Sample records for ceprate sc stem

  1. Modeling dynamics of mutants in heterogeneous stem cell niche

    NASA Astrophysics Data System (ADS)

    Shahriyari, L.; Mahdipour-Shirayeh, A.

    2017-02-01

    Studying the stem cell (SC) niche architecture is a crucial step for investigating the process of oncogenesis and obtaining an effective stem cell therapy for various cancers. Recently, it has been observed that there are two groups of SCs in the SC niche collaborating with each other to maintain tissue homeostasis: border stem cells (BSCs), which are responsible in controlling the number of non-stem cells as well as stem cells, and central stem cells (CeSCs), which regulate the SC niche. Here, we develop a bi-compartmental stochastic model for the SC niche to study the spread of mutants within the niche. The analytic calculations and numeric simulations, which are in perfect agreement, reveal that in order to delay the spread of mutants in the SC niche, a small but non-zero number of SC proliferations must occur in the CeSC compartment. Moreover, the migration of BSCs to CeSCs delays the spread of mutants. Furthermore, the fixation probability of mutants in the SC niche is independent of types of SC division as long as all SCs do not divide fully asymmetrically. Additionally, the progeny of CeSCs have a much higher chance than the progeny of BSCs to take over the entire niche.

  2. Ethical Issues in Stem Cell Research

    PubMed Central

    Lo, Bernard; Parham, Lindsay

    2009-01-01

    Stem cell research offers great promise for understanding basic mechanisms of human development and differentiation, as well as the hope for new treatments for diseases such as diabetes, spinal cord injury, Parkinson’s disease, and myocardial infarction. However, human stem cell (hSC) research also raises sharp ethical and political controversies. The derivation of pluripotent stem cell lines from oocytes and embryos is fraught with disputes about the onset of human personhood. The reprogramming of somatic cells to produce induced pluripotent stem cells avoids the ethical problems specific to embryonic stem cell research. In any hSC research, however, difficult dilemmas arise regarding sensitive downstream research, consent to donate materials for hSC research, early clinical trials of hSC therapies, and oversight of hSC research. These ethical and policy issues need to be discussed along with scientific challenges to ensure that stem cell research is carried out in an ethically appropriate manner. This article provides a critical analysis of these issues and how they are addressed in current policies. PMID:19366754

  3. Identification of stem cells from human umbilical cord blood with embryonic and hematopoietic characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Yong; Wang Honglan; Mazzone, Theodore

    2006-08-01

    We identified stem cells from the umbilical cord blood, designated cord blood-stem cells (CB-SC). CB-SC displayed important embryonic stem (ES) cell characteristics including expression of ES-cell-specific molecular markers including transcription factors OCT-4 and Nanog, along with stage-specific embryonic antigen (SSEA)-3 and SSEA-4. CB-SC also expressed hematopoietic cell antigens including CD9, CD45 and CD117, but were negative for CD34. CB-SC displayed very low immunogenicity as indicated by expression of a very low level of major histocompatibility complex (MHC) antigens and failure to stimulate the proliferation of allogeneic lymphocytes. CB-SC could give rise to cells with endothelial-like and neuronal-like characteristics in vitro,more » as demonstrated by expression of lineage-associated markers. Notably, CB-SC could be stimulated to differentiate into functional insulin-producing cells in vivo and eliminated hyperglycemia after transplantation into a streptozotocin-induced diabetic mouse model. These findings may have significant potential to advance stem-cell-based therapeutics.« less

  4. Enhancer of polycomb coordinates multiple signaling pathways to promote both cyst and germline stem cell differentiation in the Drosophila adult testis

    PubMed Central

    Feng, Lijuan; Shi, Zhen; Chen, Xin

    2017-01-01

    Stem cells reside in a particular microenvironment known as a niche. The interaction between extrinsic cues originating from the niche and intrinsic factors in stem cells determines their identity and activity. Maintenance of stem cell identity and stem cell self-renewal are known to be controlled by chromatin factors. Herein, we use the Drosophila adult testis which has two adult stem cell lineages, the germline stem cell (GSC) lineage and the cyst stem cell (CySC) lineage, to study how chromatin factors regulate stem cell differentiation. We find that the chromatin factor Enhancer of Polycomb [E(Pc)] acts in the CySC lineage to negatively control transcription of genes associated with multiple signaling pathways, including JAK-STAT and EGF, to promote cellular differentiation in the CySC lineage. E(Pc) also has a non-cell-autonomous role in regulating GSC lineage differentiation. When E(Pc) is specifically inactivated in the CySC lineage, defects occur in both germ cell differentiation and maintenance of germline identity. Furthermore, compromising Tip60 histone acetyltransferase activity in the CySC lineage recapitulates loss-of-function phenotypes of E(Pc), suggesting that Tip60 and E(Pc) act together, consistent with published biochemical data. In summary, our results demonstrate that E(Pc) plays a central role in coordinating differentiation between the two adult stem cell lineages in Drosophila testes. PMID:28196077

  5. [Stem and progenitor cells in biostructure of blood vessel walls].

    PubMed

    Korta, Krzysztof; Kupczyk, Piotr; Skóra, Jan; Pupka, Artur; Zejler, Paweł; Hołysz, Marcin; Gajda, Mariusz; Nowakowska, Beata; Barć, Piotr; Dorobisz, Andrzej T; Dawiskiba, Tomasz; Szyber, Piotr; Bar, Julia

    2013-09-18

    Development of vascular and hematopoietic systems during organogenesis occurs at the same time. During vasculogenesis, a small part of cells does not undergo complete differentiation but stays on this level, "anchored" in tissue structures described as stem cell niches. The presence of blood vessels within tissue stem cell niches is typical and led to identification of niches and ensures that they are functioning. The three-layer biostructure of vessel walls for artery and vein, tunica: intima, media and adventitia, for a long time was defined as a mechanical barrier between vessel light and the local tissue environment. Recent findings from vascular biology studies indicate that vessel walls are dynamic biostructures, which are equipped with stem and progenitor cells, described as vascular wall-resident stem cells/progenitor cells (VW-SC/PC). Distinct zones for vessel wall harbor heterogeneous subpopulations of VW-SC/PC, which are described as "subendothelial or vasculogenic zones". Recent evidence from in vitro and in vivo studies show that prenatal activity of stem and progenitor cells is not only limited to organogenesis but also exists in postnatal life, where it is responsible for vessel wall homeostasis, remodeling and regeneration. It is believed that VW-SC/PC could be engaged in progression of vascular disorders and development of neointima. We would like to summarize current knowledge about mesenchymal and progenitor stem cell phenotype with special attention to distribution and biological properties of VW-SC/PC in biostructures of intima, media and adventitia niches. It is postulated that in the near future, niches for VW-SC/PC could be a good source of stem and progenitor cells, especially in the context of vessel tissue bioengineering as a new alternative to traditional revascularization therapies.

  6. The Current Status of Stem-Cell Therapy in Erectile Dysfunction: A Review

    PubMed Central

    Reed-Maldonado, Amanda B

    2016-01-01

    Stem cells are undifferentiated cells that are capable of renewal and repair of tissue due to their capacity for division and differentiation. The purpose of this review is to describe recent advances in the use of stem cell (SC) therapy for male erectile dysfunction (ED). We performed a MEDLINE database search of all relevant articles regarding the use of SCs for ED. We present a concise summary of the scientific principles behind the usage of SC for ED. We discuss the different types of SCs, delivery methods, current pre-clinical literature, and published clinical trials. Four clinical trials employing SC for ED have been published. These articles are summarized in this review. All four report improvements in ED after SC therapy. SC therapy remains under investigation for the treatment of ED. It is reassuring that clinical trials thus far have reported positive effects on erectile function and few adverse events. Safety and methodical concerns about SC acquisition, preparation and delivery remain and require continued investigation prior to wide-spread application of these methods. PMID:28053944

  7. Bovine mammary stem cells: Cell biology meets production agriculture

    USDA-ARS?s Scientific Manuscript database

    Mammary stem cells (MaSC) provide for net growth, renewal and turnover of mammary epithelial cells, and are therefore potential targets for strategies to increase production efficiency. Appropriate regulation of MaSC can potentially benefit milk yield, persistency, dry period management and tissue ...

  8. Use of a Novel Embryonic Mammary Stem Cell Gene Signature to Improve Human Breast Cancer Diagnostics and Therapeutic Decision Making

    DTIC Science & Technology

    2015-12-01

    Our major goals are to determine whether Fetal Mammary Stem Cell (fMaSC) signatures correlate with response to chemotherapy and metastasis in...these aims will enable us to: 1) better categorize distinct cell types within the fMaSC population, 2) identify biomarkers for prospective stem cell purification...and in situ localization, and 3) identify candidate stem cell regulatory pathways that should reveal therapeutic targets and improved

  9. Use of a Novel Embryonic Mammary Stem Cell Gene Signature to Improve Human Breast Cancer Diagnostics and Therapeutic Decision Making

    DTIC Science & Technology

    2014-10-01

    Our major goals are to determine whether Fetal Mammary Stem Cell (fMaSC) signatures correlate with response to chemotherapy and metastasis in...these aims will enable us to: 1) better categorize distinct cell types within the fMaSC population, 2) identify biomarkers for prospective stem cell purification...and in situ localization, and 3) identify candidate stem cell regulatory pathways that should reveal therapeutic targets and improved

  10. Mammary stem cells: Novel markers and novel approaches to increase lactation efficiency

    USDA-ARS?s Scientific Manuscript database

    Mammary stem cells (MaSC) provide for net growth, renewal and turnover of mammary epithelial cells, and are therefore potential targets for strategies to increase production efficiency. Appropriate regulation of MaSC can potentially benefit milk yield, persistency, dry period management and tissue r...

  11. Perception and knowledge about stem cell and tissue engineering research: a survey amongst researchers and medical practitioners in perinatology.

    PubMed

    Gucciardo, Léonardo; De Koninck, Philip; Verfaillie, Catherine; Lories, Rik; Deprest, Jan

    2014-08-01

    Stem cell and tissue engineering (SC&TE) research remain controversial. Polemics are potential hurdles for raising public funds for research and clinical implementation. In view of future applications of SC&TE in perinatal conditions, we aimed to measure the background knowledge, perceptions or beliefs on SC&TE research among clinicians and academic researchers with perinatal applications on the department's research agenda. We polled three professional categories: general obstetrician gynecologists, perinatologists and basic or translational researchers in development and regeneration. The survey included questions on demographics, work environment, educational background, general knowledge, expectations, opinions and ethical reflections of the respondent about SC&TE. The response rate was 39 %. Respondents were mainly female (54 %) and under 40 years (63 %). The general background knowledge about SC&TE is low. Respondents confirm that remaining controversies still arise from the confusion that stem cell research coincides with embryo manipulation. Clinicians assume that stem cell research has reached the level of clinical implementation, and accept the risks associated of purposely harvesting fetal amniotic cells. Researchers in contrast are more cautious about both implementation and risks. Professionals in the field of perinatology may benefit of a better background knowledge and information on current SC & TE research. Though clinicians may be less aware of the current state of knowledge, they are open to clinical implementation, whereas dedicated researchers remain cautious. In view of the clinical introduction of SC & TE, purposed designed informative action should be taken and safety studies executed, hence avoid sustaining needless polemics.

  12. Three-Dimensional Spatiotemporal Modeling of Colon Cancer Organoids Reveals that Multimodal Control of Stem Cell Self-Renewal is a Critical Determinant of Size and Shape in Early Stages of Tumor Growth.

    PubMed

    Yan, Huaming; Konstorum, Anna; Lowengrub, John S

    2018-05-01

    We develop a three-dimensional multispecies mathematical model to simulate the growth of colon cancer organoids containing stem, progenitor and terminally differentiated cells, as a model of early (prevascular) tumor growth. Stem cells (SCs) secrete short-range self-renewal promoters (e.g., Wnt) and their long-range inhibitors (e.g., Dkk) and proliferate slowly. Committed progenitor (CP) cells proliferate more rapidly and differentiate to produce post-mitotic terminally differentiated cells that release differentiation promoters, forming negative feedback loops on SC and CP self-renewal. We demonstrate that SCs play a central role in normal and cancer colon organoids. Spatial patterning of the SC self-renewal promoter gives rise to SC clusters, which mimic stem cell niches, around the organoid surface, and drive the development of invasive fingers. We also study the effects of externally applied signaling factors. Applying bone morphogenic proteins, which inhibit SC and CP self-renewal, reduces invasiveness and organoid size. Applying hepatocyte growth factor, which enhances SC self-renewal, produces larger sizes and enhances finger development at low concentrations but suppresses fingers at high concentrations. These results are consistent with recent experiments on colon organoids. Because many cancers are hierarchically organized and are subject to feedback regulation similar to that in normal tissues, our results suggest that in cancer, control of cancer stem cell self-renewal should influence the size and shape in similar ways, thereby opening the door to novel therapies.

  13. Three-Dimensional Spatiotemporal Modeling of Colon Cancer Organoids Reveals that Multimodal Control of Stem Cell Self-Renewal is a Critical Determinant of Size and Shape in Early Stages of Tumor Growth

    PubMed Central

    Yan, Huaming; Konstorum, Anna

    2017-01-01

    We develop a three-dimensional multispecies mathematical model to simulate the growth of colon cancer organoids containing stem, progenitor and terminally differentiated cells, as a model of early (prevascular) tumor growth. Stem cells (SCs) secrete short-range self-renewal promoters (e.g., Wnt) and their long-range inhibitors (e.g., Dkk) and proliferate slowly. Committed progenitor (CP) cells proliferate more rapidly and differentiate to produce post-mitotic terminally differentiated cells that release differentiation promoters, forming negative feedback loops on SC and CP self-renewal. We demonstrate that SCs play a central role in normal and cancer colon organoids. Spatial patterning of the SC self-renewal promoter gives rise to SC clusters, which mimic stem cell niches, around the organoid surface, and drive the development of invasive fingers. We also study the effects of externally applied signaling factors. Applying bone morphogenic proteins, which inhibit SC and CP self-renewal, reduces invasiveness and organoid size. Applying hepatocyte growth factor, which enhances SC self-renewal, produces larger sizes and enhances finger development at low concentrations but suppresses fingers at high concentrations. These results are consistent with recent experiments on colon organoids. Because many cancers are hierarchically organized and are subject to feedback regulation similar to that in normal tissues, our results suggest that in cancer, control of cancer stem cell self-renewal should influence the size and shape in similar ways, thereby opening the door to novel therapies. PMID:28681151

  14. Induction of muscle stem cell quiescence by the secreted niche factor Oncostatin M.

    PubMed

    Sampath, Srinath C; Sampath, Srihari C; Ho, Andrew T V; Corbel, Stéphane Y; Millstone, Joshua D; Lamb, John; Walker, John; Kinzel, Bernd; Schmedt, Christian; Blau, Helen M

    2018-04-18

    The balance between stem cell quiescence and proliferation in skeletal muscle is tightly controlled, but perturbed in a variety of disease states. Despite progress in identifying activators of stem cell proliferation, the niche factor(s) responsible for quiescence induction remain unclear. Here we report an in vivo imaging-based screen which identifies Oncostatin M (OSM), a member of the interleukin-6 family of cytokines, as a potent inducer of muscle stem cell (MuSC, satellite cell) quiescence. OSM is produced by muscle fibers, induces reversible MuSC cell cycle exit, and maintains stem cell regenerative capacity as judged by serial transplantation. Conditional OSM receptor deletion in satellite cells leads to stem cell depletion and impaired regeneration following injury. These results identify Oncostatin M as a secreted niche factor responsible for quiescence induction, and for the first time establish a direct connection between induction of quiescence, stemness, and transplantation potential in solid organ stem cells.

  15. The nuclear lamina regulates germline stem cell niche organization via modulation of EGFR signaling.

    PubMed

    Chen, Haiyang; Chen, Xin; Zheng, Yixian

    2013-07-03

    Stem cell niche interactions have been studied extensively with regard to cell polarity and extracellular signaling. Less is known about the way in which signals and polarity cues integrate with intracellular structures to ensure appropriate niche organization and function. Here, we report that nuclear lamins function in the cyst stem cells (CySCs) of Drosophila testes to control the interaction of CySCs with the hub. This interaction is important for regulation of CySC differentiation and organization of the niche that supports the germline stem cells (GSCs). Lamin promotes nuclear retention of phosphorylated ERK in the CySC lineage by regulating the distribution of specific nucleoporins within the nuclear pores. Lamin-regulated nuclear epidermal growth factor (EGF) receptor signaling in the CySC lineage is essential for proliferation and differentiation of the GSCs and the transient amplifying germ cells. Thus, we have uncovered a role for the nuclear lamina in the integration of EGF signaling to regulate stem cell niche function. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Comparison of the transcriptpmes of long-tern label retaining-cells and C cells microdissected from mammary epithelium: an initial study to character potential stem/progenitor cells

    USDA-ARS?s Scientific Manuscript database

    Mammary stem cells (MaSC) account for the cell lineage of mammary epithelia and provide for mammary growth, development and tissue homeostasis. The presence of MaSC was clearly demonstrated by the generation of an entire mammary gland from a single cell implanted into epithelium-ablated mammary fat...

  17. Stem cell therapy for retinal diseases

    PubMed Central

    Garcia, José Mauricio; Mendonça, Luisa; Brant, Rodrigo; Abud, Murilo; Regatieri, Caio; Diniz, Bruno

    2015-01-01

    In this review, we discuss about current knowledge about stem cell (SC) therapy in the treatment of retinal degeneration. Both human embryonic stem cell and induced pluripotent stem cell has been growth in culture for a long time, and started to be explored in the treatment of blinding conditions. The Food and Drug Administration, recently, has granted clinical trials using SC retinal therapy to treat complex disorders, as Stargardt’s dystrophy, and patients with geographic atrophy, providing good outcomes. This study’s intent is to overview the critical regeneration of the subretinal anatomy through retinal pigment epithelium transplantation, with the goal of reestablish important pathways from the retina to the occipital cortex of the brain, as well as the differentiation from pluripotent quiescent SC to adult retina, and its relationship with a primary retinal injury, different techniques of transplantation, management of immune rejection and tumorigenicity, its potential application in improving patients’ vision, and, finally, approaching future directions and challenges for the treatment of several conditions. PMID:25621115

  18. Stem cells and their role in renal ischaemia reperfusion injury.

    PubMed

    Bagul, Atul; Frost, Jodie H; Drage, Martin

    2013-01-01

    Ischaemia-reperfusion injury (IRI) remains one of the leading causes of acute kidney injury (AKI). IRI is an underlying multifactorial pathophysiological process which affects the outcome in both native and transplanted patients. The high morbidity and mortality associated with IRI/AKI and disappointing results from current available clinical therapeutic approaches prompt further research. Stem cells (SC) are undifferentiated cells that can undergo both renewal and differentiation into one or more cell types which can possibly ameliorate IRI. To carry out a detailed literature analysis and construct a comprehensive literature review addressing the role of SC in AKI secondary to IRI. Evidence favouring the role of SC in renal IRI and evidence showing no benefits of SC in renal IRI are the two main aspects to be studied. The search strategy was based on an extensive search addressing MESH terms and free text terms. The majority of studies in the field of renal IRI and stem cell therapy show substantial benefits. Studies were mostly conducted in small animal models, thus underscoring the need for further pre-clinical studies in larger animal models, and results should be taken with caution. SC therapy may be promising though controversy exists in the exact mechanism. Thorough scientific exploration is required to assess mechanism, safety profile, reproducibility and methods to monitor administered SC. Copyright © 2012 S. Karger AG, Basel.

  19. [The characters and specific features of new human embryonic stem cells lines].

    PubMed

    Krylova, T A; Kol'tsova, A M; Zenin, V V; Gordeeva, O F; Musorina, A S; Goriachaia, T S; Shlykova, S A; Kamenetskaia, Iu K; Pinaev, G P; Polianskaia, G G

    2009-01-01

    Four continuous human embryonic stem cell lines (SC1, SC2, SC3 and SC4), derived from the blastocysts has been described. The cell lines were cultivated on mitotically inactivated human feeder cells. The cell lines SC1 and SC2 have passed through 150 population doublings and the cell lines SC3 and SC4 -- near 120 populations doublings, which exceeds Hayflick limit sufficiently. These cell lines maintain high activity of alkaline phosphatase, expression of transcription factor OCT-4 and cell surface antigens (SSEA-4, TRA-1-60 and TRA-1-81), confirming their ESC status and human specificity. Immunofluorescent detection of antigens, characteristic of ectoderm, endoderm and mesoderm confirms the ability of these cells to retain their pluripotency under in vitro condition. PCR analysis revealed expression of six genes specific for pluripotent cells (OCT-4, NANOG, DPPA3/STELLA, TDGF/CRIPTO and LEFTYA). Correlation between the level of proliferative activity and the character of DNA-bound fluorescent staining was found. Fluorescent dyes, Hoechst 33342 and PI, produced diffuse staining of the nuclei in slowly proliferating cells of the SC1 and SC2 lines. In contrast, in actively proliferating cells of the SC3 and SC4 lines, the clear staining of the nuclei was observed. Upon changing the cultivation condition, proliferative activity of SC3 and SC4 lines decreased and became similar to that of SC1 and SC2 lines. The character of the fluorescent staining of all these lines was also shown to be similar. These results show that quality of the fluorescent staining with Hoechst 33342 and PI reflects the level of proliferation. Possible causes and mechanisms of this feature of human ESC are discussed.

  20. Heterogeneous Structure of Stem Cells Dynamics: Statistical Models and Quantitative Predictions

    PubMed Central

    Bogdan, Paul; Deasy, Bridget M.; Gharaibeh, Burhan; Roehrs, Timo; Marculescu, Radu

    2014-01-01

    Understanding stem cell (SC) population dynamics is essential for developing models that can be used in basic science and medicine, to aid in predicting cells fate. These models can be used as tools e.g. in studying patho-physiological events at the cellular and tissue level, predicting (mal)functions along the developmental course, and personalized regenerative medicine. Using time-lapsed imaging and statistical tools, we show that the dynamics of SC populations involve a heterogeneous structure consisting of multiple sub-population behaviors. Using non-Gaussian statistical approaches, we identify the co-existence of fast and slow dividing subpopulations, and quiescent cells, in stem cells from three species. The mathematical analysis also shows that, instead of developing independently, SCs exhibit a time-dependent fractal behavior as they interact with each other through molecular and tactile signals. These findings suggest that more sophisticated models of SC dynamics should view SC populations as a collective and avoid the simplifying homogeneity assumption by accounting for the presence of more than one dividing sub-population, and their multi-fractal characteristics. PMID:24769917

  1. Application of stem cell-derived retinal pigmented epithelium in retinal degenerative diseases: present and future.

    PubMed

    Luo, Mingyue; Chen, Youxin

    2018-01-01

    As a constituent of blood-retinal barrier and retinal outer segment (ROS) scavenger, retinal pigmented epithelium (RPE) is fundamental to normal function of retina. Malfunctioning of RPE contributes to the onset and advance of retinal degenerative diseases. Up to date, RPE replacement therapy is the only possible method to completely reverse retinal degeneration. Transplantation of human RPE stem cell-derived RPE (hRPESC-RPE) has shown some good results in animal models. With promising results in terms of safety and visual improvement, human embryonic stem cell-derived RPE (hESC-RPE) can be expected in clinical settings in the near future. Despite twists and turns, induced pluripotent stem cell-derived RPE (iPSC-RPE) is now being intensely investigated to overcome genetic and epigenetic instability. By far, only one patient has received iPSC-RPE transplant, which is a hallmark of iPSC technology development. During follow-up, no major complications such as immunogenicity or tumorigenesis have been observed. Future trials should keep focusing on the safety of stem cell-derived RPE (SC-RPE) especially in long period, and better understanding of the nature of stem cell and the molecular events in the process to generate SC-RPE is necessary to the prosperity of SC-RPE clinical application.

  2. Phagocytosis of photoreceptor outer segments by transplanted human neural stem cells as a neuroprotective mechanism in retinal degeneration.

    PubMed

    Cuenca, Nicolás; Fernández-Sánchez, Laura; McGill, Trevor J; Lu, Bin; Wang, Shaomei; Lund, Raymond; Huhn, Stephen; Capela, Alexandra

    2013-10-15

    Transplantation of human central nervous system stem cells (HuCNS-SC) into the subretinal space of Royal College of Surgeons (RCS) rats preserves photoreceptors and visual function. To explore possible mechanism(s) of action underlying this neuroprotective effect, we performed a detailed morphologic and ultrastructure analysis of HuCNS-SC transplanted retinas. The HuCNS-SC were transplanted into the subretinal space of RCS rats. Histologic examination of the transplanted retinas was performed by light and electron microscopy. Areas of the retina adjacent to HuCNS-SC graft (treated regions) were analyzed and compared to control sections obtained from the same retina, but distant from the transplant site (untreated regions). The HuCNS-SC were detected as a layer of STEM 121 immunopositive cells in the subretinal space. In treated regions, preserved photoreceptor nuclei, as well as inner and outer segments were identified readily. In contrast, classic signs of degeneration were observed in the untreated regions. Interestingly, detailed ultrastructure analysis revealed a striking preservation of the photoreceptor-bipolar-horizontal cell synaptic contacts in the outer plexiform layer (OPL) of treated areas, in stark contrast with untreated areas. Finally, the presence of phagosomes and vesicles exhibiting the lamellar structure of outer segments also was detected within the cytosol of HuCNS-SC, indicating that these cells have phagocytic capacity in vivo. This study reveals the novel finding that preservation of specialized synaptic contacts between photoreceptors and second order neurons, as well as phagocytosis of photoreceptor outer segments, are potential mechanism(s) of HuCNS-SC transplantation, mediating functional rescue in retinal degeneration.

  3. The Drosophila BCL6 homolog Ken and Barbie promotes somatic stem cell self-renewal in the testis niche.

    PubMed

    Issigonis, Melanie; Matunis, Erika

    2012-08-15

    Stem cells sustain tissue regeneration by their remarkable ability to replenish the stem cell pool and to generate differentiating progeny. Signals from local microenvironments, or niches, control stem cell behavior. In the Drosophila testis, a group of somatic support cells called the hub creates a stem cell niche by locally activating the Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway in two adjacent types of stem cells: germline stem cells (GSCs) and somatic cyst stem cells (CySCs). Here, we find that ken and barbie (ken) is autonomously required for the self-renewal of CySCs but not GSCs. Furthermore, Ken misexpression in the CySC lineage induces the cell-autonomous self-renewal of somatic cells as well as the nonautonomous self-renewal of germ cells outside the niche. Thus, Ken, like Stat92E and its targets ZFH1 (Leatherman and Dinardo, 2008) and Chinmo (Flaherty et al., 2010), is necessary and sufficient for CySC renewal. However, ken is not a JAK-STAT target in the testis, but instead acts in parallel to Stat92E to ensure CySC self-renewal. Ken represses a subset of Stat92E targets in the embryo (Arbouzova et al., 2006) suggesting that Ken maintains CySCs by repressing differentiation factors. In support of this hypothesis, we find that the global JAK-STAT inhibitor Protein tyrosine phosphatase 61F (Ptp61F) is a JAK-STAT target in the testis that is repressed by Ken. Together, our work demonstrates that Ken has an important role in the inhibition of CySC differentiation. Studies of ken may inform our understanding of its vertebrate orthologue B-Cell Lymphoma 6 (BCL6) and how misregulation of this oncogene leads to human lymphomas. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Survivin Modulates Squamous Cell Carcinoma-Derived Stem-Like Cell Proliferation, Viability and Tumor Formation in Vivo

    PubMed Central

    Lotti, Roberta; Palazzo, Elisabetta; Petrachi, Tiziana; Dallaglio, Katiuscia; Saltari, Annalisa; Truzzi, Francesca; Quadri, Marika; Puviani, Mario; Maiorana, Antonino; Marconi, Alessandra; Pincelli, Carlo

    2016-01-01

    Squamous Cell Carcinoma-derived Stem-like Cells (SCC-SC) originate from alterations in keratinocyte stem cells (KSC) gene expression and sustain tumor development, invasion and recurrence. Since survivin, a KSC marker, is highly expressed in SCC-SC, we evaluate its role in SCC-SC cell growth and SCC models. Survivin silencing by siRNA decreases clonal growth of SCC keratinocytes and viability of total, rapidly adhering (RAD) and non-RAD (NRAD) cells from primary SCC. Similarly, survivin silencing reduces the expression of stem cell markers (OCT4, NOTCH1, CD133, β1-integrin), while it increases the level of differentiation markers (K10, involucrin). Moreover, survivin silencing improves the malignant phenotype of SCC 3D-reconstruct, as demonstrated by reduced epidermal thickness, lower Ki-67 positive cell number, and decreased expression of MMP9 and psoriasin. Furthermore, survivin depletion by siRNA in RasG12V-IκBα-derived tumors leads to smaller tumor formation characterized by lower mitotic index and reduced expression of the tumor-associated marker HIF1α, VEGF and CD51. Therefore, our results indicate survivin as a key gene in regulating SCC cancer stem cell formation and cSCC development. PMID:26771605

  5. NAD⁺ repletion improves mitochondrial and stem cell function and enhances life span in mice.

    PubMed

    Zhang, Hongbo; Ryu, Dongryeol; Wu, Yibo; Gariani, Karim; Wang, Xu; Luan, Peiling; D'Amico, Davide; Ropelle, Eduardo R; Lutolf, Matthias P; Aebersold, Ruedi; Schoonjans, Kristina; Menzies, Keir J; Auwerx, Johan

    2016-06-17

    Adult stem cells (SCs) are essential for tissue maintenance and regeneration yet are susceptible to senescence during aging. We demonstrate the importance of the amount of the oxidized form of cellular nicotinamide adenine dinucleotide (NAD(+)) and its effect on mitochondrial activity as a pivotal switch to modulate muscle SC (MuSC) senescence. Treatment with the NAD(+) precursor nicotinamide riboside (NR) induced the mitochondrial unfolded protein response and synthesis of prohibitin proteins, and this rejuvenated MuSCs in aged mice. NR also prevented MuSC senescence in the mdx (C57BL/10ScSn-Dmd(mdx)/J) mouse model of muscular dystrophy. We furthermore demonstrate that NR delays senescence of neural SCs and melanocyte SCs and increases mouse life span. Strategies that conserve cellular NAD(+) may reprogram dysfunctional SCs and improve life span in mammals. Copyright © 2016, American Association for the Advancement of Science.

  6. Novel Regenerative Therapies Based on Regionally Induced Multipotent Stem Cells in Post-Stroke Brains: Their Origin, Characterization, and Perspective.

    PubMed

    Takagi, Toshinori; Yoshimura, Shinichi; Sakuma, Rika; Nakano-Doi, Akiko; Matsuyama, Tomohiro; Nakagomi, Takayuki

    2017-12-01

    Brain injuries such as ischemic stroke cause severe neural loss. Until recently, it was believed that post-ischemic areas mainly contain necrotic tissue and inflammatory cells. However, using a mouse model of cerebral infarction, we demonstrated that stem cells develop within ischemic areas. Ischemia-induced stem cells can function as neural progenitors; thus, we initially named them injury/ischemia-induced neural stem/progenitor cells (iNSPCs). However, because they differentiate into more than neural lineages, we now refer to them as ischemia-induced multipotent stem cells (iSCs). Very recently, we showed that putative iNSPCs/iSCs are present within post-stroke areas in human brains. Because iNSPCs/iSCs isolated from mouse and human ischemic tissues can differentiate into neuronal lineages in vitro, it is possible that a clearer understanding of iNSPC/iSC profiles and the molecules that regulate iNSPC/iSC fate (e.g., proliferation, differentiation, and survival) would make it possible to perform neural regeneration/repair in patients following stroke. In this article, we introduce the origin and traits of iNSPCs/iSCs based on our reports and recent viewpoints. We also discuss their possible contribution to neurogenesis through endogenous and exogenous iNSPC/iSC therapies following ischemic stroke.

  7. Characterization of mammary epithelial stem/progenitor cells and their changes with aging in common marmosets.

    PubMed

    Wu, Anqi; Dong, Qiaoxiang; Gao, Hui; Shi, Yuanshuo; Chen, Yuanhong; Zhang, Fuchuang; Bandyopadhyay, Abhik; Wang, Danhan; Gorena, Karla M; Huang, Changjiang; Tardif, Suzette; Nathanielsz, Peter W; Sun, Lu-Zhe

    2016-08-25

    Age is the number one risk factor for breast cancer, yet the underlying mechanisms are unexplored. Age-associated mammary stem cell (MaSC) dysfunction is thought to play an important role in breast cancer carcinogenesis. Non-human primates with their close phylogenetic relationship to humans provide a powerful model system to study the effects of aging on human MaSC. In particular, the common marmoset monkey (Callithrix jacchus) with a relatively short life span is an ideal model for aging research. In the present study, we characterized for the first time the mammary epithelial stem/progenitor cells in the common marmoset. The MaSC-enriched cells formed four major types of morphologically distinct colonies when cultured on plates pre-seeded with irradiated NIH3T3 fibroblasts, and were also capable of forming mammospheres in suspension culture and subsequent formation of 3D organoids in Matrigel culture. Most importantly, these 3D organoids were found to contain stem/progenitor cells that can undergo self-renewal and multi-lineage differentiation both in vitro and in vivo. We also observed a significant decrease of luminal-restricted progenitors with age. Our findings demonstrate that common marmoset mammary stem/progenitor cells can be isolated and quantified with established in vitro and in vivo assays used for mouse and human studies.

  8. Aging of the skeletal muscle extracellular matrix drives a stem cell fibrogenic conversion.

    PubMed

    Stearns-Reider, Kristen M; D'Amore, Antonio; Beezhold, Kevin; Rothrauff, Benjamin; Cavalli, Loredana; Wagner, William R; Vorp, David A; Tsamis, Alkiviadis; Shinde, Sunita; Zhang, Changqing; Barchowsky, Aaron; Rando, Thomas A; Tuan, Rocky S; Ambrosio, Fabrisia

    2017-06-01

    Age-related declines in skeletal muscle regeneration have been attributed to muscle stem cell (MuSC) dysfunction. Aged MuSCs display a fibrogenic conversion, leading to fibrosis and impaired recovery after injury. Although studies have demonstrated the influence of in vitro substrate characteristics on stem cell fate, whether and how aging of the extracellular matrix (ECM) affects stem cell behavior has not been investigated. Here, we investigated the direct effect of the aged muscle ECM on MuSC lineage specification. Quantification of ECM topology and muscle mechanical properties reveals decreased collagen tortuosity and muscle stiffening with increasing age. Age-related ECM alterations directly disrupt MuSC responses, and MuSCs seeded ex vivo onto decellularized ECM constructs derived from aged muscle display increased expression of fibrogenic markers and decreased myogenicity, compared to MuSCs seeded onto young ECM. This fibrogenic conversion is recapitulated in vitro when MuSCs are seeded directly onto matrices elaborated by aged fibroblasts. When compared to young fibroblasts, fibroblasts isolated from aged muscle display increased nuclear levels of the mechanosensors, Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ), consistent with exposure to a stiff microenvironment in vivo. Accordingly, preconditioning of young fibroblasts by seeding them onto a substrate engineered to mimic the stiffness of aged muscle increases YAP/TAZ nuclear translocation and promotes secretion of a matrix that favors MuSC fibrogenesis. The findings here suggest that an age-related increase in muscle stiffness drives YAP/TAZ-mediated pathogenic expression of matricellular proteins by fibroblasts, ultimately disrupting MuSC fate. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  9. Signaling Networks among Stem Cell Precursors, Transit-Amplifying Progenitors, and their Niche in Developing Hair Follicles.

    PubMed

    Rezza, Amélie; Wang, Zichen; Sennett, Rachel; Qiao, Wenlian; Wang, Dongmei; Heitman, Nicholas; Mok, Ka Wai; Clavel, Carlos; Yi, Rui; Zandstra, Peter; Ma'ayan, Avi; Rendl, Michael

    2016-03-29

    The hair follicle (HF) is a complex miniorgan that serves as an ideal model system to study stem cell (SC) interactions with the niche during growth and regeneration. Dermal papilla (DP) cells are required for SC activation during the adult hair cycle, but signal exchange between niche and SC precursors/transit-amplifying cell (TAC) progenitors that regulates HF morphogenetic growth is largely unknown. Here we use six transgenic reporters to isolate 14 major skin and HF cell populations. With next-generation RNA sequencing, we characterize their transcriptomes and define unique molecular signatures. SC precursors, TACs, and the DP niche express a plethora of ligands and receptors. Signaling interaction network analysis reveals a bird's-eye view of pathways implicated in epithelial-mesenchymal interactions. Using a systematic tissue-wide approach, this work provides a comprehensive platform, linked to an interactive online database, to identify and further explore the SC/TAC/niche crosstalk regulating HF growth. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. FOXC1 maintains the hair follicle stem cell niche and governs stem cell quiescence to preserve long-term tissue-regenerating potential

    PubMed Central

    Lay, Kenneth; Kume, Tsutomu; Fuchs, Elaine

    2016-01-01

    Adult tissue stem cells (SCs) reside in niches, which orchestrate SC behavior. SCs are typically used sparingly and exist in quiescence unless activated for tissue growth. Whether parsimonious SC use is essential to conserve long-term tissue-regenerating potential during normal homeostasis remains poorly understood. Here, we examine this issue by conditionally ablating a key transcription factor Forkhead box C1 (FOXC1) expressed in hair follicle SCs (HFSCs). FOXC1-deficient HFSCs spend less time in quiescence, leading to markedly shortened resting periods between hair cycles. The enhanced hair cycling accelerates HFSC expenditure, and impacts hair regeneration in aging mice. Interestingly, although FOXC1-deficient HFs can still form a new bulge that houses HFSCs for the next hair cycle, the older bulge is left unanchored. As the new hair emerges, the entire old bulge, including its reserve HFSCs and SC-inhibitory inner cell layer, is lost. We trace this mechanism first, to a marked increase in cell cycle-associated transcripts upon Foxc1 ablation, and second, to a downstream reduction in E-cadherin–mediated inter-SC adhesion. Finally, we show that when the old bulge is lost with each hair cycle, overall levels of SC-inhibitory factors are reduced, further lowering the threshold for HFSC activity. Taken together, our findings suggest that HFSCs have restricted potential in vivo, which they conserve by coupling quiescence to adhesion-mediated niche maintenance, thereby achieving long-term tissue homeostasis. PMID:26912458

  11. Stem cell therapy for the treatment of early stage avascular necrosis of the femoral head: a systematic review

    PubMed Central

    2014-01-01

    Background Avascular necrosis (AVN) of the femoral head (FH) is believed to be caused by a multitude of etiologic factors and is associated with significant morbidity in younger populations. Eventually, the disease progresses and results in FH collapse. Thus, a focus on early disease management aimed at joint preservation by preventing or delaying progression is key. The use of stem cells (SC) for the treatment of AVN of the FH has been proposed. We undertook a systematic review of the medical literature examining the use of SC for the treatment of early stage (precollapse) AVN of the FH, in both pre-clinical and clinical studies. Methods Data collected included: Pre-clinical studies – model of AVN, variety and dosage of SC, histologic and imaging analyses. Clinical studies – study design, classification and etiology of AVN, SC dosage and treatment protocol, incidence of disease progression, patient reported outcomes, volume of necrotic lesion and hip survivorship. Results In pre-clinical studies, the use of SC uniformly demonstrated improvements in osteogenesis and angiogenesis, yet source of implanted SC was variable. In clinical studies, groups treated with SC showed significant improvements in patient reported outcomes; however hip survivorship was not affected. Discrepancies regarding dose of SC, AVN etiology and disease severity were present. Conclusions Routine use of this treatment method will first require further research into dose and quality optimization as well as confirmed improvements in hip survivorship. PMID:24886648

  12. Declined Expression of Histone Deacetylase 6 Contributes to Periodontal Ligament Stem Cell Aging.

    PubMed

    Li, Qian; Ma, Yushi; Zhu, Yunyan; Zhang, Ting; Zhou, Yanheng

    2017-01-01

    Identification of regulators for aging-associated stem cell (SC) dysfunctions is a critical topic in SC biology and SC-based therapies. Periodontal ligament stem cell (PDLSC), a kind of dental mesenchymal SC with dental regeneration potential, ages with functional deterioration in both in vivo and ex vivo expansion. However, little is known about regulators for PDLSC aging. Expression changes of a potential regulator for PDLSC aging, histone deacetylase 6 (HDAC6), were evaluated within various models. Senescence-associated phenotypic and functional alternations of PDLSC in loss-of-function models for HDAC6 were examined using HDAC6-specific pharmacologic inhibitors or RNA interference-based knockdown. Involvement of p27 Kip1 in HDAC6-associated aging was demonstrated by its acetylation and stability changes along with overexpression or functional inhibition of HDAC6. Expression of HDAC6 decreased significantly in replicative senescence and induced SC aging models. Loss-of-function experiments suggested that pharmacologic inhibition of deacetylase activity of HDAC6 accelerated PDLSC senescence and impaired its SC activities, which showed reduced osteogenic differentiation and diminished migration capacities. Examination of markers for proliferative exhaustion of SCs revealed that protein level of p27 Kip1 was specifically elevated after HDAC6 inhibition. HDAC6 physically interacted with p27 Kip1 and could deacetylate p27 Kip1 . Importantly, acetylation of p27 Kip1 was negatively regulated by HDAC6, which correlated with alteration of p27 Kip1 protein levels. Data suggest that HDAC6 plays an important role in PDLSC aging, which is dependent, at least partially, on regulation of p27 Kip1 acetylation.

  13. Multipotency of skeletal muscle stem cells on their native substrate and the expression of Connexin 43 during adoption of adipogenic and osteogenic fate.

    PubMed

    Elashry, Mohamed I; Heimann, Manuela; Wenisch, Sabine; Patel, Ketan; Arnhold, Stefan

    2017-10-01

    Muscle regeneration is performed by resident muscle stem cells called satellite cells (SC). However they are multipotent, being able to adopt adipogenic and osteogenic fate under the correct stimuli. Since SC behavior can be regulated by the extra-cellular matrix, we examined the robustness of the myogenic programme of SC on their native substrate-the surface of a myofiber. We show that the native substrate supports myogenic differentiation judged by the expression of members of the Myogenic Determination Factor (MRF) family. However SC even on their native substrate can be induced into adopting adipogenic or osteogenic fate. Furthermore conditions that support adipose or bone formation inhibit the proliferation of SC progeny as well as their migration. We show that Connexin43 (Cx43), a gap junction complex protein, is only expressed by activated and not quiescent SC. Furthermore, it is not expressed by SC that are in the process of changing their fate. Lastly we show that intact adult mouse muscle contains numerous cells expressing Cx43 and that the density of these cells seems to be related to capillary density. We suggest the Cx43 expression is localized to angioblasts and is more prominent in oxidative slow muscle compared to glycolytic fast muscle. Crown Copyright © 2017. Published by Elsevier GmbH. All rights reserved.

  14. The requirement for freshly isolated human colorectal cancer (CRC) cells in isolating CRC stem cells.

    PubMed

    Fan, F; Bellister, S; Lu, J; Ye, X; Boulbes, D R; Tozzi, F; Sceusi, E; Kopetz, S; Tian, F; Xia, L; Zhou, Y; Bhattacharya, R; Ellis, L M

    2015-02-03

    Isolation of colorectal cancer (CRC) cell populations enriched for cancer stem cells (CSCs) may facilitate target identification. There is no consensus regarding the best methods for isolating CRC stem cells (CRC-SCs). We determined the suitability of various cellular models and various stem cell markers for the isolation of CRC-SCs. Established human CRC cell lines, established CRC cell lines passaged through mice, patient-derived xenograft (PDX)-derived cells, early passage/newly established cell lines, and cells directly from clinical specimens were studied. Cells were FAC-sorted for the CRC-SC markers CD44, CD133, and aldehyde dehydrogenase (ALDH). Sphere formation and in vivo tumorigenicity studies were used to validate CRC-SC enrichment. None of the markers studied in established cell lines, grown either in vitro or in vivo, consistently enriched for CRC-SCs. In the three other cellular models, CD44 and CD133 did not reliably enrich for stemness. In contrast, freshly isolated PDX-derived cells or early passage/newly established CRC cell lines with high ALDH activity formed spheres in vitro and enhanced tumorigenicity in vivo, whereas cells with low ALDH activity did not. PDX-derived cells, early passages/newly established CRC cell lines and cells from clinical specimen with high ALDH activity can be used to identify CRC-SC-enriched populations. Established CRC cell lines should not be used to isolate CSCs.

  15. SC1 Promotes MiR124-3p Expression to Maintain the Self-Renewal of Mouse Embryonic Stem Cells by Inhibiting the MEK/ERK Pathway.

    PubMed

    Wei, Qing; Liu, Hongliang; Ai, Zhiying; Wu, Yongyan; Liu, Yingxiang; Shi, Zhaopeng; Ren, Xuexue; Guo, Zekun

    2017-01-01

    Self-renewal is one of the most important features of embryonic stem (ES) cells. SC1 is a small molecule modulator that effectively maintains the self-renewal of mouse ES cells in the absence of leukemia inhibitory factor (LIF), serum and feeder cells. However, the mechanism by which SC1 maintains the undifferentiated state of mouse ES cells remains unclear. In this study, microarray and small RNA deep-sequencing experiments were performed on mouse ES cells treated with or without SC1 to identify the key genes and microRNAs that contributed to self-renewal. SC1 regulates the expressions of pluripotency and differentiation factors, and antagonizes the retinoic acid (RA)-induced differentiation in the presence or absence of LIF. SC1 inhibits the MEK/ERK pathway through Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and pathway reporting experiments. Small RNA deep-sequencing revealed that SC1 significantly modulates the expression of multiple microRNAs with crucial functions in ES cells. The expression of miR124-3p is upregulated in SC1-treated ES cells, which significantly inhibits the MEK/ERK pathway by targeting Grb2, Sos2 and Egr1. SC1 enhances the self-renewal capacity of mouse ES cells by modulating the expression of key regulatory genes and pluripotency-associated microRNAs. SC1 significantly upregulates miR124-3p expression to further inhibit the MEK/ ERK pathway by targeting Grb2, Sos2 and Egr1. © 2017 The Author(s). Published by S. Karger AG, Basel.

  16. Tracking Oxygen Vacancies in Thin Film SOFC Cathodes

    NASA Astrophysics Data System (ADS)

    Leonard, Donovan; Kumar, Amit; Jesse, Stephen; Kalinin, Sergei; Shao-Horn, Yang; Crumlin, Ethan; Mutoro, Eva; Biegalski, Michael; Christen, Hans; Pennycook, Stephen; Borisevich, Albina

    2011-03-01

    Oxygen vacancies have been proposed to control the rate of the oxygen reduction reaction and ionic transport in complex oxides used as solid oxide fuel cell (SOFC) cathodes [1,2]. In this study oxygen vacancies were tracked, both dynamically and statically, with the combined use of scanned probe microscopy (SPM) and scanning transmission electron microscopy (STEM). Epitaxial films of La 0.8 Sr 0.2 Co O3 (L SC113) and L SC113 / LaSrCo O4 (L SC214) on a GDC/YSZ substrate were studied, where the latter showed increased electrocatalytic activity at moderate temperature. At atomic resolution, high angle annular dark field STEM micrographs revealed vacancy ordering in L SC113 as evidenced by lattice parameter modulation and EELS studies. The evolution of oxygen vacancy concentration and ordering with applied bias and the effects of bias cycling on the SOFC cathode performance will be discussed. Research is sponsored by the of Materials Sciences and Engineering Division, U.S. DOE.

  17. A Nanoparticle Carrying the p53 Gene Targets Tumors Including Cancer Stem Cells, Sensitizes Glioblastoma to Chemotherapy and Improves Survival

    PubMed Central

    2015-01-01

    Temozolomide (TMZ)-resistance in glioblastoma multiforme (GBM) has been linked to upregulation of O6-methylguanine-DNA methyltransferase (MGMT). Wild-type (wt) p53 was previously shown to down-modulate MGMT. However, p53 therapy for GBM is limited by lack of efficient delivery across the blood brain barrier (BBB). We have developed a systemic nanodelivery platform (scL) for tumor-specific targeting (primary and metastatic), which is currently in multiple clinical trials. This self-assembling nanocomplex is formed by simple mixing of the components in a defined order and a specific ratio. Here, we demonstrate that scL crosses the BBB and efficiently targets GBM, as well as cancer stem cells (CSCs), which have been implicated in recurrence and treatment resistance in many human cancers. Moreover, systemic delivery of scL-p53 down-modulates MGMT and induces apoptosis in intracranial GBM xenografts. The combination of scL-p53 and TMZ increased the antitumor efficacy of TMZ with enhanced survival benefit in a mouse model of highly TMZ-resistant GBM. scL-p53 also sensitized both CSCs and bulk tumor cells to TMZ, increasing apoptosis. These results suggest that combining scL-p53 with standard TMZ treatment could be a more effective therapy for GBM. PMID:24811110

  18. Comparative transcriptional profiling of the limbal epithelial crypt demonstrates its putative stem cell niche characteristics.

    PubMed

    Kulkarni, Bina B; Tighe, Patrick J; Mohammed, Imran; Yeung, Aaron M; Powe, Desmond G; Hopkinson, Andrew; Shanmuganathan, Vijay A; Dua, Harminder S

    2010-09-29

    The Limbal epithelial crypt (LEC) is a solid cord of cells, approximately 120 microns long. It arises from the undersurface of interpalisade rete ridges of the limbal palisades of Vogt and extends deeper into the limbal stroma parallel or perpendicular to the palisade. There are up to 6 or 7 such LEC, variably distributed along the limbus in each human eye. Morphological and immunohistochemical studies on the limbal epithelial crypt (LEC) have demonstrated the presence of limbal stem cells in this region. The purpose of this microarray study was to characterise the transcriptional profile of the LEC and compare with other ocular surface epithelial regions to support our hypothesis that LEC preferentially harbours stem cells (SC). LEC was found to be enriched for SC related Gene Ontology (GO) terms including those identified in quiescent adult SC, however similar to cornea, limbus had significant GO terms related to proliferating SC, transient amplifying cells (TAC) and differentiated cells (DC). LEC and limbus were metabolically dormant with low protein synthesis and downregulated cell cycling. Cornea had upregulated genes for cell cycling and self renewal such as FZD7, BTG1, CCNG, and STAT3 which were identified from other SC populations. Upregulated gene expression for growth factors, cytokines, WNT, Notch, TGF-Beta pathways involved in cell proliferation and differentiation were noted in cornea. LEC had highest number of expressed sequence tags (ESTs), downregulated and unknown genes, compared to other regions. Genes expressed in LEC such as CDH1, SERPINF1, LEF1, FRZB1, KRT19, SOD2, EGR1 are known to be involved in SC maintenance. Genes of interest, in LEC belonging to the category of cell adhesion molecules, WNT and Notch signalling pathway were validated with real-time PCR and immunofluorescence. Our transcriptional profiling study identifies the LEC as a preferential site for limbal SC with some characteristics suggesting that it could function as a 'SC niche' supporting quiescent SC. It also strengthens the evidence for the presence of "transient cells" in the corneal epithelium. These cells are immediate progeny of SC with self-renewal capacity and could be responsible for maintaining epithelial turn over in normal healthy conditions of the ocular surface (OS). The limbus has mixed population of differentiated and undifferentiated cells.

  19. Is belief larger than fact: expectations, optimism and reality for translational stem cell research.

    PubMed

    Bubela, Tania; Li, Matthew D; Hafez, Mohamed; Bieber, Mark; Atkins, Harold

    2012-11-06

    Stem cell (SC) therapies hold remarkable promise for many diseases, but there is a significant gulf between public expectations and the reality of progress toward clinical application. Public expectations are fueled by stakeholder arguments for research and public funding, coupled with intense media coverage in an ethically charged arena. We examine media representations in light of the expanding global landscape of SC clinical trials, asking what patients may realistically expect by way of timelines for the therapeutic and curative potential of regenerative medicine? We built 2 international datasets: (1) 3,404 clinical trials (CT) containing 'stem cell*' from ClinicalTrials.gov and the World Health Organization's International Clinical Trials Registry Search Portal; and (2) 13,249 newspaper articles on SC therapies using Factiva.com. We compared word frequencies between the CT descriptions and full-text newspaper articles for the number containing terms for SC type and diseases/conditions. We also developed inclusion and exclusion criteria to identify novel SC CTs, mainly regenerative medicine applications. Newspaper articles focused on human embryonic SCs and neurological conditions with significant coverage as well of cardiovascular disease and diabetes. In contrast, CTs used primarily hematopoietic SCs, with an increase in CTs using mesenchymal SCs since 2007. The latter dominated our novel classification for CTs, most of which are in phases I and II. From the perspective of the public, expecting therapies for neurological conditions, there is limited activity in what may be considered novel applications of SC therapies. Given the research, regulatory, and commercialization hurdles to the clinical translation of SC research, it seems likely that patients and political supporters will become disappointed and disillusioned. In this environment, proponents need to make a concerted effort to temper claims. Even though the field is highly promising, it lacks significant private investment and is largely reliant on public support, requiring a more honest acknowledgement of the expected therapeutic benefits and the timelines to achieving them.

  20. Synthetic scaffold coating with adeno-associated virus encoding BMP2 to promote endogenous bone repair.

    PubMed

    Dupont, Kenneth M; Boerckel, Joel D; Stevens, Hazel Y; Diab, Tamim; Kolambkar, Yash M; Takahata, Masahiko; Schwarz, Edward M; Guldberg, Robert E

    2012-03-01

    Biomaterial scaffolds functionalized to stimulate endogenous repair mechanisms via the incorporation of osteogenic cues offer a potential alternative to bone grafting for the treatment of large bone defects. We first quantified the ability of a self-complementary adeno-associated viral vector encoding bone morphogenetic protein 2 (scAAV2.5-BMP2) to enhance human stem cell osteogenic differentiation in vitro. In two-dimensional culture, scAAV2.5-BMP2-transduced human mesenchymal stem cells (hMSCs) displayed significant increases in BMP2 production and alkaline phosphatase activity compared with controls. hMSCs and human amniotic-fluid-derived stem cells (hAFS cells) seeded on scAAV2.5-BMP2-coated three-dimensional porous polymer Poly(ε-caprolactone) (PCL) scaffolds also displayed significant increases in BMP2 production compared with controls during 12 weeks of culture, although only hMSC-seeded scaffolds displayed significantly increased mineral formation. PCL scaffolds coated with scAAV2.5-BMP2 were implanted into critically sized immunocompromised rat femoral defects, both with or without pre-seeding of hMSCs, representing ex vivo and in vivo gene therapy treatments, respectively. After 12 weeks, defects treated with acellular scAAV2.5-BMP2-coated scaffolds displayed increased bony bridging and had significantly higher bone ingrowth and mechanical properties compared with controls, whereas defects treated with scAAV2.5-BMP2 scaffolds pre-seeded with hMSCs failed to display significant differences relative to controls. When pooled, defect treatment with scAAV2.5-BMP2-coated scaffolds, both with or without inclusion of pre-seeded hMSCs, led to significant increases in defect mineral formation at all time points and increased mechanical properties compared with controls. This study thus presents a novel acellular bone-graft-free endogenous repair therapy for orthotopic tissue-engineered bone regeneration.

  1. Is belief larger than fact: expectations, optimism and reality for translational stem cell research

    PubMed Central

    2012-01-01

    Background Stem cell (SC) therapies hold remarkable promise for many diseases, but there is a significant gulf between public expectations and the reality of progress toward clinical application. Public expectations are fueled by stakeholder arguments for research and public funding, coupled with intense media coverage in an ethically charged arena. We examine media representations in light of the expanding global landscape of SC clinical trials, asking what patients may realistically expect by way of timelines for the therapeutic and curative potential of regenerative medicine? Methods We built 2 international datasets: (1) 3,404 clinical trials (CT) containing 'stem cell*' from ClinicalTrials.gov and the World Health Organization's International Clinical Trials Registry Search Portal; and (2) 13,249 newspaper articles on SC therapies using Factiva.com. We compared word frequencies between the CT descriptions and full-text newspaper articles for the number containing terms for SC type and diseases/conditions. We also developed inclusion and exclusion criteria to identify novel SC CTs, mainly regenerative medicine applications. Results Newspaper articles focused on human embryonic SCs and neurological conditions with significant coverage as well of cardiovascular disease and diabetes. In contrast, CTs used primarily hematopoietic SCs, with an increase in CTs using mesenchymal SCs since 2007. The latter dominated our novel classification for CTs, most of which are in phases I and II. From the perspective of the public, expecting therapies for neurological conditions, there is limited activity in what may be considered novel applications of SC therapies. Conclusions Given the research, regulatory, and commercialization hurdles to the clinical translation of SC research, it seems likely that patients and political supporters will become disappointed and disillusioned. In this environment, proponents need to make a concerted effort to temper claims. Even though the field is highly promising, it lacks significant private investment and is largely reliant on public support, requiring a more honest acknowledgement of the expected therapeutic benefits and the timelines to achieving them. PMID:23131007

  2. HOXB7 overexpression in lung cancer is a hallmark of acquired stem-like phenotype.

    PubMed

    Monterisi, Simona; Lo Riso, Pietro; Russo, Karin; Bertalot, Giovanni; Vecchi, Manuela; Testa, Giuseppe; Di Fiore, Pier Paolo; Bianchi, Fabrizio

    2018-03-26

    HOXB7 is a homeodomain (HOX) transcription factor involved in regional body patterning of invertebrates and vertebrates. We previously identified HOXB7 within a ten-gene prognostic signature for lung adenocarcinoma, where increased expression of HOXB7 was associated with poor prognosis. This raises the question of how HOXB7 overexpression can influence the metastatic behavior of lung adenocarcinoma. Here, we analyzed publicly available microarray and RNA-seq lung cancer expression datasets and found that HOXB7-overexpressing tumors are enriched in gene signatures characterizing adult and embryonic stem cells (SC), and induced pluripotent stem cells (iPSC). Experimentally, we found that HOXB7 upregulates several canonical SC/iPSC markers and sustains the expansion of a subpopulation of cells with SC characteristics, through modulation of LIN28B, an emerging cancer gene and pluripotency factor, which we discovered to be a direct target of HOXB7. We validated this new circuit by showing that HOXB7 enhances reprogramming to iPSC with comparable efficiency to LIN28B or its target c-MYC, which is a canonical reprogramming factor.

  3. Economic 3D-printing approach for transplantation of human stem cell-derived β-like cells

    PubMed Central

    Song, Jiwon; Millman, Jeffrey R.

    2016-01-01

    Transplantation of human pluripotent stem cells (hPSC) differentiated into insulin-producing β cells is a regenerative medicine approach being investigated for diabetes cell replacement therapy. This report presents a multifaceted transplantation strategy that combines differentiation into stem cell-derived β (SC-β) cells with 3D printing. By modulating the parameters of a low-cost 3D printer, we created a macroporous device composed of polylactic acid (PLA) that houses SC-β cell clusters within a degradable fibrin gel. Using finite element modeling of cellular oxygen diffusion-consumption and an in vitro culture system that allows for culture of devices at physiological oxygen levels, we identified cluster sizes that avoid severe hypoxia within 3D-printed devices and developed a microwell-based technique for resizing clusters within this range. Upon transplantation into mice, SC-β cell-embedded 3D-printed devices function for 12 weeks, are retrievable, and maintain structural integrity. Here, we demonstrate a novel 3D-printing approach that advances the use of differentiated hPSC for regenerative medicine applications and serves as a platform for future transplantation strategies. PMID:27906687

  4. Economic 3D-printing approach for transplantation of human stem cell-derived β-like cells.

    PubMed

    Song, Jiwon; Millman, Jeffrey R

    2016-12-01

    Transplantation of human pluripotent stem cells (hPSC) differentiated into insulin-producing β cells is a regenerative medicine approach being investigated for diabetes cell replacement therapy. This report presents a multifaceted transplantation strategy that combines differentiation into stem cell-derived β (SC-β) cells with 3D printing. By modulating the parameters of a low-cost 3D printer, we created a macroporous device composed of polylactic acid (PLA) that houses SC-β cell clusters within a degradable fibrin gel. Using finite element modeling of cellular oxygen diffusion-consumption and an in vitro culture system that allows for culture of devices at physiological oxygen levels, we identified cluster sizes that avoid severe hypoxia within 3D-printed devices and developed a microwell-based technique for resizing clusters within this range. Upon transplantation into mice, SC-β cell-embedded 3D-printed devices function for 12 weeks, are retrievable, and maintain structural integrity. Here, we demonstrate a novel 3D-printing approach that advances the use of differentiated hPSC for regenerative medicine applications and serves as a platform for future transplantation strategies.

  5. Role of Receptor Sialylation in the Ovarian Tumor Cell Phenotype

    DTIC Science & Technology

    2014-08-01

    Chemical Society meeting, Baton Rouge, LA, Nov 2012; (3) 19th World Congress on Advances in Oncology conference, Athens, Greece, scheduled for Oct, 2014...dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res 2009;69

  6. The regulatory effect of SC-236 (4-[5-(4-chlorophenyl)-3-(trifluoromethyl)-1-pyrazol-1-l] benzenesulfonamide) on stem cell factor induced migration of mast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Su-Jin; College of Oriental Medicine, Kyung Hee University, 1 Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701; Jeong, Hyun-Ja

    SC-236 (4-[5-(4-chlorophenyl)-3-(trifluoromethyl)-1-pyrazol-1-]benzenesulfonamide; C{sub 16}H{sub 11}ClF{sub 3}N{sub 3}O{sub 2}S), is a highly selective cyclooxygenase (COX)-2 inhibitor. Recently, there have been reports that SC-236 protects against cartilage damage in addition to reducing inflammation and pain in osteoarthritis. However, the mechanism involved in the inflammatory allergic reaction has not been examined. Mast cells accumulation can be related to inflammatory conditions, including allergic rhinitis, asthma, and rheumatoid arthritis. The aim of the present study is to investigate the effects of SC-236 on stem cell factor (SCF)-induced migration, morphological alteration, and cytokine production of rat peritoneal mast cells (RPMCs). We observed that SCF significantly inducedmore » the migration and morphological alteration. The ability of SCF to enhance migration and morphological alteration was abolished by treatment with SC-236. In addition, production of tumor necrosis factor (TNF)-{alpha}, interleukin (IL)-1{beta}, and vascular endothelial growth factor (VEGF) production induced by SCF was significantly inhibited by treatment with SC-236. Previous work has demonstrated that SCF-induced migration and cytokine production of mast cells require p38 MAPK activation. We also showed that SC-236 suppresses the SCF-induced p38 MAPK activation in RPMCs. These data suggest that SC-236 inhibits migration and cytokine production through suppression of p38 MAPK activation. These results provided new insight into the pharmacological actions of SC-236 and its potential therapeutic role in the treatment of inflammatory allergic diseases.« less

  7. Skeletal Muscle Regeneration, Repair and Remodelling in Aging: The Importance of Muscle Stem Cells and Vascularization.

    PubMed

    Joanisse, Sophie; Nederveen, Joshua P; Snijders, Tim; McKay, Bryon R; Parise, Gianni

    2017-01-01

    Sarcopenia is the age-related loss of skeletal muscle mass and strength. Ultimately, sarcopenia results in the loss of independence, which imposes a large financial burden on healthcare systems worldwide. A critical facet of sarcopenia is the diminished ability for aged muscle to regenerate, repair and remodel. Over the years, research has focused on elucidating underlying mechanisms of sarcopenia and the impaired ability of muscle to respond to stimuli with aging. Muscle-specific stem cells, termed satellite cells (SC), play an important role in maintaining muscle health throughout the lifespan. It is well established that SC are essential in skeletal muscle regeneration, and it has been hypothesized that a reduction and/or dysregulation of the SC pool, may contribute to accelerated loss of skeletal muscle mass that is observed with advancing age. The preservation of skeletal muscle tissue and its ability to respond to stimuli may be impacted by reduced SC content and impaired function observed with aging. Aging is also associated with a reduction in capillarization of skeletal muscle. We have recently demonstrated that the distance between type II fibre-associated SC and capillaries is greater in older compared to younger adults. The greater distance between SC and capillaries in older adults may contribute to the dysregulation in SC activation ultimately impairing muscle's ability to remodel and, in extreme circumstances, regenerate. This viewpoint will highlight the importance of optimal SC activation in addition to skeletal muscle capillarization to maximize the regenerative potential of skeletal muscle in older adults. © 2016 S. Karger AG, Basel.

  8. Muscle stem cell intramuscular delivery within hyaluronan methylcellulose improves engraftment efficiency and dispersion.

    PubMed

    Davoudi, Sadegh; Chin, Chih-Ying; Cooke, Michael J; Tam, Roger Y; Shoichet, Molly S; Gilbert, Penney M

    2018-04-26

    Adult skeletal muscle tissue harbors the capacity for self-repair due to the presence of tissue resident muscle stem cells (MuSCs). Advances in the area of prospective MuSC isolation demonstrated the potential of cell transplantation therapy as a regenerative medicine strategy to restore strength and long-term regenerative capacity to aged, injured, or diseased skeletal muscle tissue. However, cell loss during ejection, limits to post-injection proliferation, and poor donor cell dispersion distal to the injection site are amongst hurdles to overcome to maximize MuSC transplant impact. Here, we assess a physical blend of hyaluronan and methylcellulose (HAMC) as a bioactive, shear thinning hydrogel cell delivery system to improve MuSC transplantation efficiency. Using in vivo transplantation studies, we found that the HAMC delivery system results in a >45% increase in the number of donor-derived fibers as compared to saline delivery. We demonstrate that increases in donor-derived fibers when using HAMC are attributed to increased MuSC proliferation via a CD44-independent mechanism, preventing injected cell active clearance, and supporting in vivo expansion by delaying differentiation. Furthermore, we observed a significant improvement in donor fiber dispersion when MuSCs were delivered in HAMC. Our study results suggest that HAMC is a promising muscle stem cell delivery vehicle. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Astronaut Joins Clemson to Promote the Value of Integrative STEM Education

    ERIC Educational Resources Information Center

    Technology and Engineering Teacher, 2013

    2013-01-01

    NASA and astronaut Patrick Forrester recently teamed up with Clemson University's College of Health Education and Human Development (HEHD) to promote STEM teaching and learning in the Upstate (SC) community. A goal of HEHD is to extend integrative STEM education opportunities to all teachers and their students in South Carolina. NASA space…

  10. Theoretical study of stability and superconductivity of ScHn (n =4 -8 ) at high pressure

    NASA Astrophysics Data System (ADS)

    Qian, Shifeng; Sheng, Xiaowei; Yan, Xiaozhen; Chen, Yangmei; Song, Bo

    2017-09-01

    The synthesis of hydrogen sulfides, with the potential of high-temperature superconductivity, was recently proposed at high Tc = 203 K. It motivated us to employ an ab initio approach for the predictions of crystal structures to find the stable scandium hydrides. In addition to the earlier predicted three stoichiometries of ScH, ScH2, and ScH3, we identify three other metallic stoichiometries of ScH4, ScH6, and ScH8, which show superconductivity at significantly higher temperatures. The phases of ScH4 and ScH6, whose stability does not require extremely high pressures (<150 GPa with ZPE), are primarily ionic compounds containing exotic quasimolecular H2 arrangements. The present electron-phonon calculations revealed the superconductive potential of ScH4 and ScH6 with estimated Tc of 98 K and 129 K at 200 GPa and 130 GPa, respectively. The superconductivity of ScHn stems from the large electron-phonon coupling associated with the wagging, bending, and intermediate-frequency modes attributed mainly to the hydrogen atoms.

  11. Targeting N-RAS as a Therapeutic Approach for Melanoma

    DTIC Science & Technology

    2014-12-01

    cell death. Sci. World J. 10 (2272−84), 2272−2284. (16) Lonne, G. K., Masoumi, K. C., Lennartsson, J., and Larsson, C. (2009) Protein kinase Cδ supports...dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res 2009, 69

  12. U.S. National Football League athletes seeking unproven stem cell treatments.

    PubMed

    Matthews, Kirstin R W; Cuchiara, Maude L

    2014-12-01

    From professionals to weekend warriors, many athletes seek unproven stem cell (SC) treatments in an effort to heal injuries nonsurgically and/or to accelerate recovery times after surgery. Among the elite athletes opting for these treatments are high-profile U.S. National Football League (NFL) players. Over the past 5 years, several NFL players have publicly advocated for SC types of treatments and credit them as a major reason they could continue their careers after injuries. In this article, we describe the current problems associated with unproven SC treatments, focusing on treatments without U.S. Food and Drug Administration approval undertaken by NFL players in the past 5 years. Specifically, we highlight the types of treatments obtained and how the clinics advertise specifically to athletes. We also review the intended and unintended consequences of high-profile players receiving and advocating for these types of therapies. Our findings suggest that NFL players increasingly seek out unproven SC therapies to help accelerate recoveries from injuries. While most seem to receive treatment within the United States, several have traveled abroad for therapies unavailable domestically.

  13. Scientists' perspectives on the ethical issues of stem cell research.

    PubMed

    Longstaff, Holly; Schuppli, Catherine A; Preto, Nina; Lafrenière, Darquise; McDonald, Michael

    2009-06-01

    This paper describes findings from an ethics education project funded by the Canadian Stem Cell Network (SCN). The project is part of a larger research initiative entitled "The Stem Cell Research Environment: Drawing the Evidence and Experience Together". The ethics education study began with a series of focus groups with SCN researchers and trainees as part of a "needs assessment" effort. The purpose of these discussions was to identify the main ethical issues associated with stem cell (SC) research from the perspective of the stem cell community. This paper will focus on five prominent themes that emerged from the focus group data including: (1) the source of stem cells; (2) the power of stem cells; (3) working within a charged research environment; (4) the regulatory context; and (5) ethics training for scientists. Additional discussions are planned with others involved in Canadian stem cell research (e.g., research ethics board members, policy makers) to supplement initial findings. These assessment results combined with existing bioethics literature will ultimately inform a web-based ethics education module for the SCN. We believe that our efforts are important for those analyzing the ethical, legal, and social issues (ELSI) in this area because our in depth understanding of stem cell researcher perspectives will enable us to develop more relevant and effective education material, which in turn should help SC researchers address the important ethical challenges in their area.

  14. Mesenchymal Stem Cell Therapy for Acute Radiation Syndrome: Innovative Medical Approaches in Military Medicine

    DTIC Science & Technology

    2015-01-30

    mesenchymal stem cells . Cytokine Growth Factor Rev. 2009;20:419–27. 8. Wang L, Li Y, Chen X, Chen J, Gautam SC, Xu Y, et al. MCP...Literature 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Mesenchymal stem cell therapy for acute radiation syndrome: innovative medical...Independent Research Program 14. ABSTRACT See reprint. 15. SUBJECT TERMS Acute radiation syndrome, Mesenchymal stem cell , cell therapy,

  15. Un(MaSC)ing Stem Cell Dynamics in Mammary Branching Morphogenesis.

    PubMed

    Greenwood, Erin; Wrenn, Emma D; Cheung, Kevin J

    2017-02-27

    The properties of stem cells that participate in mammary gland branching morphogenesis remain contested. Reporting in Nature, Scheele et al. (2017) establish a model for post-pubertal mammary branching morphogenesis in which position-dependent, lineage-restricted stem cells undergo cell mixing in order to contribute to long-term growth. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Stem Cells and Regenerative Medicine: Myth or Reality of the 21th Century

    PubMed Central

    Stoltz, J.-F.; de Isla, N.; Li, Y. P.; Bensoussan, D.; Zhang, L.; Huselstein, C.; Chen, Y.; Decot, V.; Magdalou, J.; Li, N.; Reppel, L.; He, Y.

    2015-01-01

    Since the 1960s and the therapeutic use of hematopoietic stem cells of bone marrow origin, there has been an increasing interest in the study of undifferentiated progenitors that have the ability to proliferate and differentiate into various tissues. Stem cells (SC) with different potency can be isolated and characterised. Despite the promise of embryonic stem cells, in many cases, adult or even fetal stem cells provide a more interesting approach for clinical applications. It is undeniable that mesenchymal stem cells (MSC) from bone marrow, adipose tissue, or Wharton's Jelly are of potential interest for clinical applications in regenerative medicine because they are easily available without ethical problems for their uses. During the last 10 years, these multipotent cells have generated considerable interest and have particularly been shown to escape to allogeneic immune response and be capable of immunomodulatory activity. These properties may be of a great interest for regenerative medicine. Different clinical applications are under study (cardiac insufficiency, atherosclerosis, stroke, bone and cartilage deterioration, diabetes, urology, liver, ophthalmology, and organ's reconstruction). This review focuses mainly on tissue and organ regeneration using SC and in particular MSC. PMID:26300923

  17. Genetic modification of mesenchymal stem cells to express a single-chain antibody against EGFRvIII on the cell surface.

    PubMed

    Balyasnikova, Irina V; Franco-Gou, Rosa; Mathis, J Michael; Lesniak, Maciej S

    2010-06-01

    Human adult mesenchymal stem cells (hMSCs) are under active investigation as cellular carriers for gene therapy. hMSCs possess natural tropism toward tumours; however, the targeting of hMSCs to specific cell populations within tumours is unexplored. In the case of glioblastoma multiforme (GBM), at least half of the tumours express EGFRvIII on the cell surface, an ideal target for antibody-mediated gene/drug delivery. In this study, we investigated the feasibility of genetically modifying hMSCs to express a single-chain antibody (scFv) to EGFRvIII on their surfaces. Nucleofection was used to transfect hMSCs with cDNA encoding scFv EGFRvIII fused with PDGFR or human B7-1 transmembrane domains. The expression of scFv EGFRvIII on the cell surface was assessed by FACS. A stable population of scFv EGFRvIII-expressing hMSCs was selected, based on antibiotic resistance, and enriched using FACS. We found that nucleofection allows the efficient expression of scFv EGFRvIII on the cell surface of hMSCs. hMSCs transfected with the construct encoding scFv EGFRvIII as a fusion with PDGFRtm showed scFv EGFRvIII expression in up to 86% of cells. Most importantly, human MSCs expressing scFv against EGFRvIII demonstrated enhanced binding to U87-EGFRvIII cells in vitro and significantly increased retention in human U87-EGFRvIII-expressing tumours in vivo. In summary, we provide the first conclusive evidence of genetic modification of hMSCs with a single-chain antibody against an antigen expressed on the surface of tumour cells, thereby opening up a new venue for enhanced delivery of gene therapy applications in the context of malignant brain cancer. Copyright 2009 John Wiley & Sons, Ltd.

  18. IGF-1 colocalizes with muscle satellite cells following acute exercise in humans.

    PubMed

    Grubb, Amanda; Joanisse, Sophie; Moore, Daniel R; Bellamy, Leeann M; Mitchell, Cameron J; Phillips, Stuart M; Parise, Gianni

    2014-04-01

    Insulin-like growth factor-1 (IGF-1) regulates stem cell proliferation and differentiation in vitro. The aim of this study was to quantify the change in satellite cell (SC) specific IGF-1 colocalization following exercise. We observed a significant increase (p < 0.05) in the percentage of SC with IGF-1 colocalization from baseline to 72 h after a bout of resistance exercise. This strongly supports a role for IGF-1 in human SC function following exercise.

  19. The role of the bi-compartmental stem cell niche in delaying cancer

    NASA Astrophysics Data System (ADS)

    Shahriyari, Leili; Komarova, Natalia L.

    2015-10-01

    In recent years, by using modern imaging techniques, scientists have found evidence of collaboration between different types of stem cells (SCs), and proposed a bi-compartmental organization of the SC niche. Here we create a class of stochastic models to simulate the dynamics of such a heterogeneous SC niche. We consider two SC groups: the border compartment, S1, is in direct contact with transit-amplifying (TA) cells, and the central compartment, S2, is hierarchically upstream from S1. The S1 SCs differentiate or divide asymmetrically when the tissue needs TA cells. Both groups proliferate when the tissue requires SCs (thus maintaining homeostasis). There is an influx of S2 cells into the border compartment, either by migration, or by proliferation. We examine this model in the context of double-hit mutant generation, which is a rate-limiting step in the development of many cancers. We discover that this type of a cooperative pattern in the stem niche with two compartments leads to a significantly smaller rate of double-hit mutant production compared with a homogeneous, one-compartmental SC niche. Furthermore, the minimum probability of double-hit mutant generation corresponds to purely symmetric division of SCs, consistent with the literature. Finally, the optimal architecture (which minimizes the rate of double-hit mutant production) requires a large proliferation rate of S1 cells along with a small, but non-zero, proliferation rate of S2 cells. This result is remarkably similar to the niche structure described recently by several authors, where one of the two SC compartments was found more actively engaged in tissue homeostasis and turnover, while the other was characterized by higher levels of quiescence (but contributed strongly to injury recovery). Both numerical and analytical results are presented.

  20. The Clinical Potential of Targeted Nanomedicine: Delivering to Cancer Stem-like Cells

    PubMed Central

    Kim, Sang-Soo; Rait, Antonina; Rubab, Farwah; Rao, Abhi K; Kiritsy, Michael C; Pirollo, Kathleen F; Wang, Shangzi; Weiner, Louis M; Chang, Esther H

    2014-01-01

    Cancer stem-like cells (CSCs) have been implicated in recurrence and treatment resistance in many human cancers. Thus, a CSC-targeted drug delivery strategy to eliminate CSCs is a desirable approach for developing a more effective anticancer therapy. We have developed a tumor-targeting nanodelivery platform (scL) for systemic administration of molecular medicines. Following treatment with the scL nanocomplex carrying various payloads, we have observed exquisite tumor-targeting specificity and significant antitumor response with long-term survival benefit in numerous animal models. We hypothesized that this observed efficacy might be attributed, at least in part, to elimination of CSCs. Here, we demonstrate the ability of scL to target both CSCs and differentiated nonstem cancer cells (non-CSCs) in various mouse models including subcutaneous and intracranial xenografts, syngeneic, and chemically induced tumors. We also show that systemic administration of scL carrying the wtp53 gene was able to induce tumor growth inhibition and the death of both CSCs and non-CSCs in subcutaneous colorectal cancer xenografts suggesting that this could be an effective method to reduce cancer recurrence and treatment resistance. This scL nanocomplex is being evaluated in a number of clinical trials where it has been shown to be well tolerated with indications of anticancer activity. PMID:24113515

  1. Focus on People and the Science Will Follow: Motivating Forces for Professional Movement in Stem Cell Research.

    PubMed

    Jacob, K J; Longstaff, H; Scott, C T; Illes, J

    2015-08-01

    The migration of researchers across geographic borders, or "brain drain" as it is commonly called, remains an important issue for governments around the world as loss or gain of highly qualified personnel in research can have substantial social, economic and political consequences. In the present study we seek to examine the forces that drive international professional migration of stem cell (SC) researchers, for which variation of SC policy in different jurisdictions has previously been implicated as a driving force. Structured interviews were carried out with a purposive sample of SC researchers in the professoriate who had made international moves after postdoctoral work between the years 2001-2014, or were actively anticipating a future move. Participants were asked to rank motivators of international movement on a 5-point Likert scale and prompted to elaborate on their answers. The results suggest that career considerations, availability of research funding, and personal considerations are of high importance to the participants when considering an international move, while the permissiveness or restrictiveness SC research policy is of comparably lower importance. Participants also expressed that international movements are beneficial to scientific careers overall. The findings have important implications for policy and strategies to attract and retain members of the SC research community.

  2. DNMT1 is essential for mammary and cancer stem cell maintenance and tumorigenesis.

    PubMed

    Pathania, Rajneesh; Ramachandran, Sabarish; Elangovan, Selvakumar; Padia, Ravi; Yang, Pengyi; Cinghu, Senthilkumar; Veeranan-Karmegam, Rajalakshmi; Arjunan, Pachiappan; Gnana-Prakasam, Jaya P; Sadanand, Fulzele; Pei, Lirong; Chang, Chang-Sheng; Choi, Jeong-Hyeon; Shi, Huidong; Manicassamy, Santhakumar; Prasad, Puttur D; Sharma, Suash; Ganapathy, Vadivel; Jothi, Raja; Thangaraju, Muthusamy

    2015-04-24

    Mammary stem/progenitor cells (MaSCs) maintain self-renewal of the mammary epithelium during puberty and pregnancy. DNA methylation provides a potential epigenetic mechanism for maintaining cellular memory during self-renewal. Although DNA methyltransferases (DNMTs) are dispensable for embryonic stem cell maintenance, their role in maintaining MaSCs and cancer stem cells (CSCs) in constantly replenishing mammary epithelium is unclear. Here we show that DNMT1 is indispensable for MaSC maintenance. Furthermore, we find that DNMT1 expression is elevated in mammary tumours, and mammary gland-specific DNMT1 deletion protects mice from mammary tumorigenesis by limiting the CSC pool. Through genome-scale methylation studies, we identify ISL1 as a direct DNMT1 target, hypermethylated and downregulated in mammary tumours and CSCs. DNMT inhibition or ISL1 expression in breast cancer cells limits CSC population. Altogether, our studies uncover an essential role for DNMT1 in MaSC and CSC maintenance and identify DNMT1-ISL1 axis as a potential therapeutic target for breast cancer treatment.

  3. Tissue-specific stem cells: Lessons from the skeletal muscle satellite cell

    PubMed Central

    Brack, Andrew S.; Rando, Thomas A.

    2012-01-01

    In 1961, the satellite cell was first identified when electron microscopic examination of skeletal muscle demonstrated a cell wedged between the plasma membrane of the muscle fiber and the basement membrane. In recent years it has been conclusively demonstrated that the satellite cell is the primary cellular source for muscle regeneration and is equipped with the potential to self renew, thus functioning as a bone fide skeletal muscle stem cell (MuSC). As we move past the 50th anniversary of the satellite cell, we take this opportunity to discuss the current state of the art and dissect the unknowns in the MuSC field. PMID:22560074

  4. Rapid establishment of the European Bank for induced Pluripotent Stem Cells (EBiSC) - the Hot Start experience.

    PubMed

    De Sousa, Paul A; Steeg, Rachel; Wachter, Elisabeth; Bruce, Kevin; King, Jason; Hoeve, Marieke; Khadun, Shalinee; McConnachie, George; Holder, Julie; Kurtz, Andreas; Seltmann, Stefanie; Dewender, Johannes; Reimann, Sascha; Stacey, Glyn; O'Shea, Orla; Chapman, Charlotte; Healy, Lyn; Zimmermann, Heiko; Bolton, Bryan; Rawat, Trisha; Atkin, Isobel; Veiga, Anna; Kuebler, Bernd; Serano, Blanca Miranda; Saric, Tomo; Hescheler, Jürgen; Brüstle, Oliver; Peitz, Michael; Thiele, Cornelia; Geijsen, Niels; Holst, Bjørn; Clausen, Christian; Lako, Majlinda; Armstrong, Lyle; Gupta, Shailesh K; Kvist, Alexander J; Hicks, Ryan; Jonebring, Anna; Brolén, Gabriella; Ebneth, Andreas; Cabrera-Socorro, Alfredo; Foerch, Patrik; Geraerts, Martine; Stummann, Tina C; Harmon, Shawn; George, Carol; Streeter, Ian; Clarke, Laura; Parkinson, Helen; Harrison, Peter W; Faulconbridge, Adam; Cherubin, Luca; Burdett, Tony; Trigueros, Cesar; Patel, Minal J; Lucas, Christa; Hardy, Barry; Predan, Rok; Dokler, Joh; Brajnik, Maja; Keminer, Oliver; Pless, Ole; Gribbon, Philip; Claussen, Carsten; Ringwald, Annette; Kreisel, Beate; Courtney, Aidan; Allsopp, Timothy E

    2017-04-01

    A fast track "Hot Start" process was implemented to launch the European Bank for Induced Pluripotent Stem Cells (EBiSC) to provide early release of a range of established control and disease linked human induced pluripotent stem cell (hiPSC) lines. Established practice amongst consortium members was surveyed to arrive at harmonised and publically accessible Standard Operations Procedures (SOPs) for tissue procurement, bio-sample tracking, iPSC expansion, cryopreservation, qualification and distribution to the research community. These were implemented to create a quality managed foundational collection of lines and associated data made available for distribution. Here we report on the successful outcome of this experience and work flow for banking and facilitating access to an otherwise disparate European resource, with lessons to benefit the international research community. ETOC: The report focuses on the EBiSC experience of rapidly establishing an operational capacity to procure, bank and distribute a foundational collection of established hiPSC lines. It validates the feasibility and defines the challenges of harnessing and integrating the capability and productivity of centres across Europe using commonly available resources currently in the field. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. A Large-Scale RNAi Screen Identifies SGK1 as a Key Survival Kinase for GBM Stem Cells.

    PubMed

    Kulkarni, Shreya; Goel-Bhattacharya, Surbhi; Sengupta, Sejuti; Cochran, Brent H

    2018-01-01

    Glioblastoma multiforme (GBM) is the most common type of primary malignant brain cancer and has a very poor prognosis. A subpopulation of cells known as GBM stem-like cells (GBM-SC) have the capacity to initiate and sustain tumor growth and possess molecular characteristics similar to the parental tumor. GBM-SCs are known to be enriched in hypoxic niches and may contribute to therapeutic resistance. Therefore, to identify genetic determinants important for the proliferation and survival of GBM stem cells, an unbiased pooled shRNA screen of 10,000 genes was conducted under normoxic as well as hypoxic conditions. A number of essential genes were identified that are required for GBM-SC growth, under either or both oxygen conditions, in two different GBM-SC lines. Interestingly, only about a third of the essential genes were common to both cell lines. The oxygen environment significantly impacts the cellular genetic dependencies as 30% of the genes required under hypoxia were not required under normoxic conditions. In addition to identifying essential genes already implicated in GBM such as CDK4, KIF11 , and RAN , the screen also identified new genes that have not been previously implicated in GBM stem cell biology. The importance of the serum and glucocorticoid-regulated kinase 1 (SGK1) for cellular survival was validated in multiple patient-derived GBM stem cell lines using shRNA, CRISPR, and pharmacologic inhibitors. However, SGK1 depletion and inhibition has little effect on traditional serum grown glioma lines and on differentiated GBM-SCs indicating its specific importance in GBM stem cell survival. Implications: This study identifies genes required for the growth and survival of GBM stem cells under both normoxic and hypoxic conditions and finds SGK1 as a novel potential drug target for GBM. Mol Cancer Res; 16(1); 103-14. ©2017 AACR . ©2017 American Association for Cancer Research.

  6. Isolation of a Novel Peroxisomal Catalase Gene from Sugarcane, Which Is Responsive to Biotic and Abiotic Stresses

    PubMed Central

    Ling, Hui; Chen, Shanshan; Wang, Shanshan; Xu, Liping; Allan, Andrew C.; Que, Youxiong

    2014-01-01

    Catalase is an iron porphyrin enzyme, which serves as an efficient scavenger of reactive oxygen species (ROS) to avoid oxidative damage. In sugarcane, the enzymatic activity of catalase in a variety (Yacheng05–179) resistant to the smut pathogen Sporisorium scitamineum was always higher than that of the susceptible variety (Liucheng03–182), suggesting that catalase activity may have a positive correlation with smut resistance in sugarcane. To understand the function of catalase at the molecular level, a cDNA sequence of ScCAT1 (GenBank Accession No. KF664183), was isolated from sugarcane infected by S. scitamineum. ScCAT1 was predicted to encode 492 amino acid residues, and its deduced amino acid sequence shared a high degree of homology with other plant catalases. Enhanced growth of ScCAT1 in recombinant Escherichia coli Rosetta cells under the stresses of CuCl2, CdCl2 and NaCl indicated its high tolerance. Q-PCR results showed that ScCAT1 was expressed at relatively high levels in the bud, whereas expression was moderate in stem epidermis and stem pith. Different kinds of stresses, including S. scitamineum challenge, plant hormones (SA, MeJA and ABA) treatments, oxidative (H2O2) stress, heavy metal (CuCl2) and hyper-osmotic (PEG and NaCl) stresses, triggered a significant induction of ScCAT1. The ScCAT1 protein appeared to localize in plasma membrane and cytoplasm. Furthermore, histochemical assays using DAB and trypan blue staining, as well as conductivity measurement, indicated that ScCAT1 may confer the sugarcane immunity. In conclusion, the positive response of ScCAT1 to biotic and abiotic stresses suggests that ScCAT1 is involved in protection of sugarcane against reactive oxidant-related environmental stimuli. PMID:24392135

  7. Hematopoietic Responses to Lipopolysaccharide in C57BL/10Sn and C57BL/10ScN Strain Mice

    DTIC Science & Technology

    1982-12-01

    Responses of endogenous (E-CFU) stem cells as well as bone marrow and spleen-derived exogenous (CFU-s) stem cells, granulocyte-macrophage (GM;-CFC... endogenous (E-CFU) stem cells as well as bone marrow and spleen-derived exogenous (CFU-s) stem cells, granulocyte-macrophage (GM-CFC) and macrophage (M...IOScN in comparison to the normal C57BL/1OSn strain mice, as measured by endogenous (E-CFU) and exogenous (CFU-s) stem cells and committed granulocyte

  8. Expression of novel, putative stem cell markers in prepubertal and lactating mammary glands of bovine

    USDA-ARS?s Scientific Manuscript database

    Mammary stem cells (MaSC) are essential for growth and maintenance of the mammary epithelium. Two main phases of mammary growth include ductal elongation prior to puberty and lobulo-alveolar growth and development during pregnancy. Some studies have utilized morphological characteristics and retenti...

  9. Stable integration of recombinant adeno-associated virus vector genomes after transduction of murine hematopoietic stem cells.

    PubMed

    Han, Zongchao; Zhong, Li; Maina, Njeri; Hu, Zhongbo; Li, Xiaomiao; Chouthai, Nitin S; Bischof, Daniela; Weigel-Van Aken, Kirsten A; Slayton, William B; Yoder, Mervin C; Srivastava, Arun

    2008-03-01

    We previously reported that among single-stranded adeno-associated virus (ssAAV) vectors, serotypes 1 through 5, ssAAV1 is the most efficient in transducing murine hematopoietic stem cells (HSCs), but viral second-strand DNA synthesis remains a rate-limiting step. Subsequently, using double-stranded, self-complementary AAV (scAAV) vectors, serotypes 7 through 10, we observed that scAAV7 vectors also transduce murine HSCs efficiently. In the present study, we used scAAV1 and scAAV7 shuttle vectors to transduce HSCs in a murine bone marrow serial transplant model in vivo, which allowed examination of the AAV proviral integration pattern in the mouse genome, as well as recovery and nucleotide sequence analyses of AAV-HSC DNA junction fragments. The proviral genomes were stably integrated, and integration sites were localized to different mouse chromosomes. None of the integration sites was found to be in a transcribed gene, or near a cellular oncogene. None of the animals, monitored for up to 1 year, exhibited pathological abnormalities. Thus, AAV proviral integration-induced risk of oncogenesis was not found in our study, which provides functional confirmation of stable transduction of self-renewing multipotential HSCs by scAAV vectors as well as promise for the use of these vectors in the potential treatment of disorders of the hematopoietic system.

  10. Regeneration of hyaline-like cartilage in situ with SOX9 stimulation of bone marrow-derived mesenchymal stem cells.

    PubMed

    Zhang, Xiaowei; Wu, Shili; Naccarato, Ty; Prakash-Damani, Manan; Chou, Yuan; Chu, Cong-Qiu; Zhu, Yong

    2017-01-01

    Microfracture, a common procedure for treatment of cartilage injury, induces fibrocartilage repair by recruiting bone marrow derived mesenchymal stem cells (MSC) to the site of cartilage injury. However, fibrocartilage is inferior biomechanically to hyaline cartilage. SRY-type high-mobility group box-9 (SOX9) is a master regulator of chondrogenesis by promoting proliferation and differentiation of MSC into chondrocytes. In this study we aimed to test the therapeutic potential of cell penetrating recombinant SOX9 protein in regeneration of hyaline cartilage in situ at the site of cartilage injury. We generated a recombinant SOX9 protein which was fused with super positively charged green fluorescence protein (GFP) (scSOX9) to facilitate cell penetration. scSOX9 was able to induce chondrogenesis of bone marrow derived MSC in vitro. In a rabbit cartilage injury model, scSOX9 in combination with microfracture significantly improved quality of repaired cartilage as shown by macroscopic appearance. Histological analysis revealed that the reparative tissue induced by microfracture with scSOX9 had features of hyaline cartilage; and collagen type II to type I ratio was similar to that in normal cartilage. This short term in vivo study demonstrated that when administered at the site of microfracture, scSOX9 was able to induce reparative tissue with features of hyaline cartilage.

  11. Regeneration of hyaline-like cartilage in situ with SOX9 stimulation of bone marrow-derived mesenchymal stem cells

    PubMed Central

    Naccarato, Ty; Prakash-Damani, Manan; Chou, Yuan; Zhu, Yong

    2017-01-01

    Microfracture, a common procedure for treatment of cartilage injury, induces fibrocartilage repair by recruiting bone marrow derived mesenchymal stem cells (MSC) to the site of cartilage injury. However, fibrocartilage is inferior biomechanically to hyaline cartilage. SRY-type high-mobility group box-9 (SOX9) is a master regulator of chondrogenesis by promoting proliferation and differentiation of MSC into chondrocytes. In this study we aimed to test the therapeutic potential of cell penetrating recombinant SOX9 protein in regeneration of hyaline cartilage in situ at the site of cartilage injury. We generated a recombinant SOX9 protein which was fused with super positively charged green fluorescence protein (GFP) (scSOX9) to facilitate cell penetration. scSOX9 was able to induce chondrogenesis of bone marrow derived MSC in vitro. In a rabbit cartilage injury model, scSOX9 in combination with microfracture significantly improved quality of repaired cartilage as shown by macroscopic appearance. Histological analysis revealed that the reparative tissue induced by microfracture with scSOX9 had features of hyaline cartilage; and collagen type II to type I ratio was similar to that in normal cartilage. This short term in vivo study demonstrated that when administered at the site of microfracture, scSOX9 was able to induce reparative tissue with features of hyaline cartilage. PMID:28666028

  12. Tissue-Engineered Regeneration of Hemisected Spinal Cord Using Human Endometrial Stem Cells, Poly ε-Caprolactone Scaffolds, and Crocin as a Neuroprotective Agent.

    PubMed

    Terraf, Panieh; Kouhsari, Shideh Montasser; Ai, Jafar; Babaloo, Hamideh

    2017-09-01

    Loss of motor and sensory function as a result of neuronal cell death and axonal degeneration are the hallmarks of spinal cord injury. To overcome the hurdles and achieve improved functional recovery multiple aspects, it must be taken into account. Tissue engineering approaches by coalescing biomaterials and stem cells offer a promising future for treating spinal cord injury. Here we investigated human endometrial stem cells (hEnSCs) as our cell source. Electrospun poly ε-caprolactone (PCL) scaffolds were used for hEnSC adhesion and growth. Scanning electron microscopy (SEM) confirmed the attachment and survival of stem cells on the PCL scaffolds. The scaffold-stem cell construct was transplanted into the hemisected spinal cords of adult male rats. Crocin, an ethanol-extractable component of Crocus sativus L., was administered to rats for 15 consecutive days post injury. Neurite outgrowth and axonal regeneration were investigated using immunohistochemical staining for neurofilament marker NF-H and luxol-fast blue (LFB) staining, respectively. TNF-α staining was performed to determine the inflammatory response in each group. Functional recovery was assessed via the Basso-Beattie-Bresnahan (BBB) scale. Results showed that PCL scaffolds seeded with hEnSCs restored the continuity of the damaged spinal cord and decreased cavity formation. Additionally, hEnSC-seeded scaffolds contributed to the functional recovery of the spinal cord. Hence, hEnSC-seeded PCL scaffolds may serve as promising transplants for spinal cord tissue engineering purposes. Furthermore, crocin had an augmenting effect on spinal cord regeneration and proved to exert neuroprotective effects on damaged neurons and may be further studied as a promising drug for spinal cord injury.

  13. Insights into cell-free therapeutic approach: Role of stem cell "soup-ernatant".

    PubMed

    Raik, Shalini; Kumar, Ajay; Bhattacharyya, Shalmoli

    2018-03-01

    Current advances in medicine have revolutionized the field of regenerative medicine dramatically with newly evolved therapies for repair or replacement of degenerating or injured tissues. Stem cells (SCs) can be harvested from different sources for clinical therapeutics, which include fetal tissues, umbilical cord blood, embryos, and adult tissues. SCs can be isolated and differentiated into desired lineages for tissue regeneration and cell replacement therapy. However, several loopholes need to be addressed properly before this can be extended for large-scale therapeutic application. These include a careful approach for patient safety during SC treatments and tolerance of recipients. SC treatments are associated with a number of risk factors and require successful integration and survival of transplanted cells in the desired microenvironment with concurrent tissue regeneration. Recent studies have focused on developing alternatives that can replace the cell-based therapy using paracrine factors. The development of stem "cell free" therapies can be devoted mainly to the use of soluble factors (secretome), extracellular vesicles, and mitochondrial transfer. The present review emphasizes on the paradigms related to the use of SC-based therapeutics and the potential applications of a cell-free approach as an alternative to cell-based therapy in the area of regenerative medicine. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  14. Biomimetic chimeric peptide-tethered hydrogels for human mesenchymal stem cell delivery.

    PubMed

    Shim, Gayong; Kim, Gunwoo; Choi, Junhyeok; Yi, TacGhee; Cho, Yun Kyoung; Song, Sun Uk; Byun, Youngro; Oh, Yu-Kyoung

    2015-12-01

    Here, we report a chimeric peptide-tethered fibrin hydrogel scaffold for delivery of human mesenchymal stem cells (hMSC). Osteopontin-derived peptide (OP) was used as an hMSC-tethering moiety. OP showed hMSC adhesion properties and enhanced hMSC proliferation. A natural fibrin-binding protein-derived peptide (FBP) was tested for its ability to tether hMSC to the fibrin gel matrix. FBP loading on fibrin gels was 8.2-fold higher than that of a scrambled peptide (scFBP). FBP-loaded fibrin gels were retained at injection sites longer than scFBP-loaded fibrin gels, showing a 15.9-fold higher photon intensity of fluorescent FBP-grafted fibrin gels than fluorescent scFBP-loaded fibrin gels 48 h after injection. On the basis of the fibrin gel-binding properties of FBP and the hMSC-binding and proliferation-supporting properties of OP, we constructed chimeric peptides containing FBP and OP linked with a spacer (FBPsOP). Four days after transplantation, the survival of hMSC in FBPsOP-grafted fibrin gels was 3.9-fold higher than hMSC in fibrin gels alone. Our results suggest the potential of FBPsOP-grafted fibrin gels as a bioactive delivery system for enhanced survival of stem cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Rejuvenation of the aged muscle stem cell population restores strength to injured aged muscles

    PubMed Central

    Cosgrove, Benjamin D.; Gilbert, Penney M.; Porpiglia, Ermelinda; Mourkioti, Foteini; Lee, Steven P.; Corbel, Stephane Y.; Llewellyn, Michael E.; Delp, Scott L.; Blau, Helen M.

    2014-01-01

    The aged suffer from progressive muscle weakness and regenerative failure. We demonstrate that muscle regeneration is impaired with aging due in part to a cell-autonomous functional decline in skeletal muscle stem cells (MuSCs). Two-thirds of aged MuSCs are intrinsically defective relative to young MuSCs, with reduced capacity to repair myofibers and repopulate the stem cell reservoir in vivo following transplantation due to a higher incidence of cells that express senescence markers and that have elevated p38α/β MAPK activity. We show that these limitations cannot be overcome by transplantation into the microenvironment of young recipient muscles. In contrast, subjecting the aged MuSC population to transient inhibition of p38α/β in conjunction with culture on soft hydrogel substrates rapidly expands the residual functional aged MuSC population, rejuvenating its potential for regeneration, serial transplantation, and strengthening damaged muscles of aged mice. These findings reveal a synergy between biophysical and biochemical cues that provides a paradigm for a localized autologous muscle stem cell therapy in aged individuals. PMID:24531378

  16. DNMT1 is essential for mammary and cancer stem cell maintenance and tumorigenesis

    PubMed Central

    Pathania, Rajneesh; Ramachandran, Sabarish; Elangovan, Selvakumar; Padia, Ravi; Yang, Pengyi; Cinghu, Senthilkumar; Veeranan-Karmegam, Rajalakshmi; Arjunan, Pachiappan; Gnana-Prakasam, Jaya P.; Fulzele, Sadanand; Pei, Lirong; Chang, Chang-Sheng; Choi, Hyeon; Shi, Huidong; Manicassamy, Santhakumar; Prasad, Puttur D.; Sharma, Suash; Ganapathy, Vadivel; Jothi, Raja; Thangaraju, Muthusamy

    2015-01-01

    Mammary stem/progenitor cells (MaSCs) maintain self-renewal of the mammary epithelium during puberty and pregnancy. DNA methylation provides a potential epigenetic mechanism for maintaining cellular memory during self-renewal. Although DNA methyltransferases (DNMTs) are dispensable for embryonic stem cell maintenance, their role in maintaining MaSCs and cancer stem cells (CSCs) in constantly replenishing mammary epithelium is unclear. Here we show that DNMT1 is indispensable for MaSC maintenance. Furthermore, we find that DNMT1 expression is elevated in mammary tumors, and mammary gland-specific DNMT1 deletion protects mice from mammary tumorigenesis by limiting the CSC pool. Through genome-scale methylation studies, we identify ISL1 as a direct DNMT1 target, hypermethylated and downregulated in mammary tumors and CSCs. DNMT inhibition or ISL1 expression in breast cancer cells limits CSC population. Altogether, our studies uncover an essential role for DNMT1 in MaSC and CSC maintenance and identify DNMT1-ISL1 axis as a potential therapeutic target for breast cancer treatment. PMID:25908435

  17. Moving epithelia: Tracking the fate of mammalian limbal epithelial stem cells.

    PubMed

    Di Girolamo, Nick

    2015-09-01

    Lineage tracing allows the destiny of a stem cell (SC) and its progeny to be followed through time. In order to track their long-term fate, SC must be permanently marked to discern their distribution, division, displacement and differentiation. This information is essential for unravelling the mysteries that govern their replenishing activity while they remain anchored within their niche microenvironment. Modern-day lineage tracing uses inducible genetic recombination to illuminate cells within embryonic, newborn and adult tissues, and the advent of powerful high-resolution microscopy has enabled the behaviour of labelled cells to be monitored in real-time in a living organism. The simple structural organization of the mammalian cornea, including its accessibility and transparency, renders it the ideal tissue to study SC fate using lineage tracing assisted by non-invasive intravital microscopy. Despite more than a century of research devoted to understanding how this tissue is maintained and repaired, many limitations and controversies continue to plague the field, including uncertainties about the specificity of current SC markers, the number of SC within the cornea, their mode of division, their location, and importantly the signals that dictate cell migration. This communication will highlight historical discoveries as well as recent developments in the corneal SC field; more specifically how the progeny of these cells are mobilised to replenish this dynamic tissue during steady-state, disease and transplantation. Also discussed is how insights gleaned from animal studies can be used to advance our knowledge of the fundamental mechanisms that govern modelling and remodelling of the human cornea in health and disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Upfront plerixafor plus G-CSF versus cyclophosphamide plus G-CSF for stem cell mobilization in multiple myeloma: efficacy and cost analysis study.

    PubMed

    Afifi, S; Adel, N G; Devlin, S; Duck, E; Vanak, J; Landau, H; Chung, D J; Lendvai, N; Lesokhin, A; Korde, N; Reich, L; Landgren, O; Giralt, S; Hassoun, H

    2016-04-01

    Cyclophosphamide plus G-CSF (C+G-CSF) is one of the most widely used stem cell (SC) mobilization regimens for patients with multiple myeloma (MM). Plerixafor plus G-CSF (P+G-CSF) has demonstrated superior SC mobilization efficacy when compared with G-CSF alone and has been shown to rescue patients who fail mobilization with G-CSF or C+G-CSF. Despite the proven efficacy of P+G-CSF in upfront SC mobilization, its use has been limited, mostly due to concerns of high price of the drug. However, a comprehensive comparison of the efficacy and cost effectiveness of SC mobilization using C+G-CSF versus P+G-CSF is not available. In this study, we compared 111 patients receiving C+G-CSF to 112 patients receiving P+G-CSF. The use of P+G-CSF was associated with a higher success rate of SC collection defined as ⩾5 × 10(6) CD34+ cells/kg (94 versus 83%, P=0.013) and less toxicities. Thirteen patients in the C+G-CSF arm were hospitalized owing to complications while none in the P+G-CSF group. C+G-CSF was associated with higher financial burden as assessed using institutional-specific costs and charges (P<0.001) as well as using Medicare reimbursement rates (P=0.27). Higher rate of hospitalization, increased need for salvage mobilization, and increased G-CSF use account for these differences.

  19. Stem Cell-Associated Marker Expression in Canine Hair Follicles

    PubMed Central

    Gerhards, Nora M.; Sayar, Beyza S.; Origgi, Francesco C.; Galichet, Arnaud; Müller, Eliane J.; Welle, Monika M.; Wiener, Dominique J.

    2016-01-01

    Functional hair follicle (HF) stem cells (SCs) are crucial to maintain the constant recurring growth of hair. In mice and humans, SC subpopulations with different biomarker expression profiles have been identified in discrete anatomic compartments of the HF. The rare studies investigating canine HF SCs have shown similarities in biomarker expression profiles to that of mouse and human SCs. The aim of our study was to broaden the current repertoire of SC-associated markers and their expression patterns in the dog. We combined analyses on the expression levels of CD34, K15, Sox9, CD200, Nestin, LGR5 and LGR6 in canine skin using RT-qPCR, the corresponding proteins in dog skin lysates, and their expression patterns in canine HFs using immunohistochemistry. Using validated antibodies, we were able to define the location of CD34, Sox9, Keratin15, LGR5 and Nestin in canine HFs and confirm that all tested biomarkers are expressed in canine skin. Our results show similarities between the expression profile of canine, human and mouse HF SC markers. This repertoire of biomarkers will allow us to conduct functional studies and investigate alterations in the canine SC compartment of different diseases, like alopecia or skin cancer with the possibility to extend relevant findings to human patients. PMID:26739040

  20. Stem Cell-Associated Marker Expression in Canine Hair Follicles.

    PubMed

    Gerhards, Nora M; Sayar, Beyza S; Origgi, Francesco C; Galichet, Arnaud; Müller, Eliane J; Welle, Monika M; Wiener, Dominique J

    2016-03-01

    Functional hair follicle (HF) stem cells (SCs) are crucial to maintain the constant recurring growth of hair. In mice and humans, SC subpopulations with different biomarker expression profiles have been identified in discrete anatomic compartments of the HF. The rare studies investigating canine HF SCs have shown similarities in biomarker expression profiles to that of mouse and human SCs. The aim of our study was to broaden the current repertoire of SC-associated markers and their expression patterns in the dog. We combined analyses on the expression levels of CD34, K15, Sox9, CD200, Nestin, LGR5 and LGR6 in canine skin using RT-qPCR, the corresponding proteins in dog skin lysates, and their expression patterns in canine HFs using immunohistochemistry. Using validated antibodies, we were able to define the location of CD34, Sox9, Keratin15, LGR5 and Nestin in canine HFs and confirm that all tested biomarkers are expressed in canine skin. Our results show similarities between the expression profile of canine, human and mouse HF SC markers. This repertoire of biomarkers will allow us to conduct functional studies and investigate alterations in the canine SC compartment of different diseases, like alopecia or skin cancer with the possibility to extend relevant findings to human patients. © 2016 The Histochemical Society.

  1. Immunoregulatory effects of human dental pulp-derived stem cells on T cells: comparison of transwell co-culture and mixed lymphocyte reaction systems.

    PubMed

    Demircan, Pinar Cetinalp; Sariboyaci, Ayla Eker; Unal, Zehra Seda; Gacar, Gulcin; Subasi, Cansu; Karaoz, Erdal

    2011-11-01

    BACKGROUND AIMS. Studies performed using human and animal models have indicated the immunoregulatory capability of mesenchymal stromal cells in several lineages. We investigated whether human dental pulp-derived stem cells (hDP-SC) have regulatory effects on phytohemagglutinin (PHA)-activated CD3(+) T cells. We aimed to define the regulatory mechanisms associated with hDP-SC that occur in mixed lymphocyte reaction (MLR) and transwell systems with PHA-CD3(+) T cells and hDP-SC at a ratio of 1:1. METHODS. Proliferation, apoptosis and pro- and anti-inflammatory cytokines of PHA-CD3(+)T cells, the expression of Regulatory T cells (Treg) markers and some regulatory factors related to hDP-SC, were studied in Both transwell and MLR are co-cultures systems. RESULTS. Anti-proliferative and apoptotic effects of hDP-SC were determined in co-culture systems. Elevated expression levels of human leukocyte antigen (HLA)-G, hepatocyte growth factor (HGF)-β1, intracellular adhesion molecule (ICAM-1)-1, interleukin (IL)-6, IL-10, transforming growth factor (TGF)-β1, vascular adhesion molecule (VCAM)-1 and vascular endothelial growth factor (VEGF) by hDP-SC were detected in the co-culture systems. We observed decreased expression levels of pro-inflammatory cytokines [interferon (IFN)-γ, IL-2, IL-6 receptor (R), IL-12, Interleukin-17A (IL-17A), tumor necrosis factor (TNF)-α] and increased expression levels of anti-inflammatory cytokine [inducible protein (IP)-10] from PHA-CD3(+) T cells in the transwell system. Expression of Treg (CD4(+) CD25(+) Foxp3(+)) markers was significantly induced by hDP-SC in both co-culture systems. We observed apoptosis of PHA-CD3(+) T cells with 24 h using time-lapse camera photographs and active caspase labeling; it is likely that paracrine soluble factors and molecular signals secreted by hDP-SC led this apoptosis. CONCLUSIONS. We suggest that hDP-SC have potent immunoregulatory functions because of their soluble factors and cytokines via paracrine mechanisms associated with PHA-CD3(+) T cells, which could contribute to clinical therapies.

  2. Dll1- and Dll4-mediated Notch signaling is required for homeostasis of intestinal stem cells

    PubMed Central

    Pellegrinet, Luca; Rodilla, Veronica; Liu, Zhenyi; Chen, Shuang; Koch, Ute; Espinosa, Lluis; Kaestner, Klaus H.; Kopan, Raphael; Lewis, Julian; Radtke, Freddy

    2011-01-01

    Background & Aims Ablation of Notch signaling within the intestinal epithelium results in loss of proliferating crypt progenitors, due to their conversion into post-mitotic secretory cells. We aimed to confirm that Notch was active in stem cells (SC), investigate consequences of loss of Notch signaling within the intestinal SC compartment, and identify the physiological ligands of Notch in mouse intestine. Furthermore, we investigated whether the induction of goblet cell differentiation that results from loss of Notch requires the transcription factor Krüppel-like factor 4 (Klf4). Methods Trasgenic mice that carried a reporter of Notch1 activation were used for lineage tracing experiments. The in vivo functions of the Notch ligands Jagged1 (Jag1), Delta-like1 (Dll1), Delta-like4 (Dll4), and the transcription factor Klf4 were assessed in mice with inducible, gut-specific gene targeting (Vil-Cre-ERT2). Results Notch1 signaling was found to be activated in intestinal SC. Although deletion of Jag1 or Dll4 did not perturb the intestinal epithelium, inactivation of Dll1 resulted in a moderate increase in number of goblet cells without noticeable effects of progenitor proliferation. However, simultaneous inactivation of Dll1 and Dll4 resulted in the complete conversion of proliferating progenitors into post-mitotic goblet cells, concomitant with loss of SC (Olfm4+, Lgr5+ and Ascl2+). Klf4 inactivation did not interfere with goblet cell differentiation in adult wild-type or in Notch pathway-deficient gut. Conclusions Notch signaling in SC and progenitors is activated by Dll1 and Dll4 ligands and is required for maintenance of intestinal progenitor and SC. Klf4 is dispensable for goblet cell differentiation in intestines of adult Notch-deficient mice. PMID:21238454

  3. Single Cell-Based Vector Tracing in Patients with ADA-SCID Treated with Stem Cell Gene Therapy.

    PubMed

    Igarashi, Yuka; Uchiyama, Toru; Minegishi, Tomoko; Takahashi, Sirirat; Watanabe, Nobuyuki; Kawai, Toshinao; Yamada, Masafumi; Ariga, Tadashi; Onodera, Masafumi

    2017-09-15

    Clinical improvement in stem cell gene therapy (SCGT) for primary immunodeficiencies depends on the engraftment levels of genetically corrected cells, and tracing the transgene in each hematopoietic lineage is therefore extremely important in evaluating the efficacy of SCGT. We established a single cell-based droplet digital PCR (sc-ddPCR) method consisting of the encapsulation of a single cell into each droplet, followed by emulsion PCR with primers and probes specific for the transgene. A fluorescent signal in a droplet indicates the presence of a single cell carrying the target gene in its genome, and this system can clearly determine the ratio of transgene-positive cells in the entire population at the genomic level. Using sc-ddPCR, we analyzed the engraftment of vector-transduced cells in two patients with severe combined immunodeficiency (SCID) who were treated with SCGT. Sufficient engraftment of the transduced cells was limited to the T cell lineage in peripheral blood (PB), and a small percentage of CD34 + cells exhibited vector integration in bone marrow, indicating that the transgene-positive cells in PB might have differentiated from a small population of stem cells or lineage-restricted precursor cells. sc-ddPCR is a simplified and powerful tool for the detailed assessment of transgene-positive cell distribution in patients treated with SCGT.

  4. Dental stem cells: a future asset of ocular cell therapy.

    PubMed

    Yam, Gary Hin-Fai; Peh, Gary Swee-Lim; Singhal, Shweta; Goh, Bee-Tin; Mehta, Jodhbir S

    2015-11-10

    Regenerative medicine using patient's own stem cells (SCs) to repair dysfunctional tissues is an attractive approach to complement surgical and pharmacological treatments for aging and degenerative disorders. Recently, dental SCs have drawn much attention owing to their accessibility, plasticity and applicability for regenerative use not only for dental, but also other body tissues. In ophthalmology, there has been increasing interest to differentiate dental pulp SC and periodontal ligament SC (PDLSC) towards ocular lineage. Both can commit to retinal fate expressing eye field transcription factors and generate rhodopsin-positive photoreceptor-like cells. This proposes a novel therapeutic alternative for retinal degeneration diseases. Moreover, as PDLSC shares similar cranial neural crest origin and proteoglycan secretion with corneal stromal keratoctyes and corneal endothelial cells, this offers the possibility of differentiating PDLSC to these corneal cell types. The advance could lead to a shift in the medical management of corneal opacities and endothelial disorders from highly invasive corneal transplantation using limited donor tissue to cell therapy utilizing autologous cells. This article provides an overview of dental SC research and the perspective of utilizing dental SCs for ocular regenerative medicine.

  5. Plasticity of the Muscle Stem Cell Microenvironment.

    PubMed

    Dinulovic, Ivana; Furrer, Regula; Handschin, Christoph

    2017-01-01

    Satellite cells (SCs) are adult muscle stem cells capable of repairing damaged and creating new muscle tissue throughout life. Their functionality is tightly controlled by a microenvironment composed of a wide variety of factors, such as numerous secreted molecules and different cell types, including blood vessels, oxygen, hormones, motor neurons, immune cells, cytokines, fibroblasts, growth factors, myofibers, myofiber metabolism, the extracellular matrix and tissue stiffness. This complex niche controls SC biology-quiescence, activation, proliferation, differentiation or renewal and return to quiescence. In this review, we attempt to give a brief overview of the most important players in the niche and their mutual interaction with SCs. We address the importance of the niche to SC behavior under physiological and pathological conditions, and finally survey the significance of an artificial niche both for basic and translational research purposes.

  6. Mammary Stem Cells: Premise, Properties, and Perspectives.

    PubMed

    Lloyd-Lewis, Bethan; Harris, Olivia B; Watson, Christine J; Davis, Felicity M

    2017-08-01

    Adult mammary stem cells (MaSCs) drive postnatal organogenesis and remodeling in the mammary gland, and their longevity and potential have important implications for breast cancer. However, despite intense investigation the identity, location, and differentiation potential of MaSCs remain subject to deliberation. The application of genetic lineage-tracing models, combined with quantitative 3D imaging and biophysical methods, has provided new insights into the mammary epithelial hierarchy that challenge classical definitions of MaSC potency and behaviors. We review here recent advances - discussing fundamental unresolved properties of MaSC potency, dynamics, and plasticity - and point to evolving technologies that promise to shed new light on this intractable debate. Elucidation of the physiological mammary differentiation hierarchy is paramount to understanding the complex heterogeneous breast cancer landscape. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Production of a Recombinant Antibody Specific for i Blood Group Antigen, a Mesenchymal Stem Cell Marker

    PubMed Central

    Suila, Heli; Tiitinen, Sari; Natunen, Suvi; Laukkanen, Marja-Leena; Kotovuori, Annika; Reinman, Mirka; Satomaa, Tero; Alfthan, Kaija; Laitinen, Saara; Takkinen, Kristiina; Räbinä, Jarkko; Valmu, Leena

    2013-01-01

    Abstract Multipotent mesenchymal stem/stromal cells (MSCs) offer great promise for future regenerative and anti-inflammatory therapies. Panels of functional and phenotypical markers are currently used in characterization of different therapeutic stem cell populations from various sources. The i antigen (linear poly-N-acetyllactosamine) from the Ii blood group system has been suggested as a marker for MSCs derived from umbilical cord blood (UCB). However, there are currently no commercially available antibodies recognizing the i antigen. In the present study, we describe the use of antibody phage display technology to produce recombinant antibodies recognizing a structure from the surface of mesenchymal stem cells. We constructed IgM phage display libraries from the lymphocytes of a donor with an elevated serum anti-i titer. Antibody phage display technology is not dependent on immunization and thus allows the generation of antibodies against poorly immunogenic molecules, such as carbohydrates. Agglutination assays utilizing i antigen–positive red blood cells (RBCs) from UCB revealed six promising single-chain variable fragment (scFv) antibodies, three of which recognized epitopes from the surface of UCB-MSCs in flow cytometric assays. The amino acid sequence of the VH gene segment of B12.2 scFv was highly similar to the VH4.21 gene segment required to encode anti-i specificities. Further characterization of binding properties revealed that the binding of B12.2 hyperphage was inhibited by soluble linear lactosamine oligosaccharide. Based on these findings, we suggest that the B12.2 scFv we have generated is a prominent anti-i antibody that recognizes i antigen on the surface of both UCB-MSCs and RBCs. This binder can thus be utilized in UCB-MSC detection and isolation as well as in blood group serology. PMID:24083089

  8. Identification, expansion and characterization of cancer cells with stem cell properties from head and neck squamous cell carcinomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaseb, Hatem O.; Department of Clinical Pathology, National Cancer Institute; Fohrer-Ting, Helene

    Head and neck squamous cell carcinoma (HNSCC) is a major public health concern. Recent data indicate the presence of cancer stem cells (CSC) in many solid tumors, including HNSCC. Here, we assessed the stem cell (SC) characteristics, including cell surface markers, radioresistance, chromosomal instability, and in vivo tumorigenic capacity of CSC isolated from HNSCC patient specimens. We show that spheroid enrichment of CSC from early and short-term HNSCC cell cultures was associated with increased expression of CD44, CD133, SOX2 and BMI1 compared with normal oral epithelial cells. On immunophenotyping, five of 12 SC/CSC markers were homogenously expressed in all tumormore » cultures, while one of 12 was negative, four of 12 showed variable expression, and two of the 12 were expressed heterogeneously. We showed that irradiated CSCs survived and retained their self-renewal capacity across different ionizing radiation (IR) regimens. Fluorescence in situ hybridization (FISH) analyses of parental and clonally-derived tumor cells revealed different chromosome copy numbers from cell to cell, suggesting the presence of chromosomal instability in HNSCC CSC. Further, our in vitro and in vivo mouse engraftment studies suggest that CD44+/CD66− is a promising, consistent biomarker combination for HNSCC CSC. Overall, our findings add further evidence to the proposed role of HNSCC CSCs in therapeutic resistance. - Highlights: • Spheroid enrichment selects cancer stem cells (CSC) from head & neck tumors (HNSCC). • Compared to normal epithelial cells, isolated CSC express increased SC/CSC markers. • Isolated CSC display enhanced radioresistance, clonogenicity and tumorigenicity. • HNSCC CSC express chromosomal instability. • CD44+/CD66− is a promising, consistent biomarker for HNSCC CSC.« less

  9. Microvesicle-mediated Wnt/β-Catenin Signaling Promotes Interspecies Mammary Stem/Progenitor Cell Growth.

    PubMed

    Bussche, Leen; Rauner, Gat; Antonyak, Marc; Syracuse, Bethany; McDowell, Melissa; Brown, Anthony M C; Cerione, Richard A; Van de Walle, Gerlinde R

    2016-11-18

    Signaling mechanisms that regulate mammary stem/progenitor cell (MaSC) self-renewal are essential for developmental changes that occur in the mammary gland during pregnancy, lactation, and involution. We observed that equine MaSCs (eMaSCs) maintain their growth potential in culture for an indefinite period, whereas canine MaSCs (cMaSCs) lose their growth potential in long term cultures. We then used this system to investigate the role of microvesicles (MVs) in promoting self-renewal properties. We found that Wnt3a and Wnt1 were expressed at higher levels in MVs isolated from eMaSCs compared with those from cMaSCs. Furthermore, eMaSC-MVs were able to induce Wnt/β-catenin signaling in different target cells, including cMaSCs. Interestingly, the induction of Wnt/β-catenin signaling in cMaSCs was prolonged when using eMaSC-MVs compared with recombinant Wnt proteins, indicating that MVs are not only important for transport of Wnt proteins, but they also enhance their signaling activity. Finally, we demonstrate that the eMaSC-MVs-mediated activation of the Wnt/β-catenin signaling pathway in cMaSCs significantly improves the ability of cMaSCs to grow as mammospheres and, importantly, that this effect is abolished when eMaSC-MVs are treated with Wnt ligand inhibitors. This suggests that this novel form of intercellular communication plays an important role in self-renewal. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Dose Dependent Side Effect of Superparamagnetic Iron Oxide Nanoparticle Labeling on Cell Motility in Two Fetal Stem Cell Populations

    PubMed Central

    Diana, Valentina; Bossolasco, Patrizia; Moscatelli, Davide; Silani, Vincenzo; Cova, Lidia

    2013-01-01

    Multipotent stem cells (SCs) could substitute damaged cells and also rescue degeneration through the secretion of trophic factors able to activate the endogenous SC compartment. Therefore, fetal SCs, characterized by high proliferation rate and devoid of ethical concern, appear promising candidate, particularly for the treatment of neurodegenerative diseases. Super Paramagnetic Iron Oxide nanoparticles (SPIOn), routinely used for pre-clinical cell imaging and already approved for clinical practice, allow tracking of transplanted SCs and characterization of their fate within the host tissue, when combined with Magnetic Resonance Imaging (MRI). In this work we investigated how SPIOn could influence cell migration after internalization in two fetal SC populations: human amniotic fluid and chorial villi SCs were labeled with SPIOn and their motility was evaluated. We found that SPIOn loading significantly reduced SC movements without increasing production of Reactive Oxygen Species (ROS). Moreover, motility impairment was directly proportional to the amount of loaded SPIOn while a chemoattractant-induced recovery was obtained by increasing serum levels. Interestingly, the migration rate of SPIOn labeled cells was also significantly influenced by a degenerative surrounding. In conclusion, this work highlights how SPIOn labeling affects SC motility in vitro in a dose-dependent manner, shedding the light on an important parameter for the creation of clinical protocols. Establishment of an optimal SPIOn dose that enables both a good visualization of grafted cells by MRI and the physiological migration rate is a main step in order to maximize the effects of SC therapy in both animal models of neurodegeneration and clinical studies. PMID:24244310

  11. [The application of stem together with visible and infrared light in regenerative medicine (Part 2)].

    PubMed

    Emel'yanov, A N; Kir'yanova, V V

    2015-01-01

    The objective of the present study was to review the experimental studies concerned with in vitro and in vivo visible and infrared light irradiation of human and animal stem cells (SC) to assess the possibilities of using its photobiomodulatory effects for the purpose of regenerative medicine (RM). Despite the long history of photochromotherapy there is thus far no reliable theoretical basis for the choice of such irradiation parameters as power density, radiation dose and exposure time. Nor is there a generally accepted opinion on the light application for the purpose of regenerative medicine. Therefore, the clinical application of light irradiation remains a matter of controversy, in the first place due to the difficulty of the rational choice of irradiation parameters. In laboratory research, the theoretical basis for the choice of irradiation parameters remains a stumbling block too. A relationship between the increased radiation power density and the cell differentiation rate was documented. SC exposure to light in the absence of the factors causing their differentiation failed to induce it. On the contrary, it increased the features characteristic of undifferentiated cells. The maximum differentiation rate of the same cells was achieved by using irradiation parameters different from those needed to achieve the maxi- mum proliferation rate. The increase of SC differentiation rate upon a rise in radiation power density was induced by increasing ir- radiation energy density. The increase of power density and the reduction of either energy density or exposure time were needed to enhance the SC responsiveness to irradiation in the form of either proliferation or differentiation. The effectiveness of phototherapy at all stages of SC treatment was documented especially when it was applied to stimulate the reservoirs of bone marrow lying far from the site of the pathogenic process together with simultaneous light irradiation of the affected site and pre-treatment of stem cells prior to their administration. Based on the results of this analysis we have proposed "a plot showing the dependence of cell response on the generalized photostimulus" and coined two new terms "photostress" and "photoshock".

  12. Plasticity of the Muscle Stem Cell Microenvironment

    PubMed Central

    Dinulovic, Ivana; Furrer, Regula; Handschin, Christoph

    2018-01-01

    Satellite cells (SCs) are adult muscle stem cells capable of repairing damaged and creating new muscle tissue throughout life. Their functionality is tightly controlled by a microenvironment composed of a wide variety of factors, such as numerous secreted molecules and different cell types, including blood vessels, oxygen, hormones, motor neurons, immune cells, cytokines, fibroblasts, growth factors, myofibers, myofiber metabolism, the extracellular matrix and tissue stiffness. This complex niche controls SC biology – quiescence, activation, proliferation, differentiation or renewal and return to quiescence. In this review, we attempt to give a brief overview of the most important players in the niche and their mutual interaction with SCs. We address the importance of the niche to SC behavior under physiological and pathological conditions, and finally survey the significance of an artificial niche both for basic and translational research purposes. PMID:29204832

  13. Single-cell topological RNA-Seq analysis reveals insights into cellular differentiation and development

    PubMed Central

    Rizvi, Abbas H.; Camara, Pablo G.; Kandror, Elena K.; Roberts, Thomas J.; Schieren, Ira; Maniatis, Tom; Rabadan, Raul

    2017-01-01

    Transcriptional programs control cellular lineage commitment and differentiation during development. Understanding cell fate has been advanced by studying single-cell RNA-seq, but is limited by the assumptions of current analytic methods regarding the structure of data. We present single-cell topological data analysis (scTDA), an algorithm for topology-based computational analyses to study temporal, unbiased transcriptional regulation. Compared to other methods, scTDA is a non-linear, model-independent, unsupervised statistical framework that can characterize transient cellular states. We applied scTDA to the analysis of murine embryonic stem cell (mESC) differentiation in vitro in response to inducers of motor neuron differentiation. scTDA resolved asynchrony and continuity in cellular identity over time, and identified four transient states (pluripotent, precursor, progenitor, and fully differentiated cells) based on changes in stage-dependent combinations of transcription factors, RNA-binding proteins and long non-coding RNAs. scTDA can be applied to study asynchronous cellular responses to either developmental cues or environmental perturbations. PMID:28459448

  14. Supercritical Carbon Dioxide Extraction of Bioactive Compounds from Ampelopsis grossedentata Stems: Process Optimization and Antioxidant Activity

    PubMed Central

    Wang, Yuefei; Ying, Le; Sun, Da; Zhang, Shikang; Zhu, Yuejin; Xu, Ping

    2011-01-01

    Supercritical carbon dioxide (SC-CO2) extraction of bioactive compounds including flavonoids and phenolics from Ampelopsis grossedentata stems was carried out. Extraction parameters such as pressure, temperature, dynamic time and modifier, were optimized using an orthogonal array design of L9 (34), and antioxidant activities of the extracts were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay and ferrous ion chelating (FIC) assay. The best conditions obtained for SC-CO2 extraction of flavonoids was 250 bar, 40 °C, 50 min, and with a modifier of methanol/ethanol (1:3, v/v), and that for phenolics extraction was 250 bar, 40 °C, 50 min, and with a modifier of methanol/ethanol (1:1, v/v). Meantime, flavonoids and phenolics were found to be mainly responsible for the DPPH scavenging activity of the extracts, but not for the chelating activity on ferrous ion according to Pearson correlation analysis. Furthermore, several unreported flavonoids such as apigenin, vitexin, luteolin, etc., have been detected in the extracts from A. grossedentata stems. PMID:22072923

  15. Integration of stem cell-derived exosomes with in situ hydrogel glue as a promising tissue patch for articular cartilage regeneration.

    PubMed

    Liu, Xiaolin; Yang, Yunlong; Li, Yan; Niu, Xin; Zhao, Bizeng; Wang, Yang; Bao, Chunyan; Xie, Zongping; Lin, Qiuning; Zhu, Linyong

    2017-03-30

    The regeneration of articular cartilage, which scarcely shows innate self-healing ability, is a great challenge in clinical treatment. Stem cell-derived exosomes (SC-Exos), an important type of extracellular nanovesicle, exhibit great potential for cartilage regeneration to replace stem cell-based therapy. Cartilage regeneration often takes a relatively long time and there is currently no effective administration method to durably retain exosomes at cartilage defect sites to effectively exert their reparative effect. Therefore, in this study, we exploited a photoinduced imine crosslinking hydrogel glue, which presents excellent operation ability, biocompatibility and most importantly, cartilage-integration, as an exosome scaffold to prepare an acellular tissue patch (EHG) for cartilage regeneration. It was found that EHG can retain SC-Exos and positively regulate both chondrocytes and hBMSCs in vitro. Furthermore, EHG can integrate with native cartilage matrix and promote cell deposition at cartilage defect sites, finally resulting in the promotion of cartilage defect repair. The EHG tissue patch therefore provides a novel, cell-free scaffold material for wound repair.

  16. Use of a Novel Embryonic Mammary Stem Cell Gene Signature to Improve Human Breast Cancer Diagnostics and Therapeutic Decision Making

    DTIC Science & Technology

    2013-10-01

    dilution transplantation functional assays, we estimated the fMaSC population to be 10-20% pure. Therefore, we inferred that its gene expression...measured by the gold standard of in vivo transplantation . This approach will not only enable us to identify biomarkers useful for prospectively...image of two of the 96 Fluidigm-C1 capture wells containing candidate fMaSC cells. green=live (Calcein-AM), red= dead (Ethidium Bromide). (B) RT-PCR

  17. Use of a Novel Embryonic Mammary Stem Cell Gene Signature to Improve Human Breast Cancer Diagnostics and Therapeutic Decision Making

    DTIC Science & Technology

    2013-10-01

    the fMaSC population into its component cell types. Based on in vitro sphere formation and in vivo limiting dilution transplantation functional...vivo transplantation . This approach will not only enable us to identify biomarkers useful for prospectively identifying fMaSCs, but should also...capture wells containing candidate fMaSC cells. green=live (Calcein-AM), red= dead (Ethidium Bromide). (B) RT-PCR analysis of prepared cDNA libraries

  18. Metabolic Maturation during Muscle Stem Cell Differentiation Is Achieved by miR-1/133a-Mediated Inhibition of the Dlk1-Dio3 Mega Gene Cluster.

    PubMed

    Wüst, Stas; Dröse, Stefan; Heidler, Juliana; Wittig, Ilka; Klockner, Ina; Franko, Andras; Bonke, Erik; Günther, Stefan; Gärtner, Ulrich; Boettger, Thomas; Braun, Thomas

    2018-05-01

    Muscle stem cells undergo a dramatic metabolic switch to oxidative phosphorylation during differentiation, which is achieved by massively increased mitochondrial activity. Since expression of the muscle-specific miR-1/133a gene cluster correlates with increased mitochondrial activity during muscle stem cell (MuSC) differentiation, we examined the potential role of miR-1/133a in metabolic maturation of skeletal muscles in mice. We found that miR-1/133a downregulate Mef2A in differentiated myocytes, thereby suppressing the Dlk1-Dio3 gene cluster, which encodes multiple microRNAs inhibiting expression of mitochondrial genes. Loss of miR-1/133a in skeletal muscles or increased Mef2A expression causes continuous high-level expression of the Dlk1-Dio3 gene cluster, compromising mitochondrial function. Failure to terminate the stem cell-like metabolic program characterized by high-level Dlk1-Dio3 gene cluster expression initiates profound changes in muscle physiology, essentially abrogating endurance running. Our results suggest a major role of miR-1/133a in metabolic maturation of skeletal muscles but exclude major functions in muscle development and MuSC maintenance. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Overexpression of HOXA4 and HOXA9 genes promotes self-renewal and contributes to colon cancer stem cell overpopulation.

    PubMed

    Bhatlekar, Seema; Viswanathan, Vignesh; Fields, Jeremy Z; Boman, Bruce M

    2018-02-01

    Because HOX genes encode master regulatory transcription factors that regulate stem cells (SCs) during development and aberrant expression of HOX genes occurs in various cancers, our goal was to determine if dysregulation of HOX genes is involved in the SC origin of colorectal cancer (CRC). We previously reported that HOXA4 and HOXD10 are expressed in the colonic SC niche and are overexpressed in CRC. HOX gene expression was studied in SCs from human colon tissue and CRC cells (CSCs) using qPCR and immunostaining. siRNA-mediated knockdown of HOX expression was used to evaluate the role of HOX genes in modulating cancer SC (CSC) phenotype at the level of proliferation, SC marker expression, and sphere formation. All-trans-retinoic-acid (ATRA), a differentiation-inducing agent was evaluated for its effects on HOX expression and CSC growth. We found that HOXA4 and HOXA9 are up-regulated in CRC SCs. siRNA knockdown of HOXA4 and HOXA9 reduced: (i) proliferation and sphere-formation and (ii) gene expression of known SC markers (ALDH1, CD166, LGR5). These results indicate that proliferation and self-renewal ability of CRC SCs are reduced in HOXA4 and HOXA9 knockdown cells. ATRA decreased HOXA4, HOXA9, and HOXD10 expression in parallel with reduction in ALDH1 expression, self-renewal, and proliferation. Overall, our findings indicate that overexpression of HOXA4 and HOXA9 contributes to self-renewal and overpopulation of SCs in CRC. Strategies designed to modulate HOX expression may provide ways to target malignant SCs and to develop more effective therapies for CRC. © 2017 Wiley Periodicals, Inc.

  20. Aggregate Mesenchymal Stem Cell Delivery Ameliorates the Regenerative Niche for Muscle Repair.

    PubMed

    Ruehle, Marissa A; Stevens, Hazel Y; Beedle, Aaron M; Guldberg, Robert E; Call, Jarrod A

    2018-05-18

    Duchenne muscular dystrophy (DMD) is a severe muscle wasting disease due to the absence of the dystrophin protein from the muscle cell membrane which renders the muscle susceptible to continuous damage. In DMD patients, muscle weakness, together with cycles of degeneration/regeneration and replacement with non-contractile tissue, limit mobility and lifespan. Since the loss of dystrophin result in loss of polarity and a reduction in the number of self-renewing satellite cells, it is postulated that these patients could achieve an improved quality of life if delivered cells could restore satellite cell function. In this study we used both an established myotoxic injury model in wildtype (WT) mice and mdx mice alone (spontaneous muscle damage). Single (SC) and aggregated (AGG) mesenchymal stem cells (MSCs) were injected into the gastrocnemius muscles 4 hours after injury (WT mice). The recovery of peak isometric torque was longitudinally assessed over 5 weeks, with earlier takedowns for histological assessment of healing (fiber cross section area and central nucleation) and MSC retention. AGG-treated WT mice had significantly greater torque recovery at day 14 than SC or saline-treated mice and a greater CSA at day 10, compared to SC/saline. AGG-treated mdx mice had a greater peak isometric torque compared to SC/saline. In vitro immunomodulatory factor secretion of AGG-MSCs was higher than SC-MSCs for all tested growth factors with the largest difference observed in hepatocyte growth factor (HGF). Future studies are necessary to pair immunomodulatory factor secretion with functional attributes, to better predict the potential therapeutic value of MSC treatment modalities. This article is protected by copyright. All rights reserved.

  1. A loop 2 cytidine-stem 1 minor groove interaction as a positive determinant for pseudoknot-stimulated -1 ribosomal frameshifting.

    PubMed

    Cornish, Peter V; Hennig, Mirko; Giedroc, David P

    2005-09-06

    The molecular determinants of stimulation of -1 programmed ribosomal frameshifting (-1 PRF) by RNA pseudoknots are poorly understood. Sugarcane yellow leaf virus (ScYLV) encodes a 28-nt mRNA pseudoknot that promotes -1 PRF between the P1 (protease) and P2 (polymerase) genes in plant luteoviruses. The solution structure of the ScYLV pseudoknot reveals a well ordered loop 2 (L2) that exhibits continuous stacking of A20 through C27 in the minor groove of the upper stem 1 (S1), with C25 flipped out of the triple-stranded stack. Five consecutive triple base pairs flank the helical junction where the 3' nucleotide of L2, C27, adopts a cytidine 27 N3-cytidine 14 2'-OH hydrogen bonding interaction with the C14-G7 base pair. This interaction is isosteric with the adenosine N1-2'-OH interaction in the related mRNA from beet western yellows virus (BWYV); however, the ScYLV and BWYV mRNA structures differ in their detailed L2-S1 hydrogen bonding and L2 stacking interactions. Functional analyses of ScYLV/BWYV chimeric pseudoknots reveal that the ScYLV RNA stimulates a higher level of -1 PRF (15 +/- 2%) relative to the BWYV pseudoknot (6 +/- 1%), a difference traced largely to the identity of the 3' nucleotide of L2 (C27 vs. A25 in BWYV). Strikingly, C27A ScYLV RNA is a poor frameshift stimulator (2.0%) and is destabilized by approximately 1.5 kcal x mol(-1) (pH 7.0, 37 degrees C) with respect to the wild-type pseudoknot. These studies establish that the precise network of weak interactions nearest the helical junction in structurally similar pseudoknots make an important contribution to setting the frameshift efficiency in mRNAs.

  2. A loop 2 cytidine-stem 1 minor groove interaction as a positive determinant for pseudoknot-stimulated –1 ribosomal frameshifting

    PubMed Central

    Cornish, Peter V.; Hennig, Mirko; Giedroc, David P.

    2005-01-01

    The molecular determinants of stimulation of –1 programmed ribosomal frameshifting (–1 PRF) by RNA pseudoknots are poorly understood. Sugarcane yellow leaf virus (ScYLV) encodes a 28-nt mRNA pseudoknot that promotes –1 PRF between the P1 (protease) and P2 (polymerase) genes in plant luteoviruses. The solution structure of the ScYLV pseudoknot reveals a well ordered loop 2 (L2) that exhibits continuous stacking of A20 through C27 in the minor groove of the upper stem 1 (S1), with C25 flipped out of the triple-stranded stack. Five consecutive triple base pairs flank the helical junction where the 3′ nucleotide of L2, C27, adopts a cytidine 27 N3-cytidine 14 2′-OH hydrogen bonding interaction with the C14-G7 base pair. This interaction is isosteric with the adenosine N1–2′-OH interaction in the related mRNA from beet western yellows virus (BWYV); however, the ScYLV and BWYV mRNA structures differ in their detailed L2–S1 hydrogen bonding and L2 stacking interactions. Functional analyses of ScYLV/BWYV chimeric pseudoknots reveal that the ScYLV RNA stimulates a higher level of –1 PRF (15 ± 2%) relative to the BWYV pseudoknot (6 ± 1%), a difference traced largely to the identity of the 3′ nucleotide of L2 (C27 vs. A25 in BWYV). Strikingly, C27A ScYLV RNA is a poor frameshift stimulator (2.0%) and is destabilized by ≈1.5 kcal·mol–1 (pH 7.0, 37°C) with respect to the wild-type pseudoknot. These studies establish that the precise network of weak interactions nearest the helical junction in structurally similar pseudoknots make an important contribution to setting the frameshift efficiency in mRNAs. PMID:16123125

  3. In silico lineage tracing through single cell transcriptomics identifies a neural stem cell population in planarians.

    PubMed

    Molinaro, Alyssa M; Pearson, Bret J

    2016-04-27

    The planarian Schmidtea mediterranea is a master regenerator with a large adult stem cell compartment. The lack of transgenic labeling techniques in this animal has hindered the study of lineage progression and has made understanding the mechanisms of tissue regeneration a challenge. However, recent advances in single-cell transcriptomics and analysis methods allow for the discovery of novel cell lineages as differentiation progresses from stem cell to terminally differentiated cell. Here we apply pseudotime analysis and single-cell transcriptomics to identify adult stem cells belonging to specific cellular lineages and identify novel candidate genes for future in vivo lineage studies. We purify 168 single stem and progeny cells from the planarian head, which were subjected to single-cell RNA sequencing (scRNAseq). Pseudotime analysis with Waterfall and gene set enrichment analysis predicts a molecularly distinct neoblast sub-population with neural character (νNeoblasts) as well as a novel alternative lineage. Using the predicted νNeoblast markers, we demonstrate that a novel proliferative stem cell population exists adjacent to the brain. scRNAseq coupled with in silico lineage analysis offers a new approach for studying lineage progression in planarians. The lineages identified here are extracted from a highly heterogeneous dataset with minimal prior knowledge of planarian lineages, demonstrating that lineage purification by transgenic labeling is not a prerequisite for this approach. The identification of the νNeoblast lineage demonstrates the usefulness of the planarian system for computationally predicting cellular lineages in an adult context coupled with in vivo verification.

  4. Modulatory Role of Sensory Innervation on Hair Follicle Stem Cell Progeny during Wound Healing of the Rat Skin

    PubMed Central

    Martínez-Martínez, Eduardo; Galván-Hernández, Claudio I.; Toscano-Márquez, Brenda; Gutiérrez-Ospina, Gabriel

    2012-01-01

    Background The bulge region of the hair follicle contains resident epithelial stem cells (SCs) that are activated and mobilized during hair growth and after epidermal wounding. However, little is known about the signals that modulate these processes. Clinical and experimental observations show that a reduced supply of sensory innervation is associated with delayed wound healing. Since axon terminals of sensory neurons are among the components of the bulge SC niche, we investigated whether these neurons are involved in the activation and mobilization of the hair stem cells during wound healing. Methodology/Principal Findings We used neonatal capsaicin treatment to reduce sensory terminals in the rat skin and performed morphometric analyses using design-based stereological methods. Epithelial proliferation was analyzed by quantifying the number of bromodeoxyuridine-labeled (BrdU+) nuclei in the epidermis and hair follicles. After wounding, the epidermis of capsaicin-treated rats presented fewer BrdU+ nuclei than in control rats. To assess SC progeny migration, we employed a double labeling protocol with iododeoxyuridine and chlorodeoxyuridine (IdU+/CldU+). The proportion of double-labeled cells was similar in the hair follicles of both groups at 32 h postwounding. IdU+/CldU+ cell proportion increased in the epidermis of control rats and decreased in treated rats at 61 h postwounding. The epidermal volume immunostained for keratin 6 was greater in treated rats at 61 h. Confocal microscopy analysis revealed that substance P (SP) and calcitonin gene-related peptide (CGRP) receptor immunoreactivity were both present in CD34+ and BrdU-retaining cells of the hair follicles. Conclusions/Significance Our results suggest that capsaicin denervation impairs SC progeny egress from the hair follicles, a circumstance associated with a greater epidermal activation. Altogether, these phenomena would explain the longer times for healing in denervated skin. Thus, sensory innervation may play a functional role in the modulation of hair SC physiology during wound healing. PMID:22574159

  5. Nucleus reticularis gigantocellularis and nucleus raphe magnus in the brain stem exert opposite effects on behavioral hyperalgesia and spinal Fos protein expression after peripheral inflammation.

    PubMed

    Wei, F; Dubner, R; Ren, K

    1999-03-01

    Previous findings indicate that the brain stem descending system becomes more active in modulating spinal nociceptive processes during the development of persistent pain. The present study further identified the supraspinal sites that mediate enhanced descending modulation of behavior hyperalgesia and dorsal horn hyperexcitability (as measured by Fos-like immunoreactivity) produced by subcutaneous complete Freund's adjuvant (CFA). Selective chemical lesions were produced in the nucleus raphe magnus (NRM), the nuclei reticularis gigantocellularis (NGC), or the locus coeruleus/subcoeruleus (LC/SC). Compared to vehicle-injected animals with injection of vehicle alone, microinjection of a serotoninergic neurotoxin 5,7-dihydroxytryptamine into the NRM significantly increased thermal hyperalgesia and Fos protein expression in lumbar spinal cord after hindpaw inflammation. In contrast, the selective bilateral destruction of the NGC with a soma-selective excitotoxic neurotoxin, ibotenic acid, led to an attenuation of hyperalgesia and a reduction of inflammation-induced spinal Fos expression. Furthermore, if the NGC lesion was extended to involve the NRM, the behavioral hyperalgesia and CFA-induced Fos expression were similar to that in vehicle-injected rats. Bilateral LC/SC lesions were produced by microinjections of a noradrenergic neurotoxin, DSP-4. There was a significant increase in inflammation-induced spinal Fos expression, especially in the ipsilateral superficial dorsal horn following LC/SC lesions. These results demonstrated that multiple specific brain stem sites are involved in descending modulation of inflammatory hyperalgesia. Both NRM and LC/SC descending pathways are major sources of enhanced inhibitory modulation in inflamed animals. The persistent hyperalgesia and neuronal hyperexcitability may be mediated in part by a descending pain facilitatory system involving NGC. Thus, the intensity of perceived pain and hyperalgesia is fine-tuned by descending pathways. The imbalance of these modulating systems may be one mechanism underlying variability in acute and chronic pain conditions.

  6. Modulatory role of sensory innervation on hair follicle stem cell progeny during wound healing of the rat skin.

    PubMed

    Martínez-Martínez, Eduardo; Galván-Hernández, Claudio I; Toscano-Márquez, Brenda; Gutiérrez-Ospina, Gabriel

    2012-01-01

    The bulge region of the hair follicle contains resident epithelial stem cells (SCs) that are activated and mobilized during hair growth and after epidermal wounding. However, little is known about the signals that modulate these processes. Clinical and experimental observations show that a reduced supply of sensory innervation is associated with delayed wound healing. Since axon terminals of sensory neurons are among the components of the bulge SC niche, we investigated whether these neurons are involved in the activation and mobilization of the hair stem cells during wound healing. We used neonatal capsaicin treatment to reduce sensory terminals in the rat skin and performed morphometric analyses using design-based stereological methods. Epithelial proliferation was analyzed by quantifying the number of bromodeoxyuridine-labeled (BrdU(+)) nuclei in the epidermis and hair follicles. After wounding, the epidermis of capsaicin-treated rats presented fewer BrdU(+) nuclei than in control rats. To assess SC progeny migration, we employed a double labeling protocol with iododeoxyuridine and chlorodeoxyuridine (IdU(+)/CldU(+)). The proportion of double-labeled cells was similar in the hair follicles of both groups at 32 h postwounding. IdU(+)/CldU(+) cell proportion increased in the epidermis of control rats and decreased in treated rats at 61 h postwounding. The epidermal volume immunostained for keratin 6 was greater in treated rats at 61 h. Confocal microscopy analysis revealed that substance P (SP) and calcitonin gene-related peptide (CGRP) receptor immunoreactivity were both present in CD34(+) and BrdU-retaining cells of the hair follicles. Our results suggest that capsaicin denervation impairs SC progeny egress from the hair follicles, a circumstance associated with a greater epidermal activation. Altogether, these phenomena would explain the longer times for healing in denervated skin. Thus, sensory innervation may play a functional role in the modulation of hair SC physiology during wound healing.

  7. Curcumin Increase the Expression of Neural Stem/Progenitor Cells and Improves Functional Recovery after Spinal Cord Injury

    PubMed Central

    Bang, Woo-Seok; Kim, Kyoung-Tae; Seo, Ye Jin; Cho, Dae-Chul; Sung, Joo-Kyung; Kim, Chi Heon

    2018-01-01

    Objective To investigates the effect of curcumin on proliferation of spinal cord neural stem/progenitor cells (SC-NSPCs) and functional outcome in a rat spinal cord injury (SCI) model. Methods Sixty adult male Sprague-Dawley rats were randomly and blindly allocated into three groups (sham control group; curcumin treated group after SCI; vehicle treated group after SCI). Functional recovery was evaluated by the Basso, Beattie, and Bresnahan (BBB) scale during 6 weeks after SCI. The expression of SC-NSPC proliferation and astrogliosis were analyzed by nestin/Bromodeoxyuridine (BrdU) and Glial fibrillary acidic protein (GFAP) staining. The injured spinal cord was then examined histologically, including quantification of cavitation. Results The BBB score of the SCI-curcumin group was better than that of SCI-vehicle group up to 14 days (p<0.05). The co-immunoreactivity of nestin/BrdU in the SCI-curcumin group was much higher than that of the SCI-vehicle group 1 week after surgery (p<0.05). The GFAP immunoreactivity of the SCI-curcumin group was remarkably lower than that of the SCI-vehicle group 4 weeks after surgery (p<0.05). The lesion cavity was significantly reduced in the curcumin group as compared to the control group (p<0.05). Conclusion These results indicate that curcumin could increase the expression of SC-NSPCs, and reduce the activity of reactive astrogliosis and lesion cavity. Consequently curcumin could improve the functional recovery after SCI via SC-NSPC properties. PMID:29354231

  8. Enhanced ADCC Activity of Affinity Maturated and Fc-Engineered Mini-Antibodies Directed against the AML Stem Cell Antigen CD96

    PubMed Central

    Kellner, Christian; Bräutigam, Joachim; Staudinger, Matthias; Schub, Natalie; Peipp, Matthias; Gramatzki, Martin; Humpe, Andreas

    2012-01-01

    CD96, a cell surface antigen recently described to be preferentially expressed on acute myeloid leukemia (AML) leukemic stem cells (LSC) may represent an interesting target structure for the development of antibody-based therapeutic approaches. The v-regions from the CD96-specific hybridoma TH-111 were isolated and used to generate a CD96-specific single chain fragment of the variable regions (scFv). An affinity maturated variant resulting in 4-fold enhanced CD96-binding was generated by random mutagenesis and stringent selection using phage display. The affinity maturated scFv CD96-S32F was used to generate bivalent mini-antibodies by genetically fusing an IgG1 wild type Fc region or a variant with enhanced CD16a binding. Antibody dependent cell-mediated cytotoxicity (ADCC) experiments revealed that Fc engineering was essential to trigger significant effector cell-mediated lysis when the wild type scFv was used. The mini-antibody variant generated by fusing the affinity-maturated scFv with the optimized Fc variant demonstrated the highest ADCC activity (2.3-fold enhancement in efficacy). In conclusion, our data provide proof of concept that CD96 could serve as a target structure for effector cell-mediated lysis and demonstrate that both enhancing affinity for CD96 and for CD16a resulted in mini-antibodies with the highest cytolytic potential. PMID:22879978

  9. Curcumin Suppresses In Vitro Proliferation and Invasion of Human Prostate Cancer Stem Cells by Modulating DLK1-DIO3 Imprinted Gene Cluster MicroRNAs.

    PubMed

    Zhang, Hu; Zheng, Jiajia; Shen, Hongliang; Huang, Yongyi; Liu, Te; Xi, Hao; Chen, Chuan

    2018-01-01

    Curcumin can suppress human prostate cancer (HuPCa) cell proliferation and invasion. However, it is not known whether curcumin can inhibit HuPCa stem cell (HuPCaSC) proliferation and invasion. We used methyl thiazolyl tetrazolium and Transwell assays to examine the proliferation and invasion of the HuPCaSC lines DU145 and 22Rv1 following curcumin or dimethyl sulfoxide (control) treatment. The microRNA (miRNA) expression levels in the DLK1-DIO3 imprinted genomic region in the cells and in tumor tissues from patients with PCa were examined using microarray and quantitative PCR. The median inhibitory concentration of curcumin for HuPCa cells significantly inhibited HuPCaSC proliferation and invasion in vitro. The miR-770-5p and miR-1247 expression levels in the DLK1-DIO3 imprinted gene cluster were significantly different between the curcumin-treated and control HuPCaSCs. Overexpression of these positive miRNAs significantly increased the inhibition rates of miR-770-5p- and miR-1247-transfected HuPCaSCs compared to the control miR-Mut-transfected HuPCaSCs. Lastly, low-tumor grade PCa tissues had higher miR-770-5p and miR-1247 expression levels than high-grade tumor tissues. Curcumin can suppress HuPCaSC proliferation and invasion in vitro by modulating specific miRNAs in the DLK1-DIO3 imprinted gene cluster.

  10. Mammary Stem Cells and Breast Cancer Stem Cells: Molecular Connections and Clinical Implications.

    PubMed

    Celià-Terrassa, Toni

    2018-05-04

    Cancer arises from subpopulations of transformed cells with high tumor initiation and repopulation ability, known as cancer stem cells (CSCs), which share many similarities with their normal counterparts. In the mammary gland, several studies have shown common molecular regulators between adult mammary stem cells (MaSCs) and breast cancer stem cells (bCSCs). Cell plasticity and self-renewal are essential abilities for MaSCs to maintain tissue homeostasis and regenerate the gland after pregnancy. Intriguingly, these properties are similarly executed in breast cancer stem cells to drive tumor initiation, tumor heterogeneity and recurrence after chemotherapy. In addition, both stem cell phenotypes are strongly influenced by external signals from the microenvironment, immune cells and supportive specific niches. This review focuses on the intrinsic and extrinsic connections of MaSC and bCSCs with clinical implications for breast cancer progression and their possible therapeutic applications.

  11. Communicating risks and benefits about ethically controversial topics: the case of induced pluripotent stem (iPS) cells.

    PubMed

    Longstaff, Holly; McDonald, Michael; Bailey, Jennifer

    2013-08-01

    Many are supportive of approaches that incorporate lay citizens into policy making and risk management decisions. However, a great deal of learning must first take place about how citizen engagement for controversial topics is best accomplished. Online risk communication efforts are increasing in popularity but there is little empirical evidence accrued to demonstrate the effectiveness of such methods. The intention of our overall study is to create a powerful method for in-depth two-way communication with the public and expert communities about complex and sensitive issues at the heart of stem cell (SC) research. The fundamental objective is to raise awareness of SC science with lay citizens by fostering more holistic or "all things considered" ethical judgments. Our risk communication study demonstrates that lay citizens are both interested in, and capable of learning about, complex scientific issues provided the right tools are used to convey information and assess understanding. Our results show that it is worth the time and effort for SC researchers to continue posting podcasts and FAQ's about their work for non-expert communities to view. In addition, despite having increased our participants' risk perceptions about induced pluripotent stem (iPS) cell research, almost all were very supportive of this type of research in Canada by the end of the survey. In other words, participants understood that this research did in fact pose some risks and learned a great deal about both the risks and benefits of iPS cell research, and still thought this research was worthwhile to pursue.

  12. Prostaglandin E2 is essential for efficacious skeletal muscle stem-cell function, augmenting regeneration and strength.

    PubMed

    Ho, Andrew T V; Palla, Adelaida R; Blake, Matthew R; Yucel, Nora D; Wang, Yu Xin; Magnusson, Klas E G; Holbrook, Colin A; Kraft, Peggy E; Delp, Scott L; Blau, Helen M

    2017-06-27

    Skeletal muscles harbor quiescent muscle-specific stem cells (MuSCs) capable of tissue regeneration throughout life. Muscle injury precipitates a complex inflammatory response in which a multiplicity of cell types, cytokines, and growth factors participate. Here we show that Prostaglandin E2 (PGE2) is an inflammatory cytokine that directly targets MuSCs via the EP4 receptor, leading to MuSC expansion. An acute treatment with PGE2 suffices to robustly augment muscle regeneration by either endogenous or transplanted MuSCs. Loss of PGE2 signaling by specific genetic ablation of the EP4 receptor in MuSCs impairs regeneration, leading to decreased muscle force. Inhibition of PGE2 production through nonsteroidal anti-inflammatory drug (NSAID) administration just after injury similarly hinders regeneration and compromises muscle strength. Mechanistically, the PGE2 EP4 interaction causes MuSC expansion by triggering a cAMP/phosphoCREB pathway that activates the proliferation-inducing transcription factor, Nurr1 Our findings reveal that loss of PGE2 signaling to MuSCs during recovery from injury impedes muscle repair and strength. Through such gain- or loss-of-function experiments, we found that PGE2 signaling acts as a rheostat for muscle stem-cell function. Decreased PGE2 signaling due to NSAIDs or increased PGE2 due to exogenous delivery dictates MuSC function, which determines the outcome of regeneration. The markedly enhanced and accelerated repair of damaged muscles following intramuscular delivery of PGE2 suggests a previously unrecognized indication for this therapeutic agent.

  13. Polymorphic Crystallization and Crystalline Reorganization of Poly(l-lactic acid)/Poly(d-lactic acid) Racemic Mixture Influenced by Blending with Poly(vinylidene fluoride).

    PubMed

    Yu, Chengtao; Han, Lili; Bao, Jianna; Shan, Guorong; Bao, Yongzhong; Pan, Pengju

    2016-08-18

    The effects of poly(vinylidene fluoride) (PVDF) on the crystallization kinetics, competing formations of homocrystallites (HCs) and stereocomplexes (SCs), polymorphic crystalline structure, and HC-to-SC crystalline reorganization of the poly(l-lactic acid)/poly(d-lactic acid) (PLLA/PDLA) racemic mixture were investigated. Even though the PLLA/PDLA/PVDF blends are immiscible, blending with PVDF enhances the crystallization rate and SC formation of PLLA/PDLA components at different temperatures that are higher or lower than the melting temperature of the PVDF component; it also facilitates the HC-to-SC melt reorganization upon heating. The crystallization rate and degree of SC crystallinity (Xc,SC) of PLLA/PDLA components in nonisothermal crystallization increase after immiscible blending with PVDF. At different isothermal crystallization temperatures, the crystallization half-time of PLLA/PDLA components decreases; its spherulitic growth rate and Xc,SC increase as the mass fraction of PVDF increases from 0 to 0.5 in the presence of either a solidified or a molten PVDF phase. The HCs formed in primary crystallization of PLLA/PDLA components melt and recrystallize into SCs upon heating; the HC-to-SC melt reorganization is promoted after blending with PVDF. We proposed that the PVDF-promoted crystallization, SC formation, and HC-to-SC melt reorganization of PLLA/PDLA components in PLLA/PDLA/PVDF blends stem from the enhanced diffusion ability of PLLA and PDLA chains.

  14. Dual role for Drosophila lethal of scute in CNS midline precursor formation and dopaminergic neuron and motoneuron cell fate

    PubMed Central

    Stagg, Stephanie B.; Guardiola, Amaris R.; Crews, Stephen T.

    2011-01-01

    Dopaminergic neurons play important behavioral roles in locomotion, reward and aggression. The Drosophila H-cell is a dopaminergic neuron that resides at the midline of the ventral nerve cord. Both the H-cell and the glutamatergic H-cell sib are the asymmetric progeny of the MP3 midline precursor cell. H-cell sib cell fate is dependent on Notch signaling, whereas H-cell fate is Notch independent. Genetic analysis of genes that could potentially regulate H-cell fate revealed that the lethal of scute [l(1)sc], tailup and SoxNeuro transcription factor genes act together to control H-cell gene expression. The l(1)sc bHLH gene is required for all H-cell-specific gene transcription, whereas tailup acts in parallel to l(1)sc and controls genes involved in dopamine metabolism. SoxNeuro functions downstream of l(1)sc and controls expression of a peptide neurotransmitter receptor gene. The role of l(1)sc may be more widespread, as a l(1)sc mutant shows reductions in gene expression in non-midline dopaminergic neurons. In addition, l(1)sc mutant embryos possess defects in the formation of MP4-6 midline precursor and the median neuroblast stem cell, revealing a proneural role for l(1)sc in midline cells. The Notch-dependent progeny of MP4-6 are the mVUM motoneurons, and these cells also require l(1)sc for mVUM-specific gene expression. Thus, l(1)sc plays an important regulatory role in both neurogenesis and specifying dopaminergic neuron and motoneuron identities. PMID:21558367

  15. Comparative Analysis of Single-Cell RNA Sequencing Methods.

    PubMed

    Ziegenhain, Christoph; Vieth, Beate; Parekh, Swati; Reinius, Björn; Guillaumet-Adkins, Amy; Smets, Martha; Leonhardt, Heinrich; Heyn, Holger; Hellmann, Ines; Enard, Wolfgang

    2017-02-16

    Single-cell RNA sequencing (scRNA-seq) offers new possibilities to address biological and medical questions. However, systematic comparisons of the performance of diverse scRNA-seq protocols are lacking. We generated data from 583 mouse embryonic stem cells to evaluate six prominent scRNA-seq methods: CEL-seq2, Drop-seq, MARS-seq, SCRB-seq, Smart-seq, and Smart-seq2. While Smart-seq2 detected the most genes per cell and across cells, CEL-seq2, Drop-seq, MARS-seq, and SCRB-seq quantified mRNA levels with less amplification noise due to the use of unique molecular identifiers (UMIs). Power simulations at different sequencing depths showed that Drop-seq is more cost-efficient for transcriptome quantification of large numbers of cells, while MARS-seq, SCRB-seq, and Smart-seq2 are more efficient when analyzing fewer cells. Our quantitative comparison offers the basis for an informed choice among six prominent scRNA-seq methods, and it provides a framework for benchmarking further improvements of scRNA-seq protocols. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Mobilization of allogeneic peripheral blood stem cell donors with intravenous plerixafor mobilizes a unique graft

    PubMed Central

    Schroeder, Mark A.; Rettig, Michael P.; Lopez, Sandra; Christ, Stephanie; Fiala, Mark; Eades, William; Mir, Fazia A.; Shao, Jin; McFarland, Kyle; Trinkaus, Kathryn; Shannon, William; Deych, Elena; Yu, Jinsheng; Vij, Ravi; Stockerl-Goldstein, Keith; Cashen, Amanda F.; Uy, Geoffrey L.; Abboud, Camille N.; Westervelt, Peter

    2017-01-01

    A single subcutaneous (SC) injection of plerixafor results in rapid mobilization of hematopoietic progenitors, but fails to mobilize 33% of normal allogeneic sibling donors in 1 apheresis. We hypothesized that changing the route of administration of plerixafor from SC to IV may overcome the low stem cell yields and allow collection in 1 day. A phase 1 trial followed by a phase 2 efficacy trial was conducted in allogeneic sibling donors. The optimal dose of IV plerixafor was determined to be 0.32 mg/kg. The primary outcome of reducing the failure to collect ≥2 × 106 CD34+/kg recipient weight in 1 apheresis collection to ≤10% was not reached. The failure rate was 34%. Studies evaluating the stem cell phenotype and gene expression revealed a novel plasmacytoid dendritic cell precursor preferentially mobilized by plerixafor with high interferon-α producing ability. The observed cytomegalovirus (CMV) viremia rate for patients at risk was low (15%), as were the rates of acute grade 2-4 graft-versus-host disease (GVHD) (21%). Day 100 treatment related mortality was low (3%). In conclusion, plerixafor results in rapid stem cell mobilization regardless of route of administration and resulted in novel cellular composition of the graft and favorable recipient outcomes. These trials were registered at clinicaltrials.gov as #NCT00241358 and #NCT00914849. PMID:28292947

  17. Tonsil-Derived Mesenchymal Stem Cells Differentiate into a Schwann Cell Phenotype and Promote Peripheral Nerve Regeneration.

    PubMed

    Jung, Namhee; Park, Saeyoung; Choi, Yoonyoung; Park, Joo-Won; Hong, Young Bin; Park, Hyun Ho Choi; Yu, Yeonsil; Kwak, Geon; Kim, Han Su; Ryu, Kyung-Ha; Kim, Jae Kwang; Jo, Inho; Choi, Byung-Ok; Jung, Sung-Chul

    2016-11-09

    Schwann cells (SCs), which produce neurotropic factors and adhesive molecules, have been reported previously to contribute to structural support and guidance during axonal regeneration; therefore, they are potentially a crucial target in the restoration of injured nervous tissues. Autologous SC transplantation has been performed and has shown promising clinical results for treating nerve injuries and donor site morbidity, and insufficient production of the cells have been considered as a major issue. Here, we performed differentiation of tonsil-derived mesenchymal stem cells (T-MSCs) into SC-like cells (T-MSC-SCs), to evaluate T-MSC-SCs as an alternative to SCs. Using SC markers such as CAD19 , GFAP , MBP , NGFR , S100B , and KROX20 during quantitative real-time PCR we detected the upregulation of NGFR , S100B , and KROX20 and the downregulation of CAD19 and MBP at the fully differentiated stage. Furthermore, we found myelination of axons when differentiated SCs were cocultured with mouse dorsal root ganglion neurons. The application of T-MSC-SCs to a mouse model of sciatic nerve injury produced marked improvements in gait and promoted regeneration of damaged nerves. Thus, the transplantation of human T-MSCs might be suitable for assisting in peripheral nerve regeneration.

  18. Ex-vivo expanded umbilical cord blood stem cells retain capacity for myocardial regeneration.

    PubMed

    Schlechta, Bernhard; Wiedemann, Dominik; Kittinger, Clemens; Jandrositz, Anita; Bonaros, Nikolaos E; Huber, Johannes C; Preisegger, Karl-Heinz; Kocher, Alfred A

    2010-01-01

    Umbilical cord blood (UCB) is a source of human hematopoietic precursor cells (HPCs), a stem cell (SC) type that has been used in several trials for myocardial repair. A certain minimal number of cells is required for measurable regeneration and a major challenge of SC-based regenerative therapy constitutes ex-vivo expansion of the primitive cell compartment. The aim of this study was to investigate the ex-vivo expansion potential of UCB-derived HPCs and the ability of these expanded cells to migrate to the site of damage and improve ventricular function in a rodent model of myocardial infarction (MI). UCB-derived HPCs, defined by coexpression of CD133 and CD34, were expanded using various cytokine combinations. MI was induced by left anterior descending artery ligation in nude rats. Cells were injected intravenously 2 days after infarction. The combination of SC factor, thrombopoietin, flt3-ligand and interleukin-6 was found to be the most effective for inducing proliferation of HPCs. The migratory capacity of expanded HPCs was similar to that of non-expanded HPCs and improvement of ejection fraction was significant in both groups, with a relative increase of >60%. UCB-derived HPCs can be reproducibly expanded ex-vivo and retain their potential to improve cardiac function post-MI. (Circ J 2010; 74: 188 - 194).

  19. Neutral competition of stem cells is skewed by proliferative changes downstream of Hh and Hpo.

    PubMed

    Amoyel, Marc; Simons, Benjamin D; Bach, Erika A

    2014-10-16

    Neutral competition, an emerging feature of stem cell homeostasis, posits that individual stem cells can be lost and replaced by their neighbors stochastically, resulting in chance dominance of a clone at the niche. A single stem cell with an oncogenic mutation could bias this process and clonally spread the mutation throughout the stem cell pool. The Drosophila testis provides an ideal system for testing this model. The niche supports two stem cell populations that compete for niche occupancy. Here, we show that cyst stem cells (CySCs) conform to the paradigm of neutral competition and that clonal deregulation of either the Hedgehog (Hh) or Hippo (Hpo) pathway allows a single CySC to colonize the niche. We find that the driving force behind such behavior is accelerated proliferation. Our results demonstrate that a single stem cell colonizes its niche through oncogenic mutation by co-opting an underlying homeostatic process. © 2014 The Authors.

  20. The immortal strand hypothesis: still non-randomly segregating opinions.

    PubMed

    Wakeman, Jane A; Hmadcha, Abdelkrim; Soria, Bernat; McFarlane, Ramsay J

    2012-06-01

    Abstract Cairns first suggested a mechanism for protecting the genomes of stem cells (SCs) from replicative errors some 40 years ago when he proposed the immortal strand hypothesis, which argued for the inheritance of a so-called immortal strand by an SC following asymmetric SC divisions. To date, the existence of immortal strands remains contentious with published evidence arguing in favour of and against the retention of an immortal strand by asymmetrically dividing SCs. The conflicting evidence is derived from a diverse array of studies on adult SC types and is predominantly based on following the fate of labelled DNA strands during asymmetric cell division events. Here, we review current data, highlighting limitations of such labelling techniques, and suggest how interpretation of such data may be improved in the future.

  1. Tracing the fate of limbal epithelial progenitor cells in the murine cornea.

    PubMed

    Di Girolamo, N; Bobba, S; Raviraj, V; Delic, N C; Slapetova, I; Nicovich, P R; Halliday, G M; Wakefield, D; Whan, R; Lyons, J G

    2015-01-01

    Stem cell (SC) division, deployment, and differentiation are processes that contribute to corneal epithelial renewal. Until now studying the destiny of these cells in a living mammal has not been possible. However, the advent of inducible multicolor genetic tagging and powerful imaging technologies has rendered this achievable in the translucent and readily accessible murine cornea. K14CreER(T2)-Confetti mice that harbor two copies of the Brainbow 2.1 cassette, yielding up to 10 colors from the stochastic recombination of fluorescent proteins, were used to monitor K-14(+) progenitor cell dynamics within the corneal epithelium in live animals. Multicolored columns of cells emerged from the basal limbal epithelium as they expanded and migrated linearly at a rate of 10.8 µm/day toward the central cornea. Moreover, the permanent expression of fluorophores, passed on from progenitor to progeny, assisted in discriminating individual clones as spectrally distinct streaks containing more than 1,000 cells within the illuminated area. The centripetal clonal expansion is suggestive that a single progenitor cell is responsible for maintaining a narrow corridor of corneal epithelial cells. Our data are in agreement with the limbus as the repository for SC as opposed to SC being distributed throughout the central cornea. This is the first report describing stem/progenitor cell fate determination in the murine cornea using multicolor genetic tracing. This model represents a powerful new resource to monitor SC kinetics and fate choice under homeostatic conditions, and may assist in assessing clonal evolution during corneal development, aging, wound-healing, disease, and following transplantation. © 2014 AlphaMed Press.

  2. Hypoxia promotes proliferation of human myogenic satellite cells: a potential benefactor in tissue engineering of skeletal muscle.

    PubMed

    Koning, Merel; Werker, Paul M N; van Luyn, Marja J A; Harmsen, Martin C

    2011-07-01

    Facial paralysis is a physically, psychologically, and socially disabling condition. Innovative treatment strategies based on regenerative medicine, in particular tissue engineering of skeletal muscle, are promising for treatment of patients with facial paralysis. The natural source for tissue-engineered muscle would be muscle stem cells, that is, human satellite cells (SC). In vivo, SC respond to hypoxic, ischemic muscle damage by activation, proliferation, differentiation to myotubes, and maturation to muscle fibers, while maintaining their reserve pool of SC. Therefore, our hypothesis is that hypoxia improves proliferation and differentiation of SC. During tissue engineering, a three-dimensional construct, or implanting SC in vivo, SC will encounter hypoxic environments. Thus, we set out to test our hypothesis on SC in vitro. During the first five passages, hypoxically cultured SC proliferated faster than their counterparts under normoxia. Moreover, also at higher passages, a switch from normoxia to hypoxia enhanced proliferation of SC. Hypoxia did not affect the expression of SC markers desmin and NCAM. However, the average surface expression per cell of NCAM was downregulated by hypoxia, and it also downregulated the gene expression of NCAM. The gene expression of the myogenic transcription factors PAX7, MYF5, and MYOD was upregulated by hypoxia. Moreover, gene expression of structural proteins α-sarcomeric actin, and myosins MYL1 and MYL3 was upregulated by hypoxia during differentiation. This indicates that hypoxia promotes a promyogenic shift in SC. Finally, Pax7 expression was not influenced by hypoxia and maintained in a subset of mononucleated cells, whereas these cells were devoid of structural muscle proteins. This suggests that during myogenesis in vitro, at least part of the SC adopt a quiescent, that is, reserve cells, phenotype. In conclusion, tissue engineering under hypoxic conditions would seem favorable in terms of myogenic proliferation, while maintaining the quiescent SC pool.

  3. Evaluation of tools for highly variable gene discovery from single-cell RNA-seq data.

    PubMed

    Yip, Shun H; Sham, Pak Chung; Wang, Junwen

    2018-02-21

    Traditional RNA sequencing (RNA-seq) allows the detection of gene expression variations between two or more cell populations through differentially expressed gene (DEG) analysis. However, genes that contribute to cell-to-cell differences are not discoverable with RNA-seq because RNA-seq samples are obtained from a mixture of cells. Single-cell RNA-seq (scRNA-seq) allows the detection of gene expression in each cell. With scRNA-seq, highly variable gene (HVG) discovery allows the detection of genes that contribute strongly to cell-to-cell variation within a homogeneous cell population, such as a population of embryonic stem cells. This analysis is implemented in many software packages. In this study, we compare seven HVG methods from six software packages, including BASiCS, Brennecke, scLVM, scran, scVEGs and Seurat. Our results demonstrate that reproducibility in HVG analysis requires a larger sample size than DEG analysis. Discrepancies between methods and potential issues in these tools are discussed and recommendations are made.

  4. Modulation of Stem Cell Differentiation and Myostatin as an Approach to Counteract Fibrosis in Muscle Dystrophy and Regeneration After Injury. Addendum

    DTIC Science & Technology

    2012-03-01

    considerable increase in central nuclei in the regenerating myofibers, and molsidomine supplementation appears to have upregulated the overall stem cell...the increase of central nuclei as indicator of muscle repair observed in the SC group in comparison to the UT group, in frozen tissue sections...treatments on myofiber repair will be better defined by the counting of central nuclei on hematoxylin/eosin stained frozen sections as in Fig 3, and the

  5. A Fusion-Inhibiting Peptide against Rift Valley Fever Virus Inhibits Multiple, Diverse Viruses

    DTIC Science & Technology

    2013-09-12

    Interests: The authors have declared that no competing interests exist. * E-mail: connie.schmaljohn@amedd.army.mil Introduction Rift Valley fever (RVF...against Rift Valley Fever Virus Inhibits Multiple, Diverse Viruses 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR (S) 5d...MFLGWSFDFGSLWGNKPWF stem 450–468 RVFV-10sc WSSGLPFGNFGLSWFDMGFWS stem 447–467 doi:10.1371/journal.pntd.0002430.t001 Author Summary Entry into a cell is an essential

  6. Stem cells for murine interstitial cells of cajal suppress cellular immunity and colitis via prostaglandin E2 secretion.

    PubMed

    Dave, Maneesh; Hayashi, Yujiro; Gajdos, Gabriella B; Smyrk, Thomas C; Svingen, Phyllis A; Kvasha, Sergiy M; Lorincz, Andrea; Dong, Haidong; Faubion, William A; Ordog, Tamas

    2015-05-01

    After allogeneic transplantation, murine stem cells (SCs) for interstitial cells of Cajal (ICCs), electrical pacemaker, and neuromodulator cells of the gut, were incorporated into gastric ICC networks, indicating in vivo immunosuppression. Immunosuppression is characteristic of bone marrow- and other non-gut-derived mesenchymal stem cells (MSCs), which are emerging as potential therapeutic agents against autoimmune diseases, including inflammatory bowel disease. Therefore, we investigated whether gut-derived ICC-SCs could also mitigate experimental colitis and studied the mechanisms of ICC-SC-mediated immunosuppression in relation to MSC-induced pathways. Isolated ICC-SCs were studied by transcriptome profiling, cytokine assays, flow cytometry, mixed lymphocyte reaction, and T-cell proliferation assay. Mice with acute and chronic colitis induced by dextran sulfate sodium and T-cell transfer, respectively, were administered ICC-SCs intraperitoneally and evaluated for disease activity by clinical and pathological assessment and for ICC-SC homing by live imaging. Unlike strain-matched dermal fibroblasts, intraperitoneally administered ICC-SCs preferentially homed to the colon and reduced the severity of both acute and chronic colitis assessed by clinical and blind pathological scoring. ICC-SCs profoundly suppressed T-cell proliferation in vitro. Similar to MSCs, ICC-SCs strongly expressed cyclooxygenase 1/2 and basally secreted prostaglandin E2. Indomethacin, a cyclooxygenase inhibitor, countered the ICC-SC-mediated suppression of T-cell proliferation. In contrast, we found no role for regulatory T-cell-, programmed death receptor-, and transforming growth factor-β-mediated mechanisms reported in MSCs; and transcriptome profiling did not support a relationship between ICC-SCs and MSCs. Murine ICC-SCs belong to a class different from MSCs and potently mitigate experimental colitis via prostaglandin E2-mediated immunosuppression. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  7. Infusion of autologous adipose tissue derived neuronal differentiated mesenchymal stem cells and hematopoietic stem cells in post-traumatic paraplegia offers a viable therapeutic approach.

    PubMed

    Thakkar, Umang G; Vanikar, Aruna V; Trivedi, Hargovind L; Shah, Veena R; Dave, Shruti D; Dixit, Satyajit B; Tiwari, Bharat B; Shah, Harda H

    2016-01-01

    Spinal cord injury (SCI) is not likely to recover by current therapeutic modalities. Stem cell (SC) therapy (SCT) has promising results in regenerative medicine. We present our experience of co-infusion of autologous adipose tissue derived mesenchymal SC differentiated neuronal cells (N-Ad-MSC) and hematopoietic SCs (HSCs) in a set of patients with posttraumatic paraplegia. Ten patients with posttraumatic paraplegia of mean age 3.42 years were volunteered for SCT. Their mean age was 28 years, and they had variable associated complications. They were subjected to adipose tissue resection for in vitro generation of N-Ad-MSC and bone marrow aspiration for generation of HSC. Generated SCs were infused into the cerebrospinal fluid (CSF) below injury site in all patients. Total mean quantum of SC infused was 4.04 ml with a mean nucleated cell count of 4.5 × 10(4)/μL and mean CD34+ of 0.35%, CD45-/90+ and CD45-/73+ of 41.4%, and 10.04%, respectively. All of them expressed transcription factors beta-3 tubulin and glial fibrillary acid protein. No untoward effect of SCT was noted. Variable and sustained improvement in Hauser's index and American Spinal Injury Association score was noted in all patients over a mean follow-up of 2.95 years. Mean injury duration was 3.42 years against the period of approximately 1-year required for natural recovery, suggesting a positive role of SCs. Co-infusion of N-Ad-MSC and HSC in CSF is safe and viable therapeutic approach for SCIs.

  8. Combination of systemic chemotherapy with local stem cell delivered S-TRAIL in resected brain tumors.

    PubMed

    Redjal, Navid; Zhu, Yanni; Shah, Khalid

    2015-01-01

    Despite advances in standard therapies, the survival of glioblastoma multiforme (GBM) patients has not improved. Limitations to successful translation of new therapies include poor delivery of systemic therapies and use of simplified preclinical models which fail to reflect the clinical complexity of GBMs. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis specifically in tumor cells and we have tested its efficacy by on-site delivery via engineered stem cells (SC) in mouse models of GBM that mimic the clinical scenario of tumor aggressiveness and resection. However, about half of tumor lines are resistant to TRAIL and overcoming TRAIL-resistance in GBM by combining therapeutic agents that are currently in clinical trials with SC-TRAIL and understanding the molecular dynamics of these combination therapies are critical to the broad use of TRAIL as a therapeutic agent in clinics. In this study, we screened clinically relevant chemotherapeutic agents for their ability to sensitize resistant GBM cell lines to TRAIL induced apoptosis. We show that low dose cisplatin increases surface receptor expression of death receptor 4/5 post G2 cycle arrest and sensitizes GBM cells to TRAIL induced apoptosis. In vivo, using an intracranial resection model of resistant primary human-derived GBM and real-time optical imaging, we show that a low dose of cisplatin in combination with synthetic extracellular matrix encapsulated SC-TRAIL significantly decreases tumor regrowth and increases survival in mice bearing GBM. This study has the potential to help expedite effective translation of local stem cell-based delivery of TRAIL into the clinical setting to target a broad spectrum of GBMs. © 2014 AlphaMed Press.

  9. Fibrin matrices enhance the transplant and efficacy of cytotoxic stem cell therapy for post-surgical cancer

    PubMed Central

    Bagó, Juli R.; Pegna, Guillaume J.; Okolie, Onyi; Hingtgen, Shawn D.

    2016-01-01

    Tumor-homing cytotoxic stem cell (SC) therapy is a promising new approach for treating the incurable brain cancer glioblastoma (GBM). However, problems of retaining cytotoxic SCs within the post-surgical GBM resection cavity are likely to significantly limit the clinical utility of this strategy. Here, we describe a new fibrin-based transplant approach capable of increasing cytotoxic SC retention and persistence within the resection cavity, yet remaining permissive to tumoritropic migration. This fibrin-based transplant can effectively treat both solid and post-surgical human GBM in mice. Using our murine model of image-guided model of GBM resection, we discovered that suspending human mesenchymal stem cells (hMSCS) in a fibrin matrix increased initial retention in the surgical resection cavity 2-fold and prolonged persistence in the cavity 3-fold compared to conventional delivery strategies. Time-lapse motion analysis revealed that cytotoxic hMSCs in the fibrin matrix remain tumoritropic, rapidly migrating from the fibrin matrix to co-localize with cultured human GBM cells. We encapsulated hMSCs releasing the cytotoxic agent TRAIL (hMSC-sTR) in fibrin, and found hMSC-sTR/fibrin therapy reduced the viability of multiple 3-D human GBM spheroids and regressed established human GBM xenografts 3-fold in 11 days. Mimicking clinical therapy of surgically resected GBM, intra-cavity seeding of therapeutic hMSC-sTR encapsulated in fibrin reduced post-surgical GBM volumes 6-fold, increased time to recurrence 4-fold, and prolonged median survival from 15 to 36 days compared to control-treated animals. Fibrin-based SC therapy could represent a clinically compatible, viable treatment to suppress recurrence of post-surgical GBM and other lethal cancer types. PMID:26803410

  10. Menstrual blood-derived mesenchymal stem cells differentiate into functional hepatocyte-like cells*

    PubMed Central

    Mou, Xiao-zhou; Lin, Jian; Chen, Jin-yang; Li, Yi-fei; Wu, Xiao-xing; Xiang, Bing-yu; Li, Cai-yun; Ma, Ju-ming; Xiang, Charlie

    2013-01-01

    Orthotopic liver transplantation (OLT) is the only proven effective treatment for both end-stage and metabolic liver diseases. Hepatocyte transplantation is a promising alternative for OLT, but the lack of available donor livers has hampered its clinical application. Hepatocyte-like cells (HLCs) differentiated from many multi-potential stem cells can help repair damaged liver tissue. Yet almost suitable cells currently identified for human use are difficult to harvest and involve invasive procedures. Recently, a novel mesenchymal stem cell derived from human menstrual blood (MenSC) has been discovered and obtained easily and repeatedly. In this study, we examined whether the MenSCs are able to differentiate into functional HLCs in vitro. After three weeks of incubation in hepatogenic differentiation medium containing hepatocyte growth factor (HGF), fibroblast growth factor-4 (FGF-4), and oncostain M (OSM), cuboidal HLCs were observed, and cells also expressed hepatocyte-specific marker genes including albumin (ALB), α-fetoprotein (AFP), cytokeratin 18/19 (CK18/19), and cytochrome P450 1A1/3A4 (CYP1A1/3A4). Differentiated cells further demonstrated in vitro mature hepatocyte functions such as urea synthesis, glycogen storage, and indocyanine green (ICG) uptake. After intrasplenic transplantation into mice with 2/3 partial hepatectomy, the MenSC-derived HLCs were detected in recipient livers and expressed human ALB protein. We also showed that MenSC-derived HLC transplantation could restore the serum ALB level and significantly suppressed transaminase activity of liver injury animals. In conclusion, MenSCs may serve as an ideal, easily accessible source of material for tissue engineering and cell therapy of liver tissues. PMID:24190442

  11. Androgens inhibit adipogenesis during human adipose stem cell commitment to predipocyte formation

    PubMed Central

    Chazenbalk, Gregorio; Singh, Prapti; Irge, Dana; Shah, Amy; Abbott, David H; Dumesic, Daniel A

    2013-01-01

    Androgens play a pivotal role in the regulation of body fat distribution. Adipogenesis is a process whereby multipotent adipose stem cells (ASCs) initially become preadipocytes (ASC commitment to preadipocytes) before differentiating into adipocytes. Androgens inhibit human (h) subcutaneous (SC) abdominal preadipocyte differentiation in both sexes, but their effects on hASC commitment to preadipocyte formation is unknown. We therefore examined whether androgen exposure to human (h) ASCs, isolated from SC abdominal adipose of nonobese women, impairs their commitment to preadipocyte formation and/or subsequent differentiation into adipocytes. For this, isolated hASCs from SC abdominal lipoaspirate were cultured in adipogenesis-inducing medium for 0.5–14 days in the presence of testosterone (T, 0–100 nM) or dihydrotestosterone (DHT, 0–50 nM). Adipogenesis was determined by immunofluorescence microscopy and by quantification of adipogenically relevant transcriptional factors, PPARγ, C/EBPα and C/EBPβ. We found that a 3-day exposure of hASCs to T (50 nM) or DHT (5 nM) in adipogenesis-inducing medium impaired lipid acquisition and decreased PPARγ, C/EBPα and C/EBPβ gene expression. The inhibitory effects of T and DHT at this early-stage of adipocyte differentiation, were partially and completely reversed by flutamide (F, 100 nM), respectively. The effect of androgens on hASC commitment to a preadipocyte phenotype was examined via activation of BMP4 signaling. T (50 nM) and DHT (5nM) significantly inhibited the stimulatory effect of BMP4-induced ASC commitment to the preadipocyte phenotype, as regards PPARγ and C/EBPα gene expression. Our findings indicate that androgens, in part through androgen receptor action, impair BMP4-induced commitment of SC hASCs to preadipocytes and also reduce early-stage adipocyte differentiation, perhaps limiting adipocyte numbers and fat storage in SC abdominal adipose. PMID:23707571

  12. Creation of Dystrophin Expressing Chimeric Cells of Myoblast Origin as a Novel Stem Cell Based Therapy for Duchenne Muscular Dystrophy.

    PubMed

    Siemionow, M; Cwykiel, J; Heydemann, A; Garcia-Martinez, J; Siemionow, K; Szilagyi, E

    2018-04-01

    Over the past decade different stem cell (SC) based approaches were tested to treat Duchenne Muscular Dystrophy (DMD), a lethal X-linked disorder caused by mutations in dystrophin gene. Despite research efforts, there is no curative therapy for DMD. Allogeneic SC therapies aim to restore dystrophin in the affected muscles; however, they are challenged by rejection and limited engraftment. Thus, there is a need to develop new more efficacious SC therapies. Chimeric Cells (CC), created via ex vivo fusion of donor and recipient cells, represent a promising therapeutic option for tissue regeneration and Vascularized Composite Allotransplantation (VCA) due to tolerogenic properties that eliminate the need for lifelong immunosuppression. This proof of concept study tested feasibility of myoblast fusion for Dystrophin Expressing. Chimeric Cell (DEC) therapy through in vitro characterization and in vivo assessment of engraftment, survival, and efficacy in the mdx mouse model of DMD. Murine DEC were created via ex vivo fusion of normal (snj) and dystrophin-deficient (mdx) myoblasts using polyethylene glycol. Efficacy of myoblast fusion was confirmed by flow cytometry and dystrophin immunostaining, while proliferative and myogenic differentiation capacity of DEC were assessed in vitro. Therapeutic effect after DEC transplant (0.5 × 10 6 ) into the gastrocnemius muscle (GM) of mdx mice was assessed by muscle functional tests. At 30 days post-transplant dystrophin expression in GM of injected mdx mice increased to 37.27 ± 12.1% and correlated with improvement of muscle strength and function. Our study confirmed feasibility and efficacy of DEC therapy and represents a novel SC based approach for treatment of muscular dystrophies.

  13. Canonical Wnt signaling differently modulates osteogenic differentiation of mesenchymal stem cells derived from bone marrow and from periodontal ligament under inflammatory conditions.

    PubMed

    Liu, Wenjia; Konermann, Anna; Guo, Tao; Jäger, Andreas; Zhang, Liqiang; Jin, Yan

    2014-03-01

    Cellular plasticity and complex functional requirements of the periodontal ligament (PDL) assume a local stem cell (SC) niche to maintain tissue homeostasis and repair. Here, pathological alterations caused by inflammatory insults might impact the regenerative capacities of these cells. As bone homeostasis is fundamentally controlled by Wnt-mediated signals, it was the aim of this study to characterize the SC-like capacities of cells derived from PDL and to investigate their involvement in bone pathophysiology especially regarding the canonical Wnt pathway. PDLSCs were investigated for their SC characteristics via analysis of cell surface marker expression, colony forming unit efficiency, proliferation, osteogenic differentiation and adipogenic differentiation, and compared to bone marrow derived mesenchymal SCs (BMMSCs). To determine the impact of both inflammation and the canonical Wnt pathway on osteogenic differentiation, cells were challenged with TNF-α, maintained with or without Wnt3a or DKK-1 under osteogenic induction conditions and investigated for p-IκBα, p-NF-κB, p-Akt, β-catenin, p-GSK-3β, ALP and Runx2. PDLSCs exhibit weaker adipogenic and osteogenic differentiation capacities compared to BMMSCs. TNF-α inhibited osteogenic differentiation of PDLSCs more than BMMSCs mainly through regulating canonical Wnt pathway. Blocking the canonical Wnt pathway by DKK-1 reconstituted osteogenic differentiation of PDLSCs under inflammatory conditions, whereas activation by Wnt3a increased osteogenic differentiation of BMMSCs. Our results suggest a diverse regulation of the inhibitory effect of TNF-α in BMMSCs and PDLSCs via canonical Wnt pathway modulation. These findings provide novel insights on PDLSC SC-like capacities and their involvement in bone pathophysiology under the impact of the canonical Wnt pathway. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Environmental enrichment synergistically improves functional recovery by transplanted adipose stem cells in chronic hypoxic-ischemic brain injury.

    PubMed

    Seo, Jung Hwa; Kim, Hyongbum; Park, Eun Sook; Lee, Jong Eun; Kim, Dong Wook; Kim, Hyun Ok; Im, Sang Hee; Yu, Ji Hea; Kim, Ji Yeon; Lee, Min-Young; Kim, Chul Hoon; Cho, Sung-Rae

    2013-01-01

    We investigated the effects of environmental enrichment (EE) on the function of transplanted adipose stem cells (ASCs) and the combined effect of EE and ASC transplantation on neurobehavioral function in an animal model of chronic hypoxic-ischemic (HI) brain injury. HI brain damage was induced in 7-day-old mice by unilateral carotid artery ligation and exposure to hypoxia (8% O2 for 90 min). At 6 weeks of age, the mice were randomly injected with either ASCs or PBS into the striatum and were randomly assigned to either EE or standard cages (SC), comprising ASC-EE (n=18), ASC-SC (n=19), PBS-EE (n=12), PBS-SC (n=17), and untreated controls (n=23). Rotarod, forelimb-use asymmetry, and grip strength tests were performed to evaluate neurobehavioral function. The fate of transplanted cells and the levels of endogenous neurogenesis, astrocyte activation, and paracrine factors were also measured. As a result, EE and ASC transplantation synergistically improved rotarod latency, forelimb-use asymmetry, and grip strength compared to those of the other groups. The number of engrafted ASCs and βIII-tubulin(+) neurons derived from the transplanted ASCs was significantly higher in mice in EE than those in SC. EE and ASC transplantation also synergistically increased BrdU(+)βIII-tubulin(+) neurons, GFAP(+) astrocytic density, and fibroblast growth factor 2 (FGF2) level but not the level of CS-56(+) glial scarring in the striatum. In conclusion, EE and ASC transplantation synergistically improved neurobehavioral functions. The underlying mechanisms of this synergism included enhanced repair processes such as higher engraftment of the transplanted ASCs, increased endogenous neurogenesis and astrocytic activation coupled with upregulation of FGF2.

  15. Klf4 reverts developmentally programmed restriction of ground state pluripotency

    PubMed Central

    Guo, Ge; Yang, Jian; Nichols, Jennifer; Hall, John Simon; Eyres, Isobel; Mansfield, William; Smith, Austin

    2009-01-01

    Summary Mouse embryonic stem (ES) cells derived from pluripotent early epiblast contribute functionally differentiated progeny to all foetal lineages of chimaeras. By contrast, epistem cell (EpiSC) lines from post-implantation epithelialised epiblast are unable to colonise the embryo even though they express the core pluripotency genes Oct4, Sox2 and Nanog. We examined interconversion between these two cell types. ES cells can readily become EpiSCs in response to growth factor cues. By contrast, EpiSCs do not change into ES cells. We exploited PiggyBac transposition to introduce a single reprogramming factor, Klf4, into EpiSCs. No effect was apparent in EpiSC culture conditions, but in ground state ES cell conditions a fraction of cells formed undifferentiated colonies. These EpiSC-derived induced pluripotent stem (Epi-iPS) cells activated expression of ES cell-specific transcripts including endogenous Klf4, and downregulated markers of lineage specification. X chromosome silencing in female cells, a feature of the EpiSC state, was erased in Epi-iPS cells. They produced high-contribution chimaeras that yielded germline transmission. These properties were maintained after Cre-mediated deletion of the Klf4 transgene, formally demonstrating complete and stable reprogramming of developmental phenotype. Thus, re-expression of Klf4 in an appropriate environment can regenerate the naïve ground state from EpiSCs. Reprogramming is dependent on suppression of extrinsic growth factor stimuli and proceeds to completion in less than 1% of cells. This substantiates the argument that EpiSCs are developmentally, epigenetically and functionally differentiated from ES cells. However, because a single transgene is the minimum requirement to attain the ground state, EpiSCs offer an attractive opportunity for screening for unknown components of the reprogramming process. PMID:19224983

  16. UCN-01 enhances cytotoxicity of irinotecan in colorectal cancer stem-like cells by impairing DNA damage response

    PubMed Central

    Pilozzi, Emanuela; De Luca, Gabriele; Cappellari, Marianna; Fanciulli, Maurizio; Goeman, Frauke; Melucci, Elisa; Biffoni, Mauro; Ricci-Vitiani, Lucia

    2016-01-01

    Colorectal cancer (CRC) is one of the most common and lethal cancers worldwide. Despite recent progress, the prognosis of advanced stage CRC remains poor, mainly because of cancer recurrence and metastasis. The high morbidity and mortality of CRC has been recently ascribed to a small population of tumor cells that hold the potential of tumor initiation, i.e. cancer stem cells (CSCs), which play a pivotal role in cancer recurrence and metastasis and are not eradicated by current therapy. We screened CRC-SCs in vitro with a library of protein kinase inhibitors and showed that CRC-SCs are resistant to specific inhibition of the major signaling pathways involved in cell survival and proliferation. Nonetheless, broad-spectrum inhibition by the staurosporin derivative UCN-01 blocks CRC-SC growth and potentiates the activity of irinotecan in vitro and in vivo CRC-SC-derived models. Reverse-Phase Protein Microarrays (RPPA) revealed that, albeit CRC-SCs display individual phospho-proteomic profiles, sensitivity of CRC-SCs to UCN-01 relies on the interference with the DNA damage response mediated by Chk1. Combination of LY2603618, a specific Chk1/2 inhibitor, with irinotecan resulted in a significant reduction of CRC-SC growth in vivo, confirming that irinotecan treatment coupled to inhibition of Chk1 represents a potentially effective therapeutic approach for CRC treatment. PMID:27286453

  17. Towards Standardized Stem Cell Therapy in Type 2 Diabetes Mellitus: A Systematic Review.

    PubMed

    Pawitan, Jeanne Adiwinata; Yang, Zheng; Wu, Ying Nan; Leed, Eng Hin

    2018-05-02

    To compile and analyze the published studies on cell therapy for type 2 diabetes mellitus (T2DM) to obtain a better insight into management of T2DM that involved stem cell therapy. We searched all published studies in Pubmed/Medline, and Cochrane library, using keywords: 'stem cell' AND 'therapy' AND 'diabetes type 2'. original articles on the use of stem cells in humans with T2DM. articles in the non-English literature, studies on T2DM complications that did not assess both adverse events and any of the common diabetes study outcomes. type of study, number of cases, and all data that were related to outcome and adverse events. Data were analyzed descriptively to conclude the possible cause of adverse reactions, and which protocols gave a satisfactory outcome. We collected 26 original articles, out of which 17 studies did not have controls and were classified as case reports, while there were 8 studies that were controlled clinical trials. Most studies used autologous bone marrow mononuclear cells (BM-MNCs) or autologous or allogeneic mesenchymal stem cells (MSCs) from various sources. Adverse events were mild and mostly intervention related. Efficacy of autologous BM-MNCs that were given via interventional route was comparable to Wharton jelly or umbilical cord MSCs that were given via intravenous (IV), Intra muscular (IM), or subcutaneous (SC) route. Further controlled studies that compare BM-MNCs to BM-MSCs or WJ-MSCs or UCSCs are recommended to prove their comparable efficacy. In addition, studies that compare various routes of administration (IV, IM or SC) versus the more invasive interventional routes are needed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Phase diagram of (Li(1-x)Fe(x))OHFeSe: a bridge between iron selenide and arsenide superconductors.

    PubMed

    Dong, Xiaoli; Zhou, Huaxue; Yang, Huaixin; Yuan, Jie; Jin, Kui; Zhou, Fang; Yuan, Dongna; Wei, Linlin; Li, Jianqi; Wang, Xinqiang; Zhang, Guangming; Zhao, Zhongxian

    2015-01-14

    Previous experimental results have shown important differences between iron selenide and arsenide superconductors which seem to suggest that the high-temperature superconductivity in these two subgroups of iron-based families may arise from different electronic ground states. Here we report the complete phase diagram of a newly synthesized superconducting (SC) system, (Li1-xFex)OHFeSe, with a structure similar to that of FeAs-based superconductors. In the non-SC samples, an antiferromagnetic (AFM) spin-density-wave (SDW) transition occurs at ∼127 K. This is the first example to demonstrate such an SDW phase in an FeSe-based superconductor system. Transmission electron microscopy shows that a well-known √5×√5 iron vacancy ordered state, resulting in an AFM order at ∼500 K in AyFe2-xSe2 (A = metal ions) superconductor systems, is absent in both non-SC and SC samples, but a unique superstructure with a modulation wave vector q = (1)/2(1,1,0), identical to that seen in the SC phase of KyFe2-xSe2, is dominant in the optimal SC sample (with an SC transition temperature Tc = 40 K). Hence, we conclude that the high-Tc superconductivity in (Li1-xFex)OHFeSe stems from the similarly weak AFM fluctuations as FeAs-based superconductors, suggesting a universal physical picture for both iron selenide and arsenide superconductors.

  19. ΔNp63 promotes stem cell activity in mammary gland development and basal-like breast cancer by enhancing Fzd7 expression and Wnt signaling

    PubMed Central

    Chakrabarti, Rumela; Wei, Yong; Hwang, Julie; Hang, Xiang; Blanco, Mario Andres; Choudhury, Abrar; Tiede, Benjamin; Romano, Rose-Anne; DeCoste, Christina; Mercatali, Laura; Ibrahim, Toni; Amadori, Dino; Kannan, Nagarajan; Eaves, Connie J; Sinha, Satrajit; Kang, Yibin

    2014-01-01

    Emerging evidence suggests that cancer is populated and maintained by tumor initiating cells (TICs) with stem-like properties similar to that of adult tissue stem cells. Despite recent advances, the molecular regulatory mechanisms that may be shared between normal and malignant stem cells remain poorly understood. Here we show that the ΔNp63 isoform of the Trp63 transcription factor promotes normal mammary stem cell (MaSC) activity by increasing the expression of the Wnt receptor Fzd7, thereby enhancing Wnt signaling. Importantly, Fzd7-dependent enhancement of Wnt signaling by ΔNp63 also governs tumor initiating activity of the basal subtype of breast cancer. These findings establish ΔNp63 as a key regulator of stem cells in both normal and malignant mammary tissues and provide direct evidence that breast cancer TICs and normal MaSCs share common regulatory mechanisms. PMID:25241036

  20. The hair follicle bulge: a niche for adult stem cells.

    PubMed

    Pasolli, Hilda Amalia

    2011-08-01

    Adult stem cells (SCs) are essential for tissue homeostasis and wound repair. They have the ability to both self-renew and differentiate into multiple cell types. They often reside in specialized microenvironments or niches that preserve their proliferative and tissue regenerative capacity. The murine hair follicle (HF) has a specialized and permanent compartment--the bulge, which safely lodges SCs and provides the necessary molecular cues to regulate their function. The HF undergoes cyclic periods of destruction, regeneration, and rest, making it an excellent system to study SC biology.

  1. Hair regrowth in alopecia areata patients following Stem Cell Educator therapy.

    PubMed

    Li, Yanjia; Yan, Baoyong; Wang, Hepeng; Li, Heng; Li, Quanhai; Zhao, Dong; Chen, Yana; Zhang, Ye; Li, Wenxia; Zhang, Jun; Wang, Shanfeng; Shen, Jie; Li, Yunxiang; Guindi, Edward; Zhao, Yong

    2015-04-20

    Alopecia areata (AA) is one of the most common autoimmune diseases and targets the hair follicles, with high impact on the quality of life and self-esteem of patients due to hair loss. Clinical management and outcomes are challenged by current limited immunosuppressive and immunomodulating regimens. We have developed a Stem Cell Educator therapy in which a patient's blood is circulated through a closed-loop system that separates mononuclear cells from the whole blood, allows the cells to briefly interact with adherent human cord blood-derived multipotent stem cells (CB-SC), and returns the "educated" autologous cells to the patient's circulation. In an open-label, phase 1/phase 2 study, patients (N = 9) with severe AA received one treatment with the Stem Cell Educator therapy. The median age was 20 years (median alopecic duration, 5 years). Clinical data demonstrated that patients with severe AA achieved improved hair regrowth and quality of life after receiving Stem Cell Educator therapy. Flow cytometry revealed the up-regulation of Th2 cytokines and restoration of balancing Th1/Th2/Th3 cytokine production in the peripheral blood of AA subjects. Immunohistochemistry indicated the formation of a "ring of transforming growth factor beta 1 (TGF-β1)" around the hair follicles, leading to the restoration of immune privilege of hair follicles and the protection of newly generated hair follicles against autoimmune destruction. Mechanistic studies revealed that co-culture with CB-SC may up-regulate the expression of coinhibitory molecules B and T lymphocyte attenuator (BTLA) and programmed death-1 receptor (PD-1) on CD8β(+)NKG2D(+) effector T cells and suppress their proliferation via herpesvirus entry mediator (HVEM) ligands and programmed death-1 ligand (PD-L1) on CB-SCs. Current clinical data demonstrated the safety and efficacy of the Stem Cell Educator therapy for the treatment of AA. This innovative approach produced lasting improvement in hair regrowth in subjects with moderate or severe AA. ClinicalTrials.gov, NCT01673789, 21 August 2012.

  2. Substance P stimulates proliferation of spinal neural stem cells in spinal cord injury via the mitogen-activated protein kinase signaling pathway.

    PubMed

    Kim, Kyoung-Tae; Kim, Hye-Jeong; Cho, Dae-Chul; Bae, Jae-Sung; Park, Seung-Won

    2015-09-01

    Substance P (SP) is a neuropeptide that can influence neural stem/progenitor cell (NSPC) proliferation and neurogenesis in the brain. However, we could not find any experimental study that investigates SP action in the spinal cord. The aims of our study were to investigate the potential of the neuropeptide SP in promoting the proliferation of spinal cord-derived NSPCs (SC-NSPCs) after spinal cord injury (SCI) and to clarify the roles of the mitogen-activated protein (MAP) kinase signaling pathway in the process. This is a randomized animal study. The SC-NSPCs were suspended in 100 μL of a neurobasal medium containing SP (binds neurokinin-1 receptor [NK1R]) or L-703,606 (NK1R antagonist) and cultured in a 96-well plate for 5 days. A cell proliferation assay was performed using a 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay. A cord clipping method was used for the SCI model. Substance P and the NK1R antagonist (L-703,606) were infused intrathecally in SCI and sham models. Neural stem/progenitor cell proliferation was evaluated with immunostaining for bromodeoxyuridine (BrdU) and the immature neural marker nestin. An immunoblotting method was used for evaluating the MAP kinase signaling protein that contains extracellular signal-regulated kinases (ERKs and p38) and β-actin as the control group. In vitro, SP (0.01-10 μmol/L) increased the proliferation of cultured SC-NSPCs, with a peak increase of 35±2% at the 0.1 μmol/L concentration. Substance P of 0.1 μmol/L continuously increased SC-NSPC proliferation from 6 hours to 5 days, whereas the proliferation decreased from 18% to 98% with L-703,606 (1-10 μM). Intrathecal infusion of SP (1 μmol/L) for 7 days significantly increased the number of proliferating NPSCs (cells positive for both BrdU and nestin) in the spinal cord (by 120±17%, p<.05) in adult rats, but infusion of L-703,606 (10 μmol/L) significantly decreased the post-SCI induction of NPSC proliferation in the spinal cord (by 87±4%). Also, SP stimulates proliferation of SC-NSPCs via the MAP kinase signaling pathway, especially the phosphorylated ERK and phosphorylated p38 proteins. The phosphorylated ERK and phosphorylated p38 protein levels increased with SP (0.1 μmol/L, p<.05). These data indicate that SP can promote proliferation of SC-NSPCs in SCI and normal conditions and have important roles in neuronal regeneration after SCI. Also, ERKs and p38 MAP kinases are important signaling proteins in this process. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. WRN conditioned media is sufficient for in vitro propagation of intestinal organoids from large farm and small companion animals.

    PubMed

    Powell, Robin H; Behnke, Michael S

    2017-05-15

    Recent years have seen significant developments in the ability to continuously propagate organoids derived from intestinal crypts. These advancements have been applied to mouse and human samples providing models for gastrointestinal tissue development and disease. We adapt these methods for the propagation of intestinal organoids (enteroids) from various large farm and small companion (LF/SC) animals, including cat, dog, cow, horse, pig, sheep and chicken. We show that LF/SC enteroids propagate and expand in L-WRN conditioned media containing signaling factors Wnt3a, R-spondin-3, and Noggin (WRN). Multiple successful isolations were achieved for each species, and the growth of LF/SC enteroids was maintained to high passage number. LF/SC enteroids expressed crypt stem cell marker LGR5 and low levels of mesenchymal marker VIM. Labeling with EdU also showed distinct regions of cell proliferation within the enteroids marking crypt-like regions. The ability to grow and maintain LF/SC enteroid cell lines provides additional models for the study of gastrointestinal developmental biology as well as platforms for the study of host-pathogen interactions between intestinal cells and zoonotic enteric pathogens of medical importance. © 2017. Published by The Company of Biologists Ltd.

  4. Electrospun nanofibrous scaffolds increase the efficacy of stem cell-mediated therapy of surgically resected glioblastoma

    PubMed Central

    Bagó, Juli R.; Pegna, Guillaume J.; Okolie, Onyi; Mohiti-Asli, Mahsa; Loboa, Elizabeth G.; Hingtgen, Shawn D.

    2017-01-01

    Engineered stem cell (SC)-based therapy holds enormous promise for treating the incurable brain cancer glioblastoma (GBM). Retaining the cytotoxic SCs in the surgical cavity after GBM resection is one of the greatest challenges to this approach. Here, we describe a biocompatible electrospun nanofibrous scaffold (bENS) implant capable of delivering and retaining tumor-homing cytotoxic stem cells that suppress recurrence of post-surgical GBM. As a new approach to GBM therapy, we created poly(l-lactic acid) (PLA) bENS bearing drug-releasing human mesenchymal stem cells (hMSCs). We discovered that bENS-based implant increased hMSC retention in the surgical cavity 5-fold and prolonged persistence 3-fold compared to standard direct injection using our mouse model of GBM surgical resection/recurrence. Time-lapse imaging showed cytotoxic hMSC/bENS treatment killed co-cultured human GBM cells, and allowed hMSCs to rapidly migrate off the scaffolds as they homed to GBMs. In vivo, bENS loaded with hMSCs releasing the anti-tumor protein TRAIL (bENSsTR) reduced the volume of established GBM xenografts 3-fold. Mimicking clinical GBM patient therapy, lining the post-operative GBM surgical cavity with bENSsTR implants inhibited the re-growth of residual GBM foci 2.3-fold and prolonged post-surgical median survival from 13.5 to 31 days in mice. These results suggest that nanofibrous-based SC therapies could be an innovative new approach to improve the outcomes of patients suffering from terminal brain cancer. PMID:27016620

  5. NOTCH3 regulates stem-to-mural cell differentiation in infantile hemangioma.

    PubMed

    Edwards, Andrew K; Glithero, Kyle; Grzesik, Peter; Kitajewski, Alison A; Munabi, Naikhoba Co; Hardy, Krista; Tan, Qian Kun; Schonning, Michael; Kangsamaksin, Thaned; Kitajewski, Jan K; Shawber, Carrie J; Wu, June K

    2017-11-02

    Infantile hemangioma (IH) is a vascular tumor that begins with rapid vascular proliferation shortly after birth, followed by vascular involution in early childhood. We have found that NOTCH3, a critical regulator of mural cell differentiation and maturation, is expressed in hemangioma stem cells (HemSCs), suggesting that NOTCH3 may function in HemSC-to-mural cell differentiation and pathological vessel stabilization. Here, we demonstrate that NOTCH3 is expressed in NG2+PDGFRβ+ perivascular HemSCs and CD31+GLUT1+ hemangioma endothelial cells (HemECs) in proliferating IHs and becomes mostly restricted to the αSMA+NG2loPDGFRβlo mural cells in involuting IHs. NOTCH3 knockdown in HemSCs inhibited in vitro mural cell differentiation and perturbed αSMA expression. In a mouse model of IH, NOTCH3 knockdown or systemic expression of the NOTCH3 inhibitor, NOTCH3 Decoy, significantly decreased IH blood flow, vessel caliber, and αSMA+ perivascular cell coverage. Thus, NOTCH3 is necessary for HemSC-to-mural cell differentiation, and adequate perivascular cell coverage of IH vessels is required for IH vessel stability.

  6. Telocytes and stem cells in limbus and uvea of mouse eye

    PubMed Central

    Luesma, María José; Gherghiceanu, Mihaela; Popescu, Laurenţiu M

    2013-01-01

    The potential of stem cell (SC) therapies for eye diseases is well-recognized. However, the results remain only encouraging as little is known about the mechanisms responsible for eye renewal, regeneration and/or repair. Therefore, it is critical to gain knowledge about the specific tissue environment (niches) where the stem/progenitor cells reside in eye. A new type of interstitial cell–telocyte (TC) (http://www.telocytes.com) was recently identified by electron microscopy (EM). TCs have very long (tens of micrometres) and thin (below 200 nm) prolongations named telopodes (Tp) that form heterocellular networks in which SCs are embedded. We found TCs by EM and electron tomography in sclera, limbus and uvea of the mouse eye. Furthermore, EM showed that SCs were present in the anterior layer of the iris and limbus. Adhaerens and gap junctions were found to connect TCs within a network in uvea and sclera. Nanocontacts (electron-dense structures) were observed between TCs and other cells: SCs, melanocytes, nerve endings and macrophages. These intercellular ‘feet’ bridged the intercellular clefts (about 10 nm wide). Moreover, exosomes (extracellular vesicles with a diameter up to 100 nm) were delivered by TCs to other cells of the iris stroma. The ultrastructural nanocontacts of TCs with SCs and the TCs paracrine influence via exosomes in the epithelial and stromal SC niches suggest an important participation of TCs in eye regeneration. PMID:23991685

  7. Gene Editing and Human Pluripotent Stem Cells: Tools for Advancing Diabetes Disease Modeling and Beta-Cell Development.

    PubMed

    Millette, Katelyn; Georgia, Senta

    2017-10-05

    This review will focus on the multiple approaches to gene editing and address the potential use of genetically modified human pluripotent stem cell-derived beta cells (SC-β) as a tool to study human beta-cell development and model their function in diabetes. We will explore how new variations of CRISPR/Cas9 gene editing may accelerate our understanding of beta-cell developmental biology, elucidate novel mechanisms that establish and regulate beta-cell function, and assist in pioneering new therapeutic modalities for treating diabetes. Improvements in CRISPR/Cas9 target specificity and homology-directed recombination continue to advance its use in engineering stem cells to model and potentially treat disease. We will review how CRISPR/Cas9 gene editing is informing our understanding of beta-cell development and expanding the therapeutic possibilities for treating diabetes and other diseases. Here we focus on the emerging use of gene editing technology, specifically CRISPR/Cas9, as a means of manipulating human gene expression to gain novel insights into the roles of key factors in beta-cell development and function. Taken together, the combined use of SC-β cells and CRISPR/Cas9 gene editing will shed new light on human beta-cell development and function and accelerate our progress towards developing new therapies for patients with diabetes.

  8. Redesigning Introductory Science Courses to Teach Sustainability: Introducing the L(SC)2 Paradigm

    NASA Astrophysics Data System (ADS)

    Myers, J. D.; Campbell-Stone, E.; Massey, G.

    2008-12-01

    Modern societies consume vast quantities of Earth resources at unsustainable levels; at the same time, resource extraction, processing, production, use and disposal have resulted in environmental damage severe enough to threaten the life-support systems of our planet. These threats are produced by multiple, integrative and cumulative environmental stresses, i.e. syndromes, which result from human physical, ecological and social interactions with the environment in specific geographic places. In recent decades, recognition of this growing threat has lead to the concept of sustainability. The science needed to provide the knowledge and know-how for a successful sustainability transition differs markedly from the science that built our modern world. Sustainability science must balanced basic and applied research, promote integrative research focused on specific problems and devise a means of merging fundamental, general scientific principles with understanding of specific places. At the same time, it must use a variety of knowledge areas, i.e. biological systems, Earth systems, technological systems and social systems, to devise solutions to the many complex and difficult problems humankind faces. Clearly, sustainability science is far removed from the discipline-based science taught in most U.S. colleges. Many introductory science courses focus on content, lack context and do not integrate scientific disciplines. To prepare the citizens who will confront future sustainability issues as well as the scientists needed to devise future sustainability strategies, educators and scientists must redesign the typical college science course. A new course paradigm, Literacies and Scientific Content in Social Context (L(SC)2), is ideally suited to teach sustainability science. It offers an alternative approach to liberal science education by redefining and expanding the concept of the interdisciplinary course and merging it with the integrated science course. In addition to promoting scientific literacy, L(SC)2 courses explicitly promote mastery of fundamental quantitative and qualitative skills critical to science and commonly a barrier to student success in science. Scientific content addresses the principles and disciplines necessary to tackle the multifaceted problems that must be solved in any sustainability transition and illustrates the limitations on what can be accomplished. Finally, social context adds the place-based component that is critical to sustainability science while revealing how science impacts students' everyday lives. Experience in addressing realistic, real-life problems fosters the habits of mind necessary to address these problems and instills a sense of social and political efficacy and responsibility. The L(SC)2 course paradigm employs a variety of educational tools (active problem-based learning, collaborative work, peer instruction, interdisciplinarity, and global context-based instruction) that improve lasting comprehension by creating a more effective learning environment. In this paradigm, STEM students learn that although there may be a technically or scientifically optimal solution to a problem, it must be responsive to a society's social, legal, cultural and religious parameters. Conversely, students in non-STEM fields learn that solutions to societal problems must be scientifically valid and technologically feasible. The interaction of STEM and non-STEM students in L(SC)2 courses builds bridges between the natural and social sciences that are critical for a successful sustainability transition and lacking in most traditional science courses.

  9. Mammary stem cells: angels or demons in mammary gland?

    PubMed

    Chen, Xueman; Liu, Qiang; Song, Erwei

    2017-01-01

    A highly dynamic development process exits within the epithelia of mammary gland, featuring morphogenetic variation during puberty, pregnancy, lactation, and regression. The identification of mammary stem cells (MaSCs) via lineage-tracing studies has substantiated a hierarchical organization of the mammary epithelia. A single MaSC is capable of reconstituting the entirely functional mammary gland upon orthotopic transplantation. Although different mammary cell subpopulations can be candidate cells-of-origin for distinct breast tumor subtypes, it still lacks experimental proofs whether MaSCs, the most primitive cells, are the 'seeds' of malignant transformation during most, if not all, tumorigenesis in the breast. Here, we review current knowledge of mammary epithelial hierarchy, highlighting the roles of mammary stem/progenitor cells and breast cancer stem cells (BCSCs) along with their key molecular regulators in organ development and cancer evolution. Clarifying these issues will pave the way for developing novel interventions toward stem/progenitor cells in either prevention or treatment of breast cancer (BrCa).

  10. Mammary stem cells: angels or demons in mammary gland?

    PubMed Central

    Chen, Xueman; Liu, Qiang; Song, Erwei

    2017-01-01

    A highly dynamic development process exits within the epithelia of mammary gland, featuring morphogenetic variation during puberty, pregnancy, lactation, and regression. The identification of mammary stem cells (MaSCs) via lineage-tracing studies has substantiated a hierarchical organization of the mammary epithelia. A single MaSC is capable of reconstituting the entirely functional mammary gland upon orthotopic transplantation. Although different mammary cell subpopulations can be candidate cells-of-origin for distinct breast tumor subtypes, it still lacks experimental proofs whether MaSCs, the most primitive cells, are the ‘seeds’ of malignant transformation during most, if not all, tumorigenesis in the breast. Here, we review current knowledge of mammary epithelial hierarchy, highlighting the roles of mammary stem/progenitor cells and breast cancer stem cells (BCSCs) along with their key molecular regulators in organ development and cancer evolution. Clarifying these issues will pave the way for developing novel interventions toward stem/progenitor cells in either prevention or treatment of breast cancer (BrCa). PMID:29263909

  11. The actin-binding protein profilin is required for germline stem cell maintenance and germ cell enclosure by somatic cyst cells

    PubMed Central

    Shields, Alicia R.; Spence, Allyson C.; Yamashita, Yukiko M.; Davies, Erin L.; Fuller, Margaret T.

    2014-01-01

    Specialized microenvironments, or niches, provide signaling cues that regulate stem cell behavior. In the Drosophila testis, the JAK-STAT signaling pathway regulates germline stem cell (GSC) attachment to the apical hub and somatic cyst stem cell (CySC) identity. Here, we demonstrate that chickadee, the Drosophila gene that encodes profilin, is required cell autonomously to maintain GSCs, possibly facilitating localization or maintenance of E-cadherin to the GSC-hub cell interface. Germline specific overexpression of Adenomatous Polyposis Coli 2 (APC2) rescued GSC loss in chic hypomorphs, suggesting an additive role of APC2 and F-actin in maintaining the adherens junctions that anchor GSCs to the niche. In addition, loss of chic function in the soma resulted in failure of somatic cyst cells to maintain germ cell enclosure and overproliferation of transit-amplifying spermatogonia. PMID:24346697

  12. Notch ligand Dll1 mediates cross-talk between mammary stem cells and the macrophageal niche.

    PubMed

    Chakrabarti, Rumela; Celià-Terrassa, Toni; Kumar, Sushil; Hang, Xiang; Wei, Yong; Choudhury, Abrar; Hwang, Julie; Peng, Jia; Nixon, Briana; Grady, John J; DeCoste, Christina; Gao, Jie; van Es, Johan H; Li, Ming O; Aifantis, Iannis; Clevers, Hans; Kang, Yibin

    2018-05-17

    The stem cell niche is a specialized environment that dictates stem cell function during development and homeostasis. Here, we show that Dll1, a Notch pathway ligand, is enriched in mammary gland stem cells (MaSCs) and mediates critical interactions with stromal macrophages in the surrounding niche. Conditional deletion of Dll1 reduced the number of MaSCs and impaired ductal morphogenesis in the mammary gland. Moreover, MaSC-expressed Dll1 activates Notch signaling in stromal macrophages, increasing their expression of Wnt family ligands such as Wnt3, Wnt10A, and Wnt16, thereby initiating a feed back loop that promotes the function of Dll1 + MaSCs. Together, these findings reveal functionally important cross-talk between MaSCs and their macrophageal niche through Dll1/Notch-mediated signaling. Copyright © 2018, American Association for the Advancement of Science.

  13. Mitigation of arsenic-induced acquired cancer phenotype in prostate cancer stem cells by miR-143 restoration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ngalame, Ntube N.O., E-mail: ngalamenn@niehs.nih.g

    Inorganic arsenic, an environmental contaminant and a human carcinogen is associated with prostate cancer. Emerging evidence suggests that cancer stem cells (CSCs) are the driving force of carcinogenesis. Chronic arsenic exposure malignantly transforms the human normal prostate stem/progenitor cell (SC) line, WPE-stem to arsenic-cancer SCs (As-CSCs), through unknown mechanisms. MicroRNAs (miRNAs) are small, non-coding RNAs that negatively regulate gene expression at the posttranscriptional level. In prior work, miR-143 was markedly downregulated in As-CSCs, suggesting a role in arsenic-induced malignant transformation. In the present study, we investigated whether loss of miR-143 expression is important in arsenic-induced transformation of prostate SCs. Restorationmore » of miR-143 in As-CSCs was achieved by lentivirus-mediated miR-143 overexpression. Cells were assessed bi-weekly for up to 30 weeks to examine mitigation of cancer phenotype. Secreted matrix metalloproteinase (MMP) activity was increased by arsenic-induced malignant transformation, but miR-143 restoration decreased secreted MMP-2 and MMP-9 enzyme activities compared with scramble controls. Increased cell proliferation and apoptotic resistance, two hallmarks of cancer, were decreased upon miR-143 restoration. Increased apoptosis was associated with decreased BCL2 and BCL-XL expression. miR-143 restoration dysregulated the expression of SC/CSC self-renewal genes including NOTCH-1, BMI-1, OCT4 and ABCG2. The anticancer effects of miR-143 overexpression appeared to be mediated by targeting and inhibiting LIMK1 protein, and the phosphorylation of cofilin, a LIMK1 substrate. These findings clearly show that miR-143 restoration mitigated multiple cancer characteristics in the As-CSCs, suggesting a potential role in arsenic-induced transformation of prostate SCs. Thus, miR-143 is a potential biomarker and therapeutic target for arsenic-induced prostate cancer. - Highlights: • Chronic arsenic exposure malignantly transforms human prostate stem cells (SCs) to arsenic-cancer SCs via unknown mechanisms. • miR-143 was several fold downregulated in the arsenic-cancer SCs (As-CSCs), suggesting a likely role in transformation. • miR-143 restoration reduced cancer characteristics in the As-CSC, suggesting a role in arsenic-induced SC transformation. • miR-143 appears to exert its anticancer effect by inhibiting expression and activity of LIMK1, its predicted gene target. • These findings suggest miR-143 is a potential biomarker and therapeutic target for arsenic-induced prostate cancer.« less

  14. Stem cells therapy for ALS.

    PubMed

    Mazzini, Letizia; Vescovi, Angelo; Cantello, Roberto; Gelati, Maurizio; Vercelli, Alessandro

    2016-01-01

    Despite knowledge on the molecular basis of amyotrophic lateral sclerosis (ALS) having quickly progressed over the last few years, such discoveries have not yet translated into new therapeutics. With the advancement of stem cell technologies there is hope for stem cell therapeutics as novel treatments for ALS. We discuss in detail the therapeutic potential of different types of stem cells in preclinical and clinical works. Moreover, we address many open questions in clinical translation. SC therapy is a potentially promising new treatment for ALS and the need to better understand how to develop cell-based experimental treatments, and how to implement them in clinical trials, becomes more pressing. Mesenchymal stem cells and neural fetal stem cells have emerged as safe and potentially effective cell types, but there is a need to carry out appropriately designed experimental studies to verify their long-term safety and possibly efficacy. Moreover, the cost-benefit analysis of the results must take into account the quality of life of the patients as a major end point. It is our opinion that a multicenter international clinical program aime d at fine-tuning and coordinating transplantation procedures and protocols is mandatory.

  15. Hepatocyte growth factor acts as a mitogen for equine satellite cells via protein kinase C δ directed signaling.

    PubMed

    Brandt, Amanda M; Kania, Joanna M; Gonzalez, Madison L; Johnson, Sally E

    2018-06-16

    Hepatocyte growth factor (HGF) signals mediate mouse skeletal muscle stem cell, or satellite cell (SC), reentry into the cell cycle and myoblast proliferation. Because the athletic horse experiences exercise-induced muscle damage, the objective of the experiment was to determine the effect of HGF on equine SC (eqSC) bioactivity. Fresh isolates of adult eqSC were incubated with increasing concentrations of HGF and the initial time to DNA synthesis was measured. Media supplementation with HGF did not shorten (P > 0.05) the duration of G0/G1 transition suggesting the growth factor does not affect activation. Treatment with 25 ng/mL HGF increased (P < 0.05) eqSC proliferation that was coincident with phosphorylation of extracellular signal-regulated kinase (ERK)1/2 and AKT serine/threonine kinase 1 (AKT1). Chemical inhibition of the upstream effectors of ERK1/2 or AKT1 elicited no effect (P > 0.05) on HGF-mediated EdU incorporation. By contrast, treatment of eqSC with 2 µm Gö6983, a pan-protein kinase C (PKC) inhibitor, blocked (P < 0.05) HGF-initiated mitotic activity. Gene expression analysis revealed that eqSC express PKCα, -δ and -ε isoforms. Knockdown of PKCδ with a small interfering RNA (siRNA) prevented (P > 0.05) HGF-mediated EdU incorporation. The siPKCδ was specific to the kinase and did not affect (P > 0.05) expression of either PKCα or PKCε. Treatment of confluent eqSCs with 25 ng/mL HGF suppressed (P < 0.05) nuclear myogenin expression during the early stages of differentiation. These results demonstrate that HGF may not affect activation but can act as a mitogen and modest suppressor of differentiation.

  16. Combining neurotrophin-transduced schwann cells and rolipram to promote functional recovery from subacute spinal cord injury.

    PubMed

    Flora, Govinder; Joseph, Gravil; Patel, Samik; Singh, Amanpreet; Bleicher, Drew; Barakat, David J; Louro, Jack; Fenton, Stephanie; Garg, Maneesh; Bunge, Mary Bartlett; Pearse, Damien D

    2013-01-01

    Following spinal cord injury (SCI), both an inhibitory environment and lack of intrinsic growth capacity impede axonal regeneration. In a previous study, prevention of cyclic adenosine monophosphate (AMP) hydrolysis by the phosphodiesterase-4 inhibitor rolipram, in combination with Schwann cell (SC) grafts, promoted significant supraspinal and proprioceptive fiber growth and/or sparing and improved locomotion. In another study, transplanted SCs transduced to generate a bifunctional neurotrophin (D15A) led to significant increases in graft SCs and axons, including supraspinal and myelinated axons. Here we studied the growth and myelination of local and supraspinal axons and functional outcome following the combination of rolipram administration and neurotrophin-transduced SC implantation after SCI. Rolipram was administered subcutaneously for 4 weeks immediately after contusion at vertebral T8 (25.0-mm weight drop, MASCIS impactor). GFP or GFP-D15A-transduced SCs were injected into the injury epicenter 1 week after SCI. GFP-D15A SC grafts and GFP SC grafts with rolipram contained significantly more serotonergic fibers compared to GFP SCs. SC myelinated axons were increased significantly in GFP SC with rolipram-treated animals compared to animals receiving SCI alone. Rolipram administered with either GFP or GFP-D15A SCs significantly increased numbers of brain stem-derived axons below the lesion/implant area and improved hindlimb function. Compared to the single treatments, the combination led to the largest SC grafts, the highest numbers of serotonergic fibers in the grafts, and increased numbers of axons from the reticular formation below the lesion/implant area and provided the greatest improvement in hindlimb function. These findings demonstrate the therapeutic potential for a combination therapy involving the maintenance of cyclic AMP levels and neurotrophin-transduced SCs to repair the subacutely injured spinal cord.

  17. Switching roles: the functional plasticity of adult tissue stem cells

    PubMed Central

    Wabik, Agnieszka; Jones, Philip H

    2015-01-01

    Adult organisms have to adapt to survive, and the same is true for their tissues. Rates and types of cell production must be rapidly and reversibly adjusted to meet tissue demands in response to both local and systemic challenges. Recent work reveals how stem cell (SC) populations meet these requirements by switching between functional states tuned to homoeostasis or regeneration. This plasticity extends to differentiating cells, which are capable of reverting to SCs after injury. The concept of the niche, the micro-environment that sustains and regulates stem cells, is broadening, with a new appreciation of the role of physical factors and hormonal signals. Here, we review different functions of SCs, the cellular mechanisms that underlie them and the signals that bias the fate of SCs as they switch between roles. PMID:25812989

  18. Is there a Stobbs factor in atomic-resolution STEM-EELS mapping?

    PubMed

    Xin, Huolin L; Dwyer, Christian; Muller, David A

    2014-04-01

    Recent work has convincingly argued that the Stobbs factor-disagreement in contrast between simulated and experimental atomic-resolution images-in ADF-STEM imaging can be accounted for by including the incoherent source size in simulation. However, less progress has been made for atomic-resolution STEM-EELS mapping. Here we have performed carefully calibrated EELS mapping experiments of a [101] DyScO3 single-crystal specimen, allowing atomic-resolution EELS signals to be extracted on an absolute scale for a large range of thicknesses. By simultaneously recording the elastic signal, also on an absolute scale, and using it to characterize the source size, sample thickness and inelastic mean free path, we eliminate all free parameters in the simulation of the core-loss signals. Coupled with double channeling simulations that incorporate both core-loss inelastic scattering and dynamical elastic and thermal diffuse scattering, the present work enables a close scrutiny of the scattering physics in the inelastic channel. We found that by taking into account the effective source distribution determined from the ADF images, both the absolute signal and the contrast in atomic-resolution Dy-M5 maps can be closely reproduced by the double-channeling simulations. At lower energy losses, discrepancies are present in the Sc-L2,3 and Dy-N4,5 maps due to the energy-dependent spatial distribution of the background spectrum, core-hole effects, and omitted complexities in the final states. This work has demonstrated the possibility of using quantitative STEM-EELS for element-specific column-by-column atom counting at higher energy losses and for atomic-like final states, and has elucidated several possible improvements for future theoretical work. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Modelling the spatio-temporal cell dynamics reveals novel insights on cell differentiation and proliferation in the small intestinal crypt.

    PubMed

    Pin, Carmen; Watson, Alastair J M; Carding, Simon R

    2012-01-01

    We developed a slow structural relaxation model to describe cellular dynamics in the crypt of the mouse small intestine. Cells are arranged in a three dimensional spiral the size of which dynamically changes according to cell production demands of adjacent villi. Cell differentiation and proliferation is regulated through Wnt and Notch signals, the strength of which depends on the local cell composition. The highest level of Wnt activity is associated with maintaining equipotent stem cells (SC), Paneth cells and common goblet-Paneth cell progenitors (CGPCPs) intermingling at the crypt bottom. Low levels of Wnt signalling area are associated with stem cells giving rise to secretory cells (CGPCPs, enteroendocrine or Tuft cells) and proliferative absorptive progenitors. Deciding between these two fates, secretory and stem/absorptive cells, depends on Notch signalling. Our model predicts that Notch signalling inhibits secretory fate if more than 50% of cells they are in contact with belong to the secretory lineage. CGPCPs under high Wnt signalling will differentiate into Paneth cells while those migrating out from the crypt bottom differentiate into goblet cells. We have assumed that mature Paneth cells migrating upwards undergo anoikis. Structural relaxation explains the localisation of Paneth cells to the crypt bottom in the absence of active forces. The predicted crypt generation time from one SC is 4-5 days with 10-12 days needed to reach a structural steady state. Our predictions are consistent with experimental observations made under altered Wnt and Notch signalling. Mutations affecting stem cells located at the crypt floor have a 50% chance of being propagated throughout the crypt while mutations in cells above are rarely propagated. The predicted recovery time of an injured crypt losing half of its cells is approximately 2 days.

  20. Adipose-derived mesenchymal stem cell-derived exosomes alleviate overwhelming systemic inflammatory reaction and organ damage and improve outcome in rat sepsis syndrome

    PubMed Central

    Chang, Chia-Lo; Sung, Pei-Hsun; Chen, Kuan-Hung; Shao, Pei-Lin; Yang, Chih-Chao; Cheng, Ben-Chung; Lin, Kun-Chen; Chen, Chih-Hung; Chai, Han-Tan; Chang, Hsueh-Wen; Yip, Hon-Kan; Chen, Hong-Hwa

    2018-01-01

    This study tested the hypothesis that healthy adipose-derived mesenchymal stem cell (ADMSC)-derived exosomes (HMSCEXO) and apoptotic (A) (induced by 12 h hypoxia/12 h starvation)-ADMSC-derived exosomes (AMSCEXO) were comparably effective at alleviating sepsis syndrome [SS; induced by cecal-ligation and puncture (CLP)]-induced systemic inflammation and reduced organ damage and unfavorable outcomes in rats. SD rats were divided into sham control (SC), SS only, SS + HMSCEXO (100 µg intravenous administration 3 h after CLP), and AMSCEXO. By day 5 after CLP procedure, the mortality rate was significantly higher in SS than in SC and HMSCEXO (all P < 0.01), but it showed no significant different between SC and HMSCEXO, between AMSCEXO and HMSCEXO or between SS and AMSCEXO (P > 0.05). The levels of inflammatory mediators in circulation (CD11b/c/Ly6G/MIF), bronchioalveolar lavage (CD11b/c/Ly6G) and abdominal ascites (CD11b/c/CD14/Ly6G/MIF) were highest in SS, lowest in SC and significantly higher in AMSCEXO than in HMSCEXO (all P < 0.001). The circulating/splenic levels of immune cells (CD34+/CD4+/CD3+/CD8+) were expressed in an identical pattern whereas the T-reg+ cells exhibited an opposite pattern of inflammation among the groups (all P < 0.001). The protein expressions of inflammation (MMP-9/MIF/TNF-α/NF-κB/IL-1β) and oxidative stress (NOX-1/NOX-2/oxidized protein), and cellular expressions (CD14+/CD68+) in lung/kidney parenchyma exhibited an identical pattern of inflammatory mediators (all P < 0.001). The kidney/lung injury scores displayed an identical pattern of inflammatory mediators among the groups (all P < 0.001). In conclusion, HMSCEXO might be superior to AMSCEXO for improving survival and suppressing the inflammatory reactions in rats after SS. PMID:29736200

  1. Characterization of corneal pannus removed from patients with total limbal stem cell deficiency.

    PubMed

    Espana, Edgar M; Di Pascuale, Mario A; He, Hua; Kawakita, Tetsuya; Raju, Vadrevu K; Liu, Chia-Yang; Tseng, Scheffer C G

    2004-09-01

    To determine the epithelial lineage of origin in corneal pannus tissue surgically removed from patients with total limbal stem cell (SC) deficiency. The lineage of origin of the entire conjunctivalized pannus removed from eight corneas with a diagnosis of total limbal SC deficiency was characterized by anti-keratin (K)-3 and anti-K19 monoclonal antibodies. The protein and mRNA of epithelial outgrowth from segments of five such pannus specimens were analyzed by Western blot and reverse transcription-polymerase chain reaction, respectively. Cross sections of all eight specimens showed a stratified epithelium with goblet cells expressing mucin (MUC)-5AC, and a stroma showing blood vessels and inflammatory cell infiltrates. Immunostaining showed full-thickness expression of K19 in the entire pannus of all eight specimens. Expression of K3 was negative in seven patients, but was sporadically positive in a patient with Stevens-Johnson syndrome. In culture, all five pannus specimens generated a compact, small epithelial cell outgrowth, and except for one, reached confluence in 2 to 3 weeks. The K3/K12 pair was expressed by extracts of cell outgrowth from the control limbal epithelial explant, but not in all five pannus specimens. A 60-kDa band of DeltaNp63 was expressed in the control specimen and in all five pannus specimens. Cell outgrowth expressed K3 transcript in three, but none showed K12 transcript. The resultant epithelial phenotype of the pannus tissue was not corneal, as evidenced by the negative staining to cornea-specific K12 mRNA and protein, but was conjunctival, as evidenced by the presence of goblet cells, the weak expression of K3, and the strong expression of K19. The abundant expression of DeltaNp63 in such conjunctiva-derived epithelium in eyes with total limbal SC deficiency raises doubts as to its validity as a limbal SC marker. Copyright Association for Research in Vision and Ophthalmology

  2. Human neural stem cells improve cognition and promote synaptic growth in two complementary transgenic models of Alzheimer's disease and neuronal loss.

    PubMed

    Ager, Rahasson R; Davis, Joy L; Agazaryan, Andy; Benavente, Francisca; Poon, Wayne W; LaFerla, Frank M; Blurton-Jones, Mathew

    2015-07-01

    Alzheimer's disease (AD) is the most prevalent age-related neurodegenerative disorder, affecting over 35 million people worldwide. Pathologically, AD is characterized by the progressive accumulation of β-amyloid (Aβ) plaques and neurofibrillary tangles within the brain. Together, these pathologies lead to marked neuronal and synaptic loss and corresponding impairments in cognition. Current treatments, and recent clinical trials, have failed to modify the clinical course of AD; thus, the development of novel and innovative therapies is urgently needed. Over the last decade, the potential use of stem cells to treat cognitive impairment has received growing attention. Specifically, neural stem cell transplantation as a treatment for AD offers a novel approach with tremendous therapeutic potential. We previously reported that intrahippocampal transplantation of murine neural stem cells (mNSCs) can enhance synaptogenesis and improve cognition in 3xTg-AD mice and the CaM/Tet-DT(A) model of hippocampal neuronal loss. These promising findings prompted us to examine a human neural stem cell population, HuCNS-SC, which has already been clinically tested for other neurodegenerative disorders. In this study, we provide the first evidence that transplantation of research grade HuCNS-SCs can improve cognition in two complementary models of neurodegeneration. We also demonstrate that HuCNS-SC cells can migrate and differentiate into immature neurons and glia and significantly increase synaptic and growth-associated markers in both 3xTg-AD and CaM/Tet-DTA mice. Interestingly, improvements in aged 3xTg-AD mice were not associated with altered Aβ or tau pathology. Rather, our findings suggest that human NSC transplantation improves cognition by enhancing endogenous synaptogenesis. Taken together, our data provide the first preclinical evidence that human NSC transplantation could be a safe and effective therapeutic approach for treating AD. © 2014 The Authors. Hippocampus Published by Wiley Periodicals, Inc.

  3. Smad4 restricts differentiation to promote expansion of satellite cell derived progenitors during skeletal muscle regeneration.

    PubMed

    Paris, Nicole D; Soroka, Andrew; Klose, Alanna; Liu, Wenxuan; Chakkalakal, Joe V

    2016-11-18

    Skeletal muscle regenerative potential declines with age, in part due to deficiencies in resident stem cells (satellite cells, SCs) and derived myogenic progenitors (MPs); however, the factors responsible for this decline remain obscure. TGFβ superfamily signaling is an inhibitor of myogenic differentiation, with elevated activity in aged skeletal muscle. Surprisingly, we find reduced expression of Smad4 , the downstream cofactor for canonical TGFβ superfamily signaling, and the target Id1 in aged SCs and MPs during regeneration. Specific deletion of Smad4 in adult mouse SCs led to increased propensity for terminal myogenic commitment connected to impaired proliferative potential. Furthermore, SC-specific Smad4 disruption compromised adult skeletal muscle regeneration. Finally, loss of Smad4 in aged SCs did not promote aged skeletal muscle regeneration. Therefore, SC-specific reduction of Smad4 is a feature of aged regenerating skeletal muscle and Smad4 is a critical regulator of SC and MP amplification during skeletal muscle regeneration.

  4. Cloning-free CRISPR

    PubMed Central

    Arbab, Mandana; Srinivasan, Sharanya; Hashimoto, Tatsunori; Geijsen, Niels; Sherwood, Richard I.

    2015-01-01

    Summary We present self-cloning CRISPR/Cas9 (scCRISPR), a technology that allows for CRISPR/Cas9-mediated genomic mutation and site-specific knockin transgene creation within several hours by circumventing the need to clone a site-specific single-guide RNA (sgRNA) or knockin homology construct for each target locus. We introduce a self-cleaving palindromic sgRNA plasmid and a short double-stranded DNA sequence encoding the desired locus-specific sgRNA into target cells, allowing them to produce a locus-specific sgRNA plasmid through homologous recombination. scCRISPR enables efficient generation of gene knockouts (∼88% mutation rate) at approximately one-sixth the cost of plasmid-based sgRNA construction with only 2 hr of preparation for each targeted site. Additionally, we demonstrate efficient site-specific knockin of GFP transgenes without any plasmid cloning or genome-integrated selection cassette in mouse and human embryonic stem cells (2%–4% knockin rate) through PCR-based addition of short homology arms. scCRISPR substantially lowers the bar on mouse and human transgenesis. PMID:26527385

  5. Telocytes and stem cells in limbus and uvea of mouse eye.

    PubMed

    Luesma, María José; Gherghiceanu, Mihaela; Popescu, Laurenţiu M

    2013-08-01

    The potential of stem cell (SC) therapies for eye diseases is well-recognized. However, the results remain only encouraging as little is known about the mechanisms responsible for eye renewal, regeneration and/or repair. Therefore, it is critical to gain knowledge about the specific tissue environment (niches) where the stem/progenitor cells reside in eye. A new type of interstitial cell-telocyte (TC) (www.telocytes.com) was recently identified by electron microscopy (EM). TCs have very long (tens of micrometres) and thin (below 200 nm) prolongations named telopodes (Tp) that form heterocellular networks in which SCs are embedded. We found TCs by EM and electron tomography in sclera, limbus and uvea of the mouse eye. Furthermore, EM showed that SCs were present in the anterior layer of the iris and limbus. Adhaerens and gap junctions were found to connect TCs within a network in uvea and sclera. Nanocontacts (electron-dense structures) were observed between TCs and other cells: SCs, melanocytes, nerve endings and macrophages. These intercellular 'feet' bridged the intercellular clefts (about 10 nm wide). Moreover, exosomes (extracellular vesicles with a diameter up to 100 nm) were delivered by TCs to other cells of the iris stroma. The ultrastructural nanocontacts of TCs with SCs and the TCs paracrine influence via exosomes in the epithelial and stromal SC niches suggest an important participation of TCs in eye regeneration. © 2013 The Authors. Journal of Cellular and Molecular Medicine Published by Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  6. P311 Accelerates Skin Wound Reepithelialization by Promoting Epidermal Stem Cell Migration Through RhoA and Rac1 Activation.

    PubMed

    Yao, Zhihui; Li, Haisheng; He, Weifeng; Yang, Sisi; Zhang, Xiaorong; Zhan, Rixing; Xu, Rui; Tan, Jianglin; Zhou, Junyi; Wu, Jun; Luo, Gaoxing

    2017-03-15

    P311 is a newly discovered functional gene, and it has been proved to play a key role in blood pressure homeostasis, glioblastoma invasion, renal fibrosis, hypertrophic scar formation, and others. In this study, for the first time, we found that P311 could enhance reepithelialization during wound healing via promoting epidermal stem cell (EpSC) migration through Rho GTPases. P311 expression was highly increased in neo-epidermal cells during human and mouse skin wound healing, and P311was co-localized with 5-bromo-2'-deoxyuridine positive label-retaining cells in a mouse superficial second-degree burn wound model. Furthermore, transfection of human EpSCs with adenovirus encoding P311 significantly accelerated the cell migration in vitro. Moreover, highly expressed P311 could enhance the activities of the Rho GTPases (RhoA, Rac1, and Cdc42) in cultured human EpSCs. P311-knockout mouse EpSCs showed dramatically decreased cell migration and activities of Rho GTPases (RhoA, Rac1, and Cdc42). Besides, both the RhoA-specific inhibitor and the Rac1 inhibitor, not the Cdc42 inhibitor, could significantly suppress P311-induced human EpSC migration. In vivo, the reepithelialization was markedly impaired during wound healing after P311 was knocked out. Together, our results suggested that P311 could accelerate skin wound reepithelialization by promoting the migration of EpSCs through RhoA and Rac1 activation. P311 could serve as a novel target for regulation of EpSC migration during cutaneous wound healing.

  7. Isolation and characterization of multipotent human periodontal ligament stem cells.

    PubMed

    Gay, I C; Chen, S; MacDougall, M

    2007-08-01

    Periodontal ligament (PDL) repair is thought to involve mesenchymal progenitor cells capable of forming fibroblasts, osteoblasts and cementoblasts. However, full characterization of PDL stem cell (SC) populations has not been achieved. To isolate and characterize PDLSC and assess their capability to differentiate into bone, cartilage and adipose tissue. Human PDL cells were stained for STRO-1, FACS sorted and expanded in culture. Human bone marrow SC (BMSC) served as a positive control. PDLSC and BMSC were cultured using standard conditions conducive for osteogenic, chondrogenic and adipogenic differentiation. Osteogenic induction was assayed using alizarine red S staining and expression of alkaline phosphatase (ALP) and bone sialoprotein (BSP). Adipogenic induction was assayed using Oil Red O staining and the expression of PPAR gamma 2 (early) and LPL (late) adipogenic markers. Chondrogenic induction was assayed by collagen type II expression and toluidine blue staining. Human PDL tissue contains about 27% STRO-1 positive cells with 3% strongly positive. In osteogenic cultures ALP was observed by day-7 in BMSC and day-14 in PDLSC. BSP expression was detectable by day-7; with more intense staining in PDLSC cultures. In adipogenic cultures both cell populations showed positive Oil Red O staining by day-25 with PPAR gamma 2 and LPL expression. By day-21, both BMSC and PDLSC chondrogenic induced cultures expressed collagen type II and glycosaminoglycans. The PDL contains SC that have the potential to differentiate into osteoblasts, chondrocytes and adipocytes, comparable with previously characterized BMSC. This adult PDLSC population can be utilized for potential therapeutic procedures related to PDL regeneration.

  8. Tracking stem cells in tissue-engineered organs using magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Hachani, Roxanne; Lowdell, Mark; Birchall, Martin; Thanh, NguyêN. Thi Kim

    2013-11-01

    The use of human stem cells (SCs) in tissue engineering holds promise in revolutionising the treatment of numerous diseases. There is a pressing need to comprehend the distribution, movement and role of SCs once implanted onto scaffolds. Nanotechnology has provided a platform to investigate this through the development of inorganic magnetic nanoparticles (MNPs). MNPs can be used to label and track SCs by magnetic resonance imaging (MRI) since this clinically available imaging modality has high spatial resolution. In this review, we highlight recent applications of iron oxide and gadolinium based MNPs in SC labelling and MRI; and offer novel considerations for their future development.

  9. Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia.

    PubMed

    Giustacchini, Alice; Thongjuea, Supat; Barkas, Nikolaos; Woll, Petter S; Povinelli, Benjamin J; Booth, Christopher A G; Sopp, Paul; Norfo, Ruggiero; Rodriguez-Meira, Alba; Ashley, Neil; Jamieson, Lauren; Vyas, Paresh; Anderson, Kristina; Segerstolpe, Åsa; Qian, Hong; Olsson-Strömberg, Ulla; Mustjoki, Satu; Sandberg, Rickard; Jacobsen, Sten Eirik W; Mead, Adam J

    2017-06-01

    Recent advances in single-cell transcriptomics are ideally placed to unravel intratumoral heterogeneity and selective resistance of cancer stem cell (SC) subpopulations to molecularly targeted cancer therapies. However, current single-cell RNA-sequencing approaches lack the sensitivity required to reliably detect somatic mutations. We developed a method that combines high-sensitivity mutation detection with whole-transcriptome analysis of the same single cell. We applied this technique to analyze more than 2,000 SCs from patients with chronic myeloid leukemia (CML) throughout the disease course, revealing heterogeneity of CML-SCs, including the identification of a subgroup of CML-SCs with a distinct molecular signature that selectively persisted during prolonged therapy. Analysis of nonleukemic SCs from patients with CML also provided new insights into cell-extrinsic disruption of hematopoiesis in CML associated with clinical outcome. Furthermore, we used this single-cell approach to identify a blast-crisis-specific SC population, which was also present in a subclone of CML-SCs during the chronic phase in a patient who subsequently developed blast crisis. This approach, which might be broadly applied to any malignancy, illustrates how single-cell analysis can identify subpopulations of therapy-resistant SCs that are not apparent through cell-population analysis.

  10. Circulating IGF-I and IGFBP3 Levels Control Human Colonic Stem Cell Function and Are Disrupted in Diabetic Enteropathy.

    PubMed

    D'Addio, Francesca; La Rosa, Stefano; Maestroni, Anna; Jung, Peter; Orsenigo, Elena; Ben Nasr, Moufida; Tezza, Sara; Bassi, Roberto; Finzi, Giovanna; Marando, Alessandro; Vergani, Andrea; Frego, Roberto; Albarello, Luca; Andolfo, Annapaola; Manuguerra, Roberta; Viale, Edi; Staudacher, Carlo; Corradi, Domenico; Batlle, Eduard; Breault, David; Secchi, Antonio; Folli, Franco; Fiorina, Paolo

    2015-10-01

    The role of circulating factors in regulating colonic stem cells (CoSCs) and colonic epithelial homeostasis is unclear. Individuals with long-standing type 1 diabetes (T1D) frequently have intestinal symptoms, termed diabetic enteropathy (DE), though its etiology is unknown. Here, we report that T1D patients with DE exhibit abnormalities in their intestinal mucosa and CoSCs, which fail to generate in vitro mini-guts. Proteomic profiling of T1D+DE patient serum revealed altered levels of insulin-like growth factor 1 (IGF-I) and its binding protein 3 (IGFBP3). IGFBP3 prevented in vitro growth of patient-derived organoids via binding its receptor TMEM219, in an IGF-I-independent manner, and disrupted in vivo CoSC function in a preclinical DE model. Restoration of normoglycemia in patients with long-standing T1D via kidney-pancreas transplantation or in diabetic mice by treatment with an ecto-TMEM219 recombinant protein normalized circulating IGF-I/IGFBP3 levels and reestablished CoSC homeostasis. These findings demonstrate that peripheral IGF-I/IGFBP3 controls CoSCs and their dysfunction in DE. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Recruiting endogenous stem cells: a novel therapeutic approach for erectile dysfunction

    PubMed Central

    Xin, Zhong-Cheng; Xu, Yong-De; Lin, Guiting; Lue, Tom F; Guo, Ying-Lu

    2016-01-01

    Transplanted stem cells (SCs), owing to their regenerative capacity, represent one of the most promising methods to restore erectile dysfunction (ED). However, insufficient source, invasive procedures, ethical and regulatory issues hamper their use in clinical applications. The endogenous SCs/progenitor cells resident in organ and tissues play critical roles for organogenesis during development and for tissue homeostasis in adulthood. Even without any therapeutic intervention, human body has a robust self-healing capability to repair the damaged tissues or organs. Therefore, SCs-for-ED therapy should not be limited to a supply-side approach. The resident endogenous SCs existing in patients could also be a potential target for ED therapy. The aim of this review was to summarize contemporary evidence regarding: (1) SC niche and SC biological features in vitro; (2) localization and mobilization of endogenous SCs; (3) existing evidence of penile endogenous SCs and their possible mode of mobilization. We performed a search on PubMed for articles related to these aspects in a wide range of basic studies. Together, numerous evidences hold the promise that endogenous SCs would be a novel therapeutic approach for the therapy of ED. PMID:25926601

  12. CRISPR-mediated genomic deletion of Sox2 in the axolotl shows a requirement in spinal cord neural stem cell amplification during tail regeneration.

    PubMed

    Fei, Ji-Feng; Schuez, Maritta; Tazaki, Akira; Taniguchi, Yuka; Roensch, Kathleen; Tanaka, Elly M

    2014-09-09

    The salamander is the only tetrapod that functionally regenerates all cell types of the limb and spinal cord (SC) and thus represents an important regeneration model, but the lack of gene-knockout technology has limited molecular analysis. We compared transcriptional activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPRs) in the knockout of three loci in the axolotl and find that CRISPRs show highly penetrant knockout with less toxic effects compared to TALENs. Deletion of Sox2 in up to 100% of cells yielded viable F0 larvae with normal SC organization and ependymoglial cell marker expression such as GFAP and ZO-1. However, upon tail amputation, neural stem cell proliferation was inhibited, resulting in spinal-cord-specific regeneration failure. In contrast, the mesodermal blastema formed normally. Sox3 expression during development, but not regeneration, most likely allowed embryonic survival and the regeneration-specific phenotype. This analysis represents the first tissue-specific regeneration phenotype from the genomic deletion of a gene in the axolotl. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Circulating IGF-I and IGFBP3 levels control human colonic stem cell function and are disrupted in diabetic enteropathy

    PubMed Central

    Maestroni, Anna; Jung, Peter; Orsenigo, Elena; Nasr, Moufida Ben; Tezza, Sara; Bassi, Roberto; Finzi, Giovanna; Marando, Alessandro; Vergani, Andrea; Frego, Roberto; Albarello, Luca; Andolfo, Annapaola; Manuguerra, Roberta; Viale, Edi; Staudacher, Carlo; Corradi, Domenico; Batlle, Eduard; Breault, David; Secchi, Antonio; Folli, Franco; Fiorina, Paolo

    2016-01-01

    Summary The role of circulating factors in regulating colonic stem cells (CoSCs) and colonic epithelial homeostasis is unclear. Individuals with long-standing type 1 diabetes (T1D) frequently have intestinal symptoms, termed diabetic enteropathy (DE), though its etiology is unknown. Here, we report T1D patients with DE exhibit abnormalities in their intestinal mucosa and CoSCs, which fail to generate in vitro mini-guts. Proteomic profiling of T1D+DE patient serum revealed altered levels of insulin-like growth factor 1 (IGF-1) and its binding protein-3 (IGFBP3). IGFBP3 prevented in vitro growth of patient-derived organoids via binding its receptor TMEM219, in an IGF-1-independent manner, and disrupted in vivo CoSC function in a preclinical DE model. Restoration of normoglycemia in patients with long-standing T1D via kidney-pancreas transplantation or in diabetic mice by treatment with an ecto-TMEM219 recombinant protein normalized circulating IGF-1/IGFBP3 levels and reestablished CoSC homeostasis. These findings demonstrate that peripheral IGF-1/IGFBP3 control CoSCs and their dysfunction in DE. PMID:26431183

  14. Nuclear lamina builds tissues from the stem cell niche.

    PubMed

    Chen, Haiyang; Zheng, Yixian

    2014-01-01

    Recent studies show that nuclear lamins, the type V intermediate filament proteins, are required for proper building of at least some organs. As the major structural components of the nuclear lamina found underneath the inner nuclear membranes, lamins are ubiquitously expressed in all animal cells. How the broadly expressed lamins support the building of specific tissues is not understood. By studying Drosophila testis, we have uncovered a mechanism by which lamin-B functions in the cyst stem cell (CySC) and its differentiated cyst cell, the cell types known to form the niche/microenvironment for the germline stem cells (GSC) and the developing germ line, to ensure testis organogenesis (1). In this extra view, we discuss some remaining questions and the implications of our findings in the understanding of how the ubiquitous nuclear lamina regulates tissue building in a context-dependent manner.

  15. Coordinate Regulation of Stem Cell Competition by Slit-Robo and JAK-STAT Signaling in the Drosophila Testis

    PubMed Central

    Stine, Rachel R.; Greenspan, Leah J.; Ramachandran, Kapil V.; Matunis, Erika L.

    2014-01-01

    Stem cells in tissues reside in and receive signals from local microenvironments called niches. Understanding how multiple signals within niches integrate to control stem cell function is challenging. The Drosophila testis stem cell niche consists of somatic hub cells that maintain both germline stem cells and somatic cyst stem cells (CySCs). Here, we show a role for the axon guidance pathway Slit-Roundabout (Robo) in the testis niche. The ligand Slit is expressed specifically in hub cells while its receptor, Roundabout 2 (Robo2), is required in CySCs in order for them to compete for occupancy in the niche. CySCs also require the Slit-Robo effector Abelson tyrosine kinase (Abl) to prevent over-adhesion of CySCs to the niche, and CySCs mutant for Abl outcompete wild type CySCs for niche occupancy. Both Robo2 and Abl phenotypes can be rescued through modulation of adherens junction components, suggesting that the two work together to balance CySC adhesion levels. Interestingly, expression of Robo2 requires JAK-STAT signaling, an important maintenance pathway for both germline and cyst stem cells in the testis. Our work indicates that Slit-Robo signaling affects stem cell function downstream of the JAK-STAT pathway by controlling the ability of stem cells to compete for occupancy in their niche. PMID:25375180

  16. Metastable Pluripotent States in NOD Mouse Derived ES Cells

    PubMed Central

    Hanna, Jacob; Markoulaki, Styliani; Mitalipova, Maisam; Cheng, Albert W.; Cassady, John P.; Staerk, Judith; Carey, Bryce W.; Lengner, Christopher J.; Foreman, Ruth; Love, Jennifer; Gao, Qing; Kim, Jongpil; Jaenisch, Rudolf

    2009-01-01

    Embryonic stem (ES) cells are isolated from the inner cell mass (ICM) of blastocysts, whereas epiblast stem cells (EpiSCs) are derived from the post-implantation epiblast and display a restricted developmental potential. Here we characterize pluripotent states in the non-obese diabetic (NOD) mouse strain, which prior to this study was considered “non-permissive” for ES cell derivation. We find that NOD stem cells can be stabilized by providing constitutive expression of Klf4 or c-Myc or small molecules that can replace these factors during in vitro reprogramming. The NOD ES and iPS cells appear “metastable”, as they acquire an alternative EpiSC-like identity after removal of the exogenous factors, while their reintroduction converts the cells back to ICM-like pluripotency. Our findings suggest that stem cells from different genetic backgrounds can assume distinct states of pluripotency in vitro, the stability of which is regulated by endogenous genetic determinants and can be modified by exogenous factors. PMID:19427283

  17. Effects of trypsinization and of a combined trypsin, collagenase, and DNase digestion on liberation and in vitro function of satellite cells isolated from juvenile porcine muscles.

    PubMed

    Miersch, Claudia; Stange, Katja; Röntgen, Monika

    2018-06-01

    Muscle stem cells, termed satellite cells (SC), and SC-derived myogenic progenitor cells (MPC) are involved in postnatal muscle growth, regeneration, and muscle adaptability. They can be released from their natural environment by mechanical disruption and tissue digestion. The literature contains several isolation protocols for porcine SC/MPC including various digestion procedures, but comparative studies are missing. In this report, classic trypsinization and a more complex trypsin, collagenase, and DNase (TCD) digestion were performed with skeletal muscle tissue from 4- to 5-d-old piglets. The two digestion procedures were compared regarding cell yield, viability, myogenic purity, and in vitro cell function. The TCD digestion tended to result in higher cell yields than digestion with solely trypsin (statistical trend p = 0.096), whereas cell size and viability did not differ. Isolated myogenic cells from both digestion procedures showed comparable proliferation rates, expressed the myogenic marker Desmin, and initiated myogenic differentiation in vitro at similar levels. Thus, TCD digestion tended to liberate slightly more cells without changes in the tested in vitro properties of the isolated cells. Both procedures are adequate for the isolation of SC/MPC from juvenile porcine muscles but the developmental state of the animal should always be considered.

  18. Small Molecules Affect Human Dental Pulp Stem Cell Properties Via Multiple Signaling Pathways

    PubMed Central

    Al-Habib, Mey; Yu, Zongdong

    2013-01-01

    One fundamental issue regarding stem cells for regenerative medicine is the maintenance of stem cell stemness. The purpose of the study was to test whether small molecules can enhance stem cell properties of mesenchymal stem cells (MSCs) derived from human dental pulp (hDPSCs), which have potential for multiple clinical applications. We identified the effects of small molecules (Pluripotin (SC1), 6-bromoindirubin-3-oxime and rapamycin) on the maintenance of hDPSC properties in vitro and the mechanisms involved in exerting the effects. Primary cultures of hDPSCs were exposed to optimal concentrations of these small molecules. Treated hDPSCs were analyzed for their proliferation, the expression levels of pluripotent and MSC markers, differentiation capacities, and intracellular signaling activations. We found that small molecule treatments decreased cell proliferation and increased the expression of STRO-1, NANOG, OCT4, and SOX2, while diminishing cell differentiation into odonto/osteogenic, adipogenic, and neurogenic lineages in vitro. These effects involved Ras-GAP-, ERK1/2-, and mTOR-signaling pathways, which may preserve the cell self-renewal capacity, while suppressing differentiation. We conclude that small molecules appear to enhance the immature state of hDPSCs in culture, which may be used as a strategy for adult stem cell maintenance and extend their capacity for regenerative applications. PMID:23573877

  19. Placental-derived stem cells: Culture, differentiation and challenges

    PubMed Central

    Oliveira, Maira S; Barreto-Filho, João B

    2015-01-01

    Stem cell therapy is a promising approach to clinical healing in several diseases. A great variety of tissues (bone marrow, adipose tissue, and placenta) are potentially sources of stem cells. Placenta-derived stem cells (p-SCs) are in between embryonic and mesenchymal stem cells, sharing characteristics with both, such as non-carcinogenic status and property to differentiate in all embryonic germ layers. Moreover, their use is not ethically restricted as fetal membranes are considered medical waste after birth. In this context, the present review will be focused on the biological properties, culture and potential cell therapy uses of placental-derived stem cells. Immunophenotype characterization, mainly for surface marker expression, and basic principles of p-SC isolation and culture (mechanical separation or enzymatic digestion of the tissues, the most used culture media, cell plating conditions) will be presented. In addition, some preclinical studies that were performed in different medical areas will be cited, focusing on neurological, liver, pancreatic, heart, muscle, pulmonary, and bone diseases and also in tissue engineering field. Finally, some challenges for stem cell therapy applications will be highlighted. The understanding of the mechanisms involved in the p-SCs differentiation and the achievement of pure cell populations (after differentiation) are key points that must be clarified before bringing the preclinical studies, performed at the bench, to the medical practice. PMID:26029347

  20. High-versus standard-dose filgrastim (rhG-CSF) for mobilization of peripheral-blood progenitor cells from allogeneic donors and CD34(+) immunoselection.

    PubMed

    Engelhardt, M; Bertz, H; Afting, M; Waller, C F; Finke, J

    1999-07-01

    The efficacy of a high- versus a standard-dose filgrastim (recombinant human granulocyte colony-stimulating factor, or rhG-CSF) regimen to mobilize peripheral-blood progenitor cells (PBPCs) for allogeneic transplantation was investigated in 75 healthy donors. From December 1994 to December 1997, 75 consecutive donors (median age, 38 years; range, 17 to 67 years) were assigned to two different schedules of rhG-CSF for PBPC mobilization. Fifty donors received 24 microg rhG-CSF/kg body weight (BW) divided into two daily subcutaneous injections (two doses of 12 microg, group A), whereas 25 were treated with 10 microg rhG-CSF once daily (group B). Apheresis was started on day 4 in group A and on day 5 in group B. Target CD34(+) cell numbers in apheresis products were >/= 4 x 10(6)/kg recipient BW. Cytokine priming and collection of PBPCs were equally well tolerated in both groups. Significantly higher CD34(+) cell numbers in group A with 3. 7 x 10(6)/kg recipient BW/apheresis (0.47 x 10(6)/L apheresis) compared with 2 x 10(6)/kg recipient BW/apheresis (0.25 x 10(6)/L apharesis) in group B were obtained (P <.05). Using standard aphereses (median, 9 L), two doses of 12 microg rhG-CSF/kg allowed collection of >/= 4 x 10(6)/kg CD34(+) cells with two aphereses (range, one to three) in group A versus three aphereses (range, one to six) in group B (P <.015). Donor age, sex, and BW influenced the collection of CD34(+) cell numbers: in particular, significantly higher apheresis results were obtained in donors younger than 40 years compared with donors older than 40 years of age (P <.05). In 65 CD34(+) selection procedures using avidin-biotin immunoabsorption columns (Ceprate SC System, CellPro, Bothell, WA), a median CD34(+) purity of 53%, CD34(+) recovery of 40%, and the collection of 2 x 10(6)/kg CD34(+) cells/selection were achieved. In group A with higher CD34(+) cells/kg/apheresis, CD34(+) purity, recovery, and cell yields were 60%, 45%, and 2.3 x 10(6)/kg/selection, respectively, as compared with 48%, 31%, and 0.7 x 10(6)/kg in group B (P <.05). Our results demonstrate that twice daily rhG-CSF (two doses of 12 microg/kg BM) compared with once daily rhG-CSF (10 microg/kg BW), in addition to being well tolerated, significantly improves PBPC mobilization, allows the collection of higher numbers of CD34(+) cells with one or two standard aphereses, and facilitates subsequent selection procedures in healthy allogeneic donors.

  1. Encapsulation of temozolomide in a tumor-targeting nanocomplex enhances anti-cancer efficacy and reduces toxicity in a mouse model of glioblastoma.

    PubMed

    Kim, Sang-Soo; Rait, Antonina; Kim, Eric; DeMarco, James; Pirollo, Kathleen F; Chang, Esther H

    2015-12-01

    Although temozolomide (TMZ) is the current first-line chemotherapy for glioblastoma multiforme (GBM), most patients either do not respond or ultimately fail TMZ treatment. Both intrinsic tumor resistance and limited access of TMZ to brain tumors as a result of the blood-brain barrier (BBB) contribute to poor response and ultimately to poor prognosis for GBM patients. We have developed a "dual-targeting" nanomedicine that both actively crosses the BBB and actively targets cancer cells once in the brain parenchyma. This nanomedicine (termed scL-TMZ) is sized ~40 nm and comprised of a cationic liposome (DOTAP:DOPE) encapsulating TMZ. The surface of liposome is decorated with anti-transferrin receptor single-chain antibody fragments to facilitate the crossing of the BBB by the scL-TMZ in addition to targeting GBM in the brain. This novel formulation was found to be markedly more effective than standard TMZ in both TMZ-resistant and TMZ-sensitive GBM. Encapsulation of TMZ also markedly enhanced its efficacy in killing a variety of non-GBM tumor cells. The scL-TMZ nanocomplex was shown to target cancer stem cells, which have been linked to both drug resistance and recurrence in GBM. Most significantly, systemically administered scL-TMZ significantly prolonged survival in mice bearing intracranial GBM tumors. The improved efficacy of scL-TMZ compared to standard TMZ was accompanied by reduced toxicity, so we conclude that the scL-TMZ nanomedicine holds great promise as a more effective therapy for GBM and other tumor types. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Immunological Applications of Stem Cells in Type 1 Diabetes

    PubMed Central

    Voltarelli, Julio; Zavazava, Nicholas

    2011-01-01

    Current approaches aiming to cure type 1 diabetes (T1D) have made a negligible number of patients insulin-independent. In this review, we revisit the role of stem cell (SC)-based applications in curing T1D. The optimal therapeutic approach for T1D should ideally preserve the remaining β-cells, restore β-cell function, and protect the replaced insulin-producing cells from autoimmunity. SCs possess immunological and regenerative properties that could be harnessed to improve the treatment of T1D; indeed, SCs may reestablish peripheral tolerance toward β-cells through reshaping of the immune response and inhibition of autoreactive T-cell function. Furthermore, SC-derived insulin-producing cells are capable of engrafting and reversing hyperglycemia in mice. Bone marrow mesenchymal SCs display a hypoimmunogenic phenotype as well as a broad range of immunomodulatory capabilities, they have been shown to cure newly diabetic nonobese diabetic (NOD) mice, and they are currently undergoing evaluation in two clinical trials. Cord blood SCs have been shown to facilitate the generation of regulatory T cells, thereby reverting hyperglycemia in NOD mice. T1D patients treated with cord blood SCs also did not show any adverse reaction in the absence of major effects on glycometabolic control. Although hematopoietic SCs rarely revert hyperglycemia in NOD mice, they exhibit profound immunomodulatory properties in humans; newly hyperglycemic T1D patients have been successfully reverted to normoglycemia with autologous nonmyeloablative hematopoietic SC transplantation. Finally, embryonic SCs also offer exciting prospects because they are able to generate glucose-responsive insulin-producing cells. Easy enthusiasm should be mitigated mainly because of the potential oncogenicity of SCs. PMID:21862682

  3. Tetraspecific scFv construct provides NK cell mediated ADCC and self-sustaining stimuli via insertion of IL-15 as a cross-linker

    PubMed Central

    Schmohl, Joerg U.; Felices, Martin; Todhunter, Deborah; Taras, Elizabeth; Miller, Jeffrey S.; Vallera, Daniel A.

    2016-01-01

    Background The design of a highly effective anti-cancer immune-engager would include targeting of highly drug refractory cancer stem cells (CSC). The design would promote effective antibody-dependent cell-mediated cytotoxicity (ADCC) and simultaneously promote costimulation to expand and self-sustain the effector NK cell population. Based on our bispecific NK cell engager platform we constructed a tetraspecific killer engager (TetraKE) comprising single-chain variable fragments (scFvs) binding FcγRIII (CD16) on NK cells, EpCAM on carcinoma cells and CD133 on cancer stem cells in order to promote ADCC. Furthermore, an Interleukin (IL)-15-crosslinker enhanced NK cell related proliferation resulting in a highly active drug termed 1615EpCAM133. Results Proliferation assays showed TetraKE promoted proliferation and enhanced NK cell survival. Drug-target binding, NK cell related degranulation, and IFN-γ production was specific for both tumor related antigens in EpCAM and CD133 bearing cancer cell lines. The TetraKE showed higher killing activity and superior dose dependent degranulation. Cytokine profiling showed a moderately enhanced IFN-γ production, enhanced GM-CSF production, but no evidence of induction of excessive cytokine release. Methods Assembly and synthesis of hybrid genes encoding the TetraKE were performed using DNA shuffling and ligation. The TetraKE was tested for efficacy, specificity, proliferation, survival, and cytokine production using carcinoma cell lines and functional assays measuring NK cell activity. Conclusion 1615EpCAM133 combines improved induction of ADCC with enhanced proliferation, limited cytokine response, and prolonged survival and proliferation of NK cells. By linking scFv-related targeting of carcinoma and CSCs with a sustaining IL-15 signal, our new construct shows great promise to target cancer and CSCs. PMID:27650544

  4. Changing Nuclear Landscape and Unique PML Structures During Early Epigenetic Transitions of Human Embryonic Stem Cells

    PubMed Central

    Butler, John T.; Hall, Lisa L.; Smith, Kelly P.; Lawrence, Jeanne B.

    2010-01-01

    The complex nuclear structure of somatic cells is important to epigenomic regulation, yet little is known about nuclear organization of human embryonic stem cells (hESC). Here we surveyed several nuclear structures in pluripotent and transitioning hESC. Observations of centromeres, telomeres, SC35 speckles, Cajal Bodies, lamin A/C and emerin, nuclear shape and size demonstrate a very different “nuclear landscape” in hESC. This landscape is remodeled during a brief transitional window, concomitant with or just prior to differentiation onset. Notably, hESC initially contain abundant signal for spliceosome assembly factor, SC35, but lack discrete SC35 domains; these form as cells begin to specialize, likely reflecting cell-type specific genomic organization. Concomitantly, nuclear size increases and shape changes as lamin A/C and emerin incorporate into the lamina. During this brief window, hESC exhibit dramatically different PML-defined structures, which in somatic cells are linked to gene regulation and cancer. Unlike the numerous, spherical somatic PML bodies, hES cells often display ~1–3 large PML structures of two morphological types: long linear “rods” or elaborate “rosettes”, which lack substantial SUMO-1, Daxx, and Sp100.These occur primarily between Day 0–2 of differentiation and become rare thereafter. PML rods may be “taut” between other structures, such as centromeres, but clearly show some relationship with the lamina, where PML often abuts or fills a “gap” in early lamin A/C staining. Findings demonstrate that pluripotent hES cells have a markedly different overall nuclear architecture, remodeling of which is linked to early epigenomic programming and involves formation of unique PML-defined structures. PMID:19449340

  5. Smad4 restricts differentiation to promote expansion of satellite cell derived progenitors during skeletal muscle regeneration

    PubMed Central

    Paris, Nicole D; Soroka, Andrew; Klose, Alanna; Liu, Wenxuan; Chakkalakal, Joe V

    2016-01-01

    Skeletal muscle regenerative potential declines with age, in part due to deficiencies in resident stem cells (satellite cells, SCs) and derived myogenic progenitors (MPs); however, the factors responsible for this decline remain obscure. TGFβ superfamily signaling is an inhibitor of myogenic differentiation, with elevated activity in aged skeletal muscle. Surprisingly, we find reduced expression of Smad4, the downstream cofactor for canonical TGFβ superfamily signaling, and the target Id1 in aged SCs and MPs during regeneration. Specific deletion of Smad4 in adult mouse SCs led to increased propensity for terminal myogenic commitment connected to impaired proliferative potential. Furthermore, SC-specific Smad4 disruption compromised adult skeletal muscle regeneration. Finally, loss of Smad4 in aged SCs did not promote aged skeletal muscle regeneration. Therefore, SC-specific reduction of Smad4 is a feature of aged regenerating skeletal muscle and Smad4 is a critical regulator of SC and MP amplification during skeletal muscle regeneration. DOI: http://dx.doi.org/10.7554/eLife.19484.001 PMID:27855784

  6. Brief Report: Interleukin-17A-Dependent Asymmetric Stem Cell Divisions Are Increased in Human Psoriasis: A Mechanism Underlying Benign Hyperproliferation.

    PubMed

    Charruyer, Alexandra; Fong, Stephen; Vitcov, Giselle G; Sklar, Samuel; Tabernik, Leah; Taneja, Monica; Caputo, Melinda; Soeung, Catherine; Yue, Lili; Uchida, Yoshi; Arron, Sarah T; Horton, Karen M; Foster, Robert D; Sano, Shigetoshi; North, Jeffrey P; Ghadially, Ruby

    2017-08-01

    The balance between asymmetric and symmetric stem cell (SC) divisions is key to tissue homeostasis, and dysregulation of this balance has been shown in cancers. We hypothesized that the balance between asymmetric cell divisions (ACDs) and symmetric cell divisions (SCDs) would be dysregulated in the benign hyperproliferation of psoriasis. We found that, while SCDs were increased in squamous cell carcinoma (SCC) (human and murine), ACDs were increased in the benign hyperproliferation of psoriasis (human and murine). Furthermore, while sonic hedgehog (linked to human cancer) and pifithrinα (p53 inhibitor) promoted SCDs, interleukin (IL)-1α and amphiregulin (associated with benign epidermal hyperproliferation) promoted ACDs. While there was dysregulation of the ACD:SCD ratio, no change in SC frequency was detected in epidermis from psoriasis patients, or in human keratinocytes treated with IL-1α or amphiregulin. We investigated the mechanism whereby immune alterations of psoriasis result in ACDs. IL17 inhibitors are effective new therapies for psoriasis. We found that IL17A increased ACDs in human keratinocytes. Additionally, studies in the imiquimod-induced psoriasis-like mouse model revealed that ACDs in psoriasis are IL17A-dependent. In summary, our studies suggest an association between benign hyperproliferation and increased ACDs. This work begins to elucidate the mechanisms by which immune alteration can induce keratinocyte hyperproliferation. Altogether, this work affirms that a finely tuned balance of ACDs and SCDs is important and that manipulating this balance may constitute an effective treatment strategy for hyperproliferative diseases. Stem Cells 2017;35:2001-2007. © 2017 AlphaMed Press.

  7. A Dual Role for SOX10 in the Maintenance of the Postnatal Melanocyte Lineage and the Differentiation of Melanocyte Stem Cell Progenitors

    PubMed Central

    Harris, Melissa L.; Buac, Kristina; Shakhova, Olga; Hakami, Ramin M.; Wegner, Michael; Sommer, Lukas; Pavan, William J.

    2013-01-01

    During embryogenesis, the transcription factor, Sox10, drives the survival and differentiation of the melanocyte lineage. However, the role that Sox10 plays in postnatal melanocytes is not established. We show in vivo that melanocyte stem cells (McSCs) and more differentiated melanocytes express SOX10 but that McSCs remain undifferentiated. Sox10 knockout (Sox10fl; Tg(Tyr::CreER)) results in loss of both McSCs and differentiated melanocytes, while overexpression of Sox10 (Tg(DctSox10)) causes premature differentiation and loss of McSCs, leading to hair graying. This suggests that levels of SOX10 are key to normal McSC function and Sox10 must be downregulated for McSC establishment and maintenance. We examined whether the mechanism of Tg(DctSox10) hair graying is through increased expression of Mitf, a target of SOX10, by asking if haploinsufficiency for Mitf (Mitfvga9) can rescue hair graying in Tg(DctSox10) animals. Surprisingly, Mitfvga9 does not mitigate but exacerbates Tg(DctSox10) hair graying suggesting that MITF participates in the negative regulation of Sox10 in McSCs. These observations demonstrate that while SOX10 is necessary to maintain the postnatal melanocyte lineage it is simultaneously prevented from driving differentiation in the McSCs. This data illustrates how tissue-specific stem cells can arise from lineage-specified precursors through the regulation of the very transcription factors important in defining that lineage. PMID:23935512

  8. Improved Sterilization of Sensitive Biomaterials with Supercritical Carbon Dioxide at Low Temperature

    PubMed Central

    Bernhardt, Anne; Wehrl, Markus; Paul, Birgit; Hochmuth, Thomas; Schumacher, Matthias; Schütz, Kathleen; Gelinsky, Michael

    2015-01-01

    The development of bio-resorbable implant materials is rapidly going on. Sterilization of those materials is inevitable to assure the hygienic requirements for critical medical devices according to the medical device directive (MDD, 93/42/EG). Biopolymer-containing biomaterials are often highly sensitive towards classical sterilization procedures like steam, ethylene oxide treatment or gamma irradiation. Supercritical CO2 (scCO2) treatment is a promising strategy for the terminal sterilization of sensitive biomaterials at low temperature. In combination with low amounts of additives scCO2 treatment effectively inactivates microorganisms including bacterial spores. We established a scCO2 sterilization procedure under addition of 0.25% water, 0.15% hydrogen peroxide and 0.5% acetic anhydride. The procedure was successfully tested for the inactivation of a wide panel of microorganisms including endospores of different bacterial species, vegetative cells of gram positive and negative bacteria including mycobacteria, fungi including yeast, and bacteriophages. For robust testing of the sterilization effect with regard to later application of implant materials sterilization all microorganisms were embedded in alginate/agarose cylinders that were used as Process Challenge Devices (PCD). These PCD served as surrogate models for bioresorbable 3D scaffolds. Furthermore, the impact of scCO2 sterilization on mechanical properties of polysaccharide-based hydrogels and collagen-based scaffolds was analyzed. The procedure was shown to be less compromising on mechanical and rheological properties compared to established low-temperature sterilization methods like gamma irradiation and ethylene oxide exposure as well as conventional steam sterilization. Cytocompatibility of alginate gels and scaffolds from mineralized collagen was compared after sterilization with ethylene oxide, gamma irradiation, steam sterilization and scCO2 treatment. Human mesenchymal stem cell viability and proliferation were not compromised by scCO2 treatment of these materials and scaffolds. We conclude that scCO2 sterilization under addition of water, hydrogen peroxide and acetic anhydride is a very effective, gentle, non-cytotoxic and thus a promising alternative sterilization method especially for biomaterials. PMID:26067982

  9. Generation of functional human pancreatic β cells in vitro

    PubMed Central

    Pagliuca, Felicia W.; Millman, Jeffrey R.; Gürtler, Mads; Segel, Michael; Van Dervort, Alana; Ryu, Jennifer Hyoje; Peterson, Quinn P.; Greiner, Dale; Melton, Douglas A.

    2015-01-01

    Summary The generation of insulin-producing pancreatic β cells from stem cells in vitro would provide an unprecedented cell source for drug discovery and cell transplantation therapy in diabetes. However, insulin-producing cells previously generated from human pluripotent stem cells (hPSC) lack many functional characteristics of bona fide β cells. Here we report a scalable differentiation protocol that can generate hundreds of millions of glucose-responsive β cells from hPSC in vitro. These stem cell derived β cells (SC-β) express markers found in mature β cells, flux Ca2+ in response to glucose, package insulin into secretory granules and secrete quantities of insulin comparable to adult β cells in response to multiple sequential glucose challenges in vitro. Furthermore, these cells secrete human insulin into the serum of mice shortly after transplantation in a glucose-regulated manner, and transplantation of these cells ameliorates hyperglycemia in diabetic mice. PMID:25303535

  10. Mammary stem cells and the differentiation hierarchy: current status and perspectives

    PubMed Central

    Visvader, Jane E.; Stingl, John

    2014-01-01

    The mammary epithelium is highly responsive to local and systemic signals, which orchestrate morphogenesis of the ductal tree during puberty and pregnancy. Based on transplantation and lineage tracing studies, a hierarchy of stem and progenitor cells has been shown to exist among the mammary epithelium. Lineage tracing has highlighted the existence of bipotent mammary stem cells (MaSCs) in situ as well as long-lived unipotent cells that drive morphogenesis and homeostasis of the ductal tree. Moreover, there is accumulating evidence for a heterogeneous MaSC compartment comprising fetal MaSCs, slow-cycling cells, and both long-term and short-term repopulating cells. In parallel, diverse luminal progenitor subtypes have been identified in mouse and human mammary tissue. Elucidation of the normal cellular hierarchy is an important step toward understanding the “cells of origin” and molecular perturbations that drive breast cancer. PMID:24888586

  11. Sphingosine-1-phosphate mediates proliferation maintaining the multipotency of human adult bone marrow and adipose tissue-derived stem cells.

    PubMed

    He, Xiaoli; H'ng, Shiau-Chen; Leong, David T; Hutmacher, Dietmar W; Melendez, Alirio J

    2010-08-01

    High renewal and maintenance of multipotency of human adult stem cells (hSCs), are a prerequisite for experimental analysis as well as for potential clinical usages. The most widely used strategy for hSC culture and proliferation is using serum. However, serum is poorly defined and has a considerable degree of inter-batch variation, which makes it difficult for large-scale mesenchymal stem cells (MSCs) expansion in homogeneous culture conditions. Moreover, it is often observed that cells grown in serum-containing media spontaneously differentiate into unknown and/or undesired phenotypes. Another way of maintaining hSC development is using cytokines and/or tissue-specific growth factors; this is a very expensive approach and can lead to early unwanted differentiation. In order to circumvent these issues, we investigated the role of sphingosine-1-phosphate (S1P), in the growth and multipotency maintenance of human bone marrow and adipose tissue-derived MSCs. We show that S1P induces growth, and in combination with reduced serum, or with the growth factors FGF and platelet-derived growth factor-AB, S1P has an enhancing effect on growth. We also show that the MSCs cultured in S1P-supplemented media are able to maintain their differentiation potential for at least as long as that for cells grown in the usual serum-containing media. This is shown by the ability of cells grown in S1P-containing media to be able to undergo osteogenic as well as adipogenic differentiation. This is of interest, since S1P is a relatively inexpensive natural product, which can be obtained in homogeneous high-purity batches: this will minimize costs and potentially reduce the unwanted side effects observed with serum. Taken together, S1P is able to induce proliferation while maintaining the multipotency of different human stem cells, suggesting a potential for S1P in developing serum-free or serum-reduced defined medium for adult stem cell cultures.

  12. Additional benefit of combined therapy with melatonin and apoptotic adipose-derived mesenchymal stem cell against sepsis-induced kidney injury.

    PubMed

    Chen, Hong-Hwa; Lin, Kun-Chen; Wallace, Christopher G; Chen, Yen-Ta; Yang, Chih-Chao; Leu, Steve; Chen, Yi-Ching; Sun, Cheuk-Kwan; Tsai, Tzu-Hsien; Chen, Yung-Lung; Chung, Sheng-Ying; Chang, Chia-Lo; Yip, Hon-Kan

    2014-08-01

    This study tested whether combined therapy with melatonin and apoptotic adipose-derived mesenchymal stem cells (A-ADMSCs) offered additional benefit in ameliorating sepsis-induced acute kidney injury. Adult male Sprague-Dawley rats (n = 65) were randomized equally into five groups: Sham controls (SC), sepsis induced by cecal-ligation and puncture (CLP), CLP-melatonin, CLP-A-ADMSC, and CLP-melatonin-A-ADMSC. Circulating TNF-α level at post-CLP 6 hr was highest in CLP and lowest in SC groups, higher in CLP-melatonin than in CLP-A-ADMSC and CLP-melatonin-A-ADMSC groups (all P < 0.001). Immune reactivity as reflected in the number of splenic helper-, cytoxic-, and regulatory-T cells at post-CLP 72 hr exhibited the same pattern as that of circulating TNF-α among all groups (P < 0.001). The histological scoring of kidney injury and the number of F4/80+ and CD14+ cells in kidney were highest in CLP and lowest in SC groups, higher in CLP-melatonin than in CLP-A-ADMSC and CLP-melatonin-A-ADMSC groups, and higher in CLP-A-ADMSC than in CLP-melatonin-A-ADMSC groups (all P < 0.001). Changes in protein expressions of inflammatory (RANTES, TNF-1α, NF-κB, MMP-9, MIP-1, IL-1β), apoptotic (cleaved caspase 3 and PARP, mitochondrial Bax), fibrotic (Smad3, TGF-β) markers, reactive-oxygen-species (NOX-1, NOX-2), and oxidative stress displayed a pattern identical to that of kidney injury score among the five groups (all P < 0.001). Expressions of antioxidants (GR+, GPx+, HO-1, NQO-1+) were lowest in SC group and highest in CLP-melatonin-A-ADMSC group, lower in CLP than in CLP-melatonin and CLP-A-ADMSC groups, and lower in CLP-melatonin- than in CLP-A-ADMSC-tretaed animals (all P < 0.001). In conclusion, combined treatment with melatonin and A-ADMSC was superior to A-ADMSC alone in protecting the kidneys from sepsis-induced injury. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Human induced pluripotent stem cells and their use in drug discovery for toxicity testing.

    PubMed

    Scott, Clay W; Peters, Matthew F; Dragan, Yvonne P

    2013-05-10

    Predicting human safety risks of novel xenobiotics remains a major challenge, partly due to the limited availability of human cells to evaluate tissue-specific toxicity. Recent progress in the production of human induced pluripotent stem cells (hiPSCs) may fill this gap. hiPSCs can be continuously expanded in culture in an undifferentiated state and then differentiated to form most cell types. Thus, it is becoming technically feasible to generate large quantities of human cell types and, in combination with relatively new detection methods, to develop higher-throughput in vitro assays that quantify tissue-specific biological properties. Indeed, the first wave of large scale hiSC-differentiated cell types including patient-derived hiPSCS are now commercially available. However, significant improvements in hiPSC production and differentiation processes are required before cell-based toxicity assays that accurately reflect mature tissue phenotypes can be delivered and implemented in a cost-effective manner. In this review, we discuss the promising alignment of hiPSCs and recently emerging technologies to quantify tissue-specific functions. We emphasize liver, cardiovascular, and CNS safety risks and highlight limitations that must be overcome before routine screening for toxicity pathways in hiSC-derived cells can be established. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Efficient generation of functional Schwann cells from adipose-derived stem cells in defined conditions

    PubMed Central

    Xie, Songtao; Lu, Fan; Han, Juntao; Tao, Ke; Wang, Hongtao; Simental, Alfred; Hu, Dahai

    2017-01-01

    ABSTRACT Schwann cells (SCs) are hitherto regarded as the most promising candidates for viable cell-based therapy to peripheral nervous system (PNS) injuries or degenerative diseases. However, the extreme drawbacks of transplanting autologous SCs for clinical applications still represent a significant bottleneck in neural regenerative medicine, mainly owing to the need of sacrificing a functional nerve to generate autologous SCs and the nature of slow expansion of the SCs. Thus, it is of great importance to establish an alternative cell system for the generation of sufficient SCs. Here, we demonstrated that adipose-derived stem cells (ADSCs) of rat robustly give rise to morphological, phenotypic and functional SCs using an optimized protocol. After undergoing a 3-week in vitro differentiation, almost all of treated ADSCs exhibited spindle shaped morphology similar to genuine SCs and expressed SC markers GFAP and S100. Most importantly, apart from acquisition of SC antigenic and biochemical features, the ADSC-derived SCs were functionally identical to native SCs as they possess a potential ability to form myelin, and secret nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and glia-derived neurotrophic factor (GDNF). The current study may provide an ideal strategy for harvesting sufficient SCs for cell-based treatment of various peripheral nerve injuries or disorders. PMID:28296571

  15. p53 and its mutants on the slippery road from stemness to carcinogenesis.

    PubMed

    Molchadsky, Alina; Rotter, Varda

    2017-04-01

    Normal development, tissue homeostasis and regeneration following injury rely on the proper functions of wide repertoire of stem cells (SCs) persisting during embryonic period and throughout the adult life. Therefore, SCs employ robust mechanisms to preserve their genomic integrity and avoid heritage of mutations to their daughter cells. Importantly, propagation of SCs with faulty DNA as well as dedifferentiation of genomically altered somatic cells may result in derivation of cancer SCs, which are considered to be the driving force of the tumorigenic process. Multiple experimental evidence suggest that p53, the central tumor suppressor gene, plays a critical regulatory role in determination of SCs destiny, thereby eliminating damaged SCs from the general SC population. Notably, mutant p53 proteins do not only lose the tumor suppressive function, but rather gain new oncogenic function that markedly promotes various aspects of carcinogenesis. In this review, we elaborate on the role of wild type and mutant p53 proteins in the various SCs types that appear under homeostatic conditions as well as in cancer. It is plausible that the growing understanding of the mechanisms underlying cancer SC phenotype and p53 malfunction will allow future optimization of cancer therapeutics in the context of precision medicine. © Crown copyright 2017.

  16. Antitumor Activity of a Mesenchymal Stem Cell Line Stably Secreting a Tumor-Targeted TNF-Related Apoptosis-Inducing Ligand Fusion Protein

    PubMed Central

    Marini, Irene; Siegemund, Martin; Hutt, Meike; Kontermann, Roland E.; Pfizenmaier, Klaus

    2017-01-01

    Mesenchymal stem cells (MSCs) are currently exploited as gene delivery systems for transient in situ expression of cancer therapeutics. As an alternative to the prevailing viral expression, we here describe a murine MSC line stably expressing a therapeutic protein for up to 42 passages, yet fully maintaining MSC features. Because of superior antitumoral activity of hexavalent TNF-related apoptosis-inducing ligand (TRAIL) formats and the advantage of a tumor-targeted action, we choose expression of a dimeric EGFR-specific diabody single-chain TRAIL (Db-scTRAIL) as a model. The bioactivity of Db-scTRAIL produced from an isolated clone (MSC.TRAIL) was revealed from cell death induction in Colo205 cells treated with either culture supernatants from or cocultured with MSC.TRAIL. In vivo, therapeutic activity of MSC.TRAIL was shown upon peritumoral injection in a Colo205 xenograft tumor model. Best antitumor activity in vitro and in vivo was observed upon combined treatment of MSC.TRAIL with bortezomib. Importantly, in vivo combination treatment did not cause apparent hepatotoxicity, weight loss, or behavioral changes. The development of well characterized stocks of stable drug-producing human MSC lines has the potential to establish standardized protocols of cell-based therapy broadly applicable in cancer treatment. PMID:28553285

  17. Supercritical carbon dioxide extracted extracellular matrix material from adipose tissue.

    PubMed

    Wang, Jun Kit; Luo, Baiwen; Guneta, Vipra; Li, Liang; Foo, Selin Ee Min; Dai, Yun; Tan, Timothy Thatt Yang; Tan, Nguan Soon; Choong, Cleo; Wong, Marcus Thien Chong

    2017-06-01

    Adipose tissue is a rich source of extracellular matrix (ECM) material that can be isolated by delipidating and decellularizing the tissue. However, the current delipidation and decellularization methods either involve tedious and lengthy processes or require toxic chemicals, which may result in the elimination of vital proteins and growth factors found in the ECM. Hence, an alternative delipidation and decellularization method for adipose tissue was developed using supercritical carbon dioxide (SC-CO 2 ) that eliminates the need of any harsh chemicals and also reduces the amount of processing time required. The resultant SC-CO 2 -treated ECM material showed an absence of nuclear content but the preservation of key proteins such as collagen Type I, collagen Type III, collagen Type IV, elastin, fibronectin and laminin. In addition, other biological factors such as glycosaminoglycans (GAGs) and growth factors such as basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) were also retained. Subsequently, the resulting SC-CO 2 -treated ECM material was used as a bioactive coating on tissue culture plastic (TCP). Four different cell types including adipose tissue-derived mesenchymal stem cells (ASCs), human umbilical vein endothelial cells (HUVECs), immortalized human keratinocyte (HaCaT) cells and human monocytic leukemia cells (THP-1) were used in this study to show that the SC-CO 2 -treated ECM coating can be potentially used for various biomedical applications. The SC-CO 2 -treated ECM material showed improved cell-material interactions for all cell types tested. In addition, in vitro scratch wound assay using HaCaT cells showed that the presence of SC-CO 2 -treated ECM material enhanced keratinocyte migration whilst the in vitro cellular studies using THP-1-derived macrophages showed that the SC-CO 2 -treated ECM material did not evoke pro-inflammatory responses from the THP-1-derived macrophages. Overall, this study shows the efficacy of SC-CO 2 method for delipidation and decellularization of adipose tissue whilst retaining its ECM and its subsequent utilization as a bioactive surface coating material for soft tissue engineering, angiogenesis and wound healing applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Neonatal Desensitization Supports Long-Term Survival and Functional Integration of Human Embryonic Stem Cell-Derived Mesenchymal Stem Cells in Rat Joint Cartilage Without Immunosuppression

    PubMed Central

    Zhang, Shufang; Jiang, Yang Zi; Zhang, Wei; Chen, Longkun; Tong, Tong; Liu, Wanlu; Mu, Qin; Liu, Hua; Ji, Junfeng; Ouyang, Hong Wei

    2013-01-01

    Immunological response hampers the investigation of human embryonic stem cells (hESCs) or their derivates for tissue regeneration in vivo. Immunosuppression is often used after surgery, but exhibits side effects of significant weight loss and allows only short-term observation. The purpose of this study was to investigate whether neonatal desensitization supports relative long-term survival of hESC-derived mesenchymal stem cells (hESC-MSCs) and promotes cartilage regeneration. hESC-MSCs were injected on the day of birth in rats. Six weeks after neonatal injection, a full-thickness cylindrical cartilage defect was created and transplanted with a hESC-MSC-seeded collagen bilayer scaffold (group d+s+c) or a collagen bilayer scaffold (group d+s). Rats without neonatal injection were transplanted with the hESC-MSC-seeded collagen bilayer scaffold to serve as controls (group s+c). Cartilage regeneration was evaluated by histological analysis, immunohistochemical staining, and biomechanical test. The role of hESC-MSCs in cartilage regeneration was analyzed by CD4 immunostaining, cell death detection, and visualization of human cells in regenerated tissues. hESC-MSCs expressed CD105, CD73, CD90, CD29, and CD44, but not CD45 and CD34, and possessed trilineage differentiation potential. Group d+s+c exhibited greater International Cartilage Repair Society (ICRS) scores than group d+s or group s+c. Abundant collagen type II and improved mechanical properties were detected in group d+s+c. There were less CD4+ inflammatory cell infiltration and cell death at week 1, and hESC-MSCs were found to survive as long as 8 weeks after transplantation in group d+s+c. Our study suggests that neonatal desensitization before transplantation may be an efficient way to develop a powerful tool for preclinical study of human cell-based therapies in animal models. PMID:22788986

  19. Neonatal desensitization supports long-term survival and functional integration of human embryonic stem cell-derived mesenchymal stem cells in rat joint cartilage without immunosuppression.

    PubMed

    Zhang, Shufang; Jiang, Yang Zi; Zhang, Wei; Chen, Longkun; Tong, Tong; Liu, Wanlu; Mu, Qin; Liu, Hua; Ji, Junfeng; Ouyang, Hong Wei; Zou, Xiaohui

    2013-01-01

    Immunological response hampers the investigation of human embryonic stem cells (hESCs) or their derivates for tissue regeneration in vivo. Immunosuppression is often used after surgery, but exhibits side effects of significant weight loss and allows only short-term observation. The purpose of this study was to investigate whether neonatal desensitization supports relative long-term survival of hESC-derived mesenchymal stem cells (hESC-MSCs) and promotes cartilage regeneration. hESC-MSCs were injected on the day of birth in rats. Six weeks after neonatal injection, a full-thickness cylindrical cartilage defect was created and transplanted with a hESC-MSC-seeded collagen bilayer scaffold (group d+s+c) or a collagen bilayer scaffold (group d+s). Rats without neonatal injection were transplanted with the hESC-MSC-seeded collagen bilayer scaffold to serve as controls (group s+c). Cartilage regeneration was evaluated by histological analysis, immunohistochemical staining, and biomechanical test. The role of hESC-MSCs in cartilage regeneration was analyzed by CD4 immunostaining, cell death detection, and visualization of human cells in regenerated tissues. hESC-MSCs expressed CD105, CD73, CD90, CD29, and CD44, but not CD45 and CD34, and possessed trilineage differentiation potential. Group d+s+c exhibited greater International Cartilage Repair Society (ICRS) scores than group d+s or group s+c. Abundant collagen type II and improved mechanical properties were detected in group d+s+c. There were less CD4+ inflammatory cell infiltration and cell death at week 1, and hESC-MSCs were found to survive as long as 8 weeks after transplantation in group d+s+c. Our study suggests that neonatal desensitization before transplantation may be an efficient way to develop a powerful tool for preclinical study of human cell-based therapies in animal models.

  20. PNPLA3 variant and portal/periportal histological pattern in patients with biopsy-proven non-alcoholic fatty liver disease: a possible role for oxidative stress.

    PubMed

    Carpino, Guido; Pastori, Daniele; Baratta, Francesco; Overi, Diletta; Labbadia, Giancarlo; Polimeni, Licia; Di Costanzo, Alessia; Pannitteri, Gaetano; Carnevale, Roberto; Del Ben, Maria; Arca, Marcello; Violi, Francesco; Angelico, Francesco; Gaudio, Eugenio

    2017-11-17

    Pathogenesis of non-alcoholic fatty liver disease (NAFLD) is influenced by predisposing genetic variations, dysmetabolism, systemic oxidative stress, and local cellular and molecular cross-talks. Patatin-like phospholipase domain containing 3 (PNPLA3) gene I148M variant is a known determinant of NAFLD. Aims were to evaluate whether PNPLA3 I148M variant was associated with a specific histological pattern, hepatic stem/progenitor cell (HpSC) niche activation and serum oxidative stress markers. Liver biopsies were obtained from 54 NAFLD patients. The activation of HpSC compartment was evaluated by the extension of ductular reaction (DR); hepatic stellate cells, myofibroblasts (MFs), and macrophages were evaluated by immunohistochemistry. Systemic oxidative stress was assessed measuring serum levels of soluble NOX2-derived peptide (sNOX2-dp) and 8-isoprostaglandin F 2α (8-iso-PGF 2α ). PNPLA3 carriers showed higher steatosis, portal inflammation and HpSC niche activation compared to wild-type patients. DR was correlated with NAFLD activity score (NAS) and fibrosis score. Serum 8-iso-PGF 2α were significantly higher in I148M carriers compared to non-carriers and were correlated with DR and portal inflammation. sNox2-dp was correlated with NAS and with HpSC niche activation. In conclusion, NAFLD patients carrying PNPLA3 I148M are characterized by a prominent activation of HpSC niche which is associated with a more aggressive histological pattern (portal fibrogenesis) and increased oxidative stress.

  1. Enabling students to learn: Design, implementation and assessment of a supplemental study strategies course for an introductory undergraduate biology course

    NASA Astrophysics Data System (ADS)

    Sriram, Jayanthi Sanjeevi

    Attrition in the STEM disciplines is a national problem and one of the important reasons for this is student experiences in introductory courses. A myriad of factors influence students' experiences in those courses; inadequate student preparation is one of the most cited reasons. Incoming freshmen often lack the learning strategies required to meaningfully learn and succeed in college courses. Unfortunately, the instructors have limited time and/or have little experience in teaching learning strategies. In this paper, the design, implementation, and evaluation of a Supplemental Course (SC) model that emphasizes learning strategies is presented. SC was offered concurrently with the introductory biology courses for four consecutive semesters (fall 2011 to spring 2013); for 10 weeks in fall 2012 and 7 weeks in the other semesters at Miami University. 10 weeks SC began earlier in the semester than the shorter SC. This study evaluated the effects of the SC on students' (1) performance in the introductory biology course, (2) perceived changes in self-regulation and social support, and (3) experiences in the introductory biology course before, during, and after participation in the SC. A mixed methods approach was used to address these goals. A pre-post survey was administered to obtain students' use of self-regulation strategies and social-support data. Quantitative methods were utilized to analyze content exam grades and changes in self-regulation strategies and social-support. To explore the experiences of the students, semi-structured interviews were conducted, followed by analysis using grounded theory. The findings reveal that participants of the longer duration SC (with an earlier start date) significantly improved in content exam performance, perceived use of self-regulation strategies, and social support compared to the non-participants. Participants of the shorter duration SC (with a later start date) did not significantly improve in content exam performance compared to the non-participants, however, demonstrated lower failure and withdrawal rates in content course than the non-participants. Qualitative findings provided further support for changes in students' study habits after participation in the SC. Literature suggests the need for early intervention, which is a critical determinant of student success. Findings presented here support that need and suggest a model that can be implemented in a discipline specific manner, perhaps with modifications.

  2. The influence of C s/C c correction in analytical imaging and spectroscopy in scanning and transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaluzec, Nestor J.

    Aberration correction in scanning/transmission electron microscopy (S/TEM) owes much to the efforts of a small dedicated group of innovators. Leading that frontier has been Prof. Harald Rose. To date his leadership and dynamic personality has spearheaded our ability to leave behind many of the limitations imposed by spherical aberration (C s) in high resolution phase contrast imaging. Following shortly behind, has been the development of chromatic aberration correction (C c) which augments those accomplishments. In this study we will review and summarize how the combination of C s/C c technology enhances our ability to conduct hyperspectral imaging and spectroscopy inmore » today's and future computationally mediated experiments in both thin as well as realistic specimens in vacuo and during in-situ/environmental experiments.« less

  3. The influence of C s/C c correction in analytical imaging and spectroscopy in scanning and transmission electron microscopy

    DOE PAGES

    Zaluzec, Nestor J.

    2014-11-11

    Aberration correction in scanning/transmission electron microscopy (S/TEM) owes much to the efforts of a small dedicated group of innovators. Leading that frontier has been Prof. Harald Rose. To date his leadership and dynamic personality has spearheaded our ability to leave behind many of the limitations imposed by spherical aberration (C s) in high resolution phase contrast imaging. Following shortly behind, has been the development of chromatic aberration correction (C c) which augments those accomplishments. In this study we will review and summarize how the combination of C s/C c technology enhances our ability to conduct hyperspectral imaging and spectroscopy inmore » today's and future computationally mediated experiments in both thin as well as realistic specimens in vacuo and during in-situ/environmental experiments.« less

  4. Comparison of the early response of human embryonic stem cells and human induced pluripotent stem cells to ionizing radiation.

    PubMed

    Suchorska, Wiktoria Maria; Augustyniak, Ewelina; Łukjanow, Magdalena

    2017-04-01

    Despite the well-demonstrated efficacy of stem cell (SC) therapy, this approach has a number of key drawbacks. One important concern is the response of pluripotent SCs to treatment with ionizing radiation (IR), given that SCs used in regenerative medicine will eventually be exposed to IR for diagnostic or treatment‑associated purposes. Therefore, the aim of the present study was to examine and compare early IR‑induced responses of pluripotent SCs to assess their radioresistance and radiosensitivity. In the present study, 3 cell lines; human embryonic SCs (hESCs), human induced pluripotent SCs (hiPSCs) and primary human dermal fibroblasts (PHDFs); were exposed to IR at doses ranging from 0 to 15 gray (Gy). Double strand breaks (DSBs), and the gene expression of the following DNA repair genes were analyzed: P53; RAD51; BRCA2; PRKDC; and XRCC4. hiPSCs demonstrated greater radioresistance, as fewer DSBs were identified, compared with hESCs. Both pluripotent SC lines exhibited distinct gene expression profiles in the most common DNA repair genes that are involved in homologous recombination, non‑homologous end‑joining and enhanced DNA damage response following IR exposure. Although hESCs and hiPSCs are equivalent in terms of capacity for pluripotency and differentiation into 3 germ layers, the results of the present study indicate that these 2 types of SCs differ in gene expression following exposure to IR. Consequently, further research is required to determine whether hiPSCs and hESCs are equally safe for application in clinical practice. The present study contributes to a greater understanding of DNA damage response (DDR) mechanisms activated in pluripotent SCs and may aid in the future development of safe SC‑based clinical protocols.

  5. Evaluation of cooperative antileukemic effects of nilotinib and vildagliptin in Ph+ chronic myeloid leukemia.

    PubMed

    Willmann, Michael; Sadovnik, Irina; Eisenwort, Gregor; Entner, Martin; Bernthaler, Tina; Stefanzl, Gabriele; Hadzijusufovic, Emir; Berger, Daniela; Herrmann, Harald; Hoermann, Gregor; Valent, Peter; Rülicke, Thomas

    2018-01-01

    Chronic myeloid leukemia (CML) is a stem cell (SC) neoplasm characterized by the BCR/ABL1 oncogene. Although the disease can be kept under control using BCR/ABL1 tyrosine kinase inhibitors (TKIs) in most cases, some patients relapse or have resistant disease, so there is a need to identify new therapeutic targets in this malignancy. Recent data suggest that leukemic SCs (LSCs) in CML display the stem-cell (SC)-mobilizing cell surface enzyme dipeptidyl-peptidase IV (DPPIV = CD26) in an aberrant manner. In the present study, we analyzed the effects of the DPPIV blocker vildagliptin as single agent or in combination with the BCR/ABL1 TKI imatinib or nilotinib on growth and survival of CML LSCs in vitro and on LSC engraftment in an in vivo xenotransplantation nonobese diabetic SCID-IL-2Rγ -/- (NSG) mouse model. We found that nilotinib induces apoptosis in CML LSCs and inhibits their engraftment in NSG mice. In contrast, no substantial effects were seen with imatinib or vildagliptin. Nevertheless, vildagliptin was found to reduce the "mobilization" of CML LSCs from a stroma cell layer consisting of mouse fibroblasts in an in vitro co-culture model, suggesting reduced disease expansion. However, although vildagliptin and nilotinib produced cooperative effects in individual experiments, overall, no significant effects of coadministered vildagliptin over nilotinib or imatinib treatment alone were seen on the engraftment of CML cells in NSG mice. Gliptins may be interesting drugs in the context of CML and nilotinib therapy, but our preclinical studies did not reveal a major cooperative effect of the drug-combination vildagliptin + nilotinib on engraftment of CML cells in NSG mice. Copyright © 2018 ISEH – Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  6. Chinmo prevents transformer alternative splicing to maintain male sex identity.

    PubMed

    Grmai, Lydia; Hudry, Bruno; Miguel-Aliaga, Irene; Bach, Erika A

    2018-02-01

    Reproduction in sexually dimorphic animals relies on successful gamete production, executed by the germline and aided by somatic support cells. Somatic sex identity in Drosophila is instructed by sex-specific isoforms of the DMRT1 ortholog Doublesex (Dsx). Female-specific expression of Sex-lethal (Sxl) causes alternative splicing of transformer (tra) to the female isoform traF. In turn, TraF alternatively splices dsx to the female isoform dsxF. Loss of the transcriptional repressor Chinmo in male somatic stem cells (CySCs) of the testis causes them to "feminize", resembling female somatic stem cells in the ovary. This somatic sex transformation causes a collapse of germline differentiation and male infertility. We demonstrate this feminization occurs by transcriptional and post-transcriptional regulation of traF. We find that chinmo-deficient CySCs upregulate tra mRNA as well as transcripts encoding tra-splice factors Virilizer (Vir) and Female lethal (2)d (Fl(2)d). traF splicing in chinmo-deficient CySCs leads to the production of DsxF at the expense of the male isoform DsxM, and both TraF and DsxF are required for CySC sex transformation. Surprisingly, CySC feminization upon loss of chinmo does not require Sxl but does require Vir and Fl(2)d. Consistent with this, we show that both Vir and Fl(2)d are required for tra alternative splicing in the female somatic gonad. Our work reveals the need for transcriptional regulation of tra in adult male stem cells and highlights a previously unobserved Sxl-independent mechanism of traF production in vivo. In sum, transcriptional control of the sex determination hierarchy by Chinmo is critical for sex maintenance in sexually dimorphic tissues and is vital in the preservation of fertility.

  7. Chinmo prevents transformer alternative splicing to maintain male sex identity

    PubMed Central

    Hudry, Bruno; Miguel-Aliaga, Irene

    2018-01-01

    Reproduction in sexually dimorphic animals relies on successful gamete production, executed by the germline and aided by somatic support cells. Somatic sex identity in Drosophila is instructed by sex-specific isoforms of the DMRT1 ortholog Doublesex (Dsx). Female-specific expression of Sex-lethal (Sxl) causes alternative splicing of transformer (tra) to the female isoform traF. In turn, TraF alternatively splices dsx to the female isoform dsxF. Loss of the transcriptional repressor Chinmo in male somatic stem cells (CySCs) of the testis causes them to “feminize”, resembling female somatic stem cells in the ovary. This somatic sex transformation causes a collapse of germline differentiation and male infertility. We demonstrate this feminization occurs by transcriptional and post-transcriptional regulation of traF. We find that chinmo-deficient CySCs upregulate tra mRNA as well as transcripts encoding tra-splice factors Virilizer (Vir) and Female lethal (2)d (Fl(2)d). traF splicing in chinmo-deficient CySCs leads to the production of DsxF at the expense of the male isoform DsxM, and both TraF and DsxF are required for CySC sex transformation. Surprisingly, CySC feminization upon loss of chinmo does not require Sxl but does require Vir and Fl(2)d. Consistent with this, we show that both Vir and Fl(2)d are required for tra alternative splicing in the female somatic gonad. Our work reveals the need for transcriptional regulation of tra in adult male stem cells and highlights a previously unobserved Sxl-independent mechanism of traF production in vivo. In sum, transcriptional control of the sex determination hierarchy by Chinmo is critical for sex maintenance in sexually dimorphic tissues and is vital in the preservation of fertility. PMID:29389999

  8. Arsenic Promotes NF-Kb-Mediated Fibroblast Dysfunction and Matrix Remodeling to Impair Muscle Stem Cell Function

    PubMed Central

    Zhang, Changqing; Ferrari, Ricardo; Beezhold, Kevin; Stearns-Reider, Kristen; D’Amore, Antonio; Haschak, Martin; Stolz, Donna; Robbins, Paul D.; Barchowsky, Aaron; Ambrosio, Fabrisia

    2016-01-01

    Arsenic is a global health hazard that impacts over 140 million individuals worldwide. Epidemiological studies reveal prominent muscle dysfunction and mobility declines following arsenic exposure; yet, mechanisms underlying such declines are unknown. The objective of this study was to test the novel hypothesis that arsenic drives a maladaptive fibroblast phenotype to promote pathogenic myomatrix remodeling and compromise the muscle stem (satellite) cell (MuSC) niche. Mice were exposed to environmentally relevant levels of arsenic in drinking water before receiving a local muscle injury. Arsenic-exposed muscles displayed pathogenic matrix remodeling, defective myofiber regeneration and impaired functional recovery, relative to controls. When naïve human MuSCs were seeded onto three-dimensional decellularized muscle constructs derived from arsenic-exposed muscles, cells displayed an increased fibrogenic conversion and decreased myogenicity, compared with cells seeded onto control constructs. Consistent with myomatrix alterations, fibroblasts isolated from arsenic-exposed muscle displayed sustained expression of matrix remodeling genes, the majority of which were mediated by NF-κB. Inhibition of NF-κB during arsenic exposure preserved normal myofiber structure and functional recovery after injury, suggesting that NF-κB signaling serves as an important mechanism of action for the deleterious effects of arsenic on tissue healing. Taken together, the results from this study implicate myomatrix biophysical and/or biochemical characteristics as culprits in arsenic-induced MuSC dysfunction and impaired muscle regeneration. It is anticipated that these findings may aid in the development of strategies to prevent or revert the effects of arsenic on tissue healing and, more broadly, provide insight into the influence of the native myomatrix on stem cell behavior. PMID:26537186

  9. PGE2 /EP4 Signaling Controls the Transfer of the Mammary Stem Cell State by Lipid Rafts in Extracellular Vesicles.

    PubMed

    Lin, Meng-Chieh; Chen, Shih-Yin; Tsai, Ho-Min; He, Pei-Lin; Lin, Yen-Chun; Herschman, Harvey; Li, Hua-Jung

    2017-02-01

    Prostaglandin E 2 (PGE 2 )-initiated signaling contributes to stem cell homeostasis and regeneration. However, it is unclear how PGE 2 signaling controls cell stemness. This study identifies a previously unknown mechanism by which PGE 2 /prostaglandin E receptor 4 (EP 4 ) signaling regulates multiple signaling pathways (e.g., PI3K/Akt signaling, TGFβ signaling, Wnt signaling, EGFR signaling) which maintain the basal mammary stem cell phenotype. A shift of basal mammary epithelial stem cells (MaSCs) from a mesenchymal/stem cell state to a non-basal-MaSC state occurs in response to prostaglandin E receptor 4 (EP 4 ) antagonism. EP 4 antagonists elicit release of signaling components, by controlling their trafficking into extracellular vesicles/exosomes in a lipid raft/caveolae-dependent manner. Consequently, EP 4 antagonism indirectly inactivates, through induced extracellular vesicle/exosome release, pathways required for mammary epithelial stem cell homeostasis, e.g. canonical/noncanonical Wnt, TGFβ and PI3K/Akt pathways. EP 4 antagonism causes signaling receptors and signaling components to shift from non-lipid raft fractions to lipid raft fractions, and to then be released in EP 4 antagonist-induced extracellular vesicles/exosomes, resulting in the loss of the stem cell state by mammary epithelial stem cells. In contrast, luminal mammary epithelial cells can acquire basal stem cell properties following ingestion of EP 4 antagonist-induced stem cell extracellular vesicles/exosomes, and can then form mammary glands. These findings demonstrate that PGE 2 /EP 4 signaling controls homeostasis of mammary epithelial stem cells through regulating extracellular vesicle/exosome release. Reprogramming of mammary epithelial cells can result from EP 4 -mediated stem cell property transfer by extracellular vesicles/exosomes containing caveolae-associated proteins, between mammary basal and luminal epithelial cells. Stem Cells 2017;35:425-444. © 2016 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  10. The effect of nutritional status on myogenic satellite cell proliferation and differentiation.

    PubMed

    Powell, D J; McFarland, D C; Cowieson, A J; Muir, W I; Velleman, S G

    2013-08-01

    Early posthatch satellite cell (SC) mitotic activity is a critical component of muscle development and growth. Satellite cells are stem cells that can be induced by nutrition to follow other cellular developmental pathways. The objective of the current study was to determine the effect of restricting protein synthesis on the proliferation and differentiation of SC, using variable concentrations of Met and Cys to modulate protein synthesis. Broiler pectoralis major SC were cultured and treated with 1 of 6 different Met/Cys concentrations: 60/192, 30/96 (control), 7.5/24, 3/9.6, 1/3.2, or 0/0 mg/L. The effect of Met/Cys concentration on SC proliferation and differentiation was measured, and myonuclear accretion was measured by counting the number of nuclei per myotube during differentiation. The 30/96 mg/L Met/Cys treatment resulted in the highest rate of proliferation compared with all other treatments by 72 h of proliferation (P < 0.05). Differentiation was measured with Met/Cys treatments only during proliferation and the cultures receiving normal differentiation medium (R/N), normal proliferation medium and differentiation medium with variable Met/Cys (N/R), or both proliferation and differentiation receiving variable Met/Cys treatments (R/R). Differentiation responded in a dose-dependent manner to Met/Cys concentration under all 3 of these treatment regimens, with a degree of recovery in the R/N regimen cells following reinstatement of the control medium. Reductions in both proliferation and differentiation were more pronounced as Met/Cys concentrations were further reduced, whereas increased differentiation was observed under the increased Met/Cys concentration treatment when applied during differentiation in the N/R and R/R regimens. The number of nuclei per myotube was significantly decreased in the severely Met/Cys restricted treatments (P < 0.05). These data demonstrate the sensitivity of pectoralis major SC to nutritional availability and the importance of optimal nutrition during both proliferation and differentiation for maximizing SC activity, which will affect subsequent muscle mass accretion.

  11. Update on the NSF PAARE Program at SC State

    NASA Astrophysics Data System (ADS)

    Walter, Donald K.; Ajello, Marco; Brittain, Sean D.; Cash, Jennifer; Hartmann, Dieter; Ho, Shirley; Howell, Steve B.; King, Jeremy R.; Leising, Mark D.; Smith, Daniel M.

    2017-01-01

    We report on results from our NSF PAARE program during Year 2 of the project. Our partnership under this PAARE award includes South Carolina State University (a Historically Black College/University), Clemson University (a Ph.D. granting institution) as well as individual investigators at NASA Ames and Carnegie Mellon University. Our recent work on variable and peculiar stars, work with the Kepler Observatory and our educational products in cosmology for non-STEM majors will be presented. We have successfully piloted sharing our teaching resources by offering an upper-level astrophysics course taught at Clemson via video conferencing , allowing a graduating senior from SC State to take a course not available through his home institution. Additionally, we are working on a memorandum of agreement between the two institutions that will allow for the seamless transfer of an undergraduate from SC State to Clemson’s graduate program in physics and astronomy. Our curriculum work includes new web-based cosmology activities and laboratory experiments. SC State undergraduates are reporting at this conference on their work with the light curves of semiregular variables using Kepler data. Additionally, we are heavily involved in the Citizen CATE Experiment. A PAARE scholarship student from SC State and the PAARE PI traveled to Indonesia for the March 2016 solar eclipse. Their results are also being presented elsewhere at this conference (see Myles McKay’s poster). Support for this work includes our NSF PAARE award AST-1358913 as well as resources and support provided by Clemson University and the National Optical Astronomy Observatory. Additional support has been provided by the South Carolina Space Grant Consortium and from NASA to SC State under awards NNX11AB82G and NNX13AC24G. CATE work has been supported by NASA SMD award NNX16AB92A to the National Solar Observatory. Additional details can be found at: http://physics.scsu.edu

  12. Glycosylphosphatidylinositol-Anchored Anti-HIV scFv Efficiently Protects CD4 T Cells from HIV-1 Infection and Deletion in hu-PBL Mice

    PubMed Central

    Ye, Chaobaihui; Wang, Weiming; Cheng, Liang; Li, Guangming; Wen, Michael; Wang, Qi; Zhang, Qing; Li, Dan

    2016-01-01

    ABSTRACT Despite success in viral inhibition and CD4 T cell recovery by highly active antiretroviral treatment (HAART), HIV-1 is still not curable due to the persistence of the HIV-1 reservoir during treatment. One patient with acute myeloid leukemia who received allogeneic hematopoietic stem cell transplantation from a homozygous CCR5 Δ32 donor has had no detectable viremia for 9 years after HAART cessation. This case has inspired a field of HIV-1 cure research focusing on engineering HIV-1 resistance in permissive cells. Here, we employed a glycosylphosphatidylinositol (GPI)-scFv X5 approach to confer resistance of human primary CD4 T cells to HIV-1. We showed that primary CD4 T cells expressing GPI-scFv X5 were resistant to CCR5 (R5)-, CXCR4 (X4)-, and dual-tropic HIV-1 and had a survival advantage compared to control cells ex vivo. In a hu-PBL mouse study, GPI-scFv X5-transduced CD4 T cells were selected in peripheral blood and lymphoid tissues upon HIV-1 infection. Finally, GPI-scFv X5-transduced CD4 T cells, after being cotransfused with HIV-infected cells, showed significantly reduced viral loads and viral RNA copy numbers relative to CD4 cells in hu-PBL mice compared to mice with GPI-scFv AB65-transduced CD4 T cells. We conclude that GPI-scFv X5-modified CD4 T cells could potentially be used as a genetic intervention against both R5- and X4-tropic HIV-1 infections. IMPORTANCE Blocking of HIV-1 entry is one of most promising approaches for therapy. Genetic disruption of the HIV-1 coreceptor CCR5 by nucleases in T cells is under 2 clinical trials and leads to reduced viremia in patients. However, the emergence of viruses using the CXCR4 coreceptor is a concern for therapies applying single-coreceptor disruption. Here, we report that HIV-1-permissive CD4 T cells engineered with GPI-scFv X5 are resistant to R5-, X4-, or dual-tropic virus infection ex vivo. In a preclinical study using hu-PBL mice, we show that CD4 T cells were protected and that GPI-scFv X5-transduced cells were selected in HIV-1-infected animals. Moreover, we show that GPI-scFv X5-transduced CD4 T cells exerted a negative effect on virus replication in vivo. We conclude that GPI-scFv X5-modified CD4 T cells could potentially be used as a genetic intervention against both R5- and X4-tropic HIV-1 infections. PMID:27881659

  13. Data-driven discovery of energy materials: efficient BaM2Si3O10 : Eu2+ (M = Sc, Lu) phosphors for application in solid state white lighting.

    PubMed

    Brgoch, Jakoah; Hasz, Kathryn; Denault, Kristin A; Borg, Christopher K H; Mikhailovsky, Alexander A; Seshadri, Ram

    2014-01-01

    In developing phosphors for application in solid state lighting, it is advantageous to target structures from databases with highly condensed polyhedral networks that produce rigid host compounds. Rigidity limits channels for non-radiative decay that will decrease the luminescence quantum yield. BaM(2)Si(3)O(10) (M = Sc, Lu) follows this design criterion and is studied here as an efficient Eu(2+)-based phosphor. M = Sc(3+) and Lu(3+) compounds with Eu(2+) substitution were prepared and characterized using synchrotron X-ray powder diffraction and photoluminescence spectroscopy. Substitution with Eu(2+) according to Ba(1-x)Eu(x)Sc(2)Si(3)O(10) and Ba(1-x)Eu(x)Lu(2)Si(3)O(10) results in UV-to-blue and UV-to-blue-green phosphors, respectively. Interestingly, substitution with Eu(2+) in the Lu(3+) containing material produces two emission peaks at low temperature and with 365 nm excitation, as allowed by the two substitution sites. The photoluminescence of the Sc(3+) compound is robust at high temperature, decreasing by only 25% of its room temperature intensity at 503 K, while the Lu-analogue suffers a large drop (75%) from its room temperature intensity. The decrease in emission intensity is explained as stemming from charge transfer quenching due to the short distances separating the luminescent centers on the Lu(3+) substitution site. The correlation between structure and optical response in these two compounds indicates that even though the structures are three-dimensionally connected, high symmetry is required to prevent structural distortions that could impact photoluminescence.

  14. Results of a Prospective Randomized, Open-Label, Noninferiority Study of Tbo-Filgrastim (Granix) versus Filgrastim (Neupogen) in Combination with Plerixafor for Autologous Stem Cell Mobilization in Patients with Multiple Myeloma and Non-Hodgkin Lymphoma.

    PubMed

    Bhamidipati, Pavan Kumar; Fiala, Mark A; Grossman, Brenda J; DiPersio, John F; Stockerl-Goldstein, Keith; Gao, Feng; Uy, Geoffrey L; Westervelt, Peter; Schroeder, Mark A; Cashen, Amanda F; Abboud, Camille N; Vij, Ravi

    2017-12-01

    Autologous hematopoietic stem cell transplantation (auto-HSCT) improves survival in patients with multiple myeloma (MM) and non-Hodgkin lymphoma (NHL). Traditionally, filgrastim (Neupogen; recombinant G-CSF) has been used in as a single agent or in combination with plerixafor for stem cell mobilization for auto-HSCT. In Europe, a biosimilar recombinant G-CSF (Tevagrastim) has been approved for various indications similar to those of reference filgrastim, including stem cell mobilization for auto-HSCT; however, in the United States, tbo-filgrastim (Granix) is registered under the original biological application and is not approved for stem cell mobilization. In retrospective studies, stem cell mobilization with tbo-filgrastim has shown similar efficacy and toxicity as filgrastim, but no prospective studies have been published to date. We have conducted the first prospective randomized trial comparing the safety and efficacy of tbo-filgrastim in combination with plerixafor with that of filgrastim in combination with plerixafor for stem cell mobilization in patients with MM and NHL. This is a phase 2 prospective randomized (1:1) open-label single-institution noninferiority study of tbo-filgrastim and filgrastim with plerixafor in patients with MM or NHL undergoing auto-HSCT. Here 10 µg/kg/day of tbo-filgrastim/filgrastim was administered s.c. for 5 days (days 1 to 5). On day 4 at approximately 1800 hours, 0.24 mg/kg of plerixafor was administered s.c. Apheresis was performed on day 5 with a target cumulative collection goal of at least 5.0 × 10 6 CD34 + cells/kg. The primary objective was to compare day 5 CD34 +  cells/kg collected. Secondary objectives included other mobilization endpoints, safety, engraftment outcomes, and hospital readmission rate. A total of 97 evaluable patients were enrolled (tbo-filgrastim, n = 46; filgrastim, n = 51). Tbo-filgrastim was not inferior to filgrastim in terms of day 5 CD34 +  cell collection (mean, 11.6 ± 6.7 CD34 + cells/kg versus 10.0  ± 6.8 CD34 + cells/kg. Multivariate analysis revealed a trend toward increased mobilization in the tbo-filgrastim arm, but this was not statistically significant. The tbo-filgrastim and filgrastim arms were similar in all secondary endpoints. Tbo-filgrastim is not inferior in efficacy and has similar safety compared to reference filgrastim when used for stem cell mobilization in patients with MM and NHL. Granix can be safely used instead of Neupogen for stem cell collection in patients undergoing auto-HSCT for MM or NHL. The study is registered at https://clinicaltrials.gov/ct2/show/NCT02098109. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  15. Tumor-stem cells interactions by fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Meleshina, Aleksandra V.; Cherkasova, Elena I.; Sergeeva, Ekaterina; Turchin, Ilya V.; Kiseleva, Ekaterina V.; Dashinimaev, Erdem B.; Shirmanova, Marina V.; Zagaynova, Elena V.

    2013-02-01

    Recently, great deal of interest is investigation the function of the stem cells (SC) in tumors. In this study, we studied «recipient-tumor- fluorescent stem cells » system using the methods of in vivo imaging and laser scanning microscopy (LSM). We used adipose-derived adult stem (ADAS) cells of human lentiviral transfected with the gene of fluorescent protein Turbo FP635. ADAS cells were administrated into nude mice with transplanted tumor HeLa Kyoto (human cervical carcinoma) at different stages of tumor growth (0-8 days) intravenously or into tumor. In vivo imaging was performed on the experimental setup for epi - luminescence bioimaging (IAP RAS, Nizhny Novgorod). The results of the imaging showed localization of fluorophore tagged stem cells in the spleen on day 5-9 after injection. The sensitivity of the technique may be improved by spectral separation autofluorescence and fluorescence of stem cells. We compared the results of in vivo imaging and confocal laser scanning microscopy (LSM 510 META, Carl Zeiss, Germany). Internal organs of the animals and tumor tissue were investigated. It was shown that with i.v. injection of ADAS, bright fluorescent structures with spectral characteristics corresponding to TurboFP635 protein are locally accumulated in the marrow, lungs and tumors of animals. These findings indicate that ADAS cells integrate in the animal body with transplanted tumor and can be identified by fluorescence bioimaging techniques in vivo and ex vivo.

  16. Enhanced periodontal regeneration using collagen, stem cells or growth factors.

    PubMed

    Basan, Tanja; Welly, Daniel; Kriebel, Katja; Scholz, Malte; Brosemann, Anne; Liese, Jan; Vollmar, Brigitte; Frerich, Bernhard; Lang, Hermann

    2017-01-01

    The regeneration of periodontal tissues still remains a challenge in periodontology. The aim of the present study was to examine the regenerative potential of a) different collagen support versus blank, b) different collagen support +/- a growth factor cocktail (GF) and c) a collagen powder versus collagen powder + periodontal ligament stem cells (PDLSCs) comparatively in a large animal model. The stem cells (SC) were isolated from extracted teeth of 15 adult miniature pigs. A total of 60 class II furcation defects were treated with the materials named above. Concluding, a histological evaluation followed. A significant increase in regeneration was observed in all treatment groups. The new attachment formation reached a maximum of 77 percent. In the control group a new attachment formation of 13 percent was observed. The study shows that all implanted materials improved periodontal regeneration, though there were no significant differences between the experimental groups. Within the limitations of this study, it can be assumed that the lack of significant differences is due to the complexity of the clinical setting.

  17. Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing

    NASA Astrophysics Data System (ADS)

    Rao, Feng; Ding, Keyuan; Zhou, Yuxing; Zheng, Yonghui; Xia, Mengjiao; Lv, Shilong; Song, Zhitang; Feng, Songlin; Ronneberger, Ider; Mazzarello, Riccardo; Zhang, Wei; Ma, Evan

    2017-12-01

    Operation speed is a key challenge in phase-change random-access memory (PCRAM) technology, especially for achieving subnanosecond high-speed cache memory. Commercialized PCRAM products are limited by the tens of nanoseconds writing speed, originating from the stochastic crystal nucleation during the crystallization of amorphous germanium antimony telluride (Ge2Sb2Te5). Here, we demonstrate an alloying strategy to speed up the crystallization kinetics. The scandium antimony telluride (Sc0.2Sb2Te3) compound that we designed allows a writing speed of only 700 picoseconds without preprogramming in a large conventional PCRAM device. This ultrafast crystallization stems from the reduced stochasticity of nucleation through geometrically matched and robust scandium telluride (ScTe) chemical bonds that stabilize crystal precursors in the amorphous state. Controlling nucleation through alloy design paves the way for the development of cache-type PCRAM technology to boost the working efficiency of computing systems.

  18. Challenging tumour immunological techniques that help to track cancer stem cells in malignant melanomas and other solid tumours.

    PubMed

    Kotlan, Beatrix; Plotar, Vanda; Eles, Klara; Horvath, Szabolcs; Balatoni, Timea; Csuka, Orsolya; Újhelyi, Mihaly; Sávolt, Ákos; Szollar, Andras; Vamosi-Nagy, Istvan; Toth, Laszlo; Farkas, Emil; Toth, Jozsef; Kasler, Miklos; Liszkay, Gabriella

    2018-03-01

    The arsenal of questions and answers about the minor cancer initiating cancer stem cell (CSC) population put responsible for cancer invasiveness and metastases, has left with an unsolved puzzle. Specific aims of a complex project were partly focused on revealing new biomarkers of cancer. We designed and set up novel techniques to facilitate the detection of cancerous cells. As a novel approach, we investigated B cells infiltrating breast carcinomas and melanomas (TIL-B) in terms of their tumour antigen binding potential. By developing the TIL-B phage display technology we provide here a new technology for the specific detection of highly tumour-associated antigens. Single chain Fv (scFv) antibody fragment phage ELISA, immunofluorescence (IF) FACS analysis, chamber slide technique with IF confocal laser microscopy and immunohistochemistry (IHC) in paraffin-embedded tissue sections were set up and standardized. We showed strong tumour-associated disialylated glycosphingolipid expression levels on various cancer cells using scFv antibody fragments, generated previously by uniquely invasive breast carcinoma TIL-B phage display library technology. We report herein a novel strategy to obtain antibody fragments of human origin that recognise tumour-associated ganglioside antigens. Our investigations have the power to detect privileged molecules in cancer progression, invasiveness, and metastases. The technical achievements of this study are being harnessed for early diagnostics and effective cancer therapeutics.

  19. Combined use of decellularized allogeneic artery conduits with autologous transdifferentiated adipose-derived stem cells for facial nerve regeneration in rats.

    PubMed

    Sun, Fei; Zhou, Ke; Mi, Wen-juan; Qiu, Jian-hua

    2011-11-01

    Natural biological conduits containing seed cells have been widely used as an alternative strategy for nerve gap reconstruction to replace traditional nerve autograft techniques. The purpose of this study was to investigate the effects of a decellularized allogeneic artery conduit containing autologous transdifferentiated adipose-derived stem cells (dADSCs) on an 8-mm facial nerve branch lesion in a rat model. After 8 weeks, functional evaluation of vibrissae movements and electrophysiological assessment, retrograde labeling of facial motoneurons and morphological analysis of regenerated nerves were performed to assess nerve regeneration. The transected nerves reconstructed with dADSC-seeded artery conduits achieved satisfying regenerative outcomes associated with morphological and functional improvements which approached those achieved with Schwann cell (SC)-seeded artery conduits, and superior to those achieved with artery conduits alone or ADSC-seeded artery conduits, but inferior to those achieved with nerve autografts. Besides, numerous transplanted PKH26-labeled dADSCs maintained their acquired SC-phenotype and myelin sheath-forming capacity inside decellularized artery conduits and were involved in the process of axonal regeneration and remyelination. Collectively, our combined use of decellularized allogeneic artery conduits with autologous dADSCs certainly showed beneficial effects on nerve regeneration and functional restoration, and thus represents an alternative approach for the reconstruction of peripheral facial nerve defects. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Corrosion of Structural Materials for Advanced Supercritical Carbon- Dioxide Brayton Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridharan, Kumar

    The supercritical carbon-dioxide (referred to as SC-CO 2 hereon) Brayton cycle is being considered for power conversion systems for a number of nuclear reactor concepts, including the sodium fast reactor (SFR), fluoride saltcooled high temperature reactor (FHR), and high temperature gas reactor (HTGR), and several types of small modular reactors (SMR). The SC-CO 2 direct cycle gas fast reactor has also been recently proposed. The SC-CO 2 Brayton cycle (discussed in Chapter 1) provides higher efficiencies compared to the Rankine steam cycle due to less compression work stemming from higher SC-CO 2 densities, and allows for smaller components size, fewermore » components, and simpler cycle layout. For example, in the case of a SFR using a SC-CO 2 Brayton cycle instead of a steam cycle would also eliminate the possibility of sodium-water interactions. The SC-CO 2 cycle has a higher efficiency than the helium Brayton cycle, with the additional advantage of being able to operate at lower temperatures and higher pressures. In general, the SC-CO 2 Brayton cycle is well-suited for any type of nuclear reactor (including SMR) with core outlet temperature above ~ 500°C in either direct or indirect versions. In all the above applications, materials corrosion in high temperature SC-CO 2 is an important consideration, given their expected lifetimes of 20 years or longer. Our discussions with National Laboratories and private industry early on in this project indicated materials corrosion to be one of the significant gaps in the implementation of SC-CO 2 Brayton cycle. Corrosion can lead to a loss of effective load-bearing wall thickness of a component and can potentially lead to the generation of oxide particulate debris which can lead to three-body wear in turbomachinery components. Another environmental degradation effect that is rather unique to CO 2 environment is the possibility for simultaneous occurrence of carburization during oxidation of the material. Carburization can potentially lead to embrittlement of structural alloys in SC-CO 2 Brayton cycle. An important consideration in regards to corrosion is that the temperatures can vary widely across the various sections of the SC-CO 2 Brayton cycle, from room temperature to 750°C, with even higher temperatures being desirable for higher efficiencies. Thus the extent of corrosion and corrosion mechanisms in various components and SC-CO 2 Brayton cycle will be different, requiring a judicious selection of materials for different sections of the cycle. The goal of this project was to address materials corrosion-related challenges, identify appropriate materials, and advance the body of scientific knowledge in the area of high temperature SC-CO 2 corrosion. The focus was on corrosion of materials in SC-CO 2 environment in the temperature range of 450°C to 750°C at a pressure of 2900 psi for exposure duration for up to 1000 hours. The Table below lists the materials tested in the project. The materials were selected based on their high temperature strength, their code certification status, commercial availabilities, and their prior or current usage in the nuclear reactor industry. Additionally, pure Fe, Fe-12%Cr, and Ni-22%Cr were investigated as simple model materials to more clearly understand corrosion mechanisms. This first phase of the project involved testing in research grade SC-CO 2 (99.999% purity). Specially designed autoclaves with high fidelity temperature, pressure, and flow control capabilities were built or modified for this project.« less

  1. Protective effect of melatonin-supported adipose-derived mesenchymal stem cells against small bowel ischemia-reperfusion injury in rat.

    PubMed

    Chang, Chia-Lo; Sung, Pei-Hsun; Sun, Cheuk-Kwan; Chen, Chih-Hung; Chiang, Hsin-Ju; Huang, Tien-Hung; Chen, Yi-Ling; Zhen, Yen-Yi; Chai, Han-Tan; Chung, Sheng-Ying; Tong, Meng-Shen; Chang, Hsueh-Wen; Chen, Hong-Hwa; Yip, Hon-Kan

    2015-09-01

    We tested the hypothesis that combined melatonin and autologous adipose-derived mesenchymal stem cells (ADMSC) was superior to either alone against small bowel ischemia-reperfusion (SBIR) injury induced by superior mesenteric artery clamping for 30 min followed by reperfusion for 72 hr. Male adult Sprague Dawley rats (n = 50) were equally categorized into sham-operated controls SC, SBIR, SBIR-ADMSC (1.0 × 10(6) intravenous and 1.0 × 10(6) intrajejunal injection), SBIR-melatonin (intraperitoneal 20 mg/kg at 30 min after SI ischemia and 50 mg/kg at 6 and 18 hr after SI reperfusion), and SBIR-ADMSC-melatonin groups. The results demonstrated that the circulating levels of TNF-α, MPO, LyG6+ cells, CD68+ cells, WBC count, and gut permeability were highest in SBIR and lowest in SC, significantly higher in SBIR-ADMSC group and further increased in SBIR-melatonin group than in the combined therapy group (all P < 0.001). The ischemic mucosal damage score, the protein expressions of inflammation (TNF-α, NF-κB, MMP-9, MPO, and iNOS), oxidative stress (NOX-1, NOX-2, and oxidized protein), apoptosis (APAF-1, mitochondrial Bax, cleaved caspase-3 and PARP), mitochondrial damage (cytosolic cytochrome C) and DNA damage (γ-H2AX) markers, as well as cellular expressions of proliferation (PCNA), apoptosis (caspase-3, TUNEL assay), and DNA damage (γ-H2AX) showed an identical pattern, whereas mitochondrial cytochrome C exhibited an opposite pattern compared to that of inflammation among all groups (all P < 0.001). Besides, antioxidant expressions at protein (NQO-1, GR, and GPx) and cellular (HO-1) levels progressively increased from SC to the combined treatment group (all P < 0.001). In conclusion, combined melatonin-ADMSC treatment offered additive beneficial effect against SBIR injury. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Stem Cell Markers (Cytokeratin 17 and Cytokeratin 19) in Scarring and Nonscarring Alopecia

    PubMed Central

    El Sakka, Dalia; Gaber, Mohamed Abdel Wahed; Abdou, Asmaa Gaber; Wahed, Moshira Abdel; Saleh, Ahmed Abdel-Wahab; Shehata, Walla

    2016-01-01

    Background: Alopecia is one of the most important hair follicle (HF) disorders, which is divided into scarring (cicatricial) and nonscarring (noncicatricial) types. Objective: The aim of this study is to investigate the expression of stem cell (SC) markers such as cytokeratin (CK) 17 and CK19 in scarring and nonscarring alopecia. Materials and Methods: Thirty patients with scalp alopecia (15 with scarring alopecia and 15 without) together with ten healthy volunteers were included in this study. Biopsies were taken from all participants and stained for CK17 and CK19 using immunohistochemistry. Results: There was a statistically significant difference between the nonscarring group and the control group with regard to CK17 expression in the outer layers of the HFs (P = 0.00) and CK19 staining of the inner layers of the HFs (P = 0.008). There was a statistically significant difference between the scarring and the control groups regarding CK17 expression in the outer (P = 0.00) and the inner layers (P = 0.00) of the HFs and CK19 expression in the inner layers of the HFs (P = 0.00). CK17 expression in the outer layers (P = 0.02) and the inner layers of the HFs (P = 0.00) together with CK19 expression in the inner layers of the HFs (P = 0.00) showed statistically significant differences between scarring and nonscarring alopecia groups. Conclusions: The presence of SC markers (CK17 and CK19) in the HFs was affected in both scarring and nonscarring alopecia, but the defect in scarring alopecia is more evident than that of nonscarring alopecia. The persistence of SC markers in some types of scarring alopecia could give a hope for the recovery of these lesions. Further studies are recommended to clarify the benefit from using HF SCs in the treatment of alopecia. PMID:27761086

  3. Neural Growth Factor Stimulates Proliferation of Spinal Cord Derived-Neural Precursor/Stem Cells

    PubMed Central

    Han, Youngmin

    2016-01-01

    Objective Recently, regenerative therapies have been used in clinical trials (heart, cartilage, skeletal). We don't make use of these treatments to spinal cord injury (SCI) patients yet, but regenerative therapies are rising interest in recent study about SCI. Neural precursor/stem cell (NPSC) proliferation is a significant event in functional recovery of the central nervous system (CNS). However, brain NPSCs and spinal cord NPSCs (SC-NPSCs) have many differences including gene expression and proliferation. The purpose of this study was to investigate the influence of neural growth factor (NGF) on the proliferation of SC-NPSCs. Methods NPSCs (2×104) were suspended in 100 µL of neurobasal medium containing NGF-7S (Sigma-Aldrich) and cultured in a 96-well plate for 12 days. NPSC proliferation was analyzed five times for either concentration of NGF (0.02 and 2 ng/mL). Sixteen rats after SCI were randomly allocated into two groups. In group 1 (SCI-vehicle group, n=8), animals received 1.0 mL of the saline vehicle solution. In group 2 (SCI-NGF group, n=8), the animals received single doses of NGF (Sigma-Aldrich). A dose of 0.02 ng/mL of NGF or normal saline as a vehicle control was intra-thecally injected daily at 24 hour intervals for 7 days. For Immunohistochemistry analysis, rats were sacrificed after one week and the spinal cords were obtained. Results The elevation of cell proliferation with 0.02 ng/mL NGF was significant (p<0.05) but was not significant for 2 ng/mL NGF. The optical density was increased in the NGF 0.02 ng/mL group compared to the control group and NGF 2 ng/mL groups. The density of nestin in the SCI-NGF group was significantly increased over the SCI-vehicle group (p<0.05). High power microscopy revealed that the density of nestin in the SCI-NGF group was significantly increased over the SCI-vehicle group. Conclusion SC-NPSC proliferation is an important pathway in the functional recovery of SCI. NGF enhances SC-NPSC proliferation in vitro and in vivo. NGF may be a useful option for treatment of SCI patients pending further studies to verify the clinical applicability. PMID:27651860

  4. SC-12CD133 SURFACE EXPRESSION INDICATES ASYMMETRIC INHERITANCE OF SIGNALING RECEPTORS DURING GLIOBLASTOMA CANCER STEM CELL MITOSIS

    PubMed Central

    Hitomi, Masahiro; Jarvis, Stephanie; Yogeswaran, Vid; Pfaff, Kayla; Lathia, Justin

    2014-01-01

    Asymmetric cell division, the mechanism by which stem cells generate progeny undergoing tissue specific differentiation and a self-renewing stem cell population, enables organogenesis, maintenance of tissue homeostasis, and tissue regeneration without depleting stem cell pools. Cancer stem cells (CSCs) have been identified in malignant cancers including glioblastoma (GBM) by virtue of their enhanced self-renewal capacity and ability to reconstitute an entire tumor with all types of cells found in the original tumor. CSCs also play pivotal roles in therapeutic resistance and are the focus of recent therapeutic development efforts. CSC maintenance is regulated by intrinsic stem cell transcription factors, as well as by multiple extrinsic factors in the tumor microenvironment. In addition to these factors, the mode of cell division plays a critical role in CSC maintenance as exemplified by normal stem cells. Previously, we demonstrated that asymmetric segregation of a CSC marker, CD133, at the time of mitosis correlated with fate determination of CSCs derived from clinical GBM patient samples. Utilizing quantitative immunofluorecsence, we detected that receptors for key signaling molecules critical for CSC maintenance were co-segregated with CD133. Inhibition of downstream signaling induced asymmetric cell death in one of the daughter cells. These data indicate that CD133 marks daughter cells with higher inheritance of molecules that facilitate self-renewal and that asymmetric cell division may benefit CSC survival by concentrating essential receptors to one daughter cell in addition to its potential role in increasing cellular heterogeneity of the tumor.

  5. Muscle regeneration potential and satellite cell activation profile during recovery following hindlimb immobilization in mice.

    PubMed

    Guitart, Maria; Lloreta, Josep; Mañas-Garcia, Laura; Barreiro, Esther

    2018-05-01

    Reduced muscle activity leads to muscle atrophy and function loss in patients and animal models. Satellite cells (SCs) are postnatal muscle stem cells that play a pivotal role in skeletal muscle regeneration following injury. The regenerative potential, satellite cell numbers, and markers during recovery following immobilization of the hindlimb for 7 days were explored. In mice exposed to 7 days of hindlimb immobilization, in those exposed to recovery (7 days, splint removal), and in contralateral control muscles, muscle precursor cells were isolated from all hindlimb muscles (fluorescence-activated cell sorting, FACS) and SCs, and muscle regeneration were identified using immunofluorescence (gastrocnemius and soleus) and electron microscopy (EM, gastrocnemius). Expression of ki67, pax7, myoD, and myogenin was quantified (RT-PCR) from SC FACS yields. Body and grip strength were determined. Following 7 day hindlimb immobilization, a decline in SCs (FACS, immunofluorescence) was observed together with an upregulation of SC activation markers and signs of muscle regeneration including fusion to existing myofibers (EM). Recovery following hindlimb immobilization was characterized by a program of muscle regeneration events. Hindlimb immobilization induced a decline in SCs together with an upregulation of markers of SC activation, suggesting that fusion to existing myofibers takes place during unloading. Muscle recovery induced a significant rise in muscle precursor cells and regeneration events along with reduced SC activation expression markers and a concomitant rise in terminal muscle differentiation expression. These are novel findings of potential applicability for the treatment of disuse muscle atrophy, which is commonly associated with severe chronic and acute conditions. © 2017 Wiley Periodicals, Inc.

  6. Telocytes and putative stem cells in the lungs: electron microscopy, electron tomography and laser scanning microscopy.

    PubMed

    Popescu, Laurentiu M; Gherghiceanu, Mihaela; Suciu, Laura C; Manole, Catalin G; Hinescu, Mihail E

    2011-09-01

    This study describes a novel type of interstitial (stromal) cell - telocytes (TCs) - in the human and mouse respiratory tree (terminal and respiratory bronchioles, as well as alveolar ducts). TCs have recently been described in pleura, epicardium, myocardium, endocardium, intestine, uterus, pancreas, mammary gland, etc. (see www.telocytes.com ). TCs are cells with specific prolongations called telopodes (Tp), frequently two to three per cell. Tp are very long prolongations (tens up to hundreds of μm) built of alternating thin segments known as podomers (≤ 200 nm, below the resolving power of light microscope) and dilated segments called podoms, which accommodate mitochondria, rough endoplasmic reticulum and caveolae. Tp ramify dichotomously, making a 3-dimensional network with complex homo- and heterocellular junctions. Confocal microscopy reveals that TCs are c-kit- and CD34-positive. Tp release shed vesicles or exosomes, sending macromolecular signals to neighboring cells and eventually modifying their transcriptional activity. At bronchoalveolar junctions, TCs have been observed in close association with putative stem cells (SCs) in the subepithelial stroma. SCs are recognized by their ultrastructure and Sca-1 positivity. Tp surround SCs, forming complex TC-SC niches (TC-SCNs). Electron tomography allows the identification of bridging nanostructures, which connect Tp with SCs. In conclusion, this study shows the presence of TCs in lungs and identifies a TC-SC tandem in subepithelial niches of the bronchiolar tree. In TC-SCNs, the synergy of TCs and SCs may be based on nanocontacts and shed vesicles.

  7. Ubx dynamically regulates Dpp signaling by repressing Dad expression during copper cell regeneration in the adult Drosophila midgut

    PubMed Central

    Li, Hongjie; Qi, Yanyan; Jasper, Heinrich

    2016-01-01

    The gastrointestinal (GI) tract of metazoans is lined by a series of regionally distinct epithelia. To maintain structure and function of the GI tract, regionally diversified differentiation of somatic stem cell (SC) lineages is critical. The adult Drosophila midgut provides an accessible model to study SC regulation and specification in a regionally defined manner. SCs of the posterior midgut (PM) have been studied extensively, but the control of SCs in the middle midgut (MM) is less well understood. The MM contains a stomach-like copper cell region (CCR) that is regenerated by gastric stem cells (GSSCs) and contains acid-secreting copper cells (CCs). Bmp-like Decapentaplegic (Dpp) signaling determines the identity of GSSCs, and is required for CC regeneration, yet the precise control of Dpp signaling activity in this lineage remains to be fully established. Here, we show that Dad, a negative feedback regulator of Dpp signaling, is dynamically regulated in the GSSC lineage to allow CC differentiation. Dad is highly expressed in GSSCs and their first daughter cells, the gastroblasts (GBs), but has to be repressed in differentiating CCs to allow Dpp-mediated differentiation into CCs. We find that the Hox gene ultrabithorax (Ubx) is required for this regulation. Loss of Ubx prevents Dad repression in the CCR, resulting in defective CC regeneration. Our study highlights the need for dynamic control of Dpp signaling activity in the differentiation of the GSSC lineage and identifies Ubx as a critical regulator of this process. PMID:27570230

  8. Direct Conversion of Human Fibroblasts into Schwann Cells that Facilitate Regeneration of Injured Peripheral Nerve In Vivo.

    PubMed

    Sowa, Yoshihiro; Kishida, Tsunao; Tomita, Koichi; Yamamoto, Kenta; Numajiri, Toshiaki; Mazda, Osam

    2017-04-01

    Schwann cells (SCs) play pivotal roles in the maintenance and regeneration of the peripheral nervous system. Although transplantation of SCs enhances repair of experimentally damaged peripheral and central nerve tissues, it is difficult to prepare a sufficient number of functional SCs for transplantation therapy without causing adverse events for the donor. Here, we generated functional SCs by somatic cell reprogramming procedures and demonstrated their capability to promote peripheral nerve regeneration. Normal human fibroblasts were phenotypically converted into SCs by transducing SOX10 and Krox20 genes followed by culturing for 10 days resulting in approximately 43% directly converted Schwann cells (dSCs). The dSCs expressed SC-specific proteins, secreted neurotrophic factors, and induced neuronal cells to extend neurites. The dSCs also displayed myelin-forming capability both in vitro and in vivo. Moreover, transplantation of the dSCs into the transected sciatic nerve in mice resulted in significantly accelerated regeneration of the nerve and in improved motor function at a level comparable to that with transplantation of the SCs obtained from a peripheral nerve. The dSCs induced by our procedure may be applicable for novel regeneration therapy for not only peripheral nerve injury but also for central nerve damage and for neurodegenerative disorders related to SC dysfunction. Stem Cells Translational Medicine 2017;6:1207-1216. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  9. Exosomes Secreted under Hypoxia Enhance Invasiveness and Stemness of Prostate Cancer Cells by Targeting Adherens Junction Molecules

    PubMed Central

    Ramteke, Anand; Ting, Harold; Agarwal, Chapla; Mateen, Samiha; Somasagara, Ranganathan; Hussain, Anowar; Graner, Michael; Frederick, Barbara; Agarwal, Rajesh; Deep, Gagan

    2015-01-01

    Hypoxic conditions in prostate cancer (PCA) are associated with poor prognosis; however, precise mechanism/s through which hypoxia promotes malignant phenotype remains unclear. Here, we analyzed the role of exosomes from hypoxic PCA cells in enhancing the invasiveness and stemness of naïve PCA cells, as well as in promoting cancer-associated fibroblast (CAF) phenotype in prostate stromal cells (PrSC). Human PCA LNCaP and PC3 cells were exposed to hypoxic (1% O2) or normoxic (21% O2) conditions, and exosomes secreted under hypoxic (ExoHypoxic) and normoxic (ExoNormoxic) conditions were isolated from conditioned media. Nanoparticle tracking analysis revealed that ExoHypoxic have smaller average size as compared to ExoNormoxic. Immunoblotting results showed a higher level of tetraspanins (CD63 and CD81), heat shock proteins (HSP90 and HSP70) and Annexin II in ExoHypoxic compared to ExoNormoxic. Co-culturing with ExoHypoxic increased the invasiveness and motility of naïve LNCaP and PC3 cells, respectively. ExoHypoxic also promoted prostasphere formation by both LNCaP and PC3 cells, and enhanced α-SMA (a CAF biomarker) expression in PrSC. Compared to ExoNormoxic, ExoHypoxic showed higher metalloproteinases activity and increased level of diverse signaling molecules (TGF-β2, TNF1α, IL6, TSG101, Akt, ILK1, and β-catenin). Furthermore, proteome analysis revealed a higher number of proteins in ExoHypoxic (160 proteins) compared to ExoNormoxic (62 proteins), primarily associated with the remodeling of epithelial adherens junction pathway. Importantly, ExoHypoxic targeted the expression of adherens junction proteins in naïve PC3 cells. These findings suggest that ExoHypoxic are loaded with unique proteins that could enhance invasiveness, stemness and induce microenvironment changes; thereby, promoting PCA aggressiveness. PMID:24347249

  10. Expression levels of brown/beige adipocyte-related genes in fat depots of vitamin A-restricted fattening cattle.

    PubMed

    Chen, Hsuan-Ju; Ihara, Tsubasa; Yoshioka, Hidetugu; Itoyama, Erina; Kitamura, Shoko; Nagase, Hiroshi; Murakami, Hiroaki; Hoshino, Yoichiro; Murakami, Masaru; Tomonaga, Shozo; Matsui, Tohru; Funaba, Masayuki

    2018-06-15

    Brown/beige adipocytes dissipate energy as heat. We previously showed that brown/beige adipocytes are present in white adipose tissue (WAT) of fattening cattle. The present study examined the effect of vitamin A restriction on mRNA expression of brown/beige adipocyte-related genes. In Japan, fattening cattle are conventionally fed a vitamin A-restricted diet to improve beef marbling. Twelve Japanese Black steers aged 10 months were fed control feed (n=6) or vitamin A-restricted feed (n=6) for 20 months. Subcutaneous WAT (scWAT) and mesenteric WAT (mesWAT) were collected, and mRNA expression levels of molecules related to function of brown/beige adipocytes (Ucp1, Cidea, Dio2, Cox7a and Cox8b) as well as transcriptional regulators related to brown/beige adipogenesis (Zfp516, Nfia, Prdm16, and Pgc-1α) were evaluated. The vitamin A restriction significantly increased or tended to increase expression levels of Cidea and Pgc-1α in scWAT, and Cidea, Dio2, and Nfia in mesWAT. Previous studies revealed that the bone morphogenetic protein (BMP) pathway was responsible for commitment of mesenchymal stem cells to brown/beige adipocyte-lineage cells. The vitamin A restriction increased expression of Bmp7 and some Bmp receptors in WAT. The interrelationship between gene expression levels indicated that expression levels of Nfia, Prdm16, and Pgc-1α were closely related to those of genes related to function of brown/beige adipocytes in scWAT. Also, expression levels of Nfia, Prdm16, and Pgc-1α were highly correlated with those of Alk3 in scWAT. In summary, the present results suggest that the vitamin A restriction increases the number or activity of brown/beige adipocytes through regulatory expression of transcriptional regulators to induce brown/beige adipogenesis especially in scWAT of fattening cattle, which may be governed by the Bmp pathway.

  11. Investigation of Mineral Transformations in Wet Supercritical CO2 by Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arey, Bruce W.; Kovarik, Libor; Wang, Zheming

    2011-10-10

    The capture and storage of carbon dioxide and other greenhouse gases in deep geologic formations represents one of the most promising options for mitigating the impacts of greenhouse gases on global warming. In this regard, mineral-fluid interactions are of prime importance since such reactions can result in the long term sequestration of CO2 by trapping in mineral phases. Recently it has been recognized that interactions with neat to water-saturated non-aqueous fluids are of prime importance in understanding mineralization reactions since the introduced CO2 is likely to contain water initially or soon after injection and the supercritical CO2 (scCO2) is lessmore » dense than the aqueous phase which can result in a buoyant scCO2 plume contacting the isolating caprock. As a result, unraveling the molecular/microscopic mechanisms of mineral transformation in neat to water saturated scCO2 has taken on an added important. In this study, we are examining the interfacial reactions of the olivine mineral forsterite (Mg2SiO4) over a range of water contents up to and including complete water saturation in scCO2. The surface precipitates that form on the reacted forsterite grains are extremely fragile and difficult to experimentally characterize. In order to address this issue we have developed experimental protocols for preparing and imaging electron-transparent samples from fragile structures. These electron-transparent samples are then examined using a combination of STEM/EDX, FIB-TEM, and helium ion microscope (HIM) imaging (Figures 1-3). This combination of capabilities has provided unique insight into the geochemical processes that occur on scCO2 reacted mineral surfaces. The experimental procedures and protocols that have been developed also have useful applications for examining fragile structures on a wide variety of materials. This research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory.« less

  12. Hypothalamic neurogenesis persists in the aging brain and is controlled by energy-sensing IGF-I pathway.

    PubMed

    Chaker, Zayna; George, Caroline; Petrovska, Marija; Caron, Jean-Baptiste; Lacube, Philippe; Caillé, Isabelle; Holzenberger, Martin

    2016-05-01

    Hypothalamic tanycytes are specialized glial cells lining the third ventricle. They are recently identified as adult stem and/or progenitor cells, able to self-renew and give rise to new neurons postnatally. However, the long-term neurogenic potential of tanycytes and the pathways regulating lifelong cell replacement in the adult hypothalamus are largely unexplored. Using inducible nestin-CreER(T2) for conditional mutagenesis, we performed lineage tracing of adult hypothalamic stem and/or progenitor cells (HySC) and demonstrated that new neurons continue to be born throughout adult life. This neurogenesis was targeted to numerous hypothalamic nuclei and produced different types of neurons in the dorsal periventricular regions. Some adult-born neurons integrated the median eminence and arcuate nucleus during aging and produced growth hormone releasing hormone. We showed that adult hypothalamic neurogenesis was tightly controlled by insulin-like growth factors (IGF). Knockout of IGF-1 receptor from hypothalamic stem and/or progenitor cells increased neuronal production and enhanced α-tanycyte self-renewal, preserving this stem cell-like population from age-related attrition. Our data indicate that adult hypothalamus retains the capacity of cell renewal, and thus, a substantial degree of structural plasticity throughout lifespan. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. The roles of muscle stem cells in muscle injury, atrophy and hypertrophy.

    PubMed

    Fukada, So-Ichiro

    2018-05-01

    Skeletal muscle is composed of multinuclear cells called myofibers. Muscular dystrophy (a genetic muscle disorder) induces instability in the cell membrane of myofibers and eventually causes myofibre damage. Non-genetic muscle disorders, including sarcopenia, diabetes, bedridden immobility and cancer cachexia, lead to atrophy of myofibres. In contrast, resistance training induces myofibre hypertrophy. Thus, myofibres exhibit a plasticity that is strongly affected by both intrinsic and extrinsic factors. There is no doubt that muscle stem cells (MuSCs, also known as muscle satellite cells) are indispensable for muscle repair/regeneration, but their contributions to atrophy and hypertrophy are still controversial. The present review focuses on the relevance of MuSCs to (i) muscle diseases and (ii) hypertrophy. Further, this review addresses fundamental questions about MuSCs to clarify the onset or progression of these diseases and which might lead to development of a MuSC-based therapy.

  14. The influence of chosen fungicides on the activity of aminopeptidases in winter oilseed rape during pods development.

    PubMed

    Kania, Joanna; Mączyńska, Agnieszka; Głazek, Mariola; Krawczyk, Tomasz; Gillner, Danuta M

    2018-06-01

    Cultivation of oilseed rape requires application of specific fungicides. Besides their protective role, they can potentially influence the expression and activity of crucial enzymes in the plant. Among the large number of enzymes expressed in plants, aminopeptidases play a key role in all crucial physiological processes during the whole life cycle (e.g. storage protein mobilization and thus supplying plant with needed amino acids, as well as plant aging, protection and defense responses). In the present paper, we evaluate for the first time, the influence of the treatment of winter oilseed rape with commercially available fungicides (Pictor 400 SC, Propulse 250 SE and Symetra 325 SC), on the activity of aminopeptidases expressed in each plant organ (flowers, leaves, stems and pods separately). Fungicides were applied once, at one of the three stages of oilseed rape development (BBCH 59-61, BBCH 63-65 and BBCH 67-69). The aminopeptidase activity was determined using six different amino acid p-nitroanilides as substrates. The results have shown, that in control plants, at the beginning of intensive pods development and seeds production, hydrophobic amino acids with bulky side chains (Phe, Leu) were preferentially hydrolysed. In control plants, the activity was ~3.5 times higher in stems and pods, compared to leaves. The treatment with all pesticides caused significant increase in aminopeptidases hydrolytic activity toward small amino acids Gly, Ala as well as proline, mostly in flowers and leaves. These amino acids are proven to be crucial in the mechanisms of delaying of plant aging, development of better resistance to stress and plant defense. It can be suggested, that studied fungicides enhance such mechanisms, by activating the expression of genes coding for aminopeptidases, which are active in hydrolysis of N-terminal amino acids such as Gly, Ala, Pro from storage peptides and proteins. Depending on fungicide, the major increase of aminopeptidase activity was observed after application at BBCH 67-69 (Pictor 400 SC and Symetra 325 SC) and BBCH 63-65 (Propulse 250 SE) stages of development. Our study revealed, that agrochemical treatment and time of application, influenced the expression and activity of aminopeptidases, even though they were not molecular targets of applied fungicides. Since aminopeptidases are widely distributed throughout all organisms and are crucial in many key physiological processes, it can be expected, that factors influencing their expression and activity in plants, can also influence these enzymes in other organisms, especially humans and other mammals. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Eye position modulates the electromyographic responses of neck muscles to electrical stimulation of the superior colliculus in the alert cat.

    PubMed

    Hadjidimitrakis, K; Moschovakis, A K; Dalezios, Y; Grantyn, A

    2007-05-01

    Rapid gaze shifts are often accomplished with coordinated movements of the eyes and head, the relative amplitude of which depends on the starting position of the eyes. The size of gaze shifts is determined by the superior colliculus (SC) but additional processing in the lower brain stem is needed to determine the relative contributions of eye and head components. Models of eye-head coordination often assume that the strength of the command sent to the head controllers is modified by a signal indicative of the eye position. Evidence in favor of this hypothesis has been recently obtained in a study of phasic electromyographic (EMG) responses to stimulation of the SC in head-restrained monkeys (Corneil et al. in J Neurophysiol 88:2000-2018, 2002b). Bearing in mind that the patterns of eye-head coordination are not the same in all species and because the eye position sensitivity of phasic EMG responses has not been systematically investigated in cats, in the present study we used cats to address this issue. We stimulated electrically the intermediate and deep layers of the caudal SC in alert cats and recorded the EMG responses of neck muscles with horizontal and vertical pulling directions. Our data demonstrate that phasic, short latency EMG responses can be modulated by the eye position such that they increase as the eye occupies more and more eccentric positions in the pulling direction of the muscle tested. However, the influence of the eye position is rather modest, typically accounting for only 10-50% of the variance of EMG response amplitude. Responses evoked from several SC sites were not modulated by the eye position.

  16. Adipose-derived stromal cells inhibit prostate cancer cell proliferation inducing apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahara, Kiyoshi; Ii, Masaaki, E-mail: masaii@art.osaka-med.ac.jp; Inamoto, Teruo

    2014-04-18

    Highlights: • AdSC transplantation exhibits inhibitory effect on tumor progressions of PCa cells. • AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway. • High expression of the TGF-β1 gene in AdSCs. - Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in the field of regenerative medicine. Adipose-derived stromal cells (AdSCs) are known to exhibit extensive proliferation potential and can undergo multilineage differentiation, sharing similar characteristics to bone marrow-derived MSCs. However, as the effect of AdSCs on tumor growth has not been studied sufficiently, we assessed the degree to which AdSCs affect the proliferationmore » of prostate cancer (PCa) cell. Human AdSCs exerted an inhibitory effect on the proliferation of androgen-responsive (LNCaP) and androgen-nonresponsive (PC3) human PCa cells, while normal human dermal fibroblasts (NHDFs) did not, and in fact promoted PCa cell proliferation to a degree. Moreover, AdSCs induced apoptosis of LNCaP cells and PC3 cells, activating the caspase3/7 signaling pathway. cDNA microarray analysis suggested that AdSC-induced apoptosis in both LNCaP and PC3 cells was related to the TGF-β signaling pathway. Consistent with our in vitro observations, local transplantation of AdSCs delayed the growth of tumors derived from both LNCaP- and PC3-xenografts in immunodeficient mice. This is the first preclinical study to have directly demonstrated that AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway, irrespective of androgen-responsiveness. Since autologous AdSCs can be easily isolated from adipose tissue without any ethical concerns, we suggest that therapy with these cells could be a novel approach for patients with PCa.« less

  17. A Model of the Superior Colliculus Predicts Fixation Locations during Scene Viewing and Visual Search.

    PubMed

    Adeli, Hossein; Vitu, Françoise; Zelinsky, Gregory J

    2017-02-08

    Modern computational models of attention predict fixations using saliency maps and target maps, which prioritize locations for fixation based on feature contrast and target goals, respectively. But whereas many such models are biologically plausible, none have looked to the oculomotor system for design constraints or parameter specification. Conversely, although most models of saccade programming are tightly coupled to underlying neurophysiology, none have been tested using real-world stimuli and tasks. We combined the strengths of these two approaches in MASC, a model of attention in the superior colliculus (SC) that captures known neurophysiological constraints on saccade programming. We show that MASC predicted the fixation locations of humans freely viewing naturalistic scenes and performing exemplar and categorical search tasks, a breadth achieved by no other existing model. Moreover, it did this as well or better than its more specialized state-of-the-art competitors. MASC's predictive success stems from its inclusion of high-level but core principles of SC organization: an over-representation of foveal information, size-invariant population codes, cascaded population averaging over distorted visual and motor maps, and competition between motor point images for saccade programming, all of which cause further modulation of priority (attention) after projection of saliency and target maps to the SC. Only by incorporating these organizing brain principles into our models can we fully understand the transformation of complex visual information into the saccade programs underlying movements of overt attention. With MASC, a theoretical footing now exists to generate and test computationally explicit predictions of behavioral and neural responses in visually complex real-world contexts. SIGNIFICANCE STATEMENT The superior colliculus (SC) performs a visual-to-motor transformation vital to overt attention, but existing SC models cannot predict saccades to visually complex real-world stimuli. We introduce a brain-inspired SC model that outperforms state-of-the-art image-based competitors in predicting the sequences of fixations made by humans performing a range of everyday tasks (scene viewing and exemplar and categorical search), making clear the value of looking to the brain for model design. This work is significant in that it will drive new research by making computationally explicit predictions of SC neural population activity in response to naturalistic stimuli and tasks. It will also serve as a blueprint for the construction of other brain-inspired models, helping to usher in the next generation of truly intelligent autonomous systems. Copyright © 2017 the authors 0270-6474/17/371453-15$15.00/0.

  18. Skin stem cells orchestrate directional migration by regulating microtubule-ACF7 connections through GSK3β.

    PubMed

    Wu, Xiaoyang; Shen, Qing-Tao; Oristian, Daniel S; Lu, Catherine P; Zheng, Qinsi; Wang, Hong-Wei; Fuchs, Elaine

    2011-02-04

    Homeostasis and wound healing rely on stem cells (SCs) whose activity and directed migration are often governed by Wnt signaling. In dissecting how this pathway integrates with the necessary downstream cytoskeletal dynamics, we discovered that GSK3β, a kinase inhibited by Wnt signaling, directly phosphorylates ACF7, a > 500 kDa microtubule-actin crosslinking protein abundant in hair follicle stem cells (HF-SCs). We map ACF7's GSK3β sites to the microtubule-binding domain and show that phosphorylation uncouples ACF7 from microtubules. Phosphorylation-refractile ACF7 rescues overall microtubule architecture, but phosphorylation-constitutive mutants do not. Neither mutant rescues polarized movement, revealing that phospho-regulation must be dynamic. This circuitry is physiologically relevant and depends upon polarized GSK3β inhibition at the migrating front of SCs/progeny streaming from HFs during wound repair. Moreover, only ACF7 and not GSKβ-refractile-ACF7 restore polarized microtubule-growth and SC-migration to ACF7 null skin. Our findings provide insights into how this conserved spectraplakin integrates signaling, cytoskeletal dynamics, and polarized locomotion of somatic SCs. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. A new method of SC image processing for confluence estimation.

    PubMed

    Soleimani, Sajjad; Mirzaei, Mohsen; Toncu, Dana-Cristina

    2017-10-01

    Stem cells images are a strong instrument in the estimation of confluency during their culturing for therapeutic processes. Various laboratory conditions, such as lighting, cell container support and image acquisition equipment, effect on the image quality, subsequently on the estimation efficiency. This paper describes an efficient image processing method for cell pattern recognition and morphological analysis of images that were affected by uneven background. The proposed algorithm for enhancing the image is based on coupling a novel image denoising method through BM3D filter with an adaptive thresholding technique for improving the uneven background. This algorithm works well to provide a faster, easier, and more reliable method than manual measurement for the confluency assessment of stem cell cultures. The present scheme proves to be valid for the prediction of the confluency and growth of stem cells at early stages for tissue engineering in reparatory clinical surgery. The method used in this paper is capable of processing the image of the cells, which have already contained various defects due to either personnel mishandling or microscope limitations. Therefore, it provides proper information even out of the worst original images available. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Two new fatty acids esters were detected in ginseng stems by the application of azoxystrobin and the increasing of antioxidant enzyme activity and ginsenosides content.

    PubMed

    Liang, Shuang; Xu, Xuan-Wei; Zhao, Xiao-Feng; Hou, Zhi-Guang; Wang, Xin-Hong; Lu, Zhong-Bin

    2016-11-01

    Panax ginseng C.A. Meyer is a valuable herb in China that has also gained popularity in the West because of its pharmacological properties. The constituents isolated and characterized in ginseng stems include ginsenosides, fatty acids, amino acids, volatile oils, and polysaccharides. In this study, the effects of fungicide azoxystrobin applied on antioxidant enzyme activity and ginsenosides content in ginseng stems was studied by using Panax ginseng C. A. Mey. cv. (the cultivar of Ermaya) under natural environmental conditions. The azoxystrobin formulation (25% SC) was sprayed three times on ginseng plants at different doses (150ga.i./ha and 225ga.i./ha), respectively. Two new fatty acids esters (ethyl linoleate and methyl linolenate) were firstly detected in ginseng stems by the application of azoxystrobin as foliar spray. The results indicated that activities of enzymatic antioxidants, the content of ginsenosides and two new fatty acids esters in ginseng stems in azoxystrobin-treated plants were increased. Azoxystrobin treatments to ginseng plants at all growth stages suggest that the azoxystrobin-induced delay of senescence is due to an enhanced antioxidant enzyme activity protecting the plants from harmful active oxygen species (AOS). The activity of superoxide dismutase (SOD) in azoxystrobin-treated plants was about 1-3 times higher than that in untreated plants. And the effects was more significant (P=0.05) when azoxystrobin was applied at dose of 225ga.i./ha. This work suggests that azoxystrobin plays an important role in delaying of senescence by changing physiological and biochemical indicators and increasing ginsenosides content in ginseng stems. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Wnt and Notch Pathways Have Interrelated Opposing Roles on Prostate Progenitor Cell Proliferation and Differentiation

    PubMed Central

    Shahi, Payam; Seethammagari, Mamatha R.; Valdez, Joseph M.; Xin, Li; Spencer, David M.

    2011-01-01

    Tissue stem cells are capable of both self-renewal and differentiation to maintain a constant stem cell population and give rise to the plurality of cells within a tissue. Wnt signaling has been previously identified as a key mediator for the maintenance of tissue stem cells; however, possible cross-regulation with other developmentally critical signaling pathways involved in adult tissue homeostasis, such as Notch, is not well understood. By using an in vitro prostate stem cell colony (“prostasphere”) formation assay and in vivo prostate reconstitution experiments, we demonstrate that Wnt pathway induction on Sca-1+ CD49f+ basal/stem cells (B/SCs) promotes expansion of the basal epithelial compartment with noticeable increases in “triple positive” (cytokeratin [CK] 5+, CK8+, p63+) prostate progenitor cells, concomitant with upregulation of known Wnt target genes involved in cell-cycle induction. Moreover, Wnt induction affects expression of epithelial-to-mesenchymal transition signature genes, suggesting a possible mechanism for priming B/SC to act as potential tumor-initiating cells. Interestingly, induction of Wnt signaling in B/SCs results in downregulation of Notch1 transcripts, consistent with its postulated antiproliferative role in prostate cells. In contrast, induction of Notch signaling in prostate progenitors inhibits their proliferation and disrupts prostasphere formation. In vivo prostate reconstitution assays further demonstrate that induction of Notch in B/SCs disrupts proper acini formation in cells expressing the activated Notch1 allele, Notch-1 intracellular domain. These data emphasize the importance of Wnt/Notch cross-regulation in adult stem cell biology and suggest that Wnt signaling controls the proliferation and/or maintenance of epithelial progenitors via modulation of Notch signaling. PMID:21308863

  2. Final Technical Report for DE-SC0012297

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dell'Antonio, Ian

    This is the final report on the work performed in award DE-SC0012297, Cosmic Frontier work in support of the LSST Dark Energy Science Collaboration's work to develop algorithms, simulations, and statistical tests to ensure optimal extraction of the dark energy properties from galaxy clusters observed with LSST. This work focused on effects that could produce a systematic error on the measurement of cluster masses (that will be used to probe the effects of dark energy on the growth of structure). These effects stem from the deviations from pure ellipticity of the gravitational lensing signal and from the blending of lightmore » of neighboring galaxies. Both these effects are expected to be more significant for LSST than for the stage III experiments such as the Dark Energy Survey. We calculate the magnitude of the mass error (or bias) for the first time and demonstrate that it can be treated as a multiplicative correction and calibrated out, allowing mass measurements of clusters from gravitational lensing to meet the requirements of LSST's dark energy investigation.« less

  3. The Nuclear Receptor, RORγ, Regulates Pathways Necessary for Breast Cancer Metastasis

    PubMed Central

    Oh, Tae Gyu; Wang, Shu-Ching M.; Acharya, Bipul R.; Goode, Joel M.; Graham, J. Dinny; Clarke, Christine L.; Yap, Alpha S.; Muscat, George E.O.

    2016-01-01

    We have previously reported that RORγ expression was decreased in ER − ve breast cancer, and increased expression improves clinical outcomes. However, the underlying RORγ dependent mechanisms that repress breast carcinogenesis have not been elucidated. Here we report that RORγ negatively regulates the oncogenic TGF-β/EMT and mammary stem cell (MaSC) pathways, whereas RORγ positively regulates DNA-repair. We demonstrate that RORγ expression is: (i) decreased in basal-like subtype cancers, and (ii) inversely correlated with histological grade and drivers of carcinogenesis in breast cancer cohorts. Furthermore, integration of RNA-seq and ChIP-chip data reveals that RORγ regulates the expression of many genes involved in TGF-β/EMT-signaling, DNA-repair and MaSC pathways (including the non-coding RNA, LINC00511). In accordance, pharmacological studies demonstrate that an RORγ agonist suppresses breast cancer cell viability, migration, the EMT transition (microsphere outgrowth) and mammosphere-growth. In contrast, RNA-seq demonstrates an RORγ inverse agonist induces TGF-β/EMT-signaling. These findings suggest pharmacological modulation of RORγ activity may have utility in breast cancer. PMID:27211549

  4. Self-Cloning CRISPR.

    PubMed

    Arbab, Mandana; Sherwood, Richard I

    2016-08-17

    CRISPR/Cas9-gene editing has emerged as a revolutionary technology to easily modify specific genomic loci by designing complementary sgRNA sequences and introducing these into cells along with Cas9. Self-cloning CRISPR/Cas9 (scCRISPR) uses a self-cleaving palindromic sgRNA plasmid (sgPal) that recombines with short PCR-amplified site-specific sgRNA sequences within the target cell by homologous recombination to circumvent the process of sgRNA plasmid construction. Through this mechanism, scCRISPR enables gene editing within 2 hr once sgRNA oligos are available, with high efficiency equivalent to conventional sgRNA targeting: >90% gene knockout in both mouse and human embryonic stem cells and cancer cell lines. Furthermore, using PCR-based addition of short homology arms, we achieve efficient site-specific knock-in of transgenes such as GFP without traditional plasmid cloning or genome-integrated selection cassette (2% to 4% knock-in rate). The methods in this paper describe the most rapid and efficient means of CRISPR gene editing. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  5. Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing.

    PubMed

    Rao, Feng; Ding, Keyuan; Zhou, Yuxing; Zheng, Yonghui; Xia, Mengjiao; Lv, Shilong; Song, Zhitang; Feng, Songlin; Ronneberger, Ider; Mazzarello, Riccardo; Zhang, Wei; Ma, Evan

    2017-12-15

    Operation speed is a key challenge in phase-change random-access memory (PCRAM) technology, especially for achieving subnanosecond high-speed cache memory. Commercialized PCRAM products are limited by the tens of nanoseconds writing speed, originating from the stochastic crystal nucleation during the crystallization of amorphous germanium antimony telluride (Ge 2 Sb 2 Te 5 ). Here, we demonstrate an alloying strategy to speed up the crystallization kinetics. The scandium antimony telluride (Sc 0.2 Sb 2 Te 3 ) compound that we designed allows a writing speed of only 700 picoseconds without preprogramming in a large conventional PCRAM device. This ultrafast crystallization stems from the reduced stochasticity of nucleation through geometrically matched and robust scandium telluride (ScTe) chemical bonds that stabilize crystal precursors in the amorphous state. Controlling nucleation through alloy design paves the way for the development of cache-type PCRAM technology to boost the working efficiency of computing systems. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  6. Reviewing and Updating the Major Molecular Markers for Stem Cells

    PubMed Central

    Calloni, Raquel; Cordero, Elvira Alicia Aparicio; Henriques, João Antonio Pêgas

    2013-01-01

    Stem cells (SC) are able to self-renew and to differentiate into many types of committed cells, making SCs interesting for cellular therapy. However, the pool of SCs in vivo and in vitro consists of a mix of cells at several stages of differentiation, making it difficult to obtain a homogeneous population of SCs for research. Therefore, it is important to isolate and characterize unambiguous molecular markers that can be applied to SCs. Here, we review classical and new candidate molecular markers that have been established to show a molecular profile for human embryonic stem cells (hESCs), mesenchymal stem cells (MSCs), and hematopoietic stem cells (HSCs). The commonly cited markers for embryonic ESCs are Nanog, Oct-4, Sox-2, Rex-1, Dnmt3b, Lin-28, Tdgf1, FoxD3, Tert, Utf-1, Gal, Cx43, Gdf3, Gtcm1, Terf1, Terf2, Lefty A, and Lefty B. MSCs are primarily identified by the expression of CD13, CD29, CD44, CD49e, CD54, CD71, CD73, CD90, CD105, CD106, CD166, and HLA-ABC and lack CD14, CD31, CD34, CD45, CD62E, CD62L, CD62P, and HLA-DR expression. HSCs are mainly isolated based on the expression of CD34, but the combination of this marker with CD133 and CD90, together with a lack of CD38 and other lineage markers, provides the most homogeneous pool of SCs. Here, we present new and alternative markers for SCs, along with microRNA profiles, for these cells. PMID:23336433

  7. Harnessing the Foreign Body Reaction in Marginal Mass Device-less Subcutaneous Islet Transplantation in Mice.

    PubMed

    Pepper, Andrew R; Pawlick, Rena; Bruni, Antonio; Gala-Lopez, Boris; Wink, John; Rafiei, Yasmin; Bral, Mariusz; Abualhassan, Nasser; Shapiro, A M James

    2016-07-01

    Islet transplantation is a successful β-cell replacement therapy for selected patients with type 1 diabetes mellitus. However, despite early insulin independence, long-term graft attrition gradually reverts recipients to exogenous insulin dependency. Undoubtedly, as insulin producing stem cell therapies progress, a transplant site that is retrievable is desirable. This prerequisite is currently incompatible with intrahepatic islet transplantation. Herein, we evaluate the functional capacity of a prevascularized subcutaneous site to accommodate marginal islet mass transplantation in mice. Syngeneic mouse islets (150) were transplanted either under the kidney capsule (KC), into a prevascularized subcutaneous device-less (DL) site, or into the unmodified subcutaneous (SC) tissue. The DL site was created 4 weeks before diabetes induction and islet transplantation through the transient placement of a 5-Fr vascular catheter. Recipient mice were monitored for glycemic control and intraperitoneal glucose tolerance. A marginal islet mass transplanted into the DL site routinely reversed diabetes (n = 13 of 18) whereas all SC islet recipients failed to restore glycemic control (n = 0 of 10, P < 0.01, log-rank). As anticipated, nearly all islet-KC mice (n = 15 of 16) became euglycemic posttransplant. The DL recipients' glucose profiles were comparable to KC islet grafts, postintrapertioneal glucose tolerance testing, whereas SC recipients remained hyperglycemic postglucose challenge. All normoglycemic mice maintained graft function for 100 days until graft retrieval. DL and KC islet grafts stained positively for insulin, microvessels, and a collagen scaffold. The device-less prevascularized approach supports marginal mass islet engraftment in mice.

  8. Isolation and characterization of progenitor cells from surgically created - early healing alveolar defects in humans. A preliminary study.

    PubMed

    Sant'Ana, Adriana Campos Passanezi; Damante, Carla Andreotti; Martinez, Maria Alejandra Frias; Valdivia, Maria Alejandra Medina; Karam, Paula Stefânia Hage; de Oliveira, Flavia Amadeu; de Oliveira, Rodrigo Cardoso; Gasparoto, Thais Helena; Campanelli, Ana Paula; Zangrando, Mariana Schutzer Ragghianti; de Rezende, Maria Lúcia Rubo; Greghi, Sebastião Luiz Aguiar; Passanezi, Euloir

    2018-05-30

    The granulation tissue (GT) present in surgically-created early healing sockets has been considered as a possible source of osteoprogenitor cells for periodontal regeneration, as demonstrated in animal studies. However, the in vitro osteogenic properties of tissue removed from human surgically-created early healing alveolar defects (SC-EHAD) remains to be established, being that the aim of this study. Surgical defects were created in the edentulous ridge of two systemically healthy adults. The healing tissue present in these defects was removed 21 days later for the establishment of primary culture. The in vitro characteristics of the cultured cells were determined by Armelin method, MTT assay, immunohistochemistry, alkaline phosphatase (ALP) activity, mineralization assay and flow cytometry for detection of stem cells/osteoprogenitor cell markers. Cells were able to adhere to the plastic and assumed spindle-shaped morphology at earlier passages, changing to a cuboidal one with increasing passages. Differences in the proliferation rate were observed with increasing passages, suggesting osteogenic differentiation. ALP and mineralization activities were detected in conventional and osteogenic medium. Fresh samples of SC-EHAD tissue exhibited CD34 - and CD45 - phenotypes. Cells at later passages (14 th ) exhibited CD34 - , CD45 - , CD105 - , CD166 - and collagen type I + phenotype. Tissue removed from SC-EHAD is a possible source of progenitor cells. This article is protected by copyright. All rights reserved. © 2018 American Academy of Periodontology.

  9. Development and Evaluation of an Optimal Human Single-Chain Variable Fragment-Derived BCMA-Targeted CAR T Cell Vector.

    PubMed

    Smith, Eric L; Staehr, Mette; Masakayan, Reed; Tatake, Ishan J; Purdon, Terence J; Wang, Xiuyan; Wang, Pei; Liu, Hong; Xu, Yiyang; Garrett-Thomson, Sarah C; Almo, Steven C; Riviere, Isabelle; Liu, Cheng; Brentjens, Renier J

    2018-06-06

    B cell maturation antigen (BCMA) has recently been identified as an important multiple myeloma (MM)-specific target for chimeric antigen receptor (CAR) T cell therapy. In CAR T cell therapy targeting CD19 for lymphoma, host immune anti-murine CAR responses limited the efficacy of repeat dosing and possibly long-term persistence. This clinically relevant concern can be addressed by generating a CAR incorporating a human single-chain variable fragment (scFv). We screened a human B cell-derived scFv phage display library and identified a panel of BCMA-specific clones from which human CARs were engineered. Despite a narrow range of affinity for BCMA, dramatic differences in CAR T cell expansion were observed between unique scFvs in a repeat antigen stimulation assay. These results were confirmed by screening in a MM xenograft model, where only the top preforming CARs from the repeat antigen stimulation assay eradicated disease and prolonged survival. The results of this screening identified a highly effective CAR T cell therapy with properties, including rapid in vivo expansion (>10,000-fold, day 6), eradication of large tumor burden, and durable protection to tumor re-challenge. We generated a bicistronic construct including a second-generation CAR and a truncated-epithelial growth factor receptor marker. CAR T cell vectors stemming from this work are under clinical investigation. Copyright © 2018 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  10. Comparison of differentiation potential of male mouse adipose tissue and bone marrow derived-mesenchymal stem cells into germ cells

    PubMed Central

    Hosseinzadeh Shirzeily, Maryam; Pasbakhsh, Parichehr; Amidi, Fardin; Mehrannia, Kobra; Sobhani, Aligholi

    2013-01-01

    Background: Recent publications about differentiation of stem cells to germ cells have motivated researchers to make new approaches to infertility. In vitro production of germ cells improves understanding differentiation process of male and female germ cells. Due to the problem of using embryonic stem cells (ESC), it’s necessary the mentioned cells be replaced with some adult multi-potent stem cells in laboratories. Objective: The aim of this study was to obtain germ cells from appropriate source beyond ESC and compare differential potentials of adipocytes derived stem cells (ADMSCs) with bone marrow derived stem cells (BMMSCs). Materials and Methods: To find multi-potential entity, after providing purified ADMSCs and BMMSCs, differentiation to osteoblast and adipocyte was confirmed by using appropriate culture medium. To confirm mesenchymal lineage production superficial markers (expression of CD90 and CD44 and non-expression of CD45 and CD31) were investigated by flowcytometry. Then the cells were differentiated to germ cells in inductive medium containing retinoic acid for 7days. To evaluate germ cells characteristic markers [Dazl (Deleted in azoospermia-like), Mvh (Mouse vasa homolog gene), Stra8 (Stimulated by retinoic acid) and Scp3 (Synaptonemal complex protein 3)] flowcytometry, imunoflorescence and real time PCR were used. Results: Both types of cells were able to differentiate into osteoblast and adipocyte cells and presentation of stem cell superficial markers (CD90, CD44) and absence of endothelial and blood cell markers (CD31, CD45) were confirmative The flowcytometry, imunoflorescence and real time PCR results showed remarkable expression of germ cells characteristic markers (Mvh, Dazl, Stra8, and Scp3). Conclusion: It was found that although ADMSCs were attained easier and also cultured and differentiated rapidly, germ cell markers were expressed in BMMSCs significantly more than ADMSCs. This article extracted from M.Sc. thesis. (Maryam Hosseinzadeh Shirzeily) PMID:24639722

  11. Uterine-derived progenitor cells are immunoprivileged and effectively improve cardiac regeneration when used for cell therapy.

    PubMed

    Ludke, Ana; Wu, Jun; Nazari, Mansoreh; Hatta, Kota; Shao, Zhengbo; Li, Shu-Hong; Song, Huifang; Ni, Nathan C; Weisel, Richard D; Li, Ren-Ke

    2015-07-01

    Cell therapy to prevent cardiac dysfunction after myocardial infarction (MI) is less effective in aged patients because aged cells have decreased regenerative capacity. Allogeneic transplanted stem cells (SCs) from young donors are usually rejected. Maintaining transplanted SC immunoprivilege may dramatically improve regenerative outcomes. The uterus has distinct immune characteristics, and we showed that reparative uterine SCs home to the myocardium post-MI. Here, we identify immunoprivileged uterine SCs and assess their effects on cardiac regeneration after allogeneic transplantation. We found more than 20% of cells in the mouse uterus have undetectable MHC I expression by flow cytometry. Uterine MHC I((neg)) and MHC I((pos)) cells were separated by magnetic cell sorting. The MHC I((neg)) population expressed the SC markers CD34, Sca-1 and CD90, but did not express MHC II or c-kit. In vitro, MHC I((neg)) and ((pos)) SCs show colony formation and endothelial differentiation capacity. In mixed leukocyte co-culture, MHC I((neg)) cells showed reduced cell death and leukocyte proliferation compared to MHC I((pos)) cells. MHC I((neg)) and ((pos)) cells had significantly greater angiogenic capacity than mesenchymal stem cells. The benefits of intramyocardial injection of allogeneic MHC I((neg)) cells after MI were comparable to syngeneic bone marrow cell transplantation, with engraftment in cardiac tissue and limited recruitment of CD4 and CD8 cells up to 21 days post-MI. MHC I((neg)) cells preserved cardiac function, decreased infarct size and improved regeneration post-MI. This new source of immunoprivileged cells can induce neovascularization and could be used as allogeneic cell therapy for regenerative medicine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Blastema cells derived from New Zealand white rabbit's pinna carry stemness properties as shown by differentiation into insulin producing, neural, and osteogenic lineages representing three embryonic germ layers.

    PubMed

    Saeinasab, Morvarid; Matin, Maryam M; Rassouli, Fatemeh B; Bahrami, Ahmad Reza

    2016-05-01

    Stem cells (SCs) are known as undifferentiated cells with self-renewal and differentiation capacities. Regeneration is a phenomenon that occurs in a limited number of animals after injury, during which blastema tissue is formed. It has been hypothesized that upon injury, the dedifferentiation of surrounding tissues leads into the appearance of cells with SC characteristics. In present study, stem-like cells (SLCs) were obtained from regenerating tissue of New Zealand white rabbit's pinna and their stemness properties were examined by their capacity to differentiate toward insulin producing cells (IPCs), as well as neural and osteogenic lineages. Differentiation was induced by culture of SLCs in defined medium, and cell fates were monitored by specific staining, RT-PCR and flow cytometry assays. Our results revealed that dithizone positive cells, which represent IPCs, and islet-like structures appeared 1 week after induction of SLCs, and this observation was confirmed by the elevated expression of Ins, Pax6 and Glut4 at mRNA level. Furthermore, SLCs were able to express neural markers as early as 1 week after retinoic acid treatment. Finally, SLCs were able to differentiate into osteogenic lineage, as confirmed by Alizarin Red S staining and RT-PCR studies. In conclusion, SLCs, which could successfully differentiate into cells derived from all three germ layers, can be considered as a valuable model to study developmental biology and regenerative medicine.

  13. Otx2 is an intrinsic determinant of the embryonic stem cell state and is required for transition to a stable epiblast stem cell condition.

    PubMed

    Acampora, Dario; Di Giovannantonio, Luca G; Simeone, Antonio

    2013-01-01

    Mouse embryonic stem cells (ESCs) represent the naïve ground state of the preimplantation epiblast and epiblast stem cells (EpiSCs) represent the primed state of the postimplantation epiblast. Studies have revealed that the ESC state is maintained by a dynamic mechanism characterized by cell-to-cell spontaneous and reversible differences in sensitivity to self-renewal and susceptibility to differentiation. This metastable condition ensures indefinite self-renewal and, at the same time, predisposes ESCs for differentiation to EpiSCs. Despite considerable advances, the molecular mechanism controlling the ESC state and pluripotency transition from ESCs to EpiSCs have not been fully elucidated. Here we show that Otx2, a transcription factor essential for brain development, plays a crucial role in ESCs and EpiSCs. Otx2 is required to maintain the ESC metastable state by antagonizing ground state pluripotency and promoting commitment to differentiation. Furthermore, Otx2 is required for ESC transition into EpiSCs and, subsequently, to stabilize the EpiSC state by suppressing, in pluripotent cells, the mesendoderm-to-neural fate switch in cooperation with BMP4 and Fgf2. However, according to its central role in neural development and differentiation, Otx2 is crucially required for the specification of ESC-derived neural precursors fated to generate telencephalic and mesencephalic neurons. We propose that Otx2 is a novel intrinsic determinant controlling the functional integrity of ESCs and EpiSCs.

  14. Cell-Surface Expression of Neuron-Glial Antigen 2 (NG2) and Melanoma Cell Adhesion Molecule (CD146) in Heterogeneous Cultures of Marrow-Derived Mesenchymal Stem Cells

    PubMed Central

    Russell, Katie C.; Tucker, H. Alan; Bunnell, Bruce A.; Andreeff, Michael; Schober, Wendy; Gaynor, Andrew S.; Strickler, Karen L.; Lin, Shuwen; Lacey, Michelle R.

    2013-01-01

    Cellular heterogeneity of mesenchymal stem cells (MSCs) impedes their use in regenerative medicine. The objective of this research is to identify potential biomarkers for the enrichment of progenitors from heterogeneous MSC cultures. To this end, the present study examines variation in expression of neuron-glial antigen 2 (NG2) and melanoma cell adhesion molecule (CD146) on the surface of MSCs derived from human bone marrow in response to culture conditions and among cell populations. Multipotent cells isolated from heterogeneous MSC cultures exhibit a greater than three-fold increase in surface expression for NG2 and greater than two-fold increase for CD146 as compared with parental and lineage-committed MSCs. For both antigens, surface expression is downregulated by greater than or equal to six-fold when MSCs become confluent. During serial passage, maximum surface expression of NG2 and CD146 is associated with minimum doubling time. Upregulation of NG2 and CD146 during loss of adipogenic potential at early passage suggests some limits to their utility as potency markers. A potential relationship between proliferation and antigen expression was explored by sorting heterogeneous MSCs into rapidly and slowly dividing groups. Fluorescence-activated cell sorting revealed that rapidly dividing MSCs display lower scatter and 50% higher NG2 surface expression than slowly dividing cells, but CD146 expression is comparable in both groups. Heterogeneous MSCs were sorted based on scatter properties and surface expression of NG2 and CD146 into high (HI) and low (LO) groups. ScLONG2HI and ScLONG2HICD146HI MSCs have the highest proliferative potential of the sorted groups, with colony-forming efficiencies that are 1.5–2.2 times the value for the parental controls. The ScLO gate enriches for rapidly dividing cells. Addition of the NG2HI gate increases cell survival to 1.5 times the parental control. Further addition of the CD146HI gate does not significantly improve cell division or survival. The combination of low scatter and high NG2 surface expression is a promising selection criterion to enrich a proliferative phenotype from heterogeneous MSCs during ex vivo expansion, with potentially numerous applications. PMID:23611563

  15. Rho-associated kinase inhibitors: a novel glaucoma therapy.

    PubMed

    Inoue, Toshihiro; Tanihara, Hidenobu

    2013-11-01

    The rho-associated kinase (ROCK) signaling pathway is activated via secreted bioactive molecules or via integrin activation after extracellular matrix binding. These lead to polymerization of actin stress fibers and formation of focal adhesions. Accumulating evidence suggests that actin cytoskeleton-modulating signals are involved in aqueous outflow regulation. Aqueous humor contains various biologically active factors, some of which are elevated in glaucomatous eyes. These factors affect aqueous outflow, in part, through ROCK signaling modulation. Various drugs acting on the cytoskeleton have also been shown to increase aqueous outflow by acting directly on outflow tissue. In vivo animal studies have shown that the trabecular meshwork (TM) actin cytoskeleton in glaucomatous eyes is more disorganized and more randomly oriented than in non-glaucomatous control eyes. In a previous study, we introduced ROCK inhibitors as a potential glaucoma therapy by showing that a selective ROCK inhibitor significantly lowered rabbit IOP. Rho-associated kinase inhibitors directly affect the TM and Schlemm's canal (SC), differing from the target sight of other glaucoma drugs. The TM is affected earlier and more strongly than ciliary muscle cells by ROCK inhibitors, largely because of pharmacological affinity differences stemming from regulatory mechanisms. Additionally, ROCK inhibitors disrupt tight junctions, result in F-actin depolymerization, and modulate intracellular calcium level, effectively increasing SC-cell monolayer permeability. Perfusion of an enucleated eye with a ROCK inhibitor resulted in wider empty spaces in the juxtacanalicular (JCT) area and more giant vacuoles in the endothelial cells of SC, while the endothelial lining of SC was intact. Interestingly, ROCK inhibitors also increase retinal blood flow by relaxing vascular smooth muscle cells, directly protecting neurons against various stresses, while promoting wound healing. These additional effects may help slow progressing visual field loss in glaucoma patients, making ROCK inhibitors an even more desirable anti-glaucoma agent. All evidence indicates that aqueous humor outflow is affected by cytoskeleton physiology and this information may provide valuable insight into understanding glaucoma pathology and treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Sensitivity Analysis of Biome-Bgc Model for Dry Tropical Forests of Vindhyan Highlands, India

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Raghubanshi, A. S.

    2011-08-01

    A process-based model BIOME-BGC was run for sensitivity analysis to see the effect of ecophysiological parameters on net primary production (NPP) of dry tropical forest of India. The sensitivity test reveals that the forest NPP was highly sensitive to the following ecophysiological parameters: Canopy light extinction coefficient (k), Canopy average specific leaf area (SLA), New stem C : New leaf C (SC:LC), Maximum stomatal conductance (gs,max), C:N of fine roots (C:Nfr), All-sided to projected leaf area ratio and Canopy water interception coefficient (Wint). Therefore, these parameters need more precision and attention during estimation and observation in the field studies.

  17. Morphological, molecular and functional differences of adult bone marrow- and adipose-derived stem cells isolated from rats of different ages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mantovani, Cristina; Department of Integrative Medical Biology and Surgical and Perioperative Science, Umea University, Umea; Department of Surgical and Perioperative Science, Umea University, Umea

    2012-10-01

    Adult mesenchymal stem cells have self-renewal and multiple differentiation potentials, and play important roles in regenerative medicine. However, their use may be limited by senescence or age of the donor, leading to changes in stem cell functionality. We investigated morphological, molecular and functional differences between bone marrow-derived (MSC) and adipose-derived (ASC) stem cells isolated from neonatal, young and old rats compared to Schwann cells from the same animals. Immunocytochemistry, RT-PCR, proliferation assays, western blotting and transmission electron microscopy were used to investigate expression of senescence markers. Undifferentiated and differentiated ASC and MSC from animals of different ages expressed Notch-2 atmore » similar levels; protein-38 and protein-53 were present in all groups of cells with a trend towards increased levels in cells from older animals compared to those from neonatal and young rats. Following co-culture with adult neuronal cells, dMSC and dASC from animals of all ages elicited robust neurite outgrowth. Mitotracker{sup Registered-Sign} staining was consistent with ultrastructural changes seen in the mitochondria of cells from old rats, indicative of senescence. In conclusion, this study showed that although the cells from aged animals expressed markers of senescence, aged MSC and ASC differentiated into SC-like cells still retain potential to support axon regeneration. -- Highlights: Black-Right-Pointing-Pointer Aged MSC and ASC differentiated into Schwann-like cells support axon regeneration. Black-Right-Pointing-Pointer p53 expression does not appreciably influence the biology of Schwann or stem cells. Black-Right-Pointing-Pointer Notch 2 expression was similar in cells derived from animals of different ages. Black-Right-Pointing-Pointer Proliferation rates of dMSC varied little over time or with animal age.« less

  18. The gene expression profile of non-cultured, highly purified human adipose tissue pericytes: Transcriptomic evidence that pericytes are stem cells in human adipose tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva Meirelles, Lindolfo da, E-mail: lindolfomeirelles@gmail.com; Laboratory for Stem Cells and Tissue Engineering, PPGBioSaúde, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900 Canoas, RS; Deus Wagatsuma, Virgínia Mara de

    Pericytes (PCs) are a subset of perivascular cells that can give rise to mesenchymal stromal cells (MSCs) when culture-expanded, and are postulated to give rise to MSC-like cells during tissue repair in vivo. PCs have been suggested to behave as stem cells (SCs) in situ in animal models, although evidence for this role in humans is lacking. Here, we analyzed the transcriptomes of highly purified, non-cultured adipose tissue (AT)-derived PCs (ATPCs) to detect gene expression changes that occur as they acquire MSC characteristics in vitro, and evaluated the hypothesis that human ATPCs exhibit a gene expression profile compatible with anmore » AT SC phenotype. The results showed ATPCs are non-proliferative and express genes characteristic not only of PCs, but also of AT stem/progenitor cells. Additional analyses defined a gene expression signature for ATPCs, and revealed putative novel ATPC markers. Almost all AT stem/progenitor cell genes differentially expressed by ATPCs were not expressed by ATMSCs or culture-expanded ATPCs. Genes expressed by ATMSCs but not by ATPCs were also identified. These findings strengthen the hypothesis that PCs are SCs in vascularized tissues, highlight gene expression changes they undergo as they assume an MSC phenotype, and provide new insights into PC biology. - Highlights: • Non-cultured adipose tissue-derived human pericytes (ncATPCs) exhibit a distinctive gene expression signature. • ncATPCs express key adipose tissue stem cell genes previously described in vivo in mice. • ncATPCs express message for anti-proliferative and antiangiogenic molecules. • Most ncATPC-specific transcripts are absent in culture-expanded pericytes or ATMSCs • Gene expression changes ncATPCs undergo as they acquire a cultured ATMSC phenotype are pointed out.« less

  19. Regeneration of cervical reserve cell-like cells from human induced pluripotent stem cells (iPSCs): A new approach to finding targets for cervical cancer stem cell treatment.

    PubMed

    Sato, Masakazu; Kawana, Kei; Adachi, Katsuyuki; Fujimoto, Asaha; Yoshida, Mitsuyo; Nakamura, Hiroe; Nishida, Haruka; Inoue, Tomoko; Taguchi, Ayumi; Ogishima, Juri; Eguchi, Satoko; Yamashita, Aki; Tomio, Kensuke; Wada-Hiraike, Osamu; Oda, Katsutoshi; Nagamatsu, Takeshi; Osuga, Yutaka; Fujii, Tomoyuki

    2017-06-20

    Cervical reserve cells are epithelial progenitor cells that are pathologically evident as the origin of cervical cancer. Thus, investigating the characteristics of cervical reserve cells could yield insight into the features of cervical cancer stem cells (CSCs). In this study, we established a method for the regeneration of cervical reserve cell-like properties from human induced pluripotent stem cells (iPSCs) and named these cells induced reserve cell-like cells (iRCs). Approximately 70% of iRCs were positive for the reserve cell markers p63, CK5 and CK8. iRCs also expressed the SC junction markers CK7, AGR2, CD63, MMP7 and GDA. While iRCs expressed neither ERα nor ERβ, they expressed CA125. These data indicated that iRCs possessed characteristics of cervical epithelial progenitor cells. iRCs secreted higher levels of several inflammatory cytokines such as macrophage migration inhibitory factor (MIF), soluble intercellular adhesion molecule 1 (sICAM-1) and C-X-C motif ligand 10 (CXCL-10) compared with normal cervical epithelial cells. iRCs also expressed human leukocyte antigen-G (HLA-G), which is an important cell-surface antigen for immune tolerance and carcinogenesis. Together with the fact that cervical CSCs can originate from reserve cells, our data suggested that iRCs were potent immune modulators that might favor cervical cancer cell survival. In conclusion, by generating reserve cell-like properties from iPSCs, we provide a new approach that may yield new insight into cervical cancer stem cells and help find new oncogenic targets.

  20. Mobilizing Transit-Amplifying Cell-Derived Ectopic Progenitors Prevents Hair Loss from Chemotherapy or Radiation Therapy.

    PubMed

    Huang, Wen-Yen; Lai, Shih-Fan; Chiu, Hsien-Yi; Chang, Michael; Plikus, Maksim V; Chan, Chih-Chieh; Chen, You-Tzung; Tsao, Po-Nien; Yang, Tsung-Lin; Lee, Hsuan-Shu; Chi, Peter; Lin, Sung-Jan

    2017-11-15

    Genotoxicity-induced hair loss from chemotherapy and radiotherapy is often encountered in cancer treatment, and there is a lack of effective treatment. In growing hair follicles (HF), quiescent stem cells (SC) are maintained in the bulge region, and hair bulbs at the base contain rapidly dividing, yet genotoxicity-sensitive transit-amplifying cells (TAC) that maintain hair growth. How genotoxicity-induced HF injury is repaired remains unclear. We report here that HFs mobilize ectopic progenitors from distinct TAC compartments for regeneration in adaptation to the severity of dystrophy induced by ionizing radiation (IR). Specifically, after low-dose IR, keratin 5 + basal hair bulb progenitors, rather than bulge SCs, were quickly activated to replenish matrix cells and regenerated all concentric layers of HFs, demonstrating their plasticity. After high-dose IR, when both matrix and hair bulb cells were depleted, the surviving outer root sheath cells rapidly acquired an SC-like state and fueled HF regeneration. Their progeny then homed back to SC niche and supported new cycles of HF growth. We also revealed that IR induced HF dystrophy and hair loss and suppressed WNT signaling in a p53- and dose-dependent manner. Augmenting WNT signaling attenuated the suppressive effect of p53 and enhanced ectopic progenitor proliferation after genotoxic injury, thereby preventing both IR- and cyclophosphamide-induced alopecia. Hence, targeted activation of TAC-derived progenitor cells, rather than quiescent bulge SCs, for anagen HF repair can be a potential approach to prevent hair loss from chemotherapy and radiotherapy. Cancer Res; 77(22); 6083-96. ©2017 AACR . ©2017 American Association for Cancer Research.

  1. Decellularised skeletal muscles allow functional muscle regeneration by promoting host cell migration.

    PubMed

    Urciuolo, Anna; Urbani, Luca; Perin, Silvia; Maghsoudlou, Panagiotis; Scottoni, Federico; Gjinovci, Asllan; Collins-Hooper, Henry; Loukogeorgakis, Stavros; Tyraskis, Athanasios; Torelli, Silvia; Germinario, Elena; Fallas, Mario Enrique Alvarez; Julia-Vilella, Carla; Eaton, Simon; Blaauw, Bert; Patel, Ketan; De Coppi, Paolo

    2018-05-30

    Pathological conditions affecting skeletal muscle function may lead to irreversible volumetric muscle loss (VML). Therapeutic approaches involving acellular matrices represent an emerging and promising strategy to promote regeneration of skeletal muscle following injury. Here we investigated the ability of three different decellularised skeletal muscle scaffolds to support muscle regeneration in a xenogeneic immune-competent model of VML, in which the EDL muscle was surgically resected. All implanted acellular matrices, used to replace the resected muscles, were able to generate functional artificial muscles by promoting host myogenic cell migration and differentiation, as well as nervous fibres, vascular networks, and satellite cell (SC) homing. However, acellular tissue mainly composed of extracellular matrix (ECM) allowed better myofibre three-dimensional (3D) organization and the restoration of SC pool, when compared to scaffolds which also preserved muscular cytoskeletal structures. Finally, we showed that fibroblasts are indispensable to promote efficient migration and myogenesis by muscle stem cells across the scaffolds in vitro. This data strongly support the use of xenogeneic acellular muscles as device to treat VML conditions in absence of donor cell implementation, as well as in vitro model for studying cell interplay during myogenesis.

  2. The Nuclear Receptor, RORγ, Regulates Pathways Necessary for Breast Cancer Metastasis.

    PubMed

    Oh, Tae Gyu; Wang, Shu-Ching M; Acharya, Bipul R; Goode, Joel M; Graham, J Dinny; Clarke, Christine L; Yap, Alpha S; Muscat, George E O

    2016-04-01

    We have previously reported that RORγ expression was decreased in ER-ve breast cancer, and increased expression improves clinical outcomes. However, the underlying RORγ dependent mechanisms that repress breast carcinogenesis have not been elucidated. Here we report that RORγ negatively regulates the oncogenic TGF-β/EMT and mammary stem cell (MaSC) pathways, whereas RORγ positively regulates DNA-repair. We demonstrate that RORγ expression is: (i) decreased in basal-like subtype cancers, and (ii) inversely correlated with histological grade and drivers of carcinogenesis in breast cancer cohorts. Furthermore, integration of RNA-seq and ChIP-chip data reveals that RORγ regulates the expression of many genes involved in TGF-β/EMT-signaling, DNA-repair and MaSC pathways (including the non-coding RNA, LINC00511). In accordance, pharmacological studies demonstrate that an RORγ agonist suppresses breast cancer cell viability, migration, the EMT transition (microsphere outgrowth) and mammosphere-growth. In contrast, RNA-seq demonstrates an RORγ inverse agonist induces TGF-β/EMT-signaling. These findings suggest pharmacological modulation of RORγ activity may have utility in breast cancer. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Palmetto Academy: Undergraduates Exploring and Communicating the Multidisciplinary Nature of STEM

    NASA Astrophysics Data System (ADS)

    Hall, C.; Ali, A.; Runyon, C. J.; Colgan, M. W.

    2012-12-01

    One of the pillars of the US economy is a well-trained Science, Technology, Engineering and Math (STEM) workforce (National Academy of Sciences, 2007). The number of students choosing to study science and engineering has taken a dramatic decline. The percentage of those degrees conferred in SC was substantially lower than the national average and the percentage of those occupations within the SC workforce also falls below the national average, supporting the need for engaging and educational STEM programs. The NASA South Carolina Space Grant Consortium's Palmetto Research Academy (PRA) program is an immersive and integrated multidisciplinary exposure and training for undergraduate students with various backgrounds and career aspirations of critical importance to the Nation. This program offers exciting and inspiring hands-on research experiences that are aligned with NASA missions. The PRA advances NASA's research interest in areas such as aeronautics, biomedical science, sun-earth connections, planetary and Earth science. The PRA helps to develop the STEM workforce in STEM disciplines, a necessity in South Carolina. In addition, the PRA incorporates an education/outreach component, where the students engage secondary educators and students in NASA scientific and technical expertise. In 2012, the PRA had 10 research projects across the state in disciplines of mechanical and chemical engineering, bioengineering, chemistry, biogeooptical sciences, physics and astronomy and biomedical sciences. 18 undergraduates and 2 technical college students participated in authentic hands-on research mentored by leading scientists and engineers throughout the state. Examples projects include: A) Development of a series of astronomical telescopes to be mounted on a commercial human-tended suborbital rockets. The students built the instrument, including the power system and the mechanical interface, and performed function and fit testing on the XCOR Aerospace Lynx vehicle mock-up. B) Mechanical modeling and statistical analysis to understand effects of radiation exposure on the joints of astronauts. The students characterized the effect of radiation on porcine cartilage biomechanics and biosynthesis through nano and microscale soft tissue mechanical testing, histological staining, and tissue biological assay techniques. C) Spectroscopy and derivation of water quality parameters from satellite visible/near-infrared (VIR) spectral radiometry. The student analyzed data, which provided frequent spatial information critical to the understanding of biogeochemical processes of interest to climate studies. The student conducted an intensive sampling campaign aboard a research vessel measuring biogeooptical properties and developed bio-optical models using NASA's MODIS sensor aboard the Aqua satellite to characterize water quality parameters (phytoplankton, suspended sediment, and dissolved organic matter). The student outreach project centered around the NASA Mars Science Laboratory Curiosity Rover. The PRA interns organized an event with several general astronomy and Mars/Curiosity planetarium shows, space-related games, and a viewing of the landing for over 50 elementary-middle school students, their parents, and numerous undergraduates. The results and the opportunities provided by PRA will be discussed.

  4. Aberration-corrected scanning transmission electron microscopy for complex transition metal oxides

    NASA Astrophysics Data System (ADS)

    Qing-Hua, Zhang; Dong-Dong, Xiao; Lin, Gu

    2016-06-01

    Lattice, charge, orbital, and spin are the four fundamental degrees of freedom in condensed matter, of which the interactive coupling derives tremendous novel physical phenomena, such as high-temperature superconductivity (high-T c SC) and colossal magnetoresistance (CMR) in strongly correlated electronic system. Direct experimental observation of these freedoms is essential to understanding the structure-property relationship and the physics behind it, and also indispensable for designing new materials and devices. Scanning transmission electron microscopy (STEM) integrating multiple techniques of structure imaging and spectrum analysis, is a comprehensive platform for providing structural, chemical and electronic information of materials with a high spatial resolution. Benefiting from the development of aberration correctors, STEM has taken a big breakthrough towards sub-angstrom resolution in last decade and always steps forward to improve the capability of material characterization; many improvements have been achieved in recent years, thereby giving an in-depth insight into material research. Here, we present a brief review of the recent advances of STEM by some representative examples of perovskite transition metal oxides; atomic-scale mapping of ferroelectric polarization, octahedral distortions and rotations, valence state, coordination and spin ordering are presented. We expect that this brief introduction about the current capability of STEM could facilitate the understanding of the relationship between functional properties and these fundamental degrees of freedom in complex oxides. Project supported by the National Key Basic Research Project, China (Grant No. 2014CB921002), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB07030200), and the National Natural Science Foundation of China (Grant Nos. 51522212 and 51421002).

  5. Inhibition of Wnt/β-catenin signaling by IWR1 induces expression of Foxd3 to promote mouse epiblast stem cell self-renewal.

    PubMed

    Liu, Kuisheng; Sun, Yuanyuan; Liu, Dahai; Ye, Shoudong

    2017-08-26

    Inhibition of Wnt/β-catenin signaling facilitates the derivation of mouse epiblast stem cells (EpiSCs), as well as dramatically promotes EpiSC self-renewal. The specific mechanism, however, is still unclear. Here, we showed that IWR1, a Wnt/β-catenin signaling inhibitor, allowed long-term self-renewal of EpiSCs in serum medium in combination with ROCK inhibitor Y27632. Through transcriptome data analysis, we arrived at a set of candidate transcription factors induced by IWR1. Among these, Forkhead box D3 (Foxd3) was most abundant. Forced expression of Foxd3 could recapitulate the self-renewal-promoting effect of IWR1 in EpiSCs. Conversely, knockdown of Foxd3 profoundly compromised responsiveness to IWR1, causing extinction of pluripotency markers and emergence of differentiation phenotype. Foxd3 thus is necessary and sufficient to mediate self-renewal downstream of Wnt/β-catenin signaling inhibitor. These findings highlight an important role for Foxd3 in regulating EpiSCs and will expand current understanding of the primed pluripotency. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Lineage-Restricted Mammary Stem Cells Sustain the Development, Homeostasis, and Regeneration of the Estrogen Receptor Positive Lineage.

    PubMed

    Van Keymeulen, Alexandra; Fioramonti, Marco; Centonze, Alessia; Bouvencourt, Gaëlle; Achouri, Younes; Blanpain, Cédric

    2017-08-15

    The mammary gland (MG) is composed of different cell lineages, including the basal and the luminal cells (LCs) that are maintained by distinct stem cell (SC) populations. LCs can be subdivided into estrogen receptor (ER) + and ER - cells. LCs act as the cancer cell of origin in different types of mammary tumors. It remains unclear whether the heterogeneity found in luminal-derived mammary tumors arises from a pre-existing heterogeneity within LCs. To investigate LC heterogeneity, we used lineage tracing to assess whether the ER + lineage is maintained by multipotent SCs or by lineage-restricted SCs. To this end, we generated doxycycline-inducible ER-rtTA mice that allowed us to perform genetic lineage tracing of ER + LCs and study their fate and long-term maintenance. Our results show that ER + cells are maintained by lineage-restricted SCs that exclusively contribute to the expansion of the ER + lineage during puberty and their maintenance during adult life. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Enhancing nerve regeneration in the peripheral nervous system using polymeric scaffolds, stem cell engineering and nanoparticle delivery system

    NASA Astrophysics Data System (ADS)

    Sharma, Anup Dutt

    Peripheral nerve regeneration is a complex biological process responsible for regrowth of neural tissue following a nerve injury. The main objective of this project was to enhance peripheral nerve regeneration using interdisciplinary approaches involving polymeric scaffolds, stem cell therapy, drug delivery and high content screening. Biocompatible and biodegradable polymeric materials such as poly (lactic acid) were used for engineering conduits with micropatterns capable of providing mechanical support and orientation to the regenerating axons and polyanhydrides for fabricating nano/microparticles for localized delivery of neurotrophic growth factors and cytokines at the site of injury. Transdifferentiated bone marrow stromal cells or mesenchymal stem cells (MSCs) were used as cellular replacements for lost native Schwann cells (SCs) at the injured nerve tissue. MSCs that have been transdifferentiated into an SC-like phenotype were tested as a substitute for the myelinating SCs. Also, genetically modified MSCs were engineered to hypersecrete brain- derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) to secrete therapeutic factors which Schwann cell secrete. To further enhance the regeneration, nerve growth factor (NGF) and interleukin-4 (IL4) releasing polyanhydrides nano/microparticles were fabricated and characterized in vitro for their efficacy. Synergistic use of these proposed techniques was used for fabricating a multifunctional nerve regeneration conduit which can be used as an efficient tool for enhancing peripheral nerve regeneration.

  8. A Novel View of the Adult Stem Cell Compartment From the Perspective of a Quiescent Population of Very Small Embryonic-Like Stem Cells.

    PubMed

    Ratajczak, Mariusz Z; Ratajczak, Janina; Suszynska, Malwina; Miller, Donald M; Kucia, Magda; Shin, Dong-Myung

    2017-01-06

    Evidence has accumulated that adult hematopoietic tissues and other organs contain a population of dormant stem cells (SCs) that are more primitive than other, already restricted, monopotent tissue-committed SCs (TCSCs). These observations raise several questions, such as the developmental origin of these cells, their true pluripotent or multipotent nature, which surface markers they express, how they can be efficiently isolated from adult tissues, and what role they play in the adult organism. The phenotype of these cells and expression of some genes characteristic of embryonic SCs, epiblast SCs, and primordial germ cells suggests their early-embryonic deposition in developing tissues as precursors of adult SCs. In this review, we will critically discuss all these questions and the concept that small dormant SCs related to migratory primordial germ cells, described as very small embryonic-like SCs, are deposited during embryogenesis in bone marrow and other organs as a backup population for adult tissue-committed SCs and are involved in several processes related to tissue or organ rejuvenation, aging, and cancerogenesis. The most recent results on successful ex vivo expansion of human very small embryonic-like SC in chemically defined media free from feeder-layer cells open up new and exciting possibilities for their application in regenerative medicine. © 2017 American Heart Association, Inc.

  9. Human scFv antibodies (Afribumabs) against Africanized bee venom: Advances in melittin recognition.

    PubMed

    Pessenda, Gabriela; Silva, Luciano C; Campos, Lucas B; Pacello, Elenice M; Pucca, Manuela B; Martinez, Edson Z; Barbosa, José E

    2016-03-15

    Africanized Apis mellifera bees, also known as killer bees, have an exceptional defensive instinct, characterized by mass attacks that may cause envenomation or death. From the years 2000-2013, 77,066 bee accidents occurred in Brazil. Bee venom comprises several substances, including melittin and phospholipase A2 (PLA2). Due to the lack of antivenom for bee envenomation, this study aimed to produce human monoclonal antibody fragments (single chain fragment variable; scFv), by using phage display technology. These fragments targeted melittin and PLA2, the two major components of bee venom, to minimize their toxic effects in cases of mass envenomation. Two phage antibody selections were performed using purified melittin. As the commercial melittin is contaminated with PLA2, phages specific to PLA2 were also obtained during one of the selections. Specific clones for melittin and PLA2 were selected for the production of soluble scFvs, named here Afribumabs: prefix: afrib- (from Africanized bee); stem/suffix: -umab (fully human antibody). Afribumabs 1 and 2 were tested in in vitro and in vivo assays to assess their ability to inhibit the toxic actions of purified melittin, PLA2, and crude bee venom. Afribumabs reduced hemolysis caused by purified melittin and PLA2 and by crude venom in vitro and reduced edema formation in the paws of mice and prolonged the survival of venom-injected animals in vivo. These results demonstrate that Afribumabs may contribute to the production of the first non-heterologous antivenom treatment against bee envenomation. Such a treatment may overcome some of the difficulties associated with conventional immunotherapy techniques. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Impaired preadipocyte differentiation into adipocytes in subcutaneous abdominal adipose of PCOS-like female rhesus monkeys.

    PubMed

    Keller, Erica; Chazenbalk, Gregorio D; Aguilera, Paul; Madrigal, Vanessa; Grogan, Tristan; Elashoff, David; Dumesic, Daniel A; Abbott, David H

    2014-07-01

    Metabolic characteristics of polycystic ovary syndrome women and polycystic ovary syndrome-like, prenatally androgenized (PA) female monkeys worsen with age, with altered adipogenesis of sc abdominal adipose potentially contributing to age-related adverse effects on metabolism. This study examines whether adipocyte morphology and gene expression in sc abdominal adipose differ between late reproductive-aged PA female rhesus monkeys compared with age-matched controls (C). Subcutaneous abdominal adipose of both groups was obtained for histological imaging and mRNA determination of zinc finger protein 423 (Zfp423) as a marker of adipose stem cell commitment to preadipocytes, and CCAAT/enhancer binding protein (C/EBP)α/peroxisome proliferator-activated receptor (PPAR)δ as well as C/EBPα/PPARγ as respective markers of early- and late-stage differentiation of preadipocytes to adipocytes. In all females combined, serum testosterone (T) levels positively correlated with fasting serum levels of total free fatty acid (r(2) = 0.73, P < .002). PA females had a greater population of small adipocytes vs C (P < .001) in the presence of increased Zfp423 (P < .025 vs C females) and decreased C/EBPα (P < .003, vs C females) mRNA expression. Moreover, Zfp423 mRNA expression positively correlated with circulating total free fatty acid levels during iv glucose tolerance testing (P < .004, r(2) = 0.66), whereas C/EBPα mRNA expression negatively correlated with serum T levels (P < .02, r(2) = 0.43). Gene expression of PPARδ and PPARγ were comparable between groups (P = .723 and P = .18, respectively). Early-to-mid gestational T excess in female rhesus monkeys impairs adult preadipocyte differentiation to adipocytes in sc abdominal adipose and may constrain the ability of this adipose depot to safely store fat with age.

  11. Growth Hormone (GH) and Rehabilitation Promoted Distal Innervation in a Child Affected by Caudal Regression Syndrome

    PubMed Central

    Devesa, Jesús; Alonso, Alba; López, Natalia; García, José; Puell, Carlos I.; Pablos, Tamara; Devesa, Pablo

    2017-01-01

    Caudal regression syndrome (CRS) is a malformation occurring during the fetal period and mainly characterized by an incomplete development of the spinal cord (SC), which is often accompanied by other developmental anomalies. We studied a 9-month old child with CRS who presented interruption of the SC at the L2–L3 level, sacral agenesis, a lack of innervation of the inferior limbs (flaccid paraplegia), and neurogenic bladder and bowel. Given the known positive effects of growth hormone (GH) on neural stem cells (NSCs), we treated him with GH and rehabilitation, trying to induce recovery from the aforementioned sequelae. The Gross Motor Function Test (GMFM)-88 test score was 12.31%. After a blood analysis, GH treatment (0.3 mg/day, 5 days/week, during 3 months and then 15 days without GH) and rehabilitation commenced. This protocol was followed for 5 years, the last GH dose being 1 mg/day. Blood analysis and physical exams were performed every 3 months initially and then every 6 months. Six months after commencing the treatment the GMFM-88 score increased to 39.48%. Responses to sensitive stimuli appeared in most of the territories explored; 18 months later sensitive innervation was complete and the patient moved all muscles over the knees and controlled his sphincters. Three years later he began to walk with crutches, there was plantar flexion, and the GMFM-88 score was 78.48%. In summary, GH plus rehabilitation may be useful for innervating distal areas below the level of the incomplete spinal cord in CRS. It is likely that GH acted on the ependymal SC NSCs, as the hormone does in the neurogenic niches of the brain, and rehabilitation helped to achieve practically full functionality. PMID:28124993

  12. Oxygen "getter" effects on microstructure and carrier transport in low temperature combustion-processed a-InXZnO (X = Ga, Sc, Y, La) transistors.

    PubMed

    Hennek, Jonathan W; Smith, Jeremy; Yan, Aiming; Kim, Myung-Gil; Zhao, Wei; Dravid, Vinayak P; Facchetti, Antonio; Marks, Tobin J

    2013-07-24

    In oxide semiconductors, such as those based on indium zinc oxide (IXZO), a strong oxygen binding metal ion ("oxygen getter"), X, functions to control O vacancies and enhance lattice formation, hence tune carrier concentration and transport properties. Here we systematically study, in the IXZO series, the role of X = Ga(3+) versus the progression X = Sc(3+) → Y(3+) → La(3+), having similar chemical characteristics but increasing ionic radii. IXZO films are prepared from solution over broad composition ranges for the first time via low-temperature combustion synthesis. The films are characterized via thermal analysis of the precursor solutions, grazing incidence angle X-ray diffraction (GIAXRD), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and scanning transmission electron microscopy (STEM) with high angle annular dark field (HAADF) imaging. Excellent thin-film transistor (TFT) performance is achieved for all X, with optimal compositions after 300 °C processing exhibiting electron mobilities of 5.4, 2.6, 2.4, and 1.8 cm(2) V(-1) s(-1) for Ga(3+), Sc(3+), Y(3+), and La(3+), respectively, and with I(on)/I(off) = 10(7)-10(8). Analysis of the IXZO TFT positive bias stress response shows X = Ga(3+) to be superior with mobilities (μ) retaining >95% of the prestress values and threshold voltage shifts (ΔV(T)) of <1.6 V, versus <85% μ retention and ΔV(T) ≈ 20 V for the other trivalent ions. Detailed microstructural analysis indicates that Ga(3+) most effectively promotes oxide lattice formation. We conclude that the metal oxide lattice formation enthalpy (ΔH(L)) and metal ionic radius are the best predictors of IXZO oxygen getter efficacy.

  13. Accelerated Total Lymphoid Irradiation-containing Salvage Regimen for Patients With Refractory and Relapsed Hodgkin Lymphoma: 20 Years of Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rimner, Andreas; Lovie, Shona; Hsu, Meier

    Purpose: We report the long-term results of integrated accelerated involved field radiation therapy (IFRT) followed by total lymphoid irradiation (TLI) as part of the high-dose salvage regimen followed by autologous bone marrow transplantation or autologous stem cell transplantation in patients with relapsed or refractory Hodgkin lymphoma (HL). Methods and Materials: From November 1985 to July 2008, 186 previously unirradiated patients with relapsed or refractory HL underwent salvage therapy on 4 consecutive institutional review board–approved protocols. All patients had biopsy-proven primary refractory or relapsed HL. After standard-dose salvage chemotherapy (SC), accelerated IFRT (18-20 Gy) was given to relapsed or refractory sites, followedmore » by TLI (15-18 Gy) and high-dose chemotherapy. Overall survival (OS) and event-free survival (EFS) were analyzed by Cox analysis and disease-specific survival (DSS) by competing-risk regression. Results: With a median follow-up period of 57 months among survivors, 5- and 10-year OS rates were 68% and 56%, respectively; 5- and 10-year EFS rates were 62% and 56%, respectively; and 5- and 10-year cumulative incidences of HL-related deaths were 21% and 29%, respectively. On multivariate analysis, complete response to SC was independently associated with improved OS and EFS. Primary refractory disease and extranodal disease were independently associated with poor DSS. Eight patients had grade 3 or higher cardiac toxicity, with 3 deaths. Second malignancies developed in 10 patients, 5 of whom died. Conclusions: Accelerated IFRT followed by TLI and high-dose chemotherapy is an effective, feasible, and safe salvage strategy for patients with relapsed or refractory HL with excellent long-term OS, EFS, and DSS. Complete response to SC is the most important prognostic factor.« less

  14. Phobos mass estimations from MEX and Viking 1 data: influence of different noise sources and estimation strategies

    NASA Astrophysics Data System (ADS)

    Kudryashova, M.; Rosenblatt, P.; Marty, J.-C.

    2015-08-01

    The mass of Phobos is an important parameter which, together with second-order gravity field coefficients and libration amplitude, constrains internal structure and nature of the moon. And thus, it needs to be known with high precision. Nevertheless, Phobos mass (GM, more precisely) estimated by different authors based on diverse data-sets and methods, varies by more than their 1-sigma error. The most complete lists of GM values are presented in the works of R. Jacobson (2010) and M. Paetzold et al. (2014) and include the estimations in the interval from (5.39 ± 0:03).10^5 (Smith et al., 1995) till (8.5 ± 0.7).10^5[m^3/s^2] (Williams et al., 1988). Furthermore, even the comparison of the estimations coming from the same estimation procedure applied to the consecutive flybys of the same spacecraft (s/c) shows big variations in GMs. The indicated behavior is very pronounced in the GM estimations stemming from the Viking1 flybys in February 1977 (as well as from MEX flybys, though in a smaller amplitude) and in this work we made an attempt to figure out its roots. The errors of Phobos GM estimations depend on the precision of the model (e.g. accuracy of Phobos a priori ephemeris and its a priori GM value) as well as on the radio-tracking measurements quality (noise, coverage, flyby distance). In the present work we are testing the impact of mentioned above error sources by means of simulations. We also consider the effect of the uncertainties in a priori Phobos positions on the GM estimations from real observations. Apparently, the strategy (i.e. splitting real observations in data-arcs, whether they stem from the close approaches of Phobos by spacecraft or from analysis of the s/c orbit evolution around Mars) of the estimations has an impact on the Phobos GM estimation.

  15. A comparison study on the behavior of human endometrial stem cell-derived osteoblast cells on PLGA/HA nanocomposite scaffolds fabricated by electrospinning and freeze-drying methods.

    PubMed

    Namini, Mojdeh Salehi; Bayat, Neda; Tajerian, Roxana; Ebrahimi-Barough, Somayeh; Azami, Mahmoud; Irani, Shiva; Jangjoo, Saranaz; Shirian, Sadegh; Ai, Jafar

    2018-03-27

    An engineered tissue structure is an artificial scaffold combined with cells and signaling factors. Among various polymers, the polylactide-co-glycolide/hydroxyapatite (PLGA/HA) has attracted much attention due to their optimal properties. The aim of this study was to study the behavior of human endometrial stem cell (hEnSC)-derived osteoblast cells cultured on PLGA/HA nanocomposite scaffolds. hEnSCs were isolated and exposed to osteogenic media for 21 days. Differentiated cells were cultured on PLGA/HA synthetic scaffolds. The PLGA/HA-based nanocomposite scaffolds were fabricated using either electrospinning or freeze-drying methods. Behavior of the cells was evaluated a week after seeding hEnSC-derived osteoblast-like cells on these scaffolds. Osteogenesis was investigated in terms of alkaline phosphatase activity, gene expression, immunocytochemistry (ICC), proliferation, and scanning electron microscopy (SEM). Moreover, scaffold properties, such as pore size and morphology of the cells, onto the scaffolds were evaluated using SEM. Furthermore, biocompatibility of these scaffolds was confirmed by 3-(4,5-dimethylthiazoyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The matrix mineralization was proved by alizarin red staining, and the osteogenic media-treated cultures positively expressed osteocalcin and osteopontin markers. Moreover, qRT-PCR results confirmed the positive gene expression of osteopontin and osteonectin in the differentiated osteoblast-like cells. The results of behavior assessment of the cultured cells on electrospinning and freeze-dried scaffolds showed that the behavior of the cultured cells on the freeze-dried PLGA/HA scaffolds was significantly better than the electrospinning PLGA/HA scaffolds. It has been shown that the freeze-dried PLGA/HA nanocomposite scaffolds can appropriately support the attachment and proliferation of the differentiated osteoblast cells and are a suitable candidate for bone tissue engineering.

  16. Fibrin matrix for suspension of regenerative cells in an artificial nerve conduit.

    PubMed

    Kalbermatten, D F; Kingham, P J; Mahay, D; Mantovani, C; Pettersson, J; Raffoul, W; Balcin, H; Pierer, G; Terenghi, G

    2008-06-01

    Peripheral nerve injury presents with specific problems of neuronal reconstructions, and from a clinical viewpoint a tissue engineering approach would facilitate the process of repair and regeneration. We have previously used artificial nerve conduits made from bioresorbable poly-3-hydroxybutyrate (PHB) in order to refine the ways in which peripheral nerves are repaired and reconnected to the target muscles and skin. The addition of Schwann cells (SC) or differentiated mesenchymal stem cells (dMSC) to the conduits enhances regeneration. In this study, we have used a matrix based on fibrin (Tisseel) to fill optimally the nerve-conduits with cells. In vitro analysis showed that both SC and MSC adhered significantly better to PHB in the presence of fibrin and cells continued to maintain their differentiated state. Cells were more optimally distributed throughout the conduit when seeded in fibrin than by delivery in growth medium alone. Transplantation of the nerve conduits in vivo showed that cells in combination with fibrin matrix significantly increased nerve regeneration distance (using PGP9.5 and S100 distal and proximal immunohistochemistry) when compared with empty PHB conduits. This study shows the beneficial combinatory effect of an optimised matrix, cells and conduit material as a step towards bridging nerve gaps which should ultimately lead to improved functional recovery following nerve injury.

  17. Hydrogel microstructure live-cell array for multiplexed analyses of cancer stem cells, tumor heterogeneity and differential drug response at single-element resolution.

    PubMed

    Afrimzon, E; Botchkina, G; Zurgil, N; Shafran, Y; Sobolev, M; Moshkov, S; Ravid-Hermesh, O; Ojima, I; Deutsch, M

    2016-03-21

    Specific phenotypic subpopulations of cancer stem cells (CSCs) are responsible for tumor development, production of heterogeneous differentiated tumor mass, metastasis, and resistance to therapies. The development of therapeutic approaches based on targeting rare CSCs has been limited partially due to the lack of appropriate experimental models and measurement approaches. The current study presents new tools and methodologies based on a hydrogel microstructure array (HMA) for identification and multiplex analyses of CSCs. Low-melt agarose integrated with type I collagen, a major component of the extracellular matrix (ECM), was used to form a solid hydrogel array with natural non-adhesive characteristics and high optical quality. The array contained thousands of individual pyramidal shaped, nanoliter-volume micro-chambers (MCs), allowing concomitant generation and measurement of large populations of free-floating CSC spheroids from single cells, each in an individual micro-chamber (MC). The optical live cell platform, based on an imaging plate patterned with HMA, was validated using CSC-enriched prostate and colon cancer cell lines. The HMA methodology and quantitative image analysis at single-element resolution clearly demonstrates several levels of tumor cell heterogeneity, including morphological and phenotypic variability, differences in proliferation capacity and in drug response. Moreover, the system facilitates real-time examination of single stem cell (SC) fate, as well as drug-induced alteration in expression of stemness markers. The technology may be applicable in personalized cancer treatment, including multiplex ex vivo analysis of heterogeneous patient-derived tumor specimens, precise detection and characterization of potentially dangerous cell phenotypes, and for representative evaluation of drug sensitivity of CSCs and other types of tumor cells.

  18. Glycome Diagnosis of Human Induced Pluripotent Stem Cells Using Lectin Microarray*

    PubMed Central

    Tateno, Hiroaki; Toyota, Masashi; Saito, Shigeru; Onuma, Yasuko; Ito, Yuzuru; Hiemori, Keiko; Fukumura, Mihoko; Matsushima, Asako; Nakanishi, Mio; Ohnuma, Kiyoshi; Akutsu, Hidenori; Umezawa, Akihiro; Horimoto, Katsuhisa; Hirabayashi, Jun; Asashima, Makoto

    2011-01-01

    Induced pluripotent stem cells (iPSCs) can now be produced from various somatic cell (SC) lines by ectopic expression of the four transcription factors. Although the procedure has been demonstrated to induce global change in gene and microRNA expressions and even epigenetic modification, it remains largely unknown how this transcription factor-induced reprogramming affects the total glycan repertoire expressed on the cells. Here we performed a comprehensive glycan analysis using 114 types of human iPSCs generated from five different SCs and compared their glycomes with those of human embryonic stem cells (ESCs; nine cell types) using a high density lectin microarray. In unsupervised cluster analysis of the results obtained by lectin microarray, both undifferentiated iPSCs and ESCs were clustered as one large group. However, they were clearly separated from the group of differentiated SCs, whereas all of the four SCs had apparently distinct glycome profiles from one another, demonstrating that SCs with originally distinct glycan profiles have acquired those similar to ESCs upon induction of pluripotency. Thirty-eight lectins discriminating between SCs and iPSCs/ESCs were statistically selected, and characteristic features of the pluripotent state were then obtained at the level of the cellular glycome. The expression profiles of relevant glycosyltransferase genes agreed well with the results obtained by lectin microarray. Among the 38 lectins, rBC2LCN was found to detect only undifferentiated iPSCs/ESCs and not differentiated SCs. Hence, the high density lectin microarray has proved to be valid for not only comprehensive analysis of glycans but also diagnosis of stem cells under the concept of the cellular glycome. PMID:21471226

  19. Structures, stability and electronic properties of bimetallic Cun-1Sc and Cun-2Sc2 (n = 2-7) clusters

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Zhao, Zhen; Zhou, Zhonghao; Wang, Qi

    2018-02-01

    To investigate the interface between the main phases of Cu-Sc alloys, the structures, stability and electronic properties of bimetallic Cun-1Sc and Cun-2Sc2 (n = 2-7) clusters are systematically calculated by the GGA-PW91 functional. The results reveal that the structures of Cun-1Sc and Cun-2Sc2 (n = 2-7) clusters inherited those of pure Cun (n = 2-7) clusters and they maintained higher symmetry. Cu5Sc cluster possesses more stable than its neighbors while Cu2Sc2 cluster is less stable than its neighbors by binding energy. Cu5Sc cluster possesses the highest kinetic stability of Cun-1Sc clusters and CuSc2, Cu3Sc2 and Cu5Sc2 clusters possess higher kinetic stability than their neighbors by HOMO-LUMO gap. NBO analysis reveals that Cu-Sc atoms have less pd orbital hybridization in the Sc doping Cun (n = 2-7) clusters.

  20. Sharp threshold of blow-up and scattering for the fractional Hartree equation

    NASA Astrophysics Data System (ADS)

    Guo, Qing; Zhu, Shihui

    2018-02-01

    We consider the fractional Hartree equation in the L2-supercritical case, and find a sharp threshold of the scattering versus blow-up dichotomy for radial data: If M[u0 ]s -sc/sc E [u0 ] < M[ Q ]s -sc/sc E [ Q ] and M[u0 ]s -sc/sc ‖u0‖ H˙s 2 < M[ Q ]s -sc/sc ‖Q‖ H˙s 2 , then the solution u (t) is globally well-posed and scatters; if M[u0 ]s -sc/sc E [u0 ] < M[ Q ]s -sc/sc E [ Q ] and M[u0 ]s -sc/sc ‖u0‖ H˙s 2 > M[ Q ]s -sc/sc ‖Q‖ H˙s 2 , the solution u (t) blows up in finite time. This condition is sharp in the sense that the solitary wave solution eit Q (x) is global but not scattering, which satisfies the equality in the above conditions. Here, Q is the ground-state solution for the fractional Hartree equation.

  1. Gene function in early mouse embryonic stem cell differentiation

    PubMed Central

    Sene, Kagnew Hailesellasse; Porter, Christopher J; Palidwor, Gareth; Perez-Iratxeta, Carolina; Muro, Enrique M; Campbell, Pearl A; Rudnicki, Michael A; Andrade-Navarro, Miguel A

    2007-01-01

    Background Little is known about the genes that drive embryonic stem cell differentiation. However, such knowledge is necessary if we are to exploit the therapeutic potential of stem cells. To uncover the genetic determinants of mouse embryonic stem cell (mESC) differentiation, we have generated and analyzed 11-point time-series of DNA microarray data for three biologically equivalent but genetically distinct mESC lines (R1, J1, and V6.5) undergoing undirected differentiation into embryoid bodies (EBs) over a period of two weeks. Results We identified the initial 12 hour period as reflecting the early stages of mESC differentiation and studied probe sets showing consistent changes of gene expression in that period. Gene function analysis indicated significant up-regulation of genes related to regulation of transcription and mRNA splicing, and down-regulation of genes related to intracellular signaling. Phylogenetic analysis indicated that the genes showing the largest expression changes were more likely to have originated in metazoans. The probe sets with the most consistent gene changes in the three cell lines represented 24 down-regulated and 12 up-regulated genes, all with closely related human homologues. Whereas some of these genes are known to be involved in embryonic developmental processes (e.g. Klf4, Otx2, Smn1, Socs3, Tagln, Tdgf1), our analysis points to others (such as transcription factor Phf21a, extracellular matrix related Lama1 and Cyr61, or endoplasmic reticulum related Sc4mol and Scd2) that have not been previously related to mESC function. The majority of identified functions were related to transcriptional regulation, intracellular signaling, and cytoskeleton. Genes involved in other cellular functions important in ESC differentiation such as chromatin remodeling and transmembrane receptors were not observed in this set. Conclusion Our analysis profiles for the first time gene expression at a very early stage of mESC differentiation, and identifies a functional and phylogenetic signature for the genes involved. The data generated constitute a valuable resource for further studies. All DNA microarray data used in this study are available in the StemBase database of stem cell gene expression data [1] and in the NCBI's GEO database. PMID:17394647

  2. The influence of shear-velocity heterogeneity on ScS2/ScS amplitude ratios and estimates of Q in the mantle

    NASA Astrophysics Data System (ADS)

    Ritsema, J.; Chaves, C. A. M.

    2016-12-01

    Regional waveforms of deep-focus Tonga-Fiji earthquakes indicate anomalous traveltime differences (ScS2-ScS) and amplitude ratios (ScS2/ScS) of the phases ScS and ScS2. The correlation between the ScS2-ScS delay time and the ScS2/ScS amplitude ratio suggests that shear-wave apparent Q in the mantle below the Tonga-Fiji region is highest when shear-wave velocities are lowest. This observation is unexpected if temperature variations were responsible for the seismic anomalies. Using spectral-element-method waveform simulations for four tomographic models we demonstrate that focusing and scattering of shear waves by long-wavelength 3D heterogeneity in the mantle may overwhelm the signal from intrinsic attenuation in long-period ScS2/ScS amplitude ratios. The tomographic models reproduce the variability in recorded ScS2-ScS difference times and ScS2/ScS amplitude ratios. Variations in shear-wave attenuation (i.e., the quality factor Q) are not necessary to explain the data. An explanation for slow shear wave propagation without intrinsic attenuation does not require a creative solution from mineral physics.

  3. The influence of shear-velocity heterogeneity on ScS2/ScS amplitude ratios and estimates of Q in the mantle

    NASA Astrophysics Data System (ADS)

    Chaves, Carlos A. M.; Ritsema, Jeroen

    2016-08-01

    Regional waveforms of deep-focus Tonga-Fiji earthquakes indicate anomalous traveltime differences (ScS2-ScS) and amplitude ratios (ScS2/ScS) of the phases ScS and ScS2. The correlation between the ScS2-ScS delay time and the ScS2/ScS amplitude ratio suggests that shear wave apparent Q in the mantle below the Tonga-Fiji region is highest when shear wave velocities are lowest. This observation is unexpected if temperature variations were responsible for the seismic anomalies. Using spectral element method waveform simulations for four tomographic models, we demonstrate that focusing and scattering of shear waves by long-wavelength 3-D heterogeneity in the mantle may overwhelm the signal from intrinsic attenuation in long-period ScS2/ScS amplitude ratios. The tomographic models reproduce the trends in recorded ScS2-ScS difference times and ScS2/ScS amplitude ratios. Although they cannot be ruled out, variations in shear wave attenuation (i.e., the quality factor Q) are not necessary to explain the data.

  4. A preliminary evaluation of synthetic cannabinoid use among adolescent cannabis users: Characteristics and treatment outcomes.

    PubMed

    Blevins, Claire E; Banes, Kelsey E; Stephens, Robert S; Walker, Denise D; Roffman, Roger A

    2016-12-01

    Little is known regarding the use of synthetic cannabinoids (SC), particularly use among adolescent substance users who may be at higher risk. The present exploratory study seeks to describe SC use and subjective effects among cannabis-using adolescents as well as compare the characteristics of cannabis users who do and do not use SC. Exploratory analyses evaluated cannabis treatment outcomes among SC users and non-users. Participants enrolled in a randomized, controlled intervention for cannabis-using high school students aged 14-19 (N=252) completed questionnaires regarding their use of SC and other substances. Those who used SC in the past 60days reported subjective effects of SC, consequences, and SC use disorder symptoms. Baseline characteristics, alcohol and other drug use, and treatment outcomes of SC users were compared to participants who never tried SC. Within this sample 29% had tried SC, and 6% used SC recently. Although most reported use at a relatively low rate, 43% of recent SC users reported SC use-disorder symptoms. Positive and negative subjective effects of SC were endorsed, with positive subjective effects reported more often. SC use was associated with more cannabis use, but not more alcohol or other (non-SC and non-cannabis) drug use. SC users did not differ from non-users on cannabis treatment outcomes. This exploratory study described SC use, and compared characteristics and treatment outcomes among SC users and non-users. Negative subjective effects of SC were reported as occurring less often, but SC use was associated with use disorder psychopathology. SC use was associated with more problematic cannabis use at baseline, but was not associated with use of other substances or differences in treatment outcome. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Construction of a Dual-Fluorescence Reporter System to Monitor the Dynamic Progression of Pluripotent Cell Differentiation.

    PubMed

    Sun, Wu-Sheng; Chun, Ju-Lan; Do, Jeong-Tae; Kim, Dong-Hwan; Ahn, Jin-Seop; Kim, Min-Kyu; Hwang, In-Sul; Kwon, Dae-Jin; Hwang, Seong-Soo; Lee, Jeong-Woong

    2016-01-01

    Oct4 is a crucial germ line-specific transcription factor expressed in different pluripotent cells and downregulated in the process of differentiation. There are two conserved enhancers, called the distal enhancer (DE) and proximal enhancer (PE), in the 5' upstream regulatory sequences (URSs) of the mouse Oct4 gene, which were demonstrated to control Oct4 expression independently in embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs). We analyzed the URSs of the pig Oct4 and identified two similar enhancers that were highly consistent with the mouse DE and PE. A dual-fluorescence reporter was later constructed by combining a DE-free- Oct4 -promoter-driven EGFP reporter cassette with a PE-free- Oct4 -promoter-driven mCherry reporter cassette. Then, it was tested in a mouse ESC-like cell line (F9) and a mouse EpiSC-like cell line (P19) before it is formally used for pig. As a result, a higher red fluorescence was observed in F9 cells, while green fluorescence was primarily detected in P19 cells. This fluorescence expression pattern in the two cell lines was consistent with that in the early naïve pluripotent state and late primed pluripotent state during differentiation of mouse ESCs. Hence, this reporter system will be a convenient tool for screening out ESC-like naïve pluripotent stem cells from other metastable state cells in a heterogenous population.

  6. Transportation behaviour of fluopicolide and its control effect against Phytophthora capsici in greenhouse tomatoes after soil application.

    PubMed

    Jiang, Lili; Wang, Hongyan; Xu, Hui; Qiao, Kang; Xia, Xiaoming; Wang, Kaiyun

    2015-07-01

    Fluopicolide, a novel benzamide fungicide, was registered for control of oomycete pathogens, including Phytophthora capsici. In this study, fluopicolide (5% SC) was applied in soil at rates of 1.5, 3 and 6 L ha(-1) [the normal (ND), double (DD) and quadruple dosages (QD) respectively] to investigate its transportation behaviour and control efficiency on tomato blight as a soil treatment agent. The results showed that fluopicolide applied to soil could be absorbed by tomato roots and then transplanted to stems and leaves. It could exist in tomato roots for more than 30 days, and in leaves and stems until day 20 after application. The decline in fluopicolide in soil was in accordance with a first-order dynamics equation, with half-lives of 5.33, 4.75 and 5.42 days for the ND, DD and QD treatments respectively. The control efficiencies of fluopicolide were better with soil application than with spraying application, and the inhibition ratios were 93.02, 97.67 and 100 on day 21 for the ND, DD and QD treatments respectively. Soil application of fluopicolide could control P. capsici in greenhouse tomatoes with high efficiency and long persistence. © 2014 Society of Chemical Industry.

  7. Mapping human pluripotent stem cell differentiation pathways using high throughput single-cell RNA-sequencing.

    PubMed

    Han, Xiaoping; Chen, Haide; Huang, Daosheng; Chen, Huidong; Fei, Lijiang; Cheng, Chen; Huang, He; Yuan, Guo-Cheng; Guo, Guoji

    2018-04-05

    Human pluripotent stem cells (hPSCs) provide powerful models for studying cellular differentiations and unlimited sources of cells for regenerative medicine. However, a comprehensive single-cell level differentiation roadmap for hPSCs has not been achieved. We use high throughput single-cell RNA-sequencing (scRNA-seq), based on optimized microfluidic circuits, to profile early differentiation lineages in the human embryoid body system. We present a cellular-state landscape for hPSC early differentiation that covers multiple cellular lineages, including neural, muscle, endothelial, stromal, liver, and epithelial cells. Through pseudotime analysis, we construct the developmental trajectories of these progenitor cells and reveal the gene expression dynamics in the process of cell differentiation. We further reprogram primed H9 cells into naïve-like H9 cells to study the cellular-state transition process. We find that genes related to hemogenic endothelium development are enriched in naïve-like H9. Functionally, naïve-like H9 show higher potency for differentiation into hematopoietic lineages than primed cells. Our single-cell analysis reveals the cellular-state landscape of hPSC early differentiation, offering new insights that can be harnessed for optimization of differentiation protocols.

  8. Effects of substituting ytterbium for scandium on the microstructure and properties of Al-Sc and Al-Mg-Sc alloys =

    NASA Astrophysics Data System (ADS)

    Tuan, Nguyen Quoc

    Al(Sc) alloys represent a new class of potential alloys for high performance structural applications. The excellent properties obtained from the combination of solid-solution hardening and precipitation hardening in Al-Mg-Sc alloys make these alloys very attractive to automotive, aerospace, and structural applications. However, the Sc high cost limits the applications and the addition of cheaper alloying elements that substitutes partially Sc are not only desirable but crucial. In order to reduce the cost of Sc-containing Al alloys and maintain their mechanical properties, the microstructure and mechanical properties of Al-Sc-Yb and Al-Mg-Sc-Yb alloys in comparison with Al-Sc and Al-Mg-Sc alloys were studied. The results showed the similarity of microstructure, hardness and aging behaviour of Al-0.24Sc-0.07Yb alloy in comparison with Al-0.28Sc alloy and Al-4 wt% Mg-0.3 wt% Sc alloy with Al-4 wt% Mg-0.24 wt% Sc-0.06 wt% Yb alloy. The approximately spheroidal Al3Sc and Al3(Sc,Yb) precipitates were uniformly distributed throughout the alpha-Al matrix. The precipitates remain fully coherent with alpha-Al matrix even after aging at high temperature for long time. In another aspect, the grain refinement in Al-Mg-Sc alloys with and without ultrasonic treatment at various pouring temperatures was investigated. The average grain size of Al-Mg-Sc alloy remarkably decreases by increasing the content of Mg or by adding 0.3 wt% of Sc. The pouring temperature has a strong effect on the microstructure of Al-1Mg-0.3Sc alloy. Lower pouring temperature leads to smaller grain size and more homogeneous microstructure. Ultrasonic vibration proved to be a potential grain refinement technique of Al-1Mg-0.3Sc. Significant grain refinement was obtained by applying ultrasonic treatment within the temperature range from 700 to 740 °C. The corrosion behaviour of Al-Sc, Al-Sc-Yb, Al-Mg, Al-Mg-Sc and Al-Mg-Sc-Yb alloys in 3.5 wt% NaCl solution was investigated by immersion and potentiodynamic polarisation analysis in order to understand the effect of Sc, Yb, and heat treatment on the localized corrosion and electrochemical behaviour. The addition of Yb decreases the corrosion tendency and improves the pitting corrosion resistance of Al-Sc alloy. The addition of Sc and Yb to Al-4Mg alloy decrease the susceptibility to corrosion of the heat treated alloys.

  9. Comparison of protocols measuring diffusion and partition coefficients in the stratum corneum.

    PubMed

    Rothe, H; Obringer, C; Manwaring, J; Avci, C; Wargniez, W; Eilstein, J; Hewitt, N; Cubberley, R; Duplan, H; Lange, D; Jacques-Jamin, C; Klaric, M; Schepky, A; Grégoire, S

    2017-07-01

    Partition (K) and diffusion (D) coefficients are important to measure for the modelling of skin penetration of chemicals through the stratum corneum (SC). We compared the feasibility of three protocols for the testing of 50 chemicals in our main studies, using three cosmetics-relevant model chemicals with a wide range of logP values. Protocol 1: SC concentration-depth profile using tape-stripping (measures K SC/v and D SC /H SC 2 , where H SC is the SC thickness); Protocol 2A: incubation of isolated SC with chemical (direct measurement of K SC/v only) and Protocol 2B: diffusion through isolated SC mounted on a Franz cell (measures K SC/v and D SC /H SC 2 , and is based on Fick's laws). K SC/v values for caffeine and resorcinol using Protocol 1 and 2B were within 30% of each other, values using Protocol 2A were ~two-fold higher, and all values were within 10-fold of each other. Only indirect determination of K SC/v by Protocol 2B was different from the direct measurement of K SC/v by Protocol 2A and Protocol 1 for 7-EC. The variability of K SC/v for all three chemicals using Protocol 2B was higher compared to Protocol 1 and 2A. D SC /H SC 2 values for the three chemicals were of the same order of magnitude using all three protocols. Additionally, using Protocol 1, there was very little difference between parameters measured in pig and human SC. In conclusion, K SC/v, and D SC values were comparable using different methods. Pig skin might be a good surrogate for human skin for the three chemicals tested. Copyright © 2017 The Authors Journal of Applied Toxicology published by John Wiley & Sons Ltd. Copyright © 2017 The Authors Journal of Applied Toxicology published by John Wiley & Sons Ltd.

  10. {sup 45}Sc Solid State NMR studies of the silicides ScTSi (T=Co, Ni, Cu, Ru, Rh, Pd, Ir, Pt)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmening, Thomas; Eckert, Hellmut, E-mail: eckerth@uni-muenster.de; Fehse, Constanze M.

    The silicides ScTSi (T=Fe, Co, Ni, Cu, Ru, Rh, Pd, Ir, Pt) were synthesized by arc-melting and characterized by X-ray powder diffraction. The structures of ScCoSi, ScRuSi, ScPdSi, and ScIrSi were refined from single crystal diffractometer data. These silicides crystallize with the TiNiSi type, space group Pnma. No systematic influences of the {sup 45}Sc isotropic magnetic shift and nuclear electric quadrupolar coupling parameters on various structural distortion parameters calculated from the crystal structure data can be detected. {sup 45}Sc MAS-NMR data suggest systematic trends in the local electronic structure probed by the scandium atoms: both the electric field gradients andmore » the isotropic magnetic shifts relative to a 0.2 M aqueous Sc(NO{sub 3}){sub 3} solution decrease with increasing valence electron concentration and within each T group the isotropic magnetic shift decreases monotonically with increasing atomic number. The {sup 45}Sc nuclear electric quadrupolar coupling constants are generally well reproduced by quantum mechanical electric field gradient calculations using the WIEN2k code. Highlights: Black-Right-Pointing-Pointer Arc-melting synthesis of silicides ScTSi. Black-Right-Pointing-Pointer Single crystal X-ray data of ScCoSi, ScRuSi, ScPdSi, and ScIrSi. Black-Right-Pointing-Pointer {sup 45}Sc solid state NMR of silicides ScTSi.« less

  11. Psychiatric comorbidity associated with synthetic cannabinoid use compared to cannabis.

    PubMed

    Bassir Nia, Anahita; Medrano, Benjamin; Perkel, Charles; Galynker, Igor; Hurd, Yasmin L

    2016-12-01

    Synthetic cannabinoids (SC) use has had a dramatic increase in recent years, but data regarding their adverse effects on mental health is limited. In this study, we compared clinical presentations of SC users with cannabis users in a psychiatric inpatient setting. Digital charts of all patients who were admitted to a dual diagnosis psychiatric unit in one year were reviewed. Patients who had any current substance use disorder were categorized in four groups: (1) SC use and cannabis use (SC+MJ+), (2) SC use without cannabis use (SC+MJ-), (3) cannabis use without SC use (SC-MJ+), and (4) No SC or cannabis use (SC-MJ-). A total of 594 charts were included. SC+MJ- patients had significantly more psychotic symptoms (OR: 4.44, 95% CI: 1.98-9.94), followed by SC+MJ+ (OR: 3.61, 95% CI: 1.87-6.97) and SC-MJ+ (OR: 1.87, 95%CI: 1.33-2.64) patients. The SC+MJ- group also had more agitation and aggression was most prominent in SC+MJ+ subjects. Multivariate analyses showed that the psychiatric associations of SC and cannabis use remained significant even after controlling for potential confounds such as other substance use. The prominent psychiatric features of SC users as compared to cannabis users in an inpatient setting are psychotic presentations and agitation, which have important treatment implications. © The Author(s) 2016.

  12. The study of dielectric properties of the endohedral fullerenes

    NASA Astrophysics Data System (ADS)

    Bhusal, Shusil

    Dielectric response of the metal nitride fullerenes is studied using the density functional theory at the all-electron level using generalized gradient approximation. The dielectric response is studied by computing the static dipole polarizabilities using the finite field method, i.e. by numerically differentiating the dipole moments with respect to electric field. The endohedral fullerenes studied in this work are Sc3N C68(6140), Sc3N C68(6146), Sc3N C70(7854), Sc3N C70(7960), Sc3N C76(17490), Sc3N C78(22010), Sc3N C80(31923), Sc3N C80(31924), Sc3N C82(39663), Sc3N C90(43), Sc3N C90(44), Sc3N C92(85), Sc3N C94(121), Sc3N C96(186), Sc3N C98(166). Using the Voronoi and Hirschfield approaches as implemented in our NRLMOL code, we determine the atomic contributions to the total polarizability. The site-specific contributions to the polarizability of endohedral fullerenes allowed us to determine the polarizability of two subsystems: the fullerene shell and the encapsulated Sc3N unit. Our results showed that the contributions to the total polarizability from the encapsulated Sc3N units are vanishingly small. Thus, the total polarizability of the endohedral fullerene is almost entirely due to the outer fullerene shell. These fullerenes are excellent molecular models of a Faraday cage.

  13. α-ScVSe2O8, β-ScVSe2O8, and ScVTe2O8: new quaternary mixed metal oxides composed of only second-order Jahn-Teller distortive cations.

    PubMed

    Kim, Yeong Hun; Lee, Dong Woo; Ok, Kang Min

    2013-10-07

    Three new quaternary scandium vanadium selenium/tellurium oxides, α-ScVSe2O8, β-ScVSe2O8, and ScVTe2O8 have been synthesized through hydrothermal and standard solid-state reactions. Although all three reported materials are stoichiometrically similar, they exhibit different crystal structures: α-ScVSe2O8 has a three-dimensional framework structure consisting of ScO6, VO6, and SeO3 groups. β-ScVSe2O8 reveals another three-dimensional framework composed of ScO7, VO5, and SeO3 polyhedra. ScVTe2O8 shows a layered structure with ScO6, VO4, and TeO4 polyhedra. Interestingly, the constituent cations, that is, Sc(3+), V(5+), Se(4+), and Te(4+) are all in a distorted coordination environment attributable to second-order Jahn-Teller (SOJT) effects. Complete characterizations including infrared spectroscopy, elemental analyses, thermal analyses, dipole moment calculation, and the magnitudes of out-of-center distortions for the compounds are reported. Transformation reactions suggest that α-ScVSe2O8 may change to β-ScVSe2O8, and then to Sc2(SeO3)3·H2O under hydrothermal conditions.

  14. SC*994C>T causes the Sc(null) phenotype in Pacific Islanders and successful transfusion of Sc3+ blood to a patient with anti-Sc3.

    PubMed

    Reid, Marion E; Hue-Roye, Kim; Velliquette, Randall W; Larimore, Kathleen; Moscarelli, Sue; Ohswaldt, Nicolas; Lomas-Francis, Christine

    2013-01-01

    Antigens in the SC blood group system are expressed by the human erythrocyte membrane-associated protein (ERMAP).Two molecular bases have been reported for the Sc,un phenotype:SC*307del2 and SC*994C>T. We report our investigation of the molecular background of five Sc,n1 individuals from the Pacific Islands and describe the successful transfusion of Sc3+ blood to a patient with anti-Sc3 in her plasma. SC (ERMAP) exons 2,3, and 12 and their flanking intronic regions were analyzed. TheSC*994C>T change introduces a restriction enzyme cleavage site for Tsp45I, and polymerase chain reaction (PCR) products from exon 12 were subjected to this PCR-restriction fragment length polymorphism (RFLP) assay. The five samples had the variant SC*994T/T. One sample, from a first cousin of one Marshallese proband, was heterozygous for SC*1514C/T (in the 3' untranslated region); the other four samples were SC*1514C/C(consensus sequence). Samples from white donors (n = 100) and African American donors (n = 99) were tested using the Tsp45IPCR-RFLP assay; all gave a banding pattern that was consistent with the SC*994C/C consensus sequence. In all five samples,our analyses showed homozygosity for the nonsense nucleotide change SC*994C>Tin an allele carrying the nucleotide associated with SLd. Further investigation determined that one of the probands reported previously with the SC*994C>T change was from the Marshall Islands (which form part of the Micronesian Pacific Islands) and the other was from an unspecified location within the large collection of Pacific Islands. Taken together, the five known probands with the SC*994C>T silencing nucleotide change were from the Pacific Islands.

  15. Breakdown of Self-Incompatibility in a Natural Population of Petunia axillaris Caused by Loss of Pollen Function1

    PubMed Central

    Tsukamoto, Tatsuya; Ando, Toshio; Takahashi, Koichi; Omori, Takahiro; Watanabe, Hitoshi; Kokubun, Hisashi; Marchesi, Eduardo; Kao, Teh-hui

    2003-01-01

    Although Petunia axillaris subsp. axillaris is described as a self-incompatible taxon, some of the natural populations we have identified in Uruguay are composed of both self-incompatible and self-compatible plants. Here, we studied the self-incompatibility (SI) behavior of 50 plants derived from such a mixed population, designated U83, and examined the cause of the breakdown of SI. Thirteen plants were found to be self-incompatible, and the other 37 were found to be self-compatible. A total of 14 S-haplotypes were represented in these 50 plants, including two that we had previously identified from another mixed population, designated U1. All the 37 self-compatible plants carried either an SC1- or an SC2-haplotype. SC1SC1 and SC2SC2 homozygotes were generated by self-pollination of two of the self-compatible plants, and they were reciprocally crossed with 40 self-incompatible S-homozygotes (S1S1 through S40S40) generated from plants identified from three mixed populations, including U83. The SC1SC1 homozygote was reciprocally compatible with all the genotypes examined. The SC2SC2 homozygote accepted pollen from all but the S17S17 homozygote (identified from the U1 population), but the S17S17 homozygote accepted pollen from the SC2SC2 homozygote. cDNAs encoding SC2- and S17-RNases were cloned and sequenced, and their nucleotide sequences were completely identical. Analysis of bud-selfed progeny of heterozygotes carrying SC1 or SC2 showed that the SI behavior of SC1 and SC2 was identical to that of SC1 and SC2 homozygotes, respectively. All these results taken together suggested that the SC2-haplotype was a mutant form of the S17-haplotype, with the defect lying in the pollen function. The possible nature of the mutation is discussed. PMID:12692349

  16. Bisulfite-independent analysis of CpG island methylation enables genome-scale stratification of single cells

    PubMed Central

    Han, Lin; Wu, Hua-Jun; Zhu, Haiying; Kim, Kun-Yong; Marjani, Sadie L.; Riester, Markus; Euskirchen, Ghia; Zi, Xiaoyuan; Yang, Jennifer; Han, Jasper; Snyder, Michael; Park, In-Hyun; Irizarry, Rafael; Weissman, Sherman M.

    2017-01-01

    Abstract Conventional DNA bisulfite sequencing has been extended to single cell level, but the coverage consistency is insufficient for parallel comparison. Here we report a novel method for genome-wide CpG island (CGI) methylation sequencing for single cells (scCGI-seq), combining methylation-sensitive restriction enzyme digestion and multiple displacement amplification for selective detection of methylated CGIs. We applied this method to analyzing single cells from two types of hematopoietic cells, K562 and GM12878 and small populations of fibroblasts and induced pluripotent stem cells. The method detected 21 798 CGIs (76% of all CGIs) per cell, and the number of CGIs consistently detected from all 16 profiled single cells was 20 864 (72.7%), with 12 961 promoters covered. This coverage represents a substantial improvement over results obtained using single cell reduced representation bisulfite sequencing, with a 66-fold increase in the fraction of consistently profiled CGIs across individual cells. Single cells of the same type were more similar to each other than to other types, but also displayed epigenetic heterogeneity. The method was further validated by comparing the CpG methylation pattern, methylation profile of CGIs/promoters and repeat regions and 41 classes of known regulatory markers to the ENCODE data. Although not every minor methylation differences between cells are detectable, scCGI-seq provides a solid tool for unsupervised stratification of a heterogeneous cell population. PMID:28126923

  17. CIP2A is a candidate therapeutic target in clinically challenging prostate cancer cell populations.

    PubMed

    Khanna, Anchit; Rane, Jayant K; Kivinummi, Kati K; Urbanucci, Alfonso; Helenius, Merja A; Tolonen, Teemu T; Saramäki, Outi R; Latonen, Leena; Manni, Visa; Pimanda, John E; Maitland, Norman J; Westermarck, Jukka; Visakorpi, Tapio

    2015-08-14

    Residual androgen receptor (AR)-signaling and presence of cancer stem-like cells (SCs) are the two emerging paradigms for clinically challenging castration-resistant prostate cancer (CRPC). Therefore, identification of AR-target proteins that are also overexpressed in the cancer SC population would be an attractive therapeutic approach.Our analysis of over three hundred clinical samples and patient-derived prostate epithelial cultures (PPECs), revealed Cancerous inhibitor of protein phosphatase 2A (CIP2A) as one such target. CIP2A is significantly overexpressed in both hormone-naïve prostate cancer (HN-PC) and CRPC patients . CIP2A is also overexpressed, by 3- and 30-fold, in HN-PC and CRPC SCs respectively. In vivo binding of the AR to the intronic region of CIP2A and its functionality in the AR-moderate and AR-high expressing LNCaP cell-model systems is also demonstrated. Further, we show that AR positively regulates CIP2A expression, both at the mRNA and protein level. Finally, CIP2A depletion reduced cell viability and colony forming efficiency of AR-independent PPECs as well as AR-responsive LNCaP cells, in which anchorage-independent growth is also impaired.These findings identify CIP2A as a common denominator for AR-signaling and cancer SC functionality, highlighting its potential therapeutic significance in the most clinically challenging prostate pathology: castration-resistant prostate cancer.

  18. Relationship between Czech Parent and Child Pedometer-assessed Weekday and Weekend Physical Activity and Screen Time.

    PubMed

    Sigmund, Erik; Sigmundová, Dagmar; Baďura, Petr; Voráčová, Jaroslava

    2015-11-01

    Uncovering the influences of parents' behaviour on their children's physical activity provides an insight into the lifestyle of families and development of effective family-based interventions. The aim of this study was to determine the relationship between parents' behaviour (step count (SC) and screen time (ST)) and children's SC on weekdays and at weekends. The participants (388 parents aged 35-45 and their 485 children aged 9-12) were randomly recruited from 21 Czech government funded primary schools. The participants recorded SC and ST duration for seven consecutive days (≥ 10 h/day) during April-May and September-October 2013. The associations between parents' behaviour (SC and ST) and children's SC were estimated using general linear regression separately for weekdays and weekends. Each 1,000 SC increase in mothers' (fathers') SC/weekday was associated with an extra 261 SC/day in their daughters and 413 (244) SC/day in their sons. Each 1,000 SC increase in mothers' (fathers') SC/weekend day was associated with an extra 523 (386) SC/day in their daughters and 508 (435) SC/day in their sons. A reduction in mothers' ST by 30 minutes per weekend day was associated with an extra 494 SC/day in their daughters and 467 SC/day in their sons. This study reveals a quantifiable relationship between parent-child SC/day and mothers' ST and children's SC at weekends. Weekend days are more suitable for the implementation of family-based interventions. Copyright© by the National Institute of Public Health, Prague 2015.

  19. Saccharomyces cerevisiae Differential Functionalization of Presumed ScALT1 and ScALT2 Alanine Transaminases Has Been Driven by Diversification of Pyridoxal Phosphate Interactions

    PubMed Central

    Rojas-Ortega, Erendira; Aguirre-López, Beatriz; Reyes-Vivas, Horacio; González-Andrade, Martín; Campero-Basaldúa, Jose C.; Pardo, Juan P.; González, Alicia

    2018-01-01

    Saccharomyces cerevisiae arose from an interspecies hybridization (allopolyploidiza-tion), followed by Whole Genome Duplication. Diversification analysis of ScAlt1/ScAlt2 indicated that while ScAlt1 is an alanine transaminase, ScAlt2 lost this activity, constituting an example in which one of the members of the gene pair lacks the apparent ancestral physiological role. This paper analyzes structural organization and pyridoxal phosphate (PLP) binding properties of ScAlt1 and ScAlt2 indicating functional diversification could have determined loss of ScAlt2 alanine transaminase activity and thus its role in alanine metabolism. It was found that ScAlt1 and ScAlt2 are dimeric enzymes harboring 67% identity and intact conservation of the catalytic residues, with very similar structures. However, tertiary structure analysis indicated that ScAlt2 has a more open conformation than that of ScAlt1 so that under physiological conditions, while PLP interaction with ScAlt1 allows the formation of two tautomeric PLP isomers (enolimine and ketoenamine) ScAlt2 preferentially forms the ketoenamine PLP tautomer, indicating a modified polarity of the active sites which affect the interaction of PLP with these proteins, that could result in lack of alanine transaminase activity in ScAlt2. The fact that ScAlt2 forms a catalytically active Schiff base with PLP and its position in an independent clade in “sensu strictu” yeasts suggests this protein has a yet undiscovered physiological function. PMID:29867852

  20. Sustainable Efficacy of Switching From Intravenous to Subcutaneous Tocilizumab Monotherapy in Patients With Rheumatoid Arthritis.

    PubMed

    Ogata, Atsushi; Atsumi, Tatsuya; Fukuda, Takaaki; Hirabayashi, Yasuhiko; Inaba, Masaaki; Ishiguro, Naoki; Kai, Motokazu; Kawabata, Daisuke; Kida, Daihei; Kohsaka, Hitoshi; Matsumura, Ryutaro; Minota, Seiji; Mukai, Masaya; Sumida, Takayuki; Takasugi, Kiyoshi; Tamaki, Shigenori; Takeuchi, Tsutomu; Ueda, Atsuhisa; Yamamoto, Kazuhiko; Yamanaka, Hisashi; Yoshifuji, Hajime; Nomura, Akira

    2015-10-01

    To evaluate the efficacy and safety of switching from intravenous (IV) tocilizumab (TCZ) to subcutaneous (SC) TCZ monotherapy in rheumatoid arthritis patients. Patients who had completed 24 weeks of TCZ-SC (162 mg/2 weeks) or TCZ-IV (8 mg/kg/4 weeks) monotherapy in the double-blind period of the MUSASHI study were enrolled in an 84-week open-label extension period. All received TCZ-SC (162 mg/2 weeks) monotherapy. Effects of the IV to SC switch were evaluated at week 36 (12 weeks after switching). Overall, 319 patients received ≥1 dose of TCZ-SC during the open-label extension period; 160 switched from TCZ-IV to TCZ-SC (TCZ IV/SC) and 159 continued TCZ-SC (TCZ SC/SC). Disease Activity Score in 28 joints using the erythrocyte sedimentation rate clinical remission rates were 62.5% (100 of 160) for TCZ IV/SC and 50.0% (79 of 158) for TCZ SC/SC at week 24, and were maintained at 62.5% (100 of 160) and 57.0% (90 of 158), respectively, at week 36. In the TCZ IV/SC group, 9% of patients (9 of 100) who had achieved remission at week 24 could not maintain remission at week 36. In TCZ IV/SC patients weighing ≥70 kg, the percentage with a sufficient serum TCZ concentration (≥1 μg/ml) decreased from 90.9% (10 of 11) at week 24 to 45.5% (5 of 11) at week 36. Overall safety profiles were similar in TCZ IV/SC and TCZ SC/SC except for mild injection site reactions in TCZ IV/SC. Efficacy is adequately maintained in most patients switching from TCZ-IV (8 mg/kg/4 weeks) to TCZ-SC (162 mg/2 weeks) monotherapy. Patients receiving TCZ-IV can switch to TCZ-SC without serious safety concerns. Clinical efficacy may be reduced after switching in some patients with high body weight. © 2015 The Authors. Arthritis Care & Research is published by Wiley Periodicals, Inc. on behalf of the American College of Rheumatology.

  1. Production and separation of 43Sc for radiopharmaceutical purposes.

    PubMed

    Domnanich, Katharina A; Eichler, Robert; Müller, Cristina; Jordi, Sara; Yakusheva, Vera; Braccini, Saverio; Behe, Martin; Schibli, Roger; Türler, Andreas; van der Meulen, Nicholas P

    2017-01-01

    The favorable decay properties of 43 Sc and 44 Sc for PET make them promising candidates for future applications in nuclear medicine. An advantage 43 Sc (T 1/2 = 3.89 h, Eβ + av = 476 keV [88%]) exhibits over 44 Sc, however, is the absence of co-emitted high energy γ-rays. While the production and application of 44 Sc has been comprehensively discussed, research concerning 43 Sc is still in its infancy. This study aimed at developing two different production routes for 43 Sc, based on proton irradiation of enriched 46 Ti and 43 Ca target material. 43 Sc was produced via the 46 Ti(p,α) 43 Sc and 43 Ca(p,n) 43 Sc nuclear reactions, yielding activities of up to 225 MBq and 480 MBq, respectively. 43 Sc was chemically separated from enriched metallic 46 Ti (97.0%) and 43 CaCO 3 (57.9%) targets, using extraction chromatography. In both cases, ~90% of the final activity was eluted in a small volume of 700 μL, thereby, making it suitable for direct radiolabeling. The prepared products were of high radionuclidic purity, i.e. 98.2% 43 Sc were achieved from the irradiation of 46 Ti, whereas the product isolated from irradiated 43 Ca consisted of 66.2% 43 Sc and 33.3% 44 Sc. A PET phantom study performed with 43 Sc, via both nuclear reactions, revealed slightly improved resolution over 44 Sc. In order to assess the chemical purity of the separated 43 Sc, radiolabeling experiments were performed with DOTANOC, attaining specific activities of 5-8 MBq/nmol, respectively, with a radiochemical yield of >96%. It was determined that higher 43 Sc activities were accessible via the 43 Ca production route, with a comparatively less complex target preparation and separation procedure. The product isolated from irradiated 46 Ti, however, revealed purer 43 Sc with minor radionuclidic impurities. Based on the results obtained herein, the 43 Ca route features some advantages (such as higher yields and direct usage of the purchased target material) over the 46 Ti path when aiming at 43 Sc production on a routine basis.

  2. Guidance of dorsal root ganglion neurites and Schwann cells by isolated Schwann cell topography on poly(dimethyl siloxane) conduits and films

    NASA Astrophysics Data System (ADS)

    Richardson, J. A.; Rementer, C. W.; Bruder, Jan M.; Hoffman-Kim, D.

    2011-08-01

    Biomimetic replicas of cellular topography have been utilized to direct neurite outgrowth. Here, we cultured postnatal rat dorsal root ganglion (DRG) explants in the presence of Schwann cell (SC) topography to determine the influence of SC topography on neurite outgrowth. Four distinct poly(dimethyl siloxane) conduits were fabricated within which DRG explants were cultured. To determine the contribution of SC topographical features to neurite guidance, the extent of neurite outgrowth into unpatterned conduits, conduits with randomly oriented SC replicas, and conduits with SC replicas parallel or perpendicular to the conduit long axis was measured. Neurite directionality and outgrowth from DRG were also quantified on two-dimensional SC replicas with orientations corresponding to the four conduit conditions. Additionally, live SC migration and neurite extension from DRG on SC replicas were examined as a first step toward quantification of the interactions between live SC and navigating neurites on SC replicas. DRG neurite outgrowth and morphology within conduits and on two-dimensional SC replicas were directed by the underlying SC topographical features. Maximal neurite outgrowth and alignment to the underlying features were observed into parallel conduits and on parallel two-dimensional substrates, whereas the least extent of outgrowth was observed into perpendicular conduits and on perpendicular two-dimensional replica conditions. Additionally, neurites on perpendicular conditions turned to extend along the direction of underlying SC topography. Neurite outgrowth exceeded SC migration in the direction of the underlying anisotropic SC replica after two days in culture. This finding confirms the critical role that SC have in guiding neurite outgrowth and suggests that the mechanism of neurite alignment to SC replicas depends on direct contact with cellular topography. These results suggest that SC topographical replicas may be used to direct and optimize neurite alignment, and emphasize the importance of SC features in neurite guidance.

  3. Hemopoietic tissue in newts flown aboard Foton M3

    NASA Astrophysics Data System (ADS)

    Domaratskaya, Elena I.; Almeida, Eduardo; Butorina, Nina N.; Nikonova, Tatyana M.; Grigoryan, Eleonora N.; Poplinskaya, Valentina A.; Souza, Kenneth; Skidmore, Mike

    The effect of 12-day spaceflight aboard the Foton-M3 biosatellite on the hematopoietic tissue of P. waltl newts was studied. These animals used at the same time in regeneration experiments after lens and tail tip amputation. In flight and synchronous groups there were performed video recording, temperature and radiation monitoring and continuous contact (via skin) with thymidine analog BrdU. We took differential blood counts and assessed histologically the liver in the flight (F), basal (BC) and synchronous (SC)control groups of animals. In the peripheral blood, we identified neutrophils, eosinophils, basophils, lymphocytes, and monocytes. Lymphocytes (L) and neutrophils (N) prevailed, accounting for about 60 and 20% of white blood cells, respectively. The spaceflight had no apparent effect on the differential blood count in the F group: neither the L and N contents nor the maturing to mature N - ratio differed from those in the control groups. No significant differences between F, SC and BC groups were observed with respect to the structure of hematopoietic areas and the liver morphology. As in Foton-M2, BrdU labeled cells revealed in blood as well as in the hemopoietic areas of the liver. However, in previous experiments performed at satellites Bion-10 and Foton-M2 the changes in peripheral blood contents were registered in operated F newts, and we supposed it could be the result of additive effects of spaceflight factors and stimulation of reparative potency and stress due to surgical operation. Possibly, the temperature conditions also may provide some influence on blood cell content of newts that belong to poikilothermic animals. Thus, in present experiment F and SC groups were reared in the same temperature regims, whereas it was nearly 3o C differences between SC and F groups exposed on Foton-M2. At the same time as it was found in experiments on Bion-11 and Foton-M2 spaceflight factors did not affect on differential blood counts of intact non-operated animals. The lack of pronounced blood changes in newts distinguishes them from rats and mice, which characterized marked differences either in cell content in peripheral blood or hemopoietic stem and committed cells in blood-forming tissues. Therefore taken together the data demonstrate that hemopoietic responses spaceflight factors of species from different taxonomic groups are dissimilar.

  4. First-principle calculation on mechanical and thermal properties of B2-NiSc with point defects

    NASA Astrophysics Data System (ADS)

    Yuan, Zhipeng; Cui, Hongbao; Guo, Xuefeng

    2017-01-01

    Using the first-principles plane-wave pseudo-potential method based on density functional theory, the effect of vacancy and anti-position defect on the mechanical and thermal properties of B2-NiSc intermetallics were discussed in detail. Several parameters, such as the shear modulus, bulk modulus, modulus of elasticity, C 11-C 11, the Debye temperature and Poisson's ratio, have been calculated to evaluate the effect of vacancy and anti-position defect on the hardness, ductility and thermal properties of B2-NiSc intermetallics. The results show that VNi, ScNi, VSc and NiSc the four point defects all make the crystal hardness decrease and improve plasticity of B2-NiSc intermetallics. The entropy, enthalpy and free energy of VNi, ScNi, VSc and NiSc are monotonously changed as temperature changes. From the perspective of free energy, NiSc is the most stable, while ScNi is the most unstable. Debye temperature of NiSc intermetallics with four different point defects shows VNi, ScNi, VSc and NiSc the four point defects all reduce the stability of B2-NiSc intermetallics. Project supported by the National Natural Science Foundation of China (Nos. 51301063, 51571086) and the Talent Introduction Foundation of Henan Polytechnic University (No. Y-2009).

  5. Cyclotron production of high purity (44m,44)Sc with deuterons from (44)CaCO3 targets.

    PubMed

    Alliot, C; Kerdjoudj, R; Michel, N; Haddad, F; Huclier-Markai, S

    2015-06-01

    Due to its longer half-life, (44)Sc (T1/2 = 3.97 h) as a positron emitter can be an interesting alternative to (68)Ga (T1/2 = 67.71 min). It has been already proposed as a PET radionuclide for scouting bone disease and is already available as a (44)Ti/(44)Sc generator. (44)Sc has an isomeric state, (44 m)Sc (T1/2 = 58.6 h), which can be co-produced with (44)Sc and that has been proved to be considered as an in-vivo PET generator (44 m)Sc/(44)Sc. This work presents the production route of (44 m)Sc/(44)Sc generator from (44)Ca(d,2n), its extraction/purification process and the evaluation of its performances. Irradiation was performed in a low activity target station using a deuteron beam of 16 MeV, which favors the number of (44 m)Sc atoms produced simultaneously to (44)Sc. Typical irradiation conditions were 60 min at 0.2 μA producing 44 MBq of (44)Sc with a (44)Sc/(44 m)Sc activity ratio of 50 at end of irradiation. Separations of the radionuclides were performed by means of cation exchange chromatography using a DGA® resin (Triskem). Then, the developed process was applied with bigger targets, and could be used for preclinical studies. The extraction/purification process leads to a radionucleidic purity higher than 99.99% ((43)Sc, (46)Sc, (48)Sc < DL). (44 m)Sc/(44)Sc labeling towards DOTA moiety was performed in order to get an evaluation of the specific activities that could be reached with regard to all metallic impurities from the resulting source. Reaction parameters of radiolabeling were optimized, reaching yields over 95%, and leading to a specific activity of about 10-20 MBq/nmol for DOTA. A recycling process for the enriched (44)Ca target was developed and optimized. The quality of the final batch with regard to radionucleidic purity, specific activity and metal impurities allowed a right away use for further radiopharmaceutical evaluation. This radionucleidic pair of (44 m)Sc/(44)Sc offers a quite interesting PET radionuclide for being further evaluated as an in-vivo generator. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Initial effect of controlled release chlorhexidine on subgingival microorganisms.

    PubMed

    Daneshmand, Nazanin; Jorgensen, Michael G; Nowzari, Hessam; Morrison, John L; Slots, Jørgen

    2002-10-01

    Little or no data exist on the ability of subgingival application of PerioChip (2.5 mg chlorhexidine gluconate in a biodegradable chip; Astra Pharmaceuticals, Westborough, MA, USA) to suppress periodontopathic microorganisms. The present study compared the subgingival microbiota of periodontitis sites receiving the chlorhexidine chip plus scaling and root planing (Sc/Rp) or Sc/Rp alone. Seven males and six females, mean age 49 years, with moderate to advanced periodontitis participated in the study. In each patient, two bilateral pockets probing 6-7 mm were randomly assigned to treatment by chlorhexidine chip + Sc/Rp, or by Sc/Rp alone. Subgingival placement of chlorhexidine chips was carried out according to the manufacturer's instructions. Sc/Rp was performed with hand instruments for at least 10 min in each study tooth. Subgingival samples were collected by paper-points at baseline, at 2 weeks and at 4 weeks post-treatment. Anaerobic culture methods were used for microbial isolation and identification. The microbiologic examination was carried out blindly. Microbiological data were evaluated by a repeated measures analysis of variance. No statistical difference was found in total colony counts between subgingival sites treated with chlorhexidine chip + Sc/Rp and those treated with Sc/Rp alone. Also, the percentage of major periodontal pathogens (Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis and Bacteroides forsythus) and the percentage of total periodontal pathogens (A. actinomycetemcomitans, P. gingivalis, B. forsythus, Prevotella intermedia-group, Fusobacterium, Eubacterium, Campylobacter rectus, Peptostreptococcus micros, Eikenella corrodens, enteric rods) were not significantly different between the chlorhexidine chip + Sc/Rp group and the Sc/Rp group. At baseline, A. actinomycetemcomitans was recovered from 4 chlorhexidine chip + Sc/Rp sites and 2 Sc/Rp sites, P. gingivalis from 5 chlorhexidine chip + Sc/Rp sites and 4 Sc/Rp sites, and B. forsythus from 9 chlorhexidine chip + Sc/Rp and 7 Sc/Rp sites. At 4 weeks, A. actinomycetemcomitans was detected in 2 chlorhexidine chip + Sc/Rp sites but not in any site receiving Sc/Rp, P. gingivalis in 2 chlorhexidine chip + Sc/Rp sites but not in any Sc/Rp site, and B. forsythus in 1 chlorhexidine chip + Sc/Rp and in 2 Sc/Rp sites. The present data obtained from bilateral periodontitis lesions of 13 adults suggest that chlorhexidine chip treatment of adult periodontitis lesions provides little or no additional antimicrobial benefits compared to thorough Sc/Rp alone.

  7. Segregation of Visual Response Properties in the Mouse Superior Colliculus and Their Modulation during Locomotion

    PubMed Central

    2017-01-01

    The superior colliculus (SC) receives direct input from the retina and integrates it with information about sound, touch, and state of the animal that is relayed from other parts of the brain to initiate specific behavioral outcomes. The superficial SC layers (sSC) contain cells that respond to visual stimuli, whereas the deep SC layers (dSC) contain cells that also respond to auditory and somatosensory stimuli. Here, we used a large-scale silicon probe recording system to examine the visual response properties of SC cells of head-fixed and alert male mice. We found cells with diverse response properties including: (1) orientation/direction-selective (OS/DS) cells with a firing rate that is suppressed by drifting sinusoidal gratings (negative OS/DS cells); (2) suppressed-by-contrast cells; (3) cells with complex-like spatial summation nonlinearity; and (4) cells with Y-like spatial summation nonlinearity. We also found specific response properties that are enriched in different depths of the SC. The sSC is enriched with cells with small RFs, high evoked firing rates (FRs), and sustained temporal responses, whereas the dSC is enriched with the negative OS/DS cells and with cells with large RFs, low evoked FRs, and transient temporal responses. Locomotion modulates the activity of the SC cells both additively and multiplicatively and changes the preferred spatial frequency of some SC cells. These results provide the first description of the negative OS/DS cells and demonstrate that the SC segregates cells with different response properties and that the behavioral state of a mouse affects SC activity. SIGNIFICANCE STATEMENT The superior colliculus (SC) receives visual input from the retina in its superficial layers (sSC) and induces eye/head-orientating movements and innate defensive responses in its deeper layers (dSC). Despite their importance, very little is known about the visual response properties of dSC neurons. Using high-density electrode recordings and novel model-based analysis, we found several novel visual response properties of the SC cells, including encoding of a cell's preferred orientation or direction by suppression of the firing rate. The sSC and the dSC are enriched with cells with different visual response properties. Locomotion modulates the cells in the SC. These findings contribute to our understanding of how the SC processes visual inputs, a critical step in comprehending visually guided behaviors. PMID:28760858

  8. Recruitment of the proneural gene scute to the Drosophila sex-determination pathway.

    PubMed Central

    Wrischnik, Lisa A; Timmer, John R; Megna, Lisa A; Cline, Thomas W

    2003-01-01

    In flies, scute (sc) works with its paralogs in the achaete-scute-complex (ASC) to direct neuronal development. However, in the family Drosophilidae, sc also acquired a role in the primary event of sex determination, X chromosome counting, by becoming an X chromosome signal element (XSE)-an evolutionary step shown here to have occurred after sc diverged from its closest paralog, achaete (ac). Two temperature-sensitive alleles, sc(sisB2) and sc(sisB3), which disrupt only sex determination, were recovered in a powerful F1 genetic selection and used to investigate how sc was recruited to the sex-determination pathway. sc(sisB2) revealed 3' nontranscribed regulatory sequences likely to be involved. The sc(sisB2) lesion abolished XSE activity when combined with mutations engineered in a sequence upstream of all XSEs. In contrast, changes in Sc protein sequence seem not to have been important for recruitment. The observation that the other new allele, sc(sisB3), eliminates the C-terminal half of Sc without affecting neurogenesis and that sc(sisB1), the most XSE-specific allele previously available, is a nonsense mutant, would seem to suggest the opposite, but we show that housefly Sc can substitute for fruit fly Sc in sex determination, despite lacking Drosophilidae-specific conserved residues in its C-terminal half. Lack of synergistic lethality among mutations in sc, twist, and dorsal argue against a proposed role for sc in mesoderm formation that had seemed potentially relevant to sex-pathway recruitment. The screen that yielded new sc alleles also generated autosomal duplications that argue against the textbook view that fruit fly sex signal evolution recruited a set of autosomal signal elements comparable to the XSEs. PMID:14704182

  9. A simple and robust approach to immobilization of antibody fragments.

    PubMed

    Ikonomova, Svetlana P; He, Ziming; Karlsson, Amy J

    2016-08-01

    Antibody fragments, such as the single-chain variable fragment (scFv), have much potential in research and diagnostics because of their antigen-binding ability similar to a full-sized antibody and their ease of production in microorganisms. Some applications of antibody fragments require immobilization on a surface, and we have established a simple immobilization method that is based on the biotin-streptavidin interaction and does not require a separate purification step. We genetically fused two biotinylation tags-the biotin carboxyl carrier protein (BCCP) or the AviTag minimal sequence-to six different scFvs (scFv13R4, scFvD10, scFv26-10, scFv3, scFv5, and scFv12) for site-specific biotinylation in vivo by endogenous biotin ligases produced by Escherichia coli. The biotinylated scFvs were immobilized onto streptavidin-coated plates directly from cell lysates, and immobilization was detected through enzyme-linked immunosorbent assays. All scFvs fusions were successfully immobilized, and scFvs biotinylated via the BCCP tag tended to immobilize better than those biotinylated via the AviTag, even when biotinylation efficiency was improved with the biotin ligase BirA. The ability of immobilized scFvs to bind antigens was confirmed using scFv13R4 and scFvD10 with their respective targets β-galactosidase and bacteriophage lambda head protein D (gpD). The immobilized scFv13R4 bound to β-galactosidase at the same level for both biotinylation tags when the surface was saturated with the scFv, and immobilized scFvs retained their functionality for at least 100days after immobilization. The simplicity and robustness of our method make it a promising approach for future applications that require antibody fragment immobilization. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Can scrotal circumference-based selection discard bulls with good productive and reproductive potential?

    PubMed Central

    Villadiego, Faider Alberto Castaño; Camilo, Breno Soares; León, Victor Gomez; Peixoto, Thiago; Díaz, Edgar; Okano, Denise; Maitan, Paula; Lima, Daniel; Guimarães, Simone Facioni; Siqueira, Jeanne Broch; Pinho, Rogério

    2018-01-01

    Nonlinear mixed models were used to describe longitudinal scrotal circumference (SC) measurements of Nellore bulls. Models comparisons were based on Akaike’s information criterion, Bayesian information criterion, error sum of squares, adjusted R2 and percentage of convergence. Sequentially, the best model was used to compare the SC growth curve in bulls divergently classified according to SC at 18–21 months of age. For this, bulls were classified into five groups: SC < 28cm; 28cm ≤ SC < 30cm, 30cm ≤ SC < 32cm, 32cm ≤ SC < 34cm and SC ≥ 34cm. Michaelis-Menten model showed the best fit according to the mentioned criteria. In this model, β1 is the asymptotic SC value and β2 represents the time to half-final growth and may be related to sexual precocity. Parameters of the individual estimated growth curves were used to create a new dataset to evaluate the effect of the classification, farms, and year of birth on β1 and β2 parameters. Bulls of the largest SC group presented a larger predicted SC along all analyzed periods; nevertheless, smaller SC group showed predicted SC similar to intermediate SC groups (28cm ≤ SC < 32cm), around 1200 days of age. In this context, bulls classified as improper for reproduction at 18–21 months old can reach a similar condition to those considered as good condition. In terms of classification at 18–21 months, asymptotic SC was similar among groups, farms and years; however, β2 differed among groups indicating that differences in growth curves are related to sexual precocity. In summary, it seems that selection based on SC at too early ages may lead to discard bulls with suitable reproductive potential. PMID:29494597

  11. Heterodimeric bispecific single chain variable fragments (scFv) killer engagers (BiKEs) enhance NK-cell activity against CD133+ colorectal cancer cells

    PubMed Central

    JU, Schmohl; MK, Gleason; PR, Dougherty; JS, Miller; DA, Vallera

    2015-01-01

    Background Natural killer (NK) cells are potent cytotoxic lymphocytes that play a critical role in tumor immunosurveillance and control. Cancer stem cells (CSC) initiate and sustain tumor cell growth, mediate drug refractory cancer relapse and express the well-known surface marker CD133. Methods DNA fragments from two fully humanized single chain fragment variable (scFv) antibody recognizing CD16 on NK-cells and CD133 on CSC were genetically spliced forming a novel drug, 16 × 133 BiKE that simultaneously recognizes these antigen to facilitate an immunologic synapse. The anti-CD133 was created using a fusion protein prepared by fusing DNA fragments encoding the two extracellular domains of CD133. Immunization of mice with the resulting fusion protein generated an unique antibody that recognized the molecular framework and was species cross-reactive. Results In vitro 51chromium release cytotoxicity assays at both high and low effector:target ratios demonstrated the ability of the heterodimeric biological drug to greatly enhance NK-cell killing of human Caco-2 colorectal carcinoma cells known to overexpress CD133. The tumor associated antigen specificity of the drug for CD133 even enhanced NK-cell cytotoxicity against the NK-resistant human Burkitt's lymphoma Daudi cell line, which has less than 5% CD133 surface expression. Flow cytometry analysis revealed increases in NK-cell degranulation and Interferon-γ production upon co-culture with Caco-2 targets in the presence of the drug. Conclusion These studies demonstrate that the innate immune system can be effectively recruited to kill CSC using bispecific antibodies targeting CD133, and that this anti-CD133 scFv may be useful in this bispecific platform or, perhaps, in the design of more complex trispecific molecules for carcinoma therapy. PMID:26566946

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakayama, Hironao; Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115; Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295

    Class 3 semaphorins were discovered as a family of axon guidance molecules, but are now known to be involved in diverse biologic processes. In this study, we investigated the anti-angiogenic potential of SEMA3E and SEMA3F (SEMA3E&F) in infantile hemangioma (IH). IH is a common vascular tumor that involves both vasculogenesis and angiogenesis. Our lab has identified and isolated hemangioma stem cells (HemSC), glucose transporter 1 positive (GLUT1{sup +}) endothelial cells (designated as GLUT1{sup sel} cells) based on anti-GLUT1 magnetic beads selection and GLUT1-negative endothelial cells (named HemEC). We have shown that these types of cells play important roles in hemangiogenesis.more » We report here that SEMA3E inhibited HemEC migration and proliferation while SEMA3F was able to suppress the migration and proliferation in all three types of cells. Confocal microscopy showed that stress fibers in HemEC were reduced by SEMA3E&F and that stress fibers in HemSC were decreased by SEMA3F, which led to cytoskeletal collapse and loss of cell motility in both cell types. Additionally, SEMA3E&F were able to inhibit vascular endothelial growth factor (VEGF)-induced sprouts in all three types of cells. Further, SEMA3E&F reduced the level of p-VEGFR2 and its downstream p-ERK in HemEC. These results demonstrate that SEMA3E&F inhibit IH cell proliferation and suppress the angiogenic activities of migration and sprout formation. SEMA3E&F may have therapeutic potential to treat or prevent growth of highly proliferative IH. - Highlights: • SEMA3E&F reduce actin stress fibers and induce cytoskeletal collapse in HemEC. • SEMA3E&F inhibit angiogenic activities of HemEC. • SEMA3E&F can interrupt the VEGF-A-VEGFR2-ERK signaling pathway in HemEC. • Plexin D1 and NRP2 are induced during HemSC/GLUT1{sup sel}-to-EC differentiation.« less

  13. Thermodynamic and kinetic study of scandium(III) complexes of DTPA and DOTA: a step toward scandium radiopharmaceuticals.

    PubMed

    Pniok, Miroslav; Kubíček, Vojtěch; Havlíčková, Jana; Kotek, Jan; Sabatie-Gogová, Andrea; Plutnar, Jan; Huclier-Markai, Sandrine; Hermann, Petr

    2014-06-23

    Diethylenetriamine-N,N,N',N'',N''-pentaacetic acid (DTPA) and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) scandium(III) complexes were investigated in the solution and solid state. Three (45)Sc NMR spectroscopic references suitable for aqueous solutions were suggested: 0.1 M Sc(ClO4)3 in 1 M aq. HClO4 (δSc =0.0 ppm), 0.1 M ScCl3 in 1 M aq. HCl (δSc =1.75 ppm) and 0.01 M [Sc(ox)4](5-) (ox(2-) = oxalato) in 1 M aq. K2C2O4 (δSc =8.31 ppm). In solution, [Sc(dtpa)](2-) complex (δSc = 83 ppm, Δν = 770 Hz) has a rather symmetric ligand field unlike highly unsymmetrical donor atom arrangement in [Sc(dota)](-) anion (δSc = 100 ppm, Δν = 4300 Hz). The solid-state structure of K8[Sc2(ox)7]⋅13 H2O contains two [Sc(ox)3](3-) units bridged by twice "side-on" coordinated oxalate anion with Sc(3+) ion in a dodecahedral O8 arrangement. Structures of [Sc(dtpa)](2-) and [Sc(dota)](-) in [(Hguanidine)]2[Sc(dtpa)]⋅3 H2O and K[Sc(dota)][H6 dota]Cl2⋅4 H2O, respectively, are analogous to those of trivalent lanthanide complexes with the same ligands. The [Sc(dota)](-) unit exhibits twisted square-antiprismatic arrangement without an axial ligand (TSA' isomer) and [Sc(dota)](-) and (H6 dota)(2+) units are bridged by a K(+) cation. A surprisingly high value of the last DOTA dissociation constant (pKa =12.9) was determined by potentiometry and confirmed by using NMR spectroscopy. Stability constants of scandium(III) complexes (log KScL 27.43 and 30.79 for DTPA and DOTA, respectively) were determined from potentiometric and (45)Sc NMR spectroscopic data. Both complexes are fully formed even below pH 2. Complexation of DOTA with the Sc(3+) ion is much faster than with trivalent lanthanides. Proton-assisted decomplexation of the [Sc(dota)](-) complex (τ1/2 =45 h; 1 M aq. HCl, 25 °C) is much slower than that for [Ln(dota)](-) complexes. Therefore, DOTA and its derivatives seem to be very suitable ligands for scandium radioisotopes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Luminescent and scintillation properties of Lu3Al5O12:Sc single crystal and single crystalline films

    NASA Astrophysics Data System (ADS)

    Zorenko, Y.; Gorbenko, V.; Voznyak, T.; Savchyn, V.; Nizhankovskiy, S.; Dan'ko, A.; Puzikov, V.; Laguta, V.; Mares, J. A.; Nikl, M.; Nejezchleb, K.; Batentschuk, M.; Winnacker, A.

    2012-10-01

    The work is dedicated to growth by the liquid phase epitaxy method and study of the luminescence and scintillation properties of Sc3+ doped single crystalline films (SCF) of Lu3Al5O12 (LuAG) garnet. The scintillation properties of SCF are compared with single crystal (SC) analogues grown by the Horizontal Direct Crystallization and Czochralski methods. We consider the dependence of intensity of the Sc3+ emission in LuAG host on the activator concentration and influence of flux contamination on the light yield (LY) of the Sc3+ luminescence in LuAG:Sc SCF with respect to their SC counterparts and the reference YAP:Ce scintillator. From the NMR investigations of LuAG:Sc SCF we confirm the substitution by Sc3+ ions both the octahedral and dodecahedral positions of LuAG host and formation of the ScAl and ScLu related emission centers, respectively. We also show that the luminescence spectrum in the UV range and decay kinetics of LuAG:Sc SCF can be effectively tuned by changing the scandium content.

  15. Knowledge Insufficient: The Management of Haemoglobin SC Disease

    PubMed Central

    Pecker, Lydia H.; Schaefer, Beverly A.; Luchtman-Jones, Lori

    2016-01-01

    Although haemoglobin SC (HbSC) accounts for 30% of sickle cell disease (SCD) in the United States and United Kingdom, evidence-based guidelines for genotype specific management are lacking. The unique pathology of HbSC disease is complex, characterized by erythrocyte dehydration, intracellular sickling and increased blood viscosity. The evaluation and treatment of patients with HbSC is largely inferred from studies of SCD consisting mostly of haemoglobin SS (HbSS) patients. These studies are underpowered to allow definitive conclusions about HbSC. We review the pathophysiology of HbSC disease, including known and potential differences between HbSS and HbSC, and highlight knowledge gaps in HbSC disease management. Clinical and translational research is needed to develop targeted treatments and to validate management recommendations for efficacy, safety and impact on quality of life for people with HbSC. PMID:27982424

  16. E-Selectin Mediates Stem Cell Adhesion and Formation of Blood Vessels in a Murine Model of Infantile Hemangioma

    PubMed Central

    Smadja, David M.; Mulliken, John B.; Bischoff, Joyce

    2013-01-01

    Hemangioma stem cells (HemSCs) are multipotent cells isolated from infantile hemangioma (IH), which form hemangioma-like lesions when injected subcutaneously into immune-deficient mice. In this murine model, HemSCs are the primary target of corticosteroid, a mainstay therapy for problematic IH. The relationship between HemSCs and endothelial cells that reside in IH is not clearly understood. Adhesive interactions might be critical for the preferential accumulation of HemSCs and/or endothelial cells in the tumor. Therefore, we studied the interactions between HemSCs and endothelial cells (HemECs) isolated from IH surgical specimens. We found that HemECs isolated from proliferating phase IH, but not involuting phase, constitutively express E-selectin, a cell adhesion molecule not present in quiescent endothelial cells. E-selectin was further increased when HemECs were exposed to vascular endothelial growth factor–A or tumor necrosis factor–α. In vitro, HemSC migration and adhesion was enhanced by recombinant E-selectin but not P-selectin; both processes were neutralized by E-selectin–blocking antibodies. E-selectin–positive HemECs also stimulated migration and adhesion of HemSCs. In vivo, neutralizing antibodies to E-selectin strongly inhibited formation of blood vessels when HemSCs and HemECs were co-implanted in Matrigel. These data suggest that endothelial E-selectin could be a major ligand for HemSCs and thereby promote cellular interactions and vasculogenesis in IH. We propose that constitutively expressed E-selectin on endothelial cells in the proliferating phase is one mediator of the stem cell tropism in IH. PMID:23041613

  17. Flow Cytometric Detection of PrPSc in Neurons and Glial Cells from Prion-Infected Mouse Brains.

    PubMed

    Yamasaki, Takeshi; Suzuki, Akio; Hasebe, Rie; Horiuchi, Motohiro

    2018-01-01

    In prion diseases, an abnormal isoform of prion protein (PrP Sc ) accumulates in neurons, astrocytes, and microglia in the brains of animals affected by prions. Detailed analyses of PrP Sc -positive neurons and glial cells are required to clarify their pathophysiological roles in the disease. Here, we report a novel method for the detection of PrP Sc in neurons and glial cells from the brains of prion-infected mice by flow cytometry using PrP Sc -specific staining with monoclonal antibody (MAb) 132. The combination of PrP Sc staining and immunolabeling of neural cell markers clearly distinguished neurons, astrocytes, and microglia that were positive for PrP Sc from those that were PrP Sc negative. The flow cytometric analysis of PrP Sc revealed the appearance of PrP Sc -positive neurons, astrocytes, and microglia at 60 days after intracerebral prion inoculation, suggesting the presence of PrP Sc in the glial cells, as well as in neurons, from an early stage of infection. Moreover, the kinetic analysis of PrP Sc revealed a continuous increase in the proportion of PrP Sc -positive cells for all cell types with disease progression. Finally, we applied this method to isolate neurons, astrocytes, and microglia positive for PrP Sc from a prion-infected mouse brain by florescence-activated cell sorting. The method described here enables comprehensive analyses specific to PrP Sc -positive neurons, astrocytes, and microglia that will contribute to the understanding of the pathophysiological roles of neurons and glial cells in PrP Sc -associated pathogenesis. IMPORTANCE Although formation of PrP Sc in neurons is associated closely with neurodegeneration in prion diseases, the mechanism of neurodegeneration is not understood completely. On the other hand, recent studies proposed the important roles of glial cells in PrP Sc -associated pathogenesis, such as the intracerebral spread of PrP Sc and clearance of PrP Sc from the brain. Despite the great need for detailed analyses of PrP Sc -positive neurons and glial cells, methods available for cell type-specific analysis of PrP Sc have been limited thus far to microscopic observations. Here, we have established a novel high-throughput method for flow cytometric detection of PrP Sc in cells with more accurate quantitative performance. By applying this method, we succeeded in isolating PrP Sc -positive cells from the prion-infected mouse brains via fluorescence-activated cell sorting. This allows us to perform further detailed analysis specific to PrP Sc -positive neurons and glial cells for the clarification of pathological changes in neurons and pathophysiological roles of glial cells. Copyright © 2017 American Society for Microbiology.

  18. Recombinant human interleukin-3 (rhIL-3) enhances the mobilization of peripheral blood progenitor cells by recombinant human granulocyte colony-stimulating factor (rhG-CSF) in normal volunteers.

    PubMed

    Huhn, R D; Yurkow, E J; Tushinski, R; Clarke, L; Sturgill, M G; Hoffman, R; Sheay, W; Cody, R; Philipp, C; Resta, D; George, M

    1996-06-01

    To identify a precisely timed and safe protocol for progenitor cell mobilization, we studied the effects of rhIL-3 and rhG-CSF administration to normal volunteers. rhG-CSF 5 micrograms/kg/d was administered subcutaneously (s.c.) for 7 consecutive days either alone or preceded by rhIL-3 5 micrograms/kg/d s.c. for 4 consecutive days in sequential or partially overlapping schedules. The combined cytokines were well-tolerated--adverse effects were similar to those of the individual agents. Total white blood cell (WBC) and neutrophil counts rose briskly in response to rhG-CSF, and peak mean values were similar between treatment cohorts. Mean platelet counts were modestly elevated during rhG-CSF treatment only in the cohorts receiving rhIL-3 and rhG-CSF. Mean circulating CD34+ cells peaked on day 5 in the rhG-CSF group (38.9+/-14.3/microliter), day 6 in the sequential rhIL-3/rhG-CSF group (56.4+/-12.4/microliter), and day 6 in the partial overlap group (46.1+/-10.9/microliter). On day 3, mean CD34+ cell counts of the subjects who received sequential treatment were markedly higher than observed in the other groups (p<0.05) and were estimated to have been sufficient for collection of adequate grafts by single 10-L leukapheresis procedures in 60% of subjects. Circulating clonogenic cells (CFU-GM and/or BFU-E) were substantially higher in the sequential group than the rhG-CSF group on days 3-6 but were only minimally elevated above baseline in the partial overlap group. The numbers of circulating CD34+/Lin-/Thy-1+ cells (putative stem cells) were increased substantially, especially in the sequential group. On the basis of this pilot trial, we conclude that priming with rhIL-3 is a safe and well-tolerated method for enhancing the mobilization of human blood progenitors and stem cells by rhG-CSF.

  19. Genomic structural variation-mediated allelic suppression causes hybrid male sterility in rice.

    PubMed

    Shen, Rongxin; Wang, Lan; Liu, Xupeng; Wu, Jiang; Jin, Weiwei; Zhao, Xiucai; Xie, Xianrong; Zhu, Qinlong; Tang, Huiwu; Li, Qing; Chen, Letian; Liu, Yao-Guang

    2017-11-03

    Hybrids between divergent populations commonly show hybrid sterility; this reproductive barrier hinders hybrid breeding of the japonica and indica rice (Oryza sativa L.) subspecies. Here we show that structural changes and copy number variation at the Sc locus confer japonica-indica hybrid male sterility. The japonica allele, Sc-j, contains a pollen-essential gene encoding a DUF1618-domain protein; the indica allele, Sc-i, contains two or three tandem-duplicated ~ 28-kb segments, each carrying an Sc-j-homolog with a distinct promoter. In Sc-j/Sc-i hybrids, the high-expression of Sc-i in sporophytic cells causes suppression of Sc-j expression in pollen and selective abortion of Sc-j-pollen, leading to transmission ratio distortion. Knocking out one or two of the three Sc-i copies by CRISPR/Cas9 rescues Sc-j expression and male fertility. Our results reveal the gene dosage-dependent allelic suppression as a mechanism of hybrid incompatibility, and provide an effective approach to overcome the reproductive barrier for hybrid breeding.

  20. Surface atoms in Sc-O/W(1 0 0) system as Schottky emitter at high temperature

    NASA Astrophysics Data System (ADS)

    Tsujita, T.; Iida, S.; Nagatomi, T.; Takai, Y.

    2003-12-01

    The chemical bonding state of surface atoms in the Sc-O/W(1 0 0) system as a Schottky emitter was investigated at high temperature using a profile of Auger electron peaks to elucidate the mechanism of the marked reduction of the work function of the Sc-O/W(1 0 0) Schottky emitter. For this, Sc-deposited W(1 0 0), oxygen-exposed W(1 0 0) and Sc surfaces were prepared as reference surfaces. A comparison of the profiles of the Auger electron peaks from the Sc-O/W(1 0 0) surface with those from the reference surfaces has revealed that oxygen and Sc atoms on the Sc-O/W(1 0 0) surface form the Sc-O complexes at the operating temperature of the Sc-O/W(1 0 0) emitter of 1400 K. In addition, the ratio of the number of Sc atoms to that of oxygen atoms is estimated as 1:1 by the quantitative analysis of the AES peaks. The present results strongly suggest that the work function of the Sc-O/W(1 0 0) emitter is caused by the formation of Sc-O electric dipoles aligning into the p(2 × 1)-p(1 × 2) double-domain structure [Surf. Sci. 523 (2003) L37] on the Sc-O/W(1 0 0) surface at the operating temperature.

  1. International trends in spice use: Prevalence, motivation for use, relationship to other substances, and perception of use and safety for synthetic cannabinoids.

    PubMed

    Loeffler, George; Delaney, Eileen; Hann, Michael

    2016-09-01

    Synthetic cannabinoids (SC), commonly known as Spice, are a class of compounds that share affinity for the cannabinoid receptors. Recreational use of SCs has grown in recent years. A literature search was conducted of national and international organizations as well as peer-reviewed publications describing SC use in non-clinical populations. Our primary goal was summarizing SC use prevalence within the general population from representative surveys. Our secondary goals included describing SC use frequency, motivation for use, the relationship between SC use and use of other substances, and perception of SC use including beliefs about safety and use by peers. Nationally and regionally representative surveys describe lifetime prevalence of SC use in the general population as between 0.2% and 4%. Longitudinal data, though limited, shows decline in SC use with peak use occurring in the late teens and early twenties. Users tend to be males. The majority of SC users report using only a small number of times and use tends to not be sustained. The most common motive for SC use is curiosity. SC users generally report a history of extensive use of other substances. Perception of SC use by others tends to be significantly greater than actual SC use. Published by Elsevier Inc.

  2. Knowledge insufficient: the management of haemoglobin SC disease.

    PubMed

    Pecker, Lydia H; Schaefer, Beverly A; Luchtman-Jones, Lori

    2017-02-01

    Although haemoglobin SC (HbSC) accounts for 30% of sickle cell disease (SCD) in the United States and United Kingdom, evidence-based guidelines for genotype specific management are lacking. The unique pathology of HbSC disease is complex, characterized by erythrocyte dehydration, intracellular sickling and increased blood viscosity. The evaluation and treatment of patients with HbSC is largely inferred from studies of SCD consisting mostly of haemoglobin SS (HbSS) patients. These studies are underpowered to allow definitive conclusions about HbSC. We review the pathophysiology of HbSC disease, including known and potential differences between HbSS and HbSC, and highlight knowledge gaps in HbSC disease management. Clinical and translational research is needed to develop targeted treatments and to validate management recommendations for efficacy, safety and impact on quality of life for people with HbSC. © 2016 John Wiley & Sons Ltd.

  3. Management of Powdery Mildew in Squash by Plant and Alga Extract Biopesticides

    PubMed Central

    Zhang, Shouan; Mersha, Zelalem; Vallad, Gary E.; Huang, Cheng-Hua

    2016-01-01

    Although many fungicides are registered for use to control powdery mildew on cucurbits, management of resistance to fungicides in pathogen populations still remains a major challenge. Two biopesticides Regalia SC and HMO 736 were evaluated in the greenhouse and field for their efficacy against powdery mildew in squash. In greenhouses, Regalia SC alone significantly (P < 0.05) reduced powdery mildew compared to the nontreated control, and was as effective as the chemical standard Procure 480SC (triflumizole). In alternation with Procure 480SC, Regalia SC demonstrated greater or equivalent effects on reducing the disease. HMO 736 alone showed varying levels of disease control, but alternating with Procure 480SC significantly improved control efficacy. In addition, application of Regalia SC or HMO 736 each in alternation with Procure 480SC significantly increased the chlorophyll content in leaves and the total fresh weight of squash plants, when compared with the water control, Regalia SC and HMO 736 alone. In field trials, application of Regalia SC and HMO 736 each alone significantly reduced disease severity in one of two field trials during the early stage of disease development, but not during later stages when disease pressure became high. Both Regalia SC and HMO 736 each applied in alternation with Procure 480SC significantly improved the control efficacy compared to Procure 480SC alone. Results from this study demonstrated that an integrated management program can be developed for powdery mildew in squash by integrating the biopesticides Regalia SC, HMO 736 with the chemical fungicide Procure 480SC. PMID:27904459

  4. Management of Powdery Mildew in Squash by Plant and Alga Extract Biopesticides.

    PubMed

    Zhang, Shouan; Mersha, Zelalem; Vallad, Gary E; Huang, Cheng-Hua

    2016-12-01

    Although many fungicides are registered for use to control powdery mildew on cucurbits, management of resistance to fungicides in pathogen populations still remains a major challenge. Two biopesticides Regalia SC and HMO 736 were evaluated in the greenhouse and field for their efficacy against powdery mildew in squash. In greenhouses, Regalia SC alone significantly ( P < 0.05) reduced powdery mildew compared to the nontreated control, and was as effective as the chemical standard Procure 480SC (triflumizole). In alternation with Procure 480SC, Regalia SC demonstrated greater or equivalent effects on reducing the disease. HMO 736 alone showed varying levels of disease control, but alternating with Procure 480SC significantly improved control efficacy. In addition, application of Regalia SC or HMO 736 each in alternation with Procure 480SC significantly increased the chlorophyll content in leaves and the total fresh weight of squash plants, when compared with the water control, Regalia SC and HMO 736 alone. In field trials, application of Regalia SC and HMO 736 each alone significantly reduced disease severity in one of two field trials during the early stage of disease development, but not during later stages when disease pressure became high. Both Regalia SC and HMO 736 each applied in alternation with Procure 480SC significantly improved the control efficacy compared to Procure 480SC alone. Results from this study demonstrated that an integrated management program can be developed for powdery mildew in squash by integrating the biopesticides Regalia SC, HMO 736 with the chemical fungicide Procure 480SC.

  5. Two new Ni(II) supramolecular complexes based on ethyl isonicotinate and ethyl nicotinate for removal of acid blue 92 dye

    NASA Astrophysics Data System (ADS)

    Etaiw, Safaa El-din H.; Marie, Hassan

    2018-03-01

    Two new luminescent supramolecular complexes (SC); [Ni(EIN)4(NCS)2] SC1 and [Ni2(EN)8(NCS)4] SC2, (EIN = ethyl isonicotinate, EN = ethyl nicotinate), have been synthesized by self-assembly method and structurally characterized by X-ray single crystal, FT-IR and UV-Vis spectra, PXRD, elemental and thermogravimetric analyses. Both SC1 and SC2 are monoclinic crystals however, they have different asymmetric units. Ni(II) atoms in both SC are isostructural and have similar hexa-coordinate environment. The structures of SC1 and SC2 consist of parallel polymeric 1D-chains, extended in two and three dimensional supramolecular frameworks by intermolecular hydrogen bonding interactions. SC1 and SC2 are luminescent materials which can be used in applications as molecular sensing systems. SC1 and SC2 were used as heterogeneous catalysts for degradation of acid blue 92 (AB-92) under sun light irradiation. The fluorescence measurements of terephthalic acid technique as a probe molecule were used to determine the •OH radicals. Also the radicals trapping experiments using isopropanol alcohol (IPA) as radical scavenger were discussed. In addition a mechanism of degradation was proposed and discussed.

  6. In vivo confocal Raman microscopic determination of depth profiles of the stratum corneum lipid organization influenced by application of various oils.

    PubMed

    Choe, ChunSik; Schleusener, Johannes; Lademann, Jürgen; Darvin, Maxim E

    2017-08-01

    The intercellular lipids (ICL) of stratum corneum (SC) play an important role in maintaining the skin barrier function. The lateral and lamellar packing order of ICL in SC is not homogenous, but rather depth-dependent. This study aimed to analyze the influence of the topically applied mineral-derived (paraffin and petrolatum) and plant-derived (almond oil and jojoba oil) oils on the depth-dependent ICL profile ordering of the SC in vivo. Confocal Raman microscopy (CRM), a unique tool to analyze the depth profile of the ICL structure non-invasively, is employed to investigate the interaction between oils and human SC in vivo. The results show that the response of SC to oils' permeation varies in the depths. All oils remain in the upper layers of the SC (0-20% of SC thickness) and show predominated differences of ICL ordering from intact skin. In these depths, skin treated with plant-derived oils shows more disordered lateral and lamellar packing order of ICL than intact skin (p<0.05). In the intermediate layers of SC (30-50% of SC thickness), the oils do not influence the lateral packing order of SC ICL (p>0.1), except plant-derived oils at the depth 30% of SC thickness. In the deeper layers of the SC (60-100% of SC thickness), no difference between ICL lateral packing order of the oil-treated and intact skin can be observed, except that at the depths of 70-90% of the SC thickness, where slight changes with more disorder states are measured for plant-derived oil treated skin (p<0.1), which could be explained by the penetration of free fatty acid fractions in the deep-located SC areas. Both oil types remain in the superficial layers of the SC (0-20% of the SC thickness). Skin treated with mineral- and plant-derived oils shows significantly higher disordered lateral and lamellar packing order of ICL in these layers of the SC compared to intact skin. Plant-derived oils significantly changed the ICL ordering in the depths of 30% and 70-90% of the SC thickness, which is likely due to the penetration of free fatty acids in the deeper layers of the SC. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  7. Emergence of superconductivity and magnetic ordering tuned by Fe-vacancy in alkali-metal Fe chalcogenides RbxFe2-ySe2

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yoshiaki; Kototani, Shouhei; Itoh, Masayuki; Sato, Masatoshi

    2014-12-01

    Samples of RbxFe2-ySe2 exhibiting superconductivity [superconducting (SC) samples] undergo a phase-separation into two phases, a Fe-vacancy ordered phase with antiferromagnetic (AFM) transition at TN1~500 K (AFM1 phase) and a phase with little Fe- vacancy and SC transition at Tc~30 K (SC phase). The samples of RbxFe2-ySe2 exhibiting no SC behaviour (non-SC samples) are phase-separated into three phases, the AFM1 phase, another AFM phase with TN2 ~150 K (AFM2 phase), and a paramagnetic phase with no SC transitions (paramagnetic non-SC phase). In this paper, we present the experimental results of magnetic susceptibility, electrical resistivity, and NMR measurements on single crystals of RbxFe2-ySe2 to reveal physical properties of these co-existing phases in the SC and non-SC samples. The 87Rb and 77Se NMR spectra show that the Fe vacancy concentration is very small in the Fe planes of the SC phase, whereas the AFM2 and paramagnetic non-SC phases in non-SC samples have larger amount of Fe vacancies. The randomness induced by the Fe vacancy in the non-SC samples makes the AFM2 and paramagnetic non-SC phases insulating/semiconducting and magnetically active, resulting in the absence of the superconductivity in RbxFe2-ySe2.

  8. Single-step colony assay for screening antibody libraries.

    PubMed

    Kato, Mieko; Hanyu, Yoshiro

    2017-08-10

    We describe a method, single-step colony assay, for simple and rapid screening of single-chain Fv fragment (scFv) libraries. Colonies of Escherichia coli expressing the scFv library are formed on a hydrophilic filter that is positioned in contact with a membrane coated with an antigen. scFv expression is triggered upon treatment of colonies with an induction reagent, following which scFvs are secreted from the cells and diffused to the antigen-coated membrane. scFvs that exhibit binding affinity for the antigen are captured by the membrane-immobilized antigen. Lastly, detection of scFv binding of the antigen on the membrane allows identification of the clones on the filter that express antigen-specific scFvs. We tested this methodology by using an anti-rabbit IgG scFv, scFv(A10B), and a rat immune scFv library. Experiments conducted using scFv(A10B) revealed that this method improves scFv expression during the colony assay. By using our method to screen an immune library of 3×10 3 scFv clones, we established several clones exhibiting affinity for the antigen. Moreover, we tested 7 other antigens, including peptides, and successfully identified positive clones. We believe that this simple procedure and controlled scFv expression of the single-step colony assay could make the antibody screening both rapid and reliable and lead to successful isolation of positive clones from antibody libraries. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Cellular Scale Anisotropic Topography Guides Schwann Cell Motility

    PubMed Central

    Mitchel, Jennifer A.; Hoffman-Kim, Diane

    2011-01-01

    Directed migration of Schwann cells (SC) is critical for development and repair of the peripheral nervous system. Understanding aspects of motility specific to SC, along with SC response to engineered biomaterials, may inform strategies to enhance nerve regeneration. Rat SC were cultured on laminin-coated microgrooved poly(dimethyl siloxane) platforms that were flat or presented repeating cellular scale anisotropic topographical cues, 30 or 60 µm in width, and observed with timelapse microscopy. SC motion was directed parallel to the long axis of the topography on both the groove floor and the plateau, with accompanying differences in velocity and directional persistence in comparison to SC motion on flat substrates. In addition, feature dimension affected SC morphology, alignment, and directional persistence. Plateaus and groove floors presented distinct cues which promoted differential motility and variable interaction with the topographical features. SC on the plateau surfaces tended to have persistent interactions with the edge topography, while SC on the groove floors tended to have infrequent contact with the corners and walls. Our observations suggest the capacity of SC to be guided without continuous contact with a topographical cue. SC exhibited a range of distinct motile morphologies, characterized by their symmetry and number of extensions. Across all conditions, SC with a single extension traveled significantly faster than cells with more or no extensions. We conclude that SC motility is complex, where persistent motion requires cellular asymmetry, and that anisotropic topography with cellular scale features can direct SC motility. PMID:21949703

  10. Compositional Characteristics and In Vitro Evaluations of Antioxidant and Neuroprotective Properties of Crude Extracts of Fucoidan Prepared from Compressional Puffing-Pretreated Sargassum crassifolium

    PubMed Central

    Yang, Wen-Ning; Chen, Po-Wei; Huang, Chun-Yung

    2017-01-01

    Fucoidan, a fucose-containing sulfated polysaccharide with diverse biological functions, is mainly recovered from brown algae. In this study, we utilized a compressional-puffing process (CPP) to pretreat Sargassum crassifolium (SC) and extracted fucoidans from SC by warm water. Three fucoidan extracts (SC1: puffing at 0 kg/cm2; SC2: puffing at 1.7 kg/cm2; and SC3: puffing at 6.3 kg/cm2) were obtained, and their composition, and antioxidant and neuroprotective activities were examined. The results suggest that CPP decreased the bulk density of algal samples, expanded the algal cellular structures, and eliminated the unpleasant algal odor. The extraction yields of fucoidans were increased and impurities of fucoidans were decreased by increasing the pressures used in CPP. The SC1–SC3 extracts displayed various characteristics of fucoidan as illustrated by the analyses of composition, Fourier transform infrared (FTIR) spectroscopy, and molecular weight. All three extracts SC1–SC3 showed antioxidant activity dose-dependently. Although both SC1 and SC2 possessed high and similar neuronal protective properties, SC2 showed a higher extraction yield, higher efficacy in the reversion of H2O2-induced cytotoxicity in rat pheochromocytoma PC-12 cells, and lower impurities compared with SC1, and thus SC2 is suggested as a good candidate for a therapeutic agent in the preventive treatment of neurodegenerative diseases. PMID:28629153

  11. Intermetallic Growth and Interfacial Properties of the Grain Refiners in Al Alloys.

    PubMed

    Li, Chunmei; Cheng, Nanpu; Chen, Zhiqian; Xie, Zhongjing; Hui, Liangliang

    2018-04-20

    Al₃TM(TM = Ti, Zr, Hf, Sc) particles acting as effective grain refiners for Al alloys have been receiving extensive attention these days. In order to judge their nucleation behaviors, first-principles calculations are used to investigate their intermetallic and interfacial properties. Based on energy analysis, Al₃Zr and Al₃Sc are more suitable for use as grain refiners than the other two intermetallic compounds. Interfacial properties show that Al/Al₃TM(TM = Ti, Zr, Hf, Sc) interfaces in I-ter interfacial mode exhibit better interface wetting effects due to larger Griffith rupture work and a smaller interface energy. Among these, Al/Al₃Sc achieves the lowest interfacial energy, which shows that Sc atoms should get priority for occupying interfacial sites. Additionally, Sc-doped Al/Al₃(Zr, Sc) interfacial properties show that Sc can effectively improve the Al/Al₃(Zr, Sc) binding strength with the Al matrix. By combining the characteristics of interfaces with the properties of intermetallics, the core-shell structure with Al₃Zr-core or Al₃Zr(Sc1-1)-core encircled with an Sc-rich shell forms.

  12. 46 CFR 7.70 - Folly Island, SC to Hilton Head Island, SC.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Folly Island, SC to Hilton Head Island, SC. 7.70 Section... BOUNDARY LINES Atlantic Coast § 7.70 Folly Island, SC to Hilton Head Island, SC. (a) A line drawn from the...′ W. (Port Royal Sound Lighted Whistle Buoy “2PR”); thence to the easternmost extremity of Hilton Head...

  13. Hydrogel limits stem cell dispersal in the deaf cochlea: implications for cochlear implants

    NASA Astrophysics Data System (ADS)

    Nayagam, Bryony A.; Backhouse, Steven S.; Cimenkaya, Cengiz; Shepherd, Robert K.

    2012-12-01

    Auditory neurons provide the critical link between a cochlear implant and the brain in deaf individuals, therefore their preservation and/or regeneration is important for optimal performance of this neural prosthesis. In cases where auditory neurons are significantly depleted, stem cells (SCs) may be used to replace the lost population of neurons, thereby re-establishing the critical link between the periphery (implant) and the brain. For such a therapy to be therapeutically viable, SCs must be differentiated into neurons, retained at their delivery site and damage caused to the residual auditory neurons minimized. Here we describe the transplantation of SC-derived neurons into the deaf cochlea, using a peptide hydrogel to limit their dispersal. The described approach illustrates that SCs can be delivered to and are retained within the basal turn of the cochlea, without a significant loss of endogenous auditory neurons. In addition, the tissue response elicited from this surgical approach was restricted to the surgical site and did not extend beyond the cochlear basal turn. Overall, this approach illustrates the feasibility of targeted cell delivery into the mammalian cochlea using hydrogel, which may be useful for future cell-based transplantation strategies, for combined treatment with a cochlear implant to restore function.

  14. Modulation instability initiated high power all-fiber supercontinuum lasers and their applications

    NASA Astrophysics Data System (ADS)

    Alexander, Vinay V.; Kulkarni, Ojas P.; Kumar, Malay; Xia, Chenan; Islam, Mohammed N.; Terry, Fred L.; Welsh, Michael J.; Ke, Kevin; Freeman, Michael J.; Neelakandan, Manickam; Chan, Allan

    2012-09-01

    High average power, all-fiber integrated, broadband supercontinuum (SC) sources are demonstrated. Architecture for SC generation using amplified picosecond/nanosecond laser diode (LD) pulses followed by modulation instability (MI) induced pulse breakup is presented and used to demonstrate SC sources from the mid-IR to the visible wavelengths. In addition to the simplicity in implementation, this architecture allows scaling up of the SC average power by increasing the pulse repetition rate and the corresponding pump power, while keeping the peak power, and, hence, the spectral extent approximately constant. Using this process, we demonstrate >10 W in a mid-IR SC extending from ˜0.8 to 4 μm, >5 W in a near IR SC extending from ˜0.8 to 2.8 μm, and >0.7 W in a visible SC extending from ˜0.45 to 1.2 μm. SC modulation capability is also demonstrated in a mid-IR SC laser with ˜3.9 W in an SC extending from ˜0.8 to 4.3 μm. The entire system and SC output in this case is modulated by a 500 Hz square wave at 50% duty cycle without any external chopping or modulation. We also explore the use of thulium doped fiber amplifier (TDFA) stages for mid-IR SC generation. In addition to the higher pump to signal conversion efficiency demonstrated in TDFAs compared to erbium/ytterbium doped fiber amplifier (EYFA), the shifting of the SC pump from ˜1.5 to ˜2 μm is pursued with an attempt to generate a longer extending SC into the mid-IR. We demonstrate ˜2.5 times higher optical conversion efficiency from pump to SC generation in wavelengths beyond 3.8 μm in the TDFA versus the EYFA based SC systems. The TDFA SC spectrum extends from ˜1.9 to 4.5 μm with ˜2.6 W at 50% modulation with a 250 Hz square wave. A variety of applications in defense, health care and metrology are also demonstrated using the SC laser systems presented in this paper.

  15. Correlative characterization of primary Al{sub 3}(Sc,Zr) phase in an Al–Zn–Mg based alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J.H., E-mail: jie-hua.li@hotmail.com; Wiessner, M.; Albu, M.

    2015-04-15

    Three-dimensional electron backscatter diffraction, focused ion beam, transmission electron microscopy and energy filtered transmission electron microscopy were employed to investigate the structural information of primary Al{sub 3}(Sc,Zr) phase, i.e. size, shape, element distribution and orientation relationship with the α-Al matrix. It was found that (i) most primary Al{sub 3}(Sc,Zr) phases have a cubic three-dimensional morphology, with a size of about 6–10 μm, (ii) most primary Al{sub 3}(Sc,Zr) phases are located within the α-Al matrix, and exhibit a cube to cube orientation relationship with the α-Al matrix, and (iii) a layer by layer growth was observed within primary Al{sub 3}(Sc,Zr) phases.more » Al, Cu, Si and Fe are enriched in the α-Al matrix between the layers of cellular eutectic Al{sub 3}(Sc,Zr) phase, while Sc, Ti and Zr are enriched in small Al{sub 3}(Sc,Zr) phases. A peritectic reaction and subsequent eutectic reaction between Al{sub 3}Sc and Al was proposed to interpret the observed layer by layer growth. This paper demonstrates that the presence of impurities (Fe, Si, Cu, Ti) in the diffusion field surrounding the growing Al{sub 3}(Sc,Zr) particle enhances the heterogeneous nucleation of Al{sub 3}(Sc,Zr) phases. - Highlights: • Most fine cubic primary Al{sub 3}(Sc,Zr) phases were observed within the α-Al matrix. • A layer by layer growth within primary Al{sub 3}(Sc,Zr) phase was observed. • A peritectic and subsequent eutectic reaction between Al{sub 3}Sc and Al was proposed. • Impurities in diffusion fields enhance heterogeneous nucleation of Al{sub 3}(Sc,Zr)« less

  16. Multi-site exploration of sex differences in brain reactivity to smoking cues: Consensus across sites and methodologies.

    PubMed

    Dumais, Kelly M; Franklin, Teresa R; Jagannathan, Kanchana; Hager, Nathan; Gawrysiak, Michael; Betts, Jennifer; Farmer, Stacey; Guthier, Emily; Pater, Heather; Janes, Amy C; Wetherill, Reagan R

    2017-09-01

    Biological sex influences cigarette smoking behavior. More men than women smoke, but women have a harder time quitting. Sex differences in smoking cue (SC) reactivity may underlie such behavioral differences. However, the influence of sex on brain reactivity to SCs has yielded inconsistent findings suggesting the need for continued study. Here, we investigated the effect of sex on SC reactivity across two sites using different imaging modalities and SC stimulus types. Pseudo-continuous arterial spin-labeled (pCASL) perfusion functional magnetic resonance imaging (fMRI) was used to assess brain responses to SC versus non-SC videos in 40 smokers (23 females) at the University of Pennsylvania. BOLD fMRI was used to assess brain responses to SC versus non-SC still images in 32 smokers (18 females) at McLean Hospital. Brain reactivity to SCs was compared between men and women and was correlated with SC-induced craving. In both cohorts, males showed higher SC versus non-SC reactivity compared to females in reward-related brain regions (i.e., ventral striatum/ventral pallidum, ventral medial prefrontal cortex). Brain activation during SC versus non-SC exposure correlated positively with SC-induced subjective craving in males, but not females. The current work provides much needed replication and validation of sex differences in SC-reactivity. These findings also add to a body of literature showing that men have greater reward-related brain activation to drug cues across drug classes. Such sex differences confirm the need to consider sex not only when evaluating SC-reactivity but when examining nicotine dependence etiology and treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A Further Study of the Products of Sc and Dioxygen Reactions

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Zhou, Mingfei; Andrews, Lester; Johnson, J. R. Tobias; Panas, Itai; Snis, Anders; Roos, Bjoern O.; Arnold, James O. (Technical Monitor)

    1999-01-01

    The products of the reaction of Sc and dioxygen have been reinvestigated. By adding the electron-trapping molecule CC14, additional information about the IR spectra has been obtained, as well as the observation of new bands. New ab initio calculations are also performed on possible products of the Sc plus O2 reaction. The previously observed band at 722.5 per cm is assigned as the b2 mode of ScO2(-). Bands arising from ScO(+), Sc(O2)(+), and(O2)ScO are also assigned. We are still unable to assign any bands to OScO. The problems associated with the computational study of ScO2 are discussed.

  18. Federal research and development for satellite communications

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A Committee on Satellite Communication (COSC) was formed under the auspices of the Space Applications Board (SAB) in order to study Federal research and development on satellite communications (SC). Discussion on whether to continue the research and development and the proper role of the Federal Government are addressed. Discussion focussed on six possible options for a Federal role in SC research and development: (1) the current NASA SC program; (2) an expanded NASA SC technology program; (3) a SC technology flight test support program; (4) an experimental SC technology flight program; (5) an experimental public service SC system program; and (6) an operational public service SC system program. Decision criteria and recommendations are presented.

  19. Do emergency medical services dispatch nature and severity codes agree with paramedic field findings?

    PubMed

    Neely, K W; Eldurkar, J A; Drake, M E

    2000-02-01

    Emergency medical services (EMS) systems increasingly seek to triage patients to alternative EMS resources. Emergency medical services dispatchers may be asked to perform this triage. New protocols may be necessary. Alternatively, existing protocols may be sufficient for this task. For an existing dispatch protocol to be sufficient, it at least must accurately categorize patient condition and severity based on an external standard. To examine the extent to which nature codes (NCs), or patient condition codes, and severity codes (SCs) currently assigned in one urban 911 center agree with paramedic field findings. The null hypothesis was that there is no routine agreement (75%) between dispatcher-assigned NC or SC and paramedic-assigned NC or SC for the same patient using the same protocol. Emergency medical services dispatch nature and severity code data and matching out-of-hospital data were prospectively gathered over six months. Dispatch data included the NC: caller-identified problem, and the SC: dispatcher-assessed severity. Each NC is modified by one of three SCs (1, 3, or 9): 1 is emergent, 3 is urgent, and 9 is neither. Paramedics verified and/or corrected dispatcher-assigned NCs and SCs using the same dispatch protocol. One thousand forty usable cases fell into 33 unique NC/SC combinations. The designation of SC 1 was assigned 275 times, SC 3 was assigned 736 times, and SC 9 was assigned 24 times. The SC was missing five times. The overall NC agreement was 0.70 (95% CI = 0.697 to 0.703). The overall SC agreement was 0.65 (95% CI = 0.645 to 0.655). The NC agreement exceeded 75% for ten (59%) NC/SC combinations. The SC agreement exceeded 75% for five (29%) NC/SC combinations. There was both NC and SC agreement for four (24%) combinations: urgent breathing problems, urgent diabetic problems, urgent falls, and urgent overdoses. The greatest NC/SC disagreement occurred within emergent and urgent traffic crashes. Paramedics adjusted SC toward lower severity 29% of the time and toward higher severity 5.4% of the time. There was no upward SC adjustment for eight (47%) combinations. Certain dispatcher-assigned NC and SC codes and NC/SC combinations achieved the study threshold. Overall agreement failed to achieve the threshold. The lowest SC level was rarely assigned, preventing a meaningful analysis of all severity levels.

  20. Selective Complexation and Reactivity of Metallic Nitride and OxoMetallic Fullerenes with Lewis Acids and Use as an Effective Purification Method

    PubMed Central

    Stevenson, Steven; Mackey, Mary A.; Pickens, Jane E.; Stuart, Melissa A.; Confait, Bridget S.; Phillips, J. Paige

    2009-01-01

    Metallic nitride fullerenes (MNFs) and oxometallic fullerenes (OMFs) react quickly with an array of Lewis acids. Empty-cage fullerenes are largely unreactive under conditions used in this study. The reactivity order is Sc4O2@Ih-C80 > Sc3N@C78 > Sc3N@C68 > Sc3N@D5h-C80 > Sc3N@Ih-C80. Manipulations of Lewis acids, molar ratios and kinetic differences within the family of OMF and MNF metallofullerenes are demonstrated in a selective precipitation scheme, which can be used either alone for purifying Sc3N@Ih-C80 or combined with a final HPLC pass for Sc4O2@Ih-C80, Sc3N@D5h-C80, Sc3N@C68, or Sc3N@C78. The purification process is scalable. Analysis of experimental rate constants versus electrochemical band gap explains the order of reactivity among the OMF and MNFs. PMID:19911812

  1. Cell growth inhibition and apoptosis in breast cancer cells induced by anti-FZD7 scFvs: involvement of bioinformatics-based design of novel epitopes.

    PubMed

    Zarei, Neda; Fazeli, Mehdi; Mohammadi, Mozafar; Nejatollahi, Foroogh

    2018-06-01

    FZD7 has a critical role as a surface receptor of Wnt/β-catenin signaling in cancer cells. Suppressing Wnt signaling through blocking FZD7 is shown to decrease cell viability, metastasis and invasion. Bioinformatic methods have been a powerful tool in epitope designing studies. Small size, high affinity and human origin of scFv antibodies have provided unique advantages for these recombinant antibodies. Two epitopes from extracellular domain of FZD7 were designed using bioinformatic methods. Specific anti-FZD7 scFvs were selected against these epitopes through panning process. The specificity of the scFvs was assessed by phage ELISA and the ability to bind to FZD7 expressing cell line (MDA-MB-231) was determined by flowcytometry. Antiproliferative and apoptotic effects of the scFvs were evaluated by MTT and Annexin V/PI assays. The effects of selected scFvs on expression level of Surivin, c-Myc and Dvl genes were also evaluated by real-time PCR. Results demonstrated selection of two specific scFvs (scFv-I and scFv-II) with frequencies of 35 and 20%. Both antibodies bound to the corresponding peptides and cell surface receptors as shown by phage ELISA and flowcytometry, respectively. The scFvs inhibited cell growth of MDA-MB-231 cells significantly as compared to untreated cells. Growth inhibition of 58.6 and 53.1% were detected for scFv-I and scFv-II, respectively. No significant growth inhibition was detected for SKBR-3 negative control cells. The scFvs induced apoptotic effects in the MDA-MB-231 treated cells after 48 h, which were 81.6 and 74.9% for scFv-I and scFv-II, respectively. Downregulation of Surivin, c-Myc and Dvl genes were also shown after 48h treatment of cells with either of scFvs (59.3-93.8%). ScFv-I showed significant higher antiproliferative and apoptotic effects than scFv-II. Bioinformatic methods could effectively select potential epitopes of FZD7 protein and suggest that epitope designing by bioinformatic methods could contribute to the selection of key antigens for cancer immunotherapy. The selected scFvs, especially scFv-I, with high antiproliferative and apoptotic effects could be considered as effective agents for immunotherapy of cancers expressing FZD7 receptor including triple negative breast cancer.

  2. Promising prospects for 44Sc-/47Sc-based theragnostics: application of 47Sc for radionuclide tumor therapy in mice.

    PubMed

    Müller, Cristina; Bunka, Maruta; Haller, Stephanie; Köster, Ulli; Groehn, Viola; Bernhardt, Peter; van der Meulen, Nicholas; Türler, Andreas; Schibli, Roger

    2014-10-01

    In recent years, (47)Sc has attracted attention because of its favorable decay characteristics (half-life, 3.35 d; average energy, 162 keV; Eγ, 159 keV) for therapeutic application and for SPECT imaging. The aim of the present study was to investigate the suitability of (47)Sc for radionuclide therapy in a preclinical setting. For this purpose a novel DOTA-folate conjugate (cm10) with an albumin-binding entity was used. (47)Sc was produced via the (46)Ca(n,γ)(47)Ca[Formula: see text](47)Sc nuclear reaction at the high-flux reactor at the Institut Laue-Langevin. Separation of the (47)Sc from the target material was performed by a semi-automated process using extraction chromatography and cation exchange chromatography. (47)Sc-labeled cm10 was tested on folate receptor-positive KB tumor cells in vitro. Biodistribution and SPECT imaging experiments were performed in KB tumor-bearing mice. Radionuclide therapy was conducted with two groups of mice, which received either (47)Sc-cm10 (10 MBq) or only saline. Tumor growth and survival time were compared between the two groups of mice. Irradiation of (46)Ca resulted in approximately 1.8 GBq of (47)Ca, which subsequently decayed to (47)Sc. Separation of (47)Sc from (47)Ca was obtained with 80% yield in only 10 min. The (47)Sc was then available in a small volume (∼500 μL) of an ammonium acetate/HCl (pH 4.5) solution suitable for direct radiolabeling. (47)Sc-cm10 was prepared with a radiochemical yield of more than 96% at a specific activity of up to 13 MBq/nmol. In vitro (47)Sc-cm10 showed folate receptor-specific binding and uptake into KB tumor cells. In vivo SPECT/CT images allowed the visualization of accumulated radioactivity in KB tumors and in the kidneys. The therapy study showed a significantly delayed tumor growth in mice, which received (47)Sc-cm10 (10 MBq, 10 Gy) resulting in a more than 50% increase in survival time, compared with untreated control mice. With this study, we demonstrated the suitability of using (47)Sc for therapeutic purposes. On the basis of our recent results obtained with (44)Sc-folate, the present work confirms the applicability of (44)Sc/(47)Sc as an excellent matched pair of nuclides for PET imaging and radionuclide therapy. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  3. Quantitation of blood lymphocytes secreting antibodies to pneumococcal polysaccharides after in vivo antigenic stimulation.

    PubMed

    Heilmann, C; Pedersen, F K

    1986-02-01

    An indirect plaque-forming cell assay detecting B cells secreting IgM, IgG and IgA antibodies against pneumococcal polysaccharides (PPS) is described. The numbers of anti-PPS-secreting cells (SC) and Ig-SC in the blood of normal persons immunized with a polyvalent PPS vaccine were quantitated. Anti-PPS-SC were recorded from the fourth to the twelfth post-vaccination day, and the maximum number was found between days 6 and 9. Quantitatively IgA anti-PPS-SC outnumbered the IgM and IgG anti-PPS-SC. Concomitant with the increase in the numbers of antibody-SC an increase in polyclonally activated IgM-, IgG- and IgA-SC was recorded. The specific anti-PPS-antibody-SC constituted 20-80% of the total numbers of Ig-SC from the sixth to the ninth post-vaccination day.

  4. Production of scandium-44 m and scandium-44 g with deuterons on calcium-44: cross section measurements and production yield calculations.

    PubMed

    Duchemin, C; Guertin, A; Haddad, F; Michel, N; Métivier, V

    2015-09-07

    HIGHLIGHTS • Production of Sc-44 m, Sc-44 g and contaminants. • Experimental values determined using the stacked-foil technique. • Thick-Target production Yield (TTY) calculations. • Comparison with the TALYS code version 1.6.Among the large number of radionuclides of medical interest, Sc-44 is promising for PET imaging. Either the ground-state Sc-44 g or the metastable-state Sc-44 m can be used for such applications, depending on the molecule used as vector. This study compares the production rates of both Sc-44 states, when protons or deuterons are used as projectiles on an enriched Calcium-44 target. This work presents the first set of data for the deuteron route. The results are compared with the TALYS code. The Thick-Target production Yields of Sc-44 m and Sc-44 g are calculated and compared with those for the proton route for three different scenarios: the production of Sc-44 g for conventional PET imaging, its production for the new 3 γ imaging technique developed at the SUBATECH laboratory and the production of a Sc-44 m/Sc-44 g in vivo generator for antibody labelling.

  5. Intermetallic Growth and Interfacial Properties of the Grain Refiners in Al Alloys

    PubMed Central

    Li, Chunmei; Cheng, Nanpu; Chen, Zhiqian; Xie, Zhongjing; Hui, Liangliang

    2018-01-01

    Al3TM(TM = Ti, Zr, Hf, Sc) particles acting as effective grain refiners for Al alloys have been receiving extensive attention these days. In order to judge their nucleation behaviors, first-principles calculations are used to investigate their intermetallic and interfacial properties. Based on energy analysis, Al3Zr and Al3Sc are more suitable for use as grain refiners than the other two intermetallic compounds. Interfacial properties show that Al/Al3TM(TM = Ti, Zr, Hf, Sc) interfaces in I-ter interfacial mode exhibit better interface wetting effects due to larger Griffith rupture work and a smaller interface energy. Among these, Al/Al3Sc achieves the lowest interfacial energy, which shows that Sc atoms should get priority for occupying interfacial sites. Additionally, Sc-doped Al/Al3(Zr, Sc) interfacial properties show that Sc can effectively improve the Al/Al3(Zr, Sc) binding strength with the Al matrix. By combining the characteristics of interfaces with the properties of intermetallics, the core-shell structure with Al3Zr-core or Al3Zr(Sc1-1)-core encircled with an Sc-rich shell forms. PMID:29677155

  6. High-performance thin-film transistors with solution-processed ScInO channel layer based on environmental friendly precursor

    NASA Astrophysics Data System (ADS)

    Song, Wei; Lan, Linfeng; Li, Meiling; Wang, Lei; Lin, Zhenguo; Sun, Sheng; Li, Yuzhi; Song, Erlong; Gao, Peixiong; Li, Yan; Peng, Junbiao

    2017-09-01

    Thin-film transistors (TFTs) with solution-processed scandium (Sc) substituted indium oxide (Sc x In1-x O3, ScInO) thin films based on environmental friendly water-induced precursor were fabricated. As the Sc concentration increases from 0% to 10%, the mobility decreases from 23.7 cm2 V-1 s-1 to 6.4 cm2 V-1 s-1, which is attributed to the non-overlapping of the Sc3+ electron orbit. However, the off current decreases and the turn-ON voltage (V ON) shifts towards the positive direction as the Sc content increases, which indicates lower carrier density after incorporation of Sc into In2O3. More interestingly, the incorporation of Sc into In2O3 can effectively improve the electrical stability of the TFT devices under gate bias stress, which is attributed to the reduction of the number of oxygen vacancies due to the relatively low standard electrode potential (-2.36) of Sc and strong bonding strength of Sc-O (680 kJ mol-1). The reduction of oxygen vacancies is confirmed by the x-ray photoelectron spectroscopy (XPS) experiments.

  7. A conjugate of an anti-midkine single-chain variable fragment to doxorubicin inhibits tumor growth

    PubMed Central

    Zhao, Shuli; Zhao, Guangfeng; Xie, Hao; Huang, Yahong; Hou, Yayi

    2012-01-01

    Doxorubicin (DOX) was conjugated to a single-chain variable fragment (scFv) against human midkine (MK), and the conjugate (scFv-DOX) was used to target the chemotherapeutic agent to a mouse solid tumor model in which the tumor cells expressed high levels of human MK. The His-tagged recombinant scFv was expressed in bacteria, purified by metal affinity chromatography, and then conjugated to DOX using oxidative dextran (Dex) as a linker. The molecular formula of this immunoconjugate was scFv(Dex)1.3(DOX)20. In vitro apoptosis assays showed that the scFv-DOX conjugate was more cytotoxic against MK-transfected human adenocarcinoma cells (BGC823-MK) than untransfected cells (55.3 ± 2.4 vs 22.4 ± 3.8%) for three independent experiments. Nude mice bearing BGC823-MK solid tumors received scFv-DOX or equivalent doses of scFv + DOX for 2 weeks and tumor growth was more effectively inhibited by the scFv-DOX conjugate than by scFv + DOX (51.83% inhibition vs 40.81%). Histological analysis of the tumor tissues revealed that the highest levels of DOX accumulated in tumors from mice treated with scFv-DOX and this resulted in more extensive tumor cell death than in animals treated with the equivalent dose of scFv + DOX. These results show that the scFv-DOX conjugate effectively inhibited tumor growth in vivo and suggest that antigen-specific scFv may be competent drug-carriers. PMID:22267001

  8. First-in-Human PET/CT Imaging of Metastatic Neuroendocrine Neoplasms with Cyclotron-Produced 44Sc-DOTATOC: A Proof-of-Concept Study.

    PubMed

    Singh, Aviral; van der Meulen, Nicholas P; Müller, Cristina; Klette, Ingo; Kulkarni, Harshad R; Türler, Andreas; Schibli, Roger; Baum, Richard P

    2017-05-01

    44 Sc is a promising positron emission tomography (PET) radionuclide (T 1/2  = 4.04 hours, E β+average  = 632 keV) and can be made available, using a cyclotron production route, in substantial quantities as a highly pure product. Herein, the authors report on a first-in-human PET/CT study using 44 Sc-DOTATOC prepared with cyclotron-produced 44 Sc. The production of 44 Sc was carried out through the 44 Ca(p,n) 44 Sc nuclear reaction at Paul Scherrer Institut, Switzerland. After separation, 44 Sc was shipped to Zentralklinik Bad Berka, Germany, where radiolabeling was performed, yielding radiochemically pure 44 Sc-DOTATOC. Two patients, currently followed up after peptide receptor radionuclide therapy of metastatic neuroendocrine neoplasms, participated in this proof-of-concept study. Blood sampling was performed before and after application of 44 Sc-DOTATOC. PET/CT acquisitions, performed at different time points after injection of 44 Sc-DOTATOC, allowed detection of even very small lesions on delayed scans. No clinical adverse effects were observed and the laboratory hematological, renal, and hepatic profiles remained unchanged. In this study, cyclotron-produced 44 Sc was used in the clinic for the first time. It is attractive for theranostic application with 177 Lu, 90 Y, or 47 Sc as therapeutic counterparts. 44 Sc-based radiopharmaceuticals will be of particular value for PET facilities without radiopharmacy, to which they can be shipped from a centralized production site.

  9. At-Risk Phenotype of Neurofibromatose-1 Patients: A Multicentre Case-Control Study

    PubMed Central

    2011-01-01

    Objectives To assess associations between subcutaneous neurofibromas (SC-NFs) and internal neurofibromas in patients with neurofibromatosis type 1 (NF-1) and to determine whether the association between SC-NFs and peripheral neuropathy was ascribable to internal neurofibromas. Patients and methods Prospective multicentre case-control study. Between 2005 and 2008, 110 NF-1 adults having two or more SC-NFs were individually matched for age, sex and hospital with 110 controls who had no SC-NF. Patients underwent standardized MRI of the spinal cord, nerve roots and sciatic nerves and an electrophysiological study. Analyses used adjusted multinomial logistic regression (ORa) to estimate the risk of the presence of internal neurofibromas or peripheral neuropathies associated with patients presented 2 to 9 SC-NFs, at least 10 SC-NFs as compared to patients without any (referential category). Results Cases had a mean age of 41 (± 13) years; 85 (80%) had two to nine SC-NFs and 21 (19%) at least ten SC-NFs. SC-NFs were more strongly associated with internal neurofibromas in patients with ten or more SC-NFs than in patients with fewer NF-SCs (e.g., sciatic nerve, aOR = 29.1 [8.5 to 100] vs. 4.3 [2.1 to 9.0]). The association with SC-NFs was stronger for diffuse, intradural, and > 3 cm internal neurofibromas than with other internal neurofibromas. Axonal neuropathy with slowed conduction velocities (SCV) was more strongly associated with having at least ten SC-NFs (aOR = 29.9, 5.5 to 162.3) than with having fewer SC-NFs (aOR = 4.4, 0.9 to 22.0). Bivariate analyses showed that the association between axonal neuropathy with SCV and sciatic neurofibromas was mediated by the association between SC-NFs and sciatic neurofibromas. Conclusion The at-risk phenotype of NF-1 patients (i.e. NF-1 patients with SC-NFs) is ascribable to associations linking SC-NFs to internal neurofibromas at risk for malignant transformation and to axonal neuropathies with slowed conduction velocities. Axonal neuropathies with SCV are particularly common in patients with at least ten SC-NFs. Registration details ORPHA86301 PMID:21752287

  10. At-risk phenotype of neurofibromatose-1 patients: a multicentre case-control study.

    PubMed

    Sbidian, Emilie; Bastuji-Garin, Sylvie; Valeyrie-Allanore, Laurence; Ferkal, Salah; Lefaucheur, Jean P; Drouet, Alain; Brugière, Pierre; Vialette, Cédric; Combemale, Patrick; Barbarot, Sébastien; Wolkenstein, Pierre

    2011-07-13

    To assess associations between subcutaneous neurofibromas (SC-NFs) and internal neurofibromas in patients with neurofibromatosis type 1 (NF-1) and to determine whether the association between SC-NFs and peripheral neuropathy was ascribable to internal neurofibromas. Prospective multicentre case-control study. Between 2005 and 2008, 110 NF-1 adults having two or more SC-NFs were individually matched for age, sex and hospital with 110 controls who had no SC-NF. Patients underwent standardized MRI of the spinal cord, nerve roots and sciatic nerves and an electrophysiological study. Analyses used adjusted multinomial logistic regression (ORa) to estimate the risk of the presence of internal neurofibromas or peripheral neuropathies associated with patients presented 2 to 9 SC-NFs, at least 10 SC-NFs as compared to patients without any (referential category). Cases had a mean age of 41 (± 13) years; 85 (80%) had two to nine SC-NFs and 21 (19%) at least ten SC-NFs. SC-NFs were more strongly associated with internal neurofibromas in patients with ten or more SC-NFs than in patients with fewer NF-SCs (e.g., sciatic nerve, aOR = 29.1 [8.5 to 100] vs. 4.3 [2.1 to 9.0]). The association with SC-NFs was stronger for diffuse, intradural, and > 3 cm internal neurofibromas than with other internal neurofibromas. Axonal neuropathy with slowed conduction velocities (SCV) was more strongly associated with having at least ten SC-NFs (aOR = 29.9, 5.5 to 162.3) than with having fewer SC-NFs (aOR = 4.4, 0.9 to 22.0). Bivariate analyses showed that the association between axonal neuropathy with SCV and sciatic neurofibromas was mediated by the association between SC-NFs and sciatic neurofibromas. The at-risk phenotype of NF-1 patients (i.e. NF-1 patients with SC-NFs) is ascribable to associations linking SC-NFs to internal neurofibromas at risk for malignant transformation and to axonal neuropathies with slowed conduction velocities. Axonal neuropathies with SCV are particularly common in patients with at least ten SC-NFs.

  11. Possible involvement of dopamine D-1 and D-2 receptors in diazepam-induced hyperphagia in rats.

    PubMed

    Naruse, T; Amano, H; Koizumi, Y

    1991-01-01

    Possible involvement of dopamine receptors in diazepam-induced (1 mg/kg, subcutaneous (sc] hyperphagia was studied in nondeprived rats. Pretreatment with the selective D-1 antagonist, SCH23390 (0.03 mg/kg, sc) inhibited diazepam-induced hyperphagia. In addition, pretreatment with the preferential D-2 antagonists, haloperidol (0.1 to 0.3 mg/kg, sc) and clebopride (0.1 to 0.3 mg/kg, sc) inhibited diazepam-induced hyperphagia in a dose-dependent manner. Pretreatment with co-administration of SCH23390 (0.1 mg/kg, sc) and clebopride (0.03 mg/kg, sc) completely inhibited this hyperphagia. The selective D-2 antagonist, sulpiride (40 mg/kg, sc) and the peripheral D-2 antagonist, domperidone (10 mg/kg, sc) did not affect diazepam-induced hyperphagia. However, sulpiride (10 micrograms, icv) or domperidone (2 micrograms, icv) administered centrally inhibited this hyperphagia. The highest dose of haloperidol (0.3 mg/kg, sc) or clebopride (0.3 mg/kg, sc) and higher doses of SCH23390 (0.01 and 0.03 mg/kg, sc) or SCH23390/clebopride (0.01/0.03 and 0.01/0.1 mg/kg, sc) tended to decrease spontaneous feeding in non-deprived rats. In addition, the highest dose of haloperidol, clebopride or SCH23390/clebopride inhibited spontaneous feeding in deprived rats. Interestingly, diazepam-induced hyperphagia was inhibited significantly by doses of haloperidol (0.1 mg/kg, sc), clebopride (0.1 mg/kg, sc) and SCH23390/clebopride (0.003/0.03 and 0.003/0.1 mg/kg, sc) which did not affect spontaneous feeding in non-deprived or deprived rats. Pretreatment with alpha-methyl-p-tyrosine (40 mg/kg, IP x 2, 6 and 2 h prior to diazepam administration) failed to inhibit this hyperphagia. Furthermore, pretreatment with a large dose of haloperidol (5 mg/kg, sc, 4 days before diazepam administration) augmented the sub-hyperphagic effect to diazepam (0.5 mg/kg, sc). Thus, these findings suggest that hyperphagia to diazepam is mediated in part by both dopamine D-1 and D-2 receptors in non-deprived rats.

  12. The shape of the Sc2(μ2-S) unit trapped in C82: crystallographic, computational, and electrochemical studies of the isomers, Sc2(μ2-S)@C(s)(6)-C82 and Sc2(μ2-S)@C(3v)(8)-C82.

    PubMed

    Mercado, Brandon Q; Chen, Ning; Rodríguez-Fortea, Antonio; Mackey, Mary A; Stevenson, Steven; Echegoyen, Luis; Poblet, Josep M; Olmstead, Marilyn M; Balch, Alan L

    2011-05-04

    Single-crystal X-ray diffraction studies of Sc(2)(μ(2)-S)@C(s)(6)-C(82)·Ni(II)(OEP)·2C(6)H(6) and Sc(2)(μ(2)-S)@C(3v)(8)-C(82)·Ni(II)(OEP)·2C(6)H(6) reveal that both contain fully ordered fullerene cages. The crystallographic data for Sc(2)(μ(2)-S)@C(s)(6)-C(82)·Ni(II)(OEP)·2C(6)H(6) show two remarkable features: the presence of two slightly different cage sites and a fully ordered molecule Sc(2)(μ(2)-S)@C(s)(6)-C(82) in one of these sites. The Sc-S-Sc angles in Sc(2)(μ(2)-S)@C(s)(6)-C(82) (113.84(3)°) and Sc(2)(μ(2)-S)@C(3v)(8)-C(82) differ (97.34(13)°). This is the first case where the nature and structure of the fullerene cage isomer exerts a demonstrable effect on the geometry of the cluster contained within. Computational studies have shown that, among the nine isomers that follow the isolated pentagon rule for C(82), the cage stability changes markedly between 0 and 250 K, but the C(s)(6)-C(82) cage is preferred at temperatures ≥250 °C when using the energies obtained with the free encapsulated model (FEM). However, the C(3v)(8)-C(82) cage is preferred at temperatures ≥250 °C using the energies obtained by rigid rotor-harmonic oscillator (RRHO) approximation. These results corroborate the fact that both cages are observed and likely to trap the Sc(2)(μ(2)-S) cluster, whereas earlier FEM and RRHO calculations predicted only the C(s)(6)-C(82) cage is likely to trap the Sc(2)(μ(2)-O) cluster. We also compare the recently published electrochemistry of the sulfide-containing Sc(2)(μ(2)-S)@C(s)(6)-C(82) to that of corresponding oxide-containing Sc(2)(μ(2)-O)@C(s)(6)-C(82). © 2011 American Chemical Society

  13. Systemic chemotherapy (SC) before cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (CRS/HIPEC) in patients with peritoneal mucinous carcinomatosis of appendiceal origin (PMCA).

    PubMed

    Milovanov, V; Sardi, A; Ledakis, P; Aydin, N; Nieroda, C; Sittig, M; Nunez, M; Gushchin, V

    2015-05-01

    The role of SC before CRS/HIPEC for patients with PMCA is unclear. This study explores the effect of SC prior to CRS/HIPEC on overall survival (OS) in patients with PMCA. 72 patients with recently diagnosed PMCA who underwent CRS/HIPEC were identified from a prospective database. Thirty patients had SC before CRS/HIPEC (Group 1) and 42 did not (Group 2). Patients who were referred to our center after multiple lines of SC were excluded from this analysis. OS was estimated. Median follow-up was 3.2 years. Groups were similar regarding lymph node positivity, postoperative SC and rate of complete cytoreduction. Twenty-four (80%) patients in Group 1 and 21 (50%) in Group 2 had high grade histology (HG) (p = 0.01). OS from CRS/HIPEC at 1, 2, and 3 years was 93, 68, 51% in Group 1 and 82, 64, 60% in Group 2, respectively (p = 0.74). Among HG patients 3-year survival was 36% in the SC group vs. 35% in the group without SC (p = 0.67). The 3-year OS for patients with low grade (LG) tumors was 100% in the SC group vs. 79% in the group with no prior SC (p = 0.26). Among patients with signet ring cell (SRC) histology, 1, 2 and 3-year survival was 94, 67 and 22% in the SC group vs. 43, 14, 14% in the group with no SC, respectively (p = 0.028). There were only 6 patients with LG PMCA who received prior SC. Preoperative SC could improve the prognosis of patients with high-grade PMCA with SRC histology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Anomalous Lightning Behavior During the 26-27 August 2007 Northern Great Plains Severe Weather Event

    NASA Astrophysics Data System (ADS)

    Logan, Timothy

    2018-02-01

    Positive polarity lightning strokes can be useful indicators of thunderstorm behavior. A combination of National Lightning Detection Network and Next Generation Radar retrievals is used to analyze the anomalous positive cloud-to-ground (CG) lightning behavior of a rare, late summer severe weather event that occurred on 26-27 August 2007 in the Northern Great Plains region of the United States and southern Canada. Seven discrete supercells (SC1-SC7) exhibiting frequent and intense lightning were responsible for numerous reports of severe weather (e.g., severe hail and 16 tornadoes) including catastrophic damage to the town of Northwood, North Dakota, caused by SC2. Biomass burning smoke from wildfires in Idaho and Montana was present prior to convective initiation. A positive CG lightning stroke rate of nearly 30 strokes per minute was observed 10 min before the EF4 tornado struck Northwood. SC2 was also responsible for all the reports of tornadoes exceeding an EF2 rating. The strongest peak currents (>200 kA) were observed in SC1-SC4 with SC2 having a maximum value of 280 kA. SC2 dominated the statistics of the line of supercells accounting for 27% of all CG lightning strokes. Positive CG lightning accounted for over 40% of all CG lightning strokes in SC4-SC7 on average, and the maximum exceeded 90% in SC6 and SC7. Increasing positive CG lightning dominance was correlated with an increasing northward gradient of smoke aerosol loading in addition to severe weather being reported before the maximum in positive CG lighting stroke rate (SC5 and SC6). This suggests that a complex combination of synoptic forcing and aerosol perturbation likely led to the observed anomalous positive CG lightning behavior in the supercells.

  15. Ultra-low noise supercontinuum source for ultra-high resolution optical coherence tomography at 1300 nm

    NASA Astrophysics Data System (ADS)

    Gonzalo, I. B.; Maria, M.; Engelsholm, R. D.; Feuchter, T.; Leick, L.; Moselund, P. M.; Podoleanu, A.; Bang, O.

    2018-02-01

    Supercontinuum (SC) sources are of great interest for many applications due to their ultra-broad optical bandwidth, good beam quality and high power spectral density [1]. In particular, the high average power over large bandwidths makes SC light sources excellent candidates for ultra-high resolution optical coherence tomography (UHR-OCT) [2-5]. However, conventional SC sources suffer from high pulse-to-pulse intensity fluctuations as a result of the noise-sensitive nonlinear effects involved in the SC generation process [6-9]. This intensity noise from the SC source can limit the performance of OCT, resulting in a reduced signal-to-noise ratio (SNR) [10-12]. Much work has been done to reduce the noise of the SC sources for instance with fiber tapers [7,8] or increasing the repetition rate of the pump laser for averaging in the spectrometer [10,12]. An alternative approach is to use all-normal dispersion (ANDi) fibers [13,14] to generate SC light from well-known coherent nonlinear processes [15-17]. In fact, reduction of SC noise using ANDi fibers compared to anomalous dispersion SC pumped by sub-picosecond pulses has been recently demonstrated [18], but a cladding mode was used to stabilize the ANDi SC. In this work, we characterize the noise performance of a femtosecond pumped ANDi based SC and a commercial SC source in an UHR-OCT system at 1300 nm. We show that the ANDi based SC presents exceptional noise properties compared to a commercial source. An improvement of 5 dB in SNR is measured in the UHR-OCT system, and the noise behavior resembles that of a superluminiscent diode. This preliminary study is a step forward towards development of an ultra-low noise SC source at 1300 nm for ultra-high resolution OCT.

  16. Technology of compact MAb and its application for medicinal plant breeding named as missile type molecular breeding.

    PubMed

    Putalun, Waraporn

    2011-03-01

    Single chain fragment-variable (scFv) enhanced solasodine glycoside accumulation in Solanum khasianum hairy root cultures transformed by the ScFv solamargine (As)-scFv gene. The scFv protein was expressed at a high level in inclusion bodies of E. coli. After being renatured, the scFv protein was purified in a one-step manner by metal chelate affinity chromatography. The yield of refolded and purified scFv was 12.5 mg per 100 ml of cell culture. The characteristics of the As-scFv expressed in E. coli and transgenic hairy roots were similar to those of the parent monoclonal antibody (MAb). The expression of scFv protein provides a low cost and a high yield of functional scFv antibody against solamargine. The full linear range of the ELISA assay using scFv was extended from 1.5-10 µg/ml. The expressed anti-solamargine scFv protein could be useful for determination of total solasodine glycoside content in plant samples by ELISA. Solasodine glycoside levels in the transgenic hairy root were 2.3-fold higher than that in the wild-type hairy root based on the soluble protein level and binding activities. The As-scFv expressed in S. khasianum hairy roots enhanced solasodine glycosides accumulation and provide a novel medicinal plant breeding methodology that can produce a high yield of secondary metabolites.

  17. Reduced graphene oxide-coated hydroxyapatite composites stimulate spontaneous osteogenic differentiation of human mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Lee, Jong Ho; Shin, Yong Cheol; Jin, Oh Seong; Kang, Seok Hee; Hwang, Yu-Shik; Park, Jong-Chul; Hong, Suck Won; Han, Dong-Wook

    2015-07-01

    Human mesenchymal stem cells (hMSCs) have great potential as cell sources for bone tissue engineering and regeneration, but the control and induction of their specific differentiation into bone cells remain challenging. Graphene-based nanomaterials are considered attractive candidates for biomedical applications such as scaffolds in tissue engineering, substrates for SC differentiation and components of implantable devices, due to their biocompatible and bioactive properties. Despite the potential biomedical applications of graphene and its derivatives, only limited information is available regarding their osteogenic activity. This study concentrates upon the effects of reduced graphene oxide (rGO)-coated hydroxyapatite (HAp) composites on osteogenic differentiation of hMSCs. The average particle sizes of HAp and rGO were 1270 +/- 476 nm and 438 +/- 180 nm, respectively. When coated on HAp particulates, rGO synergistically enhanced spontaneous osteogenic differentiation of hMSCs, without hampering their proliferation. This result was confirmed by determining alkaline phosphatase activity and mineralization of calcium and phosphate as early and late stage markers of osteogenic differentiation. It is suggested that rGO-coated HAp composites can be effectively utilized as dental and orthopedic bone fillers since these graphene-based particulate materials have potent effects on stimulating the spontaneous differentiation of MSCs and show superior bioactivity and osteoinductive potential.Human mesenchymal stem cells (hMSCs) have great potential as cell sources for bone tissue engineering and regeneration, but the control and induction of their specific differentiation into bone cells remain challenging. Graphene-based nanomaterials are considered attractive candidates for biomedical applications such as scaffolds in tissue engineering, substrates for SC differentiation and components of implantable devices, due to their biocompatible and bioactive properties. Despite the potential biomedical applications of graphene and its derivatives, only limited information is available regarding their osteogenic activity. This study concentrates upon the effects of reduced graphene oxide (rGO)-coated hydroxyapatite (HAp) composites on osteogenic differentiation of hMSCs. The average particle sizes of HAp and rGO were 1270 +/- 476 nm and 438 +/- 180 nm, respectively. When coated on HAp particulates, rGO synergistically enhanced spontaneous osteogenic differentiation of hMSCs, without hampering their proliferation. This result was confirmed by determining alkaline phosphatase activity and mineralization of calcium and phosphate as early and late stage markers of osteogenic differentiation. It is suggested that rGO-coated HAp composites can be effectively utilized as dental and orthopedic bone fillers since these graphene-based particulate materials have potent effects on stimulating the spontaneous differentiation of MSCs and show superior bioactivity and osteoinductive potential. Electronic supplementary information (ESI) available: Additional figures. See DOI: 10.1039/c5nr01580d

  18. 4SC-202 activates ASK1-dependent mitochondrial apoptosis pathway to inhibit hepatocellular carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Meili, E-mail: fumeilidrlinyi@tom.com; Wan, Fuqiang; Li, Zhengling

    The aim of the present study is to investigate the potential anti-hepatocellular carcinoma (HCC) cell activity by 4SC-202, a novel class I HDAC inhibitor (HDACi). The associated signaling mechanisms were also analyzed. We showed that 4SC-202 treatment induced potent cytotoxic and proliferation–inhibitory activities against established HCC cell lines (HepG2, HepB3, SMMC-7721) and patient-derived primary HCC cells. Further, adding 4SC-202 in HCC cells activated mitochondrial apoptosis pathway, which was evidenced by mitochondrial permeability transition pore (mPTP) opening, cytochrome C cytosol release and caspase-3/-9 activation. Inhibition of this apoptosis pathway, by caspase-3/-9 inhibitors, mPTP blockers, or by shRNA-mediated knockdown of cyclophilin-D (Cyp-D,more » a key component of mPTP), significantly attenuated 4SC-202-induced HCC cell death and apoptosis. Reversely, over-expression of Cyp-D enhanced 4SC-202's sensitivity in HCC cells. Further studies showed that 4SC-202 induced apoptosis signal-regulating kinase 1 (ASK1) activation, causing it translocation to mitochondria and physical association with Cyp-D. This mitochondrial ASK1-Cyp-D complexation appeared required for mediating 4SC-202-induced apoptosis activation. ASK1 stable knockdown by targeted-shRNAs largely inhibited 4SC-202-induced mPTP opening, cytochrome C release, and following HCC cell apoptotic death. Together, we suggest that 4SC-202 activates ASK1-dependent mitochondrial apoptosis pathway to potently inhibit human HCC cells. - Highlights: • 4SC-202 exerts potent anti-proliferative and cytotoxic activity against established/primary HCC cells. • SC-202-induced anti-HCC cell activity relies on caspase-dependent apoptosis activation. • 4SC-202 activates Cyp-D-dependent mitochondrial apoptosis pathway in HCC cells. • 4SC-202 activates ASK1 in HCC cells, causing it translocation to mitochondria. • Mitochondrial ASK1-Cyp-D complexation mediates 4SC-202's activity in HCC cells.« less

  19. Optimization of individualized graft composition: CD3/CD19 depletion combined with CD34 selection for haploidentical transplantation.

    PubMed

    Huenecke, Sabine; Bremm, Melanie; Cappel, Claudia; Esser, Ruth; Quaiser, Andrea; Bonig, Halvard; Jarisch, Andrea; Soerensen, Jan; Klingebiel, Thomas; Bader, Peter; Koehl, Ulrike

    2016-09-01

    Excessive T-cell depletion (TCD) is a prerequisite for graft manufacturing in haploidentical stem cell (SC) transplantation by using either CD34 selection or direct TCD such as CD3/CD19 depletion. To optimize graft composition we compared 1) direct or indirect TCD only, 2) a combination of CD3/CD19-depleted with CD34-selected grafts, or 3) TCD twice for depletion improvement based on our 10-year experience with 320 separations in graft manufacturing and quality control. SC recovery was significantly higher (85%, n = 187 vs. 73%, n = 115; p < 0.0001), but TCD was inferior (median log depletion, -3.6 vs. -5.2) for CD3/CD19 depletion compared to CD34 selection, respectively. For end products with less than -2.5 log TCD, a second depletion step led to a successful improvement in TCD. Thawing of grafts showed a high viability and recovery of SCs, but low NK-cell yield. To optimize individualized graft engineering, a calculator was developed to estimate the results of the final graft based on the content of CD34+ and CD3+ cells in the leukapheresis product. Finally, calculated splitting of the starting product followed by CD3/19 depletion together with CD34+ graft manipulation may enable the composition of optimized grafts with high CD34+-cell and minimal T-cell content. © 2016 AABB.

  20. Bisulfite-independent analysis of CpG island methylation enables genome-scale stratification of single cells.

    PubMed

    Han, Lin; Wu, Hua-Jun; Zhu, Haiying; Kim, Kun-Yong; Marjani, Sadie L; Riester, Markus; Euskirchen, Ghia; Zi, Xiaoyuan; Yang, Jennifer; Han, Jasper; Snyder, Michael; Park, In-Hyun; Irizarry, Rafael; Weissman, Sherman M; Michor, Franziska; Fan, Rong; Pan, Xinghua

    2017-06-02

    Conventional DNA bisulfite sequencing has been extended to single cell level, but the coverage consistency is insufficient for parallel comparison. Here we report a novel method for genome-wide CpG island (CGI) methylation sequencing for single cells (scCGI-seq), combining methylation-sensitive restriction enzyme digestion and multiple displacement amplification for selective detection of methylated CGIs. We applied this method to analyzing single cells from two types of hematopoietic cells, K562 and GM12878 and small populations of fibroblasts and induced pluripotent stem cells. The method detected 21 798 CGIs (76% of all CGIs) per cell, and the number of CGIs consistently detected from all 16 profiled single cells was 20 864 (72.7%), with 12 961 promoters covered. This coverage represents a substantial improvement over results obtained using single cell reduced representation bisulfite sequencing, with a 66-fold increase in the fraction of consistently profiled CGIs across individual cells. Single cells of the same type were more similar to each other than to other types, but also displayed epigenetic heterogeneity. The method was further validated by comparing the CpG methylation pattern, methylation profile of CGIs/promoters and repeat regions and 41 classes of known regulatory markers to the ENCODE data. Although not every minor methylation differences between cells are detectable, scCGI-seq provides a solid tool for unsupervised stratification of a heterogeneous cell population. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Efferent-Mediated Responses in Vestibular Nerve Afferents of the Alert Macaque

    PubMed Central

    Sadeghi, Soroush G.; Goldberg, Jay M.; Minor, Lloyd B.; Cullen, Kathleen E.

    2009-01-01

    The peripheral vestibular organs have long been known to receive a bilateral efferent innervation from the brain stem. However, the functional role of the efferent vestibular system has remained elusive. In this study, we investigated efferent-mediated responses in vestibular afferents of alert behaving primates (macaque monkey). We found that efferent-mediated rotational responses could be obtained from vestibular nerve fibers innervating the semicircular canals after conventional afferent responses were nulled by placing the corresponding canal plane orthogonal to the plane of motion. Responses were type III, i.e., excitatory for rotational velocity trapezoids (peak velocity, 320°/s) in both directions of rotation, consistent with those previously reported in the decerebrate chinchilla. Responses consisted of both fast and slow components and were larger in irregular (∼10 spikes/s) than in regular afferents (∼2 spikes/s). Following unilateral labyrinthectomy (UL) on the side opposite the recording site, similar responses were obtained. To confirm the vestibular source of the efferent-mediated responses, the ipsilateral horizontal and posterior canals were plugged following the UL. Responses to high-velocity rotations were drastically reduced when the superior canal (SC), the only intact canal, was in its null position, compared with when the SC was pitched 50° upward from the null position. Our findings show that vestibular afferents in alert primates show efferent-mediated responses that are related to the discharge regularity of the afferent, are of vestibular origin, and can be the result of both afferent excitation and inhibition. PMID:19091917

  2. Efferent-mediated responses in vestibular nerve afferents of the alert macaque.

    PubMed

    Sadeghi, Soroush G; Goldberg, Jay M; Minor, Lloyd B; Cullen, Kathleen E

    2009-02-01

    The peripheral vestibular organs have long been known to receive a bilateral efferent innervation from the brain stem. However, the functional role of the efferent vestibular system has remained elusive. In this study, we investigated efferent-mediated responses in vestibular afferents of alert behaving primates (macaque monkey). We found that efferent-mediated rotational responses could be obtained from vestibular nerve fibers innervating the semicircular canals after conventional afferent responses were nulled by placing the corresponding canal plane orthogonal to the plane of motion. Responses were type III, i.e., excitatory for rotational velocity trapezoids (peak velocity, 320 degrees/s) in both directions of rotation, consistent with those previously reported in the decerebrate chinchilla. Responses consisted of both fast and slow components and were larger in irregular (approximately 10 spikes/s) than in regular afferents (approximately 2 spikes/s). Following unilateral labyrinthectomy (UL) on the side opposite the recording site, similar responses were obtained. To confirm the vestibular source of the efferent-mediated responses, the ipsilateral horizontal and posterior canals were plugged following the UL. Responses to high-velocity rotations were drastically reduced when the superior canal (SC), the only intact canal, was in its null position, compared with when the SC was pitched 50 degrees upward from the null position. Our findings show that vestibular afferents in alert primates show efferent-mediated responses that are related to the discharge regularity of the afferent, are of vestibular origin, and can be the result of both afferent excitation and inhibition.

  3. Pore-scale supercritical CO2 dissolution and mass transfer under imbibition conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chun; Zhou, Quanlin; Kneafsey, Timothy J.

    2016-06-01

    In modeling of geological carbon storage, dissolution of supercritical CO2 (scCO2) is often assumed to be instantaneous with equilibrium phase partitioning. In contrast, recent core-scale imbibition experiments have shown a prolonged depletion of residual scCO2 by dissolution, implying a non-equilibrium mechanism. In this study, eight pore-scale scCO2 dissolution experiments in a 2D heterogeneous, sandstone-analogue micromodel were conducted at supercritical conditions (9 MPa and 40 °C). The micromodel was first saturated with deionized (DI) water and drained by injecting scCO2 to establish a stable scCO2 saturation. DI water was then injected at constant flow rates after scCO2 drainage was completed. Highmore » resolution time-lapse images of scCO2 and water distributions were obtained during imbibition and dissolution, aided by a scCO2-soluble fluorescent dye introduced with scCO2 during drainage. These images were used to estimate scCO2 saturations and scCO2 depletion rates. Experimental results show that (1) a time-independent, varying number of water-flow channels are created during imbibition and later dominant dissolution by the random nature of water flow at the micromodel inlet, and (2) a time-dependent number of water-flow channels are created by coupled imbibition and dissolution following completion of dominant imbibition. The number of water-flow paths, constant or transient in nature, greatly affects the overall depletion rate of scCO2 by dissolution. The average mass fraction of dissolved CO2 (dsCO2) in water effluent varies from 0.38% to 2.72% of CO2 solubility, indicating non-equilibrium scCO2 dissolution in the millimeter-scale pore network. In general, the transient depletion rate decreases as trapped, discontinuous scCO2 bubbles and clusters within water-flow paths dissolve, then remains low with dissolution of large bypassed scCO2 clusters at their interfaces with longitudinal water flow, and finally increases with coupled transverse water flow and enhanced dissolution of large scCO2 clusters. The three stages of scCO2 depletion, common to experiments with time-independent water-flow paths, are revealed by zoom-in image analysis of individual scCO2 bubbles and clusters. The measured relative permeability of water, affected by scCO2 dissolution and bi-modal permeability, shows a non-monotonic dependence on saturation. The results for experiments with different injection rates imply that the non-equilibrium nature of scCO2 dissolution becomes less important when water flow is relatively low and the time scale for dissolution is large, and more pronounced when heterogeneity is strong.« less

  4. Transport across Schlemm's canal endothelium and the blood-aqueous barrier.

    PubMed

    Braakman, Sietse T; Moore, James E; Ethier, C Ross; Overby, Darryl R

    2016-05-01

    The majority of trabecular outflow likely crosses Schlemm's canal (SC) endothelium through micron-sized pores, and SC endothelium provides the only continuous cell layer between the anterior chamber and episcleral venous blood. SC endothelium must therefore be sufficiently porous to facilitate outflow, while also being sufficiently restrictive to preserve the blood-aqueous barrier and prevent blood and serum proteins from entering the eye. To understand how SC endothelium satisfies these apparently incompatible functions, we examined how the diameter and density of SC pores affects retrograde diffusion of serum proteins across SC endothelium, i.e. from SC lumen into the juxtacanalicular tissue (JCT). Opposing retrograde diffusion is anterograde bulk flow velocity of aqueous humor passing through pores, estimated to be approximately 5 mm/s. As a result of this relatively large through-pore velocity, a mass transport model predicts that upstream (JCT) concentrations of larger solutes such as albumin are less than 1% of the concentration in SC lumen. However, smaller solutes such as glucose are predicted to have nearly the same concentration in the JCT and SC. In the hypothetical case that, rather than micron-sized pores, SC formed 65 nm fenestrae, as commonly observed in other filtration-active endothelia, the predicted concentration of albumin in the JCT would increase to approximately 50% of that in SC. These results suggest that the size and density of SC pores may have developed to allow SC endothelium to maintain the blood-aqueous barrier while simultaneously facilitating aqueous humor outflow. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Molecular Mechanisms of Nonlinearity in Response to Low Dose Ionizing Radiation

    DTIC Science & Technology

    2007-10-12

    nucleotide-binding protein 1 HSP27 heat shock protein 27 IR ionizing radiation LDH-A lactate dehydrogenase A PDI protein disulfide isomerase precursor 2...sc-9322, SCB, CA), E-FABP (sc-16060, SCB, CA), and LDH-A (sc-27230, SCB, CA), cytokeratin I (sc- 17091, SCB, CA), CaM (sc-1989, SCB, CA), HSP27 (sc...the 24 hour time point included: calmodulin (CaM), heat shock protein 27 ( HSP27 ), lactate dehydrogenase A (LDH-A) and protein disulfide isomerase

  6. Molecular and functional characterization of peptidoglycan-recognition protein SC2 (PGRP-SC2) from Nile tilapia (Oreochromis niloticus) involved in the immune response to Streptococcus agalactiae.

    PubMed

    Gan, Zhen; Chen, Shannan; Hou, Jing; Huo, Huijun; Zhang, Xiaolin; Ruan, Baiye; Laghari, Zubair Ahmed; Li, Li; Lu, Yishan; Nie, Pin

    2016-07-01

    PGRP-SC2, the member of PGRP family, plays an important role in regulation of innate immune response. In this paper, a PGRP-SC2 gene of Nile tilapia, Oreochromis niloticus (designated as On-PGRP-SC2) was cloned and its expression pattern under the infection of Streptococcus agalactiae was investigated. Sequence analysis showed main structural features required for amidase activity were detected in the deduced amino acid sequence of On-PGRP-SC2. In healthy tilapia, the On-PGRP-SC2 transcripts could be detected in all the examined tissues, with the most abundant expression in the muscle. When infected with S. agalactiae, there was a clear time-dependent expression pattern of On-PGRP-SC2 in the spleen, head kidney and brain. The assays for the amidase activity suggested that recombinant On-PGRP-SC2 protein had a Zn(2+)-dependent PGN-degrading activity. Moreover, our works showed that recombinant On-PGRP-SC2 protein could significantly reduce bacterial load in target organs attacked by S. agalactiae. These findings indicated that On-PGRP-SC2 may play important roles in the immune response to S. agalactiae in Nile tilapia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Do scheduled caste and scheduled tribe women legislators mean lower gender-caste gaps in primary schooling in India?

    PubMed

    Halim, Nafisa; Yount, Kathryn M; Cunningham, Solveig

    2016-07-01

    Despite India's substantial investments in primary schooling, gaps in schooling persist across gender and caste-with scheduled caste and scheduled tribe (SC/ST) girls being particularly disadvantaged. The representation of SC/ST women in state legislatures may help to mitigate this disadvantage. Specifically, because of her intersecting gender and caste/tribe identities, a SC/ST woman legislator might maintain a strong sense of solidarity especially with SC/ST girls and women, and support legislative policies benefitting SC/ST girls. Consequently, for this reason, we expect that living in a district where SC/ST women represent in state legislatures in a higher proportion may increase SC/ST girls' primary school completion, progression and performance. We tested this hypothesis using district-level data between 2000 and 2004 from the Indian Election Commission, the 2004/5 India Human Development Survey, and the Indian Census of 2001. As expected, the representation of SC/ST women in state legislatures was positively associated with SC/ST girls' grade completion and age-appropriate grade progression but was apparent not SC/ST girls' primary-school performance. SC/ST women's representation in state legislatures may reduce gender-caste gaps in primary-school attainment in India. Copyright © 2016. Published by Elsevier Inc.

  8. High rate of systemic corticosteroid prescription among outpatient visits for psoriasis: A population-based epidemiological study using the Korean National Health Insurance database.

    PubMed

    Eun, Sang Jun; Jang, Sihyeok; Lee, Jin Yong; Do, Young Kyung; Jo, Seong Jin

    2017-09-01

    The use of systemic corticosteroids (SC) for the treatment of psoriasis is not recommended according to textbooks and guidelines. In clinical practise, however, many physicians frequently prescribe SC for patients with psoriasis. To determine the magnitude of SC prescription for outpatients with psoriasis in Korea and identify factors associated with the use of SC, we used the 2010-2014 nationwide claims data of the Health Insurance Review and Assessment Service of Korea. In frequency analysis for the full scale of prescribed SC, oral methylprednisolone was the most frequently prescribed SC, followed by dexamethasone and betamethasone injections. The prescription rate of SC was 26.4% in outpatient visit episodes for psoriasis. The prescription rate of SC was higher in older patients, Medical Aid recipients, patients who visited office-based physician practices and hospitals, and patients living in non-metropolitan areas. In multiple logistic regression analyses, the older age group and smaller health-care institutions were more associated with the SC prescription. In conclusion, SC were widely prescribed for patients with psoriasis in Korea despite the current guidelines. Both patients' individual and institutional characteristics were associated with the SC prescription. © 2017 Japanese Dermatological Association.

  9. Physico-chemical characteristics and free fatty acid composition of dry fermented mutton sausages as affected by the use of various combinations of starter cultures and spices.

    PubMed

    Zhao, Lihua; Jin, Ye; Ma, Changwei; Song, Huanlu; Li, Hui; Wang, Zhenyu; Xiao, Shan

    2011-08-01

    The microbiological, physico-chemical and free fatty acid composition of dry fermented mutton sausages were determined during ripening and storage. Three sausage mixtures (starter culture [SC], SC and black pepper [SC+BP] and SC, BP and cumin [SC+BP+C]) were compared with a control (CO). In general, the lactic acid bacteria populations in the SC+BP increased significantly to 9 log CFU/g and were higher than the CO (8 log CFU/g) (P<0.05) from fermentation to ripening. The pH values of the SC, SC+BP and SC+BP+C were 4.81, 4.55 and 4.53 respectively, significantly lower (P<0.05) than the CO at the end of fermentation. The water activity (a(w)) in all sausages decreased significantly to 0.88 at Day 7. The total free fatty acid (TFFA) in the treatments increased significantly (P<0.05) during ripening and storage. The levels of MUFA+PUFA/SFA in SC+BP and SC+BP+C at Day 7 were 2.44 and 2.31 respectively, higher than the control (1.65) (P>0.05). Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Do scheduled caste and scheduled tribe women legislators mean lower gender-caste gaps in primary schooling in India?

    PubMed Central

    Halim, Nafisa; Yount, Kathryn M.; Cunningham, Solveig

    2017-01-01

    Despite India’s substantial investments in primary schooling, gaps in schooling persist across gender and caste—with scheduled caste and scheduled tribe (SC/ST) girls being particularly disadvantaged. The representation of SC/ST women in state legislatures may help to mitigate this disadvantage. Specifically, because of her intersecting gender and caste/tribe identities, a SC/ST woman legislator might maintain a strong sense of solidarity especially with SC/ST girls and women, and support legislative policies benefitting SC/ST girls. Consequently, for this reason, we expect that living in a district where SC/ST women represent in state legislatures in a higher proportion may increase SC/ST girls’ primary school completion, progression and performance. We tested this hypothesis using district-level data between 2000 and 2004 from the Indian Election Commission, the 2004/5 India Human Development Survey, and the Indian Census of 2001. As expected, the representation of SC/ST women in state legislatures was positively associated with SC/ST girls’ grade completion and age-appropriate grade progression but was apparent not SC/ST girls’ primary-school performance. SC/ST women’s representation in state legislatures may reduce gender-caste gaps in primary-school attainment in India. PMID:27194655

  11. Brain natriuretic peptide (BNP) may play a major role in risk stratification based on cerebral oxygen saturation by near-infrared spectroscopy in patients undergoing major cardiovascular surgery

    PubMed Central

    Hayashida, Masakazu; Matsushita, Satoshi; Yamamoto, Makiko; Nakamura, Atsushi; Amano, Atsushi

    2017-01-01

    Purpose A previous study reported that low baseline cerebral oxygen saturation (ScO2) (≤50%) measured with near-infrared spectroscopy was predictive of poor clinical outcomes after cardiac surgery. However, such findings have not been reconfirmed by others. We conducted the current study to evaluate whether the previous findings would be reproducible, and to explore mechanisms underlying the ScO2-based outcome prediction. Methods We retrospectively investigated 573 consecutive patients, aged 20 to 91 (mean ± standard deviation, 67.1 ± 12.8) years, who underwent major cardiovascular surgery. Preanesthetic baseline ScO2, lowest intraoperative ScO2, various clinical variables, and hospital mortality were examined. Results Bivariate regression analyses revealed that baseline ScO2 correlated significantly with plasma brain natriuretic peptide concentration (BNP), hemoglobin concentration (Hgb), estimated glomerular filtration rate (eGFR), and left ventricular ejection fraction (LVEF) (p < 0.0001 for each). Baseline ScO2 correlated with BNP in an exponential manner, and BNP was the most significant factor influencing ScO2. Logistic regression analyses revealed that baseline and lowest intraoperative ScO2 values, but not relative ScO2 decrements, were significantly associated with hospital mortality (p < 0.05), independent of the EuroSCORE (p < 0.01). Receiver operating curve analysis of ScO2 values and hospital mortality revealed an area under the curve (AUC) of 0.715 (p < 0.01) and a cutoff value of ≤50.5% for the baseline and ScO2, and an AUC of 0.718 (p < 0.05) and a cutoff value of ≤35% for the lowest intraoperative ScO2. Low baseline ScO2 (≤50%) was associated with increases in intubation time, intensive care unit stay, hospital stay, and hospital mortality. Conclusion Baseline ScO2 was reflective of severity of systemic comorbidities and was predictive of clinical outcomes after major cardiovascular surgery. ScO2 correlated most significantly with BNP in an exponential manner, suggesting that BNP plays a major role in the ScO2-based outcome prediction. PMID:28704502

  12. Behavioral and EEG effects of GABAergic manipulation of the nigro-tectal pathway in the Wistar audiogenic rat (WAR) strain II: an EEG wavelet analysis and retrograde neuronal tracer approach.

    PubMed

    Rossetti, Franco; Rodrigues, Marcelo Cairrão Araújo; Marroni, Simone S; Fernandes, Artur; Foresti, Maira Licia; Romcy-Pereira, Rodrigo N; de Araújo, Dráulio Barros; Garcia-Cairasco, Norberto

    2012-08-01

    The role of the substantia nigra pars reticulata (SNPr) and superior colliculus (SC) network in rat strains susceptible to audiogenic seizures still remain underexplored in epileptology. In a previous study from our laboratory, the GABAergic drugs bicuculline (BIC) and muscimol (MUS) were microinjected into the deep layers of either the anterior SC (aSC) or the posterior SC (pSC) in animals of the Wistar audiogenic rat (WAR) strain submitted to acoustic stimulation, in which simultaneous electroencephalographic (EEG) recording of the aSC, pSC, SNPr and striatum was performed. Only MUS microinjected into the pSC blocked audiogenic seizures. In the present study, we expanded upon these previous results using the retrograde tracer Fluorogold (FG) microinjected into the aSC and pSC in conjunction with quantitative EEG analysis (wavelet transform), in the search for mechanisms associated with the susceptibility of this inbred strain to acoustic stimulation. Our hypothesis was that the WAR strain would have different connectivity between specific subareas of the superior colliculus and the SNPr when compared with resistant Wistar animals and that these connections would lead to altered behavior of this network during audiogenic seizures. Wavelet analysis showed that the only treatment with an anticonvulsant effect was MUS microinjected into the pSC region, and this treatment induced a sustained oscillation in the theta band only in the SNPr and in the pSC. These data suggest that in WAR animals, there are at least two subcortical loops and that the one involved in audiogenic seizure susceptibility appears to be the pSC-SNPr circuit. We also found that WARs presented an increase in the number of FG+ projections from the posterior SNPr to both the aSC and pSC (primarily to the pSC), with both acting as proconvulsant nuclei when compared with Wistar rats. We concluded that these two different subcortical loops within the basal ganglia are probably a consequence of the WAR genetic background. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Environmental Assessment for Fuel Storage Tank Removal and Replacement

    DTIC Science & Technology

    2004-10-23

    RC Botrychium lunarioides Winter Grape-Fern G4? S? SC Calopogon barbatus Bearded Grass-Pink G4? S? SC Canna flaccida Bandana-Of-The-Everglades G4? S4...G3G4 S? SC Physostegia leptophylla Slender-Leaved Dragon -Head G4? S? SC Pieris phillyreifolia Climbing Fetter-Bush G3 S? SC Plantago sparsiflora

  14. 76 FR 56099 - Amendment of Class E Airspace; Orangeburg, SC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-12

    ... Group, Eastern Service Center, Federal Aviation Administration, P.O. Box 20636, Atlanta, Georgia 30320... the airspace descriptor from ``ASO GA E5 Orangeburg, SC [Amended]'' to ``ASO SC E5 Orangeburg, SC... Airport, SC, remove ``lat. 33[deg]27[min]39[sec] N., long. 80[deg]51[min]32[sec] W.'' and insert ``lat. 33...

  15. A New Supercapacitor and Li-ion Battery Hybrid System for Electric Vehicle in ADVISOR

    NASA Astrophysics Data System (ADS)

    Peng, Xiao; Shuhai, Quan; Changjun, Xie

    2017-02-01

    The supercapacitor (SC) and Li-ion battery(BT) hybrid energy storage system(HESS) electric vehicle(EV) is gaining universal attention. The topology is of importance for the SC/BT HESS. A new SC/BT topology HESS with a rule-based energy management strategy for EV was proposed. The BT pack is connected directly to the DC link via a controlled switch. The SC pack is connected to the DC link via a controlled switch. A uni-directional DC/DC converter is connected between the SC pack and the BT pack. The braking regeneration energy is all harvested by the SC pack. The output power of BT pack is limited. The different SC/BT configurations with varied BT maximum Ah capacity factor and SC maximum capacity factor are simulated in ADVISOR. Simulation results show that BT maximum Ah capacity factor has little impact on vehicle acceleration performance and maximum speed. SC maximum capacity factor has significant impact on vehicle acceleration performance and maximum speed. The fuel economy isn’t affected.

  16. [Autoantibody formation against the antigens of the synaptonemal complex in the syngeneic immunization of male Mus musculus].

    PubMed

    Dadashev, S Ia; Gorach, G G; Kolomiets, O L

    1994-01-01

    Male mice were immunized with the suspension of synaptonemal complexes (SC) isolated from mouse spermatocytes nuclei. The indirect immunofluorescent analysis showed the active binding of sera obtained from immunized mice to SC of mouse spermatocyte spreads. At early and mid-pachytene, SC can be clearly identified in 19 autosome bivalents and in sex chromosome bivalent. According to the electron microscopic analysis, all structural elements of SC bind antibodies. Metaphase chromosomes were not stained with the immune sera. Specificity of interaction between SC components and antibodies was confirmed in a series of control experiments. Analysis of sera obtained from mice after their syngeneic immunization with isolated SC fraction suggested that certain mouse SC components induce the formation of autoantibodies. This, in turn, suggests that these SC components are meiosis-specific.

  17. E-selectin mediates stem cell adhesion and formation of blood vessels in a murine model of infantile hemangioma.

    PubMed

    Smadja, David M; Mulliken, John B; Bischoff, Joyce

    2012-12-01

    Hemangioma stem cells (HemSCs) are multipotent cells isolated from infantile hemangioma (IH), which form hemangioma-like lesions when injected subcutaneously into immune-deficient mice. In this murine model, HemSCs are the primary target of corticosteroid, a mainstay therapy for problematic IH. The relationship between HemSCs and endothelial cells that reside in IH is not clearly understood. Adhesive interactions might be critical for the preferential accumulation of HemSCs and/or endothelial cells in the tumor. Therefore, we studied the interactions between HemSCs and endothelial cells (HemECs) isolated from IH surgical specimens. We found that HemECs isolated from proliferating phase IH, but not involuting phase, constitutively express E-selectin, a cell adhesion molecule not present in quiescent endothelial cells. E-selectin was further increased when HemECs were exposed to vascular endothelial growth factor-A or tumor necrosis factor-α. In vitro, HemSC migration and adhesion was enhanced by recombinant E-selectin but not P-selectin; both processes were neutralized by E-selectin-blocking antibodies. E-selectin-positive HemECs also stimulated migration and adhesion of HemSCs. In vivo, neutralizing antibodies to E-selectin strongly inhibited formation of blood vessels when HemSCs and HemECs were co-implanted in Matrigel. These data suggest that endothelial E-selectin could be a major ligand for HemSCs and thereby promote cellular interactions and vasculogenesis in IH. We propose that constitutively expressed E-selectin on endothelial cells in the proliferating phase is one mediator of the stem cell tropism in IH. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  18. Exploring the single-cell RNA-seq analysis landscape with the scRNA-tools database.

    PubMed

    Zappia, Luke; Phipson, Belinda; Oshlack, Alicia

    2018-06-25

    As single-cell RNA-sequencing (scRNA-seq) datasets have become more widespread the number of tools designed to analyse these data has dramatically increased. Navigating the vast sea of tools now available is becoming increasingly challenging for researchers. In order to better facilitate selection of appropriate analysis tools we have created the scRNA-tools database (www.scRNA-tools.org) to catalogue and curate analysis tools as they become available. Our database collects a range of information on each scRNA-seq analysis tool and categorises them according to the analysis tasks they perform. Exploration of this database gives insights into the areas of rapid development of analysis methods for scRNA-seq data. We see that many tools perform tasks specific to scRNA-seq analysis, particularly clustering and ordering of cells. We also find that the scRNA-seq community embraces an open-source and open-science approach, with most tools available under open-source licenses and preprints being extensively used as a means to describe methods. The scRNA-tools database provides a valuable resource for researchers embarking on scRNA-seq analysis and records the growth of the field over time.

  19. Optical monitoring of spinal cord subcellular damage after acute spinal cord injury

    NASA Astrophysics Data System (ADS)

    Shadgan, Babak; Manouchehri, Neda; So, Kitty; Shortt, Katelyn; Fong, Allan; Streijger, Femke; Macnab, Andrew; Kwon, Brian K.

    2018-02-01

    Introduction: Sudden physical trauma to the spinal cord results in acute spinal cord injury (SCI), leading to spinal cord (SC) tissue destruction, acute inflammation, increased SC intraparenchymal pressure, and tissue ischemia, hypoxia, and cellular necrosis. The ability to monitor SC tissue viability at subcellular level, using a real-time noninvasive method, would be extremely valuable to clinicians for estimating acute SCI damage, and adjusting and monitoring treatment in the intensive care setting. This study examined the feasibility and sensitivity of a custommade near infrared spectroscopy (NIRS) sensor to monitor the oxidation state of SC mitochondrial cytochrome aa3 (CCO), which reflects the subcellular damage of SC tissue in an animal model of SCI. Methods: Six anesthetized Yorkshire pigs were studied using a custom-made multi-wavelength NIRS system with a miniaturized optical sensor applied directly on the surgically exposed SC at T9. The oxidation states of SC tissue hemoglobin and CCO were monitored before, during and after acute SCI, and during mean arterial pressure alterations. Results: Non-invasive NIRS monitoring reflected changes in SC tissue CCO, simultaneous but independent of changes in hemoglobin saturation following acute SCI. A consistent decrease in SC tissue CCO chromophore concentration (-1.98 +/- 2.1 ab, p<0.05) was observed following SCI, indicating progressive SC cellular damage at the injury site. Elevation of mean arterial pressure can reduce SC tissue damage as suggested by different researchers and observed by significant increase in SC tissue CCO concentration (1.51 +/- 1.7 ab, p<0.05) in this study. Conclusions: This pilot study indicates that a novel miniaturized multi-wave NIRS sensor has the potential to monitor post-SCI changes of SC cytochrome aa3 oxygenation state in real time. Further development of this method may offer new options for improved SCI care.

  20. Vehicle effects on human stratum corneum absorption and skin penetration.

    PubMed

    Zhang, Alissa; Jung, Eui-Chang; Zhu, Hanjiang; Zou, Ying; Hui, Xiaoying; Maibach, Howard

    2017-05-01

    This study evaluated the effects of three vehicles-ethanol (EtOH), isopropyl alcohol (IPA), and isopropyl myristate (IPM)-on stratum corneum (SC) absorption and diffusion of the [ 14 C]-model compounds benzoic acid and butenafine hydrochloride to better understand the transport pathways of chemicals passing through and resident in SC. Following application of topical formulations to human dermatomed skin for 30 min, penetration flux was observed for 24 h post dosing, using an in vitro flow-through skin diffusion system. Skin absorption and penetration was compared to the chemical-SC (intact, delipidized, or SC lipid film) binding levels. A significant vehicle effect was observed for chemical skin penetration and SC absorption. IPA resulted in the greatest levels of intact SC/SC lipid absorption, skin penetration, and total skin absorption/penetration of benzoic acid, followed by IPM and EtOH, respectively. For intact SC absorption and total skin absorption/penetration of butenafine, the vehicle that demonstrated the highest level of sorption/penetration was EtOH, followed by IPA and IPM, respectively. The percent doses of butenafine that were absorbed in SC lipid film and penetrated through skin in 24 h were greatest for IPA, followed by EtOH and IPM, respectively. The vehicle effect was consistent between intact SC absorption and total chemical skin absorption and penetration, as well as SC lipid absorption and chemical penetration through skin, suggesting intercellular transport as a main pathway of skin penetration for model chemicals. These results suggest the potential to predict vehicle effects on skin permeability with simple SC absorption assays. As decontamination was applied 30 min after chemical exposure, significant vehicle effects on chemical SC partitioning and percutaneous penetration also suggest that skin decontamination efficiency is vehicle dependent, and an effective decontamination method should act on chemical solutes in the lipid domain.

  1. Improvement of bioavailability of the HIV protease inhibitor SC-52151 in the beagle dog by coadministration of the CYP3A4 inhibitor, ketoconazole.

    PubMed

    Yuan, J H; Stolzenbach, J C; Salamon, C M; Snook, S S; Schoenhard, G L

    1997-05-01

    1. SC-52151, an HIV protease inhibitor, is mainly metabolized by CYP3A4 and is poorly bioavailable after oral administration. After i.v. administration of SC-52151 to the female beagle dog (2.5 mg/kg), SC-52151 was rapidly eliminated in plasma with an elimination half-life of about 1 h, a plasma clearance of 44 ml/min/kg and an apparent steady-state volume distribution of 2.2 litre/kg. The high value of plasma clearance of SC-52151 suggests an extensive hepatic first-pass metabolism since SC-52151 is highly protein bound and does not partition itself into red blood cells. 2. The extensive hepatic first-pass metabolism was reduced by coadministration of a CYP3A4 inhibitor, ketoconazole. 3. Dogs were dosed daily with ketoconazole at dose of 100 mg ketoconazole per dog (approximately 10 mg/kg) for 5 days prior to the initiation of coadministration of SC-52151 for 15 days. The doses used for SC-52151 was 0, 60 and 120 mg SC-52151/kg/day (divided t.i.d., 8-h dosing interval). Coadministration of ketoconazole improved the bioavailability of SC-52151 from 4.1 to 9.6% and also improved the Cmax of SC-52151 from 0.41 to 0.83 microgram/ml. 4. Although the absolute bioavailability of SC-52151 was still low (approximately 10%), the Cmax and AUC achieved in this study were satisfactory for conducting chronic toxicology studies. No toxicity associated with the coadministration of ketoconazole was evident. Results from this study suggest that coadministration of ketoconazole might be a practical approach to increase the exposure of SC-52151 in both preclinical and clinical studies.

  2. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa

    PubMed Central

    Petegrosso, Raphael; Tolar, Jakub

    2018-01-01

    Single-cell RNA sequencing (scRNA-seq) has been widely applied to discover new cell types by detecting sub-populations in a heterogeneous group of cells. Since scRNA-seq experiments have lower read coverage/tag counts and introduce more technical biases compared to bulk RNA-seq experiments, the limited number of sampled cells combined with the experimental biases and other dataset specific variations presents a challenge to cross-dataset analysis and discovery of relevant biological variations across multiple cell populations. In this paper, we introduce a method of variance-driven multitask clustering of single-cell RNA-seq data (scVDMC) that utilizes multiple single-cell populations from biological replicates or different samples. scVDMC clusters single cells in multiple scRNA-seq experiments of similar cell types and markers but varying expression patterns such that the scRNA-seq data are better integrated than typical pooled analyses which only increase the sample size. By controlling the variance among the cell clusters within each dataset and across all the datasets, scVDMC detects cell sub-populations in each individual experiment with shared cell-type markers but varying cluster centers among all the experiments. Applied to two real scRNA-seq datasets with several replicates and one large-scale droplet-based dataset on three patient samples, scVDMC more accurately detected cell populations and known cell markers than pooled clustering and other recently proposed scRNA-seq clustering methods. In the case study applied to in-house Recessive Dystrophic Epidermolysis Bullosa (RDEB) scRNA-seq data, scVDMC revealed several new cell types and unknown markers validated by flow cytometry. MATLAB/Octave code available at https://github.com/kuanglab/scVDMC. PMID:29630593

  3. Toward low-cost affinity reagents: lyophilized yeast-scFv probes specific for pathogen antigens.

    PubMed

    Gray, Sean A; Weigel, Kris M; Ali, Ibne K M; Lakey, Annie A; Capalungan, Jeremy; Domingo, Gonzalo J; Cangelosi, Gerard A

    2012-01-01

    The generation of affinity reagents, usually monoclonal antibodies, remains a critical bottleneck in biomedical research and diagnostic test development. Recombinant antibody-like proteins such as scFv have yet to replace traditional monoclonal antibodies in antigen detection applications, in large part because of poor performance of scFv in solution. To address this limitation, we have developed assays that use whole yeast cells expressing scFv on their surfaces (yeast-scFv) in place of soluble purified scFv or traditional monoclonal antibodies. In this study, a nonimmune library of human scFv displayed on the surfaces of yeast cells was screened for clones that bind to recombinant cyst proteins of Entamoeba histolytica, an enteric pathogen of humans. Selected yeast-scFv clones were stabilized by lyophilization and used in detection assay formats in which the yeast-scFv served as solid support-bound monoclonal antibodies. Specific binding of antigen to the yeast-scFv was detected by staining with rabbit polyclonal antibodies. In flow cytometry-based assays, lyophilized yeast-scFv reagents retained full binding activity and specificity for their cognate antigens after 4 weeks of storage at room temperature in the absence of desiccants or stabilizers. Because flow cytometry is not available to all potential assay users, an immunofluorescence assay was also developed that detects antigen with similar sensitivity and specificity. Antigen-specific whole-cell yeast-scFv reagents can be selected from nonimmune libraries in 2-3 weeks, produced in vast quantities, and packaged in lyophilized form for extended shelf life. Lyophilized yeast-scFv show promise as low cost, renewable alternatives to monoclonal antibodies for diagnosis and research.

  4. Scandium(III) complexes of monophosphorus acid DOTA analogues: a thermodynamic and radiolabelling study with (44)Sc from cyclotron and from a (44)Ti/(44)Sc generator.

    PubMed

    Kerdjoudj, R; Pniok, M; Alliot, C; Kubíček, V; Havlíčková, J; Rösch, F; Hermann, P; Huclier-Markai, S

    2016-01-28

    The complexation ability of DOTA analogs bearing one methylenephosphonic (DO3AP) or methylenephosphinic (DO3AP(PrA) and DO3AP(ABn)) acid pendant arm toward scandium was evaluated. Stability constants of their scandium(iii) complexes were determined by potentiometry combined with (45)Sc NMR spectroscopy. The stability constants of the monophosphinate analogues are somewhat lower than that of the Sc-DOTA complex. The phosphorus acid moiety interacts with trivalent scandium even in very acidic solutions forming out-of-cage complexes; the strong affinity of the phosphonate group to Sc(iii) precludes stability constant determination of the Sc-DO3AP complex. These results were compared with those obtained by the free-ion selective radiotracer extraction (FISRE) method which is suitable for trace concentrations. FISRE underestimated the stability constants but their relative order was preserved. Nonetheless, as this method is experimentally simple, it is suitable for a quick relative comparison of stability constant values under trace concentrations. Radiolabelling of the ligands with (44)Sc was performed using the radioisotope from two sources, a (44)Ti/(44)Sc generator and (44m)Sc/(44)Sc from a cyclotron. The best radiolabelling conditions for the ligands were pH = 4, 70 °C and 20 min which were, however, not superior to those of the parent DOTA. Nonetheless, in vitro behaviour of the Sc(iii) complexes in the presence of hydroxyapatite and rat serum showed sufficient stability of (44)Sc complexes of these ligands for in vivo applications. PET images and ex vivo biodistribution of the (44)Sc-DO3AP complex performed on healthy Wistar male rats showed no specific bone uptake and rapid clearance through urine.

  5. Matching-adjusted comparisons demonstrate better clinical outcomes with SC peginterferon beta-1a every two weeks than with SC interferon beta-1a three times per week.

    PubMed

    Coyle, Patricia K; Shang, Shulian; Xiao, Zhen; Dong, Qunming; Castrillo-Viguera, Carmen

    2018-05-01

    Subcutaneous (SC) peginterferon beta-1a and SC interferon beta-1a (IFN beta-1a) have demonstrated efficacy in treating relapsing-remitting multiple sclerosis (RRMS) but have never been compared in direct head-to-head clinical trials, the gold-standard comparison. A well-balanced matching-adjusted comparison of weighted individual patient data on SC peginterferon beta-1a, and aggregate data from published phase 3 clinical trials of SC IFN beta-1a, was conducted to provide additional information on the comparative efficacy of these two agents. Individual patient data from a study of SC peginterferon beta-1a 125 mcg every two weeks (ADVANCE) and pooled summary data from four published studies of SC IFN beta-1a 44 mcg three times per week (OPERA I and II, CARE-MS I and II) with similar populations were utilized. A comparison was conducted by weighting individual peginterferon beta-1a-treated patients, using estimated propensity of enrolling in SC IFN beta-1a treatment to match multiple key aggregate baseline characteristics of SC IFN beta-1a-treated patients. After matching, weighted annualized relapse rate (ARR), 24-week confirmed disability worsening (CDW), and clinical no evidence of disease activity (clinical-NEDA) were calculated and compared for peginterferon beta-1a and SC IFN beta-1a. After matching, baseline characteristics were well balanced across treatment groups. At 2 years, ARR after matching was 0.256 for patients receiving peginterferon beta-1a (effective n = 376) and 0.335 for those receiving SC IFN beta-1a (n = 1218) (P = 0.0901). The percentage of patients who were relapse free over 2 years was significantly higher with peginterferon beta-1a than with SC IFN beta-1a (75.1% vs. 57.4% [after matching], P < 0.0001). The peginterferon beta-1a treatment group had a significantly lower proportion of patients with 24-week CDW compared with SC IFN beta-1a (after matching 6.5% vs. 13.2%; P = 0.0007). Clinical-NEDA occurred in a significantly higher proportion of patients treated with SC peginterferon beta-1a versus SC IFN beta-1a (74.1% vs. 48.1%; P < 0.0001). This matching-adjusted comparison using data from four phase 3 trials with SC IFN beta-1a formulations demonstrated that patients with RRMS treated with SC peginterferon beta-1a 125 mcg every two weeks achieved better clinical outcomes than patients who received SC IFN beta-1a 44 mcg three times per week. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Microstructure and transformation behavior of Ni{sub 24.7}Ti{sub 50.3}Pd{sub 25} high temperature shape-memory alloy with Sc micro-addition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramaiah, K.V., E-mail: kvramaiah@nal.res.in; Saikrishna, C.N.; Gouthama

    2015-08-15

    NiTiPd shape-memory alloys (SMAs) are potential functional materials for use as solid-state actuators in the temperature range 100–250 °C. The present study investigates the effect of 1.0 at.% Sc micro-addition to Ni{sub 24.7}Ti{sub 50.3}Pd{sub 25} alloy, Sc replacing either Ti or Ni. Results show that all the three alloys studied have stable transformation behavior on stress-free thermal cycling and hence, are suitable for cyclic actuation applications. However, the addition of Sc to NiTiPd alloy leads to decrease of transformation temperatures, the magnitude of decrease being greater for the alloy with Sc replacing Ni. The martensite finish (M{sub f}) temperature ofmore » 181 °C for the NiTiPd alloy decreased to 139 °C for Sc replacing Ti and 83 °C for Sc replacing Ni. Also, the indentation modulus of NiTiPdSc (Sc replacing Ni) alloy is found to be significantly low compared to the other alloys. Analysis indicates that the observed differences in the alloy properties are related to the solubility of Sc in the NiTiPd matrix. While the quaternary NiTiPdSc alloy, Sc replacing Ti, has a single phase microstructure, the alloy with Sc replacing Ni shows the presence of Sc-rich and TiPd-type second phases in the microstructure. TEM examination revealed that the TiPd-type phase has a distinct rod-like morphology (30–50 nm) arranged in a grid-like structure. The transformation and indentation behavior of the alloys is elucidated using thermodynamic calculations of frictional energy and an electronic structure based analysis. - Highlights: • TEM of Ni{sub 23.7}Ti{sub 50.3}Pd{sub 25}Sc{sub 1} showed distinct grid of TiPd-type phase nanorods < 50 nm. • Stress-free thermal cycling of all the three alloys showed stable transformation behavior. • Ni{sub 24.7}Ti{sub 49.3}Pd{sub 25}Sc{sub 1} and Ni{sub 23.7}Ti{sub 50.3}Pd{sub 25}Sc{sub 1} showed single and multiphase structures. • Sc micro-addition (1 at.%) to Ni{sub 24.7}Ti{sub 50.3}Pd{sub 25} alloy decreased TTs significantly. • Ni{sub 23.7}Ti{sub 50.3}Pd{sub 25}Sc{sub 1} exhibited lower modulus of 67 GPa to 85 GPa of Ni{sub 24.7}Ti{sub 50.3}Pd{sub 25}.« less

  7. Efficient refolding and immobilization of PMMA-tag-fused single-chain Fv antibodies for sensitive immunological detection on a PMMA plate.

    PubMed

    Kumada, Yoichi; Ishikawa, Yasuyuki; Fujiwara, Yusuke; Takeda, Rui; Miyamoto, Ryosuke; Niwa, Daisuke; Momose, Shun; Kang, Bongmun; Kishimoto, Michimasa

    2014-09-01

    In this study, we investigated the efficient refolding and site-specific immobilization of single-chain variable fragments (scFvs) genetically fused with a poly(methylmethacrylate)-binding peptide (PMMA-tag). According to the results of an aggregation test of a scFv-PM in the presence of 0.5 M urea, aggregation was hardly detectable at a weak-alkaline pH (8.5) with lower concentrations of NaCl. Consequently, more than 93% recovery of the anti-RNase scFv-PM model was attained, when it was refolded by dialysis against 50 mM TAPS (pH8.5). These results suggested that the apparent isoelectric point (pI) of a target scFv was decreased to a great extent by the genetic fusion of a PMMA-tag containing 5 acidic amino acids, and, thus, the solubility of the scFv-PM in its semi-denatured form was considerably improved. We also designed alternative peptide-tags composed of plural aspartic acid residues (D5, D10 and D15-tags) to decrease the apparent pI value of the fusion protein. As a consequence, scFv-D5, scFv-D10 and scFv-D15 were also efficiently refolded with yields of more than 95%. It is noteworthy that even scFv-PS-D15, which had both a positively charged polystyrene-binding peptide (PS-tag) and a negatively charged D15-tag, was serially connected at the C-terminal region of scFvs, and also refolded with a yield of 96.1%. These results clearly indicate that controlling the apparent pI value of scFvs by the fusion of oligo-peptides composed of acidic amino acids at the C-terminus resulted in a high degree of recovery via dialysis refolding. According to the results of a sandwich ELISA using scFv-PMs, scFv-D15 and scFv-PS-D15 as ligands, high antigen-binding signals were detected from both the PMMA and phi-PS plates immobilized with scFv-PMs. Furthermore, the high antigen-binding activity of scFv-PMs was maintained in an adsorption state when it was immobilized on the surface of not only PMMA, but also hydrophilic PS (phi-PS) and polycarbonate (PC). These results strongly suggested that a PMMA-tag introduced at the C-terminus of scFvs preferably recognizes ester and/or carboxyl groups exposed on the surface of plastics. The scFv-PM developed in the present study has advantages such as being a ligand antibody, compared with whole Ab and the conventional PS-tag-fused scFvs (scFv-PS), and, thus, it is considerably useful in a sandwich ELISA as well as in various immuno-detection and immuno-separation systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Formation of isobutene from 3-hydroxy-3-methylbutyrate by diphosphomevalonate decarboxylase.

    PubMed

    Gogerty, David S; Bobik, Thomas A

    2010-12-01

    Isobutene is an important commercial chemical used for the synthesis of butyl rubber, terephthalic acid, specialty chemicals, and a gasoline performance additive known as alkylate. Currently, isobutene is produced from petroleum and hence is nonrenewable. Here, we report that the Saccharomyces cerevisiae mevalonate diphosphate decarboxylase (ScMDD) can convert 3-hydroxy-3-methylbutyrate (3-HMB) to isobutene. Whole cells of Escherichia coli producing ScMDD with an N-terminal 6×His tag (His(6)-ScMDD) formed isobutene from 3-HMB at a rate of 154 pmol h(-1) g cells(-1). In contrast, no isobutene was detected from control cells lacking ScMDD. His(6)-ScMDD was purified by nickel affinity chromatography and shown to produce isobutene from 3-HMB at a rate of 1.33 pmol min(-1) mg(-1) protein. Controls showed that both His(6)-ScMDD and 3-HMB were required for detectable isobutene formation. Isobutene was identified by gas chromatography (GC) with flame ionization detection as well as by GC-mass spectrometry (MS). ScMDD was subjected to error-prone PCR, and two improved variants were characterized, ScMDD1 (I145F) and ScMDD2 (R74H). Whole cells of E. coli producing ScMDD1 and ScMDD2 produced isobutene from 3-HMB at rates of 3,000 and 5,888 pmol h(-1) g cells(-1), which are 19- and 38-fold increases compared to rates for cells producing His(6)-ScMDD. This showed that genetic modifications can be used to increase the rate at which ScMDD converts 3-HMB to isobutene. Because 3-HMB can be produced from l-leucine, ScMDD has a potential application for the production of renewable isobutene. Moreover, isobutene is a gas, which might simplify its purification from a fermentation medium, substantially reducing production costs.

  9. Biochemical Characterization of Prions.

    PubMed

    Fiorini, Michele; Bongianni, Matilde; Monaco, Salvatore; Zanusso, Gianluigi

    2017-01-01

    Prion disease or transmissible spongiform encephalopathies are characterized by the presence of the abnormal form of the prion protein (PrP Sc ). The pathological and transmissible properties of PrP Sc are enciphered in its secondary and tertiary structures. Since it's well established that different strains of prions are linked to different conformations of PrP Sc , biochemical characterization of prions seems a preliminary but reliable approach to detect, analyze, and compare prion strains. Experimental biochemical procedures might be helpful in distinguishing PrP Sc physicochemical properties and include resistance to proteinase K (PK) digestion, insolubility in nonionic detergents, PK-resistance under denaturing conditions and sedimentation properties in sucrose gradients. This biochemical approach has been extensively applied in human prion disorders and subsequently expanded for PrP Sc characterization in animals. In particular, in sporadic Creutzfedlt-Jakob disease (sCJD) PrP Sc is characterized by two main glycotypes conventionally named Type 1 and Type 2, based on the apparent gel migration at 21 and 19kDa of the PrP Sc PK-resistant fragment. An additional PrP Sc type was identified in sCJD characterized by an unglycosylated dominant glycoform pattern and in 2010 a variably protease-sensitive prionopathy (VPSPr) was reported showing a PrP Sc with an electrophoretic ladder like pattern. Additionally, the presence of PrP Sc truncated fragments completes the electrophoretic characterization of different prion strains. By two-dimensional (2D) electrophoretic analysis additional PrP Sc pattern was identified, since this procedure provides information about the isoelectric point and the different peptides length related to PK cleavage, as well as to glycosylation extent or GPI anchor presence. We here provide and extensive review on PrP Sc biochemical analysis in human and animal prion disorders. Further, we show that PrP Sc glycotypes observed in CJD share similarities with PrP Sc in bovine spongiform encephalopathy forms (BSE). © 2017 Elsevier Inc. All rights reserved.

  10. Parent-Child Relationship of Pedometer-Assessed Physical Activity and Proxy-Reported Screen Time in Czech Families with Preschoolers.

    PubMed

    Sigmund, Erik; Badura, Petr; Vokacova, Jana; Sigmundová, Dagmar

    2016-07-21

    This study focuses on determining the relationship between parents' step count (SC) and screen time (ST) and children's SC and ST on weekdays and at weekends. The participants (278 parents aged 30-45 and their 194 children aged 4-7) were recruited from 10 randomly selected Czech kindergartens. The participants recorded SC and ST duration over a week-long monitoring (≥8 h/day) during September-October 2014 and April-May 2015. The associations between parents' SC and ST and children's SC and ST were estimated using general linear regression for weekdays and weekends. Each 2500 SC increase in mothers'/fathers' daily SC at weekdays (weekends) was associated with an extra 1143/903 (928/753) daily SC in children. Each 60 min of ST increase in mothers'/fathers' ST at weekdays (weekends) was associated with an extra 7.6/7.6 (16.8/13.0) min of child daily ST. An increase of 2500 mothers' daily SC was associated with reduction of 2.5 (7.5) min of ST in children at weekdays (weekends). This study reveals a significant relationship between parent-child SC/day, parent-child ST/day, and mothers' ST and children's SC at weekends. Weekend days seem to provide a suitable space for the promotion of joint physical activity in parents and their pre-schoolers.

  11. Impact of "Stroke Code"-Rapid Response Team: An Attempt to Improve Intravenous Thrombolysis Rate and to Shorten Door-to-Needle Time in Acute Ischemic Stroke.

    PubMed

    Gurav, Sushma K; Zirpe, Kapil G; Wadia, R S; Naniwadekar, Avinash; Pote, Prajakta U; Tungenwar, Amit; Deshmukh, Abhijeet M; Mohopatra, Srikanta; Nimavat, Balakrishna; Surywanshi, Prasad

    2018-04-01

    "Stroke code" (SC) implementation in hospitals can improve the rate of thrombolysis and the timeline in care of stroke patient. A prospective data of patients treated for acute ischemic stroke (AIS) after implementation of "SC" (post-SC era) were analyzed (2015-2016) and compared with the retrospective data of patients treated in the "pre-SC era." Parameters such as symptom-to-door, door-to-physician, door-to-imaging, door-to-needle (DTN), and symptom-to-needle time were calculated. The severity of stroke was calculated using the National Institutes of Health Stroke Score (NIHSS) before and after treatment. Patients presented with stroke symptoms in pre- and post-SC era (695 vs. 610) and, out of these, patients who came in window period constituted 148 (21%) and 210 (34%), respectively. Patients thrombolyzed in pre- and post-SC era were 44 (29.7%) and 65 (44.52%), respectively. Average DTN time was 104.95 min in pre-SC era and reduced to 67.28 min ( P < 0.001) post-SC implementation. Percentage of patients thrombolyzed within DTN time ≤60 min in pre-SC era and SC era was 15.90% and 55.38%, respectively. Implementation of SC helped us to increase thrombolysis rate in AIS and decrease DTN time.

  12. Solution Synthesis, Structure, and CO2 Reduction Reactivity of a Scandium(II) Complex, {Sc[N(SiMe3 )2 ]3 }.

    PubMed

    Woen, David H; Chen, Guo P; Ziller, Joseph W; Boyle, Timothy J; Furche, Filipp; Evans, William J

    2017-02-13

    The first crystallographically characterizable complex of Sc 2+ , [Sc(NR 2 ) 3 ] - (R=SiMe 3 ), has been obtained by LnA 3 /M reactions (Ln=rare earth metal; A=anionic ligand; M=alkali metal) involving reduction of Sc(NR 2 ) 3 with K in the presence of 2.2.2-cryptand (crypt) and 18-crown-6 (18-c-6) and with Cs in the presence of crypt. Dark maroon [K(crypt)] + , [K(18-c-6)] + , and [Cs(crypt)] + salts of the [Sc(NR 2 ) 3 ] - anion are formed, respectively. The formation of this oxidation state of Sc is also indicated by the eight-line EPR spectra arising from the I=7/2 45 Sc nucleus. The Sc(NR 2 ) 3 reduction differs from Ln(NR 2 ) 3 reactions (Ln=Y and lanthanides) in that it occurs under N 2 without formation of isolable reduced dinitrogen species. [K(18-c-6)][Sc(NR 2 ) 3 ] reacts with CO 2 to produce an oxalate complex, {K 2 (18-c-6) 3 }{[(R 2 N) 3 Sc] 2 (μ-C 2 O 4 -κ 1 O:κ 1 O'')}, and a CO 2 - radical anion complex, [(R 2 N) 3 Sc(μ-OCO-κ 1 O:κ 1 O')K(18-c-6)] n . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Improved Soluble ScFv ELISA Screening Approach for Antibody Discovery Using Phage Display Technology.

    PubMed

    Tohidkia, Mohammad R; Sepehri, Maryam; Khajeh, Shirin; Barar, Jaleh; Omidi, Yadollah

    2017-09-01

    Phage display technology (PDT) is a powerful tool for the isolation of recombinant antibody (Ab) fragments. Using PDT, target molecule-specific phage-Ab clones are enriched through the "biopanning" process. The individual specific binders are screened by the monoclonal scFv enzyme-linked immunosorbent assay (ELISA) that may associate with inevitable false-negative results. Thus, in this study, three strategies were investigated for optimization of the scFvs screening using Tomlinson I and J libraries, including (1) optimizing the expression of functional scFvs, (2) improving the sensitivity of ELISA, and (3) preparing different samples containing scFvs. The expression of all scFv Abs was significantly enhanced when scFv clones were cultivated in the terrific broth (TB) medium at the optimum temperature of 30 °C. The protein A-conjugated with horseradish peroxidase (HRP) was found to be a well-suited reagent for the detection of Ag-bound scFvs in comparison with either anti-c-myc Ab or the mixing procedure. Based on our findings, it seems there is no universal media supplement for an improved expression of all scFvs derived from both Tomlinson I and J libraries. We thus propose that expression of scFv fragments in a microplate scale is largely dependent on a variety of parameters, in particular the scFv clones and relevant sequences.

  14. Bond breaking and bond formation: how electron correlation is captured in many-body perturbation theory and density-functional theory.

    PubMed

    Caruso, Fabio; Rohr, Daniel R; Hellgren, Maria; Ren, Xinguo; Rinke, Patrick; Rubio, Angel; Scheffler, Matthias

    2013-04-05

    For the paradigmatic case of H(2) dissociation, we compare state-of-the-art many-body perturbation theory in the GW approximation and density-functional theory in the exact-exchange plus random-phase approximation (RPA) for the correlation energy. For an unbiased comparison and to prevent spurious starting point effects, both approaches are iterated to full self-consistency (i.e., sc-RPA and sc-GW). The exchange-correlation diagrams in both approaches are topologically identical, but in sc-RPA they are evaluated with noninteracting and in sc-GW with interacting Green functions. This has a profound consequence for the dissociation region, where sc-RPA is superior to sc-GW. We argue that for a given diagrammatic expansion, sc-RPA outperforms sc-GW when it comes to bond breaking. We attribute this to the difference in the correlation energy rather than the treatment of the kinetic energy.

  15. Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography.

    PubMed

    Maria, Michael; Bravo Gonzalo, Ivan; Feuchter, Thomas; Denninger, Mark; Moselund, Peter M; Leick, Lasse; Bang, Ole; Podoleanu, Adrian

    2017-11-15

    In this Letter, we investigate the possibility of using a commercially available Q-switch-pumped supercontinuum (QS-SC) source, operating in the kilohertz regime, for ultra-high resolution optical coherence tomography (UHR-OCT) in the 1300 nm region. The QS-SC source proves to be more intrinsically stable from pulse to pulse than a mode-locked-based SC (ML-SC) source while, at the same time, is less expensive. However, its pumping rate is lower than that used in ML-SC sources. Therefore, we investigate here specific conditions to make such a source usable for OCT. We compare images acquired with the QS-SC source and with a current state-of-the-art SC source used for imaging. We show that comparable visual contrast obtained with the two technologies is achievable by increasing the readout time of the camera to include a sufficient number of QS-SC pulses.

  16. Identification and Characterization of 2′-Deoxyadenosine Adducts formed by Isoprene Monoepoxides In Vitro

    PubMed Central

    Begemann, Petra; Boysen, Gunnar; Georgieva, Nadia I.; Sangaiah, Ramiah; Koshlap, Karl M.; Koc, Hasan; Zhang, Daping; Golding, Bernard T.; Gold, Avram; Swenberg, James A.

    2011-01-01

    Isoprene, the 2-methyl analog of 1,3-butadiene, is ubiquitous in the environment, with major contributions to total isoprene emissions stemming from natural processes despite the compound being a bulk industrial chemical. Additionally, isoprene is a combustion product and a major component in cigarette smoke. Isoprene has been classified as possibly carcinogenic to humans (group 2B) by IARC and as reasonably anticipated to be a human carcinogen by the National Toxicology Program. Isoprene, like butadiene, requires metabolic activation to reactive epoxides to exhibit its carcinogenic properties. The mode of action has been postulated to be that of a genotoxic carcinogen, with formation of promutagenic DNA adducts being essential for mutagenesis and carcinogenesis. In rodents, isoprene-induced tumors show unique point mutations (A→T transversions) in the K-ras protooncogene at codon 61. Therefore, we investigated adducts formed after reaction of 2′-deoxyadenosine (dAdo1) with the two monoepoxides of isoprene, 2-ethenyl-2-methyloxirane (IP-1,2-O) and propen-2-yloxirane (IP-3,4-O), under physiological conditions. The formation of N1–2′-deoxyinosine (N1-dIno) due to deamination of N1-dAdo adducts was of particular interest, since N1-dIno adducts are suspected to have high mutagenic potential based on in vitro experiments. Major stable adducts were identified by HPLC, UV-Spectrometry and LC-MS/MS and characterized by 1H and 1H,13C HSQC and NMR experiments. Adducts of IP-1,2-O that were fully identified are: R,S-C1-N6-dAdo, R-C2-N6-dAdo, and S-C2-N6-dAdo; adducts of IP-3,4-O are: S-C3-N6-dAdo, R-C3-N6-dAdo, R,S-C4-N6-dAdo, S-C4-N1-dIno, R-C4-N1-dIno, R-C3-N1-dIno, S-C3-N1-dIno, and C3-N7-Ade. Both monoepoxides formed adducts on the external and internal oxirane carbons. This is the first study to describe adducts of isoprene monoepoxides with dAdo. Characterization of adducts formed by isoprene monoepoxides with deoxynucleosides and subsequently with DNA represent the first step toward evaluating their potential for being converted into a mutation, or as biomarkers of isoprene metabolism and exposure. PMID:21548641

  17. Optimization of reaction conditions for the radiolabeling of DOTA and DOTA-peptide with (44m/44)Sc and experimental evidence of the feasibility of an in vivo PET generator.

    PubMed

    Huclier-Markai, S; Kerdjoudj, R; Alliot, C; Bonraisin, A C; Michel, N; Haddad, F; Barbet, J

    2014-05-01

    Among the number of generator systems providing radionuclides with decay parameters promising for imaging and treatment applications, there is the (44)Ti (T1/2=60 years)/(44)Sc (T1/2=3.97 h) generator. This generator provides a longer-lived daughter for extended PET/CT measurements compared to the chemically similar system (68)Ge/(68)Ga. Scandium also exists as (47)Sc, a potential therapeutic radionuclide. It is possible to produce (44)Sc in a cyclotron using, for example, the (44)Ca (d, n) (44)Sc nuclear reaction. In that case, the isomeric state (44 m)Sc (T1/2=58.6h) is co-produced and may be used as an in vivo(44 m)Sc/(44)Sc generator. The aim of this study is to evaluate the feasibility of this in vivo(44 m)Sc/(44)Sc generator and to demonstrate that the daughter radionuclide stays inside the chelator after decay of the parent radionuclide. Indeed, the physico-chemical process occurring after the primary radioactive decay (EC, IT, Auger electron …) has prevented in many cases the use of in-vivo generator, because of the post-effect as described in the literature. The DOTA macrocyclic ligand forms stable complexes with many cations and has been shown to be the most suitable chelating moiety for scandium. Initially, the radiolabeling of DOTA and a DOTA-peptide (DOTATATE) with Sc was performed and optimized as a function of time, pH, metal-to-ligand ratio and temperature. Next, the physico-chemical processes that could occur after the decay (post-effect) were studied. (44 m)Sc(III)-labeled DOTA-peptide was quantitatively adsorbed on a solid phase matrix through a hydrophobic interaction. Elutions were then performed at regular time intervals using a DTPA solution at various concentrations. Finally, the radiolabelled complex stability was studied in serum. Radiolabeling yields ranged from 90% to 99% for metal-to-ligand ratio ranging from 1:10 to 1:500 for DOTA or DOTATATE respectively. The optimum physico-chemical parameters were pH=4-6, t=20 min, T=70°C. Then, the (44 m)Sc-DOTATATE complex, radiolabeled at 98%, was adsorbed through a hydrophobic interaction to a solid phase. Unlabeled scandium was completely eluted from the column whereas the Sc-DOTATATE complex was 100% retained. The release of (44)Sc from the complex due to decay was less than 1% over 2 periods of (44 m)Sc, independent of the DTPA concentration used for elution. (44 m)Sc/(44)Sc-DOTATATE was stable in serum over 72 h. The results indicate that the decay of (44 m)Sc to (44)Sc does not affect the integrity of the radiolabeled compound. Thus the (44 m)Sc/(44)Sc generator is chemically valid and stable in serum. It could be used for PET imaging as an in-vivo generator increasing the life time of the scandium and allowing the use of antibody as labelled compound. Further in-vivo biological evaluations should complete this work. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Skin cancer risk perceptions: a comparison across ethnicity, age, education, gender, and income.

    PubMed

    Buster, Kesha J; You, Zhiying; Fouad, Mona; Elmets, Craig

    2012-05-01

    Studies of noncutaneous and cutaneous malignancies support the hypothesis that poor risk-perception status contributes to health disparity. We evaluated skin cancer (SC) risk perceptions across race and other demographic markers using the Health Information National Trends Survey (HINTS) and compared them to discover differences in perception that may contribute to the disparities in SC diagnosis and treatment. Respondents with no history of SC were randomly selected to answer questions assessing perceived risk and knowledge of preventive strategies of SC. Logistic regression was performed to identify associations between perceptions of SC and demographic variables including self-described race, age, sex, education, income, and health insurance status. Blacks, the elderly, and people with less education perceived themselves as at lower risk of developing SC. They, along with Hispanics, were also more likely to believe that one cannot lower their SC risk and that there are so many different recommendations on how to prevent SC that it makes it difficult to know which ones to follow. Lower education also correlated with greater reluctance to have a skin examination. HINTS is a cross-sectional instrument, thus it only provides a snapshot of SC perceptions. Uncertainty and altered perceptions are more common in the SC risk perceptions of ethnic minorities, the elderly, and those with less education. These are the same groups that are subject to disparities in SC outcomes. Educational programs directed at these demographic groups may help to reduce the SC-related health disparities. Copyright © 2011 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  19. A single amino acid mutation in Spo0A results in sporulation deficiency of Paenibacillus polymyxa SC2.

    PubMed

    Hou, Xiaoyang; Yu, Xiaoning; Du, Binghai; Liu, Kai; Yao, Liangtong; Zhang, Sicheng; Selin, C; Fernando, W G D; Wang, Chengqiang; Ding, Yanqin

    2016-01-01

    Sporulating bacteria such as Bacillus subtilis and Paenibacillus polymyxa exhibit sporulation deficiencies during their lifetime in a laboratory environment. In this study, spontaneous mutants SC2-M1 and SC2-M2, of P. polymyxa SC2 lost the ability to form endospores. A global genetic and transcriptomic analysis of wild-type SC2 and spontaneous mutants was carried out. Genome resequencing analysis revealed 14 variants in the genome of SC2-M1, including three insertions and deletions (indels), 10 single nucleotide variations (SNVs) and one intrachromosomal translocation (ITX). There were nine variants in the genome of SC2-M2, including two indels and seven SNVs. Transcriptomic analysis revealed that 266 and 272 genes showed significant differences in expression in SC2-M1 and SC2-M2, respectively, compared with the wild-type SC2. Besides sporulation-related genes, genes related to exopolysaccharide biosynthesis (eps), antibiotic (fusaricidin) synthesis, motility (flgB) and other functions were also affected in these mutants. In SC2-M2, reversion of spo0A resulted in the complete recovery of sporulation. This is the first global analysis of mutations related to sporulation deficiency in P. polymyxa. Our results demonstrate that a SNV within spo0A caused the sporulation deficiency of SC2-M2 and provide strong evidence that an arginine residue at position 211 is essential for the function of Spo0A. Copyright © 2016 The Author(s). Published by Elsevier Masson SAS.. All rights reserved.

  20. Testing the SI × SC rule: Pollen-pistil interactions in interspecific crosses between members of the tomato clade (Solanum section Lycopersicon, Solanaceae).

    PubMed

    Baek, You Soon; Covey, Paul A; Petersen, Jennifer J; Chetelat, Roger T; McClure, Bruce; Bedinger, Patricia A

    2015-02-01

    Interspecific reproductive barriers (IRBs) act to ensure species integrity by preventing hybridization. Previous studies on interspecific crosses in the tomato clade have focused on the success of fruit and seed set. The SI × SC rule (SI species × SC species crosses are incompatible, but the reciprocal crosses are compatible) often applies to interspecific crosses. Because SI systems in the Solanaceae affect pollen tube growth, we focused on this process in a comprehensive study of interspecific crosses in the tomato clade to test whether the SI × SC rule was always followed. Pollen tube growth was assessed in reciprocal crosses between all 13 species of the tomato clade using fluorescence microscopy. In crosses between SC and SI species, pollen tube growth follows the SI × SC rule: interspecific pollen tube rejection occurs when SI species are pollinated by SC species, but in the reciprocal crosses (SC × SI), pollen tubes reach ovaries. However, pollen tube rejection occurred in some crosses between pairs of SC species, demonstrating that a fully functional SI system is not necessary for pollen tube rejection in interspecific crosses. Further, gradations in the strength of both pistil and pollen IRBs were revealed in interspecific crosses using SC populations of generally SI species. The SI × SC rule explains many of the compatibility relations in the tomato clade, but exceptions occur with more recently evolved SC species and accessions, revealing differences in strength of both pistil and pollen IRBs. © 2015 Botanical Society of America, Inc.

  1. Scalable Implementation of Finite Elements by NASA _ Implicit (ScIFEi)

    NASA Technical Reports Server (NTRS)

    Warner, James E.; Bomarito, Geoffrey F.; Heber, Gerd; Hochhalter, Jacob D.

    2016-01-01

    Scalable Implementation of Finite Elements by NASA (ScIFEN) is a parallel finite element analysis code written in C++. ScIFEN is designed to provide scalable solutions to computational mechanics problems. It supports a variety of finite element types, nonlinear material models, and boundary conditions. This report provides an overview of ScIFEi (\\Sci-Fi"), the implicit solid mechanics driver within ScIFEN. A description of ScIFEi's capabilities is provided, including an overview of the tools and features that accompany the software as well as a description of the input and output le formats. Results from several problems are included, demonstrating the efficiency and scalability of ScIFEi by comparing to finite element analysis using a commercial code.

  2. 10. WEST SIDE OF BRIDGE, LOOKING EAST, WITH TOM SHAW, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. WEST SIDE OF BRIDGE, LOOKING EAST, WITH TOM SHAW, SC DEPT ARCHIVES & HISTORY - Poinsett Bridge, SC Route 42, 2 miles Northwest of Route 11, 2.5 miles East of SC Route 25, Tigerville, Greenville, SC

  3. Novel avian single-chain fragment variable (scFv) targets dietary gluten and related natural grain prolamins, toxic entities of celiac disease.

    PubMed

    Stadlmann, Valerie; Harant, Hanna; Korschineck, Irina; Hermann, Marcela; Forster, Florian; Missbichler, Albert

    2015-12-01

    Celiac disease (CD) is a chronic, small intestinal inflammatory disease mediated by dietary gluten and related prolamins. The only current therapeutic option is maintenance of a strict life-long gluten-free diet, which implies substantial burden for CD patients. Different treatment regimes might be feasible, including masking of toxic celiac peptides with blocking antibodies or fragments thereof. The objective of this study was therefore to select and produce a recombinant avian single-chain fragment variable (scFv) directed against peptic-tryptic digested gliadin (PT-Gliadin) and related celiac toxic entities. Gluten-free raised chicken of same age were immunized with PT-Gliadin. Chicken splenic lymphocytes, selected with antigen-coated magnetic beads, served as RNA source for the generation of cDNA. Chicken VH and VL genes were amplified from the cDNA by PCR to generate full-length scFv constructs consisting of VH and VL fragments joined by a linker sequence. ScFv constructs were ligated in a prokaryotic expression vector, which provides a C-terminal hexahistidine tag. ScFvs from several bacterial clones were expressed in soluble form and crude cell lysates screened for binding to PT-Gliadin by ELISA. We identified an enriched scFv motif, which showed reactivity to PT-Gliadin. One selected scFv candidate was expressed and purified to homogeneity. Polyclonal anti-PT-Gliadin IgY, purified from egg yolk of immunized chicken, served as control. ScFv binds in a dose-dependent manner to PT-Gliadin, comparable to IgY. Furthermore, IgY competitively displaces scFv from PT-Gliadin and natural wheat flour digest, indicating a common epitope of scFv and IgY. ScFv was tested for reactivity to different gastric digested dietary grain flours. ScFv detects common and khorasan wheat comparably with binding affinities in the high nanomolar range, while rye is detected to a lesser extent. Notably, barley and cereals which are part of the gluten-free diet, like corn and rice, are not detected by scFv. Similarly, the pseudo-grain amaranth, used as gluten-free alternative, is not targeted by scFv. This data indicate that scFv specifically recognizes toxic cereal peptides relevant in CD. ScFv can be of benefit for future CD treatment regimes.

  4. Infectivity-associated PrP(Sc) and disease duration-associated PrP(Sc) of mouse BSE prions.

    PubMed

    Miyazawa, Kohtaro; Okada, Hiroyuki; Masujin, Kentaro; Iwamaru, Yoshifumi; Yokoyama, Takashi

    2015-01-01

    Disease-related prion protein (PrP(Sc)), which is a structural isoform of the host-encoded cellular prion protein, is thought to be a causative agent of transmissible spongiform encephalopathies. However, the specific role of PrP(Sc) in prion pathogenesis and its relationship to infectivity remain controversial. A time-course study of prion-affected mice was conducted, which showed that the prion infectivity was not simply proportional to the amount of PrP(Sc) in the brain. Centrifugation (20,000 ×g) of the brain homogenate showed that most of the PrP(Sc) was precipitated into the pellet, and the supernatant contained only a slight amount of PrP(Sc). Interestingly, mice inoculated with the obtained supernatant showed incubation periods that were approximately 15 d longer than those of mice inoculated with the crude homogenate even though both inocula contained almost the same infectivity. Our results suggest that a small population of fine PrP(Sc) may be responsible for prion infectivity and that large, aggregated PrP(Sc) may contribute to determining prion disease duration.

  5. Structural and electronic studies of metal carbide clusterfullerene Sc2C2@Cs-C72

    NASA Astrophysics Data System (ADS)

    Feng, Yongqiang; Wang, Taishan; Wu, Jingyi; Feng, Lai; Xiang, Junfeng; Ma, Yihan; Zhang, Zhuxia; Jiang, Li; Shu, Chunying; Wang, Chunru

    2013-07-01

    We present a metal carbide clusterfullerene Sc2C2@Cs(10528)-C72, whose structure has been baffling for many years. A motional endohedral Sc2C2 cluster, special molecule geometry and electronic structure were found in Sc2C2@Cs(10528)-C72. The paramagnetic Sc2C2@Cs-C72 anion radical was successfully prepared by a chemical reduction method and hyperfine couplings in the ESR spectrum were observed.We present a metal carbide clusterfullerene Sc2C2@Cs(10528)-C72, whose structure has been baffling for many years. A motional endohedral Sc2C2 cluster, special molecule geometry and electronic structure were found in Sc2C2@Cs(10528)-C72. The paramagnetic Sc2C2@Cs-C72 anion radical was successfully prepared by a chemical reduction method and hyperfine couplings in the ESR spectrum were observed. Electronic supplementary information (ESI) available: Experimental details, HPLC chromatogram, and DFT calculations. CCDC 917712. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c3nr01739g

  6. Engineered Recombinant Single-Chain Fragment Variable Antibody for Immunosensors

    PubMed Central

    Shen, Zhihong; Mernaugh, Raymond L.; Yan, Heping; Yu, Lei; Zhang, Ying; Zeng, Xiangqun

    2008-01-01

    A recombinant single-chain fragment variable (scFv) antibody (designated A10B) was engineered to contain two histidines within the linker peptide used to join the scFv heavy and light chains. A piezoimmunosensor using the scFv was successfully developed. A10B scFv bound to the gold piezoimmunosensor surface were correctly oriented, retained antigen-binding activity, and coupled at high surface concentration. These results, and results obtained from an earlier study using an scFv containing a linker cysteine, suggest that the location on the linker sequence in which the amino acids were incorporated was well tolerated by the scFv and did not interfere with scFv antigen-binding activity. The scFv-modified QCM sensor was thoroughly characterized and used to specifically detect antigen in crude serum sample and had a sensitivity of 2.3 ± 0.15 nM (n = 4) with a linear range over 2.3 × 10−9–3.3 × 10−8 M. The piezoimmunosensor was also used to study the kinetics and thermodynamics of antigen/scFv antibody binding. PMID:16255580

  7. Investigating the local structure of B-site cations in (1-x)BaTiO3-xBiScO3 and (1-x)PbTiO3-xBiScO3 using X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Blanchard, Peter E. R.; Grosvenor, Andrew P.

    2018-05-01

    The structural properties of (1-x)BaTiO3-xBiScO3 and (1-x)PbTiO3-xBiScO3 were investigated using powder X-ray diffraction and X-ray absorption spectroscopy. Diffraction measurements confirmed that substituting small amounts of BiScO3 into BaTiO3 initially stabilizes a cubic phase at x = 0.2 before impurity phases begin to form at x = 0.5. BiScO3 substitution also resulted in noticeable changes in the local coordination environment of Ti4+. X-ray absorption near-edge spectroscopy (XANES) analysis showed that replacing Ti4+ with Sc3+ results in an increase in the off-centre displacement of Ti4+ cations. Surprisingly, BiScO3 substitution has no effect on the displacement of the Ti4+ cation in the (1-x)PbTiO3-xBiScO3 solid solution.

  8. Closed-form Capacity Expressions for the α-μ Fading Channel with SC Diversity under Different Adaptive Transmission Strategies

    NASA Astrophysics Data System (ADS)

    Mohamed, Refaat; Ismail, Mahmoud H.; Newagy, Fatma; Mourad, Heba M.

    2013-03-01

    Stemming from the fact that the α-μ fading distribution is one of the very general fading models used in the literature to describe the small scale fading phenomenon, in this paper, closed-form expressions for the Shannon capacity of the α-μ fading channel operating under four main adaptive transmission strategies are derived assuming integer values for μ. These expressions are derived for the case of no diversity as well as for selection combining diversity with independent and identically distributed branches. The obtained expressions reduce to those previously derived in the literature for the Weibull as well as the Rayleigh fading cases, which are both special cases of the α-μ channel. Numerical results are presented for the capacity under the four adaptive transmission strategies and the effect of the fading parameter as well as the number of diversity branches is studied.

  9. Single-cell RNA-sequencing: The future of genome biology is now

    PubMed Central

    Picelli, Simone

    2017-01-01

    ABSTRACT Genome-wide single-cell analysis represents the ultimate frontier of genomics research. In particular, single-cell RNA-sequencing (scRNA-seq) studies have been boosted in the last few years by an explosion of new technologies enabling the study of the transcriptomic landscape of thousands of single cells in complex multicellular organisms. More sensitive and automated methods are being continuously developed and promise to deliver better data quality and higher throughput with less hands-on time. The outstanding amount of knowledge that is going to be gained from present and future studies will have a profound impact in many aspects of our society, from the introduction of truly tailored cancer treatments, to a better understanding of antibiotic resistance and host-pathogen interactions; from the discovery of the mechanisms regulating stem cell differentiation to the characterization of the early event of human embryogenesis. PMID:27442339

  10. Evolutionary Diversification of Alanine Transaminases in Yeast: Catabolic Specialization and Biosynthetic Redundancy.

    PubMed

    Escalera-Fanjul, Ximena; Campero-Basaldua, Carlos; Colón, Maritrini; González, James; Márquez, Dariel; González, Alicia

    2017-01-01

    Gene duplication is one of the major evolutionary mechanisms providing raw material for the generation of genes with new or modified functions. The yeast Saccharomyces cerevisiae originated after an allopolyploidization event, which involved mating between two different ancestral yeast species. ScALT1 and ScALT2 codify proteins with 65% identity, which were proposed to be paralogous alanine transaminases. Further analysis of their physiological role showed that while ScALT1 encodes an alanine transaminase which constitutes the main pathway for alanine biosynthesis and the sole pathway for alanine catabolism, Sc Alt2 does not display alanine transaminase activity and is not involved in alanine metabolism. Moreover, phylogenetic studies have suggested that ScALT1 and ScALT2 come from each one of the two parental strains which gave rise to the ancestral hybrid. The present work has been aimed to the understanding of the properties of the ancestral type Lacchancea kluyveri LkALT1 and Kluyveromyces lactis KlALT1 , alanine transaminases in order to better understand the ScALT1 and ScALT2 evolutionary history. These ancestral -type species were chosen since they harbor ALT1 genes, which are related to ScALT2. Presented results show that, although LkALT1 and KlALT1 constitute ScALT1 orthologous genes, encoding alanine transaminases, both yeasts display Lk Alt1 and Kl Alt1 independent alanine transaminase activity and additional unidentified alanine biosynthetic and catabolic pathway(s). Furthermore, phenotypic analysis of null mutants uncovered the fact that Kl Alt1 and Lk Alt1 have an additional role, not related to alanine metabolism but is necessary to achieve wild type growth rate. Our study shows that the ancestral alanine transaminase function has been retained by the ScALT1 encoded enzyme, which has specialized its catabolic character, while losing the alanine independent role observed in the ancestral type enzymes. The fact that Sc Alt2 conserves 64% identity with Lk Alt1 and 66% with Kl Alt1, suggests that Sc Alt2 diversified after the ancestral hybrid was formed. ScALT2 functional diversification resulted in loss of both alanine transaminase activity and the additional alanine-independent Lk Alt1 function, since ScALT2 did not complement the Lkalt1Δ phenotype. It can be concluded that LkALT1 and KlLALT1 functional role as alanine transaminases was delegated to ScALT1 , while ScALT2 lost this role during diversification.

  11. Evolutionary Diversification of Alanine Transaminases in Yeast: Catabolic Specialization and Biosynthetic Redundancy

    PubMed Central

    Escalera-Fanjul, Ximena; Campero-Basaldua, Carlos; Colón, Maritrini; González, James; Márquez, Dariel; González, Alicia

    2017-01-01

    Gene duplication is one of the major evolutionary mechanisms providing raw material for the generation of genes with new or modified functions. The yeast Saccharomyces cerevisiae originated after an allopolyploidization event, which involved mating between two different ancestral yeast species. ScALT1 and ScALT2 codify proteins with 65% identity, which were proposed to be paralogous alanine transaminases. Further analysis of their physiological role showed that while ScALT1 encodes an alanine transaminase which constitutes the main pathway for alanine biosynthesis and the sole pathway for alanine catabolism, ScAlt2 does not display alanine transaminase activity and is not involved in alanine metabolism. Moreover, phylogenetic studies have suggested that ScALT1 and ScALT2 come from each one of the two parental strains which gave rise to the ancestral hybrid. The present work has been aimed to the understanding of the properties of the ancestral type Lacchancea kluyveri LkALT1 and Kluyveromyces lactis KlALT1, alanine transaminases in order to better understand the ScALT1 and ScALT2 evolutionary history. These ancestral -type species were chosen since they harbor ALT1 genes, which are related to ScALT2. Presented results show that, although LkALT1 and KlALT1 constitute ScALT1 orthologous genes, encoding alanine transaminases, both yeasts display LkAlt1 and KlAlt1 independent alanine transaminase activity and additional unidentified alanine biosynthetic and catabolic pathway(s). Furthermore, phenotypic analysis of null mutants uncovered the fact that KlAlt1 and LkAlt1 have an additional role, not related to alanine metabolism but is necessary to achieve wild type growth rate. Our study shows that the ancestral alanine transaminase function has been retained by the ScALT1 encoded enzyme, which has specialized its catabolic character, while losing the alanine independent role observed in the ancestral type enzymes. The fact that ScAlt2 conserves 64% identity with LkAlt1 and 66% with KlAlt1, suggests that ScAlt2 diversified after the ancestral hybrid was formed. ScALT2 functional diversification resulted in loss of both alanine transaminase activity and the additional alanine-independent LkAlt1 function, since ScALT2 did not complement the Lkalt1Δ phenotype. It can be concluded that LkALT1 and KlLALT1 functional role as alanine transaminases was delegated to ScALT1, while ScALT2 lost this role during diversification. PMID:28694796

  12. Magnetic interactions in equi-atomic rare-earth intermetallic alloys RScGe (R = Ce, Pr, Nd and Gd) studied by time differential perturbed angular correlation spectroscopy and ab initio calculations.

    PubMed

    Mishra, S N

    2009-03-18

    Applying the time differential perturbed angular correlation (TDPAC) technique we have measured electric and magnetic hyperfine fields of the (111)Cd impurity in equi-atomic rare-earth intermetallic alloys RScGe (R = Ce, Pr and Gd) showing antiferro- and ferromagnetism with unusually high ordering temperatures. The Cd nuclei occupying the Sc site show high magnetic hyperfine fields with saturation values B(hf)(0) = 21 kG, 45 kG and 189 kG in CeScGe, PrScGe and GdScGe, respectively. By comparing the results with the hyperfine field data of Cd in rare-earth metals and estimations from the RKKY model, we find evidence for the presence of additional spin density at the probe nucleus, possibly due to spin polarization of Sc d band electrons. The principal electric field gradient component V(zz) in CeScGe, PrScGe and GdScGe has been determined to be 5.3 × 10(21) V m(-2), 5.5 × 10(21) V m(-2) and 5.6 × 10(21) V m(-2), respectively. Supplementing the experimental measurements, we have carried out ab initio calculations for pure and Cd-doped RScGe compounds with R = Ce, Pr, Nd and Gd using the full potential linearized augmented plane wave (FLAPW) method based on density functional theory (DFT). From the total energies calculated with and without spin polarization we find ferrimagnetic ground states for CeScGe and PrScGe while NdScGe and GdScGe are ferromagnetic. In addition, we find a sizable magnetic moment at the Sc site, increasing from ≈0.10 μ(B) in CeScGe to ≈0.3 μ(B) in GdScGe, confirming the spin polarization of Sc d band electrons. The calculated electric field gradient and magnetic hyperfine fields of the Cd impurity closely agree with the experimental values. We believe spin polarization of Sc 3d band electrons, strongly hybridized with spin polarized 5d band electrons of the rare-earth, enables a long range Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between RE 4f moments which in turn leads to high magnetic ordering temperatures in RScGe compounds.

  13. Stress Corrosion Cracking of Certain Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Hasse, K. R.; Dorward, R. C.

    1983-01-01

    SC resistance of new high-strength alloys tested. Research report describes progress in continuing investigation of stress corrosion (SC) cracking of some aluminum alloys. Objective of program is comparing SC behavior of newer high-strength alloys with established SC-resistant alloy.

  14. 33 CFR 80.712 - Morris Island, SC to Hilton Head Island, SC.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Morris Island, SC to Hilton Head..., SC to Hilton Head Island, SC. (a) A line drawn from the easternmost tip of Folley Island to the... easternmost extremity of Hilton Head at latitude 32°13.0′ N. longitude 80°40.1′ W. [CGD 77-118a, 42 FR 35784...

  15. Selecting and expressing protective single-chain Fv fragment to stabilize L-asparaginase against inactivation by trypsin.

    PubMed

    Guo, L; Yan, X; Qian, S; Meng, G

    2000-02-01

    Four non-inhibitory specific single-chain Fv (sc Fv) fragments directed against L-asparaginase (ASNase) of Escherichia coli were selected from a synthetic phage-display scFv library. The scFv46 fragment could enhance the resistance of ASNase to trypsin proteolysis, with 70% of the initial ASNase activity present after the ASNase-scFv46 complex had been treated with trypsin for 30 min at 37 degrees C, whereas little residual activity was detected without the scFv46 fragment. The scFv46 gene was cloned to an expression vector pET-21a and expressed at high levels (about 45% of total cell protein) in E. coli BL21 (DE3) as inclusion bodies. The refolded and purified scFv46 fragment was proved to protect ASNase, and the protective effect was further confirmed by SDS/PAGE. It was found that under optimum conditions of molar ratio of scFv to ASNase, incubation time and temperature, the residual activity of the ASNase-scFv46 complex could reach about 78% after treatment with trypsin for 30 min at 37 degrees C. The results demonstrated that scFv fragments prepared by phage-antibody library technology could be used to protect target proteins.

  16. Effect of the Pb(2+) lone electron pair in the structure and properties of the double perovskites Pb2Sc(Ti0.5Te0.5)O6 and Pb2Sc(Sc0.33Te0.66)O6: relaxor state due to intrinsic partial disorder.

    PubMed

    Larrégola, S A; Alonso, J A; Algueró, M; Jiménez, R; Suard, E; Porcher, F; Pedregosa, J C

    2010-06-07

    We describe the preparation, the crystal structure refined from neutron powder diffraction (NPD) data, and study of the permittivity of two related double perovskites, Pb2Sc(Ti0.5Te0.5)O6 and Pb2Sc(Sc0.33Te0.66)O6. These compounds were synthesized by standard ceramic procedures; Rietveld refinements from room temperature NPD data show that the crystal structures are well defined in a cubic unit cell (space group Fm3m) with double parameter, a = 2a0 ≈ 8 Å. They contain a completely ordered array of ScO6 and (B,Te)O6 (B = Sc, Ti) octahedra sharing corners; the PbO12 polyhedra present an off-center displacement of the lead atoms along the [1 1 1] directions, due to the electrostatic repulsion between the Pb(2+) 6 s electron lone-pair and the Pb-O bonds of the cuboctahedron. Both compounds present a low temperature, highly dispersive maximum in permittivity, the position of which follows the Vogel-Fulcher relation with freezing temperatures of 156 and 99 K for Pb2Sc(Ti0.5Te0.5)O6 and Pb2Sc(Sc0.33Te0.66)O6, respectively, exhibiting a typical phenomenology of relaxors.

  17. Self-assembly of endohedral metallofullerenes: a decisive role of cooling gas and metal-carbon bonding

    NASA Astrophysics Data System (ADS)

    Deng, Qingming; Heine, Thomas; Irle, Stephan; Popov, Alexey A.

    2016-02-01

    The endohedral metallofullerene (EMF) self-assembly process in Sc/carbon vapor in the presence and absence of an inert cooling gas (helium) is systematically investigated using quantum chemical molecular dynamics simulations. It is revealed that the presence of He atoms accelerates the formation of pentagons and hexagons and reduces the size of the self-assembled carbon cages in comparison with analogous He-free simulations. As a result, the Sc/C/He system simulations produce a larger number of successful trajectories (i.e. leading to Sc-EMFs) with more realistic cage-size distribution than simulations of the Sc/C system. The main Sc encapsulation mechanism involves nucleation of several hexagons and pentagons with Sc atoms already at the early stages of carbon vapor condensation. In such proto-cages, both Sc-C σ-bonds and coordination bonds between Sc atoms and the π-system of the carbon network are present. Sc atoms are thus rather labile and can move along the carbon network, but the overall bonding is sufficiently strong to prevent dissociation even at temperatures around 2000 kelvin. Further growth of the fullerene cage results in the encapsulation of one or two Sc atoms within the fullerene. In agreement with experimental studies, an extension of the simulations to Fe and Ti as the metal component showed that Fe-EMFs are not formed at all, whereas Ti is prone to form Ti-EMFs with small cage sizes, including Ti@C28-Td and Ti@C30-C2v(3).The endohedral metallofullerene (EMF) self-assembly process in Sc/carbon vapor in the presence and absence of an inert cooling gas (helium) is systematically investigated using quantum chemical molecular dynamics simulations. It is revealed that the presence of He atoms accelerates the formation of pentagons and hexagons and reduces the size of the self-assembled carbon cages in comparison with analogous He-free simulations. As a result, the Sc/C/He system simulations produce a larger number of successful trajectories (i.e. leading to Sc-EMFs) with more realistic cage-size distribution than simulations of the Sc/C system. The main Sc encapsulation mechanism involves nucleation of several hexagons and pentagons with Sc atoms already at the early stages of carbon vapor condensation. In such proto-cages, both Sc-C σ-bonds and coordination bonds between Sc atoms and the π-system of the carbon network are present. Sc atoms are thus rather labile and can move along the carbon network, but the overall bonding is sufficiently strong to prevent dissociation even at temperatures around 2000 kelvin. Further growth of the fullerene cage results in the encapsulation of one or two Sc atoms within the fullerene. In agreement with experimental studies, an extension of the simulations to Fe and Ti as the metal component showed that Fe-EMFs are not formed at all, whereas Ti is prone to form Ti-EMFs with small cage sizes, including Ti@C28-Td and Ti@C30-C2v(3). Electronic supplementary information (ESI) available: Additional information on metal-carbon bonding and MD simulations. See DOI: 10.1039/c5nr08645k

  18. Nitric oxide releasing hydrogel promotes endothelial differentiation of mouse embryonic stem cells.

    PubMed

    Nie, Yan; Zhang, Kaiyue; Zhang, Shuaiqiang; Wang, Dan; Han, Zhibo; Che, Yongzhe; Kong, Deling; Zhao, Qiang; Han, Zhongchao; He, Zuo-Xiang; Liu, Na; Ma, Fengxia; Li, Zongjin

    2017-11-01

    Transplantation of endothelial cells (ECs) holds great promise for treating various kinds of ischemic diseases. However, the major challenge in ECs-based therapy in clinical applications is to provide high quality and enough amounts of cells. In this study, we developed a simple and efficient system to direct endothelial differentiation of mouse embryonic stem cells (ESCs) using a controllable chitosan nitric oxide (NO)-releasing hydrogel (CS-NO). ESCs were plated onto the hydrogel culture system, and the expressions of differentiation markers were measured. We found that the expression of Flk-1 (early ECs marker) and VE-cadherin (mature ECs marker) increased obviously under the controlled NO releasing environment. Moreover, the Flk-1 upregulation was accompanied by the activation of the phospho-inositide-3 kinase (PI3K)/Akt signaling. We also found that in the presence of the PI3K inhibitor (LY294002), the endothelial commitment of ESCs was abolished, indicating the importance of Akt phosphorylation in the endothelial differentiation of ESCs. Interestingly, in the absence of NO, the activation of Akt phosphorylation alone by using AKT activator (SC-79) did not profoundly promote the endothelial differentiation of ESCs, suggesting an interdependent relationship between NO and the Akt phosphorylation in driving endothelial fate specification of ESCs. Taken together, we demonstrated that NO releasing in a continuous and controlled manner is a simple and efficient method for directing the endothelial differentiation of ESCs without adding growth factors. Fascinating data continues to show that artificial stem cell niche not only serve as a physical supporting scaffold for stem cells proliferation, but also as a novel platform for directing stem cell differentiation. Because of the lack of proper microenvironment for generating therapeutic endothelial cells (ECs) in vitro, the source of ECs for transplantation is the major limitation in ECs-based therapy to clinical applications. The current study established a feeder cell-free, 2-dimensional culture system for promoting the differentiation processes of embryonic stem cells (ESCs) committed to the endothelial lineage via using a nitric oxide (NO) controlled releasing hydrogel (CS-NO). Notably, the NO releasing from the hydrogel could selectively up-regulate Flk-1 (early ECs marker) and VE-cadherin (mature ECs marker) in the absence of growth factors, which was of crucial importance in the endothelial differentiation of ESCs. In summary, the current study proposes a simple and efficient method for directing the endothelial differentiation of ESCs without extra growth factors. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Selection of stable scFv antibodies by phage display.

    PubMed

    Brockmann, Eeva-Christine

    2012-01-01

    ScFv fragments are popular recombinant antibody formats but often suffer from limited stability. Phage display is a powerful tool in antibody engineering and applicable also for stability selection. ScFv variants with improved stability can be selected from large randomly mutated phage displayed libraries with a specific antigen after the unstable variants have been inactivated by heat or GdmCl. Irreversible scFv denaturation, which is a prerequisite for efficient selection, is achieved by combining denaturation with reduction of the intradomain disulfide bonds. Repeated selection cycles of increasing stringency result in enrichment of stabilized scFv fragments. Procedures for constructing a randomly mutated scFv library by error-prone PCR and phage display selection for enrichment of stable scFv antibodies from the library are described here.

  20. A combination of dietary N-3 fatty acids and a cyclooxygenase-1 inhibitor attenuates nonalcoholic fatty liver disease in mice.

    PubMed

    Saraswathi, Viswanathan; Perriotte-Olson, Curtis; Ganesan, Murali; Desouza, Cyrus V; Alnouti, Yazen; Duryee, Michael J; Thiele, Geoffrey M; Nordgren, Tara M; Clemens, Dahn L

    2017-04-01

    We sought to determine whether a combination of purified n-3 fatty acids (n-3) and SC-560 (SC), a cyclooxygenase-1-specific inhibitor, is effective in ameliorating nonalcoholic fatty liver disease in obesity. Female wild-type mice were fed a high-fat and high-cholesterol diet (HF) supplemented with n-3 in the presence or absence of SC. Mice treated with SC alone exhibited no change in liver lipids, whereas n-3-fed mice tended to have lower hepatic lipids. Mice given n-3+SC had significantly lower liver lipids compared with HF controls indicating enhanced lipid clearance. Total and sulfated bile acids were significantly higher only in n-3+SC-treated mice compared with chow diet (CD) controls. Regarding mechanisms, the level of pregnane X receptor (PXR), a nuclear receptor regulating drug/bile detoxification, was significantly higher in mice given n-3 or n-3+SC. Studies in precision-cut liver slices and in cultured hepatoma cells showed that n-3+SC enhanced not only the expression/activation of PXR and its target genes but also the expression of farnesoid X receptor (FXR), another regulator of bile synthesis/clearance, indicating that n-3+SC can induce both PXR and FXR. The mRNA level of FGFR4 which inhibits bile formation showed a significant reduction in Huh 7 cells upon n-3 and n-3+SC treatment. PXR overexpression in hepatoma cells confirmed that n-3 or SC each induced the expression of PXR target genes and in combination had an enhanced effect. Our findings suggest that combining SC with n-3 potentiates its lipid-lowering effect, in part, by enhanced PXR and/or altered FXR/FGFR4 signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Hypersexual, Sexually Compulsive, or Just Highly Sexually Active? Investigating Three Distinct Groups of Gay and Bisexual Men and Their Profiles of HIV-Related Sexual Risk

    PubMed Central

    Rendina, H. Jonathon; Ventuneac, Ana; Moody, Raymond L.; Grov, Christian

    2015-01-01

    Emerging research supports the notion that sexual compulsivity (SC) and hypersexual disorder (HD) among gay and bisexual men (GBM) might be conceptualized as comprising three groups—Neither SC nor HD; SC only, and Both SC and HD—that capture distinct levels of severity across the SC/HD continuum. We examined data from 370 highly sexually active GBM to assess how the three groups compare across a range of risk factors for HIV infection. Comparisons focused on psychosexual measures—temptation for condomless anal sex (CAS), self-efficacy for avoiding CAS, sexual excitation and inhibition—as well as reports of actual sexual behavior. Nearly half (48.9 %) of this highly sexually active sample was classified as Neither SC nor HD, 30 % as SC Only, and 21.1 % as Both SC and HD. While we found no significant differences between the three groups on reported number of male partners, anal sex acts, or anal sex acts with serodiscordant partners, the Both SC and HD group reported higher numbers of CAS acts and CAS acts with serodiscordant partners and also had a higher proportion of their anal sex acts without condoms compared to the SC Only group. Our findings support the validity of a three-group classification system of SC/HD severity in differentiating psychosexual and HIV-related sexual risk behavior outcomes in a sample of GBM who report similarly high levels of sexual activity. Notwithstanding the need for sex positive HIV prevention programs, interventions that attempt to help Both SC and HD men deal with distress and address their psychosexual needs specifically may derive HIV prevention benefits. PMID:25750052

  2. A field-based characterization of conductivity in areas of minimal alteration: A case example in the Cascades of northwestern United States.

    PubMed

    Cormier, Susan M; Zheng, Lei; Hayslip, Gretchen; Flaherty, Colleen M

    2018-08-15

    The concentration of salts in streams is increasing world-wide making freshwater a declining resource. Developing thresholds for freshwater with low specific conductivity (SC), a measure of dissolved ions in water, may protect high quality resources that are refugia for aquatic life and that dilute downstream waters. In this case example, methods are illustrated for estimating protective levels for streams with low SC. The Cascades in the Pacific Northwest of the United States of America was selected for the case study because a geophysical model indicated that the SC of freshwater streams was likely to be very low. Also, there was an insufficient range in the SC data to accurately derive a criterion using the 2011, US Environmental Protection Agency field-based extirpation concentration distribution method. Instead, background and a regression model was used to estimate chronic and acute SC levels that could extirpate 5% of benthic invertebrate genera. Background SC was estimated at the 25th centile (33μS/cm) of the measured data and used as the independent variable in a least squares empirical background-to-criteria (B-C) model. Because no comparison could be made with effect levels estimated from a paired SC and biological data set from the Cascades, the lower 50% prediction limit (PL) was identified as an example chronic water quality criterion (97μS/cm). The maximum exposure threshold was estimated at the 90th centile SC of streams meeting the chronic SC level. The example acute SC level was 190μS/cm. Because paired aquatic life and SC data are often sparse, the B-C method is useful for developing SC criteria for other systems with limited data. Published by Elsevier B.V.

  3. Solid-Contact pH Sensor without CO2 Interference with a Superhydrophobic PEDOT-C14 as Solid Contact: The Ultimate "Water Layer" Test.

    PubMed

    Guzinski, Marcin; Jarvis, Jennifer M; D'Orazio, Paul; Izadyar, Anahita; Pendley, Bradford D; Lindner, Ernő

    2017-08-15

    The aim of this study was to find a conducting polymer-based solid contact (SC) for ion-selective electrodes (ISEs) that could become the ultimate, generally applicable SC, which in combination with all kinds of ion-selective membranes (ISMs) would match the performance characteristics of conventional ISEs. We present data collected with electrodes utilizing PEDOT-C 14 , a highly hydrophobic derivative of poly(3,4-ethylenedioxythiophene), PEDOT, as SC and compare its performance characteristics with PEDOT-based SC ISEs. PEDOT-C 14 has not been used in SC ISEs previously. The PEDOT-C 14 -based solid contact (SC) ion-selective electrodes (ISEs) (H + , K + , and Na + ) have outstanding performance characteristics (theoretical response slope, short equilibration time, excellent potential stability, etc.). Most importantly, PEDOT-C 14 -based SC pH sensors have no CO 2 interference, an essential pH sensors property when aimed for whole-blood analysis. The superhydrophobic properties (water contact angle: 136 ± 5°) of the PEDOT-C 14 SC prevent the detachment of the ion-selective membrane (ISM) from its SC and the accumulation of an aqueous film between the ISM and the SC. The accumulation of an aqueous film between the ISM and its SC has a detrimental effect on the sensor performance. Although there is a test for the presence of an undesirable water layer, if the conditions for this test are not selected properly, it does not provide an unambiguous answer. On the other hand, recording the potential drifts of SC electrodes with pH-sensitive membranes in samples with different CO 2 levels can effectively prove the presence or absence of a water layer in a short time period.

  4. Insights into the mantle geochemistry of scandium from a meta-analysis of garnet data

    NASA Astrophysics Data System (ADS)

    Chassé, Mathieu; Griffin, William L.; Alard, Olivier; O'Reilly, Suzanne Y.; Calas, Georges

    2018-06-01

    The meta-analysis of about 13,000 analyses of scandium content in garnet grains shows that, below the spinel-garnet transition, this phase carries about three-quarters of the Sc budget of the mantle, indicating its control on Sc mobility. The Sc content of garnets in mafic rocks is low, due to a dilution effect resulting from their high modal content in garnet. Garnets from ultramafic rocks exhibit a wider range of Sc concentrations. We assess the relative influence of thermobarometry, crystal chemistry and fluid-related events on the distribution of Sc in garnet from such rocks to improve the tracking of geochemical processes in the mantle. Pressure and temperature of equilibration in the mantle are second-order factors influencing the Sc content of garnet, while crystal chemistry, in particular Cr/Cr+Al and Ca/Ca+Mg, is the main parameter controlling the compatibility of Sc. Scandium is incorporated in both X and Y sites of Cr-Ca-rich garnets, resulting in a behaviour intermediate between rare-earth elements, incorporated in the X site, and trivalent transition elements, occupying the Y site. This affinity for both sites results in a mild compatibility of Sc in the garnet stability field of the mantle; hence Sc concentration in garnet increases with melt extraction and can be reduced by silicate-melt metasomatism. In contrast, metasomatism by volatile-rich fluids increases the Sc concentration in garnet. The control of garnet on the compatibility of Sc in deep lithospheric rocks demonstrates the potential of using Sc to track the conditions of formation of magmas and their residual rocks, as well as the origin and nature of metasomatic fluids.

  5. Predeployment training for forward medicalisation in a combat zone: the specific policy of the French Military Health Service.

    PubMed

    Pasquier, Pierre; Dubost, Clément; Boutonnet, Mathieu; Chrisment, Anne; Villevieille, Thierry; Batjom, Emmanuel; Bordier, Emmanuel; Ausset, Sylvain; Puidupin, Marc; Martinez, Jean-Yves; Bay, Christian; Escarment, Jacques; Pons, François; Lenoir, Bernard; Mérat, Stéphane

    2014-09-01

    To improve the mortality rate on the battlefield, and especially the potentially survivable pre-Medical Treatment Facility deaths, Tactical Combat Casualty Care (TCCC) is now considered as a reference for management of combat casualty from the point of injury to the first medical treatment facility. TCCC comprises of a set of trauma management guidelines designed for use on the battlefield. The French Military Health Service also standardised a dedicated training programme, entitled "Sauvetage au Combat" (SC) ("forward combat casualty care"), with the characteristic of forward medicalisation on the battlefield, the medical team being projected as close as possible to the casualty at the point of injury. The aim of our article is to describe the process and the result of the SC training. Records from the French Military Health Service Academy - École du Val-de-Grâce administration, head of the SC teaching programme, defining its guidelines, and supporting its structure and its execution, were examined and analyzed, since the standardisation of the SC training programme in 2008. The total number of trainees was listed following the different courses (SC1, SC2, SC3). At the end of 2013, every deployed combatant underwent SC1 courses (confidential data), 785 health-qualified combatants were graduated for SC2 courses and 672 Role 1 physician-nurse pairs for SC3 courses. The SC concept and programmes were defined in France in 2007 and are now completely integrated into the predeployment training of all combatants but also of French Military Health Service providers. Finally, SC teaching programmes enhance the importance of teamwork in forward combat medicalisation settings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. [Construction of a phage antibody library and screening of anti-epidermal growth factor receptor variant III single chain antibody].

    PubMed

    Han, Dong-gang; Duan, Xiao-yi; Guo, You-min; Zhou, Qi; Wang, Quan-ying; Yang, Guang-xiao

    2010-01-01

    To obtain specific anti-epidermal growth factor receptor variant III (EGFRvIII) single chain antibody (ScFv) by phage antibody library display system. The total RNA was extracted from the spleen B cells of BALB/c mice immunized with pep-3-OVA protein, and the first-strand cDNA was synthesized by reverse transcription. Antibody VH and VL gene fragments were amplified and joined to a ScFv gene with the linker. The ScFv gene was ligated into the phagemid vector pCANTAB5E, which was transformed into competent E. coli TG1. The transformed cells were then infected with M13KO7 helper phage to yield the recombinant phage to construct the phage ScFv library. Pep-3-BSA protein was used to screen the phage antibody library and ELISA carried out to characterize the activity of the antibody. The VH and VL gene fragments of the antibody were about 350 bp and 320 bp in length as analyzed by agarose gel electrophoresis. The ScFv gene was 780 bp, consistent with the expected length. The recombinant phagemid with ScFv gene insert was rescued, and an immune phage ScFv library with the content of 5.0x10(6) was constructed. The recombinant ScFv phage had a titer of 3.0x10(4) cfu/ml, and the fourth phage harvest yielded 56 times as much as that of the first one. SDS-PAGE demonstrated a molecular mass of the soluble ScFv of about 28 kD. ELISA results indicated good specificity of the ScFv to bind EGFRvIII. An immune phage ScFv library is successfully constructed, and the ScFv antibody fragment is capable of specific binding to EGFRvIII.

  7. Environmental Fate and Transport of a New Energetic Material, CL-20

    DTIC Science & Technology

    2006-03-01

    Microbiology M.Sc. Biochemistry M.Sc. Chemistry Ph.D. Chemistry Ph.D. Ecotoxicology M.Sc.A. Environmental Engineering B.Sc. Chemistry B.Sc...Determine enzymes responsible for initiating the degradation of CL-20. 5. Conduct a battery of ecotoxicological tests to determine the toxic effects of...chrysosporium. The strain ATCC 24725 was maintained on Yeast Peptone Dextrose (YPD) plates and was cultivated in the modified Kirk’s nitrogen- limited medium (pH

  8. Sustainable Soil Washing: Shredded Card Filtration of Potentially Toxic Elements after Leaching from Soil Using Organic Acid Solutions

    PubMed Central

    Ash, Christopher; Drábek, Ondřej; Tejnecký, Václav; Jehlička, Jan; Michon, Ninon; Borůvka, Luboš

    2016-01-01

    Shredded card (SC) was assessed for use as a sorbent of potentially toxic elements (PTE) carried from contaminated soil in various leachates (oxalic acid, formic acid, CaCl2, water). We further assessed SC for retention of PTE, using acidified water (pH 3.4). Vertical columns and a peristaltic pump were used to leach PTE from soils (O and A/B horizons) before passing through SC. Sorption onto SC was studied by comparing leachates, and by monitoring total PTE contents on SC before and after leaching. SC buffers against acidic soil conditions that promote metals solubility; considerable increases in solution pH (+4.49) were observed. Greatest differences in solution PTE content after leaching with/without SC occurred for Pb. In oxalic acid, As, Cd, Pb showed a high level of sorption (25, 15, and 58x more of the respective PTE in leachates without SC). In formic acid, Pb sorption was highly efficient (219x more Pb in leachate without SC). In water, only Pb showed high sorption (191x more Pb in leachate without SC). In desorption experiments, release of PTE from SC varied according to the source of PTE (organic/mineral soil), and type of solvent used. Arsenic was the PTE most readily leached in desorption experiments. Low As sorption from water was followed by fast release (70% As released from SC). A high rate of Cd sorption from organic acid solutions was followed by strong retention (~12% Cd desorption). SC also retained Pb after sorption from water, with subsequent losses of ≤8.5% of total bound Pb. The proposed use of this material is for the filtration of PTE from extract solution following soil washing. Low-molecular-mass organic acids offer a less destructive, biodegradable alternative to strong inorganic acids for soil washing. PMID:26900684

  9. Why Is Spiritual Care Infrequent at the End of Life? Spiritual Care Perceptions Among Patients, Nurses, and Physicians and the Role of Training

    PubMed Central

    Balboni, Michael J.; Sullivan, Adam; Amobi, Adaugo; Phelps, Andrea C.; Gorman, Daniel P.; Zollfrank, Angelika; Peteet, John R.; Prigerson, Holly G.; VanderWeele, Tyler J.; Balboni, Tracy A.

    2013-01-01

    Purpose To determine factors contributing to the infrequent provision of spiritual care (SC) by nurses and physicians caring for patients at the end of life (EOL). Patients and Methods This is a survey-based, multisite study conducted from March 2006 through January 2009. All eligible patients with advanced cancer receiving palliative radiation therapy and oncology physician and nurses at four Boston academic centers were approached for study participation; 75 patients (response rate = 73%) and 339 nurses and physicians (response rate = 63%) participated. The survey assessed practical and operational dimensions of SC, including eight SC examples. Outcomes assessed five factors hypothesized to contribute to SC infrequency. Results Most patients with advanced cancer had never received any form of spiritual care from their oncology nurses or physicians (87% and 94%, respectively; P for difference = .043). Majorities of patients indicated that SC is an important component of cancer care from nurses and physicians (86% and 87%, respectively; P = .1). Most nurses and physicians thought that SC should at least occasionally be provided (87% and 80%, respectively; P = .16). Majorities of patients, nurses, and physicians endorsed the appropriateness of eight examples of SC (averages, 78%, 93%, and 87%, respectively; P = .01). In adjusted analyses, the strongest predictor of SC provision by nurses and physicians was reception of SC training (odds ratio [OR] = 11.20, 95% CI, 1.24 to 101; and OR = 7.22, 95% CI, 1.91 to 27.30, respectively). Most nurses and physicians had not received SC training (88% and 86%, respectively; P = .83). Conclusion Patients, nurses, and physicians view SC as an important, appropriate, and beneficial component of EOL care. SC infrequency may be primarily due to lack of training, suggesting that SC training is critical to meeting national EOL care guidelines. PMID:23248245

  10. Regulation of the CgPdr1 Transcription Factor from the Pathogen Candida glabrata ▿

    PubMed Central

    Paul, Sanjoy; Schmidt, Jennifer A.; Moye-Rowley, W. Scott

    2011-01-01

    Candida glabrata is an opportunistic human pathogen that is increasingly associated with candidemia, owing in part to the intrinsic and acquired high tolerance the organism exhibits for the important clinical antifungal drug fluconazole. This elevated fluconazole resistance often develops through gain-of-function mutations in the zinc cluster-containing transcriptional regulator C. glabrata Pdr1 (CgPdr1). CgPdr1 induces the expression of an ATP-binding cassette (ABC) transporter-encoding gene, CgCDR1. Saccharomyces cerevisiae has two CgPdr1 homologues called ScPdr1 and ScPdr3. These factors control the expression of an ABC transporter-encoding gene called ScPDR5, which encodes a homologue of CgCDR1. Loss of the mitochondrial genome (ρ0 cell) or overexpression of the mitochondrial enzyme ScPsd1 induces ScPDR5 expression in a strictly ScPdr3-dependent fashion. ScPdr3 requires the presence of a transcriptional Mediator subunit called Gal11 (Med15) to fully induce ScPDR5 transcription in response to ρ0 signaling. ScPdr1 does not respond to either ρ0 signals or ScPsd1 overproduction. In this study, we employed transcriptional fusions between CgPdr1 target promoters, like CgCDR1, to demonstrate that CgPdr1 stimulates gene expression via binding to elements called pleiotropic drug response elements (PDREs). Deletion mapping and electrophoretic mobility shift assays demonstrated that a single PDRE in the CgCDR1 promoter was capable of supporting ρ0-induced gene expression. Removal of one of the two ScGal11 homologues from C. glabrata caused a major defect in drug-induced expression of CgCDR1 but had a quantitatively minor effect on ρ0-stimulated transcription. These data demonstrate that CgPdr1 appears to combine features of ScPdr1 and ScPdr3 to produce a transcription factor with chimeric regulatory properties. PMID:21131438

  11. On the Relationship Between Global Land-Ocean Temperature and Various Descriptors of Solar-Geomagnetic Activity and Climate

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2014-01-01

    Examined are sunspot cycle- (SC-) length averages of the annual January-December values of the Global Land-Ocean Temperature Index () in relation to SC-length averages of annual values of various descriptors of solar-geomagnetic activity and climate, incorporating lags of 0-5 yr. For the overall interval SC12-SC23, the is inferred to correlate best against the parameter incorporating lag = 5 yr, where the parameter refers to the resultant aa value having removed that portion of the annual aa average value due to the yearly variation of sunspot number (SSN). The inferred correlation between the and is statistically important at confidence level cl > 99.9%, having a coefficient of linear correlation r = 0.865 and standard error of estimate se = 0.149 degC. Excluding the most recent cycles SC22 and SC23, the inferred correlation is stronger, having r = 0.969 and se = 0.048 degC. With respect to the overall trend in the , which has been upwards towards warmer temperatures since SC12 (1878-1888), solar-geomagnetic activity parameters are now trending downwards (since SC19). For SC20-SC23, in contrast, comparison of the against SC-length averages of the annual value of the Mauna Loa carbon dioxide () index is found to be highly statistically important (cl >> 99.9%), having r = 0.9994 and se = 0.012 degC for lag = 2 yr. On the basis of the inferred preferential linear correlation between the and , the current ongoing SC24 is inferred to have warmer than was seen in SC23 (i.e., >0.526 degC), probably in excess of 0.68 degC (relative to the 1951-1980 base period).

  12. High performance AlScN thin film based surface acoustic wave devices with large electromechanical coupling coefficient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wenbo; He, Xingli; Ye, Zhi, E-mail: yezhi@zju.edu.cn, E-mail: jl2@bolton.ac.uk

    AlN and AlScN thin films with 27% scandium (Sc) were synthesized by DC magnetron sputtering deposition and used to fabricate surface acoustic wave (SAW) devices. Compared with AlN-based devices, the AlScN SAW devices exhibit much better transmission properties. Scandium doping results in electromechanical coupling coefficient, K{sup 2}, in the range of 2.0% ∼ 2.2% for a wide normalized thickness range, more than a 300% increase compared to that of AlN-based SAW devices, thus demonstrating the potential applications of AlScN in high frequency resonators, sensors, and high efficiency energy harvesting devices. The coupling coefficients of the present AlScN based SAW devices are muchmore » higher than that of the theoretical calculation based on some assumptions for AlScN piezoelectric material properties, implying there is a need for in-depth investigations on the material properties of AlScN.« less

  13. Formation of Intermetallic Phases in Al-Sc Alloys Prepared by Molten Salt Electrolysis at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Zengjie; Guan, Chunyang; Liu, Qiaochu; Xue, Jilai

    Molten salts electrolysis method to prepare Al-RE alloys has attracted increasing attention recently. CaCl2 and Na3AlF6 were the most often used melts for this purpose. In this work, Al-Sc alloys prepared by electrolytic deposition process in both CaCl2 and Na3AlF6 melts were investigated, respectively. It was found that Sc distributes almost uniformly and Sc contents increase with increasing current intensity in both melts. Current efficiency was measured for comparison among various current densities applied. The alloy products were analyzed using XRD and SEM, where the formation behaviors of Al-Sc intermetallics were investigated in details. The experimental and theoretical results demonstrate that Al3Sc and Al0.968Sc0.032 are the major precipitates in the Al-Sc alloys prepared by molten electrolysis. The results are useful for selection and optimization of the molten salts compositions and the parameters of electrolysis operation.

  14. Biological effects of low-level laser irradiation on umbilical cord mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Chen, Hongli; Wang, Hong; Li, Yingxin; Liu, Weichao; Wang, Chao; Chen, Zhuying

    2016-04-01

    Low-level laser irradiation (LLLI) can enhance stem cell (SC) activity by increasing migration and proliferation. This study investigated the effects of LLLI on proliferation, enzymatic activity, and growth factor production in human umbilical cord mesenchymal SCs (hUC-MSCs) as well as the underlying mechanisms. hUC-MSCs were assigned to a control group (non-irradiation group) and three LLLI treatment groups (635 nm group, 808 nm group, and 635/808 nm group). Laser power density and energy density of 20 mW/cm2 and 12 J/cm2, respectively, were used for each experiment. The proliferation rate was higher in the 635 nm as compared to the other groups. LLLI at 808 nm did not induce cell proliferation. ROS levels in cells exposed to 635, 808, and 635/808 nm radiation were increased by 52.81%, 26.89%, and 21.15%, respectively, relative to the control group. CAT, tGPx, and SOD activity was increased. LLLI at 808 nm increased the levels of IL-1, IL-6, and NFκB but not VEGF. LLLI improved hUC-MSCs function and increased antioxidant activity. Dual-wavelength LLLI had more potent effects on hUC-MSCs than single-wavelength treatment. LLLI has potential applications in the preconditioning of hUC-MSCs in vitro prior to transplantation, which could improve the regenerative capacity of cells.

  15. Itraconazole versus fluconazole for prevention of fungal infections in patients receiving allogeneic stem cell transplants.

    PubMed

    Marr, Kieren A; Crippa, Fulvio; Leisenring, Wendy; Hoyle, Maggie; Boeckh, Michael; Balajee, S Arunmozhi; Nichols, W Garrett; Musher, Benjamin; Corey, Lawrence

    2004-02-15

    Prophylactic fluconazole prevents candidiasis; however, this drug has no activity against molds. We performed a randomized trial to determine whether prophylactic itraconazole prevents invasive mold infections (IMIs). A total of 304 patients receiving allogeneic stem cell transplants (SCT) were randomized to receive fluconazole (400 mg/d) or itraconazole (oral solution 2.5 mg/kg 3 times daily, or intravenous 200 mg daily) for 180 days after SC transplantation, or until 4 weeks after discontinuation of graft-versus-host disease (GVHD) therapy. Proven or probable invasive fungal infections (IFI) were evaluated by intent-to-treat and "on-treatment" analyses. More patients in the itraconazole arm developed hepatotoxicities, and more patients were discontinued from itraconazole because of toxicities or gastrointestinal (GI) intolerance (36% versus 16%, P <.001). Intent-to-treat analysis demonstrated no difference in the incidence of IFI during the intended study period (fluconazole 16% versus itraconazole 13%, P =.46); however, fewer patients in the itraconazole arm developed IFI on treatment (fluconazole 15% versus itraconazole 7%, P =.03). Itraconazole provided better protection against IMI (fluconazole 12% versus itraconazole 5%, P =.03), but similar protection against candidiasis (3% versus 2%, P =.69). There was no difference in overall or fungal-free survival. Itraconazole appears to prevent IMI in the subset of patients who tolerate the drug; however, toxicities and poor tolerability limit its success as prophylactic therapy.

  16. Biological effects of low-level laser irradiation on umbilical cord mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hongli; Wang, Hong; Li, Yingxin, E-mail: yingxinli2005@126.com

    2016-04-15

    Low-level laser irradiation (LLLI) can enhance stem cell (SC) activity by increasing migration and proliferation. This study investigated the effects of LLLI on proliferation, enzymatic activity, and growth factor production in human umbilical cord mesenchymal SCs (hUC-MSCs) as well as the underlying mechanisms. hUC-MSCs were assigned to a control group (non-irradiation group) and three LLLI treatment groups (635 nm group, 808 nm group, and 635/808 nm group). Laser power density and energy density of 20 mW/cm{sup 2} and 12 J/cm{sup 2}, respectively, were used for each experiment. The proliferation rate was higher in the 635 nm as compared to themore » other groups. LLLI at 808 nm did not induce cell proliferation. ROS levels in cells exposed to 635, 808, and 635/808 nm radiation were increased by 52.81%, 26.89%, and 21.15%, respectively, relative to the control group. CAT, tGPx, and SOD activity was increased. LLLI at 808 nm increased the levels of IL-1, IL-6, and NFκB but not VEGF. LLLI improved hUC-MSCs function and increased antioxidant activity. Dual-wavelength LLLI had more potent effects on hUC-MSCs than single-wavelength treatment. LLLI has potential applications in the preconditioning of hUC-MSCs in vitro prior to transplantation, which could improve the regenerative capacity of cells.« less

  17. Superior Therapeutic Index in Lymphoma Therapy: CD30+ CD34+ Hematopoietic Stem Cells Resist a Chimeric Antigen Receptor T-cell Attack

    PubMed Central

    Hombach, Andreas A; Görgens, André; Chmielewski, Markus; Murke, Florian; Kimpel, Janine; Giebel, Bernd; Abken, Hinrich

    2016-01-01

    Recent clinical trials with chimeric antigen receptor (CAR) redirected T cells targeting CD19 revealed particular efficacy in the treatment of leukemia/lymphoma, however, were accompanied by a lasting depletion of healthy B cells. We here explored CD30 as an alternative target, which is validated in lymphoma therapy and expressed by a broad variety of Hodgkin's and non-Hodgkin's lymphomas. As a safty concern, however, CD30 is also expressed by lymphocytes and hematopoietic stem and progenitor cells (HSPCs) during activation. We revealed that HRS3scFv-derived CAR T cells are superior since they were not blocked by soluble CD30 and did not attack CD30+ HSPCs while eliminating CD30+ lymphoma cells. Consequently, normal hemato- and lymphopoiesis was not affected in the long-term in the humanized mouse; the number of blood B and T cells remained unchanged. We provide evidence that the CD30+ HSPCs are protected against a CAR T-cell attack by substantially lower CD30 levels than lymphoma cells and higher levels of the granzyme B inactivating SP6/PI9 serine protease, which furthermore increased upon activation. Taken together, adoptive cell therapy with anti-CD30 CAR T cells displays a superior therapeutic index in the treatment of CD30+ malignancies leaving healthy activated lymphocytes and HSPCs unaffected. PMID:27112062

  18. Arterial stiffness estimation in healthy subjects: a validation of oscillometric (Arteriograph) and tonometric (SphygmoCor) techniques.

    PubMed

    Ring, Margareta; Eriksson, Maria Jolanta; Zierath, Juleen Rae; Caidahl, Kenneth

    2014-11-01

    Arterial stiffness is an important cardiovascular risk marker, which can be measured noninvasively with different techniques. To validate such techniques in healthy subjects, we compared the recently introduced oscillometric Arteriograph (AG) technique with the tonometric SphygmoCor (SC) method and their associations with carotid ultrasound measures and traditional risk indicators. Sixty-three healthy subjects aged 20-69 (mean 48 ± 15) years were included. We measured aortic pulse wave velocity (PWVao) and augmentation index (AIx) by AG and SC, and with SC also the PWVao standardized to 80% of the direct distance between carotid and femoral sites (St-PWVaoSC). The carotid strain, stiffness index and intima-media thickness (cIMTmean) were evaluated by ultrasound. PWVaoAG (8.00 ± 2.16 m s(-1)) was higher (P<0.001) than PWVaoSC (6.87 ± 1.47 m s(-1)), but did not differ from St-PWVaoSC (7.68 ± 1.58 m s(-1)), and correlated (P<0.001) with both (r = 0.54 and 0.59). St-PWVaoSC was significantly (P < 0.01) higher than PWVaoAG for values below median (7.4 m s(-1)). PWVao by SC and AG differed significantly in females (P<0.001), but not in males (P=0.40). AIxaoAG (27.5 ± 14.5%) was higher (P < 0.001) than AIxaoSC (20.5 ± 17.4%), but related closely (r=0.97, P<0.001). St-PWVaoSC, PWVao and AIxao by SC, and PWVao and AIxao by AG were all related to serum cholesterol and to cIMTmean (P<0.001). Arterial stiffness indices by AG and SC correlate with vascular risk markers in healthy subjects. AIxao results by AG and SC are closely interrelated, but higher values are obtained by AG. In the lower range, PWVao values by AG and SC are similar, but differ for higher values. Our results imply the necessity to apply one and the same technique for repeated studies.

  19. Association between employer's knowledge and attitude towards smoking cessation and voluntary promotion in workplace: a survey study.

    PubMed

    Wang, Man Ping; Li, William Ho Cheung; Suen, Yi Nam; Cheung, Ka Ching; Lau, Oi Sze; Lam, Tai Hing; Chan, Sophia Siu Chee

    2017-01-01

    Workplace smoking cessation (SC) intervention is effective in increasing quit rate but little was known about the factors associated with voluntary SC promotion. Comprehensive smoke-free legislation, including banning smoking in all indoor area of workplaces, has been enforced in Hong Kong. This survey investigated the prevalence of company's compliance with smoke-free legislation and examined the relation between voluntary SC promotion in workplace and employer's knowledge of and attitude towards smoking and SC. Half (50.3%, n  = 292) of a convenience sample of companies completed a self-administered questionnaire on company's voluntary SC promotion in the workplace. Factors investigated included company's characteristics (size, type, and number of smoking employees); employers' knowledge of smoking, second-hand smoke and SC effects on health; perceived responsibility in assisting employees to quit smoking and smoking prohibition in workplace (smoke free policy). Logistic regression yielded adjusted odds ratio (aOR) for voluntary SC promotion. A notable proportion of companies (14.7%) showed non-compliance with the smoke free workplace ordinance and only 10% voluntarily promoted SC. Perceived greater negative impact of smoking on the company (adjusted odds ratio[aOR] 1.94, 95% confidence interval [CI] 1.18-3.20) and better knowledge of smoking (aOR 1.40, 95%CI 1.00-1.94) were associated with voluntary SC promotion. Positive but non-significant associations were observed between perceived responsibility of assisting employees to quit, workplace smoke free policy and voluntary SC promotion. Company characteristics were generally not associated with voluntary SC promotion except white collar companies were less likely to promote SC (aOR 0.26, 95% CI 0.08-0.85). This is the first survey on company's SC promotion in the Chinese population. A notable proportion of companies was not compliant with the smoke-free workplace ordinance. Employers with a higher level of knowledge and perceived impact of smoking on companies and from blue-collar companies were more likely to promote SC in workplace. The findings inform future workplace intervention design and policy. The study was retrospectively registered at ClinicalTrials.gov (NCT02179424) dated 27 June 2014.

  20. Energy Levels and Radiative Rates for Transitions in F-like Sc XIII and Ne-like Sc XII and Y XXX

    NASA Astrophysics Data System (ADS)

    Aggarwal, Kanti

    2018-05-01

    Energy levels, radiative rates and lifetimes are reported for F-like Sc~XIII and Ne-like Sc~XII and Y~XXX for which the general-purpose relativistic atomic structure package ({\\sc grasp}) has been adopted. For all three ions limited data exist in the literature but comparisons have been made wherever possible to assess the accuracy of the calculations. In the present work the lowest 102, 125 and 139 levels have been considered for the respective ions. Additionally, calculations have also been performed with the flexible atomic code ({\\sc fac}) to (particularly) confirm the accuracy of energy levels.

  1. The Effect of Gromwell (Lithospermum erythrorhizon) Extract on the Stratum Corneum Hydration and Ceramides Content in Atopic Dermatitis Patients.

    PubMed

    Cho, Hee Ryung; Cho, Yunhi; Kim, Juyoung; Seo, Dae Bang; Kim, Sung Han; Lee, Sang Jun; Kim, Nack In

    2008-06-01

    A disruption of the balance between the water content of the stratum corneum (SC) and skin surface lipids may lead to the clinical manifestation of dryness of skin in patients with atopic dermatitis (AD). To determine whether supplementation of gromwell (Lithospermum erythrorhizon), one of herbs used in East Asia in remedies for various abnormal skin conditions, may improve the SC level of hydration and ceramides, major lipid in SC in patients with AD. A total of 28 subjects with AD were randomly assigned into two groups: either gromwell group received dextrose contained capsules with 1.5 g of gromwell extracts or placebo group received only dextrose contained capsules for 10 weeks. In contrast to no alteration of SC hydration and ceramides in placebo group, the SC hydration in gromwell group was significantly increased in parallel with an increase of SC ceramides. Furthermore, % increase of SC hydration in gromwell group bore a positive correlation with the clinical severity, which suggests that the increase of SC hydration in gromwell group was more effective as AD was more severe. Supplementation of gromwell improves SC hydration in parallel with an increase of ceramides in part.

  2. ScII: an abundant chromosome scaffold protein is a member of a family of putative ATPases with an unusual predicted tertiary structure

    PubMed Central

    1994-01-01

    Here, we describe the cloning and characterization of ScII, the second most abundant protein after topoisomerase II, of the chromosome scaffold fraction to be identified. ScII is structurally related to a protein, Smc1p, previously found to be required for accurate chromosome segregation in Saccharomyces cerevisiae. ScII and the other members of the emerging family of SMC1-like proteins are likely to be novel ATPases, with NTP-binding A and B sites separated by two lengthy regions predicted to form an alpha-helical coiled-coil. Analysis of the ScII B site predicted that ScII might use ATP by a mechanism similar to the bacterial recN DNA repair and recombination enzyme. ScII is a mitosis-specific scaffold protein that colocalizes with topoisomerase II in mitotic chromosomes. However, ScII appears not to be associated with the interphase nuclear matrix. ScII might thus play a role in mitotic processes such as chromosome condensation or sister chromatid disjunction, both of which have been previously shown to involve topoisomerase II. PMID:7929577

  3. Long-term alteration of follicular steroid concentrations in relation to subclinical endometritis in postpartum dairy cows.

    PubMed

    Green, M P; Ledgard, A M; Beaumont, S E; Berg, M C; McNatty, K P; Peterson, A J; Back, P J

    2011-11-01

    The focus of this study was to investigate the effect of subclinical endometritis (scEndo) on ovarian follicular steroid concentrations in early postpartum pasture-fed dairy cows. Mixed-age lactating dairy cows (n = 169) were examined to ascertain uterine health status on d 21 postpartum (±3 d). From this herd, a cohort of scEndo and uninfected cows (n = 47) were selected using uterine cytology to determine scEndo. To ensure cows with scEndo were selected for the study, a conservative threshold [>18% polymorphonuclear (PMN) cells among uterine nucleated cells] was chosen as a selection threshold. Ovarian follicular dynamics were assessed by ultrasonography on d 21, 42, and 63 postpartum. On the latter 2 d, all follicles >4 mm in diameter were ablated, and 4 d later, the largest (F1) and second largest (F2) follicles were measured and their follicular fluid aspirated. Hematological variables and plasma metabolites were measured also on these days to further characterize scEndo cows. On d 21, the prevalence of scEndo was approximately 9% in this herd; by d 42 infections had self-resolved in the majority (81%) of those cows classified as having scEndo on d 21. The scEndo cows had a delayed return to cyclicity; however, no effect was evident on ovarian follicle size or growth rate. Weeks after scEndo had self-resolved and cyclicity was restored, decreased (P = 0.07) testosterone and increased (P = 0.07) cortisol concentrations were evident in F1 follicles of scEndo compared with uninfected cows. Progesterone concentrations of F1 increased (P < 0.05) in 11- to 16-mm diameter follicles of scEndo cows, whereas estradiol, androstendione, and dehydroepiandrosterone concentrations were decreased (P < 0.05) in F1 8- to 10-mm diameter follicles of scEndo cows. These 3 steroids also differed (P < 0.05) between F1 follicle size categories of scEndo but not uninfected cows. On d 21, mean plasma albumin concentration was decreased (P = 0.02) in scEndo cows. In summary, early postpartum scEndo had surprisingly long-term influences on the steroid concentrations of ovarian follicles long after infections had self-resolved. This is likely to affect oocyte quality and may partially explain the reduced conception rates and longer interval between calving and conception that are often associated with scEndo, although more detailed investigations are required to substantiate this theory.

  4. Modeling the Thermodynamic and Transport Properties of Decahydronaphthalene/Propane Mixtures: Phase Equilibria, Density, and Viscosity

    DTIC Science & Technology

    2011-01-01

    expanded with supercritical fluids (ScF) have been investigated as alternative chemical process media for more than two decades. ScF expanded liquids can...internal surfaces of porous catalysts. As examples, solvents expanded by supercritical and subcritical ScFs have been used in homogeneous catalytic...decahydronaphthalene (DHN) expanded by supercritical carbon dioxide (scCO2) [4, 5, 7]. Although the addition of scCO2 improved the hydrogenation rate under many

  5. In the presence of fluoride, free Sc³⁺ is not a good predictor of Sc bioaccumulation by two unicellular algae: possible role of fluoro-complexes.

    PubMed

    Crémazy, Anne; Campbell, Peter G C; Fortin, Claude

    2014-08-19

    We investigated the effect of fluoride complexation on scandium accumulation by two unicellular algae, Chlamydomonas reinhardtii and Pseudokirchneriella subcapitata. This trivalent metal was selected for its chemical similarities with aluminum and for its convenient radioisotope (Sc-46), which can be used as a tracer in short-term bioaccumulation studies. Scandium surface-bound concentrations (Sc(ads)) and uptake fluxes (J(int)) were estimated in the two algae over short-term (<1 h) exposures at pH 5 and in the presence of 0 to 40 μM F(-). Although the computed proportion of dissolved Sc(3+) dropped from 20% to 0.01% over this [F(-)] range, Sc(ads) and J(int) values for both algae decreased only slightly, suggesting a participation of Sc fluoro-complexes in both processes. Surface adsorption and uptake of fluoride complexes with aluminum have been reported in the literature. These observations are not taken into account by current models for trace metal bioaccumulation (e.g., the biotic ligand model). Results from a previous study, where the effects of pH on Sc uptake were investigated, suggested that Sc hydroxo-complexes were internalized by C. reinhardtii. There is thus growing evidence that the free ion concentration may not be adequate to predict the accumulation of Sc (and potentially of other trivalent metals) in aquatic organisms.

  6. Impact of “Stroke Code”-Rapid Response Team: An Attempt to Improve Intravenous Thrombolysis Rate and to Shorten Door-to-Needle Time in Acute Ischemic Stroke

    PubMed Central

    Gurav, Sushma K.; Zirpe, Kapil G.; Wadia, R. S.; Naniwadekar, Avinash; Pote, Prajakta U.; Tungenwar, Amit; Deshmukh, Abhijeet M.; Mohopatra, Srikanta; Nimavat, Balakrishna; Surywanshi, Prasad

    2018-01-01

    Objective: “Stroke code” (SC) implementation in hospitals can improve the rate of thrombolysis and the timeline in care of stroke patient. Materials and Methods: A prospective data of patients treated for acute ischemic stroke (AIS) after implementation of “SC” (post-SC era) were analyzed (2015–2016) and compared with the retrospective data of patients treated in the “pre-SC era.” Parameters such as symptom-to-door, door-to-physician, door-to-imaging, door-to-needle (DTN), and symptom-to-needle time were calculated. The severity of stroke was calculated using the National Institutes of Health Stroke Score (NIHSS) before and after treatment. Results: Patients presented with stroke symptoms in pre- and post-SC era (695 vs. 610) and, out of these, patients who came in window period constituted 148 (21%) and 210 (34%), respectively. Patients thrombolyzed in pre- and post-SC era were 44 (29.7%) and 65 (44.52%), respectively. Average DTN time was 104.95 min in pre-SC era and reduced to 67.28 min (P < 0.001) post-SC implementation. Percentage of patients thrombolyzed within DTN time ≤60 min in pre-SC era and SC era was 15.90% and 55.38%, respectively. Conclusion: Implementation of SC helped us to increase thrombolysis rate in AIS and decrease DTN time. PMID:29743763

  7. PET Imaging of 64Cu-DOTA-scFv-Anti-PSMA Lipid Nanoparticles (LNPs): Enhanced Tumor Targeting over Anti-PSMA scFv or Untargeted LNPs

    PubMed Central

    Wong, Patty; Li, Lin; Chea, Junie; Delgado, Melissa K.; Crow, Desiree; Poku, Erasmus; Szpikowska, Barbara; Bowles, Nicole; Channappa, Divya; Colcher, David; Wong, Jeffrey Y.C.; Shively, John E.; Yazaki, Paul J.

    2017-01-01

    Introduction Single chain (scFv) antibodies are ideal targeting ligands due to their modular structure, high antigen specificity and affinity. These monovalent ligands display rapid tumor targeting but have limitations due to their fast urinary clearance. Methods An anti-prostate membrane antigen (PSMA) scFv with a site-specific cysteine was expressed and evaluated in a prostate cancer xenograft model by Cu-64 PET imaging. To enhance tumor accumulation, the scFv-cys was conjugated to the co-polymer DSPE-PEG-maleimide that spontaneously assembled into a homogeneous multivalent lipid nanoparticle (LNP). Results The targeted LNP exhibited a 2-fold increase in tumor uptake compared to the scFv alone using two different thiol ester chemistries. The anti-PSMA scFv-LNP exhibited a 1.6 fold increase in tumor targeting over the untargeted LNP. Conclusions The targeted anti-PSMA scFv-LNP showed enhanced tumor accumulation over the scFv alone or the untargeted DOTA-micelle providing evidence for the development of this system for drug delivery. Advances in Knowledge and implications for patient care Anti-tumor scFv antibody fragments have not achieved their therapeutic potential due to their fast blood clearance. Conjugation to a LNP enables multivalency to the tumor antigen as well as increased molecular size for chemotherapy drug delivery. PMID:28126683

  8. Anti-Aβ single-chain variable fragment antibodies exert synergistic neuroprotective activities in Drosophila models of Alzheimer's disease

    PubMed Central

    Fernandez-Funez, Pedro; Zhang, Yan; Sanchez-Garcia, Jonatan; de Mena, Lorena; Khare, Swati; Golde, Todd E.; Levites, Yona; Rincon-Limas, Diego E.

    2015-01-01

    Both active and passive immunotherapy protocols decrease insoluble amyloid-ß42 (Aß42) peptide in animal models, suggesting potential therapeutic applications against the main pathological trigger in Alzheimer's disease (AD). However, recent clinical trials have reported no significant benefits from humanized anti-Aß42 antibodies. Engineered single-chain variable fragment antibodies (scFv) are much smaller and can easily penetrate the brain, but identifying the most effective scFvs in murine AD models is slow and costly. We show here that scFvs against the N- and C-terminus of Aß42 (scFv9 and scFV42.2, respectively) that decrease insoluble Aß42 in CRND mice are neuroprotective in Drosophila models of Aß42 and amyloid precursor protein neurotoxicity. Both scFv9 and scFv42.2 suppress eye toxicity, reduce cell death in brain neurons, protect the structural integrity of dendritic terminals in brain neurons and delay locomotor dysfunction. Additionally, we show for the first time that co-expression of both anti-Aß scFvs display synergistic neuroprotective activities, suggesting that combined therapies targeting distinct Aß42 epitopes can be more effective than targeting a single epitope. Overall, we demonstrate the feasibility of using Drosophila as a first step for characterizing neuroprotective anti-Aß scFvs in vivo and identifying scFv combinations with synergistic neuroprotective activities. PMID:26253732

  9. Production of a germline-humanized cetuximab scFv and evaluation of its activity in recognizing EGFR- overexpressing cancer cells.

    PubMed

    Banisadr, Arsham; Safdari, Yaghoub; Kianmehr, Anvarsadat; Pourafshar, Mahdieh

    2018-04-03

    The aim of this study was to produce a humanized single chain antibody (scFv) as a potential improved product design to target EGFR (Epidermal Growth Factor Receptor) overexpressing cancer cells. To this end, CDR loops of cetuximab (an FDA-approved anti-EGFR antibody) were grafted on framework regions derived from type 3 (VH3 and VL3 kappa) human germline sequences to obtain recombinant VH and VL domainslinked together with a flexible linker [(Gly 4 Ser) 3 ] to form a scFv. Codon optimized synthetic gene encoding the scFv (with NH2-VH-linker-VL-COOH orientation) was expressed in E. coli Origami™ 2(DE3) cells and the resultant scFv purified by using Ni-NTA affinity chromatography. The scFv, called cet.Hum scFv, was evaluated in ELISA and immunoblot to determine whether it can recognize EGFR. The scFv was able to recognize EGFR over-expressing cancer cells (A-431) but failed to detect cancer cells with low levels of EGFR (MCF-7 cells). Although the affinity of the scFv forA-431 cells was 9 fold lower than that of cetuximab, it was strong enough to recognize these cells. Considering its ability to bind EGFR molecules, the scFv may exhibit a potential application for the detection of EGFR-overexpressing cancer cells.

  10. Energy Levels, wavelengths and hyperfine structure measurements of Sc II

    NASA Astrophysics Data System (ADS)

    Hala, Fnu; Nave, Gillian

    2018-01-01

    Lines of singly ionized Scandium (Sc II) along with other Iron group elements have been observed [1] in the region surrounding the massive star Eta Carinae [2,3] called the strontium filament (SrF). The last extensive analysis of Sc II was the four-decade old work of Johansson & Litzen [4], using low-resolution grating spectroscopy. To update and extend the Sc II spectra, we have made observation of Sc/Ar, Sc/Ne and Sc/Ge/Ar hollow cathode emission spectrum on the NIST high resolution FT700 UV/Vis and 2 m UV/Vis/IR Fourier transform spectrometers (FTS). More than 850 Sc II lines have been measured in the wavelength range of 187 nm to 3.2 μm. connecting a total of 152 energy levels. The present work also focuses to resolve hyperfine structure (HFS) in Sc II lines. We aim to obtain accurate transition wavelengths, improved energy levels and HFS constants of Sc II. The latest results from work in progress will be presented.Reference[1] Hartman H, Gull T, Johansson S and Smith N 2004 Astron. Astrophys. 419 215[2] Smith N, Morse J A and Gull T R 2004 Astrophys. J. 605 405[3] Davidson K and Humphreys R M 1997 Annu. Rev. Astron. Astrophys. 35[4] Johansson S and Litzén U 1980 Phys. Scr. 22 49

  11. Zero lattice mismatch and twin-free single crystalline ScN buffer layers for GaN growth on silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lupina, L.; Zoellner, M. H.; Dietrich, B.

    2015-11-16

    We report the growth of thin ScN layers deposited by plasma-assisted molecular beam epitaxy on Sc{sub 2}O{sub 3}/Y{sub 2}O{sub 3}/Si(111) substrates. Using x-ray diffraction, Raman spectroscopy, and transmission electron microscopy, we find that ScN films grown at 600 °C are single crystalline, twin-free with rock-salt crystal structure, and exhibit a direct optical band gap of 2.2 eV. A high degree of crystalline perfection and a very good lattice matching between ScN and GaN (misfit < 0.1%) makes the ScN/Sc{sub 2}O{sub 3}/Y{sub 2}O{sub 3} buffer system a very promising template for the growth of high quality GaN layers on silicon.

  12. Lanthanide-doped NaScF4 nanoprobes: crystal structure, optical spectroscopy and biodetection

    NASA Astrophysics Data System (ADS)

    Ai, Yu; Tu, Datao; Zheng, Wei; Liu, Yongsheng; Kong, Jintao; Hu, Ping; Chen, Zhuo; Huang, Mingdong; Chen, Xueyuan

    2013-06-01

    Trivalent lanthanide ions (Ln3+)-doped inorganic nanoparticles (NPs) as potential luminescent bioprobes have been attracting tremendous interest because of their unique upconversion (UC) and downconversion (DC) luminescence properties. NaScF4, as an important host material, has been rarely reported and its crystal structure remains unclear. Herein, based on the single crystal X-ray diffraction, the space group of NaScF4 crystals was determined to be P31 containing multiple sites of Sc3+ with crystallographic site symmetry of C1, which was verified by high-resolution photoluminescence spectroscopy of Eu3+ at low temperature (10 K). Furthermore, monodisperse and size-controllable NaScF4:Ln3+ NPs were synthesized via a facile thermal decomposition method. The biotinylated NaScF4:Er3+/Yb3+ NPs were demonstrated for their applications as a heterogeneous UC luminescence bioprobe to detect avidin with a detection limit of 180 pM. After bioconjugation with amino-terminal fragment (ATF) of urokinase plasminogen activator (uPA), NaScF4:Ln3+ NPs also exhibited specific recognition of cancer cells overexpressed with uPA receptor (uPAR, an important marker of tumor biology and metastasis), showing great potentials in tumor-targeted bioimaging.Trivalent lanthanide ions (Ln3+)-doped inorganic nanoparticles (NPs) as potential luminescent bioprobes have been attracting tremendous interest because of their unique upconversion (UC) and downconversion (DC) luminescence properties. NaScF4, as an important host material, has been rarely reported and its crystal structure remains unclear. Herein, based on the single crystal X-ray diffraction, the space group of NaScF4 crystals was determined to be P31 containing multiple sites of Sc3+ with crystallographic site symmetry of C1, which was verified by high-resolution photoluminescence spectroscopy of Eu3+ at low temperature (10 K). Furthermore, monodisperse and size-controllable NaScF4:Ln3+ NPs were synthesized via a facile thermal decomposition method. The biotinylated NaScF4:Er3+/Yb3+ NPs were demonstrated for their applications as a heterogeneous UC luminescence bioprobe to detect avidin with a detection limit of 180 pM. After bioconjugation with amino-terminal fragment (ATF) of urokinase plasminogen activator (uPA), NaScF4:Ln3+ NPs also exhibited specific recognition of cancer cells overexpressed with uPA receptor (uPAR, an important marker of tumor biology and metastasis), showing great potentials in tumor-targeted bioimaging. Electronic supplementary information (ESI) available: Crystallographic data (CCDC 931481) in CIF format. EDX analysis of NaScF4:Er3+/Yb3+ NPs. 10 K PL excitation spectra of NaScF4:Eu3+ microcrystals. Selected bond lengths and angles for NaScF4 crystals. Atomic coordinates and equivalent isotropic displacement parameters for NaScF4 crystals. UC quantum yield data of NaScF4:Er3+/Yb3+ NPs. See DOI: 10.1039/c3nr01529g

  13. Multidisciplinary Training on Spiritual Care for Patients in Palliative Care Trajectories Improves the Attitudes and Competencies of Hospital Medical Staff: Results of a Quasi-Experimental Study.

    PubMed

    van de Geer, Joep; Veeger, Nic; Groot, Marieke; Zock, Hetty; Leget, Carlo; Prins, Jelle; Vissers, Kris

    2018-02-01

    Patients value health-care professionals' attention to their spiritual needs. However, this is undervalued in health-care professionals' education. Additional training is essential for implementation of a national multidisciplinary guideline on spiritual care (SC) in palliative care (PC). Aim of this study is to measure effects of a training program on SC in PC based on the guideline. A pragmatic multicenter trial using a quasi-experimental pretest-posttest design as part of an action research study. Eight multidisciplinary teams in regular wards and 1 team of PC consultants, in 8 Dutch teaching hospitals, received questionnaires before training about perceived barriers for SC, spiritual attitudes and involvement, and SC competencies. The effect on the barriers on SC and SC competencies were measured both 1 and 6 months after the training. For nurses (n = 214), 7 of 8 barriers to SC were decreased after 1 month, but only 2 were still after 6 months. For physicians (n = 41), the training had no effect on the barriers to SC. Nurses improved in 4 of 6 competencies after both 1 and 6 months. Physicians improved in 3 of 6 competencies after 1 month but in only 1 competency after 6 months. Concise SC training programs for clinical teams can effect quality of care, by improving hospital staff competencies and decreasing the barriers they perceive. Differences in the effects of the SC training on nurses and physicians show the need for further research on physicians' educational needs on SC.

  14. Endohedral metallofullerene Sc3NC@C84: a theoretical prediction.

    PubMed

    Wang, Dong-Lai; Xu, Hong-Liang; Su, Zhong-Min; Xin, Guang

    2012-11-21

    Very recently, two novel Sc(3)NC-based cluster fullerenes Sc(3)NC@C(80) (Wang et. al. J. Am. Chem. Soc. 2010, 132, 16362) and Sc(3)NC@C(78) (Wu et. al. J. Phys. Chem. C 2011, 115, 23755) were prepared and characterized, respectively. Inspired by these findings, the possibility of encapsulating Sc(3)NC cluster in the C(84) fullerene is performed using density functional theory (DFT). Firstly, the isolated pentagon rule (IPR) D(2d) (23) C(84) fullerene is employed to encase the Sc(3)NC cluster: four possible endohedral metallofullerene isomers a-d are designed. The large binding energies (ranging from 163.7 to 210.0 kcal mol(-1)) indicate that the planar quinary cluster Sc(3)NC can be stably encapsulated in the C(84) (isomer 23) cage. Further, we consider the incorporation of Sc(3)NC into the non-IPR C(s) (51365) C(84) cage leading to isomer e and show the high stability of isomer e, which has a larger binding energy, larger HOMO-LUMO gap, higher adiabatic (vertical) ionization potential, and lower adiabatic (vertical) electron affinity than the former four Sc(3)NC@C(84) (isomer 23). Significantly, the predicted binding energy (294.2 kcal mol(-1)) of isomer e is even larger than that (289.2 and 277.7 kcal mol(-1), respectively) of the synthesized Sc(3)NC@C(80) and Sc(3)NC@C(78,) suggesting a considerable possibility for experimental realization. The (13)C NMR chemical shifts and Raman spectra of this a new endofullerene have been explored to assist future experimental characterization.

  15. Associations of psychosocial working conditions and working time characteristics with somatic complaints in German resident physicians.

    PubMed

    Fischer, Nina; Degen, Christiane; Li, Jian; Loerbroks, Adrian; Müller, Andreas; Angerer, Peter

    2016-05-01

    Somatic complaints (SC) are highly prevalent in working populations and cause suffering and extensive health-care utilization. Adverse psychosocial working conditions as conceptualized in the Job Demand-Control-Support Model (JDC-S) and adverse working time characteristics (WTC) are potential risk factors. This combination is particularly common in hospital physicians. This study examines associations of JDC-S and WTC with SC in resident physicians from Germany. A cross-sectional study was conducted among 405 physicians at the end of residency training. SC were measured using the Giessen Subjective Complaints List (GBB-24) containing the sub-categories exhaustion, gastrointestinal, musculoskeletal, and cardiovascular complaints. Data on working conditions were collected by a self-report method for work analysis in hospitals (TAA-KH-S) and by questions on WTC (i.e., working hours). Multivariable stepwise regression analyses were applied. Workload showed the most pronounced relationship with all sub-categories of SC except gastrointestinal complaints. Job autonomy was not significantly related to any SC sub-category. Social support at work was inversely associated with all SC sub-categories except for cardiovascular complaints. Free weekends were associated with reduced SC except for exhaustion. Shift work was related to an increased SC total score and musculoskeletal complaints. Working hours showed no association with SC. In resident physicians, high workload and shift work are associated with increased SC, while social support at work and free weekends are associated with decreased SC. These insights may inform the development of preventive measures to improve the health of this professional group. Prospective studies are needed though to corroborate our findings.

  16. Internal and external factors in the structural organization in cocrystals of the mixed-metal endohedrals (GdSc2N@Ih-C80, Gd2ScN@Ih-C80, and TbSc2N@Ih-C80) and nickel(II) octaethylporphyrin.

    PubMed

    Stevenson, Steven; Chancellor, Christopher J; Lee, Hon Man; Olmstead, Marilyn M; Balch, Alan L

    2008-03-03

    Structural characterizations of three new mixed-metal endohedrals, GdSc 2N@ I h -C80, Gd 2ScN@ I h -C80, and TbSc 2@ I h -C80, have been obtained by single-crystal X-ray diffraction on GdSc 2N@ I h -C80 x Ni (II)(OEP) x 2C 6H 6, Gd 2ScN@ I h -C 80 x Ni(II)(OEP) x 2C6H6, and TbSc 2N@ I h -C80 x Ni (II)(OEP) x 2C6H6. All three have I h -C 80 cages and planar MM' 2N units. The central nitride ion is positioned further from the larger Gd3+ or Tb3+ ions and closer to the smaller Sc3+ ions. The MM' 2N units show a remarkable degree of orientational order in these and related compounds in which the endohedral fullerene is cocrystallized with a metalloporphyrin. The MM' 2N units are oriented perpendicularly to the porphyrin plane and aligned along one of the N-Ni-N axes of the porphyrin. The smaller Sc3+ ions show a marked preference to lie near the porphyrin plane. The larger Gd3+ or Tb3+ ions assume positions further from the plane of the porphyrin. The roles of dipole forces and electrostatic forces in ordering these cocrystals of endohedral fullerenes and metalloporphyrins are considered.

  17. Bone marrow-derived mesenchymal stem cells ameliorate sodium nitrite-induced hypoxic brain injury in a rat model

    PubMed Central

    Ali, Elham H.A.; Ahmed-Farid, Omar A.; Osman, Amany A. E.

    2017-01-01

    Sodium nitrite (NaNO2) is an inorganic salt used broadly in chemical industry. NaNO2 is highly reactive with hemoglobin causing hypoxia. Mesenchymal stem cells (MSCs) are capable of differentiating into a variety of tissue specific cells and MSC therapy is a potential method for improving brain functions. This work aims to investigate the possible therapeutic role of bone marrow-derived MSCs against NaNO2 induced hypoxic brain injury. Rats were divided into control group (treated for 3 or 6 weeks), hypoxic (HP) group (subcutaneous injection of 35 mg/kg NaNO2 for 3 weeks to induce hypoxic brain injury), HP recovery groups N-2wR and N-3wR (treated with the same dose of NaNO2 for 2 and 3 weeks respectively, followed by 4-week or 3-week self-recovery respectively), and MSCs treated groups N-2wSC and N-3wSC (treated with the same dose of NaNO2 for 2 and 3 weeks respectively, followed by one injection of 2 × 106 MSCs via the tail vein in combination with 4 week self-recovery or intravenous injection of NaNO2 for 1 week in combination with 3 week self-recovery). The levels of neurotransmitters (norepinephrine, dopamine, serotonin), energy substances (adenosine monophosphate, adenosine diphosphate, adenosine triphosphate), and oxidative stress markers (malondialdehyde, nitric oxide, 8-hydroxy-2′-deoxyguanosine, glutathione reduced form, and oxidized glutathione) in the frontal cortex and midbrain were measured using high performance liquid chromatography. At the same time, hematoxylin-eosin staining was performed to observe the pathological change of the injured brain tissue. Compared with HP group, pathological change of brain tissue was milder, the levels of malondialdehyde, nitric oxide, oxidized glutathione, 8-hydroxy-2′-deoxyguanosine, norepinephrine, serotonin, glutathione reduced form, and adenosine triphosphate in the frontal cortex and midbrain were significantly decreased, and glutathione reduced form/oxidized glutathione and adenosine monophosphate/adenosine triphosphate ratio were significantly increased in the MSCs treated groups. These findings suggest that bone marrow-derived MSCs exhibit neuroprotective effects against NaNO2-induced hypoxic brain injury through exerting anti-oxidative effects and providing energy to the brain. PMID:29323037

  18. Comparative Study of Injury Models for Studying Muscle Regeneration in Mice

    PubMed Central

    Hardy, David; Besnard, Aurore; Latil, Mathilde; Jouvion, Grégory; Briand, David; Thépenier, Cédric; Pascal, Quentin; Guguin, Aurélie; Gayraud-Morel, Barbara; Cavaillon, Jean-Marc; Tajbakhsh, Shahragim

    2016-01-01

    Background A longstanding goal in regenerative medicine is to reconstitute functional tissus or organs after injury or disease. Attention has focused on the identification and relative contribution of tissue specific stem cells to the regeneration process. Relatively little is known about how the physiological process is regulated by other tissue constituents. Numerous injury models are used to investigate tissue regeneration, however, these models are often poorly understood. Specifically, for skeletal muscle regeneration several models are reported in the literature, yet the relative impact on muscle physiology and the distinct cells types have not been extensively characterised. Methods We have used transgenic Tg:Pax7nGFP and Flk1GFP/+ mouse models to respectively count the number of muscle stem (satellite) cells (SC) and number/shape of vessels by confocal microscopy. We performed histological and immunostainings to assess the differences in the key regeneration steps. Infiltration of immune cells, chemokines and cytokines production was assessed in vivo by Luminex®. Results We compared the 4 most commonly used injury models i.e. freeze injury (FI), barium chloride (BaCl2), notexin (NTX) and cardiotoxin (CTX). The FI was the most damaging. In this model, up to 96% of the SCs are destroyed with their surrounding environment (basal lamina and vasculature) leaving a “dead zone” devoid of viable cells. The regeneration process itself is fulfilled in all 4 models with virtually no fibrosis 28 days post-injury, except in the FI model. Inflammatory cells return to basal levels in the CTX, BaCl2 but still significantly high 1-month post-injury in the FI and NTX models. Interestingly the number of SC returned to normal only in the FI, 1-month post-injury, with SCs that are still cycling up to 3-months after the induction of the injury in the other models. Conclusions Our studies show that the nature of the injury model should be chosen carefully depending on the experimental design and desired outcome. Although in all models the muscle regenerates completely, the trajectories of the regenerative process vary considerably. Furthermore, we show that histological parameters are not wholly sufficient to declare that regeneration is complete as molecular alterations (e.g. cycling SCs, cytokines) could have a major persistent impact. PMID:26807982

  19. Nanoparticle Delivery of miR-34a Eradicates Long-term-cultured Breast Cancer Stem Cells via Targeting C22ORF28 Directly

    PubMed Central

    Lin, Xiaoti; Chen, Weiyu; Wei, Fengqin; Zhou, Binhua P.; Hung, Mien-Chie; Xie, Xiaoming

    2017-01-01

    Rationale: Cancer stem cells (CSCs) have been implicated as the seeds of therapeutic resistance and metastasis, due to their unique abilities of self-renew, wide differentiation potentials and resistance to most conventional therapies. It is a proactive strategy for cancer therapy to eradicate CSCs. Methods: Tumor tissue-derived breast CSCs (BCSC), including XM322 and XM607, were isolated by fluorescence-activated cell sorting (FACS); while cell line-derived BCSC, including MDA-MB-231.SC and MCF-7.SC, were purified by magnetic-activated cell sorting (MACS). Analyses of microRNA and mRNA expression array profiles were performed in multiple breast cell lines. The mentioned nanoparticles were constructed following the standard molecular cloning protocol. Tissue microarray analysis has been used to study 217 cases of clinical breast cancer specimens. Results: Here, we have successfully established four long-term maintenance BCSC that retain their tumor-initiating biological properties. Our analyses of microarray and qRT-PCR explored that miR-34a is the most pronounced microRNA for investigation of BCSC. We establish hTERT promoter-driven VISA delivery of miR-34a (TV-miR-34a) plasmid that can induce high throughput of miR-34a expression in BCSC. TV-miR-34a significantly inhibited the tumor-initiating properties of long-term-cultured BCSC in vitro and reduced the proliferation of BCSC in vivo by an efficient and safe way. TV-miR-34a synergizes with docetaxel, a standard therapy for invasive breast cancer, to act as a BCSC inhibitor. Further mechanistic investigation indicates that TV-miR-34a directly prevents C22ORF28 accumulation, which abrogates clonogenicity and tumor growth and correlates with low miR-34 and high C22ORF28 levels in breast cancer patients. Conclusion: Taken together, we generated four long-term maintenance BCSC derived from either clinical specimens or cell lines, which would be greatly beneficial to the research progress in breast cancer patients. We further developed the non-viral TV-miR-34a plasmid, which has a great potential to be applied as a clinical application for breast cancer therapy. PMID:29187905

  20. 7 CFR 1005.51 - Class I differential, adjustments to Class I prices, and Class I price.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 0.40 KY LAUREL 21125 0.50 KY LEE 21129 0.40 KY LESLIE 21131 0.50 KY LETCHER 21133 0.50 KY LINCOLN... 37101 0.20 NC JONES 37103 0.40 NC LEE 37105 0.30 NC LENOIR 37107 0.40 NC LINCOLN 37109 0.30 NC MC DOWELL... SC LAURENS 45059 0.50 SC LEE 45061 0.70 SC LEXINGTON 45063 0.70 SC MC CORMICK 45065 0.50 SC MARION...

  1. 7 CFR 1005.51 - Class I differential, adjustments to Class I prices, and Class I price.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 0.40 KY LAUREL 21125 0.50 KY LEE 21129 0.40 KY LESLIE 21131 0.50 KY LETCHER 21133 0.50 KY LINCOLN... 37101 0.20 NC JONES 37103 0.40 NC LEE 37105 0.30 NC LENOIR 37107 0.40 NC LINCOLN 37109 0.30 NC MC DOWELL... SC LAURENS 45059 0.50 SC LEE 45061 0.70 SC LEXINGTON 45063 0.70 SC MC CORMICK 45065 0.50 SC MARION...

  2. Phase Composition and Hardening of Castable Al - Ca - Ni - Sc Alloys Containing 0.3% Sc

    NASA Astrophysics Data System (ADS)

    Belov, N. A.; Naumova, E. A.; Bazlova, T. A.; Doroshenko, V. V.

    2017-05-01

    The phase composition of aluminum alloys of the Al - Ca - Ni - Sc system containing 0.3 wt.% Sc is studied. It is shown that the aluminum solid solution may be in equilibrium not only with binary phases (Al4Ca, Al3Sc and Al3Ni) but also with a ternary Al9NiCa compound. The temperature of attainment of maximum hardening due to precipitation of nanoparticles of phase Al3Sc is determined for all the alloys studied. Principal possibility of creation of castable alloys based on an (Al) + Al4Ca + Al9NiCa eutectic, the hardening heat treatment of which does not require quenching, is substantiated.

  3. Aerodynamic Characteristics of SC1095 and SC1094 R8 Airfoils

    NASA Technical Reports Server (NTRS)

    Bousman, William G.

    2003-01-01

    Two airfoils are used on the main rotor blade of the UH-60A helicopter, the SC1095 and the SC1094 R8. Measurements of the section lift, drag, and pitching moment have been obtained in ten wind tunnel tests for the SC1095 airfoil, and in five of these tests, measurements have also been obtained for the SC1094 R8. The ten wind tunnel tests are characterized and described in the present study. A number of fundamental parameters measured in these tests are compared and an assessment is made of the adequacy of the test data for use in look-up tables required by lifting-line calculation methods.

  4. Simulation of Temperature, Nutrients, Biochemical Oxygen Demand, and Dissolved Oxygen in the Catawba River, South Carolina, 1996-97

    USGS Publications Warehouse

    Feaster, Toby D.; Conrads, Paul; Guimaraes, Wladmir B.; Sanders, Curtis L.; Bales, Jerad D.

    2003-01-01

    Time-series plots of dissolved-oxygen concentrations were determined for various simulated hydrologic and point-source loading conditions along a free-flowing section of the Catawba River from Lake Wylie Dam to the headwaters of Fishing Creek Reservoir in South Carolina. The U.S. Geological Survey one-dimensional dynamic-flow model, BRANCH, was used to simulate hydrodynamic data for the Branched Lagrangian Transport Model. Waterquality data were used to calibrate the Branched Lagrangian Transport Model and included concentrations of nutrients, chlorophyll a, and biochemical oxygen demand in water samples collected during two synoptic sampling surveys at 10 sites along the main stem of the Catawba River and at 3 tributaries; and continuous water temperature and dissolved-oxygen concentrations measured at 5 locations along the main stem of the Catawba River. A sensitivity analysis of the simulated dissolved-oxygen concentrations to model coefficients and data inputs indicated that the simulated dissolved-oxygen concentrations were most sensitive to watertemperature boundary data due to the effect of temperature on reaction kinetics and the solubility of dissolved oxygen. Of the model coefficients, the simulated dissolved-oxygen concentration was most sensitive to the biological oxidation rate of nitrite to nitrate. To demonstrate the utility of the Branched Lagrangian Transport Model for the Catawba River, the model was used to simulate several water-quality scenarios to evaluate the effect on the 24-hour mean dissolved-oxygen concentrations at selected sites for August 24, 1996, as simulated during the model calibration period of August 23 27, 1996. The first scenario included three loading conditions of the major effluent discharges along the main stem of the Catawba River (1) current load (as sampled in August 1996); (2) no load (all point-source loads were removed from the main stem of the Catawba River; loads from the main tributaries were not removed); and (3) fully loaded (in accordance with South Carolina Department of Health and Environmental Control National Discharge Elimination System permits). Results indicate that the 24-hour mean and minimum dissolved-oxygen concentrations for August 24, 1996, changed from the no-load condition within a range of - 0.33 to 0.02 milligram per liter and - 0.48 to 0.00 milligram per liter, respectively. Fully permitted loading conditions changed the 24-hour mean and minimum dissolved-oxygen concentrations from - 0.88 to 0.04 milligram per liter and - 1.04 to 0.00 milligram per liter, respectively. A second scenario included the addition of a point-source discharge of 25 million gallons per day to the August 1996 calibration conditions. The discharge was added at S.C. Highway 5 or at a location near Culp Island (about 4 miles downstream from S.C. Highway 5) and had no significant effect on the daily mean and minimum dissolved-oxygen concentration. A third scenario evaluated the phosphorus loading into Fishing Creek Reservoir; four loading conditions of phosphorus into Catawba River were simulated. The four conditions included fully permitted and actual loading conditions, removal of all point sources from the Catawba River, and removal of all point and nonpoint sources from Sugar Creek. Removing the point-source inputs on the Catawba River and the point and nonpoint sources in Sugar Creek reduced the organic phosphorus and orthophosphate loadings to Fishing Creek Reservoir by 78 and 85 percent, respectively.

  5. Design of experimental setup for supercritical CO2 jet under high ambient pressure conditions

    NASA Astrophysics Data System (ADS)

    Shi, Huaizhong; Li, Gensheng; He, Zhenguo; Wang, Haizhu; Zhang, Shikun

    2016-12-01

    With the commercial extraction of hydrocarbons in shale and tight reservoirs, efficient methods are needed to accelerate developing process. Supercritical CO2 (SC-CO2) jet has been considered as a potential way due to its unique fluid properties. In this article, a new setup is designed for laboratory experiment to research the SC-CO2 jet's characteristics in different jet temperatures, pressures, standoff distances, ambient pressures, etc. The setup is composed of five modules, including SC-CO2 generation system, pure SC-CO2 jet system, abrasive SC-CO2 jet system, CO2 recovery system, and data acquisition system. Now, a series of rock perforating (or case cutting) experiments have been successfully conducted using the setup about pure and abrasive SC-CO2 jet, and the results have proven the great perforating efficiency of SC-CO2 jet and the applications of this setup.

  6. Design of experimental setup for supercritical CO2 jet under high ambient pressure conditions.

    PubMed

    Shi, Huaizhong; Li, Gensheng; He, Zhenguo; Wang, Haizhu; Zhang, Shikun

    2016-12-01

    With the commercial extraction of hydrocarbons in shale and tight reservoirs, efficient methods are needed to accelerate developing process. Supercritical CO 2 (SC-CO 2 ) jet has been considered as a potential way due to its unique fluid properties. In this article, a new setup is designed for laboratory experiment to research the SC-CO 2 jet's characteristics in different jet temperatures, pressures, standoff distances, ambient pressures, etc. The setup is composed of five modules, including SC-CO 2 generation system, pure SC-CO 2 jet system, abrasive SC-CO 2 jet system, CO 2 recovery system, and data acquisition system. Now, a series of rock perforating (or case cutting) experiments have been successfully conducted using the setup about pure and abrasive SC-CO 2 jet, and the results have proven the great perforating efficiency of SC-CO 2 jet and the applications of this setup.

  7. ScMO(BO3) (M = Ca and Cd): new Sc-based oxyborates featuring interesting edge-sharing sandwich-like chains and UV cut-off edges.

    PubMed

    Ma, Ruru; Xu, Dongdong; Yang, Yun; Su, Xin; Lei, Binghua; Yang, Zhihua; Pan, Shilie

    2017-11-07

    Two new isostructural rare-earth oxyborates ScMO(BO 3 ) (M = Ca and Cd) with a three-dimensional (3D) cationic framework and parallel arranged [BO 3 ] triangles have been synthesized by the flux method. In the 3D cationic framework, an interesting sandwich-like basic building unit (BBU) is constructed by two [Ca(1)O 4 ] 6- chains and two [Sc(1)O 4 ] 5- chains. ScMO(BO 3 ) melt incongruently, which shows that title compounds can be grown by the flux method. The UV cut-off edges for ScCaO(BO 3 ) and ScCdO(BO 3 ) are 230 and 249 nm, respectively. In addition, the first-principles calculations are performed to gain further insights into the relationship between the microscopic electronic structures and associated optical properties.

  8. 75 FR 67910 - Amendment of Class E Airspace; Charleston, SC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-04

    ... upward from 700 feet above the surface at Charleston, SC, by removing the East Cooper Airport from the... dimensions or operating requirements for that airspace, notice and public procedures under 5 U.S.C. 553(b... feet or more above the surface of the earth. * * * * * ASO SC E5 Charleston, SC [Amended] Charleston...

  9. The Impact of Entropy on the Spatial Organization of Synaptonemal Complexes within the Cell Nucleus

    PubMed Central

    Fritsche, Miriam; Reinholdt, Laura G.; Lessard, Mark; Handel, Mary Ann; Bewersdorf, Jörg; Heermann, Dieter W.

    2012-01-01

    We employ 4Pi-microscopy to study SC organization in mouse spermatocyte nuclei allowing for the three-dimensional reconstruction of the SC's backbone arrangement. Additionally, we model the SCs in the cell nucleus by confined, self-avoiding polymers, whose chain ends are attached to the envelope of the confining cavity and diffuse along it. This work helps to elucidate the role of entropy in shaping pachytene SC organization. The framework provided by the complex interplay between SC polymer rigidity, tethering and confinement is able to qualitatively explain features of SC organization, such as mean squared end-to-end distances, mean squared center-of-mass distances, or SC density distributions. However, it fails in correctly assessing SC entanglement within the nucleus. In fact, our analysis of the 4Pi-microscopy images reveals a higher ordering of SCs within the nuclear volume than what is expected by our numerical model. This suggests that while effects of entropy impact SC organization, the dedicated action of proteins or actin cables is required to fine-tune the spatial ordering of SCs within the cell nucleus. PMID:22574147

  10. Chronic hypoxia suppresses the CO2 response of solitary complex (SC) neurons from rats.

    PubMed

    Nichols, Nicole L; Wilkinson, Katherine A; Powell, Frank L; Dean, Jay B; Putnam, Robert W

    2009-09-30

    We studied the effect of chronic hypobaric hypoxia (CHx; 10-11% O(2)) on the response to hypercapnia (15% CO(2)) of individual solitary complex (SC) neurons from adult rats. We simultaneously measured the intracellular pH and firing rate responses to hypercapnia of SC neurons in superfused medullary slices from control and CHx-adapted adult rats using the blind whole cell patch clamp technique and fluorescence imaging microscopy. We found that CHx caused the percentage of SC neurons inhibited by hypercapnia to significantly increase from about 10% up to about 30%, but did not significantly alter the percentage of SC neurons activated by hypercapnia (50% in control vs. 35% in CHx). Further, the magnitudes of the responses of SC neurons from control rats (chemosensitivity index for activated neurons of 166+/-11% and for inhibited neurons of 45+/-15%) were the same in SC neurons from CHx-adapted rats. This plasticity induced in chemosensitive SC neurons by CHx appears to involve intrinsic changes in neuronal properties since they were the same in synaptic blockade medium.

  11. Structural architecture supports functional organization in the human aging brain at a regionwise and network level.

    PubMed

    Zimmermann, Joelle; Ritter, Petra; Shen, Kelly; Rothmeier, Simon; Schirner, Michael; McIntosh, Anthony R

    2016-07-01

    Functional interactions in the brain are constrained by the underlying anatomical architecture, and structural and functional networks share network features such as modularity. Accordingly, age-related changes of structural connectivity (SC) may be paralleled by changes in functional connectivity (FC). We provide a detailed qualitative and quantitative characterization of the SC-FC coupling in human aging as inferred from resting-state blood oxygen-level dependent functional magnetic resonance imaging and diffusion-weighted imaging in a sample of 47 adults with an age range of 18-82. We revealed that SC and FC decrease with age across most parts of the brain and there is a distinct age-dependency of regionwise SC-FC coupling and network-level SC-FC relations. A specific pattern of SC-FC coupling predicts age more reliably than does regionwise SC or FC alone (r = 0.73, 95% CI = [0.7093, 0.8522]). Hence, our data propose that regionwise SC-FC coupling can be used to characterize brain changes in aging. Hum Brain Mapp 37:2645-2661, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. sc-PDB: a database for identifying variations and multiplicity of 'druggable' binding sites in proteins.

    PubMed

    Meslamani, Jamel; Rognan, Didier; Kellenberger, Esther

    2011-05-01

    The sc-PDB database is an annotated archive of druggable binding sites extracted from the Protein Data Bank. It contains all-atoms coordinates for 8166 protein-ligand complexes, chosen for their geometrical and physico-chemical properties. The sc-PDB provides a functional annotation for proteins, a chemical description for ligands and the detailed intermolecular interactions for complexes. The sc-PDB now includes a hierarchical classification of all the binding sites within a functional class. The sc-PDB entries were first clustered according to the protein name indifferent of the species. For each cluster, we identified dissimilar sites (e.g. catalytic and allosteric sites of an enzyme). SCOPE AND APPLICATIONS: The classification of sc-PDB targets by binding site diversity was intended to facilitate chemogenomics approaches to drug design. In ligand-based approaches, it avoids comparing ligands that do not share the same binding site. In structure-based approaches, it permits to quantitatively evaluate the diversity of the binding site definition (variations in size, sequence and/or structure). The sc-PDB database is freely available at: http://bioinfo-pharma.u-strasbg.fr/scPDB.

  13. SC79 protects retinal pigment epithelium cells from UV radiation via activating Akt-Nrf2 signaling

    PubMed Central

    Cao, Guo-fan; Cao, Cong; Jiang, Qin

    2016-01-01

    Excessive Ultra-violet (UV) radiation causes oxidative damages and apoptosis in retinal pigment epithelium (RPE) cells. Here we tested the potential activity of SC79, a novel small molecule activator of Akt, against the process. We showed that SC79 activated Akt in primary and established (ARPE-19 line) RPE cells. It protected RPE cells from UV damages possibly via inhibiting cell apoptosis. Akt inhibition, via an Akt specific inhibitor (MK-2206) or Akt1 shRNA silence, almost abolished SC79-induced RPE cytoprotection. Further studies showed that SC79 activated Akt-dependent NF-E2-related factor 2 (Nrf2) signaling and inhibited UV-induced oxidative stress in RPE cells. Reversely, Nrf2 shRNA knockdown or S40T mutation attenuated SC79-induced anti-UV activity. For the in vivo studies, we showed that intravitreal injection of SC79 significantly protected mouse retina from light damages. Based on these results, we suggest that SC79 protects RPE cells from UV damages possibly via activating Akt-Nrf2 signaling axis. PMID:27517753

  14. Oxidative deterioration of pork during superchilling storage.

    PubMed

    Pomponio, Luigi; Ruiz-Carrascal, Jorge

    2017-12-01

    In superchilling (SC), meat is kept at temperatures around 1 °C below its initial freezing point, leading to a significant increase in shelf life. This study aimed to address the oxidative changes taking place in pork loins during prolonged storage at SC temperature. Loins were stored either at chilling (CH) conditions (2-4 °C) for 4 weeks or at SC temperature (around -1 °C) for 12 weeks. Storage at SC temperature diminished the rate of lipid and protein oxidation and discoloration in pork loins, so that final levels of most oxidation products and instrumental color values after 12 weeks of SC storage were similar to those after 4 weeks at CH conditions. However, hexanal content peaked by the end of SC storage, pointing to a potential accumulation of compounds from lipid oxidation during SC storage. SC storage of pork slows down the rate of lipid and protein oxidation. However, accumulation of volatile compounds from lipid oxidation could be a limiting factor for shelf life. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Cannabinoid Receptor 2 as Antiobesity Target: Inflammation, Fat Storage, and Browning Modulation.

    PubMed

    Rossi, Francesca; Bellini, Giulia; Luongo, Livio; Manzo, Iolanda; Tolone, Salvatore; Tortora, Chiara; Bernardo, Maria Ester; Grandone, Anna; Conforti, Antonella; Docimo, Ludovico; Nobili, Bruno; Perrone, Laura; Locatelli, Franco; Maione, Sabatino; Del Giudice, Emanuele Miraglia

    2016-09-01

    Obesity is associated with a low-grade inflammatory state and adipocyte (ADP) hyperplasia/hypertrophy. Obesity inhibits the "browning" of white adipose tissue. Cannabinoid receptor 2 (CB2) agonists reduce food intake and induce antiobesity effect in mice. A common missense CB2 variant, Q63R, causes CB2-reduced function. To evaluate the influence of CB2 receptor on the modulation of childhood obesity and of ADP activity and morphology. CB2-Q63R variant was analyzed in obese Italian children. The effects of an inflammatory stimulus and those of drugs selectively acting on CB2 were investigated on in vitro ADPs obtained from mesenchymal stem cells of adult healthy donors or from sc adipose biopsies of adult nonobese and obese subjects. Department of Women, Child and General and Specialist Surgery of the Second University of Naples. A total of 501 obese Italian children (age 11 ± 2.75). Twelve healthy bone marrow donors (age 36.5 ± 15); and 17 subjects, 7 lean (age 42 ± 10) and 10 obese (age 37.8 ± 12) underwent sc adipose tissue biopsies. Effects of CB2 stimulation on adipokine, perilipin, and uncoupling protein-1 expression. The less-functional CB2-R63 variant was significantly associated with a high z-score body mass index. CB2 blockade with AM630 reverse agonist increased inflammatory adipokine release and fat storage and reduced browning. CB2 stimulation with JWH-133 agonist reversed all of the obesity-related effects. CB2 receptor is a novel pharmacological target that should be considered for obesity.

  16. Aberrant Promoter Methylation and Expression of UTF1 during Cervical Carcinogenesis

    PubMed Central

    Deplus, Rachel; Lampe, Xavier; Krusy, Nathalie; Calonne, Emilie; Delbecque, Katty; Kridelka, Frederic; Fuks, François; Ennaji, My Mustapha; Delvenne, Philippe

    2012-01-01

    Promoter methylation profiles are proposed as potential prognosis and/or diagnosis biomarkers in cervical cancer. Up to now, little is known about the promoter methylation profile and expression pattern of stem cell (SC) markers during tumor development. In this study, we were interested to identify SC genes methylation profiles during cervical carcinogenesis. A genome-wide promoter methylation screening revealed a strong hypermethylation of Undifferentiated cell Transcription Factor 1 (UTF1) promoter in cervical cancer in comparison with normal ectocervix. By direct bisulfite pyrosequencing of DNA isolated from liquid-based cytological samples, we showed that UTF1 promoter methylation increases with lesion severity, the highest level of methylation being found in carcinoma. This hypermethylation was associated with increased UTF1 mRNA and protein expression. By using quantitative RT-PCR and Western Blot, we showed that both UTF1 mRNA and protein are present in epithelial cancer cell lines, even in the absence of its two main described regulators Oct4A and Sox2. Moreover, by immunofluorescence, we confirmed the nuclear localisation of UTF1 in cell lines. Surprisingly, direct bisulfite pyrosequencing revealed that the inhibition of DNA methyltransferase by 5-aza-2′-deoxycytidine was associated with decreased UTF1 gene methylation and expression in two cervical cancer cell lines of the four tested. These findings strongly suggest that UTF1 promoter methylation profile might be a useful biomarker for cervical cancer diagnosis and raise the questions of its role during epithelial carcinogenesis and of the mechanisms regulating its expression. PMID:22880087

  17. The Effect of Gromwell (Lithospermum erythrorhizon) Extract on the Stratum Corneum Hydration and Ceramides Content in Atopic Dermatitis Patients

    PubMed Central

    Cho, Hee Ryung; Cho, Yunhi; Kim, Juyoung; Seo, Dae Bang; Kim, Sung Han; Lee, Sang Jun

    2008-01-01

    Background A disruption of the balance between the water content of the stratum corneum (SC) and skin surface lipids may lead to the clinical manifestation of dryness of skin in patients with atopic dermatitis (AD). Objective To determine whether supplementation of gromwell (Lithospermum erythrorhizon), one of herbs used in East Asia in remedies for various abnormal skin conditions, may improve the SC level of hydration and ceramides, major lipid in SC in patients with AD. Methods A total of 28 subjects with AD were randomly assigned into two groups: either gromwell group received dextrose contained capsules with 1.5 g of gromwell extracts or placebo group received only dextrose contained capsules for 10 weeks. Results In contrast to no alteration of SC hydration and ceramides in placebo group, the SC hydration in gromwell group was significantly increased in parallel with an increase of SC ceramides. Furthermore, % increase of SC hydration in gromwell group bore a positive correlation with the clinical severity, which suggests that the increase of SC hydration in gromwell group was more effective as AD was more severe. Conclusion Supplementation of gromwell improves SC hydration in parallel with an increase of ceramides in part. PMID:27303161

  18. Curcumin Stimulates Proliferation of Spinal Cord Neural Progenitor Cells via a Mitogen-Activated Protein Kinase Signaling Pathway

    PubMed Central

    Son, Sihoon; Cho, Dae-Chul; Kim, Hye-Jeong; Sung, Joo-Kyung; Bae, Jae-Sung

    2014-01-01

    Objective The aims of our study are to evaluate the effect of curcumin on spinal cord neural progenitor cell (SC-NPC) proliferation and to clarify the mechanisms of mitogen-activated protein (MAP) kinase signaling pathways in SC-NPCs. Methods We established cultures of SC-NPCs, extracted from the spinal cord of Sprague-Dawley rats weighing 250 g to 350 g. We measured proliferation rates of SC-NPCs after curcumin treatment at different dosage. The immuno-blotting method was used to evaluate the MAP kinase signaling protein that contains extracellular signal-regulated kinases (ERKs), p38, c-Jun NH2-terminal kinases (JNKs) and β-actin as the control group. Results Curcumin has a biphasic effect on SC-NPC proliferation. Lower dosage (0.1, 0.5, 1 µM) of curcumin increased SC-NPC proliferation. However, higher dosage decreased SC-NPC proliferation. Also, curcumin stimulates proliferation of SC-NPCs via the MAP kinase signaling pathway, especially involving the p-ERK and p-38 protein. The p-ERK protein and p38 protein levels varied depending on curcumin dosage (0.5 and 1 µM, p<0.05). Conclusion Curcumin can stimulate proliferation of SC-NPCs via ERKs and the p38 signaling pathway in low concentrations. PMID:25289117

  19. Establishment and characterization of Roberts syndrome and SC phocomelia model medaka (Oryzias latipes).

    PubMed

    Morita, Akihiro; Nakahira, Kumiko; Hasegawa, Taeko; Uchida, Kaoru; Taniguchi, Yoshihito; Takeda, Shunichi; Toyoda, Atsushi; Sakaki, Yoshiyuki; Shimada, Atsuko; Takeda, Hiroyuki; Yanagihara, Itaru

    2012-06-01

    Roberts syndrome and SC phocomelia (RBS/SC) are genetic autosomal recessive syndromes caused by establishment of cohesion 1 homolog 2 ( ESCO 2) mutation. RBS/SC appear to have a variety of clinical features, even with the same mutation of the ESCO2 gene. Here, we established and genetically characterized a medaka model of RBS/SC by reverse genetics. The RBS/SC model was screened from a mutant medaka library produced by the Targeting Induced Local Lesions in Genomes method. The medaka mutant carrying the homozygous mutation at R80S in the conserved region of ESCO2 exhibited clinical variety (i.e. developmental arrest with craniofacial and chromosomal abnormalities and embryonic lethality) as characterized in RBS/SC. Moreover, widespread apoptosis and downregulation of some gene expression, including notch1a, were detected in the R80S mutant. The R80S mutant is the animal model for RBS/SC and a valuable resource that provides the opportunity to extend knowledge of ESCO2. Downregulation of some gene expression in the R80S mutant is an important clue explaining non-correlation between genotype and phenotype in RBS/SC. © 2012 The Authors Development, Growth & Differentiation © 2012 Japanese Society of Developmental Biologists.

  20. New insights into the negative thermal expansion: Direct experimental evidence for the “guitar-string” effect in cubic ScF 3

    DOE PAGES

    Hu, Lei; Chen, Jun; Sanson, Andrea; ...

    2016-06-23

    The understanding of the negative thermal expansion (NTE) mechanism remains challenging but critical for the development of NTE materials. This study sheds light on NTE of ScF 3, one of the most outstanding materials with NTE. The local dynamics of ScF 3 has been investigated by a combined analysis of synchrotron-based X-ray total scattering, ex-tended X-ray absorption fine structure and neutron powder diffraction. Very interestingly, we observe that i) the Sc-F nearest-neighbor distance strongly expands with increasing temperature while the Sc-Sc next-nearest-neighbor distance contracts, ii) the thermal ellipsoids of relative vibrations be-tween Sc-F nearest-neighbors are highly elongated in the directionmore » perpendicular to the Sc-F bond, indicating that the Sc-F bond is much softer to bend than to stretch, and iii) there is mainly dynamically transverse motion of fluorine atoms, rather than static shifts. Here, these results are the direct experimental evidence for the NTE mechanism, in which the rigid unit is not necessary for the occurrence of NTE, and the key role is played by the transverse thermal vibrations of fluorine atoms through the “guitar-string” effect.« less

  1. Sun-induced changes of stratum corneum hydration vary with age and gender in a normal Chinese population.

    PubMed

    Liu, Zhili; Song, Shunpeng; Luo, Wenhai; Elias, Peter M; Man, Mao-Qiang

    2012-02-01

    Previous studies have demonstrated that sun-induced alteration of epidermal permeability barrier function varies with gender and age. In the present study, we assess the stratum corneum (SC) hydration in sun-exposed males and females. A total of 168 subjects (84 males and 84 females) aged 19-75 years were enrolled. A multifunctional skin physiology monitor was used to measure SC hydration. In comparison with non-sun exposure, sun exposure does not cause a significant change in SC hydration in either young males or young females, whereas in aged females, a significant reduction of SC hydration is seen on the forehead and the dorsal hand of sun-exposed subjects. SC hydration on the canthus of both aged males and aged females is significantly lower than that of young subjects. Additionally, SC hydration on the dorsal hand of aged females is also significantly lower as compared with young females. Sun-induced reduction of SC hydration is more evident on the dorsal hand of aged females than that of males (P<0.001). Moreover, the SC rehydration capacity is significantly lower in sun-exposed aged females than in age-matched males. These results demonstrated that sun-induced changes of the SC hydration property vary with age and gender. © 2011 John Wiley & Sons A/S.

  2. The efficacy of bamboo charcoal in comparison with smectite to reduce the detrimental effect of aflatoxin B1 on in vitro rumen fermentation of a hay-rich feed mixture.

    PubMed

    Jiang, Ya-Hui; Wang, Ping; Yang, Hong-Jian; Chen, Ying

    2014-07-10

    Two commercial materials, a bamboo charcoal (BC) and a smectite clay (SC), were assessed in vitro with aflatoxin B1 (AFB1) in an equilibrium adsorption test. The adsorption capacity and proportion adsorbed (0.381 μg/mg, 0.955) for BC were greater than for SC (0.372 μg/mg, 0.931). The effects of in vitro ruminal fermentation of hay-rich feed incubated with 1.0 μg/mL AFB1 for 0-10 g/L doses of BC and SC were measured at 39 °C for 72 h. The BC and SC binders increased AFB1 loss at dosages ≥1.0 g/L (p < 0.0001). Average AFB1 loss (p < 0.0001) was greater for SC (0.904) than BC (0.881). Both SC and SC addition increased in vitro dry matter loss, and the average dry matter losses were similar. Asymptotic gas volume and volatile fatty acid production were greater for BC than for SC (p < 0.0001). Thus, BC may be as effective as SC in removing aflatoxin B1's detrimental effects on rumen degradability and fermentation under the occurrence of microbial aflatoxin degradation.

  3. The Efficacy of Bamboo Charcoal in Comparison with Smectite to Reduce the Detrimental Effect of Aflatoxin B1 on In Vitro Rumen Fermentation of a Hay-Rich Feed Mixture

    PubMed Central

    Jiang, Ya-Hui; Wang, Ping; Yang, Hong-Jian; Chen, Ying

    2014-01-01

    Two commercial materials, a bamboo charcoal (BC) and a smectite clay (SC), were assessed in vitro with aflatoxin B1 (AFB1) in an equilibrium adsorption test. The adsorption capacity and proportion adsorbed (0.381 μg/mg, 0.955) for BC were greater than for SC (0.372 μg/mg, 0.931). The effects of in vitro ruminal fermentation of hay-rich feed incubated with 1.0 μg/mL AFB1 for 0–10 g/L doses of BC and SC were measured at 39 °C for 72 h. The BC and SC binders increased AFB1 loss at dosages ≥1.0 g/L (p < 0.0001). Average AFB1 loss (p < 0.0001) was greater for SC (0.904) than BC (0.881). Both SC and SC addition increased in vitro dry matter loss, and the average dry matter losses were similar. Asymptotic gas volume and volatile fatty acid production were greater for BC than for SC (p < 0.0001). Thus, BC may be as effective as SC in removing aflatoxin B1’s detrimental effects on rumen degradability and fermentation under the occurrence of microbial aflatoxin degradation. PMID:25014194

  4. Elucidation of the mechanism of enzymatic browning inhibition by sodium chlorite.

    PubMed

    He, Qiang; Luo, Yaguang; Chen, Pei

    2008-10-15

    Sodium chlorite (SC) is a well known anti-microbial agent and its strong inhibitory effect on enzymatic browning of fresh-cut produce has recently been identified. We investigated the effect of SC on polyphenol oxidase (PPO) and its substrate, chlorogenic acid (CA), as it relates to the mechanisms of browning inhibition by SC. Results indicate that the browning reaction of CA (1.0mM) catalyzed by PPO (33U/mL) was significantly inhibited by 1.0mM SC at pH 4.6. Two PPO isoforms were identified by native polyacrylamide gel electrophoresis, and both were inactivated by SC (3.0mM). This suggests that SC serves as a PPO inhibitor to prevent enzymatic browning. Furthermore, the effect of SC on the stability of CA in both acidic (pH 4.5) and basic conditions (pH 8.3) was studied by UV-Vis scan and LC-MS analysis. The results showed that at the presence of SC (3.0mM), CA (0.1mM) degraded to quinic acid and caffeic acid as well as other intermediates. Hence, the anti-browning property of SC can be attributed to the two modes of action: the inactivation of polyphenol oxidase directly and the oxidative degradation of phenolic substrates. Published by Elsevier Ltd.

  5. Theoretical framework for analyzing structural compliance properties of proteins.

    PubMed

    Arikawa, Keisuke

    2018-01-01

    We propose methods for directly analyzing structural compliance (SC) properties of elastic network models of proteins, and we also propose methods for extracting information about motion properties from the SC properties. The analysis of SC properties involves describing the relationships between the applied forces and the deformations. When decomposing the motion according to the magnitude of SC (SC mode decomposition), we can obtain information about the motion properties under the assumption that the lower SC mode motions or the softer motions occur easily. For practical applications, the methods are formulated in a general form. The parts where forces are applied and those where deformations are evaluated are separated from each other for enabling the analyses of allosteric interactions between the specified parts. The parts are specified not only by the points but also by the groups of points (the groups are treated as flexible bodies). In addition, we propose methods for quantitatively evaluating the properties based on the screw theory and the considerations of the algebraic structures of the basic equations expressing the SC properties. These methods enable quantitative discussions about the relationships between the SC mode motions and the motions estimated from two different conformations; they also help identify the key parts that play important roles for the motions by comparing the SC properties with those of partially constrained models. As application examples, lactoferrin and ATCase are analyzed. The results show that we can understand their motion properties through their lower SC mode motions or the softer motions.

  6. Comparison of technetium-99m sulfur colloid and technetium-99m albumin colloid labeled solid meals for gastric emptying studies.

    PubMed

    Taillefer, R; Douesnard, J M; Beauchamp, G; Guimond, J

    1987-08-01

    A Tc-99m albumin colloid (Tc-AC) kit has been introduced as an alternative to Tc-99m sulfur colloid (Tc-SC) for liver-spleen imaging. Since there is no need for boiling, the use of Tc-AC reduces preparation time and manipulation. Tc-SC is one of the most commonly used radiopharmaceuticals for the labeling of solid-phase markers in gastric emptying studies. In vitro studies were performed to evaluate the labeling efficiency and stability in hydrochloric acid and in human gastric juice of intracellularly labeled chicken liver and scrambled eggs labeled with Tc-SC and Tc-AC. Gastric emptying studies also were performed on 20 healthy volunteers with both Tc-SC and Tc-AC labeled scrambled egg sandwiches. There was no significant difference between Tc-SC and Tc-AC in the labeling efficiency of chicken liver (98% +/- 1% for Tc-SC, 96% +/- 2% for Tc-AC) and scrambled eggs (92% +/- 2% for Tc-SC, 91% +/- 3% for Tc-AC). However, both Tc-SC and Tc-AC labeled scrambled eggs showed a lower stability than chicken liver, particularly in human gastric juice. Gastric emptying curves from both meals in 20 normal subjects were also similar, with a mean half-emptying time of 85 +/- 13 minutes and 87 +/- 16 minutes for the meals containing Tc-SC and Tc-AC respectively. Tc-AC is a reliable alternative to Tc-SC as a radiotracer for solid-phase gastric emptying studies.

  7. Improved respirable fraction of budesonide powder for dry powder inhaler formulations produced by advanced supercritical CO2 processing and use of a novel additive.

    PubMed

    Miyazaki, Yuta; Aruga, Naoki; Kadota, Kazunori; Tozuka, Yuichi; Takeuchi, Hirofumi

    2017-08-07

    A budesonide (BDS) suspension was obtained via advanced supercritical carbon dioxide (scCO 2 ) processing. Thereafter, the suspension was freeze-dried (FD) to produce BDS particles for dry powder inhaler formulations (scCO 2 /FD processing). The scCO 2 /FD processed BDS powder showed low crystallinity by powder X-ray diffraction and a rough surface by scanning electron microscopy. The respirable fraction of BDS was assessed using a twin impinger and revealed that the amount of the scCO 2 /FD processed sample that reached stage 2 was 4-fold higher than that of the supplied powder. To extend the utility of scCO 2 processing, BDS particles for dry powder inhalers were fabricated by combining the scCO 2 system with various additives. When BDS was processed via scCO 2 /FD in the presence of the novel additive, namely, monoglyceride stearate (MGS), the residual BDS/MGS particles remaining in the capsule and devices decreased, followed by an increase in the respirable fraction of BDS 6-fold higher than with the supplied powder. The scCO 2 /FD processed BDS/MGS particles had a smooth surface, in contrast to the scCO 2 /FD processed BDS particles. A combination of BDS and an appropriate additive in scCO 2 treatment may induce changes in particle surface morphology, leading to an improvement in the inhalation properties of BDS. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Theoretical framework for analyzing structural compliance properties of proteins

    PubMed Central

    2018-01-01

    We propose methods for directly analyzing structural compliance (SC) properties of elastic network models of proteins, and we also propose methods for extracting information about motion properties from the SC properties. The analysis of SC properties involves describing the relationships between the applied forces and the deformations. When decomposing the motion according to the magnitude of SC (SC mode decomposition), we can obtain information about the motion properties under the assumption that the lower SC mode motions or the softer motions occur easily. For practical applications, the methods are formulated in a general form. The parts where forces are applied and those where deformations are evaluated are separated from each other for enabling the analyses of allosteric interactions between the specified parts. The parts are specified not only by the points but also by the groups of points (the groups are treated as flexible bodies). In addition, we propose methods for quantitatively evaluating the properties based on the screw theory and the considerations of the algebraic structures of the basic equations expressing the SC properties. These methods enable quantitative discussions about the relationships between the SC mode motions and the motions estimated from two different conformations; they also help identify the key parts that play important roles for the motions by comparing the SC properties with those of partially constrained models. As application examples, lactoferrin and ATCase are analyzed. The results show that we can understand their motion properties through their lower SC mode motions or the softer motions. PMID:29607281

  9. Bacterial Expression of a Single-Chain Variable Fragment (scFv) Antibody against Ganoderic Acid A: A Cost-Effective Approach for Quantitative Analysis Using the scFv-Based Enzyme-Linked Immunosorbent Assay.

    PubMed

    Yusakul, Gorawit; Nuntawong, Poomraphie; Sakamoto, Seiichi; Ratnatilaka Na Bhuket, Pahweenvaj; Kohno, Toshitaka; Kikkawa, Nao; Rojsitthisak, Pornchai; Shimizu, Kuniyoshi; Tanaka, Hiroyuki; Morimoto, Satoshi

    2017-01-01

    Due to the highly specific binding between an antibody and its target, superior analytical performances was obtained by immunoassays for phytochemical analysis over conventional chromatographic techniques. Here, we describe a simple method for producing a functional single-chain variable fragment (scFv) antibody against ganoderic acid A (GAA), a pharmacologically active metabolite from Ganoderma lingzhi. The Escherichia coli BL21(DE3) strain produced a large amount of anti-GAA scFv. However, in vitro refolding steps, which partially recovered the reactivity of the scFv, were required. Interestingly, the functional scFv was expressed as a soluble and active form in the cytoplasm of an engineered E. coli SHuffle ® strain. Purified anti-GAA scFv, which yielded 2.56 mg from 1 L of culture medium, was obtained from simple and inexpensive procedures for expression and purification. The anti-GAA scFv-based indirect competitive enzyme-linked immunosorbent assay (icELISA) exhibited high sensitivity (linearity: 0.078-1.25 µg/mL) with precision (CV: ≤6.20%) and reliability (recovery: 100.1-101.8%) for GAA determination. In summary, the approach described here is an inexpensive, simple, and efficient expression system that extends the application of anti-GAA scFv-based immunoassays. In addition, when in vitro refolding steps can be skipped, the cost and complexity of scFv antibody production can be minimized.

  10. Tracking solvents in the skin through atomically resolved measurements of molecular mobility in intact stratum corneum

    PubMed Central

    Topgaard, Daniel; Sparr, Emma

    2017-01-01

    Solvents are commonly used in pharmaceutical and cosmetic formulations and sanitary products and cleansers. The uptake of solvent into the skin may change the molecular organization of skin lipids and proteins, which may in turn alter the protective skin barrier function. We herein examine the molecular effects of 10 different solvents on the outermost layer of skin, the stratum corneum (SC), using polarization transfer solid-state NMR on natural abundance 13C in intact SC. With this approach it is possible to characterize the molecular dynamics of solvent molecules when present inside intact SC and to simultaneously monitor the effects caused by the added solvent on SC lipids and protein components. All solvents investigated cause an increased fluidity of SC lipids, with the most prominent effects shown for the apolar hydrocarbon solvents and 2-propanol. However, no solvent other than water shows the ability to fluidize amino acids in the keratin filaments. The solvent molecules themselves show reduced molecular mobility when incorporated in the SC matrix. Changes in the molecular properties of the SC, and in particular alternation in the balance between solid and fluid SC components, may have significant influences on the macroscopic SC barrier properties as well as mechanical properties of the skin. Deepened understanding of molecular effects of foreign compounds in SC fluidity can therefore have strong impact on the development of skin products in pharmaceutical, cosmetic, and sanitary applications. PMID:28028209

  11. Preparation of Nonionic Vesicles Using the Supercritical Carbon Dioxide Reverse Phase Evaporation Method and Analysis of Their Solution Properties.

    PubMed

    Yamaguchi, Shunsuke; Tsuchiya, Koji; Sakai, Kenichi; Abe, Masahiko; Sakai, Hideki

    2016-01-01

    We have previously reported a new preparation method for liposomes using supercritical carbon dioxide (scCO2) as a solvent, referred to as the supercritical carbon dioxide reverse phase evaporation (scRPE) method. In our previous work, addition of ethanol to scCO2 as a co-solvent was needed, because lipid molecules had to be dissolved in scCO2 to form liposomes. In this new study, niosomes (nonionic surfactant vesicles) were prepared from various nonionic surfactants using the scRPE method. Among the nonionic surfactants tested were polyoxyethylene (6) stearylether (C18EO6), polyoxyethylene (5) phytosterolether (BPS-5), polyoxyethylene (6) sorbitan stearylester (TS-106V), and polyoxyethylene (4) sorbitan stearylester (Tween 61). All these surfactants have hydrophilic-lipophilic balance values (HLBs) around 9.5 to 9.9, and they can all form niosomes using the scRPE method even in the absence of ethanol. The high solubility of these surfactants in scCO2 was shown to be an important factor in yielding niosomes without ethanol addition. The niosomes prepared with the scRPE method had higher trapping efficiencies than those prepared using the conventional Bangham method, since the scRPE method gives a large number of unilamellar vesicles while the Bangham method gives multilamellar vesicles. Polyoxyethylene-type nonionic surfactants with HLB values from 9.5 to 9.9 were shown to be optimal for the preparation of niosomes with the scRPE method.

  12. Inhibition and Promotion of Heat-Induced Gelation of Whey Proteins in the Presence of Calcium by Addition of Sodium Caseinate.

    PubMed

    Nguyen, Bach T; Balakrishnan, Gireeshkumar; Jacquette, Boris; Nicolai, Taco; Chassenieux, Christophe; Schmitt, Christophe; Bovetto, Lionel

    2016-11-14

    Heat-induced aggregation and gelation of aqueous solutions of whey protein isolate (WPI) in the presence of sodium caseinate (SC) and CaCl 2 was studied at pH 6.6. The effect of adding SC (0-100 g/L) on the structure of the aggregates and the gels was investigated by light scattering and confocal laser scanning microscopy at different CaCl 2 concentration ([CaCl 2 ] = 0-30 mM). The gelation process was studied by oscillatory shear rheology. At the whey protein concentrations studied here (34 and 60 g/L), no gels were formed in the absence of CaCl 2 and SC. However, WPI solutions gelled above a critical CaCl 2 concentration that increased with increasing SC concentration. In the absence of CaCl 2 , WPI gels were formed only above a critical SC concentration. The critical SC concentration needed to induce WPI gelation decreased weakly when CaCl 2 was added. In an intermediate range of CaCl 2 concentrations, gels were formed both at low and high SC concentrations, but not at intermediate SC concentrations. Finally, at high CaCl 2 concentrations gels were formed at all SC concentrations. The gelation rate and the gel structure of the gels formed at low and high casein concentrations were very different. The effect of SC on the thermal gelation of WPI was interpreted by competition for Ca 2+ , a chaperon effect, and microphase separation.

  13. C8-glycosphingolipids preferentially insert into tumor cell membranes and promote chemotherapeutic drug uptake.

    PubMed

    Cordeiro Pedrosa, Lília R; van Cappellen, Wiggert A; Steurer, Barbara; Ciceri, Dalila; ten Hagen, Timo L M; Eggermont, Alexander M M; Verheij, Marcel; Goñi, Felix María; Koning, Gerben A; Contreras, F-Xabier

    2015-08-01

    Insufficient drug delivery into tumor cells limits the therapeutic efficacy of chemotherapy. Co-delivery of liposome-encapsulated drug and synthetic short-chain glycosphingolipids (SC-GSLs) significantly improved drug bioavailability by enhancing intracellular drug uptake. Investigating the mechanisms underlying this SC-GSL-mediated drug uptake enhancement is the aim of this study. Fluorescence microscopy was used to visualize the cell membrane lipid transfer intracellular fate of fluorescently labeled C6-NBD-GalCer incorporated in liposomes in tumor and non-tumor cells. Additionally click chemistry was applied to image and quantify native SC-GSLs in tumor and non-tumor cell membranes. SC-GSL-mediated flip-flop was investigated in model membranes to confirm membrane-incorporation of SC-GSL and its effect on membrane remodeling. SC-GSL enriched liposomes containing doxorubicin (Dox) were incubated at 4°C and 37°C and intracellular drug uptake was studied in comparison to standard liposomes and free Dox. SC-GSL transfer to the cell membrane was independent of liposomal uptake and the majority of the transferred lipid remained in the plasma membrane. The transfer of SC-GSL was tumor cell-specific and induced membrane rearrangement as evidenced by a transbilayer flip-flop of pyrene-SM. However, pore formation was measured, as leakage of hydrophilic fluorescent probes was not observed. Moreover, drug uptake appeared to be mediated by SC-GSLs. SC-GSLs enhanced the interaction of doxorubicin (Dox) with the outer leaflet of the plasma membrane of tumor cells at 4°C. Our results demonstrate that SC-GSLs preferentially insert into tumor cell plasma membranes enhancing cell intrinsic capacity to translocate amphiphilic drugs such as Dox across the membrane via a biophysical process. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Biocompatible coupling of therapeutic fusion proteins to human erythrocytes

    PubMed Central

    Villa, Carlos H.; Pan, Daniel C.; Johnston, Ian H.; Greineder, Colin F.; Walsh, Landis R.; Hood, Elizabeth D.; Cines, Douglas B.; Poncz, Mortimer; Siegel, Don L.

    2018-01-01

    Carriage of drugs by red blood cells (RBCs) modulates pharmacokinetics, pharmacodynamics, and immunogenicity. However, optimal targets for attaching therapeutics to human RBCs and adverse effects have not been studied. We engineered nonhuman-primate single-chain antibody fragments (scFvs) directed to human RBCs and fused scFvs with human thrombomodulin (hTM) as a representative biotherapeutic cargo (hTM-scFv). Binding fusions to RBCs on band 3/glycophorin A (GPA; Wright b [Wrb] epitope) and RhCE (Rh17/Hr0 epitope) similarly endowed RBCs with hTM activity, but differed in their effects on RBC physiology. scFv and hTM-scFv targeted to band 3/GPA increased membrane rigidity and sensitized RBCs to hemolysis induced by mechanical stress, while reducing sensitivity to hypo-osmotic hemolysis. Similar properties were seen for other ligands bound to GPA and band 3 on human and murine RBCs. In contrast, binding of scFv or hTM-scFv to RhCE did not alter deformability or sensitivity to mechanical and osmotic stress at similar copy numbers bound per RBCs. Contrasting responses were also seen for immunoglobulin G antibodies against band 3, GPA, and RhCE. RBC-bound hTM-scFv generated activated protein C (APC) in the presence of thrombin, but RhCE-targeted hTM-scFv demonstrated greater APC generation per bound copy. Both Wrb- and RhCE-targeted fusion proteins inhibited fibrin deposition induced by tumor necrosis factor-α in an endothelialized microfluidic model using human whole blood. RhCE-bound hTM-scFv more effectively reduced platelet and leukocyte adhesion, whereas anti-Wrb scFv appeared to promote platelet adhesion. These data provide a translational framework for the development of engineered affinity ligands to safely couple therapeutics to human RBCs. PMID:29365311

  15. Strength and conditioning in adolescent female athletes.

    PubMed

    Sommi, Corinne; Gill, Frances; Trojan, Jeffrey D; Mulcahey, Mary K

    2018-06-22

    Despite evidence that strength and conditioning (S&C) programs decrease injury risk and increase sport performance, young females are rarely offered S&C programs comparable to those of their male counterparts. The purpose of this study was to evaluate the current body of available literature regarding S&C in adolescent female athletes, describe potential benefits, and generate recommendations for S&C programs for female adolescent athletes. This systematic review was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Systematic searches of the PubMed and Google Scholar databases were conducted using the following keywords: 'female athletes,' 'injury prevention,' 'adolescent,' 'physical fitness,' 'strength,' 'female adolescent,' and 'conditioning.' Studies included in this review evaluated the effectiveness of S&C protocols and/or the habits and attitudes of coaches and athletic trainers working with female adolescent athletes. Seven articles evaluating S&C programs for the adolescent female athlete were used as the basis for this systematic review. These articles described current protocols and/or factors that should be taken into account when designing S&C programs. The identified articles focused on improving the strength of adolescent female athletes, decreasing the risk of injury, and exposing female athletes to the benefits of S&C that are routinely afforded to their male counterparts. Despite the critical potential benefits of S&C training, such as improved landing mechanics, coaches and athletic trainers do not routinely implement S&C programs for female adolescent athletes. The lack of such programs is largely due to misconceptions surrounding female athletes, such as the perception that females fear bulking up. S&C programs for adolescent female athletes should incorporate stretching of the hip adductors, targeted hamstring, gluteal and quadriceps strengthening, and a synergistic adaptation model, which tailors training protocols to an athlete's pubertal stage.

  16. Mechanism of Bacillus subtilis Spore Inactivation by and Resistance to Supercritical CO2 plus Peracetic Acid

    PubMed Central

    Setlow, Barbara; Korza, George; Blatt, Kelly M.S.; Fey, Julien P.; Setlow, Peter

    2015-01-01

    Aims Determine how supercritical CO2 (scCO2) plus peracetic acid (PAA) inactivates Bacillus subtilis spores, factors important in spore resistance to scCO2-PAA, and if spores inactivated by scCO2-PAA are truly dead. Methods and Results Spores of wild-type B. subtilis and isogenic mutants lacking spore protective proteins were treated with scCO2-PAA in liquid or dry at 35°C. Wild-type wet spores (aqueous suspension) were more susceptible than dry spores. Treated spores were examined for viability (and were truly dead), dipicolinic acid (DPA), mutations, permeability to nucleic acid stains, germination under different conditions, energy metabolism and outgrowth. ScCO2-PAA-inactivated spores retained DPA, and survivors had no notable DNA damage. However, DPA was released from inactivated spores at a normally innocuous temperature (85°C), and colony formation from treated spores was salt sensitive. The inactivated spores germinated but did not outgrow, and these germinated spores had altered plasma membrane permeability and defective energy metabolism. Wet or dry coat-defective spores had increased scCO2-PAA sensitivity, and dry spores but not wet spores lacking DNA protective proteins were more scCO2-PAA sensitive. Conclusions These findings suggest that scCO2-PAA inactivates spores by damaging spores’ inner membrane. The spore coat provided scCO2-PAA resistance for both wet and dry spores. DNA protective proteins provided scCO2-PAA resistance only for dry spores. Significance and Impact of Study These results provide information on mechanisms of spore inactivation of and resistance to scCO2-PAA, an agent with increasing use in sterilization applications. PMID:26535794

  17. Mechanism of Bacillus subtilis spore inactivation by and resistance to supercritical CO2 plus peracetic acid.

    PubMed

    Setlow, B; Korza, G; Blatt, K M S; Fey, J P; Setlow, P

    2016-01-01

    Determine how supercritical CO2 (scCO2 ) plus peracetic acid (PAA) inactivates Bacillus subtilis spores, factors important in spore resistance to scCO2 -PAA, and if spores inactivated by scCO2 -PAA are truly dead. Spores of wild-type B. subtilis and isogenic mutants lacking spore protective proteins were treated with scCO2 -PAA in liquid or dry at 35°C. Wild-type wet spores (aqueous suspension) were more susceptible than dry spores. Treated spores were examined for viability (and were truly dead), dipicolinic acid (DPA), mutations, permeability to nucleic acid stains, germination under different conditions, energy metabolism and outgrowth. ScCO2 -PAA-inactivated spores retained DPA, and survivors had no notable DNA damage. However, DPA was released from inactivated spores at a normally innocuous temperature (85°C), and colony formation from treated spores was salt sensitive. The inactivated spores germinated but did not outgrow, and these germinated spores had altered plasma membrane permeability and defective energy metabolism. Wet or dry coat-defective spores had increased scCO2 -PAA sensitivity, and dry spores but not wet spores lacking DNA protective proteins were more scCO2 -PAA sensitive. These findings suggest that scCO2 -PAA inactivates spores by damaging spores' inner membrane. The spore coat provided scCO2 -PAA resistance for both wet and dry spores. DNA protective proteins provided scCO2 -PAA resistance only for dry spores. These results provide information on mechanisms of spore inactivation of and resistance to scCO2 -PAA, an agent with increasing use in sterilization applications. © 2015 The Society for Applied Microbiology.

  18. Timed Stair Climbing is the Single Strongest Predictor of Perioperative Complications in Patients Undergoing Abdominal Surgery

    PubMed Central

    Reddy, Sushanth; Contreras, Carlo M; Singletary, Brandon; Bradford, T Miller; Waldrop, Mary G; Mims, Andrew H; Smedley, W Andrew; Swords, Jacob A; Thomas N, Wang; Martin J, Heslin

    2016-01-01

    Background Current methods to predict patients' peri-operative morbidity utilize complex algorithms with multiple clinical variables focusing primarily on organ-specific compromise. The aim of the present study is to determine the value of a timed stair climb (SC) in predicting peri-operative complications for patients undergoing abdominal surgery. Study Design From March 2014 to July 2015, 362 patients attempted SC while being timed prior to undergoing elective abdominal surgery. Vital signs were measured before and after SC. Ninety day post-operative complications were assessed by the Accordion Severity Grading System. The prognostic value of SC was compared to the ACS NSQIP risk calculator. Results A total of 264 (97.4%) patients were able to complete SC. SC time directly correlated to changes in both mean arterial pressure and heart rate as an indicator of stress. An Accordion grade 2 or higher complication occurred in 84 (25%) patients. There were 8 mortalities (2.4%). Patients with slower SC times had an increased complication rate (P<0.0001). In multivariable analysis SC time was the single strongest predictor of complications (OR=1.029, P<0.0001), and no other clinical co-morbidity reached statistical significance. Receiver operative characteristic curves predicting post-operative morbidity by SC time was superior to that of the ACS risk calculator (AUC 0.81 vs. 0.62, P<0.0001). Additionally slower patients had a greater deviation from predicted length of hospital stay (P=0.034) Conclusions SC provides measurable stress, accurately predicts post-operative complications, and is easy to administer in patients undergoing abdominal surgery. Larger patient populations with a diverse group of operations will be needed to further validate the use of SC in risk prediction models. PMID:26920993

  19. Isolation and characterization of a novel human scFv inhibiting EGFR vIII expressing cancers.

    PubMed

    Rahbarnia, Leila; Farajnia, Safar; Babaei, Hossein; Majidi, Jafar; Dariushnejad, Hassan; Hosseini, Mohammad Kazem

    2016-12-01

    EGFRvIII, a mutant form of epidermal growth factor receptor is highly expressed in glioblastoma, carcinoma of the breast, ovary, and lung but not in normal cells. This tumor specific antigen has emerged as a promising candidate for antibody based therapy of several cancers. The aim of the present study was isolation and characterization of a human single chain antibody against EGFRvIII as a promising target for cancer therapy. For this, a synthetic peptide corresponding to EGFRvIII protein was used for screening the naive human scFv phage library. Selection was performed using a novel screening strategy for enrichment of rare specific clones. After five rounds of screening, six positive scFv clones against EGFRvIII were selected using monoclonal phage ELISA, among them, a clone with an amber mutation in VH CDR2 coding sequence showed higher reactivity. The mutation was corrected through site directed mutagenesis and then scFv fragment was expressed after subcloning into the bacterial expression vector. Expression in BL21 pLysS resulted in a highly soluble scFv appeared in soluble fraction of E. coli lysate. Bioinformatic in silico analysis between scFv and EGFRvIII sequences confirmed specific binding of desired scFv to EGFRvIII in CDR regions. The specific reactivity of the purified scFv with native EGFRvIII was confirmed by cell based ELISA and western blot. In conclusion, human anti- EGFRvIII scFv isolated from a scFv phage library displayed high reactivity with EGFRvIII. The scFv isolated in this study can be the groundwork for developing more effective diagnostic and therapeutic agents against EGFRvIII expressing cancers. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  20. Purification and refolding of anti-T-antigen single chain antibodies (scFvs) expressed in Escherichia coli as inclusion bodies.

    PubMed

    Yuasa, Noriyuki; Koyama, Tsubasa; Fujita-Yamaguchi, Yoko

    2014-02-01

    T-antigen (Galβ1-3GalNAcα-1-Ser/Thr) is an oncofetal antigen that is commonly expressed as a carbohydrate determinant in many adenocarcinomas. Since it is associated with tumor progression and metastasis, production of recombinant antibodies specific for T-antigen could lead to the development of cancer diagnostics and therapeutics. Previously, we isolated and characterized 11 anti-T-antigen phage clones from a phage library displaying human single-chain antibodies (scFvs) and purified one scFv protein, 1G11. More recently, we purified and characterized 1E8 scFv protein using a Drosophila S2 expression system. In the current study, four anti-T-antigen scFv genes belonging to Groups 1-4 were purified from inclusion bodies expressed in Escherichia coli cells. Inclusion bodies isolated from E. coli cells were denatured in 3.5 M Gdn-HCl. Solubilized His-tagged scFv proteins were purified using Ni(2+)-Sepharose column chromatography in the presence of 3.5 M Gdn-HCl. Purified scFv proteins were refolded according to a previously published method of step-wise dialysis. Two anti-T-antigen scFv proteins, 1E6 and 1E8 that belong to Groups 1 and 2, respectively, were produced in sufficient amounts, thus allowing further characterization of their binding activity with T-antigen. Specificity and affinity constants determined using enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR), respectively, provided evidence that both 1E8 and 1E6 scFv proteins are T-antigen specific and suggested that 1E8 scFv protein has a higher affinity for T-antigen than 1E6 scFv protein.

Top