, processing, and presentation suitable for clinical use.
NASA Technical Reports Server (NTRS)
Lawson, Denise L.; James, Mark L.
1989-01-01
The Spacecraft Health Automated Reasoning Prototype (SHARP) is a system designed to demonstrate automated health and status analysis for multi-mission spacecraft and ground data systems operations. Telecommunications link analysis of the Voyager 2 spacecraft is the initial focus for the SHARP system demonstration which will occur during Voyager's encounter with the planet Neptune in August, 1989, in parallel with real time Voyager operations. The SHARP system combines conventional computer science methodologies with artificial intelligence techniques to produce an effective method for detecting and analyzing potential spacecraft and ground systems problems. The system performs real time analysis of spacecraft and other related telemetry, and is also capable of examining data in historical context. A brief introduction is given to the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory. The current method of operation for monitoring the Voyager Telecommunications subsystem is described, and the difficulties associated with the existing technology are highlighted. The approach taken in the SHARP system to overcome the current limitations is also described, as well as both the conventional and artificial intelligence solutions developed in SHARP.
A telemetry system embedded in clothes for indoor localization and elderly health monitoring.
Charlon, Yoann; Fourty, Nicolas; Campo, Eric
2013-09-04
This paper presents a telemetry system used in a combined trilateration method for the precise indoor localization of the elderly who need health monitoring. The system is based on the association of two wireless technologies: ultrasonic and 802.15.4. The use of the 802.15.4 RF signal gives the reference starting time of the ultrasonic emission (time difference of arrival method). A time of flight measurement of the ultrasonic pulses provides the distances between the mobile node and three anchor points. These distance measurements are then used to locate the mobile node using the trilateration method with an accuracy of a few centimetres. The originality of our work lies in embedding the mobile node in clothes. The system is embedded in clothes in two ways: on a shoe in order to form a "smart" shoe and in a hat in order to form a "smart" hat. Both accessories allow movements, gait speed and distance covered to be monitored for health applications. Experiments in a test room are presented to show the effectiveness of our system.
Casolo, Giancarlo; Zuin, Guerrino; Morichelli, Loredana; Calcagnini, Giovanni; Ventimiglia, Vincenzo; Censi, Federica; Caldarola, Pasquale; Russo, Giancarmine; Leogrande, Lorenzo; Franco Gensini, Gian
2017-01-01
Abstract The electrocardiogram (ECG) signal can be derived from different sources. These include systems for surface ECG, Holter monitoring, ergometric stress tests, and telemetry systems and bedside monitoring of vital parameters, which are useful for rhythm and ST-segment analysis and ECG screening of electrical sudden cardiac death predictors. A precise ECG diagnosis is based upon correct recording, elaboration, and presentation of the signal. Several sources of artefacts and potential external causes may influence the quality of the original ECG waveforms. Other factors that may affect the quality of the information presented depend upon the technical solutions employed to improve the signal. The choice of the instrumentations and solutions used to offer a high-quality ECG signal are, therefore, of paramount importance. Some requirements are reported in detail in scientific statements and recommendations. The aim of this consensus document is to give scientific reference for the choice of systems able to offer high quality ECG signal acquisition, processing, and presentation suitable for clinical use. PMID:28751842
SHARP: A multi-mission AI system for spacecraft telemetry monitoring and diagnosis
NASA Technical Reports Server (NTRS)
Lawson, Denise L.; James, Mark L.
1989-01-01
The Spacecraft Health Automated Reasoning Prototype (SHARP) is a system designed to demonstrate automated health and status analysis for multi-mission spacecraft and ground data systems operations. Telecommunications link analysis of the Voyager II spacecraft is the initial focus for the SHARP system demonstration which will occur during Voyager's encounter with the planet Neptune in August, 1989, in parallel with real-time Voyager operations. The SHARP system combines conventional computer science methodologies with artificial intelligence techniques to produce an effective method for detecting and analyzing potential spacecraft and ground systems problems. The system performs real-time analysis of spacecraft and other related telemetry, and is also capable of examining data in historical context. A brief introduction is given to the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory. The current method of operation for monitoring the Voyager Telecommunications subsystem is described, and the difficulties associated with the existing technology are highlighted. The approach taken in the SHARP system to overcome the current limitations is also described, as well as both the conventional and artificial intelligence solutions developed in SHARP.
Tudorache, Christian; Burgerhout, Erik; Brittijn, Sebastiaan; van den Thillart, Guido
2014-01-01
Telemetry studies on aquatic animals often use external tags to monitor migration patterns and help to inform conservation effort. However, external tags are known to impair swimming energetics dramatically in a variety of species, including the endangered European eel. Due to their high swimming efficiency, anguilliform swimmers are very susceptibility for added drag. Using an integration of swimming physiology, behaviour and kinematics, we investigated the effect of additional drag and site of externally attached tags on swimming mode and costs. The results show a significant effect of a) attachment site and b) drag on multiple energetic parameters, such as Cost Of Transport (COT), critical swimming speed (Ucrit) and optimal swimming speed (Uopt), possibly due to changes in swimming kinematics. Attachment at 0.125 bl from the tip of the snout is a better choice than at the Centre Of Mass (0.35 bl), as it is the case in current telemetry studies. Quantification of added drag effect on COT and Ucrit show a (limited) correlation, suggesting that the Ucrit test can be used for evaluating external tags for telemetry studies until a certain threshold value. Uopt is not affected by added drag, validating previous findings of telemetry studies. The integrative methodology and the evaluation tool presented here can be used for the design of new studies using external telemetry tags, and the (re-) evaluation of relevant studies on anguilliform swimmers. PMID:25409179
Tudorache, Christian; Burgerhout, Erik; Brittijn, Sebastiaan; van den Thillart, Guido
2014-01-01
Telemetry studies on aquatic animals often use external tags to monitor migration patterns and help to inform conservation effort. However, external tags are known to impair swimming energetics dramatically in a variety of species, including the endangered European eel. Due to their high swimming efficiency, anguilliform swimmers are very susceptibility for added drag. Using an integration of swimming physiology, behaviour and kinematics, we investigated the effect of additional drag and site of externally attached tags on swimming mode and costs. The results show a significant effect of a) attachment site and b) drag on multiple energetic parameters, such as Cost Of Transport (COT), critical swimming speed (Ucrit) and optimal swimming speed (Uopt), possibly due to changes in swimming kinematics. Attachment at 0.125 bl from the tip of the snout is a better choice than at the Centre Of Mass (0.35 bl), as it is the case in current telemetry studies. Quantification of added drag effect on COT and Ucrit show a (limited) correlation, suggesting that the Ucrit test can be used for evaluating external tags for telemetry studies until a certain threshold value. Uopt is not affected by added drag, validating previous findings of telemetry studies. The integrative methodology and the evaluation tool presented here can be used for the design of new studies using external telemetry tags, and the (re-) evaluation of relevant studies on anguilliform swimmers.
Bachmor, T; Schöchlin, J; Bolz, A
2002-01-01
Equipping medical devices with long range telemetry opens completely new possibilities for emergency response, home care and remote diagnosis. Mobile communications nowadays seem to be a generally accepted part of our modern world, but bridging the gap between new (consumer-) technologies and medical devices still is a challenge today. Providing a telemetry link (GSM) is just the trivial part--ensuring security, reliability and service management are the more critical tasks that need to be addressed. Therefore, a complete system concept consists of an automatic fleet management (e.g. periodic device-initiated service calls) as well as customer relationship management (CRM), including technical service and a trouble-ticket system.
Design development of a neural network-based telemetry monitor
NASA Technical Reports Server (NTRS)
Lembeck, Michael F.
1992-01-01
This paper identifies the requirements and describes an architectural framework for an artificial neural network-based system that is capable of fulfilling monitoring and control requirements of future aerospace missions. Incorporated into this framework are a newly developed training algorithm and the concept of cooperative network architectures. The feasibility of such an approach is demonstrated for its ability to identify faults in low frequency waveforms.
Skylab consolidated instrumentation plan for SL-1/SL-2
NASA Technical Reports Server (NTRS)
Clark, D. E.
1972-01-01
The consolidated instrumentation plan is presented for employing optical and electronic data acquisition systems to monitor the performance and trajectory of Skylab 1 and Skylab 2 vehicles during the launch phase. Telemetry, optical, and electronic tracking equipment on board the vehicles, and data acquisition systems monitoring the flights are discussed. Flight safety instrumentation, vehicle data transmission systems, and instrumentation geography are also described.
A RADIO-TELEMETRY STUDY OF ADULT GREEN FROGS (RANA CLAMITANS) IN CENTRAL MISSOURI. (U915537)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
78 FR 28806 - Endangered and Threatened Species; Take of Anadromous Fish
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-16
... out comparative studies on salmonid ecology across all Central Valley habitats (streams, rivers and... California's salmon stocks. Studies authorized under Permit 17299 will follow three directions: (1) Telemetry studies to assess river habitat use, behavior, and survival, (2) predator impacts on salmon, and (3...
Tu, Hans T; Chen, Ziyuan; Swift, Corey; Churilov, Leonid; Guo, Ruibing; Liu, Xinfeng; Jannes, Jim; Mok, Vincent; Freedman, Ben; Davis, Stephen M; Yan, Bernard
2017-10-01
Rationale Paroxysmal atrial fibrillation is a common and preventable cause of devastating strokes. However, currently available monitoring methods, including Holter monitoring, cardiac telemetry and event loop recorders, have drawbacks that restrict their application in the general stroke population. AliveCor™ heart monitor, a novel device that embeds miniaturized electrocardiography (ECG) in a smartphone case coupled with an application to record and diagnose the ECG, has recently been shown to provide an accurate and sensitive single lead ECG diagnosis of atrial fibrillation. This device could be used by nurses to record a 30-s ECG instead of manual pulse taking and automatically provide a diagnosis of atrial fibrillation. Aims To compare the proportion of patients with paroxysmal atrial fibrillation detected by AliveCor™ ECG monitoring with current standard practice. Sample size 296 Patients. Design Consecutive ischemic stroke and transient ischemic attack patients presenting to participating stroke units without known atrial fibrillation will undergo intermittent AliveCor™ ECG monitoring administered by nursing staff at the same frequency as the vital observations of pulse and blood pressure until discharge, in addition to the standard testing paradigm of each participating stroke unit to detect paroxysmal atrial fibrillation. Study outcome Proportion of patients with paroxysmal atrial fibrillation detected by AliveCor™ ECG monitoring compared to 12-lead ECG, 24-h Holter monitoring and cardiac telemetry. Discussion Use of AliveCor™ heart monitor as part of routine stroke unit nursing observation has the potential to be an inexpensive non-invasive method to increase paroxysmal atrial fibrillation detection, leading to improvement in stroke secondary prevention.
The Micro-Instrumentation Package: A Solution to Lightweight Ballooning
NASA Astrophysics Data System (ADS)
Juneau, Jill
This paper discusses the design and testing of an over the horizon (OTH) light weight telemetry and termination system that can be used for small ballooning payloads. Currently, the Columbia Scientific Balloon Facility (CSBF) provides telemetry for the science payload by integrating one of two types of support packages. The type of support package integrated depends on whether the flight will stay in range of line of sight (LOS) or will exceed LOS requiring the use of over the horizon (OTH) telemetry. The weights of these systems range from 100 pounds to 350 pounds depending upon the use of redundant systems, equipment for high data rates, and batteries and/or solar panels for power requirements. These weight values are not as significant for larger payloads but can be crippling for smaller payloads. In addition, these support package systems are fairly expensive, placing a high importance on recovery. A lightweight and inexpensive telemetry system could be beneficial for various reasons. First, it would allow scientists to fly lightweight payloads on large balloons reaching even higher altitudes. Second, scientists could fly lightweight payloads on less expensive balloons such as meteorological balloons. Depending on the payload, these flights could be fairly inexpensive and even disposable. Third, a compact telemetry system on any balloon will free up more room for the science portion of the payload. In response, a compact telemetry/termination system called the Micro-Instrumentation Package (MIP) was developed. The MIP provides uplink and downlink communications, an interface to the science, housekeeping information including global positioning system (GPS) position, and relays. Instead of a power-hungry microprocessor, the MIP's central consists of a microcontroller. Microcontrollers are lower power, easily programmed, and can be purchased for less than ten dollars. For uplink and downlink telemetry, the MIP uses an LOS serial transceiver and an Iridium unit for OTH flights. A relay deck is also included for powering subsystems and for flight termination. Furthermore, the science will be able to interface to the MIP through a serial connection, although the data rates for the science interface will be limited compared to those of standard telemetry support packages. Overall, the MIP provides the basic necessities for the safe operation of a balloon flight without the weight and the expense of the current CSBF telemetry support packages. This paper will explain more about CSBF operations and delve further into the MIP development, testing and capabilities.
An inductive narrow-pulse RFID telemetry system for gastric slow waves monitoring.
Javan-Khoskholgh, Amir; Abukhalaf, Zaid; Ji Li; Miller, Larry S; Kiani, Mehdi; Farajidavar, Aydin
2016-08-01
We present a passive data telemetry system for real-time monitoring of gastric electrical activity of a living subject. The system is composed of three subsystems: an implantable unit (IU), a wearable unit (WU), and a stationary unit (SU). Data communication between the IU and WU is based on a radio-frequency identification (RFID) link operating at 13.56 MHz. Since wireless power transmission and reverse data telemetry system share the same inductive interface, a load shift keying (LSK)-based differential pulse position (DPP) coding data communication with only 6.25% duty cycle is developed to guarantee consistent wireless downlink power transmission and uplink high data transfer rate, simultaneously. The clock and data are encoded into one signal by an MSP430 microcontroller (MCU) at the IU side. This signal is sent to the WU through the inductive link, where decoded by an MSP432 MCU. Finally, the retrieved data at the WU are transmitted to the SU connected to a PC via a 2.4 GHz transceiver for real-time display and analysis. The results of the measurements on the implemented test bench, demonstrate IU-WU 125 kb/s and WU-SU 2 Mb/s data transmission rate with no observed mismatch, while the data stream was randomly generated, and matching between the transmitted data by the IU and received by the SU verified by a custom-made automated software.
Differences in alarm events between disposable and reusable electrocardiography lead wires.
Albert, Nancy M; Murray, Terri; Bena, James F; Slifcak, Ellen; Roach, Joel D; Spence, Jackie; Burkle, Alicia
2015-01-01
Disposable electrocardiographic lead wires (ECG-LWs) may not be as durable as reusable ones. To examine differences in alarm events between disposable and reusable ECG-LWs. Two cardiac telemetry units were randomized to reusable ECG-LWs, and 2 units alternated between disposable and reusable ECG-LWs for 4 months. A remote monitoring team, blinded to ECG-LW type, assessed frequency and type of alarm events by using total counts and rates per 100 patient days. Event rates were compared by using generalized linear mixed-effect models for differences and noninferiority between wire types. In 1611 patients and 9385.5 patient days of ECG monitoring, patient characteristics were similar between groups. Rates of alarms for no telemetry, leads fail, or leads off were lower in disposable ECG-LWs (adjusted relative risk [95% CI], 0.71 [0.53-0.96]; noninferiority P < .001; superiority P = .03) and monitoring (artifact) alarms were significantly noninferior (adjusted relative risk [95% CI]: 0.88, [0.62-1.24], P = .02; superiority P = .44). No between-group differences existed in false or true crisis alarms. Disposable ECG-LWs were noninferior to reusable ECG-LWs for all false-alarm events (N [rate per 100 patient days], disposable 2029 [79.1] vs reusable 6673 [97.9]; adjusted relative risk [95% CI]: 0.81 [0.63-1.06], P = .002; superiority P = .12.) Disposable ECG-LWs with patented push-button design had superior performance in reducing alarms created by no telemetry, leads fail, or leads off and significant noninferiority in all false-alarm rates compared with reusable ECG-LWs. Fewer ECG alarms may save nurses time, decrease alarm fatigue, and improve patient safety. ©2015 American Association of Critical-Care Nurses.
Microcontroller-based underwater acoustic ECG telemetry system.
Istepanian, R S; Woodward, B
1997-06-01
This paper presents a microcontroller-based underwater acoustic telemetry system for digital transmission of the electrocardiogram (ECG). The system is designed for the real time, through-water transmission of data representing any parameter, and it was used initially for transmitting in multiplexed format the heart rate, breathing rate and depth of a diver using self-contained underwater breathing apparatus (SCUBA). Here, it is used to monitor cardiovascular reflexes during diving and swimming. The programmable capability of the system provides an effective solution to the problem of transmitting data in the presence of multipath interference. An important feature of the paper is a comparative performance analysis of two encoding methods, Pulse Code Modulation (PCM) and Pulse Position Modulation (PPM).
NASA Technical Reports Server (NTRS)
Frost, J. D., Jr.
1970-01-01
Electronic instrument automatically monitors the stages of sleep of a human subject. The analyzer provides a series of discrete voltage steps with each step corresponding to a clinical assessment of level of consciousness. It is based on the operation of an EEG and requires very little telemetry bandwidth or time.
DOT National Transportation Integrated Search
2008-08-01
The authors monitored desert bighorn sheep via satellite telemetry, remote cameras, and track beds between 2006 and 2007 to evaluate the effectiveness of the three design features (underpasses) incorporated to facilitate wildlife movement under State...
REMOTE MONITORING AND DATA VERIFICATION WHEN USING A PACKAGE PLANT
A remote telemetry system (RTS) has been fabricated, laboratory tested, and integrated into the field operation of 10,000 gal/day ultra filtration package plant (UFPP). The UFPP utilizes bag filtration, disinfection by chlorination, and an ultra filtration membrane to produce fin...
Moxley, Jerry H.; Bogomolni, Andrea; Hammill, Mike O.; Moore, Kathleen M. T.; Polito, Michael J.; Sette, Lisa; Sharp, W. Brian; Waring, Gordon T.; Gilbert, James R.; Halpin, Patrick N.; Johnston, David W.
2017-01-01
Abstract As the sampling frequency and resolution of Earth observation imagery increase, there are growing opportunities for novel applications in population monitoring. New methods are required to apply established analytical approaches to data collected from new observation platforms (e.g., satellites and unmanned aerial vehicles). Here, we present a method that estimates regional seasonal abundances for an understudied and growing population of gray seals (Halichoerus grypus) in southeastern Massachusetts, using opportunistic observations in Google Earth imagery. Abundance estimates are derived from digital aerial survey counts by adapting established correction-based analyses with telemetry behavioral observation to quantify survey biases. The result is a first regional understanding of gray seal abundance in the northeast US through opportunistic Earth observation imagery and repurposed animal telemetry data. As species observation data from Earth observation imagery become more ubiquitous, such methods provide a robust, adaptable, and cost-effective solution to monitoring animal colonies and understanding species abundances. PMID:29599542
Moxley, Jerry H; Bogomolni, Andrea; Hammill, Mike O; Moore, Kathleen M T; Polito, Michael J; Sette, Lisa; Sharp, W Brian; Waring, Gordon T; Gilbert, James R; Halpin, Patrick N; Johnston, David W
2017-08-01
As the sampling frequency and resolution of Earth observation imagery increase, there are growing opportunities for novel applications in population monitoring. New methods are required to apply established analytical approaches to data collected from new observation platforms (e.g., satellites and unmanned aerial vehicles). Here, we present a method that estimates regional seasonal abundances for an understudied and growing population of gray seals (Halichoerus grypus) in southeastern Massachusetts, using opportunistic observations in Google Earth imagery. Abundance estimates are derived from digital aerial survey counts by adapting established correction-based analyses with telemetry behavioral observation to quantify survey biases. The result is a first regional understanding of gray seal abundance in the northeast US through opportunistic Earth observation imagery and repurposed animal telemetry data. As species observation data from Earth observation imagery become more ubiquitous, such methods provide a robust, adaptable, and cost-effective solution to monitoring animal colonies and understanding species abundances.
NASA Astrophysics Data System (ADS)
Abecasis, D.; Bentes, L.; Lino, P. G.; Santos, M. N.; Erzini, K.
2013-02-01
Artificial reefs are used as management tools for coastal fisheries and ecosystems and the knowledge of habitat use and fish movements around them is necessary to understand their performance and improve their design and location. In this study wild specimens of Diplodus sargus were tagged with acoustic tags and their movements were tracked using passive acoustic telemetry. The monitored area enclosed a natural rocky reef, an adjacent artificial reef (AR) and shallower sandy bottoms. Most of the fish were close to full time residents in the monitored area. Results revealed that D. sargus use the natural reef areas on a more frequent basis than the AR. However, excursions to the adjacent AR and sandy bottoms were frequently detected, essentially during daytime. The use of acoustic telemetry allowed a better understanding of the use of artificial reef structures and its adjacent areas by wild D. sargus providing information that is helpful towards the improvement of AR design and location.
NASA Astrophysics Data System (ADS)
Ashe, Josie; Luscombe, David; Grand-Clement, Emilie; Gatis, Naomi; Anderson, Karen; Brazier, Richard
2014-05-01
The Exmoor/Dartmoor Mires Project is a peatland restoration programme focused on the geoclimatically marginal blanket bogs of South West England. In order to better understand the hydrological functioning of degraded/restored peatlands and support land management decisions across these uplands, this study is providing robust spatially distributed, hydrological monitoring at a high temporal resolution and in near real time. This paper presents the conceptual framework and experimental design for three hydrological monitoring arrays situated in headwater catchments dominated by eroding and drained blanket peatland. Over 250 individual measurements are collected at a high temporal resolution (15 minute time-step) via sensors integrated within a remote telemetry system. These are sent directly to a dedicated server over VHF and GPRS mobile networks. Sensors arrays are distributed at varying spatial scales throughout the studied catchments and record multiple parameters including: water table depth, channel flow, temperature, conductivity and pH measurements. A full suite of meteorological sensors and ten spatially distributed automatic flow based water samplers are also connected to the telemetry system and controlled remotely. This paper will highlight the challenges and solutions to obtaining these data in exceptionally remote and harsh field conditions over long (multi annual) temporal scales.
A mobile phone based alarm system for supervising vital parameters in free moving rats.
Kellermann, Kristine; Kreuzer, Matthias; Omerovich, Adem; Hoetzinger, Franziska; Kochs, Eberhard F; Jungwirth, Bettina
2012-02-23
Study protocols involving experimental animals often require the monitoring of different parameters not only in anesthetized, but also in free moving animals. Most animal research involves small rodents, in which continuously monitoring parameters such as temperature and heart rate is very stressful for the awake animals or simply not possible. Aim of the underlying study was to monitor heart rate, temperature and activity and to assess inflammation in the heart, lungs, liver and kidney in the early postoperative phase after experimental cardiopulmonary bypass involving 45 min of deep hypothermic circulatory arrest in rats. Besides continuous monitoring of heart rate, temperature and behavioural activity, the main focus was on avoiding uncontrolled death of an animal in the early postoperative phase in order to harvest relevant organs before autolysis would render them unsuitable for the assessment of inflammation. We therefore set up a telemetry-based system (Data Science International, DSI™) that continuously monitored the rat's temperature, heart rate and activity in their cages. The data collection using telemetry was combined with an analysis software (Microsoft excel™), a webmail application (GMX) and a text message-service. Whenever an animal's heart rate dropped below the pre-defined threshold of 150 beats per minute (bpm), a notification in the form of a text message was automatically sent to the experimenter's mobile phone. With a positive predictive value of 93.1% and a negative predictive value of 90.5%, the designed surveillance and alarm system proved a reliable and inexpensive tool to avoid uncontrolled death in order to minimize suffering and harvest relevant organs before autolysis would set in. This combination of a telemetry-based system and software tools provided us with a reliable notification system of imminent death. The system's high positive predictive value helped to avoid uncontrolled death and facilitated timely organ harvesting. Additionally we were able to markedly reduce the drop out rate of experimental animals, and therefore the total number of animals used in our study. This system can be easily adapted to different study designs and prove a helpful tool to relieve stress and more importantly help to reduce animal numbers.
Bio-medical telemetry: Sensing and transmitting biological information from animals to man
NASA Technical Reports Server (NTRS)
Mackay, S.
1971-01-01
The application of small radio transmitters for monitoring biological activity in animals and humans is discussed. The microminiaturization of the electronic transmitters makes it possible for them to be swallowed and to operate within the body with no external connections. The small size also makes it possible for the transmitters to be surgically implanted or carried externally to monitor specific bodily functions. The use of satellites to monitor the activity of birds and animals carrying small transmitters is described. Photographs of birds, fish, and reptiles which were equipped with miniature electronic monitors are provided.
Applications of geophysical methods to volcano monitoring
Wynn, Jeff; Dzurisin, Daniel; Finn, Carol A.; Kauahikaua, James P.; Lahusen, Richard G.
2006-01-01
The array of geophysical technologies used in volcano hazards studies - some developed originally only for volcano monitoring - ranges from satellite remote sensing including InSAR to leveling and EDM surveys, campaign and telemetered GPS networks, electronic tiltmeters and strainmeters, airborne magnetic and electromagnetic surveys, short-period and broadband seismic monitoring, even microphones tuned for infrasound. They include virtually every method used in resource exploration except large-scale seismic reflection. By “geophysical ” we include both active and passive methods as well as geodetic technologies. Volcano monitoring incorporates telemetry to handle high-bandwith cameras and broadband seismometers. Critical geophysical targets include the flux of magma in shallow reservoir and lava-tube systems, changes in active hydrothermal systems, volcanic edifice stability, and lahars. Since the eruption of Mount St. Helens in Washington State in 1980, and the eruption at Pu’u O’o in Hawai’i beginning in 1983 and still continuing, dramatic advances have occurred in monitoring technology such as “crisis GIS” and lahar modeling, InSAR interferograms, as well as gas emission geochemistry sampling, and hazards mapping and eruption predictions. The on-going eruption of Mount St. Helens has led to new monitoring technologies, including advances in broadband Wi-Fi and satellite telemetry as well as new instrumentation. Assessment of the gap between adequate monitoring and threat at the 169 potentially dangerous Holocene volcanoes shows where populations are dangerously exposed to volcanic catastrophes in the United States and its territories . This paper focuses primarily on Hawai’ian volcanoes and the northern Pacific and Cascades volcanoes. The US Geological Survey, the US National Park System, and the University of Utah cooperate in a program to monitor the huge Yellowstone volcanic system, and a separate observatory monitors the restive Long Valley caldera in collaboration with the US Forest Service.
2015-10-26
platforms and are quickly using up available spectrum. The national need in the commercial sector with emerging technologies such as 5G is pushing for...recovered and post processed later. The Front End Server also sends selected data stream across a high speed network link to the centralized
Apollo/Saturn 5 consolidated instrumentation plan for AS-511 (Apollo 16)
NASA Technical Reports Server (NTRS)
Clark, D. E.
1972-01-01
The consolidated instrumentation plan, for employing optical and electronic data acquisition systems to monitor the performance and trajectory of Apollo Saturn 5 vehicle 511 during the launch phase of the mission (prelaunch, liftoff to insertion), is presented. Telemetry, optical, and electronic tracking equipment on board the vehicle and data acquisition systems monitoring the flight are discussed. Flight safety instrumentation, vehicle data transmission systems, and geophysical instrumentation are also described.
Biotelemetry system for ambulatory patients
NASA Technical Reports Server (NTRS)
Fryer, T. B.
1978-01-01
Compact transmitter for multichannel telemetry of medical data is carried in patient's belt. Pulse-code modulation (PCM), is used for high-quality signal, and low-power CMOS integrated circuits make miniaturization possible. Transmitter is useful for electro-encephalograms (EEG) and electro-cardiograms (EKG) and other biomedical patient-monitoring situations.
NASA Astrophysics Data System (ADS)
Norsk, P.; Simonsen, L. C.; Alwood, J.
2018-02-01
Investigations of mammalian cell cultures as well as organs-on-chips will be done from the Deep Space Gateway by telemetry. Cells will be monitored regularly for metabolic activity, growth, and viability, and results compared to ground control data.
NASA Astrophysics Data System (ADS)
Swartwout, Michael Alden
New paradigms in space missions require radical changes in spacecraft operations. In the past, operations were insulated from competitive pressures of cost, quality and time by system infrastructures, technological limitations and historical precedent. However, modern demands now require that operations meet competitive performance goals. One target for improvement is the telemetry downlink, where significant resources are invested to acquire thousands of measurements for human interpretation. This cost-intensive method is used because conventional operations are not based on formal methodologies but on experiential reasoning and incrementally adapted procedures. Therefore, to improve the telemetry downlink it is first necessary to invent a rational framework for discussing operations. This research explores operations as a feedback control problem, develops the conceptual basis for the use of spacecraft telemetry, and presents a method to improve performance. The method is called summarization, a process to make vehicle data more useful to operators. Summarization enables rational trades for telemetry downlink by defining and quantitatively ranking these elements: all operational decisions, the knowledge needed to inform each decision, and all possible sensor mappings to acquire that knowledge. Summarization methods were implemented for the Sapphire microsatellite; conceptual health management and system models were developed and a degree-of-observability metric was defined. An automated tool was created to generate summarization methods from these models. Methods generated using a Sapphire model were compared against the conventional operations plan. Summarization was shown to identify the key decisions and isolate the most appropriate sensors. Secondly, a form of summarization called beacon monitoring was experimentally verified. Beacon monitoring automates the anomaly detection and notification tasks and migrates these responsibilities to the space segment. A set of experiments using Sapphire demonstrated significant cost and time savings compared to conventional operations. Summarization is based on rational concepts for defining and understanding operations. Therefore, it enables additional trade studies that were formerly not possible and also can form the basis for future detailed research into spacecraft operations.
Demonstrating Acquisition of Real-Time Thermal Data Over Fires Utilizing UAVs
NASA Technical Reports Server (NTRS)
Ambrosia, Vincent G.; Wegener, Steven S.; Brass, James A.; Buechel, Sally W.; Peterson, David L. (Technical Monitor)
2002-01-01
A disaster mitigation demonstration, designed to integrate remote-piloted aerial platforms, a thermal infrared imaging payload, over-the-horizon (OTH) data telemetry and advanced image geo-rectification technologies was initiated in 2001. Project FiRE incorporates the use of a remotely piloted Uninhabited Aerial Vehicle (UAV), thermal imagery, and over-the-horizon satellite data telemetry to provide geo-corrected data over a controlled burn, to a fire management community in near real-time. The experiment demonstrated the use of a thermal multi-spectral scanner, integrated on a large payload capacity UAV, distributing data over-the-horizon via satellite communication telemetry equipment, and precision geo-rectification of the resultant data on the ground for data distribution to the Internet. The use of the UAV allowed remote-piloted flight (thereby reducing the potential for loss of human life during hazardous missions), and the ability to "finger and stare" over the fire for extended periods of time (beyond the capabilities of human-pilot endurance). Improved bit-rate capacity telemetry capabilities increased the amount, structure, and information content of the image data relayed to the ground. The integration of precision navigation instrumentation allowed improved accuracies in geo-rectification of the resultant imagery, easing data ingestion and overlay in a GIS framework. We focus on these technological advances and demonstrate how these emerging technologies can be readily integrated to support disaster mitigation and monitoring strategies regionally and nationally.
Sex-specific movements in postfledging juvenile Ovenbirds (Seiurus aurocapilla)
Julianna M. A. Jenkins; Mikenzie Hart; Lori S. Eggert; John Faaborg
2017-01-01
Understanding sex-specific differences in behavior and survival is essential for informative population modeling and evolutionary biology in animal populations. Uneven sex ratios are common in many migrant passerine species; however, the underlying mechanisms remain unclear. We used molecular sex determination, nest monitoring, and radio telemetry of fledgling...
Research on golden-winged warblers: recent progress and current needs
Henry M. Streby; Ronald W. Rohrbaugh; David A. Buehler; David E. Andersen; Rachel Vallender; David I. King; Tom Will
2016-01-01
Considerable advances have been made in knowledge about Golden-winged Warblers (Vermivora chrysoptera) in the past decade. Recent employment of molecular analysis, stable-isotope analysis, telemetry-based monitoring of survival and behavior, and spatially explicit modeling techniques have added to, and revised, an already broad base of published...
DOT National Transportation Integrated Search
2007-01-01
Desert bighorn sheep were monitored via satellite telemetry, ground observations, and : track beds between 2004 and 2006, primarily to determine distribution and movements : relative to mileposts (MP) 3 to 17 of U.S. Highway 93 in the Black Mountains...
Beacon Spacecraft Operations: Lessons in Automation
NASA Technical Reports Server (NTRS)
Sherwood, R.; Schlutsmeyer, A.; Sue, M.; Szijjarto, J.; Wyatt, E. J.
2000-01-01
A new approach to mission operations has been flight validated on NASA's Deep Space One (DS1) mission that launched in October 1998. The beacon monitor operations technology is aimed at decreasing the total volume of downlinked engineering telemetry by reducing the frequency of downlink and the volume of data received per pass.
Managing a Watershed Monitoring Project with Innovative Data Telemetry and Communications Software
In collaboration with Clermont County, the U.S. EPA is developing watershed-wide load and transport models to better understand environmental stressors in stream flow and the structure and function of stream ecosystems in the tributaries of the Lower East Fork River. Watershed s...
Managing a Watershed Monitoring Project with Innovative Data Telemetry and Communications Software
In collaboration with Clermont County, the U.S. EPA is developing watershed-wide load and transport models to better understand environmental stressors in stream flow and the structure and function of stream ecosystems in the tributaries of the Lower East Fork River. Watershed se...
Wireless, Ultra-Low-Power Implantable Sensor for Chronic Bladder Pressure Monitoring.
Majerus, Steve J A; Garverick, Steven L; Suster, Michael A; Fletter, Paul C; Damaser, Margot S
2012-06-01
The wireless implantable/intracavity micromanometer (WIMM) system was designed to fulfill the unmet need for a chronic bladder pressure sensing device in urological fields such as urodynamics for diagnosis and neuromodulation for bladder control. Neuromodulation in particular would benefit from a wireless bladder pressure sensor which could provide real-time pressure feedback to an implanted stimulator, resulting in greater bladder capacity while using less power. The WIMM uses custom integrated circuitry, a MEMS transducer, and a wireless antenna to transmit pressure telemetry at a rate of 10 Hz. Aggressive power management techniques yield an average current draw of 9 μ A from a 3.6-Volt micro-battery, which minimizes the implant size. Automatic pressure offset cancellation circuits maximize the sensing dynamic range to account for drifting pressure offset due to environmental factors, and a custom telemetry protocol allows transmission with minimum overhead. Wireless operation of the WIMM has demonstrated that the external receiver can receive the telemetry packets, and the low power consumption allows for at least 24 hours of operation with a 4-hour wireless recharge session.
Wireless, Ultra-Low-Power Implantable Sensor for Chronic Bladder Pressure Monitoring
MAJERUS, STEVE J. A.; GARVERICK, STEVEN L.; SUSTER, MICHAEL A.; FLETTER, PAUL C.; DAMASER, MARGOT S.
2015-01-01
The wireless implantable/intracavity micromanometer (WIMM) system was designed to fulfill the unmet need for a chronic bladder pressure sensing device in urological fields such as urodynamics for diagnosis and neuromodulation for bladder control. Neuromodulation in particular would benefit from a wireless bladder pressure sensor which could provide real-time pressure feedback to an implanted stimulator, resulting in greater bladder capacity while using less power. The WIMM uses custom integrated circuitry, a MEMS transducer, and a wireless antenna to transmit pressure telemetry at a rate of 10 Hz. Aggressive power management techniques yield an average current draw of 9 μA from a 3.6-Volt micro-battery, which minimizes the implant size. Automatic pressure offset cancellation circuits maximize the sensing dynamic range to account for drifting pressure offset due to environmental factors, and a custom telemetry protocol allows transmission with minimum overhead. Wireless operation of the WIMM has demonstrated that the external receiver can receive the telemetry packets, and the low power consumption allows for at least 24 hours of operation with a 4-hour wireless recharge session. PMID:26778926
Mitchell, Andrea Z; McMahon, Carrie; Beck, Tom W; Sarazan, R Dustan
2010-01-01
Animals are commonly used in toxicological research for the evaluation of drug effects on the cardiovascular system. Accurate and reproducible determination of blood pressure (BP) in conscious, manually restrained monkeys and dogs is a challenge with current non-invasive cuff techniques. The High Definition Oscillometry (HDO) technique enables real time measurements with immediate visual feedback via PC screen on data validity. HDO measurements are considerably faster with a duration of approximately 8 to 15s than conventional cuff methods that can take several minutes. HDO Memo Diagnostic Model Science and Cardell BP Monitor Model 9401 measurements were compared for accuracy and reliability with simultaneously recorded direct blood pressure data captured via radiotelemetry. Six monkeys and six dogs implanted with DSI PCT telemetry transmitters were used; BP data were collected by all methods under manual constraint and compared. Measurements were performed with HDO and Cardell in the presence of a BP lowering drug (hexamethonium bromide). Systolic, diastolic, mean arterial pressure, and pulse rate were determined before, during and following up to 10mg/kg hexamethonium administration via intravenous slow bolus injection. Drug induced hemodynamic changes could be detected in monkeys and dogs with the HDO method but only in dogs with the Cardell method. Correlation coefficients were generally higher for HDO versus Telemetry than Cardell versus Telemetry comparisons, indicating that this novel, non-invasive technique produces reliable blood pressure data and is able to detect drug-induced hemodynamic changes. HDO provides an alternative approach for invasive telemetry surgeries to obtain reliable hemodynamic data in animal models for cardiovascular research when invasive techniques are not warranted. Copyright 2010 Elsevier Inc. All rights reserved.
Propulsion/flight control integration technology (PROFIT) software system definition
NASA Technical Reports Server (NTRS)
Carlin, C. M.; Hastings, W. J.
1978-01-01
The Propulsion Flight Control Integration Technology (PROFIT) program is designed to develop a flying testbed dedicated to controls research. The control software for PROFIT is defined. Maximum flexibility, needed for long term use of the flight facility, is achieved through a modular design. The Host program, processes inputs from the telemetry uplink, aircraft central computer, cockpit computer control and plant sensors to form an input data base for use by the control algorithms. The control algorithms, programmed as application modules, process the input data to generate an output data base. The Host program formats the data for output to the telemetry downlink, the cockpit computer control, and the control effectors. Two applications modules are defined - the bill of materials F-100 engine control and the bill of materials F-15 inlet control.
Study of Tools for Command and Telemetry Dictionaries
NASA Technical Reports Server (NTRS)
Pires, Craig; Knudson, Matthew D.
2017-01-01
The Command and Telemetry Dictionary is at the heart of space missions. The C&T Dictionary represents all of the information that is exchanged between the various systems both in space and on the ground. Large amounts of ever-changing information has to be disseminated to all for the various systems and sub-systems throughout all phases of the mission. The typical approach of having each sub-system manage it's own information flow, results in a patchwork of methods within a mission. This leads to significant duplication of effort and potential errors. More centralized methods have been developed to manage this data flow. This presentation will compare two tools that have been developed for this purpose, CCDD and SCIMI that were designed to work with the Core Flight System (cFS).
Mars Observer screen display design for a multimission environment
NASA Technical Reports Server (NTRS)
Chafin, Roy L.
1993-01-01
The Multi Mission Control Team (MMCT) is responsible for support to real time operations of the Mars Observer Mission. The team has the responsibility for monitoring the ground data system for the integrity of the telemetry and command data links. It also supports the Mars Observers Spacecraft Team in monitoring spacecraft events. The Data Monitor and Display subsystem (DMD) workstation provides the data interface with the ground data system. DMD workstation displays were developed to support the Mission Controllers in accomplishing their assigned tasks for supporting the Mars Observer mission. The display design concepts that were used in the Mar Observer MMCT displays to minimize the cognitive demands on the controllers and enhance the MMCT operations were presented. The Data Monitor and Display subsystem (DMD) is the controllers window into the spacecraft and the ground data system. The DMD is a workstation that provides a variety of formatted data displays to the controller. The displays present both spacecraft telemetry data and ground system monitor data. Some displays are preplanned and developed prior to the operations in which they are used. These are called fixed displays and are quite versatile in format and content. Other displays and plots can be created in real time. These displays have limited formats but flexibility in content. These are called list or message displays. They can be rapidly generated by the controller as needed. The MMCT display repertoire provides a mix of displays appropriate to the needs of the MMCT controllers.
Ultrasonic ranging and data telemetry system
Brashear, Hugh R.; Blair, Michael S.; Phelps, James E.; Bauer, Martin L.; Nowlin, Charles H.
1990-01-01
An ultrasonic ranging and data telemetry system determines a surveyor's position and automatically links it with other simultaneously taken survey data. An ultrasonic and radio frequency (rf) transmitter are carried by the surveyor in a backpack. The surveyor's position is determined by calculations that use the measured transmission times of an airborne ultrasonic pulse transmitted from the backpack to two or more prepositioned ultrasonic transceivers. Once a second, rf communications are used both to synchronize the ultrasonic pulse transmission-time measurements and to transmit other simultaneously taken survey data. The rf communications are interpreted by a portable receiver and microcomputer which are brought to the property site. A video display attached to the computer provides real-time visual monitoring of the survey progress and site coverage.
An improved method to monitor nest attentiveness using radio-telemetry
Licht, D.S.; McAuley, D.G.; Longcore, J.R.; Sepik, G.F.
1989-01-01
An improved method of automatically monitoring nest attentiveness was designed and tested using radio-equipped American Woodcock (Scolopax minor). Shielded coaxial cable (RG-58) was extended from a receiver and placed 30 cm above the nest, with a 3.8 cm section of the inner wire exposed. Presence, absence, and activity of birds within 10.1 ? 5.2 m (SD) of the nest were clearly indicated on a Rustrak recorder while extraneous signal interference was minimized.
Beeman, John W.; Adams, Noah S.
2015-01-01
As part of the evaluations conducted at Detroit Dam, we continued to refine and improve methods for monitoring fish movements in the Willamette River. The goal was to develop stable, cost-effective, long-term monitoring arrays suitable for detection of any Juvenile Salmon Acoustic Telemetry System (JSATS)-tagged fish in the Willamette River. These data then could be used to estimate timing, migration rates, and survival of JSATS-tagged fish from various studies in the Willamette River Basin. The challenge, however, is that acoustic telemetry generally performs poorly in shallow, turbulent water, like that found in the Willamette River. We successfully designed, deployed, and maintained a series of monitoring sites near the Oregon cities of Salem, Wilsonville, and Portland. In the spring, detection probabilities at these sites ranged from 0.900 to 1.000. In the fall, the detection probabilities decreased and ranged from 0.526 to 1.000. The lower detection probabilities, particularly at the Salem site (0.526), were owing to loss of data caused by abnormally high flows as well as the 2013 Federal government shutdown, which prevented us from servicing the equipment. The monitoring sites that we installed seem to be robust and enable the efficient use of acoustic-tagged fish for studies of migration or survival in the Willamette River and similar environments.
Implementation of body area networks based on MICS/WMTS medical bands for healthcare systems.
Yuce, Mehmet R; Ho, Chee Keong
2008-01-01
A multi-hoping sensor network system has been implemented to monitor physiological parameters from multiple patient bodies by means of medical communication standards MICS (Medical Implant Communication Service) and WMTS (Wireless Medical Telemetry Service). Unlike the other medical sensor networks (they usually use 2.4 GHz ISM band), we used the two medical standards occupying the frequency bands that are mainly assigned to medical applications. The prototype system uses the MICS band (402-405 MHz) between the sensor nodes and a remote central control unit (CCU). And WMTS frequencies (608-614MHz) are used between the CCUs and the remote base stations allowing for a much larger range acting as an intermediate node. The sensor nodes in the prototype can measure up to four body signals (i.e. 4-channel) where one is dedicated to a continuous physiological signal such as ECC/EEG. The system includes firmware and software designs that can provide a long distance data transfer through the internet or a mobile network.
ASU Formula Lightning Race Vehicle Report Prepared for Ohio Aerospace Institute
NASA Technical Reports Server (NTRS)
Sirkis, Murray D.; Happ, John B., III; Gilbert, Nicholas
1994-01-01
This report describes the drive system in the Arizona State University Formula Lightning electric race car when it participated in the 1994 Cleveland Electric Formula Classic on 9 July 1994. In addition, the telemetry system used to monitor the car's performance and plans for improving the car's performance are described.
Ingestible Thermometer Pill Aids Athletes in Beating the Heat
NASA Technical Reports Server (NTRS)
2006-01-01
Developed by Goddard Space Flight Center and the Johns Hopkins University Applied Physics Laboratory to monitor the core body temperature of astronauts during space flight, the ingestible "thermometer pill" has a silicone-coated exterior, with a microbattery, a quartz crystal temperature sensor, a space-aged telemetry system, and microminiaturized circuitry on the interior.
Intelligent data reduction for autonomous power systems
NASA Technical Reports Server (NTRS)
Floyd, Stephen A.
1988-01-01
Since 1984 Marshall Space Flight Center was actively engaged in research and development concerning autonomous power systems. Much of the work in this domain has dealt with the development and application of knowledge-based or expert systems to perform tasks previously accomplished only through intensive human involvement. One such task is the health status monitoring of electrical power systems. Such monitoring is a manpower intensive task which is vital to mission success. The Hubble Space Telescope testbed and its associated Nickel Cadmium Battery Expert System (NICBES) were designated as the system on which the initial proof of concept for intelligent power system monitoing will be established. The key function performed by an engineer engaged in system monitoring is to analyze the raw telemetry data and identify from the whole only those elements which can be considered significant. This function requires engineering expertise on the functionality of the system, the mode of operation and the efficient and effective reading of the telemetry data. Application of this expertise to extract the significant components of the data is referred to as data reduction. Such a function possesses characteristics which make it a prime candidate for the application of knowledge-based systems' technologies. Such applications are investigated and recommendations are offered for the development of intelligent data reduction systems.
Goldstein, J.N.; Woodward, D.F.; Farag, A.M.
1999-01-01
Spawning migration of adult male chinook salmon Oncorhynchus tshawytscha was monitored by radio telemetry to determine their response to the presence of metals contamination in the South Fork of the Coeur d'Alene River, Idaho. The North Fork of the Coeur d'Alene River is relatively free of metals contamination and was used as a control. In all, 45 chinook salmon were transported from their natal stream, Wolf Lodge Creek, tagged with radio transmitters, and released in the Coeur d'Alene River 2 km downstream of the confluence of the South Fork and the North Fork of the Coeur d'Alene River. Fixed telemetry receivers were used to monitor the upstream movement of the tagged chinook salmon through the confluence area for 3 weeks after release. During this period, general water quality and metals concentrations were monitored in the study area. Of the 23 chinook salmon observed to move upstream from the release site and through the confluence area, the majority (16 fish, 70%) moved up the North Fork, and only 7 fish (30%) moved up the South Fork, where greater metals concentrations were observed. Our results agree with laboratory findings and suggest that natural fish populations will avoid tributaries with high metals contamination.
Evaluation of a low cost wireless heat ratio method system for measuring transpiration
NASA Astrophysics Data System (ADS)
Eiriksson, D.; Boyer, B.; Aishlin, P. S.; Bowling, D. R.
2016-12-01
For decades, environmental measurements in remote locations have consisted of sensors hard wired to loggers that send data to central servers via radio, satellite, or cellular telemetry. This model of data collection is effective when all sensors are located in close proximity to the central data logger, such as on a weather station. Frequently, however, in order to adequately capture the spatial heterogeneity associated with environmental processes (e.g., transpiration, soil moisture, or snow depth), it is necessary to install many sensors 10's to 100's of meters from a central data logging station. This presents a practical and financial obstacle when considering the cost of cabling and conduit, in addition to the potential data collection and data quality problems associated with long cable runs. We offer a solution to this persistent challenge with a hybrid datalogging system that combines the power and reliability of Campbell Scientific logging and telemetry equipment with low cost Xbee radios and Arduino based data logging platforms. To evaluate the promise of this hybrid datalogging concept we developed a new generation of low cost, homemade heat ratio sapflux sensors and tested them at a forested site in the Wasatch Mountains, near Salt Lake City, Utah. We present data from this test site, heat ratio method sensor construction details, and example code that merges the capabilities of Arduino and Campbell Scientific datalogging systems.
Preliminary development of an intelligent computer assistant for engine monitoring
NASA Technical Reports Server (NTRS)
Disbrow, James D.; Duke, Eugene L.; Ray, Ronald J.
1989-01-01
As part of the F-18 high-angle-of-attack vehicle program, an AI method was developed for the real time monitoring of the propulsion system and for the identification of recovery procedures for the F404 engine. The aim of the development program is to provide enhanced flight safety and to reduce the duties of the propulsion engineers. As telemetry data is received, the results are continually displayed in a number of different color graphical formats. The system makes possible the monitoring of the engine state and the individual parameters. Anomaly information is immediately displayed to the engineer.
2014-12-01
scrofa domesticus) Scott Willens,1,* David M Cox,3 Ernest H Braue,1 Todd M Myers,1 and Matthew D Wegner2 Telemetric monitoring of physiologic parameters...BMC Vet Res 4:51. 15. Hulet SW, Sommerville DR, Crosier RB, Dabisch PA, Miller DB, Benton BJ, Forster JS, Scotto JA, Jarvis JR , Krauthauser C...domestic white pig. Basic Clin Pharmacol Toxicol 97:35–38. 6. Crawshaw GJ, Mills KJ, Mosley C, Patterson BR. 2007. Field im- plantation of
Telemetry Attributes Transfer Standard (TMATS) Handbook
2015-07-01
Example ......................... 6-1 Appendix A. Extensible Markup Language TMATS Differences ...................................... A-1 Appendix B...return-to-zero - level TG Telemetry Group TM telemetry TMATS Telemetry Attributes Transfer Standard XML eXtensible Markup Language Telemetry... Markup Language) format. The initial version of a standard 1 Range Commanders Council. Telemetry
Seismic switch for strong motion measurement
Harben, Philip E.; Rodgers, Peter W.; Ewert, Daniel W.
1995-01-01
A seismic switching device that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period.
Seismic switch for strong motion measurement
Harben, P.E.; Rodgers, P.W.; Ewert, D.W.
1995-05-30
A seismic switching device is described that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period. 11 figs.
Further In-vitro Characterization of an Implantable Biosensor for Ethanol Monitoring in the Brain
Secchi, Ottavio; Zinellu, Manuel; Spissu, Ylenia; Pirisinu, Marco; Bazzu, Gianfranco; Migheli, Rossana; Desole, Maria Speranza; O′Neill, Robert D.; Serra, Pier Andrea; Rocchitta, Gaia
2013-01-01
Ethyl alcohol may be considered one of the most widespread central nervous system (CNS) depressants in Western countries. Because of its toxicological and neurobiological implications, the detection of ethanol in brain extracellular fluid (ECF) is of great importance. In a previous study, we described the development and characterization of an implantable biosensor successfully used for the real-time detection of ethanol in the brain of freely-moving rats. The implanted biosensor, integrated in a low-cost telemetry system, was demonstrated to be a reliable device for the short-time monitoring of exogenous ethanol in brain ECF. In this paper we describe a further in-vitro characterization of the above-mentioned biosensor in terms of oxygen, pH and temperature dependence in order to complete its validation. With the aim of enhancing ethanol biosensor performance, different enzyme loadings were investigated in terms of apparent ethanol Michaelis-Menten kinetic parameters, viz. IMAX, KM and linear region slope, as well as ascorbic acid interference shielding. The responses of biosensors were studied over a period of 28 days. The overall findings of the present study confirm the original biosensor configuration to be the best of those investigated for in-vivo applications up to one week after implantation. PMID:23881145
Space and habitat use by wild Bactrian camels in the Transaltai Gobi of southern Mongolia☆
Kaczensky, Petra; Adiya, Yadamsuren; von Wehrden, Henrik; Mijiddorj, Batmunkh; Walzer, Chris; Güthlin, Denise; Enkhbileg, Dulamtseren; Reading, Richard P.
2014-01-01
Wild Bactrian camels (Camela ferus) are listed as Critically Endangered by the International Union for Conservation of Nature (IUCN) and only persist in some of the most remote locations in northern China and southern Mongolia. Although the species has been recognized as an umbrella species for the fragile central Asian desert ecosystem and has been high on the conservation agenda, little is known about the species’ habitat requirements, with most information coming from anecdotal sightings and descriptive studies. We compiled the only available telemetry data from wild camels worldwide. Seven wild camels, which were followed for 11–378 monitoring days, covered a total range of 28,410 km2, with individual annual ranges being >12,000 km2 for three animals followed over a year. Camels reacted strongly to capture events, moving up to 64 km from the capture site within a day, whereas normal average daily straight line distances were 3.0–6.4 km/day. Camels showed a preference for intermediate productivity values (NDVI, habitat type) and landscape parameters (distance to water, elevation) and an avoidance of steep slopes. Our telemetry results suggest that wild camels still range throughout the entire Great Gobi A Strictly Protected Area (SPA), are highly mobile, and very sensitive to human disturbance. Their habitat preference may be a trade-off between dietary and safety requirements. Small sample size did not allow the development of a full habitat model testing all variables simultaneously and we urgently call for more data from additional wild camels as a foundation for evidence driven conservation actions. PMID:24695588
Melczer, Csaba; Melczer, László; Goják, Ilona; Kónyi, Attila; Szabados, Sándor; Raposa, László Bence; Oláh, András; Ács, Pongrác
2017-09-01
Several studies have demonstrated that the prevalence of heart disease can be accounted for between 0.4 and 2% in developed countries. The present study aimed to use the PA% of the telemetry data to estimate the 6-minute walk test result. A total of seventeen patients with heart disease; 3 females and 14 males; age: 57.35 yrs ± 9.54; body mass 98.71 ± 9.89 kg; average BMI 36.69 ± 3.67 were recruited into the study. Using the two sets of values describing physical performance, linear regression was calculated providing a mathematical equation, thus, the Physical Activity % value is used to estimate the distance traveled over a 6-minute walk test. On further data analysis, we have come to the conclusion that the distance walked during the six-minute-long test may be measured by PA% from the data of CRT device. With our method, based on the values received from the physical activity sensor implanted into the resynchronisation devices, changes in patients' health status could be monitored telemetrically with the assistance from the implanted electronic device. Orv Hetil. 2017; 158(35): 1390-1395.
Monitoring service for the Gran Telescopio Canarias control system
NASA Astrophysics Data System (ADS)
Huertas, Manuel; Molgo, Jordi; Macías, Rosa; Ramos, Francisco
2016-07-01
The Monitoring Service collects, persists and propagates the Telescope and Instrument telemetry, for the Gran Telescopio CANARIAS (GTC), an optical-infrared 10-meter segmented mirror telescope at the ORM observatory in Canary Islands (Spain). A new version of the Monitoring Service has been developed in order to improve performance, provide high availability, guarantee fault tolerance and scalability to cope with high volume of data. The architecture is based on a distributed in-memory data store with a Product/Consumer pattern design. The producer generates the data samples. The consumers either persists the samples to a database for further analysis or propagates them to the consoles in the control room to monitorize the state of the whole system.
Process and methodology of developing Cassini G and C Telemetry Dictionary
NASA Technical Reports Server (NTRS)
Kan, Edwin P.
1994-01-01
While the Cassini spacecraft telemetry design had taken on the new approach of 'packetized telemetry', the AACS (Attitude and Articulation Subsystem) had further extended into the design of 'mini-packets' in its telemetry system. Such telemetry packet and mini-packet design produced the AACS Telemetry Dictionary; iterations of the latter in turn provided changes to the former. The ultimate goals were to achieve maximum telemetry packing density, optimize the 'freshness' of more time-critical data, and to effect flexibility, i.e., multiple AACS data collection schemes, without needing to change the overall spacecraft telemetry mode. This paper describes such a systematic process and methodology, evidenced by various design products related to, or as part of, the AACS Telemetry Dictionary.
Seasonal movement of brown trout in a southern Appalachian river
Kyle H. Burrell; J. Jeffery Isely; David B. Bunnell; David H. Van Lear; C. Andrew Dolloff
2000-01-01
Radio telemetry was used to evaluate the seasonal movement, activity level, and home range size of adult brown trout Salmo trutta in the Chattooga River watershed, one of the southernmost coldwater stream systems in the United States. In all, 27 adult brown trout (262-452 mm total length) were successfully monitored from 16 November 1995 to 15...
2012-01-01
sea lions (Zalophus californicus, Eumetopias jubatus) or white sturgeon (Acipenser transmontanus) in the tailrace, moved to spawning tributaries...and management of three parasitic lampreys of North America. Fisheries 35:580-594. Close, D. A., M. Fitzpatrick, and H. Li. 2002. The ecological
Microelectronics bioinstrumentation systems
NASA Technical Reports Server (NTRS)
Ko, W. H.
1977-01-01
Microelectronic bioinstrumentation systems to be employed in the Cardiovascular Deconditioning Program were developed. Implantable telemetry systems for long-term monitoring of animals on earth were designed to collect physiological data necessary for the understanding of the mechanisms of cardiovascular deconditioning. In-flight instrumentation systems, microelectronic instruments, and RF powering techniques for other life science experiments in the NASA program were studied.
Home range use by swamp rabbits (Sylvilagus aquaticus) in a frequently inundated bottomland forest
Patrick A. Zollner; Winston P. Smith; Leonard A. Brennan
2000-01-01
Home range size of six swamp rabbits in south-central Arkansas was estilnated by radio-telemetry from February 1991 through March 1992. The average home range size was significantly larger than previously reported estimates. This difference is partly attributable to the large number of observations per rabbit in our study, but may also be explained by our inclusion of...
Hubble Space Telescope: the new telemetry archiving system
NASA Astrophysics Data System (ADS)
Miebach, Manfred P.
2000-07-01
The Hubble Space Telescope (HST), the first of NASA's Great Observatories, was launched on April 24, 1990. The HST was designed for a minimum fifteen-year mission with on-orbit servicing by the Space Shuttle System planned at approximately three-year intervals. Major changes to the HST ground system have been implemented for the third servicing mission in December 1999. The primary objectives of the ground system re- engineering effort, a project called 'Vision 2000 Control Center System (CCS),' are to reduce both development and operating costs significantly for the remaining years of HST's lifetime. Development costs are reduced by providing a more modern hardware and software architecture and utilizing commercial off the shelf (COTS) products wherever possible. Part of CCS is a Space Telescope Engineering Data Store, the design of which is based on current Data Warehouse technology. The Data Warehouse (Red Brick), as implemented in the CCS Ground System that operates and monitors the Hubble Space Telescope, represents the first use of a commercial Data Warehouse to manage engineering data. The purpose of this data store is to provide a common data source of telemetry data for all HST subsystems. This data store will become the engineering data archive and will provide a queryable database for the user to analyze HST telemetry. The access to the engineering data in the Data Warehouse is platform-independent from an office environment using commercial standards (Unix, Windows98/NT). The latest Internet technology is used to reach the HST engineering community. A WEB-based user interface allows easy access to the data archives. This paper will provide a CCS system overview and will illustrate some of the CCS telemetry capabilities: in particular the use of the new Telemetry Archiving System. Vision 20001 is an ambitious project, but one that is well under way. It will allow the HST program to realize reduced operations costs for the Third Servicing Mission and beyond.
Atmosphere Explorer control system software (version 2.0)
NASA Technical Reports Server (NTRS)
Mocarsky, W.; Villasenor, A.
1973-01-01
The Atmosphere Explorer Control System (AECS) was developed to provide automatic computer control of the Atmosphere Explorer spacecraft and experiments. The software performs several vital functions, such as issuing commands to the spacecraft and experiments, receiving and processing telemetry data, and allowing for extensive data processing by experiment analysis programs. The AECS was written for a 48K XEROX Data System Sigma 5 computer, and coexists in core with the XDS Real-time Batch Monitor (RBM) executive system. RBM is a flexible operating system designed for a real-time foreground/background environment, and hence is ideally suited for this application. Existing capabilities of RBM have been used as much as possible by AECS to minimize programming redundancy. The most important functions of the AECS are to send commands to the spacecraft and experiments, and to receive, process, and display telemetry data.
Launching AI in NASA ground systems
NASA Technical Reports Server (NTRS)
Perkins, Dorothy C.; Truszkowski, Walter F.
1990-01-01
This paper will discuss recent operational successes in implementing expert systems to support the complex functions of NASA mission control systems at the Goddard Space Flight Center, including fault detection and diagnosis for real time and engineering analysis functions in the Cosmic Background Explorer and Gamma Ray Observatory missions and automation of resource planning and scheduling functions for various missions. It will also discuss ongoing developments and prototypes that will lead to increasingly sophisticated applications of artificial intelligence. These include the use of neural networks to perform telemetry monitoring functions, the implementation of generic expert system shells that can be customized to telemetry handling functions specific to NASA control centers, the applications of AI in training and user support, the long-term potential of implementing systems based around distributed, cooperative problem solving, and the use of AI to control and assist system development activities.
NASA Technical Reports Server (NTRS)
1988-01-01
Ingestible Thermal Monitoring System was developed at Johns Hopkins University as means of getting internal temperature readings for treatments of such emergency conditions as dangerously low (hypothermia) and dangerously high (hyperthermia) body temperatures. ITMS's accuracy is off no more than one hundredth of a degree and provides the only means of obtaining deep body temperature. System has additional applicability in fertility monitoring and some aspects of surgery, critical care obstetrics, metabolic disease treatment, gerontology (aging) and food processing research. Three-quarter inch silicone capsule contains telemetry system, micro battery, and a quartz crystal temperature sensor inserted vaginally, rectally, or swallowed.
Surveying the earth from 20,000 miles
Colvocoresses, A.P.
1970-01-01
Current space programs aimed at monitoring the earth's resources concentrate on the lower orbital altitudes of 100 to 500 nautical miles. An earth synchronous (geo-stationary) orbit is 19,400 n. mi. above the earth. A powerful telephoto camera at such a location can monitor and record many time-variant phenomena far more effectively than instruments at lower altitudes. The geo-stationary systems characteristics and problem areas related to optics and telemetry are outlined and detailed, and on-going programs are discussed as they relate to the geo-stationary system.
Improving Spacecraft Data Visualization Using Splunk
NASA Technical Reports Server (NTRS)
Conte, Matthew
2012-01-01
EPOXI, like all spacecraft missions, receives large volumes of telemetry data from its spacecraft, DIF. It is extremely important for this data to be updated quickly and presented in a readable manner so that the flight team can monitor the status of the spacecraft. Existing DMD pages for monitoring spacecraft telemetry, while functional, are limited and do not take advantage of modern search technology. For instance, they only display current data points from instruments on the spacecraft and have limited graphing capabilities, making it difficult to see historical data. The DMD pages have fixed refresh rates so the team must often wait several minutes to see the most recent data, even after it is received on the ground. The pages are also rigid and require an investment of time and money to update. To more easily organize and visualize spacecraft telemetry, the EPOXI team has begun experimenting with Splunk, a commercially-available data mining system. Splunk can take data received from the spacecraft's different data channels, often in different formats, and index all the data into a common format. Splunk allows flight team members to search through the different data formats from a single interface and to filter results by time range and data field to make finding specific spacecraft events quick and easy. Furthermore, Splunk provides functions to create custom interfaces which help team members visualize the data in charts and graphs to show how the health of the spacecraft has changed over time.One of the goals of my internship with my mentor, Victor Hwang, was to develop new Splunk interfaces to replace the DMD pages and give the spacecraft team access to historical data and visualizations that were previously unavailable. The specific requirements of these pages are discussed in the next section.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodenbeck, Christopher T.; Young, Derek; Chou, Tina
A combined radar and telemetry system is described. The combined radar and telemetry system includes a processing unit that executes instructions, where the instructions define a radar waveform and a telemetry waveform. The processor outputs a digital baseband signal based upon the instructions, where the digital baseband signal is based upon the radar waveform and the telemetry waveform. A radar and telemetry circuit transmits, simultaneously, a radar signal and telemetry signal based upon the digital baseband signal.
Movements and landscape use of Eastern Imperial Eagles Aquila heliaca in Central Asia
Poessel, Sharon; Bragin, Evgeny A.; Sharpe, Peter B.; Garcelon, David K.; Bartoszuk, Kordian; Katzner, Todd E.
2018-01-01
Capsule: We describe ecological factors associated with movements of a globally declining raptor species, the Eastern Imperial Eagle Aquila heliaca.Aims: To describe the movements, habitat associations and resource selection of Eastern Imperial Eagles marked in Central Asia.Methods: We used global positioning system (GPS) data sent via satellite telemetry devices deployed on Eastern Imperial Eagles captured in Kazakhstan to calculate distances travelled and to associate habitat and weather variables with eagle locations collected throughout the annual cycle. We also used resource selection models to evaluate habitat use of tracked birds during autumn migration. Separately, we used wing-tagging recovery data to broaden our understanding of wintering locations of eagles.Results: Eagles tagged in Kazakhstan wintered in most countries on the Arabian Peninsula, as well as Iran and India. The adult eagle we tracked travelled more efficiently than did the four pre-adults. During autumn migration, telemetered eagles used a mixture of vegetation types, but during winter and summer, they primarily used bare and sparsely vegetated areas. Finally, telemetered birds used orographic updrafts to subsidize their autumn migration flight, but they relied on thermal updrafts during spring migration.Conclusion: Our study is the first to use GPS telemetry to describe year-round movements and habitat associations of Eastern Imperial Eagles in Central Asia. Our findings provide insight into the ecology of this vulnerable raptor species that can contribute to conservation efforts on its behalf.
Guideline-based intervention to reduce telemetry rates in a large tertiary centre.
Ramkumar, Satish; Tsoi, Edward H; Raghunath, Ajay; Dias, Floyd F; Li Wai Suen, Christopher; Tsoi, Andrew H; Mansfield, Darren R
2017-07-01
Inappropriate cardiac telemetry use is associated with reduced patient flow and increased healthcare costs. To evaluate the outcomes of guideline-based application of cardiac telemetry. Phase I involved a prospective audit (March to August 2011) of telemetry use at a tertiary hospital. Data were collected on indication for telemetry and clinical outcomes. Phase II prospectively included patients more than 18 years under general medicine requiring ward-based telemetry. As phase II occurred at a time remotely from phase I, an audit similar to phase I (phase II - baseline) was completed prior to a 3-month intervention (May to August 2015). The intervention consisted of a daily telemetry ward round and an admission form based on the American Heart Association guidelines (class I, telemetry indicated; class II, telemetry maybe indicated; class III, telemetry not indicated). Patient demographics, telemetry data, and clinical outcomes were studied. Primary endpoint was the percentage reduction of class III indications, while secondary endpoint included telemetry duration. In phase I (n = 200), 38% were admitted with a class III indication resulting in no change in clinical management. A total of 74 patients was included in phase II baseline (mean ± standard deviation (SD) age 73 years ± 14.9, 57% male), whilst 65 patients were included in the intervention (mean ± SD age 71 years ± 18.4, 35% male). Both groups had similar baseline characteristics. There was a reduction in class III admissions post-intervention from 38% to 11%, P < 0.001. Intervention was associated with a reduction in median telemetry duration (1.8 ± 1.8 vs 2.4 ± 2.5 days, P = 0.047); however, length of stay was similar in both groups (P > 0.05). Guideline-based telemetry admissions and a regular telemetry ward round are associated with a reduction in inappropriate telemetry use. © 2017 Royal Australasian College of Physicians.
Fisher research in the US Rocky Mountains: A critical overview
Michael Schwartz; J. Sauder
2013-01-01
In this talk we review the recent fisher research and monitoring efforts that have occurred throughout Idaho and Montana in past 2 decades. We begin this talk with a summary of the habitat relationship work that has examined fisher habitat use at multiple scales. These have largely been conducted using radio and satellite telemetry, although a new, joint effort to use...
2010-04-01
frequency monitoring, target control, and electronic warfare and networked operations. Kokee supports tracking radars, telemetry, communications, and...owned island of Niihau provide support and sites for a remotely operated PMRF surveillance radar, a Test Vehicle Recovery Site, an electronic warfare...site, multiple electronic warfare portable simulator sites, a marker for aircraft mining exercise programs, and a helicopter terrain-following
Animal movement data: GPS telemetry, autocorrelation and the need for path-level analysis [chapter 7
Samuel A. Cushman
2010-01-01
In the previous chapter we presented the idea of a multi-layer, multi-scale, spatially referenced data-cube as the foundation for monitoring and for implementing flexible modeling of ecological pattern-process relationships in particulate, in context and to integrate these across large spatial extents at the grain of the strongest linkage between response and driving...
Diel activity patterns of the Louisiana pine snakes (Pituophis ruthveni) in eastern Texas
Marc J. Ealy; Robert R. Fleet; D. Craig Rudolph
2004-01-01
This study examined the diel activity patterns of six Louisiana pine snakes in eastern Texas using radio-telemetry. snakes were monitored for 44 days on two study areas from May to October 1996. Louisana pine snakes were primarily diurnal with moderate crepuscular activity, spending the night within pocket gopher burrows or inactive on the surface. During daylight...
A second generation expert system for checking and diagnosing AXAF's electric power system
NASA Technical Reports Server (NTRS)
Bykat, Alex
1992-01-01
AXAF - Advanced X-ray Astrophysics Facility - is a third NASA's great space observatory. Each of these observatories is intended to cover different parts of the electromagnetic spectrum (x-ray for AXAF) and to provide high resolution images of celestial sources in our universe. While the spacecraft is in orbit, the electric power system (EPS) performance is monitored via sensors measuring voltages, currents, pressures, and temperatures. The sensor data are sent from the spacecraft to the ground station as telemetry and analyzed on arrival. Monitoring, diagnosis and maintenance of such EPS is an arduous task which requires expertise and constant attention of the ground personnel. To help the ground crew in this task, much of it should be automated and delegated to expert systems, which draw engineer's attention to possible malfunctions and allows him to review the telemetry to determine the source of the trouble, diagnose the suspected fault and to propose a corrective action. Those systems are built on assumptions such as: (1) domain knowledge is available and can be represented as a set of rules; (2) domain knowledge is circumscribed, static, and monotonic; and (3) expert decision making can be emulated by a logical inference mechanism.
Landsat-5 bumper-mode geometric correction
Storey, James C.; Choate, Michael J.
2004-01-01
The Landsat-5 Thematic Mapper (TM) scan mirror was switched from its primary operating mode to a backup mode in early 2002 in order to overcome internal synchronization problems arising from long-term wear of the scan mirror mechanism. The backup bumper mode of operation removes the constraints on scan start and stop angles enforced in the primary scan angle monitor operating mode, requiring additional geometric calibration effort to monitor the active scan angles. It also eliminates scan timing telemetry used to correct the TM scan geometry. These differences require changes to the geometric correction algorithms used to process TM data. A mathematical model of the scan mirror's behavior when operating in bumper mode was developed. This model includes a set of key timing parameters that characterize the time-varying behavior of the scan mirror bumpers. To simplify the implementation of the bumper-mode model, the bumper timing parameters were recast in terms of the calibration and telemetry data items used to process normal TM imagery. The resulting geometric performance, evaluated over 18 months of bumper-mode operations, though slightly reduced from that achievable in the primary operating mode, is still within the Landsat specifications when the data are processed with the most up-to-date calibration parameters.
Research on monitoring system of water resources in Shiyang River Basin based on Multi-agent
NASA Astrophysics Data System (ADS)
Zhao, T. H.; Yin, Z.; Song, Y. Z.
2012-11-01
The Shiyang River Basin is the most populous, economy relatively develop, the highest degree of development and utilization of water resources, water conflicts the most prominent, ecological environment problems of the worst hit areas in Hexi inland river basin in Gansu province. the contradiction between people and water is aggravated constantly in the basin. This text combines multi-Agent technology with monitoring system of water resource, the establishment of a management center, telemetry Agent Federation, as well as the communication network between the composition of the Shiyang River Basin water resources monitoring system. By taking advantage of multi-agent system intelligence and communications coordination to improve the timeliness of the basin water resources monitoring.
Head-Impact-Measurement Devices: A Systematic Review.
O'Connor, Kathryn L; Rowson, Steven; Duma, Stefan M; Broglio, Steven P
2017-03-01
With an estimated 3.8 million sport- and recreation-related concussions occurring annually, targeted prevention and diagnostic methods are needed. Biomechanical analysis of head impacts may provide quantitative information that can inform both prevention and diagnostic strategies. To assess available head-impact devices and their clinical utility. We performed a systematic search of the electronic database PubMed for peer-reviewed publications, using the following phrases: accelerometer and concussion, head impact telemetry, head impacts and concussion and sensor, head impacts and sensor, impact sensor and concussion, linear acceleration and concussion, rotational acceleration and concussion, and xpatch concussion. In addition to the literature review, a Google search for head impact monitor and concussion monitor yielded 15 more devices. Included studies were performed in vivo, used commercially available devices, and focused on sport-related concussion. One author reviewed the title and abstract of each study for inclusion and exclusion criteria and then reviewed each full-text article to confirm inclusion criteria. Controversial articles were reviewed by all authors to reach consensus. In total, 61 peer-reviewed articles involving 4 head-impact devices were included. Participants in boxing, football, ice hockey, soccer, or snow sports ranged in age from 6 to 24 years; 18% (n = 11) of the studies included female athletes. The Head Impact Telemetry System was the most widely used device (n = 53). Fourteen additional commercially available devices were presented. Measurements collected by impact monitors provided real-time data to estimate player exposure but did not have the requisite sensitivity to concussion. Proper interpretation of previously reported head-impact kinematics across age, sport, and position may inform future research and enable staff clinicians working on the sidelines to monitor athletes. However, head-impact-monitoring systems have limited clinical utility due to error rates, designs, and low specificity in predicting concussive injury.
Pressler, Ronit M; Seri, Stefano; Kane, Nick; Martland, Tim; Goyal, Sushma; Iyer, Anand; Warren, Elliott; Notghi, Lesley; Bill, Peter; Thornton, Rachel; Appleton, Richard; Doyle, Sarah; Rushton, Sarah; Worley, Alan; Boyd, Stewart G
2017-08-01
Paediatric Epilepsy surgery in the UK has recently been centralised in order to improve expertise and quality of service available to children. Video EEG monitoring or telemetry is a highly specialised and a crucial component of the pre-surgical evaluation. Although many Epilepsy Monitoring Units work to certain standards, there is no national or international guideline for paediatric video telemetry. Due to lack of evidence we used a modified Delphi process utilizing the clinical and academic expertise of the clinical neurophysiology sub-specialty group of Children's Epilepsy Surgical Service (CESS) centres in England and Wales. This process consisted of the following stages I: Identification of the consensus working group, II: Identification of key areas for guidelines, III: Consensus practice points and IV: Final review. Statements that gained consensus (median score of either 4 or 5 using a five-point Likerttype scale) were included in the guideline. Two rounds of feedback and amendments were undertaken. The consensus guidelines includes the following topics: referral pathways, neurophysiological equipment standards, standards of recording techniques, with specific emphasis on safety of video EEG monitoring both with and without drug withdrawal, a protocol for testing patient's behaviours, data storage and guidelines for writing factual reports and conclusions. All statements developed received a median score of 5 and were adopted by the group. Using a modified Delphi process we were able to develop universally-accepted video EEG guidelines for the UK CESS. Although these recommendations have been specifically developed for the pre-surgical evaluation of children with epilepsy, it is assumed that most components are transferable to any paediatric video EEG monitoring setting. Copyright © 2017 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, W.; Seeber, L.; Armbruster, J. G.
2002-12-01
On April 20, 2002, a Mw 5 earthquake occurred near the town of Au Sable Forks, northeastern Adirondacks, New York. The quake caused moderate damage (MMI VII) around the epicentral area and it is well recorded by over 50 broadband stations in the distance ranges of 70 to 2000 km in the Eastern North America. Regional broadband waveform data are used to determine source mechanism and focal depth using moment tensor inversion technique. Source mechanism indicates predominantly thrust faulting along 45° dipping fault plane striking due South. The mainshock is followed by at least three strong aftershocks with local magnitude (ML) greater than 3 and about 70 aftershocks are detected and located in the first three months by a 12-station portable seismographic network. The aftershock distribution clearly delineate the mainshock rupture to the westerly dipping fault plane at a depth of 11 to 12 km. Preliminary analysis of the aftershock waveform data indicates that orientation of the P-axis rotated 90° from that of the mainshock, suggesting a complex source process of the earthquake sequence. We achieved an important milestone in monitoring earthquakes and evaluating their hazards through rapid cross-border (Canada-US) and cross-regional (Central US-Northeastern US) collaborative efforts. Hence, staff at Instrument Software Technology, Inc. near the epicentral area joined Lamont-Doherty staff and deployed the first portable station in the epicentral area; CERI dispatched two of their technical staff to the epicentral area with four accelerometers and a broadband seismograph; the IRIS/PASSCAL facility shipped three digital seismographs and ancillary equipment within one day of the request; the POLARIS Consortium, Canada sent a field crew of three with a near real-time, satellite telemetry based earthquake monitoring system. The Polaris station, KSVO, powered by a solar panel and batteries, was already transmitting data to the central Hub in London, Ontario, Canada within a day after the field crew arrived in the Au Sable Forks area. This collaboration allowed us to maximize the scarce resources available for monitoring this damaging earthquake and its aftershocks in the Northeastern U.S.
Adaptable Transponder for Multiple Telemetry Systems
NASA Technical Reports Server (NTRS)
Sims, William Herbert, III (Inventor); Varnavas, Kosta A. (Inventor)
2014-01-01
The present invention is a stackable telemetry circuit board for use in telemetry systems for satellites and other purposes. The present invention incorporates previously-qualified interchangeable circuit boards, or "decks," that perform functions such as power, signal receiving and transmission, and processing. Each deck is adapted to serve a range of telemetry applications. This provides flexibility in the construction of the stackable telemetry circuit board and significantly reduces the cost and time necessary to develop a telemetry system.
Snipelisky, David; Ray, Jordan; Matcha, Gautam; Roy, Archana; Harris, Dana; Bosworth, Veronica; Dumitrascu, Adrian; Clark, Brooke; Vadeboncoeur, Tyler; Kusumoto, Fred; Bowman, Cammi; Burton, M Caroline
2018-03-01
Our study assesses the utility of telemetry in identifying decompensation in patients with documented cardiopulmonary arrest. A retrospective review of inpatients who experienced a cardiopulmonary arrest from May 1, 2008, until June 30, 2014, was performed. Telemetry records 24 hours prior to and immediately preceding cardiopulmonary arrest were reviewed. Patient subanalyses based on clinical demographics were made as well as analyses of survival comparing patients with identifiable rhythm changes in telemetry to those without. Of 242 patients included in the study, 75 (31.0%) and 110 (45.5%) experienced telemetry changes at the 24-hour and immediately preceding time periods, respectively. Of the telemetry changes, the majority were classified as nonmalignant (n = 50, 66.7% and n = 66, 55.5% at 24 hours prior and immediately preceding, respectively). There was no difference in telemetry changes between intensive care unit (ICU) and non-ICU patients and among patients stratified according to the American Heart Association telemetry indications. There was no difference in survival when comparing patients with telemetry changes immediately preceding and at 24 hours prior to an event (n = 30, 27.3% and n = 15, 20.0%) to those without telemetry changes during the same periods (n = 27, 20.5% and n = 42, 25.2%; P = .22 and .39). Telemetry has limited utility in predicting clinical decompensation in the inpatient setting.
High temperature, harsh environment sensors for advanced power generation systems
NASA Astrophysics Data System (ADS)
Ohodnicki, P. R.; Credle, S.; Buric, M.; Lewis, R.; Seachman, S.
2015-05-01
One mission of the Crosscutting Technology Research program at the National Energy Technology Laboratory is to develop a suite of sensors and controls technologies that will ultimately increase efficiencies of existing fossil-fuel fired power plants and enable a new generation of more efficient and lower emission power generation technologies. The program seeks to accomplish this mission through soliciting, managing, and monitoring a broad range of projects both internal and external to the laboratory which span sensor material and device development, energy harvesting and wireless telemetry methodologies, and advanced controls algorithms and approaches. A particular emphasis is placed upon harsh environment sensing for compatibility with high temperature, erosive, corrosive, and highly reducing or oxidizing environments associated with large-scale centralized power generation. An overview of the full sensors and controls portfolio is presented and a selected set of current and recent research successes and on-going projects are highlighted. A more detailed emphasis will be placed on an overview of the current research thrusts and successes of the in-house sensor material and device research efforts that have been established to support the program.
Kevin S. McKelvey; Yvette K. Ortega; Gary M. Koehler; Keith B. Aubry; J. David. Brittell
2000-01-01
We examined habitat selection by 22 lynx on the Okanogan National Forest in Washington, analyzing radio-telemetry data collected during two previous studies, 1981 through 1988. At a coarse scale, lynx showed little use of areas below 1,400 m or above 2,150 m. Within the zone between 1,400 and 2,150 m, lynx used areas with slopes <10% and moderate stream...
A habitat assessment for Florida panther population expansion into central Florida
Thatcher, C.A.; Van Manen, F.T.; Clark, J.D.
2009-01-01
One of the goals of the Florida panther (Puma concolor coryi) recovery plan is to expand panther range north of the Caloosahatchee River in central Florida. Our objective was to evaluate the potential of that region to support panthers. We used a geographic information system and the Mahalanobis distance statistic to develop a habitat model based on landscape characteristics associated with panther home ranges. We used cross-validation and an independent telemetry data set to test the habitat model. We also conducted a least-cost path analysis to identify potential habitat linkages and to provide a relative measure of connectivity among habitat patches. Variables in our model were paved road density, major highways, human population density, percentage of the area permanently or semipermanently flooded, and percentage of the area in natural land cover. Our model clearly identified habitat typical of that found within panther home ranges based on model testing with recent telemetry data. We identified 4 potential translocation sites that may support a total of approximately 36 panthers. Although we identified potential habitat linkages, our least-cost path analyses highlighted the extreme isolation of panther habitat in portions of the study area. Human intervention will likely be required if the goal is to establish female panthers north of the Caloosahatchee in the near term.
106-17 Telemetry Standards Digitized Audio Telemetry Standard Chapter 5
2017-07-01
RCC Standard 106-17 Chapter 5, July 2017 5-3 5.8 CVSD Bit Rate Determination The following discussion provides a procedure for determining the...Telemetry Standards , RCC Standard 106-17 Chapter 5, July 2017 CHAPTER 5 Digitized Audio Telemetry Standard Table of Contents Chapter 5...Digitized Audio Telemetry Standard ............................................................... 5-1 5.1 General
Olsen, Flemming J; Biering-Sørensen, Tor; Krieger, Derk W
2015-05-01
Continuous cardiac rhythm monitoring has undergone compelling progress over the past decades. Cardiac monitoring has emerged from 12-lead electrocardiograms being performed at the discretion of the treating physician to in-hospital telemetry, Holter monitoring, prolonged external event monitoring and most recently toward insertable device monitoring for several years. Significant advantages and disadvantages pertaining to these monitoring options will be addressed in this review. Insertable cardiac monitors have several advantages over external monitoring techniques and may signify a clinical turning point in the field of arrhythmia management. However, their role in the detection of paroxysmal atrial fibrillation after cryptogenic strokes has yet to evolve. This will be the main focus of this review. Issues surrounding patient selection, clinical relevance and determination of cost-effectiveness for prolonged cardiac monitoring require further studies. Furthermore, insertable cardiac monitoring has not only the potential to augment diagnostic capabilities but also to improve the management of paroxysmal atrial fibrillation.
A three channel telemetry system
NASA Technical Reports Server (NTRS)
Lesho, Jeffery C.; Eaton, Harry A. C.
1993-01-01
A three channel telemetry system intended for biomedical applications is described. The transmitter is implemented in a single chip using a 2 micron BiCMOS processes. The operation of the system and the test results from the latest chip are discussed. One channel is always dedicated to temperature measurement while the other two channels are generic. The generic channels carry information from transducers that are interfaced to the system through on-chip general purpose operational amplifiers. The generic channels have different bandwidths: one from dc to 250 Hz and the other from dc to 1300 Hz. Each generic channel modulates a current controlled oscillator to produce a frequency modulated signal. The two frequency modulated signals are summed and used to amplitude modulate the temperature signal which acts as a carrier. A near-field inductive link telemeters the combined signals over a short distance. The chip operates on a supply voltage anywhere from 2.5 to 3.6 Volts and draws less than 1 mA when transmitting a signal. The chip can be incorporated into ingestible, implantable and other configurations. The device can free the patient from tethered data collection systems and reduces the possibility of infection from subcutaneous leads. Data telemetry can increase patient comfort leading to a greater acceptance of monitoring.
Radio telemetry equipment and applications for carnivores
Fuller, Mark R.; Fuller, Todd K.; Boitani, Luigi; Powell, Roger A.
2012-01-01
Radio-telemetry was not included in the first comprehensive manual of wildlife research techniques (Mosby 1960) because the first published papers were about physiological wildlife telemetry (LeMunyan et al. 1959) and because research using telemetry in field ecology was just being initiated (Marshall et al. 1962; Cochran and Lord 1963). Among the first uses of telemetry to study wildlife, however, was a study of carnivores (Craighead et al. 1963), and telemetry has become a common method for studying numerous topics of carnivore biology. Our goals for this chapter are to provide basic information about radio-telemetry equipment and procedures. Although we provide many references to studies using telemetry equipment and methods, we recommend Kenward's (2001) comprehensive book, A manual of wildlife radio tagging for persons who are unfamiliar with radio-telemetry, Fuller et al. (2005), and Tomkiewicz et al. (2010). Compendia of uses of radio-telemetry in animal research appear regularly as chapters in manuals (Cochran 1980; Samuel and Fuller 1994), in books about equipment, field procedures, study design, and applications (Amlaner and Macdonald 1980; Anderka 1987; Amlaner 1989; White and Garrott 1990; Priede and Swift 1992; Kenward 2001; Millspaugh and Marzluff 2001; Mech and Barber 2002), and in reviews highlighting new developments (Cooke et al. 2004; Rutz and Hays 2009; Cagnacci et al. 2010). Some animal telemetry products and techniques have remained almost unchanged for years, but new technologies and approaches emerge and replace previously available equipment at an increasing pace. Here, we emphasize recent studies for which telemetry was used with carnivores.
GSMS and space views: Advanced spacecraft monitoring tools
NASA Technical Reports Server (NTRS)
Carlton, Douglas; Vaules, David, Jr.; Mandl, Daniel
1993-01-01
The Graphical Spacecraft Monitoring System (GSMS) processes and translates real-time telemetry data from the Gamma Ray Observatory (GRO) spacecraft into high resolution 2-D and 3-D color displays showing the spacecraft's position relative to the Sun, Earth, Moon, and stars, its predicted orbit path, its attitude, instrument field of views, and other items of interest to the GRO Flight Operations Team (FOT). The GSMS development project is described and the approach being undertaken for implementing Space Views, the next version of GSMS, is presented. Space Views is an object-oriented graphical spacecraft monitoring system that will become a standard component of Goddard Space Flight Center's Transportable Payload Operations Control Center (TPOCC).
On the estimation of dispersal and movement of birds
Kendall, W.L.; Nichols, J.D.
2004-01-01
The estimation of dispersal and movement is important to evolutionary and population ecologists, as well as to wildlife managers. We review statistical methodology available to estimate movement probabilities. We begin with cases where individual birds can be marked and their movements estimated with the use of multisite capture-recapture methods. Movements can be monitored either directly, using telemetry, or by accounting for detection probability when conventional marks are used. When one or more sites are unobservable, telemetry, band recoveries, incidental observations, a closed- or open-population robust design, or partial determinism in movements can be used to estimate movement. When individuals cannot be marked, presence-absence data can be used to model changes in occupancy over time, providing indirect inferences about movement. Where abundance estimates over time are available for multiple sites, potential coupling of their dynamics can be investigated using linear cross-correlation or nonlinear dynamic tools.
Reducing SCADA System Nuisance Alarms in the Water Industry in Northern Ireland.
O'Donoghue, Nigel; Phillips, Debra H; Nicell, Ciaran
2015-08-01
The advancement of telemetry control for the water industry has increased the difficulty of managing large volumes of nuisance alarms (i.e., alarms that do not require a response). The aim of this study was to identify and reduce the number of nuisance alarms that occur for Northern Ireland (NI) Water by carrying out alarm duration analysis to determine the appropriate length of persistence (an advanced alarm management tool) that could be applied. All data were extracted from TelemWeb (NI Water's telemetry monitoring system) and analyzed in Excel. Over a 6-week period, an average of 40 000 alarms occurred per week. The alarm duration analysis, which has never been implemented before by NI Water, found that an average of 57% of NI Water alarms had a duration of <5 minutes. Applying 5-minute persistence, therefore, could prevent an average 26 816 nuisance alarms per week. Most of these alarms were from wastewater assets.
Environmental Monitoring Using Sensor Networks
NASA Astrophysics Data System (ADS)
Yang, J.; Zhang, C.; Li, X.; Huang, Y.; Fu, S.; Acevedo, M. F.
2008-12-01
Environmental observatories, consisting of a variety of sensor systems, computational resources and informatics, are important for us to observe, model, predict, and ultimately help preserve the health of the nature. The commoditization and proliferation of coin-to-palm sized wireless sensors will allow environmental monitoring with unprecedented fine spatial and temporal resolution. Once scattered around, these sensors can identify themselves, locate their positions, describe their functions, and self-organize into a network. They communicate through wireless channel with nearby sensors and transmit data through multi-hop protocols to a gateway, which can forward information to a remote data server. In this project, we describe an environmental observatory called Texas Environmental Observatory (TEO) that incorporates a sensor network system with intertwined wired and wireless sensors. We are enhancing and expanding the existing wired weather stations to include wireless sensor networks (WSNs) and telemetry using solar-powered cellular modems. The new WSNs will monitor soil moisture and support long-term hydrologic modeling. Hydrologic models are helpful in predicting how changes in land cover translate into changes in the stream flow regime. These models require inputs that are difficult to measure over large areas, especially variables related to storm events, such as soil moisture antecedent conditions and rainfall amount and intensity. This will also contribute to improve rainfall estimations from meteorological radar data and enhance hydrological forecasts. Sensor data are transmitted from monitoring site to a Central Data Collection (CDC) Server. We incorporate a GPRS modem for wireless telemetry, a single-board computer (SBC) as Remote Field Gateway (RFG) Server, and a WSN for distributed soil moisture monitoring. The RFG provides effective control, management, and coordination of two independent sensor systems, i.e., a traditional datalogger-based wired sensor system and the WSN-based wireless sensor system. The RFG also supports remote manipulation of the devices in the field such as the SBC, datalogger, and WSN. Sensor data collected from the distributed monitoring stations are stored in a database (DB) Server. The CDC Server acts as an intermediate component to hide the heterogeneity of different devices and support data validation required by the DB Server. Daemon programs running on the CDC Server pre-process the data before it is inserted into the database, and periodically perform synchronization tasks. A SWE-compliant data repository is installed to enable data exchange, accepting data from both internal DB Server and external sources through the OGC web services. The web portal, i.e. TEO Online, serves as a user-friendly interface for data visualization, analysis, synthesis, modeling, and K-12 educational outreach activities. It also provides useful capabilities for system developers and operators to remotely monitor system status and remotely update software and system configuration, which greatly simplifies the system debugging and maintenance tasks. We also implement Sensor Observation Services (SOS) at this layer, conforming to the SWE standard to facilitate data exchange. The standard SensorML/O&M data representation makes it easy to integrate our sensor data into the existing Geographic Information Systems (GIS) web services and exchange the data with other organizations.
SeaWiFS technical report series. Volume 10: Modeling of the SeaWiFS solar and lunar observations
NASA Technical Reports Server (NTRS)
Woodward, Robert H.; Barnes, Robert A.; Mcclain, Charles R.; Esaias, Wayne E.; Barnes, William L.; Mecherikunnel, Ann T.; Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor)
1993-01-01
Post-launch stability monitoring of the Sea-viewing Wide Field-of-view Sensor (SeaWifs) will include periodic sweeps of both an onboard solar diffuser plate and the moon. The diffuser views will provide short-term checks and the lunar views will monitor long-term trends in the instrument's radiometric stability. Models of the expected sensor response to these observations were created on the SeaWiFS computer at the National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC) using the Interactive Data Language (IDL) utility with a graphical user interface (GUI). The solar model uses the area of intersecting circles to simulate the ramping of sensor response while viewing the diffuser. This model is compared with preflight laboratory scans of the solar diffuser. The lunar model reads a high-resolution lunar image as input. The observations of the moon are simulated with a bright target recovery algorithm that includes ramping and ringing functions. Tests using the lunar model indicate that the integrated radiance of the entire lunar surface provides a more stable quantity than the mean of radiances from centralized pixels. The lunar model is compared to ground-based scans by the SeaWiFS instrument of a full moon in December 1992. Quality assurance and trend analyses routines for calibration and for telemetry data are also discussed.
Plant Habitat Telemetry / Command Interface and E-MIST
NASA Technical Reports Server (NTRS)
Walker, Uriae M.
2013-01-01
Plant Habitat (PH) is an experiment to be taken to the International Space Station (ISS) in 2016. It is critical that ground support computers have the ability to uplink commands to control PH, and that ISS computers have the ability to downlink PH telemetry data to ground support. This necessitates communication software that can send, receive, and process, PH specific commands and telemetry. The objective of the Plant Habitat Telemetry/ Command Interface is to provide this communication software, and to couple it with an intuitive Graphical User Interface (GUI). Initial investigation of the project objective led to the decision that code be written in C++ because of its compatibility with existing source code infrastructures and robustness. Further investigation led to a determination that multiple Ethernet packet structures would need to be created to effectively transmit data. Setting a standard for packet structures would allow us to distinguish these packets that would range from command type packets to sub categories of telemetry packets. In order to handle this range of packet types, the conclusion was made to take an object-oriented programming approach which complemented our decision to use the C++ programming language. In addition, extensive utilization of port programming concepts was required to implement the core functionality of the communication software. Also, a concrete understanding of a packet processing software was required in order to put aU the components of ISS-to-Ground Support Equipment (GSE) communication together and complete the objective. A second project discussed in this paper is Exposing Microbes to the Stratosphere (EMIST). This project exposes microbes into the stratosphere to observe how they are impacted by atmospheric effects. This paper focuses on the electrical and software expectations of the project, specifically drafting the printed circuit board, and programming the on-board sensors. The Eagle Computer-Aided Drafting (CAD) software was used to draft the E-MIST circuit. This required several component libraries to be created. Coding the sensors and obtaining sensor data involved using the Arduino Uno developmental board and coding language, and properly wiring peripheral sensors to the microcontroller (the central control unit of the experiment).
William H. Lane; David E. Andersen; Thomas H. Nicholls
1997-01-01
To determine habitat use and movements of male Boreal Owls (Aegolius funereus) in northeast Minnesota, we monitored 10 radio-equipped owls from 1990-1992. We used mist nets, bal-chartris, and the taped playback recording of the primary song of the male Boreal Owl to trap territorial male owls during the springtime breeding season.
Electromagnetic interference with pacemakers caused by portable media players.
Thaker, Jay P; Patel, Mehul B; Jongnarangsin, Krit; Liepa, Valdis V; Thakur, Ranjan K
2008-04-01
Electromagnetic fields generated by electrical devices may cause interference with permanent pacemakers. Media players are becoming a common mode of portable entertainment. The most common media players used worldwide are iPods. These devices are often carried in a shirt chest pocket, which may place the devices close to an implanted pacemaker. The purpose of this study was to determine if iPods cause interference with pacemakers. In this prospective, single-blinded study, 100 patients who had cardiac pacemakers were tested with four types of iPods to assess for interference. Patients were monitored by a single-channel ECG monitor as well as the respective pacemaker programmer via the telemetry wand. iPods were tested by placing them 2 inches anterior to the pacemaker and wand for up to 10 seconds. To simulate actual use, standard-issue headphones were plugged into the iPods. To maintain consistency, the volume was turned up maximally, and the equalizer was turned off. A subset of 25 patients underwent testing on 2 separate days to assess for reproducibility of interference. Pacemaker interference was categorized as type I or type II telemetry interference. Type I interference was associated with atrial and/or ventricular high rates on rate histograms. Type II interference did not affect pacemaker rate counters. Electromagnetic emissions from the four iPods also were evaluated in a Faraday cage to determine the mechanism of the observed interference. One hundred patients (63 men and 37 women; mean age 77.1 +/- 7.6 years) with 11 single-chamber pacemakers and 89 dual-chamber pacemakers underwent 800 tests. The incidence of any type of interference was 51% of patients and 20% of tests. Type I interference was seen in 19% of patients and type II in 32% of patients. Reproducibility testing confirmed that interference occurred regardless of pacing configuration (unipolar or bipolar), pacing mode (AAI, VVI, or DDD), and from one day to the next. Electromagnetic emissions testing from the iPods demonstrated maximum emissions in the pacemaker carrier frequency range when the iPod was turned "on" with the headphones attached. iPods placed within 2 inches of implanted pacemakers monitored via the telemetry wand can cause interference with pacemakers.
A standard operating procedure for the surgical implantation of transmitters in juvenile salmonids
Liedtke, T.L.; Beeman, J.W.; Gee, L.P.
2012-01-01
Biotelemetry is a useful tool to monitor the movements of animals and is widely applied in fisheries research. Radio or acoustic technology can be used, depending on the study design and the environmental conditions in the study area. A broad definition of telemetry also includes the use of Passive Integrated Transponder (PIT) tags, either separately or with a radio or acoustic transmitter. To use telemetry, fish must be equipped with a transmitter. Although there are several attachment procedures available, surgical implantation of transmitters in the abdominal cavity is recognized as the best technique for long-term telemetry studies in general (Stasko and Pincock, 1977; Winter, 1996; Jepsen, 2003), and specifically for juvenile salmonids, Oncorhynchus spp. (Adams and others, 1998a, 1998b; Martinelli and others, 1998; Hall and others, 2009). Studies that use telemetry assume that the processes by which the animals are captured, handled, and tagged, as well as the act of carrying the transmitter, will have minimal effect on their behavior and performance. This assumption, commonly stated as a lack of transmitter effects, must be valid if telemetry studies are to describe accurately the movements and behavior of an entire population of interest, rather than the subset of that population that carries transmitters. This document describes a standard operating procedure (SOP) for surgical implantation of radio or acoustic transmitters in juvenile salmonids. The procedures were developed from a broad base of published information, laboratory experiments, and practical experience in tagging thousands of fish for numerous studies of juvenile salmon movements near Columbia River and Snake River hydroelectric dams. Staff from the Western Fisheries Research Center's Columbia River Research Laboratory (CRRL) frequently have used telemetry studies to evaluate new structures or operations at hydroelectric dams in the Columbia River Basin, and these evaluations typically require large numbers of tagged fish. For example, a study conducted at the dams on the Columbia River and funded by the U.S. Army Corps of Engineers required tagging and monitoring of 40,000 juvenile salmon during a 3-month migration period (Counihan and others, 2006a, 2006b; Perry and others, 2006). To meet the demands of such a large study, the authors and CRRL staff refined the SOP to increase efficiency in the tagging process while maintaining high standards of fish care. The SOP has been used in laboratory and field settings for more than 15 years, and consistently has produced low mortality rates (<1 percent) and transmitter loss rates (<0.01 percent) in the 24-36 hours after tagging. In addition to describing the detailed surgical procedures required for transmitter implantation, this document provides guidance on fish collection, handling and holding, and the release of tagged fish. Although often overlooked, or at least underemphasized, these processes can have a large impact on the outcome of the tagging procedure. Stress associated with the individual steps in handling and tagging can be cumulative and lethal (Maule and others, 1988; Wedemeyer and others, 1990; Portz and others, 2006), so the goal is to provide the best possible fish care at every step in order to manage the overall effect on study fish.
106-17 Telemetry Standards Chapter 1
2017-07-01
Telemetry Standards , RCC Standard 106-17 Chapter 1, July 2017 1-1 CHAPTER 1 Introduction The Telemetry Standards address the here-to-date...generally devoted to a different element of the telemetry system or process . Chapters 21 through 28 address the topic of network telemetry. These...Commonly used terms are defined in standard reference glossaries and dictionaries. Definitions of terms with special applications are included when
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryson, Amanda J.; Woodley, Christa M.; Karls, Rhonda K.
2013-04-30
Animal telemetry, which requires the implantation of passive transponders or active transmitters, is used to monitor and assess fish stock and conservation to gain an understanding of fish movement and behavior. As new telemetry technologies become available, studies of their effects on species of interest are imperative as is development of implantation techniques. In this study, we investigated the effects of bevel rotation (0-, 90-, 180-degree axis rotation) on wound extent, tag loss, and wound healing rates in juvenile Chinook salmon injected with an 8-gauge needle, which is required for implantation of the novel injectable Juvenile Salmon Acoustic Telemetry Systemsmore » (JSATS) acoustic transmitter or large passive integrated transponder (PIT) tags. Although the injection sites were not closed after injection (e.g., with sutures or glue), there were no mortalities, dropped tags, or indications of fungus, ulceration, and/or redness around the wound. On Day 0 and post-implantation Day 7, the 90-degree bevel rotation produced smaller wound extent than the 180-degree bevel rotation. No axis rotation (0-degrees) resulted in the PIT tag frequently misleading or falling out upon injection. The results of this study indicated the 90-degree bevel rotation was the more efficient technique, produced less wound extent. Given the wound extent compared to size of fish, we recommend researchers should consider a 90-degree rotation over the 180-degree rotation in telemetry studies. Highlights •Three degrees of needle rotation were examined for effects in Chinook salmon. •Mortality, tag loss, wound extent, healing, and infection indicators were measured. •There were no mortalities, tag loss, or indications of infection. •The 90-degree needle rotation through Day 7 produced the smallest wound extent.« less
The Ocean Tracking Network and its contribution to ocean biological observation
NASA Astrophysics Data System (ADS)
Whoriskey, F. G.
2016-02-01
Animals move to meet their needs for food, shelter, reproduction and to avoid unfavorable environments. In aquatic systems, it is essential that we understand these movements if we are to sustainably manage populations and maintain healthy ecosystems. Thus the ability to document and monitor changes in aquatic animal movements is a biological observing system need. The Ocean Tracking Network (OTN) is a global research, technology development, and data management platform headquartered at Dalhousie University, in Halifax, Nova Scotia working to fill this need. OTN uses electronic telemetry to document the local-to-global movements and survival of aquatic animals, and to correlate them to oceanographic or limnological variables that are influencing movements. Such knowledge can assist with planning for and managing of anthropogenic impacts on present and future animal distributions, including those due to climate change. OTN works with various tracking methods including satellite and data storage tag systems, but its dominant focus is acoustic telemetry. OTN is built on global partnerships for the sharing of equipment and data, and has stimulated technological development in telemetry by bringing researchers with needs for new capabilities together with manufacturers to generate, test, and operationalize new technologies. This has included pioneering work into the use of marine autonomous vehicles (Slocum electric gliders; Liquid Robotics Wave Glider) in animal telemetry research. Similarly, OTN scientists worked with the Sea Mammal Research Unit to develop mobile acoustic receiver that have been placed on grey seals and linked via Bluetooth to a satellite transmitter/receiver. This provided receiver coverage in areas occupied by the seals during their typically extensive migrations and allowed for the examination of ecosystem linkages by documenting behavioral interactions the seals had with the physical environment, conspecifics, and other tagged species.
Rapidly Deployed Modular Telemetry System
NASA Technical Reports Server (NTRS)
Varnavas, Kosta A. (Inventor); Sims, William Herbert, III (Inventor)
2013-01-01
The present invention is a telemetry system, and more specifically is a rapidly deployed modular telemetry apparatus which utilizes of SDR technology and the FPGA programming capability to reduce the number of hardware components and programming required to deploy a telemetry system.
NASA Technical Reports Server (NTRS)
1992-01-01
An ingestible mini-thermometer capable of measuring and relaying internal body temperatures is marketed by Human Technologies, Inc. The CorTemp system, developed by Goddard Space Flight Center and Applied Physics Lab, incorporates space technologies, among them telemetry and microminiaturized circuit, sensor and battery technologies. The capsule is ingested and continually monitors temperature with a vibrating quartz crystal sensor, which telemeters signals to a recorder, where data is displayed and stored. The system is very accurate, and because it does not require wires, allows patients to be monitored in everyday situations. The industrial variant (CSC-100) has wide utility in commercial applications.
Wireless monitoring of the biological object state at microwave frequencies: A review
NASA Astrophysics Data System (ADS)
Vendik, I. B.; Vendik, O. G.; Kozlov, D. S.; Munina, I. V.; Pleskachev, V. V.; Rusakov, A. S.; Tural'chuk, P. A.
2016-01-01
Radio-frequency identification systems used for the remote diagnostics of diseases and contactless monitoring and assessment of human health are reviewed. The propagation of electromagnetic waves inside a biological medium and along interfaces between different media, as well as the problem of telemetry data acquisition from implanted systems or system on the human body surface using wireless sensors, is considered. Emphasis is on radio-frequency identification systems that use far-field electromagnetic radiation, since they are necessary in emergency situations to find injured people in hard-to-reach places and assess the state of emergency response workers.
NASA Technical Reports Server (NTRS)
Kocher, Walter M.
2003-01-01
Pollution prevention (P2) opportunities and Greening the Government (GtG) activities, including the development of the Real-Time Environmental Monitoring System (RTEMS), are currently under development at the NASA Glenn Research Center. The RTEMS project entails the ongoing development of a monitoring system which includes sensors, instruments, computer hardware and software, plus a data telemetry system.Professor Kocher has been directing the RTEMS project for more than 3 years, and the implementation of the prototype system at GRC will be a major portion of his summer effort. This prototype will provide mulitmedia environmental monitoring and control capabilities, although water quality and air emissions will be the immediate issues addressed this summer. Applications beyond those currently identified for environmental purposes will also be explored.
XTCE. XML Telemetry and Command Exchange Tutorial
NASA Technical Reports Server (NTRS)
Rice, Kevin; Kizzort, Brad; Simon, Jerry
2010-01-01
An XML Telemetry Command Exchange (XTCE) tutoral oriented towards packets or minor frames is shown. The contents include: 1) The Basics; 2) Describing Telemetry; 3) Describing the Telemetry Format; 4) Commanding; 5) Forgotten Elements; 6) Implementing XTCE; and 7) GovSat.
Gaidet, Nicolas; Cappelle, Julien; Takekawa, John Y.; Prosser, Diann J.; Iverson, Samuel A.; Douglas, David C.; Perry, William M.; Mundkur, Taej; Newman, Scott H.
2010-01-01
1. Migratory birds are major candidates for long-distance dispersal of zoonotic pathogens. In recent years, wildfowl have been suspected of contributing to the rapid geographic spread of the highly pathogenic avian influenza (HPAI) H5N1 virus. Experimental infection studies reveal that some wild ducks, geese and swans shed this virus asymptomatically and hence have the potential to spread it as they move. 2. We evaluate the dispersive potential of HPAI H5N1 viruses by wildfowl through an analysis of the movement range and movement rate of birds monitored by satellite telemetry in relation to the apparent asymptomatic infection duration (AID) measured in experimental studies. We analysed the first large-scale data set of wildfowl movements, including 228 birds from 19 species monitored by satellite telemetry in 2006–2009, over HPAI H5N1 affected regions of Asia, Europe and Africa. 3. Our results indicate that individual migratory wildfowl have the potential to disperse HPAI H5N1 over extensive distances, being able to perform movements of up to 2900 km within timeframes compatible with the duration of asymptomatic infection. 4. However, the likelihood of such virus dispersal over long distances by individual wildfowl is low: we estimate that for an individual migratory bird there are, on average, only 5–15 days per year when infection could result in the dispersal of HPAI H5N1 virus over 500 km. 5. Staging at stopover sites during migration is typically longer than the period of infection and viral shedding, preventing birds from dispersing a virus over several consecutive but interrupted long-distance movements. Intercontinental virus dispersion would therefore probably require relay transmission between a series of successively infected migratory birds. 6. Synthesis and applications. Our results provide a detailed quantitative assessment of the dispersive potential of HPAI H5N1 virus by selected migratory birds. Such dispersive potential rests on the assumption that free-living wildfowl will respond analogously to captive, experimentally-infected birds, and that asymptomatic infection will not alter their movement abilities. Our approach of combining experimental exposure data and telemetry information provides an analytical framework for quantifying the risk of spread of avian-borne diseases.
Optimization of radio telemetry receiving systems: Chapter 5.2
Evans, Scott D.; Stevenson, John R.; Adams, Noah S.; Beeman, John W.; Eiler, John H.
2012-01-01
Telemetry provides a powerful and flexible tool for studying fish and other aquatic animals, and its use has become increasingly commonplace. However, telemetry is gear intensive and typically requires more specialized knowledge and training than many other field techniques. As with other scientific methods, collecting good data is dependent on an understanding of the underlying principles behind the approach, knowing how to use the equipment and techniques properly, and recognizing what to do with the data collected. This book provides a road map for using telemetry to study aquatic animals, and provides the basic information needed to plan, implement, and conduct a telemetry study under field conditions. Topics include acoustic or radio telemetry study design, tag implantation techniques, radio and acoustic telemetry principles and case studies, and data management and analysis.
A history of telemetry in fishery research: Chapter 2
Hockersmith, Eric; Beeman, John W.; Adams, Noah S.; Beeman, John W.; Eiler, John H.
2012-01-01
Telemetry provides a powerful and flexible tool for studying fish and other aquatic animals, and its use has become increasingly commonplace. However, telemetry is gear intensive and typically requires more specialized knowledge and training than many other field techniques. As with other scientific methods, collecting good data is dependent on an understanding of the underlying principles behind the approach, knowing how to use the equipment and techniques properly, and recognizing what to do with the data collected. This book provides a road map for using telemetry to study aquatic animals, and provides the basic information needed to plan, implement, and conduct a telemetry study under field conditions. Topics include acoustic or radio telemetry study design, tag implantation techniques, radio and acoustic telemetry principles and case studies, and data management and analysis.
2012-09-01
downconverters; telemetry RF preamplifiers; telemetry multicouplers; telemetry receivers 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as...Continuing Engineering Education Program, George Washington University , 1994. A-5 Figure A-2. Graphical representation of intercept point...NFdb) is expressed in decibels and noise factor (nf ) in decimal units. For example, a noise figure of 3 dB corresponds to a noise factor of 2
LANDSAT-D data format control book. Volume 2: Telemetry
NASA Technical Reports Server (NTRS)
Talipsky, R.
1982-01-01
The formats used for the transmission of LANDSAT-D and LANDSAT-D Prime spacecraft telemetry data through either the TDRS/GSTDN via the NASCOM Network to the CSF are described as well as the telemetry flow from the command and data handling subsystem, a telemetry list and telemetry matrix assignment for the mission and engineering formats. The on-board computer (OBC) controlled format and the dwell format are also discussed. The OBCs contribution to telemetry, and the format of the reports, are covered. The high rate data channel includes the payload correction data format, the narrowband tape recorder and the OBC dump formats.
Radio telemetry for black-footed ferret research and monitoring
Biggins, Dean E.; Godbey, Jerry L.; Miller, Brian J.; Hanebury, Louis R.
2006-01-01
By 1973, radio telemetry was regarded as an important potential tool for studying the elusive, nocturnal, and semifossorial black-footed ferret (Mustela nigripes), but fears of using invasive techniques on this highly endangered mammal caused delays. We began radio collaring ferrets in 1981. Use of radio telemetry on ferrets proved to be both challenging and rewarding. We document two decades of development and use that led to the present radio-tagging techniques and methods for radio tracking. The 7-g radio collar commonly used after 1992 was smaller and lighter, relative to mass and size of subjects, than collars used in studies of other Mustela. Other important developments were a Teflon® coating to shed mud, a highly flexible stainless steel cable for whip antennas, and a nondurable wool collar. Although collar-caused neck abrasions have continued to occur sporadically, a retrospective assessment of minimum survival rates for 724 reintroduced ferrets (392 radio tagged), using data from spotlight surveys, failed to detect negative effects of radio-collars. In a South Dakota study, ferrets that were found to have hair loss or neck abrasions when collars were removed did not exhibit movements significantly different from those of radio-tagged ferrets with no evidence of neck problems. Prototype transmitters designed for surgical implantation had insufficient power output for effective use on ferrets. Early attempts at tracking radio-tagged ferrets by following the signal on foot quickly gave way to following movements by triangulation, which does not disturb the subjects. The most effective tracking stations were camper trailers fitted with rotatable, 11-element, dual-beam Yagi antennas on 6-m masts. We used radio telemetry to produce 83,275 lines of data (44,191 indications of status and 39,084 positional fixes via triangulation) for 340 radio-collared ferrets during the reintroduction program. Tracking by hand and from aircraft augmented triangulation, allowing us to locate animals that dispersed long distances and enabling us to determine causes of mortality. Justifying further use of radio telemetry on black-footed ferrets requires careful consideration of costs and benefits.
Key Features of the Deployed NPP/NPOESS Ground System
NASA Astrophysics Data System (ADS)
Heckmann, G.; Grant, K. D.; Mulligan, J. E.
2010-12-01
The National Oceanic & Atmospheric Administration (NOAA), Department of Defense (DoD), and National Aeronautics & Space Administration (NASA) are jointly acquiring the next-generation weather/environmental satellite system; the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS replaces the current NOAA Polar-orbiting Operational Environmental Satellites (POES) and DoD Defense Meteorological Satellite Program (DMSP). NPOESS satellites carry sensors to collect meteorological, oceanographic, climatological, and solar-geophysical data of the earth, atmosphere, and space. The ground data processing segment is the Interface Data Processing Segment (IDPS), developed by Raytheon Intelligence & Information Systems (IIS). The IDPS processes NPOESS Preparatory Project (NPP)/NPOESS satellite data to provide environmental data products/records (EDRs) to NOAA and DoD processing centers operated by the US government. The IDPS will process EDRs beginning with NPP and continuing through the lifetime of the NPOESS system. The command & telemetry segment is the Command, Control & Communications Segment (C3S), also developed by Raytheon IIS. C3S is responsible for managing the overall NPP/NPOESS missions from control & status of the space and ground assets to ensuring delivery of timely, high quality data from the Space Segment to IDPS for processing. In addition, the C3S provides the globally-distributed ground assets needed to collect and transport mission, telemetry, and command data between the satellites and processing locations. The C3S provides all functions required for day-to-day satellite commanding & state-of-health monitoring, and delivery of Stored Mission Data to each Central IDP for data products development and transfer to system subscribers. The C3S also monitors and reports system-wide health & status and data communications with external systems and between the segments. The C3S & IDPS segments were delivered & transitioned to operations for NPP. C3S transitioned to operations at the NOAA Satellite Operations Facility (NSOF) in Suitland Maryland in August 2007 and IDPS transitioned in July 2009. Both segments were involved with several compatibility tests with the NPP Satellite at the Ball Aerospace Technology Corporation (BATC) factory. The compatibility tests involved the spacecraft bus, the four sensors (VIIRS, ATMS, CrIS and OMPS), and both ground segments flowing data between the NSOF and BATC factory and flowing data from the polar ground station (Svalbard) over high-speed links back to the NSOF and the two IDP locations (NESDIS & AFWA). This presentation will describe the NPP/NPOESS ground architecture features & enhancements for the NPOESS era. These will include C3S-provided space-to-ground connectivity, reliable and secure data delivery and insight & oversight of the total operation. For NPOESS the ground architecture is extended to provide additional ground receptor sites to reduce data product delivery times to users and delivery of additional sensor data products from sensors similar to NPP and more NPOESS sensors. This architecture is also extended from two Centrals (NESDIS & AFWA) to two additional Centrals (FNMOC & NAVO). IDPS acts as a buffer minimizing changes in how users request and receive data products.
Barroco, L S A; Freitas, C E C; Lima, Á C
2018-05-01
The effect of catch-and-release fishing on the survival of peacock bass (Cichla spp.) was evaluated by comparing two types of artificial bait (jig and shallow-diver plugs) and two types of post-catch confinement. Two experiments were conducted during the periods January-February and October-November 2012 in the Unini River, a right-bank tributary of the Negro River. In total, 191 peacock bass were captured. Both groups of fish were subjected to experimental confinement (collective and individual) for three days. Additionally, 11 fish were tagged with radio transmitters for telemetry monitoring. Mortality rate was estimated as the percentage of dead individuals for each type of bait and confinement. For peacock bass caught with jig baits, mortality was zero. The corresponding figure for shallow-diver bait was 1.66% for fish in collective containment, 18.18% for fish monitored by telemetry and 0% for individuals confined individually. Our results show low post-release mortality rates for peacock bass. Furthermore, neither the type of confinement nor the type of bait had a statistically significant influence on mortality rates. While future studies could include other factors in the analysis, our results show that catch-and-release fishing results in low mortality rates.
NASA Technical Reports Server (NTRS)
McElrath, T. P.; Cangahuala, L. A.; Miller, K. J.; Stravert, L. R.; Garcia-Perez, Raul
1995-01-01
Ulysses is a spin-stabilized spacecraft that experienced significant nutation after its launch in October 1990. This was due to the Sun-spacecraft-Earth geometry, and a study of the phenomenon predicted that the nutation would again be a problem during 1994-95. The difficulty of obtaining nutation estimates in real time from the spacecraft telemetry forced the ESA/NASA Ulysses Team to explore alternative information sources. The work performed by the ESA Operations Team provided a model for a system that uses the radio signal strength measurements to monitor the spacecraft dynamics. These measurements (referred to as AGC) are provided once per second by the tracking stations of the DSN. The system was named ARGOS (Attitude Reckoning from Ground Observable Signals) after the ever-vigilant, hundred-eyed giant of Greek Mythology. The ARGOS design also included Doppler processing, because Doppler shifts indicate thruster firings commanded by the active nutation control carried out onboard the spacecraft. While there is some visibility into thruster activity from telemetry, careful processing of the high-sample-rate Doppler data provides an accurate means of detecting the presence and time of thruster firings. DSN Doppler measurements are available at a ten-per-second rate in the same tracking data block as the AGC data.
Designing on-Board Data Handling for EDF (Electric Ducted Fan) Rocket
NASA Astrophysics Data System (ADS)
Mulyana, A.; Faiz, L. A. A.
2018-02-01
The EDF (Electric Ducted Fan) rocket to launch requires a system of monitoring, tracking and controlling to allow the rocket to glide properly. One of the important components in the rocket is OBDH (On-Board Data Handling) which serves as a medium to perform commands and data processing. However, TTC (Telemetry, Tracking, and Command) are required to communicate between GCS (Ground Control Station) and OBDH on EDF rockets. So the design control system of EDF rockets and GCS for telemetry and telecommand needs to be made. In the design of integrated OBDH controller uses a lot of electronics modules, to know the behavior of rocket used IMU sensor (Inertial Measurement Unit) in which consist of 3-axis gyroscope sensor and Accelerometer 3-axis. To do tracking using GPS, compass sensor as a determinant of the direction of the rocket as well as a reference point on the z-axis of gyroscope sensor processing and used barometer sensors to measure the height of the rocket at the time of glide. The data can be known in real-time by sending data through radio modules at 2.4 GHz frequency using XBee-Pro S2B to GCS. By using windows filter, noises can be reduced, and it used to guarantee monitoring and controlling system can work properly.
Markert, Michael; Trautmann, Thomas; Krause, Florian; Cioaga, Marius; Mouriot, Sebastien; Wetzel, Miriam; Guth, Brian D
2018-03-26
A newly developed total implant telemetry system for cardiovascular (CV), electrophysiological and body temperature measurement was evaluated. A cloud-based transmission of the physiological signals allowed an assessment of the quality of the physiological signals despite the physical separation between the instrumented animals and the evaluating home laboratory. The new system is intended to be used for safety pharmacological evaluations of drug candidates in various species. Two female minipigs, 6 Labrador-mixed breed dogs and 4 female Cynomolgus monkeys were instrumented with a newly developed total implant system (TSE SYSTEMS). The implants feature a microprocessor, internal memory (1 GB), 2 solid state pressure-tipped catheters, amplifiers and a radio transmitter. Sampling rates for each measurement can be selected within a range between 0.1 and 1 kHz. Biological signals are selected in a programmable fashion on a session-by-session basis according to a user-defined protocol. The pressure sensors are at the tip of an electrical lead having a length customized to each species. Core temperature measurement and activity monitoring (3D accelerometer) are included in the system. Digital transmission range using a single antenna is 5 m with up to 16 animals held together and monitored simultaneously. The range can be expanded with more antennas in an array coupled to a single receiver. The antenna/receiver station consists of a single USB powered mobile unit connected to a PC or laptop. The battery life provides 110 days of continuous recording. The dogs and minipigs were instrumented and monitored in Germany. A novel cloud-based data transmission system was developed to monitor the physiological signals in real-time from the Cynomolgus monkeys, still kept in Mauritius, from the data evaluation laboratory in Germany. After recovery from the surgical implantation, aortic pressure (AP), left ventricular pressure (LVP), ECG and body temperature were recorded for 24 hr monitoring sessions in all animals. Additionally, moxifloxacin (10, 30 and 100 mg/kg) was tested in the dog model using a modified Latin square cross-over study design. The implant was well tolerated and the animals recovered rapidly from the implantation procedure. Excellent signal quality was obtained and stable hemodynamic and electrophysiological parameters could be measured, with little signal artefact or drop-out, over 24 h in each species. After oral dosing of moxifloxacin to the dogs, a substantial, dose-dependent increase in the QT-interval duration could be shown, as anticipated for this agent. Cloud-based data acquisition from the animals in Mauritius and the data evaluation lab in Germany worked well. This new CV telemetry system provides a novel alternative to fluid-filled catheter telemetry systems and the coupling to a cloud-based data transmission allows for flexibility in the location of the instrumented animals and data acquisition and the location of the site for data analysis. For the first time it is technically feasible to conduct a CV safety pharmacology study in Cynomolgus monkeys without having to ship them long distances to the home laboratory. Copyright © 2018 Elsevier Inc. All rights reserved.
Next-Generation Telemetry Workstation
NASA Technical Reports Server (NTRS)
2008-01-01
A next-generation telemetry workstation has been developed to replace the one currently used to test and control Range Safety systems. Improving upon the performance of the original system, the new telemetry workstation uses dual-channel telemetry boards for better synchronization of the two uplink telemetry streams. The new workstation also includes an Interrange Instrumentation Group/Global Positioning System (IRIG/GPS) time code receiver board for independent, local time stamping of return-link data. The next-generation system will also record and play back return-link data for postlaunch analysis.
Diggins, Corinne A.; Ford, W. Mark
2017-01-01
Glaucomys sabrinus fuscus (Virginia Northern Flying Squirrel; VNFS) is a rare Sciurid that occurrs in the Allegheny Mountains of eastern West Virginia and northwest Virginia. Previous work on this subspecies has confirmed close associations with Picea rubens (Red Spruce) at the landscape and stand levels in the region. However, ongoing Red Spruce restoration actions using canopy-gap creation to release single or small groups of trees requires a better understanding of within-stand habitat selection of VNFS to assess potential short- and medium-term impacts. To address these questions, we conducted a microhabitat study using radio-collared squirrels in montane conifer and mixed conifer—hardwood stands. We used points obtained from telemetry surveys and randomly generated points within each squirrel's home range to compare microhabitat variables for 13 individuals. We found that VNFS preferentially selected plots with conifer-dominant overstories and deep organic-soil horizons. VNFS avoided plots with dense Red Spruce regeneration in the understory in stands with hardwood-dominated overstories—the types of areas targeted for Red Spruce restoration. We also opportunistically searched for hypogeal fungi at telemetry points and found 3 species of Elaphomyces during our surveys. Our results indicate that microhabitat selection is associated with Red Spruce-dominant forests. Efforts to restore Red Spruce where hardwoods dominate in the central Appalachians may improve the connectivity and extent of habitat of VNFS.
Wireless sensors powered by microbial fuel cells.
Shantaram, Avinash; Beyenal, Haluk; Raajan, Raaja; Veluchamy, Angathevar; Lewandowski, Zbigniew
2005-07-01
Monitoring parameters characterizing water quality, such as temperature, pH, and concentrations of heavy metals in natural waters, is often followed by transmitting the data to remote receivers using telemetry systems. Such systems are commonly powered by batteries, which can be inconvenient at times because batteries have a limited lifetime and must be recharged or replaced periodically to ensure that sufficient energy is available to power the electronics. To avoid these inconveniences, a microbial fuel cell was designed to power electrochemical sensors and small telemetry systems to transmit the data acquired by the sensors to remote receivers. The microbial fuel cell was combined with low-power, high-efficiency electronic circuitry providing a stable power source for wireless data transmission. To generate enough power for the telemetry system, energy produced by the microbial fuel cell was stored in a capacitor and used in short bursts when needed. Since commercial electronic circuits require a minimum 3.3 V input and our cell was able to deliver a maximum of 2.1 V, a DC-DC converter was used to boost the potential. The DC-DC converter powered a transmitter, which gathered the data from the sensor and transmitted it wirelessly to a remote receiver. To demonstrate the utility of the system, temporal variations in temperature were measured, and the data were wirelessly transmitted to a remote receiver.
NASA Technical Reports Server (NTRS)
Chang, Chen J. (Inventor); Liaghati, Jr., Amir L. (Inventor); Liaghati, Mahsa L. (Inventor)
2018-01-01
Methods and apparatus are provided for telemetry processing using a telemetry processor. The telemetry processor can include a plurality of communications interfaces, a computer processor, and data storage. The telemetry processor can buffer sensor data by: receiving a frame of sensor data using a first communications interface and clock data using a second communications interface, receiving an end of frame signal using a third communications interface, and storing the received frame of sensor data in the data storage. After buffering the sensor data, the telemetry processor can generate an encapsulated data packet including a single encapsulated data packet header, the buffered sensor data, and identifiers identifying telemetry devices that provided the sensor data. A format of the encapsulated data packet can comply with a Consultative Committee for Space Data Systems (CCSDS) standard. The telemetry processor can send the encapsulated data packet using a fourth and a fifth communications interfaces.
A Configurable Internet Telemetry Server / Remote Client System
NASA Astrophysics Data System (ADS)
Boyd, W. T.; Hopkins, A.; Abbott, M. J.; Girouard, F. R.
2000-05-01
We have created a general, object-oriented software framework in Java for remote viewing of telemetry over the Internet. The general system consists of a data server and a remote client that can be extended by any project that uses telemetry to implement a remote telemetry viewer. We have implemented a system that serves live telemetry from NASA's Extreme Ultraviolet Explorer satellite and a client that can display the telemetry at a remote location. An authenticated user may run a standalone graphical or text-based client, or an applet on a web page, to view EUVE telemetry. In the case of the GUI client, a user can build displays to his/her own specifications using a GUI view-building tool. This work was supported by grants NCC2-947 and NCC2-966 from NASA Ames Research Center and grant JPL-960684 from NASA Jet Propulsion Laboratory.
Missile telemetry systems for flight tests and EMC tests on EED's
NASA Astrophysics Data System (ADS)
Freymann, D.
1985-06-01
This paper describes telemetry systems developed for use in the 'Roland', 'MLRS AT2' and 'Kormoran' missiles. The main design effort required to obtain a high performance of telemetry data acquisition and transmission under extreme environmental conditions are discussed, along with test results. Considered are different types of PCM telemetry systems where the data is either transmitted directly to the ground via an RF or fiber optic link or stored in an onboard solid-state memory. The safety of EEDs in the presence of unwanted electromagnetic fields or currents is very important in weapon-systems. Therefore another type of telemetry system is reported here allowing the measurement of extremely small DC- and RF-currents induced on EEDs during EMC ground-tests. These telemetry signals are transmitted via fiber optics, to avoid additional coupling. Finally, there is a brief commentary on the future design philosophy of missile telemetry systems.
A spacecraft computer repairable via command.
NASA Technical Reports Server (NTRS)
Fimmel, R. O.; Baker, T. E.
1971-01-01
The MULTIPAC is a central data system developed for deep-space probes with the distinctive feature that it may be repaired during flight via command and telemetry links by reprogramming around the failed unit. The computer organization uses pools of identical modules which the program organizes into one or more computers called processors. The interaction of these modules is dynamically controlled by the program rather than hardware. In the event of a failure, new programs are entered which reorganize the central data system with a somewhat reduced total processing capability aboard the spacecraft. Emphasis is placed on the evolution of the system architecture and the final overall system design rather than the specific logic design.
NASA Astrophysics Data System (ADS)
Schwuttke, Ursula M.; Veregge, John, R.; Angelino, Robert; Childs, Cynthia L.
1990-10-01
The Monitor/Analyzer of Real-time Voyager Engineering Link (MARVEL) is described. It is the first automation tool to be used in an online mode for telemetry monitoring and analysis in mission operations. MARVEL combines standard automation techniques with embedded knowledge base systems to simultaneously provide real time monitoring of data from subsystems, near real time analysis of anomaly conditions, and both real time and non-real time user interface functions. MARVEL is currently capable of monitoring the Computer Command Subsystem (CCS), Flight Data Subsystem (FDS), and Attitude and Articulation Control Subsystem (AACS) for both Voyager spacecraft, simultaneously, on a single workstation. The goal of MARVEL is to provide cost savings and productivity enhancement in mission operations and to reduce the need for constant availability of subsystem expertise.
NASA Astrophysics Data System (ADS)
Shaw, John M.
2013-06-01
While the production, transport and refining of oils from the oilsands of Alberta, and comparable resources elsewhere is performed at industrial scales, numerous technical and technological challenges and opportunities persist due to the ill defined nature of the resource. For example, bitumen and heavy oil comprise multiple bulk phases, self-organizing constituents at the microscale (liquid crystals) and the nano scale. There are no quantitative measures available at the molecular level. Non-intrusive telemetry is providing promising paths toward solutions, be they enabling technologies targeting process design, development or optimization, or more prosaic process control or process monitoring applications. Operation examples include automated large object and poor quality ore during mining, and monitoring the thickness and location of oil water interfacial zones within separation vessels. These applications involve real-time video image processing. X-ray transmission video imaging is used to enumerate organic phases present within a vessel, and to detect individual phase volumes, densities and elemental compositions. This is an enabling technology that provides phase equilibrium and phase composition data for production and refining process development, and fluid property myth debunking. A high-resolution two-dimensional acoustic mapping technique now at the proof of concept stage is expected to provide simultaneous fluid flow and fluid composition data within porous inorganic media. Again this is an enabling technology targeting visualization of diverse oil production process fundamentals at the pore scale. Far infrared spectroscopy coupled with detailed quantum mechanical calculations, may provide characteristic molecular motifs and intermolecular association data required for fluid characterization and process modeling. X-ray scattering (SAXS/WAXS/USAXS) provides characteristic supramolecular structure information that impacts fluid rheology and process fouling. The intent of this contribution is to present some of the challenges and to provide an introduction grounded in current work on non-intrusive telemetry applications - from a mine or reservoir to a refinery!
NASA Technical Reports Server (NTRS)
2008-01-01
The Aquarius Radiometer, a subsystem of the Aquarius Instrument required a data acquisition ground system to support calibration and radiometer performance assessment. To support calibration and compose performance assessments, we developed an automated system which uploaded raw data to a ftp server and saved raw and processed data to a database. This paper details the overall functionalities of the Aquarius Instrument Science Data System (ISDS) and the individual electrical ground support equipment (EGSE) which produced data files that were infused into the ISDS. Real time EGSEs include an ICDS Simulator, Calibration GSE, Labview controlled power supply, and a chamber data acquisition system. ICDS Simulator serves as a test conductor primary workstation, collecting radiometer housekeeping (HK) and science data and passing commands and HK telemetry collection request to the radiometer. Calibration GSE (Radiometer Active Test Source) provides source choice from multiple targets for the radiometer external calibration. Power Supply GSE, controlled by labview, provides real time voltage and current monitoring of the radiometer. And finally the chamber data acquisition system produces data reflecting chamber vacuum pressure, thermistor temperatures, AVG and watts. Each GSE system produce text based data files every two to six minutes and automatically copies the data files to the Central Archiver PC. The Archiver PC stores the data files, schedules automated uploads of these files to an external FTP server, and accepts request to copy all data files to the ISDS for offline data processing and analysis. Aquarius Radiometer ISDS contains PHP and MATLab programs to parse, process and save all data to a MySQL database. Analysis tools (MATLab programs) in the ISDS system are capable of displaying radiometer science, telemetry and auxiliary data in near real time as well as performing data analysis and producing automated performance assessment reports of the Aquarius Radiometer.
LANDSAT-4 to ground station interface description
NASA Technical Reports Server (NTRS)
1983-01-01
The LANDSAT 4 to ground station interface is described in detail. The radiometric specifications, internal calibration, sensor output format, and data processing constants for the multispectral scanner and the thematic mapper are discussed. The mission payload telemetry, onboard computer telemetry, and engineering telemetry formats are described. In addition, the telemetry time signals and the onboard clock resetting procedure are addressed.
Advanced Telemetry System Development.
Progress in advanced telemetry system development is described. Discussions are included of studies leading to the specification for design...characteristics of adaptive and analytical telemetry systems in which the information efficiently utilizes the data channel capacity. Also discussed are...Progress indicates that further sophistication of existing designs in telemetry will be less advantageous than the development of new systems of
Real-time surface-water monitoring in New Jersey, 2003
Schopp, Robert D.; Stedfast, David A.; Navoy, Anthony S.
2003-01-01
A network of 93 gaging stations that provide surface-water stage, flow (discharge), and tide-level data on a “realtime” basis through satellite, radio, and telephone telemetry is operating (May 2003) in New Jersey through a cooperative effort of the U.S. Geological Survey (USGS) and other agencies. The stream data from these stations are transmitted every 1 to 4 hours and then are immediately posted for viewing on the Internet. This fact sheet describes the “real-time” monitoring network, and the equipment used to measure stage and flow and to transmit the data for viewing on the Internet. Instructions for viewing the data are included.
Increased flexibility for modeling telemetry and nest-survival data using the multistate framework
Devineau, Olivier; Kendall, William L.; Doherty, Paul F.; Shenk, Tanya M.; White, Gary C.; Lukacs, Paul M.; Burnham, Kenneth P.
2014-01-01
Although telemetry is one of the most common tools used in the study of wildlife, advances in the analysis of telemetry data have lagged compared to progress in the development of telemetry devices. We demonstrate how standard known-fate telemetry and related nest-survival data analysis models are special cases of the more general multistate framework. We present a short theoretical development, and 2 case examples regarding the American black duck and the mallard. We also present a more complex lynx data analysis. Although not necessary in all situations, the multistate framework provides additional flexibility to analyze telemetry data, which may help analysts and biologists better deal with the vagaries of real-world data collection.
NASA Astrophysics Data System (ADS)
Watkins, M.; Busby, R.; Rico, H.; Johnson, M.; Hauksson, E.
2003-12-01
We provide enhanced network robustness by apportioning redundant data communications paths for seismic stations in the field. By providing for more than one telemetry route, either physical or logical, network operators can improve availability of seismic data while experiencing occasional network outages, and also during the loss of key gateway interfaces such as a router or central processor. This is especially important for seismic stations in sparsely populated regions where a loss of a single site may result in a significant gap in the network's monitoring capability. A number of challenges arise in the application of a circuit-detour mechanism. One requirement is that it fits well within the existing framework of our real-time system processing. It is also necessary to craft a system that is not needlessly complex to maintain or implement, particularly during a crisis. The method that we use for circuit-detours does not require the reconfiguration of dataloggers or communications equipment in the field. Remote network configurations remain static, changes are only required at the central site. We have implemented standardized procedures to detour circuits on similar transport mediums, such as virtual circuits on the same leased line; as well as physically different communications pathways, such as a microwave link backed up by a leased line. The lessons learned from these improvements in reliability, and optimization efforts could be applied to other real-time seismic networks. A fundamental tenant of most seismic networks is that they are reliable and have a high percentage of real-time data availability. A reasonable way to achieve these expectations is to provide alternate means of delivering data to the central processing sites, with a simple method for utilizing these alternate paths.
Extreme Ultraviolet Explorer Science Operation Center
NASA Technical Reports Server (NTRS)
Wong, G. S.; Kronberg, F. A.; Meriwether, H. D.; Wong, L. S.; Grassi, C. L.
1993-01-01
The EUVE Science Operations Center (ESOC) is a satellite payload operations center for the Extreme Ultraviolet Explorer project, located on the Berkeley campus of the University of California. The ESOC has the primary responsibility for commanding the EUVE telescopes and monitoring their telemetry. The ESOC is one of a very few university-based satellite operations facilities operating with NASA. This article describes the history, operation, and advantages of the ESOC as an on-campus operations center.
Deer use of riparian zones and adjacent pine plantations in Texas
Micah L. Poteet; Ronald E. Thill; R. Montague Whiting; R. Lee Rayburn
1996-01-01
The authors monitored white-tailed deer (Odocoileus virginianus) use of riparian zones (RZâs) and adjacent pine plantations of 3 age classes (young, 1 to 3 years old; intermediate, 5 to 7 years old; and older, 9 to 13 years old) using radio telemetry for 2 years on a 1,300 ha study area near Alto, TX. Riparian zones comprised 22.0 percent of the area; young,...
Head-Impact–Measurement Devices: A Systematic Review
O'Connor, Kathryn L.; Rowson, Steven; Duma, Stefan M.; Broglio, Steven P.
2017-01-01
Context: With an estimated 3.8 million sport- and recreation-related concussions occurring annually, targeted prevention and diagnostic methods are needed. Biomechanical analysis of head impacts may provide quantitative information that can inform both prevention and diagnostic strategies. Objective: To assess available head-impact devices and their clinical utility. Data Sources: We performed a systematic search of the electronic database PubMed for peer-reviewed publications, using the following phrases: accelerometer and concussion, head impact telemetry, head impacts and concussion and sensor, head impacts and sensor, impact sensor and concussion, linear acceleration and concussion, rotational acceleration and concussion, and xpatch concussion. In addition to the literature review, a Google search for head impact monitor and concussion monitor yielded 15 more devices. Study Selection: Included studies were performed in vivo, used commercially available devices, and focused on sport-related concussion. Data Extraction: One author reviewed the title and abstract of each study for inclusion and exclusion criteria and then reviewed each full-text article to confirm inclusion criteria. Controversial articles were reviewed by all authors to reach consensus. Data Synthesis: In total, 61 peer-reviewed articles involving 4 head-impact devices were included. Participants in boxing, football, ice hockey, soccer, or snow sports ranged in age from 6 to 24 years; 18% (n = 11) of the studies included female athletes. The Head Impact Telemetry System was the most widely used device (n = 53). Fourteen additional commercially available devices were presented. Conclusions: Measurements collected by impact monitors provided real-time data to estimate player exposure but did not have the requisite sensitivity to concussion. Proper interpretation of previously reported head-impact kinematics across age, sport, and position may inform future research and enable staff clinicians working on the sidelines to monitor athletes. However, head-impact–monitoring systems have limited clinical utility due to error rates, designs, and low specificity in predicting concussive injury. PMID:28387553
Restoration and Future Analysis of the Apollo Lunar Dust Detector Data
NASA Astrophysics Data System (ADS)
McBride, M.; Williams, D. R.; Hills, H. K.
2012-12-01
The Dust, Thermal and Radiation Engineering Measurement (DTREM) packages mounted on the central stations of the Apollo 11, 12, 14, and 15 ALSEPs (Apollo Lunar Surface Experiments Packages) measured the outputs of exposed solar cells and thermistors over time. The goal of the experiment, also commonly known as the dust detector, was to study the long-term effects of dust, radiation, and temperature at the lunar surface on solar cells. The original data were never archived with NASA, with the exception of 38 reels of microfilm archived at the National Space Science Data Center. These reels contained images of computer printouts of times and raw and calibrated DTREM data for Apollo 14 and 15. The high volume of data is not readily accessible in this form. The raw telemetry for the DTREM also exists as part of the ALSEP housekeeping (Word 33) telemetry. As part of the lunar data restoration effort we are converting the telemetry to digital tables containing the fully calibrated dust detector data. These restored data sets will be archived through the Lunar Data Node of the Planetary Data System (PDS) for general use by the lunar community. In this form, these data will finally be amenable to study by modern techniques not available during the Apollo era. Over the past year, analysis of the correlation between the NSSDC microfilm record and the raw telemetry was used to determine the translations and calibrations necessary to convert the digital telemetry into a fully calibrated data set giving temperatures and solar cell outputs over time. The final data set consists of a reading every 54 seconds over periods of 5 years for Apollo 14 and 15. The sheer quantity of data shows why a fully digital form is necessary for proper analysis. The Apollo 11 DTREM was designed for a short lifetime and returned less than two lunations of data. We do not currently have the translation and calibration information necessary to convert the raw telemetry to a calibrated data set for Apollo 11, but we have found some preliminary information which we believe will lead to full restoration of this data set. The dust detector on Apollo 12 was configured differently from the other DTREMs. While the Apollo 11, 14, and 15 instruments had three upward-facing solar cells, one glass-covered, one uncovered, and one pre-irradiated and glass-covered, the Apollo 12 dust detector had three identical cells with only one facing upwards. The other two faced to the east and west, respectively. For Apollo 12 we have the raw telemetry but not the necessary calibration information to fully restore these data sets. As with Apollo 11, we are attempting to obtain the required information to translate the raw telemetry counts into voltages and temperatures and apply the correct calibrations. We are also currently analyzing the restored and raw data and will present results of our analysis, including revisiting the earlier published Apollo results. The scientific community has shown great interest in the outcome of these restorations. The microfilm data have been scanned and converted to PDS data sets which have undergone review and will be archived. The digital data sets will soon be available to the full lunar community after restoration has been completed and they have undergone PDS review and validation.
Borehole dilatometer installation, operation, and maintenance at sites in Hawaii
Myren, G.D.; Johnston, M.J.S.; Mueller, R.J.
2006-01-01
In response to concerns about the potential hazard of Mauna Loa volcano in Hawaii, the USGS began efforts in 1998 to add four high-resolution borehole sites. Located at these sites are; strainmeters, tiltmeters, seismometers, accelerometers and other instrumentation. These instruments are capable of providing continuous monitoring of the magma movement under Mauna Loa. Each site was planned to provide multi-parameter monitoring of volcanic activity. In June of 2000, a contract was let for the core drilling of three of these four sites. They are located at Hokukano (west side of Mauna Loa) above Captain Cook, Hawaii; at Mauna Loa Observatory (11,737 feet near the summit), and at Mauna Loa Strip Road (east side of Mauna Loa). Another site was chosen near Halema'uma u' and Kilauea's summit, in the Keller deep well. (See maps). The locations of these instruments are shown in Figure 1 with their latitude and longitude in Table 1. The purpose of this network is to monitor crustal deformation associated with volcanic intrusions and earthquakes on Mauna Loa and Kilauea volcanoes. This report describes the methods used to locate sites, install dilatometers, other instrumentation, and telemetry. We also provide a detailed description of the electronics used for signal amplification and telemetry, plus techniques used for instrument maintenance. Instrument sites were selected in regions of hard volcanic rock where the expected signals from magmatic activity were calculated to be a maximum and the probability of earthquakes with magnitude 4 or greater is large. At each location, an attempt was made to separate tectonic and volcanic signals from known noise sources for each instrument type.
NASA Lewis' Telescience Support Center Supports Orbiting Microgravity Experiments
NASA Technical Reports Server (NTRS)
Hawersaat, Bob W.
1998-01-01
The Telescience Support Center (TSC) at the NASA Lewis Research Center was developed to enable Lewis-based science teams and principal investigators to monitor and control experimental and operational payloads onboard the International Space Station. The TSC is a remote operations hub that can interface with other remote facilities, such as universities and industrial laboratories. As a pathfinder for International Space Station telescience operations, the TSC has incrementally developed an operational capability by supporting space shuttle missions. The TSC has evolved into an environment where experimenters and scientists can control and monitor the health and status of their experiments in near real time. Remote operations (or telescience) allow local scientists and their experiment teams to minimize their travel and maintain a local complement of expertise for hardware and software troubleshooting and data analysis. The TSC was designed, developed, and is operated by Lewis' Engineering and Technical Services Directorate and its support contractors, Analex Corporation and White's Information System, Inc. It is managed by Lewis' Microgravity Science Division. The TSC provides operational support in conjunction with the NASA Marshall Space Flight Center and NASA Johnson Space Center. It enables its customers to command, receive, and view telemetry; monitor the science video from their on-orbit experiments; and communicate over mission-support voice loops. Data can be received and routed to experimenter-supplied ground support equipment and/or to the TSC data system for display. Video teleconferencing capability and other video sources, such as NASA TV, are also available. The TSC has a full complement of standard services to aid experimenters in telemetry operations.
Willens, Scott; Cox, David M; Braue, Ernest H; Myers, Todd M; Wegner, Matthew D
2014-01-01
Telemetric monitoring of physiologic parameters in animal models is a critical component of chemical and biologic agent studies. The long-term collection of neurobehavioral and other physiologic data can require larger telemetry devices. Furthermore, such devices must be implanted in a location that is safe, well-tolerated, and functional. Göttingen minipigs (Sus scrofa domesticus) present an ideal large animal model for chemical agent studies due to their relatively small size, characterized health status, and ease of training and handling. We report an effective approach to implanting a novel device to measure transthoracic impedance to approximate respiratory tidal volume and rate in Suidae. We tested the approach using 24 male Göttingen minipigs. A ventral midline abdominal incision extending from the umbilicus to the prepuce was followed by a paramedian incision of the parietal peritoneum and dorsal blunt dissection to create a retroperitoneal pocket. The device was anchored inside the pocket to the internal abdominal musculature with 3-0 nonabsorbable suture, biopotential leads were routed through the abdominal musculature, and the pocket was closed with 3-0 absorbable suture. Paired biopotential leads were anchored intermuscularly at the level of the seventh rib midway between spine and sternum bilaterally to provide surrogate data for respiratory function. Postoperative recovery and gross pathology findings at necropsy were used to assess safety and refine the surgical procedure. Results demonstrated that this procedure permitted effective monitoring of complex physiologic data, including transthoracic impedance, without negatively affecting the health and behavior of the animals. PMID:25527027
PIC microcontroller-based RF wireless ECG monitoring system.
Oweis, R J; Barhoum, A
2007-01-01
This paper presents a radio-telemetry system that provides the possibility of ECG signal transmission from a patient detection circuit via an RF data link. A PC then receives the signal through the National Instrument data acquisition card (NIDAQ). The PC is equipped with software allowing the received ECG signals to be saved, analysed, and sent by email to another part of the world. The proposed telemetry system consists of a patient unit and a PC unit. The amplified and filtered ECG signal is sampled 360 times per second, and the A/D conversion is performed by a PIC16f877 microcontroller. The major contribution of the final proposed system is that it detects, processes and sends patients ECG data over a wireless RF link to a maximum distance of 200 m. Transmitted ECG data with different numbers of samples were received, decoded by means of another PIC microcontroller, and displayed using MATLAB program. The designed software is presented in a graphical user interface utility.
A small long-life acoustic transmitter for studying the behavior of aquatic animals
Lu, J.; Deng, Z. D.; Li, H.; ...
2016-11-21
The lack of stronger acoustic signal, longer service life and smaller size from off-the-shelf transmitters has precluded intensive research for environmental monitoring of certain species using acoustic telemetry techniques. In this study we developed a small long-life acoustic transmitter with the length of approximately 24.2 mm, the diameter of approximately 5.0 mm, and the dry weight of approximately 0.72 g. The new transmitter can generate an acoustic signal at selectable source level between 159 and 163 dB re 1 µPa at 1 m. The new acoustic transmitter has an operation lifetime up to a year or longer at a pulsemore » rate interval of 15 seconds, and also has a signal detection range up to at least 500 meters that enhances detection probability in a quiet environment. Furthermore, the new technology makes long-term acoustic telemetry studies of small fish possible and is being deployed for long-term tracking of juvenile sturgeon.« less
A small long-life acoustic transmitter for studying the behavior of aquatic animals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, J.; Deng, Z. D.; Li, H.
The lack of stronger acoustic signal, longer service life and smaller size from off-the-shelf transmitters has precluded intensive research for environmental monitoring of certain species using acoustic telemetry techniques. In this study we developed a small long-life acoustic transmitter with the length of approximately 24.2 mm, the diameter of approximately 5.0 mm, and the dry weight of approximately 0.72 g. The new transmitter can generate an acoustic signal at selectable source level between 159 and 163 dB re 1 µPa at 1 m. The new acoustic transmitter has an operation lifetime up to a year or longer at a pulsemore » rate interval of 15 seconds, and also has a signal detection range up to at least 500 meters that enhances detection probability in a quiet environment. Furthermore, the new technology makes long-term acoustic telemetry studies of small fish possible and is being deployed for long-term tracking of juvenile sturgeon.« less
2013-03-05
CAPE CANAVERAL, Fla. – A telemetry antenna and tracker camera is attached to the roof of the Launch Control Center, or LCC, in Launch Complex 39 at NASA's Kennedy Space Center in Florida. This antenna and camera system is the first of three to be installed on the LCC roof for the Radio Frequency and Telemetry Station RFTS, which will be used to monitor radio frequency communications from a launch vehicle at Launch Pad 39A or B as well as provide radio frequency relay for a launch vehicle in the Vehicle Assembly Building. The RFTS replaces the shuttle-era communications and tracking labs at Kennedy. The modern RFTS checkout station is designed to primarily support NASA's Space Launch System, or SLS, and Orion spacecraft, but can support multi-user radio frequency tests as the space center transitions to support a variety of rockets and spacecraft. For more information on the modernization efforts at Kennedy, visit the Ground Systems Development and Operations, or GSDO, website at http://go.nasa.gov/groundsystems. Photo credit: NASA/Jim Grossmann
The Venus Balloon Project telemetry processing
NASA Technical Reports Server (NTRS)
Urech, J. M.; Chamarro, A.; Morales, J. L.; Urech, M. A.
1986-01-01
The peculiarities of the Venus Balloon telemetry system required the development of a new methodology for the telemetry processing, since the capabilities of the Deep Space Network (DSN) telemetry system do not include burst processing of short frames with two different bit rates and first bit acquisition. A software package was produced for the non-real time detection, demodulation, and decoding of the telemetry streams obtained from an open loop recording utilizing the DSN spectrum processing subsystem-radio science (DSP-RS). A general description of the resulting software package (DMO-5539-SP) and its adaptability to the real mission's variations is contained.
Schulz, William H.; Ellis, William L.
2007-01-01
The Johnson Creek landslide is a translational, primarily bedrock landslide located along the Oregon coast about 5 km north of Newport. The landslide has damaged U.S. Highway 101 many times since construction of the highway and at least two geological and geotechnical investigations of the landslide have been performed by Oregon State agencies. In cooperation with the Oregon Department of Geology and Mineral Industries and the Oregon Department of Transportation, the U.S. Geological Survey upgraded landslide monitoring systems and installed additional monitoring devices at the landslide beginning in 2004. Monitoring devices at the landslide measured landslide displacement, rainfall, air temperature, shallow soil-water content, and ground-water temperature and pressure. The devices were connected to automatic dataloggers and read at one-hour and, more recently, 15-minute intervals. Monitoring results were periodically downloaded from the dataloggers using cellular telemetry. The purposes of this report are to describe and present preliminary monitoring data from November 19, 2004, to March 31, 2007.
NASA Astrophysics Data System (ADS)
Schaffer, G.; Marks, D.
2004-12-01
Since 1978 snow deposition and SWE in the inter-mountain western US have been monitored by the NRCS SNOTEL (SNOwpack TELemetry) system. This revolutionary network utilizes Meteorburst technology to telemeter data back to a central location in near real-time. With a pilot program starting in 1991, NRCS introduced SCAN (Soil Climate and Analysis Network) adding a focus on soil moisture and climate in regions outside the intermountain west. In the mid-1990's SNOTEL sites began to be augmented to match the full climate instrumentation (air temperature, humidity, solar radiation, wind, and soil moisture and temperature in addition to precipitation, snow depth and SWE) of the SCAN system. At present there are nearly 700 SNOTEL sites in 12 states in the western US and Alaska, and over 100 SCAN sites in 40 states, Puerto Rico, and several foreign countries. Though SNOTEL was originally a western snow-monitoring network, differences between SCAN and SNOTEL have largely disappeared. The combined SNOTEL/SCAN system provides a continental-scale mesonet to support river basin to continental scale hydro-climatic analysis. The system is flexible and based on off-the-shelf data recording technology, allowing instrumentation, sampling and averaging intervals to be specified by site conditions, issues, or scientific questions. Because of the NRCS data management structure, all sites have active telemetery and provide near real-time access to data through the internet. An ongoing research program is directed to improved instrumentation for measuring precipitation, snow depth and SWE, and soil moisture and temperature. Future directions include expansion of the network to be more comprehensive, and to develop focused monitoring efforts to more effectively observe elevational and regional gradients, and to capture high intensity hydro-climatic events such as potential flooding from convective storms and rain-on-snow.
Spitzer Telemetry Processing System
NASA Technical Reports Server (NTRS)
Stanboli, Alice; Martinez, Elmain M.; McAuley, James M.
2013-01-01
The Spitzer Telemetry Processing System (SirtfTlmProc) was designed to address objectives of JPL's Multi-mission Image Processing Lab (MIPL) in processing spacecraft telemetry and distributing the resulting data to the science community. To minimize costs and maximize operability, the software design focused on automated error recovery, performance, and information management. The system processes telemetry from the Spitzer spacecraft and delivers Level 0 products to the Spitzer Science Center. SirtfTlmProc is a unique system with automated error notification and recovery, with a real-time continuous service that can go quiescent after periods of inactivity. The software can process 2 GB of telemetry and deliver Level 0 science products to the end user in four hours. It provides analysis tools so the operator can manage the system and troubleshoot problems. It automates telemetry processing in order to reduce staffing costs.
Snake River fall Chinook salmon life history investigations, annual report 2008
Tiffan, Kenneth F.; Connor, William P.; Bellgraph, Brian J.; Buchanan, Rebecca A.
2010-01-01
In 2009, we used radio and acoustic telemetry to evaluate the migratory behavior, survival, mortality, and delay of subyearling fall Chinook salmon in the Clearwater River and Lower Granite Reservoir. We released a total of 1,000 tagged hatchery subyearlings at Cherry Lane on the Clearwater River in mid August and we monitored them as they passed downstream through various river and reservoir reaches. Survival through the free-flowing river was high (>0.85) for both radio- and acoustic-tagged fish, but dropped substantially as fish delayed in the Transition Zone and Confluence areas. Estimates of the joint probability of migration and survival through the Transition Zone and Confluence reaches combined were similar for both radio- and acoustic-tagged fish, and ranged from about 0.30 to 0.35. Estimates of the joint probability of delaying and surviving in the combined Transition Zone and Confluence peaked at the beginning of the study, ranging from 0.323 ( SE =NA; radio-telemetry data) to 0.466 ( SE =0.024; acoustic-telemetry data), and then steadily declined throughout the remainder of the study. By the end of October, no live tagged juvenile salmon were detected in either the Transition Zone or the Confluence. As estimates of the probability of delay decreased throughout the study, estimates of the probability of mortality increased, as evidenced by the survival estimate of 0.650 ( SE =0.025) at the end of October (acoustic-telemetry data). Few fish were detected at Lower Granite Dam during our study and even fewer fish passed the dam before PIT-tag monitoring ended at the end of October. Five acoustic-tagged fish passed Lower Granite Dam in October and 12 passed the dam in November based on detections in the dam tailrace; however, too few detections were available to calculate the joint probabilities of migrating and surviving or delaying and surviving. Estimates of the joint probability of migrating and surviving through the reservoir was less than 0.2 based on acoustic-tagged fish. Migration rates of tagged fish were highest in the free-flowing river (median range = 36 to 43 km/d) but were generally less than 6 km/d in the reservoir reaches. In particular, median migration rates of radio-tagged fish through the Transition Zone and Confluence were 3.4 and 5.2 km/d, respectively. Median migration rate for acoustic-tagged fish though the Transition Zone and Confluence combined was 1 km/d.
Dempsey, Steven J; Gese, Eric M; Kluever, Bryan M; Lonsinger, Robert C; Waits, Lisette P
2015-01-01
Development and evaluation of noninvasive methods for monitoring species distribution and abundance is a growing area of ecological research. While noninvasive methods have the advantage of reduced risk of negative factors associated with capture, comparisons to methods using more traditional invasive sampling is lacking. Historically kit foxes (Vulpes macrotis) occupied the desert and semi-arid regions of southwestern North America. Once the most abundant carnivore in the Great Basin Desert of Utah, the species is now considered rare. In recent decades, attempts have been made to model the environmental variables influencing kit fox distribution. Using noninvasive scat deposition surveys for determination of kit fox presence, we modeled resource selection functions to predict kit fox distribution using three popular techniques (Maxent, fixed-effects, and mixed-effects generalized linear models) and compared these with similar models developed from invasive sampling (telemetry locations from radio-collared foxes). Resource selection functions were developed using a combination of landscape variables including elevation, slope, aspect, vegetation height, and soil type. All models were tested against subsequent scat collections as a method of model validation. We demonstrate the importance of comparing multiple model types for development of resource selection functions used to predict a species distribution, and evaluating the importance of environmental variables on species distribution. All models we examined showed a large effect of elevation on kit fox presence, followed by slope and vegetation height. However, the invasive sampling method (i.e., radio-telemetry) appeared to be better at determining resource selection, and therefore may be more robust in predicting kit fox distribution. In contrast, the distribution maps created from the noninvasive sampling (i.e., scat transects) were significantly different than the invasive method, thus scat transects may be appropriate when used in an occupancy framework to predict species distribution. We concluded that while scat deposition transects may be useful for monitoring kit fox abundance and possibly occupancy, they do not appear to be appropriate for determining resource selection. On our study area, scat transects were biased to roadways, while data collected using radio-telemetry was dictated by movements of the kit foxes themselves. We recommend that future studies applying noninvasive scat sampling should consider a more robust random sampling design across the landscape (e.g., random transects or more complete road coverage) that would then provide a more accurate and unbiased depiction of resource selection useful to predict kit fox distribution.
A Data Management Framework for Real-Time Water Quality Monitoring
NASA Astrophysics Data System (ADS)
Mulyono, E.; Yang, D.; Craig, M.
2007-12-01
CSU East Bay operates two in-situ, near-real-time water quality monitoring stations in San Francisco Bay as a member of the Center for Integrative Coastal Ocean Observation, Research, and Education (CICORE) and the Central and Northern California Ocean Observing System (CeNCOOS). We have been operating stations at Dumbarton Pier and San Leandro Marina for the past two years. At each station, a sonde measures seven water quality parameters every six minutes. During the first year of operation, we retrieved data from the sondes every few weeks by visiting the sites and uploading data to a handheld logger. Last year we implemented a telemetry system utilizing a cellular CDMA modem to transfer data from the field to our data center on an hourly basis. Data from each station are initially stored in monthly files in native format. We import data from these files into a SQL database every hour. SQL is handled by Django, an open source web framework. Django provides a user- friendly web user interface (UI) to administer the data. We utilized parts of the Django UI for our database web- front, which allows users to access our database via the World Wide Web and perform basic queries. We also serve our data to other aggregating sites, including the central CICORE website and NOAA's National Data Buoy Center (NDBC). Since Django is written in Python, it allows us to integrate other Python modules into our software, such as the Matplot library for scientific graphics. We store our code in a Subversion repository, which keeps track of software revisions. Code is tested using Python's unittest and doctest modules within Django's testing facility, which warns us when our code modifications cause other parts of the software to break. During the past two years of data acquisition, we have incrementally updated our data model to accommodate changes in physical hardware, including equipment moves, instrument replacements, and sensor upgrades that affected data format.
XTCE: XML Telemetry and Command Exchange Tutorial, XTCE Version 1
NASA Technical Reports Server (NTRS)
Rice, Kevin; Kizzort, Brad
2008-01-01
These presentation slides are a tutorial on XML Telemetry and Command Exchange (XTCE). The goal of XTCE is to provide an industry standard mechanism for describing telemetry and command streams (particularly from satellites.) it wiill lower cost and increase validation over traditional formats, and support exchange or native format.XCTE is designed to describe bit streams, that are typical of telemetry and command in the historic space domain.
Network Science Research Laboratory (NSRL) Telemetry Warehouse
2016-06-01
Functionality and architecture of the NSRL Telemetry Warehouse are also described as well as the web interface, data structure, security aspects, and...Experiment Controller 6 4.5 Telemetry Sensors 7 4.6 Custom Data Processing Nodes 7 5. Web Interface 8 6. Data Structure 8 6.1 Measurements 8...telemetry in comma-separated value (CSV) format from the web interface or via custom applications developed by researchers using the client application
2017-07-01
any of the listed reference frequencies may be used provided the requirements for compensation rate of change are satisfied. If the reference...for in present discriminator systems when the nominal response rating of the channels is employed and a reference frequency is recorded with the...Telemetry Standards, RCC Standard 106-17 Chapter 3, July 2017 3-i CHAPTER 3 Frequency Division Multiplexing Telemetry Standards Acronyms
Telemetry: Summary of concept and rationale
NASA Astrophysics Data System (ADS)
1987-12-01
This report presents the concept and supporting rationale for the telemetry system developed by the Consultative Committee for Space Data Systems (CCSDS). The concepts, protocols and data formats developed for the telemetry system are designed for flight and ground data systems supporting conventional, contemporary free-flyer spacecraft. Data formats are designed with efficiency as a primary consideration, i.e., format overhead is minimized. The results reflect the consensus of experts from many space agencies. An overview of the CCSDS telemetry system introduces the notion of architectural layering to achieve transparent and reliable delivery of scientific and engineering sensor data (generated aboard space vehicles) to users located in space or on earth. The system is broken down into two major conceptual categories: a packet telemetry concept and a telemetry channel coding concept. Packet telemetry facilitates data transmission from source to user in a standardized and highly automated manner. It provides a mechanism for implementing common data structures and protocols which can enhance the development and operation of space mission systems. Telemetry channel coding is a method by which data can be sent from a source to a destination by processing it in such a way that distinct messages are created which are easily distinguishable from one another. This allows construction of the data with low error probability, thus improving performance of the channel.
GeoSEA: Geodetic Earthquake Observatory on the Seafloor
NASA Astrophysics Data System (ADS)
Kopp, Heidrun; Lange, Dietrich; Flueh, Ernst R.; Petersen, Florian; Behrmann, Jan-Hinrich; Devey, Colin
2014-05-01
Space geodetic observations of crustal deformation have contributed greatly to our understanding of plate tectonic processes in general, and plate subduction in particular. Measurements of interseismic strain have documented the active accumulation of strain, and subsequent strain release during earthquakes. However, techniques such as GPS cannot be applied below the water surface because the electromagnetic energy is strongly attenuated in the water column. Evidence suggests that much of the elastic strain build up and release (and particularly that responsible for both tsunami generation and giant earthquakes) occurs offshore. To quantify strain accumulation and assess the resultant hazard potential we urgently need systems to resolve seafloor crustal deformation. Here we report on first results of sea trials of a newly implemented seafloor geodesy array. The GeoSEA (Geodetic Earthquake Observatory on the Seafloor) array consists of a seafloor transponder network comprising 35 units and a wave glider acting as a surface unit (GeoSURF) to ensure satellite correspondence, data transfer and monitor system health. Seafloor displacement occurs in the horizontal (x,y) and vertical direction (z). The vertical displacement is measured by monitoring pressure variations at the seafloor. Horizontal seafloor displacement can be measured either using an acoustic/GPS combination to provide absolute positioning (requiring a suitably equipped vessel to perform repeated cruises to provide the GPS fixes) or by long-term acoustic telemetry between different beacons fixed on the seafloor to determine relative distances by using the travel time observations to each other, which is the technique tested during our short sea trials. For horizontal direct path measurements, the system utilizes acoustic ranging techniques with a ranging precision better than 15 mm and long term stability over 2 km distances. Vertical motion is obtained from pressure gauges. Integrated inclinometers monitor station settlement in two horizontal directions. Data can be acquired and recorded autonomously subsea without system or human intervention for up to 6 years. These data can then be recovered via the integrated high-speed acoustic telemetry link without recovering the seafloor units. When requested to do so, the stored data will be transmitted wirelessly up to the sea surface to the GeoSURF wave glider for onward transmission via a satellite link. Targets for GeoSEA are the marine sector of the North Anatolian fault zone in the Marmara Sea, where a joint French-German array will be installed in late 2014 as well as the central sector of the South America - Nazca convergent plate boundary along the Iquique segment, offshore Northern Chile. Here, the GeoSEA array will be installed in late 2015 to monitor crustal deformation. Mobile autonomous seafloor arrays for continuous measurement of active seafloor deformation in hazard zones have the potential to lead to transformative discoveries of plate boundary/fault zone tectonic processes and address a novel element of marine geophysical research.
NASA Technical Reports Server (NTRS)
Freemon, F. R.; Mcnew, J. J.; Adey, W. R.
1971-01-01
The electroencephalogram and electro-oculogram of two unrestrained juvenile chimpanzees was monitored for 7 consecutive nights using telemetry methods. Of the sleeping time, 23% was spent in the rapid eye movement of REM type of sleep, whereas 8, 4, 15, and 10% were spent in non-REM stages 1 through 4, respectively. Seven to nine periods of REM sleep occurred per night. The average time from the beginning of one REM period to the beginning of the next was approximately 85 min.
Monitoring Beaked Whale Movements During Submarine Commanders Course Using Satellite Telemetry Tags
2010-09-30
whales may have removed them from each other, perhaps in a social gathering as has been observed with social groups of resident killer whales (JWD, pers...including sperm whales , pilot whales , false killer whales and melon-headed whales . This work will occur only when working with beaked whales is deemed... whales in the southern Ross Sea, Antarctica. Polar Biology 31: 1461-1468. Johnson, D. S., J. M. London, M. Lea, and J. W. Durban. (2008
Longshore, Kathleen M.; Jaeger, Jef R.; Sappington, J. Mark
2003-01-01
Survival of adult Desert Tortoises (Gopherus agassizii) appears related to site-specific variation in precipitation and productivity of annual plants. We studied adult tortoise survival rates at two closely situated, but physiographically different, sites in the eastern Mojave Desert over a nine-year period (spring 1992 to spring 2001). Survival rates were initially derived from population surveys conducted over a three-year period and by radio-telemetry monitoring over a seven-year period beginning in 1994. After a period of initial stability, survival rates on the two sites diverged over the study period, and seven-year survival rates estimated from radio-telemetry monitoring were 0.900 and 0.269, respectively. A die-off in 1996 on the latter site appears to have been triggered by a period of drought, which began in the summer of 1995, coupled with a failure of annual vegetation production in 1996. Depressed survival rates on this site were associated with drought conditions during three of four years. Although the decline had the appearance of an epizootic, there were no clinical signs of disease. Relatively short-term drought, combined with little or no annual biomass, appears to have caused severe reductions in tortoise survival. If periods of drought-induced low survival are common over relatively small areas, then source-sink population dynamics may be an important factor determining tortoise population densities.
Mottram, T
2016-10-01
Dairy cows are high value farm animals requiring careful management to achieve the best results. Since the advent of robotic and high throughput milking, the traditional few minutes available for individual human attention daily has disappeared and new automated technologies have been applied to improve monitoring of dairy cow production, nutrition, fertility, health and welfare. Cows milked by robots must meet legal requirements to detect healthy milk. This review focuses on emerging technical approaches in those areas of high cost to the farmer (fertility, metabolic disorders, mastitis, lameness and calving). The availability of low cost tri-axial accelerometers and wireless telemetry has allowed accurate models of behaviour to be developed and sometimes combined with rumination activity detected by acoustic sensors to detect oestrus; other measures (milk and skin temperature, electronic noses, milk yield) have been abandoned. In-line biosensors have been developed to detect markers for ovulation, pregnancy, lactose, mastitis and metabolic changes. Wireless telemetry has been applied to develop boluses for monitoring the rumen pH and temperature to detect metabolic disorders. Udder health requires a multisensing approach due to the varying inflammatory responses collectively described as mastitis. Lameness can be detected by walk over weigh cells, but also by various types of video image analysis and speed measurement. Prediction and detection of calving time is an area of active research mostly focused on behavioural change.
Shuenn-Yuh Lee; Chih-Jen Cheng; Ming-Chun Liang
2011-08-01
In this paper, wireless telemetry using the near-field coupling technique with round-wire coils for an implanted cardiac microstimulator is presented. The proposed system possesses an external powering amplifier and an internal bidirectional microstimulator. The energy of the microstimulator is provided by a rectifier that can efficiently charge a rechargeable device. A fully integrated regulator and a charge pump circuit are included to generate a stable, low-voltage, and high-potential supply voltage, respectively. A miniature digital processor includes a phase-shift-keying (PSK) demodulator to decode the transmission data and a self-protective system controller to operate the entire system. To acquire the cardiac signal, a low-voltage and low-power monitoring analog front end (MAFE) performs immediate threshold detection and data conversion. In addition, the pacing circuit, which consists of a pulse generator (PG) and its digital-to-analog (D/A) controller, is responsible for stimulating heart tissue. The chip was fabricated by Taiwan Semiconductor Manufacturing Company (TSMC) with 0.35-μm complementary metal-oxide semiconductor technology to perform the monitoring and pacing functions with inductively powered communication. Using a model with lead and heart tissue on measurement, a -5-V pulse at a stimulating frequency of 60 beats per minute (bpm) is delivered while only consuming 31.5 μW of power.
Telemetry Boards Interpret Rocket, Airplane Engine Data
NASA Technical Reports Server (NTRS)
2009-01-01
For all the data gathered by the space shuttle while in orbit, NASA engineers are just as concerned about the information it generates on the ground. From the moment the shuttle s wheels touch the runway to the break of its electrical umbilical cord at 0.4 seconds before its next launch, sensors feed streams of data about the status of the vehicle and its various systems to Kennedy Space Center s shuttle crews. Even while the shuttle orbiter is refitted in Kennedy s orbiter processing facility, engineers constantly monitor everything from power levels to the testing of the mechanical arm in the orbiter s payload bay. On the launch pad and up until liftoff, the Launch Control Center, attached to the large Vehicle Assembly Building, screens all of the shuttle s vital data. (Once the shuttle clears its launch tower, this responsibility shifts to Mission Control at Johnson Space Center, with Kennedy in a backup role.) Ground systems for satellite launches also generate significant amounts of data. At Cape Canaveral Air Force Station, across the Banana River from Kennedy s location on Merritt Island, Florida, NASA rockets carrying precious satellite payloads into space flood the Launch Vehicle Data Center with sensor information on temperature, speed, trajectory, and vibration. The remote measurement and transmission of systems data called telemetry is essential to ensuring the safe and successful launch of the Agency s space missions. When a launch is unsuccessful, as it was for this year s Orbiting Carbon Observatory satellite, telemetry data also provides valuable clues as to what went wrong and how to remedy any problems for future attempts. All of this information is streamed from sensors in the form of binary code: strings of ones and zeros. One small company has partnered with NASA to provide technology that renders raw telemetry data intelligible not only for Agency engineers, but also for those in the private sector.
Reinventing User Applications for Mission Control
NASA Technical Reports Server (NTRS)
Trimble, Jay Phillip; Crocker, Alan R.
2010-01-01
In 2006, NASA Ames Research Center's (ARC) Intelligent Systems Division, and NASA Johnson Space Centers (JSC) Mission Operations Directorate (MOD) began a collaboration to move user applications for JSC's mission control center to a new software architecture, intended to replace the existing user applications being used for the Space Shuttle and the International Space Station. It must also carry NASA/JSC mission operations forward to the future, meeting the needs for NASA's exploration programs beyond low Earth orbit. Key requirements for the new architecture, called Mission Control Technologies (MCT) are that end users must be able to compose and build their own software displays without the need for programming, or direct support and approval from a platform services organization. Developers must be able to build MCT components using industry standard languages and tools. Each component of MCT must be interoperable with other components, regardless of what organization develops them. For platform service providers and MOD management, MCT must be cost effective, maintainable and evolvable. MCT software is built from components that are presented to users as composable user objects. A user object is an entity that represents a domain object such as a telemetry point, a command, a timeline, an activity, or a step in a procedure. User objects may be composed and reused, for example a telemetry point may be used in a traditional monitoring display, and that same telemetry user object may be composed into a procedure step. In either display, that same telemetry point may be shown in different views, such as a plot, an alpha numeric, or a meta-data view and those views may be changed live and in place. MCT presents users with a single unified user environment that contains all the objects required to perform applicable flight controller tasks, thus users do not have to use multiple applications, the traditional boundaries that exist between multiple heterogeneous applications disappear, leaving open the possibility of new operations concepts that are not constrained by the traditional applications paradigm.
NPOESS C3S Expandability: SafetyNetTM and McMurdo Improvements
NASA Astrophysics Data System (ADS)
Jamilkowski, M. L.; Paciaroni, J.; Pela, F.
2010-12-01
The National Oceanic & Atmospheric Administration (NOAA), Department of Defense (DoD), and National Aeronautics & Space Administration (NASA) are jointly acquiring the next-generation weather & environmental satellite system; the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS replaces the current NOAA Polar-orbiting Operational Environmental Satellites (POES) and Dod's Defense Meteorological Satellite Program (DMSP). The NPOESS satellites carry a suite of sensors that collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The command & telemetry portion of NPOESS is the Command, Control and Communications Segment (C3S), developed by Raytheon Intelligence & Information Systems. C3S is responsible for managing the overall NPOESS mission from control and status of the space and ground assets to ensuring delivery of timely, high quality data from the Space Segment (SS) to the Interface Data Processing Segment (IDPS) for processing. In addition, the C3S provides the globally distributed ground assets necessary to collect and transport mission, telemetry, and command data between the satellites and the processing locations. The C3S provides all functions required for day-to-day commanding & state-of-health monitoring of the NPP & NPOESS satellites, and delivery of Stored Mission Data (SMD) to each US Weather Central Interface Data Processor (IDP) for data products development and transfer to System subscribers. The C3S also monitors and reports system-wide health and status & data communications with external systems and between NPOESS segments. Two crucial elements of NPOESS C3S expandability are SafetyNetTM and communications improvements to McMurdo Station, Antarctica. SafetyNetTM is a key feature of NPOESS and a vital element of the C3S and Northrop Grumman Aerospace Systems patented data collection architecture. The centerpiece of SafetyNetTM is the system of fifteen globally-distributed ground receptors developed by Raytheon Company. These antennae will collect up to five times as much environmental data approximately four times faster than current polar-orbiting weather satellites. Once collected, these data will be forwarded near-instantaneously to US weather centrals via the global fiber optic network for processing in environmental prediction models. In January 2008, Raytheon Company achieved a significant milestone for the NPOESS program by successfully completing the first phase of a major communications upgrade for Antarctica. The upgrade of the off-continent satellite communications link at McMurdo Station more than tripled the bandwidth available for scientific research, weather prediction, and health & safety of those stationed at McMurdo. The project is part of the company’s C3S under development for NPOESS. This upgrade paves the way for a second major communications upgrade planned for 2012 in preparation for the use of McMurdo Station as one of the 15 NPOESS ground stations worldwide that will be receiving environmental data collected by the NPOESS satellites. SafetyNet is a trademark of Northrop Grumman Aerospace Systems.
A hybrid optic-fiber sensor network with the function of self-diagnosis and self-healing
NASA Astrophysics Data System (ADS)
Xu, Shibo; Liu, Tiegen; Ge, Chunfeng; Chen, Cheng; Zhang, Hongxia
2014-11-01
We develop a hybrid wavelength division multiplexing optical fiber network with distributed fiber-optic sensors and quasi-distributed FBG sensor arrays which detect vibrations, temperatures and strains at the same time. The network has the ability to locate the failure sites automatically designated as self-diagnosis and make protective switching to reestablish sensing service designated as self-healing by cooperative work of software and hardware. The processes above are accomplished by master-slave processors with the help of optical and wireless telemetry signals. All the sensing and optical telemetry signals transmit in the same fiber either working fiber or backup fiber. We take wavelength 1450nm as downstream signal and wavelength 1350nm as upstream signal to control the network in normal circumstances, both signals are sent by a light emitting node of the corresponding processor. There is also a continuous laser wavelength 1310nm sent by each node and received by next node on both working and backup fibers to monitor their healthy states, but it does not carry any message like telemetry signals do. When fibers of two sensor units are completely damaged, the master processor will lose the communication with the node between the damaged ones.However we install RF module in each node to solve the possible problem. Finally, the whole network state is transmitted to host computer by master processor. Operator could know and control the network by human-machine interface if needed.
Bidirectional Telemetry Controller for Neuroprosthetic Devices
Sharma, Vishnu; McCreery, Douglas B.; Han, Martin; Pikov, Victor
2010-01-01
We present versatile multifunctional programmable controller with bidirectional data telemetry, implemented using existing commercial microchips and standard Bluetooth protocol, which adds convenience, reliability, and ease-of-use to neuroprosthetic devices. Controller, weighing 190 g, is placed on animal's back and provides bidirectional sustained telemetry rate of 500 kb/s, allowing real-time control of stimulation parameters and viewing of acquired data. In continuously-active state, controller consumes ∼420 mW and operates without recharge for 8 h. It features independent 16-channel current-controlled stimulation, allowing current steering; customizable stimulus current waveforms; recording of stimulus voltage waveforms and evoked neuronal responses with stimulus artifact blanking circuitry. Flexibility, scalability, cost-efficiency, and a user-friendly computer interface of this device allow use in animal testing for variety of neuroprosthetic applications. Initial testing of the controller has been done in a feline model of brainstem auditory prosthesis. In this model, the electrical stimulation is applied to the array of microelectrodes implanted in the ventral cochlear nucleus, while the evoked neuronal activity was recorded with the electrode implanted in the contralateral inferior colliculus. Stimulus voltage waveforms to monitor the access impedance of the electrodes were acquired at the rate of 312 kilosamples/s. Evoked neuronal activity in the inferior colliculus was recorded after the blanking (transient silencing) of the recording amplifier during the stimulus pulse, allowing the detection of neuronal responses within 100 μs after the end of the stimulus pulse applied in the cochlear nucleus. PMID:19933010
An Evaluation and Demonstration of a Network Based Aircraft Telemetry System
NASA Technical Reports Server (NTRS)
Waldersen, Matt; Schnarr, Otto, III
2017-01-01
The primary topics of this presentation describe the testing of network based telemetry and RF modulation techniques. The overall intend is to aid the aerospace industry in transitioning to a network based telemetry system.
A Simulation Testbed for Adaptive Modulation and Coding in Airborne Telemetry
2014-05-29
its modulation waveforms and LDPC for the FEC codes . It also uses several sets of published telemetry channel sounding data as its channel models...waveforms and LDPC for the FEC codes . It also uses several sets of published telemetry channel sounding data as its channel models. Within the context...check ( LDPC ) codes with tunable code rates, and both static and dynamic telemetry channel models are included. In an effort to maximize the
Incorporating CCSDS telemetry standards and philosophy on Cassini
NASA Technical Reports Server (NTRS)
Day, John C.; Elson, Anne B.
1995-01-01
The Cassini project at the Jet Propulsion Laboratory (JPL) is implementing a spacecraft telemetry system based on the Consultative Committee for Space Data Systems (CCSDS) packet telemetry standards. Resolving the CCSDS concepts with a Ground Data System designed to handle time-division-multiplexed telemetry and also handling constraints unique to a deep-space planetary spacecraft (such as fixed downlink opportunities, small downlink rates and requirements for on-board data storage) have resulted in spacecraft and ground system design challenges. Solving these design challenges involved adapting and extending the CCSDS telemetry standards as well as changes to the spacecraft and ground system designs. The resulting spacecraft/ground system design is an example of how new ideas and philosophies can be incorporated into existing systems and design approaches without requiring significant rework. In addition, it shows that the CCSDS telemetry standards can be successfully applied to deep-space planetary spacecraft.
Packet telemetry and packet telecommand - The new generation of spacecraft data handling techniques
NASA Technical Reports Server (NTRS)
Hooke, A. J.
1983-01-01
Because of rising costs and reduced reliability of spacecraft and ground network hardware and software customization, standardization Packet Telemetry and Packet Telecommand concepts are emerging as viable alternatives. Autonomous packets of data, within each concept, which are created within ground and space application processes through the use of formatting techniques, are switched end-to-end through the space data network to their destination application processes through the use of standard transfer protocols. This process may result in facilitating a high degree of automation and interoperability because of completely mission-independent-designed intermediate data networks. The adoption of an international guideline for future space telemetry formatting of the Packet Telemetry concept, and the advancement of the NASA-ESA Working Group's Packet Telecommand concept to a level of maturity parallel to the of Packet Telemetry are the goals of the Consultative Committee for Space Data Systems. Both the Packet Telemetry and Packet Telecommand concepts are reviewed.
Impact of advanced onboard processing concepts on end-to-end data system
NASA Technical Reports Server (NTRS)
Sos, J. Y.
1978-01-01
An investigation is conducted of the impact of advanced onboard data handling concepts on the total system in general and on ground processing operations, such as those being performed in the central data processing facility of the NASA Goddard Space Flight Center. In one of these concepts, known as the instrument telemetry packet (ITP) system, telemetry data from a single instrument is encoded into a packet, along with other ancillary data, and transmitted in this form to the ground. Another concept deals with onboard temporal registration of image data from such sensors as the thematic mapper, to be carried onboard the Landsat-D spacecraft in 1981. It is found that the implementation of the considered concepts will result in substantial simplification of the ground processing element of the system. With the projected tenfold increase in the data volume expected in the next decade, the introduction of ITP should keep the cost of the ground data processing function within reasonable bounds and significantly contribute to a more timely delivery of data/information to the end user.
The ingestible thermal monitoring system
NASA Technical Reports Server (NTRS)
Cutchis, Protagoras N.; Hogrefe, Arthur F.; Lesho, Jeffery C.
1988-01-01
A thermal monitoring system for measuring body core temperatures was developed that contains an ingestible pill which is both commandable and rechargeable, and which uses magnetic induction for command and telemetry as well as for recharging. The pill electronics consist of a battery power source, a crystal-controlled oscillator that drives a small air coil, and a command detection circuit. The resulting 262-kHz magnetilc field can be easily detected from a distance of 1 m. The pill oscillator functions at voltages less than 1 V, supplied by a single Ni-Cd battery, which must be recharged after 72 h of continuous transmission. The pill can be recalibrated periodically to compensate for long-term drift.
Transportable telemetry workstation
NASA Technical Reports Server (NTRS)
Collins, Aaron S.
1989-01-01
The goal was to complete the design of a prototype for a Transportable Telemetry Workstation (TTW). The Macintosh 2 is used to provide a low-cost system which can house real-time cards mounted on the NuBus inside the Macintosh 2 plus provide a standardized user interface on the Macintosh 2 console. Prior to a telemetry run, the user will be able to configure his real-time telemetry processing functions from the Macintosh 2 console. During a telemetry run, the real-time cards will store the telemetry data directly on a hard disk while permitting viewing of the data cards on the Macintosh 2 console on various selectable formats. The user will view the cards in terms of the functions they perform and the selectable paths through the cards, it is not required to become involved directly in hardware issue except in terms of the functional configuration of the system components. The TTW will accept telemetry data from an RS422 serial input data bus, pass it through a frame synchronizer card and on to a real time controller card via a telemetry backplane bus. The controller card will then route the data to a hard disk through a SCSI interface, and/or to a user interface on the Macintosh 2 console by way of the Macintosh 2 NuBus. The three major components to be designed, therefore, are the TTW Controller Card, the TTW Synchronizer Card, and the NuBus/Macintosh 2 User Interface. Design and prototyping of this state-of-the-art, transportable, low-cost, easy-to-use multiprocessor telemetry system is continuing. Other functions are planned for the future.
High performance VLSI telemetry data systems
NASA Technical Reports Server (NTRS)
Chesney, J.; Speciale, N.; Horner, W.; Sabia, S.
1990-01-01
NASA's deployment of major space complexes such as Space Station Freedom (SSF) and the Earth Observing System (EOS) will demand increased functionality and performance from ground based telemetry acquisition systems well above current system capabilities. Adaptation of space telemetry data transport and processing standards such as those specified by the Consultative Committee for Space Data Systems (CCSDS) standards and those required for commercial ground distribution of telemetry data, will drive these functional and performance requirements. In addition, budget limitations will force the requirement for higher modularity, flexibility, and interchangeability at lower cost in new ground telemetry data system elements. At NASA's Goddard Space Flight Center (GSFC), the design and development of generic ground telemetry data system elements, over the last five years, has resulted in significant solutions to these problems. This solution, referred to as the functional components approach includes both hardware and software components ready for end user application. The hardware functional components consist of modern data flow architectures utilizing Application Specific Integrated Circuits (ASIC's) developed specifically to support NASA's telemetry data systems needs and designed to meet a range of data rate requirements up to 300 Mbps. Real-time operating system software components support both embedded local software intelligence, and overall system control, status, processing, and interface requirements. These components, hardware and software, form the superstructure upon which project specific elements are added to complete a telemetry ground data system installation. This paper describes the functional components approach, some specific component examples, and a project example of the evolution from VLSI component, to basic board level functional component, to integrated telemetry data system.
Dudgeon, Christine L; Pollock, Kenneth H; Braccini, J Matias; Semmens, Jayson M; Barnett, Adam
2015-07-01
Capture-mark-recapture models are useful tools for estimating demographic parameters but often result in low precision when recapture rates are low. Low recapture rates are typical in many study systems including fishing-based studies. Incorporating auxiliary data into the models can improve precision and in some cases enable parameter estimation. Here, we present a novel application of acoustic telemetry for the estimation of apparent survival and abundance within capture-mark-recapture analysis using open population models. Our case study is based on simultaneously collecting longline fishing and acoustic telemetry data for a large mobile apex predator, the broadnose sevengill shark (Notorhynchus cepedianus), at a coastal site in Tasmania, Australia. Cormack-Jolly-Seber models showed that longline data alone had very low recapture rates while acoustic telemetry data for the same time period resulted in at least tenfold higher recapture rates. The apparent survival estimates were similar for the two datasets but the acoustic telemetry data showed much greater precision and enabled apparent survival parameter estimation for one dataset, which was inestimable using fishing data alone. Combined acoustic telemetry and longline data were incorporated into Jolly-Seber models using a Monte Carlo simulation approach. Abundance estimates were comparable to those with longline data only; however, the inclusion of acoustic telemetry data increased precision in the estimates. We conclude that acoustic telemetry is a useful tool for incorporating in capture-mark-recapture studies in the marine environment. Future studies should consider the application of acoustic telemetry within this framework when setting up the study design and sampling program.
Transportable telemetry workstation
NASA Astrophysics Data System (ADS)
Collins, Aaron S.
1989-09-01
The goal was to complete the design of a prototype for a Transportable Telemetry Workstation (TTW). The Macintosh 2 is used to provide a low-cost system which can house real-time cards mounted on the NuBus inside the Macintosh 2 plus provide a standardized user interface on the Macintosh 2 console. Prior to a telemetry run, the user will be able to configure his real-time telemetry processing functions from the Macintosh 2 console. During a telemetry run, the real-time cards will store the telemetry data directly on a hard disk while permitting viewing of the data cards on the Macintosh 2 console on various selectable formats. The user will view the cards in terms of the functions they perform and the selectable paths through the cards, it is not required to become involved directly in hardware issue except in terms of the functional configuration of the system components. The TTW will accept telemetry data from an RS422 serial input data bus, pass it through a frame synchronizer card and on to a real time controller card via a telemetry backplane bus. The controller card will then route the data to a hard disk through a SCSI interface, and/or to a user interface on the Macintosh 2 console by way of the Macintosh 2 NuBus. The three major components to be designed, therefore, are the TTW Controller Card, the TTW Synchronizer Card, and the NuBus/Macintosh 2 User Interface. Design and prototyping of this state-of-the-art, transportable, low-cost, easy-to-use multiprocessor telemetry system is continuing. Other functions are planned for the future.
Wireless energizing system for an automated implantable sensor.
Swain, Biswaranjan; Nayak, Praveen P; Kar, Durga P; Bhuyan, Satyanarayan; Mishra, Laxmi P
2016-07-01
The wireless drive of an automated implantable electronic sensor has been explored for health monitoring applications. The proposed system comprises of an automated biomedical sensing system which is energized through resonant inductive coupling. The implantable sensor unit is able to monitor the body temperature parameter and sends back the corresponding telemetry data wirelessly to the data recoding unit. It has been observed that the wireless power delivery system is capable of energizing the automated biomedical implantable electronic sensor placed over a distance of 3 cm from the power transmitter with an energy transfer efficiency of 26% at the operating resonant frequency of 562 kHz. This proposed method ensures real-time monitoring of different human body temperatures around the clock. The monitored temperature data have been compared with a calibrated temperature measurement system to ascertain the accuracy of the proposed system. The investigated technique can also be useful for monitoring other body parameters such as blood pressure, bladder pressure, and physiological signals of the patient in vivo using various implantable sensors.
Automatic Satellite Telemetry Analysis for SSA using Artificial Intelligence Techniques
NASA Astrophysics Data System (ADS)
Stottler, R.; Mao, J.
In April 2016, General Hyten, commander of Air Force Space Command, announced the Space Enterprise Vision (SEV) (http://www.af.mil/News/Article-Display/Article/719941/hyten-announces-space-enterprise-vision/). The SEV addresses increasing threats to space-related systems. The vision includes an integrated approach across all mission areas (communications, positioning, navigation and timing, missile warning, and weather data) and emphasizes improved access to data across the entire enterprise and the ability to protect space-related assets and capabilities. "The future space enterprise will maintain our nation's ability to deliver critical space effects throughout all phases of conflict," Hyten said. Satellite telemetry is going to become available to a new audience. While that telemetry information should be valuable for achieving Space Situational Awareness (SSA), these new satellite telemetry data consumers will not know how to utilize it. We were tasked with applying AI techniques to build an infrastructure to process satellite telemetry into higher abstraction level symbolic space situational awareness and to initially populate that infrastructure with useful data analysis methods. We are working with two organizations, Montana State University (MSU) and the Air Force Academy, both of whom control satellites and therefore currently analyze satellite telemetry to assess the health and circumstances of their satellites. The design which has resulted from our knowledge elicitation and cognitive task analysis is a hybrid approach which combines symbolic processing techniques of Case-Based Reasoning (CBR) and Behavior Transition Networks (BTNs) with current Machine Learning approaches. BTNs are used to represent the process and associated formulas to check telemetry values against anticipated problems and issues. CBR is used to represent and retrieve BTNs that represent an investigative process that should be applied to the telemetry in certain circumstances. Machine Learning is used to learn normal patterns of telemetry, learn pre-mission simulated telemetry patterns that represent known problems, and detect both pre-trained known and unknown abnormalities in real-time. The operational system is currently being implemented and applied to real satellite telemetry data. This paper presents the design, examples, and results of the first version as well as planned future work.
Design and Implementation of the National Seismic Monitoring Network in the Kingdom of Bhutan
NASA Astrophysics Data System (ADS)
Ohmi, S.; Inoue, H.; Chophel, J.; Pelgay, P.; Drukpa, D.
2017-12-01
Bhutan-Himalayan district is located along the plate collision zone between Indian and Eurasian plates, which is one of the most seismically active region in the world. Recent earthquakes such as M7.8 Gorkha Nepal earthquake in April 25, 2015 and M6.7 Imphal, India earthquake in January 3, 2016 are examples of felt earthquakes in Bhutan. However, there is no permanent seismic monitoring system ever established in Bhutan, whose territory is in the center of the Bhutan-Himalayan region. We started establishing permanent seismic monitoring network of minimum requirements and intensity meter network over the nation. The former is composed of six (6) observation stations in Bhutan with short period weak motion and strong motion seismometers as well as three (3) broad-band seismometers, and the latter is composed of twenty intensity meters located in every provincial government office. Obtained data are transmitted to the central processing system in the DGM office in Thimphu in real time. In this project, DGM will construct seismic vault with their own budget which is approved as the World Bank project, and Japan team assists the DGM for site survey of observation site, designing the observation vault, and designing the data telemetry system as well as providing instruments for the observation such as seismometers and digitizers. We already started the operation of the six (6) weak motion stations as well as twenty (20) intensity meter stations. Additionally, the RIMES (Regional Integrated Multi-hazard Early Warning System for Africa and Asia) is also providing eight (8) weak motion stations and we are keeping close communication to operate them as one single seismic monitoring network composed of fourteen (14) stations. This network will be definitely utilized for not only for seismic disaster mitigation of the country but also for studying the seismotectonics in the Bhutan-Himalayan region which is not yet precisely revealed due to the lack of observation data in the past.
47 CFR 95.1111 - Frequency coordination.
Code of Federal Regulations, 2010 CFR
2010-10-01
... notify the frequency coordinator whenever a medical telemetry device is permanently taken out of service... SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1111 Frequency coordination. (a) Prior to operation, authorized health care providers who desire to use wireless medical telemetry...
47 CFR 95.1111 - Frequency coordination.
Code of Federal Regulations, 2011 CFR
2011-10-01
... notify the frequency coordinator whenever a medical telemetry device is permanently taken out of service... SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1111 Frequency coordination. (a) Prior to operation, authorized health care providers who desire to use wireless medical telemetry...
Animal movement constraints improve resource selection inference in the presence of telemetry error
Brost, Brian M.; Hooten, Mevin B.; Hanks, Ephraim M.; Small, Robert J.
2016-01-01
Multiple factors complicate the analysis of animal telemetry location data. Recent advancements address issues such as temporal autocorrelation and telemetry measurement error, but additional challenges remain. Difficulties introduced by complicated error structures or barriers to animal movement can weaken inference. We propose an approach for obtaining resource selection inference from animal location data that accounts for complicated error structures, movement constraints, and temporally autocorrelated observations. We specify a model for telemetry data observed with error conditional on unobserved true locations that reflects prior knowledge about constraints in the animal movement process. The observed telemetry data are modeled using a flexible distribution that accommodates extreme errors and complicated error structures. Although constraints to movement are often viewed as a nuisance, we use constraints to simultaneously estimate and account for telemetry error. We apply the model to simulated data, showing that it outperforms common ad hoc approaches used when confronted with measurement error and movement constraints. We then apply our framework to an Argos satellite telemetry data set on harbor seals (Phoca vitulina) in the Gulf of Alaska, a species that is constrained to move within the marine environment and adjacent coastlines.
Bacheler, N.M.; Buckel, J.A.; Hightower, J.E.; Paramore, L.M.; Pollock, K.H.
2009-01-01
A joint analysis of tag return and telemetry data should improve estimates of mortality rates for exploited fishes; however, the combined approach has thus far only been tested in terrestrial systems. We tagged subadult red drum (Sciaenops ocellatus) with conventional tags and ultrasonic transmitters over 3 years in coastal North Carolina, USA, to test the efficacy of the combined telemetry - tag return approach. There was a strong seasonal pattern to monthly fishing mortality rate (F) estimates from both conventional and telemetry tags; highest F values occurred in fall months and lowest levels occurred during winter. Although monthly F values were similar in pattern and magnitude between conventional tagging and telemetry, information on F in the combined model came primarily from conventional tags. The estimated natural mortality rate (M) in the combined model was low (estimated annual rate ?? standard error: 0.04 ?? 0.04) and was based primarily upon the telemetry approach. Using high-reward tagging, we estimated different tag reporting rates for state agency and university tagging programs. The combined telemetry - tag return approach can be an effective approach for estimating F and M as long as several key assumptions of the model are met.
2014-09-30
TERM GOALS We recently developed small satellite-linked telemetry tags that are anchored with small attachment darts to the dorsal fins of small ...monitor the movements of numerous species not previously accessible because they were too large or difficult to capture safely, but too small for tags...cetaceans that provides the data needed to answer critical conservation and management questions without an adverse effect on the tagged animal. Therefore
NASA Technical Reports Server (NTRS)
1988-01-01
ARCO Solar manufactures PV Systems tailored to a broad variety of applications. PV arrays are routinely used at remote communications installations to operate large microwave repeaters, TV and radio repeaters rural telephone, and small telemetry systems that monitor environmental conditions. Also used to power agricultural water pumping systems, to provide electricity for isolated villages and medical clinics, for corrosion protection for pipelines and bridges, to power railroad signals, air/sea navigational aids, and for many types of military systems. ARCO is now moving into large scale generation for utilities.
TOPEX NASA Altimeter Operations Handbook, September 1992. Volume 6
NASA Technical Reports Server (NTRS)
Hancock, David W., III; Hayne, George S.; Purdy, Craig L.; Bull, James B.; Brooks, Ronald L.
2003-01-01
This operations handbook identifies the commands for the NASA radar altimeter for the TOPEX/Poseidon spacecraft, defines the functions of these commands, and provides supplemental reference material for use by the altimeter operations personnel. The main emphasis of this document is placed on command types, command definitions, command sequences, and operational constraints. Additional document sections describe uploadable altimeter operating parameters, the telemetry stream data contents (for both the science and the engineering data), the Missions Operations System displays, and the spacecraft and altimeter health monitors.
2012-08-01
may have population sub-units with higher than expected residency to the Southern California Bight. Beaked whales particularly show this higher than... killer whale , satellite tags, photo-identification, biopsy sampling, acoustic monitoring, SOAR, Southern California Bight. 16. SECURITY...population sub-units with higher than expected residency to the Southern California Bight, and to SOAR in particular in the case of beaked whales . These
Configurable technology development for reusable control and monitor ground systems
NASA Technical Reports Server (NTRS)
Uhrlaub, David R.
1994-01-01
The control monitor unit (CMU) uses configurable software technology for real-time mission command and control, telemetry processing, simulation, data acquisition, data archiving, and ground operations automation. The base technology is currently planned for the following control and monitor systems: portable Space Station checkout systems; ecological life support systems; Space Station logistics carrier system; and the ground system of the Delta Clipper (SX-2) in the Single-Stage Rocket Technology program. The CMU makes extensive use of commercial technology to increase capability and reduce development and life-cycle costs. The concepts and technology are being developed by McDonnell Douglas Space and Defense Systems for the Real-Time Systems Laboratory at NASA's Kennedy Space Center under the Payload Ground Operations Contract. A second function of the Real-Time Systems Laboratory is development and utilization of advanced software development practices.
Seasonal movements and environmental triggers to fall migration of Sage Sparrows
Fesenmyer, K.A.; Knick, S.T.
2011-01-01
Post-breeding ecology of shrubland passerines prior to onset of migration is unknown relative to dynamics of breeding areas. We radiomarked and monitored 38 Sage Sparrows (Amphispiza belli ssp. nevadensis) at one site in Oregon and two in Nevada from September to mid-November 2007 to track local movements, estimate seasonal range sizes, and characterize weather patterns triggering onset of migration. Median area used by Sage Sparrows monitored between 3 and 18 days during or prior to migration was 14 ha; maximum daily movement was 15 km. Radio-marked Sage Sparrows at each location departed individually, rather than en masse, corresponding with passage of cold front weather systems. Conventional telemetry techniques limited our ability to monitor Sage Sparrows beyond pre-migratory periods and precluded detecting and tracking actual movements during migration. ?? 2011 by the Wilson Ornithological Society.
BION-M 1: First continuous blood pressure monitoring in mice during a 30-day spaceflight
NASA Astrophysics Data System (ADS)
Andreev-Andrievskiy, Alexander; Popova, Anfisa; Lloret, Jean-Christophe; Aubry, Patrick; Borovik, Anatoliy; Tsvirkun, Daria; Vinogradova, Olga; Ilyin, Eugeniy; Gauquelin-Koch, Guillemette; Gharib, Claude; Custaud, Marc-Antoine
2017-05-01
Animals are an essential component of space exploration and have been used to demonstrate that weightlessness does not disrupt essential physiological functions. They can also contribute to space research as models of weightlessness-induced changes in humans. Animal research was an integral component of the 30-day automated Russian biosatellite Bion-M 1 space mission. The aim of the hemodynamic experiment was to estimate cardiovascular function in mice, a species roughly 3000 times smaller than humans, during prolonged spaceflight and post-flight recovery, particularly, to investigate if mice display signs of cardiovascular deconditioning. For the first time, heart rate (HR) and blood pressure (BP) were continuously monitored using implantable telemetry during spaceflight and recovery. Decreased HR and unchanged BP were observed during launch, whereas both HR and BP dropped dramatically during descent. During spaceflight, BP did not change from pre-flight values. However, HR increased, particularly during periods of activity. HR remained elevated after spaceflight and was accompanied by increased levels of exercise-induced tachycardia. Loss of three of the five mice during the flight as a result of the hardware malfunction (unrelated to the telemetry system) and thus the limited sample number constitute the major limitation of the study. For the first time BP and HR were continuously monitored in mice during the 30-day spaceflight and 7-days of post-flight recovery. Cardiovascular deconditioning in these tiny quadruped mammals was reminiscent of that in humans. Therefore, the loss of hydrostatic pressure in space, which is thought to be the initiating event for human cardiovascular adaptation in microgravity, might be of less importance than other physiological mechanisms. Further experiments with larger number of mice are needed to confirm these findings.
Macintosh II based space Telemetry and Command (MacTac) system
NASA Technical Reports Server (NTRS)
Dominy, Carol T.; Chesney, James R.; Collins, Aaron S.; Kay, W. K.
1991-01-01
The general architecture and the principal functions of the Macintosh II based Telemetry and Command system, presently under development, are described, with attention given to custom telemetry cards, input/output interfaces, and the icon driven user interface. The MacTac is a low-cost, transportable, easy to use, compact system designed to meet the requirements specified by the Consultative Committeee for Space Data Systems while remaining flexible enough to support a wide variety of other user specific telemetry processing requirements, such as TDM data. In addition, the MacTac can accept or generate forward data (such as spacecraft commands), calculate and append a Polynomial Check Code, and output these data to NASCOM to provide full Telemetry and Command capability.
Telemetry Simulation Assembly Implementation in the DSN
NASA Technical Reports Server (NTRS)
Alberda, M. E.
1984-01-01
The telemetry simulation was implemented as part of the MARK IV network implementation project. The telemetry simulation assembly (TSA) is replacing the Simulation Conversion Assembly (SCA) throughout the DSN. The development of the TSA is discussed, and the design is described to the block diagram level.
Preliminary PANSAT ground station software design and use of an expert system to analyze telemetry
NASA Astrophysics Data System (ADS)
Lawrence, Gregory W.
1994-03-01
The Petite Amateur Navy Satellite (PANSAT) is a communications satellite designed to be used by civilian amateur radio operators. A master ground station is being built at the Naval Postgraduate School. This computer system performs satellite commands, displays telemetry, trouble-shoots problems, and passes messages. The system also controls an open loop tracking antenna. This paper concentrates on the telemetry display, decoding, and interpretation through artificial intelligence (AI). The telemetry is displayed in an easily interpretable format, so that any user can understand the current health of the satellite and be cued as to any problems and possible solutions. Only the master ground station has the ability to receive all telemetry and send commands to the spacecraft; civilian ham users do not have access to this information. The telemetry data is decommutated and analyzed before it is displayed to the user, so that the raw data will not have to be interpreted by ground users. The analysis will use CLIPS imbedded in the code, and derive its inputs from telemetry decommutation. The program is an expert system using a forward chaining set of rules based on the expected operation and parameters of the satellite. By building the rules during the construction and design of the satellite, the telemetry can be well understood and interpreted after the satellite is launched and the designers may no longer be available to provide input to the problem.
Hansbarger, Jeff L.; Petty, J. Todd; Mazik, Patricia M.
2008-01-01
Brook trout (Salvelinus fontinalis) habitat restoration is needed across a range of stream sizes; however, studies quantifying brook trout habitat preferences in streams of differing sizes are rare. We used radio-telemetry to quantify adult brook trout microhabitat use in a central Appalachian watershed, the upper Shavers Fork of the Cheat River in eastern West Virginia. Our objectives were to: 1) quantify non-random microhabitat use by adult brook trout in the Shavers Fork main stem (drainage area = 32 km2) and an adjacent tributary, Rocky Run (drainage area = 7 km2); and 2) construct stream-specific habitat suitability curves (HSCs) for four important microhabitat variables (depth, average current velocity, maximum current velocity within one meter, and distance to cover). Brook trout used a subset of available microhabitats in both the main stem and Rocky Run: trout tended to occupy microhabitats that were deeper, higher velocity, and closer to cover than expected by chance alone. Although specific microhabitat values differed between the main stem and tributary populations, the overall patterns in brook trout microhabitat use were consistent regardless of stream size. Habitat suitability curves were constructed based on brook trout microhabitat use and will be used to design and monitor the effectiveness of future habitat restoration efforts in the Shavers Fork watershed. Our results suggest that habitat enhancement projects that increase the availability of deep, high velocity microhabitats adjacent to cover would benefit brook trout in both small tributaries and larger river main stems.
DSN telemetry system data records
NASA Technical Reports Server (NTRS)
Gatz, E. C.
1976-01-01
The DSN telemetry system now includes the capability to provide a complete magnetic tape record, within 24 hours of reception, of all telemetry data received from a spacecraft. This record, the intermediate data record, is processed and generated almost entirely automatically, and provides a detailed accounting of any missing data.
Preliminary Concept of Operations for the Deep Space Array-Based Network
NASA Astrophysics Data System (ADS)
Bagri, D. S.; Statman, J. I.
2004-05-01
The Deep Space Array-Based Network (DSAN) will be an array-based system, part of a greater than 1000 times increase in the downlink/telemetry capability of the Deep Space Network. The key function of the DSAN is provision of cost-effective, robust telemetry, tracking, and command services to the space missions of NASA and its international partners. This article presents an expanded approach to the use of an array-based system. Instead of using the array as an element in the existing Deep Space Network (DSN), relying to a large extent on the DSN infrastructure, we explore a broader departure from the current DSN, using fewer elements of the existing DSN, and establishing a more modern concept of operations. For example, the DSAN will have a single 24 x 7 monitor and control (M&C) facility, while the DSN has four 24 x 7 M&C facilities. The article gives the architecture of the DSAN and its operations philosophy. It also briefly describes the customer's view of operations, operations management, logistics, anomaly analysis, and reporting.
Weiland, Mark A.; Deng, Z. Daniel; Seim, Tom A.; LaMarche, Brian L.; Choi, Eric Y.; Fu, Tao; Carlson, Thomas J.; Thronas, Aaron I.; Eppard, M. Brad
2011-01-01
In 2001 the U.S. Army Corps of Engineers, Portland District (OR, USA), started developing the Juvenile Salmon Acoustic Telemetry System, a nonproprietary sensing technology, to meet the needs for monitoring the survival of juvenile salmonids through eight large hydroelectric facilities within the Federal Columbia River Power System (FCRPS). Initial development focused on coded acoustic microtransmitters and autonomous receivers that could be deployed in open reaches of the river for detection of the juvenile salmonids implanted with microtransmitters as they passed the autonomous receiver arrays. In 2006, the Pacific Northwest National Laboratory began the development of an acoustic receiver system for deployment at hydropower facilities (cabled receiver) for detecting fish tagged with microtransmitters as well as tracking them in two or three dimensions for determining route of passage and behavior as the fish passed at the facility. The additional information on route of passage, combined with survival estimates, is used by the dam operators and managers to make structural and operational changes at the hydropower facilities to improve survival of fish as they pass the facilities through the FCRPS. PMID:22163918
2013-03-05
CAPE CANAVERAL, Fla. – With the help of a crane, a worker helps guide a parabolic telemetry antenna and tracker camera to the roof of the Launch Control Center, or LCC, in Launch Complex 39 at NASA's Kennedy Space Center in Florida. This antenna and camera system is the first of three that will be installed on the LCC roof for the Radio Frequency and Telemetry Station RFTS, which will be used to monitor radio frequency communications from a launch vehicle at Launch Pad 39A or B as well as provide radio frequency relay for a launch vehicle in the Vehicle Assembly Building. The RFTS replaces the shuttle-era communications and tracking labs at Kennedy. The modern RFTS checkout station is designed to primarily support NASA's Space Launch System, or SLS, and Orion spacecraft, but can support multi-user radio frequency tests as the space center transitions to support a variety of rockets and spacecraft. For more information on the modernization efforts at Kennedy, visit the Ground Systems Development and Operations, or GSDO, website at http://go.nasa.gov/groundsystems. Photo credit: NASA/Jim Grossmann
A system verification platform for high-density epiretinal prostheses.
Chen, Kuanfu; Lo, Yi-Kai; Yang, Zhi; Weiland, James D; Humayun, Mark S; Liu, Wentai
2013-06-01
Retinal prostheses have restored light perception to people worldwide who have poor or no vision as a consequence of retinal degeneration. To advance the quality of visual stimulation for retinal implant recipients, a higher number of stimulation channels is expected in the next generation retinal prostheses, which poses a great challenge to system design and verification. This paper presents a system verification platform dedicated to the development of retinal prostheses. The system includes primary processing, dual-band power and data telemetry, a high-density stimulator array, and two methods for output verification. End-to-end system validation and individual functional block characterization can be achieved with this platform through visual inspection and software analysis. Custom-built software running on the computers also provides a good way for testing new features before they are realized by the ICs. Real-time visual feedbacks through the video displays make it easy to monitor and debug the system. The characterization of the wireless telemetry and the demonstration of the visual display are reported in this paper using a 256-channel retinal prosthetic IC as an example.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Zhiwei, E-mail: jiayege@hotmail.com; Yan, Guozheng; Zhu, Bingquan
An implanted telemetry system for experimental animals with or without anaesthesia can be used to continuously monitor physiological parameters. This system is significant not only in the study of organisms but also in the evaluation of drug efficacy, artificial organs, and auxiliary devices. The system is composed of a miniature electronic capsule, a wireless power transmission module, a data-recording device, and a processing module. An electrocardiograph, a temperature sensor, and a pressure sensor are integrated in the miniature electronic capsule, in which the signals are transmitted in vitro by wireless communication after filtering, amplification, and A/D sampling. To overcome themore » power shortage of batteries, a wireless power transmission module based on electromagnetic induction was designed. The transmitting coil of a rectangular-section solenoid and a 3D receiving coil are proposed according to stability and safety constraints. Experiments show that at least 150 mW of power could pick up on the load in a volume of Φ10.5 mm × 11 mm, with a transmission efficiency of 2.56%. Vivisection experiments verified the feasibility of the integrated radio-telemetry system.« less
Impedance-matched drilling telemetry system
Normann, Randy A [Edgewood, NM; Mansure, Arthur J [Albuquerque, NM
2008-04-22
A downhole telemetry system that uses inductance or capacitance as a mode through which signal is communicated across joints between assembled lengths of pipe wherein efficiency of signal propagation through a drill string, for example, over multiple successive pipe segments is enhanced through matching impedances associated with the various telemetry system components.
106-17 Telemetry Standards Metadata Configuration Chapter 23
2017-07-01
23-1 23.2 Metadata Description Language ...Chapter 23, July 2017 iii Acronyms HTML Hypertext Markup Language MDL Metadata Description Language PCM pulse code modulation TMATS Telemetry...Attributes Transfer Standard W3C World Wide Web Consortium XML eXtensible Markup Language XSD XML schema document Telemetry Network Standard
47 CFR 90.238 - Telemetry operations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... MHz band (as available in the Public Safety Pool for bio-medical telemetry operations). (i) For... with § 90.257 and subject to the rules governing the use of that band). (b) 154.45625, 154.46375, 154...-470 MHz band, telemetry operations will be authorized on a secondary basis with a transmitter output...
47 CFR 95.1115 - General technical requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) In the 1395-1400 MHz and 1427-1432 MHz bands, no specific channels are specified. Wireless medical telemetry devices may operate on any channel within the bands authorized for wireless medical telemetry use in this part. (2) In the 608-614 MHz band, wireless medical telemetry devices utilizing broadband...
2017-07-13
ec o n d s Data Rate TELEMETRY SYSTEM DATA LATENCY 15 of 31 Document: JT3-AFC-SRPT-17172-0005 Revision...250 So ft w ar e D ec o m L at en cy N T im es G re at er T h an D xD ec o m L at en cy Data Rate TELEMETRY SYSTEM DATA LATENCY 16 of...20.0 30.0 40.0 50.0 60.0 70.0 M ill is ec o n d s Data Rate TELEMETRY SYSTEM DATA LATENCY 17 of 31 Document:
Satellite telemetry and wildlife studies in India: Advantages, options and challenges
Javed, Sàlim; Higuchi, Hiroyoshi; Nagendran, Meenakshi; Takekawa, John Y.
2003-01-01
Greater spatial coverage, accuracy and non-invasiveness of satellite technology make it one of the best tools to track long-distance migrants, which is otherwise difficult using conventional radio telemetry. In this article, we review the evolution of satellite telemetry and its application. We provide examples of three recent studies in India that have demonstrated and created a widespread appreciation of the use and benefits of satellite telemetry among biologists and managers. We also discuss the future prospects of this technology vis-a-vis benefits and challenges in the Indian subcontinent.
NASA Technical Reports Server (NTRS)
1997-01-01
In 1990, Avtec Systems, Inc. developed its first telemetry boards for Goddard Space Flight Center. Avtec products now include PC/AT, PCI and VME-based high speed I/O boards and turn-key systems. The most recent and most successful technology transfer from NASA to Avtec is the Programmable Telemetry Processor (PTP), a personal computer- based, multi-channel telemetry front-end processing system originally developed to support the NASA communication (NASCOM) network. The PTP performs data acquisition, real-time network transfer, and store and forward operations. There are over 100 PTP systems located in NASA facilities and throughout the world.
Bush, Benjamin; Tobias, Joseph D; Lin, Chen; Ruda, James; Jatana, Kris R; Essig, Garth; Cooper, Jennifer; Tumin, Dmitry; Elmaraghy, Charles A
2018-01-01
Dexmedetomidine is a novel pharmacologic agent that has become a frequently used adjunct during care of pediatric patients with obstructive sleep apnea (OSA) undergoing tonsillectomy. While generally safe and effective, dexmedetomidine is associated with adverse effects of hypotension and bradycardia from its central sympatholytic effects. Due to safety concerns, our institution routinely admits patients with OSA for overnight cardiorespiratory monitoring following tonsillectomy. With such monitoring, we have anecdotally noted bradycardia in our patients and sought to investigate whether this was related to the increased use of intra-operative dexmedetomidine. We retrospectively reviewed records over an 11-month period to compare the incidence of postoperative bradycardia following hospital admission for tonsillectomy in patients who received dexmedetomidine versus those who did not. The study cohort included 921 patients (371 received dexmedetomidine and 550 did not). Bradycardia was asymptomatically noted in 66 patients (7.2%). No patient required medical intervention for the bradycardia or developed clinical symptoms. There was no association of bradycardia with the intra-operative administration of dexmedetomidine (8.9% of patients who received dexmetomidine vs. 9.4% who did not). In multivariable analysis, bradycardia was more common among older patients, with the administration of topical or injected lidocaine, and with specific associated procedures (inferior turbinate coblation with out-fracture or direct laryngoscopy and bronchoscopy). The increased incidence of asymptomatic bradycardia in our post-adenotonsillectomy patients seemed to relate more to increased utilization of postoperative cardiac telemetry, and did not appear associated with the use of dexmedetomidine use intra-operatively. Copyright © 2017 Elsevier B.V. All rights reserved.
Highly automated on-orbit operations of the NuSTAR telescope
NASA Astrophysics Data System (ADS)
Roberts, Bryce; Bester, Manfred; Dumlao, Renee; Eckert, Marty; Johnson, Sam; Lewis, Mark; McDonald, John; Pease, Deron; Picard, Greg; Thorsness, Jeremy
2014-08-01
UC Berkeley's Space Sciences Laboratory (SSL) currently operates a fleet of seven NASA satellites, which conduct research in the fields of space physics and astronomy. The newest addition to this fleet is a high-energy X-ray telescope called the Nuclear Spectroscopic Telescope Array (NuSTAR). Since 2012, SSL has conducted on-orbit operations for NuSTAR on behalf of the lead institution, principle investigator, and Science Operations Center at the California Institute of Technology. NuSTAR operations benefit from a truly multi-mission ground system architecture design focused on automation and autonomy that has been honed by over a decade of continual improvement and ground network expansion. This architecture has made flight operations possible with nominal 40 hours per week staffing, while not compromising mission safety. The remote NuSTAR Science Operation Center (SOC) and Mission Operations Center (MOC) are joined by a two-way electronic interface that allows the SOC to submit automatically validated telescope pointing requests, and also to receive raw data products that are automatically produced after downlink. Command loads are built and uploaded weekly, and a web-based timeline allows both the SOC and MOC to monitor the state of currently scheduled spacecraft activities. Network routing and the command and control system are fully automated by MOC's central scheduling system. A closed-loop data accounting system automatically detects and retransmits data gaps. All passes are monitored by two independent paging systems, which alert staff of pass support problems or anomalous telemetry. NuSTAR mission operations now require less than one attended pass support per workday.
Cranmer, Alexana; Smetzer, Jennifer R; Welch, Linda; Baker, Erin
2017-05-15
Quantifying and managing the potential adverse wildlife impacts of offshore wind energy is critical for developing offshore wind energy in a sustainable and timely manner, but poses a significant challenge, particularly for small marine birds that are difficult to monitor. We developed a discrete-time Markov model of seabird movement around a colony site parameterized by automated radio telemetry data from common terns (Sterna hirundo) and Arctic terns (S. paradisaea), and derived impact functions that estimate the probability of collision fatality as a function of the distance and bearing of wind turbines from a colony. Our purpose was to develop and demonstrate a new, flexible tool that can be used for specific management and wind-energy planning applications when adequate data are available, rather than inform wind-energy development at this site. We demonstrate how the tool can be used 1) in marine spatial planning exercises to quantitatively identify setback distances under development scenarios given a risk threshold, 2) to examine the ecological and technical trade-offs of development alternatives to facilitate negotiation between objectives, and 3) in the U.S. National Environmental Policy Act (NEPA) process to estimate collision fatality under alternative scenarios. We discuss model limitations and data needs, and highlight opportunities for future model extension and development. We present a highly flexible tool for wind energy planning that can be easily extended to other central place foragers and data sources, and can be updated and improved as new monitoring data arises. Copyright © 2017 Elsevier Ltd. All rights reserved.
Automated Activation and Deactivation of a System Under Test
NASA Technical Reports Server (NTRS)
Poff, Mark A.
2006-01-01
The MPLM Automated Activation/Deactivation application (MPLM means Multi-Purpose Logistic Module) was created with a three-fold purpose in mind: 1. To reduce the possibility of human error in issuing commands to, or interpreting telemetry from, the MPLM power, computer, and environmental control systems; 2. To reduce the amount of test time required for the repetitive activation/deactivation processes; and 3. To reduce the number of on-console personnel required for activation/ deactivation. All of these have been demonstrated with the release of the software. While some degree of automated end-item commanding had previously been performed for space-station hardware in the test environment, none approached the functionality and flexibility of this application. For MPLM activation, it provides mouse-click selection of the hardware complement to be activated, activates the desired hardware and verifies proper feedbacks, and alerts the user when telemetry indicates an error condition or manual intervention is required. For MPLM deactivation, the product senses which end items are active and deactivates them in the proper sequence. For historical purposes, an on-line log is maintained of commands issued and telemetry points monitored. The benefits of the MPLM Automated Activation/ Deactivation application were demonstrated with its first use in December 2002, when it flawlessly performed MPLM activation in 8 minutes (versus as much as 2.4 hours for previous manual activations), and performed MPLM deactivation in 3 minutes (versus 66 minutes for previous manual deactivations). The number of test team members required has dropped from eight to four, and in actuality the software can be operated by a sole (knowledgeable) system engineer.
Monitoring of International Space Station Telemetry Using Shewhart Control Charts
NASA Technical Reports Server (NTRS)
Fitch, Jeffery T.; Simon, Alan L.; Gouveia, John A.; Hillin, Andrew M.; Hernandez, Steve A.
2012-01-01
Shewhart control charts have been established as an expedient method for analyzing dynamic, trending data in order to identify anomalous subsystem performance as soon as such performance would exceed a statistically established baseline. Additionally, this leading indicator tool integrates a selection methodology that reduces false positive indications, optimizes true leading indicator events, minimizes computer processor unit duty cycles, and addresses human factor concerns (i.e., the potential for flight-controller data overload). This innovation leverages statistical process control, and provides a relatively simple way to allow flight controllers to focus their attention on subtle system changes that could lead to dramatic off-nominal system performance. Finally, this capability improves response time to potential hardware damage and/or crew injury, thereby improving space flight safety. Shewhart control charts require normalized data. However, the telemetry from the ISS Early External Thermal Control System (EETCS) was not normally distributed. A method for normalizing the data was implemented, as was a means of selecting data windows, the number of standard deviations (Sigma Level), the number of consecutive points out of limits (Sequence), and direction (increasing or decreasing trend data). By varying these options, and treating them like dial settings, the number of nuisance alerts and leading indicators were optimized. The goal was to capture all leading indicators while minimizing the number of nuisances. Lean Six Sigma (L6S) design of experiment methodologies were employed. To optimize the results, Perl programming language was used to automate the massive amounts of telemetry data, control chart plots, and the data analysis.
A Wireless FSCV Monitoring IC With Analog Background Subtraction and UWB Telemetry.
Dorta-Quiñones, Carlos I; Wang, Xiao Y; Dokania, Rajeev K; Gailey, Alycia; Lindau, Manfred; Apsel, Alyssa B
2016-04-01
A 30-μW wireless fast-scan cyclic voltammetry monitoring integrated circuit for ultra-wideband (UWB) transmission of dopamine release events in freely-behaving small animals is presented. On-chip integration of analog background subtraction and UWB telemetry yields a 32-fold increase in resolution versus standard Nyquist-rate conversion alone, near a four-fold decrease in the volume of uplink data versus single-bit, third-order, delta-sigma modulation, and more than a 20-fold reduction in transmit power versus narrowband transmission for low data rates. The 1.5- mm(2) chip, which was fabricated in 65-nm CMOS technology, consists of a low-noise potentiostat frontend, a two-step analog-to-digital converter (ADC), and an impulse-radio UWB transmitter (TX). The duty-cycled frontend and ADC/UWB-TX blocks draw 4 μA and 15 μA from 3-V and 1.2-V supplies, respectively. The chip achieves an input-referred current noise of 92 pA(rms) and an input current range of ±430 nA at a conversion rate of 10 kHz. The packaged device operates from a 3-V coin-cell battery, measures 4.7 × 1.9 cm(2), weighs 4.3 g (including the battery and antenna), and can be carried by small animals. The system was validated by wirelessly recording flow-injection of dopamine with concentrations in the range of 250 nM to 1 μM with a carbon-fiber microelectrode (CFM) using 300-V/s FSCV.
A Wireless FSCV Monitoring IC with Analog Background Subtraction and UWB Telemetry
Dorta-Quiñones, Carlos I.; Wang, Xiao Y.; Dokania, Rajeev K.; Gailey, Alycia; Lindau, Manfred; Apsel, Alyssa B.
2015-01-01
A 30-μW wireless fast-scan cyclic voltammetry monitoring integrated circuit for ultra-wideband (UWB) transmission of dopamine release events in freely-behaving small animals is presented. On-chip integration of analog background subtraction and UWB telemetry yields a 32-fold increase in resolution versus standard Nyquist-rate conversion alone, near a four-fold decrease in the volume of uplink data versus single-bit, third-order, delta-sigma modulation, and more than a 20-fold reduction in transmit power versus narrowband transmission for low data rates. The 1.5-mm2 chip, which was fabricated in 65-nm CMOS technology, consists of a low-noise potentiostat frontend, a two-step analog-to-digital converter (ADC), and an impulse-radio UWB transmitter (TX). The duty-cycled frontend and ADC/UWB-TX blocks draw 4 μA and 15 μA from 3-V and 1.2-V supplies, respectively. The chip achieves an input-referred current noise of 92 pArms and an input current range of ±430 nA at a conversion rate of 10 kHz. The packaged device operates from a 3-V coin-cell battery, measures 4.7 × 1.9 cm2, weighs 4.3 g (including the battery and antenna), and can be carried by small animals. The system was validated by wirelessly recording flow-injection of dopamine with concentrations in the range of 250 nM to 1 μM with a carbon-fiber microelectrode (CFM) using 300-V/s FSCV. PMID:26057983
Real-Time GPS Monitoring for Earthquake Rapid Assessment in the San Francisco Bay Area
NASA Astrophysics Data System (ADS)
Guillemot, C.; Langbein, J. O.; Murray, J. R.
2012-12-01
The U.S. Geological Survey Earthquake Science Center has deployed a network of eight real-time Global Positioning System (GPS) stations in the San Francisco Bay area and is implementing software applications to continuously evaluate the status of the deformation within the network. Real-time monitoring of the station positions is expected to provide valuable information for rapidly estimating source parameters should a large earthquake occur in the San Francisco Bay area. Because earthquake response applications require robust data access, as a first step we have developed a suite of web-based applications which are now routinely used to monitor the network's operational status and data streaming performance. The web tools provide continuously updated displays of important telemetry parameters such as data latency and receive rates, as well as source voltage and temperature information within each instrument enclosure. Automated software on the backend uses the streaming performance data to mitigate the impact of outages, radio interference and bandwidth congestion on deformation monitoring operations. A separate set of software applications manages the recovery of lost data due to faulty communication links. Displacement estimates are computed in real-time for various combinations of USGS, Plate Boundary Observatory (PBO) and Bay Area Regional Deformation (BARD) network stations. We are currently comparing results from two software packages (one commercial and one open-source) used to process 1-Hz data on the fly and produce estimates of differential positions. The continuous monitoring of telemetry makes it possible to tune the network to minimize the impact of transient interruptions of the data flow, from one or more stations, on the estimated positions. Ongoing work is focused on using data streaming performance history to optimize the quality of the position, reduce drift and outliers by switching to the best set of stations within the network, and automatically select the "next best" station to use as reference. We are also working towards minimizing the loss of streamed data during concurrent data downloads by improving file management on the GPS receivers.
A new environment for multiple spacecraft power subsystem mission operations
NASA Technical Reports Server (NTRS)
Bahrami, K. A.
1990-01-01
The engineering analysis subsystem environment (EASE) is being developed to enable fewer controllers to monitor and control power and other spacecraft engineering subsystems. The EASE prototype has been developed to support simultaneous real-time monitoring of several spacecraft engineering subsystems. It is being designed to assist with offline analysis of telemetry data to determine trends, and to help formulate uplink commands to the spacecraft. An early version of the EASE prototype has been installed in the JPL Space Flight Operations Facility for online testing. The EASE prototype is installed in the Galileo Mission Support Area. The underlying concept, development, and testing of the EASE prototype and how it will aid in the ground operations of spacecraft power subsystems are discussed.
Arduino Based Weather Monitoring Telemetry System Using NRF24L01+
NASA Astrophysics Data System (ADS)
Sidqi, Rafi; Rio Rynaldo, Bagus; Hadi Suroso, Satya; Firmansyah, Rifqi
2018-04-01
Abstract-Weather is an important part of the natural environment, thus knowing weather information is needed before doing activity. The main purpose of this research was to develop a weather monitoring system which capable to transmit weather data via radio frequency by using nRF24L01+ 2,4GHz radio module. This research implement Arduino UNO as the main controller of the system which send data wirelessly using the radio module and received by a receiver system. Received data then logged and displayed using a Graphical User Interface on a personal computer. Test and experiment result show that the system was able to transmit weather data via radio wave with maximum transmitting range of 32 meters.
Evaluating elk habitat interactions with GPS collars
Mark A. Rumble; Lakhdar Benkobi; Fredrick Lindzey; R. Scott Gamo
2001-01-01
Global positioning systems (GPS) are likely to revolutionize animal telemetry studies. GPS collars allow biologists to collect systematically scheduled data when VHF telemetry data is difficult or impossible to collect. Past studies have shown that the success of GPS telemetry is greater when animals are standing, or in open habitats. To make effective use of GPS...
Espinoza, Mario; Lédée, Elodie J I; Simpfendorfer, Colin A; Tobin, Andrew J; Heupel, Michelle R
2015-12-01
Understanding the efficacy of marine protected areas (MPAs) for wide-ranging predators is essential to designing effective management and conservation approaches. The use of acoustic monitoring and network analysis can improve our understanding of the spatial ecology and functional connectivity of reef-associated species, providing a useful approach for reef-based conservation planning. This study compared and contrasted the movement and connectivity of sharks with different degrees of reef association. We examined the residency, dispersal, degree of reef connectivity, and MPA use of grey reef (Carcharhinus amblyrhynchos), silvertip (C. albimarginatus), and bull (C. leucas) sharks monitored in the central Great Barrier Reef (GBR). An array of 56 acoustic receivers was used to monitor shark movements on 17 semi-isolated reefs. Carcharhinus amblyrhynchos and C. albimarginatus were detected most days at or near their tagging reef. However, while C. amblyrhynchos spent 80% of monitoring days in the array, C. albimarginatus was only detected 50% of the time. Despite both species moving similar distances (< 50 km), a large portion of the population of C. albimarginatus (71%) was detected on multiple reefs and moved more frequently between reefs and management zones than C. amblyrhynchos. Carcharhinus leucas was detected less than 20% of the time within the tagging array, and 42% of the population undertook long-range migrations to other arrays in the GBR. Networks derived for C. leucas were larger and more complex than those for C. amblyrhynchos and C. albimarginatus. Our findings suggest that protecting specific reefs based on prior knowledge (e.g., healthier reefs with high fish biomass) and increasing the level of protection to include nearby, closely spaced reef habitats (< 20 km) may perform better for species like C. albimarginatus than having either a single or a network of isolated MPAs. This design would also provide protection for larger male C. amblyrhynchos, which tend to disperse more and use larger areas than females. For wide-ranging sharks like C. leucas, a combination of spatial planning and other alternative measures is critical. Our findings demonstrate that acoustic monitoring can serve as a useful platform for designing more effective MPA networks for reef predators displaying a range of movement patterns.
Natural History of Aerosol Exposure with Marburg Virus in Rhesus Macaques
Ewers, Evan C.; Pratt, William D.; Twenhafel, Nancy A.; Shamblin, Joshua; Donnelly, Ginger; Esham, Heather; Wlazlowski, Carly; Johnson, Joshua C.; Botto, Miriam; Hensley, Lisa E.; Goff, Arthur J.
2016-01-01
Marburg virus causes severe and often lethal viral disease in humans, and there are currently no Food and Drug Administration (FDA) approved medical countermeasures. The sporadic occurrence of Marburg outbreaks does not allow for evaluation of countermeasures in humans, so therapeutic and vaccine candidates can only be approved through the FDA animal rule—a mechanism requiring well-characterized animal models in which efficacy would be evaluated. Here, we describe a natural history study where rhesus macaques were surgically implanted with telemetry devices and central venous catheters prior to aerosol exposure with Marburg-Angola virus, enabling continuous physiologic monitoring and blood sampling without anesthesia. After a three to four day incubation period, all animals developed fever, viremia, and lymphopenia before developing tachycardia, tachypnea, elevated liver enzymes, decreased liver function, azotemia, elevated D-dimer levels and elevated pro-inflammatory cytokines suggesting a systemic inflammatory response with organ failure. The final, terminal period began with the onset of sustained hypotension, dehydration progressed with signs of major organ hypoperfusion (hyperlactatemia, acute kidney injury, hypothermia), and ended with euthanasia or death. The most significant pathologic findings were marked infection of the respiratory lymphoid tissue with destruction of the tracheobronchial and mediastinal lymph nodes, and severe diffuse infection in the liver, and splenitis. PMID:27043611
Natural History of Aerosol Exposure with Marburg Virus in Rhesus Macaques.
Ewers, Evan C; Pratt, William D; Twenhafel, Nancy A; Shamblin, Joshua; Donnelly, Ginger; Esham, Heather; Wlazlowski, Carly; Johnson, Joshua C; Botto, Miriam; Hensley, Lisa E; Goff, Arthur J
2016-03-30
Marburg virus causes severe and often lethal viral disease in humans, and there are currently no Food and Drug Administration (FDA) approved medical countermeasures. The sporadic occurrence of Marburg outbreaks does not allow for evaluation of countermeasures in humans, so therapeutic and vaccine candidates can only be approved through the FDA animal rule-a mechanism requiring well-characterized animal models in which efficacy would be evaluated. Here, we describe a natural history study where rhesus macaques were surgically implanted with telemetry devices and central venous catheters prior to aerosol exposure with Marburg-Angola virus, enabling continuous physiologic monitoring and blood sampling without anesthesia. After a three to four day incubation period, all animals developed fever, viremia, and lymphopenia before developing tachycardia, tachypnea, elevated liver enzymes, decreased liver function, azotemia, elevated D-dimer levels and elevated pro-inflammatory cytokines suggesting a systemic inflammatory response with organ failure. The final, terminal period began with the onset of sustained hypotension, dehydration progressed with signs of major organ hypoperfusion (hyperlactatemia, acute kidney injury, hypothermia), and ended with euthanasia or death. The most significant pathologic findings were marked infection of the respiratory lymphoid tissue with destruction of the tracheobronchial and mediastinal lymph nodes, and severe diffuse infection in the liver, and splenitis.
Uniform Data Management and Access to Near Real-Time Seismic Data (Invited)
NASA Astrophysics Data System (ADS)
Casey, R.; Ahern, T. K.; Benson, R. B.; Karstens, R.; Stromme, S.; Trabant, C. M.; Weertman, B. R.
2010-12-01
The IRIS Data Management Center has its ears to the ground, receiving relayed seismic telemetry from all parts of the globe with delay times as little as a few seconds from sensor to data center. This immediacy of always-on geophysical information has spawned a demand for ready access to persistent data streams, quality assurance metrics, and automatic production of data products based on specific triggers. For the last ten years, IRIS DMC has developed an effective near real-time data pipeline that serves the needs of seismic networks needing a central data management system as well as the scientific community that need the ability to monitor and respond to events that occurred only moments before. A number of accessible applications have been developed that provide useful data both through the web and through freely available software. Metrics and products of the raw data are cataloged and managed as a chain of events that occur in near-real time. The technical challenges faced with such a system are general to the data management community. Delayed transmission of packetized data, out of order data transmissions, verification of complete data transmission, and data flow concurrency have all been areas of focus in order to provide the best possible level of service to scientists and educators.
A magnetostatic-coupling based remote query sensor for environmental monitoring
NASA Technical Reports Server (NTRS)
Grimes, C. A.; Stoyanov, P. G.; Liu, Y.; Tong, C.; Ong, K. G.; Loiselle, K.; Shaw, M.; Doherty, S. A.; Seitz, W. R.
1999-01-01
A new type of in situ, remotely monitored magnetism-based sensor is presented that is comprised of an array of magnetically soft, magnetostatically-coupled ferromagnetic thin-film elements or particles combined with a chemically responsive material that swells or shrinks in response to the analyte of interest. As the chemically responsive material changes size the distance between the ferromagnetic elements changes, altering the inter-element magnetostatic coupling. This in turn changes the coercive force of the sensor, the amplitude of the voltage spikes detected in nearby pick-up coils upon magnetization reversal and the number of higher-order harmonics generated by the flux reversal. Since the sensor is monitored through changes in magnetic flux, no physical connections such as wires or cables are needed to obtain sensor information, nor is line of sight alignment required as with laser telemetry; the sensors can be detected from within sealed, opaque or thin metallic enclosures.
GenSAA: A tool for advancing satellite monitoring with graphical expert systems
NASA Technical Reports Server (NTRS)
Hughes, Peter M.; Luczak, Edward C.
1993-01-01
During numerous contacts with a satellite each day, spacecraft analysts must closely monitor real time data for combinations of telemetry parameter values, trends, and other indications that may signify a problem or failure. As satellites become more complex and the number of data items increases, this task is becoming increasingly difficult for humans to perform at acceptable performance levels. At the NASA Goddard Space Flight Center, fault-isolation expert systems have been developed to support data monitoring and fault detection tasks in satellite control centers. Based on the lessons learned during these initial efforts in expert system automation, a new domain-specific expert system development tool named the Generic Spacecraft Analyst Assistant (GenSAA) is being developed to facilitate the rapid development and reuse of real-time expert systems to serve as fault-isolation assistants for spacecraft analysts. Although initially domain-specific in nature, this powerful tool will support the development of highly graphical expert systems for data monitoring purposes throughout the space and commercial industry.
Experience with the EURECA Packet Telemetry and Packet Telecommand system
NASA Technical Reports Server (NTRS)
Sorensen, Erik Mose; Ferri, Paolo
1994-01-01
The European Retrieval Carrier (EURECA) was launched on its first flight on the 31st of July 1992 and retrieved on the 29th of June 1993. EURECA is characterized by several new on-board features, most notably Packet telemetry, and a partial implementation of packet telecommanding, the first ESA packetised spacecraft. Today more than one year after the retrieval the data from the EURECA mission has to a large extent been analysed and we can present some of the interesting results. This paper concentrates on the implementation and operational experience with the EURECA Packet Telemetry and Packet Telecommanding. We already discovered during the design of the ground system that the use of packet telemetry has major impact on the overall design and that processing of packet telemetry may have significant effect on the computer loading and sizing. During the mission a number of problems were identified with the on-board implementation resulting in very strange anomalous behaviors. Many of these problems directly violated basic assumptions for the design of the ground segment adding to the strange behavior. The paper shows that the design of a telemetry packet system should be flexible enough to allow a rapid configuration of the telemetry processing in order to adapt it to the new situation in case of an on-board failure. The experience gained with the EURECA mission control should be used to improve ground systems for future missions.
Comprehension of Spacecraft Telemetry Using Hierarchical Specifications of Behavior
NASA Technical Reports Server (NTRS)
Havelund, Klaus; Joshi, Rajeev
2014-01-01
A key challenge in operating remote spacecraft is that ground operators must rely on the limited visibility available through spacecraft telemetry in order to assess spacecraft health and operational status. We describe a tool for processing spacecraft telemetry that allows ground operators to impose structure on received telemetry in order to achieve a better comprehension of system state. A key element of our approach is the design of a domain-specific language that allows operators to express models of expected system behavior using partial specifications. The language allows behavior specifications with data fields, similar to other recent runtime verification systems. What is notable about our approach is the ability to develop hierarchical specifications of behavior. The language is implemented as an internal DSL in the Scala programming language that synthesizes rules from patterns of specification behavior. The rules are automatically applied to received telemetry and the inferred behaviors are available to ground operators using a visualization interface that makes it easier to understand and track spacecraft state. We describe initial results from applying our tool to telemetry received from the Curiosity rover currently roving the surface of Mars, where the visualizations are being used to trend subsystem behaviors, in order to identify potential problems before they happen. However, the technology is completely general and can be applied to any system that generates telemetry such as event logs.
Radio telemetry methods for studying spotted owls in the Pacific Northwest.
J.H. Guetterman; J.A. Burns; J.A. Reid; R.B. Horn; C.C. Foster
1991-01-01
The paper is a practical guide to field methodology for conducting a radio telemetry study of spotted owls (Strix occidentalis) in mountainous terrain. It begins with a synopsis of spotted owl biology and basic telemetry. The criteria used to select which owls will carry transmitters are discussed as are location and capture methods. Instructions...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Specific requirements for wireless medical... SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1121 Specific requirements for wireless medical telemetry devices operating in the 1395-1400 and 1427-1432 MHz bands. Due to the critical...
75 FR 19277 - PLMR Licensing; Frequency Coordination and Eligibility Issues
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-14
... band (1427-1429.5 MHz), and non-medical telemetry in the upper half of the band (1429.5-1432 MHz). Non... secondary basis on those portions of the 1427-1432 MHz shared band where non-medical telemetry is primary...-medical telemetry has primary status. Some WMTS operations in the portions of the 1427-1432 MHz band where...
DSN telemetry system performance with convolutionally code data
NASA Technical Reports Server (NTRS)
Mulhall, B. D. L.; Benjauthrit, B.; Greenhall, C. A.; Kuma, D. M.; Lam, J. K.; Wong, J. S.; Urech, J.; Vit, L. D.
1975-01-01
The results obtained to date and the plans for future experiments for the DSN telemetry system were presented. The performance of the DSN telemetry system in decoding convolutionally coded data by both sequential and maximum likelihood techniques is being determined by testing at various deep space stations. The evaluation of performance models is also an objective of this activity.
Multi-purpose ECG telemetry system.
Marouf, Mohamed; Vukomanovic, Goran; Saranovac, Lazar; Bozic, Miroslav
2017-06-19
The Electrocardiogram ECG is one of the most important non-invasive tools for cardiac diseases diagnosis. Taking advantage of the developed telecommunication infrastructure, several approaches that address the development of telemetry cardiac devices were introduced recently. Telemetry ECG devices allow easy and fast ECG monitoring of patients with suspected cardiac issues. Choosing the right device with the desired working mode, signal quality, and the device cost are still the main obstacles to massive usage of these devices. In this paper, we introduce design, implementation, and validation of a multi-purpose telemetry system for recording, transmission, and interpretation of ECG signals in different recording modes. The system consists of an ECG device, a cloud-based analysis pipeline, and accompanied mobile applications for physicians and patients. The proposed ECG device's mechanical design allows laypersons to easily record post-event short-term ECG signals, using dry electrodes without any preparation. Moreover, patients can use the device to record long-term signals in loop and holter modes, using wet electrodes. In order to overcome the problem of signal quality fluctuation due to using different electrodes types and different placements on subject's chest, customized ECG signal processing and interpretation pipeline is presented for each working mode. We present the evaluation of the novel short-term recorder design. Recording of an ECG signal was performed for 391 patients using a standard 12-leads golden standard ECG and the proposed patient-activated short-term post-event recorder. In the validation phase, a sample of validation signals followed peer review process wherein two experts annotated the signals in terms of signal acceptability for diagnosis.We found that 96% of signals allow detecting arrhythmia and other signal's abnormal changes. Additionally, we compared and presented the correlation coefficient and the automatic QRS delineation results of both short-term post-event recorder and 12-leads golden standard ECG recorder. The proposed multi-purpose ECG device allows physicians to choose the working mode of the same device according to the patient status. The proposed device was designed to allow patients to manage the technical requirements of both working modes. Post-event short-term ECG recording using the proposed design provide physicians reliable three ECG leads with direct symptom-rhythm correlation.
Can telemetry data obviate the need for sleep studies in Pierre Robin Sequence?
Aaronson, Nicole Leigh; Jabbour, Noel
2017-09-01
This study looks to correlate telemetry data gathered on patients with Pierre Robin Sequence (PRS) with sleep study data. Strong correlation might allow obstructive sleep apnea (OSA) to be reasonably predicted without the need for sleep study. Charts from forty-six infants with PRS who presented to our children's hospital between 2005 and 2015 and received a polysomnogram (PSG) prior to surgical intervention were retrospectively reviewed. Correlations and scatterplots were used to compare average daily oxygen nadir, overall oxygen nadir, and average number of daily desaturations from telemetry data with apnea-hypopnea index (AHI) and oxygen nadir on sleep study. Results were also categorized into groups of AHI ≥ or <10 and oxygen nadir ≥ or <80% for chi-squared analysis. Our data did not show significant correlations between telemetry data and sleep study data. Patients with O2 nadir below 80% on telemetry were not more likely to have an O2 nadir below 80% on sleep study. Patients with an average O2 nadir below 80% did show some correlation with having an AHI greater than 10 on sleep study but this relationship did not reach significance. Of 22 patients who did not have any desaturations on telemetry below 80%, 16 (73%) had an AHI >10 on sleep study. In the workup of infants with PRS, the index of suspicion is high for OSA. In our series, telemetry data was not useful in ruling out severe OSA. Thus our data do not support forgoing sleep study in patients with PRS and concern for OSA despite normal telemetry patterns. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Rice, Amanda; Parris, Frank; Nerren, Philip
2000-01-01
Marshall Space Flight Center (MSFC) has been funding development of intelligent software models to benefit payload ground operations for nearly a decade. Experience gained from simulator development and real-time monitoring and control is being applied to engineering design, testing, and operation of the First Material Science Research Rack (MSRR-1). MSRR-1 is the first rack in a suite of three racks comprising the Materials Science Research Facility (MSRF) which will operate on the International Space Station (ISS). The MSRF will accommodate advanced microgravity investigations in areas such as the fields of solidification of metals and alloys, thermo-physical properties of polymers, crystal growth studies of semiconductor materials, and research in ceramics and glasses. The MSRR-1 is a joint venture between NASA and the European Space Agency (ESA) to study the behavior of different materials during high temperature processing in a low gravity environment. The planned MSRR-1 mission duration is five (5) years on-orbit and the total design life is ten (IO) years. The MSRR-1 launch is scheduled on the third Utilization Flight (UF-3) to ISS, currently in February of 2003). The objective of MSRR-1 is to provide an early capability on the ISS to conduct material science, materials technology, and space product research investigations in microgravity. It will provide a modular, multi-user facility for microgravity research in materials crystal growth and solidification. An intelligent software model of MSRR-1 is under development and will serve multiple purposes to support the engineering analysis, testing, training, and operational phases of the MSRR-1 life cycle development. The G2 real-time expert system software environment developed by Gensym Corporation was selected as the intelligent system shell for this development work based on past experience gained and the effectiveness of the programming environment. Our approach of multi- uses of the simulation model and its intuitive graphics capabilities is providing a concurrent engineering environment for rapid prototyping and development. Operational schematics of the MSRR-1 electrical, thermal control, vacuum access, and gas supply systems, and furnace inserts are represented graphically in the environment. Logic to represent first order engineering calculations is coded into the knowledge base to simulate the operational behavior of the MSRR-1 systems. An example of engineering data provided includes electrical currents, voltages, operational power, temperatures, thermal fluid flow rates. pressures, and component status indications. These type of data are calculated and displayed at appropriate instrumentation points, and the schematics are animated to reflect the simulated operational status of the MSRR-1. The software control functions are also simulated to represent appropriate operational behavior based on automated control and response to commands received by the crew or ground controllers. The first benefit of this simulation environment is being realized in the high fidelity engineering analysis results from the electrical power system G2 model. Secondly, the MSRR-1 simulation model will be embedded with a hardware mock-up of the MSRR-1 to provide crew training on MSRR-1 integrated payload operations. G2 gateway code will output the simulated instrumentation values, termed as telemetry, in a flight-like data stream so that the crew has realistic and accurate simulated MSRR-1 data on the flight displays which will be designed for crew use. The simulation will also respond appropriately to crew or ground initiated commands, which will be part of normal facility operations. A third use of the G2 model is being planned; the MSRR-1 simulation will be integrated with additional software code as part of the test configuration of the primary onboard computer, or Master Controller, for MSRR-1. We will take advantage of the G2 capability to simulate the flight like data stream to test flight software responses and behavior. A fourth use of the G2 model will be to train the Ground Support Personnel that will monitor the MSRR-1 systems and payloads while they are operating aboard the ISS. The intuitive, schematic based environment will provide an excellent foundation for personnel to understand the integrated configuration and operation of the MSRR-1, and the anticipated telemetry feedback based on operational modes of the equipment. Expert monitoring features will be enhanced to provide a smart monitoring environment for the operators. These features include: (1) Animated, intuitive schematic-based displays which reflect telemetry values, (1) Real-time plotting of simulated or incoming sensor values, (3) High/Low exception monitoring for analog data, (4) Expected state monitoring for discrete data, (5) Data trending, (6) Automated malfunction procedure execution to diagnose problems, (7) Look ahead capability to planned MSRR-1 activities in the onboard timeline. And finally, the logic to calculate telemetry values will be deactivated, and the same environment will interface to the incoming data for the real-time telemetry stream to schematically represent the onboard hardware configuration. G2 will be the foundation for the real-time monitoring and control environment. In summary, our MSRR-1 simulation model spans many elements of the life cycle development of this project: Engineering Analysis, Test and Checkout, Training of Crew and Ground Personnel, and Real-time monitoring and control. By utilizing the unique features afforded by an expert system development environment, we have been able to synergize a powerful tool capable of addressing our project needs at every phase of project development.
NASA Astrophysics Data System (ADS)
Guy, Nathaniel
This thesis explores new ways of looking at telemetry data, from a time-correlative perspective, in order to see patterns within the data that may suggest root causes of system faults. It was thought initially that visualizing an animated Pearson Correlation Coefficient (PCC) matrix for telemetry channels would be sufficient to give new understanding; however, testing showed that the high dimensionality and inability to easily look at change over time in this approach impeded understanding. Different correlative techniques, combined with the time curve visualization proposed by Bach et al (2015), were adapted to visualize both raw telemetry and telemetry data correlations. Review revealed that these new techniques give insights into the data, and an intuitive grasp of data families, which show the effectiveness of this approach for enhancing system understanding and assisting with root cause analysis for complex aerospace systems.
Definition and maintenance of a telemetry database dictionary
NASA Technical Reports Server (NTRS)
Knopf, William P. (Inventor)
2007-01-01
A telemetry dictionary database includes a component for receiving spreadsheet workbooks of telemetry data over a web-based interface from other computer devices. Another component routes the spreadsheet workbooks to a specified directory on the host processing device. A process then checks the received spreadsheet workbooks for errors, and if no errors are detected the spreadsheet workbooks are routed to another directory to await initiation of a remote database loading process. The loading process first converts the spreadsheet workbooks to comma separated value (CSV) files. Next, a network connection with the computer system that hosts the telemetry dictionary database is established and the CSV files are ported to the computer system that hosts the telemetry dictionary database. This is followed by a remote initiation of a database loading program. Upon completion of loading a flatfile generation program is manually initiated to generate a flatfile to be used in a mission operations environment by the core ground system.
Telecommunications end-to-end systems monitoring on TOPEX/Poseidon: Tools and techniques
NASA Technical Reports Server (NTRS)
Calanche, Bruno J.
1994-01-01
The TOPEX/Poseidon Project Satellite Performance Analysis Team's (SPAT) roles and responsibilities have grown to include functions that are typically performed by other teams on JPL Flight Projects. In particular, SPAT Telecommunication's role has expanded beyond the nominal function of monitoring, assessing, characterizing, and trending the spacecraft (S/C) RF/Telecom subsystem to one of End-to-End Information Systems (EEIS) monitoring. This has been accomplished by taking advantage of the spacecraft and ground data system structures and protocols. By processing both the received spacecraft telemetry minor frame ground generated CRC flags and NASCOM block poly error flags, bit error rates (BER) for each link segment can be determined. This provides the capability to characterize the separate link segments, determine science data recovery, and perform fault/anomaly detection and isolation. By monitoring and managing the links, TOPEX has successfully recovered approximately 99.9 percent of the science data with an integrity (BER) of better than 1 x 10(exp 8). This paper presents the algorithms used to process the above flags and the techniques used for EEIS monitoring.
Space-Proven Medical Monitor: The Total Patient-Care Package
NASA Technical Reports Server (NTRS)
2006-01-01
The primary objective of the Gemini Program was to develop techniques that would allow for advanced, long-duration space travel, a prerequisite of the ensuing Apollo Program that would put man safely on the Moon before the end of the decade. In order to carry out this objective, NASA worked with a variety of innovative companies to develop propulsion systems, onboard computers, and docking capabilities that were critical to the health of Gemini spacecraft, as well as life-support systems and physiological-monitoring devices that were critical to the health of Gemini astronauts. One of these companies was Spacelabs Medical, Inc., the pioneer of what is commonly known today as medical telemetry. Spacelabs Medical helped NASA better understand man s reaction to space through a series of bioinstrumentation devices that, for the first time ever, were capable of monitoring orbiting astronauts physical conditions in real time, from Earth. The company went on to further expand its knowledge of monitoring and maintaining health in space, and then brought it down to Earth, to dramatically change the course of patient monitoring in the field of health care.
Wireless energizing system for an automated implantable sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swain, Biswaranjan; Nayak, Praveen P.; Kar, Durga P.
The wireless drive of an automated implantable electronic sensor has been explored for health monitoring applications. The proposed system comprises of an automated biomedical sensing system which is energized through resonant inductive coupling. The implantable sensor unit is able to monitor the body temperature parameter and sends back the corresponding telemetry data wirelessly to the data recoding unit. It has been observed that the wireless power delivery system is capable of energizing the automated biomedical implantable electronic sensor placed over a distance of 3 cm from the power transmitter with an energy transfer efficiency of 26% at the operating resonantmore » frequency of 562 kHz. This proposed method ensures real-time monitoring of different human body temperatures around the clock. The monitored temperature data have been compared with a calibrated temperature measurement system to ascertain the accuracy of the proposed system. The investigated technique can also be useful for monitoring other body parameters such as blood pressure, bladder pressure, and physiological signals of the patient in vivo using various implantable sensors.« less
Aerospace technology can be applied to exploration 'back on earth'. [offshore petroleum resources
NASA Technical Reports Server (NTRS)
Jaffe, L. D.
1977-01-01
Applications of aerospace technology to petroleum exploration are described. Attention is given to seismic reflection techniques, sea-floor mapping, remote geochemical sensing, improved drilling methods and down-hole acoustic concepts, such as down-hole seismic tomography. The seismic reflection techniques include monitoring of swept-frequency explosive or solid-propellant seismic sources, as well as aerial seismic surveys. Telemetry and processing of seismic data may also be performed through use of aerospace technology. Sea-floor sonor imaging and a computer-aided system of geologic analogies for petroleum exploration are also considered.
2013-08-22
Research Collective Olympia, Washington 98501 8 . PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING / MONITORING AGENCY NAME(S) AND...298 (Rev. 8 -98) Prescribed by ANSI Std. Z39.18 THIS PAGE INTENTIONALLY LEFT BLANK i...aTable 8 : aTable 9: Table 10: Table 11: Table 12: Table 13: Summary of survey effort by day, November 2012 - March 2013
NPOESS C3S Expandability: SafetyNet(TM) and McMurdo Improvements
NASA Astrophysics Data System (ADS)
Paciaroni, J.; Jamilkowski, M. L.
2009-12-01
The National Oceanic & Atmospheric Administration (NOAA), Department of Defense (DoD), and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation weather and environmental satellite system; the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS replaces the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA and the Defense Meteorological Satellite Program (DMSP) managed by the DoD. The NPOESS satellites carry a suite of sensors that collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The command and telemetry portion of NPOESS is the Command, Control and Communications Segment (C3S), developed by Raytheon Intelligence & Information Systems. C3S is responsible for managing the overall NPOESS mission from control and status of the space and ground assets to ensuring delivery of timely, high quality data from the Space Segment (SS) to the Interface Data Processing Segment (IDPS) for processing. In addition, the C3S provides the globally distributed ground assets necessary to collect and transport mission, telemetry, and command data between the satellites and the processing locations. The C3S provides all functions required for day-to-day commanding and state-of-health monitoring of the NPP and NPOESS satellites, and delivery of Stored Mission Data (SMD) to each U.S. Weather Central Interface Data Processor (IDP) for data products development and transfer to System subscribers. The C3S also monitors and reports system-wide health and status and data communications with external systems and between the NPOESS segments. Two crucial elements of NPOESS C3S expandability are SafetyNet(TM) and communications improvements to McMurdo Station, Antarctica. ‘SafetyNet(TM)’ is a key feature of the National Polar-orbiting Operational Environmental Satellite System (NPOESS), vital element of the C3S and Northrop Grumman Space Technology patented data collection architecture. The centerpiece of SafetyNet(TM) is the system of fifteen globally-distributed ground receptors developed by Raytheon Company. These receptors or antennae will collect up to five times as much environmental data approximately four times faster than current polar-orbiting weather satellites. Once collected, these data will be forwarded near-instantaneously to U.S. weather centrals via global fiber optic network for processing and production of data records for use in environmental prediction models. In January 2008, Raytheon Company achieved a significant milestone for the NPOESS program by successfully completing the first phase of a major communications upgrade for Antarctica. The upgrade of the off-continent satellite communications link at McMurdo Station more than tripled the bandwidth available for scientific research, weather prediction, and health and safety of those stationed at McMurdo. The project is part of the company’s C3S under development for NPOESS. This upgrade paves the way for a second major communications upgrade planned for 2012 in preparation for the use of McMurdo Station as one of the 15 NPOESS ground stations worldwide that will be receiving environmental data collected by the NPOESS satellites.
Phobos lander coding system: Software and analysis
NASA Technical Reports Server (NTRS)
Cheung, K.-M.; Pollara, F.
1988-01-01
The software developed for the decoding system used in the telemetry link of the Phobos Lander mission is described. Encoders and decoders are provided to cover the three possible telemetry configurations. The software can be used to decode actual data or to simulate the performance of the telemetry system. The theoretical properties of the codes chosen for this mission are analyzed and discussed.
106 17 Telemetry Standards Chapter 2
2017-07-31
high frequency STC space -time code SOQPSK shaped offset quadrature phase shift keying UHF ultra- high frequency US&P United States...and Possessions VCO voltage-controlled oscillator VHF very- high frequency WCS Wireless Communication Service Telemetry Standards, RCC Standard...get interference. a. Telemetry Bands Air and space -to-ground telemetering is allocated in the ultra- high frequency (UHF) bands 1435 to 1535, 2200
Applicability of implantable telemetry systems in cardiovascular research.
NASA Technical Reports Server (NTRS)
Krutz, R. W.; Rader, R. D.; Meehan, J. P.; Henry, J. P.
1971-01-01
This paper briefly describes the results of an experimental program undertaken to develop and apply implanted telemetry to cardiovascular research. Because of the role the kidney may play in essential hypertension, emphasis is placed on telemetry's applicability in the study of renal physiology. Consequently, the relationship between pressure, flow, and hydraulic impedance are stressed. Results of an exercise study are given.
Code of Federal Regulations, 2010 CFR
2010-10-01
... wireless medical telemetry devices operating in the 1395-1400 and 1427-1432 MHz bands. Due to the critical... 47 Telecommunication 5 2010-10-01 2010-10-01 false Specific requirements for wireless medical telemetry devices operating in the 1395-1400 and 1427-1432 MHz bands. 95.1121 Section 95.1121...
A Systematic Approach to Error Free Telemetry
2017-06-28
A SYSTEMATIC APPROACH TO ERROR FREE TELEMETRY 412TW-TIM-17-03 DISTRIBUTION A: Approved for public release. Distribution is...Systematic Approach to Error-Free Telemetry) was submitted by the Commander, 412th Test Wing, Edwards AFB, California 93524. Prepared by...Technical Information Memorandum 3. DATES COVERED (From - Through) February 2016 4. TITLE AND SUBTITLE A Systematic Approach to Error-Free
System for Configuring Modular Telemetry Transponders
NASA Technical Reports Server (NTRS)
Varnavas, Kosta A. (Inventor); Sims, William Herbert, III (Inventor)
2014-01-01
A system for configuring telemetry transponder cards uses a database of error checking protocol data structures, each containing data to implement at least one CCSDS protocol algorithm. Using a user interface, a user selects at least one telemetry specific error checking protocol from the database. A compiler configures an FPGA with the data from the data structures to implement the error checking protocol.
Animal Telemetry Network Data Assembly Center: Phase 2
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Animal telemetry network data assembly center: Phase...2 Barbara Block & Randy Kochevar Hopkins Marine Station Stanford University 120 Oceanview Blvd. Pacific Grove, Ca phone: (831) 655-6236...prior development for tag data management (e.g. TOPP, GTOPP, GulfTOPP) of animal telemetry data management into a single system (DAC) with an
A Real-Time Telemetry Simulator of the IUS Spacecraft
NASA Technical Reports Server (NTRS)
Drews, Michael E.; Forman, Douglas A.; Baker, Damon M.; Khazoyan, Louis B.; Viazzo, Danilo
1998-01-01
A real-time telemetry simulator of the IUS spacecraft has recently entered operation to train Flight Control Teams for the launch of the AXAF telescope from the Shuttle. The simulator has proven to be a successful higher fidelity implementation of its predecessor, while affirming the rapid development methodology used in its design. Although composed of COTS hardware and software, the system simulates the full breadth of the mission: Launch, Pre-Deployment-Checkout, Burn Sequence, and AXAF/IUS separation. Realism is increased through patching the system into the operations facility to simulate IUS telemetry, Shuttle telemetry, and the Tracking Station link (commands and status message).
Use of radio-telemetry to reduce bias in nest searching
Powell, L.A.; Lang, J.D.; Krementz, D.G.; Conroy, M.J.
2005-01-01
We used traditional searching, as well as radio-telemetry, to find 125 Wood Thrush (Hylocichla mustelina) nests during 1994?1996 at the Piedmont National Wildlife Refuge in Georgia, USA. We compared daily nest survival rates for 66 nests of radio-marked birds with 59 nests of birds found through systematic searching. By using radio-telemetry, we found Wood Thrush nests in higher elevation pine habitats, in addition to the more usual hardwood forests with moist soils. We found nests of radio-marked birds farther from streams than nests found by systematic searching. Thirty-two percent of radio-marked birds' nests were found at the tops of slopes, compared to 15% of the nests found by traditional searching. In addition, radio-marked birds generally moved up-slope for re-nesting attempts. Although the distribution of nests found with telemetry and searching varied, daily nest survival did not vary between the two groups. Radio-telemetry provided new information about Wood Thrush nesting habitats. We believe radio-telemetry can be a valuable addition to traditional searching techniques; it has the potential to provide a sample of nests free from a priori habitat biases.
Evaluation of a GPS used in conjunction with aerial telemetry
Olexa, E.M.; Gogan, P.J.P.; Podruzny, K.M.; Eiler, John; Alcorn, Doris J.; Neuman, Michael R.
2001-01-01
We investigated the use of a non-correctable Global Positioning System (NGPS) in association with aerial telemetry to determine animal locations. Average error was determined for 3 components of the location process: use of a NGPS receiver on the ground, use of a NGPS receiver in a aircraft while flying over a visual marker, and use of the same receiver while flying over a location determined by standard aerial telemetry. Average errors were 45.3, 88.1 and 137.4 m, respectively. A directional bias of <35 m was present for the telemetry component only. Tests indicated that use of NGPS to determine aircraft, and thereby animal, location is an efficient alternative to interpolation from topographic maps. This method was more accurate than previously reported Long-Range Navigation system, version C (LORAN-C) and Argos satellite telemetry. It has utility in areas where animal-borne GPS receivers are not practical due to a combination of topography, canopy coverage, weight or cost of animal-borne GPS units. Use of NGPS technology in conjunction with aerial telemetry will provide the location accuracy required for identification of gross movement patterns and coarse-grained habitat use.
Instrumentation and telemetry systems for free-flight drop model testing
NASA Technical Reports Server (NTRS)
Hyde, Charles R.; Massie, Jeffrey J.
1993-01-01
This paper presents instrumentation and telemetry system techniques used in free-flight research drop model testing at the NASA Langley Research Center. The free-flight drop model test technique is used to conduct flight dynamics research of high performance aircraft using dynamically scaled models. The free-flight drop model flight testing supplements research using computer analysis and wind tunnel testing. The drop models are scaled to approximately 20 percent of the size of the actual aircraft. This paper presents an introduction to the Free-Flight Drop Model Program which is followed by a description of the current instrumentation and telemetry systems used at the NASA Langley Research Center, Plum Tree Test Site. The paper describes three telemetry downlinks used to acquire the data, video, and radar tracking information from the model. Also described are two telemetry uplinks, one used to fly the model employing a ground-based flight control computer and a second to activate commands for visual tracking and parachute recovery of the model. The paper concludes with a discussion of free-flight drop model instrumentation and telemetry system development currently in progress for future drop model projects at the NASA Langley Research Center.
Accuracy of telemetry signal power loss in a filter as an estimate for telemetry degradation
NASA Technical Reports Server (NTRS)
Koerner, M. A.
1989-01-01
When telemetry data is transmitted through a communication link, some degradation in telemetry performance occurs as a result of the imperfect frequency response of the channel. The term telemetry degradation as used here is the increase in received signal power required to offset this filtering. The usual approach to assessing this degradation is to assume that it is equal to the signal power loss in the filtering, which is easily calculated. However, this approach neglects the effects of the nonlinear phase response of the filter, the effect of any reduction of the receiving system noise due to the filter, and intersymbol interference. Here, an exact calculation of the telemetry degradation, which includes all of the above effects, is compared with the signal power loss calculation for RF filtering of NRZ data on a carrier. The signal power loss calculation is found to be a reasonable approximation when the filter follows the point at which the receiving system noise is introduced, especially if the signal power loss is less than 0.5 dB. The signal power loss approximation is less valid when the receiving system noise is not filtered.
Major technological innovations introduced in the large antennas of the Deep Space Network
NASA Technical Reports Server (NTRS)
Imbriale, W. A.
2002-01-01
The NASA Deep Space Network (DSN) is the largest and most sensitive scientific, telecommunications and radio navigation network in the world. Its principal responsibilities are to provide communications, tracking, and science services to most of the world's spacecraft that travel beyond low Earth orbit. The network consists of three Deep Space Communications Complexes. Each of the three complexes consists of multiple large antennas equipped with ultra sensitive receiving systems. A centralized Signal Processing Center (SPC) remotely controls the antennas, generates and transmits spacecraft commands, and receives and processes the spacecraft telemetry.
Gray, John R.; Fisk, Gregory G.
1992-01-01
From July 1988 through September 1991, radionuclide and suspended-sediment transport were monitored in ephemeral streams in the semiarid Little Colorado River basin of Arizona and New Mexico, USA, where in-stream gross-alpha plus gross-beta activities have exceeded Arizona's Maximum Allowable Limit through releases from natural weathering processes and from uranium-mining operations in the Church Rock Mining District, Grants Mineral Belt, New Mexico. Water samples were collected at a network of nine continuous-record streamgauges equipped with microprocessor-based satellite telemetry and automatic water-sampling systems, and six partial-record streamgauges equipped with passive water samplers. Analytical results from these samples were used to calculate transport of selected suspended and dissolved radionuclides in the uranium-238 and thorium-232 decay series.
Pit-a-Pat: A Smart Electrocardiogram System for Detecting Arrhythmia.
Park, Juyoung; Lee, Kuyeon; Kang, Kyungtae
2015-10-01
Electrocardiogram (ECG) telemonitoring is one of the most promising applications of medical telemetry. However, previous approaches to ECG telemonitoring have largely relied on public databases of ECG results. In this article we propose a smart ECG system called Pit-a-Pat, which extracts features from ECG signals and detects arrhythmia. It is designed to run on an Android™ (Google, Mountain View, CA) device, without requiring modifications to other software. We implemented the Pit-a-Pat system using a commercial ECG device, and the experimental results demonstrate the effectiveness and accuracy of Pit-a-Pat for monitoring the ECG signal and analyzing the cardiac activity of a mobile patient. The proposed system allows monitoring of cardiac activity with automatic analysis, thereby providing a convenient, inexpensive, and ubiquitous adjunct to personal healthcare.
NASA Technical Reports Server (NTRS)
1980-01-01
Lewis Research Center helped design the complex EMS Communication System, originating from space operated telemetry, including the telemetry link between ambulances and hospitals for advanced life support services. In emergency medical use telemetry links ambulances and hospitals for advanced life support services and allows transmission of physiological data -- an electrocardiogram from an ambulance to a hospital emergency room where a physician reads the telemetered message and prescribes emergency procedures to ambulance attendants.
Development of BION(TM) Technology for Functional Electrical Stimulation: Bidirectional Telemetry
2001-10-25
paralyzed limb , it is necessary to incorporate sensors and back telemetry to provide voluntary control and sensory feedback signals. We describe...requirements. Keywords - neural prostheses, electrical stimulation, implants, telemetry, sensors I. INTRODUCTION BIONs ( BIOnic Neurons) are modular...ents of a paralyzed limb will require a sophisticated control system that must be driven by two types of data from the patient: 1) command signals
A media player causes clinically significant telemetry interference with implantable loop recorders.
Thaker, Jay P; Patel, Mehul B; Shah, Ashok J; Liepa, Valdis V; Jongnarangsin, Krit; Thakur, Ranjan K
2009-03-01
The implantable loop recorder is a useful diagnostic tool for intermittent cardiovascular symptoms because it can automatically record arrhythmias as well as a patient-triggered ECG. Media players have been shown to cause telemetry interference with pacemakers. Telemetry interference may be important in patients with implantable loop recorders because capturing a patient-triggered ECG requires a telemetry link between a hand-held activator and the implanted device. The purpose of this study was to determine if a media player causes interference with implantable loop recorders. Fourteen patients with implantable loop recorders underwent evaluation for interference with a 15 GB third generation iPod (Apple, Inc.) media player. All patients had the Reveal Plus (Medtronic, Inc.) implantable loop recorder. We tested for telemetry interference on the programmer by first establishing a telemetry link with the loop recorder and then, the media player was placed next to it, first turned off and then, on. We evaluated for telemetry interference between the activator and the implanted device by placing the activator over the device (normal use) and the media player next to it, first turned off and then, on. We made 5 attempts to capture a patient-triggered ECG by depressing the activator switch 5 times while the media player was off or on. Telemetry interference on the programmer screen, consisting of either high frequency spikes or blanking of the ECG channel was seen in all patients. Telemetry interference with the activator resulted in failure to capture an event in 7 patients. In one of these patients, a green indicator light on the activator suggested that a patient-triggered event was captured, but loop recorder interrogation did not show a captured event. In the remaining 7 patients, an event was captured and appropriately recognized by the device at least 1 out of 5 times. A media player playing in close proximity to an implanted loop recorder may interfere with capture of a patient-triggered event. Patients should be advised to keep media players away from their implanted loop recorder.
Test Telemetry And Command System (TTACS)
NASA Technical Reports Server (NTRS)
Fogel, Alvin J.
1994-01-01
The Jet Propulsion Laboratory has developed a multimission Test Telemetry and Command System (TTACS) which provides a multimission telemetry and command data system in a spacecraft test environment. TTACS reuses, in the spacecraft test environment, components of the same data system used for flight operations; no new software is developed for the spacecraft test environment. Additionally, the TTACS is transportable to any spacecraft test site, including the launch site. The TTACS is currently operational in the Galileo spacecraft testbed; it is also being provided to support the Cassini and Mars Surveyor Program projects. Minimal personnel data system training is required in the transition from pre-launch spacecraft test to post-launch flight operations since test personnel are already familiar with the data system's operation. Additionally, data system components, e.g. data display, can be reused to support spacecraft software development; and the same data system components will again be reused during the spacecraft integration and system test phases. TTACS usage also results in early availability of spacecraft data to data system development and, as a result, early data system development feedback to spacecraft system developers. The TTACS consists of a multimission spacecraft support equipment interface and components of the multimission telemetry and command software adapted for a specific project. The TTACS interfaces to the spacecraft, e.g., Command Data System (CDS), support equipment. The TTACS telemetry interface to the CDS support equipment performs serial (RS-422)-to-ethernet conversion at rates between 1 bps and 1 mbps, telemetry data blocking and header generation, guaranteed data transmission to the telemetry data system, and graphical downlink routing summary and control. The TTACS command interface to the CDS support equipment is nominally a command file transferred in non-real-time via ethernet. The CDS support equipment is responsible for metering the commands to the CDS; additionally for Galileo, TTACS includes a real-time-interface to the CDS support equipment. The TTACS provides the basic functionality of the multimission telemetry and command data system used during flight operations. TTACS telemetry capabilities include frame synchronization, Reed-Solomon decoding, packet extraction and channelization, and data storage/query. Multimission data display capabilities are also available. TTACS command capabilities include command generation verification, and storage.
Schmitz, Sabrina; Henke, Julia; Tacke, Sabine; Guth, Brian
2016-01-01
Guinea pigs (GPs) are a valuable cardiovascular pharmacology model. Implantation of a radio-telemetry system into GPs is, however, challenging and has been associated with a high failure rate in the past. We provide information on a novel procedure for implanting telemetry devices into GPs and we have measured the hemodynamics (arterial blood pressure, BP and heart rate, HR) and core body temperature (BT) in the 24h after surgery. Male Hartley GPs (Crl:HA, 350-400g, 6.5weeks, n=16) were implanted with a radio transmitter abdominally and were then monitored continuously (HR, BP and BT) for 24h after surgery. 13 of 16 GPs (81%) survived the surgery. Surgery duration was 94min (min) (range: 76-112min) and anaesthesia duration was 131min (range: 107-158min). GPs lost body weight until 2days after surgery and then regained weight. Mean arterial BP increased from 33.7mmHg directly after surgery to 59.1mmHg after 24h. HR increased from 206bpm directly after surgery to 286bpm at 8h and fell to 251bpm at 24h after implantation. BT was 36°C directly after surgery, fell to 35.4°C until regaining of the righting reflex and then stabilized at 38.5°C after 24h. A high survival rate in telemetered GPs is possible. We achieved this through a procedure with minimal stress through habituation and planning, continuous warming during anaesthesia, an optimal anaesthetic and analgesic management, efficient surgical techniques and vitamin C supplementation. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Wada, Toshifumi; Mitsushio, Takahiro; Inoue, Shinya; Koike, Hiroko; Kawabe, Ryo
2016-01-01
The horseshoe crab Tachypleus tridentatus is critically endangered in Japan due to rapidly decreasing numbers resulting from the loss of tidal flats and sandy beaches, and the deterioration of coastal environments. We monitored the year-round migratory patterns and residency of this species in a coastal embayment at Tsuyazaki, Japan, using acoustic telemetry. Total 20 adult crabs (15 males and 5 females) were tagged with ultrasonic transmitters and tracked during two periods (2006-2008; n = 10 and 2007-2009; n = 10). Adult crabs were more active during periods of higher water temperatures and their activity peaked in July, during the spawning period. Water temperature appeared to be one of the key factors influencing the movement patterns for the species. Moreover, the crabs tended to be more active at night than in the day. The nocturnal activity pattern was clearly evident before and during the reproductive period (May-August). Tracking data also showed that one pair-bond was maintained for a maximum of 17 days after the pair-bonded female had spawned. Overall, 11 males (73% of 15 individuals) remained in the bay area over winter, whereas three females (60% of 5 individuals) overwintered outside of the bay. Telemetry data showed that over 60% (13 of 20) of tagged crabs overwintered within the bay where there are sandy beaches, mudflats, and scattered seagrass beds. This year-round residence by adult T. tridentatus in the bay area identifies it as a critical habitat for the management of this species, regardless of life-stage. Not only is it a comprehensive management strategy that effectively reflects this species' habitat use patterns but also its implementation, such as the establishment of a protected area, would contribute to its conservation.
Ruth, T.E.; Smith, D.W.; Haroldson, M.A.; Buotte, P.C.; Schwartz, C.C.; Quigley, H.B.; Cherry, S.; Tyres, D.; Frey, K.
2003-01-01
The Greater Yellowstone Ecosystem contains the rare combination of an intact guild of native large carnivores, their prey, and differing land management policies (National Park versus National Forest; no hunting versus hunting). Concurrent field studies on large carnivores allowed us to investigate activities of humans and carnivores on Yellowstone National Park's (YNP) northern boundary. Prior to and during the backcountry big-game hunting season, we monitored movements of grizzly bears (Ursus arctos), wolves (Canis lupus), and cougars (Puma concolor) on the northern boundary of YNP. Daily aerial telemetry locations (September 1999), augmented with weekly telemetry locations (August and October 1999), were obtained for 3 grizzly bears, 7 wolves in 2 groups of 1 pack, and 3 cougars in 1 family group. Grizzly bears were more likely located inside the YNP boundary during the pre-hunt period and north of the boundary once hunting began. The cougar family tended to be found outside YNP during the pre-hunt period and moved inside YNP when hunting began. Wolves did not significantly change their movement patterns during the pre-hunt and hunting periods. Qualitative information on elk (Cervus elaphus) indicated they moved into YNP once hunting started, suggesting that cougars followed living prey or responded to hunting activity, grizzly bears focused on dead prey (e.g., gut piles, crippled elk), and wolves may have taken advantage of both. Measures of association (Jacob's Index) were positive within carnivore species but inconclusive among species. Further collaborative research and the use of new technologies such as Global Positioning System (GPS) telemetry collars will advance our ability to understand these species, the carnivore community and its interactions, and human influences on carnivores.
Mechanisms to explain purse seine bycatch mortality of coho salmon.
Raby, Graham D; Hinch, Scott G; Patterson, David A; Hills, Jayme A; Thompson, Lisa A; Cooke, Steven J
2015-10-01
Research on fisheries bycatch and discards frequently involves the assessment of reflex impairment, injury, or blood physiology as means of quantifying vitality and predicting post-release mortality, but exceptionally few studies have used all three metrics concurrently. We conducted an experimental purse seine fishery for Pacific salmon in the Juan de Fuca Strait, with a focus on understanding the relationships between different sublethal indicators and whether mortality could be predicted in coho salmon (Oncorhynchus kisutch) bycatch. We monitored mortality using a ~24-h net pen experiment (N = 118) and acoustic telemetry (N = 50), two approaches commonly used to assess bycatch mortality that have rarely been directly compared. Short-term mortality was 21% in the net pen experiment (~24 h) and estimated at 20% for telemetry-tagged fish (~48-96 h). Mortality was predicted by injury and reflex impairment, but only in the net pen experiment. Higher reflex impairment was mirrored by perturbations to plasma ions and lactate, supporting the notion that reflex impairment can be used as a proxy for departure from physiological homeostasis. Reflex impairment also significantly correlated with injury scores, while injury scores were significantly correlated with plasma ion concentrations. The higher time-specific mortality rate in the net pen and the fact that reflexes and injury corresponded with mortality in that experiment, but not in the telemetry-tagged fish released into the wild could be explained partly by confinement stress. While holding experiments offer the potential to provide insights into the underlying causes of mortality, chronic confinement stress can complicate the interpretation of patterns and ultimately affect mortality rates. Collectively, these results help refine our understanding of the different sublethal metrics used to assess bycatch and the mechanisms that can lead to mortality.
Space shuttle data handling and communications considerations.
NASA Technical Reports Server (NTRS)
Stoker, C. J.; Minor, R. G.
1971-01-01
Operational and development flight instrumentation, data handling subsystems and communication requirements of the space shuttle orbiter are discussed. Emphasis is made on data gathering methods, crew display data, computer processing, recording, and telemetry by means of a digital data bus. Also considered are overall communication conceptual system aspects and design features allowing a proper specification of telemetry encoders and instrumentation recorders. An adaptive bit rate concept is proposed to handle the telemetry bit rates which vary with the amount of operational and experimental data to be transmitted. A split-phase encoding technique is proposed for telemetry to cope with the excessive bit jitter and low bit transition density which may affect television performance.
NASA Technical Reports Server (NTRS)
Scaffidi, C. A.; Stocklin, F. J.; Feldman, M. B.
1971-01-01
An L-band telemetry system designed to provide the capability of near-real-time processing of calibration data is described. The system also provides the capability of performing computerized spacecraft simulations, with the aircraft as a data source, and evaluating the network response. The salient characteristics of a telemetry analysis and simulation program (TASP) are discussed, together with the results of TASP testing. The results of the L-band system testing have successfully demonstrated the capability of near-real-time processing of telemetry test data, the control of the ground-received signal to within + or - 0.5 db, and the computer generation of test signals.
NASA Astrophysics Data System (ADS)
Kumagai, H.; Yepes, H.; Vaca, M.; Caceres, V.; Nagai, T.; Yokoe, K.; Imai, T.; Miyakawa, K.; Yamashina, T.; Arrais, S.; Vasconez, F.; Pinajota, E.; Cisneros, C.; Ramos, C.; Paredes, M.; Gomezjurado, L.; Garcia-Aristizabal, A.; Molina, I.; Ramon, P.; Segovia, M.; Palacios, P.; Enriquez, W.; Inoue, I.; Nakano, M.; Inoue, H.
2006-12-01
Tungurahua and Cotopaxi are andesitic active volcanoes in Ecuadorian Andes. Tungurahua continues its eruptive activity since 1999, in which explosive eruptions accompanying pyroclastic flows occurred in July- August, 2006. Cotopaxi is one of the world's highest glacier-clad active volcanoes, and its seismic activity remains high since 2001. To enhance the monitoring capability of these volcanoes, we have installed broadband seismometers (Guralp CMG-40T: 60 s-50 Hz) and infrasonic sensors (ACO TYPE7144/4144: 10 s- 100 Hz) on these volcanoes through the technical cooperation program of Japan International Cooperation Agency (JICA). Three and five stations are currently installed at Tungurahua and Cotopaxi, respectively, and additional two stations will be installed at Tungurahua. Both seismic and infrasonic waveform data at each station are digitized by a Geotech Smart24D datalogger with a sampling frequency of 50 Hz, and transmitted by a digital telemetry system using 2.4 GHz Wireless LAN to the central office in Quito. The Tungurahua's eruptive activity accompanying pyroclastic flows in July-August 2006 was monitored in real-time by the network. The observed waveforms show a wide variety of signatures in response to various eruption styles: intermittent tremor during Strombolian eruptions, five-hour-long continuous strong tremor during heightened eruptions, very-long-period (VLP) seismic signals (10-50 s) associated with pyroclastic flows, and impulsive seismic and infrasonic events of explosions. At Cotopaxi Volcano, VLP signals (2 s) accompanying long- period signals (1-2 Hz) were detected by our network. Similar events occurred in 2002, and are interpreted as gas-release process from magma in an intruded dike beneath Cotopaxi (Molina et al, submitted to JGR). The present observation of the same type of events suggests that the intruded dike is still active beneath Cotopaxi. These signals detected by our networks are highly useful to understand volcanic processes beneath Tungurahua and Cotopaxi, which contribute to improve the monitoring capability of these volcanoes.
Safety of capsule endoscopy using human body communication in patients with cardiac devices.
Chung, Joo Won; Hwang, Hye Jin; Chung, Moon Jae; Park, Jeong Youp; Pak, Hui-Nam; Song, Si Young
2012-06-01
The MiroCam (IntroMedic, Ltd., Seoul, Korea) is a small-bowel capsule endoscope that uses human body communication to transmit data. The potential interactions between cardiac devices and the capsule endoscope are causes for concern, but no data are available for this matter. This clinical study was designed to evaluate the potential influence of the MiroCam capsules on cardiac devices. Patients with cardiac pacemakers or implantable cardiac defibrillators referred for evaluation of small bowel disease were prospectively enrolled in this study. Before capsule endoscopy, a cardiologist checked baseline electrocardiograms and functions of the cardiac devices. Cardiac rhythms were continuously monitored by 24-h telemetry during capsule endoscopy in the hospital. After completion of procedures, functions of the cardiac devices were checked again for interference. Images from the capsule endoscopy were reviewed and analyzed for technical problems. Six patients, three with pacemakers and three with implantable cardiac defibrillators, were included in the study. We identified no disturbances in the cardiac devices and no arrhythmias detected on telemetry monitoring during capsule endoscopy. No significant changes in the programmed parameters of the cardiac devices were noted after capsule endoscopy. There were no imaging disturbances from the cardiac devices on capsule endoscopy. Capsule endoscopy using human body communication to transmit data was safely performed in patients with cardiac pacemakers or implantable cardiac defibrillators. Images from the capsule endoscopy were not affected by cardiac devices. A further large-scale study is required to confirm the safety of capsule endoscopy with various types of cardiac devices.
Du, Xiao-Jun; Shan, Leonard; Gao, Xiao-Ming; Kiriazis, Helen; Liu, Yang; Lobo, Abhirup; Head, Geoffrey A; Dart, Anthony M
2011-02-01
Left ventricular thrombus (LVT) and rupture are important mechanical complications following myocardial infarction (MI) and are believed to be due to unrelated mechanisms. We studied whether, in fact, wall rupture and LVT are closely related in their pathogenesis with intramural platelet thrombus (IMT) playing a pivotal role. Male 129sv and C57Bl/6 mice underwent operation to induce MI, and autopsy was performed to confirm rupture deaths. Haemodynamic features of rupture events were monitored by telemetry in conscious mice. Detailed histological examination was conducted with special attention to the presence of IMT in relation to rupture location and LVT formation. IMT was detected in infarcted hearts of 129sv (82%) and C57Bl/6 (39%) mice with rupture in the form of a narrow streak spanning the wall or an occupying mass dissecting the infarcted myofibers apart. IMT often contained dense inflammatory cells and blood clot, indicating a dynamic process of thrombus formation and destruction. Notably, IMT was found extending into the cavity to form LVT. Haemodynamic monitoring by telemetry revealed that rupture occurred either as a single event or recurrent episodes. Importantly, the anti-platelet drug clopidogrel, but not aspirin, reduced the prevalence of rupture (10% vs. 45%) and IMT, and suppressed the degree of inflammation. Thus, IMT is a key pathological element in the infarcted heart closely associated with the complications of rupture and LVT. IMT could be either triggered by a wall tear or act as initiator of rupture. IMT may propagate towards the ventricular chamber to trigger LVT.
Wireless Command-and-Control of UAV-Based Imaging LANs
NASA Technical Reports Server (NTRS)
Herwitz, Stanley; Dunagan, S. E.; Sullivan, D. V.; Slye, R. E.; Leung, J. G.; Johnson, L. F.
2006-01-01
Dual airborne imaging system networks were operated using a wireless line-of-sight telemetry system developed as part of a 2002 unmanned aerial vehicle (UAV) imaging mission over the USA s largest coffee plantation on the Hawaiian island of Kauai. A primary mission objective was the evaluation of commercial-off-the-shelf (COTS) 802.11b wireless technology for reduction of payload telemetry costs associated with UAV remote sensing missions. Predeployment tests with a conventional aircraft demonstrated successful wireless broadband connectivity between a rapidly moving airborne imaging local area network (LAN) and a fixed ground station LAN. Subsequently, two separate LANs with imaging payloads, packaged in exterior-mounted pressure pods attached to the underwing of NASA's Pathfinder-Plus UAV, were operated wirelessly by ground-based LANs over independent Ethernet bridges. Digital images were downlinked from the solar-powered aircraft at data rates of 2-6 megabits per second (Mbps) over a range of 6.5 9.5 km. An integrated wide area network enabled payload monitoring and control through the Internet from a range of ca. 4000 km during parts of the mission. The recent advent of 802.11g technology is expected to boost the system data rate by about a factor of five.
Bridges, A.S.; Vaughan, M.R.; Klenzendorf, S.
2004-01-01
Activity pattern plasticity may serve as an evolutionary adaptation to optimize fitness in an inconstant environment, however, quantifying patterns and demonstrating variation can be problematic. For American black bears Ursus americanus, wariness and habitat inaccessibility further complicate quantification. Radio telemetry has been the primary technique used to examine activity, however, interpretation error and limitation on numbers of animals available to monitor prevent extrapolation to unmarked or untransmittered members of the population. We used remote cameras to quantify black bear activity patterns and examined differences by season, sex and reproductive class in the Alleghany Mountains of western Virginia, USA. We used 1,533 pictures of black bears taken during 1998-2002 for our analyses. Black bears generally were diurnal in summer and nocturnal in autumn with a vespertine activity peak during both seasons. Bear-hound training seasons occurred during September and may offer explanation for the observed shift towards nocturnal behaviour. We found no substantial differences in activity patterns between sex and reproductive classes. Use of remote cameras allowed us to efficiently sample larger numbers of individual animals and likely offered a better approximation of population-level activity patterns than individual-level, telemetry-based methodologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiland, Mark A.; Deng, Zhiqun; Seim, Thomas A.
2011-05-26
The U.S. Army Corps of Engineers-Portland District started development of the Juvenile Salmon Acoustic Telemetry System (JSATS), a nonproprietary technology, in 2001 to meet the needs for monitoring the survival of juvenile salmonids through the 31 federal dams in the Federal Columbia River Power System (FCRPS). Initial development focused on coded acoustic microtransmitters, and autonomous receivers that could be deployed in open reaches of the river for detection of the juvenile salmonids implanted with microtransmitters as they passed the autonomous receiver arrays. In 2006 the Pacific Northwest National Laboratory (PNNL) was tasked with development of an acoustic receiver system formore » deployment at hydropower facilities (cabled receiver) for detecting fish tagged with microtransmitters as well as tracking them in 2 or 3-dimensions as the fish passed at the facility for determining route of passage. The additional route of passage information, combined with survival estimates, is used by the dam operators and managers to make structural and operational changes at the hydropower facilities to improve survival of fish as they pass the facilities and through the FCRPS.« less
A distributed computing model for telemetry data processing
NASA Astrophysics Data System (ADS)
Barry, Matthew R.; Scott, Kevin L.; Weismuller, Steven P.
1994-05-01
We present a new approach to distributing processed telemetry data among spacecraft flight controllers within the control centers at NASA's Johnson Space Center. This approach facilitates the development of application programs which integrate spacecraft-telemetered data and ground-based synthesized data, then distributes this information to flight controllers for analysis and decision-making. The new approach combines various distributed computing models into one hybrid distributed computing model. The model employs both client-server and peer-to-peer distributed computing models cooperating to provide users with information throughout a diverse operations environment. Specifically, it provides an attractive foundation upon which we are building critical real-time monitoring and control applications, while simultaneously lending itself to peripheral applications in playback operations, mission preparations, flight controller training, and program development and verification. We have realized the hybrid distributed computing model through an information sharing protocol. We shall describe the motivations that inspired us to create this protocol, along with a brief conceptual description of the distributed computing models it employs. We describe the protocol design in more detail, discussing many of the program design considerations and techniques we have adopted. Finally, we describe how this model is especially suitable for supporting the implementation of distributed expert system applications.
Telemetry distribution and processing for the second German Spacelab Mission D-2
NASA Technical Reports Server (NTRS)
Rabenau, E.; Kruse, W.
1994-01-01
For the second German Spacelab Mission D-2 all activities related to operating, monitoring and controlling the experiments on board the Spacelab were conducted from the German Space Operations Control Center (GSOC) operated by the Deutsche Forschungsanstalt fur Luft- und Raumfahrt (DLR) in Oberpfaffenhofen, Germany. The operational requirements imposed new concepts on the transfer of data between Germany and the NASA centers and the processing of data at the GSOC itself. Highlights were the upgrade of the Spacelab Data Processing Facility (SLDPF) to real time data processing, the introduction of packet telemetry and the development of the high-rate data handling front end, data processing and display systems at GSOC. For the first time, a robot on board the Spacelab was to be controlled from the ground in a closed loop environment. A dedicated forward channel was implemented to transfer the robot manipulation commands originating from the robotics experiment ground station to the Spacelab via the Orbiter's text and graphics system interface. The capability to perform telescience from an external user center was implemented. All interfaces proved successful during the course of the D-2 mission and are described in detail in this paper.
An 8.4-GHz dual-maser front-end system for Parkes reimplementation
NASA Technical Reports Server (NTRS)
Trowbridge, D. L.; Loreman, J. R.; Brunzie, T. J.; Quinn, R.
1990-01-01
An 8.4-GHz front-end system consisting of a feedhorn, a waveguide feed assembly, dual masers, and downconverters was reimplemented at Parkes as part of the Parkes Canberra Telemetry Array for the Voyager Neptune encounter. The front-end system was originally assembled by the European Space Agency and installed on the Parkes antenna for the Giotto project. It was also used on a time-sharing basis by the Deep Space Network as part of the Parkes Canberra Telemetry Array to enhance the data return from the Voyager Uranus encounter. At the conclusion of these projects in 1986, part of the system was then shipped to JPL on loan for reimplementation at Parkes for the Voyager Neptune encounter. New design and implementation required to make the system operable at Parkes included new microwave front-end control cabinets, closed-cycle refrigeration monitor system, noise-adding radiometer system, front-end controller assembly, X81 local oscillator multiplier, and refurbishment of the original dual 8.4-GHz traveling-wave masers and waveguide feed system. The front-end system met all requirements during the encounter and was disassembled in October 1989 and returned to JPL.
A distributed computing model for telemetry data processing
NASA Technical Reports Server (NTRS)
Barry, Matthew R.; Scott, Kevin L.; Weismuller, Steven P.
1994-01-01
We present a new approach to distributing processed telemetry data among spacecraft flight controllers within the control centers at NASA's Johnson Space Center. This approach facilitates the development of application programs which integrate spacecraft-telemetered data and ground-based synthesized data, then distributes this information to flight controllers for analysis and decision-making. The new approach combines various distributed computing models into one hybrid distributed computing model. The model employs both client-server and peer-to-peer distributed computing models cooperating to provide users with information throughout a diverse operations environment. Specifically, it provides an attractive foundation upon which we are building critical real-time monitoring and control applications, while simultaneously lending itself to peripheral applications in playback operations, mission preparations, flight controller training, and program development and verification. We have realized the hybrid distributed computing model through an information sharing protocol. We shall describe the motivations that inspired us to create this protocol, along with a brief conceptual description of the distributed computing models it employs. We describe the protocol design in more detail, discussing many of the program design considerations and techniques we have adopted. Finally, we describe how this model is especially suitable for supporting the implementation of distributed expert system applications.
Mobile Telemetry Van Remote Control Upgrade
2012-05-17
Advantages of Remote Control System Upgrade • Summary Overview • Remote control of Telemetry Mobile Ground Support ( TMGS ) Van proposed to allow...NWC) personnel provided valuable data for full-function remote control of telemetry tracking vans Background • TMGS Vans support Flight Test...control capability from main TM site at Building 5790 currently allows support via TMGS Van at nearby C- 15 Site, Plant 42 in Palmdale, and as far
A Model for Real-Time Data Reputation Via Cyber Telemetry
2016-06-01
TIME DATA REPUTATION VIA CYBER TELEMETRY by Beau M. Houser June 2016 Thesis Advisor: Dorothy E. Denning Co-Advisor: Phyllis Schneck...information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and...Master’s Thesis 4. TITLE AND SUBTITLE A MODEL FOR REAL- TIME DATA REPUTATION VIA CYBER TELEMETRY 5. FUNDING NUMBERS 6. AUTHOR(S) Beau M
An Advanced Commanding and Telemetry System
NASA Astrophysics Data System (ADS)
Hill, Maxwell G. G.
The Loral Instrumentation System 500 configured as an Advanced Commanding and Telemetry System (ACTS) supports the acquisition of multiple telemetry downlink streams, and simultaneously supports multiple uplink command streams for today's satellite vehicles. By using industry and federal standards, the system is able to support, without relying on a host computer, a true distributed dataflow architecture that is complemented by state-of-the-art RISC-based workstations and file servers.
Review of research methodologies for tigers: telemetry.
Miller, Clayton S; Hebblewhite, Mark; Goodrich, John M; Miquelle, Dale G
2010-12-01
Over the past half century, wildlife research has relied on technological advances to gain additional insight into the secretive lives of animals. This revolution started in the 1960s with the development of radio telemetry and continues today with the use of Global Positioning System (GPS)-based research techniques. In the present paper we review the history of radio telemetry from its origins with grizzly bears in Yellowstone to its early applications in tiger research and conservation in Asia. We address the different types of data that are available using radio telemetry as opposed to using other research techniques, such as behavioral observations, camera trapping, DNA analysis and scat analysis. In the late 1990s, the rapid development of GPS collar technology revolutionized wildlife research. This new technology has enabled researchers to dramatically improve their ability to gather data on animal movements and ecology. Despite the ecological and conservation benefits of radio telemetry, there have been few telemetry studies of tigers in the wild, and most have been on the Bengal or Amur subspecies. We close with an assessment of the current tiger conservation efforts using GPS technology and discuss how this new information can help to preserve tigers for future generations. © 2010 ISZS, Blackwell Publishing and IOZ/CAS.
A battery-free multichannel digital neural/EMG telemetry system for flying insects.
Thomas, Stewart J; Harrison, Reid R; Leonardo, Anthony; Reynolds, Matthew S
2012-10-01
This paper presents a digital neural/EMG telemetry system small enough and lightweight enough to permit recording from insects in flight. It has a measured flight package mass of only 38 mg. This system includes a single-chip telemetry integrated circuit (IC) employing RF power harvesting for battery-free operation, with communication via modulated backscatter in the UHF (902-928 MHz) band. An on-chip 11-bit ADC digitizes 10 neural channels with a sampling rate of 26.1 kSps and 4 EMG channels at 1.63 kSps, and telemeters this data wirelessly to a base station. The companion base station transceiver includes an RF transmitter of +36 dBm (4 W) output power to wirelessly power the telemetry IC, and a digital receiver with a sensitivity of -70 dBm for 10⁻⁵ BER at 5.0 Mbps to receive the data stream from the telemetry IC. The telemetry chip was fabricated in a commercial 0.35 μ m 4M1P (4 metal, 1 poly) CMOS process. The die measures 2.36 × 1.88 mm, is 250 μm thick, and is wire bonded into a flex circuit assembly measuring 4.6 × 6.8 mm.
Martell, M.S.; Henny, Charles J.; Nye, P.; Solensky, Matthew J.
2001-01-01
Satellite telemetry was used to determine fall migratory movements of Ospreys (Pandion haliaetus) breeding in the United States. Study areas were established along the lower Columbia River between Oregon and Washington; in north-central Minnesota; on Shelter Island, New York; and in southern New Jersey. Seventy-four adults (25 males, 49 females) were tracked from 1995 through 1999. Migration routes differed among populations but not by sex. Western Ospreys migrated through California and to a lesser degree other western states and wintered in Mexico (88%), El Salvador (6%), and Honduras (6%) (25.9A?N to 13.0A?N and 108.3A?W to 87.3A?W). Minnesota Ospreys migrated along three routes: (1) through the Central U.S. and then along the east coast of Mexico, (2) along the Mississippi River Valley, then across the Gulf of Mexico, or (3) through the southeastern U.S., then across the Caribbean. East Coast birds migrated along the eastern seaboard of the U.S., through Florida, and across the Caribbean. Midwestern birds wintered from Mexico south to Bolivia (22.35A?N to 13.64A?S, and 91.75A?W to 61.76A?W), while East Coast birds wintered from Florida to as far south as Brazil (27.48A?N to 18.5A?S and 80.4A?W to 57.29A?W). Dates of departure from breeding areas differed significantly between sexes and geographic regions, with females leaving earlier than males. Western birds traveled a shorter distance than either midwestern or eastern Ospreys. Females traveled farther than males from the same population, which resulted in females typically wintering south of males.
ANZA Seismic Network- From Monitoring to Science
NASA Astrophysics Data System (ADS)
Vernon, F.; Eakin, J.; Martynov, V.; Newman, R.; Offield, G.; Hindley, A.; Astiz, L.
2007-05-01
The ANZA Seismic Network (http:eqinfo.ucsd.edu) utilizes broadband and strong motion sensors with 24-bit dataloggers combined with real-time telemetry to monitor local and regional seismicity in southernmost California. The ANZA network provides real-time data to the IRIS DMC, California Integrated Seismic Network (CISN), other regional networks, and the Advanced National Seismic System (ANSS), in addition to providing near real-time information and monitoring to the greater San Diego community. Twelve high dynamic range broadband and strong motion sensors adjacent to the San Jacinto Fault zone contribute data for earthquake source studies and continue the monitoring of the seismic activity of the San Jacinto fault initiated 24 years ago. Five additional stations are located in the San Diego region with one more station on San Clemente Island. The ANZA network uses the advance wireless networking capabilities of the NSF High Performance Wireless Research and Education Network (http:hpwren.ucsd.edu) to provide the communication infrastructure for the real-time telemetry of Anza seismic stations. The ANZA network uses the Antelope data acquisition software. The combination of high quality hardware, communications, and software allow for an annual network uptime in excess of 99.5% with a median annual station real-time data return rate of 99.3%. Approximately 90,000 events, dominantly local sources but including regional and teleseismic events, comprise the ANZA network waveform database. All waveform data and event data are managed using the Datascope relational database. The ANZA network data has been used in a variety of scientific research including detailed structure of the San Jacinto Fault Zone, earthquake source physics, spatial and temporal studies of aftershocks, array studies of teleseismic body waves, and array studies on the source of microseisms. To augment the location, detection, and high frequency observations of the seismic source spectrum from local earthquakes, the ANZA network is receiving real-time data from borehole arrays located at the UCSD Thornton Hospital, and from UCSB's Borrego Valley and Garner Valley Downhole Arrays. Finally the ANZA network is acquiring data from seven PBO sites each with 300 meter deep MEMs accelerometers, passive seismometers, and a borehole strainmeter.
Drymon, J. Marcus; Ajemian, Matthew J.; Powers, Sean P.
2014-01-01
Understanding how animals alter habitat use in response to changing abiotic conditions is important for effective conservation management. For bull sharks (Carcharhinus leucas), habitat use has been widely examined in the eastern and western Gulf of Mexico; however, knowledge of their movements and the factors influencing them is lacking for populations in the more temperate north-central Gulf of Mexico. To examine how changes in hydrographic conditions affected the presence of young bull sharks in Mobile Bay, Alabama, thirty-five sharks were fitted with internal acoustic transmitters and monitored with an acoustic monitoring array consisting of thirty-three receivers between June 2009 and December 2010. Tagged sharks ranged in size from 60 to 114 cm fork length and were detected between the upper and lower portions of Mobile Bay. Despite a variety of freshwater sources associated with this highly productive estuary, sharks were most consistently detected at the largest input to the system – the Mobile and Tensaw Rivers. Our findings suggest a combination of hydrographic factors interact to influence the distribution of juvenile bull sharks in Mobile Bay. The factors affecting the probability of detecting at least one bull shark varied both temporally (2009 vs 2010) and spatially (upper vs lower bay). Electivity analysis demonstrated that bull sharks showed highest affinity for warm water (29–32°C), moderate salinities (10–11 psu) and normoxic waters (5–7 mg/l), although these patterns were not consistent between regions or across years. We suggest future studies coupling telemetry and hydrographic variables should, when possible, consider the interactions of multiple environmental parameters when defining the dynamic factors explaining the spatial distribution of coastal sharks. PMID:24841925
Drymon, J Marcus; Ajemian, Matthew J; Powers, Sean P
2014-01-01
Understanding how animals alter habitat use in response to changing abiotic conditions is important for effective conservation management. For bull sharks (Carcharhinus leucas), habitat use has been widely examined in the eastern and western Gulf of Mexico; however, knowledge of their movements and the factors influencing them is lacking for populations in the more temperate north-central Gulf of Mexico. To examine how changes in hydrographic conditions affected the presence of young bull sharks in Mobile Bay, Alabama, thirty-five sharks were fitted with internal acoustic transmitters and monitored with an acoustic monitoring array consisting of thirty-three receivers between June 2009 and December 2010. Tagged sharks ranged in size from 60 to 114 cm fork length and were detected between the upper and lower portions of Mobile Bay. Despite a variety of freshwater sources associated with this highly productive estuary, sharks were most consistently detected at the largest input to the system--the Mobile and Tensaw Rivers. Our findings suggest a combination of hydrographic factors interact to influence the distribution of juvenile bull sharks in Mobile Bay. The factors affecting the probability of detecting at least one bull shark varied both temporally (2009 vs 2010) and spatially (upper vs lower bay). Electivity analysis demonstrated that bull sharks showed highest affinity for warm water (29-32 °C), moderate salinities (10-11 psu) and normoxic waters (5-7 mg/l), although these patterns were not consistent between regions or across years. We suggest future studies coupling telemetry and hydrographic variables should, when possible, consider the interactions of multiple environmental parameters when defining the dynamic factors explaining the spatial distribution of coastal sharks.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-09
.... 0907141130-0112-02] RIN 0648-AX80 Antarctic Marine Living Resources; Use of Centralized-Vessel Monitoring... documentation that the harvesting vessel participated in the Centralized-Vessel Monitoring System (C-VMS... Centralized-Vessel Monitoring System (C-VMS) regardless of where the fish was harvested. This final rule also...
BION-M 1: First continuous blood pressure monitoring in mice during a 30-day spaceflight.
Andreev-Andrievskiy, Alexander; Popova, Anfisa; Lloret, Jean-Christophe; Aubry, Patrick; Borovik, Anatoliy; Tsvirkun, Daria; Vinogradova, Olga; Ilyin, Eugeniy; Gauquelin-Koch, Guillemette; Gharib, Claude; Custaud, Marc-Antoine
2017-05-01
Animals are an essential component of space exploration and have been used to demonstrate that weightlessness does not disrupt essential physiological functions. They can also contribute to space research as models of weightlessness-induced changes in humans. Animal research was an integral component of the 30-day automated Russian biosatellite Bion-M 1 space mission. The aim of the hemodynamic experiment was to estimate cardiovascular function in mice, a species roughly 3000 times smaller than humans, during prolonged spaceflight and post-flight recovery, particularly, to investigate if mice display signs of cardiovascular deconditioning. For the first time, heart rate (HR) and blood pressure (BP) were continuously monitored using implantable telemetry during spaceflight and recovery. Decreased HR and unchanged BP were observed during launch, whereas both HR and BP dropped dramatically during descent. During spaceflight, BP did not change from pre-flight values. However, HR increased, particularly during periods of activity. HR remained elevated after spaceflight and was accompanied by increased levels of exercise-induced tachycardia. Loss of three of the five mice during the flight as a result of the hardware malfunction (unrelated to the telemetry system) and thus the limited sample number constitute the major limitation of the study. For the first time BP and HR were continuously monitored in mice during the 30-day spaceflight and 7-days of post-flight recovery. Cardiovascular deconditioning in these tiny quadruped mammals was reminiscent of that in humans. Therefore, the loss of hydrostatic pressure in space, which is thought to be the initiating event for human cardiovascular adaptation in microgravity, might be of less importance than other physiological mechanisms. Further experiments with larger number of mice are needed to confirm these findings. Copyright © 2017 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
Drumheller, Douglas S.
1997-01-01
An acoustic transducer comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers.
A computer system for analysis and transmission of spirometry waveforms using volume sampling.
Ostler, D V; Gardner, R M; Crapo, R O
1984-06-01
A microprocessor-controlled data gathering system for telemetry and analysis of spirometry waveforms was implemented using a completely digital design. Spirometry waveforms were obtained from an optical shaft encoder attached to a rolling seal spirometer. Time intervals between 10-ml volume changes (volume sampling) were stored. The digital design eliminated problems of analog signal sampling. The system measured flows up to 12 liters/sec with 5% accuracy and volumes up to 10 liters with 1% accuracy. Transmission of 10 waveforms took about 3 min. Error detection assured that no data were lost or distorted during transmission. A pulmonary physician at the central hospital reviewed the volume-time and flow-volume waveforms and interpretations generated by the central computer before forwarding the results and consulting with the rural physician. This system is suitable for use in a major hospital, rural hospital, or small clinic because of the system's simplicity and small size.
Implantable telemetry for small animals
NASA Astrophysics Data System (ADS)
1982-03-01
A series of totally implantable telemetry devices for use in measuring deep body parameters in small animals were developed. Under a collaborative agreement with NASA, several of these systems; the continuous wave Doppler ultrasonic flowmeter, the multichannel telemetry system, and the inductively-powered dual channel cardiac pacer were evaluated in a series of ten mongrel dogs (15 to 20 kg.). These systems were used to measure ascending aortic and coronary blood flow, aortic pressure, and subcutaneous EKG.
Implantable telemetry for small animals
NASA Technical Reports Server (NTRS)
1982-01-01
A series of totally implantable telemetry devices for use in measuring deep body parameters in small animals were developed. Under a collaborative agreement with NASA, several of these systems; the continuous wave Doppler ultrasonic flowmeter, the multichannel telemetry system, and the inductively-powered dual channel cardiac pacer were evaluated in a series of ten mongrel dogs (15 to 20 kg.). These systems were used to measure ascending aortic and coronary blood flow, aortic pressure, and subcutaneous EKG.
The advanced receiver 2: Telemetry test results in CTA 21
NASA Technical Reports Server (NTRS)
Hinedi, S.; Bevan, R.; Marina, M.
1991-01-01
Telemetry tests with the Advanced Receiver II (ARX II) in Compatibility Test Area 21 are described. The ARX II was operated in parallel with a Block-III Receiver/baseband processor assembly combination (BLK-III/BPA) and a Block III Receiver/subcarrier demodulation assembly/symbol synchronization assembly combination (BLK-III/SDA/SSA). The telemetry simulator assembly provided the test signal for all three configurations, and the symbol signal to noise ratio as well as the symbol error rates were measured and compared. Furthermore, bit error rates were also measured by the system performance test computer for all three systems. Results indicate that the ARX-II telemetry performance is comparable and sometimes superior to the BLK-III/BPA and BLK-III/SDA/SSA combinations.
VLSI technology for smaller, cheaper, faster return link systems
NASA Technical Reports Server (NTRS)
Nanzetta, Kathy; Ghuman, Parminder; Bennett, Toby; Solomon, Jeff; Dowling, Jason; Welling, John
1994-01-01
Very Large Scale Integration (VLSI) Application-specific Integrated Circuit (ASIC) technology has enabled substantially smaller, cheaper, and more capable telemetry data systems. However, the rapid growth in available ASIC fabrication densities has far outpaced the application of this technology to telemetry systems. Available densities have grown by well over an order magnitude since NASA's Goddard Space Flight Center (GSFC) first began developing ASIC's for ground telemetry systems in 1985. To take advantage of these higher integration levels, a new generation of ASIC's for return link telemetry processing is under development. These new submicron devices are designed to further reduce the cost and size of NASA return link processing systems while improving performance. This paper describes these highly integrated processing components.
Health Management Applications for International Space Station
NASA Technical Reports Server (NTRS)
Alena, Richard; Duncavage, Dan
2005-01-01
Traditional mission and vehicle management involves teams of highly trained specialists monitoring vehicle status and crew activities, responding rapidly to any anomalies encountered during operations. These teams work from the Mission Control Center and have access to engineering support teams with specialized expertise in International Space Station (ISS) subsystems. Integrated System Health Management (ISHM) applications can significantly augment these capabilities by providing enhanced monitoring, prognostic and diagnostic tools for critical decision support and mission management. The Intelligent Systems Division of NASA Ames Research Center is developing many prototype applications using model-based reasoning, data mining and simulation, working with Mission Control through the ISHM Testbed and Prototypes Project. This paper will briefly describe information technology that supports current mission management practice, and will extend this to a vision for future mission control workflow incorporating new ISHM applications. It will describe ISHM applications currently under development at NASA and will define technical approaches for implementing our vision of future human exploration mission management incorporating artificial intelligence and distributed web service architectures using specific examples. Several prototypes are under development, each highlighting a different computational approach. The ISStrider application allows in-depth analysis of Caution and Warning (C&W) events by correlating real-time telemetry with the logical fault trees used to define off-nominal events. The application uses live telemetry data and the Livingstone diagnostic inference engine to display the specific parameters and fault trees that generated the C&W event, allowing a flight controller to identify the root cause of the event from thousands of possibilities by simply navigating animated fault tree models on their workstation. SimStation models the functional power flow for the ISS Electrical Power System and can predict power balance for nominal and off-nominal conditions. SimStation uses realtime telemetry data to keep detailed computational physics models synchronized with actual ISS power system state. In the event of failure, the application can then rapidly diagnose root cause, predict future resource levels and even correlate technical documents relevant to the specific failure. These advanced computational models will allow better insight and more precise control of ISS subsystems, increasing safety margins by speeding up anomaly resolution and reducing,engineering team effort and cost. This technology will make operating ISS more efficient and is directly applicable to next-generation exploration missions and Crew Exploration Vehicles.
Digital Interface Board to Control Phase and Amplitude of Four Channels
NASA Technical Reports Server (NTRS)
Smith, Amy E.; Cook, Brian M.; Khan, Abdur R.; Lux, James P.
2011-01-01
An increasing number of parts are designed with digital control interfaces, including phase shifters and variable attenuators. When designing an antenna array in which each antenna has independent amplitude and phase control, the number of digital control lines that must be set simultaneously can grow very large. Use of a parallel interface would require separate line drivers, more parts, and thus additional failure points. A convenient form of control where single-phase shifters or attenuators could be set or the whole set could be programmed with an update rate of 100 Hz is needed to solve this problem. A digital interface board with a field-programmable gate array (FPGA) can simultaneously control an essentially arbitrary number of digital control lines with a serial command interface requiring only three wires. A small set of short, high-level commands provides a simple programming interface for an external controller. Parity bits are used to validate the control commands. Output timing is controlled within the FPGA to allow for rapid update rates of the phase shifters and attenuators. This technology has been used to set and monitor eight 5-bit control signals via a serial UART (universal asynchronous receiver/transmitter) interface. The digital interface board controls the phase and amplitude of the signals for each element in the array. A host computer running Agilent VEE sends commands via serial UART connection to a Xilinx VirtexII FPGA. The commands are decoded, and either outputs are set or telemetry data is sent back to the host computer describing the status and the current phase and amplitude settings. This technology is an integral part of a closed-loop system in which the angle of arrival of an X-band uplink signal is detected and the appropriate phase shifts are applied to the Ka-band downlink signal to electronically steer the array back in the direction of the uplink signal. It will also be used in the non-beam-steering case to compensate for phase shift variations through power amplifiers. The digital interface board can be used to set four 5-bit phase shifters and four 5-bit attenuators and monitor their current settings. Additionally, it is useful outside of the closed-loop system for beamsteering alone. When the VEE program is started, it prompts the user to initialize variables (to zero) or skip initialization. After that, the program enters into a continuous loop waiting for the telemetry period to elapse or a button to be pushed. A telemetry request is sent when the telemetry period is elapsed (every five seconds). Pushing one of the set or reset buttons will send the appropriate command. When a command is sent, the interface status is returned, and the user will be notified by a pop-up window if any error has occurred. The program runs until the End Program button is depressed.
Computer-aided video exposure monitoring.
Walsh, P T; Clark, R D; Flaherty, S; Gentry, S J
2000-01-01
A computer-aided video exposure monitoring system was used to record exposure information. The system comprised a handheld camcorder, portable video cassette recorder, radio-telemetry transmitter/receiver, and handheld or notebook computers for remote data logging, photoionization gas/vapor detectors (PIDs), and a personal aerosol monitor. The following workplaces were surveyed using the system: dry cleaning establishments--monitoring tetrachoroethylene in the air and in breath; printing works--monitoring white spirit type solvent; tire manufacturing factory--monitoring rubber fume; and a slate quarry--monitoring respirable dust and quartz. The system based on the handheld computer, in particular, simplified the data acquisition process compared with earlier systems in use by our laboratory. The equipment is more compact and easier to operate, and allows more accurate calibration of the instrument reading on the video image. Although a variety of data display formats are possible, the best format for videos intended for educational and training purposes was the review-preview chart superimposed on the video image of the work process. Recommendations for reducing exposure by engineering or by modifying work practice were possible through use of the video exposure system in the dry cleaning and tire manufacturing applications. The slate quarry work illustrated how the technique can be used to test ventilation configurations quickly to see their effect on the worker's personal exposure.
Sequence-of-events-driven automation of the deep space network
NASA Technical Reports Server (NTRS)
Hill, R., Jr.; Fayyad, K.; Smyth, C.; Santos, T.; Chen, R.; Chien, S.; Bevan, R.
1996-01-01
In February 1995, sequence-of-events (SOE)-driven automation technology was demonstrated for a Voyager telemetry downlink track at DSS 13. This demonstration entailed automated generation of an operations procedure (in the form of a temporal dependency network) from project SOE information using artificial intelligence planning technology and automated execution of the temporal dependency network using the link monitor and control operator assistant system. This article describes the overall approach to SOE-driven automation that was demonstrated, identifies gaps in SOE definitions and project profiles that hamper automation, and provides detailed measurements of the knowledge engineering effort required for automation.
Theory, Instrumentation and Applications of Magnetoelastic Resonance Sensors: A Review
Grimes, Craig A.; Roy, Somnath C.; Rani, Sanju; Cai, Qingyun
2011-01-01
Thick-film magnetoelastic sensors vibrate mechanically in response to a time varying magnetic excitation field. The mechanical vibrations of the magnetostrictive magnetoelastic material launch, in turn, a magnetic field by which the sensor can be monitored. Magnetic field telemetry enables contact-less, remote-query operation that has enabled many practical uses of the sensor platform. This paper builds upon a review paper we published in Sensors in 2002 (Grimes, C.A.; et al. Sensors 2002, 2, 294–313), presenting a comprehensive review on the theory, operating principles, instrumentation and key applications of magnetoelastic sensing technology. PMID:22163768
Flood-tracking chart for the Chattahoochee River Basin in Metropolitan Atlanta, Georgia
LaFontaine, Jacob H.; McCallum, Brian E.; Stamey, Timothy C.; Wipperfurth, Caryl J.
2006-01-01
The U.S. Geological Survey (USGS)—in cooperation with other Federal, State, and local agencies—operates a flood monitoring system in the Chattahoochee River Basin. This system is a network of 35 automated river stage stations that transmit stage data through satellite telemetry to the USGS Georgia Water Science Center in Atlanta. During floods, the public and emergency response agencies use this information to make decisions about road closures, evacuations, and other public safety issues. The emergency phone number for your area is listed under “Local flood emergency phone numbers.”
Fourth Conference on Artificial Intelligence for Space Applications
NASA Technical Reports Server (NTRS)
Odell, Stephen L. (Compiler); Denton, Judith S. (Compiler); Vereen, Mary (Compiler)
1988-01-01
Proceedings of a conference held in Huntsville, Alabama, on November 15-16, 1988. The Fourth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: space applications of expert systems in fault diagnostics, in telemetry monitoring and data collection, in design and systems integration; and in planning and scheduling; knowledge representation, capture, verification, and management; robotics and vision; adaptive learning; and automatic programming.
Sequence-of-Events-Driven Automation of the Deep Space Network
NASA Technical Reports Server (NTRS)
Hill, R., Jr.; Fayyad, K.; Smyth, C.; Santos, T.; Chen, R.; Chien, S.; Bevan, R.
1996-01-01
In February 1995, sequence-of-events (SOE)-driven automation technology was demonstrated for a Voyager telemetry downlink track at DSS 13. This demonstration entailed automated generation of an operations procedure (in the form of a temporal dependency network) from project SOE information using artificial intelligence planning technology and automated execution of the temporal dependency network using the link monitor and control operator assistant system. This article describes the overall approach to SOE-driven automation that was demonstrated, identifies gaps in SOE definitions and project profiles that hamper automation, and provides detailed measurements of the knowledge engineering effort required for automation.
Spacelab Data Processing Facility (SLDPF) quality assurance expert systems development
NASA Technical Reports Server (NTRS)
Kelly, Angelita C.; Basile, Lisa; Ames, Troy; Watson, Janice; Dallam, William
1987-01-01
Spacelab Data Processing Facility (SLDPF) expert system prototypes were developed to assist in the quality assurance of Spacelab and/or Attached Shuttle Payload (ASP) processed telemetry data. The SLDPF functions include the capturing, quality monitoring, processing, accounting, and forwarding of mission data to various user facilities. Prototypes for the two SLDPF functional elements, the Spacelab Output Processing System and the Spacelab Input Processing Element, are described. The prototypes have produced beneficial results including an increase in analyst productivity, a decrease in the burden of tedious analyses, the consistent evaluation of data, and the providing of concise historical records.
Spacelab Data Processing Facility (SLDPF) quality assurance expert systems development
NASA Technical Reports Server (NTRS)
Kelly, Angelita C.; Basile, Lisa; Ames, Troy; Watson, Janice; Dallam, William
1987-01-01
Spacelab Data Processing Facility (SLDPF) expert system prototypes have been developed to assist in the quality assurance of Spacelab and/or Attached Shuttle Payload (ASP) processed telemetry data. SLDPF functions include the capturing, quality monitoring, processing, accounting, and forwarding of mission data to various user facilities. Prototypes for the two SLDPF functional elements, the Spacelab Output Processing System and the Spacelab Input Processing Element, are described. The prototypes have produced beneficial results including an increase in analyst productivity, a decrease in the burden of tedious analyses, the consistent evaluation of data, and the providing of concise historical records.
Meyer, Michael L; Huey, Greg M
2006-05-01
This study utilized telemetric systems to sample microbes and pathogens in forest, burned forest, rangeland, and urban watersheds to assess surface water quality in northern New Mexico. Four sites included remote mountainous watersheds, prairie rangelands, and a small urban area. The telemetric system was linked to dataloggers with automated event monitoring equipment to monitor discharge, turbidity, electrical conductivity, water temperature, and rainfall during base flow and storm events. Site data stored in dataloggers was uploaded to one of three types of telemetry: 1) radio in rangeland and urban settings; 2) a conventional phone/modem system with a modem positioned at the urban/forest interface; and 3) a satellite system used in a remote mountainous burned forest watershed. The major variables affecting selection of each system were site access, distance, technology, and cost. The systems were compared based on operation and cost. Utilization of telecommunications systems in this varied geographic area facilitated the gathering of hydrologic and water quality data on a timely basis.
The Application of Metal Oxide Nanomaterials for Chemical Sensor Development
NASA Technical Reports Server (NTRS)
Xu, Jennifer C.; Hunter, Gary W.; Evans, Laura J.; VanderWal, Randy L.; Berger, Gordon M.
2007-01-01
NASA Glenn Research Center (GRC) has been developing miniature chemical sensors for a variety of applications including fire detection, emissions monitoring, fuel leak detection, and environmental monitoring. Smart Lick and Stick sensor technology which integrates a sensor array, electronics, telemetry, and power into one microsystem are being developed. These microsystems require low power consumption for long-term aerospace applications. One approach to decreasing power consumption is the use of nanotechnology. Nanocrystalline tin oxide (SnO2) carbon monoxide (CO) sensors developed previously by this group have been successfully used for fire detection and emissions monitoring. This presentation will briefly review the overall NASA GRC chemical sensor program and discuss our further effort in nanotechnology applications. New carbon dioxide (CO2) sensing material using doped nanocrystalline SnO2 will be discussed. Nanocrystalline SnO2 coated solid electrolyte CO2 sensors and SnO2 nanorod and nanofiber hydrogen (H2) sensors operated at reduced or room temperatures will also be discussed.
NASA Technical Reports Server (NTRS)
Hegab, Hisham E.
2002-01-01
The purpose of this project was to perform a thermal analysis for the NASA Integrated Vehicle Health Monitoring (IVHM) Technology Experiment for X-vehicles (NITEX). This electronics package monitors vehicle sensor information in flight and downlinks vehicle health summary information via telemetry. The experiment will be tested on the X-34 in an unpressurized compartment, in the vicinity of one of the vehicle's liquid oxygen tanks. The transient temperature profile for the electronics package has been determined using finite element analysis for possible mission profiles that will most likely expose the package to the most extreme hot and cold environmental conditions. From the analyses, it was determined that temperature limits for the electronics would be exceeded for the worst case cold environment mission profile. The finite element model used for the analyses was modified to examine the use of insulation to address this problem. Recommendations for insulating the experiment for the cold environment are presented, and were analyzed to determine their effect on a nominal mission profile.
NASA Technical Reports Server (NTRS)
Hegab, Hisham E.
2001-01-01
The purpose of this project was to perform a thermal analysis for the NASA Integrated Vehicle Health Monitoring (IVHM) Technology Experiment for X-vehicles (NITEX). This electronics package monitors vehicle sensor information in flight and downlinks vehicle health summary information via telemetry. The experiment will be tested on the X-34 in an unpressurized compartment, in the vicinity of one of the vehicle's liquid oxygen tanks. The transient temperature profile for the electronics package has been determined using finite element analysis for possible mission profiles that will most likely expose the package to the most extreme hot and cold environmental conditions. From the analyses, it was determined that temperature limits for the electronics would be exceeded for the worst case cold environment mission profile. The finite element model used for the analyses was modified to examine the use of insulation to address this problem. Recommendations for insulating the experiment for the cold environment are presented, and were analyzed to determine their effect on a nominal mission profile.
The Generic Spacecraft Analyst Assistant (gensaa): a Tool for Developing Graphical Expert Systems
NASA Technical Reports Server (NTRS)
Hughes, Peter M.
1993-01-01
During numerous contacts with a satellite each day, spacecraft analysts must closely monitor real-time data. The analysts must watch for combinations of telemetry parameter values, trends, and other indications that may signify a problem or failure. As the satellites become more complex and the number of data items increases, this task is becoming increasingly difficult for humans to perform at acceptable performance levels. At NASA GSFC, fault-isolation expert systems are in operation supporting this data monitoring task. Based on the lessons learned during these initial efforts in expert system automation, a new domain-specific expert system development tool named the Generic Spacecraft Analyst Assistant (GenSAA) is being developed to facilitate the rapid development and reuse of real-time expert systems to serve as fault-isolation assistants for spacecraft analysts. Although initially domain-specific in nature, this powerful tool will readily support the development of highly graphical expert systems for data monitoring purposes throughout the space and commercial industry.
Developing Signal-Pattern-Recognition Programs
NASA Technical Reports Server (NTRS)
Shelton, Robert O.; Hammen, David
2006-01-01
Pattern Interpretation and Recognition Application Toolkit Environment (PIRATE) is a block-oriented software system that aids the development of application programs that analyze signals in real time in order to recognize signal patterns that are indicative of conditions or events of interest. PIRATE was originally intended for use in writing application programs to recognize patterns in space-shuttle telemetry signals received at Johnson Space Center's Mission Control Center: application programs were sought to (1) monitor electric currents on shuttle ac power busses to recognize activations of specific power-consuming devices, (2) monitor various pressures and infer the states of affected systems by applying a Kalman filter to the pressure signals, (3) determine fuel-leak rates from sensor data, (4) detect faults in gyroscopes through analysis of system measurements in the frequency domain, and (5) determine drift rates in inertial measurement units by regressing measurements against time. PIRATE can also be used to develop signal-pattern-recognition software for different purposes -- for example, to monitor and control manufacturing processes.
Patient-centered care model in IONM: a review and commentary.
Skinner, Stan
2013-04-01
Both remote monitoring and nearby/available care models depend on waveform telemetry (a limited form of telemedicine) during intraoperative neurophysiological monitoring (IONM). These dominant models neither mandate preoperative patient contact nor assume co-practitioner collegiality. This review and commentary argues in favor of a routine, normative relationship between the patient and the IONM physician/professional (IONM-P). Similarly, normal collegial relations should be established and maintained over time between the IONM-P and fellow co-practitioners (the proceduralist and the anesthesiologist). This professional practice "upgrade" places the IONM-P in a much stronger bioethical position among peers (and third party reviewers of the field and its practices). This "upgrade" also improves the likelihood that correct context-driven decisions will be made by the co-practitioners (IONM-P, proceduralist, and anesthesiologist) during complex multimodality monitoring. Most current models of IONM can be accommodated by readily available telemedicine-mediated videoconferencing. Several lines of argument are used to support this "patient-centered care model" of IONM.
Estimating animal resource selection from telemetry data using point process models
Johnson, Devin S.; Hooten, Mevin B.; Kuhn, Carey E.
2013-01-01
To demonstrate the analysis of telemetry data with the point process approach, we analysed a data set of telemetry locations from northern fur seals (Callorhinus ursinus) in the Pribilof Islands, Alaska. Both a space–time and an aggregated space-only model were fitted. At the individual level, the space–time analysis showed little selection relative to the habitat covariates. However, at the study area level, the space-only model showed strong selection relative to the covariates.
The usefulness of GPS telemetry to study wolf circadian and social activity
Merrill, Samuel B.; Mech, L. David
2003-01-01
This study describes circadian and social movement patterns of 9 wolves and illustrates capabilities and limitations of Global Positioning System (GPS) telemetry for analysis of animal activity patterns. Global Positioning System telemetry was useful in determining when pack members were traveling together or apart and how long a breeding female wolf spent near her pups (e.g., 10-month-old pups were left unattended by their mother for as long as 17 days).
SHARP: Automated monitoring of spacecraft health and status
NASA Technical Reports Server (NTRS)
Atkinson, David J.; James, Mark L.; Martin, R. Gaius
1991-01-01
Briefly discussed here are the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory (JPL). Some of the difficulties associated with the existing technology used in mission operations are highlighted. A new automated system based on artificial intelligence technology is described which seeks to overcome many of these limitations. The system, called the Spacecraft Health Automated Reasoning Prototype (SHARP), is designed to automate health and status analysis for multi-mission spacecraft and ground data systems operations. The system has proved to be effective for detecting and analyzing potential spacecraft and ground systems problems by performing real-time analysis of spacecraft and ground data systems engineering telemetry. Telecommunications link analysis of the Voyager 2 spacecraft was the initial focus for evaluation of the system in real-time operations during the Voyager spacecraft encounter with Neptune in August 1989.
Chronically implanted pressure sensors: challenges and state of the field.
Yu, Lawrence; Kim, Brian J; Meng, Ellis
2014-10-31
Several conditions and diseases are linked to the elevation or depression of internal pressures from a healthy, normal range, motivating the need for chronic implantable pressure sensors. A simple implantable pressure transduction system consists of a pressure-sensing element with a method to transmit the data to an external unit. The biological environment presents a host of engineering issues that must be considered for long term monitoring. Therefore, the design of such systems must carefully consider interactions between the implanted system and the body, including biocompatibility, surgical placement, and patient comfort. Here we review research developments on implantable sensors for chronic pressure monitoring within the body, focusing on general design requirements for implantable pressure sensors as well as specifications for different medical applications. We also discuss recent efforts to address biocompatibility, efficient telemetry, and drift management, and explore emerging trends.
Software Considerations for Subscale Flight Testing of Experimental Control Laws
NASA Technical Reports Server (NTRS)
Murch, Austin M.; Cox, David E.; Cunningham, Kevin
2009-01-01
The NASA AirSTAR system has been designed to address the challenges associated with safe and efficient subscale flight testing of research control laws in adverse flight conditions. In this paper, software elements of this system are described, with an emphasis on components which allow for rapid prototyping and deployment of aircraft control laws. Through model-based design and automatic coding a common code-base is used for desktop analysis, piloted simulation and real-time flight control. The flight control system provides the ability to rapidly integrate and test multiple research control laws and to emulate component or sensor failures. Integrated integrity monitoring systems provide aircraft structural load protection, isolate the system from control algorithm failures, and monitor the health of telemetry streams. Finally, issues associated with software configuration management and code modularity are briefly discussed.
Cardiomed System for Medical Monitoring Onboard ISS
NASA Astrophysics Data System (ADS)
Lloret, J. C.; Aubry, P.; Nguyen, L.; Kozharinov, V.; Grachev, V.; Temnova, E.
2008-06-01
Cardiomed system was developed with two main objectives: (1) cardiovascular medical monitoring of cosmonauts onboard ISS together with LBNP countermeasure; (2) scientific study of the cardio-vascular system in micro-gravity. Cardiomed is an integrated end-to-end system, from the onboard segment operating different medical instruments, to the ground segment which provides real-time telemetry of on-board experiments and off-line analysis of physiological measurements. In the first part of the paper, Cardiomed is described from an architecture point of view together with some typical uses. In the second part, the most constraining requirements with respect to system design are introduced. Some requirements are generic; some are specific to medical follow-up, others to scientific objectives. In the last part, the main technical challenges which were addressed during the development and the qualification of Cardiomed and the lessons learnt are presented.
SHARP - Automated monitoring of spacecraft health and status
NASA Technical Reports Server (NTRS)
Atkinson, David J.; James, Mark L.; Martin, R. G.
1990-01-01
Briefly discussed here are the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory (JPL). Some of the difficulties associated with the existing technology used in mission operations are highlighted. A new automated system based on artificial intelligence technology is described which seeks to overcome many of these limitations. The system, called the Spacecraft Health Automated Reasoning Prototype (SHARP), is designed to automate health and status analysis for multi-mission spacecraft and ground data systems operations. The system has proved to be effective for detecting and analyzing potential spacecraft and ground systems problems by performing real-time analysis of spacecraft and ground data systems engineering telemetry. Telecommunications link analysis of the Voyager 2 spacecraft was the initial focus for evaluation of the system in real-time operations during the Voyager spacecraft encounter with Neptune in August 1989.
Wintering ecology of adult North American ospreys
Washburn, Brian E.; Martell, Mark S.; Bierregaard, Richard O.; Henny, Charles J.; Dorr, Brian S.; Olexa, Thomas J.
2014-01-01
North American Ospreys (Pandion haliaetus) typically migrate long distances to their wintering grounds in the tropics. Beyond the general distribution of their wintering range (i.e., the Caribbean, South America, and Central America), very little is known about the wintering ecology of these birds. We used satellite telemetry to determine the duration of wintering period, to examine the characteristics of wintering areas used by Ospreys, and to quantify space use and activity patterns of wintering Ospreys. Adult Ospreys migrated to wintering sites and exhibited high wintering site fidelity among years. Overall, Ospreys wintered on river systems (50.6%) more than on lakes (19.0%), and use of coastal areas was (30.4%) intermediate. Ospreys remained on their wintering grounds for an average of 154 d for males and 167 d for females. Locations of wintering Ospreys obtained via GPS-capable satellite telemetry suggest these birds move infrequently and their movements are very localized (i.e., 2 and 1.4 km2, respectively. Overall, our findings suggest wintering adult North American Ospreys are very sedentary, demonstrating a pattern of limited daily movements and high fidelity to a few select locations (presumably roosts). We suggest this wintering strategy might be effective for reducing the risk of mortality and maximizing energy conservation.
Smart Sensors for Launch Vehicles
NASA Astrophysics Data System (ADS)
Ray, Sabooj; Mathews, Sheeja; Abraham, Sheena; Pradeep, N.; Vinod, P.
2017-12-01
Smart Sensors bring a paradigm shift in the data acquisition mechanism adopted for launch vehicle telemetry system. The sensors integrate signal conditioners, digitizers and communication systems to give digital output from the measurement location. Multiple sensors communicate with a centralized node over a common digital data bus. An in-built microcontroller gives the sensor embedded intelligence to carry out corrective action for sensor inaccuracies. A smart pressure sensor has been realized and flight-proven to increase the reliability as well as simplicity in integration so as to obtain improved data output. Miniaturization is achieved by innovative packaging. This work discusses the construction, working and flight performance of such a sensor.
Precise timing correlation in telemetry recording and processing systems
NASA Technical Reports Server (NTRS)
Pickett, R. B.; Matthews, F. L.
1973-01-01
Independent PCM telemetry data signals received from missiles must be correlated to within + or - 100 microseconds for comparison with radar data. Tests have been conducted to determine RF antenna receiving system delays; delays associated with wideband analog tape recorders used in the recording, dubbing and repdocuing processes; and uncertainties associated with computer processed time tag data. Several methods used in the recording of timing are evaluated. Through the application of a special time tagging technique, the cumulative timing bias from all sources is determined and the bias removed from final data. Conclusions show that relative time differences in receiving, recording, playback and processing of two telemetry links can be accomplished with a + or - 4 microseconds accuracy. In addition, the absolute time tag error (with respect to UTC) can be reduced to less than 15 microseconds. This investigation is believed to be the first attempt to identify the individual error contributions within the telemetry system and to describe the methods of error reduction within the telemetry system and to describe the methods of error reduction and correction.
NASA Technical Reports Server (NTRS)
Stanboli, Alice
2013-01-01
Phxtelemproc is a C/C++ based telemetry processing program that processes SFDU telemetry packets from the Telemetry Data System (TDS). It generates Experiment Data Records (EDRs) for several instruments including surface stereo imager (SSI); robotic arm camera (RAC); robotic arm (RA); microscopy, electrochemistry, and conductivity analyzer (MECA); and the optical microscope (OM). It processes both uncompressed and compressed telemetry, and incorporates unique subroutines for the following compression algorithms: JPEG Arithmetic, JPEG Huffman, Rice, LUT3, RA, and SX4. This program was in the critical path for the daily command cycle of the Phoenix mission. The products generated by this program were part of the RA commanding process, as well as the SSI, RAC, OM, and MECA image and science analysis process. Its output products were used to advance science of the near polar regions of Mars, and were used to prove that water is found in abundance there. Phxtelemproc is part of the MIPL (Multi-mission Image Processing Laboratory) system. This software produced Level 1 products used to analyze images returned by in situ spacecraft. It ultimately assisted in operations, planning, commanding, science, and outreach.
Telemetry Applications Handbook
2006-05-01
Guidelines .......................................................... 3-2 3.4 References for Chapter 3...and Discriminators ............................................................. 4-45 4.8 Receiving/Recording System Parameter Selection Guidelines ...2-176 Figure 2-199. DSQ- 50 telemetry transmitter + BPF + LNA. ........................................... 2-177
Using Onboard Telemetry for MAVEN Orbit Determination
NASA Technical Reports Server (NTRS)
Lam, Try; Trawny, Nikolas; Lee, Clifford
2013-01-01
Determination of the spacecraft state has been traditional done using radiometric tracking data before and after the atmosphere drag pass. This paper describes our approach and results to include onboard telemetry measurements in addition to radiometric observables to refine the reconstructed trajectory estimate for the Mars Atmosphere and Volatile Evolution Mission (MAVEN). Uncertainties in the Mars atmosphere models, combined with non-continuous tracking degrade navigation accuracy, making MAVEN a key candidate for using onboard telemetry data to help complement its orbit determination process.
1999-01-01
fMr- ir ») 5<s © oo vo «o vo vo t- 3 -6 TABLE 3 - 3 . REFERENCE SIGNAL USAGE Reference Frequencies for Tape Speed and Flutter Compensation...maximum frequency response of tables 3 -1 and 3 -2, !K. M. Uglow, Noise and Bandwidth in FM/FM Radio Telemetry. IRE Transaction on Telemetry and...t4 u N s O i Q • I-H D-12 Bit Rate Clock Input ’ r if ir it if , IF RNRZ-L Data 1 2 3 15 - Stage Shift Register 13
Sauvé, Caroline C.; Van de Walle, Joanie; Hammill, Mike O.; Arnould, John P. Y.; Beauplet, Gwénaël
2014-01-01
Knowledge of milk transfer from mother to offspring and early solid food ingestions in mammals allows for a greater understanding of the factors affecting transition to nutritional independence and pre-weaning growth and survival. Yet studies monitoring suckling behaviour have often relied on visual observations, which might not accurately represent milk intake. We assessed the use of stomach temperature telemetry to monitor suckling and foraging behaviour in free-ranging harbour seal (Phoca vitulina) pups during lactation. Stomach temperature declines were analysed using principal component and cluster analyses, as well as trials using simulated stomachs resulting in a precise classification of stomach temperature drops into milk, seawater and solid food ingestions. Seawater and solid food ingestions represented on average 15.3±1.6% [0–40.0%] and 0.7±0.2% [0–13.0%], respectively, of individual ingestions. Overall, 63.7% of milk ingestions occurred while the pups were in the water, of which 13.9% were preceded by seawater ingestion. The average time between subsequent ingestions was significantly less for seawater than for milk ingestions. These results suggest that seawater ingestion might represent collateral ingestion during aquatic suckling attempts. Alternatively, as solid food ingestions (n = 19) were observed among 7 pups, seawater ingestion could result from missed prey capture attempts. This study shows that some harbour seals start ingesting prey while still being nursed, indicating that weaning occurs more gradually than previously thought in this species. Stomach temperature telemetry represents a promising method to study suckling behaviour in wild mammals and transition to nutritional independence in various endotherm species. PMID:24587327
Popova, Anfisa; Tsvirkun, Darya; Dolgov, Oleg; Anokhin, Konstantin; Alberts, Jeffrey; Lagereva, Evgeniia; Custaud, Marc-Antoine; Gauquelin-Koch, Guillemette; Vinogradova, Olga; Andreev-Andrievskiy, Alexander
Implantable telemetry enables continuous monitoring of physiological functions in freely moving animals and can greatly complement pharmacological research. Despite its miniaturization, a sensor/transmitter constitutes 5% or more of a mouse's bodyweight. The aim of the present study was to evaluate whether factors related to the presence of a probe/transmitter influence the ambulatory activity, strength, agility, or operant, motivated behaviors of this small rodent. Adult male mice (C57BL/6N, 22-25g, 9-10weeks; implanted n=26, intact n=45) were evaluated during week-long tests, conducted three and eight weeks after surgical implantation of the PA-C10 blood pressure probe. An open field test, grip force measurement, Rotarod test were performed, followed by 7-day continuous monitoring of spontaneous wheel running activity and positively reinforced operant conditioning in an automated data collection system. An implanted blood pressure transmitter did not affect behavior of mice in the open field test, on the Rotarod or their grip force, compared to unoperated controls. Voluntary wheel running distance was reduced three, but not eight weeks after implantation. Three weeks after the surgery, performance in the positively reinforced operant conditioning in operated mice was slightly decreased compared to intact animals, while retention and acquisition of a 2nd, reversal-learning task eight weeks after the surgery were unaffected. We conclude that an implantable transmitter may have detectable effects in the first few weeks following implantation on some elements of mouse behavior. With sufficient recovery, mice perform comparably to unoperated controls in tests of strength, endurance, agility and learned operant behavior. Copyright © 2017 Elsevier Inc. All rights reserved.
Transition Flight Control Room Automation
NASA Technical Reports Server (NTRS)
Welborn, Curtis Ray
1990-01-01
The Workstation Prototype Laboratory is currently working on a number of projects which we feel can have a direct impact on ground operations automation. These projects include: The Fuel Cell Monitoring System (FCMS), which will monitor and detect problems with the fuel cells on the Shuttle. FCMS will use a combination of rules (forward/backward) and multi-threaded procedures which run concurrently with the rules, to implement the malfunction algorithms of the EGIL flight controllers. The combination of rule based reasoning and procedural reasoning allows us to more easily map the malfunction algorithms into a real-time system implementation. A graphical computation language (AGCOMPL). AGCOMPL is an experimental prototype to determine the benefits and drawbacks of using a graphical language to design computations (algorithms) to work on Shuttle or Space Station telemetry and trajectory data. The design of a system which will allow a model of an electrical system, including telemetry sensors, to be configured on the screen graphically using previously defined electrical icons. This electrical model would then be used to generate rules and procedures for detecting malfunctions in the electrical components of the model. A generic message management (GMM) system. GMM is being designed as a message management system for real-time applications which send advisory messages to a user. The primary purpose of GMM is to reduce the risk of overloading a user with information when multiple failures occurs and in assisting the developer in devising an explanation facility. The emphasis of our work is to develop practical tools and techniques, while determining the feasibility of a given approach, including identification of appropriate software tools to support research, application and tool building activities.
Transition flight control room automation
NASA Technical Reports Server (NTRS)
Welborn, Curtis Ray
1990-01-01
The Workstation Prototype Laboratory is currently working on a number of projects which can have a direct impact on ground operations automation. These projects include: (1) The fuel cell monitoring system (FCMS), which will monitor and detect problems with the fuel cells on the shuttle. FCMS will use a combination of rules (forward/backward) and multithreaded procedures, which run concurrently with the rules, to implement the malfunction algorithms of the EGIL flight controllers. The combination of rule-based reasoning and procedural reasoning allows us to more easily map the malfunction algorithms into a real-time system implementation. (2) A graphical computation language (AGCOMPL) is an experimental prototype to determine the benefits and drawbacks of using a graphical language to design computations (algorithms) to work on shuttle or space station telemetry and trajectory data. (3) The design of a system will allow a model of an electrical system, including telemetry sensors, to be configured on the screen graphically using previously defined electrical icons. This electrical model would then be used to generate rules and procedures for detecting malfunctions in the electrical components of the model. (4) A generic message management (GMM) system is being designed for real-time applications as a message management system which sends advisory messages to a user. The primary purpose of GMM is to reduce the risk of overloading a user with information when multiple failures occur and to assist the developer in the devising an explanation facility. The emphasis of our work is to develop practical tools and techniques, including identification of appropriate software tools to support research, application, and tool building activities, while determining the feasibility of a given approach.
Virtual Instrument Simulator for CERES
NASA Technical Reports Server (NTRS)
Chapman, John J.
1997-01-01
A benchtop virtual instrument simulator for CERES (Clouds and the Earth's Radiant Energy System) has been built at NASA, Langley Research Center in Hampton, VA. The CERES instruments will fly on several earth orbiting platforms notably NASDA's Tropical Rainfall Measurement Mission (TRMM) and NASA's Earth Observing System (EOS) satellites. CERES measures top of the atmosphere radiative fluxes using microprocessor controlled scanning radiometers. The CERES Virtual Instrument Simulator consists of electronic circuitry identical to the flight unit's twin microprocessors and telemetry interface to the supporting spacecraft electronics and two personal computers (PC) connected to the I/O ports that control azimuth and elevation gimbals. Software consists of the unmodified TRW developed Flight Code and Ground Support Software which serves as the instrument monitor and NASA/TRW developed engineering models of the scanners. The CERES Instrument Simulator will serve as a testbed for testing of custom instrument commands intended to solve in-flight anomalies of the instruments which could arise during the CERES mission. One of the supporting computers supports the telemetry display which monitors the simulator microprocessors during the development and testing of custom instrument commands. The CERES engineering development software models have been modified to provide a virtual instrument running on a second supporting computer linked in real time to the instrument flight microprocessor control ports. The CERES Instrument Simulator will be used to verify memory uploads by the CERES Flight Operations TEAM at NASA. Plots of the virtual scanner models match the actual instrument scan plots. A high speed logic analyzer has been used to track the performance of the flight microprocessor. The concept of using an identical but non-flight qualified microprocessor and electronics ensemble linked to a virtual instrument with identical system software affords a relatively inexpensive simulation system capable of high fidelity.
NASA Technical Reports Server (NTRS)
Greene, E. P.
1976-01-01
The requirements for mission-operations data management will accelerate sharply when the Space Transportation System (i.e., Space Shuttle) becomes the primary vehicle for research from space. These demands can be satisfied most effectively by providing a higher-level source encoding function within the spaceborne vehicle. An Instrument Telemetry Packet (ITP) concept is described which represents an alternative to the conventional multiplexed telemetry frame approach for acquiring spaceborne instrument data. By providing excellent data-integrity protection at the source and a variable instrument bandwidth capability, this ITP concept represents a significant improvement over present data acquisition procedures. Realignments in the ground telemetry processing functions are described which are intended to take advantage of the ITP concept and to make the data management system more responsive to the scientific investigators.
A system-level view of optimizing high-channel-count wireless biosignal telemetry.
Chandler, Rodney J; Gibson, Sarah; Karkare, Vaibhav; Farshchi, Shahin; Marković, Dejan; Judy, Jack W
2009-01-01
In this paper we perform a system-level analysis of a wireless biosignal telemetry system. We perform an analysis of each major system component (e.g., analog front end, analog-to-digital converter, digital signal processor, and wireless link), in which we consider physical, algorithmic, and design limitations. Since there are a wide range applications for wireless biosignal telemetry systems, each with their own unique set of requirements for key parameters (e.g., channel count, power dissipation, noise level, number of bits, etc.), our analysis is equally broad. The net result is a set of plots, in which the power dissipation for each component and as the system as a whole, are plotted as a function of the number of channels for different architectural strategies. These results are also compared to existing implementations of complete wireless biosignal telemetry systems.
Single frequency RF powered ECG telemetry system
NASA Technical Reports Server (NTRS)
Ko, W. H.; Hynecek, J.; Homa, J.
1979-01-01
It has been demonstrated that a radio frequency magnetic field can be used to power implanted electronic circuitry for short range telemetry to replace batteries. A substantial reduction in implanted volume can be achieved by using only one RF tank circuit for receiving the RF power and transmitting the telemetered information. A single channel telemetry system of this type, using time sharing techniques, was developed and employed to transmit the ECG signal from Rhesus monkeys in primate chairs. The signal from the implant is received during the period when the RF powering radiation is interrupted. The ECG signal is carried by 20-microsec pulse position modulated pulses, referred to the trailing edge of the RF powering pulse. Satisfactory results have been obtained with this single frequency system. The concept and the design presented may be useful for short-range long-term implant telemetry systems.
GTAG: architecture and design of miniature transmitter with position logging for radio telemetry
NASA Astrophysics Data System (ADS)
Řeřucha, Šimon; Bartonička, Tomáš; Jedlička, Petr
2011-10-01
The radio telemetry is a well-known technique used within zoological research to exploit the behaviour of animal species. A usage of GPS for a frequent and precise position recording gives interesting possibility for a further enhancement of this method. We present our proposal of an architecture and design concepts of telemetry transmitter with GPS module, called GTAG, that is suited for study of the Egyptian fruit bat (Rousettus aegyptiacus). The model group we study set particular constrains, especially the weight limit (9 g) and prevention of any power resources recharging technique. We discuss the aspect of physical realization and the energyconsumption issues. We have developed a reference implementation that has been already deployed during telemetry sessions and we evaluate the experience and compare the estimated performance of our device to a real data.
Validation of International Space Station Electrical Performance Model via On-orbit Telemetry
NASA Technical Reports Server (NTRS)
Jannette, Anthony G.; Hojnicki, Jeffrey S.; McKissock, David B.; Fincannon, James; Kerslake, Thomas W.; Rodriguez, Carlos D.
2002-01-01
The first U.S. power module on International Space Station (ISS) was activated in December 2000. Comprised of solar arrays, nickel-hydrogen (NiH2) batteries, and a direct current power management and distribution (PMAD) system, the electric power system (EPS) supplies power to housekeeping and user electrical loads. Modeling EPS performance is needed for several reasons, but primarily to assess near-term planned and off-nominal operations and because the EPS configuration changes over the life of the ISS. The System Power Analysis for Capability Evaluation (SPACE) computer code is used to assess the ISS EPS performance. This paper describes the process of validating the SPACE EPS model via ISS on-orbit telemetry. To accomplish this goal, telemetry was first used to correct assumptions and component models in SPACE. Then on-orbit data was directly input to SPACE to facilitate comparing model predictions to telemetry. It will be shown that SPACE accurately predicts on-orbit component and system performance. For example, battery state-of-charge was predicted to within 0.6 percentage points over a 0 to 100 percent scale and solar array current was predicted to within a root mean square (RMS) error of 5.1 Amps out of a typical maximum of 220 Amps. First, SPACE model predictions are compared to telemetry for the ISS EPS components: solar arrays, NiH2 batteries, and the PMAD system. Second, SPACE predictions for the overall performance of the ISS EPS are compared to telemetry and again demonstrate model accuracy.
FPGA for Power Control of MSL Avionics
NASA Technical Reports Server (NTRS)
Wang, Duo; Burke, Gary R.
2011-01-01
A PLGT FPGA (Field Programmable Gate Array) is included in the LCC (Load Control Card), GID (Guidance Interface & Drivers), TMC (Telemetry Multiplexer Card), and PFC (Pyro Firing Card) boards of the Mars Science Laboratory (MSL) spacecraft. (PLGT stands for PFC, LCC, GID, and TMC.) It provides the interface between the backside bus and the power drivers on these boards. The LCC drives power switches to switch power loads, and also relays. The GID drives the thrusters and latch valves, as well as having the star-tracker and Sun-sensor interface. The PFC drives pyros, and the TMC receives digital and analog telemetry. The FPGA is implemented both in Xilinx (Spartan 3- 400) and in Actel (RTSX72SU, ASX72S). The Xilinx Spartan 3 part is used for the breadboard, the Actel ASX part is used for the EM (Engineer Module), and the pin-compatible, radiation-hardened RTSX part is used for final EM and flight. The MSL spacecraft uses a FC (Flight Computer) to control power loads, relays, thrusters, latch valves, Sun-sensor, and star-tracker, and to read telemetry such as temperature. Commands are sent over a 1553 bus to the MREU (Multi-Mission System Architecture Platform Remote Engineering Unit). The MREU resends over a remote serial command bus c-bus to the LCC, GID TMC, and PFC. The MREU also sends out telemetry addresses via a remote serial telemetry address bus to the LCC, GID, TMC, and PFC, and the status is returned over the remote serial telemetry data bus.
Bromaghin, Jeffrey F.; Gates, Kenneth S.; Palmer, Douglas E.
2010-01-01
Many fisheries for Pacific salmon Oncorhynchus spp. are actively managed to meet escapement goal objectives. In fisheries where the demand for surplus production is high, an extensive assessment program is needed to achieve the opposing objectives of allowing adequate escapement and fully exploiting the available surplus. Knowledge of abundance is a critical element of such assessment programs. Abundance estimation using mark—recapture experiments in combination with telemetry has become common in recent years, particularly within Alaskan river systems. Fish are typically captured and marked in the lower river while migrating in aggregations of individuals from multiple populations. Recapture data are obtained using telemetry receivers that are co-located with abundance assessment projects near spawning areas, which provide large sample sizes and information on population-specific mark rates. When recapture data are obtained from multiple populations, unequal mark rates may reflect a violation of the assumption of homogeneous capture probabilities. A common analytical strategy is to test the hypothesis that mark rates are homogeneous and combine all recapture data if the test is not significant. However, mark rates are often low, and a test of homogeneity may lack sufficient power to detect meaningful differences among populations. In addition, differences among mark rates may provide information that could be exploited during parameter estimation. We present a temporally stratified mark—recapture model that permits capture probabilities and migratory timing through the capture area to vary among strata. Abundance information obtained from a subset of populations after the populations have segregated for spawning is jointly modeled with telemetry distribution data by use of a likelihood function. Maximization of the likelihood produces estimates of the abundance and timing of individual populations migrating through the capture area, thus yielding substantially more information than the total abundance estimate provided by the conventional approach. The utility of the model is illustrated with data for coho salmon O. kisutch from the Kasilof River in south-central Alaska.
Design Description of the X-33 Avionics Architecture
NASA Technical Reports Server (NTRS)
Reichenfeld, Curtis J.; Jones, Paul G.
1999-01-01
In this paper, we provide a design description of the X-33 avionics architecture. The X-33 is an autonomous Single Stage to Orbit (SSTO) launch vehicle currently being developed by Lockheed Martin for NASA as a technology demonstrator for the VentureStar Reusable Launch Vehicle (RLV). The X-33 avionics provides autonomous control of die vehicle throughout takeoff, ascent, descent, approach, landing, rollout, and vehicle safing. During flight the avionics provides communication to the range through uplinked commands and downlinked telemetry. During pre-launch and post-safing activities, the avionics provides interfaces to ground support consoles that perform vehicle flight preparations and maintenance. The X-33 Avionics is a hybrid of centralized and distributed processing elements connected by three dual redundant Mil-Std 1553 data buses. These data buses are controlled by a central processing suite located in the avionics bay and composed of triplex redundant Vehicle Mission Computers (VMCs). The VMCs integrate mission management, guidance, navigation, flight control, subsystem control and redundancy management functions. The vehicle sensors, effectors and subsystems are interfaced directly to the centralized VMCs as remote terminals or through dual redundant Data Interface Units (DIUs). The DIUs are located forward and aft of the avionics bay and provide signal conditioning, health monitoring, low level subsystem control and data interface functions. Each VMC is connected to all three redundant 1553 data buses for monitoring and provides a complete identical data set to the processing algorithms. This enables bus faults to be detected and reconfigured through a voted bus control configuration. Data is also shared between VMCs though a cross channel data link that is implemented in hardware and controlled by AlliedSignal's Fault Tolerant Executive (FTE). The FTE synchronizes processors within the VMC and synchronizes redundant VMCs to each other. The FTE provides an output-voting plane to detect, isolate and contain faults due to internal hardware or software faults and reconfigures the VMCs to accommodate these faults. Critical data in the 1553 messages are scheduled and synchronized to specific processing frames in order to minimize data latency. In order to achieve an open architecture, military and commercial off-the-shelf equipment is incorporated using common processors, standard VME backplanes and chassis, the VxWorks operating system, and MartixX for automatic code generation. The use of off-the-shelf tools and equipment helps reduce development time and enables software reuse. The open architecture allows for technology insertion, while the distributed modular elements allow for expansion to increased redundancy levels to meet the higher reliability goals of future RLVs.
A Cloud Robotics Based Service for Managing RPAS in Emergency, Rescue and Hazardous Scenarios
NASA Astrophysics Data System (ADS)
Silvagni, Mario; Chiaberge, Marcello; Sanguedolce, Claudio; Dara, Gianluca
2016-04-01
Cloud robotics and cloud services are revolutionizing not only the ICT world but also the robotics industry, giving robots more computing capabilities, storage and connection bandwidth while opening new scenarios that blend the physical to the digital world. In this vision, new IT architectures are required to manage robots, retrieve data from them and create services to interact with users. Among all the robots this work is mainly focused on flying robots, better known as drones, UAV (Unmanned Aerial Vehicle) or RPAS (Remotely Piloted Aircraft Systems). The cloud robotics approach shifts the concept of having a single local "intelligence" for every single UAV, as a unique device that carries out onboard all the computation and storage processes, to a more powerful "centralized brain" located in the cloud. This breakthrough opens new scenarios where UAVs are agents, relying on remote servers for most of their computational load and data storage, creating a network of devices where they can share knowledge and information. Many applications, using UAVs, are growing as interesting and suitable devices for environment monitoring. Many services can be build fetching data from UAVs, such as telemetry, video streaming, pictures or sensors data; once. These services, part of the IT architecture, can be accessed via web by other devices or shared with other UAVs. As test cases of the proposed architecture, two examples are reported. In the first one a search and rescue or emergency management, where UAVs are required for monitoring intervention, is shown. In case of emergency or aggression, the user requests the emergency service from the IT architecture, providing GPS coordinates and an identification number. The IT architecture uses a UAV (choosing among the available one according to distance, service status, etc.) to reach him/her for monitoring and support operations. In the meantime, an officer will use the service to see the current position of the UAV, its telemetry and video streaming from its camera. Data are stored for further use and documentation and can be shared to all the involved personal or services. The second case refer to imaging survey. An investigation area is selected using a map or a set of coordinates by a user that can be on the field on in a management facility. The cloud system elaborate this data and automatically compute a flight plan that consider the survey data requirements (i.e: picture ground resolution, overlapping) but also several environment constraints (i.e: no fly zones, possible hazardous areas, known obstacles, etc). Once the flight plan is loaded in the selected UAV the mission starts. During the mission, if a suitable data network coverage is available, the UAV transmit acquired images (typically low quality image to limit bandwidth) and shooting pose in order to perform a preliminary check during the mission and minimize failing in survey; if not, all data are uploaded asynchronously after the mission. The cloud servers perform all the tasks related to image processing (mosaic, ortho-photo, geo-referencing, 3D models) and data management.
Ackerman, Joshua T; Takekawa, John Y; Eagles-Smith, Collin A; Iverson, Samuel A
2008-02-01
We evaluated whether mercury influenced survival of free-ranging American avocet (Recurvirostra americana) and black-necked stilt (Himantopus mexicanus) chicks in San Francisco Bay, California. Using radio telemetry, we radio-marked 158 avocet and 79 stilt chicks at hatching and tracked them daily until their fate was determined. We did not find strong support for an influence of in ovo mercury exposure on chick survival, despite observing a wide range of mercury concentrations in chick down feathers at hatching (0.40-44.31 microg g(-1) fw). We estimated that chick survival rates were reduced by < or =3% over the range of observed mercury concentrations during the 28-day period from hatching to fledging. We also salvaged newly-hatched chicks that were found dead during routine nest monitoring. In contrast to the telemetry results, we found that mercury concentrations in down feathers of dead chicks were higher than those in randomly-sampled live chicks of similar age. However, capture site was the most important variable influencing mercury concentrations, followed by year, species, and hatching date. Although laboratory studies have demonstrated negative effects of environmentally relevant mercury concentrations on chick survival, our results concur with the small number of previous field studies that have not been able to detect reduced survival in the wild.
Reubens, Jan T; Pasotti, Francesca; Degraer, Steven; Vincx, Magda
2013-09-01
Because offshore wind energy development is fast growing in Europe it is important to investigate the changes in the marine environment and how these may influence local biodiversity and ecosystem functioning. One of the species affected by these ecosystem changes is Atlantic cod (Gadus morhua), a heavily exploited, commercially important fish species. In this research we investigated the residency, site fidelity and habitat use of Atlantic cod on a temporal scale at windmill artificial reefs in the Belgian part of the North Sea. Acoustic telemetry was used and the Vemco VR2W position system was deployed to quantify the movement behaviour. In total, 22 Atlantic cod were tagged and monitored for up to one year. Many fish were present near the artificial reefs during summer and autumn, and demonstrated strong residency and high individual detection rates. When present within the study area, Atlantic cod also showed distinct habitat selectivity. We identified aggregation near the artificial hard substrates of the wind turbines. In addition, a clear seasonal pattern in presence was observed. The high number of fish present in summer and autumn alternated with a period of very low densities during the winter period. Copyright © 2013 Elsevier Ltd. All rights reserved.
Temporal variation and scale in movement-based resource selection functions
Hooten, M.B.; Hanks, E.M.; Johnson, D.S.; Alldredge, M.W.
2013-01-01
A common population characteristic of interest in animal ecology studies pertains to the selection of resources. That is, given the resources available to animals, what do they ultimately choose to use? A variety of statistical approaches have been employed to examine this question and each has advantages and disadvantages with respect to the form of available data and the properties of estimators given model assumptions. A wealth of high resolution telemetry data are now being collected to study animal population movement and space use and these data present both challenges and opportunities for statistical inference. We summarize traditional methods for resource selection and then describe several extensions to deal with measurement uncertainty and an explicit movement process that exists in studies involving high-resolution telemetry data. Our approach uses a correlated random walk movement model to obtain temporally varying use and availability distributions that are employed in a weighted distribution context to estimate selection coefficients. The temporally varying coefficients are then weighted by their contribution to selection and combined to provide inference at the population level. The result is an intuitive and accessible statistical procedure that uses readily available software and is computationally feasible for large datasets. These methods are demonstrated using data collected as part of a large-scale mountain lion monitoring study in Colorado, USA.
Function of an Implanted Tissue Glucose Sensor for More than One Year in Animals
Gough, David A.; Kumosa, Lucas S.; Routh, Timothy L.; Lin, Joe T.; Lucisano, Joseph Y.
2015-01-01
An implantable sensor capable of long-term monitoring of tissue glucose concentrations by wireless telemetry has been developed for eventual application in people with diabetes. In a recent trial, the sensor-telemetry system functioned continuously while implanted in subcutaneous tissues of two pigs for a total of 222 days and 520 days respectively, with each animal in both non-diabetic and diabetic states. The sensor detects glucose via an enzyme electrode principle that is based on differential electrochemical oxygen detection, which reduces the sensitivity of the sensor to encapsulation by the body, variations in local microvascular perfusion, limited availability of tissue oxygen, and inactivation of the enzymes. After an initial two-week stabilization period, the implanted sensors maintained stability of calibration for extended periods. The lag between blood and tissue glucose concentrations was 11.8 ± 5.7 minutes and 6.5 ± 13.3 minutes respectively, for rising and falling blood glucose challenges (mean ± SD). The lag was determined mainly by glucose mass transfer in the tissues, rather than the intrinsic response of the sensor, and showed no systematic change over implant test periods. These results represent a milestone in the translation of the sensor system to human applications. PMID:20668297
Inferring animal social networks and leadership: applications for passive monitoring arrays.
Jacoby, David M P; Papastamatiou, Yannis P; Freeman, Robin
2016-11-01
Analyses of animal social networks have frequently benefited from techniques derived from other disciplines. Recently, machine learning algorithms have been adopted to infer social associations from time-series data gathered using remote, telemetry systems situated at provisioning sites. We adapt and modify existing inference methods to reveal the underlying social structure of wide-ranging marine predators moving through spatial arrays of passive acoustic receivers. From six months of tracking data for grey reef sharks (Carcharhinus amblyrhynchos) at Palmyra atoll in the Pacific Ocean, we demonstrate that some individuals emerge as leaders within the population and that this behavioural coordination is predicted by both sex and the duration of co-occurrences between conspecifics. In doing so, we provide the first evidence of long-term, spatially extensive social processes in wild sharks. To achieve these results, we interrogate simulated and real tracking data with the explicit purpose of drawing attention to the key considerations in the use and interpretation of inference methods and their impact on resultant social structure. We provide a modified translation of the GMMEvents method for R, including new analyses quantifying the directionality and duration of social events with the aim of encouraging the careful use of these methods more widely in less tractable social animal systems but where passive telemetry is already widespread. © 2016 The Authors.
Faerber, Julia; Cummins, Gerard; Pavuluri, Sumanth Kumar; Record, Paul; Rodriguez, Adrian R Ayastuy; Lay, Holly S; McPhillips, Rachael; Cox, Benjamin F; Connor, Ciaran; Gregson, Rachael; Clutton, Richard Eddie; Khan, Sadeque Reza; Cochran, Sandy; Desmulliez, Marc P Y
2018-02-01
This paper describes the design, fabrication, packaging, and performance characterization of a conformal helix antenna created on the outside of a capsule endoscope designed to operate at a carrier frequency of 433 MHz within human tissue. Wireless data transfer was established between the integrated capsule system and an external receiver. The telemetry system was tested within a tissue phantom and in vivo porcine models. Two different types of transmission modes were tested. The first mode, replicating normal operating conditions, used data packets at a steady power level of 0 dBm, while the capsule was being withdrawn at a steady rate from the small intestine. The second mode, replicating the worst-case clinical scenario of capsule retention within the small bowel, sent data with stepwise increasing power levels of -10, 0, 6, and 10 dBm, with the capsule fixed in position. The temperature of the tissue surrounding the external antenna was monitored at all times using thermistors embedded within the capsule shell to observe potential safety issues. The recorded data showed, for both modes of operation, a low error transmission of 10 -3 packet error rate and 10 -5 bit error rate and no temperature increase of the tissue according to IEEE standards.
Method and apparatus for telemetry adaptive bandwidth compression
NASA Technical Reports Server (NTRS)
Graham, Olin L.
1987-01-01
Methods and apparatus are provided for automatic and/or manual adaptive bandwidth compression of telemetry. An adaptive sampler samples a video signal from a scanning sensor and generates a sequence of sampled fields. Each field and range rate information from the sensor are hence sequentially transmitted to and stored in a multiple and adaptive field storage means. The field storage means then, in response to an automatic or manual control signal, transfers the stored sampled field signals to a video monitor in a form for sequential or simultaneous display of a desired number of stored signal fields. The sampling ratio of the adaptive sample, the relative proportion of available communication bandwidth allocated respectively to transmitted data and video information, and the number of fields simultaneously displayed are manually or automatically selectively adjustable in functional relationship to each other and detected range rate. In one embodiment, when relatively little or no scene motion is detected, the control signal maximizes sampling ratio and causes simultaneous display of all stored fields, thus maximizing resolution and bandwidth available for data transmission. When increased scene motion is detected, the control signal is adjusted accordingly to cause display of fewer fields. If greater resolution is desired, the control signal is adjusted to increase the sampling ratio.
Inferring animal social networks and leadership: applications for passive monitoring arrays
Papastamatiou, Yannis P.; Freeman, Robin
2016-01-01
Analyses of animal social networks have frequently benefited from techniques derived from other disciplines. Recently, machine learning algorithms have been adopted to infer social associations from time-series data gathered using remote, telemetry systems situated at provisioning sites. We adapt and modify existing inference methods to reveal the underlying social structure of wide-ranging marine predators moving through spatial arrays of passive acoustic receivers. From six months of tracking data for grey reef sharks (Carcharhinus amblyrhynchos) at Palmyra atoll in the Pacific Ocean, we demonstrate that some individuals emerge as leaders within the population and that this behavioural coordination is predicted by both sex and the duration of co-occurrences between conspecifics. In doing so, we provide the first evidence of long-term, spatially extensive social processes in wild sharks. To achieve these results, we interrogate simulated and real tracking data with the explicit purpose of drawing attention to the key considerations in the use and interpretation of inference methods and their impact on resultant social structure. We provide a modified translation of the GMMEvents method for R, including new analyses quantifying the directionality and duration of social events with the aim of encouraging the careful use of these methods more widely in less tractable social animal systems but where passive telemetry is already widespread. PMID:27881803
ECG telemetry in conscious guinea pigs.
Ruppert, Sabine; Vormberge, Thomas; Igl, Bernd-Wolfgang; Hoffmann, Michael
2016-01-01
During preclinical drug development, monitoring of the electrocardiogram (ECG) is an important part of cardiac safety assessment. To detect potential pro-arrhythmic liabilities of a drug candidate and for internal decision-making during early stage drug development an in vivo model in small animals with translatability to human cardiac function is required. Over the last years, modifications/improvements regarding animal housing, ECG electrode placement, and data evaluation have been introduced into an established model for ECG recordings using telemetry in conscious, freely moving guinea pigs. Pharmacological validation using selected reference compounds affecting different mechanisms relevant for cardiac electrophysiology (quinidine, flecainide, atenolol, dl-sotalol, dofetilide, nifedipine, moxifloxacin) was conducted and findings were compared with results obtained in telemetered Beagle dogs. Under standardized conditions, reliable ECG data with low variability allowing largely automated evaluation were obtained from the telemetered guinea pig model. The model is sensitive to compounds blocking cardiac sodium channels, hERG K(+) channels and calcium channels, and appears to be even more sensitive to β-blockers as observed in dogs at rest. QT interval correction according to Bazett and Sarma appears to be appropriate methods in conscious guinea pigs. Overall, the telemetered guinea pig is a suitable model for the conduct of early stage preclinical ECG assessment. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Miranda, Felix A.; Simons, Rainee N.; Haal, David G.
2004-01-01
In this paper we discuss a novel radio frequency (RF) telemetry concept for biomedical applications. The concept consists of a miniaturized spiral inductor/antenna for bio-MEMS sensors and an external pick-up antenna integrated into a handheld device. The measured relative signal strength in the presence of biological phantoms ranged from 5.9 to 7.5 dB for antenna separations of 5 and 10 cm. These relative signal strengths are easily measurable, therefore validating the RF telemetry concept for biomedical applications.
A remote drip infusion monitoring system employing Bluetooth.
Amano, Hikaru; Ogawa, Hidekuni; Maki, Hiromichi; Tsukamoto, Sosuke; Yonezawa, Yoshiharu; Caldwell, W Morton
2012-01-01
We have developed a remote drip infusion monitoring system for use in hospitals. The system consists of several infusion monitoring devices and a central monitor. The infusion monitoring device employing a Bluetooth module can detect the drip infusion rate and an empty infusion solution bag, and then these data are sent to the central monitor placed at the nurses' station via the Bluetooth. The central monitor receives the data from several infusion monitoring devices and then displays graphically them. Therefore, the developed system can monitor intensively the drip infusion situation of the several patients at the nurses' station.
Real-time monitoring of cardiovascular function in rhesus macaques infected with Zaire ebolavirus.
Kortepeter, Mark G; Lawler, James V; Honko, Anna; Bray, Mike; Johnson, Joshua C; Purcell, Bret K; Olinger, Gene G; Rivard, Robert; Hepburn, Matthew J; Hensley, Lisa E
2011-11-01
Nine rhesus macaques were implanted with multisensor telemetry devices and internal jugular vein catheters before being infected with Zaire ebolavirus. All animals developed viremia, fever, a hemorrhagic rash, and typical changes of Ebola hemorrhagic fever in clinical laboratory tests. Three macaques unexpectedly survived this usually lethal disease, making it possible to compare physiological parameters in lethally challenged animals and survivors. After the onset of fever, lethal illness was characterized by a decline in mean arterial blood pressure, an increase in pulse and respiratory rate, lactic acidosis, and renal failure. Survivors showed less pronounced change in these parameters. Four macaques were randomized to receive supplemental volumes of intravenous normal saline when they became hypotensive. Although those animals had less severe renal compromise, no apparent survival benefit was observed. This is the first report of continuous physiologic monitoring in filovirus-infected nonhuman primates and the first to attempt cardiovascular support with intravenous fluids.
Damage prognosis: the future of structural health monitoring.
Farrar, Charles R; Lieven, Nick A J
2007-02-15
This paper concludes the theme issue on structural health monitoring (SHM) by discussing the concept of damage prognosis (DP). DP attempts to forecast system performance by assessing the current damage state of the system (i.e. SHM), estimating the future loading environments for that system, and predicting through simulation and past experience the remaining useful life of the system. The successful development of a DP capability will require the further development and integration of many technology areas including both measurement/processing/telemetry hardware and a variety of deterministic and probabilistic predictive modelling capabilities, as well as the ability to quantify the uncertainty in these predictions. The multidisciplinary and challenging nature of the DP problem, its current embryonic state of development, and its tremendous potential for life-safety and economic benefits qualify DP as a 'grand challenge' problem for engineers in the twenty-first century.
Movements of a polar bear from northern Alaska to northern Greenland
Durner, George M.; Amstrup, Steven C.
1995-01-01
Using satellite telemetry, we monitored the movements of an adult female polar bear (Ursus maritimus) as she traveled from the Alaskan Beaufort Sea coast to northern Greenland. She is the first polar bear known to depart the Beaufort Sea region for an extended period, and the first polar bear known to move between Alaska and Greenland. This bear traveled for four months across the polar basin and came within 2 degrees of the North Pole. During the first year following her capture, she traveled 5256 km. Evidence to suggest her use of maternity dens in northern Alaska and in northern Greenland demonstrates the potential for genetic exchange between two widely separate populations of polar bears. The long life spans of polar bears and the rarity of their long-range movements means the significance of interpopulation movement can be assessed after long-term monitoring of individuals.