Sample records for centurion quarter-scale prototype

  1. Centurion Quarter-scale Prototype Pre-flight Taxi Test

    NASA Technical Reports Server (NTRS)

    1997-01-01

    As crewmen jog and cycle alongside, a battery-powered, quarter-scale prototype of the remotely-piloted Centurion flying wing rolls across the El Mirage Dry Lake during pre-flight taxi tests. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  2. Centurion Quarter-scale Prototype Pre-flight Checkout

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Technicians perform pre-test checks of a battery-powered quarter-scale prototype of the remotely-piloted Centurion flying wing during taxi tests In March 1997 at California's El Mirage Dry Lake. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  3. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Illuminated by early-morning sunlight, a quarter-scale model of the Solar-powered, remotely piloted Centurion ultra-high-altitude flying wing demonstrates its abilities during a March 1997 test flight. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  4. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Silhouetted under a bright blue sky, a quarter-scale model of the Centurion solar-powered flying wing shows off its long, narrow wing as it flies over the broad expanse of El Mirage Dry Lake in Southern California during a March 1997 test flight. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  5. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing Landing during First

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A quarter-scale model of the future Centurion solar-powered high-altitude research aircraft settles in for landing after a March 1997 test flight at El Mirage Dry Lake, California. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  6. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Illuminated by early-morning sunlight, a quarter-scale model of the solar-powered, remotely piloted Centurion ultra-high-altitude flying wing soars over California's Mojave Desert on a March 1997 test flight. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  7. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    With the snow-covered San Gabriel Mountains as a backdrop and a motorcycle-mounted chase crew alongside, a quarter-scale model of the Centurion solar-powered flying wing soars over El Mirage Dry Lake on an early test flight in March 1997. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  8. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Framed by wispy contrails left by passing jets high above, a quarter-scale model of the Centurion solar-electric flying wing shows off its graceful lines during a March 1997 test flight at El Mirage Dry Lake in California's Mojave Desert. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  9. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Trailed by a van carrying the remote pilot and observers, a radio-controlled quarter-scale model of the Centurion solar-electric flying wing makes a low pass over El Mirage Dry Lake in Southern California during a March 1997 test flight. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  10. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing on Lakebed

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A quarter-scale model of the Centurion solar-powered flying wing rests on the clay of El Mirage Dry Lake in Southern California's high desert after completion of of a March 1997 flight test. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  11. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Silhouetted under a bright blue sky, a quarter-scale model of the Centurion solar-powered flying wing shows off its internal rib structure as it floats over the El Mirage Dry Lake in Southern California during a March 1997 test flight. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  12. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing on Lakebed

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A quarter-scale model of the Centurion solar-powered flying wing rests on the clay of El Mirage Dry Lake in Southern California's high desert after completion of a March 1997 test flight. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  13. Centurion on Lakebed during Functional Checkout

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A close-up view of the 14 wide-bladed propellers and electric motors on the Centurion solar-powered, remotely piloted flying wing. This photo was taken during a functional checkout of the aircraft prior to its first test flights at NASA's Dryden Flight Research Center, Edwards, California, in late 1998. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  14. Centurion in Flight with Internal Wing Structure Visible

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The lightweight wing structure and covering of the Centurion remotely piloted flying wing can be clearly seen in this photo of the plane during one of its initial low-altitude, battery-powered test flights in late 1998 at NASA's Dryden Flight Research Center, Edwards, California. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  15. Centurion in Flight over Lakebed

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Centurion remotely piloted flying wing during an early morning test flight over the Rogers Dry Lake adjacent to at NASA's Dryden Flight Research Center, Edwards, California. The flight was one of an initial series of low-altitude, battery-powered test flights conducted in late 1998. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  16. Centurion in Flight over Lakebed with STS Mate-DeMate Device in Background

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Centurion remotely piloted flying wing in flight during an initial series of low-altitude, battery-powered test flights in late 1998 at NASA's Dryden Flight Research Center, Edwards, California. The special Mate-DeMate structure used by NASA to attach Space Shuttle orbiters to the back of modified Boeing 747s for transport to other locations can be seen in the background of this photo. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  17. EC99-45140-12

    NASA Image and Video Library

    1999-08-18

    The Helios Prototype is an enlarged version of the Centurion flying wing, which flew a series of test flights at Dryden in late 1998. The craft has a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of its solar-powered Pathfinder flying wing, and longer than either the Boeing 747 jetliner or Lockheed C-5 transport aircraft.

  18. EC99-45161-10

    NASA Image and Video Library

    1999-09-08

    The Helios Prototype is an enlarged version of the Centurion flying wing, which flew a series of test flights at Dryden in late 1998. The craft has a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of its solar-powered Pathfinder flying wing, and longer than either the Boeing 747 jetliner or Lockheed C-5 transport aircraft.

  19. EC99-45140-2

    NASA Image and Video Library

    1999-08-18

    The Helios Prototype is an enlarged version of the Centurion flying wing, which flew a series of test flights at Dryden in late 1998. The craft has a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of its solar-powered Pathfinder flying wing, and longer than either the Boeing 747 jetliner or Lockheed C-5 transport aircraft.

  20. EC99-45161-8

    NASA Image and Video Library

    1999-09-08

    The Helios Prototype is an enlarged version of the Centurion flying wing, which flew a series of test flights at Dryden in late 1998. The craft has a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of its solar-powered Pathfinder flying wing, and longer than either the Boeing 747 jetliner or Lockheed C-5 transport aircraft.

  1. EC99-45161-9

    NASA Image and Video Library

    1999-09-08

    The Helios Prototype is an enlarged version of the Centurion flying wing, which flew a series of test flights at Dryden in late 1998. The craft has a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of its solar-powered Pathfinder flying wing, and longer than either the Boeing 747 jetliner or Lockheed C-5 transport aircraft.

  2. ED01-0230-1

    NASA Image and Video Library

    2001-08-13

    NASA's Helios Prototype aircraft taking off from the Pacific Missile Range Facility, Kauai, Hawaii, for the record flight. As a follow-on to the Centurion (and earlier Pathfinder and Pathfinder-Plus) aircraft, the solar-powered Helios Prototype is the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions in the stratosphere. Developed by AeroVironment, Inc., of Monrovia, California, under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the unique craft is intended to demonstrate two key missions: the ability to reach and sustain horizontal flight at 100,000 feet altitude on a single-day flight in 2001, and to maintain flight above 50,000 feet altitude for at least four days in 2003, with the aid of a regenerative fuel cell-based energy storage system now in development. Both of these missions will be powered by electricity derived from non-polluting solar energy. The Helios Prototype is an enlarged version of the Centurion flying wing, which flew a series of test flights at NASA's Dryden Flight Research Center in late 1998. The craft has a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of its solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. The remotely piloted, electrically powered Helios Prototype went aloft on its maiden low-altitude checkout flight Sept. 8, 1999, over Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center in the Southern California desert. The initial flight series was flown on battery power as a risk-reduction measure. In all, six flights were flown in the Helios Protoype's initial development series. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingsp

  3. NASA's Helios Prototype aircraft taking off from the Pacific Missile Range Facility, Kauai, Hawaii,

    NASA Technical Reports Server (NTRS)

    2001-01-01

    As a follow-on to the Centurion (and earlier Pathfinder and Pathfinder-Plus) aircraft, the solar-powered Helios Prototype is the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions in the stratosphere. Developed by AeroVironment, Inc., of Monrovia, California, under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the unique craft is intended to demonstrate two key missions: the ability to reach and sustain horizontal flight at 100,000 feet altitude on a single-day flight in 2001, and to maintain flight above 50,000 feet altitude for at least four days in 2003, with the aid of a regenerative fuel cell-based energy storage system now in development. Both of these missions will be powered by electricity derived from non-polluting solar energy. The Helios Prototype is an enlarged version of the Centurion flying wing, which flew a series of test flights at NASA's Dryden Flight Research Center in late 1998. The craft has a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of its solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. The remotely piloted, electrically powered Helios Prototype went aloft on its maiden low-altitude checkout flight Sept. 8, 1999, over Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center in the Southern California desert. The initial flight series was flown on battery power as a risk-reduction measure. In all, six flights were flown in the Helios Protoype's initial development series. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved aerodynamic efficiency, allowing the Helios Prototype to fly higher, longer and with a larger payload than the smaller craft. In addition, project engineers added a differential Global Positioning Satellite (GPS) system to improve navigation, an extensive turbulence monitoring system payload to record structural loads on the aircraft both in the air and on the ground, and radiator plates to assist in cooling the avionics at high altitudes where there is little air to dissipate heat. During 2000, more than 65,000 solar cells in 1,800 groups were mounted on the upper surface of Helios' wing. Produced by SunPower, Inc., these bi-facial silicon cells are about 19 percent efficient in the flight regime in which the helios is designed to operate, converting about 19 percent of the solar energy they receive into electrical current. The entire array is capable of producing a maximum output of about 35 kw at high noon on a summer day. The mission to reach and sustain flight at 100,000 feet in 2001 requires use of all 14 motors and minimal ballast to save weight, with the aircraft weighing in at only a little more than 1,600 lbs. The four-day mission above 50,000 feet envisioned for the Helios Prototype in 2003will see only eight motors powering the craft and the addition of the regenerative energy storage system now in development. The system will increase the Helios Prototype's flight weight to a little over 2,000 lbs. Fewer motors are needed for the long-endurance mission due to the lesser altitude requirements, and the excess electrical energy generated by the solar arrays during the daytime will be diverted to the hydrogen-oxygen fuel cell energy storage system, which will release the electricity to power the Helios after dark. With other system reliability improvements, production versions of the Helios are expected to fly missions lasting months at a time, becoming true 'atmospheric satellites.'

  4. The Helios Prototype aircraft during initial climb-out to the west over the Pacific Ocean.

    NASA Technical Reports Server (NTRS)

    2001-01-01

    As a follow-on to the Centurion (and earlier Pathfinder and Pathfinder-Plus) aircraft, the solar-powered Helios Prototype is the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions in the stratosphere. Developed by AeroVironment, Inc., of Monrovia, California, under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the unique craft is intended to demonstrate two key missions: the ability to reach and sustain horizontal flight at 100,000 feet altitude on a single-day flight in 2001, and to maintain flight above 50,000 feet altitude for at least four days in 2003, with the aid of a regenerative fuel cell-based energy storage system now in development. Both of these missions will be powered by electricity derived from non-polluting solar energy. The Helios Prototype is an enlarged version of the Centurion flying wing, which flew a series of test flights at NASA's Dryden Flight Research Center in late 1998. The craft has a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of its solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. The remotely piloted, electrically powered Helios Prototype went aloft on its maiden low-altitude checkout flight Sept. 8, 1999, over Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center in the Southern California desert. The initial flight series was flown on battery power as a risk-reduction measure. In all, six flights were flown in the Helios Protoype's initial development series. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved aerodynamic efficiency, allowing the Helios Prototype to fly higher, longer and with a larger payload than the smaller craft. In addition, project engineers added a differential Global Positioning Satellite (GPS) system to improve navigation, an extensive turbulence monitoring system payload to record structural loads on the aircraft both in the air and on the ground, and radiator plates to assist in cooling the avionics at high altitudes where there is little air to dissipate heat. During 2000, more than 65,000 solar cells in 1,800 groups were mounted on the upper surface of Helios' wing. Produced by SunPower, Inc., these bi-facial silicon cells are about 19 percent efficient in the flight regime in which the helios is designed to operate, converting about 19 percent of the solar energy they receive into electrical current. The entire array is capable of producing a maximum output of about 35 kw at high noon on a summer day. The mission to reach and sustain flight at 100,000 feet in 2001 requires use of all 14 motors and minimal ballast to save weight, with the aircraft weighing in at only a little more than 1,600 lbs. The four-day mission above 50,000 feet envisioned for the Helios Prototype in 2003will see only eight motors powering the craft and the addition of the regenerative energy storage system now in development. The system will increase the Helios Prototype's flight weight to a little over 2,000 lbs. Fewer motors are needed for the long-endurance mission due to the lesser altitude requirements, and the excess electrical energy generated by the solar arrays during the daytime will be diverted to the hydrogen-oxygen fuel cell energy storage system, which will release the electricity to power the Helios after dark. With other system reliability improvements, production versions of the Helios are expected to fly missions lasting months at a time, becoming true 'atmospheric satellites.'

  5. The Helios Prototype aircraft in a northerly climb over Niihau Island, Hawaii, at about 8,000 feet a

    NASA Technical Reports Server (NTRS)

    2001-01-01

    As a follow-on to the Centurion (and earlier Pathfinder and Pathfinder-Plus) aircraft, the solar-powered Helios Prototype is the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions in the stratosphere. Developed by AeroVironment, Inc., of Monrovia, California, under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the unique craft is intended to demonstrate two key missions: the ability to reach and sustain horizontal flight at 100,000 feet altitude on a single-day flight in 2001, and to maintain flight above 50,000 feet altitude for at least four days in 2003, with the aid of a regenerative fuel cell-based energy storage system now in development. Both of these missions will be powered by electricity derived from non-polluting solar energy. The Helios Prototype is an enlarged version of the Centurion flying wing, which flew a series of test flights at NASA's Dryden Flight Research Center in late 1998. The craft has a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of its solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. The remotely piloted, electrically powered Helios Prototype went aloft on its maiden low-altitude checkout flight Sept. 8, 1999, over Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center in the Southern California desert. The initial flight series was flown on battery power as a risk-reduction measure. In all, six flights were flown in the Helios Protoype's initial development series. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved aerodynamic efficiency, allowing the Helios Prototype to fly higher, longer and with a larger payload than the smaller craft. In addition, project engineers added a differential Global Positioning Satellite (GPS) system to improve navigation, an extensive turbulence monitoring system payload to record structural loads on the aircraft both in the air and on the ground, and radiator plates to assist in cooling the avionics at high altitudes where there is little air to dissipate heat. During 2000, more than 65,000 solar cells in 1,800 groups were mounted on the upper surface of Helios' wing. Produced by SunPower, Inc., these bi-facial silicon cells are about 19 percent efficient in the flight regime in which the helios is designed to operate, converting about 19 percent of the solar energy they receive into electrical current. The entire array is capable of producing a maximum output of about 35 kw at high noon on a summer day. The mission to reach and sustain flight at 100,000 feet in 2001 requires use of all 14 motors and minimal ballast to save weight, with the aircraft weighing in at only a little more than 1,600 lbs. The four-day mission above 50,000 feet envisioned for the Helios Prototype in 2003will see only eight motors powering the craft and the addition of the regenerative energy storage system now in development. The system will increase the Helios Prototype's flight weight to a little over 2,000 lbs. Fewer motors are needed for the long-endurance mission due to the lesser altitude requirements, and the excess electrical energy generated by the solar arrays during the daytime will be diverted to the hydrogen-oxygen fuel cell energy storage system, which will release the electricity to power the Helios after dark. With other system reliability improvements, production versions of the Helios are expected to fly missions lasting months at a time, becoming true 'atmospheric satellites.'

  6. Helios Prototype on lakebed during ground check of electric motors

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Helios Prototype is an enlarged version of the Centurion flying wing, which flew a series of test flights at Dryden in late 1998. The craft has a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of its solar-powered Pathfinder flying wing, and longer than either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. Helios is one of several remotely-piloted aircraft-also known as uninhabited aerial vehicles or UAV's-being developed as technology demonstrators by several small airframe manufacturers under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Developed by AeroVironment, Inc., of Monrovia, Calif., the unique craft is intended to demonstrate two key missions: the ability to reach and sustain horizontal flight at 100,000 feet altitude on a single-day flight, and to maintain flight above 50,000 feet altitude for at least four days, both on electrical power derived from non-polluting solar energy. During later flights, AeroVironment's flight test team will evaluate new motor-control software which may allow the pitch of the aircraft-the nose-up or nose-down attitude in relation to the horizon-to be controlled entirely by the motors. If successful, productions versions of the Helios could eliminate the elevators on the wing's trailing edge now used for pitch control, saving weight and increasing the area of the wing available for installation of solar cells.

  7. Comparison of occlusion break responses and vacuum rise times of phacoemulsification systems.

    PubMed

    Sharif-Kashani, Pooria; Fanney, Douglas; Injev, Val

    2014-07-30

    Occlusion break surge during phacoemulsification cataract surgery can lead to potential surgical complications. The purpose of this study was to quantify occlusion break surge and vacuum rise time of current phacoemulsification systems used in cataract surgery. Occlusion break surge at vacuum pressures between 200 and 600 mmHg was assessed with the Infiniti® Vision System, the WhiteStar Signature® Phacoemulsification System, and the Centurion® Vision System using gravity-fed fluidics. Centurion Active FluidicsTM were also tested at multiple intraoperative pressure target settings. Vacuum rise time was evaluated for Infiniti, WhiteStar Signature, Centurion, and Stellaris® Vision Enhancement systems. Rise time to vacuum limits of 400 and 600 mmHg was assessed at flow rates of 30 and 60 cc/minute. Occlusion break surge was analyzed by 2-way analysis of variance. The Centurion system exhibited substantially less occlusion break surge than the other systems tested. Surge area with Centurion Active Fluidics was similar to gravity fluidics at an equivalent bottle height. At all Centurion Active Fluidics intraoperative pressure target settings tested, surge was smaller than with Infiniti and WhiteStar Signature. Infiniti had the fastest vacuum rise time and Stellaris had the slowest. No system tested reached the 600-mmHg vacuum limit. In this laboratory study, Centurion had the least occlusion break surge and similar vacuum rise times compared with the other systems tested. Reducing occlusion break surge may increase safety of phacoemulsification cataract surgery.

  8. Comparison of occlusion break responses and vacuum rise times of phacoemulsification systems

    PubMed Central

    2014-01-01

    Background Occlusion break surge during phacoemulsification cataract surgery can lead to potential surgical complications. The purpose of this study was to quantify occlusion break surge and vacuum rise time of current phacoemulsification systems used in cataract surgery. Methods Occlusion break surge at vacuum pressures between 200 and 600 mmHg was assessed with the Infiniti® Vision System, the WhiteStar Signature® Phacoemulsification System, and the Centurion® Vision System using gravity-fed fluidics. Centurion Active FluidicsTM were also tested at multiple intraoperative pressure target settings. Vacuum rise time was evaluated for Infiniti, WhiteStar Signature, Centurion, and Stellaris® Vision Enhancement systems. Rise time to vacuum limits of 400 and 600 mmHg was assessed at flow rates of 30 and 60 cc/minute. Occlusion break surge was analyzed by 2-way analysis of variance. Results The Centurion system exhibited substantially less occlusion break surge than the other systems tested. Surge area with Centurion Active Fluidics was similar to gravity fluidics at an equivalent bottle height. At all Centurion Active Fluidics intraoperative pressure target settings tested, surge was smaller than with Infiniti and WhiteStar Signature. Infiniti had the fastest vacuum rise time and Stellaris had the slowest. No system tested reached the 600-mmHg vacuum limit. Conclusions In this laboratory study, Centurion had the least occlusion break surge and similar vacuum rise times compared with the other systems tested. Reducing occlusion break surge may increase safety of phacoemulsification cataract surgery. PMID:25074069

  9. Terrain interaction with the quarter scale beam walker

    NASA Technical Reports Server (NTRS)

    Chun, Wendell H.; Price, S.; Spiessbach, A.

    1990-01-01

    Frame walkers are a class of mobile robots that are robust and capable mobility platforms. Variations of the frame walker robot are in commercial use today. Komatsu Ltd. of Japan developed the Remotely Controlled Underwater Surveyor (ReCUS) and Normed Shipyards of France developed the Marine Robot (RM3). Both applications of the frame walker concept satisfied robotic mobility requirements that could not be met by a wheeled or tracked design. One vehicle design concept that falls within this class of mobile robots is the walking beam. A one-quarter scale prototype of the walking beam was built by Martin Marietta to evaluate the potential merits of utilizing the vehicle as a planetary rover. The initial phase of prototype rover testing was structured to evaluate the mobility performance aspects of the vehicle. Performance parameters such as vehicle power, speed, and attitude control were evaluated as a function of the environment in which the prototype vehicle was tested. Subsequent testing phases will address the integrated performance of the vehicle and a local navigation system.

  10. Terrain Interaction With The Quarter Scale Beam Walker

    NASA Astrophysics Data System (ADS)

    Chun, Wendell H.; Price, R. S.; Spiessbach, Andrew J.

    1990-03-01

    Frame walkers are a class of mobile robots that are robust and capable mobility platforms. Variations of the frame walker robot are in commercial use today. Komatsu Ltd. of Japan developed the Remotely Controlled Underwater Surveyor (ReCUS) and Normed Shipyards of France developed the Marine Robot (RM3). Both applications of the frame walker concept satisfied robotic mobility requirements that could not be met by a wheeled or tracked design. One vehicle design concept that falls within this class of mobile robots is the walking beam. A one-quarter scale prototype of the walking beam was built by Martin Marietta to evaluate the potential merits of utilizing the vehicle as a planetary rover. The initial phase of prototype rover testing was structured to evaluate the mobility performance aspects of the vehicle. Performance parameters such as vehicle power, speed, and attitude control were evaluated as a function of the environment in which the prototype vehicle was tested. Subsequent testing phases will address the integrated performance of the vehicle and a local navigation system.

  11. Comparison of cumulative dissipated energy between the Infiniti and Centurion phacoemulsification systems.

    PubMed

    Chen, Ming; Anderson, Erik; Hill, Geoffrey; Chen, John J; Patrianakos, Thomas

    2015-01-01

    To compare cumulative dissipated energy between two phacoemulsification machines. An ambulatory surgical center, Honolulu, Hawaii, USA. Retrospective chart review. A total of 2,077 consecutive cases of cataract extraction by phacoemulsification performed by five surgeons from November 2012 to November 2014 were included in the study; 1,021 consecutive cases were performed using the Infiniti Vision System, followed by 1,056 consecutive cases performed using the Centurion Vision System. The Centurion phacoemulsification system required less energy to remove a cataractous lens with an adjusted average energy reduction of 38% (5.09 percent-seconds) (P<0.001) across all surgeons in comparison to the Infiniti phacoemulsification system. The reduction in cumulative dissipated energy was statistically significant for each surgeon, with a range of 29%-45% (2.25-12.54 percent-seconds) (P=0.005-<0.001). Cumulative dissipated energy for both the Infiniti and Centurion systems varied directly with patient age, increasing an average of 2.38 percent-seconds/10 years. The Centurion phacoemulsification system required less energy to remove a cataractous lens in comparison to the Infiniti phacoemulsification system.

  12. Comparison of cumulative dissipated energy between the Infiniti and Centurion phacoemulsification systems

    PubMed Central

    Chen, Ming; Anderson, Erik; Hill, Geoffrey; Chen, John J; Patrianakos, Thomas

    2015-01-01

    Purpose To compare cumulative dissipated energy between two phacoemulsification machines. Setting An ambulatory surgical center, Honolulu, Hawaii, USA. Design Retrospective chart review. Methods A total of 2,077 consecutive cases of cataract extraction by phacoemulsification performed by five surgeons from November 2012 to November 2014 were included in the study; 1,021 consecutive cases were performed using the Infiniti Vision System, followed by 1,056 consecutive cases performed using the Centurion Vision System. Results The Centurion phacoemulsification system required less energy to remove a cataractous lens with an adjusted average energy reduction of 38% (5.09 percent-seconds) (P<0.001) across all surgeons in comparison to the Infiniti phacoemulsification system. The reduction in cumulative dissipated energy was statistically significant for each surgeon, with a range of 29%–45% (2.25–12.54 percent-seconds) (P=0.005–<0.001). Cumulative dissipated energy for both the Infiniti and Centurion systems varied directly with patient age, increasing an average of 2.38 percent-seconds/10 years. Conclusion The Centurion phacoemulsification system required less energy to remove a cataractous lens in comparison to the Infiniti phacoemulsification system. PMID:26229430

  13. Astonishing Technological Faith: Individuals Can Grow Spiritually When Christian Education Is Taught through Distance Learning

    ERIC Educational Resources Information Center

    Stapleton, Deborah Leah

    2013-01-01

    My project examined if individuals can grow spiritually when Christian Education is taught through online interactive distance learning. Jesus' comment--in Matthew 8:5-13--regarding the astonishing faith of the centurion who asked Jesus to heal his servant from a distance was used for my Biblical Foundation. The centurion stated that Jesus did not…

  14. 76 FR 41854 - Aqua Society, Inc., Centurion Gold Holdings, Inc., and PowerRaise, Inc.; Order of Suspension of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Aqua Society, Inc., Centurion Gold Holdings, Inc., and PowerRaise, Inc.; Order of Suspension of Trading July 13, 2011. It appears to the Securities... securities of Aqua Society, Inc. because it has not filed any periodic reports since the period ended June 30...

  15. Integral habitat transport system

    NASA Technical Reports Server (NTRS)

    Elliott, Bill; Frazer, Scott; Higgs, Joey; Huff, Jason; Milam, Tigree

    1994-01-01

    In the 1993 Fall quarter, the ME 4182 design class was sponsored to study various scenarios that needed to be studied for Martian travel. The class was sponsored by NASA and there were several different design projects. The design that group three chose was an integral transport system for a Martian habitat. An integral transport system means the design had to be one that was attached to the habitat. There were several criteria that the design had to meet. Group three performed an in depth study of the Martian environment and looked at several different design ideas. The concept group three developed involved the use of kinematic linkages and the use of Martian gravity to move the habitat. The various design concepts, the criteria matrices and all other aspects that helped group three develop their design can be found in their 1993 ME 4182 design report. Now it is Winter quarter 1994 and group three is faced with another problem. The problem is building a working prototype of their Fall design. The limitations this quarter were the parts. The group had to make the prototype work with existing manufactured parts or make the parts themselves in a machine shop. The prototype was scaled down roughly about twelve times smaller than the original design. The following report describes the actions taken by group three to build a working model.

  16. Deployment Ready Airway Management System (DRAMS)

    DTIC Science & Technology

    2013-10-24

    have been developed along with rapid prototypes. The results have been excellent and DMLS Alpha one and two prototypes have been developed resulting...Contact Model Quarterly  Report               10/25/2013 DMLS FlexBlade Reusable Module B-1 Prototype

  17. Design and prototyping of HL-LHC double quarter wave crab cavities for SPS test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verdu-Andres, S.; Skaritka, J.; Wu, Q.

    2015-05-03

    The LHC high luminosity project envisages the use of the crabbing technique for increasing and levelling the LHC luminosity. Double Quarter Wave (DQW) resonators are compact cavities especially designed to meet the technical and performance requirements for LHC beam crabbing. Two DQW crab cavities are under fabrication and will be tested with beam in the Super Proton Synchrotron (SPS) at CERN by 2017. This paper describes the design and prototyping of the DQW crab cavities for the SPS test.

  18. COMPARISON OF RECENTLY USED PHACOEMULSIFICATION SYSTEMS USING A HEALTH TECHNOLOGY ASSESSMENT METHOD.

    PubMed

    Huang, Jiannan; Wang, Qi; Zhao, Caimin; Ying, Xiaohua; Zou, Haidong

    2017-01-01

    To compare the recently used phacoemulsification systems using a health technology assessment (HTA) model. A self-administered questionnaire, which included questions to gauge on the opinions of the recently used phacoemulsification systems, was distributed to the chief cataract surgeons in the departments of ophthalmology of eighteen tertiary hospitals in Shanghai, China. A series of senile cataract patients undergoing phacoemulsification surgery were enrolled in the study. The surgical results and the average costs related to their surgeries were all recorded and compared for the recently used phacoemulsification systems. The four phacoemulsification systems currently used in Shanghai are the Infiniti Vision, Centurion Vision, WhiteStar Signature, and Stellaris Vision Enhancement systems. All of the doctors confirmed that the systems they used would help cataract patients recover vision. A total of 150 cataract patients who underwent phacoemulsification surgery were enrolled in the present study. A significant difference was found among the four groups in cumulative dissipated energy, with the lowest value found in the Centurion group. No serious complications were observed and a positive trend in visual acuity was found in all four groups after cataract surgery. The highest total cost of surgery was associated with procedures conducted using the Centurion Vision system, and significant differences between systems were mainly because of the cost of the consumables used in the different surgeries. This HTA comparison of four recently used phacoemulsification systems found that each of system offers a satisfactory vision recovery outcome, but differs in surgical efficacy and costs.

  19. Collation of quarterly reports on air flat plate collectors

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The solar 2 air flat plate collectors are described. The development and fabrication of a prototype air flat plate collector subsystem containing 320 square feet of collector area are described. Three instrumented panels were completely assembled with glazing and insulation. Manufacture of the last seven prototype collectors was completed in October 1977.

  20. Prototype solar heated hot water systems and double-walled heat exchangers: A collection of quarterly reports

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The plan schedule and status of multiple objectives to be achieved in the development, manufacture, installation, and maintenance of two solar heated hot water prototype systems and two heat exchangers are reported. A computer program developed to resolve problems and evaluate system performance is described.

  1. Design, prototyping, and testing of a compact superconducting double quarter wave crab cavity

    NASA Astrophysics Data System (ADS)

    Xiao, Binping; Alberty, Luis; Belomestnykh, Sergey; Ben-Zvi, Ilan; Calaga, Rama; Cullen, Chris; Capatina, Ofelia; Hammons, Lee; Li, Zenghai; Marques, Carlos; Skaritka, John; Verdu-Andres, Silvia; Wu, Qiong

    2015-04-01

    We proposed a novel design for a compact superconducting crab cavity with a double quarter wave (DQWCC) shape. After fabrication and surface treatments, this niobium proof-of-principle cavity was tested cryogenically in a vertical cryostat. The cavity is extremely compact yet has a low frequency of 400 MHz, an essential property for service in the Large Hadron Collider luminosity upgrade. The cavity's electromagnetic properties are well suited for this demanding task. The demonstrated deflecting voltage of 4.6 MV is well above the required 3.34 MV for a crab cavity in the future High Luminosity LHC. In this paper, we present the design, prototyping, and results from testing the DQWCC.

  2. Design, prototyping, and testing of a compact superconducting double quarter wave crab cavity

    DOE PAGES

    Xiao, Binping; Alberty, Luis; Belomestnykh, Sergey; ...

    2015-04-01

    We proposed a novel design for a compact superconducting crab cavity with a double quarter wave (DQWCC) shape. After fabrication and surface treatments, this niobium proof-of-principle cavity was tested cryogenically in a vertical cryostat. The cavity is extremely compact yet has a low frequency of 400 MHz, an essential property for service in the Large Hadron Collider luminosity upgrade. The cavity’s electromagnetic properties are well suited for this demanding task. The demonstrated deflecting voltage of 4.6 MV is well above the required 3.34 MV for a crab cavity in the future High Luminosity LHC. In this paper, we present themore » design, prototyping, and results from testing the DQWCC.« less

  3. 77 FR 17021 - Certain Steel Wheels From the People's Republic of China: Notice of Final Determination of Sales...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ... Scope Should Exclude Off-Road/Non-DOT Specification Stamped Wheels. Comment 2: Whether Double Remedies... Centurion's Indirect Selling Expense Calculation. Comment 8: Hot-Rolled Steel Surrogate Value. Comment 9...

  4. Prototype solar heating and cooling systems including potable hot water

    NASA Technical Reports Server (NTRS)

    1978-01-01

    These combined quarterly reports summarize the activities from November 1977 through September 1978, and over the progress made in the development, delivery and support of two prototype solar heating and cooling systems including potable hot water. The system consists of the following subsystems: solar collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

  5. Prototype pushing robot for emplacing vitrified waste canisters into horizontal disposal drifts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Londe, L.; Seidler, W.K.; Bosgiraud, J.M.

    2007-07-01

    Within the French Underground Disposal concept, as described in ANDRA's (Agence Nationale pour la Gestion des Dechets Radioactifs) Dossier 2005, the Pushing Robot is an application envisaged for the emplacement (and the potential retrieval) of 'Vitrified waste packages', also called 'C type packages'. ANDRA has developed a Prototype Pushing Robot within the framework of the ESDRED Project (Engineering Studies and Demonstration of Repository Design) which is co-funded by the European Commission as part of the sixth EURATOM Research and Training Framework Programme (FP6) on nuclear energy (2002 - 2006). The Rationale of the Pushing Robot technology comes from various considerations,more » including the need for (1) a simple and robust system, capable of moving (and potentially retrieving) on up to 40 metres (m), a 2 tonne C type package (mounted on ceramic sliding runners) inside the carbon steel sleeve constituting the liner (and rock support) of a horizontal disposal cell, (2) small annular clearances between the package and the liner, (3) compactness of the device to be transferred from surface to underground, jointly with the package, inside a shielding cask, and (4) remote controlled operations for the sake of radioprotection. The initial design, based on gripping supports, has been replaced by a 'technical variant' based on inflatable toric jacks. It was then possible, using a test bench, to check that the Pushing Robot worked properly. Steps as high as 7 mm were successfully cleared by a dummy package pushed by the Prototype.. Based on the lessons learned by ANDRA's regarding the Prototype Pushing Robot, a new Scope of Work is being written for the Contract concerning an Industrial Scale Demonstrator. The Industrial Scale Demonstration should be completed by the end of the second Quarter of 2008. (authors)« less

  6. Marine Animal Alert System -- Task 2.1.5.3: Development of Monitoring Technologies -- FY 2011 Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Thomas J.; Deng, Zhiqun; Myers, Joshua R.

    2011-09-30

    The Marine Animal Alert System (MAAS) in development by the Pacific Northwest National Laboratory is focused on providing elements of compliance monitoring to support deployment of marine hydrokinetic energy devices. An initial focus is prototype tidal turbines to be deployed in Puget Sound in Washington State. The MAAS will help manage the risk of injury or mortality to marine animals from blade strike or contact with tidal turbines. In particular, development has focused on detection, classification, and localization of listed Southern Resident killer whales within 200 m of prototype turbines using both active and passive acoustic approaches. At the closemore » of FY 2011, a passive acoustic system consisting of a pair of four-element star arrays and parallel processing of eight channels of acoustic receptions has been designed and built. Field tests of the prototype system are scheduled for the fourth quarter of calendar year 2011. Field deployment and testing of the passive acoustic prototype is scheduled for the first quarter of FY 2012. The design of an active acoustic system that could be built using commercially available off-the-shelf components from active acoustic system vendors is also in the final stages of design and specification.« less

  7. Pathfinder-Plus takes off on flight in Hawaii

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pathfinder-Plus on a flight over Hawaii in 1998. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus' Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA's Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA's Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder's solar arrays produced approximately 8,000 watts of power while Pathfinder Plus' solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam.

  8. Pathfinder-Plus on flight in Hawaii

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pathfinder-Plus on a flight over Hawaii in 1998. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus' Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA's Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA's Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder's solar arrays produced approximately 8,000 watts of power while Pathfinder Plus' solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam.

  9. Pathfinder-Plus on a flight over Hawaiian island N'ihau

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pathfinder-Plus on a flight over the Hawaiian island of N'ihau in 1998. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus' Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA's Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA's Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder's solar arrays produced approximately 8,000 watts of power while Pathfinder Plus' solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam.

  10. Pathfinder-Plus on flight over Hawaiian island N'ihau

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pathfinder-Plus on a flight over the Hawaiian island of N'ihau in 1998. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus' Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA's Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA's Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder's solar arrays produced approximately 8,000 watts of power while Pathfinder Plus' solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam.

  11. Pathfinder-Plus on flight near Hawaiian island N'ihau

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pathfinder-Plus on a flight with the Hawaiian island of N'ihau in the background. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus' Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA's Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA's Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder's solar arrays produced approximately 8,000 watts of power while Pathfinder Plus' solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam.

  12. Pathfinder-Plus on flight over Hawaii

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pathfinder-Plus flying over the Hawaiian Islands in 1998 with Ni'ihau Island in the background. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus' Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA's Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA's Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder's solar arrays produced approximately 8,000 watts of power while Pathfinder Plus' solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam.

  13. Pathfinder-Plus on flight over Hawaii

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pathfinder-Plus on flight over Hawaii. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus' Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA's Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA's Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder's solar arrays produced approximately 8,000 watts of power while Pathfinder Plus' solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam.

  14. Pathfinder-Plus on a flight in Hawaii

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pathfinder-Plus on a flight in 1998 over Hawaiian waters. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus' Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA's Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA's Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder's solar arrays produced approximately 8,000 watts of power while Pathfinder Plus' solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam.

  15. Pathfinder-Plus on flight over Hawaiian Islands

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pathfinder-Plus on flight over Hawaiian Islands in 1998. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus' Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA's Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA's Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder's solar arrays produced approximately 8,000 watts of power while Pathfinder Plus' solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam.

  16. OEM unveil new ideas for shovels and excavators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiscor, S.

    2006-08-15

    From upgrades to new loading arrangements, vendors are looking at new ways to optimize the production process. The paper describes P & M equipment's new C series electric shovels equipped with the centurion system, Hitachi's super-sized excavator to Canadian oil sands, and Bucyrus and Siemens' engineer shovels. 3 figs., 1 photo.

  17. 75 FR 65703 - Notice of Applications for Certificates of Public Convenience and Necessity and Foreign Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... Applications, or Motion to Modify Scope:November 4, 2010. Description:Joint application of Centurion Air Cargo... DEPARTMENT OF TRANSPORTATION Office of the Secretary Notice of Applications for Certificates of...)During the Week Ending October 16, 2010 The following Applications for Certificates of Public Convenience...

  18. How to Publish: Tips from Two Centurions

    ERIC Educational Resources Information Center

    Johnson, David W.; Johnson, Roger T.

    2016-01-01

    There are no easy guidelines to follow in submitting articles to journals, but based on our perspective and experience, we do have a few suggestions. Conduct research that tests a well-formulated, strategic, powerful, and profound theory and contains enough data to compute an effect size. Create a body of knowledge by conducting a series of…

  19. Prototype solar heating and hot water systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Progress made in the development of a solar hot water and space heating system is described in four quarterly reports. The program schedules, technical status and other program activities from 6 October 1976 through 30 September 1977 are provided.

  20. 77 FR 17017 - Certain Steel Wheels From the People's Republic of China: Final Affirmative Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ... provided for less than adequate remuneration to the Centurion Companies and Jingu Companies. On September 9... hearing in this investigation. \\11\\ See Memorandum to Melissa G. Skinner, Director, AD/CVD Operations... To Be Used for the Jingu Companies Under the HRS for Less Than Adequate Remuneration (LTAR) Program...

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    A collection of quarterly and monthly reports from Elcam, Inc., covering progress made from January 1, 1978, through September 30, 1978, is presented. Elcam, is developing two solar-heated hot water prototype systems and two heat exchangers. This effort consists of development, manufacture, installation, maintenance, problem resolution, and system evaluation.

  2. Vanderbilt University Institute of Imaging Science Center for Computational Imaging XNAT: A multimodal data archive and processing environment.

    PubMed

    Harrigan, Robert L; Yvernault, Benjamin C; Boyd, Brian D; Damon, Stephen M; Gibney, Kyla David; Conrad, Benjamin N; Phillips, Nicholas S; Rogers, Baxter P; Gao, Yurui; Landman, Bennett A

    2016-01-01

    The Vanderbilt University Institute for Imaging Science (VUIIS) Center for Computational Imaging (CCI) has developed a database built on XNAT housing over a quarter of a million scans. The database provides framework for (1) rapid prototyping, (2) large scale batch processing of images and (3) scalable project management. The system uses the web-based interfaces of XNAT and REDCap to allow for graphical interaction. A python middleware layer, the Distributed Automation for XNAT (DAX) package, distributes computation across the Vanderbilt Advanced Computing Center for Research and Education high performance computing center. All software are made available in open source for use in combining portable batch scripting (PBS) grids and XNAT servers. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Pathfinder-Plus on flight over Hawaiian Islands, with N'ihau and Lehua in the background

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pathfinder-Plus on flight over Hawaiian Islands, with N'ihau and Lehua in the background. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus' Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA's Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA's Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder's solar arrays produced approximately 8,000 watts of power while Pathfinder Plus' solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam.

  4. Performance Comparison at Mach Numbers 1.8 and 2.0 of Full Scale and Quarter Scale Translating-Spike Inlets

    NASA Technical Reports Server (NTRS)

    Anderson, B. H.; Dryer, M.; Hearth, D. P.

    1957-01-01

    The performance of a full-scale translating-spike inlet was obtained at Mach numbers of 1.8 and 2.0 and at angles of attach from 0 deg to 6 deg. Comparisons were made between the full-scale production inlet configuration and a geometrically similar quarter-scale model. The inlet pressure-recovery, cowl pressure-distribution, and compressor-face distortion characteristics of the full-scale inlet agreed fairly well with the quarter-scale results. In addition, the results indicated that bleeding around the periphery ahead of the compressor-face station improved pressure recovery and compressor-face distortion, especially at angle of attack.

  5. [Testing and commercialization of a cotton stalk shredder and plow]. Technical progress report, October--December 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thacker, G.W.

    1996-01-27

    This quarterly report describes work on Task 1: Field test and sell prototype to Ellis Equipment, Ltd; Task 2: Design, build, and field test two prototypes; and Task 3: Produce and sell Pegasus to farmers. The equipment has been built to shred stalks, deeply till the soil, and prepare seedbeds for cotton plants. The equipment has been field tested in Australia and is currently being field tested in California and Arizona. Unexpected problems appeared with hard dry soils and this report describes improvements made.

  6. Vertically Integrated Skill Development and Vocational Training for Socioeconomically Marginalised Youth: The Experience at Gram Tarang and Centurion University, India

    ERIC Educational Resources Information Center

    Mishra, Mukti

    2014-01-01

    At present, India's education system turns out millions of young people who are ready to think, but not enough people with entrepreneurial or employment skills. As India faces increasing limits on its resources, both economic and natural, the competency and capability of human resources play a pivotal role in developing and sustaining the economy.…

  7. Dewar Testing of Coaxial Resonators at MSU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popielarski, J; Facco, A; Hodek, M

    2012-07-01

    Michigan State University is currently testing prototype and production cavities for two accelerator projects. 80.5 MHz {beta} = 0.085 quarter wave resonators (QWR) are being produced as part of a cryomodule for ReA3. 322 MHz {beta} = 0.53 half wave resonators (HWR) are being prototyped for a driver linac for the Facility for Rare Isotope Beams. This paper will discuss test results and how different cavity preparations effect cavity performs. Also various diagnostics methods have been developed, such as second sound quench location determination, and temperature mapping to determine hot spots from defects and multipacting location.

  8. Schedules, technical status, and program activities in the development of a single family solar space heating system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A collection of three quarterly reports are given covering the development of two prototype solar heating systems consisting of the following subsystems: collector, storage, control, transport, and site data acquisition. The two systems are being installed at York, Pennsylvania, and Manchester, New Hampshire.

  9. Safeguards Technology Development Program 1st Quarter FY 2018 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, Manoj K.

    LLNL will evaluate the performance of a stilbene-based scintillation detector array for IAEA neutron multiplicity counting (NMC) applications. This effort will combine newly developed modeling methodologies and recently acquired high-efficiency stilbene detector units to quantitatively compare the prototype system performance with the conventional He-3 counters and liquid scintillator alternatives.

  10. Quarter Scale RLV Multi-Lobe LH2 Tank Test Program

    NASA Technical Reports Server (NTRS)

    Blum, Celia; Puissegur, Dennis; Tidwell, Zeb; Webber, Carol

    1998-01-01

    Thirty cryogenic pressure cycles have been completed on the Lockheed Martin Michoud Space Systems quarter scale RLV composite multi-lobe liquid hydrogen propellant tank assembly, completing the initial phases of testing and demonstrating technologies key to the success of large scale composite cryogenic tankage for X33, RLV, and other future launch vehicles.

  11. Establishment of Models and Data Tracking for Small UAV Reliability

    DTIC Science & Technology

    2004-06-01

    The development of solar powered UAVs is also being supported and funded by NASA. The idea, development, and construction was initiated by the...Aerovironment company, which has been involved in the construction of solar -powered aircraft for 20 years. Solar Challenger, HALSOL, Talon, Pathfinder...Centurion, and Helios with a wingspan of 247 feet, were among the solar -powered UAVs during those efforts.28 New technologies like regenerative fuel

  12. International Space Station USOS Crew Quarters Development

    NASA Technical Reports Server (NTRS)

    Broyan, James Lee, Jr.; Borrego, Melissa Ann; Bahr, Juergen F.

    2008-01-01

    The International Space Station (ISS) United States Operational Segment (USOS) currently provides a Temporary Sleep Station (TeSS) as crew quarters for one crewmember in the Laboratory Module. The Russian Segment provides permanent crew quarters (Kayutas) for two crewmembers in the Service Module. The TeSS provides limited electrical, communication, and ventilation functionality. A new permanent rack sized USOS ISS Crew Quarters (CQ) is being developed. Up to four CQs can be installed into the Node 2 element to increase the ISS crewmember size to six. The new CQs will provide private crewmember space with enhanced acoustic noise mitigation, integrated radiation reduction material, controllable airflow, communication equipment, redundant electrical systems, and redundant caution and warning systems. The rack sized CQ is a system with multiple crewmember restraints, adjustable lighting, controllable ventilation, and interfaces that allow each crewmember to personalize their CQ workspace. Providing an acoustically quiet and visually isolated environment, while ensuring crewmember safety, is critical for obtaining crewmember rest and comfort to enable long term crewmember performance. The numerous human factor, engineering, and program considerations during the concept, design, and prototyping are outlined in the paper.

  13. Coal-fired high performance power generating system. Quarterly progress report, October 1, 1994--December 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-08-01

    This report covers work carried out under Task 3, Preliminary R and D, under contract DE-AC22-92PC91155, {open_quotes}Engineering Development of a Coal-Fired High Performance Power Generation System{close_quotes} between DOE Pittsburgh Energy Technology Center and United Technologies Research Center. The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of (1) > 47% thermal efficiency; (2) NO{sub x}, SO{sub x} and particulates {<=}25% NSPS; (3) cost {>=}65% of heat input; (4) all solid wastes benign. In our design consideration, we have tried to render all waste streams benign andmore » if possible convert them to a commercial product. It appears that vitrified slag has commercial values. If the flyash is reinjected through the furnace, along with the dry bottom ash, then the amount of the less valuable solid waste stream (ash) can be minimized. A limitation on this procedure arises if it results in the buildup of toxic metal concentrations in either the slag, the flyash or other APCD components. We have assembled analytical tools to describe the progress of specific toxic metals in our system. The outline of the analytical procedure is presented in the first section of this report. The strengths and corrosion resistance of five candidate refractories have been studied in this quarter. Some of the results are presented and compared for selected preparation conditions (mixing, drying time and drying temperatures). A 100 hour pilot-scale stagging combustor test of the prototype radiant panel is being planned. Several potential refractory brick materials are under review and five will be selected for the first 100 hour test. The design of the prototype panel is presented along with some of the test requirements.« less

  14. The Centurions vs. the Hydra: French Counterinsurgency in the Peninsular War (1808-1812)

    DTIC Science & Technology

    2011-06-10

    their operational dilemma in different manners. But the analysis also outlined a common denominator to their practices. Leverage of religion , build up...But the analysis also outlined a common denominator to their practices. Leverage of religion , build up of native security forces, and development...armada en los origenese de la Espana liberal, 1808-1823 [Cortes and Military Forces at the Origin of Liberal Spain] (Madrid, Spain: Siglo veintiuno

  15. United States Marine Corps Reserve Prior Service Recruiting: A Future Command for Partially Manning the Reserves

    DTIC Science & Technology

    2013-06-14

    month, blackjack award, slugger award, heavy hitter award, centurion, and recruiter of the year.” Marine Corps recruiting duty is very similar to a...UNITED STATES MARINE CORPS RESERVE PRIOR SERVICE RECRUITING: A FUTURE COMMAND FOR PARTIALLY MANNING THE RESERVES A thesis...presented to the Faculty of the U.S. Army Command and General Staff College in partial fulfillment of the requirements for the degree MASTER OF

  16. Multiple harmonic frequencies resonant cavity design and half-scale prototype measurements for a fast kicker

    DOE PAGES

    Huang, Yulu; Wang, Haipeng; Wang, Shaoheng; ...

    2016-12-09

    Quarter wavelength resonator (QWR) based deflecting cavities with the capability of supporting multiple odd-harmonic modes have been developed for an ultrafast periodic kicker system in the proposed Jefferson Lab Electron Ion Collider (JLEIC, formerly MEIC). Previous work on the kicking pulse synthesis and the transverse beam dynamics tracking simulations show that a flat-top kicking pulse can be generated with minimal emittance growth during injection and circulation of the cooling electron bunches. This flat-top kicking pulse can be obtained when a DC component and 10 harmonic modes with appropriate amplitude and phase are combined together. To support 10 such harmonic modes,more » four QWR cavities are used with 5, 3, 1, and 1 modes, respectively. In the multiple-mode cavities, several slightly tapered segments of the inner conductor are introduced to tune the higher order deflecting modes to be harmonic, and stub tuners are used to fine tune each frequency to compensate for potential errors. In this paper, we summarize the electromagnetic design of the five-mode cavity, including the geometry optimization to get high transverse shunt impedance, the frequency tuning and sensitivity analysis, and the single loop coupler design for coupling to all of the harmonic modes. In particular we report on the design and fabrication of a half-scale copper prototype of this proof-of-principle five-odd-mode cavity, as well as the rf bench measurements. Lastly, we demonstrate mode superposition in this cavity experimentally, which illustrates the kicking pulse generation concept.« less

  17. Intelligent Network Flow Optimization (INFLO) prototype : Seattle small-scale demonstration report.

    DOT National Transportation Integrated Search

    2015-05-01

    This report describes the performance and results of the INFLO Prototype Small-Scale Demonstration. The purpose of the Small-Scale Demonstration was to deploy the INFLO Prototype System to demonstrate its functionality and performance in an operation...

  18. Center for Information Services Fourth Quarterly Progress Report, Phase IIB; Detailed Design and Prototype Development, 1 October 1971 to 31 December 1971.

    ERIC Educational Resources Information Center

    Kehl, W. B.; And Others

    The administrative activity, including organization, staff, budget and external contacts, and the technical progress of IPS development, experimental service, workshops, documentation and related activities of the Center for Information Services (at the University of California, Los Angeles) are reported upon in this document. Pages 9 and 10 may…

  19. SuperCDMS Prototype Detector Design and Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, Allison Blair

    A substantial amount of astrophysical evidence indicates that approximately a quarter of all energy in the universe is composed of a nonluminous, and nonbaryonic \\dark" matter. Of the potential dark matter particle candidates, Weakly Interacting Massive Particles, or WIMPs, is particularly well motivated. As a means to directly detect WIMP interactions with baryonic matter, the Cryogenic Dark Matter Search (CDMS) project was established, operating at the Soudan Underground Laboratory from 2003 - 2015, under the CDMS II and SuperCDMS Soudan experiments. CDMS detectors simultaneously measure the ionization and phonon energies of recoil events in Si and Ge crystals kept atmore » cryogenic temperatures in a low-background environment. The ratio of ionization energy to recoil energy serves as a discrimination parameter to separate nuclear recoil events from the electron-recoil background. The next installation, SuperCDMS SNOLAB, is preparing for future operation, with an initial payload of eighteen Ge and six Si, 100 mm diameter, 33 mm thick detectors. Of this initial payload, eight Ge and four Si detectors will operate in a high-voltage ( 100 V) mode, which have an increased sensitivity to low-mass WIMPs due to decreased energy thresholds. The SuperCDMS test facility at University of Minnesota aids in the detector R&D and characterization of prototype detectors, as part of the scale-up eort for Super- CDMS SNOLAB. This thesis presents the rst full ionization and phonon characterization study of a 100 mm diameter, 33 mm thick prototype Ge detector with interleaved phonon and ionization channels. Measurements include ionization collection eciency, surface event rejection capabilities, and successful demonstration of nuclear recoil event discrimination. Results indicate that 100 mm diameter, interleaved Ge detectors show potential for use in SuperCDMS SNOLAB. As part of detector R&D, the Minnesota test facility also looks beyond the next stage of SuperCDMS, investigating larger individual detectors as a means to easily scale up the sensitive mass of future searches. This thesis presents the design and initial testing results of a prototype 150 mm diameter, 33 mm thick silicon ionization detector, which is 5.2 times larger than those used in SuperCDMS at Soudan and 2.25 times larger than those planned for use at SuperCDMS SNOLAB. In addition, the detector was operated with contact-free ionization electrodes to minimize bias leakage currents, which can limit operation at high bias voltages. The results show promise for the operation of both large volume silicon detectors and contact-free ionization electrodes for scaling up detector mass and bias.« less

  20. Assessment of bioavailable fraction of POPS in surface water bodies in Johannesburg City, South Africa, using passive samplers: an initial assessment.

    PubMed

    Amdany, Robert; Chimuka, Luke; Cukrowska, Ewa; Kukučka, Petr; Kohoutek, Jiří; Tölgyessy, Peter; Vrana, Branislav

    2014-09-01

    In this study, the semipermeable membrane device (SPMD) passive samplers were used to determine freely dissolved concentrations of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in selected water bodies situated in and around Johannesburg City, South Africa. The devices were deployed for 14 days at each sampling site in spring and summer of 2011. Time weighted average (TWA) concentrations of the water-borne contaminants were calculated from the amounts of analytes accumulated in the passive samplers. In the area of interest, concentrations of analytes in water ranged from 33.5 to 126.8 ng l(-1) for PAHs, from 20.9 to 120.9 pg l(-1) for PCBs and from 0.2 to 36.9 ng l(-1) for OCPs. Chlorinated pesticides were mainly composed of hexachlorocyclohexanes (HCHs) (0.15-36.9 ng l(-1)) and dichlorodiphenyltrichloromethane (DDT) with its metabolites (0.03-0.55 ng l(-1)). By applying diagnostic ratios of certain PAHs, identification of possible sources of the contaminants in the various sampling sites was performed. These ratios were generally inclined towards pyrogenic sources of pollution by PAHs in all study sites except in the Centurion River (CR), Centurion Lake (CL) and Airport River (AUP) that indicated petrogenic origins. This study highlights further need to map up the temporal and spatial variations of these POPs using passive samplers.

  1. Plant allometry, leaf nitrogen and phosphorus stoichiometry, and interspecific trends in annual growth rates.

    PubMed

    Niklas, Karl J

    2006-02-01

    Life forms as diverse as unicellular algae, zooplankton, vascular plants, and mammals appear to obey quarter-power scaling rules. Among the most famous of these rules is Kleiber's (i.e. basal metabolic rates scale as the three-quarters power of body mass), which has a botanical analogue (i.e. annual plant growth rates scale as the three-quarters power of total body mass). Numerous theories have tried to explain why these rules exist, but each has been heavily criticized either on conceptual or empirical grounds. N,P-STOICHIOMETRY: Recent models predicting growth rates on the basis of how total cell, tissue, or organism nitrogen and phosphorus are allocated, respectively, to protein and rRNA contents may provide the answer, particularly in light of the observation that annual plant growth rates scale linearly with respect to standing leaf mass and that total leaf mass scales isometrically with respect to nitrogen but as the three-quarters power of leaf phosphorus. For example, when these relationships are juxtaposed with other allometric trends, a simple N,P-stoichiometric model successfully predicts the relative growth rates of 131 diverse C3 and C4 species. The melding of allometric and N,P-stoichiometric theoretical insights provides a robust modelling approach that conceptually links the subcellular 'machinery' of protein/ribosomal metabolism to observed growth rates of uni- and multicellular organisms. Because the operation of this 'machinery' is basic to the biology of all life forms, its allometry may provide a mechanistic explanation for the apparent ubiquity of quarter-power scaling rules.

  2. Simultaneous quarter-wave plate and half-mirror operation through a highly flexible single layer anisotropic metasurface.

    PubMed

    Khan, M Ismail; Tahir, Farooq A

    2017-11-22

    A highly flexible single-layer metasurface manifesting quarter-wave plate as well as half-mirror (1:1 beam-splitter) operation in the microwave frequency regime is being presented in this research. The designed metasurface reflects half power of the impinging linearly polarized electromagnetic wave as circularly polarized wave while the remaining half power is transmitted as circularly polarized wave at resonance frequency. Similarly, a circularly polarized incident wave is reflected and transmitted as linearly polarized wave with equal half powers. Moreover, the response of the metasurface is quite stable against the variations in the incidence angle up to 45°. The measurements performed on the fabricated prototype exhibit a good agreement with the simulation results. The compact size, flexible structure, angular stability and two in one operation (operating as a quarter-wave plate and beam-splitter at the same time) are the main characteristics of the subject metasurface that makes it a potential candidate for numerous applications in communication and miniaturized and conformal polarization control devices.

  3. Programmable Logic Application Notes

    NASA Technical Reports Server (NTRS)

    Katz, Richard

    2000-01-01

    This column will be provided each quarter as a source for reliability, radiation results, NASA capabilities, and other information on programmable logic devices and related applications. This quarter will continue a series of notes concentrating on analysis techniques with this issue's section discussing: Digital Timing Analysis Tools and Techniques. Articles in this issue include: SX and SX-A Series Devices Power Sequencing; JTAG and SXISX-AISX-S Series Devices; Analysis Techniques (i.e., notes on digital timing analysis tools and techniques); Status of the Radiation Hard reconfigurable Field Programmable Gate Array Program, Input Transition Times; Apollo Guidance Computer Logic Study; RT54SX32S Prototype Data Sets; A54SX32A - 0.22 micron/UMC Test Results; Ramtron FM1608 FRAM; and Analysis of VHDL Code and Synthesizer Output.

  4. RTO Technical Publications: A Quarterly Listing

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A quarterly listing of RTO technical publications is presented. The topics include: Handbook on the Analysis of Smaller-Scale Contingency Operations in Long Term Defence Planning; 2) Radar Polarimetry and Interferometry; 3) Combat Casualty Care in Ground-Based Tactical Situations: Trauma Technology and Emergency Medical Procedures; and 4) RTO Technical Publications: A Quarterly Listing

  5. Data Fusion

    DTIC Science & Technology

    2014-05-01

    CDiff Antibiotics) 4.5.3 Preliminary Results of Prototype 1 Figure 5: Mapped Cases of Clostridium difficile by ward over 1 year KGH C. Diff. All...Quarters Figure 6: Mapped Cases of Clostridium difficile by ward over 3 months KGH C. Diff. Q1 Figure 7: Mapped Cases of Methicillin Resistant Staph...Competing Technologies B-2 Schedule Performance Summary B-3 Cost Performance Summary Annex C Publications, Presentations, Patents Bibliography List of

  6. Air-liquid solar collector for solar heating, combined heating and cooling, and hot water subsystems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A collection of quarterly reports consisting of the installation and layout design of the air collector system for commercial applications, completion of the preliminary design review, detailed design efforts, and preparation of the verification test plan are given. Performance specifications and performance testing of a prototype model of a two manifold, 144 tube air collector array is presented.

  7. Private Observatories in South Africa

    NASA Astrophysics Data System (ADS)

    Rijsdijk, C.

    2016-12-01

    Descriptions of private observatories in South Africa, written by their owners. Positions, equipment descriptions and observing programmes are given. Included are: Klein Karoo Observatory (B. Monard), Cederberg Observatory (various), Centurion Planetary and Lunar Observatory (C. Foster), Le Marischel Observatory (L. Ferreira), Sterkastaaing Observatory (M. Streicher), Henley on Klip (B. Fraser), Archer Observatory (B. Dumas), Overbeek Observatory (A. Overbeek), Overberg Observatory (A. van Staden), St Cyprian's School Observatory, Fisherhaven Small Telescope Observatory (J. Retief), COSPAR 0433 (G. Roberts), COSPAR 0434 (I. Roberts), Weltevreden Karoo Observatory (D. Bullis), Winobs (M. Shafer)

  8. Intelligent Network Flow Optimization (INFLO) prototype : Seattle small-scale demonstration plan.

    DOT National Transportation Integrated Search

    2015-01-01

    This report describes the INFLO Prototype Small-Scale Demonstration to be performed in Seattle Washington. This demonstration is intended to demonstrate that the INFLO Prototype, previously demonstrated in a controlled environment, functions well in ...

  9. The « 3-D donut » electrostatic analyzer for millisecond timescale electron measurements in the solar wind

    NASA Astrophysics Data System (ADS)

    Berthomier, M.; Techer, J. D.

    2017-12-01

    Understanding electron acceleration mechanisms in planetary magnetospheres or energy dissipation at electron scale in the solar wind requires fast measurement of electron distribution functions on a millisecond time scale. Still, since the beginning of space age, the instantaneous field of view of plasma spectrometers is limited to a few degrees around their viewing plane. In Earth's magnetosphere, the NASA MMS spacecraft use 8 state-of-the-art sensor heads to reach a time resolution of 30 milliseconds. This costly strategy in terms of mass and power consumption can hardly be extended to the next generation of constellation missions that would use a large number of small-satellites. In the solar wind, using the same sensor heads, the ESA THOR mission is expected to reach the 5ms timescale in the thermal energy range, up to 100eV. We present the « 3-D donut » electrostatic analyzer concept that can change the game for future space missions because of its instantaneous hemispheric field of view. A set of 2 sensors is sufficient to cover all directions over a wide range of energy, e.g. up to 1-2keV in the solar wind, which covers both thermal and supra-thermal particles. In addition, its high sensitivity compared to state of the art instruments opens the possibility of millisecond time scale measurements in space plasmas. With CNES support, we developed a high fidelity prototype (a quarter of the full « 3-D donut » analyzer) that includes all electronic sub-systems. The prototype weights less than a kilogram. The key building block of the instrument is an imaging detector that uses EASIC, a low-power front-end electronics that will fly on the ESA Solar Orbiter and on the NASA Parker Solar Probe missions.

  10. Testing and Analysis of the First Plastic Melt Waste Compactor Prototype

    NASA Technical Reports Server (NTRS)

    Pace, Gregory S.; Fisher, John W.

    2005-01-01

    A half scale Plastic Melt Waste Compactor prototype has been developed at NASA Ames Research Center. The half scale prototype unit will lead to the development of a full scale Plastic Melt Waste Compactor prototype that is representative of flight hardware that would be used on near and far term space missions. This report details the testing being done on the prototype Plastic Melt Waste Compactor by the Solid Waste Management group at NASA Ames Research Center. The tests are designed to determine the prototype's functionality, simplicity of operation, ability to contain and control noxious off-gassing, biological stability of the processed waste, and water recovery potential using a waste composite that is representative of the types of wastes produced on the International Space Station, Space Shuttle, MIR and Skylab missions.

  11. Prospective study of Centurion® versus Infiniti® phacoemulsification systems: surgical and visual outcomes.

    PubMed

    Oh, Lawrence J; Nguyen, Chu Luan; Wong, Eugene; Wang, Samuel S Y; Francis, Ian C

    2017-01-01

    To evaluate surgical outcomes (SOs) and visual outcomes (VOs) in cataract surgery comparing the Centurion ® phacoemulsification system (CPS) with the Infiniti ® phacoemulsification system (IPS). Prospective, consecutive study in a single-site private practice. Totally 412 patients undergoing cataract surgery with either the CPS using the 30-degree balanced ® tip ( n =207) or the IPS using the 30-degree Kelman ® tip ( n =205). Intraoperative and postoperative outcomes were documented prospectively up to one month follow-up. Nuclear sclerosis (NS) grade, cumulated dissipated energy (CDE), preoperative corrected distance visual acuity (CDVA), and CDVA at one month were recorded. CDE was 13.50% less in the whole CPS compared with the whole IPS subcohort. In eyes with NS grade III or greater, CDE was 28.87% less with CPS ( n =70) compared with IPS ( n =44) ( P =0.010). Surgical complications were not statistically different between the two subcohorts ( P =0.083), but in the one case of vitreous loss using the CPS, CDVA of 6/4 was achieved at one month. The mean CDVAs (VOs) at one month for NS grade III and above cataracts were -0.17 logMAR (6/4.5) in the CPS and -0.15 logMAR (6/4.5) in the IPS subcohort respectively ( P =0.033). CDE is 28.87% less, and VOs are significantly improved, in denser cataracts in the CPS compared with the IPS. The authors recommend the CPS for cases with denser nuclei.

  12. Allometric scaling in-vitro

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Arti

    2017-02-01

    About two decades ago, West and coworkers established a model which predicts that metabolic rate follows a three quarter power relationship with the mass of an organism, based on the premise that tissues are supplied nutrients through a fractal distribution network. Quarter power scaling is widely considered a universal law of biology and it is generally accepted that were in-vitro cultures to obey allometric metabolic scaling, they would have more predictive potential and could, for instance, provide a viable substitute for animals in research. This paper outlines a theoretical and computational framework for establishing quarter power scaling in three-dimensional spherical constructs in-vitro, starting where fractal distribution ends. Allometric scaling in non-vascular spherical tissue constructs was assessed using models of Michaelis Menten oxygen consumption and diffusion. The models demonstrate that physiological scaling is maintained when about 5 to 60% of the construct is exposed to oxygen concentrations less than the Michaelis Menten constant, with a significant concentration gradient in the sphere. The results have important implications for the design of downscaled in-vitro systems with physiological relevance.

  13. Future Directions for Space Transportation and Propulsion at NASA

    NASA Technical Reports Server (NTRS)

    Sackheim, Robert L.

    2005-01-01

    Contents include the following: Oxygen Compatible Materials. Manufacturing Technology Demonstrations. Turbopump Inducer Waterflow Test. Turbine Damping "Whirligig" Test. Single Element Preburner and Main Injector Test. 40K Multi-Element Preburner and MI. Full-Scale Battleship Preburner. Prototype Preburner Test Article. Full-Scale Prototype TCA. Turbopump Hot-Fire Test Article. Prototype Engine. Validated Analytical Models.

  14. Experimental investigation of the crashworthiness of scaled composite sailplane fuselages

    NASA Technical Reports Server (NTRS)

    Kampf, Karl-Peter; Crawley, Edward F.; Hansman, R. John, Jr.

    1989-01-01

    The crash dynamics and energy absorption of composite sailplane fuselage segments undergoing nose-down impact were investigated. More than 10 quarter-scale structurally similar test articles, typical of high-performance sailplane designs, were tested. Fuselages segments were fabricated of combinations of fiberglass, graphite, Kevlar, and Spectra fabric materials. Quasistatic and dynamic tests were conducted. The quasistatic tests were found to replicate the strain history and failure modes observed in the dynamic tests. Failure modes of the quarter-scale model were qualitatively compared with full-scale crash evidence and quantitatively compared with current design criteria. By combining material and structural improvements, substantial increases in crashworthiness were demonstrated.

  15. NEAMS update quarterly report for January - March 2012.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, K.S.; Hayes, S.; Pointer, D.

    Quarterly highlights are: (1) The integration of Denovo and AMP was demonstrated in an AMP simulation of the thermo-mechanics of a complete fuel assembly; (2) Bison was enhanced with a mechanistic fuel cracking model; (3) Mechanistic algorithms were incorporated into various lower-length-scale models to represent fission gases and dislocations in UO2 fuels; (4) Marmot was improved to allow faster testing of mesoscale models using larger problem domains; (5) Component models of reactor piping were developed for use in Relap-7; (6) The mesh generator of Proteus was updated to accept a mesh specification from Moose and equations were formulated for themore » intermediate-fidelity Proteus-2D1D module; (7) A new pressure solver was implemented in Nek5000 and demonstrated to work 2.5 times faster than the previous solver; (8) Work continued on volume-holdup models for two fuel reprocessing operations: voloxidation and dissolution; (9) Progress was made on a pyroprocessing model and the characterization of pyroprocessing emission signatures; (10) A new 1D groundwater waste transport code was delivered to the used fuel disposition (UFD) campaign; (11) Efforts on waste form modeling included empirical simulation of sodium-borosilicate glass compositions; (12) The Waste team developed three prototypes for modeling hydride reorientation in fuel cladding during very long-term fuel storage; (13) A benchmark demonstration problem (fission gas bubble growth) was modeled to evaluate the capabilities of different meso-scale numerical methods; (14) Work continued on a hierarchical up-scaling framework to model structural materials by directly coupling dislocation dynamics and crystal plasticity; (15) New 'importance sampling' methods were developed and demonstrated to reduce the computational cost of rare-event inference; (16) The survey and evaluation of existing data and knowledge bases was updated for NE-KAMS; (17) The NEAMS Early User Program was launched; (18) The Nuclear Regulatory Commission (NRC) Office of Regulatory Research was introduced to the NEAMS program; (19) The NEAMS overall software quality assurance plan (SQAP) was revised to version 1.5; and (20) Work continued on NiCE and its plug-ins and other utilities, such as Cubit and VisIt.« less

  16. Prospective study of Centurion® versus Infiniti® phacoemulsification systems: surgical and visual outcomes

    PubMed Central

    Oh, Lawrence J.; Nguyen, Chu Luan; Wong, Eugene; Wang, Samuel S.Y.; Francis, Ian C.

    2017-01-01

    AIM To evaluate surgical outcomes (SOs) and visual outcomes (VOs) in cataract surgery comparing the Centurion® phacoemulsification system (CPS) with the Infiniti® phacoemulsification system (IPS). METHODS Prospective, consecutive study in a single-site private practice. Totally 412 patients undergoing cataract surgery with either the CPS using the 30-degree balanced® tip (n=207) or the IPS using the 30-degree Kelman® tip (n=205). Intraoperative and postoperative outcomes were documented prospectively up to one month follow-up. Nuclear sclerosis (NS) grade, cumulated dissipated energy (CDE), preoperative corrected distance visual acuity (CDVA), and CDVA at one month were recorded. RESULTS CDE was 13.50% less in the whole CPS compared with the whole IPS subcohort. In eyes with NS grade III or greater, CDE was 28.87% less with CPS (n=70) compared with IPS (n=44) (P=0.010). Surgical complications were not statistically different between the two subcohorts (P=0.083), but in the one case of vitreous loss using the CPS, CDVA of 6/4 was achieved at one month. The mean CDVAs (VOs) at one month for NS grade III and above cataracts were -0.17 logMAR (6/4.5) in the CPS and -0.15 logMAR (6/4.5) in the IPS subcohort respectively (P=0.033). CONCLUSION CDE is 28.87% less, and VOs are significantly improved, in denser cataracts in the CPS compared with the IPS. The authors recommend the CPS for cases with denser nuclei. PMID:29181313

  17. Design and Vertical Tests of SPS-series Double-Quarter Wave (DQW) Cavity Prototypes for the HL-LHC Crab Cavity System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verdú-Andrés, S.; et al.

    Crab crossing is essential for high-luminosity colliders. The High Luminosity Large Hadron Collider (HL-LHC) will equip one of its Interaction Points (IP1) with Double-Quarter Wave (DQW) crab cavities. A DQW cavity is a new generation of deflecting RF cavities that stands out for its compactness and broad frequency separation between fundamental and first high-order modes. The deflecting kick is provided by its fundamental mode. Each HL-LHC DQW cavity shall provide a nominal deflecting voltage of 3.4 MV, although up to 5.0 MV may be required. A Proof-of-Principle (PoP) DQW cavity was limited by quench at 4.6 MV. This paper describesmore » a new, highly optimized cavity, designated DQW SPS-series, which satisfies dimensional, cryogenic, manufacturing and impedance requirements for beam tests at SPS and operation in LHC. Two prototypes of this DQW SPS-series were fabricated by US industry and cold tested after following conventional SRF surface treatment. Both units outperformed the PoP cavity, reaching a deflecting voltage of 5.3-5.9 MV. This voltage - the highest reached by a DQW cavity - is well beyond the nominal voltage of 3.4 MV and may even operate at the ultimate voltage of 5.0MVwith sufficient margin. This paper covers fabrication, surface preparation and cryogenic RF test results and implications.« less

  18. The magnetohydrodynamics coal-fired flow facility

    NASA Astrophysics Data System (ADS)

    1990-12-01

    The purpose of this report is to provide the status of a multi-task research and development program in coal fired MHD/steam combined cycle power production (more detailed information on specific topics is presented in topical reports). Current emphasis is on developing technology for the Steam Bottoming Cycle Program. The approach being taken is to design test components that simulate the most important process variables, such as gas temperature, chemical composition, tube metal temperature, particulate loading, etc., to gain test data needed for scale-up to larger size components. This quarter, a 217 hour coal-fired long-duration test was completed as part of the Proof-of-Concept (POC) test program. The aggregate test time is now 1512 hours of a planned 2000 hours on Eastern coal. The report contains results of testing the newly installed automatic ash/seed handling system and the high pressure sootblower system. The conceptual design for the modifications to the coal processing system to permit operation with Western coal is presented. Results of analysis of superheater test module tube removed after 500 hours of coal-fired testing are summarized. The status of the environmental program is reported. Pollutant measurements from remote monitoring trailers that give the dispersion of stack emissions are presented. Results of advanced measurement systems operated by both UTSI and Mississippi State University during the POC test are summarized. Actions to prepare for the installation of a 20MW(sub t) prototype of the TRW slag rejection combustor first stage are discussed. Contract management and administrative actions completed during the quarter are included.

  19. Development of the Plastic Melt Waste Compactor- Design and Fabrication of the Half-Scale Prototype

    NASA Technical Reports Server (NTRS)

    Pace, Gregory S.; Fisher, John

    2005-01-01

    A half scale version of a device called the Plastic Melt Waste Compactor prototype has been developed at NASA Ames Research Center to deal with plastic based wastes that are expected to be encountered in future human space exploration scenarios such as Lunar or Martian Missions. The Plastic Melt Waste Compactor design was based on the types of wastes produced on the International Space Station, Space Shuttle, MIR and Skylab missions. The half scale prototype unit will lead to the development of a full scale Plastic Melt Waste Compactor prototype that is representative of flight hardware that would be used on near and far term space missions. This report details the progress of the Plastic Melt Waste Compactor Development effort by the Solid Waste Management group at NASA Ames Research Center.

  20. Inertial confinement fusion quarterly report, October--December 1992. Volume 3, No. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixit, S.N.

    1992-12-31

    This report contains papers on the following topics: The Beamlet Front End: Prototype of a new pulse generation system;imaging biological objects with x-ray lasers; coherent XUV generation via high-order harmonic generation in rare gases; theory of high-order harmonic generation; two-dimensional computer simulations of ultra- intense, short-pulse laser-plasma interactions; neutron detectors for measuring the fusion burn history of ICF targets; the recirculator; and lasnex evolves to exploit computer industry advances.

  1. Line focus concentrating collector for Copper Mountain Ski Resort, Colorado (Engineering Materials)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-06-02

    The present invention is a device which develops an accurate line focus concentrating collector by flexural bending of thin reflective materials. This method avoids the need for expensive tooling and support frame fabrication. The technical work conducted during this quarter included completion of designs for the prototype system for the Copper Mountain Ski Resort in Colorado. Evaluation of alternate tracking and drive systems and final design of the support system. These drawings accompany DOE/CS/15072--T4.

  2. Relating Child-Rearing Technique to the Child's Self-Concept.

    ERIC Educational Resources Information Center

    Olowu, A. A.

    1983-01-01

    Childrearing technique was found to be related to child's self-concept in a study of 686 adolescent secondary school pupils, three-quarters of whom were White English and one-quarter of whom were Nigerian Yoruba. Subjects rated their parents' childrearing techniques and completed a self-concept scale. (RH)

  3. Prototype Vector Machine for Large Scale Semi-Supervised Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Kai; Kwok, James T.; Parvin, Bahram

    2009-04-29

    Practicaldataminingrarelyfalls exactlyinto the supervisedlearning scenario. Rather, the growing amount of unlabeled data poses a big challenge to large-scale semi-supervised learning (SSL). We note that the computationalintensivenessofgraph-based SSLarises largely from the manifold or graph regularization, which in turn lead to large models that are dificult to handle. To alleviate this, we proposed the prototype vector machine (PVM), a highlyscalable,graph-based algorithm for large-scale SSL. Our key innovation is the use of"prototypes vectors" for effcient approximation on both the graph-based regularizer and model representation. The choice of prototypes are grounded upon two important criteria: they not only perform effective low-rank approximation of themore » kernel matrix, but also span a model suffering the minimum information loss compared with the complete model. We demonstrate encouraging performance and appealing scaling properties of the PVM on a number of machine learning benchmark data sets.« less

  4. Comparison of cumulative dissipated energy delivered by active-fluidic pressure control phacoemulsification system versus gravity-fluidics.

    PubMed

    Gonzalez-Salinas, Roberto; Garza-Leon, Manuel; Saenz-de-Viteri, Manuel; Solis-S, Juan C; Gulias-Cañizo, Rosario; Quiroz-Mercado, Hugo

    2017-08-22

    To compare the cumulative dissipated energy (CDE), aspiration time and estimated aspiration fluid utilized during phacoemulsification cataract surgery using two phacoemulsification systems . A total of 164 consecutive eyes of 164 patients undergoing cataract surgery, 82 in the active-fluidics group and 82 in the gravity-fluidics group were enrolled in this study. Cataracts graded NII to NIII using LOCS II were included. Each subject was randomly assigned to one of the two platforms with a specific configuration: the active-fluidics Centurion ® phacoemulsification system or the gravity-fluidics Infiniti ® Vision System. CDE, aspiration time (AT) and the mean estimated aspiration fluid (EAF) were registered and compared. A mean age of 68.3 ± 9.8 years was found (range 57-92 years), and no significant difference was evident between both groups. A positive correlation between the CDE values obtained by both platforms was verified (r = 0.271, R 2  = 0.073, P = 0.013). Similarly, a significant correlation was evidenced for the EAF (r = 0.334, R 2  = 0.112, P = 0.046) and AT values (r = 0.156, R 2  = 0.024, P = 0.161). A statistically significantly lower CDE count, aspiration time and estimated fluid were obtained using the active-fluidics configuration when compared to the gravity-fluidics configuration by 19.29, 12.10 and 9.29%, respectively (P = 0.001, P < 0.0001 and P = 0.001). The active-fluidics Centurion ® phacoemulsification system achieved higher surgical efficiency than the gravity-fluidics Infiniti ® IP system for NII and NIII cataracts.

  5. Two-speed phacoemulsification for soft cataracts using optimized parameters and procedure step toolbar with the CENTURION Vision System and Balanced Tip.

    PubMed

    Davison, James A

    2015-01-01

    To present a cause of posterior capsule aspiration and a technique using optimized parameters to prevent it from happening when operating soft cataracts. A prospective list of posterior capsule aspiration cases was kept over 4,062 consecutive cases operated with the Alcon CENTURION machine and Balanced Tip. Video analysis of one case of posterior capsule aspiration was accomplished. A surgical technique was developed using empirically derived machine parameters and customized setting-selection procedure step toolbar to reduce the pace of aspiration of soft nuclear quadrants in order to prevent capsule aspiration. Two cases out of 3,238 experienced posterior capsule aspiration before use of the soft quadrant technique. Video analysis showed an attractive vortex effect with capsule aspiration occurring in 1/5 of a second. A soft quadrant removal setting was empirically derived which had a slower pace and seemed more controlled with no capsule aspiration occurring in the subsequent 824 cases. The setting featured simultaneous linear control from zero to preset maximums for: aspiration flow, 20 mL/min; and vacuum, 400 mmHg, with the addition of torsional tip amplitude up to 20% after the fluidic maximums were achieved. A new setting selection procedure step toolbar was created to increase intraoperative flexibility by providing instantaneous shifting between the soft and normal settings. A technique incorporating a reduced pace for soft quadrant acquisition and aspiration can be accomplished through the use of a dedicated setting of integrated machine parameters. Toolbar placement of the procedure button next to the normal setting procedure button provides the opportunity to instantaneously alternate between the two settings. Simultaneous surgeon control over vacuum, aspiration flow, and torsional tip motion may make removal of soft nuclear quadrants more efficient and safer.

  6. Biomedical device prototype based on small scale hydrodynamic cavitation

    NASA Astrophysics Data System (ADS)

    Ghorbani, Morteza; Sozer, Canberk; Alcan, Gokhan; Unel, Mustafa; Ekici, Sinan; Uvet, Huseyin; Koşar, Ali

    2018-03-01

    This study presents a biomedical device prototype based on small scale hydrodynamic cavitation. The application of small scale hydrodynamic cavitation and its integration to a biomedical device prototype is offered as an important alternative to other techniques, such as ultrasound therapy, and thus constitutes a local, cheap, and energy-efficient solution, for urinary stone therapy and abnormal tissue ablation (e.g., benign prostate hyperplasia (BPH)). The destructive nature of bubbly, cavitating, flows was exploited, and the potential of the prototype was assessed and characterized. Bubbles generated in a small flow restrictive element (micro-orifice) based on hydrodynamic cavitation were utilized for this purpose. The small bubbly, cavitating, flow generator (micro-orifice) was fitted to a small flexible probe, which was actuated with a micromanipulator using fine control. This probe also houses an imaging device for visualization so that the emerging cavitating flow could be locally targeted to the desired spot. In this study, the feasibility of this alternative treatment method and its integration to a device prototype were successfully accomplished.

  7. Changes in the contents of strontium, barium, and lead in scales of bream Abramis brama from the Mozhaisk Reservoir over a quarter century.

    PubMed

    Saltykova, E A; Pelgunova, L A; Sokolova, E L; Skomorokhov, M O; Demidova, T B; Golubtsov, A S

    2016-03-01

    The heavy metal contents in the scales of bream (Abramis brama) from the Mozhaisk Reservoir collected in the second half of the 1980s were compared to the current values. The concentrations of three out of the seven elements studied in the bream scales have changed severalfold during the past quarter century: that of strontium has decreased, and those of barium and lead have increased. Short-term variations of heavy metal contents have proved to be smaller than the observed long-term differences. There is grounds to believe that these long-term differences adequately reflect the changes that have occurred in the water body.

  8. Ceramic High Efficiency Particulate Air (HEPA) Filter Final Report CRADA No. TC02160.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, M.; Bergman, W.

    2017-08-25

    The technical objective of this project was to develop a ceramic HEPA filter technology, by initially producing and testing coupon ceramics, small scale prototypes, and full scale prototype HEPA filters, and to address relevant manufacturing and commercialization technical issues.

  9. Advances in the Lightweight Air-Liquid Composite Heat Exchanger Development for Space Exploration Applications

    NASA Technical Reports Server (NTRS)

    Shin, E. Eugene; Johnston, J. Chris; Haas, Daniel

    2011-01-01

    An advanced, lightweight composite modular Air/Liquid (A/L) Heat Exchanger (HX) Prototype for potential space exploration thermal management applications was successfully designed, manufactured, and tested. This full-scale Prototype consisting of 19 modules, based on recommendations from its predecessor Engineering Development unit (EDU) but with improved thermal characteristics and manufacturability, was 11.2 % lighter than the EDU and achieves potentially a 42.7% weight reduction from the existing state-of-the-art metallic HX demonstrator. However, its higher pressure drop (0.58 psid vs. 0.16 psid of the metal HX) has to be mitigated by foam material optimizations and design modifications including a more systematic air channel design. Scalability of the Prototype design was validated experimentally by comparing manufacturability and performance between the 2-module coupon and the 19-module Prototype. The Prototype utilized the thermally conductive open-cell carbon foam material but with lower density and adopted a novel high-efficiency cooling system with significantly increased heat transfer contact surface areas, improved fabricability and manufacturability compared to the EDU. Even though the Prototype was required to meet both the thermal and the structural specifications, accomplishing the thermal requirement was a higher priority goal for this first version. Overall, the Prototype outperformed both the EDU and the corresponding metal HX, particularly in terms of specific heat transfer, but achieved 93.4% of the target. The next generation Prototype to achieve the specification target, 3,450W would need 24 core modules based on the simple scaling factor. The scale-up Prototype will weigh about 14.7 Kg vs. 21.6 Kg for the metal counterpart. The advancement of this lightweight composite HX development from the original feasibility test coupons to EDU to Prototype is discussed in this paper.

  10. Development of a superconductor magnetic suspension and balance prototype facility for studying the feasibility of applying this technique to large scale aerodynamic testing

    NASA Technical Reports Server (NTRS)

    Zapata, R. N.; Humphris, R. R.; Henderson, K. C.

    1975-01-01

    The basic research and development work towards proving the feasibility of operating an all-superconductor magnetic suspension and balance device for aerodynamic testing is presented. The feasibility of applying a quasi-six-degree-of freedom free support technique to dynamic stability research was studied along with the design concepts and parameters for applying magnetic suspension techniques to large-scale aerodynamic facilities. A prototype aerodynamic test facility was implemented. Relevant aspects of the development of the prototype facility are described in three sections: (1) design characteristics; (2) operational characteristics; and (3) scaling to larger facilities.

  11. Thermal-Hydraulic Analysis of an Experimental Reactor Cavity Cooling System with Air. Part I: Experiments; Part II: Separate Effects Tests and Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corradin, Michael; Anderson, M.; Muci, M.

    This experimental study investigates the thermal hydraulic behavior and the heat removal performance for a scaled Reactor Cavity Cooling System (RCCS) with air. A quarter-scale RCCS facility was designed and built based on a full-scale General Atomics (GA) RCCS design concept for the Modular High Temperature Gas Reactor (MHTGR). The GA RCCS is a passive cooling system that draws in air to use as the cooling fluid to remove heat radiated from the reactor pressure vessel to the air-cooled riser tubes and discharged the heated air into the atmosphere. Scaling laws were used to preserve key aspects and to maintainmore » similarity. The scaled air RCCS facility at UW-Madison is a quarter-scale reduced length experiment housing six riser ducts that represent a 9.5° sector slice of the full-scale GA air RCCS concept. Radiant heaters were used to simulate the heat radiation from the reactor pressure vessel. The maximum power that can be achieved with the radiant heaters is 40 kW with a peak heat flux of 25 kW per meter squared. The quarter-scale RCCS was run under different heat loading cases and operated successfully. Instabilities were observed in some experiments in which one of the two exhaust ducts experienced a flow reversal for a period of time. The data and analysis presented show that the RCCS has promising potential to be a decay heat removal system during an accident scenario.« less

  12. Water Powered Tools

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Space Spin-Offs, Inc. under a contract with Lewis Research Center and Marshall Space Flight Center produced a new water-powered saw that cuts through concrete and steel plate reducing danger of explosion or electric shock in rescue and other operations. In prototype unit efficient water-powered turbine drives an 8 inch diameter grinding disk at 6,600 rpm. Exhaust water cools disk and workpiece quenching any sparks produced by cutting head. At maximum power, tool easily cuts through quarter inch steel plate. Adapter heads for chain saws, impact wrenches, heavy duty drills, and power hack saws can be fitted.

  13. Microtube strip heat exchanger

    NASA Astrophysics Data System (ADS)

    Doty, F. D.

    1991-07-01

    During the last quarter, Doty Scientific, Inc. (DSI) continued to make progress on the microtube strip (MTS) heat exchanger. The DSI completed a heat exchanger stress analysis of the ten-module heat exchanger bank; and performed a shell-side flow inhomogeneity analysis of the three-module heat exchanger bank. The company produced 50 tubestrips using an in-house CNC milling machine and began pressing them onto tube arrays. The DSI revised some of the tooling required to encapsulate a tube array and press tubestrips into the array to improve some of the prototype tooling.

  14. Chapter 13 - Perspectives on LANDFIRE Prototype Project Accuracy Assessment

    Treesearch

    James Vogelmann; Zhiliang Zhu; Jay Kost; Brian Tolk; Donald Ohlen

    2006-01-01

    The purpose of this chapter is to provide a general overview of the many aspects of accuracy assessment pertinent to the Landscape Fire and Resource Management Planning Tools Prototype Project (LANDFIRE Prototype Project). The LANDFIRE Prototype formed a large and complex research and development project with many broad-scale data sets and products developed throughout...

  15. Geometry in flipbook multimedia, a role of technology to improve mathematics learning quality: the case in madiun, east java

    NASA Astrophysics Data System (ADS)

    Andini, S.; Fitriana, L.; Budiyono

    2018-04-01

    This research is aimed to describe the process and to get product development of learning material using flipbook. The learning material is developed in geometry, especially quadrilateral. This research belongs to Research and Development (R&D). The procedure includes the steps of Budiyono Model such as conducting preliminary research, planning and developing a theoretical and prototype product, and determining product quality (validity, practicality, and effectiveness). The average assessment result of the theoretical product by the experts gets 4,54, while validity result of prototype product by the experts is 4,62. Practicability is obtained by the implementation of flipbook prototype in each meeting of limited-scale try out based on learning observation, with the average score of 4,10 and increasing of 4,50 in wide-scale try out. The effectiveness of the prototype product is obtained by the result from pretest and posttest on a limited-scale and a wide-scale try out. The limited-scale pre-test result showed a significant increase in average score of wide-scale pre-test of 25,2, and there is an increase in the average score of posttest on limited-scale try out and wide-scale try out is 8,16. The result of product quality can be concluded that flipbook media can be used in the geometry learning in elementary school which implemented curriculum 2013.

  16. The Full-Scale Prototype for the Fluorescence Detector Array of Single-Pixel Telescopes

    NASA Astrophysics Data System (ADS)

    Fujii, T.; Malacari, M.; Bellido, J. A.; Farmer, J.; Galimova, A.; Horvath, P.; Hrabovsky, M.; Mandat, D.; Matalon, A.; Matthews, J. N.; Merolle, M.; Ni, X.; Nozka, L.; Palatka, M.; Pech, M.; Privitera, P.; Schovanek, P.; Thomas, S. B.; Travnicek, P.

    The Fluorescence detector Array of Single-pixel Telescopes (FAST) is a design concept for the next generation of ultrahigh-energy cosmic ray (UHECR) observatories, addressing the requirements for a large-area, low-cost detector suitable for measuring the properties of the highest energy cosmic rays. In the FAST design, a large field of view is covered by a few pixels at the focal plane of a mirror or Fresnel lens. Motivated by the successful detection of UHECRs using a prototype comprised of a single 200 mm photomultiplier-tube and a 1 m2 Fresnel lens system, we have developed a new "full-scale" prototype consisting of four 200 mm photomultiplier-tubes at the focus of a segmented mirror of 1.6 m in diameter. We report on the status of the full-scale prototype, including test measurements made during first light operation at the Telescope Array site in central Utah, U.S.A.

  17. Technical report on prototype intelligent network flow optimization (INFLO) dynamic speed harmonization and queue warning.

    DOT National Transportation Integrated Search

    2015-06-01

    This Technical Report on Prototype Intelligent Network Flow Optimization (INFLO) Dynamic Speed Harmonization and Queue Warning is the final report for the project. It describes the prototyping, acceptance testing and small-scale demonstration of the ...

  18. Application of the 1:2,000,000-scale data base: A National Atlas sectional prototype

    USGS Publications Warehouse

    Dixon, Donna M.

    1985-01-01

    A study of the potential to produce a National Atlas sectional prototype from the 1:2,000,000-scale data base was concluded recently by the National Mapping Division, U. S. Geological Survey. This paper discusses the specific digital cartographic production procedures involved in the preparation of the prototype map, as well as the theoretical and practical cartographic framework for the study. Such items as data organization, data classification, digital techniques, data conversions, and modification of traditional design specifications for an automated environment are discussed. The bulk of the cartographic work for the production of the prototype was carried out in raster format on the Scitex Response-250 mapping system.

  19. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis

    2001-07-25

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 4/03/2001 through 7/02/2001. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives. Note that this version of the quarterly technical report is a revision to add the reports from subcontractors Montana State and Oak Ridge National Laboratories The significant accomplishments for this quarter include: Development of an experimental plan and initiation of experiments to create a calibration curve that correlates algal chlorophyll levels with carbon levels (to simplify future experimentalmore » procedures); Completion of debugging of the slug flow reactor system, and development of a plan for testing the pressure drop of the slug flow reactor; Design and development of a new bioreactor screen design which integrates the nutrient delivery drip system and the harvesting system; Development of an experimental setup for testing the new integrated drip system/harvesting system; Completion of model-scale bioreactor tests examining the effects of CO{sub 2} concentration levels and lighting levels on Nostoc 86-3 growth rates; Completion of the construction of a larger model-scale bioreactor to improve and expand testing capabilities and initiation of tests; Substantial progress on construction of a pilot-scale bioreactor; and Preliminary economic analysis of photobioreactor deployment. Plans for next quarter's work are included in the conclusions. A preliminary economic analysis is included as an appendix.« less

  20. From research plots to prototype biomass plantations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenney, W.A.; Vanstone, B.J.; Gambles, R.L.

    1993-12-31

    The development of biomass energy plantations is now expanding from the research plot phase into the next level of development at larger scale plantings. This is necessary to provide: more accurate information on biomass yields, realistic production cost figures, venues to test harvesting equipment, demonstration sites for potential producers, and a supply of feedstock for prototype conversion facilities. The paper will discuss some of these objectives and some of the challenges encountered in the scale-up process associated with a willow prototype plantation project currently under development in Eastern Canada.

  1. A Compendium of Energy Conservation Success Stories

    DOE R&D Accomplishments Database

    1988-09-01

    Three-quarters of DOE's Conservation R and D funds have been devoted to technology research and development: basic and applied research, exploratory R and D, engineering feasibility studies, pilot-scale prototype R and D, and technology demonstration. Non R and D projects have involved technology assessment program planning and analysis, model development, technology transfer and consumer information, health effects and safety research, and technical support for rule making. The success stories summarized in this compendium fall into three general categories: Completed Technology Success Stories, projects that have resulted in new energy-saving technologies that are presently being used in the private sector; Technical Success Stories, projects that have produced or disseminated important scientific/technical information likely to result in future energy savings; Program Success Stories, non-R and D activities that have resulted in nationally significant energy benefits. The Energy Conservation research and development program at DOE is managed by the Office of Conservation under the direction of the Deputy Assistant Secretary for Conservation. Three subordinate Program Offices correspond to the buildings, transportation, and industrial end-use sectors. A fourth subordinate Program Office{endash}Energy Utilization Research{endash}sponsors research and technical inventions for all end-use sectors.

  2. The Chip-Scale Atomic Clock - Prototype Evaluation

    DTIC Science & Technology

    2007-11-01

    39th Annual Precise Time and Time Interval (PTTI) Meeting THE CHIP-SCALE ATOMIC CLOCK – PROTOTYPE EVALUATION R. Lutwak *, A. Rashed...been supported by the Defense Advanced Research Projects Agency, Contract # NBCHC020050. REFERENCES [1] R. Lutwak , D. Emmons, W. Riley, and...D.C.), pp. 539-550. [2] R. Lutwak , D. Emmons, T. English, W. Riley, A. Duwel, M. Varghese, D. K. Serkland, and G. M. Peake, 2004, “The Chip-Scale

  3. Bangladesh Delta: Assessment of the Causes of Sea-level Rise Hazards and Integrated Development of Predictive Modeling Towards Mitigation and Adaptation (BanD-AID)

    NASA Astrophysics Data System (ADS)

    Kusche, J.; Shum, C. K.; Jenkins, C. J.; Chen, J.; Guo, J.; Hossain, F.; Braun, B.; Calmant, S.; Ballu, V.; Papa, F.; Kuhn, M.; Ahmed, R.; Khan, Z. H.; Hossain, M.; Bernzen, A.; Dai, C.; Jia, Y.; Krien, Y.; Kuo, C. Y.; Liibusk, A.; Shang, K.; Testut, L.; Tseng, K. H.; Uebbing, B.; Rietbroek, R.; Valty, P.; Wan, J.

    2016-12-01

    As a low-lying and the largest coastal deltaic region in the world, Bangladesh already faces tremendous vulnerability. Accelerated sea-level rise, along with tectonic, sediment load and groundwater extraction induced land uplift/subsidence, have exacerbated Bangladesh's coastal vulnerability. Climate change has further intensified these risks with increasing temperatures, greater rainfall volatility, and increased incidence of intensified cyclones, in addition to its seasonal transboundary monsoonal flooding. Our Belmont Forum/IGFA G8 project BanD-AiD, http://Belmont-BanDAiD.org, or http://Blemont-SeaLevel.org, comprises of an international cross-disciplinary team including stakeholders in Bangladesh, aims at a joint assessment of the physical and social science knowledge of the physical and social dynamics which govern coastal vulnerability and societal resilience in Bangladesh. We have built a prototype observational system, following the Belmont Challenge identified Earth System Analysis & Prediction System (ESAPS) for the Bangladesh Delta, to achieve the physical science objectives of the project. The prototype observational system is exportable to other regions of the world. We studied the physical causes of relative sea-level rise in coastal Bangladesh, with the goal to separate and quantify land subsidence and geocentric sea-level rise signals at adequate spatial scales using contemporary space geodetic and remote sensing data. We used a social and natural science integrative approach to investigate the various social and economic drivers behind land use change, population increase migration and community resilience to understand the social dynamics of this complex region and to forecast likely and alternative scenarios for maintaining the societal resilience of this vital region which currently houses a quarter of Bangladesh's 160 million people.

  4. Some scale considerations for watercourse restoration and rehabilitation

    Treesearch

    Robert R. Ziemer

    1999-01-01

    Summary - Appropriate temporal and spatial scales vary between rehabilitation objectives. A scale appropriate within a physical or biological context might not be appropriate within a political or social context. For example, corporations and stockholders consider quarterly profits and losses to be an important measure of corporate health. Politicians often focus on...

  5. Category Rating Is Based on Prototypes and Not Instances: Evidence from Feedback-Dependent Context Effects

    ERIC Educational Resources Information Center

    Petrov, Alexander A.

    2011-01-01

    Context effects in category rating on a 7-point scale are shown to reverse direction depending on feedback. Context (skewed stimulus frequencies) was manipulated between and feedback within subjects in two experiments. The diverging predictions of prototype- and exemplar-based scaling theories were tested using two representative models: ANCHOR…

  6. Including the Group Quarters Population in the US Synthesized Population Database

    PubMed Central

    Chasteen, Bernadette M.; Wheaton, William D.; Cooley, Philip C.; Ganapathi, Laxminarayana; Wagener, Diane K.

    2011-01-01

    In 2005, RTI International researchers developed methods to generate synthesized population data on US households for the US Synthesized Population Database. These data are used in agent-based modeling, which simulates large-scale social networks to test how changes in the behaviors of individuals affect the overall network. Group quarters are residences where individuals live in close proximity and interact frequently. Although the Synthesized Population Database represents the population living in households, data for the nation’s group quarters residents are not easily quantified because of US Census Bureau reporting methods designed to protect individuals’ privacy. Including group quarters population data can be an important factor in agent-based modeling because the number of residents and the frequency of their interactions are variables that directly affect modeling results. Particularly with infectious disease modeling, the increased frequency of agent interaction may increase the probability of infectious disease transmission between individuals and the probability of disease outbreaks. This report reviews our methods to synthesize data on group quarters residents to match US Census Bureau data. Our goal in developing the Group Quarters Population Database was to enable its use with RTI’s US Synthesized Population Database in the Modeling of Infectious Diseases Agent Study. PMID:21841972

  7. Allometric Scaling in Biology

    NASA Astrophysics Data System (ADS)

    Banavar, Jayanth

    2009-03-01

    The unity of life is expressed not only in the universal basis of inheritance and energetics at the molecular level, but also in the pervasive scaling of traits with body size at the whole-organism level. More than 75 years ago, Kleiber and Brody and Proctor independently showed that the metabolic rates, B, of mammals and birds scale as the three-quarter power of their mass, M. Subsequent studies showed that most biological rates and times scale as M-1/4 and M^1/4 respectively, and that these so called quarter-power scaling relations hold for a variety of organisms, from unicellular prokaryotes and eukaryotes to trees and mammals. The wide applicability of Kleiber's law, across the 22 orders of magnitude of body mass from minute bacteria to giant whales and sequoias, raises the hope that there is some simple general explanation that underlies the incredible diversity of form and function. We will present a general theoretical framework for understanding the relationship between metabolic rate, B, and body mass, M. We show how the pervasive quarter-power biological scaling relations arise naturally from optimal directed resource supply systems. This framework robustly predicts that: 1) whole organism power and resource supply rate, B, scale as M^3/4; 2) most other rates, such as heart rate and maximal population growth rate scale as M-1/4; 3) most biological times, such as blood circulation time and lifespan, scale as M^1/4; and 4) the average velocity of flow through the network, v, such as the speed of blood and oxygen delivery, scales as M^1/12. Our framework is valid even when there is no underlying network. Our theory is applicable to unicellular organisms as well as to large animals and plants. This work was carried out in collaboration with Amos Maritan along with Jim Brown, John Damuth, Melanie Moses, Andrea Rinaldo, and Geoff West.

  8. Structural Similitude and Scaling Laws for Plates and Shells: A Review

    NASA Technical Reports Server (NTRS)

    Simitses, G. J.; Starnes, J. H., Jr.; Rezaeepazhand, J.

    2000-01-01

    This paper deals with the development and use of scaled-down models in order to predict the structural behavior of large prototypes. The concept is fully described and examples are presented which demonstrate its applicability to beam-plates, plates and cylindrical shells of laminated construction. The concept is based on the use of field equations, which govern the response behavior of both the small model as well as the large prototype. The conditions under which the experimental data of a small model can be used to predict the behavior of a large prototype are called scaling laws or similarity conditions and the term that best describes the process is structural similitude. Moreover, since the term scaling is used to describe the effect of size on strength characteristics of materials, a discussion is included which should clarify the difference between "scaling law" and "size effect". Finally, a historical review of all published work in the broad area of structural similitude is presented for completeness.

  9. Design, Fabrication, and Testing of a Composite Rack Prototype in Support of the Deep Space Habitat Program

    NASA Technical Reports Server (NTRS)

    Smith, Russ; Hagen, Richard

    2015-01-01

    In support of the Deep Space Habitat project a number of composite rack prototypes were developed, designed, fabricated and tested to various extents ( with the International Standard Payload Rack configuration, or crew quarters, as a baseline). This paper focuses specifically on a composite rack prototype with a direct tie in to Space Station hardware. The outlined prototype is an all composite construction, excluding metallic fasteners, washers, and their associated inserts. The rack utilizes braided carbon composite tubing for the frame with the sidewalls, backwall and flooring sections utilizing aircraft grade composite honeycomb sandwich panels. Novel additively manufactured thermoplastic joints and tube inserts were also developed in support of this effort. Joint and tube insert screening tests were conducted at a preliminary level. The screening tests allowed for modification, and enhancement, of the fabrication and design approaches, which will be outlined. The initial joint tests did not include mechanical fasteners. Adhesives were utilized at the joint to composite tube interfaces, along with mechanical fasteners during final fabrication (thus creating a stronger joint than the adhesive only variant). In general the prototype was focused on a potential in-space assembly approach, or kit-of-parts construction concept, which would not necessarily require the inclusion of an adhesive in the joint regions. However, given the tie in to legacy Station hardware (and potential flight loads with imbedded hardware mass loadings), the rack was built as stiff and strong as possible. Preliminary torque down tests were also conducted to determine the feasibility of mounting the composite honeycomb panels to the composite tubing sections via the additively manufactured tube inserts. Additional fastener torque down tests were also conducted with inserts (helicoils) imbedded within the joints. Lessons learned are also included and discussed.

  10. Laboratory Scale Prototype of a Low-Speed Electrodynamic Levitation System Based on a Halbach Magnet Array

    ERIC Educational Resources Information Center

    Iniguez, J.; Raposo, V.

    2009-01-01

    In this paper we analyse the behaviour of a small-scale model of a magnetic levitation system based on the Inductrack concept. Drag and lift forces acting on our prototype, moving above a continuous copper track, are studied analytically following a simple low-speed approach. The experimental results are in good agreement with the theoretical…

  11. CRBR pump water test experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, M.E.; Huber, K.A.

    1983-01-01

    The hydraulic design features and water testing of the hydraulic scale model and prototype pump of the sodium pumps used in the primary and intermediate sodium loops of the Clinch River Breeder Reactor Plant (CRBRP) are described. The Hydraulic Scale Model tests are performed and the results of these tests are discussed. The Prototype Pump tests are performed and the results of these tests are discussed.

  12. Crown ratio influences allometric scaling in trees

    Treesearch

    Annikki Makela; Harry T. Valentine

    2006-01-01

    Allometric theories suggest that the size and shape of organisms follow universal rules, with a tendency toward quarter-power scaling. In woody plants, however, structure is influenced by branch death and shedding, which leads to decreasing crown ratios, accumulation of heartwood, and stem and branch tapering. This paper examines the impacts on allometric scaling of...

  13. Two-speed phacoemulsification for soft cataracts using optimized parameters and procedure step toolbar with the CENTURION Vision System and Balanced Tip

    PubMed Central

    Davison, James A

    2015-01-01

    Purpose To present a cause of posterior capsule aspiration and a technique using optimized parameters to prevent it from happening when operating soft cataracts. Patients and methods A prospective list of posterior capsule aspiration cases was kept over 4,062 consecutive cases operated with the Alcon CENTURION machine and Balanced Tip. Video analysis of one case of posterior capsule aspiration was accomplished. A surgical technique was developed using empirically derived machine parameters and customized setting-selection procedure step toolbar to reduce the pace of aspiration of soft nuclear quadrants in order to prevent capsule aspiration. Results Two cases out of 3,238 experienced posterior capsule aspiration before use of the soft quadrant technique. Video analysis showed an attractive vortex effect with capsule aspiration occurring in 1/5 of a second. A soft quadrant removal setting was empirically derived which had a slower pace and seemed more controlled with no capsule aspiration occurring in the subsequent 824 cases. The setting featured simultaneous linear control from zero to preset maximums for: aspiration flow, 20 mL/min; and vacuum, 400 mmHg, with the addition of torsional tip amplitude up to 20% after the fluidic maximums were achieved. A new setting selection procedure step toolbar was created to increase intraoperative flexibility by providing instantaneous shifting between the soft and normal settings. Conclusion A technique incorporating a reduced pace for soft quadrant acquisition and aspiration can be accomplished through the use of a dedicated setting of integrated machine parameters. Toolbar placement of the procedure button next to the normal setting procedure button provides the opportunity to instantaneously alternate between the two settings. Simultaneous surgeon control over vacuum, aspiration flow, and torsional tip motion may make removal of soft nuclear quadrants more efficient and safer. PMID:26355695

  14. Studies of a full-scale mechanical prototype line for the ANTARES neutrino telescope and tests of a prototype instrument for deep-sea acoustic measurements

    NASA Astrophysics Data System (ADS)

    Ageron, M.; Aguilar, J. A.; Albert, A.; Ameli, F.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardellier-Desages, F.; Aslanides, E.; Aubert, J.-J.; Auer, R.; Barbarito, E.; Basa, S.; Battaglieri, M.; Bazzotti, M.; Becherini, Y.; Béthoux, N.; Beltramelli, J.; Bertin, V.; Bigi, A.; Billault, M.; Blaes, R.; de Botton, N.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Burgio, G. F.; Busto, J.; Cafagna, F.; Caillat, L.; Calzas, A.; Capone, A.; Caponetto, L.; Carmona, E.; Carr, J.; Castel, D.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Ceres, A.; Charvis, P.; Chauchot, P.; Chiarusi, T.; Circella, M.; Coail, J.-Y.; Colnard, C.; Compére, C.; Coniglione, R.; Cottini, N.; Coyle, P.; Cuneo, S.; Cussatlegras, A.-S.; Damy, G.; van Dantzig, R.; Debonis, G.; de Marzo, C.; de Vita, R.; Dekeyser, I.; Delagnes, E.; Denans, D.; Deschamps, A.; Dessa, J.-X.; Destelle, J.-J.; Dinkespieler, B.; Distefano, C.; Donzaud, C.; Drogou, J.-F.; Druillole, F.; Durand, D.; Ernenwein, J.-P.; Escoffier, S.; Falchini, E.; Favard, S.; Fehr, F.; Feinstein, F.; Fiorello, C.; Flaminio, V.; Fratini, K.; Fuda, J.-L.; Galeotti, S.; Gallone, J.-M.; Giacomelli, G.; Girard, N.; Gojak, C.; Goret, Ph.; Graf, K.; Guilloux, F.; Hallewell, G.; Harakeh, M. N.; Hartmann, B.; Heijboer, A.; Heine, E.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hoffman, C.; Hogenbirk, J.; Hubbard, J. R.; Jaquet, M.; Jaspers, M.; de Jong, M.; Jouvenot, F.; Kalantar-Nayestanaki, N.; Kappes, A.; Karg, T.; Katz, U.; Keller, P.; Kneib, J. P.; Kok, E.; Kok, H.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Kruijer, A.; Kuch, S.; Lagier, P.; Lahmann, R.; Lamanna, G.; Lamare, P.; Lambard, G.; Languillat, J. C.; Laschinsky, H.; Lavalle, J.; Le Guen, Y.; Le Provost, H.; Le van Suu, A.; Lefévre, D.; Legou, T.; Lelaizant, G.; Lim, G.; Lo Presti, D.; Loaec, G.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Lyashuk, V.; Mangano, S.; Marcelin, M.; Margiotta, A.; Masullo, R.; Mazéas, F.; Mazure, A.; Megna, R.; Melissas, M.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Musumeci, M.; Naumann, C.; Naumann-Godo, M.; Niess, V.; Noble, A.; Olivetto, C.; Ostasch, R.; Palanque-Delabrouille, N.; Payre, P.; Peek, H. Z.; Perez, A.; Petta, C.; Piattelli, P.; Pillet, R.; Pineau, J.-P.; Poinsignon, J.; Popa, V.; Pradier, T.; Racca, C.; Randazzo, N.; van Randwijk, J.; Real, D.; Regnier, M.; van Rens, B.; Réthoré, F.; Rewiersma, P.; Riccobene, G.; Rigaud, V.; Ripani, M.; Roca, V.; Roda, C.; Rolin, J. F.; Rostovtsev, A.; Roux, J.; Ruppi, M.; Russo, G. V.; Rusydi, G.; Salesa, F.; Salomon, K.; Sapienza, P.; Schmitt, F.; Schuller, J.-P.; Shanidze, R.; Sokalski, I.; Spona, T.; Spurio, M.; van der Steenhoven, G.; Stolarczyk, T.; Streeb, K.; Sulak, L.; Taiuti, M.; Tamburini, C.; Tao, C.; Tasca, L.; Terreni, G.; Urbano, F.; Valdy, P.; Valente, V.; Vallage, B.; Vaudaine, G.; Venekamp, G.; Verlaat, B.; Vernin, P.; van Wijk, R.; Wijnker, G.; Wobbe, G.; de Wolf, E.; Yao, A.-F.; Zaborov, D.; Zaccone, H.; Zornoza, J. D.; Zúñiga, J.

    2007-11-01

    A full-scale mechanical prototype line was deployed to a depth of 2500 m to test the leak tightness of the electronics containers and the pressure-resistant properties of an electromechanical cable under evaluation for use in the ANTARES deep-sea neutrino telescope. During a month-long immersion study, line parameter data were taken using miniature autonomous data loggers and shore-based optical time domain reflectometry. Details of the mechanical prototype line, the electromechanical cable and data acquisition are presented. Data taken during the immersion study revealed deficiencies in the pressure resistance of the electromechanical cable terminations at the entry points to the electronics containers. The improvements to the termination, which have been integrated into subsequent detection lines, are discussed. The line also allowed deep-sea acoustic measurements with a prototype hydrophone system. The technical setup of this system is described, and the first results of the data analysis are presented.

  15. The scientific foundation of the LANDFIRE Prototype Project [Chapter 3

    Treesearch

    Robert E. Keane; Matthew Rollins

    2006-01-01

    The Landscape Fire and Resource Management Planning Tools Prototype Project, or LANDFIRE Prototype Project, originated from a recent mapping project that developed a set of coarse-scale spatial data layers for wildland fire management describing fire hazard and ecological status for the conterminous United States (Hardy and others 2001; Schmidt and others 2002; www. fs...

  16. Development of a Computer Vision Technology for the Forest Products Manufacturing Industry

    Treesearch

    D. Earl Kline; Richard Conners; Philip A. Araman

    1992-01-01

    The goal of this research is to create an automated processing/grading system for hardwood lumber that will be of use to the forest products industry. The objective of creating a full scale machine vision prototype for inspecting hardwood lumber will become a reality in calendar year 1992. Space for the full scale prototype has been created at the Brooks Forest...

  17. Compact OXC architecture, design and prototype development for flexible waveband routing optical networks.

    PubMed

    Ishikawa, Tomohiro; Mori, Yojiro; Hasegawa, Hiroshi; Subramaniam, Suresh; Sato, Ken-Ichi; Moriwaki, Osamu

    2017-07-10

    A novel compact OXC node architecture that combines WSSs and arrays of small scale optical delivery-coupling type switches ("DCSWs") is proposed. Unlike conventional OXC nodes, the WSSs are only responsible for dynamic path bundling ("flexible waveband") while the small scale optical switches route bundled path groups. A network design algorithm that is aware of the routing scheme is also proposed, and numerical experiments elucidate that the necessary number of WSSs and amplifiers can be significantly reduced. A prototype of the proposed OXC is also developed using monolithic arrayed DCSWs. Transmission experiments on the prototype verify the proposal's technical feasibility.

  18. Mammalian basal metabolic rate is proportional to body mass2/3

    PubMed Central

    White, Craig R.; Seymour, Roger S.

    2003-01-01

    The relationship between mammalian basal metabolic rate (BMR, ml of O2 per h) and body mass (M, g) has been the subject of regular investigation for over a century. Typically, the relationship is expressed as an allometric equation of the form BMR = aMb. The scaling exponent (b) is a point of contention throughout this body of literature, within which arguments for and against geometric (b = 2/3) and quarter-power (b = 3/4) scaling are made and rebutted. Recently, interest in the topic has been revived by published explanations for quarter-power scaling based on fractal nutrient supply networks and four-dimensional biology. Here, a new analysis of the allometry of mammalian BMR that accounts for variation associated with body temperature, digestive state, and phylogeny finds no support for a metabolic scaling exponent of 3/4. Data encompassing five orders of magnitude variation in M and featuring 619 species from 19 mammalian orders show that BMR ∝ M2/3. PMID:12637681

  19. The scaling and temperature dependence of vertebrate metabolism

    PubMed Central

    White, Craig R; Phillips, Nicole F; Seymour, Roger S

    2005-01-01

    Body size and temperature are primary determinants of metabolic rate, and the standard metabolic rate (SMR) of animals ranging in size from unicells to mammals has been thought to be proportional to body mass (M) raised to the power of three-quarters for over 40 years. However, recent evidence from rigorously selected datasets suggests that this is not the case for birds and mammals. To determine whether the influence of body mass on the metabolic rate of vertebrates is indeed universal, we compiled SMR measurements for 938 species spanning six orders of magnitude variation in mass. When normalized to a common temperature of 38 °C, the SMR scaling exponents of fish, amphibians, reptiles, birds and mammals are significantly heterogeneous. This suggests both that there is no universal metabolic allometry and that models that attempt to explain only quarter-power scaling of metabolic rate are unlikely to succeed. PMID:17148344

  20. Solar heating and cooling system design and development

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The progress of the program during the sixth program quarter is reported. The program calls for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test. The William O'Brien single-family heating system was installed and is operational. The New Castle single-family heating residence is under construction. The Kansas University (KU) system is in the final design stages. The 25 ton cooling subsystem for KU is the debugging stage. Pressure drops that were greater than anticipated were encountered. The 3 ton simulation work is being finalized and the design parameters for the Rankine system were determined from simulation output.

  1. The cosmic ray muon tomography facility based on large scale MRPC detectors

    NASA Astrophysics Data System (ADS)

    Wang, Xuewu; Zeng, Ming; Zeng, Zhi; Wang, Yi; Zhao, Ziran; Yue, Xiaoguang; Luo, Zhifei; Yi, Hengguan; Yu, Baihui; Cheng, Jianping

    2015-06-01

    Cosmic ray muon tomography is a novel technology to detect high-Z material. A prototype of TUMUTY with 73.6 cm×73.6 cm large scale position sensitive MRPC detectors has been developed and is introduced in this paper. Three test kits have been tested and image is reconstructed using MAP algorithm. The reconstruction results show that the prototype is working well and the objects with complex structure and small size (20 mm) can be imaged on it, while the high-Z material is distinguishable from the low-Z one. This prototype provides a good platform for our further studies of the physical characteristics and the performances of cosmic ray muon tomography.

  2. New Political-Military Realities in East Asia: An Assessment of U.S. Interests, Threats and Commitments

    DTIC Science & Technology

    1990-06-25

    in recent years the Soviets have been scaling back on their naval operations. Admiral William J. Crowe, former Chairman of the Joint Chiefs of Staff...133-146. Chira , Susan. "Japan Ready to Share Burden, But Also the Power, With U.S." The New York Times, March 7, 1989, pp. A-I and A- 12. Cimbala...Washington: USGPO, 1988. Congressional Quarterly. Powers of Congress. Washington: Congressional Quarterly, 1976. 24 Crowe, William J., Jr., Admiral, "U.S

  3. Superconducting Resonators Development for the FRIB and ReA Linacs at MSU: Recent Achievements and Future Goals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Facco, A; Binkowski, J; Compton, C

    2012-07-01

    The superconducting driver and post-accelerator linacs of the FRIB project, the large scale radioactive beam facility under construction at MSU, require the construction of about 400 low-{beta} Quarter-wave (QWR) and Half-wave resonators (HWR) with four different optimum velocities. 1st and 2nd generation prototypes of {beta}{sub 0} = 0.041 and 0.085 QWRs and {beta}{sub 0} = 0.53 HWRs have been built and tested, and have more than fulfilled the FRIB and ReA design goals. The present cavity surface preparation at MSU allowed production of low-{beta} cavities nearly free from field emission. The first two cryostats of {beta}{sub 0} = 0.041 QWRsmore » are now in operation in the ReA3 linac. A 3rd generation design of the FRIB resonators allowed to further improve the cavity parameters, reducing the peak magnetic field in operation and increasing the possible operation gradient, with consequent reduction of the number of required resonators. The construction of the cavities for FRIB, which includes three phases for each cavity type (development, pre-production and production runs) has started. Cavity design, construction, treatment and performance will be described and discussed.« less

  4. Enabling Microfluidics: From Clean Rooms to Makerspaces

    DTIC Science & Technology

    2016-09-30

    anyone can make 133 and rapidly scale to bulk manufacturing . To enable others to take part in this type of product 134 design and development, we...cost molds for a fee; however, the 77 design process is slowed down waiting for molds to be manufactured and shipped. While 78 PDMS devices may be...finished prototype into a commercial product . An example of a rapid 101 prototyping method amenable to scaled-up manufacturing is laser cutting. Figure

  5. Development of Trace Contaminant Control Prototypes for the Primary Life Support System (PLSS)

    NASA Technical Reports Server (NTRS)

    Wojtowicz, Marek; Cosgrove, Joseph E.; Serio, Michael E.; Nalette, Tim; Guerrero, Sandra V.; Papale, William; Wilburn, Monique S.

    2017-01-01

    Results are presented on the development of Trace Contaminant Control (TCC) Prototypes for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is non-regenerable, and the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. Data on sorption and desorption of ammonia and formaldehyde, which are major TCs of concern, as well as pressure-drop calculations were used to design and test 1/6-scale and full-scale trace contaminant control system (TCCS) prototypes. Carbon sorbents were fabricated in both the granular and foam-supported forms. Sorbent performance was tested for ammonia sorption and vacuum regeneration in 1/6-scale, and pressure-drop characteristics were measured at flow rates relevant to the PLSS application.

  6. Development of a behaviour-based measurement tool with defined intervention level for assessing acute pain in cats.

    PubMed

    Calvo, G; Holden, E; Reid, J; Scott, E M; Firth, A; Bell, A; Robertson, S; Nolan, A M

    2014-12-01

    To develop a composite measure pain scale tool to assess acute pain in cats and derive an intervention score. To develop the prototype composite measure pain scale-feline, words describing painful cats were collected, grouped into behavioural categories and ranked. To assess prototype validity two observers independently assigned composite measure pain scale-feline and numerical rating scale scores to 25 hospitalised cats before and after analgesic treatment. Following interim analysis the prototype was revised (revised composite measure pain scale-feline). To determine intervention score, two observers independently assigned revised composite measure pain scale-feline and numerical rating scale scores to 116 cats. A further observer, a veterinarian, stated whether analgesia was necessary. Mean ± sd decrease in revised composite measure pain scale-feline and numerical rating scale scores following analgesia were 2 · 4 ± 2 · 87 and 1 · 9 ± 2 · 34, respectively (95% confidence interval for mean change in revised composite measure pain scale-feline between 1 · 21 and 3 · 6). Changes in revised composite measure pain scale-feline and numerical rating scale were significantly correlated (r = 0 · 8) (P < 0001). Intervention level score of ≥4/16 was derived for revised composite measure pain scale-feline (26 · 7% misclassification) and ≥3/10 for numerical rating scale (14 · 5% misclassification). A valid instrument with a recommended analgesic intervention level has been developed to assess acute clinical pain in cats that should be readily applicable in practice. © 2014 British Small Animal Veterinary Association.

  7. The physics of musical scales: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Durfee, Dallin S.; Colton, John S.

    2015-10-01

    The theory of musical scales involves mathematical ratios, harmonic resonators, beats, and human perception and provides an interesting application of the physics of waves and sound. We first review the history and physics of musical scales, with an emphasis on four historically important scales: twelve-tone equal temperament, Pythagorean, quarter-comma meantone, and Ptolemaic just intonation. We then present an easy way for students and teachers to directly experience the qualities of different scales using MIDI synthesis.

  8. Delivering digital health and well-being at scale: lessons learned during the implementation of the dallas program in the United Kingdom

    PubMed Central

    Devlin, Alison M; McGee-Lennon, Marilyn; O’Donnell, Catherine A; Bouamrane, Matt-Mouley; Agbakoba, Ruth; O’Connor, Siobhan; Grieve, Eleanor; Finch, Tracy; Wyke, Sally; Watson, Nicholas; Browne, Susan

    2016-01-01

    Objective To identify implementation lessons from the United Kingdom Delivering Assisted Living Lifestyles at Scale (dallas) program—a large-scale, national technology program that aims to deliver a broad range of digital services and products to the public to promote health and well-being. Materials and Methods Prospective, longitudinal qualitative research study investigating implementation processes. Qualitative data collected includes semi-structured e-Health Implementation Toolkit–led interviews at baseline/mid-point (n = 38), quarterly evaluation, quarterly technical and barrier and solutions reports, observational logs, quarterly evaluation alignment interviews with project leads, observational data collected during meetings, and ethnographic data from dallas events (n > 200 distinct pieces of qualitative data). Data analysis was guided by Normalization Process Theory, a sociological theory that aids conceptualization of implementation issues in complex healthcare settings. Results Five key challenges were identified: 1) The challenge of establishing and maintaining large heterogeneous, multi-agency partnerships to deliver new models of healthcare; 2) The need for resilience in the face of barriers and set-backs including the backdrop of continually changing external environments; 3) The inherent tension between embracing innovative co-design and achieving delivery at pace and at scale; 4) The effects of branding and marketing issues in consumer healthcare settings; and 5) The challenge of interoperability and information governance, when commercial proprietary models are dominant. Conclusions The magnitude and ambition of the dallas program provides a unique opportunity to investigate the macro level implementation challenges faced when designing and delivering digital health and wellness services at scale. Flexibility, adaptability, and resilience are key implementation facilitators when shifting to new digitally enabled models of care. PMID:26254480

  9. Delivering digital health and well-being at scale: lessons learned during the implementation of the dallas program in the United Kingdom.

    PubMed

    Devlin, Alison M; McGee-Lennon, Marilyn; O'Donnell, Catherine A; Bouamrane, Matt-Mouley; Agbakoba, Ruth; O'Connor, Siobhan; Grieve, Eleanor; Finch, Tracy; Wyke, Sally; Watson, Nicholas; Browne, Susan; Mair, Frances S

    2016-01-01

    To identify implementation lessons from the United Kingdom Delivering Assisted Living Lifestyles at Scale (dallas) program-a large-scale, national technology program that aims to deliver a broad range of digital services and products to the public to promote health and well-being. Prospective, longitudinal qualitative research study investigating implementation processes. Qualitative data collected includes semi-structured e-Health Implementation Toolkit-led interviews at baseline/mid-point (n = 38), quarterly evaluation, quarterly technical and barrier and solutions reports, observational logs, quarterly evaluation alignment interviews with project leads, observational data collected during meetings, and ethnographic data from dallas events (n > 200 distinct pieces of qualitative data). Data analysis was guided by Normalization Process Theory, a sociological theory that aids conceptualization of implementation issues in complex healthcare settings. Five key challenges were identified: 1) The challenge of establishing and maintaining large heterogeneous, multi-agency partnerships to deliver new models of healthcare; 2) The need for resilience in the face of barriers and set-backs including the backdrop of continually changing external environments; 3) The inherent tension between embracing innovative co-design and achieving delivery at pace and at scale; 4) The effects of branding and marketing issues in consumer healthcare settings; and 5) The challenge of interoperability and information governance, when commercial proprietary models are dominant. The magnitude and ambition of the dallas program provides a unique opportunity to investigate the macro level implementation challenges faced when designing and delivering digital health and wellness services at scale. Flexibility, adaptability, and resilience are key implementation facilitators when shifting to new digitally enabled models of care. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  10. Investigation of correlation between full-scale and fifth-scale wind tunnel tests of a Bell helicopter Textron Model 222

    NASA Technical Reports Server (NTRS)

    Squires, P. K.

    1982-01-01

    Reasons for lack of correlation between data from a fifth-scale wind tunnel test of the Bell Helicopter Textron Model 222 and a full-scale test of the model 222 prototype in the NASA Ames 40-by 80-foot tunnel were investigated. This investigation centered around a carefully designed fifth-scale wind tunnel test of an accurately contoured model of the Model 222 prototype mounted on a replica of the full-scale mounting system. The improvement in correlation for drag characteristics in pitch and yaw with the fifth-scale model mounted on the replica system is shown. Interference between the model and mounting system was identified as a significant effect and was concluded to be a primary cause of the lack of correlation in the earlier tests.

  11. Rapid Prototyping of Microbial Cell Factories via Genome-scale Engineering

    PubMed Central

    Si, Tong; Xiao, Han; Zhao, Huimin

    2014-01-01

    Advances in reading, writing and editing genetic materials have greatly expanded our ability to reprogram biological systems at the resolution of a single nucleotide and on the scale of a whole genome. Such capacity has greatly accelerated the cycles of design, build and test to engineer microbes for efficient synthesis of fuels, chemicals and drugs. In this review, we summarize the emerging technologies that have been applied, or are potentially useful for genome-scale engineering in microbial systems. We will focus on the development of high-throughput methodologies, which may accelerate the prototyping of microbial cell factories. PMID:25450192

  12. Structural Similitude and Scaling Laws

    NASA Technical Reports Server (NTRS)

    Simitses, George J.

    1998-01-01

    Aircraft and spacecraft comprise the class of aerospace structures that require efficiency and wisdom in design, sophistication and accuracy in analysis and numerous and careful experimental evaluations of components and prototype, in order to achieve the necessary system reliability, performance and safety. Preliminary and/or concept design entails the assemblage of system mission requirements, system expected performance and identification of components and their connections as well as of manufacturing and system assembly techniques. This is accomplished through experience based on previous similar designs, and through the possible use of models to simulate the entire system characteristics. Detail design is heavily dependent on information and concepts derived from the previous steps. This information identifies critical design areas which need sophisticated analyses, and design and redesign procedures to achieve the expected component performance. This step may require several independent analysis models, which, in many instances, require component testing. The last step in the design process, before going to production, is the verification of the design. This step necessitates the production of large components and prototypes in order to test component and system analytical predictions and verify strength and performance requirements under the worst loading conditions that the system is expected to encounter in service. Clearly then, full-scale testing is in many cases necessary and always very expensive. In the aircraft industry, in addition to full-scale tests, certification and safety necessitate large component static and dynamic testing. Such tests are extremely difficult, time consuming and definitely absolutely necessary. Clearly, one should not expect that prototype testing will be totally eliminated in the aircraft industry. It is hoped, though, that we can reduce full-scale testing to a minimum. Full-scale large component testing is necessary in other industries as well, Ship building, automobile and railway car construction all rely heavily on testing. Regardless of the application, a scaled-down (by a large factor) model (scale model) which closely represents the structural behavior of the full-scale system (prototype) can prove to be an extremely beneficial tool. This possible development must be based on the existence of certain structural parameters that control the behavior of a structural system when acted upon by static and/or dynamic loads. If such structural parameters exist, a scaled-down replica can be built, which will duplicate the response of the full-scale system. The two systems are then said to be structurally similar. The term, then, that best describes this similarity is structural similitude. Similarity of systems requires that the relevant system parameters be identical and these systems be governed by a unique set of characteristic equations. Thus, if a relation or equation of variables is written for a system, it is valid for all systems which are similar to it. Each variable in a model is proportional to the corresponding variable of the prototype. This ratio, which plays an essential role in predicting the relationship between the model and its prototype, is called the scale factor.

  13. Radio Links for the NASA ABTS

    NASA Technical Reports Server (NTRS)

    Jeutter, Dean C.

    1996-01-01

    The closed loop prototype has operational bi-directional wireless links. The Wideband PCM-FSK receiver has been designed and characterized. Now that both links function, communication performance can be addressed. For example, noise problems with the received outlink signal that caused the PC program to lockup were just recently revealed and minimized by software "enhancements" to the Windows based PC program. A similar problem with inlink communication was uncovered several days before this report: A noise spike or dropout (expected events in the animal Habitat) caused an interrupt to the implant microcontroller which halted outlink transmission. Recovery of outlink transmission did not reliably occur. The problem has been defined and implant software is being modified to better recognize noise from data by changing the timing associated with valid data packet identification and by better utilizing the error flags generated by the microcontroller's SCI circuits. Excellent inlink performance will also require improvements in the implant's receiver. The biggest performance improvement can be provided by antenna design for the Habitat. The quarter wavelength whip antennas used with the demo prototype inlink leave much to be desired.

  14. Study and Development of an Air Conditioning System Operating on a Magnetic Heat Pump Cycle

    NASA Technical Reports Server (NTRS)

    Wang, Pao-Lien

    1991-01-01

    This report describes the design of a laboratory scale demonstration prototype of an air conditioning system operating on a magnetic heat pump cycle. Design parameters were selected through studies performed by a Kennedy Space Center (KSC) System Simulation Computer Model. The heat pump consists of a rotor turning through four magnetic fields that are created by permanent magnets. Gadolinium was selected as the working material for this demonstration prototype. The rotor was designed to be constructed of flat parallel disks of gadolinium with very little space in between. The rotor rotates in an aluminum housing. The laboratory scale demonstration prototype is designed to provide a theoretical Carnot Cycle efficiency of 62 percent and a Coefficient of Performance of 16.55.

  15. Categorical prototyping: incorporating molecular mechanisms into 3D printing.

    PubMed

    Brommer, Dieter B; Giesa, Tristan; Spivak, David I; Buehler, Markus J

    2016-01-15

    We apply the mathematical framework of category theory to articulate the precise relation between the structure and mechanics of a nanoscale system in a macroscopic domain. We maintain the chosen molecular mechanical properties from the nanoscale to the continuum scale. Therein we demonstrate a procedure to 'protoype a model', as category theory enables us to maintain certain information across disparate fields of study, distinct scales, or physical realizations. This process fits naturally with prototyping, as a prototype is not a complete product but rather a reduction to test a subset of properties. To illustrate this point, we use large-scale multi-material printing to examine the scaling of the elastic modulus of 2D carbon allotropes at the macroscale and validate our printed model using experimental testing. The resulting hand-held materials can be examined more readily, and yield insights beyond those available in the original digital representations. We demonstrate this concept by twisting the material, a test beyond the scope of the original model. The method developed can be extended to other methods of additive manufacturing.

  16. Size scaling of negative hydrogen ion sources for fusion

    NASA Astrophysics Data System (ADS)

    Fantz, U.; Franzen, P.; Kraus, W.; Schiesko, L.; Wimmer, C.; Wünderlich, D.

    2015-04-01

    The RF-driven negative hydrogen ion source (H-, D-) for the international fusion experiment ITER has a width of 0.9 m and a height of 1.9 m and is based on a ⅛ scale prototype source being in operation at the IPP test facilities BATMAN and MANITU for many years. Among the challenges to meet the required parameters in a caesiated source at a source pressure of 0.3 Pa or less is the challenge in size scaling of a factor of eight. As an intermediate step a ½ scale ITER source went into operation at the IPP test facility ELISE with the first plasma in February 2013. The experience and results gained so far at ELISE allowed a size scaling study from the prototype source towards the ITER relevant size at ELISE, in which operational issues, physical aspects and the source performance is addressed, highlighting differences as well as similarities. The most ITER relevant results are: low pressure operation down to 0.2 Pa is possible without problems; the magnetic filter field created by a current in the plasma grid is sufficient to reduce the electron temperature below the target value of 1 eV and to reduce together with the bias applied between the differently shaped bias plate and the plasma grid the amount of co-extracted electrons. An asymmetry of the co-extracted electron currents in the two grid segments is measured, varying strongly with filter field and bias. Contrary to the prototype source, a dedicated plasma drift in vertical direction is not observed. As in the prototype source, the performance in deuterium is limited by the amount of co-extracted electrons in short as well as in long pulse operation. Caesium conditioning is much harder in deuterium than in hydrogen for which fast and reproducible conditioning is achieved. First estimates reveal a caesium consumption comparable to the one in the prototype source despite the large size.

  17. Preliminary Study on a Reduced Scaled Model Regarding the Air Diffusion inside a Crew Quarter on Board of the ISS

    NASA Astrophysics Data System (ADS)

    Sandu, Mihnea; Nastase, Ilinca; Bode, Florin; Croitoru, CristianaVerona; Tacutu, Laurentiu

    2018-02-01

    The paper focus on the air quality inside the Crew Quarters on board of the International Space Station. Several issues to improve were recorded by NASA and ESA and most important of them are the following: noise level reduction, CO2 accumulation reduction and dust accumulation reduction. The study in this paper is centred on a reduced scaled model used to provide simulations related to the air diffusion inside the CQ. It is obvious that a new ventilation system is required to achieve the three issues mentioned above, and the solutions obtained by means of numerical simulation need to be validated by experimental approach. First of all we have built a reduced scaled physical model to simulate the flow pattern inside the CQ and the equipment inside the CQ has been reproduced using a geometrical scale ratio. The flow pattern was considered isothermal and incompressible. The similarity criteria used was the Reynolds number to characterize the flow pattern and the length scale was set at value 1/4. Water has been used inside the model to simulate air. Velocity magnitude vectors have been obtained using PIV measurement techniques.

  18. Multifrequency ultrasound transducers for conformal interstitial thermal therapy.

    PubMed

    Chopra, Rajiv; Luginbuhl, Chris; Foster, F Stuart; Bronskill, Michael J

    2003-07-01

    Control over the pattern of thermal damage generated by interstitial ultrasound heating applicators can be enhanced by changing the ultrasound frequency during heating. The ability to change transmission frequency from a single transducer through the use of high impedance front layers was investigated in this study. The transmission spectrum of multifrequency transducers was calculated using the KLM equivalent circuit model and verified with experimental measurements on prototype transducers. The addition of a quarter-wavelength thick PZT (unpoled) front layer enabled the transmission of ultrasound at two discrete frequencies, 4.7 and 9.7 MHz, from a transducer with an original resonant frequency of 8.4 MHz. Three frequency transmission at 3.3, 8.4, and 10.8 MHz was possible for a transducer with a half-wavelength thick front layer. Calculations of the predicted thermal lesion size at each transmission frequency indicated that the depth of thermal lesion could be varied by a factor of 1.6 for the quarter-wavelength front layer. Heating experiments performed in excised liver tissue with a dual-frequency applicator confirmed this ability to control the shape of thermal lesions during heating to generate a desired geometry. Practical interstitial designs that enable the generation of shaped thermal lesions are feasible.

  19. Guided to gather: toy plane upgraded with telemetry

    USGS Publications Warehouse

    Wiese, Vanessa; Wiese, Dana

    2006-01-01

    GPS/INS and infrared optical sensors propel USGS's transformation of a remote-controlled one-quarter scale recreational aircraft into a low-cost unmanned aerial vehicle designed for environmental particulate collection.

  20. Computational prediction of propellant reorientation

    NASA Technical Reports Server (NTRS)

    Hochstein, John I.

    1987-01-01

    Viewgraphs from a presentation on computational prediction of propellant reorientation are given. Information is given on code verification, test conditions, predictions for a one-quarter scale cryogenic tank, pulsed settling, and preliminary results.

  1. A Translational Polarization Rotator

    NASA Technical Reports Server (NTRS)

    Chuss, David T.; Wollack, Edward J.; Pisano, Giampaolo; Ackiss, Sheridan; U-Yen, Kongpop; Ng, Ming wah

    2012-01-01

    We explore a free-space polarization modulator in which a variable phase introduction between right- and left-handed circular polarization components is used to rotate the linear polarization of the outgoing beam relative to that of the incoming beam. In this device, the polarization states are separated by a circular polarizer that consists of a quarter-wave plate in combination with a wire grid. A movable mirror is positioned behind and parallel to the circular polarizer. As the polarizer-mirror distance is separated, an incident liear polarization will be rotated through an angle that is proportional to the introduced phase delay. We demonstrate a prototype device that modulates Stokes Q and U over a 20% bandwidth.

  2. Experimental feasibility study of the application of magnetic suspension techniques to large-scale aerodynamic test facilities

    NASA Technical Reports Server (NTRS)

    Zapata, R. N.; Humphris, R. R.; Henderson, K. C.

    1974-01-01

    Based on the premises that (1) magnetic suspension techniques can play a useful role in large-scale aerodynamic testing and (2) superconductor technology offers the only practical hope for building large-scale magnetic suspensions, an all-superconductor three-component magnetic suspension and balance facility was built as a prototype and was tested successfully. Quantitative extrapolations of design and performance characteristics of this prototype system to larger systems compatible with existing and planned high Reynolds number facilities have been made and show that this experimental technique should be particularly attractive when used in conjunction with large cryogenic wind tunnels.

  3. Rapid prototyping of microbial cell factories via genome-scale engineering.

    PubMed

    Si, Tong; Xiao, Han; Zhao, Huimin

    2015-11-15

    Advances in reading, writing and editing genetic materials have greatly expanded our ability to reprogram biological systems at the resolution of a single nucleotide and on the scale of a whole genome. Such capacity has greatly accelerated the cycles of design, build and test to engineer microbes for efficient synthesis of fuels, chemicals and drugs. In this review, we summarize the emerging technologies that have been applied, or are potentially useful for genome-scale engineering in microbial systems. We will focus on the development of high-throughput methodologies, which may accelerate the prototyping of microbial cell factories. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Experimental feasibility study of the application of magnetic suspension techniques to large-scale aerodynamic test facilities. [cryogenic traonics wind tunnel

    NASA Technical Reports Server (NTRS)

    Zapata, R. N.; Humphris, R. R.; Henderson, K. C.

    1975-01-01

    Based on the premises that magnetic suspension techniques can play a useful role in large scale aerodynamic testing, and that superconductor technology offers the only practical hope for building large scale magnetic suspensions, an all-superconductor 3-component magnetic suspension and balance facility was built as a prototype and tested sucessfully. Quantitative extrapolations of design and performance characteristics of this prototype system to larger systems compatible with existing and planned high Reynolds number facilities at Langley Research Center were made and show that this experimental technique should be particularly attractive when used in conjunction with large cryogenic wind tunnels.

  5. Testing of a prototype Web based intervention for adolescent mothers on postpartum depression.

    PubMed

    Logsdon, M Cynthia; Barone, Michael; Lynch, Tania; Robertson, Ashley; Myers, John; Morrison, David; York, Sara; Gregg, Jennifer

    2013-08-01

    This article describes testing of a prototype Web site for adolescent mothers with postpartum depression; providing proof of concept. Participants (N=138) were recruited from a public school-based program for adolescent parents and completed the Mental Health Acceptability Scale, Stigma Scale for Receiving Psychological Help, and Attitudes Towards Seeking Professional Psychological Help Scale before, and after, the Web site intervention. They also provided feedback on the usability of the Web site. Attitudes related to depression and treatment (ATSPPH) improved after viewing the Web site (p=.023). Feedback on the Web site indicated that it was easy to use (77%), reflecting highly acceptable score for product usability. The data provide the foundation for the launch of the Web site from prototype to product and more comprehensive testing. The creation and testing of informational text messages will be added to the Web site to increase the interactivity and dose of the intervention. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Consolidated fuel reprocessing program

    NASA Astrophysics Data System (ADS)

    1985-02-01

    Improved processes and components for the Breeder Reprocessing Engineering Test (BRET) were identified and developed as well as the design, procurement and development of prototypic equipment. The integrated testing of process equipment and flowsheets prototypical of a pilot scale full reprocessing plant, and also for testing prototypical remote features of specific complex components in the system are provided. Information to guide the long range activities of the Consolidated Fuel Reprocessing Program (CERP), a focal point for foreign exchange activities, and support in specialized technical areas are described. Research and development activities in HTGR fuel treatment technology are being conducted. Head-end process and laboratory scale development efforts, as well as studies specific to HTGR fuel, are reported. The development of off-gas treatment processes has generic application to fuel reprocessing, progress in this work is also reported.

  7. Exploring Blueberry Aroma Complexity by Chromatographic and Direct-Injection Spectrometric Techniques

    PubMed Central

    Farneti, Brian; Khomenko, Iuliia; Grisenti, Marcella; Ajelli, Matteo; Betta, Emanuela; Algarra, Alberto Alarcon; Cappellin, Luca; Aprea, Eugenio; Gasperi, Flavia; Biasioli, Franco; Giongo, Lara

    2017-01-01

    Blueberry (Vaccinium spp.) fruit consumption has increased over the last 5 years, becoming the second most important soft fruit species after strawberry. Despite the possible economic and sensory impact, the blueberry volatile organic compound (VOC) composition has been poorly investigated. Thus, the great impact of the aroma on fruit marketability stimulates the need to step forward in the understanding of this quality trait. Beside the strong effect of ripening, blueberry aroma profile also varies due to the broad genetic differences among Vaccinium species that have been differently introgressed in modern commercial cultivars through breeding activity. In the present study, divided into two different activities, the complexity of blueberry aroma was explored by an exhaustive untargeted VOC analysis, performed by two complementary methods: SPME-GC-MS (solid phase microextraction- gas chromatography-mass spectrometry) and PTR-ToF-MS (proton transfer reaction-time of flight-mass spectrometry). The first experiment was aimed at determining the VOC modifications during blueberry ripening for five commercially representative cultivars (“Biloxi,” “Brigitta Blue,” “Centurion,” “Chandler,” and “Ozark Blue”) harvested at four ripening stages (green, pink, ripe, and over-ripe) to outline VOCs dynamic during fruit development. The objective of the second experiment was to confirm the analytical capability of PTR-ToF-MS to profile blueberry genotypes and to identify the most characterizing VOCs. In this case, 11 accessions belonging to different Vaccinium species were employed: V. corymbosum L. (“Brigitta,” “Chandler,” “Liberty,” and “Ozark Blue”), V. virgatum Aiton (“Centurion,” “Powder Blue,” and “Sky Blue”), V. myrtillus L. (three wild genotypes of different mountain locations), and one accession of V. cylindraceum Smith. This comprehensive characterization of blueberry aroma allowed the identification of a wide pull of VOCs, for the most aldehydes, alcohols, terpenoids, and esters that can be used as putative biomarkers to rapidly evaluate the blueberry aroma variations related to ripening and/or senescence as well as to genetic background differences. Moreover, the obtained results demonstrated the complementarity between chromatographic and direct-injection mass spectrometric techniques to study the blueberry aroma. PMID:28491071

  8. Antibacterial Envelope Is Associated With Low Infection Rates After Implantable Cardioverter-Defibrillator and Cardiac Resynchronization Therapy Device Replacement: Results of the Citadel and Centurion Studies.

    PubMed

    Henrikson, Charles A; Sohail, M Rizwan; Acosta, Helbert; Johnson, Eric E; Rosenthal, Lawrence; Pachulski, Roman; Dan, Dan; Paladino, Walter; Khairallah, Farhat S; Gleed, Kent; Hanna, Ibrahim; Cheng, Alan; Lexcen, Daniel R; Simons, Grant R

    2017-10-01

    This study sought to determine whether the nonabsorbable TYRX Antibacterial Envelope (TYRX) reduces major cardiovascular implantable electronic device (CIED) infections 12 months after implant. TYRX is a monofilament polypropylene mesh impregnated with minocycline and rifampin specifically designed to hold a CIED in place and elute antimicrobials over time. There are limited data on its ability to reduce CIED infections. We prospectively enrolled patients who underwent generator replacement with an implantable cardioverter-defibrillator (ICD) or cardiac resynchronization therapy device (CRT), treated with TYRX. The primary endpoints were major CIED infection and CIED mechanical complications. Given the differences in infection rates among ICD and CRT patients, 3 different control populations were used: a published benchmark rate for ICD patients, and both site-matched and comorbidity-matched controls groups for CRT patients. Overall, a major CIED infection occurred in 5 of 1,129 patients treated with TYRX (0.4%; 95% confidence interval: 0.0% to 0.9%), significantly lower than the 12-month benchmark rate of 2.2% (p = 0.0023). Among the TYRX-treated CRT cohort, the major CIED infection rate was 0.7% compared with an infection rate of 1.0% and 1.3% (p = 0.38 and p = 0.02) in site-matched and comorbidity-matched control groups, respectively. Among the ICD group, the 12-month infection rate was 0.2% compared with the published benchmark of 2.2% (p = 0.0052). The most common CIED mechanical complication in study patients was pocket hematoma, which occurred in 18 of the 1,129 patients (1.6%; 95% confidence interval: 0.8 to 2.5), which is comparable with a published rate of 1.6%. Use of TYRX was associated with a lower major CIED infection rate. (TYRX™ Envelope for Prevention of Infection Following Replacement With a CRT or ICD; [Centurion]; NCT01043861/NCT01043705). Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  9. [Effectivity and Safety of a Modified Tip Design in Torsional Phacoemulsification].

    PubMed

    Schmidt, Sabine; Hubich, Sophie; Vetter, Jan Markus; Wirbelauer, Christopher

    2018-02-16

    Torsional mode phacoemulsification results in more effective fragmentation of the nucleus due to a different movement of the phacotip. In this clinical study, we investigated the influence of a modified tip design and active fluidics on the efficacy of phacoemulsification and safety for the corneal endothelium. We conducted a prospective randomized 2 : 1 study in which 40 patients were operated on with the mini-flared Kelman Tip using the Infiniti ® System (group 1), and 20 patients were operated on with the Intrepid ® Balanced Tip and the Centurion ® System. We analyzed the intraoperative cumulative dissipated energy and also the density of the corneal endothelium measured with an endothelial microscope (CEM 530, Nidek) pre- and postoperatively. Both groups did not differ preoperatively in age, sex, axial length of the globe or corneal endothelium cell density nor cataract density (LOCS3). All surgeries were uneventful. The cumulative dissipated energy in group 1 (mini-flared Kelman tip, Infiniti System) was 38% higher than in group 2 (balanced tip, Centurion System; p < 0.05). The endothelial cell loss was 8% in group 1 and 10.3% in group 2 (p > 0.05). The cell size (polymegathism) increased in both groups significantly with + 37 µm in group 1 (p < 0.05) und + 54 µm in group 2 (p < 0.05). There was no statistically significant difference between both groups (p > 0.05). The number of hexagonal cells (pleomorphism) and corneal thickness did not differ in both groups either pre- nor postoperatively. Compared to torsional phacoemulsification with a mini-flared Kelman Tip and gravity fluidics, torsional phacoemulsification with a modified tip design and active fluidics is 38% more effective regarding the cumulative dissipated energy. Endothelial cell loss occurs to a similar extend using both systems. The postoperative changes in cell size (polymegathism), number of hexagonal cells (pleomorphism) and corneal thickness (pachymetry) were similar among both systems. We conclude, that the intraoperative stress on the endothelium is equivalent with both systems used. Georg Thieme Verlag KG Stuttgart · New York.

  10. Exploring Blueberry Aroma Complexity by Chromatographic and Direct-Injection Spectrometric Techniques.

    PubMed

    Farneti, Brian; Khomenko, Iuliia; Grisenti, Marcella; Ajelli, Matteo; Betta, Emanuela; Algarra, Alberto Alarcon; Cappellin, Luca; Aprea, Eugenio; Gasperi, Flavia; Biasioli, Franco; Giongo, Lara

    2017-01-01

    Blueberry ( Vaccinium spp.) fruit consumption has increased over the last 5 years, becoming the second most important soft fruit species after strawberry. Despite the possible economic and sensory impact, the blueberry volatile organic compound (VOC) composition has been poorly investigated. Thus, the great impact of the aroma on fruit marketability stimulates the need to step forward in the understanding of this quality trait. Beside the strong effect of ripening, blueberry aroma profile also varies due to the broad genetic differences among Vaccinium species that have been differently introgressed in modern commercial cultivars through breeding activity. In the present study, divided into two different activities, the complexity of blueberry aroma was explored by an exhaustive untargeted VOC analysis, performed by two complementary methods: SPME-GC-MS (solid phase microextraction- gas chromatography-mass spectrometry) and PTR-ToF-MS (proton transfer reaction-time of flight-mass spectrometry). The first experiment was aimed at determining the VOC modifications during blueberry ripening for five commercially representative cultivars ("Biloxi," "Brigitta Blue," "Centurion," "Chandler," and "Ozark Blue") harvested at four ripening stages (green, pink, ripe, and over-ripe) to outline VOCs dynamic during fruit development. The objective of the second experiment was to confirm the analytical capability of PTR-ToF-MS to profile blueberry genotypes and to identify the most characterizing VOCs. In this case, 11 accessions belonging to different Vaccinium species were employed: V . corymbosum L. ("Brigitta," "Chandler," "Liberty," and "Ozark Blue"), V. virgatum Aiton ("Centurion," "Powder Blue," and "Sky Blue"), V. myrtillus L. (three wild genotypes of different mountain locations), and one accession of V. cylindraceum Smith. This comprehensive characterization of blueberry aroma allowed the identification of a wide pull of VOCs, for the most aldehydes, alcohols, terpenoids, and esters that can be used as putative biomarkers to rapidly evaluate the blueberry aroma variations related to ripening and/or senescence as well as to genetic background differences. Moreover, the obtained results demonstrated the complementarity between chromatographic and direct-injection mass spectrometric techniques to study the blueberry aroma.

  11. The energy performance of prototype holographic glazings

    NASA Astrophysics Data System (ADS)

    Papamichael, K.; Beltran, L.; Furler, R.; Lee, E. S.; Selkowitz, S.; Rubin, M.

    1993-02-01

    We report on the simulation of the energy performance of prototype holographic glazings in commercial office buildings in a California climate. These prototype glazings, installed above conventional side windows, are designed to diffract the transmitted solar radiation and reflect it off the ceiling, providing adequate daylight illumination for typical office tasks up to 10m from the window. In this study, we experimentally determined a comprehensive set of solar-optical properties and characterized the contribution of the prototype holographic glazings to workplane illuminance in a scale model of a typical office space. We then used the scale model measurements to simulate the energy performance of the holographic glazings over the course of an entire year for four window orientations (North, East, South and West) for the inland Los Angeles climate, using the DOE-2.lD building energy analysis computer program. The results of our experimental analyses indicate that these prototype holographic glazings diffract only a small fraction of the incident light. The results of this study indicate that these prototype holographic glazings will not save energy in commercial office buildings. Their performance is very similar to that of clear glass, which, through side windows, cannot efficiently illuminate more than a 4-6 m depth of a building's perimeter, because the cooling penalties due to solar heat gain are greater than the electric lighting savings due to daylighting.

  12. Scaling Up Graph-Based Semisupervised Learning via Prototype Vector Machines

    PubMed Central

    Zhang, Kai; Lan, Liang; Kwok, James T.; Vucetic, Slobodan; Parvin, Bahram

    2014-01-01

    When the amount of labeled data are limited, semi-supervised learning can improve the learner's performance by also using the often easily available unlabeled data. In particular, a popular approach requires the learned function to be smooth on the underlying data manifold. By approximating this manifold as a weighted graph, such graph-based techniques can often achieve state-of-the-art performance. However, their high time and space complexities make them less attractive on large data sets. In this paper, we propose to scale up graph-based semisupervised learning using a set of sparse prototypes derived from the data. These prototypes serve as a small set of data representatives, which can be used to approximate the graph-based regularizer and to control model complexity. Consequently, both training and testing become much more efficient. Moreover, when the Gaussian kernel is used to define the graph affinity, a simple and principled method to select the prototypes can be obtained. Experiments on a number of real-world data sets demonstrate encouraging performance and scaling properties of the proposed approach. It also compares favorably with models learned via ℓ1-regularization at the same level of model sparsity. These results demonstrate the efficacy of the proposed approach in producing highly parsimonious and accurate models for semisupervised learning. PMID:25720002

  13. Enriching the national map database for multi-scale use: Introducing the visibilityfilter attribution

    USGS Publications Warehouse

    Stauffer, Andrew J.; Webinger, Seth; Roche, Brittany

    2016-01-01

    The US Geological Survey’s (USGS) National Geospatial Technical Operations Center is prototyping and evaluating the ability to filter data through a range of scales using 1:24,000-scale The National Map (TNM) datasets as the source. A “VisibilityFilter” attribute is under evaluation that can be added to all TNM vector data themes and will permit filtering of data to eight target scales between 1:24,000 and 1:5,000,000, thus defining each feature’s smallest applicable scale-of-use. For a prototype implementation, map specifications for 1:100,000- and 1:250,000-scale USGS Topographic Map Series are being utilized to define feature content appropriate at fixed mapping scales to guide generalization decisions that are documented in a ScaleMaster diagram. This paper defines the VisibilityFilter attribute, the generalization decisions made for each TNM data theme, and how these decisions are embedded into the data to support efficient data filtering.

  14. Space shuttle pogo studies. [systems stability

    NASA Technical Reports Server (NTRS)

    Coppolino, R. N.; Lock, M. H.; Rubin, S.

    1977-01-01

    Topics covered include: (1) pogo suppression for main propulsion subsystem operation; (2) application of quarter-scale low pressure oxidizer turbopump transfer functions; (3) pogo stability during orbital maneuvering subsystem operation; and (4) errors in frequency response measurements.

  15. Design and characterization of very high frequency pulse tube prototypes

    NASA Astrophysics Data System (ADS)

    Lopes, Diogo; Duval, Jean-Marc; Charles, Ivan; Butterworth, James; Trollier, Thierry; Tanchon, Julien; Ravex, Alain; Daniel, Christophe

    2012-06-01

    Weight and size are important features of a cryocooler when it comes to space applications. Given their reliability and low level of exported vibrations (due to the absence of moving cold parts), pulse tubes are good candidates for spatial purposes and their miniaturization has been the focus of many studies. We report on the design and performance of a small-scale very high frequency pulse tube prototype, modeled after two previous prototypes which were optimized with a numerical code.

  16. The GlueX central drift chamber: Design and performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Haarlem, Y; Barbosa, F; Dey, B

    2010-10-01

    Tests and studies concerning the design and performance of the GlueX Central Drift Chamber (CDC) are presented. A full-scale prototype was built to test and steer the mechanical and electronic design. Small scale prototypes were constructed to test for sagging and to do timing and resolution studies of the detector. These studies were used to choose the gas mixture and to program a Monte Carlo simulation that can predict the detector response in an external magnetic field. Particle identification and charge division possibilities were also investigated.

  17. Prototyping an institutional IAIMS/UMLS information environment for an academic medical center.

    PubMed

    Miller, P L; Paton, J A; Clyman, J I; Powsner, S M

    1992-07-01

    The paper describes a prototype information environment designed to link network-based information resources in an integrated fashion and thus enhance the information capabilities of an academic medical center. The prototype was implemented on a single Macintosh computer to permit exploration of the overall "information architecture" and to demonstrate the various desired capabilities prior to full-scale network-based implementation. At the heart of the prototype are two components: a diverse set of information resources available over an institutional computer network and an information sources map designed to assist users in finding and accessing information resources relevant to their needs. The paper describes these and other components of the prototype and presents a scenario illustrating its use. The prototype illustrates the link between the goals of two National Library of Medicine initiatives, the Integrated Academic Information Management System (IAIMS) and the Unified Medical Language System (UMLS).

  18. Real-time contaminant sensing and control in civil infrastructure systems

    NASA Astrophysics Data System (ADS)

    Rimer, Sara; Katopodes, Nikolaos

    2014-11-01

    A laboratory-scale prototype has been designed and implemented to test the feasibility of real-time contaminant sensing and control in civil infrastructure systems. A blower wind tunnel is the basis of the prototype design, with propylene glycol smoke as the ``contaminant.'' A camera sensor and compressed-air vacuum nozzle system is set up at the test section portion of the prototype to visually sense and then control the contaminant; a real-time controller is programmed to read in data from the camera sensor and administer pressure to regulators controlling the compressed air operating the vacuum nozzles. A computational fluid dynamics model is being integrated in with this prototype to inform the correct pressure to supply to the regulators in order to optimally control the contaminant's removal from the prototype. The performance of the prototype has been evaluated against the computational fluid dynamics model and is discussed in this presentation. Furthermore, the initial performance of the sensor-control system implemented in the test section of the prototype is discussed. NSF-CMMI 0856438.

  19. OTEC riser cable model and prototype testing

    NASA Astrophysics Data System (ADS)

    Kurt, J. P.; Schultz, J. A.; Roblee, L. H. S.

    1981-12-01

    Two different OTEC riser cables have been developed to span the distance between a floating OTEC power plant and the ocean floor. The major design concerns for a riser cable in the dynamic OTEC environment are fatigue, corrosion, and electrical/mechanical aging of the cable components. The basic properties of the cable materials were studied through tests on model cables and on samples of cable materials. Full-scale prototype cables were manufactured and were tested to measure their electrical and mechanical properties and performance. The full-scale testing was culminated by the electrical/mechanical fatigue test, which exposes full-scale cables to simultaneous tension, bending and electrical loads, all in a natural seawater environment.

  20. Structural similitude and scaling laws for laminated beam-plates

    NASA Technical Reports Server (NTRS)

    Simitses, George J.; Rezaeepazhand, Jalil

    1992-01-01

    The establishment of similarity conditions between two structural systems is discussed. Similarity conditions provide the relationship between a scale model and its prototype and can be used to predict the behavior of the prototype by extrapolating the experimental data of the corresponding small-scale model. Since satisfying all the similarity conditions simultaneously is difficult or even impossible, distorted models with partial similarity (with at least one similarity condition relaxed) are more practical. Establishing similarity conditions based on both dimensional analysis and direct use of governing equations is discussed, and the possibility of designing distorted models is investigated. The method is demonstrated through analysis of the cylindrical bending of orthotropic laminated beam-plates subjected to transverse line loads.

  1. Development and Assessment of Planetary Gear Unit for Experimental Prototype of Vertical Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Urbahs, A.; Urbaha, M.; Carjova, K.

    2017-10-01

    The theoretical calculation for development of planetary gear unit of wind turbine (WT) and its experimental tests are presented in the paper. Development of experimental prototypes from composite materials is essential to determine capability of element and its impact on feature. Two experimental scale prototypes of planetary gear unit for WT were developed for such purposes. Hall transducer, servomechanisms and optical tachometers were used to obtain results, comparison analysis of theoretical and actual data was performed as well as quality assessment of experimental prototypes of planetary gear unit. After kinematic and load analysis as well as control of rotation frequency, it is possible to declare that the unit is able to operate at designated quality. Theoretical calculations and test results obtained are used for industrial WT prototype development.

  2. Air injection test on a Kaplan turbine: prototype - model comparison

    NASA Astrophysics Data System (ADS)

    Angulo, M.; Rivetti, A.; Díaz, L.; Liscia, S.

    2016-11-01

    Air injection is a very well-known resource to reduce pressure pulsation magnitude in turbines, especially on Francis type. In the case of large Kaplan designs, even when not so usual, it could be a solution to mitigate vibrations arising when tip vortex cavitation phenomenon becomes erosive and induces structural vibrations. In order to study this alternative, aeration tests were performed on a Kaplan turbine at model and prototype scales. The research was focused on efficiency of different air flow rates injected in reducing vibrations, especially at the draft tube and the discharge ring and also in the efficiency drop magnitude. It was found that results on both scales presents the same trend in particular for vibration levels at the discharge ring. The efficiency drop was overestimated on model tests while on prototype were less than 0.2 % for all power output. On prototype, air has a beneficial effect in reducing pressure fluctuations up to 0.2 ‰ of air flow rate. On model high speed image computing helped to quantify the volume of tip vortex cavitation that is strongly correlated with the vibration level. The hydrophone measurements did not capture the cavitation intensity when air is injected, however on prototype, it was detected by a sonometer installed at the draft tube access gallery.

  3. Model Scaling of Hydrokinetic Ocean Renewable Energy Systems

    NASA Astrophysics Data System (ADS)

    von Ellenrieder, Karl; Valentine, William

    2013-11-01

    Numerical simulations are performed to validate a non-dimensional dynamic scaling procedure that can be applied to subsurface and deeply moored systems, such as hydrokinetic ocean renewable energy devices. The prototype systems are moored in water 400 m deep and include: subsurface spherical buoys moored in a shear current and excited by waves; an ocean current turbine excited by waves; and a deeply submerged spherical buoy in a shear current excited by strong current fluctuations. The corresponding model systems, which are scaled based on relative water depths of 10 m and 40 m, are also studied. For each case examined, the response of the model system closely matches the scaled response of the corresponding full-sized prototype system. The results suggest that laboratory-scale testing of complete ocean current renewable energy systems moored in a current is possible. This work was supported by the U.S. Southeast National Marine Renewable Energy Center (SNMREC).

  4. Facilitating Co-Design for Extreme-Scale Systems Through Lightweight Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engelmann, Christian; Lauer, Frank

    This work focuses on tools for investigating algorithm performance at extreme scale with millions of concurrent threads and for evaluating the impact of future architecture choices to facilitate the co-design of high-performance computing (HPC) architectures and applications. The approach focuses on lightweight simulation of extreme-scale HPC systems with the needed amount of accuracy. The prototype presented in this paper is able to provide this capability using a parallel discrete event simulation (PDES), such that a Message Passing Interface (MPI) application can be executed at extreme scale, and its performance properties can be evaluated. The results of an initial prototype aremore » encouraging as a simple 'hello world' MPI program could be scaled up to 1,048,576 virtual MPI processes on a four-node cluster, and the performance properties of two MPI programs could be evaluated at up to 16,384 virtual MPI processes on the same system.« less

  5. SUSTAINABLE ANAEROBIC DIGESTER/COOK STOVE DESIGN TO PROMOTE HEALTH, ENVIRONMENT, AND ECONOMIC PROSPERITY FOR INDIGENOUS PEOPLE OF ECUADOR

    EPA Science Inventory

    Phase I prototype digesters demonstrated the feasibility of biogas generation, using simple materials such as trash cans, oil drums, and polyethylene bags – a full scale digester, based on prototype biogas production volumes, range from 5000 to 9000 liters, depending on ...

  6. Renewable Energy Finance Tracking Initiative (REFTI) Solar Trend Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubbell, R.; Lowder, T.; Mendelsohn, M.

    This report is a summary of the finance trends for small-scale solar photovoltaic (PV) projects (PV <1 MW), large-scale PV projects (PV greater than or equal to 1 MW), and concentrated solar power projects as reported in the National Renewable Energy Laboratory's Renewable Energy Finance Tracking Initiative (REFTI). The report presents REFTI data during the five quarterly periods from the fourth quarter of 2009 to the first half of 2011. The REFTI project relies exclusively on the voluntary participation of industry stakeholders for its data; therefore, it does not offer a comprehensive view of the technologies it tracks. Despite thismore » limitation, REFTI is the only publicly available resource for renewable energy project financial terms. REFTI analysis offers usable inputs into the project economic evaluations of developers and investors, as well as the policy assessments of public utility commissions and others in the renewable energy industry.« less

  7. Real-Time Gaze Tracking for Public Displays

    NASA Astrophysics Data System (ADS)

    Sippl, Andreas; Holzmann, Clemens; Zachhuber, Doris; Ferscha, Alois

    In this paper, we explore the real-time tracking of human gazes in front of large public displays. The aim of our work is to estimate at which area of a display one ore more people are looking at a time, independently from the distance and angle to the display as well as the height of the tracked people. Gaze tracking is relevant for a variety of purposes, including the automatic recognition of the user's focus of attention, or the control of interactive applications with gaze gestures. The scope of the present paper is on the former, and we show how gaze tracking can be used for implicit interaction in the pervasive advertising domain. We have developed a prototype for this purpose, which (i) uses an overhead mounted camera to distinguish four gaze areas on a large display, (ii) works for a wide range of positions in front of the display, and (iii) provides an estimation of the currently gazed quarters in real time. A detailed description of the prototype as well as the results of a user study with 12 participants, which show the recognition accuracy for different positions in front of the display, are presented.

  8. Creating a Computer Adaptive Test Version of the Late-Life Function & Disability Instrument

    PubMed Central

    Jette, Alan M.; Haley, Stephen M.; Ni, Pengsheng; Olarsch, Sippy; Moed, Richard

    2009-01-01

    Background This study applied Item Response Theory (IRT) and Computer Adaptive Test (CAT) methodologies to develop a prototype function and disability assessment instrument for use in aging research. Herein, we report on the development of the CAT version of the Late-Life Function & Disability instrument (Late-Life FDI) and evaluate its psychometric properties. Methods We employed confirmatory factor analysis, IRT methods, validation, and computer simulation analyses of data collected from 671 older adults residing in residential care facilities. We compared accuracy, precision, and sensitivity to change of scores from CAT versions of two Late-Life FDI scales with scores from the fixed-form instrument. Score estimates from the prototype CAT versus the original instrument were compared in a sample of 40 older adults. Results Distinct function and disability domains were identified within the Late-Life FDI item bank and used to construct two prototype CAT scales. Using retrospective data, scores from computer simulations of the prototype CAT scales were highly correlated with scores from the original instrument. The results of computer simulation, accuracy, precision, and sensitivity to change of the CATs closely approximated those of the fixed-form scales, especially for the 10- or 15-item CAT versions. In the prospective study each CAT was administered in less than 3 minutes and CAT scores were highly correlated with scores generated from the original instrument. Conclusions CAT scores of the Late-Life FDI were highly comparable to those obtained from the full-length instrument with a small loss in accuracy, precision, and sensitivity to change. PMID:19038841

  9. A Fault-Oblivious Extreme-Scale Execution Environment (FOX)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Hensbergen, Eric; Speight, William; Xenidis, Jimi

    IBM Research’s contribution to the Fault Oblivious Extreme-scale Execution Environment (FOX) revolved around three core research deliverables: • collaboration with Boston University around the Kittyhawk cloud infrastructure which both enabled a development and deployment platform for the project team and provided a fault-injection testbed to evaluate prototypes • operating systems research focused on exploring role-based operating system technologies through collaboration with Sandia National Labs on the NIX research operating system and collaboration with the broader IBM Research community around a hybrid operating system model which became known as FusedOS • IBM Research also participated in an advisory capacity with themore » Boston University SESA project, the core of which was derived from the K42 operating system research project funded in part by DARPA’s HPCS program. Both of these contributions were built on a foundation of previous operating systems research funding by the Department of Energy’s FastOS Program. Through the course of the X-stack funding we were able to develop prototypes, deploy them on production clusters at scale, and make them available to other researchers. As newer hardware, in the form of BlueGene/Q, came online, we were able to port the prototypes to the new hardware and release the source code for the resulting prototypes as open source to the community. In addition to the open source coded for the Kittyhawk and NIX prototypes, we were able to bring the BlueGene/Q Linux patches up to a more recent kernel and contribute them for inclusion by the broader Linux community. The lasting impact of the IBM Research work on FOX can be seen in its effect on the shift of IBM’s approach to HPC operating systems from Linux and Compute Node Kernels to role-based approaches as prototyped by the NIX and FusedOS work. This impact can be seen beyond IBM in follow-on ideas being incorporated into the proposals for the Exasacale Operating Systems/Runtime program.« less

  10. Development of Residential Prototype Building Models and Analysis System for Large-Scale Energy Efficiency Studies Using EnergyPlus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendon, Vrushali V.; Taylor, Zachary T.

    ABSTRACT: Recent advances in residential building energy efficiency and codes have resulted in increased interest in detailed residential building energy models using the latest energy simulation software. One of the challenges of developing residential building models to characterize new residential building stock is to allow for flexibility to address variability in house features like geometry, configuration, HVAC systems etc. Researchers solved this problem in a novel way by creating a simulation structure capable of creating fully-functional EnergyPlus batch runs using a completely scalable residential EnergyPlus template system. This system was used to create a set of thirty-two residential prototype buildingmore » models covering single- and multifamily buildings, four common foundation types and four common heating system types found in the United States (US). A weighting scheme with detailed state-wise and national weighting factors was designed to supplement the residential prototype models. The complete set is designed to represent a majority of new residential construction stock. The entire structure consists of a system of utility programs developed around the core EnergyPlus simulation engine to automate the creation and management of large-scale simulation studies with minimal human effort. The simulation structure and the residential prototype building models have been used for numerous large-scale studies, one of which is briefly discussed in this paper.« less

  11. Prototype of an in vitro model of the microcirculation.

    PubMed

    Shevkoplyas, Sergey S; Gifford, Sean C; Yoshida, Tatsuro; Bitensky, Mark W

    2003-03-01

    We have used microfabrication technology to construct a network of microchannels, patterned after the dimensions and architecture of the mammalian microcirculation. The network is cast in transparent silicone elastomer and the channels are coated with silanated mPEG to provide lubrication. Flow of red and white blood cells through the network is readily visualized by the use of high-speed digital image acquisition. The acquired sequences of high-quality images are used to calculate hematocrits and rates of red cell movement in the microchannels. Our prototype system has significant advantages over scaled-up room-size experimental systems in that it permits experimentation with actual human blood cells. Experiments can be carried out under well-controlled conditions in a network of microchannels with precisely known dimensions using cell suspensions of defined composition. Moreover, there is no need to counteract or anticipate the host's adaptive responses that may confound live animal experiments. Notwithstanding its limitations, the current prototype demonstrates certain features characteristic of the microcirculation, such as parachute and bullet shapes of red cells deformed in capillary channels, rouleaux formation, plasma skimming, and the utilization of collateral flow pathways due to flow obstruction caused by a white cell blocking a microchannel. We present this device as a prototype scale-to-scale model of the mammalian microcirculation. Limitations of the system as well as a variety of possible applications are described.

  12. Short Rotation Woody Crops Program. Quarterly progress report, March 1-May 31, 1985. [Sycamore, alders, black locust, larch, poplars, saltbush

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, L.L.; Perlack, R.D.; Wenzel, C.R.

    1985-08-01

    This report covers the progress of the Short Rotation Woody Crops Program (SRWCP) during the third quarter of fiscal year 1985. This report summarizes ORNL management activities, technical activities at ORNL and subcontract institutions, and the technology transfer that is occurring as a result of subcontractor and ORNL activities. Third-year results of a nutrient utilization study confirmed that there were no benefits to quarterly fertilization with urea nitrogen. Testing of one prototype short-rotation intensive culture harvester was conducted on a sycamore plantation on Scott Paper Company land in southern Alabama. Coppice yields of European black alder reported by Iowa Statemore » University indicate potential productivity of about 7.2 dry Mg . ha/sup -1/ . year/sup -1/ if the best trees are selected. Coppice yields were more than double first-rotation yields. About 31,000 black locust and larch trees were established in 12 genetic tests at 4 sites in Michigan. Seedling rotation productivity rates of 4-year-old hybrid poplar, based on harvest data, were reported by Pennsylvania State University. Rates varied from 4.8 dry Mg . ha/sup -1/ . year/sup -1/ to 10.7 dry Mg . ha/sup -1/ . year/sup -1/, depending on site, management strategy, and planting year. An efficient method for in vitro micropropagation of elite genotypes of fourwing saltbush was developed by Plant Resources Institute. A new study to evaluate yield/density relationships was established by the USDA Forest Service, Pacific Northwest Forest and Range Experiment Station. Dissertation research on the crown geometry of plantation-grown American sycamore was completed.« less

  13. Retaining minorities in engineering: Assessment of a program prototype

    NASA Astrophysics Data System (ADS)

    Good, Jennifer Marie (Phillips)

    Program assessment is an essential part of healthy program development. Assessment should include multiple considerations, dimensions, and outcomes that match the program's objectives. As a newly formed retention program, the Auburn University Minority Engineering Program, designed to help pre-engineering minority students make the transition into their freshman year of university studies, incorporated evaluation and assessment into all three components of the program (the interactive learning laboratory, critical-thinking workshops, and Sunday-evening tutorials) from the program's inception. If students successfully adapted to the university environment and the demands of the pre-engineering course of study, then retention of minority students in the College of Engineering should improve. Data were gathered on the students involved in the various program components. Students who entered the Minority Engineering Program were pre- and posttested on three standardized subtests (critical thinking, mathematics, and science reasoning) of the Collegiate Assessment of Academic Proficiency. The first-quarter grade-point averages of the students were also gathered to compare their grades to freshman students in previous quarters within the College of Engineering. Qualitative data were also gathered on this same group of students. An analysis of the data revealed that student achievement is affected by involvement in the Minority Engineering Program. Specifically, the first quarter grade point averages of students involved in the program exceeded those of their peers in earlier years of study prior to the program's existence. In addition, mathematics and science reasoning scores on standardized tests increased pre- to postintervention. Comments collected in journals and files also demonstrated use of critical-thinking and problem-solving skills employed by the students. Recommendations for alterations of the program were made based on the outcome of the program evaluation. Further suggestions for research in minority engineering program development and evaluation were also discussed.

  14. Malawi's contribution to "3 by 5": achievements and challenges.

    PubMed

    Libamba, Edwin; Makombe, Simon D; Harries, Anthony D; Schouten, Erik J; Yu, Joseph Kwong-Leung; Pasulani, Olesi; Mhango, Eustice; Aberle-Grasse, John; Hochgesang, Mindy; Limbambala, Eddie; Lungu, Douglas

    2007-02-01

    Many resource-poor countries have started scaling up antiretroviral therapy (ART). While reports from individual clinics point to successful implementation, there is limited information about progress in government institutions at a national level. Malawi started national ART scale-up in 2004 using a structured approach. There is a focus on one generic, fixed-dose combination treatment with stavudine, lamivudine and nevirapine. Treatment is delivered free of charge to eligible patients with HIV and there is a standardized system for recruiting patients, monthly follow-up, registration, monitoring and reporting of cases and outcomes. All treatment sites receive quarterly supervision and evaluation. In January 2004, there were nine public sector facilities delivering ART to an estimated 4 000 patients. By December 2005, there were 60 public sector facilities providing free ART to 37,840 patients using national standardized systems. Analysis of quarterly cohort treatment outcomes at 12 months showed 80% of patients were alive, 10% dead, 9% lost to follow-up and 1% had stopped treatment. Achievements were the result of clear national ART guidelines, implementing partners working together, an intensive training schedule focused on clinical officers and nurses, a structured system of accrediting facilities for ART delivery, quarterly supervision and monitoring, and no stock-outs of antiretroviral drugs. The main challenges are to increase the numbers of children, pregnant women and patients with tuberculosis being started on ART, and to avert high early mortality and losses to follow-up. The capacity of the health sector to cope with escalating case loads and to scale up prevention alongside treatment will determine the future success of ART delivery in Malawi.

  15. Predicting the potential distributions of the invasive cycad scale Aulacaspis yasumatsui (Hemiptera: Diaspididae) under different climate change scenarios and the implications for management.

    PubMed

    Wei, Jiufeng; Zhao, Qing; Zhao, Wanqing; Zhang, Hufang

    2018-01-01

    Cycads are an ancient group of gymnosperms that are popular as landscaping plants, though nearly all of them are threatened or endangered in the wild. The cycad aulacaspis scale (CAS), Aulacaspis yasumatsui Takagi (Hemiptera: Diaspididae), has become one of the most serious pests of cycads in recent years; however, the potential distribution range and the management approach for this pest are unclear. A potential risk map of cycad aulacaspis scale was created based on occurrence data under different climatic conditions and topology factors in this study. Furthermore, the future potential distributions of CAS were projected for the periods 2050s and 2070s under three different climate change scenarios (GFDL-CM3, HADGEM2-AO and MIROC5) described in the Special Report on Emissions Scenarios of the IPCC (Intergovernmental Panel on Climate Change). The model suggested high environmental suitability for the continents of Asia and North America, where the species has already been recorded. The potential distribution expansions or reductions were also predicted under different climate change conditions. Temperature of Driest Quarter (Bio9) was the most important factor, explaining 48.1% of the distribution of the species. The results also suggested that highly suitable habitat for CAS would exist in the study area if the mean temperature of 15-20 °C in the driest quarter and a mean temperature of 25-28 °C the wettest quarter. This research provides a theoretical reference framework for developing policy to manage and control this invasive pest.

  16. The moving-ring field-reversed mirror prototype reactor

    NASA Astrophysics Data System (ADS)

    Smith, A. C., Jr.; Carlson, G. A.; Fleischmann, H. H.; Grossman, W., Jr.; Kammash, T.; Schultz, K. R.; Woodall, D. M.

    1981-03-01

    A prototype fusion reactor was designed based on magnetic field reversed plasma confinement. A set of physics, technology, and mechanical design criteria were developed in order to make this concept attractive. Six major criteria guide the commercial prototype design. The prototype must: (1) produce net electricity decisively P sub net 70% of P sub gross; (2) scale to an economical commercial plant and have small physical size; (3) have all features required of a correcial upgrade plant (H-3 breeding, etc.); (4) minimize exotic technology and maintenance complexity; (5) promise significantly lower safety hazards than fission plants (environmentally and socially acceptable); and (6) be modular in design to permit repetitive production of components.

  17. Payload test philosophy. [to provide confidence in Shuttle structural math models

    NASA Technical Reports Server (NTRS)

    Mayhew, D.

    1979-01-01

    Shuttle payload test philosophy is discussed with reference to testing to provide confidence in Shuttle structural math models. Particular attention is given the Shuttle quarter-scale program and the Mated Vertical Ground Vibration Test Program.

  18. Design of scaled down structural models

    NASA Technical Reports Server (NTRS)

    Simitses, George J.

    1994-01-01

    In the aircraft industry, full scale and large component testing is a very necessary, time consuming, and expensive process. It is essential to find ways by which this process can be minimized without loss of reliability. One possible alternative is the use of scaled down models in testing and use of the model test results in order to predict the behavior of the larger system, referred to herein as prototype. This viewgraph presentation provides justifications and motivation for the research study, and it describes the necessary conditions (similarity conditions) for two structural systems to be structurally similar with similar behavioral response. Similarity conditions provide the relationship between a scaled down model and its prototype. Thus, scaled down models can be used to predict the behavior of the prototype by extrapolating their experimental data. Since satisfying all similarity conditions simultaneously is in most cases impractical, distorted models with partial similarity can be employed. Establishment of similarity conditions, based on the direct use of the governing equations, is discussed and their use in the design of models is presented. Examples include the use of models for the analysis of cylindrical bending of orthotropic laminated beam plates, of buckling of symmetric laminated rectangular plates subjected to uniform uniaxial compression and shear, applied individually, and of vibrational response of the same rectangular plates. Extensions and future tasks are also described.

  19. Design of scaled down structural models

    NASA Astrophysics Data System (ADS)

    Simitses, George J.

    1994-07-01

    In the aircraft industry, full scale and large component testing is a very necessary, time consuming, and expensive process. It is essential to find ways by which this process can be minimized without loss of reliability. One possible alternative is the use of scaled down models in testing and use of the model test results in order to predict the behavior of the larger system, referred to herein as prototype. This viewgraph presentation provides justifications and motivation for the research study, and it describes the necessary conditions (similarity conditions) for two structural systems to be structurally similar with similar behavioral response. Similarity conditions provide the relationship between a scaled down model and its prototype. Thus, scaled down models can be used to predict the behavior of the prototype by extrapolating their experimental data. Since satisfying all similarity conditions simultaneously is in most cases impractical, distorted models with partial similarity can be employed. Establishment of similarity conditions, based on the direct use of the governing equations, is discussed and their use in the design of models is presented. Examples include the use of models for the analysis of cylindrical bending of orthotropic laminated beam plates, of buckling of symmetric laminated rectangular plates subjected to uniform uniaxial compression and shear, applied individually, and of vibrational response of the same rectangular plates. Extensions and future tasks are also described.

  20. Utility-Scale Future, Continuum Magazine: Clean Energy Innovation at NREL, Spring 2011, Issue 1 Vol. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2011-08-01

    This quarterly magazine is dedicated to stepping beyond the technical journals to reveal NREL's vital work in a real-world context for our stakeholders. Continuum provides insights into the latest and most impactful clean energy innovations, while spotlighting those talented researchers and unique facilities that make it all happen. This edition focuses on creating a utility-scale future.

  1. Assessing self-care and social function using a computer adaptive testing version of the pediatric evaluation of disability inventory.

    PubMed

    Coster, Wendy J; Haley, Stephen M; Ni, Pengsheng; Dumas, Helene M; Fragala-Pinkham, Maria A

    2008-04-01

    To examine score agreement, validity, precision, and response burden of a prototype computer adaptive testing (CAT) version of the self-care and social function scales of the Pediatric Evaluation of Disability Inventory compared with the full-length version of these scales. Computer simulation analysis of cross-sectional and longitudinal retrospective data; cross-sectional prospective study. Pediatric rehabilitation hospital, including inpatient acute rehabilitation, day school program, outpatient clinics; community-based day care, preschool, and children's homes. Children with disabilities (n=469) and 412 children with no disabilities (analytic sample); 38 children with disabilities and 35 children without disabilities (cross-validation sample). Not applicable. Summary scores from prototype CAT applications of each scale using 15-, 10-, and 5-item stopping rules; scores from the full-length self-care and social function scales; time (in seconds) to complete assessments and respondent ratings of burden. Scores from both computer simulations and field administration of the prototype CATs were highly consistent with scores from full-length administration (r range, .94-.99). Using computer simulation of retrospective data, discriminant validity, and sensitivity to change of the CATs closely approximated that of the full-length scales, especially when the 15- and 10-item stopping rules were applied. In the cross-validation study the time to administer both CATs was 4 minutes, compared with over 16 minutes to complete the full-length scales. Self-care and social function score estimates from CAT administration are highly comparable with those obtained from full-length scale administration, with small losses in validity and precision and substantial decreases in administration time.

  2. A Population-Level Data Analytics Portal for Self-Administered Lifestyle and Mental Health Screening.

    PubMed

    Zhang, Xindi; Warren, Jim; Corter, Arden; Goodyear-Smith, Felicity

    2016-01-01

    This paper describes development of a prototype data analytics portal for analysis of accumulated screening results from eCHAT (electronic Case-finding and Help Assessment Tool). eCHAT allows individuals to conduct a self-administered lifestyle and mental health screening assessment, with usage to date chiefly in the context of primary care waiting rooms. The intention is for wide roll-out to primary care clinics, including secondary school based clinics, resulting in the accumulation of population-level data. Data from a field trial of eCHAT with sexual health questions tailored to youth were used to support design of a data analytics portal for population-level data. The design process included user personas and scenarios, screen prototyping and a simulator for generating large-scale data sets. The prototype demonstrates the promise of wide-scale self-administered screening data to support a range of users including practice managers, clinical directors and health policy analysts.

  3. Development of Prototype Outcomes-Based Training Modules for Aesthetic Dentistry

    ERIC Educational Resources Information Center

    Andres, Maricar Joy T.; Borabo, Milagros L.

    2015-01-01

    The objective of the study is to know the essential components of Aesthetic Dentistry that will be a basis for prototype Outcomes-based training modules. Using a 5-point Likert scale, the researcher-made questionnaire assessed the different elements of Aesthetic Dentistry which are needed in the designing of the training module, the manner of…

  4. A superconducting levitation vehicle prototype

    NASA Astrophysics Data System (ADS)

    Stephan, R. M.; Nicolsky, R.; Neves, M. A.; Ferreira, A. C.; de Andrade, R.; Cruz Moreira, M. A.; Rosário, M. A.; Machado, O. J.

    2004-08-01

    This paper presents a small scale MAGLEV vehicle prototype which is under development at UFRJ. The levitation is done by Y-Ba-Cu-O superconducting blocks refrigerated by liquid nitrogen in the presence of Nd-Fe-B magnets. A long primary linear synchronous motor gives the traction. Design considerations and experimental results show the characteristics and performance of this system.

  5. The chip-scale atomic clock : prototype evaluation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mescher, Mark; Varghese, Mathew; Lutwak, Robert

    2007-12-01

    The authors have developed a chip-scale atomic clock (CSAC) for applications requiring atomic timing accuracy in portable battery-powered applications. At PTTI/FCS 2005, they reported on the demonstration of a prototype CSAC, with an overall size of 10 cm{sup 3}, power consumption > 150 mW, and short-term stability sy(t) < 1 x 10-9t-1/2. Since that report, they have completed the development of the CSAC, including provision for autonomous lock acquisition and a calibrated output at 10.0 MHz, in addition to modifications to the physics package and system architecture to improve performance and manufacturability.

  6. Pretest Plan for a Quarter Scale AFT Segment of the SRB Filament Wound Case in the NSWC Hydroballistics Facility. [space shuttle boosters

    NASA Technical Reports Server (NTRS)

    Adoue, J. A.

    1984-01-01

    In support of preflight design loads definition, preliminary water impact scale model are being conducted of space shuttle rocket boosters. The model to be used as well as the instrumentation, test facilities, and test procedures are described for water impact tests being conducted at test conditions to simulate full-scale initial impact at vertical velocities from 65 to 85 ft/sec. zero horizontal velocity, and angles of 0,5, and 10 degrees.

  7. Scale-up of nature's tissue weaving algorithms to engineer advanced functional materials.

    PubMed

    Ng, Joanna L; Knothe, Lillian E; Whan, Renee M; Knothe, Ulf; Tate, Melissa L Knothe

    2017-01-11

    We are literally the stuff from which our tissue fabrics and their fibers are woven and spun. The arrangement of collagen, elastin and other structural proteins in space and time embodies our tissues and organs with amazing resilience and multifunctional smart properties. For example, the periosteum, a soft tissue sleeve that envelops all nonarticular bony surfaces of the body, comprises an inherently "smart" material that gives hard bones added strength under high impact loads. Yet a paucity of scalable bottom-up approaches stymies the harnessing of smart tissues' biological, mechanical and organizational detail to create advanced functional materials. Here, a novel approach is established to scale up the multidimensional fiber patterns of natural soft tissue weaves for rapid prototyping of advanced functional materials. First second harmonic generation and two-photon excitation microscopy is used to map the microscopic three-dimensional (3D) alignment, composition and distribution of the collagen and elastin fibers of periosteum, the soft tissue sheath bounding all nonarticular bone surfaces in our bodies. Then, using engineering rendering software to scale up this natural tissue fabric, as well as multidimensional weaving algorithms, macroscopic tissue prototypes are created using a computer-controlled jacquard loom. The capacity to prototype scaled up architectures of natural fabrics provides a new avenue to create advanced functional materials.

  8. Scale-up of nature’s tissue weaving algorithms to engineer advanced functional materials

    NASA Astrophysics Data System (ADS)

    Ng, Joanna L.; Knothe, Lillian E.; Whan, Renee M.; Knothe, Ulf; Tate, Melissa L. Knothe

    2017-01-01

    We are literally the stuff from which our tissue fabrics and their fibers are woven and spun. The arrangement of collagen, elastin and other structural proteins in space and time embodies our tissues and organs with amazing resilience and multifunctional smart properties. For example, the periosteum, a soft tissue sleeve that envelops all nonarticular bony surfaces of the body, comprises an inherently “smart” material that gives hard bones added strength under high impact loads. Yet a paucity of scalable bottom-up approaches stymies the harnessing of smart tissues’ biological, mechanical and organizational detail to create advanced functional materials. Here, a novel approach is established to scale up the multidimensional fiber patterns of natural soft tissue weaves for rapid prototyping of advanced functional materials. First second harmonic generation and two-photon excitation microscopy is used to map the microscopic three-dimensional (3D) alignment, composition and distribution of the collagen and elastin fibers of periosteum, the soft tissue sheath bounding all nonarticular bone surfaces in our bodies. Then, using engineering rendering software to scale up this natural tissue fabric, as well as multidimensional weaving algorithms, macroscopic tissue prototypes are created using a computer-controlled jacquard loom. The capacity to prototype scaled up architectures of natural fabrics provides a new avenue to create advanced functional materials.

  9. Abstract memory representations in the ventromedial prefrontal cortex and hippocampus support concept generalization.

    PubMed

    Bowman, Caitlin R; Zeithamova, Dagmar

    2018-02-07

    Memory function involves both the ability to remember details of individual experiences and the ability to link information across events to create new knowledge. Prior research has identified the ventromedial prefrontal cortex (VMPFC) and the hippocampus as important for integrating across events in service of generalization in episodic memory. The degree to which these memory integration mechanisms contribute to other forms of generalization, such as concept learning, is unclear. The present study used a concept-learning task in humans (both sexes) coupled with model-based fMRI to test whether VMPFC and hippocampus contribute to concept generalization, and whether they do so by maintaining specific category exemplars or abstract category representations. Two formal categorization models were fit to individual subject data: a prototype model that posits abstract category representations and an exemplar model that posits category representations based on individual category members. Latent variables from each of these models were entered into neuroimaging analyses to determine whether VMPFC and the hippocampus track prototype or exemplar information during concept generalization. Behavioral model fits indicated that almost three quarters of the subjects relied on prototype information when making judgments about new category members. Paralleling prototype dominance in behavior, correlates of the prototype model were identified in VMPFC and the anterior hippocampus with no significant exemplar correlates. These results indicate that the VMPFC and portions of the hippocampus play a broad role in memory generalization and that they do so by representing abstract information integrated from multiple events. SIGNIFICANCE STATEMENT Whether people represent concepts as a set of individual category members or by deriving generalized concept representations abstracted across exemplars has been debated. In episodic memory, generalized memory representations have been shown to arise through integration across events supported by the ventromedial prefrontal cortex (VMPFC) and hippocampus. The current study combined formal categorization models with fMRI data analysis to show that the VMPFC and anterior hippocampus represent abstract prototype information during concept generalization, contributing novel evidence of generalized concept representations in the brain. Results indicate that VMPFC-hippocampal memory integration mechanisms contribute to knowledge generalization across multiple cognitive domains, with the degree of abstraction of memory representations varying along the long axis of the hippocampus. Copyright © 2018 the authors.

  10. Quail Egg compared to a quarter

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Quail eggs are small (shown here with a quarter for scale) and develop quickly, making them ideal for space experiments. The Avian Development Facility (ADF) supports 36 eggs in two carousels (below), one of which rotates to provide a 1-g control for comparing to eggs grown in microgravity. The ADF originated in NASA's Shuttle Student Involvement program in the 1980s and was developed under the NASA Small Business Irnovation Research program. In late 2001, the ADF made its first flight and carried eggs used in two investigations, Development and function of the inner-ear balance system in normal and altered gravity environments, and Skeletal development in embryonic quail.

  11. DEVELOPING A COST EFFECTIVE ENVIRONMENTAL SOLUTION FOR PRODUCED WATER AND CREATING A ''NEW'' WATER RESOURCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glenn Doran

    1997-04-28

    This report summarizes the status of this project for the quarter January 1, 1997 to March 31, 1997. Phase II has been started and Task 7, Develop Pilot Scale Test Work Plan has been completed. The operational portion of this phase, Task 8 has been initiated with several pieces of pilot equipment already on-site. The start up of the full process train will not occur until the next quarter. The project is slightly behind schedule. A no cost extension was requested and was granted. The anticipated completion date is December 31, 1997. The project is on budget.

  12. Dynamical analyses of the time series for three foreign exchange rates

    NASA Astrophysics Data System (ADS)

    Kim, Sehyun; Kim, Soo Yong; Jung, Jae-Won; Kim, Kyungsik

    2012-05-01

    In this study, we investigate the multifractal properties of three foreign exchange rates (USD-KRW, USD-JPY, and EUR-USD) that are quoted with different economic scales. We estimate and analyze both the generalized Hurst exponent and the autocorrelation function in three foreign exchange rates. The USD-KRW is shown to have the strongest of the Hurst exponents when compared with the other two foreign exchange rates. In particular, the autocorrelation function of the USD-KRW has the largest memory behavior among three foreign exchange rates. It also exhibits a long-memory property in the first quarter, more than those in the other quarters.

  13. Water Based Inkjet Material Deposition Of Donor-Acceptor Nanoparticles For Usage In Organic Photovoltaics

    NASA Astrophysics Data System (ADS)

    Penmetcha, Anirudh Raju

    Significant efficiency increases are being made for bulk heterojunction organic photovoltaic prototype devices with world records at 11%. However the chlorinated solvents most frequently used in prototype manufacture would cause local health and safety concerns or large scale environmental pollution upon expansion of these techniques for commercialization. Moreover, research to bridge prototype and large-scale production of these solar cells is still in its infancy. Most prototype devices are made in inert glove box environments using spin-coating. There is a need to develop a non-toxic ink and incorporate it into a material deposition system that can be used in mass production. In this thesis, P3HT:PCBM organic photovoltaic devices were fabricated with the help of inkjet printing. P3HT:PCBM blends were dissolved in organic solvent systems, and this solution was used as the ink for the printer. The "coffee-ring effect" as well as the effect of inkjet printing parameters on film formation were highlighted - thus the inkjet printing method was validated as a stepping stone between lab-scale production of OPVs and large-scale roll-to-roll manufacturing. To address the need of a non-toxic ink, P3HT:PCBM blends were then dispersed in water, using the miniemulsion method. The nanoparticles were characterized for their size, as well as the blending between the P3HT and PCBM within the nanoparticle. These dispersions were then converted into inks. Finally, these nanoparticle inks were inkjet-printed to fabricate OPV devices. Based on the results obtained here, tentative "next steps" have been outlined in order to improve upon this research work, in the future.

  14. Thermal Performance Analysis of Solar Collectors Installed for Combisystem in the Apartment Building

    NASA Astrophysics Data System (ADS)

    Žandeckis, A.; Timma, L.; Blumberga, D.; Rochas, C.; Rošā, M.

    2012-01-01

    The paper focuses on the application of wood pellet and solar combisystem for space heating and hot water preparation at apartment buildings under the climate of Northern Europe. A pilot project has been implemented in the city of Sigulda (N 57° 09.410 E 024° 52.194), Latvia. The system was designed and optimised using TRNSYS - a dynamic simulation tool. The pilot project was continuously monitored. To the analysis the heat transfer fluid flow rate and the influence of the inlet temperature on the performance of solar collectors were subjected. The thermal performance of a solar collector loop was studied using a direct method. A multiple regression analysis was carried out using STATGRAPHICS Centurion 16.1.15 with the aim to identify the operational and weather parameters of the system which cause the strongest influence on the collector's performance. The parameters to be used for the system's optimisation have been evaluated.

  15. Trust in Teams Scale, Trust in Leaders Scale: Manual for Administration and Analyses

    DTIC Science & Technology

    2008-07-01

    Committee The scientific or technical validity of this Contractor Report is entirely the responsibility of the contractor and the...and Farley’s exploratory analysis of the unit climate profile. DRDC Toronto Report CR-2001-149. KORSGAARD, M . A., S. E. BRODT, & WHITENER, E. M ...8217 trust in leader, satisfaction, and organizational citizenship behaviors. Leadership Quarterly, 1(2), 107-142. ROUSSEAU , D ., SITKIN, S., BURT, R

  16. The Galileo PPS expert monitoring and diagnostic prototype

    NASA Technical Reports Server (NTRS)

    Bahrami, Khosrow

    1989-01-01

    The Galileo PPS Expert Monitoring Module (EMM) is a prototype system implemented on the SUN workstation that will demonstrate a knowledge-based approach to monitoring and diagnosis for the Galileo spacecraft Power/Pyro subsystems. The prototype will simulate an analysis module functioning within the SFOC Engineering Analysis Subsystem Environment (EASE). This document describes the implementation of a prototype EMM for the Galileo spacecraft Power Pyro Subsystem. Section 2 of this document provides an overview of the issues in monitoring and diagnosis and comparison between traditional and knowledge-based solutions to this problem. Section 3 describes various tradeoffs which must be considered when designing a knowledge-based approach to monitoring and diagnosis, and section 4 discusses how these issues were resolved in constructing the prototype. Section 5 presents conclusions and recommendations for constructing a full-scale demonstration of the EMM. A Glossary provides definitions of terms used in this text.

  17. MEMS Stirling Cooler Development Update

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.; Wesolek, Danielle

    2003-01-01

    This presentation provides an update on the effort to build and test a prototype unit of the patented MEMS Stirling cooler concept. A micro-scale regenerator has been fabricated by Polar Thermal Technologies and is currently being integrated into a Stirling cycle simulator at Johns Hopkins University Applied Physics Laboratory. A discussion of the analysis, design, assembly, and test plans for the prototype will be presented.

  18. The fourth dimension of life: fractal geometry and allometric scaling of organisms.

    PubMed

    West, G B; Brown, J H; Enquist, B J

    1999-06-04

    Fractal-like networks effectively endow life with an additional fourth spatial dimension. This is the origin of quarter-power scaling that is so pervasive in biology. Organisms have evolved hierarchical branching networks that terminate in size-invariant units, such as capillaries, leaves, mitochondria, and oxidase molecules. Natural selection has tended to maximize both metabolic capacity, by maximizing the scaling of exchange surface areas, and internal efficiency, by minimizing the scaling of transport distances and times. These design principles are independent of detailed dynamics and explicit models and should apply to virtually all organisms.

  19. Assessing self-care and social function using a computer adaptive testing version of the Pediatric Evaluation of Disability Inventory Accepted for Publication, Archives of Physical Medicine and Rehabilitation

    PubMed Central

    Coster, Wendy J.; Haley, Stephen M.; Ni, Pengsheng; Dumas, Helene M.; Fragala-Pinkham, Maria A.

    2009-01-01

    Objective To examine score agreement, validity, precision, and response burden of a prototype computer adaptive testing (CAT) version of the Self-Care and Social Function scales of the Pediatric Evaluation of Disability Inventory (PEDI) compared to the full-length version of these scales. Design Computer simulation analysis of cross-sectional and longitudinal retrospective data; cross-sectional prospective study. Settings Pediatric rehabilitation hospital, including inpatient acute rehabilitation, day school program, outpatient clinics; community-based day care, preschool, and children’s homes. Participants Four hundred sixty-nine children with disabilities and 412 children with no disabilities (analytic sample); 38 children with disabilities and 35 children without disabilities (cross-validation sample). Interventions Not applicable. Main Outcome Measures Summary scores from prototype CAT applications of each scale using 15-, 10-, and 5-item stopping rules; scores from the full-length Self-Care and Social Function scales; time (in seconds) to complete assessments and respondent ratings of burden. Results Scores from both computer simulations and field administration of the prototype CATs were highly consistent with scores from full-length administration (all r’s between .94 and .99). Using computer simulation of retrospective data, discriminant validity and sensitivity to change of the CATs closely approximated that of the full-length scales, especially when the 15- and 10-item stopping rules were applied. In the cross-validation study the time to administer both CATs was 4 minutes, compared to over 16 minutes to complete the full-length scales. Conclusions Self-care and Social Function score estimates from CAT administration are highly comparable to those obtained from full-length scale administration, with small losses in validity and precision and substantial decreases in administration time. PMID:18373991

  20. Declining Return Migration from the United States to Mexico in the late-2000s Recession: A Research Note

    PubMed Central

    Rendall, Michael S.; Brownell, Peter; Kups, Sarah

    2011-01-01

    Researchers in the U.S. and Mexico have variously asserted that return migration from the U.S. to Mexico has increased substantially, remained unchanged, or declined slightly in response to the 2008–2009 U.S. recession and fall 2008 global financial crisis. The present study addresses this debate using microdata through 2009 from a large-scale, quarterly Mexican household survey, the National Survey of Occupation and Employment (ENOE), after first validating the ENOE against return migration estimates from a specialist demographic survey, the National Survey of Demographic Dynamics (ENADID). Declines in annual return migration flows of up to a third between 2007 and 2009 were seen among the predominantly labor-migrant groups of male migrants and all 18 to 40 year old migrants with less than a college education, and a decline in total return migration was seen in the fourth quarter of 2008 (immediately after the triggering of the global financial crisis) compared to the fourth quarter of 2007. PMID:21744184

  1. Declining return migration from the United States to Mexico in the late-2000s recession: a research note.

    PubMed

    Rendall, Michael S; Brownell, Peter; Kups, Sarah

    2011-08-01

    Researchers in the United States and Mexico have variously asserted that return migration from the United States to Mexico increased substantially, remained unchanged, or declined slightly in response to the 2008-2009 U.S. recession and fall 2008 global financial crisis. The present study addresses this debate using microdata from 2005 through 2009 from a large-scale, quarterly Mexican household survey, the National Survey of Occupation and Employment (ENOE), after first validating the ENOE against return-migration estimates from a specialist demographic survey, the National Survey of Demographic Dynamics (ENADID). Declines in annual return-migration flows of up to a third between 2007 and 2009 were seen among the predominantly labor-migrant groups of male migrants and all 18- to 40-year-old migrants with less than a college education; and a decline in total return migration was seen in the fourth quarter of 2008 (immediately after the triggering of the global financial crisis) compared with the fourth quarter of 2007.

  2. Views from Within a Narrative: Evaluating Long-Term Human-Robot Interaction in a Naturalistic Environment Using Open-Ended Scenarios.

    PubMed

    Syrdal, Dag Sverre; Dautenhahn, Kerstin; Koay, Kheng Lee; Ho, Wan Ching

    2014-01-01

    This article describes the prototyping of human-robot interactions in the University of Hertfordshire (UH) Robot House. Twelve participants took part in a long-term study in which they interacted with robots in the UH Robot House once a week for a period of 10 weeks. A prototyping method using the narrative framing technique allowed participants to engage with the robots in episodic interactions that were framed using narrative to convey the impression of a continuous long-term interaction. The goal was to examine how participants responded to the scenarios and the robots as well as specific robot behaviours, such as agent migration and expressive behaviours. Evaluation of the robots and the scenarios were elicited using several measures, including the standardised System Usability Scale, an ad hoc Scenario Acceptance Scale, as well as single-item Likert scales, open-ended questionnaire items and a debriefing interview. Results suggest that participants felt that the use of this prototyping technique allowed them insight into the use of the robot, and that they accepted the use of the robot within the scenario.

  3. Effect of vertical ground motions on shear demand and capacity in bridge columns.

    DOT National Transportation Integrated Search

    2012-03-01

    The objective of this project was to examine the effects of axial force variation in bridge columns due to strong vertical : ground motions and the influence of these axial force fluctuations on shear strength degradation. : Two quarter scale specime...

  4. Effect of IOP based infusion system with and without balanced phaco tip on cumulative dissipated energy and estimated fluid usage in comparison to gravity fed infusion in torsional phacoemulsification.

    PubMed

    Malik, Praveen K; Dewan, Taru; Patidar, Arun Kr; Sain, Ekta

    2017-01-01

    To evaluate the effect of three different combinations of tip designs and infusion systems in torsional phacoemulsification (INFINITI and CENTURION) in patients with cataract. According to the manufacturer, two unique improvements in the Centurion are: active fluid dynamic management system and use of an intrepid balanced tip. The study specifically aimed to evaluate the beneficial effects, if any, of change in tip design and infusion system individually and in combination on both per-operative parameters as well as endothelial health over 6 months. One hundred and twenty six consenting patients of grade 4.0-6.9 senile cataract were randomized into three groups for phacoemulsification: Group A ( n  = 42): Gravity fed infusion system and 45 0 Kelman miniflared ABS phaco tip; Group B ( n  = 42): intraocular pressure (IOP) based infusion system and 45 0 Kelman miniflared ABS phaco tip; Group C ( n  = 42): IOP based infusion system and 45 0 Intrepid balanced phaco tip. The cumulative dissipated energy (CDE), estimated fluid usage (EFU) and total aspiration time (TAT) were compared peroperatively. The endothelial parameters were followed up postoperatively for six months. The three arms were matched for age ( p  = 0.525), gender ( p  = 0.96) and grade of cataract ( p  = 0.177). Group C was associated with significant reductions in CDE ( p  = 0.001), EFU ( p  < 0.0005) as well as TAT ( p  = 0.001) in comparison to the other groups. All three groups had comparable baseline endothelial cell density ( p  = 0.876) and central corneal thickness ( p  = 0.561). On post-operative evaluation, although all groups were comparable till 3 months, by 6 months, the percentage losses in endothelial cell density were significantly lower in group C as compared to the other groups. Use of an IOP based phacoemulsification system in association with use of the Intrepid balanced tip reduces the CDE, EFU and TAT in comparison to a gravity fed system with a mini flared tip or IOP based system with a mini flared tip while also providing better endothelial preservation thus favouring the use of an IOP fed system with a balanced tip. Trial registration No.: CTRI/2016/06/007022.

  5. Prototyping for LENS

    NASA Astrophysics Data System (ADS)

    Rasco, B. C.

    2012-03-01

    The Low-Energy Neutrino Spectroscopy (LENS) experiment will precisely measure the energy spectrum of low-energy solar neutrinos via charged-current neutrino reactions on indium. The LENS detector concept applies indium-loaded scintillator in an optically-segmented lattice geometry to achieve precise time and spatial resolution with unprecedented sensitivity for low-energy neutrino events. The LENS collaboration is currently developing prototypes that aim to demonstrate the performance and selectivity of the technology and to benchmark Monte Carlo simulations that will guide scaling to the full LENS instrument. Currently a 120 liter prototype, microLENS, is operating with pure scintillator (no indium loading) in the Kimballton Underground Research Facility (KURF). We will present results from initial measurements with microLENS and plans for a 400 liter prototype, miniLENS, using indium loaded scintillator that will be installed this summer.

  6. Composite armored vehicle advanced technology demonstator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostberg, D.T.; Dunfee, R.S.; Thomas, G.E.

    1996-12-31

    Composite structures are a key technology needed to develop future lightweight combat vehicles that are both deployable and survivable. The Composite Armored Vehicle Advanced Technology Demonstrator Program that started in fiscal year 1994 will continue through 1998 to verily that composite structures are a viable solution for ground combat vehicles. Testing thus far includes material characterization, structural component tests and full scale quarter section tests. Material and manufacturing considerations, tests, results and changes, and the status of the program will be described. The structural component tests have been completed successfully, and quarter section testing is in progress. Upon completion ofmore » the critical design review, the vehicle demonstrator will be Fabricated and undergo government testing.« less

  7. A Prototype Flood Early Warning SensorWeb System for Namibia

    NASA Astrophysics Data System (ADS)

    Sohlberg, R. A.; Mandl, D.; Frye, S. W.; Cappelaere, P. G.; Szarzynski, J.; Policelli, F.; van Langenhove, G.

    2010-12-01

    During the past two years, there have been extensive floods in the country of Namibia, Africa which have affected up to a quarter of the population. Via a collaboration between a group funded by the Earth Science Technology Office (ESTO) at NASA that has been performing various SensorWeb prototyping activities for disasters, the Department of Hydrology in Namibia and the United Nations Space-based Information for Disaster and Emergency Response (UN-SPIDER) , experiments were conducted on how to apply various satellite resources integrated into a SensorWeb architecture along with in-situ sensors such as river gauges and rain gauges into a flood early warning system. The SensorWeb includes a global flood model and a higher resolution basin specific flood model. Furthermore, flood extent and status is monitored by optical and radar types of satellites and integrated via some automation. We have taken a practical approach to find out how to create a working system by selectively using the components that provide good results. The vision for the future is to combine this with the country side dwelling unit data base to create risk maps that provide specific warnings to houses within high risk areas based on near term predictions. This presentation will show some of the highlights of the effort thus far plus our future plans.

  8. NASA'S SERVIR Gulf of Mexico Project: The Gulf of Mexico Regional Collaborative (GoMRC)

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Irwin, Daniel; Presson, Joan; Estes, Maury; Estes, Sue; Judd, Kathleen

    2006-01-01

    The Gulf of Mexico Regional Collaborative (GoMRC) is a NASA-funded project that has as its goal to develop an integrated, working, prototype IT infrastructure for Earth science data, knowledge and models for the five Gulf U.S. states and Mexico, and to demonstrate its ability to help decision-makers better understand critical Gulf-scale issues. Within this preview, the mission of this project is to provide cross cutting solution network and rapid prototyping capability for the Gulf of Mexico region, in order to demonstrate substantial, collaborative, multi-agency research and transitional capabilities using unique NASA data sets and models to address regional problems. SERVIR Mesoamerica is seen as an excellent existing framework that can be used to integrate observational and GIs data bases, provide a sensor web interface, visualization and interactive analysis tools, archival functions, data dissemination and product generation within a Rapid Prototyping concept to assist decision-makers in better understanding Gulf-scale environmental issues.

  9. 40 CFR 98.84 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... by direct weight measurement using the same plant instruments used for accounting purposes, such as... be determined quarterly by direct weight measurement using the same plant instruments used for accounting purposes, such as weigh hoppers, truck weigh scales, or belt weigh feeders. (f) The quantity of...

  10. CMAQ MODELING FOR AIR TOXICS AT FINE SCALES: A PROTOTYPE STUDY

    EPA Science Inventory

    Toxic air pollutants (TAPs) or hazardous air pollutants (HAPs) exhibit considerable spatial and temporal variability across urban areas. Therefore, the ability of chemical transport models (CTMs), e.g. Community Multi-scale Air Quality (CMAQ), to reproduce the spatial and tempor...

  11. Superconducting 112 MHz QWR electron gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belomestnykh, S.; Ben-Zvi, I.; Boulware, C.H.

    Brookhaven National Laboratory and Niowave, Inc. have designed and fabricated a superconducting 112 MHz quarter-wave resonator (QWR) electron gun. The first cold test of the QWR cryomodule has been completed at Niowave. The paper describes the cryomodule design, presents the cold test results, and outline plans to upgrade the cryomodule. Future experiments include studies of different photocathodes and use for the coherent electron cooling proof-of-principle experiment. Two cathode stalk options, one for multi-alkali photocathodes and the other one for a diamond-amplified photocathode, are discussed. A quarter-wave resonator concept of superconducting RF (SRF) electron gun was proposed at BNL for electronmore » cooling hadron beams in RHIC. QWRs can be made sufficiently compact even at low RF frequencies (long wavelengths). The long wavelength allows to produce long electron bunches, thus minimizing space charge effects and enabling high bunch charge. Also, such guns should be suitable for experiments requiring high average current electron beams. A 112 MHz QWR gun was designed, fabricated, and cold-tested in collaboration between BNL and Niowave. This is the lowest frequency SRF gun ever tested successfully. In this paper we describe the gun design and fabrication, present the cold test results, and outline our plans. This gun will also serve as a prototype for a future SRF gun to be used for coherent electron cooling of hadrons in eRHIC.« less

  12. Active vibration control on a quarter-car for cancellation of road noise disturbance

    NASA Astrophysics Data System (ADS)

    Belgacem, Walid; Berry, Alain; Masson, Patrice

    2012-07-01

    In this paper, a methodology is presented for the cancellation of road noise, from the analysis of vibration transmission paths for an automotive suspension to the design of an active control system using inertial actuators on a suspension to reduce the vibrations transmitted to the chassis. First, experiments were conducted on a Chevrolet Epica LS automobile on a concrete test track to measure accelerations induced on the suspension by the road. These measurements were combined with experimental Frequency Response Functions (FRFs) measured on a quarter-car test bench to reconstruct an equivalent three dimensional force applied on the wheel hub. Second, FRFs measured on the test bench between the three-dimensional driving force and forces at each suspension/chassis linkage were used to characterize the different transmission paths of vibration energy to the chassis. Third, an experimental model of the suspension was constructed to simulate the configuration of the active control system, using the primary (disturbance) FRFs and secondary (control) FRFs also measured on the test bench. This model was used to optimize the configuration of the control actuators and to evaluate the required forces. Finally, a prototype of an active suspension was implemented and measurements were performed in order to assess the performance of the control approach. A 4.6 dB attenuation on transmitted forces was obtained in the 50-250 Hz range.

  13. The Catalytic Pellet: A Rich Prototype for Engineering Up-Scaling

    ERIC Educational Resources Information Center

    Arce, Pedro E.; Oyanader, Mario; Whitaker, Stephen

    2007-01-01

    This paper focuses on the use of scaling aspects for understanding transport processes with reaction in catalytic pores and pellets. The idea is to identify a systematic up-scaling approach in the learning process to help students with several concepts related to the transport-reaction process and the mathematical description associated with them.…

  14. Distributed Adaptive Binary Quantization for Fast Nearest Neighbor Search.

    PubMed

    Xianglong Liu; Zhujin Li; Cheng Deng; Dacheng Tao

    2017-11-01

    Hashing has been proved an attractive technique for fast nearest neighbor search over big data. Compared with the projection based hashing methods, prototype-based ones own stronger power to generate discriminative binary codes for the data with complex intrinsic structure. However, existing prototype-based methods, such as spherical hashing and K-means hashing, still suffer from the ineffective coding that utilizes the complete binary codes in a hypercube. To address this problem, we propose an adaptive binary quantization (ABQ) method that learns a discriminative hash function with prototypes associated with small unique binary codes. Our alternating optimization adaptively discovers the prototype set and the code set of a varying size in an efficient way, which together robustly approximate the data relations. Our method can be naturally generalized to the product space for long hash codes, and enjoys the fast training linear to the number of the training data. We further devise a distributed framework for the large-scale learning, which can significantly speed up the training of ABQ in the distributed environment that has been widely deployed in many areas nowadays. The extensive experiments on four large-scale (up to 80 million) data sets demonstrate that our method significantly outperforms state-of-the-art hashing methods, with up to 58.84% performance gains relatively.

  15. User ratings of prosthetic usability and satisfaction in VA study to optimize DEKA arm.

    PubMed

    Resnik, Linda; Borgia, Matthew

    2014-01-01

    The Department of Veterans Affairs study to optimize the DEKA Arm provided feedback to inform optimization of the gen 2 (second-generation) prototype and evaluate the gen 3 (third-generation) prototype. This article summarizes recommendations to improve gen 2 and reports satisfaction and usability ratings of gen 2 and gen 3. Data were collected from 39 subjects; 37 subjects were included in this analysis. Of the subjects, 24 were fit with gen 2 (8 radial configuration [RC], 6 humeral configuration [HC], and 10 shoulder configuration [SC]), 13 were fit with gen 3 (4 RC, 5 HC, and 4 SC), and 5 were fit with both. Usability and satisfaction were evaluated using the Trinity Amputation and Prosthesis Experience Scale (TAPES) and study-specific usability and satisfaction scales. Descriptive statistics were examined and prototypes compared using Wilcoxon rank-sum. Results were stratified by configuration level and outcomes compared by prototype. Satisfaction and usability were greater for gen 3 than gen 2. Overall TAPES scores were similar; however, scores of the TAPES aesthetic satisfaction subscale were higher for gen 3. Compared with gen 2 users, gen 3 users were more satisfied with appearance, grips, and doffing and rated overall usability higher. Features of gen 3, including weight, external cables and wires, hand covering, and fingernails, would benefit from further optimization.

  16. Development and prototype testing of MgCl 2 /graphite foam latent heat thermal energy storage system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Dileep; Yu, Wenhua; Zhao, Weihuan

    Composites of graphite foam infiltrated with a magnesium chloride phase-change material have been developed as high-temperature thermal energy storage media for concentrated solar power applications. This storage medium provides a high thermal energy storage density, a narrow operating temperature range, and excellent heat transfer characteristics. In this study, experimental investigations were conducted on laboratory-scale prototypes with magnesium chloride/graphite foam composite as the latent heat thermal energy storage system. Prototypes were designed and built to monitor the melt front movement during the charging/discharging tests. A test loop was built to ensure the charging/discharging of the prototypes at temperatures > 700 degreesmore » C. Repeated thermal cycling experiments were carried out on the fabricated prototypes, and the experimental temperature profiles were compared to the predicted results from numerical simulations using COMSOL Multiphysics software. Experimental results were found to be in good agreement with the simulations to validate the thermal models.« less

  17. The tinnitus functional index: development of a new clinical measure for chronic, intrusive tinnitus.

    PubMed

    Meikle, Mary B; Henry, James A; Griest, Susan E; Stewart, Barbara J; Abrams, Harvey B; McArdle, Rachel; Myers, Paula J; Newman, Craig W; Sandridge, Sharon; Turk, Dennis C; Folmer, Robert L; Frederick, Eric J; House, John W; Jacobson, Gary P; Kinney, Sam E; Martin, William H; Nagler, Stephen M; Reich, Gloria E; Searchfield, Grant; Sweetow, Robert; Vernon, Jack A

    2012-01-01

    Chronic subjective tinnitus is a prevalent condition that causes significant distress to millions of Americans. Effective tinnitus treatments are urgently needed, but evaluating them is hampered by the lack of standardized measures that are validated for both intake assessment and evaluation of treatment outcomes. This work was designed to develop a new self-report questionnaire, the Tinnitus Functional Index (TFI), that would have documented validity both for scaling the severity and negative impact of tinnitus for use in intake assessment and for measuring treatment-related changes in tinnitus (responsiveness) and that would provide comprehensive coverage of multiple tinnitus severity domains. To use preexisting knowledge concerning tinnitus-related problems, an Item Selection Panel (17 expert judges) surveyed the content (175 items) of nine widely used tinnitus questionnaires. From those items, the Panel identified 13 separate domains of tinnitus distress and selected 70 items most likely to be responsive to treatment effects. Eliminating redundant items while retaining good content validity and adding new items to achieve the recommended minimum of 3 to 4 items per domain yielded 43 items, which were then used for constructing TFI Prototype 1.Prototype 1 was tested at five clinics. The 326 participants included consecutive patients receiving tinnitus treatment who provided informed consent-constituting a convenience sample. Construct validity of Prototype 1 as an outcome measure was evaluated by measuring responsiveness of the overall scale and its individual items at 3 and 6 mo follow-up with 65 and 42 participants, respectively. Using a predetermined list of criteria, the 30 best-functioning items were selected for constructing TFI Prototype 2.Prototype 2 was tested at four clinics with 347 participants, including 155 and 86 who provided 3 and 6 mo follow-up data, respectively. Analyses were the same as for Prototype 1. Results were used to select the 25 best-functioning items for the final TFI. Both prototypes and the final TFI displayed strong measurement properties, with few missing data, high validity for scaling of tinnitus severity, and good reliability. All TFI versions exhibited the same eight factors characterizing tinnitus severity and negative impact. Responsiveness, evaluated by computing effect sizes for responses at follow-up, was satisfactory in all TFI versions.In the final TFI, Cronbach's alpha was 0.97 and test-retest reliability 0.78. Convergent validity (r = 0.86 with Tinnitus Handicap Inventory [THI]; r = 0.75 with Visual Analog Scale [VAS]) and discriminant validity (r = 0.56 with Beck Depression Inventory-Primary Care [BDI-PC]) were good. The final TFI was successful at detecting improvement from the initial clinic visit to 3 mo with moderate to large effect sizes and from initial to 6 mo with large effect sizes. Effect sizes for the TFI were generally larger than those obtained for the VAS and THI. After careful evaluation, a 13-point reduction was considered a preliminary criterion for meaningful reduction in TFI outcome scores. The TFI should be useful in both clinical and research settings because of its responsiveness to treatment-related change, validity for scaling the overall severity of tinnitus, and comprehensive coverage of multiple domains of tinnitus severity.

  18. Mechanics, Hydrodynamics and Energetics of Blue Whale Lunge Feeding: Efficiency Dependence on Krill Density

    DTIC Science & Technology

    2011-01-01

    obtained these morphometric data from blue whale specimens reposited at the National Museum of Natural History in Washington, DC (USNM 124326), the Santa...mouth-closing stage. The basic distance scale for this force is set by the ratio Ac/whead, calculated from Eqn A4, and the morphometrics of the body...allometry of mammalian metabolic rate supports niether geometric nor quarter-power scaling. Evolution 63, 2658-2667. Williams, T. M. (1999). The

  19. Structural similitude and design of scaled down laminated models

    NASA Technical Reports Server (NTRS)

    Simitses, G. J.; Rezaeepazhand, J.

    1993-01-01

    The excellent mechanical properties of laminated composite structures make them prime candidates for wide variety of applications in aerospace, mechanical and other branches of engineering. The enormous design flexibility of advanced composites is obtained at the cost of large number of design parameters. Due to complexity of the systems and lack of complete design based informations, designers tend to be conservative in their design. Furthermore, any new design is extensively evaluated experimentally until it achieves the necessary reliability, performance and safety. However, the experimental evaluation of composite structures are costly and time consuming. Consequently, it is extremely useful if a full-scale structure can be replaced by a similar scaled-down model which is much easier to work with. Furthermore, a dramatic reduction in cost and time can be achieved, if available experimental data of a specific structure can be used to predict the behavior of a group of similar systems. This study investigates problems associated with the design of scaled models. Such study is important since it provides the necessary scaling laws, and the factors which affect the accuracy of the scale models. Similitude theory is employed to develop the necessary similarity conditions (scaling laws). Scaling laws provide relationship between a full-scale structure and its scale model, and can be used to extrapolate the experimental data of a small, inexpensive, and testable model into design information for a large prototype. Due to large number of design parameters, the identification of the principal scaling laws by conventional method (dimensional analysis) is tedious. Similitude theory based on governing equations of the structural system is more direct and simpler in execution. The difficulty of making completely similar scale models often leads to accept certain type of distortion from exact duplication of the prototype (partial similarity). Both complete and partial similarity are discussed. The procedure consists of systematically observing the effect of each parameter and corresponding scaling laws. Then acceptable intervals and limitations for these parameters and scaling laws are discussed. In each case, a set of valid scaling factors and corresponding response scaling laws that accurately predict the response of prototypes from experimental models is introduced. The examples used include rectangular laminated plates under destabilizing loads, applied individually, vibrational characteristics of same plates, as well as cylindrical bending of beam-plates.

  20. WASTE INFORMATION MODELING (WIM) FOR CONSTRUCTION OF THE BUILT ENVIRONMENT

    EPA Science Inventory

    The outcomes will include the construction of full-scale building prototypes. As full-scale pieces are constructed they will be installed throughout the community, and could potentially be used as installations within the local community to demonstrate the use of recycled prod...

  1. A Visual Analytics Paradigm Enabling Trillion-Edge Graph Exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Pak C.; Haglin, David J.; Gillen, David S.

    We present a visual analytics paradigm and a system prototype for exploring web-scale graphs. A web-scale graph is described as a graph with ~one trillion edges and ~50 billion vertices. While there is an aggressive R&D effort in processing and exploring web-scale graphs among internet vendors such as Facebook and Google, visualizing a graph of that scale still remains an underexplored R&D area. The paper describes a nontraditional peek-and-filter strategy that facilitates the exploration of a graph database of unprecedented size for visualization and analytics. We demonstrate that our system prototype can 1) preprocess a graph with ~25 billion edgesmore » in less than two hours and 2) support database query and visualization on the processed graph database afterward. Based on our computational performance results, we argue that we most likely will achieve the one trillion edge mark (a computational performance improvement of 40 times) for graph visual analytics in the near future.« less

  2. Rapid prototyping and stereolithography in dentistry

    PubMed Central

    Nayar, Sanjna; Bhuminathan, S.; Bhat, Wasim Manzoor

    2015-01-01

    The word rapid prototyping (RP) was first used in mechanical engineering field in the early 1980s to describe the act of producing a prototype, a unique product, the first product, or a reference model. In the past, prototypes were handmade by sculpting or casting, and their fabrication demanded a long time. Any and every prototype should undergo evaluation, correction of defects, and approval before the beginning of its mass or large scale production. Prototypes may also be used for specific or restricted purposes, in which case they are usually called a preseries model. With the development of information technology, three-dimensional models can be devised and built based on virtual prototypes. Computers can now be used to create accurately detailed projects that can be assessed from different perspectives in a process known as computer aided design (CAD). To materialize virtual objects using CAD, a computer aided manufacture (CAM) process has been developed. To transform a virtual file into a real object, CAM operates using a machine connected to a computer, similar to a printer or peripheral device. In 1987, Brix and Lambrecht used, for the first time, a prototype in health care. It was a three-dimensional model manufactured using a computer numerical control device, a type of machine that was the predecessor of RP. In 1991, human anatomy models produced with a technology called stereolithography were first used in a maxillofacial surgery clinic in Viena. PMID:26015715

  3. Rapid prototyping and stereolithography in dentistry.

    PubMed

    Nayar, Sanjna; Bhuminathan, S; Bhat, Wasim Manzoor

    2015-04-01

    The word rapid prototyping (RP) was first used in mechanical engineering field in the early 1980s to describe the act of producing a prototype, a unique product, the first product, or a reference model. In the past, prototypes were handmade by sculpting or casting, and their fabrication demanded a long time. Any and every prototype should undergo evaluation, correction of defects, and approval before the beginning of its mass or large scale production. Prototypes may also be used for specific or restricted purposes, in which case they are usually called a preseries model. With the development of information technology, three-dimensional models can be devised and built based on virtual prototypes. Computers can now be used to create accurately detailed projects that can be assessed from different perspectives in a process known as computer aided design (CAD). To materialize virtual objects using CAD, a computer aided manufacture (CAM) process has been developed. To transform a virtual file into a real object, CAM operates using a machine connected to a computer, similar to a printer or peripheral device. In 1987, Brix and Lambrecht used, for the first time, a prototype in health care. It was a three-dimensional model manufactured using a computer numerical control device, a type of machine that was the predecessor of RP. In 1991, human anatomy models produced with a technology called stereolithography were first used in a maxillofacial surgery clinic in Viena.

  4. Topological magnons in a one-dimensional itinerant flatband ferromagnet

    NASA Astrophysics Data System (ADS)

    Su, Xiao-Fei; Gu, Zhao-Long; Dong, Zhao-Yang; Li, Jian-Xin

    2018-06-01

    Different from previous scenarios that topological magnons emerge in local spin models, we propose an alternative that itinerant electron magnets can host topological magnons. A one-dimensional Tasaki model with a flatband is considered as the prototype. This model can be viewed as a quarter-filled periodic Anderson model with impurities located in between and hybridizing with the nearest-neighbor conducting electrons, together with a Hubbard repulsion for these electrons. By increasing the Hubbard interaction, the gap between the acoustic and optical magnons closes and reopens while the Berry phase of the acoustic band changes from 0 to π , leading to the occurrence of a topological transition. After this transition, there always exist in-gap edge magnonic modes, which is consistent with the bulk-edge correspondence. The Hubbard interaction-driven transition reveals a new mechanism to realize nontrivial magnon bands.

  5. General Chemistry Division. Quarterly report, July--September 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrar, J.E.

    1978-11-17

    Status of the following studies is given: nonaqueous titrimetry; molar absorbance of 1,3,5,-triamine-2,4,6,-trinitrobenzene in dimethylsulfoxide, potentiometric microdetermination of pentaerythritol tetranitrate (PETN) in PETN-containing composites; potentiometric semimicrodetermination of some tetrazoles with silver nitrate; applications of a mode-locked krypton ion laser; time-resolved spectroscopy; photoelectrochemistry; evaluation of a prototype atomic emission source system; laser spectroscopy of neptunium; high-performance liquid chromatography of polyphenyl ether; acquisition of a portable, computerized mass spectrometer; improved inlet for quantitative mass spectrometry; a computer data system for the UTI gas analyzers; analysis of perfluorobutene-2; examination of iridium coatings; source of high-intensity, polarized x rays for fluorescence analysis; mass spectrometermore » for the coal gasification field test; materials protection measurement guides; the LOG system of sample file control; and methylation of platinum compounds by methylcobalamin. (LK)« less

  6. DOE SBIR Phase II Final Technical Report - Assessing Climate Change Effects on Wind Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiteman, Cameron; Capps, Scott

    Specialized Vertum Partners software tools were prototyped, tested and commercialized to allow wind energy stakeholders to assess the uncertainties of climate change on wind power production and distribution. This project resulted in three commercially proven products and a marketing tool. The first was a Weather Research and Forecasting Model (WRF) based resource evaluation system. The second was a web-based service providing global 10m wind data from multiple sources to wind industry subscription customers. The third product addressed the needs of our utility clients looking at climate change effects on electricity distribution. For this we collaborated on the Santa Ana Wildfiremore » Threat Index (SAWTi), which was released publicly last quarter. Finally to promote these products and educate potential users we released “Gust or Bust”, a graphic-novel styled marketing publication.« less

  7. Prediction of a Francis turbine prototype full load instability from investigations on the reduced scale model

    NASA Astrophysics Data System (ADS)

    Alligné, S.; Maruzewski, P.; Dinh, T.; Wang, B.; Fedorov, A.; Iosfin, J.; Avellan, F.

    2010-08-01

    The growing development of renewable energies combined with the process of privatization, lead to a change of economical energy market strategies. Instantaneous pricings of electricity as a function of demand or predictions, induces profitable peak productions which are mainly covered by hydroelectric power plants. Therefore, operators harness more hydroelectric facilities at full load operating conditions. However, the Francis Turbine features an axi-symmetric rope leaving the runner which may act under certain conditions as an internal energy source leading to instability. Undesired power and pressure fluctuations are induced which may limit the maximum available power output. BC Hydro experiences such constraints in a hydroelectric power plant consisting of four 435 MW Francis Turbine generating units, which is located in Canada's province of British Columbia. Under specific full load operating conditions, one unit experiences power and pressure fluctuations at 0.46 Hz. The aim of the paper is to present a methodology allowing prediction of this prototype's instability frequency from investigations on the reduced scale model. A new hydro acoustic vortex rope model has been developed in SIMSEN software, taking into account the energy dissipation due to the thermodynamic exchange between the gas and the surrounding liquid. A combination of measurements, CFD simulations and computation of eigenmodes of the reduced scale model installed on test rig, allows the accurate calibration of the vortex rope model parameters at the model scale. Then, transposition of parameters to the prototype according to similitude laws is applied and stability analysis of the power plant is performed. The eigenfrequency of 0.39 Hz related to the first eigenmode of the power plant is determined to be unstable. Predicted frequency of the full load power and pressure fluctuations at the unit unstable operating point is found to be in general agreement with the prototype measurements.

  8. Wearable Wireless Sensor for Multi-Scale Physiological Monitoring

    DTIC Science & Technology

    2015-10-01

    clothes with different colors and patterns. The developed algorithm can still detect the chest movements even if single color clothes are worn...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT One of the aims of Year 2 of the project was to complete development of a prototype multi...this aim, we have developed a prototype 6-photodetector reflectance-based pulse oximeter and results to date show that good signals can be obtained in

  9. DIFFUSION IN THE VICINITY OF STANDARD-DESIGN NUCLEAR POWER PLANTS-I. WIND-TUNNEL EVALUATION OF DIFFUSIVE CHARACTERISTICS OF A SIMULATED SUBURBAN NEUTRAL ATMOSPHERIC BOUNDARY LAYER

    EPA Science Inventory

    A large meteorological wind tunnel was used to simulate a suburban atmospheric boundary layer. The model-prototype scale was 1:300 and the roughness length was approximately 1.0 m full scale. The model boundary layer simulated full scale dispersion from ground-level and elevated ...

  10. Reliability and accuracy of real-time visualization techniques for measuring school cafeteria tray waste: validating the quarter-waste method.

    PubMed

    Hanks, Andrew S; Wansink, Brian; Just, David R

    2014-03-01

    Measuring food waste is essential to determine the impact of school interventions on what children eat. There are multiple methods used for measuring food waste, yet it is unclear which method is most appropriate in large-scale interventions with restricted resources. This study examines which of three visual tray waste measurement methods is most reliable, accurate, and cost-effective compared with the gold standard of individually weighing leftovers. School cafeteria researchers used the following three visual methods to capture tray waste in addition to actual food waste weights for 197 lunch trays: the quarter-waste method, the half-waste method, and the photograph method. Inter-rater and inter-method reliability were highest for on-site visual methods (0.90 for the quarter-waste method and 0.83 for the half-waste method) and lowest for the photograph method (0.48). This low reliability is partially due to the inability of photographs to determine whether packaged items (such as milk or yogurt) are empty or full. In sum, the quarter-waste method was the most appropriate for calculating accurate amounts of tray waste, and the photograph method might be appropriate if researchers only wish to detect significant differences in waste or consumption of selected, unpackaged food. Copyright © 2014 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  11. Lunar cycle may have an effect on Shock Wave Lithotripsy related pain outcome.

    PubMed

    Tokgöz, Hüsnü; Yalçınkaya, Soner; İslamoğlu, Ekrem; Karamık, Kaan; Tokgöz, Özlem; Savaş, Murat

    2017-12-01

    We tried to investigate the effects of lunar phase on Shock Wave Lithotripsy (SWL) related pain. In addition, correlation of various clinical parameters with the pain perception during SWL procedure, were also investigated. A total of 378 patients who underwent first SWL sessions for renal or ureteral stones were prospectively enrolled in the study. The degree of pain perception during the procedure was evaluated with 10-point visual analog scale (VAS) and pain questionnaires. The date of SWL was allocated to dates and times of lunar phases as: newmoon, waxing crescent, first quarter, waxing gibbus, fullmoon, waning gibbus, last quarter and waning gibbus. Mean VAS scores in first quarter (2,41±1,06) were significantly lower when compared to mean VAS scores in waning crescent (3,58±1,83) and waning gibbus (3,42±1,98) ( p=0,005 and 0,041 , respectively). No statistically significant differences were observed when other lunar phases were compared between each other. Mean pain scores were not affected from gender, age, body mass index (BMI) and stone characteristics (stone laterality, burden and location). SWL procedure performed in first quarter of the lunar phase may become less painful. To the best of our knowledge, this is the first study which evaluated the effect of lunar phase on post-SWL pain outcome. Thus, additional randomized studies with larger series may be more informative.

  12. Clinical validity of prototype personality disorder ratings in adolescents.

    PubMed

    Defife, Jared A; Haggerty, Greg; Smith, Scott W; Betancourt, Luis; Ahmed, Zain; Ditkowsky, Keith

    2015-01-01

    A growing body of research shows that personality pathology in adolescents is clinically distinctive and frequently stable into adulthood. A reliable and useful method for rating personality pathology in adolescent patients has the potential to enhance conceptualization, dissemination, and treatment effectiveness. The aim of this study is to examine the clinical validity of a prototype matching approach (derived from the Shedler Westen Assessment Procedure-Adolescent Version) for quantifying personality pathology in an adolescent inpatient sample. Sixty-six adolescent inpatients and their parents or legal guardians completed forms of the Child Behavior Checklist (CBCL) assessing emotional and behavioral problems. Clinical criterion variables including suicide history, substance use, and fights with peers were also assessed. Patients' individual and group therapists on the inpatient unit completed personality prototype ratings. Prototype diagnoses demonstrated substantial reliability (median intraclass correlation coefficient =.75) across independent ratings from individual and group therapists. Personality prototype ratings correlated with the CBCL scales and clinical criterion variables in anticipated and meaningful ways. As seen in prior research with adult samples, prototype personality ratings show clinical validity across independent clinician raters previously unfamiliar with the approach, and they are meaningfully related to clinical symptoms, behavioral problems, and adaptive functioning.

  13. From prototype to production system: lessons learned from the evolution of the SignOut System at Mount Sinai Medical Center.

    PubMed

    Kushniruk, Andre; Karson, Tom; Moore, Carlton; Kannry, Joseph

    2003-01-01

    Approaches to the development of information systems in large health care institutions range from prototyping to conventional development of large scale production systems. This paper discusses the development of the SignOut System at Mount Sinai Medical Center, which was designed in 1997 to capture vital resident information. Local need quickly outstripped proposed delays for building a production system and a prototype system quickly became a production system. By the end of 2002 the New SignOut System was built to create an integrated application that was a true production system. In this paper we discuss the design and implementation issues in moving from a prototype to a production system. The production system had a number of advantages, including increased organizational visibility, integration into enterprise resource planning and full time staff for support. However, the prototype allowed for more rapid design and subsequent changes, less training, and equal to or superior help desk support. It is argued that healthcare IT systems may need characteristics of both prototype and production system development to rapidly meet the changing and different needs of healthcare user populations.

  14. Pressure pulsation in Kaplan turbines: Prototype-CFD comparison

    NASA Astrophysics Data System (ADS)

    Rivetti, A.; Lucino1, C.; Liscia, S.; Muguerza, D.; Avellan, F.

    2012-11-01

    Pressure pulsation phenomena in a large Kaplan turbine are investigated by means of numerical simulations (CFD) and prototype measurements in order to study the dynamic behavior of flow due to the blade passage and its interaction with other components of the turbine. Numerical simulations are performed with the commercial software Ansys CFX code, solving the incompressible Unsteady Reynolds-Averaged-Navier Stokes equations under a finite volume scheme. The computational domain involves the entire machine at prototype scale. Special care is taken in the discretization of the wicket gate overhang and runner blade gap. Prototype measurements are performed using pressure transducers at different locations among the wicket gate outlet and the draft tube inlet. Then, CFD results are compared with temporary signals of prototype measurements at identical locations to validate the numerical model. A detailed analysis was focused on the tip gap flow and the pressure field at the discharge ring. From a rotating reference frame perspective, it is found that the mean pressure fluctuates accordingly the wicket gate passage. Moreover, in prototype measurements the pressure frequency that reveals the presence of modulated cavitation at the discharge ring is distinguished, as also verified from the shape of erosion patches in concordance with the number of wicket gates.

  15. Clinical Validity of Prototype Personality Disorder Ratings in Adolescents

    PubMed Central

    DeFife, Jared A.; Haggerty, Greg; Smith, Scott W.; Betancourt, Luis; Ahmed, Zain; Ditkowsky, Keith

    2015-01-01

    A growing body of research shows that personality pathology in adolescents is clinically distinctive and frequently stable into adulthood. A reliable and useful method for rating personality pathology in adolescent patients has the potential to enhance conceptualization, dissemination, and treatment effectiveness. The aim of this study is to examine the clinical validity of a prototype matching approach (derived from the Shedler Westen Assessment Procedure – Adolescent Version) for quantifying personality pathology in an adolescent inpatient sample. Sixty-six adolescent inpatients and their parents or legal guardians completed forms of the Child Behavior Checklist (CBCL) assessing emotional and behavioral problems. Clinical criterion variables including suicide history, substance use, and fights with peers were also assessed. Patients’ individual and group therapists on the inpatient unit completed personality prototype ratings. Prototype diagnoses demonstrated substantial reliability (median ICC = .75) across independent ratings from individual and group therapists. Personality prototype ratings correlated with the CBCL scales and clinical criterion variables in anticipated and meaningful ways. As seen in prior research with adult samples, prototype personality ratings show clinical validity across independent clinician raters previously unfamiliar with the approach, and they are meaningfully related to clinical symptoms, behavioral problems, and adaptive functioning. PMID:25457971

  16. Cope's Rule and the Universal Scaling Law of Ornament Complexity.

    PubMed

    Raia, Pasquale; Passaro, Federico; Carotenuto, Francesco; Maiorino, Leonardo; Piras, Paolo; Teresi, Luciano; Meiri, Shai; Itescu, Yuval; Novosolov, Maria; Baiano, Mattia Antonio; Martínez, Ricard; Fortelius, Mikael

    2015-08-01

    Luxuriant, bushy antlers, bizarre crests, and huge, twisting horns and tusks are conventionally understood as products of sexual selection. This view stems from both direct observation and from the empirical finding that the size of these structures grows faster than body size (i.e., ornament size shows positive allometry). We contend that the familiar evolutionary increase in the complexity of ornaments over time in many animal clades is decoupled from ornament size evolution. Increased body size comes with extended growth. Since growth scales to the quarter power of body size, we predicted that ornament complexity should scale according to the quarter power law as well, irrespective of the role of sexual selection in the evolution and function of the ornament. To test this hypothesis, we selected three clades (ammonites, deer, and ceratopsian dinosaurs) whose species bore ornaments that differ in terms of the importance of sexual selection to their evolution. We found that the exponent of the regression of ornament complexity to body size is the same for the three groups and is statistically indistinguishable from 0.25. We suggest that the evolution of ornament complexity is a by-product of Cope's rule. We argue that although sexual selection may control size in most ornaments, it does not influence their shape.

  17. Small scale adaptive optics experiment systems engineering

    NASA Technical Reports Server (NTRS)

    Boykin, William H.

    1993-01-01

    Assessment of the current technology relating to the laser power beaming system which in full scale is called the Beam Transmission Optical System (BTOS). Evaluation of system integration efforts are being conducted by the various government agencies and industry. Concepts are being developed for prototypes of adaptive optics for a BTOS.

  18. Hydroacoustic Studies Using HydroCAM - Station-centric Integration of Models and Observations Quarterly Report No.4 July 2003 - September 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upton, Zachary, M.; Pulli, Jay, J.

    2003-10-13

    OAK B272 Quarterly technical report summarizing BBN's efforts to improve DOE's hydroacoustic modeling and analysis capability for nuclear explosion monitoring. BBN's work during the third quarter of 2003 was focused on preparations for and participation in the 2003 Seismic Research Review Meeting, unit testing and bug fixes to HydroCAM 4.1, data collection and analysis, and procuring high-resolution bathymetric data. In an attempt to save money, BBN scaled back its labor in the third quarter, delaying some deliverables but saving contract funding in case our next increment is delayed. We have succeeded in finding the correct Naval contact that can helpmore » us procure high-resolution bathymetry data. Although these data may require the release of a classified version of HydroCAM, we are optimistic that we will be able to acquire and integrate high-resolution bathymetric data near the Indian Ocean IMS stations. HydroCAM 4.1, which includes the ability to make blockage predictions using varying resolution bathymetric data, has completed unit testing and is now under integration (release) testing. We hope to deliver that functionality to DOE and AFTAC in November. BBN improved its database of hydroacoustic events in the Indian Ocean by including meta-data for associated arrivals. For each earthquake event, BBN is now picking the direct arrival at each station (Diego Garcia North and South, and Cape Leeuwin) and associating that arrival with the origin information that we are compiling. The data for 2001, 2002 and 2003 (to date) will be delivered to LLNL for integration into the Knowledge Base during the fourth quarter of 2003.« less

  19. Enhanced sensitivity in a butterfly gyroscope with a hexagonal oblique beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Dingbang; Cao, Shijie; Hou, Zhanqiang, E-mail: houzhanqiang@nudt.edu.cn

    2015-04-15

    A new approach to improve the performance of a butterfly gyroscope is developed. The methodology provides a simple way to improve the gyroscope’s sensitivity and stability, by reducing the resonant frequency mismatch between the drive and sense modes. This method was verified by simulations and theoretical analysis. The size of the hexagonal section oblique beam is the major factor that influences the resonant frequency mismatch. A prototype, which has the appropriately sized oblique beam, was fabricated using precise, time-controlled multilayer pre-buried masks. The performance of this prototype was compared with a non-tuned gyroscope. The scale factor of the prototype reachesmore » 30.13 mV/ °/s, which is 15 times larger than that obtained from the non-tuned gyroscope. The bias stability of the prototype is 0.8 °/h, which is better than the 5.2 °/h of the non-tuned devices.« less

  20. A second generation 50 Mbps VLSI level zero processing system prototype

    NASA Technical Reports Server (NTRS)

    Harris, Jonathan C.; Shi, Jeff; Speciale, Nick; Bennett, Toby

    1994-01-01

    Level Zero Processing (LZP) generally refers to telemetry data processing functions performed at ground facilities to remove all communication artifacts from instrument data. These functions typically include frame synchronization, error detection and correction, packet reassembly and sorting, playback reversal, merging, time-ordering, overlap deletion, and production of annotated data sets. The Data Systems Technologies Division (DSTD) at Goddard Space Flight Center (GSFC) has been developing high-performance Very Large Scale Integration Level Zero Processing Systems (VLSI LZPS) since 1989. The first VLSI LZPS prototype demonstrated 20 Megabits per second (Mbp's) capability in 1992. With a new generation of high-density Application-specific Integrated Circuits (ASIC) and a Mass Storage System (MSS) based on the High-performance Parallel Peripheral Interface (HiPPI), a second prototype has been built that achieves full 50 Mbp's performance. This paper describes the second generation LZPS prototype based upon VLSI technologies.

  1. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turnquist, Norman; Qi, Xuele; Raminosoa, Tsarafidy

    2013-12-20

    This report summarizes the progress made during the April 01, 2010 – December 30, 2013 period under Cooperative Agreement DE-EE0002752 for the U.S. Department of Energy entitled “High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems.” The overall objective of this program is to advance the technology for well fluids lifting systems to meet the foreseeable pressure, temperature, and longevity needs of the Enhanced Geothermal Systems (EGS) industry for the coming ten years. In this program, lifting system requirements for EGS wells were established via consultation with industry experts and site visits. A number of artificial lift technologies were evaluated with regard tomore » their applicability to EGS applications; it was determined that a system based on electric submersible pump (ESP) technology was best suited to EGS. Technical barriers were identified and a component-level technology development program was undertaken to address each barrier, with the most challenging being the development of a power-dense, small diameter motor that can operate reliably in a 300°C environment for up to three years. Some of the targeted individual component technologies include permanent magnet motor construction, high-temperature insulation, dielectrics, bearings, seals, thrust washers, and pump impellers/diffusers. Advances were also made in thermal management of electric motors. In addition to the overall system design for a full-scale EGS application, a subscale prototype was designed and fabricated. Like the full-scale design, the subscale prototype features a novel “flow-through-the-bore” permanent magnet electric motor that combines the use of high temperature materials with an internal cooling scheme that limits peak internal temperatures to <330°C. While the full-scale high-volume multi-stage pump is designed to lift up to 80 kg/s of process water, the subscale prototype is based on a production design that can pump 20 kg/s and has been modified for high-temperature operation. In parallel with the design and fabrication of the subscale prototype ESP system, a subscale test facility consisting of a high-temperature-high-pressure flow loop was designed, fabricated, and installed at GE Global Research in Niskayuna, NY. A test plan for the prototype system was also established. The original plan of testing the prototype hardware in the flow loop was delayed until a future date.« less

  2. Frequency scaling with miniature COmpact MIcrowave and Coaxial ion sources

    NASA Astrophysics Data System (ADS)

    Sortais, Pascal; André, Thomas; Angot, Julien; Bouat, Sophie; Jacob, Josua; Lamy, Thierry; Sole, Patrick

    2014-02-01

    We will present recent basic developments about possible extension of the COMIC (for COmpact MIcrowave and Coaxial) devices up to 5.8 GHz in place of the present 2.45 GHz operation [P. Sortais, T. Lamy, J. Médard, J. Angot, L. Latrasse, and T. Thuillier, Rev. Sci. Instrum. 81, 02B314 (2010)]. New applications associating multiple COMIC devices for thin film deposition will be described and we will explain why an increase of the current density delivered by each individual ion source could lead to the increase of the deposition rate. For this purpose, we will present results of about two devices working at 5.8 GHz. The first one is a tiny ion source, the world smallest microwave ion source, exactly similar to COMIC but operating at 5.8 GHz with a quarter wave cavity structure and a few watts microwave power consumption. We will show that the frequency scaling effect is effective inside such small machines. The second one is a more ambitious ion source designed around a three quarter wave structure that works with a few tens of watts at 5.8 GHz.

  3. Observation of parametric instabilities in the quarter critical density region driven by the Nike KrF laser

    NASA Astrophysics Data System (ADS)

    Weaver, J. L.; Oh, J.; Phillips, L.; Afeyan, B.; Seely, J.; Kehne, D.; Brown, C. M.; Obenschain, S. P.; Serlin, V.; Schmitt, A. J.; Feldman, U.; Lehmberg, R. H.; Mclean, E.; Manka, C.

    2013-02-01

    The krypton-fluoride (KrF) laser is an attractive choice for inertial confinement fusion due to its combination of short wavelength (λ =248 nm), large bandwidth (up to 3 THz), and superior beam smoothing by induced spatial incoherence. These qualities improve the overall hydrodynamics of directly driven pellet implosions and should allow use of increased laser intensity due to higher thresholds for laser plasma instabilities when compared to frequency tripled Nd:glass lasers (λ =351 nm). Here, we report the first observations of the two-plasmon decay instability using a KrF laser. The experiments utilized the Nike laser facility to irradiate solid plastic planar targets over a range of pulse lengths (0.35 ns≤τ≤1.25 ns) and intensities (up to 2×1015 W/cm2). Variation of the laser pulse created different combinations of electron temperature and electron density scale length. The observed onset of instability growth was consistent with the expected scaling that KrF lasers have a higher intensity threshold for instabilities in the quarter critical density region.

  4. Cosmic Ray Inspection and Passive Tomography for SNM Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armitage, John; Oakham, Gerald; Bryman, Douglas

    2009-12-02

    The Cosmic Ray Inspection and Passive Tomography (CRIPT) project has recently started investigating the detection of illicit Special Nuclear Material in cargo using cosmic ray muon tomography and complementary neutron detectors. We are currently performing simulation studies to help with the design of small scale prototypes. Based on the prototype tests and refined simulations, we will determine whether the muon tracking system for the full scale prototype will be based on drift chambers or extruded scintillator trackers. An analysis of the operations of the Port of Montreal has determined how long muon scan times should take if all or amore » subset of the cargo is to be screened. As long as the throughput of the muon system(s) is equal to the rate at which containers are unloaded from ships, the impact on port operations would not be great if a muon scanning stage were required for all cargo. We also show preliminary simulation results indicating that excellent separation between Al, Fe and Pb is possible under ideal conditions. The discrimination power is reduced but still significant when realistic momentum resolution measurements are considered.« less

  5. Cosmic Ray Inspection and Passive Tomography for SNM Detection

    NASA Astrophysics Data System (ADS)

    Armitage, John; Bryman, Douglas; Cousins, Thomas; Gallant, Grant; Jason, Andrew; Jonkmans, Guy; Noël, Scott; Oakham, Gerald; Stocki, Trevor J.; Waller, David

    2009-12-01

    The Cosmic Ray Inspection and Passive Tomography (CRIPT) project has recently started investigating the detection of illicit Special Nuclear Material in cargo using cosmic ray muon tomography and complementary neutron detectors. We are currently performing simulation studies to help with the design of small scale prototypes. Based on the prototype tests and refined simulations, we will determine whether the muon tracking system for the full scale prototype will be based on drift chambers or extruded scintillator trackers. An analysis of the operations of the Port of Montreal has determined how long muon scan times should take if all or a subset of the cargo is to be screened. As long as the throughput of the muon system(s) is equal to the rate at which containers are unloaded from ships, the impact on port operations would not be great if a muon scanning stage were required for all cargo. We also show preliminary simulation results indicating that excellent separation between Al, Fe and Pb is possible under ideal conditions. The discrimination power is reduced but still significant when realistic momentum resolution measurements are considered.

  6. Flexible metal-semiconductor-metal device prototype on wafer-scale thick boron nitride layers grown by MOVPE.

    PubMed

    Li, Xin; Jordan, Matthew B; Ayari, Taha; Sundaram, Suresh; El Gmili, Youssef; Alam, Saiful; Alam, Muhbub; Patriarche, Gilles; Voss, Paul L; Paul Salvestrini, Jean; Ougazzaden, Abdallah

    2017-04-11

    Practical boron nitride (BN) detector applications will require uniform materials over large surface area and thick BN layers. To report important progress toward these technological requirements, 1~2.5 µm-thick BN layers were grown on 2-inch sapphire substrates by metal-organic vapor phase epitaxy (MOVPE). The structural and optical properties were carefully characterized and discussed. The thick layers exhibited strong band-edge absorption near 215 nm. A highly oriented two-dimensional h-BN structure was formed at the film/sapphire interface, which permitted an effective exfoliation of the thick BN film onto other adhesive supports. And this structure resulted in a metal-semiconductor-metal (MSM) device prototype fabricated on BN membrane delaminating from the substrate. MSM photodiode prototype showed low dark current of 2 nA under 100 V, and 100 ± 20% photoconductivity yield for deep UV light illumination. These wafer-scale MOVPE-grown thick BN layers present great potential for the development of deep UV photodetection applications, and even for flexible (opto-) electronics in the future.

  7. Prototype ultrasonic instrument for quantitative testing

    NASA Technical Reports Server (NTRS)

    Lynnworth, L. C.; Dubois, J. L.; Kranz, P. R.

    1972-01-01

    A prototype ultrasonic instrument has been designed and developed for quantitative testing. The complete delivered instrument consists of a pulser/receiver which plugs into a standard oscilloscope, an rf power amplifier, a standard decade oscillator, and a set of broadband transducers for typical use at 1, 2, 5 and 10 MHz. The system provides for its own calibration, and on the oscilloscope, presents a quantitative (digital) indication of time base and sensitivity scale factors and some measurement data.

  8. Epitrochoid Power-Law Nozzle Rapid Prototype Build/Test Project (Briefing Charts)

    DTIC Science & Technology

    2015-02-01

    Production Approved for public release; distribution is unlimited. PA clearance # 15122. 4 Epitrochoid Power-Law Nozzle Build/Test Build on SpaceX ...Multiengine Approach SpaceX ) Approved for public release; distribution is unlimited. PA clearance # 15122. Engines: Merlin 1D on Falcon 9 v1.1 (Photo 5...to utilize features of high performance engines advances and the economies of scale of the multi-engine approach of SpaceX Falcon 9 – Rapid Prototype

  9. Performance of a full scale prototype detector at the BR2 reactor for the SoLid experiment

    NASA Astrophysics Data System (ADS)

    Abreu, Y.; Amhis, Y.; Arnold, L.; Ban, G.; Beaumont, W.; Bongrand, M.; Boursette, D.; Castle, B. C.; Clark, K.; Coupé, B.; Cussans, D.; De Roeck, A.; D'Hondt, J.; Durand, D.; Fallot, M.; Ghys, L.; Giot, L.; Guillon, B.; Ihantola, S.; Janssen, X.; Kalcheva, S.; Kalousis, L. N.; Koonen, E.; Labare, M.; Lehaut, G.; Manzanillas, L.; Mermans, J.; Michiels, I.; Moortgat, C.; Newbold, D.; Park, J.; Pestel, V.; Petridis, K.; Piñera, I.; Pommery, G.; Popescu, L.; Pronost, G.; Rademacker, J.; Ryckbosch, D.; Ryder, N.; Saunders, D.; Schune, M.-H.; Simard, L.; Vacheret, A.; Van Dyck, S.; Van Mulders, P.; van Remortel, N.; Vercaemer, S.; Verstraeten, M.; Weber, A.; Yermia, F.

    2018-05-01

    The SoLid collaboration has developed a new detector technology to detect electron anti-neutrinos at close proximity to the Belgian BR2 reactor at surface level. A 288 kg prototype detector was deployed in 2015 and collected data during the operational period of the reactor and during reactor shut-down. Dedicated calibration campaigns were also performed with gamma and neutron sources. This paper describes the construction of the prototype detector with a high control on its proton content and the stability of its operation over a period of several months after deployment at the BR2 reactor site. All detector cells provide sufficient light yields to achieve a target energy resolution of better than 20%/√E(MeV). The capability of the detector to track muons is exploited to equalize the light response of a large number of channels to a precision of 3% and to demonstrate the stability of the energy scale over time. Particle identification based on pulse-shape discrimination is demonstrated with calibration sources. Despite a lower neutron detection efficiency due to triggering constraints, the main backgrounds at the reactor site were determined and taken into account in the shielding strategy for the main experiment. The results obtained with this prototype proved essential in the design optimization of the final detector.

  10. Efficient Plasma Production in Low Background Neutral Pressures with the M2P2 Prototype

    NASA Technical Reports Server (NTRS)

    Ziemba, T.; Euripides, P.; Winglee, R.; Slough, J.; Giersch, L.

    2003-01-01

    Mini-Magnetospheric Plasma Propulsion (M2P2) seeks the creation of a large-scale (10 km radius) magnetic wall or bubble (i.e. a magnetosphere) by the electromagnetic inflation of a small-scale (20 cm radius) dipole magnet. The inflated magnetosphere will intercept the solar wind and thereby provide high-speed propulsion with modest power and fuel requirements due to the gain provided by the ambient medium. Magnetic field inflation is produced by the injection of plasma onto the dipole magnetic field eliminating the need for large mechanical structures and added material weight at launch. For successful inflation of the magnetic bubble a beta near unity must be achieved along the imposed dipole field. This is dependent on the plasma parameters that can be achieved with a plasma source that provide continuous operation at the desired power levels of 1 to 2 kilowatts. Over the last two years we have been developing a laboratory prototype to demonstrate the inflation of the magnetic field under space-like conditions. In this paper we will present some of the latest results from the prototype development at the University of Washington and show that the prototype can produce high ionization efficiencies while operating in near space like neutral background pressures producing electron temperatures of a few tens of electron volts. This allows for operation with propellant expenditures lower than originally estimated.

  11. Design and validation of a low cost, high-capacity weighing device for wheelchair users and bariatrics.

    PubMed

    Sherrod, Brandon A; Dew, Dustin A; Rogers, Rebecca; Rimmer, James H; Eberhardt, Alan W

    2017-01-01

    Accessible high-capacity weighing scales are scarce in healthcare facilities, in part due to high device cost and weight. This shortage impairs weight monitoring and health maintenance for people with disabilities and/or morbid obesity. We conducted this study to design and validate a lighter, lower cost, high-capacity accessible weighing device. A prototype featuring 360 kg (800 lbs) of weight capacity, a wheelchair-accessible ramp, and wireless data transmission was fabricated. Forty-five participants (20 standing, 20 manual wheelchair users, and five power wheelchair users) were weighed using the prototype and a calibrated scale. Participants were surveyed to assess perception of each weighing device and the weighing procedure. Weight measurements between devices demonstrated a strong linear correlation (R 2  = 0.997) with absolute differences of 1.4 ± 2.0% (mean±SD). Participant preference ratings showed no difference between devices. The prototype weighed 11 kg (38%) less than the next lightest high-capacity commercial device found by author survey. The prototype's estimated commercial price range, $500-$600, is approximately half the price of the least expensive commercial device found by author survey. Such low cost weighing devices may improve access to weighing instrumentation, which may in turn help eliminate current health disparities. Future work is needed to determine the feasibility of market transition.

  12. Thermodynamics constrains allometric scaling of optimal development time in insects.

    PubMed

    Dillon, Michael E; Frazier, Melanie R

    2013-01-01

    Development time is a critical life-history trait that has profound effects on organism fitness and on population growth rates. For ectotherms, development time is strongly influenced by temperature and is predicted to scale with body mass to the quarter power based on 1) the ontogenetic growth model of the metabolic theory of ecology which describes a bioenergetic balance between tissue maintenance and growth given the scaling relationship between metabolism and body size, and 2) numerous studies, primarily of vertebrate endotherms, that largely support this prediction. However, few studies have investigated the allometry of development time among invertebrates, including insects. Abundant data on development of diverse insects provides an ideal opportunity to better understand the scaling of development time in this ecologically and economically important group. Insects develop more quickly at warmer temperatures until reaching a minimum development time at some optimal temperature, after which development slows. We evaluated the allometry of insect development time by compiling estimates of minimum development time and optimal developmental temperature for 361 insect species from 16 orders with body mass varying over nearly 6 orders of magnitude. Allometric scaling exponents varied with the statistical approach: standardized major axis regression supported the predicted quarter-power scaling relationship, but ordinary and phylogenetic generalized least squares did not. Regardless of the statistical approach, body size alone explained less than 28% of the variation in development time. Models that also included optimal temperature explained over 50% of the variation in development time. Warm-adapted insects developed more quickly, regardless of body size, supporting the "hotter is better" hypothesis that posits that ectotherms have a limited ability to evolutionarily compensate for the depressing effects of low temperatures on rates of biological processes. The remaining unexplained variation in development time likely reflects additional ecological and evolutionary differences among insect species.

  13. The mechanical design and simulation of a scaled H⁻ Penning ion source.

    PubMed

    Rutter, T; Faircloth, D; Turner, D; Lawrie, S

    2016-02-01

    The existing ISIS Penning H(-) source is unable to produce the beam parameters required for the front end test stand and so a new, high duty factor, high brightness scaled source is being developed. This paper details first the development of an electrically biased aperture plate for the existing ISIS source and second, the design, simulation, and development of a prototype scaled source.

  14. The mechanical design and simulation of a scaled H- Penning ion source

    NASA Astrophysics Data System (ADS)

    Rutter, T.; Faircloth, D.; Turner, D.; Lawrie, S.

    2016-02-01

    The existing ISIS Penning H- source is unable to produce the beam parameters required for the front end test stand and so a new, high duty factor, high brightness scaled source is being developed. This paper details first the development of an electrically biased aperture plate for the existing ISIS source and second, the design, simulation, and development of a prototype scaled source.

  15. Injury Profiles Associated with Artisanal and Small-Scale Gold Mining in Tarkwa, Ghana

    PubMed Central

    Calys-Tagoe, Benedict N. L.; Ovadje, Lauretta; Clarke, Edith; Basu, Niladri; Robins, Thomas

    2015-01-01

    Artisanal and small-scale gold mining (ASGM) is inherently risky, but little is known about mining-associated hazards and injuries despite the tremendous growth worldwide of ASGM and the benefits it offers. The current study aimed to characterize the physical injuries associated with ASGM in Ghana to guide policy formulation. A cross-sectional survey was carried out in the Tarkwa mining district of the Western Region of Ghana in 2014. A total of 404 small-scale miners were recruited and interviewed regarding their occupational injury experiences over the preceding 10 years using a paper-based structured questionnaire. Nearly one-quarter (23.5%) of the miners interviewed reported getting injured over the previous 10 years, and the overall injury rate was calculated to be 5.39 per 100 person years. The rate was significantly higher for women (11.93 per 100 person years) and those with little mining experience (e.g., 25.31 per 100 person years for those with less than one year of work experience). The most injury-prone mining activities were excavation (58.7%) and crushing (23.1%), and over 70% of the injuries were reported to be due to miners being hit by an object. The majority of the injuries (57%) were lacerations, and nearly 70% of the injuries were to the upper or lower limbs. Approximately one-third (34.7%) of the injuries resulted in miners missing more than two weeks of work. One-quarter of the injured workers believed that abnormal work pressure played a role in their injuries, and nearly two-fifths believed that their injuries could have been prevented, with many citing personal protective equipment as a solution. About one-quarter of the employees reported that their employers never seemed to be interested in the welfare or safety of their employees. These findings greatly advance our understanding of occupational hazards and injuries amongst ASGM workers and help identify several intervention points. PMID:26184264

  16. Injury Profiles Associated with Artisanal and Small-Scale Gold Mining in Tarkwa, Ghana.

    PubMed

    Calys-Tagoe, Benedict N L; Ovadje, Lauretta; Clarke, Edith; Basu, Niladri; Robins, Thomas

    2015-07-10

    Artisanal and small-scale gold mining (ASGM) is inherently risky, but little is known about mining-associated hazards and injuries despite the tremendous growth worldwide of ASGM and the benefits it offers. The current study aimed to characterize the physical injuries associated with ASGM in Ghana to guide policy formulation. A cross-sectional survey was carried out in the Tarkwa mining district of the Western Region of Ghana in 2014. A total of 404 small-scale miners were recruited and interviewed regarding their occupational injury experiences over the preceding 10 years using a paper-based structured questionnaire. Nearly one-quarter (23.5%) of the miners interviewed reported getting injured over the previous 10 years, and the overall injury rate was calculated to be 5.39 per 100 person years. The rate was significantly higher for women (11.93 per 100 person years) and those with little mining experience (e.g., 25.31 per 100 person years for those with less than one year of work experience). The most injury-prone mining activities were excavation (58.7%) and crushing (23.1%), and over 70% of the injuries were reported to be due to miners being hit by an object. The majority of the injuries (57%) were lacerations, and nearly 70% of the injuries were to the upper or lower limbs. Approximately one-third (34.7%) of the injuries resulted in miners missing more than two weeks of work. One-quarter of the injured workers believed that abnormal work pressure played a role in their injuries, and nearly two-fifths believed that their injuries could have been prevented, with many citing personal protective equipment as a solution. About one-quarter of the employees reported that their employers never seemed to be interested in the welfare or safety of their employees. These findings greatly advance our understanding of occupational hazards and injuries amongst ASGM workers and help identify several intervention points.

  17. 22. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L27056) LOCKHEED YP-38 IN THE FULL-SCALE WIND TUNNEL; THIS WAS THE PROTOTYPE OF THE P-38 (LOCKHEED LIGHTNING); c. 1941. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  18. Is therapist evaluation of Social Anxiety/Avoidance traits associated with patient-reported attachment style?

    PubMed

    Katz, Michael; Hilsenroth, Mark J

    2017-11-01

    The Social Anxiety/Avoidance Scale was recently added to the Shedler Westen Assessment Procedure (SWAP), and requires independent validation. This study used data drawn from a larger ongoing project in order to retrospectively examine its convergent validity with two self-report attachment measures: Relationship Questionnaire (RQ) and Experiences in Close Relationships Questionnaire-Revised (ECR-R). Fifty-two patients completed the RQ and the ECR-R before beginning psychotherapy treatment. Clinicians rated the patients on the SWAP after six sessions. The SWAP Social Anxiety/Avoidance Scale (SWAP-SAAS) was negatively related to the RQ secure attachment prototype scale and positively related to the ECR-R attachment anxiety scale. Our findings provide initial support for the use of the SWAP-SAAS as a therapist-rated measure associated with lower patient-reported levels of fit with a secure attachment prototype and with higher patient-reported levels of attachment anxiety. Implications and suggestions for future research on the SWAP-SAAS, as well as for clinical work with socially anxious and avoidant patients, are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The NASA Carbon Monitoring System

    NASA Astrophysics Data System (ADS)

    Hurtt, G. C.

    2015-12-01

    Greenhouse gas emission inventories, forest carbon sequestration programs (e.g., Reducing Emissions from Deforestation and Forest Degradation (REDD and REDD+), cap-and-trade systems, self-reporting programs, and their associated monitoring, reporting and verification (MRV) frameworks depend upon data that are accurate, systematic, practical, and transparent. A sustained, observationally-driven carbon monitoring system using remote sensing data has the potential to significantly improve the relevant carbon cycle information base for the U.S. and world. Initiated in 2010, NASA's Carbon Monitoring System (CMS) project is prototyping and conducting pilot studies to evaluate technological approaches and methodologies to meet carbon monitoring and reporting requirements for multiple users and over multiple scales of interest. NASA's approach emphasizes exploitation of the satellite remote sensing resources, computational capabilities, scientific knowledge, airborne science capabilities, and end-to-end system expertise that are major strengths of the NASA Earth Science program. Through user engagement activities, the NASA CMS project is taking specific actions to be responsive to the needs of stakeholders working to improve carbon MRV frameworks. The first phase of NASA CMS projects focused on developing products for U.S. biomass/carbon stocks and global carbon fluxes, and on scoping studies to identify stakeholders and explore other potential carbon products. The second phase built upon these initial efforts, with a large expansion in prototyping activities across a diversity of systems, scales, and regions, including research focused on prototype MRV systems and utilization of COTS technologies. Priorities for the future include: 1) utilizing future satellite sensors, 2) prototyping with commercial off-the-shelf technology, 3) expanding the range of prototyping activities, 4) rigorous evaluation, uncertainty quantification, and error characterization, 5) stakeholder engagement, 6) partnerships with other U.S. agencies and international partners, and 7) modeling and data assimilation.

  20. Study program for design improvements of the X-3060 klystron. Phase 3: Electron gun fabrication and beam analyzer evaluation. Phase 4: Klystron prototype fabrication and testing

    NASA Technical Reports Server (NTRS)

    Goldfinger, A.

    1981-01-01

    A full scale model was produced to verify suggested design changes. Through beam analyzer study, the correct electron beam diameter and cross sectional profile were established in conjunction with the desired confining magnetic field. Comparative data on the performance of the X-3060 klystron, design predictions for the improved klystron, and performance data taken during acceptance testing of the prototype VKS-8274 JPL are presented.

  1. The Use of Prototypes in Weapon System Development

    DTIC Science & Technology

    1981-03-01

    engine to minimize flameouts; experience showed that some uses of composite mate- rials were unwarranted, and other uses were proved valid; and a special... composite structure materials. The YF-16 used a single F100, an engine already developed for the F-15 program. By the time of the YF-16 first flight...lessons learned during the prototype tests led to a reduction in the use of composite materials ir the full scale F-16A program. UTTAS. Because of the

  2. High Performance Piezoelectric Actuators and Wings for Nano Air Vehicles

    DTIC Science & Technology

    2012-08-26

    we designed and fabricated the LionFly, a flapping wing prototype actuated by a PZT -5H bimorph actuator. Several LionFly prototypes were fabricated...in the literature, using PZT thin film actuators directly coupled to a 2.5 mm SiO2/Si3N4/T i-Au wing that produces large flapping angle at resonance...for larger scale mechanisms [17, 9]. For PAVs, linear electromagnetic ac- tuation [21] and bulk PZT bimorph actuators [8], and thin film PZT unimorph

  3. Status of the prototype Pulsed Photonuclear Assessment (PPA) inspection system

    NASA Astrophysics Data System (ADS)

    Jones, James L.; Blackburn, Brandon W.; Norman, Daren R.; Watson, Scott M.; Haskell, Kevin J.; Johnson, James T.; Hunt, Alan W.; Harmon, Frank; Moss, Calvin

    2007-08-01

    The Idaho National Laboratory, in collaboration with Idaho State University's Idaho Accelerator Center and the Los Alamos National Laboratory, continues to develop the Pulsed Photonuclear Assessment (PPA) technique for shielded nuclear material detection in large volume configurations, such as cargo containers. In recent years, the Department of Homeland Security has supported the development of a prototype PPA cargo inspection system. This PPA system integrates novel neutron and gamma-ray detectors for nuclear material detection along with a complementary and unique gray scale, density mapping component for significant shield material detection. This paper will present the developmental status of the prototype system, its detection performance using several INL Calibration Pallets, and planned enhancements to further increase its nuclear material detection capability.

  4. Continuous stacking computational approach based automated microscope slide scanner

    NASA Astrophysics Data System (ADS)

    Murali, Swetha; Adhikari, Jayesh Vasudeva; Jagannadh, Veerendra Kalyan; Gorthi, Sai Siva

    2018-02-01

    Cost-effective and automated acquisition of whole slide images is a bottleneck for wide-scale deployment of digital pathology. In this article, a computation augmented approach for the development of an automated microscope slide scanner is presented. The realization of a prototype device built using inexpensive off-the-shelf optical components and motors is detailed. The applicability of the developed prototype to clinical diagnostic testing is demonstrated by generating good quality digital images of malaria-infected blood smears. Further, the acquired slide images have been processed to identify and count the number of malaria-infected red blood cells and thereby perform quantitative parasitemia level estimation. The presented prototype would enable cost-effective deployment of slide-based cyto-diagnostic testing in endemic areas.

  5. Characteristic time scales in the American dollar-Mexican peso exchange currency market

    NASA Astrophysics Data System (ADS)

    Alvarez-Ramirez, Jose

    2002-06-01

    Daily fluctuations of the American dollar-Mexican peso exchange currency market are studied using multifractal analysis methods. It is found evidence of multiaffinity of daily fluctuations in the sense that the qth-order (roughness) Hurst exponent Hq varies with changes in q. It is also found that there exist several characteristic time scales ranging from week to year. Accordingly, the market exhibits persistence in the sense that instabilities introduced by market events acting around the characteristic time scales (mainly, quarter and year) would propagate through the future market activity. Some implications of our results on the regulation of the dollar-mexpeso market activity are discussed.

  6. Design of a Balun Bandpass Filter with Asymmetrical Coupled Microstrip Lines

    NASA Astrophysics Data System (ADS)

    Wang, Xuedao; Wang, Jianpeng; Zhang, Gang; Huang, Feng

    2017-07-01

    A new microstrip coupled-line balun topology and its application to the balun bandpass filter (BPF) with a triple mode response are proposed in this paper. The involved balun structure is composed of two back-to-back quarter-wavelength (λ/4) asymmetrical coupled-line sections. Detailed design formulas based on the asymmetrical coupled-line theory are given to validate the feasibility of the balun. Besides, to obtain filtering performance simultaneously, the balun is then effectively integrated with a pair of triple mode resonators. To demonstrate the design concept of the balun BPF, a prototype operating at 2.4 GHz with the fractional bandwidth (FBW) of about 19.2 % is designed, fabricated, and measured. Results indicate that between the two balanced outputs, the amplitude imbalance is less than 0.3 dB and the phase difference is within 180°±5° inside the whole passband. Both simulated and experimental results are in good agreement.

  7. The mechanical design and simulation of a scaled H{sup −} Penning ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutter, T., E-mail: theo.rutter@stfc.ac.uk; Faircloth, D.; Turner, D.

    2016-02-15

    The existing ISIS Penning H{sup −} source is unable to produce the beam parameters required for the front end test stand and so a new, high duty factor, high brightness scaled source is being developed. This paper details first the development of an electrically biased aperture plate for the existing ISIS source and second, the design, simulation, and development of a prototype scaled source.

  8. Effects of a Data-Driven District-Level Reform Model

    ERIC Educational Resources Information Center

    Slavin, Robert E.; Holmes, GwenCarol; Madden, Nancy A.; Chamberlain, Anne; Cheung, Alan

    2010-01-01

    Despite a quarter-century of reform, US schools serving students in poverty continue to lag far behind other schools. There are proven programs, but these are not widely used. This large-scale experiment evaluated a district-level reform model created by the Center for DataDriven Reform in Education (CDDRE). The CDDRE model provided consultation…

  9. Formation flow rate control method in multi-layer production

    NASA Astrophysics Data System (ADS)

    Muzipov, H. N.; Akhmadulin, R. К; Bakanovskaya, L. N.

    2018-05-01

    The article describes a method of flow rate control of separate formations in multilayer production by noises frequency response (FR). The noise FR is converted into electrical signals scaled in proportion to the flow rates using secondary facilities. The pump noise is suggested to be reduced with the quarter-wave acoustic resonator working as an acoustic filter.

  10. Pipeline Development: Cultivating Teacher Leaders. [Federal Policy Platform Series. Brief 2

    ERIC Educational Resources Information Center

    New Leaders, 2014

    2014-01-01

    Accounting for a quarter of a school's impact on student achievement, principals are the leverage point for education reform and the primary drivers of school improvement. School leaders have a greater influence on all students than teachers and are the best long-term investment in effective teaching at scale. Like all professionals, teachers,…

  11. A Study of the Relative Effectiveness of Content and Process Centered Biology Laboratories for College Freshmen.

    ERIC Educational Resources Information Center

    Murphy, Glenn Wayne

    The relative effectiveness of "content-centered" and "process-centered" biology laboratory courses in a freshman general biology course was investigated by administering the Nelson Biology Test, Science Attitude Scale, EPS II (a problem solving test), and an Interest Inventory at the beginning and end of the one quarter course. Course examination…

  12. Working Poverty across the Metro-Nonmetro Divide: A Quarter Century in Perspective, 1979-2003

    ERIC Educational Resources Information Center

    Slack, Tim

    2010-01-01

    Researchers are increasingly recognizing space as a key axis of inequality. Scholars concerned with spatial inequality have called for special attention to issues of comparative advantage and disadvantage across space as well as the consideration of the subnational scale. This study draws on these ideas by examining the relationship between work…

  13. Computation and analysis of cavitating flow in Francis-class hydraulic turbines

    NASA Astrophysics Data System (ADS)

    Leonard, Daniel J.

    Hydropower is the most proven renewable energy technology, supplying the world with 16% of its electricity. Conventional hydropower generates a vast majority of that percentage. Although a mature technology, hydroelectric generation shows great promise for expansion through new dams and plants in developing hydro countries. Moreover, in developed hydro countries, such as the United States, installing generating units in existing dams and the modern refurbishment of existing plants can greatly expand generating capabilities with little to no further impact on the environment. In addition, modern computational technology and fluid dynamics expertise has led to substantial improvements in modern turbine design and performance. Cavitation has always presented a problem in hydroturbines, causing performance breakdown, erosion, damage, vibration, and noise. While modern turbines are usually designed to be cavitation-free at their best efficiency point, due to the variable demand of the energy market it is fairly common to operate at off-design conditions. Here, cavitation and its deleterious effects are unavoidable, and hence, cavitation is a limiting factor on the design and operation of these turbines. Multiphase Computational Fluid Dynamics (CFD) has been used in recent years to model cavitating flow for a large range of problems, including turbomachinery. However, CFD of cavitating flow in hydroturbines is still in its infancy. This dissertation presents steady-periodic Reynolds-averaged Navier-Stokes simulations of a cavitating Francis-class hydroturbine at model and prototype scales. Computational results of the reduced-scale model and full-scale prototype, undergoing performance breakdown, are compared with empirical model data and prototype performance estimations based on standard industry scalings from the model data. Mesh convergence of the simulations is also displayed. Comparisons are made between the scales to display that cavitation performance breakdown can occur more abruptly in the model than the prototype, due to lack of Froude similitude between the two. When severe cavitation occurs, clear differences are observed in vapor content between the scales. A stage-by-stage performance decomposition is conducted to analyze the losses within individual components of each scale of the machine. As cavitation becomes more severe, the losses in the draft tube account for an increasing amount of the total losses in the machine. More losses occur in the model draft tube as cavitation formation in the prototype draft tube is prevented by the larger hydrostatic pressure gradient across the machine. Additionally, unsteady Detached Eddy Simulations of the fully-coupled cavitating hydroturbine are performed for both scales. Both mesh and temporal convergence studies are provided. The temporal and spectral content of fluctuations in torque and pressure are monitored and compared between single-phase, cavitating, model, and prototype cases. A shallow draft tube induced runner imbalance results in an asymmetric vapor distribution about the runner, leading to more extensive growth and collapse of vapor on any individual blade as it undergoes a revolution. Unique frequency components manifest and persist through the entire machine only when cavitation is present in the hub vortex. Large maximum pressure spikes, which result from vapor collapse, are observed on the blade surfaces in the multiphase simulations, and these may be a potential source of cavitation damage and erosion. Multiphase CFD is shown to be an accurate and effective technique for simulating and analyzing cavitating flow in Francis-class hydraulic turbines. It is recommended that it be used as an industrial tool to supplement model cavitation experiments for all types of hydraulic turbines. Moreover, multiphase CFD can be equally effective as a research tool, to investigate mechanisms of cavitating hydraulic turbines that are not understood, and to uncover unique new phenomena which are currently unknown.

  14. Age differences in alcohol prototype perceptions and willingness to drink in U.K. adolescents.

    PubMed

    Davies, Emma L; Martin, Jilly; Foxcroft, David R

    2016-01-01

    Using the prototype willingness model (PWM) as a framework, this study sought to explore the relationship between prototype perceptions, willingness and alcohol consumption in a sample of adolescents in the United Kingdom (UK). Adolescents aged 11-17 were asked about their alcohol prototype perceptions, willingness to drink, intentions, alcohol consumption, drunkenness and harms using a cross-sectional online survey. Participants were recruited through opportunity sampling via schools and parents. The survey was completed by 178 respondents (51% female; 91 aged 11-15, 87 aged 16-17). Multivariate analysis revealed significant differences between participants aged 11-15 and 16-17 on PWM measures, even when experience with drinking was accounted for (p < .001). There were significant interactions (p < .001) between age and prototype perceptions; younger participants rated non-drinker prototypes as more favourable and more similar to the self than 16- and 17-year-old participants. Willingness and intentions interacted with age; both measures were similar in 16- and 17-year-olds, whereas younger participants scored significantly higher on willingness than intentions (p < .001). Three distinct scales of prototype descriptions were identified in principal components analysis. Characteristics related to sociability significantly predicted willingness to drink alcohol in the sample (p < .001). This study extends previous research by demonstrating that the PWM can provide a theoretical explanation of adolescent drinking in the UK. The results suggest that 11- to 15-year-olds may be the most suitable age for an intervention that targets alcohol prototypes, with a focus on sociability characteristics.

  15. Software Prototyping

    PubMed Central

    Del Fiol, Guilherme; Hanseler, Haley; Crouch, Barbara Insley; Cummins, Mollie R.

    2016-01-01

    Summary Background Health information exchange (HIE) between Poison Control Centers (PCCs) and Emergency Departments (EDs) could improve care of poisoned patients. However, PCC information systems are not designed to facilitate HIE with EDs; therefore, we are developing specialized software to support HIE within the normal workflow of the PCC using user-centered design and rapid prototyping. Objective To describe the design of an HIE dashboard and the refinement of user requirements through rapid prototyping. Methods Using previously elicited user requirements, we designed low-fidelity sketches of designs on paper with iterative refinement. Next, we designed an interactive high-fidelity prototype and conducted scenario-based usability tests with end users. Users were asked to think aloud while accomplishing tasks related to a case vignette. After testing, the users provided feedback and evaluated the prototype using the System Usability Scale (SUS). Results Survey results from three users provided useful feedback that was then incorporated into the design. After achieving a stable design, we used the prototype itself as the specification for development of the actual software. Benefits of prototyping included having 1) subject-matter experts heavily involved with the design; 2) flexibility to make rapid changes, 3) the ability to minimize software development efforts early in the design stage; 4) rapid finalization of requirements; 5) early visualization of designs; 6) and a powerful vehicle for communication of the design to the programmers. Challenges included 1) time and effort to develop the prototypes and case scenarios; 2) no simulation of system performance; 3) not having all proposed functionality available in the final product; and 4) missing needed data elements in the PCC information system. PMID:27081404

  16. Application of remote sensor data to geologic analysis of the Bonanza Test Site Colorado

    NASA Technical Reports Server (NTRS)

    Lee, K. (Compiler)

    1973-01-01

    A geologic map of the Bonanza Test Site is nearing completion. Using published large scale geologic maps from various sources, the geology of the area is being compiled on a base scaled at 1:250,000. Sources of previously published geologic mapping include: (1) USGS Bulletins; (2) professional papers and geologic quadrangle maps; (3) Bureau of Mines reports; (4) Colorado School of Mines quarterlies; and (5) Rocky Mountain Association of Geologist Guidebooks. This compilation will be used to evaluate ERTS, Skylab, and remote sensing underflight data.

  17. Rapid prototyping of multi-scale biomedical microdevices by combining additive manufacturing technologies.

    PubMed

    Hengsbach, Stefan; Lantada, Andrés Díaz

    2014-08-01

    The possibility of designing and manufacturing biomedical microdevices with multiple length-scale geometries can help to promote special interactions both with their environment and with surrounding biological systems. These interactions aim to enhance biocompatibility and overall performance by using biomimetic approaches. In this paper, we present a design and manufacturing procedure for obtaining multi-scale biomedical microsystems based on the combination of two additive manufacturing processes: a conventional laser writer to manufacture the overall device structure, and a direct-laser writer based on two-photon polymerization to yield finer details. The process excels for its versatility, accuracy and manufacturing speed and allows for the manufacture of microsystems and implants with overall sizes up to several millimeters and with details down to sub-micrometric structures. As an application example we have focused on manufacturing a biomedical microsystem to analyze the impact of microtextured surfaces on cell motility. This process yielded a relevant increase in precision and manufacturing speed when compared with more conventional rapid prototyping procedures.

  18. Tracking a head-mounted display in a room-sized environment with head-mounted cameras

    NASA Astrophysics Data System (ADS)

    Wang, Jih-Fang; Azuma, Ronald T.; Bishop, Gary; Chi, Vernon; Eyles, John; Fuchs, Henry

    1990-10-01

    This paper presents our efforts to accurately track a Head-Mounted Display (HMD) in a large environment. We review our current benchtop prototype (introduced in {WCF9O]), then describe our plans for building the full-scale system. Both systems use an inside-oui optical tracking scheme, where lateraleffect photodiodes mounted on the user's helmet view flashing infrared beacons placed in the environment. Church's method uses the measured 2D image positions and the known 3D beacon locations to recover the 3D position and orientation of the helmet in real-time. We discuss the implementation and performance of the benchtop prototype. The full-scale system design includes ceiling panels that hold the infrared beacons and a new sensor arrangement of two photodiodes with holographic lenses. In the full-scale system, the user can walk almost anywhere under the grid of ceiling panels, making the working volume nearly as large as the room.

  19. The VolturnUS 1:8 Floating Wind Turbine: Design, Construction, Deployment, Testing, Retrieval, and Inspection of the First Grid-Connected Offshore Wind Turbine in US

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dagher, Habib; Viselli, Anthony; Goupee, Andrew

    Volume II of the Final Report for the DeepCwind Consortium National Research Program funded by US Department of Energy Award Number: DE-EE0003278.001 summarizes the design, construction, deployment, testing, numerical model validation, retrieval, and post-deployment inspection of the VolturnUS 1:8-scale floating wind turbine prototype deployed off Castine, Maine on June 2nd, 2013. The 1:8 scale VolturnUS design served as a de-risking exercise for a commercial multi-MW VolturnUS design. The American Bureau of Shipping Guide for Building and Classing Floating Offshore Wind Turbine Installations was used to design the prototype. The same analysis methods, design methods, construction techniques, deployment methods, mooring, andmore » anchoring planned for full-scale were used. A commercial 20kW grid-connected turbine was used and was the first offshore wind turbine in the US.« less

  20. Engineering Development of Ceramic Membrane Reactor System for Converting Natural Gas to Hydrogen and Synthesis Gas for Liquid Transportation Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Air Products and Chemicals

    2008-09-30

    An Air Products-led team successfully developed ITM Syngas technology from the concept stage to a stage where a small-scale engineering prototype was about to be built. This technology produces syngas, a gas containing carbon monoxide and hydrogen, by reacting feed gas, primarily methane and steam, with oxygen that is supplied through an ion transport membrane. An ion transport membrane operates at high temperature and oxygen ions are transported through the dense membrane's crystal lattice when an oxygen partial pressure driving force is applied. This development effort solved many significant technical challenges and successfully scaled-up key aspects of the technology tomore » prototype scale. Throughout the project life, the technology showed significant economic benefits over conventional technologies. While there are still on-going technical challenges to overcome, the progress made under the DOE-funded development project proved that the technology was viable and continued development post the DOE agreement would be warranted.« less

  1. Periodic magnetorotational dynamo action as a prototype of nonlinear magnetic-field generation in shear flows.

    PubMed

    Herault, J; Rincon, F; Cossu, C; Lesur, G; Ogilvie, G I; Longaretti, P-Y

    2011-09-01

    The nature of dynamo action in shear flows prone to magnetohydrodynamc instabilities is investigated using the magnetorotational dynamo in Keplerian shear flow as a prototype problem. Using direct numerical simulations and Newton's method, we compute an exact time-periodic magnetorotational dynamo solution to three-dimensional dissipative incompressible magnetohydrodynamic equations with rotation and shear. We discuss the physical mechanism behind the cycle and show that it results from a combination of linear and nonlinear interactions between a large-scale axisymmetric toroidal magnetic field and nonaxisymmetric perturbations amplified by the magnetorotational instability. We demonstrate that this large-scale dynamo mechanism is overall intrinsically nonlinear and not reducible to the standard mean-field dynamo formalism. Our results therefore provide clear evidence for a generic nonlinear generation mechanism of time-dependent coherent large-scale magnetic fields in shear flows and call for new theoretical dynamo models. These findings may offer important clues to understanding the transitional and statistical properties of subcritical magnetorotational turbulence.

  2. Physical Test Prototypes Based on Microcontroller

    NASA Astrophysics Data System (ADS)

    Paramitha, S. T.

    2017-03-01

    The purpose of this study was to produce a prototype of a physical test-based microcontroller. The research method uses the research and development of the Borg and gall. The procedure starts from the study; research and information collecting, planning, develop preliminary form of product, preliminary field testing, main product revision, playing field testing, operational product revision, field operational testing, final product revision, dissemination and implementation. Validation of the product, obtained through expert evaluation; test products of small scale and large scale; effectiveness test; evaluation of respondents. The results showed that the eligibility assessment of prototype products based physical tests microcontroller. Based on the ratings of seven experts showed that 87% included in the category of “very good” and 13% included in the category of “good”. While the effectiveness of the test results showed that 1). The results of the experimental group to test sit-ups increase by 40% and the control group by 15%. 2). The results of the experimental group to test push-ups increased by 30% and the control group by 10%. 3). The results of the experimental group to test the Back-ups increased by 25% and the control group by 10%. With a significant value of 0.002 less than 0.05, product means a physical test prototype microcontroller based, proven effective in improving the results of physical tests. Conclusions and recommendations; Product physical microcontroller-based assays, can be used to measure the physical tests of pushups, sit ups, and back-ups.

  3. Status of E-ELT M5 scale-one demonstrator

    NASA Astrophysics Data System (ADS)

    Barriga, Pablo; Sedghi, Babak; Dimmler, Martin; Kornweibel, Nick

    2014-07-01

    The fifth mirror of the European Extremely Large Telescope optical train is a field stabilization tip/tilt unit responsible for correcting the dynamical tip and tilt caused mainly by wind load on the telescope. A scale-one prototype including the inclined support, the fixed frame and a basic control system was designed and manufactured by NTE-SENER (Spain) and CSEM (Switzerland) as part of the prototyping and design activities. All interfaces to the mirror have been reproduced on a dummy structure reproducing the inertial characteristics of the optical element. The M5 unit is required to have sufficient bandwidth for tip/tilt reference commands coming from the wavefront control system. Such a bandwidth can be achieved using local active damping loop to damp the low frequency mechanical modes before closing a position loop. Prototyping on the M5 unit has been undertaken in order to demonstrate the E-ELT control system architecture, concepts and development standards and to further study active damping strategies. The control system consists of two nested loops: a local damping loop and a position loop. The development of this control system was undertaken following the E-ELT control system development standards in order to determine their applicability and performance and includes hardware selection, communication, synchronization, configuration, and data logging. In this paper we present the current status of the prototype M5 control system and the latest results on the active damping control strategy, in particular the promising results obtained with the method of positive position feedback.

  4. Usefulness of temporal bone prototype for drilling training: A prospective study.

    PubMed

    Aussedat, C; Venail, F; Nguyen, Y; Lescanne, E; Marx, M; Bakhos, D

    2017-12-01

    Dissection of cadaveric temporal bones (TBs) is considered the gold standard for surgical training in otology. For many reasons, access to the anatomical laboratory and cadaveric TBs is difficult for some facilities. The aim of this prospective and comparative study was to evaluate the usefulness of a physical TB prototype for drilling training in residency. Prospective study. Tertiary referral centre. Thirty-four residents were included. Seventeen residents (mean age 26.7±1.6) drilled on only cadaveric TBs ("traditional" group), in the traditional training method, while seventeen residents (mean age 26.5±1.7) drilled first on a prototype and then on a cadaveric TB ("prototype" group). Drilling performance was assessed using a validated scale. Residents completed a mastoid image before and after each drilling to enable evaluation of mental representations of the mastoidectomy. No differences were observed between the groups with respect to age, drilling experience and level of residency. Regarding drilling performance, we found a significant difference across the groups, with a better score in the prototype group (P=.0007). For mental representation, the score was statistically improved (P=.0003) after drilling in both groups, suggesting that TB drilling improves the mental representation of the mastoidectomy whether prototype or cadaveric TB is used. The TB prototype improves the drilling performance and mental representation of the mastoidectomy in the young resident population. A drilling simulation with virtual or physical systems seems to be a beneficial tool to improve TB drilling. © 2017 John Wiley & Sons Ltd.

  5. SP-100 GES/NAT radiation shielding systems design and development testing

    NASA Astrophysics Data System (ADS)

    Disney, Richard K.; Kulikowski, Henry D.; McGinnis, Cynthia A.; Reese, James C.; Thomas, Kevin; Wiltshire, Frank

    1991-01-01

    Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield, the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned.

  6. Illuminance and luminance distributions of a prototype ambient illumination system for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Mullican, R. C.; Hayes, B. C.

    1991-01-01

    Preliminary results of research conducted in the late 1970's indicate that perceptual qualities of an enclosure can be influenced by the distribution of illumination within the enclosure. Subjective impressions such as spaciousness, perceptual clarity, and relaxation or tenseness, among others, appear to be related to different combinations of surface luminance. A prototype indirect ambient illumination system was developed which will allow crew members to alter surface luminance distributions within an enclosed module, thus modifying perceptual cues to match crew preferences. A traditional lensed direct lighting system was compared to the prototype utilizing the full-scale mockup of Space Station Freedom developed by Marshall Space Flight Center. The direct lensed system was installed in the habitation module with the indirect prototype deployed in the U.S. laboratory module. Analysis centered on the illuminance and luminance distributions resultant from these systems and the implications of various luminaire spacing options. All test configurations were evaluated for compliance with NASA Standard 3000, Man-System Integration Standards.

  7. Using an integrative mock-up simulation approach for evidence-based evaluation of operating room design prototypes.

    PubMed

    Bayramzadeh, Sara; Joseph, Anjali; Allison, David; Shultz, Jonas; Abernathy, James

    2018-07-01

    This paper describes the process and tools developed as part of a multidisciplinary collaborative simulation-based approach for iterative design and evaluation of operating room (OR) prototypes. Full-scale physical mock-ups of healthcare spaces offer an opportunity to actively communicate with and to engage multidisciplinary stakeholders in the design process. While mock-ups are increasingly being used in healthcare facility design projects, they are rarely evaluated in a manner to support active user feedback and engagement. Researchers and architecture students worked closely with clinicians and architects to develop OR design prototypes and engaged clinical end-users in simulated scenarios. An evaluation toolkit was developed to compare design prototypes. The mock-up evaluation helped the team make key decisions about room size, location of OR table, intra-room zoning, and doors location. Structured simulation based mock-up evaluations conducted in the design process can help stakeholders visualize their future workspace and provide active feedback. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. A prototype retinal prosthesis for visual stimulation.

    PubMed

    Abu-Faraj, Ziad O; Rjeily, Dany M Abou; Nasreddine, Rayan W; Andari, Majid A; Taok, Habib H

    2007-01-01

    Vision loss has severe impacts on its victims, carrying with it physiological, psychological, social, and economic consequences thereby degrading the quality of life and depriving the individual from performing many of the daily living activities. This article describes the design and development of a prototype retinal prosthesis for visual stimulation. The system consists of a webcam, a notebook computer, and a prototype excitatory circuit. The system is driven by a MATLAB-based custom-built software. Live webcam images are converted to an 8 x 8 mosaic of 256 gray scale shades. Subsequently, electrical impulses are generated by the excitatory circuit in real-time to topographically stimulate the corresponding epiretinal cells. Following their conversion to gray scale, recorded data from the central pixel of the mosaic yielded: 36.24 nC for black, 48.48 nC for red, 55.68 nC for green, 67.68 nC for blue, and 91.92 nC for white. These results correlate well with data reported in the literature. The hallmark of this work is in the potential of partial restoration of sight that would add quality to the life of individuals with vision loss.

  9. Extraction of Uranium from Seawater: Design and Testing of a Symbiotic System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slocum, Alex

    The U.S. Department of Energy in October 2014 awarded the Massachusetts Institute of Technology (MIT) a Nuclear Energy University Program grant (DE-NE0008268) to investigate the design and testing of a symbiotic system to harvest uranium from seawater. As defined in the proposal, the goals for the project are: 1. Address the design of machines for seawater uranium mining. 2. Develop design rules for a uranium harvesting system that would be integrated into an offshore wind power tower. 3. Fabricate a 1/50th size scale prototype for bench and pool-testing to verify initial analysis and theory. 4. Design, build, and test amore » second 1/10th size scale prototype in the ocean for more comprehensive testing and validation. This report describes work done as part of DE-NE0008268 from 10/01/2014 to 11/30/2017 entitled, “Extraction of Uranium from Seawater: Design and Testing of a Symbiotic System.” This effort is part of the Seawater Uranium Recovery Program. This report details the publications and presentations to date on the project, an introduction to the project’s goals and background research into previous work done to achieve these goals thus far. From there, the report describes an algorithm developed during the project used to optimize the adsorption of uranium by changing mechanical parameters such as immersion time and adsorbent reuses is described. Next, a design tool developed as part of the project to determine the global feasibility of symbiotic uranium harvesting systems. Additionally, the report details work done on shell enclosures for uranium adsorption. Moving on, the results from the design, building, and testing of a 1/50th physical scale prototype of a highly feasible symbiotic uranium harvester is described. Then, the report describes the results from flume experiment used to determine the affect of enclosure shells on the uptake of uranium by the adsorbent they enclose. From there the report details the design of a Symbiotic Machine for Ocean uRanium Extraction (SMORE). Next, the results of the 1/10th scale physical scale prototype of a highly feasible symbiotic uranium harvester are presented. The report then details the design and results of an experiment to examine the hydrodynamic effects of a uranium harvester on the offshore wind turbine it is attached to using a 1/150th Froude scale tow tank test. Finally, the report details the results of an initial cost-analysis for the production of uranium from seawater from such a symbiotic device.« less

  10. Post-print UV curing method for improving the mechanical properties of prototypes derived from two-photon lithography [A post-print UV curing method for improving the mechanical properties of prototypes derived from two-photon polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oakdale, James S.; Ye, Jianchao; Smith, William L.

    Here, two photon polymerization (TPP) is a precise, reliable, and increasingly popular technique for rapid prototyping of micro-scale parts with sub-micron resolution. The materials of choice underlying this process are predominately acrylic resins cross-linked via free-radical polymerization. Due to the nature of the printing process, the derived parts are only partially cured and the corresponding mechanical properties, i.e. modulus and ultimate strength, are lower than if the material were cross-linked to the maximum extent. Herein, post-print curing via UV-driven radical generation, is demonstrated to increase the overall degree of cross-linking of low density, TPP-derived structures.

  11. Post-print UV curing method for improving the mechanical properties of prototypes derived from two-photon lithography [A post-print UV curing method for improving the mechanical properties of prototypes derived from two-photon polymerization

    DOE PAGES

    Oakdale, James S.; Ye, Jianchao; Smith, William L.; ...

    2016-11-28

    Here, two photon polymerization (TPP) is a precise, reliable, and increasingly popular technique for rapid prototyping of micro-scale parts with sub-micron resolution. The materials of choice underlying this process are predominately acrylic resins cross-linked via free-radical polymerization. Due to the nature of the printing process, the derived parts are only partially cured and the corresponding mechanical properties, i.e. modulus and ultimate strength, are lower than if the material were cross-linked to the maximum extent. Herein, post-print curing via UV-driven radical generation, is demonstrated to increase the overall degree of cross-linking of low density, TPP-derived structures.

  12. Dimensions of assertiveness: factor analysis of five assertion inventories.

    PubMed

    Henderson, M; Furnham, A

    1983-09-01

    Five self report assertiveness inventories were factor analyzed. In each case two major factors emerged, accounting for approximately one-quarter to a third of the variance. The findings emphasize the multidimensional nature of current measures of assertiveness, and suggest the construction of a more systematic and psychometrically evaluated scale that would yield subscale scores assessing the separate dimensions of assertiveness.

  13. The quarter-power scaling model does not imply size-invariant hydraulic resistance in plants

    Treesearch

    Annikki Makela; Harry T. Valentine

    2006-01-01

    West, Brown, and Enquist (1997, 1999) propose an integrated model of the structure and allometry of plant vascular systems, which has come to be known as the 'WBE model' (Enquist, 2002). The WBE model weaves together area-preserving branching (Leonardo da Vinci), elastic similarity (Greenhill, 1881), the constant ratio of foliage mass to sapwood area (...

  14. Simulation modeling of forest landscape disturbances: Where do we go from here?

    Treesearch

    Ajith H. Perera; Brian R. Sturtevant; Lisa J. Buse

    2015-01-01

    It was nearly a quarter-century ago when Turner and Gardner (1991) drew attention to methods of quantifying landscape patterns and processes, including simulation modeling. The many authors who contributed to that seminal text collectively signaled the emergence of a new field—spatially explicit simulation modeling of broad-scale ecosystem dynamics. Of particular note...

  15. Improvement of Sweep Efficiency in Gasflooding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kishore Mohanty

    2008-12-31

    Miscible and near-miscible gasflooding has proven to be one of the few cost effective enhance oil recovery techniques in the past twenty years. As the scope of gas flooding is being expanded to medium viscosity oils in shallow sands in Alaska and shallower reservoirs in the lower 48, there are questions about sweep efficiency in near-miscible regions. The goal of this research is to evaluate sweep efficiency of various gas flooding processes in a laboratory model and develop numerical tools to estimate their effectiveness in the field-scale. Quarter 5-spot experiments were conducted at reservoir pressure to evaluate the sweep efficiencymore » of gas, WAG and foam floods. The quarter 5-spot model was used to model vapor extraction (VAPEX) experiments at the lab scale. A streamline-based compositional simulator and a commercial simulator (GEM) were used to model laboratory scale miscible floods and field-scale pattern floods. An equimolar mixture of NGL and lean gas is multicontact miscible with oil A at 1500 psi; ethane is a multicontact miscible solvent for oil B at pressures higher than 607 psi. WAG improves the microscopic displacement efficiency over continuous gas injection followed by waterflood in corefloods. WAG improves the oil recovery in the quarter 5-spot over the continuous gas injection followed by waterflood. As the WAG ratio increases from 1:2 to 2:1, the sweep efficiency in the 5-spot increases, from 39.6% to 65.9%. A decrease in the solvent amount lowers the oil recovery in WAG floods, but significantly higher amount of oil can be recovered with just 0.1 PV solvent injection over just waterflood. Use of a horizontal production well lowers the oil recovery over the vertical production well during WAG injection phase in this homogeneous 5-spot model. Estimated sweep efficiency decreases from 61.5% to 50.5%. In foam floods, as surfactant to gas slug size ratio increases from 1:10 to 1:1, oil recovery increases. In continuous gasflood VAPEX processes, as the distance between the injection well and production well decreases, the oil recovery and rate decreases in continuous gasflood VAPEX processes. Gravity override is observed for gas injection simulations in vertical (X-Z) cross-sections and 3-D quarter five spot patterns. Breakthrough recovery efficiency increases with the viscous-to-gravity ratio in the range of 1-100. The speed up for the streamline calculations alone is almost linear with the number of processors. The overall speed up factor is sub-linear because of the overhead time spent on the finite-difference calculation, inter-processor communication, and non-uniform processor load. Field-scale pattern simulations showed that recovery from gas and WAG floods depends on the vertical position of high permeability regions and k{sub v}/k{sub h} ratio. As the location of high permeability region moves down and k{sub v}/k{sub h} ratio decreases, oil recovery increases. There is less gravity override. The recovery from the field model is lower than that from the lab 5-spot model, but the effect of WAG ratio is similar.« less

  16. Testing of the Multi-Fluid Evaporator Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Quinn, Gregory; O'Connor, Ed; Riga, Ken; Anderson, Molly; Westheimer, David

    2007-01-01

    Hamilton Sundstrand is under contract with the NASA Johnson Space Center to develop a scalable, evaporative heat rejection system called the Multi-Fluid Evaporator (MFE). It is being designed to support the Orion Crew Module and to support future Constellation missions. The MFE would be used from Earth sea level conditions to the vacuum of space. The current Shuttle configuration utilizes an ammonia boiler and flash evaporator system to achieve cooling at all altitudes. The MFE system combines both functions into a single compact package with significant weight reduction and improved freeze-up protection. The heat exchanger core is designed so that radial flow of the evaporant provides increasing surface area to keep the back pressure low. The multiple layer construction of the core allows for efficient scale up to the desired heat rejection rate. The full scale MFE prototype will be constructed with four core sections that, combined with a novel control scheme, manage the risk of freezing the heat exchanger cores. A sub-scale MFE engineering development unit (EDU) has been built, and is identical to one of the four sections of a full scale prototype. The EDU has completed testing at Hamilton Sundstrand. The overall test objective was to determine the thermal performance of the EDU. The first set of tests simulated how each of the four sections of the prototype would perform by varying the chamber pressure, evaporant flow rate, coolant flow rate and coolant temperature. A second set of tests was conducted with an outlet steam header in place to verify that the outlet steam orifices prevent freeze-up in the core while also allowing the desired thermal turn-down ratio. This paper discusses the EDU tests and results.

  17. ProtoMD: A prototyping toolkit for multiscale molecular dynamics

    NASA Astrophysics Data System (ADS)

    Somogyi, Endre; Mansour, Andrew Abi; Ortoleva, Peter J.

    2016-05-01

    ProtoMD is a toolkit that facilitates the development of algorithms for multiscale molecular dynamics (MD) simulations. It is designed for multiscale methods which capture the dynamic transfer of information across multiple spatial scales, such as the atomic to the mesoscopic scale, via coevolving microscopic and coarse-grained (CG) variables. ProtoMD can be also be used to calibrate parameters needed in traditional CG-MD methods. The toolkit integrates 'GROMACS wrapper' to initiate MD simulations, and 'MDAnalysis' to analyze and manipulate trajectory files. It facilitates experimentation with a spectrum of coarse-grained variables, prototyping rare events (such as chemical reactions), or simulating nanocharacterization experiments such as terahertz spectroscopy, AFM, nanopore, and time-of-flight mass spectroscopy. ProtoMD is written in python and is freely available under the GNU General Public License from github.com/CTCNano/proto_md.

  18. The LHC magnet system and its status of development

    NASA Technical Reports Server (NTRS)

    Bona, Maurizio; Perin, Romeo; Vlogaert, Jos

    1995-01-01

    CERN is preparing for the construction of a new high energy accelerator/collider, the Large Hadron Collider (LHC). This new facility will mainly consist of two superconducting magnetic beam channels, 27 km long, to be installed in the existing LEP tunnel. The magnetic system comprises about 1200 twin-aperture dipoles, 13.145 m long, with an operational field of 8.65 T, about 600 quadrupoles, 3 m long, and a very large number of other superconducting magnetic components. A general description of the system is given together with the main features of the design of the regular lattice magnets. The paper also describes the present state of the magnet R & D program. Results from short model work, as well as from full scale prototypes will be presented, including the recently tested 10 m long full-scale prototype dipole manufactured in industry.

  19. A Scalable proxy cache for Grid Data Access

    NASA Astrophysics Data System (ADS)

    Cristian Cirstea, Traian; Just Keijser, Jan; Koeroo, Oscar Arthur; Starink, Ronald; Templon, Jeffrey Alan

    2012-12-01

    We describe a prototype grid proxy cache system developed at Nikhef, motivated by a desire to construct the first building block of a future https-based Content Delivery Network for grid infrastructures. Two goals drove the project: firstly to provide a “native view” of the grid for desktop-type users, and secondly to improve performance for physics-analysis type use cases, where multiple passes are made over the same set of data (residing on the grid). We further constrained the design by requiring that the system should be made of standard components wherever possible. The prototype that emerged from this exercise is a horizontally-scalable, cooperating system of web server / cache nodes, fronted by a customized webDAV server. The webDAV server is custom only in the sense that it supports http redirects (providing horizontal scaling) and that the authentication module has, as back end, a proxy delegation chain that can be used by the cache nodes to retrieve files from the grid. The prototype was deployed at Nikhef and tested at a scale of several terabytes of data and approximately one hundred fast cores of computing. Both small and large files were tested, in a number of scenarios, and with various numbers of cache nodes, in order to understand the scaling properties of the system. For properly-dimensioned cache-node hardware, the system showed speedup of several integer factors for the analysis-type use cases. These results and others are presented and discussed.

  20. Laser-absorption sensing of gas composition of products from coal gasification

    NASA Astrophysics Data System (ADS)

    Jeffries, Jay B.; Sur, Ritobrata; Sun, Kai; Hanson, Ronald K.

    2014-06-01

    A prototype in-situ laser-absorption sensor for the real-time composition measurement (CO, CH4, H2O and CO2) of synthesis gas products of coal gasification (called here syngas) was designed, tested in the laboratory, and demonstrated during field-measurement campaigns in a pilot-scale entrained flow gasifier at the University of Utah and in an engineering-scale, fluidized-bed transport gasifier at the National Carbon Capture Center (NCCC). The prototype design and operation were improved by the lessons learned from each field test. Laser-absorption measurements are problematic in syngas flows because efficient gasifiers operate at elevated pressures (10-50 atm) where absorption transitions are collision broadened and absorption transitions that are isolated at 1 atm become blended into complex features, and because syngas product streams can contain significant particulate, producing significant non-absorption scattering losses of the transmission of laser light. Thus, the prototype sensor used a new wavelength-scanned, wavelength-modulation spectroscopy strategy with 2f-detection and 1f-normalization (WMS-2f/1f) that can provide sensitive absorption measurements of species with spectra blended by collision broadening even in the presence of large non-absorption laser transmission losses (e.g., particulate scattering, beam steering, etc.). The design of the sensor for detection of CO, CH4, H2O and CO2 was optimized for the specific application of syngas monitoring at the output of large-scale gasifiers. Sensor strategies, results and lessons learned from these field measurement campaigns are discussed.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierson, L.G.; Witzke, E.L.

    This effort studied the integration of innovative methods of key management crypto synchronization, and key agility while scaling encryption speed. Viability of these methods for encryption of ATM cell payloads at the SONET OC- 192 data rate (10 Gb/s), and for operation at OC-48 rates (2.5 Gb/s) was shown. An SNL-Developed pipelined DES design was adapted for the encryption of ATM cells. A proof-of-principle prototype circuit board containing 11 Electronically Programmable Logic Devices (each holding the equivalent of 100,000 gates) was designed, built, and used to prototype a high speed encryptor.

  2. F-8 oblique wing structural feasibility study

    NASA Technical Reports Server (NTRS)

    Koltko, E.; Katz, A.; Bell, M. A.; Smith, W. D.; Lauridia, R.; Overstreet, C. T.; Klapprott, C.; Orr, T. F.; Jobe, C. L.; Wyatt, F. G.

    1975-01-01

    The feasibility of fitting a rotating oblique wing on an F-8 aircraft to produce a full scale manned prototype capable of operating in the transonic and supersonic speed range was investigated. The strength, aeroelasticity, and fatigue life of such a prototype are analyzed. Concepts are developed for a new wing, a pivot, a skewing mechanism, control systems that operate through the pivot, and a wing support assembly that attaches in the F-8 wing cavity. The modification of the two-place NTF-8A aircraft to the oblique wing configuration is discussed.

  3. Packaging of silicon photonic devices: from prototypes to production

    NASA Astrophysics Data System (ADS)

    Morrissey, Padraic E.; Gradkowski, Kamil; Carroll, Lee; O'Brien, Peter

    2018-02-01

    The challenges associated with the photonic packaging of silicon devices is often underestimated and remains technically challenging. In this paper, we review some key enabling technologies that will allow us to overcome the current bottleneck in silicon photonic packaging; while also describing the recent developments in standardisation, including the establishment of PIXAPP as the worlds first open-access PIC packaging and assembly Pilot Line. These developments will allow the community to move from low volume prototype photonic packaged devices to large scale volume manufacturing, where the full commercialisation of PIC technology can be realised.

  4. A study of alternative methods for reclaiming oxygen from carbon dioxide and water by a solid-electrolyte process for spacecraft applications

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Two alternative technical approaches were studied for application of an electrochemical process using a solid oxide electrolyte (zirconia stabilized by yttria or scandia) to oxygen reclamation from carbon dioxide and water, for spacecraft life support systems. Among the topics considered are the advisability of proceeding to engineering prototype development and fabrication of a full scale model for the system concept, the optimum choice of method or approach to be carried into prototype development, and the technical problem areas which exist.

  5. The Gamma-ray Cherenkov Telescope, an end-to end Schwarzschild-Couder telescope prototype proposed for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Dournaux, J. L.; Abchiche, A.; Allan, D.; Amans, J. P.; Armstrong, T. P.; Balzer, A.; Berge, D.; Boisson, C.; Bousquet, J.-J.; Brown, A. M.; Bryan, M.; Buchholtz, G.; Chadwick, P. M.; Costantini, H.; Cotter, G.; Dangeon, L.; Daniel, M. K.; De Franco, A.; De Frondat, F.; Dumas, D.; Ernenwein, J. P.; Fasola, G.; Funk, S.; Gironnet, J.; Graham, J. A.; Greenshaw, T.; Hameau, B.; Hervet, O.; Hidaka, N.; Hinton, J. A.; Huet, J. M.; Jégouzo, I.; Jogler, T.; Kawashima, T.; Kraush, M.; Lapington, J. S.; Laporte, P.; Lefaucheur, J.; Markoff, S.; Melse, T.; Mohrmann, L.; Molyneux, P.; Nolan, S. J.; Okumura, A.; Osborne, J. P.; Parsons, R. D.; Rosen, S.; Ross, D.; Rowell, G.; Rulten, C. B.; Sato, Y.; Sayède, F.; Schmoll, J.; Schoorlemmer, H.; Servillat, M.; Sol, H.; Stamatescu, V.; Stephan, M.; Stuik, R.; Sykes, J.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Trichard, C.; Vink, J.; Watson, J. J.; White, R.; Yamane, N.; Zech, A.; Zink, A.

    2016-08-01

    The GCT (Gamma-ray Cherenkov Telescope) is a dual-mirror prototype of Small-Sized-Telescopes proposed for the Cherenkov Telescope Array (CTA) and made by an Australian-Dutch-French-German-Indian-Japanese-UK-US consortium. The integration of this end-to-end telescope was achieved in 2015. On-site tests and measurements of the first Cherenkov images on the night sky began on November 2015. This contribution describes the telescope and plans for the pre-production and a large scale production within CTA.

  6. Design of a solar concentrator considering arbitrary surfaces

    NASA Astrophysics Data System (ADS)

    Jiménez-Rodríguez, Martín.; Avendaño-Alejo, Maximino; Verduzco-Grajeda, Lidia Elizabeth; Martínez-Enríquez, Arturo I.; García-Díaz, Reyes; Díaz-Uribe, Rufino

    2017-10-01

    We study the propagation of light in order to efficiently redirect the reflected light on photocatalytic samples placed inside a commercial solar simulator, and we have designed a small-scale prototype of Cycloidal Collectors (CCs), resembling a compound parabolic collector. The prototype consists of either cycloidal trough or cycloidal collector having symmetry of rotation, which has been designed considering an exact ray tracing assuming a bundle of rays propagating parallel to the optical axis and impinging on a curate cycloidal surface, obtaining its caustic surface produced by reflection.

  7. Software Prototyping: A Case Report of Refining User Requirements for a Health Information Exchange Dashboard.

    PubMed

    Nelson, Scott D; Del Fiol, Guilherme; Hanseler, Haley; Crouch, Barbara Insley; Cummins, Mollie R

    2016-01-01

    Health information exchange (HIE) between Poison Control Centers (PCCs) and Emergency Departments (EDs) could improve care of poisoned patients. However, PCC information systems are not designed to facilitate HIE with EDs; therefore, we are developing specialized software to support HIE within the normal workflow of the PCC using user-centered design and rapid prototyping. To describe the design of an HIE dashboard and the refinement of user requirements through rapid prototyping. Using previously elicited user requirements, we designed low-fidelity sketches of designs on paper with iterative refinement. Next, we designed an interactive high-fidelity prototype and conducted scenario-based usability tests with end users. Users were asked to think aloud while accomplishing tasks related to a case vignette. After testing, the users provided feedback and evaluated the prototype using the System Usability Scale (SUS). Survey results from three users provided useful feedback that was then incorporated into the design. After achieving a stable design, we used the prototype itself as the specification for development of the actual software. Benefits of prototyping included having 1) subject-matter experts heavily involved with the design; 2) flexibility to make rapid changes, 3) the ability to minimize software development efforts early in the design stage; 4) rapid finalization of requirements; 5) early visualization of designs; 6) and a powerful vehicle for communication of the design to the programmers. Challenges included 1) time and effort to develop the prototypes and case scenarios; 2) no simulation of system performance; 3) not having all proposed functionality available in the final product; and 4) missing needed data elements in the PCC information system.

  8. Human Factors and Technical Considerations for a Computerized Operator Support System Prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulrich, Thomas Anthony; Lew, Roger Thomas; Medema, Heather Dawne

    2015-09-01

    A prototype computerized operator support system (COSS) has been developed in order to demonstrate the concept and provide a test bed for further research. The prototype is based on four underlying elements consisting of a digital alarm system, computer-based procedures, PI&D system representations, and a recommender module for mitigation actions. At this point, the prototype simulates an interface to a sensor validation module and a fault diagnosis module. These two modules will be fully integrated in the next version of the prototype. The initial version of the prototype is now operational at the Idaho National Laboratory using the U.S. Departmentmore » of Energy’s Light Water Reactor Sustainability (LWRS) Human Systems Simulation Laboratory (HSSL). The HSSL is a full-scope, full-scale glass top simulator capable of simulating existing and future nuclear power plant main control rooms. The COSS is interfaced to the Generic Pressurized Water Reactor (gPWR) simulator with industry-typical control board layouts. The glass top panels display realistic images of the control boards that can be operated by touch gestures. A section of the simulated control board was dedicated to the COSS human-system interface (HSI), which resulted in a seamless integration of the COSS into the normal control room environment. A COSS demonstration scenario has been developed for the prototype involving the Chemical & Volume Control System (CVCS) of the PWR simulator. It involves a primary coolant leak outside of containment that would require tripping the reactor if not mitigated in a very short timeframe. The COSS prototype presents a series of operator screens that provide the needed information and soft controls to successfully mitigate the event.« less

  9. Unsteady loads due to propulsive lift configurations. Part A: Investigation of scaling laws

    NASA Technical Reports Server (NTRS)

    Morton, J. B.; Haviland, J. K.

    1978-01-01

    This study covered scaling laws, and pressure measurements made to determine details of the large scale jet structure and to verify scaling laws by direct comparison. The basis of comparison was a test facility at NASA Langley in which a JT-15D exhausted over a boilerplater airfoil surface to reproduce upper surface blowing conditions. A quarter scale model was built of this facility, using cold jets. A comparison between full scale and model pressure coefficient spectra, presented as functions of Strouhal numbers, showed fair agreement, however, a shift of spectral peaks was noted. This was not believed to be due to Mach number or Reynolds number effects, but did appear to be traceable to discrepancies in jet temperatures. A correction for jet temperature was then tried, similar to one used for far field noise prediction. This was found to correct the spectral peak discrepancy.

  10. 4. Northeast corner of quarters (executive officer's quarters), looking onto ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Northeast corner of quarters (executive officer's quarters), looking onto Quarter R (commanding officer's quarters), looking southeast - Naval Air Station Chase Field, Texas State Highway 202, 4.8 miles east of intersection of Texas State Highway 202 & U.S. State Highway 181, Beeville, Bee County, TX

  11. Developing Sensitive and Selective Nanosensors: A Single Molecule - Multiple Excitation Source Approach. Altairnano Lithium Ion Nano-scaled Titanate Oxide Cell and Module Abuse Testing

    DTIC Science & Technology

    2012-03-13

    Source Approach Part II. Altairnano Lithium Ion Nano-scaled Titanate Oxide Cell and Module Abuse Testing 14. ABSTRACT 16. SECURITY CLASSIFICATION OF...Lithium Ion Nano-scaled Titanate Oxide Cell and Module Abuse Testing Report Title ABSTRACT This final report for Contract W911NF-09-C-0135 transmits the...prototype development. The second (Part II.) is "Altairnano Lithium Ion Nano-scaled Titanate Oxide Cell and Module Abuse Test Report". The

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Charles

    In the 2nd quarter of 2012, a program was formally initiated at Delta Products to develop smart-grid-enabled Electric Vehicle Supply Equipment (EVSE) product for residential use. The project was funded in part by the U.S. Department of Energy (DOE), under award DE-OE0000590. Delta products was the prime contractor to DOE during the three year duration of the project. In addition to Delta Products, several additional supplier-partners were engaged in this research and development (R&D) program, including Detroit Edison DTE, Mercedes Benz Research and Development North America, and kVA. This report summarizes the program and describes the key research outcomes ofmore » the program. A technical history of the project activities is provided, which describes the key steps taken in the research and the findings made at successive stages in the multi-stage work. The evolution of an EVSE prototype system is described in detail, culminating in prototypes shipped to Department of Energy Laboratories for final qualification. After the program history is reviewed, the key attributes of the resulting EVSE are described in terms of functionality, performance, and cost. The results clearly demonstrate the ability of this EVSE to meet or exceed DOE's targets for this program, including: construction of a working product-intent prototype of a smart-grid-enabled EVSE, with suitable connectivity to grid management and home-energy management systems, revenue-grade metering, and related technical functions; and cost reduction of 50% or more compared to typical market priced EVSEs at the time of DOE's funding opportunity announcement (FOA), which was released in mid 2011. In addition to meeting all the program goals, the program was completed within the original budget and timeline established at the time of the award. The summary program budget and timeline, comparing plan versus actual values, is provided for reference, along with several supporting explanatory notes. Technical information relating to the product design and test results are contained in the appendices to this report.« less

  13. Concentrating Solar Power Central Receiver Panel Component Fabrication and Testing FINAL REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDowell, Michael W; Miner, Kris

    The objective of this project is to complete a design of an advanced concentrated solar panel and demonstrate the manufacturability of key components. Then confirm the operation of the key components under prototypic solar flux conditions. This work is an important step in reducing the levelized cost of energy (LCOE) from a central receiver solar power plant. The key technical risk to building larger power towers is building the larger receiver systems. Therefore, this proposed technology project includes the design of an advanced molten salt prototypic sub-scale receiver panel that can be utilized into a large receiver system. Then completemore » the fabrication and testing of key components of the receive design that will be used to validate the design. This project shall have a significant impact on solar thermal power plant design. Receiver panels of suitable size for utility scale plants are a key element to a solar power tower plant. Many subtle and complex manufacturing processes are involved in producing a reliable, robust receiver panel. Given the substantial size difference between receiver panels manufactured in the past and those needed for large plant designs, the manufacture and demonstration on prototype receiver panel components with representative features of a full-sized panel will be important to improving the build process for commercial success. Given the thermal flux limitations of the test facility, the panel components cannot be rendered full size. Significance changes occurred in the projects technical strategies from project initiation to the accomplishments described herein. The initial strategy was to define cost improvements for the receiver, design and build a scale prototype receiver and test, on sun, with a molten salt heat transport system. DOE had committed to constructing a molten salt heat transport loop to support receiver testing at the top of the NSTTF tower. Because of funding constraints this did not happen. A subsequent plan to test scale prototype receiver, off sun but at temperature, at a molten salt loop at ground level adjacent to the tower also had to be abandoned. Thus, no test facility existed for a molten salt receiver test. As a result, PWR completed the prototype receiver design and then fabricated key components for testing instead of fabricating the complete prototype receiver. A number of innovative design ideas have been developed. Key features of the receiver panel have been identified. This evaluation includes input from Solar 2, personal experience of people working on these programs and meetings with Sandia. Key components of the receiver design and key processes used to fabricate a receiver have been selected for further evaluation. The Test Plan, Concentrated Solar Power Receiver In Cooperation with the Department of Energy and Sandia National Laboratory was written to define the scope of the testing to be completed as well as to provide details related to the hardware, instrumentation, and data acquisition. The document contains a list of test objectives, a test matrix, and an associated test box showing the operating points to be tested. Test Objectives: 1. Demonstrate low-cost manufacturability 2. Demonstrate robustness of two different tube base materials 3. Collect temperature data during on sun operation 4. Demonstrate long term repeated daily operation of heat shields 5. Complete pinhole tube weld repairs 6. Anchor thermal models This report discusses the tests performed, the results, and implications for design improvements and LCOE reduction.« less

  14. Improved malaria case management in formal private sector through public private partnership in Ethiopia: retrospective descriptive study.

    PubMed

    Argaw, Mesele D; Woldegiorgis, Asfawesen Gy; Abate, Derebe T; Abebe, Mesfin E

    2016-07-11

    Malaria is a major public health problem and still reported among the 10 top causes of morbidity and mortality in Ethiopia. More than one-third of the people sought treatment from the private health sector. Evaluating adherences of health care providers to standards are paramount importance to determine the quality and the effectiveness of service delivery. Therefore, the aim of this study was to evaluate the contribution of public private mix (PPM) approach in improving quality of malaria case management among formal private providers. A retrospective data analysis was conducted using 2959 facility-months data collected from 110 PPM for malaria care facilities located in Amhara, Dire Dawa, Hareri, Oromia, Southern Nation Nationalities and Peoples and Tigray regions. Data abstraction formats were used to collect and collate the data on quarterly bases. The data were manually cleaned and analysed using Microsoft Office Excel 2010. To claim statistical significance non-parametric McNemar test was done and decision accepted at P < 0.05. From April 2012-September 2015, a total of 873,707 malaria suspected patients were identified, of which one-fourth (25.6 %) were treated as malaria cases. Among malaria suspected cases the proportion of malaria investigation improved from recorded in first quarter 87.7-100.0 % in last quarter (X(2) = 66.84, P < 0.001). The majority (96.0 %) were parasitologically-confirmed cases either by using microscopy or rapid diagnostic tests. The overall slid positivity rate was 25.1 % of which half (50.7 %) were positive for Plasmodium falciparum and slightly lower than half (45.2 %) for Plasmodium vivax; the remaining 8790 (4.1 %) showed mixed infections of P. falciparum and P. vivax. Adherence to appropriate treatment using artemether-lumefantrine (AL) was improved from 47.8 % in the first quarter to 95.7 % in the last quarter (X(2) = 12.89, P < 0.001). Similarly, proper patient management using chloroquine (CQ) was improved from 44.1 % in the first quarter to 98.12 % in the last quarter (X(2) = 11.62, P < 0.001). This study documented the chronological changes of adherence of health care providers with the national recommended standards to treat malaria. The PPM for malaria care services significantly improved the malaria case management practice of health care providers at the formal private health facilities. Therefore, regional health bureaus and partners shall closely work to scale up the initiated PPM for malaria care service.

  15. Wearable Technology

    NASA Technical Reports Server (NTRS)

    Watson, Amanda

    2013-01-01

    Wearable technology projects, to be useful, in the future, must be seamlessly integrated with the Flight Deck of the Future (F.F). The lab contains mockups of space vehicle cockpits, habitat living quarters, and workstations equipped with novel user interfaces. The Flight Deck of the Future is one element of the Integrated Power, Avionics, and Software (IPAS) facility, which, to a large extent, manages the F.F network and data systems. To date, integration with the Flight Deck of the Future has been limited by a lack of tools and understanding of the Flight Deck of the Future data handling systems. To remedy this problem it will be necessary to learn how data is managed in the Flight Deck of the Future and to develop tools or interfaces that enable easy integration of WEAR Lab and EV3 products into the Flight Deck of the Future mockups. This capability is critical to future prototype integration, evaluation, and demonstration. This will provide the ability for WEAR Lab products, EV3 human interface prototypes, and technologies from other JSC organizations to be evaluated and tested while in the Flight Deck of the Future. All WEAR Lab products must be integrated with the interface that will connect them to the Flight Deck of the Future. The WEAR Lab products will primarily be programmed in Arduino. Arduino will be used for the development of wearable controls and a tactile communication garment. Arduino will also be used in creating wearable methane detection and warning system.

  16. SP-100 GES/NAT radiation shielding systems design and development testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Disney, R.K.; Kulikowski, H.D.; McGinnis, C.A.

    1991-01-10

    Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield,more » the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned.« less

  17. 12 CFR 1777.10 - Developments prompting supervisory response.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) An Enterprise's publicly reported net income for the most recent calendar quarter is less than one-half of its average quarterly net income for any four-quarter period during the prior eight quarters... than one-half of its average NIM for any four-quarter period during the prior eight quarters; (d) For...

  18. Novel Surface Modification Method for Ultrasupercritical Coal-Fired Boilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, T. Danny

    2013-05-22

    US Department of Energy seeks an innovative coating technology for energy production to reduce the emission of SOx, NOx, and CO2 toxic gaseous species. To realize this need, Inframat Corporation (IMC) proposed an SPS thermal spray coating technique to produce ultrafine/nanocoatings that can be deposited onto the surfaces of high temperature boiler tubes, so that higher temperatures of boiler operation becomes possible, leading to significantly reduced emission of toxic gaseous species. It should be noted that the original PI was Dr. Xinqing Ma, who after 1.5 year conducting this project left Inframat in December, 2008. Thus, the PI was transferredmore » to Dr. Danny Xiao, who originally co-authored the proposal with Dr. Ma, in order to carry the project into a completion. Phase II Objectives: The proposed technology has the following attributes, including: (1). Dispersion of a nanoparticle or alloyed particle in a solvent to form a uniform slurry feedstock; (2). Feeding of the slurry feedstock into a thermal spray flame, followed by deposition of the slurry feedstock onto substrates to form tenacious nanocoatings; (3). High coating performance: including high bonding strength, and high temperature service life in the temperature range of 760oC/1400oF. Following the above premises, our past Phase I project has demonstrated the feasibility in small scale coatings on boiler substrates. The objective of this Phase II project was to focus on scale-up the already demonstrated Phase I work for the fabrication of SPS coatings that can satisfy DOE's emission reduction goals for energy production operations. Specifically, they are: (1). Solving engineering problems to scale-up the SPS-HVOF delivery system to a prototype production sub-delivery system; (2). Produce ultrafine/nanocoatings using the scale-up prototype system; (3). Demonstrate the coated components using the scale-up device having superior properties. Proposed Phase II Tasks: In the original Phase II proposal, we have six (6) technical tasks plus one (1) reporting task, as described below: Task 1 Scale-up and optimize the SPS process; Task 2 Coating design and fabrication with desired microstructure; Task 3 Evaluate microstructure and physical properties; Task 4 Test performance of long-term corrosion and erosion; Task 5 Test mechanical property and reliability; Task 6 Coating of a prototype boiler tube for evaluation; Task 7 Reporting task. To date, we have already completed all the technical tasks of 1 through 6. Major Phase II Achievements: In this four (4) year working period, Inframat had spent great effort to complete the proposed tasks. The project had been completed; the goals have been accomplished. Major achievements obtained include: (1). Developed a prototype scale-up slurry feedstock delivery system for thermal spray coatings; (2). Successfully coated high performance coatings using this scale-up slurry delivery system; (3). Commercial applications in energy efficiency and clean energy components have been developed using this newly fabricated slurry feedstock delivery system.« less

  19. Aeroelastic characteristics of a rapid prototype multi-material wind tunnel model of a mechanically deployable aerodynamic decelerator

    NASA Astrophysics Data System (ADS)

    Raskin, Boris

    Scaled wind tunnel models are necessary for the development of aircraft and spacecraft to simulate aerodynamic behavior. This allows for testing multiple iterations of a design before more expensive full-scale aircraft and spacecraft are built. However, the cost of building wind tunnel models can still be high because they normally require costly subtractive manufacturing processes, such as machining, which can be time consuming and laborious due to the complex surfaces of aerodynamic models. Rapid prototyping, commonly known as 3D printing, can be utilized to save on wind tunnel model manufacturing costs. A rapid prototype multi-material wind tunnel model was manufactured for this thesis to investigate the possibility of using PolyJet 3D printing to create a model that exhibits aeroelastic behavior. The model is of NASA's Adaptable Deployable entry and Placement (ADEPT) aerodynamic decelerator, used to decelerate a spacecraft during reentry into a planet's atmosphere. It is a 60° cone with a spherically blunted nose that consists of a 12 flexible panels supported by a rigid structure of nose, ribs, and rim. The novel rapid prototype multi-material model was instrumented and tested in two flow conditions. Quantitative comparisons were made of the average forces and dynamic forces on the model, demonstrating that the model matched expected behavior for average drag, but not Strouhal number, indicating that there was no aeroelastic behavior in this particular case. It was also noted that the dynamic properties (e.g., resonant frequency) associated with the mounting scheme are very important and may dominate the measured dynamic response.

  20. Full-Scale Hollow Fiber Spacesuit Water Membrane Evaporator Prototype Development and Testing for Advanced Spacesuits

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Dillon, Paul; Weaver, Gregg

    2009-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform the thermal control function for advanced spacesuits to take advantage of recent advances in micropore membrane technology in providing a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. Principles of a sheet membrane SWME design were demonstrated using a prototypic test article that was tested in a vacuum chamber at JSC in July 1999. The Membrana Celgard X50-215 microporous hollow fiber (HoFi) membrane was selected after recent contamination tests as the superior candidate among commercial alternatives for HoFi SWME prototype development. Although a number of design variants were considered, one that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was deemed best for further development. An analysis of test data showed that eight layer stacks of the HoFi sheets that had good exposure on each side of the stack would evaporate water with high efficiency. A design that has 15,000 tubes, with 18 cm of exposed tubes between headers has been built and tested that meets the size, weight, and performance requirements of the SWME. This full-scale prototype consists of 30 stacks, each of which are formed into a chevron shape and separated by spacers and organized into three sectors of ten nested stacks. Testing has been performed to show contamination resistance to the constituents expected to be found in potable water produced by the distillation processes. Other tests showed the sensitivity to surfactants.

  1. A bubble column evaporator with basic flat-plate condenser for brackish and seawater desalination.

    PubMed

    Schmack, Mario; Ho, Goen; Anda, Martin

    2016-01-01

    This paper describes the development and experimental evaluation of a novel bubble column-based humidification-dehumidification system, for small-scale desalination of saline groundwater or seawater in remote regions. A bubble evaporator prototype was built and matched with a simple flat-plate type condenser for concept assessment. Consistent bubble evaporation rates of between 80 and 88 ml per hour were demonstrated. Particular focus was on the performance of the simple condenser prototype, manufactured from rectangular polyvinylchlorid plastic pipe and copper sheet, a material with a high thermal conductivity that quickly allows for conduction of the heat energy. Under laboratory conditions, a long narrow condenser model of 1500 mm length and 100 mm width achieved condensate recovery rates of around 73%, without the need for external cooling. The condenser prototype was assessed under a range of different physical conditions, that is, external water cooling, partial insulation and aspects of air circulation, via implementing an internal honeycomb screen structure. Estimated by extrapolation, an up-scaled bubble desalination system with a 1 m2 condenser may produce around 19 l of distilled water per day. Sodium chloride salt removal was found to be highly effective with condensate salt concentrations between 70 and 135 µS. Based on findings and with the intent to reduce material cost of the system, a shorter condenser length of 750 mm for the non-cooled (passive) condenser and of 500 mm for the water-cooled condenser was considered to be equally efficient as the experimentally evaluated prototype of 1500 mm length.

  2. Nitrogen (N) dynamics in the mineral soil of a Central Appalachian hardwood forest during a quarter century of whole-watershed N additions

    Treesearch

    Frank S. ​Gilliam; Christopher A. Walter; Mary Beth Adams; William T. Peterjohn

    2018-01-01

    The structure and function of terrestrial ecosystemsare maintained by processes that vary with temporal and spatial scale. This study examined temporal and spatial patterns of net nitrogen (N) mineralization and nitrification in mineral soil of three watersheds at the Fernow Experimental Forest, WV: 2 untreated watersheds and 1 watershed receiving aerial applications...

  3. Microwave-based navigation of femtosatellites using on-off keying

    NASA Astrophysics Data System (ADS)

    Kamte, Namrata Jagdish

    The objective of this research is to validate that a custom-built microchip-scale satellite transmitting a signal modulated with a Pseudo Random Noise code using On-Off Keying, can be tracked. The weak GPS satellite signal is modulated with a Pseudo Random Noise (PRN) code that provides a mathematical gain. Our signal is modulated with the same PRN code using On-Off Keying (OOK) unlike Phase Shift Keying used in GPS satellites. Our goal is to obtain timing and positioning information from the microchip-scale satellite via a ground station using the concepts of PRN encoding and the OOK modulation technique. Decimeter scale satellites, with a mass of 2--6 kilograms, referred to as picosatellites, have been tracked successfully by ground stations. The microchip-scale satellite, called the femtosatellite is smaller with even less mass, at most 100 grams. At this size the satellite can take advantage of small-scale physics to perform maneuver, such as solar pressure, which only slightly perturb large spacecraft. Additionally, the reduced size decreases the cost of launch as compared to the picosatellites. A swarm of such femtosatellites can serve as environmental probes, interplanetary chemists or in-orbit inspectors of the parent spacecraft. In May 2011, NASA's last space shuttle mission STS-134 carried femtosatellites developed by Cornell researchers called "Sprites". The sprites were deployed from the International Space Station but ground stations on Earth failed to track them. In an effort to develop an alternative femtosatellite design, we have built our own femtosatellite prototype. Our femtosatellite prototype contains the AVR microcontroller on an Arduino board. This assembly is connected to a radio transmitter and a custom antenna transmitting a 433 Mhz radio frequency signal. The prototype transmits a PRN code modulated onto the signal using OOK. Our ground station consists of a Universal Software Radio Peripheral (USRP) with a custom antenna for reception of the 433 MHz signal. The USRP is driven by an open source software-defined radio application called GNU Radio. The required components of the signal are extracted from GNU Radio and processed in order to plot the received data. Benchtop testing of these OOK signals has yielded a reception sensitivity of upto 1 microsecond, which translates into a ranging capability similar to that of GPS satellites. We have correlated the received and replica PRN sequences and demonstrated that they match. The correlation can be used to obtain the identity and position of the femtosatellite prototype. This demonstrates the ability to track a femtosatellite signal that is lower than ambient noise, just like the signals broadcast from GPS satellites. Further, we have performed a system analysis and recognized key system behavioral problems. Thus we have determinately developed an optimum femtosatellite prototype and designed a novel positioning signal, providing a stepping- stone in the journey of successful femtosatellite communication.

  4. Engaging Community Stakeholders to Evaluate the Design, Usability, and Acceptability of a Chronic Obstructive Pulmonary Disease Social Media Resource Center

    PubMed Central

    Chaney, Beth; Chaney, Don; Paige, Samantha; Payne-Purvis, Caroline; Tennant, Bethany; Walsh-Childers, Kim; Sriram, PS; Alber, Julia

    2015-01-01

    Background Patients with chronic obstructive pulmonary disease (COPD) often report inadequate access to comprehensive patient education resources. Objective The purpose of this study was to incorporate community-engagement principles within a mixed-method research design to evaluate the usability and acceptability of a self-tailored social media resource center for medically underserved patients with COPD. Methods A multiphase sequential design (qual → QUANT → quant + QUAL) was incorporated into the current study, whereby a small-scale qualitative (qual) study informed the design of a social media website prototype that was tested with patients during a computer-based usability study (QUANT). To identify usability violations and determine whether or not patients found the website prototype acceptable for use, each patient was asked to complete an 18-item website usability and acceptability questionnaire, as well as a retrospective, in-depth, semistructured interview (quant + QUAL). Results The majority of medically underserved patients with COPD (n=8, mean 56 years, SD 7) found the social media website prototype to be easy to navigate and relevant to their self-management information needs. Mean responses on the 18-item website usability and acceptability questionnaire were very high on a scale of 1 (strongly disagree) to 5 (strongly agree) (mean 4.72, SD 0.33). However, the majority of patients identified several usability violations related to the prototype’s information design, interactive capabilities, and navigational structure. Specifically, 6 out of 8 (75%) patients struggled to create a log-in account to access the prototype, and 7 out of 8 patients (88%) experienced difficulty posting and replying to comments on an interactive discussion forum. Conclusions Patient perceptions of most social media website prototype features (eg, clickable picture-based screenshots of videos, comment tools) were largely positive. Mixed-method stakeholder feedback was used to make design recommendations, categorize usability violations, and prioritize potential solutions for improving the usability of a social media resource center for COPD patient education. PMID:25630449

  5. Geospatial Augmented Reality for the interactive exploitation of large-scale walkable orthoimage maps in museums

    NASA Astrophysics Data System (ADS)

    Wüest, Robert; Nebiker, Stephan

    2018-05-01

    In this paper we present an app framework for augmenting large-scale walkable maps and orthoimages in museums or public spaces using standard smartphones and tablets. We first introduce a novel approach for using huge orthoimage mosaic floor prints covering several hundred square meters as natural Augmented Reality (AR) markers. We then present a new app architecture and subsequent tests in the Swissarena of the Swiss National Transport Museum in Lucerne demonstrating the capabilities of accurately tracking and augmenting different map topics, including dynamic 3d data such as live air traffic. The resulting prototype was tested with everyday visitors of the museum to get feedback on the usability of the AR app and to identify pitfalls when using AR in the context of a potentially crowded museum. The prototype is to be rolled out to the public after successful testing and optimization of the app. We were able to show that AR apps on standard smartphone devices can dramatically enhance the interactive use of large-scale maps for different purposes such as education or serious gaming in a museum context.

  6. Simulation of pump-turbine prototype fast mode transition for grid stability support

    NASA Astrophysics Data System (ADS)

    Nicolet, C.; Braun, O.; Ruchonnet, N.; Hell, J.; Béguin, A.; Avellan, F.

    2017-04-01

    The paper explores the additional services that Full Size Frequency Converter, FSFC, solution can provide for the case of an existing pumped storage power plant of 2x210 MW, for which conversion from fixed speed to variable speed is investigated with a focus on fast mode transition. First, reduced scale model tests experiments of fast transition of Francis pump-turbine which have been performed at the ANDRITZ HYDRO Hydraulic Laboratory in Linz Austria are presented. The tests consist of linear speed transition from pump to turbine and vice versa performed with constant guide vane opening. Then existing pumped storage power plant with pump-turbine quasi homologous to the reduced scale model is modelled using the simulation software SIMSEN considering the reservoirs, penstocks, the two Francis pump-turbines, the two downstream surge tanks, and the tailrace tunnel. For the electrical part, an FSFC configuration is considered with a detailed electrical model. The transitions from turbine to pump and vice versa are simulated, and similarities between prototype simulation results and reduced scale model experiments are highlighted.

  7. Simplified Impact Testing of Traffic Barrier Systems (Phase I)

    DOT National Transportation Integrated Search

    2003-06-01

    A simplified impact test configuration was developed to provide a preliminary, economical means of assessing prototype traffic barriers before proceeding to full-scale federal testing. Specifically, the test was configured to assess the federal crite...

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukhanin, Gennadiy; Biery, Kurt; Foulkes, Stephen

    In the NO A experiment, the Detector Controls System (DCS) provides a method for controlling and monitoring important detector hardware and environmental parameters. It is essential for operating the detector and is required to have access to roughly 370,000 independent programmable channels via more than 11,600 physical devices. In this paper, we demonstrate an application of Control System Studio (CSS), developed by Oak Ridge National Laboratory, for the NO A experiment. The application of CSS for the DCS of the NO A experiment has been divided into three phases: (1) user requirements and concept prototype on a test-stand, (2) smallmore » scale deployment at the prototype Near Detector on the Surface, and (3) a larger scale deployment at the Far Detector. We also give an outline of the CSS integration with the NO A online software and the alarm handling logic for the Front-End electronics.« less

  9. Crystallization in high level waste (HLW) glass melters: Savannah River Site operational experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, Kevin M.; Peeler, David K.; Kruger, Albert A.

    2015-06-12

    This paper provides a review of the scaled melter testing that was completed for design input to the Defense Waste Processing Facility (DWPF) melter. Testing with prototype melters provided the data to define the DWPF operating limits to avoid bulk (volume) crystallization in the un-agitated DWPF melter and provided the data to distinguish between spinels generated by refractory corrosion versus spinels that precipitated from the HLW glass melt pool. A review of the crystallization observed with the prototype melters and the full-scale DWPF melters (DWPF Melter 1 and DWPF Melter 2) is included. Examples of actual DWPF melter attainment withmore » Melter 2 are given. The intent is to provide an overview of lessons learned, including some example data, that can be used to advance the development and implementation of an empirical model and operating limit for crystal accumulation for a waste treatment and immobilization plant.« less

  10. Detection and analysis of part load and full load instabilities in a real Francis turbine prototype

    NASA Astrophysics Data System (ADS)

    Presas, Alexandre; Valentin, David; Egusquiza, Eduard; Valero, Carme

    2017-04-01

    Francis turbines operate in many cases out of its best efficiency point, in order to regulate their output power according to the instantaneous energy demand of the grid. Therefore, it is of paramount importance to analyse and determine the unstable operating points for these kind of units. In the framework of the HYPERBOLE project (FP7-ENERGY-2013-1; Project number 608532) a large Francis unit was investigated numerically, experimentally in a reduced scale model and also experimentally and numerically in the real prototype. This paper shows the unstable operating points identified during the experimental tests on the real Francis unit and the analysis of the main characteristics of these instabilities. Finally, it is shown that similar phenomena have been identified on previous research in the LMH (Laboratory for Hydraulic Machines, Lausanne) with the reduced scale model.

  11. A regional estimate of convective transport of CO from biomass burning

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.; Scala, John R.; Thompson, Anne M.; Tao, Wei-Kuo; Simpson, Joanne

    1992-01-01

    A regional-scale estimate of the fraction of biomass burning emissions that are transported to the free troposphere by deep convection is presented. The focus is on CO and the study region is a part of Brazil that underwent intensive deforestation in the 1980s. The method of calculation is stepwise, scaling up from a prototype convective event, the dynamics of which are well-characterized, to the vertical mass flux of carbon monoxide over the region. Given uncertainties in CO emissions from biomass burning and the representativeness of the prototype event, it is estimated that 10-40 percent of CO emissions from the burning region may be rapidly transported to the free troposphere over the burning region. These relatively fresh emissions will produce O3 efficiently in the free troposphere where O3 has a longer lifetime than in the boundary layer.

  12. Simplified methods of determining treatment retention in Malawi: ART cohort reports vs. pharmacy stock cards.

    PubMed

    Chan, A K; Singogo, E; Changamire, R; Ratsma, Y E C; Tassie, J-M; Harries, A D

    2012-06-21

    Rapid scale-up of antiretroviral therapy (ART) has challenged the health system in Malawi to monitor large numbers of patients effectively. To compare two methods of determining retention on treatment: quarterly ART clinic data aggregation vs. pharmacy stock cards. Between October 2010 and March 2011, data on ART outcomes were extracted from monitoring tools at five facilities. Pharmacy data on ART consumption were extracted. Workload for each method was observed and timed. We used intraclass correlation and Bland-Altman plots to compare the agreeability of both methods to determine treatment retention. There is wide variability between ART clinic cohort data and pharmacy data to determine treatment retention due to divergence in data at sites with large numbers of patients. However, there is a non-significant trend towards agreeability between the two methods (intraclass correlation coefficient > 0.9; P > 0.05). Pharmacy stock card monitoring is more time-efficient than quarterly ART data aggregation (81 min vs. 573 min). In low-resource settings, pharmacy records could be used to improve drug forecasting and estimate ART retention in a more time-efficient manner than quarterly data aggregation; however, a necessary precondition would be capacity building around pharmacy data management, particularly for large-sized cohorts.

  13. Quarterly Research Performance Progress Report (2015 Q3). Ultrasonic Phased Arrays and Interactive Reflectivity Tomography for Nondestructive Inspection of Injection and Production Wells in Geothermal Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos-Villalobos, Hector J; Polsky, Yarom; Kisner, Roger A

    2015-09-01

    For the past quarter, we have placed our effort in implementing the first version of the ModelBased Iterative Reconstruction (MBIR) algorithm, assembling and testing the electronics, designing transducers mounts, and defining our laboratory test samples. We have successfully developed the first implementation of MBIR for ultrasound imaging. The current algorithm was tested with synthetic data and we are currently making new modifications for the reconstruction of real ultrasound data. Beside assembling and testing the electronics, we developed a LabView graphic user interface (GUI) to fully control the ultrasonic phased array, adjust the time-delays of the transducers, and store the measuredmore » reflections. As part of preparing for a laboratory-scale demonstration, the design and fabrication of the laboratory samples has begun. Three cement blocks with embedded objects will be fabricated, characterized, and used to demonstrate the capabilities of the system. During the next quarter, we will continue to improve the current MBIR forward model and integrate the reconstruction code with the LabView GUI. In addition, we will define focal laws for the ultrasonic phased array and perform the laboratory demonstration. We expect to perform laboratory demonstration by the end of October 2015.« less

  14. A Blind Survey for AGN in the Kepler Field through Optical Variability

    NASA Astrophysics Data System (ADS)

    Olling, Robert; Shaya, E. J.; Mushotzky, R.

    2013-01-01

    We present an initial analysis of three quarters of Kepler LLC time series of 400 small galaxies. The Kepler LLC data is sampled about twice per hour, and allows us to investigate variability on time scales between about one day and one month. The calibrated Kepler LLC light curves still contain many instrumental effects that can not be taken out in a robust manner. Instead, our analysis relies on the similarity of variability measures in the three independent quarters to decide if an galaxy shows variability, or not. We estimate that roughly 15% of our small galaxies shows variability at levels exceeding several parts per thousand (mmag) on timescales of days to weeks. However, this estimate is probably uncertain by a factor of two. Our data is more sensitive by several factors of ten as compared to extant data sets.

  15. LLE Review, Volume 57. Quarterly report, October--December 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, A.

    During this quarter, the visible fruits of long design labors on the OMEGA Upgrade began to appear. The target mirror structure was put in place, along with the target chamber itself. The laser bay structures were also installed, and the bay is now being prepared to receive optomechanical, control, and laser assemblies. Further details are in the OMEGA Upgrade Status Report in this issue. Theory and analysis of previous experiments continued during this reporting period. Articles contained herein describe an improved theory of the ablative Rayleigh-Taylor instability; a novel proposal for characterizing plasma-density profiles by using grid image refractometry; amore » much-improved treatment of the damping of ion sound waves in a mixture of light and heavy ions; and, finally, a new interpretation of measurements of 3/2-harmonic radiation emitted from the long-scale-length plasmas created in earlier OMEGA experiments.« less

  16. Multiple dimensions of attitudes about homosexuality: development of a multifaceted scale measuring attitudes toward homosexuality.

    PubMed

    Adolfsen, Anna; Iedema, Jurjen; Keuzenkamp, Saskia

    2010-01-01

    Attitudes toward homosexuality are complex. To get a comprehensive view on the attitudes of people, different dimensions need to be included in research. Based on a review of the literature, we distinguish five dimensions: acceptance of homosexuality in a general sense; attitude toward equal rights; reactions to homosexuality "at close quarters"; reactions to homosexuality in public; and so-called modern homonegativity. In a study on a representative sample of Dutch Defence personnel (N = 1,607) we tested this model. Structural equation modeling of several items measuring the attitude toward homosexuality offers a six factor solution. These six factors are more or less comparable to the five dimensions we distinguished. The dimension "reactions to homosexuality at close quarters" is, however, empirically split in a dimension on affective reactions to homosexuality and homosexual persons in general and a dimension on affective reaction to homosexual friends or acquaintances.

  17. Quarterly Report: Microchannel-Assisted Nanomaterial Deposition Technology for Photovoltaic Material Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palo, Daniel R.

    2011-04-26

    Quarterly report to ITP for Nanomanufacturing program. Report covers FY11 Q2. The primary objective of this project is to develop a nanomanufacturing process which will reduce the manufacturing energy, environmental discharge, and production cost associated with current nano-scale thin-film photovoltaic (PV) manufacturing approaches. The secondary objective is to use a derivative of this nanomanufacturing process to enable greener, more efficient manufacturing of higher efficiency quantum dot-based photovoltaic cells now under development. The work is to develop and demonstrate a scalable (pilot) microreactor-assisted nanomaterial processing platform for the production, purification, functionalization, and solution deposition of nanomaterials for photovoltaic applications. The highmore » level task duration is shown. Phase I consists of a pilot platform for Gen II PV films along with parallel efforts aimed at Gen III PV quantum dot materials. Status of each task is described.« less

  18. Influence of substrate temperatures on the properties of GdF(3) thin films with quarter-wave thickness in the ultraviolet region.

    PubMed

    Jin, Jingcheng; Jin, Chunshui; Li, Chun; Deng, Wenyuan; Yao, Shun

    2015-06-01

    High-quality coatings of fluoride materials are in extraordinary demand for use in deep ultraviolet (DUV) lithography. Gadolinium fluoride (GdF3) thin films were prepared by a thermal boat evaporation process at different substrate temperatures. GdF3 thin film was set at quarter-wave thickness (∼27  nm) with regard to their common use in DUV/vacuum ultraviolet optical stacks; these thin films may significantly differ in nanostructural properties at corresponding depositing temperatures, which would crucially influence the performance of the multilayers. The measurement and analysis of optical, structural, and mechanical properties of GdF3 thin films have been performed in a comprehensive characterization cycle. It was found that depositing GdF3 thin films at relative higher temperature would form a rather dense, smooth, homogeneous structure within this film thickness scale.

  19. A New Multibeam Sonar Technique for Evaluating Fine-Scale Fish Behavior Near Hydroelectric Dam Guidance Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Robert L.; Simmons, Mary Ann; Simmons, Carver S.

    2002-03-07

    This book chapter describes a Dual-Head Multibeam Sonar (DHMS) system developed by Battelle and deployed at two dam sites on the Snake and Columbia rivers in Washington State to evaluate the fine-scale (

  20. 3. Southwest side of quarters R (commanding officer's quarters), looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Southwest side of quarters R (commanding officer's quarters), looking east - Naval Air Station Chase Field, Quarters R, Essex Street, .43 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  1. 6. Interior of quarters (executive officer's quarters), living room, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Interior of quarters (executive officer's quarters), living room, looking west - Naval Air Station Chase Field, Quarters S, Essex Street, .45 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  2. 1. North side of quarters (executive officer's quarters), looking southeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. North side of quarters (executive officer's quarters), looking southeast - Naval Air Station Chase Field, Quarters S, Essex Street, .45 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  3. 5. East side of quarters (executive officer's quarters), looking west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. East side of quarters (executive officer's quarters), looking west - Naval Air Station Chase Field, Quarters S, Essex Street, .45 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  4. 1. Northeast side of Quarters R (commanding officer's quarters), looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Northeast side of Quarters R (commanding officer's quarters), looking west - Naval Air Station Chase Field, Quarters R, Essex Street, .43 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  5. 2. West side of quarters (executive officer's quarters), looking east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. West side of quarters (executive officer's quarters), looking east - Naval Air Station Chase Field, Quarters S, Essex Street, .45 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  6. 2. Southeast side of Quarters R (commanding officer's quarters), looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Southeast side of Quarters R (commanding officer's quarters), looking northwest - Naval Air Station Chase Field, Quarters R, Essex Street, .43 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  7. 4. Northwest side of Quarters R (commanding officer's quarters), looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Northwest side of Quarters R (commanding officer's quarters), looking southeast - Naval Air Station Chase Field, Quarters R, Essex Street, .43 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  8. 4. South side of quarters (executive officer's quarters), looking north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. South side of quarters (executive officer's quarters), looking north - Naval Air Station Chase Field, Quarters S, Essex Street, .45 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  9. 3. Southwest side of quarters (executive officer's quarters), looking northeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Southwest side of quarters (executive officer's quarters), looking northeast - Naval Air Station Chase Field, Quarters S, Essex Street, .45 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  10. A process for prototyping onboard payload displays for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.

    1992-01-01

    Significant advances have been made in the area of Human-Computer Interface design. However, there is no well-defined process for going from user interface requirements to user interface design. Developing and designing a clear and consistent user interface for medium to large scale systems is a very challenging and complex task. The task becomes increasingly difficult when there is very little guidance and procedures on how the development process should flow from one stage to the next. Without a specific sequence of development steps each design becomes difficult to repeat, to evaluate, to improve, and to articulate to others. This research contributes a process which identifies the phases of development and products produced as a result of each phase for a rapid prototyping process to be used to develop requirements for the onboard payload displays for Space Station Freedom. The functional components of a dynamic prototyping environment in which this process can be carried out is also discussed. Some of the central questions which are answered here include: How does one go from specifications to an actual prototype? How is a prototype evaluated? How is usability defined and thus measured? How do we use the information from evaluation in redesign of an interface? and Are there techniques which allow for convergence on a design?

  11. Additive Manufacturing for Cost Efficient Production of Compact Ceramic Heat Exchangers and Recuperators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shulman, Holly; Ross, Nicole

    2015-10-30

    An additive manufacture technique known as laminated object manufacturing (LOM) was used to fabricate compact ceramic heat exchanger prototypes. LOM uses precision CO2 laser cutting of ceramic green tapes, which are then precision stacked to build a 3D object with fine internal features. Modeling was used to develop prototype designs and predict the thermal response, stress, and efficiency in the ceramic heat exchangers. Build testing and materials analyses were used to provide feedback for the design selection. During this development process, laminated object manufacturing protocols were established. This included laser optimization, strategies for fine feature integrity, lamination fluid control, greenmore » handling, and firing profile. Three full size prototypes were fabricated using two different designs. One prototype was selected for performance testing. During testing, cross talk leakage prevented the application of a high pressure differential, however, the prototype was successful at withstanding the high temperature operating conditions (1300 °F). In addition, analysis showed that the bulk of the part did not have cracks or leakage issues. This led to the development of a module method for next generation LOM heat exchangers. A scale-up cost analysis showed that given a purpose built LOM system, these ceramic heat exchangers would be affordable for the applications.« less

  12. Towards 10 meV resolution: The design of an ultrahigh resolution soft X-ray RIXS spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dvorak, Joseph; Jarrige, Ignace; Bisogni, Valentina

    Here we present the optical design of the Centurion soft X-ray resonant inelastic X-ray scattering (RIXS) spectrometer to be located on the SIX beamline at NSLS-II. The spectrometer is designed to reach a resolving power of 100 000 at 1000 eV at its best resolution. It is also designed to have continuously variable 2θ motion over a range of 112° using a custom triple rotating flange. We have analyzed several possible spectrometer designs capable of reaching the target resolution. After careful analysis, we have adopted a Hettrick-Underwood spectrometer design, with an additional plane mirror to maintain a fixed direction formore » the outgoing beam. The spectrometer can cancel defocus and coma aberrations at all energies, has an erect focal plane, and minimizes mechanical motions of the detector. When the beamline resolution is accounted for, the net spectral resolution will be 14 meV at 1000 eV. Lastly, this will open up many low energy excitations to study and will expand greatly the power of soft X-ray RIXS.« less

  13. Towards 10 meV resolution: The design of an ultrahigh resolution soft X-ray RIXS spectrometer

    DOE PAGES

    Dvorak, Joseph; Jarrige, Ignace; Bisogni, Valentina; ...

    2016-11-10

    Here we present the optical design of the Centurion soft X-ray resonant inelastic X-ray scattering (RIXS) spectrometer to be located on the SIX beamline at NSLS-II. The spectrometer is designed to reach a resolving power of 100 000 at 1000 eV at its best resolution. It is also designed to have continuously variable 2θ motion over a range of 112° using a custom triple rotating flange. We have analyzed several possible spectrometer designs capable of reaching the target resolution. After careful analysis, we have adopted a Hettrick-Underwood spectrometer design, with an additional plane mirror to maintain a fixed direction formore » the outgoing beam. The spectrometer can cancel defocus and coma aberrations at all energies, has an erect focal plane, and minimizes mechanical motions of the detector. When the beamline resolution is accounted for, the net spectral resolution will be 14 meV at 1000 eV. Lastly, this will open up many low energy excitations to study and will expand greatly the power of soft X-ray RIXS.« less

  14. Characterization of thermal-hydraulic and ignition phenomena in prototypic, full-length boiling water reactor spent fuel pool assemblies after a complete loss-of-coolant accident.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindgren, Eric Richard; Durbin, Samuel G

    2007-04-01

    The objective of this project was to provide basic thermal-hydraulic data associated with a SFP complete loss-of-coolant accident. The accident conditions of interest for the SFP were simulated in a full-scale prototypic fashion (electrically-heated, prototypic assemblies in a prototypic SFP rack) so that the experimental results closely represent actual fuel assembly responses. A major impetus for this work was to facilitate code validation (primarily MELCOR) and reduce questions associated with interpretation of the experimental results. It was necessary to simulate a cluster of assemblies to represent a higher decay (younger) assembly surrounded by older, lower-power assemblies. Specifically, this program providedmore » data and analysis confirming: (1) MELCOR modeling of inter-assembly radiant heat transfer, (2) flow resistance modeling and the natural convective flow induced in a fuel assembly as it heats up in air, (3) the potential for and nature of thermal transient (i.e., Zircaloy fire) propagation, and (4) mitigation strategies concerning fuel assembly management.« less

  15. Integrating multisource land use and land cover data

    USGS Publications Warehouse

    Wright, Bruce E.; Tait, Mike; Lins, K.F.; Crawford, J.S.; Benjamin, S.P.; Brown, Jesslyn F.

    1995-01-01

    As part of the U.S. Geological Survey's (USGS) land use and land cover (LULC) program, the USGS in cooperation with the Environmental Systems Research Institute (ESRI) is collecting and integrating LULC data for a standard USGS 1:100,000-scale product. The LULC data collection techniques include interpreting spectrally clustered Landsat Thematic Mapper (TM) images; interpreting 1-meter resolution digital panchromatic orthophoto images; and, for comparison, aggregating locally available large-scale digital data of urban areas. The area selected is the Vancouver, WA-OR quadrangle, which has a mix of urban, rural agriculture, and forest land. Anticipated products include an integrated LULC prototype data set in a standard classification scheme referenced to the USGS digital line graph (DLG) data of the area and prototype software to develop digital LULC data sets.This project will evaluate a draft standard LULC classification system developed by the USGS for use with various source material and collection techniques. Federal, State, and local governments, and private sector groups will have an opportunity to evaluate the resulting prototype software and data sets and to provide recommendations. It is anticipated that this joint research endeavor will increase future collaboration among interested organizations, public and private, for LULC data collection using common standards and tools.

  16. 5. Interior of Quarters R (commanding officer's quarters), living room, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Interior of Quarters R (commanding officer's quarters), living room, looking northwest - Naval Air Station Chase Field, Quarters R, Essex Street, .43 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  17. 33 CFR 117.261 - Atlantic Intracoastal Waterway from St. Marys River to Key Largo.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... draw shall open on the quarter and three-quarter hour. (u) Flagler Memorial (SR A1A) bridge, mile 1020... (SR 700/80) bridge, mile 1024.7 at Palm Beach. The draw shall open on the quarter and three-quarter... open on the quarter and three-quarter-hour. (z-2) Linton Boulevard bridge, mile 1041.1, at Delray Beach...

  18. 33 CFR 117.261 - Atlantic Intracoastal Waterway from St. Marys River to Key Largo.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... draw shall open on the quarter and three-quarter hour. (u) Flagler Memorial (SR A1A) bridge, mile 1020... (SR 700/80) bridge, mile 1024.7 at Palm Beach. The draw shall open on the quarter and three-quarter... open on the quarter and three-quarter-hour. (z-2) Linton Boulevard bridge, mile 1041.1, at Delray Beach...

  19. 33 CFR 117.261 - Atlantic Intracoastal Waterway from St. Marys River to Key Largo.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... draw shall open on the quarter and three-quarter hour. (u) Flagler Memorial (SR A1A) bridge, mile 1020... (SR 700/80) bridge, mile 1024.7 at Palm Beach. The draw shall open on the quarter and three-quarter... open on the quarter and three-quarter-hour. (z-2) Linton Boulevard bridge, mile 1041.1, at Delray Beach...

  20. [Development of cell content and shedding of Prototheca spp. in milk from infected udder quarters of cows].

    PubMed

    Tenhagen, B A; Hille, A; Schmidt, A; Heuwieser, W

    2005-02-01

    It was the objective of this study to analyse shedding patterns and somatic cell counts in cows and quarters infected with Prototheca spp. and to evaluate two approaches to identify infected animals by somatic cell count (SCC) or by bacteriological analysis of pooled milk samples. Five lactating dairy cows, chronically infected with Prototheca spp. in at least one quarter were studied over 11 weeks to 13 months. Quarter milk samples and a pooled milk sample from 4 quarters were collected aseptically from all quarters of the cows on a weekly basis. Culture results of quarter milk and pooled samples were compared using cross tabulation. SCC of quarter milk samples and of pooled samples were related to the probability of detection in the infected quarters and cows, respectively. Shedding of Prototheca spp. was continuous in 2 of 8 quarters. In the other quarters negative samples were obtained sporadically or over a longer period (1 quarter). Overall, Prototheca spp. were isolated from 83.6% of quarter milk samples and 77.0% of pooled milk samples of infected quarters and cows. Somatic cell counts were higher in those samples from infected quarters that contained the algae than in negative samples (p < 0.0001). The same applied for composite samples from infected cows. Positive samples had higher SCC than negative samples. However, Prototheca spp. were also isolated from quarter milk and pooled samples with physiological SCC (i.e. < 10(5)/ml). Infected quarters that were dried off did not develop acute mastitis. However, drying off had no effect on the infection, i.e. samples collected at calving or 8 weeks after dry off still contained Prototheca spp. Results indicate that pre-selection of cows to be sampled for Prototheca spp. by SCC and the use of composite samples are probably inadequate in attempts to eradicate the disease. However, due to intermittent shedding of the algae in some cows, single herd sampling using quarter milk samples probably also fails to detect all infected cases. Therefore, continuous monitoring of problem cows with clinical mastitis or increased SCC in herds during eradication programs is recommended.

  1. The ASTRI SST-2M prototype for the Cherenkov Telescope Array: prototype technologies goals and strategies for the future SST

    NASA Astrophysics Data System (ADS)

    Marchiori, Gianpietro; Busatta, Andrea; Giacomel, Stefano; Folla, Ivan; Valsecchi, Marco; Canestrari, Rodolfo; Bonnoli, Giacomo; Cascone, Enrico; Conconi, Paolo; Fiorini, Mauro; Giro, Enrico; La Palombara, Nicola; Pareschi, Giovanni; Perri, Luca; Rodeghiero, Gabriele; Sironi, Giorgia; Stringhetti, Luca; Toso, Giorgio; Tosti, Gino; Pellicciari, Carlo

    2014-07-01

    The Cherenkov Telescope Array (CTA) observatory will represent the next generation of Imaging Atmospheric Cherenkov Telescope. Using a combination of large-, medium-, and small-scale telescopes (LST, MST, SST, respectively), it will explore the Very High Energy domain from a few tens of GeVup to about few hundreds of TeV with unprecedented sensitivity, angular resolution and imaging quality. In this framework, the Italian ASTRI program, led by the Italian National Institute of Astrophysics (INAF) developed a 4-meter class telescope, which will adopt an aplanatic, wide-field, double-reflection optical layout in a Schwarzschild- Couder configuration. Within this program INAF assigned to the consortium between Galbiati Group and EIE Group the construction, assembly and tests activities of the prototype named ASTRI SST-2M. On the basis of the lesson learnt from the prototype, other telescopes will be produced, starting from a re-design phase, in order to optimize performances and the overall costs and production schedule for the CTA-SST telescope. This paper will firstly give an overview of the concept for the SST prototype mount structure. In this contest, the technologies adopted for the design, manufacturing and tests of the entire system will be presented. Moreover, a specific focus on the challenges of the prototype and the strategies associated with it will be provided, in order to outline the near future performance goals for this type of Cherenkov telescopes employed for Gamma ray science.

  2. DEVELOPMENT OF SUPERCONDUCTING COMBINED FUNCTION MAGNETS FOR THE PROTON TRANSPORT LINE FOR THE J-PARC NEUTRINO EXPERIMENT.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NAKAMOTO, T.; AJIMA, Y.; FUJII, Y.

    2005-05-16

    Superconducting combined function magnets will be utilized for the 50 GeV, 750 kW proton beam line for the J-PARC neutrino experiment. The magnet is designed to provide a dipole field of 2.6 T combined with a quadrupole field of 19 T/m in a coil aperture of 173.4 mm at a nominal current of 7345 A. Two full-scale prototype magnets to verify the magnet performance were successfully developed. The first prototype experienced no training quench during the excitation test and good field quality was confirmed.

  3. Prototype design for a predictive model to improve evacuation operations : technical report.

    DOT National Transportation Integrated Search

    2011-08-01

    Mass evacuations of the Texas Gulf Coast remain a difficult challenge. These events are massive in scale, : highly complex, and entail an intricate, ever-changing conglomeration of technical and jurisdictional issues. : This project focused primarily...

  4. EXTRACTION OF SUGARS FROM ALGAE FOR DIRECT CONVERSION TO BUTANOL

    EPA Science Inventory

    We will have a complete full scale design at the end of this project including algae growth and butanol production. Further, the group will have a working prototype for display at the National Mall.

  5. An experimental method to verify soil conservation by check dams on the Loess Plateau, China.

    PubMed

    Xu, X Z; Zhang, H W; Wang, G Q; Chen, S C; Dang, W Q

    2009-12-01

    A successful experiment with a physical model requires necessary conditions of similarity. This study presents an experimental method with a semi-scale physical model. The model is used to monitor and verify soil conservation by check dams in a small watershed on the Loess Plateau of China. During experiments, the model-prototype ratio of geomorphic variables was kept constant under each rainfall event. Consequently, experimental data are available for verification of soil erosion processes in the field and for predicting soil loss in a model watershed with check dams. Thus, it can predict the amount of soil loss in a catchment. This study also mentions four criteria: similarities of watershed geometry, grain size and bare land, Froude number (Fr) for rainfall event, and soil erosion in downscaled models. The efficacy of the proposed method was confirmed using these criteria in two different downscaled model experiments. The B-Model, a large scale model, simulates watershed prototype. The two small scale models, D(a) and D(b), have different erosion rates, but are the same size. These two models simulate hydraulic processes in the B-Model. Experiment results show that while soil loss in the small scale models was converted by multiplying the soil loss scale number, it was very close to that of the B-Model. Obviously, with a semi-scale physical model, experiments are available to verify and predict soil loss in a small watershed area with check dam system on the Loess Plateau, China.

  6. Rapid Prototyping Integrated With Nondestructive Evaluation and Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George Y.

    2001-01-01

    Most reverse engineering approaches involve imaging or digitizing an object then creating a computerized reconstruction that can be integrated, in three dimensions, into a particular design environment. Rapid prototyping (RP) refers to the practical ability to build high-quality physical prototypes directly from computer aided design (CAD) files. Using rapid prototyping, full-scale models or patterns can be built using a variety of materials in a fraction of the time required by more traditional prototyping techniques (refs. 1 and 2). Many software packages have been developed and are being designed to tackle the reverse engineering and rapid prototyping issues just mentioned. For example, image processing and three-dimensional reconstruction visualization software such as Velocity2 (ref. 3) are being used to carry out the construction process of three-dimensional volume models and the subsequent generation of a stereolithography file that is suitable for CAD applications. Producing three-dimensional models of objects from computed tomography (CT) scans is becoming a valuable nondestructive evaluation methodology (ref. 4). Real components can be rendered and subjected to temperature and stress tests using structural engineering software codes. For this to be achieved, accurate high-resolution images have to be obtained via CT scans and then processed, converted into a traditional file format, and translated into finite element models. Prototyping a three-dimensional volume of a composite structure by reading in a series of two-dimensional images generated via CT and by using and integrating commercial software (e.g. Velocity2, MSC/PATRAN (ref. 5), and Hypermesh (ref. 6)) is being applied successfully at the NASA Glenn Research Center. The building process from structural modeling to the analysis level is outlined in reference 7. Subsequently, a stress analysis of a composite cooling panel under combined thermomechanical loading conditions was performed to validate this process.

  7. Development of a Prototype Continuity of Care Record with Context-Specific Links to Meet the Information Needs of Case Managers for Persons Living with HIV

    PubMed Central

    Cimino, James J.; Bakken, Suzanne

    2012-01-01

    Objectives (1) To develop a prototype Continuity of Care Record (CCR) with context-specific links to electronic HIV information resources; and (2) to assess case managers’ perceptions regarding the usability of the prototype. Methods We integrated context-specific links to HIV case management information resources into a prototype CCR using the Infobutton Manager and Librarian Infobutton Tailoring Environment (LITE). Case managers (N=9) completed a think-aloud protocol and the Computer System Usability Questionnaire (CSUQ) to evaluate the usability of the prototype. Verbalizations from the think-aloud protocol were summarized using thematic analysis. CSUQ data were analyzed with descriptive statistics. Results Although participants expressed positive comments regarding the usability of the prototype, the think-aloud protocol also identified the need for improvement in resource labels and for additional resources. On a scale ranging from 1 (strongly agree) to 7 (strongly disagree), the average CSUQ overall satisfaction was 2.25 indicating that users (n=9) were generally satisfied with the system. Mean CSUQ factor scores were: System Usefulness (M=2.13), Information Quality (M=2.46), and Interface Quality (M=2.26). Conclusion Our novel application of the Infobutton Manager and LITE in the context of case management for persons living with HIV in community-based settings resulted in a prototype CCR with infobuttons that met the majority of case managers’ information needs and received relatively positive usability ratings. Findings from this study inform future integration of context-specific links into CCRs and electronic health records and support their use for meeting end-users information needs. PMID:22632821

  8. Straight scaling FFAG beam line

    NASA Astrophysics Data System (ADS)

    Lagrange, J.-B.; Planche, T.; Yamakawa, E.; Uesugi, T.; Ishi, Y.; Kuriyama, Y.; Qin, B.; Okabe, K.; Mori, Y.

    2012-11-01

    Fixed field alternating gradient (FFAG) accelerators are recently subject to a strong revival. They are usually designed in a circular shape; however, it would be an asset to guide particles with no overall bend in this type of accelerator. An analytical development of a straight FFAG cell which keeps zero-chromaticity is presented here. A magnetic field law is thus obtained, called "straight scaling law", and an experiment has been conducted to confirm this zero-chromatic law. A straight scaling FFAG prototype has been designed and manufactured, and horizontal phase advances of two different energies are measured. Results are analyzed to clarify the straight scaling law.

  9. A Large-Scale Internet/Computer-Based, Training Module: Dissemination of Evidence-Based Management of Postpartum Hemorrhage to Front-Line Health Care Workers

    ERIC Educational Resources Information Center

    Abawi, Karim; Gertiser, Lynn; Idris, Raqibat; Villar, José; Langer, Ana; Chatfield, Alison; Campana, Aldo

    2017-01-01

    Postpartum hemorrhage (PPH) is the leading cause of maternal mortality in most developing and low-income countries and the cause of one-quarter of maternal deaths worldwide. With appropriate and prompt care, these deaths can be prevented. With the current and rapidly developing research and worldwide access to information, a lack of knowledge of…

  10. Report for Full-Scale Mulch Wall Treatment of Chlorinated Hydrocarbon-Impacted Groundwater

    DTIC Science & Technology

    2004-04-13

    7.1 Direction of Groundwater Flow Through the Test Area Static water level measurements were taken every quarter after the installation of the...volatile organic compounds, alternate electron acceptors/byproducts and water quality parameters. Potentiometric surface maps showed the groundwater ... groundwater and surface water restrictions 10 Established clear zone (3000 ft by 3000 ft) Building 301 CEA Previously installed soil boring MW-19I 19

  11. Joint Force Quarterly. Number 4, Spring 1994

    DTIC Science & Technology

    1994-05-01

    arbitrary cultural difference; the most distinct factor in the tradi- tional Chinese way of thinking about war was the sheer scale of the battlefield...operations instinctively considered them within a complex cultural , po- litical, and moral context. Therefore ancient Chinese mili- tary works might appear...using the expanse of the Atlantic moat as a barrier to involvement. Conduct- ing business with those states in need of loans and goods to field armies

  12. Airborne cow allergen, ammonia and particulate matter at homes vary with distance to industrial scale dairy operations: an exposure assessment

    PubMed Central

    2011-01-01

    Background Community exposures to environmental contaminants from industrial scale dairy operations are poorly understood. The purpose of this study was to evaluate the impact of dairy operations on nearby communities by assessing airborne contaminants (particulate matter, ammonia, and cow allergen, Bos d 2) associated with dairy operations inside and outside homes. Methods The study was conducted in 40 homes in the Yakima Valley, Washington State where over 61 dairies operate. Results A concentration gradient was observed showing that airborne contaminants are significantly greater at homes within one-quarter mile (0.4 km) of dairy facilities, outdoor Bos d 2, ammonia, and TD were 60, eight, and two times higher as compared to homes greater than three miles (4.8 km) away. In addition median indoor airborne Bos d 2 and ammonia concentrations were approximately 10 and two times higher in homes within one-quarter mile (0.4 km) compared to homes greater than three miles (4.8 km) away. Conclusions These findings demonstrate that dairy operations increase community exposures to agents with known human health effects. This study also provides evidence that airborne biological contaminants (i.e. cow allergen) associated with airborne particulate matter are statistically elevated at distances up to three miles (4.8 km) from dairy operations. PMID:21838896

  13. Ultra-dense magnetoresistive mass memory

    NASA Technical Reports Server (NTRS)

    Daughton, J. M.; Sinclair, R.; Dupuis, T.; Brown, J.

    1992-01-01

    This report details the progress and accomplishments of Nonvolatile Electronics (NVE), Inc., on the design of the wafer scale MRAM mass memory system during the fifth quarter of the project. NVE has made significant progress this quarter on the one megabit design in several different areas. A test chip, which will verify a working GMR bit with the dimensions required by the 1 Meg chip, has been designed, laid out, and is currently being processed in the NVE labs. This test chip will allow electrical specifications, tolerances, and processing issues to be finalized before construction of the actual chip, thus providing a greater assurance of success of the final 1 Meg design. A model has been developed to accurately simulate the parasitic effects of unselected sense lines. This model gives NVE the ability to perform accurate simulations of the array electronic and test different design concepts. Much of the circuit design for the 1 Meg chip has been completed and simulated and these designs are included. Progress has been made in the wafer scale design area to verify the reliable operation of the 16 K macrocell. This is currently being accomplished with the design and construction of two stand alone test systems which will perform life tests and gather data on reliabiliy and wearout mechanisms for analysis.

  14. ECCE Toolkit: Prototyping Sensor-Based Interaction.

    PubMed

    Bellucci, Andrea; Aedo, Ignacio; Díaz, Paloma

    2017-02-23

    Building and exploring physical user interfaces requires high technical skills and hours of specialized work. The behavior of multiple devices with heterogeneous input/output channels and connectivity has to be programmed in a context where not only the software interface matters, but also the hardware components are critical (e.g., sensors and actuators). Prototyping physical interaction is hindered by the challenges of: (1) programming interactions among physical sensors/actuators and digital interfaces; (2) implementing functionality for different platforms in different programming languages; and (3) building custom electronic-incorporated objects. We present ECCE (Entities, Components, Couplings and Ecosystems), a toolkit for non-programmers that copes with these issues by abstracting from low-level implementations, thus lowering the complexity of prototyping small-scale, sensor-based physical interfaces to support the design process. A user evaluation provides insights and use cases of the kind of applications that can be developed with the toolkit.

  15. Development of superconductor magnetic suspension and balance prototype facility for studying the feasibility of applying this technique to large scale aerodynamic testing

    NASA Technical Reports Server (NTRS)

    Zapata, R. N.; Humphris, R. R.; Henderson, K. C.

    1975-01-01

    The unique design and operational characteristics of a prototype magnetic suspension and balance facility which utilizes superconductor technology are described and discussed from the point of view of scalability to large sizes. The successful experimental demonstration of the feasibility of this new magnetic suspension concept of the University of Virginia, together with the success of the cryogenic wind-tunnel concept developed at Langley Research Center, appear to have finally opened the way to clean-tunnel, high-Re aerodynamic testing. Results of calculations corresponding to a two-step design extrapolation from the observed performance of the prototype magnetic suspension system to a system compatible with the projected cryogenic transonic research tunnel are presented to give an order-of-magnitude estimate of expected performance characteristics. Research areas where progress should lead to improved design and performance of large facilities are discussed.

  16. GEM System: automatic prototyping of cell-wide metabolic pathway models from genomes.

    PubMed

    Arakawa, Kazuharu; Yamada, Yohei; Shinoda, Kosaku; Nakayama, Yoichi; Tomita, Masaru

    2006-03-23

    Successful realization of a "systems biology" approach to analyzing cells is a grand challenge for our understanding of life. However, current modeling approaches to cell simulation are labor-intensive, manual affairs, and therefore constitute a major bottleneck in the evolution of computational cell biology. We developed the Genome-based Modeling (GEM) System for the purpose of automatically prototyping simulation models of cell-wide metabolic pathways from genome sequences and other public biological information. Models generated by the GEM System include an entire Escherichia coli metabolism model comprising 968 reactions of 1195 metabolites, achieving 100% coverage when compared with the KEGG database, 92.38% with the EcoCyc database, and 95.06% with iJR904 genome-scale model. The GEM System prototypes qualitative models to reduce the labor-intensive tasks required for systems biology research. Models of over 90 bacterial genomes are available at our web site.

  17. Enabling Cross-Platform Clinical Decision Support through Web-Based Decision Support in Commercial Electronic Health Record Systems: Proposal and Evaluation of Initial Prototype Implementations

    PubMed Central

    Zhang, Mingyuan; Velasco, Ferdinand T.; Musser, R. Clayton; Kawamoto, Kensaku

    2013-01-01

    Enabling clinical decision support (CDS) across multiple electronic health record (EHR) systems has been a desired but largely unattained aim of clinical informatics, especially in commercial EHR systems. A potential opportunity for enabling such scalable CDS is to leverage vendor-supported, Web-based CDS development platforms along with vendor-supported application programming interfaces (APIs). Here, we propose a potential staged approach for enabling such scalable CDS, starting with the use of custom EHR APIs and moving towards standardized EHR APIs to facilitate interoperability. We analyzed three commercial EHR systems for their capabilities to support the proposed approach, and we implemented prototypes in all three systems. Based on these analyses and prototype implementations, we conclude that the approach proposed is feasible, already supported by several major commercial EHR vendors, and potentially capable of enabling cross-platform CDS at scale. PMID:24551426

  18. ECCE Toolkit: Prototyping Sensor-Based Interaction

    PubMed Central

    Bellucci, Andrea; Aedo, Ignacio; Díaz, Paloma

    2017-01-01

    Building and exploring physical user interfaces requires high technical skills and hours of specialized work. The behavior of multiple devices with heterogeneous input/output channels and connectivity has to be programmed in a context where not only the software interface matters, but also the hardware components are critical (e.g., sensors and actuators). Prototyping physical interaction is hindered by the challenges of: (1) programming interactions among physical sensors/actuators and digital interfaces; (2) implementing functionality for different platforms in different programming languages; and (3) building custom electronic-incorporated objects. We present ECCE (Entities, Components, Couplings and Ecosystems), a toolkit for non-programmers that copes with these issues by abstracting from low-level implementations, thus lowering the complexity of prototyping small-scale, sensor-based physical interfaces to support the design process. A user evaluation provides insights and use cases of the kind of applications that can be developed with the toolkit. PMID:28241502

  19. 12 CFR 1777.10 - Developments prompting supervisory response.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... less than the national HPI four quarters previously, or for any Census Division or Divisions in which... more than five percent less than the HPI for that Division or Divisions four quarters previously; (b...-half of its average quarterly net income for any four-quarter period during the prior eight quarters...

  20. 18 CFR 35.10b - Electric Quarterly Reports.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Electric Quarterly... Application § 35.10b Electric Quarterly Reports. Each public utility shall file an updated Electric Quarterly..., file by January 31. Electric Quarterly Reports must be prepared in conformance with the Commission's...

  1. 18 CFR 35.10b - Electric Quarterly Reports.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Electric Quarterly... Application § 35.10b Electric Quarterly Reports. Each public utility shall file an updated Electric Quarterly..., file by January 31. Electric Quarterly Reports must be prepared in conformance with the Commission's...

  2. 18 CFR 35.10b - Electric Quarterly Reports.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Electric Quarterly... Application § 35.10b Electric Quarterly Reports. Each public utility shall file an updated Electric Quarterly..., file by January 31. Electric Quarterly Reports must be prepared in conformance with the Commission's...

  3. Radio-frequency plasma transducer for use in harsh environments.

    PubMed

    May, Andrew; Andarawis, Emad

    2007-10-01

    We describe a compact transducer used to generate and modulate low-intensity radio-frequency atmospheric pressure plasma (RF-APP) for high temperature gap measurement and generation of air-coupled ultrasound. The new transducer consists of a quarter-wave transmission line where the ground return path is a coaxial solenoid winding. The RF-APP is initiated at the open end of the transmission line and stabilized by passive negative feedback between the electrical impedance of the plasma and the energy stored in the solenoid. The electrical impedance of the plasma was measured at the lower-voltage source end of the transducer, eliminating the need to measure kilovolt-level voltages near the discharge. We describe the use of a 7 MHz RF-APP prototype as a harsh-environment clearance sensor to demonstrate the suitability of plasma discharges for a common nondestructive inspection application. Clearance measurements of 0-5 mm were performed on a rotating calibration target with a measurement precision of 0.1 mm and a 20 kHz sampling rate.

  4. Non-linear modelling and control of semi-active suspensions with variable damping

    NASA Astrophysics Data System (ADS)

    Chen, Huang; Long, Chen; Yuan, Chao-Chun; Jiang, Hao-Bin

    2013-10-01

    Electro-hydraulic dampers can provide variable damping force that is modulated by varying the command current; furthermore, they offer advantages such as lower power, rapid response, lower cost, and simple hardware. However, accurate characterisation of non-linear f-v properties in pre-yield and force saturation in post-yield is still required. Meanwhile, traditional linear or quarter vehicle models contain various non-linearities. The development of a multi-body dynamics model is very complex, and therefore, SIMPACK was used with suitable improvements for model development and numerical simulations. A semi-active suspension was built based on a belief-desire-intention (BDI)-agent model framework. Vehicle handling dynamics were analysed, and a co-simulation analysis was conducted in SIMPACK and MATLAB to evaluate the BDI-agent controller. The design effectively improved ride comfort, handling stability, and driving safety. A rapid control prototype was built based on dSPACE to conduct a real vehicle test. The test and simulation results were consistent, which verified the simulation.

  5. EXPERIMENTS - APOLLO 17

    NASA Image and Video Library

    1972-11-17

    S72-53472 (November 1972) --- An artist's concept illustrating how radar beams of the Apollo 17 lunar sounder experiment will probe three-quarters of a mile below the moon's surface from the orbiting spacecraft. The Lunar Sounder will be mounted in the SIM bay of the Apollo 17 Service Module. Electronic data recorded on film will be retrieved by the crew during trans-Earth EVA. Geologic information on the lunar interior obtained by the sounder will permit scientific investigation of underground rock layers, lava flow patterns, rille (canyon) structures, mascon properties, and any areas containing water. A prototype lunar sounder has been flight tested in aircraft over selected Earth sites to confirm the equipment design and develop scientific analysis techniques. The Lunar Sounder Experiment (S-209) was developed by North American Rockwell's (NR) Space Division for NASA's Manned Spacecraft Center to provide data for a scientific investigation team with representatives from the Jet Propulsion Laboratory, University of Utah, University of Michigan, U.S. Geological Survey, and NASA Ames Research Center.

  6. Interpersonal Development, Stability, and Change in Early Adulthood

    PubMed Central

    Wright, Aidan G. C.; Pincus, Aaron L.; Lenzenweger, Mark F.

    2011-01-01

    Objective This goal of this research was to explore the development of the interpersonal system mapped by the interpersonal circumplex in early adulthood (Ages 18-22). Method This study uses the Longitudinal Study of Personality Disorders sample (N = 250; 53% Female). Participants completed the Revised Interpersonal Adjective Scales (Wiggins, Trapnell, & Phillips, 1988) in their freshman, sophomore, and senior years of college. Estimates of structural, rank-order, mean, individual, and ipsative stability were calculated for the broad interpersonal dimensions of Dominance and Affiliation, and also the lower-order octant scales. Additionally, the interpersonal profile parameters of differentiation and prototypicality were calculated at each wave and explored longitudinally, and also used as predictors of interpersonal stability. Results We found excellent structural and high rank-order and ipsative stability in the interpersonal scales over this time period. Mean increases on the Affiliation axis, but not on the Dominance axis, were found to mask differential rates of change among the octant scales, along with significant individual variation in the rates of change. Interpersonal differentiation and prototypicality were related to higher stability in overall interpersonal style. Conclusions Results point to evidence of both stability and nuanced change, illuminating some of the features of the structural variables that can be derived from interpersonal circumplex profiles. PMID:22224462

  7. Seismic testing of precast segmental bridges, Phase III : bridge system test.

    DOT National Transportation Integrated Search

    2005-06-01

    This report discusses the main findings of a test examining the seismic behavior of a precast, post-tensioned, segmental bridge : superstructure with a cast-in-place, hollow, rectangular column. The half-scale specimen modeled a prototype bridge from...

  8. ELECTROCHEMICAL ARSENIC REMEDIATION IN RURAL BANGLADESH

    EPA Science Inventory

    In Year 1, we built a bench-scale continuous flow prototype (dubbed “Sushi” for its sushi-like electrode roll) and completed preliminary field trials in Bangladesh. We were also able to leverage additional funding to complete preliminary field trials in arsenic-...

  9. Prototype readout system for a multi Mpixels UV single-photon imaging detector capable of space flight operation

    NASA Astrophysics Data System (ADS)

    Seljak, A.; Cumming, H. S.; Varner, G.; Vallerga, J.; Raffanti, R.; Virta, V.

    2018-02-01

    Our collaboration works on the development of a large aperture, high resolution, UV single-photon imaging detector, funded through NASA's Strategic Astrophysics Technology (SAT) program. The detector uses a microchannel plate for charge multiplication, and orthogonal cross strip (XS) anodes for charge readout. Our target is to make an advancement in the technology readiness level (TRL), which enables real scale prototypes to be tested for future NASA missions. The baseline detector has an aperture of 50×50 mm and requires 160 low-noise charge-sensitive channels, in order to extrapolate the incoming photon position with a spatial resolution of about 20 μm FWHM. Technologies involving space flight require highly integrated electronic systems operating at very low power. We have designed two ASICs which enable the construction of such readout system. First, a charge sensitive amplifier (CSAv3) ASIC provides an equivalent noise charge (ENC) of around 600 e-, and a baseline gain of 10 mV/fC. The second, a Giga Sample per Second (GSPS) ASIC, called HalfGRAPH, is a 12-bit analog to digital converter. Its architecture is based on waveform sampling capacitor arrays and has about 8 μs of analog storage memory per channel. Both chips encapsulate 16 measurement channels. Using these chips, a small scale prototype readout system has been constructed on a FPGA Mezzanine Board (FMC), equipped with 32 measurement channels for system evaluation. We describe the construction of HalfGRAPH ASIC, detector's readout system concept and obtained results from the prototype system. As part of the space flight qualification, these chips were irradiated with a Cobalt gamma-ray source, to verify functional operation under ionizing radiation exposure.

  10. Clinical Evaluation of a Prototype Underwear Designed to Detect Urine Leakage From Continence Pads.

    PubMed

    Long, Adele; Edwards, Julia; Worthington, Joanna; Cotterill, Nikki; Weir, Iain; Drake, Marcus J; van den Heuvel, Eleanor

    2015-01-01

    We evaluated the performance of prototype underwear designed to detect urine leakage from continence pads, their acceptability to users, and their effect on health-related quality of life and psychosocial factors. Prototype product evaluation. Participants were 81 women with an average age of 67 years (range, 32-98 years) recruited between October 2010 and February 2012 from outpatient clinics, general practice surgeries, community continence services, and through charities and networks. The TACT3 project developed and manufactured a prototype undergarment designed to alert the wearer to a pad leak before it reaches outer clothing or furniture. The study was conducted in 2 stages: a pilot/feasibility study to assess general performance and a larger study to measure performance, acceptability to users, health-related quality of life, and psychosocial impact. Participants were asked to wear the prototype underwear for a period of 2 weeks, keeping a daily diary of leakage events for the first 7 days. They also completed validated instruments measuring lower urinary tract symptoms, health-related quality of life, and psychosocial impact. On average, 86% of the time participants were alerted to pad leakage events. More than 90% thought the prototype underwear was "good" or "OK" and that it would or could give them more confidence. Mean scores for the International Consultation on Incontinence Questionnaire-Urinary Incontinence Short Form indicated no change in the level of symptoms reported before or after the intervention, and no significant changes in health-related quality of life status occurred, except improvement in for travel restrictions. Evaluation via the Psychosocial Impact of Assistive Devices Scale also indicated a positive impact. The prototype underwear evaluated in this study was effective and acceptable for 5 out of every 10 wearers. Findings also suggest that the prototype underwear is suitable for women of all ages, dress sizes, and continence severity.

  11. Idaho National Laboratory Quarterly Occurrence Analysis 4th Quarter FY 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Lisbeth Ann

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System, as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 84 reportable events (29 from the 4th quarter fiscal year 2016 and 55 from the prior three reporting quarters), as well as 39 other issue reports (including events found to be not reportable and Significant Category A and Bmore » conditions) identified at INL during the past 12 months (two from this quarter and 37 from the prior three quarters).« less

  12. Quarterly environmental data summary for first quarter 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    In support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement, a copy of the Quarterly Environmental Data Summary (QEDS) for the first quarter of 1999 is enclosed. The data presented in this constitute the QEDS. The data, except for air monitoring data and site KPA generated data (uranium analyses), were received from the contract laboratories, verified by the Weldon Spring Site verification group and merged into the database during the first quarter of 1999. KPA results for on-site total uranium analyses performed during first quarter 1999 are included. Air monitoring data presented are the most recent completemore » sets of quarterly data.« less

  13. On the interpretation of millennium-scale level variations of the Black Sea during the first quarter of the Holocene

    NASA Astrophysics Data System (ADS)

    Kislov, Alexander

    2016-04-01

    Introduction. During the first quarter of the Holocene, the Black Sea (BS) experienced large changes: amid the gradually rising water surface, Black Sea level (BSL) fluctuations occurred. We calculated based on records (e.g., Balabanov, 2007) that the standard deviation is ˜3.5 ÷ 5 m. Their typical duration was ˜1000 years. Time of occurrence of positive and negative anomalies of the BS is different in different reconstructions. The source of these discrepancies could be tectonically induced vertical motions. Before ˜7 ka BP the BSL was higher than the level of the World Ocean. The rising BS spilled over a rocky sill at the Bosphorus (Chepalyga, 2007). It is clear that if the water discharge were quite large, the long-term BSL anomalies could not be. This study focuses on the quantification of this concept. Methodology. I use the equation of the water balance of the BS in term of the annual averaged level anomalies. Time scales of the BSL fluctuations were determined based on the BS basin morphology and averaged volumes of rivers runoff and water discharge via the Bosphorus Sill. The short-term (1-2 year) contribution (like random white noise) to level changes are due to variations of river runoff and precipitation mines evaporation. From this perspective, the water balance equation is represented as a stochastic Langevin equation (Kislov, 2015). In another case, the BSL anomaly could be destructed due to relation "BSL anomaly - value of water discharge via the Bosphorus Sill" which acts as a negative feedback. Results. To quantify the parameters, I use the present day information about hydrological regime of the BS. It should not lead to serious errors, because the first and last quarters of the Holocene exhibit similarity in their hydroclimatic regimes (Panin, Matlakhova, 2014). As well, the paleohydrological data about dynamics of the Dnieper River runoff was used (Swetc, 1978). It was found that the time scale of the BSL fluctuations due to water discharge via the Bosphorus Sill were estimated as ˜10÷30 years or less, using values of reconstructed and calculated water flow crossing the Bosporus Sill (Chepalyga, 2007; Esin, 2014). It means, that millennium-scale BSL anomalies could not occurred. However, in the case of absence of water flow via the Bosphorus, the variance of the BSL fluctuations can be calculated as solution of the Langevin equation. It was found that sea level fluctuations during the first quarter of the Holocene are characterized by the standard deviation ˜4 m, close to the abovementioned empirical values. Conclusions. The theoretical analysis showed that the empirical data are controversial: mentioned long-term BSL fluctuations and large water discharge value via the Bosphorus Sill could not occurred simultaneously. This fact creates problems in interpreting the BSL fluctuations. The possibility of a "self-development" effect as a source of growth in sea-level anomalies is not prohibited in the case if the discharge of water via the Bosporus Sill was small.

  14. Three-dimensional visualization of cultural clusters in the 1878 yellow fever epidemic of New Orleans

    PubMed Central

    Curtis, Andrew J

    2008-01-01

    Background An epidemic may exhibit different spatial patterns with a change in geographic scale, with each scale having different conduits and impediments to disease spread. Mapping disease at each of these scales often reveals different cluster patterns. This paper will consider this change of geographic scale in an analysis of yellow fever deaths for New Orleans in 1878. Global clustering for the whole city, will be followed by a focus on the French Quarter, then clusters of that area, and finally street-level patterns of a single cluster. The three-dimensional visualization capabilities of a GIS will be used as part of a cluster creation process that incorporates physical buildings in calculating mortality-to-mortality distance. Including nativity of the deceased will also capture cultural connection. Results Twenty-two yellow fever clusters were identified for the French Quarter. These generally mirror the results of other global cluster and density surfaces created for the entire epidemic in New Orleans. However, the addition of building-distance, and disease specific time frame between deaths reveal that disease spread contains a cultural component. Same nativity mortality clusters emerge in a similar time frame irrespective of proximity. Italian nativity mortalities were far more densely grouped than any of the other cohorts. A final examination of mortalities for one of the nativity clusters reveals that further sub-division is present, and that this pattern would only be revealed at this scale (street level) of investigation. Conclusion Disease spread in an epidemic is complex resulting from a combination of geographic distance, geographic distance with specific connection to the built environment, disease-specific time frame between deaths, impediments such as herd immunity, and social or cultural connection. This research has shown that the importance of cultural connection may be more important than simple proximity, which in turn might mean traditional quarantine measures should be re-evaluated. PMID:18721469

  15. Three-dimensional visualization of cultural clusters in the 1878 yellow fever epidemic of New Orleans.

    PubMed

    Curtis, Andrew J

    2008-08-22

    An epidemic may exhibit different spatial patterns with a change in geographic scale, with each scale having different conduits and impediments to disease spread. Mapping disease at each of these scales often reveals different cluster patterns. This paper will consider this change of geographic scale in an analysis of yellow fever deaths for New Orleans in 1878. Global clustering for the whole city, will be followed by a focus on the French Quarter, then clusters of that area, and finally street-level patterns of a single cluster. The three-dimensional visualization capabilities of a GIS will be used as part of a cluster creation process that incorporates physical buildings in calculating mortality-to-mortality distance. Including nativity of the deceased will also capture cultural connection. Twenty-two yellow fever clusters were identified for the French Quarter. These generally mirror the results of other global cluster and density surfaces created for the entire epidemic in New Orleans. However, the addition of building-distance, and disease specific time frame between deaths reveal that disease spread contains a cultural component. Same nativity mortality clusters emerge in a similar time frame irrespective of proximity. Italian nativity mortalities were far more densely grouped than any of the other cohorts. A final examination of mortalities for one of the nativity clusters reveals that further sub-division is present, and that this pattern would only be revealed at this scale (street level) of investigation. Disease spread in an epidemic is complex resulting from a combination of geographic distance, geographic distance with specific connection to the built environment, disease-specific time frame between deaths, impediments such as herd immunity, and social or cultural connection. This research has shown that the importance of cultural connection may be more important than simple proximity, which in turn might mean traditional quarantine measures should be re-evaluated.

  16. 78 FR 23903 - Proposed Information Collection; Comment Request; Quarterly Summary of State and Local Government...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-23

    ... Quarterly Summary of State and Local Government Tax Revenue, using the F-71 (Quarterly Survey of Property Tax Collections), F-72 (Quarterly Survey of State Tax Collections), and F-73 (Quarterly Survey of Non... data for individual states. The information contained in this survey is the most current information...

  17. 29 CFR 548.306 - Average earnings for year or quarter year preceding the current quarter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PAY Interpretations Authorized Basic Rates § 548.306 Average earnings for year or quarter year... regular rates of pay during the current quarter year, and (ii) such average hourly remuneration during the... 29 Labor 3 2011-07-01 2011-07-01 false Average earnings for year or quarter year preceding the...

  18. 2. View to northeast showing quarters and outbuildings, L to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View to northeast showing quarters and outbuildings, L to R: Service Building (HABS No. VA-1287-D), Medical Officer's Quarters C (in background), Garage (HABS No. VA-1287-F), and Medical Officer's Quarters B - Portsmouth Naval Hospital, Medical Officer's Quarters C, West side Williamson Drive, 400 feet South of Rixey Drive, Portsmouth, Portsmouth, VA

  19. Adjustment Notes for Apprentice and Trainee Estimates: December Quarter 2014. Support Document

    ERIC Educational Resources Information Center

    National Centre for Vocational Education Research (NCVER), 2015

    2015-01-01

    Apprentice and trainee data are reported by the State and Territory Training Authorities to National Centre for Vocational Education Research (NCVER) on a quarterly basis, starting at the September quarter of 1994. The set of data submitted that quarter is referred to as Collection 1. The sets of data submitted in subsequent quarters are referred…

  20. Short-time-scale left ventricular systolic dynamics. Evidence for a common mechanism in both left ventricular chamber and heart muscle mechanics.

    PubMed

    Campbell, K B; Shroff, S G; Kirkpatrick, R D

    1991-06-01

    Based on the premise that short-time-scale, small-amplitude pressure/volume/outflow behavior of the left ventricular chamber was dominated by dynamic processes originating in cardiac myofilaments, a prototype model was built to predict pressure responses to volume perturbations. In the model, chamber pressure was taken to be the product of the number of generators in a pressure-bearing state and their average volumetric distortion, as in the muscle theory of A.F. Huxley, in which force was equal to the number of attached crossbridges and their average lineal distortion. Further, as in the muscle theory, pressure generators were assumed to cycle between two states, the pressure-bearing state and the non-pressure-bearing state. Experiments were performed in the isolated ferret heart, where variable volume decrements (0.01-0.12 ml) were removed at two commanded flow rates (flow clamps, -7 and -14 ml/sec). Pressure responses to volume removals were analyzed. Although the prototype model accounted for most features of the pressure responses, subtle but systematic discrepancies were observed. The presence or absence of flow and the magnitude of flow affected estimates of model parameters. However, estimates of parameters did not differ when the model was fitted to flow clamps with similar magnitudes of flows but different volume changes. Thus, prototype model inadequacies were attributed to misrepresentations of flow-related effects but not of volume-related effects. Based on these discrepancies, an improved model was built that added to the simple two-state cycling scheme, a pathway to a third state. This path was followed only in response to volume change. The improved model eliminated the deficiencies of the prototype model and was adequate in accounting for all observations. Since the template for the improved model was taken from the cycling crossbridge theory of muscle contraction, it was concluded that, in spite of the complexities of geometry, architecture, and regional heterogeneity of function and structure, crossbridge mechanisms dominated the short-time-scale dynamics of left ventricular chamber behavior.

  1. Variation in the composition of selected milk fraction samples from healthy and mastitic quarters, and its significance for mastitis diagnosis.

    PubMed

    Bansal, Baljinder K; Hamann, Joern; Grabowskit, Nils Th; Singh, Krishan B

    2005-05-01

    Seven variables--electrical conductivity (EC), somatic cell count (SCC), N-acetyl-beta-D-glucosaminidase (NAGase), lactose, protein, fat and pH--were compared in four quarter milk fractions (MF1: strict foremilk; MF2: first 12-15 ml foremilk; MF3: subsequent 40-45 ml milk; MF4: strippings) and in one cow composite milk sample (CC) per cow. The study used 142 quarters from 37 lactating cows of the German Black Pied breed. To rule out any possible effect due to management, animal physiology and analytical procedures, the collection and processing of milk samples from each cow was repeated for three consecutive days, and the means of 3-d values were used. All variables were affected significantly by milk fraction and udder health. Compared with foremilk, EC, lactose and protein levels in strippings decreased, while SCC, NAGase and fat increased. The pH of foremilk and strippings did not differ significantly in healthy or in mastitic quarters. The difference between MF1 and MF2 was significant for EC in mastitic quarters, and for SCC in healthy quarters only. In general, mastitis resulted in a significant increase in EC, SCC, NAGase and protein but in a decrease in lactose and fat contents of milk in one or more of the milk fractions studied. Comparison of cow composite milk samples from healthy and mastitic cows revealed the significance (P < 0.01) of udder health for EC, SCC and lactose. Of the different parameters that can distinguish between healthy and mastitic quarters or cows, EC could be used to classify 76% of quarters and 73% of cows correctly, while the lactose content permitted correct identification of 81% of quarters and 76% of cows. NAGase and pH could be used to determine the status of 73% and 61% of quarters, respectively. In general, the correlation observed in strippings was higher than in foremilk for almost all the variables studied. Surprisingly, EC, SCC, NAGase and lactose in milk from healthy quarters of mastitic cows (with at least one mastitic quarter) differed significantly (P < 0.05) from those from healthy quarters of cows with all four healthy quarters, indicating an inconsistent effect of mastitic quarters on neighbouring healthy quarters (quarter interdependence).

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Zhiqun; Carlson, Thomas J.; Fu, Tao

    Power extracted from fast moving tidal currents has been identified as a potential commercial-scale source of renewable energy. Device developers and utilities are pursuing deployment of prototype tidal turbines to assess technology viability, site feasibility, and environmental interactions. Deployment of prototype turbines requires permits from a range of regulatory authorities. Ensuring the safety of marine animals, particularly those under protection of the Endangered Species Act of 1973 (ESA) and the Marine Mammal Protection Act of 1972 has emerged as a key regulatory challenge for initial MHK deployments. The greatest perceived risk to marine animals is from strike by the rotatingmore » blades of tidal turbines. Development of the marine mammal alert system (MAAS) was undertaken to support monitoring and mitigation requirements for tidal turbine deployments. The prototype system development focused on Southern Resident killer whales (SRKW), an endangered population of killer whales that frequents Puget Sound and is intermittently present in the part of the sound where deployment of prototype tidal turbines is being considered. Passive acoustics were selected as the primary means because of the vocal nature of these animals. The MAAS passive acoustic system consists of two-stage process involving the use of an energy detector and a spectrogram-based classifier to distinguish between SKRW’s calls and noise. A prototype consisting of two 2D symmetrical star arrays separated by 20 m center to center was built and evaluated in the waters of Sequim Bay using whale call playback.« less

  3. 1. CARRIAGE HOUSE (left) AND SLAVE QUARTERS, SOUTH FRONT. A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. CARRIAGE HOUSE (left) AND SLAVE QUARTERS, SOUTH FRONT. A kitchen was included in the quarters. - Charles Fraser House, Carriage House & Slave Quarters, 55 King Street, Charleston, Charleston County, SC

  4. EMSL Quarterly Highlights Report: 1st Quarter, Fiscal Year 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Showalter, Mary Ann; Kathmann, Loel E.; Manke, Kristin L.

    2009-02-02

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2008 - December 2008) of Fiscal Year 2009.

  5. Idaho National Laboratory Quarterly Occurrence Analysis for the 1st Quarter FY2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Lisbeth Ann

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 82 reportable events (13 from the 1st quarter (Qtr) of fiscal year (FY) 2017 and 68 from the prior three reporting quarters), as well as 31 other issue reports (including events found to be not reportable and Significantmore » Category A and B conditions) identified at INL during the past 12 months (seven from this quarter and 24 from the prior three quarters).« less

  6. Notable deals in the pharmaceutical industry in the first quarter of 2017.

    PubMed

    Cruces, E

    2017-06-01

    During the first quarter of 2017, Cortellis Competitive Intelligence had 1,073 new deals added as part of its ongoing coverage of pharmaceutical licensing activity. This meant a slight increase on the last quarter (1,022) and a similar volume on the same quarter for the previous 1 year (1,141). However, this quarter showed a significant augment in deals worth more than USD 0.5 billion on the last quarter (17 vs. 12). This article will focus on highlighting a number of the most valuable and notable deals forged during the quarter, as well as a selection of deals from some of the most prolific deal makers. An update on milestone, options and terminated deals of significance will also be presented, along with an early outlook on the next quarter's pharmaceutical licensing activity.

  7. Finding parasites and finding challenges: improved diagnostic access and trends in reported malaria and anti-malarial drug use in Livingstone district, Zambia

    PubMed Central

    2012-01-01

    Background Understanding the impact of malaria rapid diagnostic test (RDT) use on management of acute febrile disease at a community level, and on the consumption of anti-malarial medicines, is critical to the planning and success of scale-up to universal parasite-based diagnosis by health systems in malaria-endemic countries. Methods A retrospective study of district-wide community-level RDT introduction was conducted in Livingstone District, Zambia, to assess the impact of this programmed on malaria reporting, incidence of mortality and on district anti-malarial consumption. Results Reported malaria declined from 12,186 cases in the quarter prior to RDT introduction in 2007 to an average of 12.25 confirmed and 294 unconfirmed malaria cases per quarter over the year to September 2009. Reported malaria-like fever also declined, with only 4,381 RDTs being consumed per quarter over the same year. Reported malaria mortality declined to zero in the year to September 2009, and all-cause mortality declined. Consumption of artemisinin-based combination therapy (ACT) dropped dramatically, but remained above reported malaria, declining from 12,550 courses dispensed by the district office in the quarter prior to RDT implementation to an average of 822 per quarter over the last year. Quinine consumption in health centres also declined, with the district office ceasing to supply due to low usage, but requests for sulphadoxine-pyrimethamine (SP) rose to well above previous levels, suggesting substitution of ACT with this drug in RDT-negative cases. Conclusions RDT introduction led to a large decline in reported malaria cases and in ACT consumption in Livingstone district. Reported malaria mortality declined to zero, indicating safety of the new diagnostic regime, although adherence and/or use of RDTs was still incomplete. However, a deficiency is apparent in management of non-malarial fever, with inappropriate use of a low-cost single dose drug, SP, replacing ACT. While large gains have been achieved, the full potential of RDTs will only be realized when strategies can be put in place to better manage RDT-negative cases. PMID:23043557

  8. WE-F-16A-02: Design, Fabrication, and Validation of a 3D-Printed Proton Filter for Range Spreading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remmes, N; Courneyea, L; Corner, S

    2014-06-15

    Purpose: To design, fabricate and test a 3D-printed filter for proton range spreading in scanned proton beams. The narrow Bragg peak in lower-energy synchrotron-based scanned proton beams can result in longer treatment times for shallow targets due to energy switching time and plan quality degradation due to minimum monitor unit limitations. A filter with variable thicknesses patterned on the same scale as the beam's lateral spot size will widen the Bragg peak. Methods: The filter consists of pyramids dimensioned to have a Gaussian distribution in thickness. The pyramids are 2.5mm wide at the base, 0.6 mm wide at the peak,more » 5mm tall, and are repeated in a 2.5mm pseudo-hexagonal lattice. Monte Carlo simulations of the filter in a proton beam were run using TOPAS to assess the change in depth profiles and lateral beam profiles. The prototypes were constrained to a 2.5cm diameter disk to allow for micro-CT imaging of promising prototypes. Three different 3D printers were tested. Depth-doses with and without the prototype filter were then measured in a ~70MeV proton beam using a multilayer ion chamber. Results: The simulation results were consistent with design expectations. Prototypes printed on one printer were clearly unacceptable on visual inspection. Prototypes on a second printer looked acceptable, but the micro-CT image showed unacceptable voids within the pyramids. Prototypes from the third printer appeared acceptable visually and on micro-CT imaging. Depth dose scans using the prototype from the third printer were consistent with simulation results. Bragg peak width increased by about 3x. Conclusions: A prototype 3D printer pyramid filter for range spreading was successfully designed, fabricated and tested. The filter has greater design flexibility and lower prototyping and production costs compared to traditional ridge filters. Printer and material selection played a large role in the successful development of the filter.« less

  9. Environmentally Benign Battlefield Effects Black Smoke Simulator

    DTIC Science & Technology

    2006-11-01

    tested and results Fuel Oxidizer Color of Smoke Density of Smoke Sugar (Sucrose) KNO3 Grey Medium Dextrin KNO3 Grey Thin Microcrystalline...design. 3.5 Initial Prototype Scale Fiberboard Testing Several quality black smoke formulations were identified in the small pellet testing to

  10. DEVELOP A CONCENTRATED SOLAR POWER-BASED THERMAL COOLING SYSTEM VIA SIMULATION AND EXPERIMENTAL STUDIES

    EPA Science Inventory

    A small scale CSP-based cooling system prototype (300W cooling capacity) and the system performance simulation tool will be developed as a proof of concept. Practical issues will be identified to improve our design.

  11. CTTRANSIT Operates New England's First Fuel Cell Hybrid Bus

    DOT National Transportation Integrated Search

    2018-02-01

    The purpose of the Impact Assessment Plan is to take the results of the test track or field tests of the prototype, make reasonable extrapolations of those results to a theoretical full scale implementation, and answer the following 7 questions relat...

  12. Electronically Integrated Active Compliant Transmission (ACT) Actuation Technologies Proof-of-Concept Investigation of Active Velcro for Smart Attachment Mechanisms

    DTIC Science & Technology

    2003-12-01

    Active Velcro” is a general technology which can be applied at different scales (micro- to macro -) for different required performance by tailoring a...operations (engagement, retention/release, positioning) to provide synthesis and analysis tools. Several different scaled prototypes were fabricated and...necessary foundation for further development of this unique paradigm which is useful for any unstable environment (space, fluidic, moving, vibration

  13. Compliant Robotic Structures. Part 2

    DTIC Science & Technology

    1986-07-01

    Nonaxially Homogeneous Stresses and Strains 44 Parametric Studies 52 % References 65 III. LARGE DEFLECTIONS OF CONTINUOUS ELASTIC ’- STRUCTURES 66...APPENDIX C: Computer Program for the Element String 133 -° SUMMARY This is the second year report which is a part of a three- year study on compliant...ratios as high as 10/1 for laboratory-scale models and up to 3/1 for full-scale prototype arms. The first two years of this study have involved the

  14. Adjustment Notes for Apprentice and Trainee Estimates: December Quarter 2016. Support Document

    ERIC Educational Resources Information Center

    National Centre for Vocational Education Research (NCVER), 2017

    2017-01-01

    Apprentice and trainee data are reported by the State and Territory Training Authorities to NCVER on a quarterly basis, starting at the September quarter of 1994. The set of data submitted that quarter is referred to as Collection 1. The sets of data submitted in subsequent quarters are referred to as Collection 2, Collection 3 and so on. NCVER…

  15. Adjustment Notes for Apprentice and Trainee Estimates: September Quarter 2016. Support Document

    ERIC Educational Resources Information Center

    National Centre for Vocational Education Research (NCVER), 2017

    2017-01-01

    Apprentice and trainee data are reported by the State and Territory Training Authorities to NCVER on a quarterly basis, starting at the September quarter of 1994. The set of data submitted that quarter is referred to as Collection 1. The sets of data submitted in subsequent quarters are referred to as Collection 2, Collection 3 and so on. NCVER…

  16. The Top Ten Critical MIS Issues in the Department of Defense

    DTIC Science & Technology

    1991-03-01

    II. LITERATURE REVIEW A. INTRODUCTION There are five studies of Management Information Systems (MIS) critical issues similar to this one that are...detailed in Management Information Systems Quarterly and other IS publications. These studies were conducted and published between 1980 and 1990. B. BALL... Information Systems (SMIS). In 1980, they mailed questionnaires to 1400 members asking them to use a six-point Likert-type scale to rank the importance of 18

  17. Strategic Studies Quarterly. Volume 6, Number 3. Fall 2012

    DTIC Science & Technology

    2012-01-01

    a particular TOR site, the number of Iranian users on the network drops precipitously. It picks up again after TOR developers announce a workaround...benefit, hence value of the network , is then proportional to the area under the curve or natural log of N (lnN). The increase (decrease) in network ...necessary sensors and automation to strengthen and de­ fend network operations at the scale required for a global industry or military operations

  18. Quantitative evidence for the effects of multiple drivers on continental-scale amphibian declines

    Treesearch

    Evan H. Campbell Grant; David A. W. Miller; Benedikt R. Schmidt; Michael J. Adams; Staci M. Amburgey; Thierry Chambert; Sam S. Cruickshank; Robert N. Fisher; David M. Green; Blake R. Hossack; Pieter T. J. Johnson; Maxwell B. Joseph; Tracy A. G. Rittenhouse; Maureen E. Ryan; J. Hardin Waddle; Susan C. Walls; Larissa L. Bailey; Gary M. Fellers; Thomas A. Gorman; Andrew M. Ray; David S. Pilliod; Steven J. Price; Daniel Saenz; Walt Sadinski; Erin Muths

    2016-01-01

    Since amphibian declines were first proposed as a global phenomenon over a quarter century ago, the conservation community has made little progress in halting or reversing these trends. The early search for a “smoking gun” was replaced with the expectation that declines are caused by multiple drivers. While field observations and experiments have identified factors...

  19. Improving Joint Function Using Photochemical Hydrogels for Articular Surface Repair

    DTIC Science & Technology

    2012-10-01

    with thrombin previously has been reported as a favorable scaffold for cartilage formation by encapsulated chondrocytes [10]. Studies over the past...during the photochemical crosslinking process. A full scale study is planned for the first quarter of year 3 to evaluate the fully formed cartilage ...Perform initial study of collagen and PEG gels with stem cells implanted in mice  Bone marrow MSCs were harvested from donor swine and grown in culture

  20. Archeological Data Recovery at Algiers Point. Volume 1.

    DTIC Science & Technology

    1984-10-15

    the Mississippi River directly across from the Vieux Carre, the Historic French Quarter of New Orleans. Algiers initially was settled in 1718 by early... French colonists, and today it is home to the large scale ship repair and dry dock facilities that support the Port of New Orleans. The Algiers Point...fourth period, from 1977 to the present, simply represents current occupation and land use. The initial, or Colonial period, began with French

  1. Sceening, down selection, and implementation of environmentally compliant cleaning and insulation bonding for MNASA

    NASA Astrophysics Data System (ADS)

    Keen, Jill M.; Hutchens, D. E.; Smith, G. M.; Dillard, T. W.

    1994-06-01

    MNASA, a quarter-scale space shuttle solid rocket motor, has historically been processed using environmentally and physiologically harmful chemicals. This program draws from previous testing done in support of full-scale manufacturing and examines the synergy and interdependency between environmentally acceptable materials for Solid Rocket Motor insulation applications, bonding, corrosion inhibiting, painting, priming and cleaning; and then implements new materials and processes in sub-scale motors. Tests have been conducted to eliminate or minimize hazardous chemicals used in the manufacture of MNASA components and identify alternate materials and/or processes following NASA Operational Environment Team (NOET) priorities. This presentation describes implementation of high pressure water refurbishment cleaning, aqueous precision cleaning using both Brulin 815 GD and Jettacin and insulation case bonding using ODC compliant primers and adhesives.

  2. A Novel Spacecraft Charge Monitor for LEO

    NASA Technical Reports Server (NTRS)

    Goembel, Luke

    2004-01-01

    Five years ago we introduced a new method for measuring spacecraft chassis floating potential relative to the space plasma (absolute spacecraft potential) in low Earth orbit. The method, based on a straightforward interpretation of photoelectron spectra, shows promise for numerous applications, but has not yet been tried. In the interest of testing the method, and ultimately supplying another tool for measuring absolute spacecraft charge, we are producing a flight prototype Spacecraft Charge Monitor (SCM) with support from NASA's Small Business Innovation Research (SBIR) program. Although insight into the technique came from data collected in space over two decades ago, very little data are available. The data indicate that it may be possible to determine spacecraft floating potential to within 0.1 volt each with the SCM second under certain conditions. It is debatable that spacecraft floating potential has ever been measured with such accuracy. The compact, easily deployed SCM also offers the advantage of long-term stability in calibration. Accurate floating potential determinations from the SCM could be used to correct biases in space plasma measurements and evaluate charge mitigation and/or sensing devices. Although this paper focuses on the device's use in low Earth orbit (LEO), the device may also be able to measure spacecraft charge at higher altitudes, in the solar wind, and in orbits around other planets. The flight prototype SCM we are producing for delivery to NASA in the third quarter of 2004 will measure floating potential from 0 to -150 volts with 0.1 volt precision, weigh approximately 600-700 grams, consume approximately 2 watts, and will measure approximately 8 x 10 x 17 cm.

  3. Designing cellulosic and nanocellulosic sensors for interface with a protease sequestrant wound-dressing prototype: Implications of material selection for dressing and protease sensor design.

    PubMed

    Fontenot, Krystal R; Edwards, J Vincent; Haldane, David; Pircher, Nicole; Liebner, Falk; Condon, Brian D; Qureshi, Huzaifah; Yager, Dorne

    2017-11-01

    Interfacing nanocellulosic-based biosensors with chronic wound dressings for protease point of care diagnostics combines functional material properties of high specific surface area, appropriate surface charge, and hydrophilicity with biocompatibility to the wound environment. Combining a protease sensor with a dressing is consistent with the concept of an intelligent dressing, which has been a goal of wound-dressing design for more than a quarter century. We present here biosensors with a nanocellulosic transducer surface (nanocrystals, nanocellulose composites, and nanocellulosic aerogels) immobilized with a fluorescent elastase tripeptide or tetrapeptide biomolecule, which has selectivity and affinity for human neutrophil elastase present in chronic wound fluid. The specific surface area of the materials correlates with a greater loading of the elastase peptide substrate. Nitrogen adsorption and mercury intrusion studies revealed gas permeable systems with different porosities (28-98%) and pore sizes (2-50 nm, 210 µm) respectively, which influence water vapor transmission rates. A correlation between zeta potential values and the degree of protease sequestration imply that the greater the negative surface charge of the nanomaterials, the greater the sequestration of positively charged neutrophil proteases. The biosensors gave detection sensitivities of 0.015-0.13 units/ml, which are at detectable human neutrophil elastase levels present in chronic wound fluid. Thus, the physical and interactive biochemical properties of the nano-based biosensors are suitable for interfacing with protease sequestrant prototype wound dressings. A discussion of the relevance of protease sensors and cellulose nanomaterials to current chronic wound dressing design and technology is included.

  4. Ultrafast holographic technique for 3D in situ documentation of cultural heritage

    NASA Astrophysics Data System (ADS)

    Frey, Susanne; Bongartz, Jens; Giel, Dominik M.; Thelen, Andrea; Hering, Peter

    2003-10-01

    A novel 3d reconstruction method for medical application has been applied for the examination and documentation of a 2000-year-old bog body. An ultra-fast pulsed holographic camera has been modified to allow imaging of the bog body from different views. Full-scale daylight copies of the master holograms give a detailed impressive three-dimensional view of the mummy and can be exhibited instead of the object. In combination with a rapid prototyping model (built by the Rapid Prototyping group of the Stiftung caesar, Bonn, Germany) derived from computer tomography (CT) data our results are an ideal basis for a future facial reconstruction.

  5. Dietary Assessment on a Mobile Phone Using Image Processing and Pattern Recognition Techniques: Algorithm Design and System Prototyping.

    PubMed

    Probst, Yasmine; Nguyen, Duc Thanh; Tran, Minh Khoi; Li, Wanqing

    2015-07-27

    Dietary assessment, while traditionally based on pen-and-paper, is rapidly moving towards automatic approaches. This study describes an Australian automatic food record method and its prototype for dietary assessment via the use of a mobile phone and techniques of image processing and pattern recognition. Common visual features including scale invariant feature transformation (SIFT), local binary patterns (LBP), and colour are used for describing food images. The popular bag-of-words (BoW) model is employed for recognizing the images taken by a mobile phone for dietary assessment. Technical details are provided together with discussions on the issues and future work.

  6. Towards an operational fault isolation expert system for French telecommunication satellite Telecom 2

    NASA Astrophysics Data System (ADS)

    Haziza, M.

    1990-10-01

    The DIAMS satellite fault isolation expert system shell concept is described. The project, initiated in 1985, has led to the development of a prototype Expert System (ES) dedicated to the Telecom 1 attitude and orbit control system. The prototype ES has been installed in the Telecom 1 satellite control center and evaluated by Telecom 1 operations. The development of a fault isolation ES covering a whole spacecraft (the French telecommunication satellite Telecom 2) is currently being undertaken. Full scale industrial applications raise stringent requirements in terms of knowledge management and software development methodology. The approach used by MATRA ESPACE to face this challenge is outlined.

  7. New-type planar field emission display with superaligned carbon nanotube yarn emitter.

    PubMed

    Liu, Peng; Wei, Yang; Liu, Kai; Liu, Liang; Jiang, Kaili; Fan, Shoushan

    2012-05-09

    With the superaligned carbon nanotube yarn as emitter, we have fabricated a 16 × 16 pixel field emission display prototype by adopting screen printing and laser cutting technologies. A planar diode field emission structure has been adopted. A very sharp carbon nanotube yarn tip emitter can be formed by laser cutting. Low voltage phosphor was coated on the anode electrodes also by screen printing. With a specially designed circuit, we have demonstrated the dynamic character display with the field emission display prototype. The emitter material and fabrication technologies in this paper are both easy to scale up to large areas.

  8. Characteristics of HIV Care and Treatment in PEPFAR-Supported Sites

    PubMed Central

    Filler, Scott; Berruti, Andres A.; Menzies, Nick; Berzon, Rick; Ellerbrock, Tedd V.; Ferris, Robert; Blandford, John M.

    2011-01-01

    Background The U.S. President’s Emergency Plan for AIDS Relief (PEPFAR) has supported the extension of HIV care and treatment to 2.4 million individuals by September 2009. With increasing resources targeted toward scale-up, it is important to understand the characteristics of current PEPFAR-supported HIV care and treatment sites. Methods Forty-five sites in Botswana, Ethiopia, Nigeria, Uganda, and Vietnam were sampled. Data were collected retrospectively from successive 6-month periods of site operations, through reviews of facility records and interviews with site personnel between April 2006 and March 2007. Facility size and scale-up rate, patient characteristics, staffing models, clinical and laboratory monitoring, and intervention mix were compared. Results Sites added a median of 293 patients per quarter. By the evaluation’s end, sites supported a median of 1,649 HIV patients, 922 of them receiving antiretroviral therapy (ART). Patients were predominantly adult (97.4%) and the majority (96.5%) were receiving regimens based on nonnucleoside reverse transcriptase inhibitors (NNRTIs). The ratios of physicians to patients dropped substantially as sites matured. ART patients were commonly seen monthly or quarterly for clinical and laboratory monitoring, with CD4 counts being taken at 6-month intervals. One-third of sites provided viral load testing. Cotrimoxazole prophylaxis was the most prevalent supportive service. Conclusions HIV treatment sites scaled up rapidly with the influx of resources and technical support through PEPFAR, providing complex health services to progressively expanding patient cohorts. Human resources are stretched thin, and delivery models and intervention mix differ widely between sites. Ongoing research is needed to identify best-practice service delivery models. PMID:21346585

  9. Parametric motion control of robotic arms: A biologically based approach using neural networks

    NASA Technical Reports Server (NTRS)

    Bock, O.; D'Eleuterio, G. M. T.; Lipitkas, J.; Grodski, J. J.

    1993-01-01

    A neural network based system is presented which is able to generate point-to-point movements of robotic manipulators. The foundation of this approach is the use of prototypical control torque signals which are defined by a set of parameters. The parameter set is used for scaling and shaping of these prototypical torque signals to effect a desired outcome of the system. This approach is based on neurophysiological findings that the central nervous system stores generalized cognitive representations of movements called synergies, schemas, or motor programs. It has been proposed that these motor programs may be stored as torque-time functions in central pattern generators which can be scaled with appropriate time and magnitude parameters. The central pattern generators use these parameters to generate stereotypical torque-time profiles, which are then sent to the joint actuators. Hence, only a small number of parameters need to be determined for each point-to-point movement instead of the entire torque-time trajectory. This same principle is implemented for controlling the joint torques of robotic manipulators where a neural network is used to identify the relationship between the task requirements and the torque parameters. Movements are specified by the initial robot position in joint coordinates and the desired final end-effector position in Cartesian coordinates. This information is provided to the neural network which calculates six torque parameters for a two-link system. The prototypical torque profiles (one per joint) are then scaled by those parameters. After appropriate training of the network, our parametric control design allowed the reproduction of a trained set of movements with relatively high accuracy, and the production of previously untrained movements with comparable accuracy. We conclude that our approach was successful in discriminating between trained movements and in generalizing to untrained movements.

  10. Experimental Pressure Measurements on Hydropower Turbine Runners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harding, Samuel F.; Richmond, Marshall C.

    The range of hydrodynamic operating conditions to which the turbine is exposed results in significant pressure fluctuations on both the pressure and suction sides of the blades. Understanding these dynamic pressures has a range of applications. Structurally, the resulting dynamic loads are significant in understanding the design life and maintenance schedule of the bearing, shafts and runner components. The pulsing pressures have also been seen to have a detrimental effect on the surface condition of the blades. Biologically, the pressure gradients and pressure extremes are the primary driver of barotrauma for fish passing through hydroturbines. Improvements in computational fluid dynamicsmore » (CFD) can be used to simulate such unsteady pressures in the regions of concern. High frequency model scale and prototype measurements of pressures at the blade are important in the validation of these models. Experimental characterization of pressure fields over hydroturbine blades has been demonstrated by a number of studies which using multiple pressure transducers to map the pressure contours on the runner blades. These have been performed at both model and prototype scales, often to validate computational models of the pressure and flow fields over the blades. This report provides a review of existing studies in which the blade pressure was measured in situ. The report assesses the technology for both model and prototype scale testing. The details of the primary studies in this field are reported and used to inform the types of hardware required for similar experiments based on the Ice Harbor Dam owned by the US Corps of Engineers on the Snake River, WA, USA. Such a study would be used to validate the CFD performed for the BioPA.« less

  11. Development of micromachine tool prototypes for microfactories

    NASA Astrophysics Data System (ADS)

    Kussul, E.; Baidyk, T.; Ruiz-Huerta, L.; Caballero-Ruiz, A.; Velasco, G.; Kasatkina, L.

    2002-11-01

    At present, many areas of industry have strong tendencies towards miniaturization of products. Mechanical components of these products as a rule are manufactured using conventional large-scale equipment or micromechanical equipment based on microelectronic technology (MEMS). The first method has some drawbacks because conventional large-scale equipment consumes much energy, space and material. The second method seems to be more advanced but has some limitations, for example, two-dimensional (2D) or 2.5-dimensional shapes of components and materials compatible with silicon technology. In this paper, we consider an alternative technology of micromechanical device production. This technology is based on micromachine tools (MMT) and microassembly devices, which can be produced as sequential generations of microequipment. The first generation can be produced by conventional large-scale equipment. The machine tools of this generation can have overall sizes of 100-200 mm. Using microequipment of this generation, second generation microequipment having smaller overall sizes can be produced. This process can be repeated to produce generations of micromachine tools having overall sizes of some millimetres. In this paper we describe the efforts and some results of first generation microequipment prototyping. A micromachining centre having an overall size of 130 × 160 × 85 mm3 was produced and characterized. This centre has allowed us to manufacture micromechanical details having sizes from 50 µm to 5 mm. These details have complex three-dimensional shapes (for example, screw, gear, graduated shaft, conic details, etc), and are made from different materials, such as brass, steel, different plastics etc. We have started to investigate and to make prototypes of the assembly microdevices controlled by a computer vision system. In this paper we also describe an example of the applications (microfilters) for the proposed technology.

  12. DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larry G. Felix; P. Vann Bush

    2002-10-26

    This is the eighth Quarterly Technical Report for DOE Cooperative Agreement No. DE-FC26-00NT40895. A statement of the project objectives is included in the Introduction of this report. The final biomass co-firing test burn was conducted during this quarter. In this test (Test 14), up to 20% by weight dry switchgrass was comilled with Jim Walters No.7 mine coal and injected through the single-register burner. Jim Walters No.7 coal is a low-volatility, low-sulfur ({approx}0.7% S) Eastern bituminous coal. The results of this test are presented in this quarterly report. Progress has continued to be made in implementing a modeling approach tomore » combine reaction times and temperature distributions from computational fluid dynamic models of the pilot-scale combustion furnace with char burnout and chemical reaction kinetics to predict NO{sub x} emissions and unburned carbon levels in the furnace exhaust. The REI Configurable Fireside Simulator (CFS) is now in regular use. Presently, the CFS is being used to generate CFD calculations for completed tests with Powder River Basin coal and low-volatility (Jim Walters No.7 Mine) coal. Niksa Energy Associates will use the results of these CFD simulations to complete their validation of the NOx/LOI predictive model. Work has started on the project final report.« less

  13. Using statistical and artificial neural network models to forecast potentiometric levels at a deep well in South Texas

    NASA Astrophysics Data System (ADS)

    Uddameri, V.

    2007-01-01

    Reliable forecasts of monthly and quarterly fluctuations in groundwater levels are necessary for short- and medium-term planning and management of aquifers to ensure proper service of seasonal demands within a region. Development of physically based transient mathematical models at this time scale poses considerable challenges due to lack of suitable data and other uncertainties. Artificial neural networks (ANN) possess flexible mathematical structures and are capable of mapping highly nonlinear relationships. Feed-forward neural network models were constructed and trained using the back-percolation algorithm to forecast monthly and quarterly time-series water levels at a well that taps into the deeper Evangeline formation of the Gulf Coast aquifer in Victoria, TX. Unlike unconfined formations, no causal relationships exist between water levels and hydro-meteorological variables measured near the vicinity of the well. As such, an endogenous forecasting model using dummy variables to capture short-term seasonal fluctuations and longer-term (decadal) trends was constructed. The root mean square error, mean absolute deviation and correlation coefficient ( R) were noted to be 1.40, 0.33 and 0.77 m, respectively, for an evaluation dataset of quarterly measurements and 1.17, 0.46, and 0.88 m for an evaluative monthly dataset not used to train or test the model. These statistics were better for the ANN model than those developed using statistical regression techniques.

  14. Deployable Crew Quarters

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo

    2008-01-01

    The deployable crew quarters (DCQ) have been designed for the International Space Station (ISS). Each DCQ would be a relatively inexpensive, deployable boxlike structure that is designed to fit in a rack bay. It is to be occupied by one crewmember to provide privacy and sleeping functions for the crew. A DCQ comprises mostly hard panels, made of a lightweight honeycomb or matrix/fiber material, attached to each other by cloth hinges. Both faces of each panel are covered with a layer of Nomex cloth and noise-suppression material to provide noise isolation from ISS. On Earth, the unit is folded flat and attached to a rigid pallet for transport to the ISS. On the ISS, crewmembers unfold the unit and install it in place, attaching it to ISS structural members by use of soft cords (which also help to isolate noise and vibration). A few hard pieces of equipment (principally, a ventilator and a smoke detector) are shipped separately and installed in the DCQ unit by use of a system of holes, slots, and quarter-turn fasteners. Full-scale tests showed that the time required to install a DCQ unit amounts to tens of minutes. The basic DCQ design could be adapted to terrestrial applications to satisfy requirements for rapid deployable emergency shelters that would be lightweight, portable, and quickly erected. The Temporary Early Sleep Station (TeSS) currently on-orbit is a spin-off of the DCQ.

  15. Design and validation of a low cost, high-capacity weighing device for wheelchair users and bariatrics

    PubMed Central

    Sherrod, Brandon A.; Dew, Dustin A.; Rogers, Rebecca; Rimmer, James H.; Eberhardt, Alan W.

    2017-01-01

    Accessible high-capacity weighing scales are scarce in healthcare facilities, in part due to high device cost and weight. This shortage impairs weight monitoring and health maintenance for people with disabilities and/or morbid obesity. We conducted this study to design and validate a lighter, lower cost, high-capacity accessible weighing device. A prototype featuring 360 kg (800 lbs) weight capacity, a wheelchair-accessible ramp, and wireless data transmission was fabricated. Forty-five participants (20 standing, 20 manual wheelchair users, and 5 power wheelchair users) were weighed using the prototype and a calibrated scale. Participants were surveyed to assess perception of each weighing device and the weighing procedure. Weight measurements between devices demonstrated a strong linear correlation (R2=0.997) with absolute differences of 1.4±2.0% (mean±SD). Participant preference ratings showed no difference between devices. The prototype weighed 11 kg (38%) less than the next lightest high-capacity commercial device found by author survey. The prototype’s estimated commercial price range, $500–600, is approximately half the price of the least expensive commercial device found by author survey. Such low cost weighing devices may improve access to weighing instrumentation, which may in turn help eliminate current health disparities. Future work is needed to determine the feasibility of market transition. PMID:27450105

  16. The Virtual Watershed Observatory: Cyberinfrastructure for Model-Data Integration and Access

    NASA Astrophysics Data System (ADS)

    Duffy, C.; Leonard, L. N.; Giles, L.; Bhatt, G.; Yu, X.

    2011-12-01

    The Virtual Watershed Observatory (VWO) is a concept where scientists, water managers, educators and the general public can create a virtual observatory from integrated hydrologic model results, national databases and historical or real-time observations via web services. In this paper, we propose a prototype for automated and virtualized web services software using national data products for climate reanalysis, soils, geology, terrain and land cover. The VWO has the broad purpose of making accessible water resource simulations, real-time data assimilation, calibration and archival at the scale of HUC 12 watersheds (Hydrologic Unit Code) anywhere in the continental US. Our prototype for model-data integration focuses on creating tools for fast data storage from selected national databases, as well as the computational resources necessary for a dynamic, distributed watershed simulation. The paper will describe cyberinfrastructure tools and workflow that attempts to resolve the problem of model-data accessibility and scalability such that individuals, research teams, managers and educators can create a WVO in a desired context. Examples are given for the NSF-funded Shale Hills Critical Zone Observatory and the European Critical Zone Observatories within the SoilTrEC project. In the future implementation of WVO services will benefit from the development of a cloud cyber infrastructure as the prototype evolves to data and model intensive computation for continental scale water resource predictions.

  17. Design and commissioning of a multi-mode prototype for thermochemical conversion of human faeces.

    PubMed

    Jurado, Nelia; Somorin, Tosin; Kolios, Athanasios J; Wagland, Stuart; Patchigolla, Kumar; Fidalgo, Beatriz; Parker, Alison; McAdam, Ewan; Williams, Leon; Tyrrel, Sean

    2018-05-01

    This article describes the design and commissioning of a micro-combustor for energy recovery from human faeces, which can operate both in updraft and downdraft modes. Energy recovery from faecal matter via thermochemical conversion has recently been identified as a feasible solution for sanitation problems in low income countries and locations of high income countries where access to sewage infrastructures is difficult or not possible. This technology can be applied to waterless toilets with the additional outcome of generating heat and power that can be used to pre-treat the faeces before their combustion and to ensure that the entire system is self-sustaining. The work presented here is framed within the Nano Membrane Toilet (NMT) project that is being carried out at Cranfield University, as part of the Reinvent the Toilet Challenge of the Bill and Melinda Gates Foundation. For this study, preliminary trials using simulant faeces pellets were first carried out to find out the optimum values for the main operating variables at the scale required by the process, i.e. a fuel flowrate between 0.4 and 1.2 g/min of dry faeces. Parameters such as ignition temperature, residence time, and maximum temperature reached, were determined and used for the final design of the bench-scale combustor prototype. The prototype was successfully commissioned and the first experimental results, using real human faeces, are discussed in the paper.

  18. Syn-Fuel reciprocating charge pump improvement program. Quarterly technical project report, April-June 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-01-01

    Major accomplishments during the second quarter of 1984 were completion of the Diaphragm Separation Seal clear liquid testing, and initiation of Phase III Field Testing. Diaphragm operational testing was conducted on a clear water test loop. The test goals were to ensure; mechanical reliability of the Diaphragm Seal, safe operation with simulated component failure, and proper operation of the Diaphragm Buffer Volume Control System. This latter system is essential in controlling the phasing of the diaphragm with its driving plunger. These tests were completed successfully. All operational problems were solved. However, it must be emphasized that the Diaphragm Seal wouldmore » be damaged by allowing the pump to operate in a cavitating condition for an extended period of time. A change in the Field Test phase of the program was made regarding choice of field test site. There is no operating Syn-Fuel pilot plant capable of inexpensively producing the slurry stream required for the reciprocating pump testing. The Field Tests will now be conducted by first testing the prototype pump and separation seals in an ambient temperature sand water slurry. This will determine resistence to abrasive wear and determine any operation problems at pressure over a lengthy period of time. After successful conclusion of these tests the pump and seals will be operated with a high temperature oil, but without solids, to identify any problems associated with thermal gradients, thermal shock and differential growth. After successful completion of the high temperature clean oil tests the pump will be deemed ready for in-line installation at a designated Syn-Fuel pilot plant. The above approach avoids the expense and complications of a separate hot slurry test loop. It also reduces risk of operational problems while in-line at the pilot plant. 5 figs.« less

  19. Thirty Meter Telescope narrow-field infrared adaptive optics system real-time controller prototyping results

    NASA Astrophysics Data System (ADS)

    Smith, Malcolm; Kerley, Dan; Chapin, Edward L.; Dunn, Jennifer; Herriot, Glen; Véran, Jean-Pierre; Boyer, Corinne; Ellerbroek, Brent; Gilles, Luc; Wang, Lianqi

    2016-07-01

    Prototyping and benchmarking was performed for the Real-Time Controller (RTC) of the Narrow Field InfraRed Adaptive Optics System (NFIRAOS). To perform wavefront correction, NFIRAOS utilizes two deformable mirrors (DM) and one tip/tilt stage (TTS). The RTC receives wavefront information from six Laser Guide Star (LGS) Shack- Hartmann WaveFront Sensors (WFS), one high-order Natural Guide Star Pyramid WaveFront Sensor (PWFS) and multiple low-order instrument detectors. The RTC uses this information to determine the commands to send to the wavefront correctors. NFIRAOS is the first light AO system for the Thirty Meter Telescope (TMT). The prototyping was performed using dual-socket high performance Linux servers with the real-time (PREEMPT_RT) patch and demonstrated the viability of a commercial off-the-shelf (COTS) hardware approach to large scale AO reconstruction. In particular, a large custom matrix vector multiplication (MVM) was benchmarked which met the required latency requirements. In addition all major inter-machine communication was verified to be adequate using 10Gb and 40Gb Ethernet. The results of this prototyping has enabled a CPU-based NFIRAOS RTC design to proceed with confidence and that COTS hardware can be used to meet the demanding performance requirements.

  20. High rejection reverse osmosis membrane for removal of N-nitrosamines and their precursors.

    PubMed

    Fujioka, Takahiro; Ishida, Kenneth P; Shintani, Takuji; Kodamatani, Hitoshi

    2017-12-12

    Direct potable reuse is becoming a feasible option to cope with water shortages. It requires more stringent water quality assurance than indirect potable reuse. Thus, the development of a high-rejection reverse osmosis (RO) membrane for the removal of one of the most challenging chemicals in potable reuse - N-nitrosodimethylamine (NDMA) - ensures further system confidence in reclaimed water quality. This study aimed to achieve over 90% removal of NDMA by modifying three commercial and one prototype RO membrane using heat treatment. Application of heat treatment to a prototype membrane resulted in a record high removal of 92% (1.1-log) of NDMA. Heat treatment reduced conductivity rejection and permeability, while secondary amines, selected as N-nitrosamine precursors, were still well rejected (>98%) regardless of RO membrane type. This study also demonstrated the highly stable separation performance of the heat-treated prototype membrane under conditions of varying feed temperature and permeate flux. Fouling propensity of the prototype membrane was lower than a commercial RO membrane. This study identified a need to develop highly selective RO membranes with high permeability to ensure the feasibility of using these membranes at full scale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Prototyping phase of the high heat flux scraper element of Wendelstein 7-X

    DOE PAGES

    Boscary, Jean; Greuner, Henri; Ehrke, G.; ...

    2016-03-24

    The water-cooled high heat flux scraper element aims to reduce excessive heat loads on the target element ends of the actively cooled divertor of Wendelstein 7-X. Its purpose is to intercept some of the plasma fluxes both upstream and downstream before they reach the divertor surface. The scraper element has 24 identical plasma facing components (PFCs) divided into 6 modules. One module has 4 PFCs hydraulically connected in series by 2 water boxes. A PFC, 247 mm long and 28 mm wide, has 13 monoblocks made of CFC NB31 bonded by hot isostatic pressing onto a CuCrZr cooling tube equippedmore » with a copper twisted tape. 4 full-scale prototypes of PFCs have been successfully tested in the GLADIS facility up to 20 MW/m 2. The difference observed between measured and calculated surface temperatures is probably due to the inhomogeneity of CFC properties. The design of the water box prototypes has been detailed to allow the junction between the cooling pipe of the PFCs and the water boxes by internal orbital welding. In conclusion, the prototypes are presently under fabrication.« less

  2. Three-dimensional computational fluid dynamics modeling of particle uptake by an occupational air sampler using manually-scaled and adaptive grids

    PubMed Central

    Landázuri, Andrea C.; Sáez, A. Eduardo; Anthony, T. Renée

    2016-01-01

    This work presents fluid flow and particle trajectory simulation studies to determine the aspiration efficiency of a horizontally oriented occupational air sampler using computational fluid dynamics (CFD). Grid adaption and manual scaling of the grids were applied to two sampler prototypes based on a 37-mm cassette. The standard k–ε model was used to simulate the turbulent air flow and a second order streamline-upwind discretization scheme was used to stabilize convective terms of the Navier–Stokes equations. Successively scaled grids for each configuration were created manually and by means of grid adaption using the velocity gradient in the main flow direction. Solutions were verified to assess iterative convergence, grid independence and monotonic convergence. Particle aspiration efficiencies determined for both prototype samplers were undistinguishable, indicating that the porous filter does not play a noticeable role in particle aspiration. Results conclude that grid adaption is a powerful tool that allows to refine specific regions that require lots of detail and therefore better resolve flow detail. It was verified that adaptive grids provided a higher number of locations with monotonic convergence than the manual grids and required the least computational effort. PMID:26949268

  3. Design of a piezoelectric inchworm actuator and compliant end effector for minimally invasive surgery

    NASA Astrophysics Data System (ADS)

    Canfield, Shawn; Edinger, Ben; Frecker, Mary I.; Koopmann, Gary H.

    1999-06-01

    Recent advances in robotics, tele-robotics, smart material actuators, and mechatronics raise new possibilities for innovative developments in millimeter-scale robotics capable of manipulating objects only fractions of a millimeter in size. These advances can have a wide range of applications in the biomedical community. A potential application of this technology is in minimally invasive surgery (MIS). The focus of this paper is the development of a single degree of freedom prototype to demonstrate the viability of smart materials, force feedback and compliant mechanisms for minimally invasive surgery. The prototype is a compliant gripper that is 7-mm by 17-mm, made from a single piece of titanium that is designed to function as a needle driver for small scale suturing. A custom designed piezoelectric `inchworm' actuator drives the gripper. The integrated system is computer controlled providing a user interface device capable of force feedback. The design methodology described draws from recent advances in three emerging fields in engineering: design of innovative tools for MIS, design of compliant mechanisms, and design of smart materials and actuators. The focus of this paper is on the design of a millimeter-scale inchworm actuator for use with a compliant end effector in MIS.

  4. Notable licensing deals in the biopharma industry in the second quarter of 2017.

    PubMed

    D'Souza, P

    2017-08-01

    During the second quarter of 2017, Cortellis Competitive Intelligence added 967 new licensing deals (excluding mergers and acquisition deals) as part of its ongoing coverage of pharmaceutical licensing activity. This meant an 8% decrease on the previous quarter (1,050) and a 3% decrease from the same quarter in 2016 (993). This quarter also showed a significant decline in the number of deals worth more than USD 0.5 billion from the last quarter (7 vs. 17). This article will highlight a number of the most valuable and notable deals forged during the quarter, as well as a selection of deals from some of the most prolific deal makers in the life sciences. An update on milestone, options and terminated deals of significance will also be presented, along with an early outlook on the next quarter's pharmaceutical licensing activity.

  5. Continuously distributed magnetization profile for millimeter-scale elastomeric undulatory swimming

    NASA Astrophysics Data System (ADS)

    Diller, Eric; Zhuang, Jiang; Zhan Lum, Guo; Edwards, Matthew R.; Sitti, Metin

    2014-04-01

    We have developed a millimeter-scale magnetically driven swimming robot for untethered motion at mid to low Reynolds numbers. The robot is propelled by continuous undulatory deformation, which is enabled by the distributed magnetization profile of a flexible sheet. We demonstrate control of a prototype device and measure deformation and speed as a function of magnetic field strength and frequency. Experimental results are compared with simple magnetoelastic and fluid propulsion models. The presented mechanism provides an efficient remote actuation method at the millimeter scale that may be suitable for further scaling down in size for micro-robotics applications in biotechnology and healthcare.

  6. 42 CFR 433.10 - Rates of FFP for program services.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...; (B) 95 percent, for calendar quarters in CY 2017; (C) 94 percent, for calendar quarters in CY 2018... quarters in CY 2018; and (F) 100 percent, for calendar quarters in CY 2019 and all subsequent calendar...

  7. Experimental intramammary inoculation with Mycoplasma bovis in vaccinated and unvaccinated cows: effect on milk production and milk quality.

    PubMed Central

    Boothby, J T; Jasper, D E; Thomas, C B

    1986-01-01

    The effect of vaccination on milk production was evaluated in vaccinated and control cows experimentally challenged in two of four quarters with live Mycoplasma bovis. During the first three weeks after experimental challenge, six of eight unchallenged quarters on vaccinated cows and seven of eight unchallenged quarters on control cows became infected. Most of these quarters secreted normal milk, with negative California Mastitis Test scores and maintained normal milk production throughout most of the study (although some quarters on control cows remained infected). All challenged quarters became infected, had strong California Mastitis Test reactions, and had a drastic (greater than 85%) loss in milk production. Thereafter, four of eight challenged quarters on control cows remained infected, had mostly positive California Mastitis Test scores, produced mostly normal-appearing milk, and recovered some productive capabilities. By the end of the study no M. bovis could be recovered from challenged quarters on vaccinated cows and the milk appeared mostly normal. The California Mastitis Test scores on these quarters, however, remained elevated and milk production remained very low. PMID:3756674

  8. Validating a Geographical Image Retrieval System.

    ERIC Educational Resources Information Center

    Zhu, Bin; Chen, Hsinchun

    2000-01-01

    Summarizes a prototype geographical image retrieval system that demonstrates how to integrate image processing and information analysis techniques to support large-scale content-based image retrieval. Describes an experiment to validate the performance of this image retrieval system against that of human subjects by examining similarity analysis…

  9. Los Angeles-Gateway Freight Advanced Traveler Information System : prototype development and small-scale demonstrations for FRATIS.

    DOT National Transportation Integrated Search

    2013-06-01

    This Demonstration Plan has been prepared to provide guidance and a common definition to all parties of the testing program that will be conducted for the LA-Gateway FRATIS Demonstration Project. More specifically, this document provides: Plannin...

  10. IMPLEMENTATION OF GREEN ROOF SUSTAINABILITY IN ARID CONDITIONS

    EPA Science Inventory

    We successfully designed and fabricated accurately scaled prototypes of a green roof and a conventional white roof and began testing in simulated conditions of 115-70°F with relative humidity of 13%. The design parameters were based on analytical models created through ver...

  11. Investigation of an Ultrafast Harmonic Resonant RF Kicker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yulu

    An Energy Recovery Linac (ERL) based multi-turn electron Circulator Cooler Ring (CCR) is envisaged in the proposed Jefferson Lab Electron Ion Collider (JLEIC) to cool the ion bunches with high energy (55 MeV), high current (1.5 A), high repetition frequency (476.3 MHz), high quality magnetized electron bunches. A critical component in this scheme is a pair of ultrafast kickers for the exchange of electron bunches between the ERL and the CCR. The ultrafast kicker should operate with the rise and fall time in less than 2.1 ns, at the repetition rate of ~10s MHz, and should be able to runmore » continuously during the whole period of cooling. These -and-fall time being combined together, are well beyond the state-of-art of traditional pulsed power supplies and magnet kickers. To solve this technical challenge, an alternative method is to generate this high repetition rate, fast rise-and-fall time short pulse continuous waveform by summing several finite number of (co)sine waves at harmonic frequencies of the kicking repetition frequency, and these harmonic modes can be generated by the Quarter Wave Resonater (QWR) based multifrequency cavities. Assuming the recirculator factor is 10, 10 harmonic modes (from 47.63 MHz to 476.3 MHz) with proper amplitudes and phases, plus a DC offset are combined together, a continuous short pulse waveform with the rise-and-fall time in less than 2.1 ns, repetition rate of 47.63 MHz waveform can be generated. With the compact and matured technology of QWR cavities, the total cost of both hardware development and operation can be reduced to a modest level. Focuse on the technical scheme, three main topics will be discussed in this thesis: the synthetization of the kicking pulse, the design and optimization of the deflecting QWR multi-integer harmonic frequency resonator and the fabrication and bench measurements of a half scale copper prototype. In the kicking pulse synthetization part, we begin with the Fourier Series expansion of an ideal square pulse, and get a Flat-Top waveform which will give a uniform kick over the bunch length of the kicked electron bunches, thus the transverse emittance of these kicked electron bunches can be maintained. By using two identical kickers with the betatron phase advance of 180 degree or its odd multiples, the residual kick voltage wave slopes at the unkicked bunch position will be totally cancelled out. Flat-Top waveform combined with two kicker scheme, the transverse emittance of the cooling electron bunches will be conserved during the whole injection, recirculation, and ejection processes. In the cavity design part, firstly, the cavity geometry is optimized to get high transverse shunt impedance thus less than 100 W of RF losses on the cavity wall can be achieved for all these 10 harmonic modes. To support all these 10 harmonic modes, group of four QWRs are adopted with the mode distribution of 5:3:1:1. In the multi-frequency cavities such as the five-mode-cavity and the three-mode-cavity, tunings are required to achieve the design frequencies for each mode. Slight segments of taper design on the inner conductor help to get the frequencies to be exactly on the odd harmonic modes. Stub tuners equal to the number of resonant modes are inserted to the outer conductor wall to compensate the frequency shifts due manufacturing errors and other perturbations during the operation such as the change of the cavity temperature. Single loop couple is designed for all harmonic modes in each cavity. By adjusting its loop size, position and rotation, it is possible to get the fundamental mode critical coupled and other higher harmonic modes slightly over coupled. A broadband circulator will be considered for absorbing the reflected power. Finally in this part, multipole field components due to the asymmetric cylindrical structure around the beam axis of the cavity as well as the beam-induced higher order mode (HOM) issues will be analyzed and discussed in this thesis. A half-scale copper prototype cavity (resonant frequencies from 95.26 MHz to 857.34 MHz) was fabricated to validate the electromagnetic characteristics. With this half scale prototype, the tuning processes of multiple harmonic frequencies, unloaded quality factor measurements of each mode, and bead-pull measurements are performed. The bench measurement results matched well with the simulation results, which have validated our cavity design and construction methods. Finally, a simple mode combining experiment with five separate signal generators was performed on this prototype cavity and the desired fast rise/fall time (1.2 ns), high repetition rate (95.26 MHz) waveform was captured, which finally proved our design of this ultrafast harmonic kicker.« less

  12. Test of the CLAS12 RICH large-scale prototype in the direct proximity focusing configuration

    DOE PAGES

    Anefalos Pereira, S.; Baltzell, N.; Barion, L.; ...

    2016-02-11

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c up to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Laboratory. The adopted solution foresees a novel hybrid optics design based on aerogel radiator, composite mirrors and high-packed and high-segmented photon detectors. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). We report here the results of the tests of a large scale prototype of the RICH detector performed withmore » the hadron beam of the CERN T9 experimental hall for the direct detection configuration. As a result, the tests demonstrated that the proposed design provides the required pion-to-kaon rejection factor of 1:500 in the whole momentum range.« less

  13. Design of high-activity single-atom catalysts via n-p codoping

    NASA Astrophysics Data System (ADS)

    Wang, Xiaonan; Zhou, Haiyan; Zhang, Xiaoyang; Jia, Jianfeng; Wu, Haishun

    2018-03-01

    The large-scale synthesis of stable single-atom catalysts (SACs) in experiments remains a significant challenge due to high surface free energy of metal atom. Here, we propose a concise n-p codoping approach, and find it can not only disperse the relatively inexpensive metal, copper (Cu), onto boron (B)-doped graphene, but also result in high-activity SACs. We use CO oxidation on B/Cu codoped graphene as a prototype example, and demonstrate that: (1) a stable SAC can be formed by stronger electrostatic attraction between the metal atom (n-type Cu) and support (p-type B-doped graphene). (2) the energy barrier of the prototype CO oxidation on B/Cu codoped graphene is 0.536 eV by the Eley-Rideal mechanism. Further analysis shows that the spin selection rule can provide well theoretical insight into high activity of our suggested SAC. The concept of n-p codoping may lead to new strategy in large-scale synthesis of stable single-atom catalysts.

  14. Flight Test of GL-1 Glider Half Scale Prototype

    NASA Astrophysics Data System (ADS)

    Fikri Zulkarnain, Muhammad; Fazlur Rahman, Muhammad; Luthfi Imam Nurhakim, Muhammad; Arifianto, Ony; Mulyanto, Taufiq

    2018-04-01

    GL-1 is a single-seat mid-performance glider, designed to be Indonesian National Glider. The Glider have been developing since 2014. The development produced a half scale prototype called BL-1, which had accomplished static test in 2016, then followed by first flight test at April 20th 2017, and second flight test at May 21st 2017. The purpose of the flight test was to obtain familiarization of the aircraft, aerodynamics characteristics and flow visualization, with data from flight recorded in FDR. The flight test resulted in two flights with total length of 21 minutes. The data from FDR and flight test documents extracted to analyze the characteristics and behavior of the aircraft during flight test. The aerodynamics characteristic was close to analytical results. The control was good; however, the effectiveness of control surface may need to be further analyzed. The result of the flight test will be used as a reference for further improvements and may need further testing.

  15. Oscar: a portable prototype system for the study of climate variability

    NASA Astrophysics Data System (ADS)

    Madonna, Fabio; Rosoldi, Marco; Amato, Francesco

    2015-04-01

    The study of the techniques for the exploitation of solar energy implies the knowledge of nature, ecosystem, biological factors and local climate. Clouds, fog, water vapor, and the presence of large concentrations of dust can significantly affect the way to exploit the solar energy. Therefore, a quantitative characterization of the impact of climate variability at the regional scale is needed to increase the efficiency and sustainability of the energy system. OSCAR (Observation System for Climate Application at Regional scale) project, funded in the frame of the PO FESR 2007-2013, aims at the design of a portable prototype system for the study of correlations among the trends of several Essential Climate Variables (ECVs) and the change in the amount of solar irradiance at the ground level. The final goal of this project is to provide a user-friendly low cost solution for the quantification of the impact of regional climate variability on the efficiency of solar cell and concentrators to improve the exploitation of natural sources. The prototype has been designed on the basis of historical measurements performed at CNR-IMAA Atmospheric Observatory (CIAO). Measurements from satellite and data from models have been also considered as ancillary to the study, above all, to fill in the gaps of existing datasets. In this work, the results outcome from the project activities will be presented. The results include: the design and implementation of the prototype system; the development of a methodology for the estimation of the impact of climate variability, mainly due to aerosol, cloud and water vapor, on the solar irradiance using the integration of the observations potentially provided by prototype; the study of correlation between the surface radiation, precipitation and aerosols transport. In particular, a statistical study will be presented to assess the impact of the atmosphere on the solar irradiance at the ground, quantifying the contribution due to aerosol and clouds and separating their effect on the direct and the diffuse components of the solar radiation. This also aims to provide recommendations to the manufacturer of the devices used to exploit solar radiation.

  16. Prototype of an Integrated Hurricane Information System for Research: Description and Illustration of its Use in Evaluating WRF Model Simulations

    NASA Astrophysics Data System (ADS)

    Hristova-Veleva, S.; Chao, Y.; Vane, D.; Lambrigtsen, B.; Li, P. P.; Knosp, B.; Vu, Q. A.; Su, H.; Dang, V.; Fovell, R.; Tanelli, S.; Garay, M.; Willis, J.; Poulsen, W.; Fishbein, E.; Ao, C. O.; Vazquez, J.; Park, K. J.; Callahan, P.; Marcus, S.; Haddad, Z.; Fetzer, E.; Kahn, R.

    2007-12-01

    In spite of recent improvements in hurricane track forecast accuracy, currently there are still many unanswered questions about the physical processes that determine hurricane genesis, intensity, track and impact on large- scale environment. Furthermore, a significant amount of work remains to be done in validating hurricane forecast models, understanding their sensitivities and improving their parameterizations. None of this can be accomplished without a comprehensive set of multiparameter observations that are relevant to both the large- scale and the storm-scale processes in the atmosphere and in the ocean. To address this need, we have developed a prototype of a comprehensive hurricane information system of high- resolution satellite, airborne and in-situ observations and model outputs pertaining to: i) the thermodynamic and microphysical structure of the storms; ii) the air-sea interaction processes; iii) the larger-scale environment as depicted by the SST, ocean heat content and the aerosol loading of the environment. Our goal was to create a one-stop place to provide the researchers with an extensive set of observed hurricane data, and their graphical representation, together with large-scale and convection-resolving model output, all organized in an easy way to determine when coincident observations from multiple instruments are available. Analysis tools will be developed in the next step. The analysis tools will be used to determine spatial, temporal and multiparameter covariances that are needed to evaluate model performance, provide information for data assimilation and characterize and compare observations from different platforms. We envision that the developed hurricane information system will help in the validation of the hurricane models, in the systematic understanding of their sensitivities and in the improvement of the physical parameterizations employed by the models. Furthermore, it will help in studying the physical processes that affect hurricane development and impact on large-scale environment. This talk will describe the developed prototype of the hurricane information systems. Furthermore, we will use a set of WRF hurricane simulations and compare simulated to observed structures to illustrate how the information system can be used to discriminate between simulations that employ different physical parameterizations. The work described here was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics ans Space Administration.

  17. Industry evolution through consolidation: Implications for addiction treatment.

    PubMed

    Corredoira, Rafael A; Kimberly, John R

    2006-10-01

    Drawing on experiences in other industries, this article argues that the business of addiction treatment is likely to be transformed by the advent of a period of consolidation, in which a number of small independent programs will be acquired by larger, better capitalized, and managerially more sophisticated enterprises. Consolidation will be driven by opportunities to leverage new technologies, to exploit new regulatory initiatives, and to introduce economies of scale and scope into an industry that is currently highly fragmented. The process is likely to result in segmentation of the market, with the coexistence of large, generalist, highly standardized firms and a number of small highly specialized firms. When an industry consolidates, the types and quality of services provided can improve through the adoption of best practices and through increased competition among larger providers. If these larger providers are publicly traded, however, efforts to improve will inevitably be influenced by pressures to maintain or increase quarter-to-quarter earnings and share prices, leaving open the long-term impact on service quality.

  18. Plasmonic Structure Integrated Single-Photon Detector Configurations to Improve Absorptance and Polarization Contrast

    PubMed Central

    Csete, Mária; Szekeres, Gábor; Szenes, András; Szalai, Anikó; Szabó, Gábor

    2015-01-01

    Configurations capable of maximizing both the absorption component of system detection efficiency and the achievable polarization contrast were determined for 1550 nm polarized light illumination of different plasmonic structure integrated superconducting nanowire single-photon detectors (SNSPDs) consisting of p = 264 nm and P = 792 nm periodic niobium nitride (NbN) patterns on silica substrate. Global effective NbN absorptance maxima appear in case of p/s-polarized light illumination in S/P-orientation (γ = 90°/0° azimuthal angle) and the highest polarization contrast is attained in S-orientation of all devices. Common nanophotonical origin of absorptance enhancement is collective resonance on nanocavity gratings with different profiles, which is promoted by coupling between localized modes in quarter-wavelength metal-insulator-metal nanocavities and laterally synchronized Brewster-Zenneck-type surface waves in integrated SNSPDs possessing a three-quarter-wavelength-scaled periodicity. The spectral sensitivity and dispersion characteristics reveal that device design specific optimal configurations exist. PMID:25654724

  19. 1. GENERAL VIEW OF SLAVE QUARTERS No. 2 (right). Located ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF SLAVE QUARTERS No. 2 (right). Located north of main house. The building at left is Slave Quarters No. 1 (HABS No. VA-1233 C) - Westend, Slave Quarters No. 2, Route 638 vicinity, Trevilians, Louisa County, VA

  20. Idaho National Laboratory Quarterly Occurrence Analysis - 3rd Quarter FY-2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Lisbeth Ann

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 73 reportable events (23 from the 3rd Qtr FY-16 and 50 from the prior three reporting quarters), as well as 45 other issue reports (including events found to be not reportable and Significant Category A and B conditions)more » identified at INL during the past 12 months (16 from this quarter and 29 from the prior three quarters).« less

  1. Idaho National Laboratory Quarterly Occurrence Analysis - 1st Quarter FY 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Lisbeth Ann

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 74 reportable events (16 from the 1st Qtr FY-16 and 58 from the prior three reporting quarters), as well as 35 other issue reports (including events found to be not reportable and Significant Category A and B conditions)more » identified at INL during the past 12 months (15 from this quarter and 20 from the prior three quarters).« less

  2. 77 FR 51705 - Rescission of Quarterly Financial Reporting Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-27

    ... No. FMCSA-2012-0020] RIN-2126-AB48 Rescission of Quarterly Financial Reporting Requirements AGENCY...: FMCSA withdraws its June 27, 2012, direct final rule eliminating the quarterly financial reporting... future proposing the elimination of the quarterly financial reporting requirements for Form QFR and Form...

  3. Teaching Physics and Feeling Good about It.

    ERIC Educational Resources Information Center

    Prokop, Charles F.

    1988-01-01

    Describes a high school physics teaching sequence including more modern topics. The first quarter covers cosmology, astronomy, optics, wave mechanics, relativity, gravity, and quantum theory. The second quarter covers classical mechanics. The third quarter covers electromagnetism and electronics. The fourth quarter consists of thermodynamics and…

  4. 10 CFR 34.29 - Quarterly inventory.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Quarterly inventory. 34.29 Section 34.29 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Equipment § 34.29 Quarterly inventory. (a) Each licensee shall conduct a quarterly...

  5. 10 CFR 34.29 - Quarterly inventory.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Quarterly inventory. 34.29 Section 34.29 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Equipment § 34.29 Quarterly inventory. (a) Each licensee shall conduct a quarterly...

  6. 10 CFR 34.29 - Quarterly inventory.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Quarterly inventory. 34.29 Section 34.29 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Equipment § 34.29 Quarterly inventory. (a) Each licensee shall conduct a quarterly...

  7. 10 CFR 34.29 - Quarterly inventory.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Quarterly inventory. 34.29 Section 34.29 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Equipment § 34.29 Quarterly inventory. (a) Each licensee shall conduct a quarterly...

  8. 77 FR 39447 - Revisions to Electric Quarterly Report Filing Process

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-03

    ... Quarterly Report Filing Process AGENCY: Federal Energy Regulatory Commission, DOE. ACTION: Notice of... Rule which governs the filing of Electric Quarterly Reports (EQRs), to change the process for filing... Regulatory Commission (Commission) proposes changes to the method for filing Electric Quarterly Reports (EQRs...

  9. 3D PRINTING SUSTAINABLE BUILDING COMPONENTS FOR FAÇADES AND AS WINDOW ELEMENTS

    EPA Science Inventory

    The production of full scale working prototypes that can be installed on site and measured through observation and actual physical measurement are vital. Students will measure mechanical, structural, chemical and optical properties of the walls. Students will do temperature an...

  10. The 80 megawatt wind power project at Kahuku Point, Hawaii

    NASA Technical Reports Server (NTRS)

    Laessig, R. R.

    1982-01-01

    Windfarms Ltd. is developing the two largest wind energy projects in the world. Designed to produce 80 megawatts at Kahuku Point, Hawaii and 350 megawatts in Solano County, California, these projects will be the prototypes for future large-scale wind energy installations throughout the world.

  11. Quarter-BPS states in orbifold sigma models with ADE singularities

    NASA Astrophysics Data System (ADS)

    Wong, Kenny

    2017-06-01

    We study the elliptic genera of two-dimensional orbifold CFTs, where the orbifolding procedure introduces du Val surface singularities on the target space. The N=4 characterdecompositionsoftheellipticgenuscontributionsfromthetwistedsectors at the singularities obey a consistent scaling property, and contain information about the arrangement of exceptional rational curves in the resolution. We also discuss how these twisted sector elliptic genera are related to twining genera and Hodge elliptic genera for sigma models with K3 target space.

  12. TerraSAR-X time-series interferometry detects human-induce subsidence in the Historical Centre of Hanoi, Vietnam

    NASA Astrophysics Data System (ADS)

    Le, Tuan; Chang, Chung-Pai; Nguyen, Xuan

    2016-04-01

    Hanoi was the capital of 12 Vietnamese dynasties, where the most historical relics, archaeological ruins and ancient monuments are located over Vietnam. However, those heritage assets are threatened by the land subsidence process occurred in recent decades, which mainly triggered by massive groundwater exploitation and construction activities. In this work, we use a set of high resolution TerraSAR-X images to map small-scale land subsidence patterns in the Historical Centre of Hanoi from April 2012 to November 2013. Images oversampling is integrated into the Small Baseline InSAR processing chain in order to enlarge the monitoring coverage by increasing the point-wise measurements, maintaining the monitoring scale of single building and monument. We analyzed over 2.4 million radar targets on 13.9 km2 area of interest based on 2 main sites: The Citadel, the Old Quarter and French Quarter. The highest subsidence rate recorded is -14.2 mm/year. Most of the heritage assets are considered as stable except the Roman Catholic Archdiocese and the Ceramic Mosaic Mural with the subsidence rates are -14.2 and -13.7 mm/year, respectively. Eventually, optical image and soil properties map are used to determine the causes of subsidence patterns. The result shows the strong relationships between the existing construction sites, the component of sediments and land subsidence processes that occurred in the study site.

  13. 26 CFR 1.461-1 - General rule for taxable year of deduction.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... quarter, 1964 Apr. 1 300,000 2d quarter, 1964 July 1 300,000 3d quarter, 1964 Oct. 1 300,000 4th quarter... of CFR Sections Affected, which appears in the Finding Aids section of the printed volume and on GPO...

  14. 10 CFR 34.29 - Quarterly inventory.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... RADIOGRAPHIC OPERATIONS Equipment § 34.29 Quarterly inventory. (a) Each licensee shall conduct a quarterly physical inventory to account for all sealed sources and for devices containing depleted uranium received... 10 Energy 1 2010-01-01 2010-01-01 false Quarterly inventory. 34.29 Section 34.29 Energy NUCLEAR...

  15. 19 CFR 159.34 - Certified quarterly rate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... TREASURY (CONTINUED) LIQUIDATION OF DUTIES Conversion of Foreign Currency § 159.34 Certified quarterly rate. (a) Countries for which quarterly rate is certified. For the currency of each of the following... York for such foreign currency for a day in that quarter: Australia, Austria, Belgium, Brazil, Canada...

  16. 78 FR 59093 - Quarterly Rail Cost Adjustment Factor

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-25

    ...)] Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board, DOT ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the fourth quarter 2013 rail cost adjustment factor (RCAF) and cost index filed by the Association of American Railroads. The fourth quarter 2013 RCAF...

  17. 49 CFR 228.101 - Distance requirement for employee sleeping quarters; definitions used in this subpart.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Distance requirement for employee sleeping... OF SERVICE OF RAILROAD EMPLOYEES; RECORDKEEPING AND REPORTING; SLEEPING QUARTERS Construction of Railroad-Provided Sleeping Quarters § 228.101 Distance requirement for employee sleeping quarters...

  18. 49 CFR 228.101 - Distance requirement for employee sleeping quarters; definitions used in this subpart.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Distance requirement for employee sleeping... OF SERVICE OF RAILROAD EMPLOYEES; RECORDKEEPING AND REPORTING; SLEEPING QUARTERS Construction of Railroad-Provided Sleeping Quarters § 228.101 Distance requirement for employee sleeping quarters...

  19. 49 CFR 228.101 - Distance requirement for employee sleeping quarters; definitions used in this subpart.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Distance requirement for employee sleeping... OF SERVICE OF RAILROAD EMPLOYEES; RECORDKEEPING AND REPORTING; SLEEPING QUARTERS Construction of Railroad-Provided Sleeping Quarters § 228.101 Distance requirement for employee sleeping quarters...

  20. 26 CFR 1.461-1 - General rule for taxable year of deduction.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... quarter, 1964 Apr. 1 300,000 2d quarter, 1964 July 1 300,000 3d quarter, 1964 Oct. 1 300,000 4th quarter... of CFR Sections Affected, which appears in the Finding Aids section of the printed volume and at www...

Top