The ultrastructure and processing properties of Straumann Bone Ceramic and NanoBone.
Dietze, S; Bayerlein, T; Proff, P; Hoffmann, A; Gedrange, T
2006-02-01
The ultrastructure, fundamental chemistry, and processing modes of fully synthetic bone grafting materials are relevant to the reconstruction of osseous defects. Rapid progress in the profitable market of biomaterials has led to the development of various bone substitutes. Despite all these efforts, an ideal and full substitute of autologous bone is not yet in sight. With regard to anorganic calcium phosphate ceramics, Straumann Bone Ceramic and NanoBone are compared. These have a similar composition and are osteoconductive, which indispensably requires contact with well-vascularised bone.
De Coster, Peter; Browaeys, Hilde; De Bruyn, Hugo
2011-03-01
Various grafting materials have been designed to minimize edentulous ridge volume loss following tooth extraction by encouraging new bone formation in healing sockets. BoneCeramic® is a composite of hydroxyapatite and bèta-tricalcium phosphate with pores of 100-500 microns. The aim of this study was to evaluate bone regeneration in healing sockets substituted with BoneCeramic® prior to implant procedures. Fifteen extraction sockets were substituted with BoneCeramic® and 14 sockets were left to heal naturally in 10 patients (mean age 59.6 years). Biopsies were collected only from the implant recipient sites during surgery after healing periods ranging from 6-74 weeks (mean 22). In total, 24 biopsies were available; 10 from substituted and 14 from naturally healed sites. In one site, the implant was not placed intentionally and, in four substituted sites, implant placement had to be postponed due to inappropriate healing, hence from five sites biopsies were not available. Histological sections were examined by transmitted light microscope. At the time of implant surgery, bone at substituted sites was softer than in controls, compromising initial implant stability. New bone formation at substituted sites was consistently poorer than in controls, presenting predominantly loose connective tissue and less woven bone. The use of BoneCeramic® as a grafting material in fresh extraction sockets appears to interfere with normal healing processes of the alveolar bone. On the basis of the present preliminary findings, its indication as a material for bone augmentation, when implant placement is considered within 6-38 weeks after extraction, should be revised. © 2009, Copyright the Authors. Journal Compilation © 2011, Wiley Periodicals, Inc.
Doped Calcium Silicate Ceramics: A New Class of Candidates for Synthetic Bone Substitutes
No, Young Jung; Li, Jiao Jiao; Zreiqat, Hala
2017-01-01
Doped calcium silicate ceramics (DCSCs) have recently gained immense interest as a new class of candidates for the treatment of bone defects. Although calcium phosphates and bioactive glasses have remained the mainstream of ceramic bone substitutes, their clinical use is limited by suboptimal mechanical properties. DCSCs are a class of calcium silicate ceramics which are developed through the ionic substitution of calcium ions, the incorporation of metal oxides into the base binary xCaO–ySiO2 system, or a combination of both. Due to their unique compositions and ability to release bioactive ions, DCSCs exhibit enhanced mechanical and biological properties. Such characteristics offer significant advantages over existing ceramic bone substitutes, and underline the future potential of adopting DCSCs for clinical use in bone reconstruction to produce improved outcomes. This review will discuss the effects of different dopant elements and oxides on the characteristics of DCSCs for applications in bone repair, including mechanical properties, degradation and ion release characteristics, radiopacity, and biological activity (in vitro and in vivo). Recent advances in the development of DCSCs for broader clinical applications will also be discussed, including DCSC composites, coated DCSC scaffolds and DCSC-coated metal implants. PMID:28772513
Ceramic and non-ceramic hydroxyapatite as a bone graft material: a brief review.
Dutta, S R; Passi, D; Singh, P; Bhuibhar, A
2015-03-01
Treatment of dental, craniofacial and orthopedic defects with bone graft substitutes has shown promising result achieving almost complete bone regeneration depending on product resorption similar to human bone's physicochemical and crystallographic characteristics. Among these, non-ceramic and ceramic hydroxyapatite being the main inorganic salt of bone is the most studied calcium phosphate material in clinical practices ever since 1970s and non-ceramic since 1985. Its "chemical similarity" with the mineralized phase of biologic bone makes it unique. Hydroxyapatite as an excellent carrier of osteoinductive growth factors and osteogenic cell populations is also useful as drug delivery vehicle regardless of its density. Porous ceramic and non-ceramic hydroxyapatite is osteoconductive, biocompatible and very inert. The need for bone graft material keeps on increasing with increased age of the population and the increased conditions of trauma. Recent advances in genetic engineering and doping techniques have made it possible to use non-ceramic hydroxyapatite in larger non-ceramic crystals and cluster forms as a successful bone graft substitute to treat various types of bone defects. In this paper we have mentioned some recently studied properties of hydroxyapatite and its various uses through a brief review of the literatures available to date.
Gauthier, O; Bouler, J M; Weiss, P; Bosco, J; Aguado, E; Daculsi, G
1999-08-01
This in vivo study investigated the influence of two calcium phosphate particle sizes (40-80 microm and 200-500 microm) on the cellular degradation activity associated with the bone substitution process of two injectable bone substitutes (IBS). The tested biomaterials were obtained by associating a biphasic calcium phosphate (BCP) ceramic mineral phase and a 3% aqueous solution of a cellulosic polymer (hydroxypropylmethylcellulose). Both were injected into osseous defects at the distal end of rabbit femurs for 2- and 3-week periods. Quantitative results for tartrate-resistant acid phosphatase (TRAP) cellular activity, new bone formation, and ceramic resorption were studied for statistical purposes. Positive TRAP-stained degradation cells were significantly more numerous for IBS 40-80 than IBS 200-500, regardless of implantation time. BCP degradation was quite marked during the first 2 weeks for IBS 40-80, and bone colonization occurred more extensively for IBS 40-80 than for IBS 200-500. The resorption-bone substitution process occurred earlier and faster for IBS 40-80 than IBS 200-500. Both tested IBS displayed similar biological efficiency, with conserved in vivo bioactivity and bone-filling ability. Differences in calcium phosphate particle sizes influenced cellular degradation activity and ceramic resorption but were compatible with efficient bone substitution.
Germaini, Marie-Michèle; Detsch, Rainer; Grünewald, Alina; Magnaudeix, Amandine; Lalloue, Fabrice; Boccaccini, Aldo R; Champion, Eric
2017-06-06
The influence of carbonate substitution (4.4 wt%, mixed A/B type) in hydroxyapatite ceramics for bone remodeling scaffolds was investigated by separately analyzing the response of pre-osteoblasts and osteoclast-like cells. Carbonated hydroxyapatite (CHA) (Ca 9.5 (PO 4 ) 5.5 (CO 3 ) 0.5 (OH)(CO 3 ) 0.25 -CHA), mimicking the chemical composition of natural bone mineral, and pure hydroxyapatite (HA) (Ca 10 (PO 4 ) 6 (OH) 2 -HA) porous ceramics were processed to obtain a similar microstructure and surface physico-chemical properties (grain size, porosity ratio and pore size, surface roughness and zeta potential). The biological behavior was studied using MC3T3-E1 pre-osteoblastic and RAW 264.7 monocyte/macrophage cell lines. Chemical dissolution in the culture media and resorption lacunae produced by osteoclasts occur with both HA and CHA ceramics, but CHA exhibits much higher dissolution and greater bioresorption ability. CHA ceramics promoted a significantly higher level of pre-osteoblast proliferation. Osteoblastic differentiation, assessed by qRT-PCR of RUNX2 and COLIA2, and pre-osteoclastic proliferation and differentiation were not significantly different on CHA or HA ceramics but cell viability and metabolism were significantly greater on CHA ceramics. Thus, the activity of both osteoclast-like and osteoblastic cells was influenced by the carbonate substitution in the apatite structure. Furthermore, CHA showed a particularly interesting balance between biodegradation, by osteoclasts and chemical dissolution, and osteogenesis through osteoblasts' activity, to stimulate bone regeneration. It is hypothesized that this amount of 4.4 wt% carbonate substitution leads to an adapted concentration of calcium in the fluid surrounding the ceramic to stimulate the activity of cells. These results highlight the superior biological behavior of microporous 4.4 wt% A/B CHA ceramics that could beneficially replace the commonly used HA of biphasic calcium phosphates for future applications in bone tissue engineering.
3D printed porous ceramic scaffolds for bone tissue engineering: a review.
Wen, Yu; Xun, Sun; Haoye, Meng; Baichuan, Sun; Peng, Chen; Xuejian, Liu; Kaihong, Zhang; Xuan, Yang; Jiang, Peng; Shibi, Lu
2017-08-22
This study summarizes the recent research status and development of three-dimensional (3D)-printed porous ceramic scaffolds in bone tissue engineering. Recent literature on 3D-printed porous ceramic scaffolds was reviewed. Compared with traditional processing and manufacturing technologies, 3D-printed porous ceramic scaffolds have obvious advantages, such as enhancement of the controllability of the structure or improvement of the production efficiency. More sophisticated scaffolds were fabricated by 3D printing technology. 3D printed bioceramics have broad application prospects in bone tissue engineering. Through understanding the advantages and limitations of different 3D-printing approaches, new classes of bone graft substitutes can be developed.
Bone substitutes and expanders in Spine Surgery: A review of their fusion efficacies
Millhouse, Paul W; Kepler, Christopher K; Radcliff, Kris E.; Fehlings, Michael G.; Janssen, Michael E.; Sasso, Rick C.; Benedict, James J.; Vaccaro, Alexander R
2016-01-01
Study Design A narrative review of literature. Objective This manuscript intends to provide a review of clinically relevant bone substitutes and bone expanders for spinal surgery in terms of efficacy and associated clinical outcomes, as reported in contemporary spine literature. Summary of Background Data Ever since the introduction of allograft as a substitute for autologous bone in spinal surgery, a sea of literature has surfaced, evaluating both established and newly emerging fusion alternatives. An understanding of the available fusion options and an organized evidence-based approach to their use in spine surgery is essential for achieving optimal results. Methods A Medline search of English language literature published through March 2016 discussing bone graft substitutes and fusion extenders was performed. All clinical studies reporting radiological and/or patient outcomes following the use of bone substitutes were reviewed under the broad categories of Allografts, Demineralized Bone Matrices (DBM), Ceramics, Bone Morphogenic proteins (BMPs), Autologous growth factors (AGFs), Stem cell products and Synthetic Peptides. These were further grouped depending on their application in lumbar and cervical spine surgeries, deformity correction or other miscellaneous procedures viz. trauma, infection or tumors; wherever data was forthcoming. Studies in animal populations and experimental in vitro studies were excluded. Primary endpoints were radiological fusion rates and successful clinical outcomes. Results A total of 181 clinical studies were found suitable to be included in the review. More than a third of the published articles (62 studies, 34.25%) focused on BMP. Ceramics (40 studies) and Allografts (39 studies) were the other two highly published groups of bone substitutes. Highest radiographic fusion rates were observed with BMPs, followed by allograft and DBM. There were no significant differences in the reported clinical outcomes across all classes of bone substitutes. Conclusions There is a clear publication bias in the literature, mostly favoring BMP. Based on the available data, BMP is however associated with the highest radiographic fusion rate. Allograft is also very well corroborated in the literature. The use of DBM as a bone expander to augment autograft is supported, especially in the lumbar spine. Ceramics are also utilized as bone graft extenders and results are generally supportive, although limited. The use of autologous growth factors is not substantiated at this time. Cell matrix or stem cell-based products and the synthetic peptides have inadequate data. More comparative studies are needed to evaluate the efficacy of bone graft substitutes overall. PMID:27909654
Bone repair using a new injectable self-crosslinkable bone substitute.
Fellah, Borhane H; Weiss, Pierre; Gauthier, Olivier; Rouillon, Thierry; Pilet, Paul; Daculsi, Guy; Layrolle, Pierre
2006-04-01
A new injectable and self-crosslinkable bone substitute (IBS2) was developed for filling bone defects. The IBS2 consisted of a chemically modified polymer solution mixed with biphasic calcium phosphate (BCP) ceramic particles. The polymer hydroxypropylmethyl cellulose was functionalized with silanol groups (Si-HPMC) and formed a viscous solution (3 wt %) in alkaline medium. With a decrease in pH, self-hardening occurred due to the formation of intermolecular -Si-O- bonds. During setting, BCP particles, 40 to 80 microm in diameter, were added to the polymer solution at a weight ratio of 50/50. The resulting injectable material was bilaterally implanted into critically sized bone defects at the distal femoral epiphyses of nine New Zealand White rabbits. The IBS2 filled the bone defects entirely and remained in place. After 8 weeks, bone had grown centripetally and progressed towards the center of the defects. Newly formed bone, ceramic, and nonmineralized tissue ratios were 24.6% +/- 5.6%, 21.6% +/- 5.8%, and 53.7% +/- 0.1%, respectively. Mineralized and mature bone was observed between and in contact with the BCP particles. The bone/ceramic apposition was 73.4% +/- 10.6%. The yield strength for the IBS2-filled defects was 16.4 +/- 7.2 MPa, significantly higher than for the host trabecular bone tissue (2.7 +/- 0.4 MPa). This study showed that BCP particles supported the bone healing process by osteoconduction while the Si-HPMC hydrogel created intergranular space for bone ingrowth. This new injectable and self-crosslinkable bone substitute could be used conveniently in orthopedic surgery for filling critical-size bone defects. Copyright 2006 Orthopaedic Research Society
Basu, Bikramjit; Sabareeswaran, A; Shenoy, S J
2015-08-01
One of the desired properties for any new biomaterial composition is its long-term stability in a suitable animal model and such property cannot be appropriately assessed by performing short-term implantation studies. While hydroxyapatite (HA) or bioglass coated metallic biomaterials are being investigated for in vivo biocompatibility properties, such study is not extensively being pursued for bulk glass ceramics. In view of their inherent brittle nature, the implant stability as well as impact of long-term release of metallic ions on bone regeneration have been a major concern. In this perspective, the present article reports the results of the in vivo implantation experiments carried out using 100% strontium (Sr)-substituted glass ceramics with the nominal composition of 4.5 SiO2 -3Al2 O3 -1.5P2 O5 -3SrO-2SrF2 for 26 weeks in cylindrical bone defects in rabbit model. The combination of histological and micro-computed tomography analysis provided a qualitative and quantitative understanding of the bone regeneration around the glass ceramic implants in comparison to the highly bioactive HA bioglass implants (control). The sequential polychrome labeling of bone during in vivo osseointegration using three fluorochromes followed by fluorescence microscopy observation confirmed homogeneous bone formation around the test implants. The results of the present study unequivocally confirm the long-term implant stability as well as osteoconductive property of 100% Sr-substituted glass ceramics, which is comparable to that of a known bioactive implant, that is, HA-based bioglass. © 2014 Wiley Periodicals, Inc.
Interconnected porous hydroxyapatite ceramics for bone tissue engineering
Yoshikawa, Hideki; Tamai, Noriyuki; Murase, Tsuyoshi; Myoui, Akira
2008-01-01
Several porous calcium hydroxyapatite (HA) ceramics have been used clinically as bone substitutes, but most of them possessed few interpore connections, resulting in pathological fracture probably due to poor bone formation within the substitute. We recently developed a fully interconnected porous HA ceramic (IP-CHA) by adopting the ‘foam-gel’ technique. The IP-CHA had a three-dimensional structure with spherical pores of uniform size (average 150 μm, porosity 75%), which were interconnected by window-like holes (average diameter 40 μm), and also demonstrated adequate compression strength (10–12 MPa). In animal experiments, the IP-CHA showed superior osteoconduction, with the majority of pores filled with newly formed bone. The interconnected porous structure facilitates bone tissue engineering by allowing the introduction of mesenchymal cells, osteotropic agents such as bone morphogenetic protein or vasculature into the pores. Clinically, we have applied the IP-CHA to treat various bony defects in orthopaedic surgery, and radiographic examinations demonstrated that grafted IP-CHA gained radiopacity more quickly than the synthetic HA in clinical use previously. We review the accumulated data on bone tissue engineering using the novel scaffold and on clinical application in the orthopaedic field. PMID:19106069
Kitsugi, T; Yamamuro, T; Nakamura, T; Yoshii, S; Kokubo, T; Takagi, M; Shibuya, T
1992-01-01
Glass-ceramics containing crystalline oxy-fluoroapatite (Ca10(PO4)6(O,F2)) and wollastonite (CaSiO3) (designated AWGC) are reported to have a fairly high mechanical strength as well as the capability of forming a chemical bond with bone tissue. The chemical composition is MgO 4.6, CaO 44.9, SiO2 34.2, P2O5 16.3, and CaF2 0.5 in weight ratio. In this study the influence of substituting B2O3 for CaF2 on the bonding behaviour of glass-ceramics containing apatite and wollastonite to bone tissue was investigated. Two kinds of glass-ceramics containing apatite and wollastonite were prepared. CaF2 0.5 was replaced with B2O3 at 0.5 and 2.0 in weight ratio (designated AWGC-0.5B and AWGC-2.0B). Rectangular ceramic plates (15 x 10 x 2 mm, abraded with No. 2000 alumina powder) were implanted into a rabbit tibia. The failure load, when an implant detached from the bone, or the bone itself broke, was measured. The failure load of AWGC-0.5B was 8.00 +/- 1.82 kg at 10 weeks after implantation and 8.16 +/- 1.36 kg at 25 weeks after implantation. The failure load of AWGC-2B was 8.08 +/- 1.70 kg at 10 weeks after implantation and 9.92 +/- 2.46 kg at 25 weeks after implantation. None of the loads for the two kinds of glass-ceramics decreased as time passed. Giemsa surface staining and contact microradiography revealed direct bonding between glass-ceramics and bone. SEM-EPMA showed a calcium-phosphorus rich layer (reaction zone) at the interface of ceramics and bone tissue. The thickness of the reaction zone was 10 to -15 microns and did not increase as time passed.(ABSTRACT TRUNCATED AT 250 WORDS)
Lee, Jae Hyup; Ryu, Hyun-Seung; Seo, Jun-Hyuk; Lee, Do-Yoon; Chang, Bong-Soon; Lee, Choon-Ki
2014-03-01
Bioactive glass-ceramics have the ability to directly bind to bones and have been widely used as bone graft substitutes due to their high osteoconductivity and biocompatibility. CaO-SiO2-P2O5-B2O3 glass-ceramics are known to have good osteoconductivity and are used as bone graft extenders. This study aimed to evaluate the effects of the resorbing properties of glass-ceramics in bone fusion after producing and analyzing three types of CaO-SiO2-P2O5-B2O3 glass-ceramics with high osteoconductivity that had enhanced resorption by having an increased B2O3 content. The three types of CaO-SiO2-P2O5-B2O3 glass-ceramics with B2O3 contents of 8.0, 9.0, and 9.5 weight % were designated and grouped as P20B80, P10B90, and P5B95, respectively. Glass-ceramic types were tested for fusion rates and bone formation by employing the lumbar 5-6 intertransverse process fusion model in 51 New Zealand male rabbits. Bioactivity was assessed by soaking in simulated body fluid (SBF). In vitro study results showed sufficient hydroxycarbonate apatite layer formation occurred for P20B80 in1 day, for P10B90 in 3 days, and for P5B95 in 5 days after soaking in SBF. For the rabbit lumbar spine posterolateral fusion model, the autograft group recorded a 100% fusion rate with levels significantly higher than those of P20B80 (29.4%), P10B90 (0%), and P5B95 (14.3%), with high resorbing properties. Resorbing property differences among the three glass-ceramic groups were not significant. Histological results showed new bone formation confirming osteoconductivity in all three types of glass-ceramics. Radiomorphometric results also confirmed the resorbing properties of the three glass-ceramic types. The high resorbing properties and osteoconductivity of porous glass-ceramics can be advantageous as no glass-ceramics remain in the body. However, their relatively fast rate of resorption in the body negatively affects their role as an osteoconductive scaffold as glass-ceramics are resorbed before bony fusion.
Lee, Jae Hyup; Ryu, Hyun-Seung; Seo, Jun-Hyuk; Lee, Do-Yoon; Chang, Bong-Soon
2014-01-01
Background Bioactive glass-ceramics have the ability to directly bind to bones and have been widely used as bone graft substitutes due to their high osteoconductivity and biocompatibility. CaO-SiO2-P2O5-B2O3 glass-ceramics are known to have good osteoconductivity and are used as bone graft extenders. Methods This study aimed to evaluate the effects of the resorbing properties of glass-ceramics in bone fusion after producing and analyzing three types of CaO-SiO2-P2O5-B2O3 glass-ceramics with high osteoconductivity that had enhanced resorption by having an increased B2O3 content. The three types of CaO-SiO2-P2O5-B2O3 glass-ceramics with B2O3 contents of 8.0, 9.0, and 9.5 weight % were designated and grouped as P20B80, P10B90, and P5B95, respectively. Glass-ceramic types were tested for fusion rates and bone formation by employing the lumbar 5-6 intertransverse process fusion model in 51 New Zealand male rabbits. Bioactivity was assessed by soaking in simulated body fluid (SBF). Results In vitro study results showed sufficient hydroxycarbonate apatite layer formation occurred for P20B80 in1 day, for P10B90 in 3 days, and for P5B95 in 5 days after soaking in SBF. For the rabbit lumbar spine posterolateral fusion model, the autograft group recorded a 100% fusion rate with levels significantly higher than those of P20B80 (29.4%), P10B90 (0%), and P5B95 (14.3%), with high resorbing properties. Resorbing property differences among the three glass-ceramic groups were not significant. Histological results showed new bone formation confirming osteoconductivity in all three types of glass-ceramics. Radiomorphometric results also confirmed the resorbing properties of the three glass-ceramic types. Conclusions The high resorbing properties and osteoconductivity of porous glass-ceramics can be advantageous as no glass-ceramics remain in the body. However, their relatively fast rate of resorption in the body negatively affects their role as an osteoconductive scaffold as glass-ceramics are resorbed before bony fusion. PMID:24605194
Design of bone-integrating organic-inorganic composite suitable for bone repair.
Miyazaki, Toshiki
2013-01-01
Several ceramics exhibit specific biological affinity, i.e. direct bone integration, when implanted in bony defects. They are called bioactive ceramics and utilized as important bone substitutes. However, there is limitation on clinical application, because of their inappropriate mechanical properties such as high Young's modulus and low fracture toughness. Novel bioactive materials exhibiting high machinability and flexibility have been desired in medical fields. Mixing bioactive ceramic powders and organic polymers have developed various organic-inorganic composites. Their mechanical property and bioactivity are mainly governed by the ceramics content. It is known that bioactive ceramics integrate with the bone through bone-like hydroxyapatite layer formed on their surfaces by chemical reaction with body fluid. This is triggered by a catalytic effect of various functional groups. On the basis of these facts, novel bioactive organic-inorganic nanocomposites have been developed. In these composites, inorganic components effective for triggering the hydroxyapatite nucleation are dispersed in polymer matrix at molecular level. Concept of the organic-inorganic composite is also applicable for providing polymethyl methacrylate (PMMA) bone cement with the bioactivity.
He, Fupo; Zhang, Jing; Yang, Fanwen; Zhu, Jixiang; Tian, Xiumei; Chen, Xiaoming
2015-05-01
The robust calcium carbonate composite ceramics (CC/PG) can be acquired by fast sintering calcium carbonate at a low temperature (650 °C) using a biocompatible, degradable phosphate-based glass (PG) as sintering agent. In the present study, the in vitro degradation and cell response of CC/PG were assessed and compared with 4 synthetic bone substitute materials, calcium carbonate ceramic (CC), PG, hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) ceramics. The degradation rates in decreasing order were as follows: PG, CC, CC/PG, β-TCP, and HA. The proliferation of rat bone mesenchymal stem cells (rMSCs) cultured on the CC/PG was comparable with that on CC and PG, but inferior to HA and β-TCP. The alkaline phosphatase (ALP) activity of rMSCs on CC/PG was lower than PG, comparable with β-TCP, but higher than HA. The rMSCs on CC/PG and PG had enhanced gene expression in specific osteogenic markers, respectively. Compared to HA and β-TCP, the rMSCs on the CC/PG expressed relatively lower level of collagen I and runt-related transcription factor 2, but showed more considerable expression of osteopontin. Although CC, PG, HA, and β-TCP possessed impressive performances in some specific aspects, they faced extant intrinsic drawbacks in either degradation rate or mechanical strength. Based on considerable compressive strength, moderate degradation rate, good cell response, and being free of obvious shortcoming, the CC/PG is promising as another choice for bone substitute materials. Copyright © 2015 Elsevier B.V. All rights reserved.
Barbanti Brodano, G; Griffoni, C; Zanotti, B; Gasbarrini, A; Bandiera, S; Ghermandi, R; Boriani, S
2015-10-01
Iliac crest bone graft (ICBG) is considered the gold standard for spine surgical procedures to achieve a successful fusion, because of its known osteoinductive and osteoconductive properties. Considering its autogenous origin, the use of ICBG has not been associated to an increase of intraoperative or postoperative complications directly related to the surgery. However, complications related to the harvesting procedure and to the donor site morbidity have been largely reported in the literature, favoring the development of a wide range of alternative products to be used as bone graft extenders or substitutes for spine fusion. The family of ceramic-based bone grafts has been widely used and studied during the last years for spine surgical procedures in order to reduce the need for iliac crest bone grafting and the consequent morbidity associated to the harvesting procedures. We report here the results of a post-market surveillance analysis performed on four independent cohorts of patients (115 patients) to evaluate the safety of three different formulations of hydroxyapatite-derived products used as bone graft extenders/substitutes for lumbar arthrodesis. No intraoperative or post-operative complications related to the use of hydroxyapatite-derived products were detected, during medium and long follow up period (minimum 12 months-maximum 5 years). This post-market surveillance analysis evidenced the safety of ceramic products as bone graft extenders or substitutes for spine fusion. Moreover, the evidence of the safety of hydroxyapatite-derived products allows to perform clinical studies aimed at evaluating the fusion rates and the clinical outcomes of these materials as bone graft extenders/substitutes, in order to support their use as an alternative to ICBG for spine fusion.
Li, Jiao Jiao; Roohani-Esfahani, Seyed-Iman; Kim, Kyungsook; Kaplan, David L; Zreiqat, Hala
2017-06-01
Bioactive ceramic scaffolds represent competitive choices for clinical bone reconstruction, but their widespread use is restricted by inherent brittleness and weak mechanical performance under load. This study reports the development of strong and tough bioactive scaffolds suitable for use in load-bearing bone reconstruction. A strong and bioactive ceramic scaffold (strontium-hardystonite-gahnite) is combined with single and multiple coating layers of silk fibroin to enhance its toughness, producing composite scaffolds which match the mechanical properties of cancellous bone and show enhanced capacity to promote in vitro osteogenesis. Also reported for the first time is a comparison of the coating effects obtained when a polymeric material is coated on ceramic scaffolds with differing microstructures, namely the strontium-hardystonite-gahnite scaffold with high-density struts as opposed to a conventional ceramic scaffold, such as biphasic calcium phosphate, with low-density struts. The results show that silk coating on a unique ceramic scaffold can lead to simple and effective enhancement of its mechanical and biological properties to suit a wider range of applications in clinical bone reconstruction, and also establish the influence of ceramic microstructure on the effectiveness of silk coating as a method of reinforcement when applied to different types of ceramic bone graft substitutes. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Kadlec, Karol; Adamska, Katarzyna; Okulus, Zuzanna; Voelkel, Adam
2016-10-14
The novel technique for ceramic biomaterials surface characterisation was proposed. The examined bone substitute materials were two orthophosphates: hydroxyapatite, β-tricalcium phosphate and the mixture of these two - biphasic calcium phosphate. The aim of this work was characterisation of the ceramic biomaterials surface expressed via the values of parameters e, s, a, b, v considered in linear free energy relationship. The values of these parameters reflect the ability of stationary phase to occur in different types of interactions. The sorption phenomena occurring on the bone substitute materials surface are responsible for the process of the multiplication of the osteoblasts. Thus the detailed description of this phenomena may contribute to the better understanding of bone loss regeneration mechanism. The data required for characterisation by using LFER model was collected by means of inverse liquid chromatography with the use of five different mobile phases: 98% ethanol, ethanol/water (50/50), water, 0.2M NaCl and SBF. The determination of the ceramic orthophosphates surface properties in SBF solution allowed to observe the behaviour of biomaterials in "natural environment" - in living organism. Copyright © 2016 Elsevier B.V. All rights reserved.
Fernandez de Grado, Gabriel; Keller, Laetitia; Idoux-Gillet, Ysia; Wagner, Quentin; Musset, Anne-Marie; Benkirane-Jessel, Nadia; Bornert, Fabien; Offner, Damien
2018-01-01
Bone replacement might have been practiced for centuries with various materials of natural origin, but had rarely met success until the late 19th century. Nowadays, many different bone substitutes can be used. They can be either derived from biological products such as demineralized bone matrix, platelet-rich plasma, hydroxyapatite, adjunction of growth factors (like bone morphogenetic protein) or synthetic such as calcium sulfate, tri-calcium phosphate ceramics, bioactive glasses, or polymer-based substitutes. All these substitutes are not suitable for every clinical use, and they have to be chosen selectively depending on their purpose. Thus, this review aims to highlight the principal characteristics of the most commonly used bone substitutes and to give some directions concerning their clinical use, as spine fusion, open-wedge tibial osteotomy, long bone fracture, oral and maxillofacial surgery, or periodontal treatments. However, the main limitations to bone substitutes use remain the management of large defects and the lack of vascularization in their central part, which is likely to appear following their utilization. In the field of bone tissue engineering, developing porous synthetic substitutes able to support a faster and a wider vascularization within their structure seems to be a promising way of research. PMID:29899969
Tomco, Marek; Petrovova, Eva; Giretova, Maria; Almasiova, Viera; Holovska, Katarina; Cigankova, Viera; Jenca, Andrej; Jencova, Janka; Jenca, Andrej; Boldizar, Martin; Balazs, Kosa; Medvecky, Lubomir
2017-09-01
Bone tissue engineering combines biomaterials with biologically active factors and cells to hold promise for reconstructing craniofacial defects. In this study the biological activity of biphasic hydroxyapatite ceramics (HA; a bone substitute that is a mixture of hydroxyapatite and β-tricalcium phosphate in fixed ratios) was characterized (1) in vitro by assessing the growth of MC3T3 mouse osteoblast lineage cells, (2) in ovo by using the chick chorioallantoic membrane (CAM) assay and (3) in an in vivo pig animal model. Biocompatibility, bioactivity, bone formation and biomaterial degradation were detected microscopically and by radiology and histology. HA ceramics alone demonstrated great biocompatibility on the CAM as well as bioactivity by increased proliferation and alkaline phosphatase secretion of mouse osteoblasts. The in vivo implantation of HA ceramics with bone marrow mesenchymal stem cells (MMSCs) showed de novo intramembranous bone healing of critical-size bone defects in the right lateral side of pig mandibular bodies after 3 and 9 weeks post-implantation. Compared with the HA ceramics without MMSCs, the progress of bone formation was slower with less-developed features. This article highlights the clinical use of microporous biphasic HA ceramics despite the unusually shaped elongated micropores with a high length/width aspect ratio (up to 20) and absence of preferable macropores (>100 µm) in bone regenerative medicine.
Hu, Jianzhong; Yang, Zhiming; Zhou, Yongchun; Liu, Yong; Li, Kaiyang; Lu, Hongbin
2015-11-01
The osteoconduction of porous biphasic calcium phosphate (BCP) ceramics has been widely reported. In a previous study, we demonstrated that applying a nano-hydroxyapatite (nHA) coating enhances the osteoinductive potential of BCP ceramics, making these scaffolds more suitable for bone tissue engineering applications. The aim of the present study was to determine the effects of reconstructing radius defects in rabbits using nHA-coated BCP ceramics seeded with mesenchymal stem cells (MSCs) and to compare the bone regeneration induced by different scaffolds. Radius defects were created in 20 New Zealand rabbits, which were divided into four groups by treatment: porous BCP ceramics (Group A), nHA-coated porous BCP ceramics (Group B), porous BCP ceramics seeded with rabbit MSCs (Group C), and nHA-coated porous BCP ceramics seeded with rabbit MSCs (Group D). After in vitro incubation, the cell/scaffold complexes were implanted into the defects. Twelve weeks after implantation, the specimens were examined macroscopically and histologically. Both the nHA coating and seeding with MSCs enhanced the formation of new bone tissue in the BCP ceramics, though the osteoinductive potential of the scaffolds with MSCs was greater than that of the nHA-coated scaffolds. Notably, the combination of nHA coating and MSCs significantly improved the bone regeneration capability of the BCP ceramics. Thus, MSCs seeded into porous BCP ceramics coated with nHA may be an effective bone substitute to reconstruct bone defects in the clinic.
Wilson, C. E.; van Blitterswijk, C. A.; Verbout, A. J.; de Bruijn, J. D.
2010-01-01
Calcium phosphate ceramics, commonly applied as bone graft substitutes, are a natural choice of scaffolding material for bone tissue engineering. Evidence shows that the chemical composition, macroporosity and microporosity of these ceramics influences their behavior as bone graft substitutes and bone tissue engineering scaffolds but little has been done to optimize these parameters. One method of optimization is to place focus on a particular parameter by normalizing the influence, as much as possible, of confounding parameters. This is difficult to accomplish with traditional fabrication techniques. In this study we describe a design based rapid prototyping method of manufacturing scaffolds with virtually identical macroporous architectures from different calcium phosphate ceramic compositions. Beta-tricalcium phosphate, hydroxyapatite (at two sintering temperatures) and biphasic calcium phosphate scaffolds were manufactured. The macro- and micro-architectures of the scaffolds were characterized as well as the influence of the manufacturing method on the chemistries of the calcium phosphate compositions. The structural characteristics of the resulting scaffolds were remarkably similar. The manufacturing process had little influence on the composition of the materials except for the consistent but small addition of, or increase in, a beta-tricalcium phosphate phase. Among other applications, scaffolds produced by the method described provide a means of examining the influence of different calcium phosphate compositions while confidently excluding the influence of the macroporous structure of the scaffolds. PMID:21069558
Organic-inorganic composites designed for biomedical applications.
Miyazaki, Toshiki; Ishikawa, Kunio; Shirosaki, Yuki; Ohtsuki, Chikara
2013-01-01
Several varieties of ceramics, such as Bioglass-type glasses, sintered hydroxyapatite and glass-ceramic A-W, exhibit specific biological affinity, i.e., direct bonding to surrounding bone, when implanted in bony defects. These bone-bonding ceramics are called bioactive ceramics and are utilized as important bone substitutes in the medical field. However, there is a limitation to their clinical applications because of their inappropriate mechanical properties. Natural bone takes a kind of organic-inorganic composite, where apatite nanocrystals are precipitated on collagen fibers. Therefore, problems with the bioactive ceramics can be solved by material design based on the composites. In this paper, current research topics on the development of bioactive organic-inorganic composites inspired by actual bone microstructure have been reviewed in correlation with preparation methods and various properties. Several kinds of inorganic components have been found to exhibit bioactivity in the body environment. Combination of the inorganic components with various organic polymers enables the development of bioactive organic-inorganic composites. In addition, novel biomedical applications of the composites to drug delivery systems, scaffolds for tissue regeneration and injectable biomaterials are available by combining drugs or biological molecules with appropriate control of its microstructure.
Design of biocomposite materials for bone tissue regeneration.
Yunus Basha, Rubaiya; Sampath Kumar, T S; Doble, Mukesh
2015-12-01
Several synthetic scaffolds are being developed using polymers, ceramics and their composites to overcome the limitations of auto- and allografts. Polymer-ceramic composites appear to be the most promising bone graft substitute since the natural bone itself is a composite of collagen and hydroxyapatite. Ceramics provide strength and osteoconductivity to the scaffold while polymers impart flexibility and resorbability. Natural polymers have an edge over synthetic polymers because of their biocompatibility and biological recognition property. But, very few natural polymer-ceramic composites are available as commercial products, and those few are predominantly based on type I collagen. Disadvantages of using collagen include allergic reactions and pathogen transmission. The commercial products also lack sufficient mechanical properties. This review summarizes the recent developments of biocomposite materials as bone scaffolds to overcome these drawbacks. Their characteristics, in vitro and in vivo performance are discussed with emphasis on their mechanical properties and ways to improve their performance. Copyright © 2015 Elsevier B.V. All rights reserved.
Lavallé, F; Pascal-Mousselard, H; Rouvillain, J L; Ribeyre, D; Delattre, O; Catonné, Y
2004-10-01
The aim of this radiological study was to evaluate the use of a biphasic ceramic wedge combined with plate fixation with locked adjustable screws for open wedge tibial osteotomy. Twenty-six consecutive patients (27 knees) underwent surgery between December 1999 and March 2002 to establish a normal lower-limb axis. The series included 6 women and 20 men, mean age 50 years (16 right knees and 11 left knees). Partial weight-bearing with crutches was allowed on day 1. A standard radiological assessment was performed on day 1, 90, and 360 (plain AP and lateral stance films of the knee). A pangonogram was performed before surgery and at day 360. Presence of a lateral metaphyseal space, development of peripheral cortical bridges, and osteointegration of the bone substitute-bone interface were evaluated used to assess bone healing. The medial tibial angle between the line tangent to the tibial plateau and the anatomic axis of the tibia (beta) was evaluated to assess preservation of postoperative correction. The HKA angle was determined. Three patients were lost to follow-up and 23 patients (24 knees) were retained for analysis. At last follow-up, presence of peripheral cortical bridges and complete filling of the lateral metaphyseal space demonstrated bone healing in all patients. Good quality osteointegration was achieved since 21 knees did not present an interface between the bone substitute and native bone (homogeneous transition zone). The beta angle was unchanged for 23 knees. A normal axis was observed in patients (16 knees) postoperatively. Use of a biphasic ceramic wedge in combination with plate fixation with locked adjustable screws is a reliable option for open wedge tibial osteotomy. The bone substitute fills the gap well. Tolerance and integration are optimal. Bone healing is achieved. Plate fixation with protected weight bearing appears to be a solid assembly, maintaining these corrections.
NASA Astrophysics Data System (ADS)
Rack, A.; Stiller, M.; Nelson, K.; Knabe, C.; Rack, T.; Zabler, S.; Dalügge, O.; Riesemeier, H.; Cecilia, A.; Goebbels, J.
2010-09-01
Biocompatible materials such as porous bioactive calcium phosphate ceramics or titanium are regularly applied in dental surgery: ceramics are used to support the local bone regeneration in a given defect, afterwards titanium implants replace lost teeth. The current gold standard for bone reconstruction in implant dentistry is the use of autogenous bone grafts. But the concept of guided bone regeneration (GBR) has become a predictable and well documented surgical approach using biomaterials (bioactive calcium phosphate ceramics) which qualify as bone substitutes for this kind of application as well. We applied high resolution synchrotron microtomography and subsequent 3d image analysis in order to investigate bone formation and degradation of the bone substitute material in a three-dimensional manner, extending the knowledge beyond the limits of classical histology. Following the bone regeneration, titanium-based implants to replace lost teeth call for high mechanical precision, especially when two-piece concepts are used in order to guaranty leak tightness. Here, synchrotron-based radiography in comparison with classical laboratory radiography yields high spatial resolution in combination with high contrast even when exploiting micro-sized features in these kind of highly attenuating objects. Therefore, we could study micro-gap formation at interfaces in two-piece dental implants with the specimen under different mechanical load. We could prove the existence of micro-gaps for implants with conical connections as well as to study the micromechanical behavior of the mating zone of conical implants during loading. The micro-gap is a potential issue of failure, i. e. bacterial leakage which can induce an inflammatory process.
Spies, Christian K G; Schnürer, Stefan; Gotterbarm, Tobias; Breusch, Steffen J
2010-01-01
To examine and compare biocompatibility, osteocompatibility, rate of resorption, and remodelling dynamics of 2 calcium phosphate cements in comparison with a well-established hydroxyapatite ceramic. In a randomised fashion, Bone Source™, Cementek™, and Endobon™ were implanted bilaterally into the proximal metaphyseal tibiae of 35 Göttinger minipigs in a direct right vs. left intra-individual comparison. Fluorescent labelling was used. Histological and morphometric evaluations were carried out at 6, 12, and 52 weeks. All bone substitutes showed good biocompatibility, bioactivity, and osteoconductivity. Endobon™ was not degraded over the follow-up period. Cementek™ was degraded constantly and significantly over the time intervals, whereas Bone Source™ was degraded mainly from the 6 week to 12 week interval. After 52 weeks, a significant difference of residual material within the defect zone was detected between all substitutes, with the highest resorption rate for Cementek™. Bone Source™ was least degraded. Defects filled with Endobon™ were characterised by a significantly continuous bony ingrowth over the time intervals. Bone formation within the defects filled with Cementek™ and Bone Source™ showed significant peaks 12 weeks after implantation. After 52 weeks, a significant difference in the amount of new bone within the defect area was detected, with the highest levels for Endobon™, followed by Cementek™. After 1 year a restitution ad integrum could not be observed in any treatment group. The ceramic Endobon™ showed the expected response histologically. Based on its porosity it excelled in osteoconductivity. Concerning the calcium phosphate cements, a thorough osseous incorporation seemed to inhibit further degradation of both bone substitute materials.
Boix, D; Weiss, P; Gauthier, O; Guicheux, J; Bouler, J-M; Pilet, P; Daculsi, G; Grimandi, G
2006-11-01
The aim of the present study was to assess the efficacy of a ready-to-use injectable bone substitute on the prevention of alveolar ridge resorption after tooth extraction. Maxillary and mandibular premolars were extracted from 3 Beagle dogs with preservation of alveolar bone. Thereafter, distal sockets were filled with an injectable bone substitute (IBS), obtained by combining a polymer solution and granules of a biphasic calcium phosphate (BCP) ceramic. As a control, the mesial sockets were left unfilled. After a 3 months healing period, specimens were removed and prepared for histomorphometric evaluation with image analysis. Histomorphometric study allowed to measure the mean and the maximal heights of alveolar crest modifications. Results always showed an alveolar bone resorption in unfilled sockets. Resorption in filled maxillary sites was significantly lower than in control sites. Interestingly, an alveolar ridge augmentation was measured in mandibular filled sockets including 30% of newly-formed bone. It was concluded that an injectable bone substitute composed of a polymeric carrier and calcium phosphate can significantly increase alveolar ridge preservation after tooth extraction.
Bose, Susmita; Tarafder, Solaiman
2012-01-01
Calcium phosphates (CaPs) are the most widely used bone substitutes in bone tissue engineering due to their compositional similarities to bone mineral and excellent biocompatibility. In recent years, CaPs, especially hydroxyapatite and tricalcium phosphate, have attracted significant interest in simultaneous use as bone substitute and drug delivery vehicle, adding a new dimension to their application. CaPs are more biocompatible than many other ceramic and inorganic nanoparticles. Their biocompatibility and variable stoichiometry, thus surface charge density, functionality, and dissolution properties, make them suitable for both drug and growth factor delivery. CaP matrices and scaffolds have been reported to act as delivery vehicles for growth factors and drugs in bone tissue engineering. Local drug delivery in musculoskeletal disorder treatments can address some of the critical issues more effectively and efficiently than the systemic delivery. CaPs are used as coatings on metallic implants, CaP cements, and custom designed scaffolds to treat musculoskeletal disorders. This review highlights some of the current drug and growth factor delivery approaches and critical issues using CaP particles, coatings, cements, and scaffolds towards orthopedic and dental applications. PMID:22127225
Klünter, Tim; Schulz, Peter; Deisinger, Ulrike; Diez, Claudius; Waiss, Waltraud; Kirschneck, Christian; Reichert, Torsten E.; Detsch, Rainer
2017-01-01
Background: The aim of the present study was to evaluate the degradation pattern of highly porous bioceramics as well as the bone formation in presence of bone morphogenetic protein 7 (BMP-7) in an ectopic site. Methods: Novel calcium phosphate ceramic cylinders sintered at 1,300°C with a total porosity of 92–94 vol%, 45 pores per inch, and sized 15 mm (Ø) × 5 mm were grafted on the musculus latissimus dorsi bilaterally in 10 Göttingen minipigs: group I (n = 5): hydroxyapatite (HA) versus biphasic calcium phosphate (BCP), a mixture of HA and tricalcium phosphate (TCP) in a ratio of 60/40 wt%; group II (n = 5): TCP versus BCP. A test side was supplied in situ with 250 μg BMP-7. Fluorochrome bone labeling and computed tomography were performed in vivo. Specimens were evaluated 14 weeks after surgery by environmental scanning electron microscopy, fluorescence microscopy, tartrate-resistant acid phosphatase, and pentachrome staining. Results: Bone formation was enhanced in the presence of BMP-7 in all ceramics (P = 0.001). Small spots of newly formed bone were observed in all implants in the absence of BMP-7. Degradation of HA and BCP was enhanced in the presence of BMP-7 (P = 0.001). In those ceramics, osteoclasts were observed. TCP ceramics were almost completely degraded independently of the effect of BMP-7 after 14 weeks (P = 0.76), osteoclasts were not observed. Conclusions: BMP-7 enhanced bone formation and degradation of HA and BCP ceramics via osteoclast resorption. TCP degraded via dissolution. All ceramics were osteoinductive. Novel degradable HA and BCP ceramics in the presence of BMP-7 are promising bone substitutes in the growing individual. PMID:28740783
Gauthier, O; Bouler, J M; Weiss, P; Bosco, J; Daculsi, G; Aguado, E
1999-10-01
This study investigated the in vivo performance of two composite injectable bone substitutes (IBS), each with different calcium-phosphate particles granulometries [40-80 (IBS 40-80) and 200-500 microm (IBS 200-500)]. These biomaterials were obtained by associating a biphasic calcium-phosphate (BCP) ceramic mineral phase with a 3% aqueous solution of a cellulosic polymer (hydroxy-propyl-methyl-cellulose). Both materials were injected for periods of 2, 3, 8, or 12 weeks into bone defects at the distal end of rabbit femurs. Quantitative results on new bone formation, BCP resorption, and staining for tartrate-resistant acid phosphatase (TRAP) activity were studied for statistical purposes. Measurements with scanning electron microscopy and image analysis showed that the final rates of newly formed bone were similar for both tested IBS after 12 weeks of implantation. Bone colonization occurred more extensively during early implantation times for IBS 40-80 than for IBS 200-500. For the latter, BCP degradation occurred regularly throughout the implantation period, whereas it was very intensive during the first 2 weeks for IBS 40-80. Positive TRAP-stained degradation cells were significantly more numerous for IBS 40-80 than for IBS 200-500 regardless of implantation time. With the granulometry of either mineral phase, both tested IBS supported extensive bone colonization, which was greater than that previously reported for an equivalent block of macroporous BCP. The resorption-bone substitution process seemed to occur earlier and faster for IBS 40-80 than for IBS 200-500. Both tested IBS expressed similar biological efficiency, with conserved in vivo bioactivity and bone-filling ability. Copyright 1999 John Wiley & Sons, Inc.
Gil-Albarova, Jorge; Garrido-Lahiguera, Ruth; Salinas, Antonio J; Román, Jesús; Bueno-Lozano, Antonio L; Gil-Albarova, Raúl; Vallet-Regí, María
2004-08-01
The in vivo evaluation, in New Zealand rabbits, of a SiO(2)-P(2)O(5)-CaO sol-gel glass and a SiO(2)-P(2)O(5)-CaO-MgO glass-ceramic, both bioactive in Kokubo's simulated body fluid (SBF), is presented. Bone defects, performed in the lateral aspect of distal right femoral epiphysis, 5mm in diameter and 4mm in depth, were filled with (i) sol-gel glass disks, (ii) glass-ceramic disks, or (iii) no material (control group). Each group included 8 mature and 8 immature rabbits. A 4-month radiographic study showed good implant stability without axial deviation of extremities in immature animals and periosteal growth and remodelling around and over the bone defect. After sacrifice, the macroscopic study showed healing of bone defects, with bone coating over the implants. The morphometric study showed a more generous bone formation in animals receiving sol-gel glass or glass-ceramic disks than in control group. Histomorphometric study showed an intimate union of the new-formed bone to the implants. This study allows considering both materials as eligible for bone substitution or repair. Their indications could include cavities filling and the coating of implant surfaces. The minimum degradation of glass-ceramic disks suggests its application in locations of load or transmission forces. As specific indication in growth plate surgery, both materials could be used as material of interposition after bony bridges resection.
Iundusi, Riccardo; Gasbarra, Elena; D'Arienzo, Michele; Piccioli, Andrea; Tarantino, Umberto
2015-05-13
Reduction of tibial plateau fractures and maintain a level of well aligned congruent joint is key to a satisfactory clinical outcome and is important for the return to pre-trauma level of activity. Stable internal fixation support early mobility and weight bearing. The augmentation with bone graft substitute is often required to support the fixation to mantain reduction. For these reasons there has been development of novel bone graft substitutes for trauma applications and in particular synthetic materials based on calcium phosphates and/or apatite combined with calcium sulfates. Injectable bone substitutes can optimize the filling of irregular bone defects. The purpose of this study was to assess the potential of a novel injectable bone substitute CERAMENT™|BONE VOID FILLER in supporting the initial reduction and preserving alignment of the joint surface until fracture healing. From June 2010 through May 2011 adult patients presenting with acute, closed and unstable tibial plateau fractures which required both grafting and internal fixation, were included in a prospective study with percutaneous or open reduction and internal fixation (ORIF) augmented with an injectable ceramic biphasic bone substitute CERAMENT™|BONE VOID FILLER (BONESUPPORT™, Lund, Sweden) to fill residual voids. Clinical follow up was performed at 1, 3, 9 and 12 months and any subsequent year; including radiographic analysis and Rasmussen system for knee functional grading. Twenty four patients, balanced male-to-female, with a mean age of 47 years, were included and followed with an average of 44 months (range 41-52 months). Both Schatzker and Müller classifications were used and was type II or 41-B3 in 7 patients, type III or 41-B2 in 12 patients, type IV or 41-C1 in 2 patients and type VI or 41-C3 in 3 patients, respectively. The joint alignement was satisfactory and manteined within a range of 2 mm, with an average of 1.18 mm. The mean Rasmussen knee function score was 26.5, with 14 patients having an excellent result and the remaining 10 with a good result. It can be concluded that radiological and clinical outcome was satisfactory and obtained in all cases without complications. This injectable novel biphasic hydroxyapatite and calcium sulfate ceramic material is a valuable armamentarium in the treatment of trauma where bone graft is required.
Abarrategi, Ander; Moreno-Vicente, Carolina; Martínez-Vázquez, Francisco Javier; Civantos, Ana; Ramos, Viviana; Sanz-Casado, José Vicente; Martínez-Corriá, Ramón; Perera, Fidel Hugo; Mulero, Francisca; Miranda, Pedro; López-Lacomba, José Luís
2012-01-01
Porous ceramic scaffolds are widely studied in the tissue engineering field due to their potential in medical applications as bone substitutes or as bone-filling materials. Solid free form (SFF) fabrication methods allow fabrication of ceramic scaffolds with fully controlled pore architecture, which opens new perspectives in bone tissue regeneration materials. However, little experimentation has been performed about real biological properties and possible applications of SFF designed 3D ceramic scaffolds. Thus, here the biological properties of a specific SFF scaffold are evaluated first, both in vitro and in vivo, and later scaffolds are also implanted in pig maxillary defect, which is a model for a possible application in maxillofacial surgery. In vitro results show good biocompatibility of the scaffolds, promoting cell ingrowth. In vivo results indicate that material on its own conducts surrounding tissue and allow cell ingrowth, thanks to the designed pore size. Additional osteoinductive properties were obtained with BMP-2, which was loaded on scaffolds, and optimal bone formation was observed in pig implantation model. Collectively, data show that SFF scaffolds have real application possibilities for bone tissue engineering purposes, with the main advantage of being fully customizable 3D structures.
Abarrategi, Ander; Moreno-Vicente, Carolina; Martínez-Vázquez, Francisco Javier; Civantos, Ana; Ramos, Viviana; Sanz-Casado, José Vicente; Martínez-Corriá, Ramón; Perera, Fidel Hugo; Mulero, Francisca; Miranda, Pedro; López-Lacomba, José Luís
2012-01-01
Porous ceramic scaffolds are widely studied in the tissue engineering field due to their potential in medical applications as bone substitutes or as bone-filling materials. Solid free form (SFF) fabrication methods allow fabrication of ceramic scaffolds with fully controlled pore architecture, which opens new perspectives in bone tissue regeneration materials. However, little experimentation has been performed about real biological properties and possible applications of SFF designed 3D ceramic scaffolds. Thus, here the biological properties of a specific SFF scaffold are evaluated first, both in vitro and in vivo, and later scaffolds are also implanted in pig maxillary defect, which is a model for a possible application in maxillofacial surgery. In vitro results show good biocompatibility of the scaffolds, promoting cell ingrowth. In vivo results indicate that material on its own conducts surrounding tissue and allow cell ingrowth, thanks to the designed pore size. Additional osteoinductive properties were obtained with BMP-2, which was loaded on scaffolds, and optimal bone formation was observed in pig implantation model. Collectively, data show that SFF scaffolds have real application possibilities for bone tissue engineering purposes, with the main advantage of being fully customizable 3D structures. PMID:22470527
Structure and bioactivity studies of new polysiloxane-derived materials for orthopedic applications
NASA Astrophysics Data System (ADS)
Paluszkiewicz, Czesława; Gumuła, Teresa; Podporska, Joanna; Błażewicz, Marta
2006-07-01
The aim of this work was to examine the structure of new calcium silicate bioactive ceramic implant material for bone surgery applications. The bioceramic material was obtained by thermal treatment of active fillers-containing organosilicon polymer precursor. Different ceramic active fillers, namely Ca(OH) 2, CaCO 3, Na 2HPO 4 and SiO 2 powders were used. The phase composition of ceramic samples obtained by thermal transformation of active fillers containing polysiloxane was investigated. Morphology and structure of ceramic phases were characterized by means of scanning electron microscopy (SEM) with EDS point analysis, FTIR spectroscopy and XRD analysis. It was found that thermal treatment of active fillers-containing organosilicon precursor lead to the formation of wollastonite-containing ceramic material. This ceramic material showed bioactivity in 'in vitro' conditions studied by immersing the samples in simulated body fluid (SBF). The surface of wollastonite-containing ceramic before and after immersion in SBF was analysed. It can be concluded that this kind of ceramic material may be useful as bone substitute. FTIR spectroscopy is an adequate device for the determination of such derived materials structure.
Nair, Manitha B; Bernhardt, Anne; Lode, Anja; Heinemann, Christiane; Thieme, Sebastian; Hanke, Thomas; Varma, Harikrishna; Gelinsky, Michael; John, Annie
2009-08-01
Hydroxyapatite (HA) ceramics are widely used as bone graft substitutes because of their biocompatibility and osteoconductivity. However, to enhance the success of therapeutic application, many efforts are undertaken to improve the bioactivity of HA. We have developed a triphasic, silica-containing ceramic-coated hydroxyapatite (HASi) and evaluated its performance as a scaffold for cell-based tissue engineering applications. Human bone marrow stromal cells (hBMSCs) were seeded on both HASi and HA scaffolds and cultured with and without osteogenic supplements for a period of 4 weeks. Cellular responses were determined in vitro in terms of cell adhesion, viability, proliferation, and osteogenic differentiation, where both materials exhibited excellent cytocompatibility. Nevertheless, an enhanced rate of cell proliferation and higher levels of both alkaline phosphatase expression and activity were observed for cells cultured on HASi with osteogenic supplements. These findings indicate that the bioactivity of HA endowed with a silica-containing coating has definitely influenced the cellular activity, projecting HASi as a suitable candidate material for bone regenerative therapy.
Fabrication and performance of porous lithium sodium potassium niobate ceramic
NASA Astrophysics Data System (ADS)
Chen, Caifeng; Zhu, Yuan; Ji, Jun; Cai, Feixiang; Zhang, Youming; Zhang, Ningyi; Wang, Andong
2018-02-01
Porous lithium sodium potassium niobate (LNK) ceramic has excellent piezoelectric properties, chemical stability and great chemical compatibility. It has a good application potential in the field of biological bone substitute. In the paper, porous LNK ceramic was fabricated with egg albumen foaming agent by foaming method. Effects of preparation process of the porous LNK ceramic on density, phase structure, hole size and piezoelectric properties were researched and characterized. The results show that the influence factors of LNK solid content and foaming agent addition are closely relevant to properties of the porous LNK ceramic. When solid content is 65% and foaming agent addition is 30%, the porous LNK ceramic has uniform holes and the best piezoelectric properties.
Ahmadzadeh, Elham; Talebnia, Farid; Tabatabaei, Meisam; Ahmadzadeh, Hossein; Mostaghaci, Babak
2016-07-01
To repair damaged bone tissues, osteoconductive bone graft substitutes are required for enhancement of the regenerative potential of osteoblast cells. Nanostructured hydroxyapatite is a bioactive ceramic used for bone tissue engineering purposes. In this study, carbonate hydroxyapatite (cHA) and zinc-magnesium substituted hydroxyapatite (Zn-Mg-HA) nanoparticles were synthesized via biomineralization method using Enterobacter aerogenes. The structural phase composition and the morphology of the samples were analyzed using appropriate powder characterization methods. Next, a composite graft was fabricated by using polyvinyl alcohol and both cHA and Zn-Mg-HA samples. In vivo osteogenic potential of the graft was then investigated in a rabbit tibial osteotomy model. Histological, radiological and morphological studies showed that the graft was mineralized by the newly formed bone tissue without signs of inflammation or infection after 4 weeks of implantation. These histomorphometric results suggest that the fabricated graft can function as a potent osteoconductive bone tissue substitute. Copyright © 2016 Elsevier Inc. All rights reserved.
Boix, Damien; Gauthier, Olivier; Guicheux, Jérôme; Pilet, Paul; Weiss, Pierre; Grimandi, Gaël; Daculsi, Guy
2004-05-01
The aim of the present study was to assess the efficacy of a ready-to-use injectable bone substitute for bone regeneration around dental implants placed into fresh extraction sockets. Third and fourth mandibular premolars were extracted from three beagle dogs and the interradicular septa were surgically reduced to induce a mesial bone defect. Thereafter, titanium implants were immediately placed. On the left side of the jaw, mesial bone defects were filled with an injectable bone substitute (IBS), obtained by combining a polymer and biphasic calcium phosphate ceramic granules. The right defects were left unfilled as controls. After 3 months of healing, specimens were prepared for histological and histomorphometric evaluations. No post-surgical complications were observed during the healing period. In all experimental conditions, histological observations revealed a lamellar bone formation in contact with the implant. Histomorphometric analysis showed that IBS triggers a significant (P<0.05) increase in terms of the number of threads in contact with bone, bone-to-implant contact, and peri-implant bone density of approximately 8.6%, 11.0%, and 14.7%, respectively. In addition, no significant difference was observed when number of threads, bone-to-implant contact, and bone density in the filled defects were compared to the no-defect sites. It is concluded that an injectable bone substitute composed of a polymeric carrier and calcium phosphate significantly increases bone regeneration around immediately placed implants.
Preparation and characterization of calcium phosphate ceramics and composites as bone substitutes
NASA Astrophysics Data System (ADS)
Zhang, Xing
Marine CaCO3 skeletons have tailored architectures created by nature, which give them structural support and other functions. For example, seashells have dense lamellar structures, while coral, cuttlebone and sea urchin spines have interconnected porous structures. In our experiments, seashells, coral and cuttlebone were hydrothermally converted to hydroxyapatite (HAP), and sea urchin spines were converted to Mg-substituted tricalcium phosphate (beta-TCMP), while maintaining their original structures. Partially converted shell samples have mechanical strength, which is close to that of compact human bone. After implantation of converted shell and spine samples in rat femoral defects for 6 weeks, there was newly formed bone growth up to and around the implants. Some new bone was found to migrate through the pores of converted spine samples and grow inward. These results show good bioactivity and osteoconductivity of the implants, indicating the converted shell and spine samples can be used as bone defect fillers. Calcium phosphate powders were prepared through different synthesis methods. Micro-size HAP rods were synthesized by hydrothermal method through a nucleation-growth mechanism. On the other hand, HAP particles, which have good crystallinity, were prepared by wet precipitation with further hydrothermal treatment. beta-TCP or beta-TCMP powders were prepared by a two-step process: wet precipitation of apatitic tricalcium phosphate ('precursor') and calcination of the precursor at 800°C for 3 hours. beta-TCMP or beta-TCP powders were also prepared by solid-state reactions from CaHPO4 and CaCO 3 with/without MgO. Biphasic calcium phosphate, which is mixture of HAP and beta-TCP, can be prepared though mechanical mixing of HAP and beta-TCP powders synthesized as above. Dense beta-TCP and beta-TCMP ceramics can be produced by pressing green bodies at 100MPa and further sintering above 1100°C for 2 hours. beta-TCMP ceramics ˜99.4% relative dense were prepared by this method. Dense beta-TCP ceramics have average strength up to 540MPa. Macroporous beta-TCMP ceramics were produced with sucrose as the porogen following a two-step pressing method. Porous beta-TCMP ceramics were also prepared by replication of polyurethane sponge. beta-TCMP ceramics with porous structures in the center surrounded by dense structures were created. The outside dense structures give the scaffold mechanical strength, while the central porous structures enable cells migration and vascular infiltration, and finally in-growth of new bone into the scaffold.
Bioactive Glass-Ceramic Foam Scaffolds from ‘Inorganic Gel Casting’ and Sinter-Crystallization
Molino, Giulia; Vitale Brovarone, Chiara
2018-01-01
Highly porous bioactive glass-ceramic scaffolds were effectively fabricated by an inorganic gel casting technique, based on alkali activation and gelification, followed by viscous flow sintering. Glass powders, already known to yield a bioactive sintered glass-ceramic (CEL2) were dispersed in an alkaline solution, with partial dissolution of glass powders. The obtained glass suspensions underwent progressive hardening, by curing at low temperature (40 °C), owing to the formation of a C–S–H (calcium silicate hydrate) gel. As successful direct foaming was achieved by vigorous mechanical stirring of gelified suspensions, comprising also a surfactant. The developed cellular structures were later heat-treated at 900–1000 °C, to form CEL2 glass-ceramic foams, featuring an abundant total porosity (from 60% to 80%) and well-interconnected macro- and micro-sized cells. The developed foams possessed a compressive strength from 2.5 to 5 MPa, which is in the range of human trabecular bone strength. Therefore, CEL2 glass-ceramics can be proposed for bone substitutions. PMID:29495498
Nanostructured Biomaterials for Tissue Engineered Bone Tissue Reconstruction
Chiara, Gardin; Letizia, Ferroni; Lorenzo, Favero; Edoardo, Stellini; Diego, Stomaci; Stefano, Sivolella; Eriberto, Bressan; Barbara, Zavan
2012-01-01
Bone tissue engineering strategies are emerging as attractive alternatives to autografts and allografts in bone tissue reconstruction, in particular thanks to their association with nanotechnologies. Nanostructured biomaterials, indeed, mimic the extracellular matrix (ECM) of the natural bone, creating an artificial microenvironment that promotes cell adhesion, proliferation and differentiation. At the same time, the possibility to easily isolate mesenchymal stem cells (MSCs) from different adult tissues together with their multi-lineage differentiation potential makes them an interesting tool in the field of bone tissue engineering. This review gives an overview of the most promising nanostructured biomaterials, used alone or in combination with MSCs, which could in future be employed as bone substitutes. Recent works indicate that composite scaffolds made of ceramics/metals or ceramics/polymers are undoubtedly more effective than the single counterparts in terms of osteoconductivity, osteogenicity and osteoinductivity. A better understanding of the interactions between MSCs and nanostructured biomaterials will surely contribute to the progress of bone tissue engineering. PMID:22312283
Hainich, J; von Rechenberg, B; Jakubietz, R G; Jakubietz, M G; Giovanoli, P; Grünert, J G
2014-02-01
Surgical treatment of osteoporotic distal radius fractures with locking plates does not completely prevent loss of reduction. Additional bone deficit stabilisation with the use of bone substitute materials is receiving increased attention. Most knowledge on the in vivo behavior of bone substitutes originates from a small number of animal models after its implantation in young, good vascularized bone. This paper investigates the osteoconductivity, resorption and biocompatibility of beta-tricalcium phosphate as a temporary bone replacement in osteoporotic type distal radius fractures. 15 bone samples taken from the augmented area of the distal radius of elderly people during metal removal were examined. The material was found to be osteoconductive, good degradable, and biocompatible. Degrading process and remodelling to woven bone seem to require more time than in available comparative bioassays. The material is suitable for temporary replacement of lost, distal radius bone from the histological point of view. © Georg Thieme Verlag KG Stuttgart · New York.
3D bioactive composite scaffolds for bone tissue engineering.
Turnbull, Gareth; Clarke, Jon; Picard, Frédéric; Riches, Philip; Jia, Luanluan; Han, Fengxuan; Li, Bin; Shu, Wenmiao
2018-09-01
Bone is the second most commonly transplanted tissue worldwide, with over four million operations using bone grafts or bone substitute materials annually to treat bone defects. However, significant limitations affect current treatment options and clinical demand for bone grafts continues to rise due to conditions such as trauma, cancer, infection and arthritis. Developing bioactive three-dimensional (3D) scaffolds to support bone regeneration has therefore become a key area of focus within bone tissue engineering (BTE). A variety of materials and manufacturing methods including 3D printing have been used to create novel alternatives to traditional bone grafts. However, individual groups of materials including polymers, ceramics and hydrogels have been unable to fully replicate the properties of bone when used alone. Favourable material properties can be combined and bioactivity improved when groups of materials are used together in composite 3D scaffolds. This review will therefore consider the ideal properties of bioactive composite 3D scaffolds and examine recent use of polymers, hydrogels, metals, ceramics and bio-glasses in BTE. Scaffold fabrication methodology, mechanical performance, biocompatibility, bioactivity, and potential clinical translations will be discussed.
Punke, Christoph; Zehlicke, Thorsten; Boltze, Carsten; Pau, Hans Wilhelm
2008-09-01
In an initial preliminary study, the applicability of a new high-porosity hydroxyapatite (HA) ceramic for obliterating large open mastoid cavities was proven and tested in an animal model (bulla of guinea pig). Experimental study. NanoBone, a highly porous matrix consisting of 76% hydroxyl apatite and 24% silicone dioxide fabricated in a sol-gel technique, was administered unilaterally into the opened bullae of 30 guinea pigs. In each animal, the opposite bulla was filled with Bio-Oss, a bone substitute consisting of a portion of mineral bovine bone. Histologic evaluations were performed 1, 2, 3, 4, 5, and 12 weeks after the implantation. After an initial phase in which the ceramic granules were surrounded by inflammatory cells (1-2 wk), there were increasing signs of vascularization. Osteoneogenesis and-at the same time-resorption of the HA ceramic were observed after the third week. No major difference in comparison to the bovine bone material could be found. Our results confirm the favorable qualities of the new ceramic reported in association with current maxillofacial literature. Conventional HA granules used for mastoid obliteration to date often showed problems with prolonged inflammatory reactions and, finally, extrusions. In contrast to those ceramics, the new material seems to induce more osteoneogenesis and undergoes early resorption probably due to its high porosity. Overall, it is similar to the bovine bone substance tested on the opposite ear in each animal. Further clinical studies may reveal whether NanoBone can be an adequate material for obliterating open mastoid cavities in patients.
BMP-7 Preserves Surface Integrity of Degradable-ceramic Cranioplasty in a Göttingen Minipig Model
Schulz, Peter; Klünter, Tim; Deisinger, Ulrike; Diez, Claudius; Waiss, Waltraud; Kirschneck, Christian; Reichert, Torsten E.; Detsch, Rainer
2017-01-01
Background: The aim of the study was to evaluate the integrity of a craniotomy grafted site in a minipig model using different highly porous calcium phosphate ceramic scaffolds either loaded or nonloaded with bone morphogenetic protein-7 (BMP-7). Methods: Four craniotomies with a diameter of 15 mm (critical-size defect) were grafted with different highly porous (92–94 vol%) calcium phosphate ceramics [hydroxyapatite (HA), tricalcium phosphate (TCP), and biphasic calcium phosphate (BCP; a mixture of HA and TCP)] in 10 Göttingen minipigs: (a) group I (n = 5): HA versus BCP; (b) group II (n = 5): TCP versus BCP. One scaffold of each composition was supplied with 250 μg of BMP-7. In vivo computed tomography scan and fluorochrome bone labeling were performed. Specimens were evaluated 14 weeks after surgery by environmental scanning electron microscopy, fluorescence microscopy, and Giemsa staining histology. Results: BMP-7 significantly enhanced bone formation in TCP (P = 0.047). Slightly enhanced bone formation was observed in BCP (P = 0.059) but not in HA implants. BMP-7 enhanced ceramic degradation in TCP (P = 0.05) and BCP (P = 0.05) implants but not in HA implants. Surface integrity of grafted site was observed in all BMP-7-loaded implants after successful creeping substitution by the newly formed bone. In 9 of 10 HA implants without BMP-7, partial collapse of the implant site was observed. All TCP implants without BMP-7 collapsed. Fluorescent labeling showed bone formation at week 1 in BMP-7-stimulated implants. Conclusions: BMP-7 supports bone formation, ceramic degradation, implant integration, and surface integrity of the grafted site. PMID:28458969
Draenert, K; Draenert, M; Erler, M; Draenert, A; Draenert, Y
2011-09-01
The behaviour of physiological biomaterials, β-tricalciumphosphate and hydroxyapatite, is analysed based on current literature and our own experimental work. The properties of graft substitutes based on ceramic materials are clearly defined according to their scientific efficiency. The strength of the materials and their biodegradability are still not fully evaluated. Strength and degradability have a direct proportional relationship and are considered the most efficient way to be adapted by their properties to the needs for the treatment of bone defects. New technologies for the manufacturing process are presented that increase those properties and thus open up new indications and easier application of the ceramic materials. The implantation process as well is carefully validated by animal experiments to avoid failures. Based on the experiments, a completely new approach is defined as to how primary bone formation with osteoconductive ceramics can be achieved. The milestones in that approach comprise a synthetically manufactured replica of the bone marrow spaces as osteoconductive ladder, whereas the bead is defined as bone-forming element. As a result, materials are available with high strength if the ceramic is solid or highly porous and possesses a micro-structure. The injection moulding process allows for the combination of high strength of the material with high porosity. Based on the strong capillary forces, micro-chambered beads fulfil most expectations for primary bone formation in cancellous bone defects, including drug delivery, mechanical strengthening if necessary, and stable implantation in situ by coagulation of the blood and bone marrow suctioned in. Copyright © 2011 Elsevier Ltd. All rights reserved.
Management of segmental bony defects: the role of osteoconductive orthobiologics.
McKee, Michael D
2006-01-01
Our knowledge about, and the availability of, orthobiologic materials has increased exponentially in the last decade. Although previously confined to the experimental or animal-model realm, several orthobiologics have been shown to be useful in a variety of clinical situations. As surgical techniques in vascular anastomosis, soft-tissue coverage, limb salvage, and fracture stabilization have improved, the size and frequency of bony defects (commensurate with the severity of the initial injury) have increased, as well. Because all methods of managing segmental bony defects have drawbacks, a need remains for a readily available, void-filling, inexpensive bone substitute. Such a bone substitute fulfills a permissive role in allowing new bone to grow into a given defect. Such potential osteoconductive materials include ceramics, calcium sulfate or calcium phosphate compounds, hydroxyapatite, deproteinized bone, corals, and recently developed polymers. Some materials that have osteoinductive properties, such as demineralized bone matrix, also display prominent osteoconductive properties.
Khan, Safdar N; Toth, Jeffrey M; Gupta, Kavita; Glassman, Steven D; Gupta, Munish C
2014-06-01
We used a nonhuman primate lumbar intertransverse process arthrodesis model to evaluate biological cascade of bone formation using different carrier preparation methods with a single dose of recombinant human bone morphogenetic protein-2 (rhBMP-2) at early time points. To examine early-term/mid-term descriptive histologic and computerized tomographic events in single-level uninstrumented posterolateral nonhuman primate spinal fusions using rhBMP-2/absorbable collagen sponge (ACS) combined with ceramic bulking agents in 3 different configurations. rhBMP-2 on an ACS carrier alone leads to consistent posterolateral lumbar spine fusions in lower-order animals; however, these results have been difficult to replicate in nonhuman primates. Twelve skeletally mature, rhesus macaque monkeys underwent single-level posterolateral arthrodesis at L4-L5. A hydroxyapatite/β-tricalcium phosphate ceramic bulking agent in 3 formulations was used in the treatment groups (n=3). When used, rhBMP-2/ACS at 1.5 mg/cm (3.0 mg rhBMP-2) was combined with 2.5 cm of ceramic bulking agent per side. Animals were euthanized at 4 and 12 weeks postoperative. Computerized tomography scans were performed immediately postoperatively and every 4 weeks until they were euthanized. Sagittal histologic sections were evaluated for bone histogenesis and location, cellular infiltration of the graft/substitute, and bone remodeling activity. Significant histologic differences in the developing fusion appeared between the 3 rhBMP-2/ACS treatment groups at 4 and 12 weeks. At 4 weeks, bone formation appeared to originate at the transverse process and the intertransverse membrane. Cellular infiltration was greatest in granular ceramic groups compared with matrix ceramic group. Minimal to no residual ACS was identified at the early time point. At 12 weeks, marked ceramic remodeling was observed with continued bone formation noted in all carrier groups. At the early time period, histology showed that bone formation appeared to originate at the transverse processes and the intertransverse membrane, indicating that the dorsal muscle bed may not be the only location for bone formation. Histology also showed that the collagen carrier for rhBMP-2 is mostly resorbed by 4 weeks. Our results and previous literature indicate that ceramic bulking agents are needed to provide resistance to compression caused by paraspinal muscles on the fusion bed in the posterolateral environment. Histology showed that ceramic bulking agents may offer long-term scaffolding and a structure to supporting bone formation of the developing fusion mass.
Development and in vitro examination of materials for osseointegration
NASA Astrophysics Data System (ADS)
Jalota, Sahil
Bone is a connective tissue with nanosized particles of carbonated apatitic calcium phosphate dispersed in a hydrated collagen matrix. With the ageing of the baby boomer population, an increasing number of people sustain bone fractures and defects. Hence, efforts are underway to develop materials to hasten the healing and repairing of such defects. These materials are termed as artificial bone substitutes. This study represents innovative techniques for development of bone implant materials and improving the existing substitute materials. Emphasis was on three different kinds of materials: Metals (titanium and alloys), Ceramics (calcium phosphates), and Polymers (collagen). The bioactivity of titanium and alloys, resorptivity of calcium phosphates and biocompatibility of collagen were the major issues with these materials. These issues are appropriately addressed in this dissertation. For titanium and alloys, biomimetic coating methodology was developed for uniformly and evenly coating 3-D titanium structures. Cracks were observed in these coatings and a protocol was developed to form crack-free biomimetic coatings. In calcium phosphates, increasing the resorption rate of HA (hydroxyapatite) and decreasing the resorption rate of beta-TCP (beta-tricalcium phosphate) were studied. HA-based ceramics were synthesized with Na+ and CO32- ions dopings, and development of biphasic mixtures of HA-beta-TCP and HA-Rhenanite was performed. Similarly, beta-TCP ceramics were synthesized with Zn 2+ ion doping and development of beta-TCP-HA biphasic mixtures was performed. In case of collagen, a biomimetic coating process was developed that decreased the time to coat the collagen substrates and also increased biocompatibility, as determined by the response of mouse osteoblasts.
An, Shaofeng; Gao, Yan; Huang, Xiangya; Ling, Junqi; Liu, Zhaohui; Xiao, Yin
2015-05-01
The repair of bone defects that result from periodontal diseases remains a clinical challenge for periodontal therapy. β-tricalcium phosphate (β-TCP) ceramics are biodegradable inorganic bone substitutes with inorganic components that are similar to those of bone. Demineralized bone matrix (DBM) is an acid-extracted organic matrix derived from bone sources that consists of the collagen and matrix proteins of bone. A few studies have documented the effects of DBM on the proliferation and osteogenic differentiation of human periodontal ligament cells (hPDLCs). The aim of the present study was to investigate the effects of inorganic and organic elements of bone on the proliferation and osteogenic differentiation of hPDLCs using three-dimensional porous β-TCP ceramics and DBM with or without osteogenic inducers. Primary hPDLCs were isolated from human periodontal ligaments. The proliferation of the hPDLCs on the scaffolds in the growth culture medium was examined using a Cell-Counting kit-8 (CCK-8) and scanning electron microscopy (SEM). Alkaline phosphatase (ALP) activity and the osteogenic differentiation of the hPDLCs cultured on the β-TCP ceramics and DBM were examined in both the growth culture medium and osteogenic culture medium. Specific osteogenic differentiation markers were examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). SEM images revealed that the cells on the β-TCP were spindle-shaped and much more spread out compared with the cells on the DBM surfaces. There were no significant differences observed in cell proliferation between the β-TCP ceramics and the DBM scaffolds. Compared with the cells that were cultured on β-TCP ceramics, the ALP activity, as well as the Runx2 and osteocalcin (OCN) mRNA levels in the hPDLCs cultured on DBM were significantly enhanced both in the growth culture medium and the osteogenic culture medium. The organic elements of bone may exhibit greater osteogenic differentiation effects on hPDLCs than the inorganic elements.
Synthesis of bioactive organic-inorganic nanohybrid for bone repair through sol-gel processing.
Miyazaki, Toshiki; Ohtsuki, Chikara; Tanihara, Masao
2003-12-01
So-called bioactive ceramics have been attractive because they form bone-like apatite on their surfaces to bond directly to living bone when implanted in bony defects. However, they are much more brittle and much less flexible than natural bone. Organic-inorganic hybrids consisting of flexible organic polymers and the essential constituents of the bioactive ceramics (i.e., Si-OH groups and Ca2+ ions) are useful as novel bone substitutes, because of their bioactivity and mechanical properties analogous to those of natural bone. In the present study, organic-inorganic nanohybrids were synthesized from hydroxyethylmethacrylate (HEMA) and methacryloxypropyltrimethoxysilane (MPS), as well as various calcium salts. Bioactivity of the synthesized hybrids was assessed in vitro by examining their acceptance of apatite deposition in simulated body fluid (Kokubo solution). The prepared hybrids formed apatite in Kokubo solution when they were modified with calcium chloride (CaCl2) at 5 or 10 mol% of the total of MPS and HEMA. Deposition of a kind of calcium phosphate was observed for the hybrids modified with calcium acetate (Ca(CH3COO)2), although it could not be identified with apatite. The addition of glycerol up to 10 mol% of the total of MPS and HEMA or water up to 20 mol% as plasticizers did not appreciably decrease the acceptance of apatite formation of the hybrids. These findings allow wide selectivity in the design of bioactive nanohybrids developed by organic modification of the Si-OH group and calcium ion through sol-gel processing. Such nanohybrids have potential as novel bone substitutes with both high bioactivity and high flexibility.
An Injectable Method for Posterior Lateral Spine Fusion
2013-09-01
any problems that would prevent us from reaching our proposed goals. We have begun to establish optimal parameters for encapsulation of the MSCs...783–799 (2009). 3. U. Heise, J. F. Osborn, and F. Duwe, “ Hydroxyapatite ceramic as a bone substitute,” Int. Orthop. 14(3), 329–338 (1990). 4. H...gel and porous hydroxyapatite for posterolateral lumbar spine fusion,” Spine 30(10), 1134–1138 (2005). 9. M. R. Urist, “Bone: formation by
Seebach, Caroline; Schultheiss, Judith; Wilhelm, Kerstin; Frank, Johannes; Henrich, Dirk
2010-07-01
Various synthetic bone-graft substitutes are used commercially as osteoconductive scaffolds in the treatment of bone defects and fractures. The role of bone-graft substitutes is changing from osteoconductive conduits for growth to an delivery system for biologic fracture treatments. Achieving optimal bone regeneration requires biologics (e.g. MSC) and using the correct scaffold incorporated into a local environment for bone regeneration. The need for an unlimited supply with high quality bone-graft substitutes continue to find alternatives for bone replacement surgery. This in vitro study investigates cell seeding efficiency, metabolism, gene expression and growth behaviour of MSC sown on six commercially clinical available bone-graft substitutes in order to define their biological properties: synthetic silicate-substituted porous hydroxyapatite (Actifuse ABX), synthetic alpha-TCP (Biobase), synthetic beta-TCP (Vitoss), synthetic beta-TCP (Chronos), processed human cancellous allograft (Tutoplast) and processed bovines hydroxyapatite ceramic (Cerabone). 250,000 MSC derived from human bone marrow (n=4) were seeded onto the scaffolds, respectively. On days 2, 6 and 10 the adherence of MSC (fluorescence microscopy) and cellular activity (MTT assay) were analysed. Osteogenic gene expression (cbfa-1) was analysed by RT-PCR and scanning electron microscopy was performed. The highest number of adhering cells was found on Tutoplast (e.g. day 6: 110.0+/-24.0 cells/microscopic field; p<0.05) followed by Chronos (47.5+/-19.5, p<0.05), Actifuse ABX (19.1+/-4.4), Biobase (15.7+/-9.9), Vitoss (8.8+/-8.7) and Cerabone (8.1+/-2.2). MSC seeded onto Tutoplast showed highest metabolic activity and gene expression of cbfa-1. These data are confirmed by scanning electron microscopy. The cell shapes varied from round-shaped cells to wide spread cells and cell clusters, depending on the bone-graft substitutes. Processed human cancellous allograft is a well-structured and biocompatible scaffold for ingrowing MSC in vitro. Of all other synthetical scaffolds, beta-tricalcium phosphate (Chronos) have shown the best growth behaviour for MSC. Our results indicate that various bone-graft substitutes influence cell seeding efficiency, metabolic activity and growth behaviour of MSC in different manners. We detected a high variety of cellular integration of MSC in vitro, which may be important for bony integration in the clinical setting. 2010 Elsevier Ltd. All rights reserved.
Simple Signaling Molecules for Inductive Bone Regenerative Engineering
Nelson, Stephen J.; Deng, Meng; Sethuraman, Swaminathan; Doty, Stephen B.; Lo, Kevin W. H.; Khan, Yusuf M.; Laurencin, Cato T.
2014-01-01
With greater than 500,000 orthopaedic procedures performed in the United States each year requiring a bone graft, the development of novel graft materials is necessary. We report that some porous polymer/ceramic composite scaffolds possess intrinsic osteoinductivity as shown through their capacity to induce in vivo host osteoid mineralization and in vitro stem cell osteogenesis making them attractive synthetic bone graft substitutes. It was discovered that certain low crystallinity ceramics partially dissociate into simple signaling molecules (i.e., calcium and phosphate ions) that induce stem cells to endogenously produce their own osteoinductive proteins. Review of the literature has uncovered a variety of simple signaling molecules (i.e., gases, ions, and redox reagents) capable of inducing other desirable stem cell differentiation through endogenous growth factor production. Inductive simple signaling molecules, which we have termed inducerons, represent a paradigm shift in the field of regenerative engineering where they can be utilized in place of recombinant protein growth factors. PMID:25019622
NASA Astrophysics Data System (ADS)
Kanasan, Nanthini; Adzila, Sharifah; Suid, Mohd Syafiq; Gurubaran, P.
2016-07-01
In biomedical fields, synthetic scaffolds are being improved by using the ceramics, polymers and composites materials to avoid the limitations of allograft. Ceramic-polymer composites are appearing to be the most successful bone graft substitute in human body. The natural bones itself are well-known as composite of collagen and hydroxyapatite. In this research, precipitation method was used to synthesis hydroxyapatite (HA)/sodium alginate (SA) in various parameters. This paper describes the hydroxyapatite/sodium alginate biocomposite which suitable for use in bone defects or regeneration of bone through the characterizations which include FTIR, FESEM, EDS and DTA. In FTIR, the characteristi peaks of PO4-3 and OH- groups which corresponding to hydroxyapatite are existed in the mixing powders. The needle-size particle of hydroxyapatite/ alginate (HA/SA) are observed in FESEM in the range of 15.8nm-38.2nm.EDS confirmed the existence of HA/SA composition in the mixing powders. There is an endothermic peak which corresponds to the dehydration and the loss of physically adsorbed water molecules of the hydroxyapatite (HA)/sodium alginate (SA) powder which are described in DTA.
Lin, Kaili; Xia, Lunguo; Li, Haiyan; Jiang, Xinquan; Pan, Haobo; Xu, Yuanjin; Lu, William W; Zhang, Zhiyuan; Chang, Jiang
2013-12-01
The regeneration capacity of the osteoporotic bones is generally lower than that of the normal bones. Current methods of bone defect treatment for osteoporosis are not always satisfactory. Recent studies have shown that the silicate based biomaterials can stimulate osteogenesis and angiogenesis due to the silicon (Si) ions released from the materials, and enhance bone regeneration in vivo. Other studies showed that strontium (Sr) plays a distinct role on inhibiting bone resorption. Based on the hypothesis that the combination of Si and Sr may have synergetic effects on osteoporotic bone regeneration, the porous Sr-substituted calcium silicate (SrCS) ceramic scaffolds combining the functions of Sr and Si elements were developed with the goals to promote osteoporotic bone defect repair. The effects of the ionic extract from SrCS on osteogenic differentiation of bone marrow mesenchymal stem cells derived from ovariectomized rats (rBMSCs-OVX), angiogenic differentiation of human umbilical vein endothelial cells (HUVECs) were investigated. The in vitro results showed that Sr and Si ions released from SrCS enhanced cell viability, alkaline phosphatase (ALP) activity, and mRNA expression levels of osteoblast-related genes of rBMSCs-OVX and expression of vascular endothelial growth factor (VEGF) without addition of extra osteogenic and angiogenic reagents. The activation in extracellular signal-related kinases (ERK) and p38 signaling pathways were observed in rBMSCs-OVX cultured in the extract of SrCS, and these effects could be blocked by ERK inhibitor PD98059, and P38 inhibitor SB203580, respectively. Furthermore, the ionic extract of SrCS stimulated HUVECs proliferation, differentiation and angiogenesis process. The in vivo experiments revealed that SrCS dramatically stimulated bone regeneration and angiogenesis in a critical sized OVX calvarial defect model, and the enhanced bone regeneration might be attributed to the modulation of osteogenic differentiation of endogenous mesenchymal stem cells (MSCs) and the inhibition of osteoclastogenesis, accompanying with the promotion of the angiogenic activity of endothelial cells (ECs). Copyright © 2013 Elsevier Ltd. All rights reserved.
Boos, Anja M; Loew, Johanna S; Deschler, Gloria; Arkudas, Andreas; Bleiziffer, Oliver; Gulle, Heinz; Dragu, Adrian; Kneser, Ulrich; Horch, Raymund E; Beier, Justus P
2011-01-01
Abstract Bone tissue engineering approaches increasingly focus on the use of mesenchymal stem cells (MSC). In most animal transplantation models MSC are isolated and expanded before auto cell transplantation which might be critical for clinical application in the future. Hence this study compares the potential of directly auto-transplanted versus in vitro expanded MSC with or without bone morphogenetic protein-2 (BMP-2) to induce bone formation in a large volume ceramic bone substitute in the sheep model. MSC were isolated from bone marrow aspirates and directly auto-transplanted or expanded in vitro and characterized using fluorescence activated cell sorting (FACS) and RT-PCR analysis before subcutaneous implantation in combination with BMP-2 and β-tricalcium phosphate/hydroxyapatite (β-TCP/HA) granules. Constructs were explanted after 1 to 12 weeks followed by histological and RT-PCR evaluation. Sheep MSC were CD29+, CD44+ and CD166+ after selection by Ficoll gradient centrifugation, while directly auto-transplanted MSC-populations expressed CD29 and CD166 at lower levels. Both, directly auto-transplanted and expanded MSC, were constantly proliferating and had a decreasing apoptosis over time in vivo. Directly auto-transplanted MSC led to de novo bone formation in a heterotopic sheep model using a β-TCP/HA matrix comparable to the application of 60 μg/ml BMP-2 only or implantation of expanded MSC. Bone matrix proteins were up-regulated in constructs following direct auto-transplantation and in expanded MSC as well as in BMP-2 constructs. Up-regulation was detected using immunohistology methods and RT-PCR. Dense vascularization was demonstrated by CD31 immunohistology staining in all three groups. Ectopic bone could be generated using directly auto-transplanted or expanded MSC with β-TCP/HA granules alone. Hence BMP-2 stimulation might become dispensable in the future, thus providing an attractive, clinically feasible approach to bone tissue engineering. PMID:20636333
Clinical Application of Ceramics in Anterior Cervical Discectomy and Fusion: A Review and Update.
Zadegan, Shayan Abdollah; Abedi, Aidin; Jazayeri, Seyed Behnam; Bonaki, Hirbod Nasiri; Vaccaro, Alexander R; Rahimi-Movaghar, Vafa
2017-06-01
Narrative review. Anterior cervical discectomy and fusion (ACDF) is a reliable procedure, commonly used for cervical degenerative disc disease. For interbody fusions, autograft was the gold standard for decades; however, limited availability and donor site morbidities have led to a constant search for new materials. Clinically, it has been shown that calcium phosphate ceramics, including hydroxyapatite (HA) and tricalcium phosphate (TCP), are effective as osteoconductive materials and bone grafts. In this review, we present the current findings regarding the use of ceramics in ACDF. A review of the relevant literature examining the clinical use of ceramics in anterior cervical discectomy and fusion procedures was conducted using PubMed, OVID and Cochrane. HA, coralline HA, sandwiched HA, TCP, and biphasic calcium phosphate ceramics were used in combination with osteoinductive materials such as bone marrow aspirate and various cages composed of poly-ether-ether-ketone (PEEK), fiber carbon, and titanium. Stand-alone ceramic spacers have been associated with fracture and cracks. Metallic cages such as titanium endure the risk of subsidence and migration. PEEK cages in combination with ceramics were shown to be a suitable substitute for autograft. None of the discussed options has demonstrated clear superiority over others, although direct comparisons are often difficult due to discrepancies in data collection and study methodologies. Future randomized clinical trials are warranted before definitive conclusions can be drawn.
NASA Astrophysics Data System (ADS)
Jallot, E.; Irigaray, J. L.; Oudadesse, H.; Brun, V.; Weber, G.; Frayssinet, P.
1999-05-01
From the viewpoint of hard tissue response to implant materials, calcium phosphates are probably the most compatible materials presently known. During the last few years, much attention has been paid to hydroxyapatite and β-tricalcium phosphate as potential biomaterials for bone substitute. A good implantation of biomaterials in the skeleton is to reach full integration of non-living implant with living bone. The aim of this study is to compare the resorption kinetics of four kinds of calcium phosphate ceramics: hydroxyapatite (Ca{10}(PO4)6(OH)2), hydroxyapatite doped with manganese or zinc and a composite material of 75% hydroxyapatite and 25% β-tricalcium phosphate (Ca3(PO4)2). Cylinders (5 6 mm in diameter) of these ceramics were packed into holes made in the femur diaphysis of mature ovine. At 2, 4, 8, 12, 16, 20, 28, 36 and 48 weeks after the operation, bone/implant interface was embedded in polymethylmethacrylate. We used the PIXE method (particle induced X-ray emission) to measure the distribution of mineral elements (Ca, P, Sr, Zn, Mn and Fe) at the bone/implant interface. At 4, 8, 16, 28 and 48 weeks after implantation we studied a biopsy of the ceramics by neutron activation method. Then, we have a global measurement of mineral elements in the biomaterial. The results showed that the resorption kinetics of hydroxyapatite doped with zinc was faster than that of the three other bioceramics.
Ng, Min Hwei; Duski, Suryasmi; Tan, Kok Keong; Yusof, Mohd Reusmaazran; Low, Kiat Cheong; Mohamed Rose, Isa; Mohamed, Zahiah; Bin Saim, Aminuddin; Idrus, Ruszymah Bt Hj
2014-01-01
Calcium phosphate-based bone substitutes have not been used to repair load-bearing bone defects due to their weak mechanical property. In this study, we reevaluated the functional outcomes of combining ceramic block with osteogenic-induced mesenchymal stem cells and platelet-rich plasma (TEB) to repair critical-sized segmental tibial defect. Comparisons were made with fresh marrow-impregnated ceramic block (MIC) and partially demineralized allogeneic bone block (ALLO). Six New Zealand White female rabbits were used in each study group and three rabbits with no implants were used as negative controls. By Day 90, 4/6 rabbits in TEB group and 2/6 in ALLO and MIC groups resumed normal gait pattern. Union was achieved significantly faster in TEB group with a radiological score of 4.50 ± 0.78 versus ALLO (1.06 ± 0.32), MIC (1.28 ± 0.24), and negative controls (0). Histologically, TEB group scored the highest percentage of new bone (82% ± 5.1%) compared to ALLO (5% ± 2.5%) and MIC (26% ± 5.2%). Biomechanically, TEB-treated tibiae achieved the highest compressive strength (43.50 ± 12.72 MPa) compared to those treated with ALLO (15.15 ± 3.57 MPa) and MIC (23.28 ± 6.14 MPa). In conclusion, TEB can repair critical-sized segmental load-bearing bone defects and restore limb function. PMID:25165699
Ohta, Kouji; Tada, Misato; Ninomiya, Yoshiaki; Kato, Hiroki; Ishida, Fumi; Abekura, Hitoshi; Tsuga, Kazuhiro; Takechi, Masaaki
2017-12-01
Autogenous block bone grafting as treatment for alveolar ridge atrophy has various disadvantages, including a limited availability of sufficiently sized and shaped grafts, donor site morbidity and resorption of the grafted bone. As a result, interconnected porous hydroxyapatite ceramic (IP-CHA) materials with high porosity have been developed and used successfully in orthopedic cases. To the best of the author's knowledge, this is the first report of clinical application of an IP-CHA block for onlay grafting for implant treatment in a patient with horizontal alveolar atrophy. The present study performed onlay block grafting using an IP-CHA block to restore bone volume for implant placement in the alveolar ridge area without collecting autogenous bone. Dental X-ray findings revealed that the border of the IP-CHA block became increasingly vague over the 3-year period, whereas CT scanning revealed that the gap between the block and bone had a smooth transition, indicating that IP-CHA improved the process of integration with host bone. In follow-up examinations over a period of 5 years, the implants and superstructures had no problems. An IP-CHA block may be useful as a substitute for onlay block bone grafting in implant treatment.
Faruq, Omar; Kim, Boram; Padalhin, Andrew R; Lee, Gun Hee; Lee, Byong-Taek
2017-10-01
An ideal bone substitute should be made of biocompatible materials that mimic the structure, characteristics, and functions of natural bone. Many researchers have worked on the fabrication of different bone scaffold systems including ceramic-polymer hybrid system. In the present study, we incorporated hyaluronic acid-gelatin hydrogel to micro-channeled biphasic calcium phosphate granules as a carrier to improve cell attachment and proliferation through highly interconnected porous structure. This hybrid system is composed of ceramic biphasic calcium phosphate granules measuring 1 mm in diameter with seven holes and hyaluronic acid-gelatin hydrogel. This combination of biphasic calcium phosphate and hyaluronic acid-gelatin retained suitable characteristics for bone regeneration. The resulting scaffold had a porosity of 56% with a suitable pore sizes. The mechanical strength of biphasic calcium phosphate granule increased after loading hyaluronic acid-gelatin from 4.26 ± 0.43 to 6.57 ± 0.25 MPa, which is highly recommended for cancellous bone substitution. Swelling and degradation rates decreased in the hybrid scaffold compared to hydrogel due to the presence of granules in hybrid scaffold. In vitro cytocompatibility studies were observed by preosteoblasts (MC3T3-E1) cell line and the result revealed that biphasic calcium phosphate/hyaluronic acid-gelatin significantly increased cell growth and proliferation compared to biphasic calcium phosphate granules. Analysis of micro-computed tomography data and stained tissue sections from the implanted samples showed that the hybrid scaffold had good osseointegration and better bone formation in the scaffold one and two months postimplantation. Histological section confirmed the formation of dense collagenous tissue and new bone in biphasic calcium phosphate/hyaluronic acid-gelatin scaffolds at two months. Our study demonstrated that such hybrid biphasic calcium phosphate/hyaluronic acid-gelatin scaffold is a promising system for bone regeneration.
The biodegradation of hydroxyapatite bone graft substitutes in vivo.
Rumpel, E; Wolf, E; Kauschke, E; Bienengräber, V; Bayerlein, T; Gedrange, T; Proff, P
2006-02-01
Hydroxyapatite (HA) ceramics are widely used for bone reconstruction. They are osteoconductive and serve as structural scaffolds for the deposition of new bone. Generally, scaffold materials should be degradable as they affect the mechanical properties of the reconstructed bone negatively. Degradation by osteoclasts during the bone remodelling process is desirable but often does not take place. In the current study we analysed by light microscopy the degradation of two granular HA implants in critically sized defects in the mandibula of Goettingen mini-pigs five weeks after implantation. Bio-Oss consists of sintered bovine bone and NanoBone is a synthetic HA produced in a sol-gel process in the presence of SiO2. We found that both biomaterials were degraded by osteoclasts with ruffled borders and acid phosphatase activity. The osteoclasts created resorption lacunae and resorptive trails and contained mineral particles. Frequently, resorption surfaces were in direct contact with bone formative surfaces on one granule. Granules, especially of NanoBone, were also covered by osteoclasts if located in vascularised connective tissue distant from bone tissue. However, this usually occurred without the creation of resorption lacunae. The former defect margins consisted of newly formed bone often without remnants of bone substitutes. Our results show that the degradation of both biomaterials corresponds to the natural bone degradation processes and suggest the possibility of complete resorption during bone remodelling.
Ceramic-polylactide composite material used in a model of healing of osseous defects in rabbits.
Myciński, Paweł; Zarzecka, Joanna; Skórska-Stania, Agnieszka; Jelonek, Agnieszka; Okoń, Krzysztof; Wróbel, Maria
The growing demand for various kinds of bone regeneration material has in turn increased the desire to find materials with optimal physical, chemical, and biological properties. The objective of the present study was to identify the proportions of ceramic and polylactide components in a bone substitute material prepared in collaboration with the Crystal Chemistry of Drugs Team of the Faculty of Chemistry at the Jagiellonian University, which would be optimal for bone regeneration processes. Another goal was to provide a histological analysis of the influence of a ceramic-polylactide composite on the healing of osseous defects in rabbits. The study was performed on laboratory animals (18 New Zealand White rabbits). The following study groups were formed: - group A (study group, 9 animals) - in this group we performed a histological analysis of healing with a ceramic-polylactide composite based on an 80/20 mix of hydroxyapatite and polylactide; - group B (study group, 9 animals) - in this group we performed a histological analysis of healing with a ceramic-polylactide composite with a reduced amount of hydroxyapatite compared to the previous group, i.e. in a ratio of 61/39; - group K (control, 18 animals) - the control group comprised self-healing, standardised osseous defects prepared in the calvarial bone of the rabbits on the contralateral side. In the assessment of histological samples, we were also able to eliminate individual influences that might have led to differentiation in wound healing. The material used in the histological analysis took the form of rabbit bone tissue samples, containing both defects, with margins of around 0.5 cm, taken 1, 3, and 6 months after the experiment. The osseous defects from groups A and B filled with ceramic-polylactide material healed with less inflammatory infiltration than was the case with control group K. They were also characterised by faster regression, and no resorption or osteonecrosis, which allowed for better regeneration of the bone tissue. A statistical analysis of the study results revealed the increased resorptive activity of the composite in group B, which may have been due to its higher polylactide content. Simultaneously, we observed that healing of osseous defects filled with ceramic-polylactide composites in 80/20 and 61/39 ratios was comparable.
Walschot, Lucas H B; Aquarius, René; Schreurs, Barend W; Verdonschot, Nico; Buma, Pieter
2012-08-01
Impaction grafting restores bone defects in hip arthroplasty. Defects are reconstructed with bone particles (BoP) as substitute materials with adequate mechanical and biological properties are not yet available. Ceramic particles (CeP) have mechanical drawbacks as opposed to porous titanium particles (TiP). In this in vivo study, bone ingrowth and bone volume in coated and noncoated TiP were compared to porous biphasic calcium-phospate CeP and allograft BoP. Coatings consisted of silicated calcium-phosphate and carbonated apatite. Materials were implanted in goats and impacted in cylindrical defects (diameter 8 mm) in the cancellous bone of the femur. On the basis of fluorochrome labeling and histology, bone ingrowth distance was measured at 4, 8, and 12 weeks. Cross-sectional bone area was measured at 12 weeks. TiP created a coherent matrix of entangled particles. CeP pulverized and were noncoherent. Bone ingrowth in TiP improved significantly by the coatings to levels comparable to BoP and CeP. Cross-sectional bone area was smaller in CeP and TiP compared to BoP. The osteoconductive properties of impacted TiP with a calcium-phosphate coating are comparable to impacted allograft bone and impacted biphasic ceramics. A more realistic loaded in vivo study should prove that coated TiP is an attractive alternative to allograft bone. Copyright © 2012 Wiley Periodicals, Inc.
Boos, Anja M; Loew, Johanna S; Deschler, Gloria; Arkudas, Andreas; Bleiziffer, Oliver; Gulle, Heinz; Dragu, Adrian; Kneser, Ulrich; Horch, Raymund E; Beier, Justus P
2011-06-01
Bone tissue engineering approaches increasingly focus on the use of mesenchymal stem cells (MSC). In most animal transplantation models MSC are isolated and expanded before auto cell transplantation which might be critical for clinical application in the future. Hence this study compares the potential of directly auto-transplanted versus in vitro expanded MSC with or without bone morphogenetic protein-2 (BMP-2) to induce bone formation in a large volume ceramic bone substitute in the sheep model. MSC were isolated from bone marrow aspirates and directly auto-transplanted or expanded in vitro and characterized using fluorescence activated cell sorting (FACS) and RT-PCR analysis before subcutaneous implantation in combination with BMP-2 and β-tricalcium phosphate/hydroxyapatite (β-TCP/HA) granules. Constructs were explanted after 1 to 12 weeks followed by histological and RT-PCR evaluation. Sheep MSC were CD29(+), CD44(+) and CD166(+) after selection by Ficoll gradient centrifugation, while directly auto-transplanted MSC-populations expressed CD29 and CD166 at lower levels. Both, directly auto-transplanted and expanded MSC, were constantly proliferating and had a decreasing apoptosis over time in vivo. Directly auto-transplanted MSC led to de novo bone formation in a heterotopic sheep model using a β-TCP/HA matrix comparable to the application of 60 μg/ml BMP-2 only or implantation of expanded MSC. Bone matrix proteins were up-regulated in constructs following direct auto-transplantation and in expanded MSC as well as in BMP-2 constructs. Up-regulation was detected using immunohistology methods and RT-PCR. Dense vascularization was demonstrated by CD31 immunohistology staining in all three groups. Ectopic bone could be generated using directly auto-transplanted or expanded MSC with β-TCP/HA granules alone. Hence BMP-2 stimulation might become dispensable in the future, thus providing an attractive, clinically feasible approach to bone tissue engineering. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.
Trajkovski, Branko; Jaunich, Matthias; Müller, Wolf-Dieter; Beuer, Florian; Zafiropoulos, Gregory-George; Houshmand, Alireza
2018-01-30
The indication-oriented Dental Bone Graft Substitutes (DBGS) selection, the correct bone defects classification, and appropriate treatment planning are very crucial for obtaining successful clinical results. However, hydrophilic, viscoelastic, and physicochemical properties' influence on the DBGS regenerative potential has poorly been studied. For that reason, we investigated the dimensional changes and molecular mobility by Dynamic Mechanical Analysis (DMA) of xenograft (cerabone ® ), synthetic (maxresorb ® ), and allograft (maxgraft ® , Puros ® ) blocks in a wet and dry state. While no significant differences could be seen in dry state, cerabone ® and maxresorb ® blocks showed a slight height decrease in wet state, whereas both maxgraft ® and Puros ® had an almost identical height increase. In addition, cerabone ® and maxresorb ® blocks remained highly rigid and their damping behaviour was not influenced by the water. On the other hand, both maxgraft ® and Puros ® had a strong increase in their molecular mobility with different damping behaviour profiles during the wet state. A high-speed microscopical imaging system was used to analyze the hydrophilicity in several naturally derived (cerabone ® , Bio-Oss ® , NuOss ® , SIC ® nature graft) and synthetic DBGS granules (maxresorb ® , BoneCeramic ® , NanoBone ® , Ceros ® ). The highest level of hydrophilicity was detected in cerabone ® and maxresorb ® , while Bio-Oss ® and BoneCeramic ® had the lowest level of hydrophilicity among both naturally derived and synthetic DBGS groups. Deviations among the DBGS were also addressed via physicochemical differences recorded by Micro Computed Tomography, Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, X-ray powder Diffractometry, and Thermogravimetric Analysis. Such DBGS variations could influence the volume stability at the grafting site, handling as well as the speed of vascularization and bone regeneration. Therefore, this study initiates a new insight into the DBGS differences and their importance for successful clinical results.
Müller, Wolf-Dieter; Beuer, Florian; Zafiropoulos, Gregory-George; Houshmand, Alireza
2018-01-01
The indication-oriented Dental Bone Graft Substitutes (DBGS) selection, the correct bone defects classification, and appropriate treatment planning are very crucial for obtaining successful clinical results. However, hydrophilic, viscoelastic, and physicochemical properties’ influence on the DBGS regenerative potential has poorly been studied. For that reason, we investigated the dimensional changes and molecular mobility by Dynamic Mechanical Analysis (DMA) of xenograft (cerabone®), synthetic (maxresorb®), and allograft (maxgraft®, Puros®) blocks in a wet and dry state. While no significant differences could be seen in dry state, cerabone® and maxresorb® blocks showed a slight height decrease in wet state, whereas both maxgraft® and Puros® had an almost identical height increase. In addition, cerabone® and maxresorb® blocks remained highly rigid and their damping behaviour was not influenced by the water. On the other hand, both maxgraft® and Puros® had a strong increase in their molecular mobility with different damping behaviour profiles during the wet state. A high-speed microscopical imaging system was used to analyze the hydrophilicity in several naturally derived (cerabone®, Bio-Oss®, NuOss®, SIC® nature graft) and synthetic DBGS granules (maxresorb®, BoneCeramic®, NanoBone®, Ceros®). The highest level of hydrophilicity was detected in cerabone® and maxresorb®, while Bio-Oss® and BoneCeramic® had the lowest level of hydrophilicity among both naturally derived and synthetic DBGS groups. Deviations among the DBGS were also addressed via physicochemical differences recorded by Micro Computed Tomography, Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, X-ray powder Diffractometry, and Thermogravimetric Analysis. Such DBGS variations could influence the volume stability at the grafting site, handling as well as the speed of vascularization and bone regeneration. Therefore, this study initiates a new insight into the DBGS differences and their importance for successful clinical results. PMID:29385747
Piezoelectric ceramic implants: in vivo results.
Park, J B; Kelly, B J; Kenner, G H; von Recum, A F; Grether, M F; Coffeen, W W
1981-01-01
The suitability of barium titanate (BaTiO3) ceramic for direct substitution of hard tissues was evaluated using both electrically stimulated (piezoelectric) and inactive (nonpolarized) test implants. Textured cylindrical specimens, half of them made piezoelectric by polarization in a high electric field, were implanted into the cortex of the midshaft region of the femora of dogs for various periods of time. Interfacial healing and bio-compatibility of the implant material were studied using mechanical, microradiographical, and histological techniques. Our results indicate that barium titanate ceramic shows a very high degree of biocompatibility as evidenced by the absence of inflammatory or foreign body reactions at the implant-tissue interface. Furthermore, the material and its surface porosity allowed a high degree of bone ingrowth as evidenced by microradiography and a high degree of interfacial tensile strength. No difference was found between the piezoelectric and the electrically neutral implant-tissue interfaces. Possible reasons for this are discussed. The excellent mechanical properties of barium titanate, its superior biocompatibility, and the ability of bone to form a strong mechanical interfacial bond with it, makes this material a new candidate for further tests for hard tissue replacement.
A process for the development of strontium hydroxyapatite
NASA Astrophysics Data System (ADS)
Zahra, N.; Fayyaz, M.; Iqbal, W.; Irfan, M.; Alam, S.
2014-06-01
A procedure for the preparation of Strontium Hydroxyapatite is adapted to produce high purity and better homogeneity ceramic with good Crystallinity. The strontium substituted bone cement has potential for use in orthopedic surgeries. Ionic Strontium (Sr) in humans shares the same physiological pathway as calcium and can be deposited in the mineral structure of the bone. In the present study, a novel concept of preparing Sr-contained Hydroxyapatite bone cement by using a precipitation method is proposed to get an ideal biomaterial that possesses potential degradability and more excellent pharmacological effect. Chemical analysis, Fourier Transform Infra Red analysis and Thermogravimetric/ Differential Scanning Calorimetric studies were conducted on prepared Strontium Hydroxyapatite sample to characterize the incorporation of 15% Sr2+ into the crystal lattice of Hydroxyapatite. Strontium was quantitatively incorporated into Hydroxyapatite where its substitution for calcium provoked a linear shift of the infrared absorption bands of the hydroxyl and phosphate groups. Thus, the formation of Sr-HAp was confirmed by Chemical Analysis, FT-IR and TGA/DSC results.
Raina, Deepak Bushan; Isaksson, Hanna; Hettwer, Werner; Kumar, Ashok; Lidgren, Lars; Tägil, Magnus
2016-01-01
In orthopedic surgery, large amount of diseased or injured bone routinely needs to be replaced. Autografts are mainly used but their availability is limited. Commercially available bone substitutes allow bone ingrowth but lack the capacity to induce bone formation. Thus, off-the-shelf osteoinductive bone substitutes that can replace bone grafts are required. We tested the carrier properties of a biphasic, calcium sulphate and hydroxyapatite ceramic material, containing a combination of recombinant human bone morphogenic protein-2 (rhBMP-2) to induce bone, and zoledronic acid (ZA) to delay early resorption. In-vitro, the biphasic material released 90% of rhBMP-2 and 10% of ZA in the first week. No major changes were found in the surface structure using scanning electron microscopy (SEM) or in the mechanical properties after adding rhBMP-2 or ZA. In-vivo bone formation was studied in an abdominal muscle pouch model in rats (n = 6/group). The mineralized volume was significantly higher when the biphasic material was combined with both rhBMP-2 and ZA (21.4 ± 5.5 mm3) as compared to rhBMP-2 alone (10.9 ± 2.1 mm3) when analyzed using micro computed tomography (μ-CT) (p < 0.01). In the clinical setting, the biphasic material combined with both rhBMP-2 and ZA can potentially regenerate large volumes of bone. PMID:27189411
3D Printing of Calcium Phosphate Ceramics for Bone Tissue Engineering and Drug Delivery
Trombetta, Ryan; Inzana, Jason A.; Schwarz, Edward M.; Kates, Stephen L.; Awad, Hani A.
2016-01-01
Additive manufacturing, also known as 3D printing, has emerged over the past 3 decades as a disruptive technology for rapid prototyping and manufacturing. Vat polymerization, powder bed fusion, material extrusion, and binder jetting are distinct technologies of additive manufacturing, which have been used in a wide variety of fields, including biomedical research and tissue engineering. The ability to print biocompatible, patient-specific geometries with controlled macro- and micropores, and to incorporate cells, drugs and proteins has made 3D-printing ideal for orthopaedic applications, such as bone grafting. Herein, we performed a systematic review examining the fabrication of calcium phosphate (CaP) ceramics by 3D printing, their biocompatibility in vitro, and their bone regenerative potential in vivo, as well as their use in localized delivery of bioactive molecules or cells. Understanding the advantages and limitations of the different 3D printing approaches, CaP materials, and bioactive additives through critical evaluation of in vitro and in vivo evidence of efficacy is essential for developing new classes of bone graft substitutes that can perform as well as autografts and allografts or even surpass the performance of these clinical standards. PMID:27324800
3D Printing of Calcium Phosphate Ceramics for Bone Tissue Engineering and Drug Delivery.
Trombetta, Ryan; Inzana, Jason A; Schwarz, Edward M; Kates, Stephen L; Awad, Hani A
2017-01-01
Additive manufacturing, also known as 3D printing, has emerged over the past 3 decades as a disruptive technology for rapid prototyping and manufacturing. Vat polymerization, powder bed fusion, material extrusion, and binder jetting are distinct technologies of additive manufacturing, which have been used in a wide variety of fields, including biomedical research and tissue engineering. The ability to print biocompatible, patient-specific geometries with controlled macro- and micro-pores, and to incorporate cells, drugs and proteins has made 3D-printing ideal for orthopaedic applications, such as bone grafting. Herein, we performed a systematic review examining the fabrication of calcium phosphate (CaP) ceramics by 3D printing, their biocompatibility in vitro, and their bone regenerative potential in vivo, as well as their use in localized delivery of bioactive molecules or cells. Understanding the advantages and limitations of the different 3D printing approaches, CaP materials, and bioactive additives through critical evaluation of in vitro and in vivo evidence of efficacy is essential for developing new classes of bone graft substitutes that can perform as well as autografts and allografts or even surpass the performance of these clinical standards.
Pneumaticos, Spyros G; Triantafyllopoulos, Georgios K; Basdra, Efthimia K; Papavassiliou, Athanasios G
2010-01-01
Abstract Several conditions in clinical orthopaedic practice can lead to the development of a diaphyseal segmental bone defect, which cannot heal without intervention. Segmental bone defects have been traditionally treated with bone grafting and/or distraction osteogenesis, methods that have many advantages, but also major drawbacks, such as limited availability, risk of disease transmission and prolonged treatment. In order to overcome such limitations, biological treatments have been developed based on specific pathways of bone physiology and healing. Bone tissue engineering is a dynamic field of research, combining osteogenic cells, osteoinductive factors, such as bone morphogenetic proteins, and scaffolds with osteoconductive and osteoinductive attributes, to produce constructs that could be used as bone graft substitutes for the treatment of segmental bone defects. Scaffolds are usually made of ceramic or polymeric biomaterials, or combinations of both in composite materials. The purpose of the present review is to discuss in detail the molecular and cellular basis for the development of bone tissue engineering constructs. PMID:20345845
Du, Dajiang; Asaoka, Teruo; Shinohara, Makoto; Kageyama, Tomonori; Ushida, Takashi; Furukawa, Katsuko Sakai
2015-01-01
Porous ceramic scaffolds with shapes matching the bone defects may result in more efficient grafting and healing than the ones with simple geometries. Using computer-assisted microstereolithography (MSTL), we have developed a novel gelcasting indirect MSTL technology and successfully fabricated two scaffolds according to CT images of rabbit femur. Negative resin molds with outer 3D dimensions conforming to the femur and an internal structure consisting of stacked meshes with uniform interconnecting struts, 0.5 mm in diameter, were fabricated by MSTL. The second mold type was designed for cortical bone formation. A ceramic slurry of beta-tricalcium phosphate (β-TCP) with room temperature vulcanization (RTV) silicone as binder was cast into the molds. After the RTV silicone was completely cured, the composite was sintered at 1500°C for 5 h. Both gross anatomical shape and the interpenetrating internal network were preserved after sintering. Even cortical structure could be introduced into the customized scaffolds, which resulted in enhanced strength. Biocompatibility was confirmed by vital staining of rabbit bone marrow mesenchymal stromal cells cultured on the customized scaffolds for 5 days. This fabrication method could be useful for constructing bone substitutes specifically designed according to local anatomical defects. PMID:26504839
NASA Astrophysics Data System (ADS)
Abdelghany, A. M.; Ouis, M. A.; Azooz, M. A.; ElBatal, H. A.; El-Bassyouni, G. T.
2016-01-01
Borate glasses containing SrO substituting both CaO and NaO were prepared and characterized for their bioactivity or bone bonding ability. Glass ceramic derivatives were prepared by thermal heat treatment process. FTIR, XRD and SEM measurements for the prepared glass and glass-ceramics before and after immersion in sodium phosphate solution for one and two weeks were carried out. The appearance of two IR peaks within the range 550-680 cm-1 after immersion in phosphate solution indicates the formation of hydroxyapatite or equivalent Sr phosphate layer. X-ray diffraction data agree with the FTIR spectral analysis. The solubility test was carried out for both glasses and glass ceramics derivatives in the same phosphate solution. The introduction of SrO increases the solubility for both glasses and glass ceramics and this is assumed to be due to the formation of Sr phosphate which is more soluble than calcium phosphate (hydroxyapatite). SEM images reveal varying changes in the surfaces of glass ceramics after immersion according to the SrO content.
Abdelghany, A M; Ouis, M A; Azooz, M A; ElBatal, H A; El-Bassyouni, G T
2016-01-05
Borate glasses containing SrO substituting both CaO and NaO were prepared and characterized for their bioactivity or bone bonding ability. Glass ceramic derivatives were prepared by thermal heat treatment process. FTIR, XRD and SEM measurements for the prepared glass and glass-ceramics before and after immersion in sodium phosphate solution for one and two weeks were carried out. The appearance of two IR peaks within the range 550-680cm(-1) after immersion in phosphate solution indicates the formation of hydroxyapatite or equivalent Sr phosphate layer. X-ray diffraction data agree with the FTIR spectral analysis. The solubility test was carried out for both glasses and glass ceramics derivatives in the same phosphate solution. The introduction of SrO increases the solubility for both glasses and glass ceramics and this is assumed to be due to the formation of Sr phosphate which is more soluble than calcium phosphate (hydroxyapatite). SEM images reveal varying changes in the surfaces of glass ceramics after immersion according to the SrO content. Copyright © 2015 Elsevier B.V. All rights reserved.
TCP is hardly resorbed and not osteoconductive in a non-loading calvarial model.
Handschel, Jörg; Wiesmann, Hans Peter; Stratmann, Udo; Kleinheinz, Johannes; Meyer, Ulrich; Joos, Ulrich
2002-04-01
Tricalciumphosphate (TCP) has been used as a ceramic bone substitute material in the orthopedic field as well as in craniofacial surgery. Some controversies exist concerning the osteoconductive potential of this material in different implantation sites. This study was designed to evaluate the biological response of calvarial bone towards TCP granules under non-loading conditions to assess the potential of TCP as a biodegredable and osteoconductive bone substitue material for the cranial vault. Full-thickness non-critical size defects were made bilaterally in the calvaria of 21 adult Wistar rats. One side was filled by TCP granules, the contralateral side was left empty and used as a control. Animals were sacrified in defined time intervals up to 6 months. Bone regeneration was analyzed with special respect toward the micromorphological and microanalytical features of the material-bone interaction by electron microscopy and electron diffraction analysis. Histologic examination revealed no TCP degradation even after 6 months of implantation. In contrast, a nearly complete bone regeneration of control defects was found after 6 months. At all times TCP was surrounded by a thin fibrous layer without presence of osteoblasts and features of regular mineralization. As far as degradation and substitution are concerned, TCP is a less favourable material tinder conditions of non-loading.
Meininger, Susanne; Mandal, Sourav; Kumar, Alok; Groll, Jürgen; Basu, Bikramjit; Gbureck, Uwe
2016-02-01
Strontium ions (Sr(2+)) are known to prevent osteoporosis and also encourage bone formation. Such twin requirements have motivated researchers to develop Sr-substituted biomaterials for orthopaedic applications. The present study demonstrates a new concept of developing Sr-substituted Mg3(PO4)2 - based biodegradable scaffolds. In particular, this work reports the fabrication, mechanical properties with an emphasis on strength reliability as well as in vitro degradation of highly biodegradable strontium-incorporated magnesium phosphate cements. These implantable scaffolds were fabricated using three-dimensional powder printing, followed by high temperature sintering and/or chemical conversion, a technique adaptable to develop patient-specific implants. A moderate combination of strength properties of 36.7MPa (compression), 24.2MPa (bending) and 10.7MPa (tension) were measured. A reasonably modest Weibull modulus of up to 8.8 was recorded after uniaxial compression or diametral tensile tests on 3D printed scaffolds. A comparison among scaffolds with varying compositions or among sintered or chemically hardened scaffolds reveals that the strength reliability is not compromised in Sr-substituted scaffolds compared to baseline Mg3(PO4)2. The micro-computed tomography analysis reveals the presence of highly interconnected porous architecture in three-dimension with lognormal pore size distribution having median in the range of 17.74-26.29μm for the investigated scaffolds. The results of extensive in vitro ion release study revealed passive degradation with a reduced Mg(2+) release and slow but sustained release of Sr(2+) from strontium-substituted magnesium phosphate scaffolds. Taken together, the present study unequivocally illustrates that the newly designed Sr-substituted magnesium phosphate scaffolds with good strength reliability could be used for biomedical applications requiring consistent Sr(2+)- release, while the scaffold degrades in physiological medium. The study investigates the additive manufacturing of scaffolds based on different strontium-substituted magnesium phosphate bone cements by means of three-dimensional powder printing technique (3DPP). Magnesium phosphates were chosen due to their higher biodegradability compared to calcium phosphates, which is due to both a higher solubility as well as the absence of phase changes (to low soluble hydroxyapatite) in vivo. Since strontium ions are known to promote bone formation by stimulating osteoblast growth, we aimed to establish such a highly degradable magnesium phosphate ceramic with an enhanced bioactivity for new bone ingrowth. After post-processing, mechanical strengths of up to 36.7MPa (compression), 24.2MPa (bending) and 10.7MPa (tension) could be achieved. Simultaneously, the failure reliability of those bioceramic implant materials, measured by Weibull modulus calculations, were in the range of 4.3-8.8. Passive dissolution studies in vitro proved an ion release of Mg(2+) and PO4(3-) as well as Sr(2+), which is fundamental for in vivo degradation and a bone growth promoting effect. In our opinion, this work broadens the range of bioceramic bone replacement materials suitable for additive manufacturing processing. The high biodegradability of MPC ceramics together with the anticipated promoting effect on osseointegration opens up the way for a patient-specific treatment with the prospect of a fast and complete healing of bone fractures. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Characterization and in vitro bioactivity of zinc-containing bioactive glass and glass-ceramics.
Du, Rui Lin; Chang, Jiang; Ni, Si Yu; Zhai, Wan Yin; Wang, Jun Ying
2006-04-01
Zinc-containing glass is prepared by the substitution of CaO in 58S bioactive glass with 0.5 and 4 wt% ZnO, and glass-ceramics are obtained by heat-treating the glass at 1,200 C. The bending strength and in vitro bioactivity of the glass and glass-ceramics are evaluated. The results indicate that Zn promotes the crystallization of SiO(2) and wollastonite in glass-ceramics, and proper crystallization can enhance the bending strength of the glass-ceramic. The in vitro results show that ZnO in glass retards the hydroxyapatite (HA) nucleation at the initial stage of simulated body fluid (SBF) soaking, but does not affect the growth of HA after long periods of soaking, and the ionic products of 58S4Z glass can stimulate the proliferation of osteoblast at certain concentrations. Osteoblasts attach well on both glass samples and glass-ceramic samples, but the high Si ion concentration released from glass samples restrains the proliferation of osteoblasts after 3 days of culture. In contrast, osteoblasts show good proliferation on glass-ceramic samples, and ZnO in glass-ceramics promotes the proliferation rate. The results in this study suggest that the glass and glass-ceramics with different ZnO content might be used as bioactive bone implant materials in different applications.
Son, Jun-Sik; Kim, Su-Gwan; Oh, Ji-Su; Appleford, Mark; Oh, Sunho; Ong, Joo L; Lee, Kyu-Bok
2011-12-15
This study presents a novel design of a ceramic/polymer biphasic combination scaffold that mimics natural bone structures and is used as a bone graft substitute. To mimic the natural bone structures, the outside cortical-like shells were composed of porous hydroxyapatite (HA) with a hollow interior using a polymeric template-coating technique; the inner trabecular-like core consisted of porous poly(D,L-lactic acid) (PLA) that was loaded with dexamethasone (DEX) and was directly produced using a particle leaching/gas forming technique to create the inner diameter of the HA scaffold. It was observed that the HA and PLA parts of the fabricated HA/PLA biphasic scaffold contained open and interconnected pore structures, and the boundary between both parts was tightly connected without any gaps. It was found that the structure of the combination scaffold was analogous to that of natural bone based on micro-computed tomography analysis. Additionally, the dense, uniform apatite layer was formed on the surface of the HA/PLA biphasic scaffold through a biomimetic process, and DEX was successfully released from the PLA of the biphasic scaffold over a 1-month period. This release caused human embryonic palatal mesenchyme cells to proliferate, differentiate, produce ECM, and form tissue in vitro. Therefore, it was concluded that this functionally graded scaffold is similar to natural bone and represents a potential bone-substitute material. Copyright © 2011 Wiley Periodicals, Inc.
In vitro culture of large bone substitutes in a new bioreactor: importance of the flow direction.
Olivier, V; Hivart, Ph; Descamps, M; Hardouin, P
2007-09-01
New biomaterials combined with osteogenic cells are now being developed as an alternative to autogeneous bone grafts when the skeletal defect reaches a critical size. Yet, the size issue appears to be a key obstacle in the development of bone tissue engineering. Bioreactors are needed to allow the in vitro expansion of cells inside large bulk materials under appropriate conditions. However, no bioreactor has yet been designed for large-scale 3D structures and custom-made scaffolds. In this study, we evaluate the efficiency of a new bioreactor for the in vitro development of large bone substitutes, ensuring the perfusion of large ceramic scaffolds by the nutritive medium. The survival and proliferation of cells inside the scaffolds after 7 and 28 days in this dynamic culture system and the impact of the direction of the flow circulation are evaluated. The follow-up of glucose consumption, DNA quantification and microscopic evaluation all confirmed cell survival and proliferation for a sample under dynamic culture conditions, whereas static culture leads to the death of cells inside the scaffolds. Two directions of flow perfusion were assayed; the convergent direction leads to enhanced results compared to divergent flow.
Navarro, M; Michiardi, A; Castaño, O; Planell, J.A
2008-01-01
At present, strong requirements in orthopaedics are still to be met, both in bone and joint substitution and in the repair and regeneration of bone defects. In this framework, tremendous advances in the biomaterials field have been made in the last 50 years where materials intended for biomedical purposes have evolved through three different generations, namely first generation (bioinert materials), second generation (bioactive and biodegradable materials) and third generation (materials designed to stimulate specific responses at the molecular level). In this review, the evolution of different metals, ceramics and polymers most commonly used in orthopaedic applications is discussed, as well as the different approaches used to fulfil the challenges faced by this medical field. PMID:18667387
An in vitro study of electrically active hydroxyapatite-barium titanate ceramics using Saos-2 cells.
Baxter, Frances R; Turner, Irene G; Bowen, Christopher R; Gittings, Jonathan P; Chaudhuri, Julian B
2009-08-01
Electrically active ceramics are of interest as bone graft substitute materials. This study investigated the ferroelectric properties of hydroxyapatite-barium titanate (HABT) composites and the behaviour of osteoblast-like cells seeded on their surfaces. A piezoelectric coefficient (d(33)) of 57.8 pCN(-1) was observed in HABT discs prepared for cell culture. The attachment, proliferation, viability, morphology and metabolic activity of cells cultured on unpoled HABT were comparable to those observed on commercially available hydroxyapatite at all time points. No indication of the cytotoxicity of HABT was detected. At one day after seeding, cell attachment was modified on both the positive and negative surfaces of poled HABT. After longer incubations, all parameters observed were comparable on poled and unpoled ceramics. The results indicate that HABT ceramics are biocompatible in the short term in vitro and that further investigation of cell responses to these materials under mechanical load and at longer incubation times is warranted.
Sun, Miao; Liu, An; Shao, Huifeng; Yang, Xianyan; Ma, Chiyuan; Yan, Shigui; Liu, Yanming; He, Yong; Gou, Zhongru
2016-01-01
Wollastonite (CaSiO3; CSi) ceramic is a promising bioactive material for bone defect repair due to slightly fast degradation of its porous constructs in vivo. In our previous strategy some key features of CSi ceramic have been significantly improved by dilute magnesium doping for regulating mechanical properties and biodegradation. Here we demonstrate that 6 ~ 14% of Ca substituted by Mg in CSi (CSi-Mgx, x = 6, 10, 14) can enhance the mechanical strength (>40 MPa) but not compromise biological performances of the 3D printed porous scaffolds with open porosity of 60‒63%. The in vitro cell culture tests in vitro indicated that the dilute Mg doping into CSi was beneficial for ALP activity and high expression of osteogenic marker genes of MC3T3-E1 cells in the scaffolds. A good bone tissue regeneration response and elastoplastic response in mechanical strength in vivo were determined after implantation in rabbit calvarial defects for 6‒12 weeks. Particularly, the CSi-Mg10 and CSi-Mg14 scaffolds could enhance new bone regeneration with a significant increase of newly formed bone tissue (18 ~ 22%) compared to the pure CSi (~14%) at 12 weeks post-implantation. It is reasonable to consider that, therefore, such CSi-Mgx scaffolds possessing excellent strength and reasonable degradability are promising for bone reconstruction in thin-wall bone defects. PMID:27658481
Development of hydroxyapatite/polyvinyl alcohol bionanocomposite for prosthesis implants
NASA Astrophysics Data System (ADS)
Karthik, V.; Pabi, S. K.; Chowdhury, S. K. Roy
2018-02-01
Hydroxyapatite (Ca10(PO4)6(OH)2) has similar structural and chemical properties of natural bone mineral and hence widely used as a bone replacement substitute. Natural bone consists of hydroxyapatite and collagen. For mimicking the natural, in the present work, a sintered porous hydroxyapatite component has been vacuum impregnated with Polyvinyl alcohol (PVA), which has better properties like biocompatibility, biodegradability and water- solubility. Hydroxyapatite powders have been made into nanosize to reduce the melting point and hence the sintering temperature. In the present investigation high energy ball mill is used to produce nano-hydroxyapatite powders in bulk quantity by optimizing the milling parameters using stainless steel grinding media. Pellets of 10 mm diameter have been produced from nano- hydroxyapatite powders under different uniaxial compaction pressures. The pellets have been sintered to form porous compacts. The vacuum impregnation of sintered pallets with PVA solution of different strength has been done to find the optimum impregnation condition. Microhardness, compressive strength, wear loss and haemocompatibility of hydroxyapatite ceramics have been studied before and after impregnation of PVA. The nano- hydroxyapatite/PVA composites have superior mechanical properties and reduced wear loss than the non-impregnated porous nano-hydroxyapatite ceramics.
Irradiation conditions for fiber laser bonding of HAp-glass ceramics with bovine cortical bone.
Tadano, Shigeru; Yamada, Satoshi; Kanaoka, Masaru
2014-01-01
Orthopedic implants are widely used to repair bones and to replace articulating joint surfaces. It is important to develop an instantaneous technique for the direct bonding of bone and implant materials. The aim of this study was to develop a technique for the laser bonding of bone with an implant material like ceramics. Ceramic specimens (10 mm diameter and 1 mm thickness) were sintered with hydroxyapatite and MgO-Al2O3-SiO2 glass powders mixed in 40:60 wt% proportions. A small hole was bored at the center of a ceramic specimen. The ceramic specimen was positioned onto a bovine bone specimen and a 5 mm diameter area of the ceramic specimen was irradiated using a fiber laser beam (1070-1080 nm wavelength). As a result, the bone and the ceramic specimens bonded strongly under the irradiation conditions of a 400 W laser power and a 1.0 s exposure time. The maximum shear strength was 5.3 ± 2.3 N. A bonding substance that penetrated deeply into the bone specimen was generated around the hole in the ceramic specimen. On using the fiber laser, the ceramic specimen instantaneously bonded to the bone specimen. Further, the irradiation conditions required for the bonding were investigated.
Incorporation of RANKL promotes osteoclast formation and osteoclast activity on β-TCP ceramics.
Choy, John; Albers, Christoph E; Siebenrock, Klaus A; Dolder, Silvia; Hofstetter, Wilhelm; Klenke, Frank M
2014-12-01
β-Tricalcium phosphate (β-TCP) ceramics are approved for the repair of osseous defects. In large defects, however, the substitution of the material by authentic bone is inadequate to provide sufficient long-term mechanical stability. We aimed to develop composites of β-TCP ceramics and receptor activator of nuclear factor κ-B ligand (RANKL) to enhance the formation of osteoclasts and promote cell mediated calcium phosphate resorption. RANKL was adsorbed superficially onto β-TCP ceramics or incorporated into a crystalline layer of calcium phosphate by the use of a co-precipitation technique. Murine osteoclast precursors were seeded onto the ceramics. After 15 days, the formation of osteoclasts was quantified cytologically and colorimetrically with tartrate-resistant acidic phosphatase (TRAP) staining and TRAP activity measurements, respectively. Additionally, the expression of transcripts encoding the osteoclast gene products cathepsin K, calcitonin receptor, and of the sodium/hydrogen exchanger NHA2 were quantified by real-time PCR. The activity of newly formed osteoclasts was evaluated by means of a calcium phosphate resorption assay. Superficially adsorbed RANKL did not induce the formation of osteoclasts on β-TCP ceramics. When co-precipitated onto β-TCP ceramics RANKL supported the formation of mature osteoclasts. The development of osteoclast lineage cells was further confirmed by the increased expression of cathepsin K, calcitonin receptor, and NHA2. Incorporated RANKL stimulated the cells to resorb crystalline calcium phosphate. Our in vitro study shows that RANKL incorporated into β-TCP ceramics induces the formation of active, resorbing osteoclasts on the material surface. Once formed, osteoclasts mediate the release of RANKL thereby perpetuating their differentiation and activation. In vivo, the stimulation of osteoclast-mediated resorption may contribute to a coordinated sequence of material resorption and bone formation. Further in vivo studies are needed to confirm the current in vitro findings. Copyright © 2014 Elsevier Inc. All rights reserved.
Promotion of osteogenesis by a piezoelectric biological ceramic.
Feng, J; Yuan, H; Zhang, X
1997-12-01
Hydroxyapatite (HA) ceramic and piezoelectric biological ceramic, hydroxyapatite and barium titanate (HABT), were implanted in the jawbones of dogs. Histological observation showed that, compared with HA ceramics, HABT promoted the growth and repair of the bone significantly, the tissue growth around the HABT ceramic was direction-dependent, the collagen arranged orderly and the bone grew orderly. The order growth of the bone increased the efficiency of osteogenesis on the surface of the implanted HABT ceramics.
Yokoyama, Atsuro; Yamamoto, Satoru; Kawasaki, Takao; Kohgo, Takao; Nakasu, Masanori
2002-02-01
We developed a calcium phosphate cement that could be molded into any desired shape due to its chewing-gum-like consistency after mixing. The powder component of the cement consists of alpha-tricalcium phosphate and tetracalcium phosphate, which were made by decomposition of hydroxyapatite ceramic blocks. The liquid component consists of citric acid, chitosan and glucose solution. In this study, we used 20% citric acid (group 20) and 45% citric acid (group 45). The mechanical properties and biocompatibility of this new cement were investigated. The setting times of cements were 5.5 min, in group 20 and 6.4 min, in group 45. When incubated in physiological saline, the cements were transformed to hydroxyapatite at 3, and 6 weeks, the compressive strengths were 15.6 and 20.7 MPa, in group 45 and group 20, respectively. The inflammatory response around the cement implanted on the bone and in the subcutaneous tissue in rats was more prominent in group 45 than in group 20 at 1 week after surgery. After 4 weeks, the inflammation disappeared and the cement had bound to bone in both groups. These results indicate that this new calcium phosphate cement is a suitable bone substitute material and that the concentration of citric acid in the liquid component affects its mechanical properties and biocompatibility.
Guided bone augmentation using ceramic space-maintaining devices: the impact of chemistry
Anderud, Jonas; Abrahamsson, Peter; Jimbo, Ryo; Isaksson, Sten; Adolfsson, Erik; Malmström, Johan; Naito, Yoshihito; Wennerberg, Ann
2015-01-01
The purpose of the study was to evaluate histologically, whether vertical bone augmentation can be achieved using a hollow ceramic space maintaining device in a rabbit calvaria model. Furthermore, the chemistry of microporous hydroxyapatite and zirconia were tested to determine which of these two ceramics are most suitable for guided bone generation. 24 hollow domes in two different ceramic materials were placed subperiosteal on rabbit skull bone. The rabbits were sacrificed after 12 weeks and the histology results were analyzed regarding bone-to-material contact and volume of newly formed bone. The results suggest that the effect of the microporous structure of hydroxyapatite seems to facilitate for the bone cells to adhere to the material and that zirconia enhance a slightly larger volume of newly formed bone. In conclusion, the results of the current study demonstrated that ceramic space maintaining devices permits new bone formation and osteoconduction within the dome. PMID:25792855
Morimoto, Shinji; Anada, Takahisa; Honda, Yoshitomo; Suzuki, Osamu
2012-08-01
The present study was designed to investigate the extent to which calcium phosphate bone substitute materials, including osteoconductive octacalcium phosphate (OCP), display cytotoxic and inflammatory responses based on their dissolution in vitro. Hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) ceramics, which are clinically used, as well as dicalcium phosphate dihydrate (DCPD) and synthesized OCP were compared. The materials were well characterized by chemical analysis, x-ray diffraction and Fourier transform infrared spectroscopy. Calcium and phosphate ion concentrations and the pH of culture media after immersion of the materials were determined. The colony forming rate of Chinese hamster lung fibroblasts was estimated with extraction of the materials. Proliferation of bone marrow stromal ST-2 cells and inflammatory cytokine TNF-α production by THP-1 cells grown on the material-coated plates were examined. The materials had characteristics that corresponded to those reported. DCPD was shown to dissolve the most in the culture media, with a marked increase in phosphate ion concentration and a reduction in pH. ST-2 cells proliferated well on the materials, with the exception of DCPD, which markedly inhibited cellular growth. The colony forming capacity was the lowest on DCPD, while that of the other calcium phosphates was not altered. In contrast, TNF-α was not detected even in cells grown on DCPD, suggesting that calcium phosphate materials are essentially non-inflammatory, while the solubility of the materials can affect osteoblastic and fibroblastic cellular attachment. These results indicate that OCP is biocompatible, which is similar to the materials used clinically, such as HA. Therefore, OCP could be clinically used as a biocompatible bone substitute material.
NASA Astrophysics Data System (ADS)
Zhang, Lingli; Hanagata, Nobutaka; Maeda, Megumi; Minowa, Takashi; Ikoma, Toshiyuki; Fan, Hongsong; Zhang, Xingdong
2009-04-01
Because calcium phosphate (Ca-P) ceramics have been used as bone substitutes, it is necessary to investigate what effects the ceramics have on osteoblast maturation. We prepared three types of Ca-P ceramics with different Ca-P ratios, i.e. hydroxyapatite (HA), beta-tricalcium phosphate (β-TCP), and biphasic calcium phosphate (BCP) ceramics with dense-smooth and porous structures. Comprehensive gene expression microarray analysis of mouse osteoblast-like cells cultured on these ceramics revealed that porous Ca-P ceramics considerably affected the gene expression profiles, having a higher potential for osteoblast maturation. In the in vivo study that followed, porous Ca-P ceramics were implanted into rat skeletal muscle. Sixteen weeks after the implantation, more alkaline-phosphatase-positive cells were observed in the pores of hydroxyapatite and BCP, and the expression of the osteocalcin gene (an osteoblast-specific marker) in tissue grown in pores was also higher in hydroxyapatite and BCP than in β-TCP. In the pores of any Ca-P ceramics, 16 weeks after the implantation, we detected the expressions of marker genes of the early differentiation stage of chondrocytes and the complete differentiation stage of adipocytes, which originate from mesenchymal stem cells, as well as osteoblasts. These marker gene expressions were not observed in the muscle tissue surrounding the implanted Ca-P ceramics. These observations indicate that porous hydroxyapatite and BCP had a greater potential for promoting the differentiation of mesenchymal stem cells into osteoblasts than β-TCP.
Valiense, Helder; Barreto, Mauricio; Resende, Rodrigo F; Alves, Adriana T; Rossi, Alexandre M; Mavropoulos, Elena; Granjeiro, José M; Calasans-Maia, Mônica D
2016-02-01
Various synthetic bone substitutes have been developed to reconstruct bone defects. One of the most prevalent ceramics in bone treatment is hydroxyapatite (HA) that is a useful material as bone substitute, however, with a low rate of biodegradation. Its structure allows isomorphic cationic and anionic substitutions to be easily introduced, which can alter the crystallinity, morphology, biocompatibility, and osteoconductivity. The objective of this study was to investigate the in vitro and in vivo biological responses to strontium-containing nanostructured carbonated HA/sodium alginate (SrCHA) spheres (425<ϕ <600 μm) that were used for sinus lifts in rabbits using nanostructured carbonated HA/sodium alginate (CHA) as a reference. Cytocompatibility was determined using a multiparametric assay after exposing murine preosteoblasts to the extracts of these materials. Twelve male and female rabbits underwent bilateral sinus lift procedures and were divided into two groups (CHA or SrCHA) and in two experimental periods (4 and 12 weeks), for microscopic and histomorphometric analyses. The in vitro test revealed the overall viability of the cells exposed to the CHA and SrCHA extracts; thus, these extracts were considered cytocompatible, which was confirmed by three different parameters in the in vitro tests. The histological analysis showed chronic inflammation with a prevalence of macrophages around the CHA spheres after 4 weeks, and this inflammation decreased after 12 weeks. Bone formation was observed in both groups, and smaller quantities of SrCHA spheres were observed after 12 weeks, indicating greater bioresorption of SrCHA than CHA. SrCHA spheres are biocompatible and osteoconductive and undergo bioresorption earlier than CHA spheres. © 2015 Wiley Periodicals, Inc.
Shokrollahi, H; Salimi, F; Doostmohammadi, A
2017-10-01
In recent years, due to the controllable mechanical properties and degradation rate, calcium silicates such as akermanite (Ca 2 MgSi 2 O 7 ) with Ca-Mg and Si- containing bio-ceramics have received much more attention. In addition, the piezoelectric effect plays an important role in bone growth, remodeling and defect healing. To achieve our objective, the porous bioactive nano-composite with a suitable piezoelectric coefficient was fabricated by the freeze-casting technique from the barium titanate and nano-akermanite (BT/nAK) suspension. The highest d 33 of 4pC/N was obtained for BT90/nAK10. The compressive strength and porosity were for BT75/nAK25 and BT60/nAK40 at the highest level, respectively. The average pore channel diameter was 41 for BT75/nAK25. Interestingly enough, the inter-connected pore channel was observed in the SEM images. There was no detectable transformation phase in the XRD pattern for the BT/nAK composites. The manipulation flexibility of this method indicated the potential for the customized needs in the application of bone substitutes. An ((3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide)) MTT assay indicated that the obtained scaffolds have no cytotoxic effects on the human bone marrow mesenchymal stem cells. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bioactive ceramic-based materials with designed reactivity for bone tissue regeneration
Ohtsuki, Chikara; Kamitakahara, Masanobu; Miyazaki, Toshiki
2009-01-01
Bioactive ceramics have been used clinically to repair bone defects owing to their biological affinity to living bone; i.e. the capability of direct bonding to living bone, their so-called bioactivity. However, currently available bioactive ceramics do not satisfy every clinical application. Therefore, the development of novel design of bioactive materials is necessary. Bioactive ceramics show osteoconduction by formation of biologically active bone-like apatite through chemical reaction of the ceramic surface with surrounding body fluid. Hence, the control of their chemical reactivity in body fluid is essential to developing novel bioactive materials as well as biodegradable materials. This paper reviews novel bioactive materials designed based on chemical reactivity in body fluid. PMID:19158015
Current progress in bioactive ceramic scaffolds for bone repair and regeneration.
Gao, Chengde; Deng, Youwen; Feng, Pei; Mao, Zhongzheng; Li, Pengjian; Yang, Bo; Deng, Junjie; Cao, Yiyuan; Shuai, Cijun; Peng, Shuping
2014-03-18
Bioactive ceramics have received great attention in the past decades owing to their success in stimulating cell proliferation, differentiation and bone tissue regeneration. They can react and form chemical bonds with cells and tissues in human body. This paper provides a comprehensive review of the application of bioactive ceramics for bone repair and regeneration. The review systematically summarizes the types and characters of bioactive ceramics, the fabrication methods for nanostructure and hierarchically porous structure, typical toughness methods for ceramic scaffold and corresponding mechanisms such as fiber toughness, whisker toughness and particle toughness. Moreover, greater insights into the mechanisms of interaction between ceramics and cells are provided, as well as the development of ceramic-based composite materials. The development and challenges of bioactive ceramics are also discussed from the perspective of bone repair and regeneration.
Current Progress in Bioactive Ceramic Scaffolds for Bone Repair and Regeneration
Gao, Chengde; Deng, Youwen; Feng, Pei; Mao, Zhongzheng; Li, Pengjian; Yang, Bo; Deng, Junjie; Cao, Yiyuan; Shuai, Cijun; Peng, Shuping
2014-01-01
Bioactive ceramics have received great attention in the past decades owing to their success in stimulating cell proliferation, differentiation and bone tissue regeneration. They can react and form chemical bonds with cells and tissues in human body. This paper provides a comprehensive review of the application of bioactive ceramics for bone repair and regeneration. The review systematically summarizes the types and characters of bioactive ceramics, the fabrication methods for nanostructure and hierarchically porous structure, typical toughness methods for ceramic scaffold and corresponding mechanisms such as fiber toughness, whisker toughness and particle toughness. Moreover, greater insights into the mechanisms of interaction between ceramics and cells are provided, as well as the development of ceramic-based composite materials. The development and challenges of bioactive ceramics are also discussed from the perspective of bone repair and regeneration. PMID:24646912
Nair, Manitha B; Varma, H K; Menon, K V; Shenoy, Sachin J; John, Annie
2009-06-01
Segmental bone defects resulting from trauma or pathology represent a common and significant clinical problem. In this study, a triphasic ceramic (calcium silicate, hydroxyapatite and tricalcium phosphate)-coated hydroxyapatite (HASi) having the benefits of both HA (osteointegration, osteoconduction) and silica (degradation) was used as a bone substitute for the repair of segmental defect (2 cm) created in a goat femur model. Three experimental goat femur implant groups--(a) bare HASi, (b) osteogenic-induced goat bone marrow-derived mesenchymal stem cells cultured HASi (HASi+C) and (c) osteogenic-induced goat bone marrow-derived mesenchymal stem cells cultured HASi+platelet-rich plasma (HASi+CP)--were designed and efficacy performance in the healing of the defect was evaluated. In all the groups, the material united with host bone without any inflammation and an osseous callus formed around the implant. This reflects the osteoconductivity of HASi where the cells have migrated from the cut ends of host bone. The most observable difference between the groups appeared in the mid region of the defect. In bare HASi groups, numerous osteoblast-like cells could be seen together with a portion of material. However, in HASi+C and HASi+CP, about 60-70% of that area was occupied by woven bone, in line with material degradation. The interconnected porous nature (50-500 microm), together with the chemical composition of the HASi, facilitated the degradation of HASi, thereby opening up void spaces for cellular ingrowth and bone regeneration. The combination of HASi with cells and PRP was an added advantage that could promote the expression of many osteoinductive proteins, leading to faster bone regeneration and material degradation. Based on these results, we conclude that bare HASi can aid in bone regeneration but, with the combination of cells and PRP, the sequence of healing events are much faster in large segmental bone defects in weight-bearing areas in goats.
Parent, Marianne; Baradari, Hiva; Champion, Eric; Damia, Chantal; Viana-Trecant, Marylène
2017-04-28
Effective treatment of critical-size defects is a key challenge in restorative surgery of bone. The strategy covers the implantation of biocompatible, osteoconductive, bioactive and biodegradable devices which (1) well interact with native tissue, mimic multi-dimensional and hierarchical structure of bone and (2) are able to enhance bone repair, treating post implantation pathologies or bone diseases by local delivery of therapeutic agents. Among different options, calcium phosphate biomaterials are found to be attractive choices, due to their excellent biocompatibility, customisable bioactivity and biodegradability. Several approaches have been established to enhance this material ability to be loaded with a therapeutic agent, in order to obtain an in situ controlled release that meets the clinical needs. This article reviews the most important factors influencing on both drug loading and release capacity of porous calcium phosphate bone substitutes. Characteristics of the carrier, drug/carrier interactions, experimental conditions of drug loading and evaluation of drug delivery are considered successively. Copyright © 2017 Elsevier B.V. All rights reserved.
Effects of (LiCe) co-substitution on the structural and electrical properties of CaBi2Nb2O9 ceramics
NASA Astrophysics Data System (ADS)
Tian, Xiao-Xia; Qu, Shao-Bo; Du, Hong-Liang; Li, Ye; Xu, Zhuo
2012-03-01
The piezoelectric, dielectric, and ferroelectric properties of the (LiCe) co-substituted calcium bismuth niobate (CaBi2Nb2O9, CBNO) are investigated. The piezoelectric properties of CBNO ceramics are significantly enhanced and the dielectric loss tan δ decreased. This makes poling using (LiCe) co-substitution easier. The ceramics (where □ represents A-site Ca2+ vacancies, possess a pure layered structure phase and no other phases can be found. The Ca0.88(LiCe)0.04□0.04Bi2Nb2O9 ceramics possess optimal piezoelectric properties, with piezoelectric coefficient (d33) and Curie temperature (TC) found to be 13.3 pC/N and 960 °C, respectively. The dielectric and piezoelectric properties of the (LiCe) co-substituted CBNO ceramics exhibit very stable temperature behaviours. This demonstrates that the CBNO ceramics are a promising candidate for ultrahigh temperature applications.
In vitro bioactivity of akermanite ceramics.
Wu, Chengtie; Chang, Jiang; Ni, Siyu; Wang, Junying
2006-01-01
In this study, the bone-like apatite-formation ability of akermanite ceramics (Ca2MgSi2O7) in simulated body fluid (SBF) and the effects of ionic products from akermanite dissolution on osteoblasts and mouse fibroblasts (cell line L929) were investigated. In addition, osteoblast morphology and proliferation on the ceramics were evaluated. The results showed that akermanite ceramics possessed bone-like apatite-formation ability comparable with bioactive wollastonite ceramics (CaSiO3) after 20 days of soaking in SBF and the mechanism of bone-like apatite formation on akermanite ceramics is similar to that of wollastonite ceramics. The Ca, Si, and Mg ions from akermanite dissolution at certain ranges of concentration significantly stimulated osteoblast and L929 cell proliferation. Furthermore, osteoblasts spread well on the surface of akermanite ceramics, and proliferated with increasing the culture time. The results showed that akermanite ceramics possess bone-like apatite-formation ability and can release soluble ionic products to stimulate cell proliferation, which indicated good bioactivity. (c) 2005 Wiley Periodicals, Inc
Rapid prototyped porous nickel–titanium scaffolds as bone substitutes
Hoffmann, Waldemar; Bormann, Therese; Rossi, Antonella; Müller, Bert; Schumacher, Ralf; Martin, Ivan; Wendt, David
2014-01-01
While calcium phosphate–based ceramics are currently the most widely used materials in bone repair, they generally lack tensile strength for initial load bearing. Bulk titanium is the gold standard of metallic implant materials, but does not match the mechanical properties of the surrounding bone, potentially leading to problems of fixation and bone resorption. As an alternative, nickel–titanium alloys possess a unique combination of mechanical properties including a relatively low elastic modulus, pseudoelasticity, and high damping capacity, matching the properties of bone better than any other metallic material. With the ultimate goal of fabricating porous implants for spinal, orthopedic and dental applications, nickel–titanium substrates were fabricated by means of selective laser melting. The response of human mesenchymal stromal cells to the nickel–titanium substrates was compared to mesenchymal stromal cells cultured on clinically used titanium. Selective laser melted titanium as well as surface-treated nickel–titanium and titanium served as controls. Mesenchymal stromal cells had similar proliferation rates when cultured on selective laser melted nickel–titanium, clinically used titanium, or controls. Osteogenic differentiation was similar for mesenchymal stromal cells cultured on the selected materials, as indicated by similar gene expression levels of bone sialoprotein and osteocalcin. Mesenchymal stromal cells seeded and cultured on porous three-dimensional selective laser melted nickel–titanium scaffolds homogeneously colonized the scaffold, and following osteogenic induction, filled the scaffold’s pore volume with extracellular matrix. The combination of bone-related mechanical properties of selective laser melted nickel–titanium with its cytocompatibility and support of osteogenic differentiation of mesenchymal stromal cells highlights its potential as a superior bone substitute as compared to clinically used titanium. PMID:25383165
Tantalum—A bioactive metal for implants
NASA Astrophysics Data System (ADS)
Balla, Vamsi Krishna; Bose, Susmita; Davies, Neal M.; Bandyopadhyay, Amit
2010-07-01
Metallic biomaterials currently in use for load-bearing orthopedic applications are mostly bioinert and therefore lack sufficient osseointegration. Although bioactive ceramics such as hydroxyapatite (HA) can spontaneously bond to living bone tissue, low fracture toughness of HA limits their use as a bone substitute for load-bearing applications. Surface modification techniques such as HA coating on metals are current options to improve osseointegration in load-bearing metal implants. Over the last few decades researchers have attempted to find a bioactive metal with high mechanical strength and excellent fatigue resistance that can bond chemically with surrounding bone for orthopedic applications. Recent in vitro, in vivo, and clinical studies demonstrated that tantalum is a promising metal that is bioactive. However, tantalum applications in biomedical devices have been limited by processing challenges rather than biological performances. In this article, we provide an overview of processing aspects and biological properties of tantalum for load-bearing orthopedic applications.
Osteoinductive ceramics as a synthetic alternative to autologous bone grafting
Yuan, Huipin; Fernandes, Hugo; Habibovic, Pamela; de Boer, Jan; Barradas, Ana M. C.; de Ruiter, Ad; Walsh, William R.; van Blitterswijk, Clemens A.; de Bruijn, Joost D.
2010-01-01
Biomaterials can be endowed with biologically instructive properties by changing basic parameters such as elasticity and surface texture. However, translation from in vitro proof of concept to clinical application is largely missing. Porous calcium phosphate ceramics are used to treat small bone defects but in general do not induce stem cell differentiation, which is essential for regenerating large bone defects. Here, we prepared calcium phosphate ceramics with varying physicochemical and structural characteristics. Microporosity correlated to their propensity to stimulate osteogenic differentiation of stem cells in vitro and bone induction in vivo. Implantation in a large bone defect in sheep unequivocally demonstrated that osteoinductive ceramics are equally efficient in bone repair as autologous bone grafts. Our results provide proof of concept for the clinical application of “smart” biomaterials. PMID:20643969
Sun, Lanying; Danoux, Charlène B; Wang, Qibao; Pereira, Daniel; Barata, David; Zhang, Jingwei; LaPointe, Vanessa; Truckenmüller, Roman; Bao, Chongyun; Xu, Xin; Habibovic, Pamela
2016-09-15
Within the general aim of finding affordable and sustainable regenerative solutions for damaged and diseased tissues and organs, significant efforts have been invested in developing synthetic alternatives to natural bone grafts, such as autografts. Calcium phosphate (CaP) ceramics are among widely used synthetic bone graft substitutes, but their mechanical properties and bone regenerative capacity are still outperformed by their natural counterparts. In order to improve the existing synthetic bone graft substitutes, it is imperative to understand the effects of their individual properties on a biological response, and to find a way to combine the desired properties into new, improved functional biomaterials. To this end, we studied the independent effects of the chemical composition and surface microstructure of a poly(lactic acid)/hydroxyapatite (PLA/HA) composite material on the proliferation and osteogenic differentiation of clinically relevant bone marrow-derived human mesenchymal stromal cells (hMSCs). While the molecular weight of the polymer and presence/absence of the ceramic phase were used as the chemical variables, a soft embossing technique was used to pattern the surfaces of all materials with either pits or pillars with identical microscale dimensions. The results indicated that, while cell morphology was affected by both the presence and availability of HA and by the surface microstructure, the effect of the latter parameter on cell proliferation was negligible. The osteogenic differentiation of hMSCs, and in particular the expression of bone morphogenetic protein 2 (BMP-2) and osteopontin (OP) were significantly enhanced when cells were cultured on the composite based on low-molecular-weight PLA, as compared to the high-molecular-weight PLA-based composite and the two pure polymers. The OP expression on the low-molecular-weight PLA-based composite was further enhanced when the surface was patterned with pits. Taken together, within this experimental set up, the individual effect of the chemistry, and in particular of the presence of CaP, was more pronounced than the individual effect of the surface microstructure, although their combined effects were, in some cases, synergistic. The approach presented here opens new routes to study the interactions of biomaterials with the biological environment in greater depths, which can serve as a starting point for developing biomaterials with improved bioactivity. The aim of the this study was to obtain insight into independent effects of the chemical composition and surface microstructure of a poly(lactic acid)/hydroxyapatite (PLA/HA) composite material on the morphology, proliferation and osteogenic differentiation of clinically relevant bone marrow-derived human mesenchymal stromal cells (hMSCs). While the need for synthetic alternatives for natural bone in bone regenerative strategies is rapidly increasing, the clinical performance of synthetic biomaterials needs to be further improved. To do this successfully, we believe that a better understanding of the relationship between a property of a material and a biological response is imperative. This study is a step forward in this direction, and we are therefore convinced that it will be of interest to the readers of Acta Biomaterialia. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Ye, Xinhai; Yin, Xiaofan; Yang, Dawei; Tan, Jian; Liu, Guangpeng
2012-07-01
Tissue engineering approaches using the combination of porous ceramics and bone marrow mesenchymal stem cells (BMSCs) represent a promising bone substitute for repairing large bone defects. Nevertheless, optimal conditions for constructing tissue-engineered bone have yet to be determined. It remains unclear if transplantation of predifferentiated BMSCs is superior to undifferentiated BMSCs or freshly isolated bone marrow mononucleated cells (BMNCs) in terms of new bone formation in vivo. The aim of this study was to investigate the effect of in vitro osteogenic differentiation (β-glycerophosphate, dexamethasone, and l-ascorbic acid) of human BMSCs on the capability to form tissue-engineered bone in unloaded conditions after subcutaneous implantation in nude mice. After isolation from human bone marrow aspirates, BMNCs were divided into three parts: one part was seeded onto porous beta-tricalcium phosphate ceramics immediately and transplanted in a heterotopic nude mice model; two parts were expanded in vitro to passage 2 before cell seeding and in vivo transplantation, either under osteogenic conditions or not. Animals were sacrificed for micro-CT and histological evaluation at 4, 8, 12, 16, and 20 weeks postimplantation. The results showed that BMSCs differentiated into osteo-progenitor cells after induction, as evidenced by the altered cell morphology and elevated alkaline phosphatase activity and calcium deposition, but their clonogenicity, proliferating rate, and seeding efficacy were not significantly affected by osteogenic differentiation, compared with undifferentiated cells. Extensive new bone formed in the pores of all the scaffolds seeded with predifferentiated BMSCs at 4 weeks after implantation, and maintained for 20 weeks. On the contrary, scaffolds containing undifferentiated BMSCs revealed limited bone formation only in 1 out of 6 cases at 8 weeks, and maintained for 4 weeks. For scaffolds with BMNCs, woven bone was observed sporadically only in one case at 8 weeks. Overall, this study suggests that ectopic osteogenesis of cell/scaffold composites is more dependent on the in vitro expansion condition, and osteo-differentiated BMSCs hold the highest potential concerning in vivo bone regeneration.
Resorption Rate Tunable Bioceramic: Si, Zn-Modified Tricalcium Phosphate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Xiang
2006-01-01
This dissertation is organized in an alternate format. Several manuscripts which have already been published or are to be submitted for publication have been included as separate chapters. Chapter 1 is a general introduction which describes the dissertation organization and introduces the human bone and ceramic materials as bone substitute. Chapter 2 is the background and literature review on dissolution behavior of calcium phosphate, and discussion of motivation for this research. Chapter 3 is a manuscript entitled ''Si,Zn-modified tricalcium phosphate: a phase composition and crystal structure study'', which was published in ''Key Engineering Materials'' [1]. Chapter 4 gives more crystalmore » structure details by neutron powder diffraction, which identifies the position for Si and Zn substitution and explains the stabilization mechanism of the structure. A manuscript entitled ''Crystal structure analysis of Si, Zn-modified Tricalcium phosphate by Neutron Powder Diffraction'' will be submitted to Biomaterials [2]. Chapter 5 is a manuscript, entitled ''Dissolution behavior and cytotoxicity test of Si, Zn-modified tricalcium phosphate'', which is to be submitted to Biomaterials [3]. This paper discusses the additives effect on the dissolution behavior of TCP, and cytotoxicity test result is also included. Chapter 6 is the study of hydrolysis process of {alpha}-tricalcium phosphate in the simulated body fluid, and the phase development during drying process is discussed. A manuscript entitled ''Hydrolysis of {alpha}-tricalcium phosphate in simulated body fluid and phase transformation during drying process'' is to be submitted to Biomaterials [4]. Ozan Ugurlu is included as co-authors in these two papers due to his TEM contributions. Appendix A is the general introduction of the materials synthesis, crystal structure and preliminary dissolution result. A manuscript entitled ''Resorption rate tunable bioceramic: Si and Zn-modified tricalcium phosphate'' was published in Ceramic Engineering and Science Proceedings (the 29th International Conference on Advanced Ceramics and Composites - Advances in Bioceramics and Biocomposites) [5].« less
Kanchana, Ponnusamy; Sekar, Chinnathambi
2010-01-01
Biphasic calcium phosphate (BCP) ceramics are suitable for synthetic bone applications. The strontium substituted calcium phosphate ceramics have potential for use in orthopedic surgeries. Aim of the present work is to introduce strontium into BCP (composed of hydroxyapatite and tricalcium phosphate) ceramics and to study their bioactivity and mechanical properties. BCP ceramics have been synthesized at room temperature under the physiological pH of 7.4 by gel method in the presence of strontium (5, 10 M %). The appropriate choice of anhydrous CaCl₂ as precursor solution has promoted the formation of BCP instead of pure HA for CaCl₂.2H₂O. Powder X-ray diffraction analysis confirmed the formation of BCP with different HA and ß -TCP ratios depending upon the Sr content. The presence of Sr has reduced the nucleation and growth rate of BCP when compared to pure system. The SEM micrographs showed that the microstructural morphology of BCP changes from fibrous to platelet. Nanoindentation studies indicate a significant decrease in the hardness and elastic modulus values of BCP ceramics due to Sr doping. In vitro bioactivity study has revealed the formation of apatite layer on the Sr doped BCP samples and the doping enhanced its bioactivity.
Nanoceramics on osteoblast proliferation and differentiation in bone tissue engineering.
Sethu, Sai Nievethitha; Namashivayam, Subhapradha; Devendran, Saravanan; Nagarajan, Selvamurugan; Tsai, Wei-Bor; Narashiman, Srinivasan; Ramachandran, Murugesan; Ambigapathi, Moorthi
2017-05-01
Bone, a highly dynamic connective tissue, consist of a bioorganic phase comprising osteogenic cells and proteins which lies over an inorganic phase predominantly made of CaPO 4 (biological apatite). Injury to bone can be due to mechanical, metabolic or inflammatory agents also owing pathological conditions like fractures, osteomyelitis, osteolysis or cysts may arise in enameloid, chondroid, cementum, or chondroid bone which forms the intermediate tissues of the body. Bone tissue engineering (BTE) applies bioactive scaffolds, host cells and osteogenic signals for restoring damaged or diseased tissues. Various bioceramics used in BTE can be bioactive (like glass ceramics and hydroxyapatite bioactive glass), bioresorbable (like tricalcium phosphates) or bioinert (like zirconia and alumina). Limiting the size of these materials to nano-scale has resulted in a higher surface area to volume ratio thereby improving multi-functionality, solubility, surface catalytic activity, high heat and electrical conductivity. Nanoceramics have been found to induce osteoconduction, osteointegration, osteogenesis and osteoinduction. The present review aims at summarizing the interactions of nanoceramics and osteoblast/stem cells for promoting the proliferation and differentiation of the osteoblast cells by nanoceramics as superior bone substitutes in bone tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhou, Changchun; Deng, Congying; Chen, Xuening; Zhao, Xiufen; Chen, Ying; Fan, Yujiang; Zhang, Xingdong
2015-08-01
Functionally graded materials (FGM) open the promising approach for bone tissue repair. In this study, a novel functionally graded hydroxyapatite (HA) bioceramic with micrograin and nanograin structure was fabricated. Its mechanical properties were tailored by composition of micrograin and nanograin. The dynamic mechanical analysis (DMA) indicated that the graded HA ceramics had similar mechanical property compared to natural bones. Their cytocompatibility was evaluated via fluorescent microscopy and MTT colorimetric assay. The viability and proliferation of rabbit bone marrow mesenchymal stem cells (BMSCs) on ceramics indicated that this functionally graded HA ceramic had better cytocompatibility than conventional HA ceramic. This study demonstrated that functionally graded HA ceramics create suitable structures to satisfy both the mechanical and biological requirements of bone tissues. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yanamandra, Radha; Kandula, Kumara Raja; Bandi, Posidevi; Reddy, H. Satish Kumar; Asthana, Saket; Patri, Tirupathi
2018-05-01
Eco friendly (Na0.5Bi0.48Eu0.02) Ti1-xNbxO3 ceramics were synthesized with help of conventional solid state reaction by using high energy ball milling. The room temperature XRD of Nb5+ substituted NBET ceramics were stabilized in single phase pervoskite structure without any secondary phase. Polarization study reflects long range ferroelectric order for pure NBET ceramics and coercive field enhance with the substitution of Nb5+ ion at Ti site. Further, the substitution of Nb5+ ≥ 0.02 composition induced relaxor future. The energy density calculation shows the maximum energy storage density of 1.02 J/cm3 for x=0.02 ceramics. These results confirms a small fraction of Nb5+ doped NBET ceramics should be good candidates for energy storage applications.
Hoch, Allison I; Duhr, Ralph; Di Maggio, Nunzia; Mehrkens, Arne; Jakob, Marcel; Wendt, David
2017-12-01
Bone marrow-derived mesenchymal stromal cells (BMSC), when expanded directly within 3D ceramic scaffolds in perfusion bioreactors, more reproducibly form bone when implanted in vivo as compared to conventional expansion on 2D polystyrene dishes/flasks. Since the bioreactor-based expansion on 3D ceramic scaffolds encompasses multiple aspects that are inherently different from expansion on 2D polystyrene, we aimed to decouple the effects of specific parameters among these two model systems. We assessed the effects of the: 1) 3D scaffold vs. 2D surface; 2) ceramic vs. polystyrene materials; and 3) BMSC niche established within the ceramic pores during in vitro culture, on subsequent in vivo bone formation. While BMSC expanded on 3D polystyrene scaffolds in the bioreactor could maintain their in vivo osteogenic potential, results were similar as BMSC expanded in monolayer on 2D polystyrene, suggesting little influence of the scaffold 3D environment. Bone formation was most reproducible when BMSC are expanded on 3D ceramic, highlighting the influence of the ceramic substrate. The presence of a pre-formed niche within the scaffold pores had negligible effects on the in vivo bone formation. The results of this study allow a greater understanding of the parameters required for perfusion bioreactor-based manufacturing of osteogenic grafts for clinical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bioactive ceramic coating of cancellous screws improves the osseointegration in the cancellous bone.
Lee, Jae Hyup; Nam, Hwa; Ryu, Hyun-Seung; Seo, Jun-Hyuk; Chang, Bong-Soon; Lee, Choon-Ki
2011-05-01
A number of methods for coating implants with bioactive ceramics have been reported to improve osseointegration in bone, but the effects of bioactive ceramic coatings on the osseointegration of cancellous screws are not known. Accordingly, biomechanical and histomorphometric analyses of the bone-screw interface of uncoated cancellous screws and cancellous screws coated with four different bioactive ceramics were performed. After coating titanium alloy cancellous screws with calcium pyrophosphate (CPP), CaO-SiO(2)-B(2)O(3) glass-ceramics (CSG), apatite-wollastonite 1:3 glass-ceramics (W3G), and CaO-SiO(2)-P(2)O(5)-B(2)O(3) glass-ceramics (BGS-7) using an enameling method, the coated and the uncoated screws were inserted into the proximal tibia and distal femur metaphysis of seven male mongrel dogs. The torque values of the screws were measured at the time of insertion and at removal after 8 weeks. The bone-screw contact ratio was analyzed by histomorphometry. There was no significant difference in the insertion torque between the uncoated and coated screws. The torque values of the CPP and BGS-7 groups measured at removal after 8 weeks were significantly higher than those of the uncoated group. Moreover, the values of the CPP and BGS-7 groups were significantly higher than the insertion torques. The fraction of bone-screw interface measured from the undecalcified histological slide showed that the CPP, W3G, and BGS-7 groups had significantly higher torque values in the cortical bone area than the uncoated group, and the CPP and BGS-7 groups had significantly higher torque values in the cancellous bone area than the uncoated group. In conclusion, a cancellous screw coated with CPP and BGS-7 ceramic bonds directly to cancellous bone to improve the bone-implant osseointegration. This may broaden the indications for cancellous screws by clarifying their contribution to improving osseointegration, even in the cancellous bone area.
Ru, Nan; Liu, Sean Shih-Yao; Bai, Yuxing; Li, Song; Liu, Yunfeng; Wei, Xiaoxia
2016-04-01
BoneCeramic (Straumann, Basel, Switzerland) can regenerate bone in alveolar defects after tooth extraction, but it is unknown whether it is feasible to move a tooth through BoneCeramic grafting sites. The objective of this study was to investigate 3-dimensional real-time root resorption and bone responses in grafted sites during orthodontic tooth movement. Sixty 5-week-old rats were randomly assigned to 3 groups to receive BoneCeramic, natural bovine cancellous bone particles (Bio-Oss; Geistlich Pharma, Wolhusen, Switzerland), or no graft, after the extraction of the maxillary left first molar. After 4 weeks, the maxillary left second molar was moved into the extraction site for 28 days. Dynamic bone microstructures and root resorption were evaluated using in-vivo microcomputed tomography. Stress distribution and corresponding tissue responses were examined by the finite element method and histology. Mixed model analysis of variance was performed to compare the differences among time points with Bonferroni post-hoc tests at the significance level of P <0.05. The BoneCeramic group had the least amount of tooth movement and root resorption volumes and craters, and the highest bone volume fraction, trabecular number, and mean trabecular thickness, followed by the Bio-Oss and the control groups. The highest stress accumulated in the cervical region of the mesial roots. BoneCeramic has better osteoconductive potential and induces less root resorption compared with Bio-Oss grafting and naturally recovered extraction sites. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parida, Geetanjali, E-mail: geeta.lily@gmail.com; Bera, J., E-mail: jbera@nitrkl.ac.in
2015-08-15
Graphical abstract: The ferroelectric properties of Nb modified Bi{sub 4}Ti{sub 3}O{sub 12}–SrBi{sub 4}Ti{sub 4}O{sub 15} intergrowth ceramics increases significantly when Bi is substituted by La. - Highlights: • La{sup 3+} substitution for Bi{sup 3+} in Nb doped Bi{sub 4}Ti{sub 3}O{sub 12}–SrBi{sub 4}Ti{sub 4}O{sub 15} ferroelectrics is reported. • The orthorhombic distortion of the structure decreased with the increasing La. • La acts as a grain growth inhibitor in the ceramics. • The remnant polarization of the ferroelectrics increased significantly with La substitution. - Abstract: The effect of La substitution on the electrical properties of SrLa{sub x}Bi{sub 8−x}Ti{sub 6.88}Nb{sub 0}.{sub 12}O{submore » 27} intergrowth Aurivillius phase ferroelectric ceramic was investigated. La content ‘x’ was ranging from 0.0 to 1.0 in a step of 0.2. The ceramic phase was synthesized through a modified oxalate route. X-ray diffraction was used to identify the phase and to investigate the change in lattice parameter and microstrain with the substitution. La-substitution does not affect the crystal structure of the intergrowth. Microstructural investigation revealed that the grain size of the ceramic decreases with La addition. The lattice parameters and orthorhombicity of intergrowth structure were found to decrease with increasing La substitution. The temperature dependence of dielectric behavior was investigated in the temperature range 30–700 °C and the frequency of 100 kHz. The remnant polarization 2P{sub r} increased and the Curie temperature T{sub c} decreased with the increase in the La substitution.« less
Magnaudeix, Amandine; Usseglio, Julie; Lasgorceix, Marie; Lalloue, Fabrice; Damia, Chantal; Brie, Joël; Pascaud-Mathieu, Patricia; Champion, Eric
2016-07-01
The development of scaffolds for bone filling of large defects requires an understanding of angiogenesis and vascular guidance, which are crucial processes for bone formation and healing. There are few investigations on the ability of a scaffold to support blood vessel guidance and it this is of great importance because it relates to the quality and dispersion of the blood vessel network. This work reports an analysis of vascularisation of porous silicon-substituted hydroxyapatite (SiHA) bioceramics and the effects of pore shape on vascular guidance using an expedient ex ovo model, the chick embryo chorioallantoic membrane (CAM) assay. Image analysis of vascularised implants assessed the vascular density, fractal dimension and diameter of blood vessels at two different scales (the whole ceramic and pores alone) and was performed on model SiHA ceramics harbouring pores of various cross-sectional geometries (circles, square, rhombus, triangles and stars). SiHA is a biocompatible material which allows the conduction of blood vessels on its surface. The presence of pores did not influence angiogenesis related-parameters (arborisation, fractal dimension) but pore geometry affected the blood vessel guidance and angio-conductive potential (diameter and number of the blood vessels converging toward the pores). The measured angles of pore cross-section modulated the number and diameter of blood vessels converging to pores, with triangular pores appearing of particular interest. This result will be used for shaping ceramic scaffolds with specific porous architecture to promote vascular colonisation and osteointegration. An expedient and efficient method, using chick embryo chorioallantoic membrane (CAM) assays, has been set up to characterise quantitatively the angiogenesis and the vascular conduction in scaffolds. This approach complements the usual cell culture assays and could replace to a certain extent in vivo experiments. It was applied to silicon-substituted hydroxyapatite porous bioceramics with various pore shapes. The material was found to be biocompatible, allowing the conduction of blood vessels on its surface. The presence of pores does not influence the angiogenesis but the pore shape affects the blood vessel guidance and angio-conductive potential. Pores with triangular cross-section appear particularly attractive for the further design of scaffolds in order to promote their vascular colonisation and osteointegration and improve their performances. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Probst, H. B.
1978-01-01
The high temperature capability of ceramics such as silicon nitride and silicon carbide can result in turbine engines of improved efficiency. Other advantages when compared to the nickel and cobalt alloys in current use are raw material availability, lower weight, erosion/corrosion resistance, and potentially lower cost. The use of ceramics in three different sizes of gas turbine is considered; these are the large utility turbines, advanced aircraft turbines, and small automotive turbines. Special consideration, unique to each of these applications, arise when one considers substituting ceramics for high temperature alloys. The effects of material substitutions are reviewed in terms of engine performance, operating economy, and secondary effects.
Zhu, Minghua; Zeng, Yi; Sun, Tao; Peng, Qiang
2005-03-15
To investigate the osteogenic potential of four kinds of new bioactive ceramics combined with bovine bone morphogenetic proteins (BMP) and to explore the feasibility of using compounds as bone substitute material. Ninety-six rats were divided into 4 groups (24 in each group). BMP was combined with hydroxyapatite (HA), tricalcium phosphate (TCP), fluoridated-HA (FHA), and collagen-HA(CHA) respectively. The left thighs of the rats implanted with HA/BMP, TCP/BMP, FHA/BMP, and CHA/BMP were used as experimental groups. The right thighs of the rats implanted with HA, TCP, CHA, and decalcified dentin matrix (DDM) were used as control groups. The rats were sacrificed 1, 3, 5 and 7 weeks after implantation and bone induction was estimated by alkaline phosphatase (ALP), phosphorus (P), and total protein (TP) measurement. The histological observation and electronic microscope scanning of the implants were also made. The cartilage growth in the 4 experimental groups and the control group implanted with DDM was observed 1 week after operation and fibrous connective tissues were observed in the other 3 control groups. 3 weeks after implantation, lamellar bone with bone marrow and positive reaction in ALP stain were observed in the 4 experimental groups. No bone formation or positive reaction in ALP stain were observed in the control groups. The amount of ALP activity, P value, and new bone formation in the experimental groups were higher than those in the control group(P < 0.05). The amount of ALP activity, P value, and new bone formation in TCP/BMP group were higher than those in HA/BMP, CHA/BMP and FHA/BMP groups (P < 0.05). There was no significant difference in TP between the BMP treatment group and the control groups. From 5th to 7th week, new bone formation, histochemistry evaluation, and the level of ALP, P, TP value were as high as those in the 3rd week. New composite artificial bone of TCP/BMP, HA/BMP, CHA/BMP, and FHA/BMP all prove to be effective, but TCP/BMP is the most effective so that it is the most suitable biomaterial replacement of tissue.
NASA Astrophysics Data System (ADS)
Sroka-Bartnicka, Anna; Borkowski, Leszek; Ginalska, Grazyna; Ślósarczyk, Anna; Kazarian, Sergei G.
2017-01-01
Hydroxyapatite and carbonate-substituted hydroxyapatite are widely used in bone tissue engineering and regenerative medicine. Both apatite materials were embedded into recently developed ceramic/polymer composites, subjected to Simulated Body Fluid (SBF) for 30 days and characterized using ATR-FTIR spectroscopic imaging to assess their behaviour and structures. The specific aim was to detect the transition phases between both types of hydroxyapatite during the test and to analyze the surface modification caused by SBF. ATR-FTIR spectroscopic imaging was successfully applied to characterise changes in the hydroxyapatite lattice due to the elastic properties of the scaffolds. It was observed that SBF treatment caused a replacement of phosphates in the lattice of non-substituted hydroxyapatite by carbonate ions. A detailed study excluded the formation of pure A type carbonate apatite. In turn, CO32- content in synthetic carbonate-substituted hydroxyapatite decreased. The usefulness of ATR-FTIR spectroscopic imaging studies in the evaluation of elastic and porous β-glucan hydroxyapatite composites has been demonstrated.
Punke, C; Zehlicke, T; Boltze, C; Pau, H W
2009-04-01
Many different techniques for obliterating open mastoid cavity have been described. The results after the application of alloplastic materials like Hydroxyapatite and Tricalciumphosphate were poor due to long-lasting resorption. Extrusion of those materials has been described. We investigated the applicability of a new high-porosity ceramic for obliterating large open mastoid cavities and tested it in an animal model (bulla of guinea pig). A highly porous matrix (NanoBone) bone-inductor fabricated in a sol-gel-technique was administered unilaterally into the opened bullae of 30 guinea pigs. In each animal the opposite bulla was filled with Bio-Oss, a bone substitute consisting of a portion of mineral bovine bone. Histological evaluations were performed 1, 2, 3, 4, 5 and 12 weeks after the implantation. After the initial phase with an inflammatory reaction creating a loose granulation tissue, we observed the formation of trabeculare bone within the fourth week in both groups. From the fifth week on we found osteoclasts on the surface of NanoBone and Bio-Oss with consecutive degradation of both materials. In our animal model study we found beneficial properties of the used bone-inductors NanoBone and Bio-Oss for obliterating open mastoid cavities.
Application of nonlinear phenomena induced by focused ultrasound to bone imaging.
Callé, Samuel; Remenieras, Jean-Pierre; Bou Matar, Olivier; Defontaine, Marielle; Patat, Frederic
2003-03-01
A tissue deformability image is obtained with the vibroacoustography imaging method using mechanical low-frequency (LF) excitation. This ultrasonic excitation is created locally by means of a focused annular array emitting two primary beams at two close frequencies, f(1) and f(2) (f(2) = f(1) + f(LF)). The LF acoustic emission resulting from the vibration of the medium is detected by a sensitive hydrophone and then used to form the image. This noninvasive imaging method was demonstrated in this study to be suitable for bone imaging, with x and y transverse resolutions less than 300 micro m. Two bone sites susceptible to demineralization were tested: the calcaneus and the neck of the femur. The vibroacoustic method provides valuable ultrasonic images regarding the structure and the elastic properties of bone tissue. Correlation was made between vibroacoustic bone images, performed in vitro, and images acquired by other imaging methods (i.e., bone ultrasound attenuation and x-ray computerized tomography (CT)). Moreover, the amplitudes of vibroacoustic signals radiating from phosphocalcic ceramic samples (bone substitute) of different porosity were evaluated. The good correlation between these results and the description of our images and the quality of vibroacoustic images indicate that bone decalcification could be detected using vibroacoustography.
Roldán, J C; Chang, E; Kelantan, M; Jazayeri, L; Deisinger, U; Detsch, R; Reichert, T E; Gurtner, G C
2010-12-01
Cell migration is preceded by cell polarization. The aim of the present study was to evaluate the impact of the geometry of different bone substitutes on cell morphology and chemical responses in vitro. Cell polarization and migration were monitored temporally by using confocal laser scanning microscopy (CLSM) to follow green fluorescent protein (GFP)±mesenchymal stem cells (MSCs) on anorganic cancellous bovine bone (Bio-Oss(®)), β-tricalcium phosphate (β-TCP) (chronOS(®)) and highly porous calcium phosphate ceramics (Friedrich-Baur-Research-Institute for Biomaterials, Germany). Differentiation GFP±MSCs was observed using pro-angiogenic and pro-osteogenic biomarkers. At the third day of culture polarized vs. non-polarized cellular sub-populations were clearly established. Biomaterials that showed more than 40% of polarized cells at the 3rd day of culture, subsequently showed an enhanced cell migration compared to biomaterials, where non-polarized cells predominated (p<0.003). This trend continued untill the 7th day of culture (p<0.003). The expression of vascular endothelial growth factor was enhanced in biomaterials where cell polarization predominated at the 7th day of culture (p=0.001). This model opens an interesting approach to understand osteoconductivity at a cellular level. MSCs are promising in bone tissue engineering considering the strong angiogenic effect before differentiation occurs. Copyright © 2010 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Wittenburg, Gretel; Flade, Viktoria; Garbe, Annette I; Lauer, Günter; Labudde, Dirk
2014-05-01
We have analysed the growth and differentiation of mesenchymal stromal cells (MSC) from bone marrow, and of adipose derived stem cells (ASC) from murine abdominal fat tissue, of green fluorescent protein (GFP) transgenic animals grown directly on two types of hydroxyapatite ceramic bone substitutes. BONITmatrix® and NanoBone® have specific mechanical and physiochemical properties such as porosity and an inner surface that influence cellular growth. Both MSC and ASC were separately seeded on 200mg of each biomaterial and cultured for 3 weeks under osteogenic differentiation conditions. The degree of mineralisation was assessed by alizarin red dye and the specific alkaline phosphatase activity of the differentiated cells. The morphology of the cells was examined by scanning electron microscopy and confocal microscopy. The osteoblastic phenotype of the cells was confirmed by analysing the expression of bone-specific genes (Runx2, osteocalcin, osteopontin, and osteonectin) by semiquantitative reverse transcriptase polymerase chain reaction (PCR). Comparison of BONITmatrix® and NanoBone® showed cell type-specific preferences in terms of osteogenic differentiation. MSC-derived osteoblast-like cells spread optimally on the surface of NanoBone® but not BONITmatrix® granules. In contrast BONITmatrix® granules conditioned the growth of osteoblast-like cells derived from ASC. The osteoblastic phenotype of the cultured cells on all matrices was confirmed by specific gene expression. Our results show that the in vitro growth and osteogenic differentiation of murine MSC or ASC of GFP transgenic mice are distinctly influenced by the ceramic substratum. While NanoBone® granules support the proliferation and differentiation of murine MSC isolated from bone marrow, the growth of murine ASC is supported by BONITmatrix® granules. NanoBone® is therefore recommended for use as scaffold in tissue engineering that requires MSC, whereas ASC can be combined with BONITmatrix® for in vitro bone engineering. Copyright © 2014 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Fabrication, Properties and Applications of Dense Hydroxyapatite: A Review
Prakasam, Mythili; Locs, Janis; Salma-Ancane, Kristine; Loca, Dagnija; Largeteau, Alain; Berzina-Cimdina, Liga
2015-01-01
In the last five decades, there have been vast advances in the field of biomaterials, including ceramics, glasses, glass-ceramics and metal alloys. Dense and porous ceramics have been widely used for various biomedical applications. Current applications of bioceramics include bone grafts, spinal fusion, bone repairs, bone fillers, maxillofacial reconstruction, etc. Amongst the various calcium phosphate compositions, hydroxyapatite, which has a composition similar to human bone, has attracted wide interest. Much emphasis is given to tissue engineering, both in porous and dense ceramic forms. The current review focusses on the various applications of dense hydroxyapatite and other dense biomaterials on the aspects of transparency and the mechanical and electrical behavior. Prospective future applications, established along the aforesaid applications of hydroxyapatite, appear to be promising regarding bone bonding, advanced medical treatment methods, improvement of the mechanical strength of artificial bone grafts and better in vitro/in vivo methodologies to afford more particular outcomes. PMID:26703750
LIBS analysis of hydroxyapatite extracted from bovine bone for Ca/P ratio measurements
NASA Astrophysics Data System (ADS)
Tariq, Usman; Haider, Zuhaib; Hussain, Rafaqat; Tufail, Kashif; Ali, Jalil
2017-03-01
Hydroxyapatite has been extensively used as a potential biocompatible ceramic in many orhtopedic applications. Hydroxyapatite is one of the members of calcium phosphate family and been used extensively as a bone substitute. The mechanical properties of hydroxyapatite itself, ceramics and bone cements prepared from hydroxyapatite vary greatly with slight variation in its Ca/P ratio. At present EDX, XRD, XRF and ICP-OES are being used for the determination of Ca/P ratio in hydroxyapatite. These techniques require special sample preparation, may also use toxic chemicals and usually are not very fast in giving the measurements. We report LIBS as a rapid alternative technique for calculation of Ca/P ratio in hydroxyapatite extracted from bovine bone (BHA). Ca/P ratio in laboratory prepared HA is calculated using LIBS and the results are validated against EDX results Ca/P ratio of the hydroxyapatite was calculated as 1.54±0.19 using LIBS while 1.63±0.03 using EDX. Ca/P ratio calculated by LIBS and EDX and showed comparable results with a difference of 5.5%. Moreover, plasma temperature and the ratio of the calcium (ion) line to calcium (atomic) line did not show significant variation in plasma conditions during measurements. The present study has demonstrated that LIBS can also be used for the determination of Ca/P ratio of hydroxyapatite and other calcium phosphates. At the request of all authors of the paper, and with the agreement of the Proceedings Editor, an updated version of this article was published on 24 May 2017.
Vila, Mercedes; García, Ana; Girotti, Alessandra; Alonso, Matilde; Rodríguez-Cabello, Jose Carlos; González-Vázquez, Arlyng; Planell, Josep A; Engel, Elisabeth; Buján, Julia; García-Honduvilla, Natalio; Vallet-Regí, María
2016-11-01
The current study reports on the manufacturing by rapid prototyping technique of three-dimensional (3D) scaffolds based on silicon substituted hydroxyapatite with Elastin-like Recombinamers (ELRs) functionalized surfaces. Silicon doped hydroxyapatite (Si-HA), with Ca 10 (PO 4 ) 5.7 (SiO 4 ) 0.3 (OH) 1.7 h 0.3 nominal formula, was surface functionalized with two different types of polymers designed by genetic engineering: ELR-RGD that contain cell attachment specific sequences and ELR-SN A 15/RGD with both hydroxyapatite and cells domains that interact with the inorganic phase and with the cells, respectively. These hybrid materials were subjected to in vitro assays in order to clarify if the ELRs coating improved the well-known biocompatible and bone regeneration properties of calcium phosphates materials. The in vitro tests showed that there was a total and homogeneous colonization of the 3D scaffolds by Bone marrow Mesenchymal Stromal Cells (BMSCs). In addition, the BMSCs were viable and able to proliferate and differentiate into osteoblasts. Bone tissue engineering is an area of increasing interest because its main applications are directly related to the rising life expectancy of the population, which promotes higher rates of several bone pathologies, so innovative strategies are needed for bone tissue regeneration therapies. Here we use the rapid prototyping technology to allow moulding ceramic 3D scaffolds and we use different bio-polymers for the functionalization of their surfaces in order to enhance the biological response. Combining the ceramic material (silicon doped hydroxyapatite, Si-HA) and the Elastin like Recombinamers (ELRs) polymers with the presence of the integrin-mediate adhesion domain alone or in combination with SNA15 peptide that possess high affinity for hydroxyapatite, provided an improved Bone marrow Mesenchymal Stromal Cells (BMSCs) differentiation into osteoblastic linkage. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Evaluation of Soft Tissue Reaction to Corundum Ceramic Implants Infiltrated with Colloidal Silver.
Wnukiewicz, Witold; Rutowski, Roman; Zboromirska-Wnukiewicz, Beata; Reichert, Paweł; Gosk, Jerzy
2016-01-01
Corundum ceramic is a biomaterial used as a bone graft substitute. Silver is a well known antiseptic substance with many practical, clinical applications. The aim of this study was to estimate soft tissue (in vivo) reaction to a new kind of ceramic implants. In our experiment, we examined the soft tissue reaction after implantation of corundum ceramic infiltrated with colloidal silver in the back muscles of 18 Wistar rats. The use of colloidal silver as a coating for the implant was designed to protect it against colonization by bacteria and the formation of bacterial biofilm. In our study, based on the experimental method, we performed implantation operations on 18 Wistar rats. We implanted 18 modified ceramic implants and, as a control group, 18 unmodified implants. As a follow up, we observed the animals operated upon, and did postoperative, autopsy and histopathological examinations 14, 30, 90 and 180 days after implantation. We didn't observe any pathological reactions and significant differences between the soft tissue reaction to the modified implants and the control group. Lack of pathological reaction to the modified implants in the living organism is the proof of their biocompatibility. This is, of course, the first step on the long path to introduce a new kind of biocompatible ceramic implant with antiseptic cottage. Our experiment has an only introductory character and we plan to perform other, more specific, tests of this new kind of implant.
Zou, Wen; Ran, Xu; Liang, Jie; Chen, Hezhong; Luo, Jiaoming
2012-12-01
Strontium added into porous hydroxyaptite ceramics has the functions of improving its osseointegration, decreasing its dissolution rate and improving the bone density. Strontium-containing hydroxyaptite (Sr-HA) ceramics has been used as bone replacement and scaffold to treat the osteoporosis and bone default in clinic, but the mechanism of interfacial tissue response caused by the trace element Sr in Sr-HA ceramics still remains to be further studied. Four types of Sr-HA ceramic samples with different contents of Sr were prepared by microwave plasma sintering for testing the response of the soft tissue implanted in dog muscles in our laboratory. The contents of Sr element in the samples are 0 mol%, 1 mol%, 5 mol%, and 7 mol%, respectively. The samples were implanted in the muscle of the dogs for 4 weeks, 8 weeks and 12 weeks, respectively. The histological observations at the end of each period showed that the irritant ranking increased with the content of Sr in Sr-HA ceramics at the end of 12 weeks, and there were rich bone tissue in Sr-HA ceramic samples with 5 mol% Sr element. The overdose of element Sr is harmful to soft tissues. When the content of Sr in Sr-HA ceramic was below 5 mol%, the soft tissue response was very slight and the new bones were induced to grow well.
Yan, W; Zhang, C Y; Xia, L L; Zhang, T; Fang, Q F
2016-08-01
Calcium phosphate ceramics such as synthetic hydroxyapatite and tricalcium phosphate are widely used in the clinic, but they stimulate less bone regeneration. In this paper, nano-hydroxyapatite/poly(L-lactic acid) (nano-HA/PLLA) spindle composites with good mechanical performance were fabricated by a modified in situ precipitation method. The HA part of composite, distributing homogenously in PLLA matrix, is spindle shape with size of 10-30 nm in diameter and 60-100 nm in length. The molar ratio of Ca/P in the synthesized nano-HA spindles was deduced as 1.52 from the EDS spectra, which is close to the stoichiometric composition of HA (Ca/P & 1.67). The compress strength is up to 150 MPa when the HA content increase to 20 %. The in vitro tests indicate that HA/PLLA bio-composites have good biodegradability and bioactivity when immersed in simulated body fluid solutions. All the results suggested that HA/PLLA nano-biocomposites are appropriate to be applied as bone substitute in bone tissue engineering.
Duan, Yourong; Wu, Yao; Wang, Chaoyuan; Chen, Jiyong; Zhang, Xingdong
2003-03-01
Bone-like apatite formation on the surface of calcium phosphate ceramics has been believed to be necessary for new bone to grow on the ceramics and to be related to the osteoinductivity of the material. The research of bone-like apatite formation is a great help to understanding the mechanism of osteoinduction. Synthetic porous calcium phosphate ceramics (HA/TCP = 70/30) were implanted intramuscularly in pigs, dogs, rabbits and rats to make a comparative study of the bone-like apatite formation onto the porous HA/TCP ceramics in different animals. Specimens were harvested at 14 days after implantation. Samples were detected for the surface morphology with SEM. The chemical composition of the sample surface after implantation was analyzed with reflection infrared (R-IR). Obvious bone-like apatite formation could be detected in the sections of porous specimens harvested from all animals after 14 days intramuscular implantation. Crystal deposition could be only observed on the surface of the concave regions of the samples collected from dogs, rabbits and rat. On the contrary, evenly distributed flake-shaped crystal could be found on the pore surface and also on the outer surface of the materials implanted in pigs. The morphology of bone-like apatite in pigs was different from that in the others animals. Bone-like apatite was not observed in dense specimen implanted intramuscularly. Bone-like apatite formed faster on specimens implanted in rabbit than that in other animals. This formation sequence is different from the sequence of osteoinductivity of biphasic calcium phosphate ceramics implanted in these animals. The results demonstrated that the formation of bone-like apatite on materials is a prerequisite condition to their osteoinduction but other factors also play important roles in osteoinduction.
Low temperature setting polymer-ceramic composites for bone tissue engineering
NASA Astrophysics Data System (ADS)
Sethuraman, Swaminathan
Tissue engineering is defined as "the application of biological, chemical and engineering principles towards the repair, restoration or regeneration of tissues using scaffolds, cells, factors alone or in combination". The hypothesis of this thesis is that a matrix made of a synthetic biocompatible, biodegradable composite can be designed to mimic the properties of bone, which itself is a composite. The overall goal was to design and develop biodegradable, biocompatible polymer-ceramic composites that will be a practical alternative to current bone repair materials. The first specific aim was to develop and evaluate the osteocompatibility of low temperature self setting calcium deficient apatites for bone tissue engineering. The four different calcium deficient hydroxyapatites evaluated were osteocompatible and expressed the characteristic genes for osteoblast proliferation, maturation, and differentiation. Our next objective was to develop and evaluate the osteocompatibility of biodegradable amino acid ester polyphosphazene in vitro as candidates for forming composites with low temperature apatites. We determined the structure-property relationship, the cellular adhesion, proliferation, and differentiation of primary rat osteoblast cells on two dimensional amino acid ester based polyphosphazene films. Our next goal was to evaluate the amino acid ester based polyphosphazenes in a subcutaneous rat model and our results demonstrated that the polyphosphazenes evaluated in the study were biocompatible. The physio-chemical property characterization, cellular response and gene expression on the composite surfaces were evaluated. The results demonstrated that the precursors formed calcium deficient hydroxyapatite in the presence of biodegradable polyphosphazenes. In addition, cells on the surface of the composites expressed normal phenotype and characteristic genes such as type I collagen, alkaline phosphatase, osteocalcin, osteopontin, and bone sialoprotein. The in vivo study of these novel bone cements in a 5mm unicortical defect in New Zealand white rabbits showed that the implants were osteoconductive, and osteointegrative. In conclusion, the various studies that have been carried out in this thesis to study the feasibility of a bone cement system have shown that these materials are promising candidates for various orthopaedic applications. Overall I believe that these next generation bone cements are promising bone graft substitutes in the armamentarium to treat bone defects.
A-Site (MCe) Substitution Effects on the Structures and Properties of CaBi4Ti4O15 Ceramics
NASA Astrophysics Data System (ADS)
Yan, Haixue; Li, Chengen; Zhou, Jiaguang; Zhu, Weimin; He, Lianxin; Song, Yuxin
2000-11-01
We investigated the effect of A-site compound substitution on the structures and properties of Ca0.8(MCe)0.1Bi4Ti4O15 (M denotes Li, Na and K) ceramics. The samples were prepared by the conventional ceramic technique. Sintering characteristics of Ca0.8(MCe)0.1Bi4Ti4O15 and CaBi4Ti4O15 ceramics were discussed. X-ray powder diffraction patterns of the three modified CBT-based compounds show a single phase of bismuth oxide layer type structure with m=4. The hysteresis loops of polarization versus electric field of the four compounds were also measured. A-site compound substitution improves the piezoelectric properties and the high-temperature resistivity of these materials. A-site (LiCe) and (KCe) substitution not only improves the Curie temperature but also decreases the temperature coefficient of dielectric constant (TK\\varepsilon). Among the three modified ceramics, only the Curie temperature of Ca0.8(NaCe)0.1Bi4Ti4O15 is lower than that of CaBi4Ti4O15; however, its TK\\varepsilon is the lowest. As a result, all the three modified CBT-based ceramics were found to be excellent high-temperature piezoelectric materials.
Preparation and characterization of a novel willemite bioceramic.
Zhang, Meili; Zhai, Wanyin; Chang, Jiang
2010-04-01
Willemite (Zn(2)SiO(4)) ceramics were prepared by sintering the willemite green compacts. The effects of sintering temperature on the linear shrinkage, porosity and mechanical strength of the ceramics were examined. With the sintering temperature increased, the linear shrinkage of the ceramics increased and the porosity decreased. When sintered at 1,300 degrees C, willemite ceramics showed mechanical properties of the same order of magnitude as values for human cortical bone, as measured by bending strength (91.2 +/- 4.2 MPa) and Young's modulus (37.5 +/- 1.5 GPa). In addition, the adhesion and proliferation of rabbit bone marrow stromal cells (BMSCs) on willemite ceramics was investigated. The results showed that the ceramics supported cell adhesion and stimulated the proliferation. All these findings suggest that willemite ceramics possess suitable mechanical properties and favorable biocompatibility and might be a promising biomaterial for bone implant applications.
Biocompatible glass-ceramic materials for bone substitution.
Vitale-Brovarone, Chiara; Verné, Enrica; Robiglio, Lorenza; Martinasso, Germana; Canuto, Rosa A; Muzio, Giuliana
2008-01-01
A new bioactive glass composition (CEL2) in the SiO(2)-P(2)O(5)-CaO-MgO-K(2)O-Na(2)O system was tailored to control pH variations due to ion leaching phenomena when the glass is in contact with physiological fluids. CEL2 was prepared by a traditional melting-quenching process obtaining slices that were heat-treated to obtain a glass-ceramic material (CEL2GC) that was characterized thorough SEM analysis. Pre-treatment of CEL2GC with SBF was found to enhance its biocompatibility, as assessed by in vitro tests. CEL2 powder was then used to synthesize macroporous glass-ceramic scaffolds. To this end, CEL2 powders were mixed with polyethylene particles within the 300-600 microm size-range and then pressed to obtain crack-free compacted powders (green). This was heat-treated to remove the organic phase and to sinter the inorganic phase, leaving a porous structure. The biomaterial thus obtained was characterized by X-ray diffraction, SEM equipped with EDS, density measurement, image analysis, mechanical testing and in vitro evaluation, and found to be a glass-ceramic macroporous scaffold with uniformly distributed and highly interconnected porosity. The extent and size-range of the porosity can be tailored by varying the amount and size of the polyethylene particles.
In vivo bone tissue response to a canasite glass-ceramic.
da Rocha Barros, V M; Salata, L A; Sverzut, C E; Xavier, S P; van Noort, R; Johnson, A; Hatton, P V
2002-07-01
The aim of this study was to determine the biocompatibility and osteoconductive potential of a high-strength canasite glass ceramic. Glass-ceramic rods were produced using the lost-wax casting technique and implanted in the mid-shafts rabbit femurs. Implants were harvested at 4, 13 and 22 weeks and prepared for light and electron microscopy. Hydroxyapatite was used as a control material. Hydroxyapatite implants were surrounded by new mineralised bone tissue after 4 weeks of implantation. The amount of bone surrounding the implant increased slightly at 13 weeks. In contrast, canasite glass and glass ceramic implants were almost entirely surrounded by soft tissue during all the time periods. Close contact between bone and canasite glass-ceramic implant without the intervening fibrous tissue was observed in only a few regions. The canasite formulation evaluated was not osteoconductive and appeared to degrade in the biological environment. It was therefore concluded that the canasite formulation used was unsuitable for use as implant. Further work is required to improve the biocompatibility of these materials with bone tissue. It is possible that this could be achieved by reducing the solubility of the glass and glass ceramic.
Gil-Albarova, Jorge; Salinas, Antonio J; Bueno-Lozano, Antonio L; Román, Jesus; Aldini-Nicolo, Nicolo; García-Barea, Agustina; Giavaresi, Gianluca; Fini, Milena; Giardino, Roberto; Vallet-Regí, Maria
2005-07-01
The in vivo evaluation, in New Zealand rabbits, of a sol-gel glass 70% CaO-30% SiO2 (in mol%) and a glass-ceramic obtained from thermal treatment of the glass, both bioactive in Kokubo's simulated body fluid (SBF), is presented. Femoral bone diaphyseal critical defects were filled with: (i) sol-gel glass cylinders, (ii) glass-ceramic cylinders, or (iii) no material (control group). Osteosynthesis was done by means of anterior screwed plates with an associate intramedullar Kirschner wire. Each group included 10 mature rabbits, 9 months old. Follow-up was 6 months. After sacrifice, macroscopic study showed healing of bone defects, with bone coating over the cylinders, but without evidence of satisfactory repair in control group. Radiographic study showed good implant stability and periosteal growth and bone remodelling around and over the filled bone defect. The morphometric study showed minimum evidences of degradation or resorption in glass-ceramic cylinders, maintaining its original shape, but sol-gel glass cylinders showed abundant fragmentation and surface resorption. An intimate union of the new-formed bone to both materials was observed. Mechanical study showed the higher results in the glass-ceramic group, whereas sol-gel glass and control group showed no differences. The minimum degradation of glass-ceramic cylinders suggests their application in critical bone defects locations of transmission forces or load bearing. The performance of sol-gel glass cylinders suggests their usefulness in locations where a quick resorption should be preferable, considering the possibility of serving as drug or cells vehicle for both of them.
Hydroxyapatite/collagen bone-like nanocomposite.
Kikuchi, Masanori
2013-01-01
Our group has succeeded to synthesize material with bone-like nanostructure and bone-like inorganic and organic composition via self-organization mechanism between them using simultaneous titration method under controlled pH and temperature. The hydroxyapatite/collagen (HAp/Col) bone-like nanocomposite completely incorporated into bone remodeling process to be substituted by new bone. Cells cultured on the HAp/Col revealed very interesting reactions. Osteoblast-like MG63 cells showed upregulation of alkaline phosphatase >3 times greater than MG63 cells cultured on tissue culture polystyrene (TCPS). MG63 cells 3-dimensionally cultured in a "HAp/Col sponge," a porous HAp/Col having sponge-like viscoelasticity, accumulated calcium phosphate nodules on extracellular matrices they secreted. Bone marrow cells co-cultured with osteoblasts on HAp/Col differentiated to osteoclasts without differentiation supplements. This phenomenon is not found in cells cultured on hydroxyapatite ceramics and TCPS, and rarely in cells cultured on dentin. These results suggest that HAp/Col is a good candidate for tissue engineering of bone as well as bone filler. In a clinical test as a bone filler, the HAp/Col sponge was significantly better than porous β-tricalcium phosphate. The HAp/Col sponge has been approved by the Japanese government and will be used as greatly needed bone filler in patients. In addition to the above, HAp/Col coating on titanium revealed higher osteo-conductivity than HAp-coated titanium and bare titanium and improved direct bonding between titanium and newly formed bone. The HAp/Col coating may be used for metal devices requiring osseointegration.
Montazerian, Maziar; Yekta, Bijan Eftekhari; Marghussian, Vahak Kaspari; Bellani, Caroline Faria; Siqueira, Renato Luiz; Zanotto, Edgar Dutra
2015-10-01
In this study, 10 mol% ZrO2 was added to a 27CaO-5P2O5-68SiO2 (mol%) base composition synthesized via a simple sol-gel method. This composition is similar to that of a frequently investigated bioactive gel-glass. The effects of ZrO2 on the in vitro bioactivity and MG-63 cell proliferation of the glass and its derivative polycrystalline (glass-ceramic) powder were investigated. The samples were characterized using thermo-gravimetric and differential thermal analysis (TG/DTA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) coupled to energy dispersive X-ray spectroscopy (EDS). Release of Si, Ca, P and Zr into simulated body fluid (SBF) was determined by inductively coupled plasma (ICP). Upon heat treatment at 1000 °C, the glass powder crystallized into an apatite-wollastonite-zirconia glass-ceramic powder. Hydroxycarbonate apatite (HCA) formation on the surface of the glass and glass-ceramic particles containing ZrO2 was confirmed by FTIR and SEM. Addition of ZrO2 to the base glass composition decreased the rate of HCA formation in vitro from one day to three days, and hence, ZrO2 could be employed to control the rate of apatite formation. However, the rate of HCA formation on the glass-ceramic powder containing ZrO2 crystal was equal to that in the base glassy powder. Tests with a cultured human osteoblast-like MG-63 cells revealed that the glass and glass-ceramic materials stimulated cell proliferation, indicating that they are biocompatible and are not cytotoxic in vitro. Moreover, zirconia clearly increased osteoblast proliferation over that of the Zr-free samples. This increase is likely associated with the lower solubility of these samples and, consequently, a smaller variation in the media pH. Despite the low solubility of these materials, bioactivity was maintained, indicating that these glassy and polycrystalline powders are potential candidates for bone graft substitutes and bone cements with the special feature of radiopacity. Copyright © 2015 Elsevier B.V. All rights reserved.
Choi, Won-Young; Kim, Hyoun-Ee; Moon, Young-Wook; Shin, Kwan-Ha; Koh, Young-Hag
2015-01-01
Calcium phosphate (CaP) ceramics are one of the most valuable biomaterials for uses as the bone scaffold owing to their outstanding biocompatability, bioactivity, and biodegradation nature. In particular, these materials with an open porous structure can stimulate bone ingrowth into their 3-dimensionally interconnected pores. However, the creation of pores in bulk materials would inevitably cause a severe reduction in mechanical properties. Thus, it is a challenge to explore new ways of improving the mechanical properties of porous CaP scaffolds without scarifying their high porosity. Porous CaP ceramic scaffolds with aligned pores were successfully produced using ceramic/camphene-based co-extrusion. This aligned porous structure allowed for the achievement of high compressive strength when tested parallel to the direction of aligned pores. In addition, the overall porosity and mechanical properties of the aligned porous CaP ceramic scaffolds could be tailored simply by adjusting the initial CaP content in the CaP/camphene slurry. The porous CaP scaffolds showed excellent in vitro biocompatibility, suggesting their potential as the bone scaffold. Aligned porous CaP ceramic scaffolds with considerably enhanced mechanical properties and tailorable porosity would find very useful applications as the bone scaffold.
Acceleration of osteogenesis by using barium titanate piezoelectric ceramic as an implant material
NASA Astrophysics Data System (ADS)
Furuya, K.; Morita, Y.; Tanaka, K.; Katayama, T.; Nakamachi, E.
2011-04-01
As bone has piezoelectric properties, it is expected that activity of bone cells and bone formation can be accelerated by applying piezoelectric ceramics to implants. Since lead ions, included in ordinary piezoelectric ceramics, are harmful, a barium titanate (BTO) ceramic, which is a lead-free piezoelectric ceramic, was used in this study. The purpose of this study was to investigate piezoelectric effects of surface charge of BTO on cell differentiation under dynamic loading in vitro. Rat bone marrow cells seeded on surfaces of BTO ceramics were cultured in culture medium supplemented with dexamethasone, β-glycerophosphate and ascorbic acid while a dynamic load was applied to the BTO ceramics. After 10 days of cultivation, the cell layer and synthesized matrix on the BTO surfaces were scraped off, and then DNA content, alkaline phosphtase (ALP) activity and calcium content were measured, to evaluate osteogenic differentiation. ALP activity on the charged BTO surface was slightly higher than that on the non-charged BTO surface. The amount of calcium on the charged BTO surface was also higher than that on the non-charged BTO surface. These results showed that the electric charged BTO surface accelerated osteogenesis.
Bergschmidt, Philipp; Dammer, Rebecca; Zietz, Carmen; Finze, Susanne; Mittelmeier, Wolfram; Bader, Rainer
2016-06-01
Evaluation of the adhesive strength of femoral components to the bone cement is a relevant parameter for predicting implant safety. In the present experimental study, three types of cemented femoral components (metallic, ceramic and silica/silane-layered ceramic) of the bicondylar Multigen Plus knee system, implanted on composite femora were analysed. A pull-off test with the femoral components was performed after different load and several cementing conditions (four groups and n=3 components of each metallic, ceramic and silica/silane-layered ceramic in each group). Pull-off forces were comparable for the metallic and the silica/silane-layered ceramic femoral components (mean 4769 N and 4298 N) under standard test condition, whereas uncoated ceramic femoral components showed reduced pull-off forces (mean 2322 N). Loading under worst-case conditions led to decreased adhesive strength by loosening of the interface implant and bone cement using uncoated metallic and ceramic femoral components, respectively. Silica/silane-coated ceramic components were stably fixed even under worst-case conditions. Loading under high flexion angles can induce interfacial tensile stress, which could promote early implant loosening. In conclusion, a silica/silane-coating layer on the femoral component increased their adhesive strength to bone cement. Thicker cement mantles (>2 mm) reduce adhesive strength of the femoral component and can increase the risk of cement break-off.
Adhesive bone bonding prospects for lithium disilicate ceramic implants
NASA Astrophysics Data System (ADS)
Vennila Thirugnanam, Sakthi Kumar
Temporomandibular Joint (TMJ) implants articulating mandible with temporal bone in humans have a very high failure rate. Metallic TMJ implants available in the medical market are not osseointegrated, but bond only by mechanical interlocking using screws which may fail, mandating a second surgery for removal. Stress concentration around fixture screws leads to aseptic loosening or fracture of the bone. It has been proposed that this problem can be overcome by using an all-ceramic TMJ implant bonded to bone with dental adhesives. Structural ceramics are promising materials with an excellent track record in the field of dentis.
Nevins, Marc L; Camelo, Marcelo; Schupbach, Peter; Nevins, Myron; Kim, Soo-Woo; Kim, David M
2011-01-01
The objective of this study was to assess the osseous healing of buccal plate extraction socket defects. There were four cohorts: group A (mineral collagen bone substitute [MCBS] scaffold alone), group B (MCBS with recombinant human platelet-derived growth factor BB [rhPDGF-BB; 0.3 mg/mL]), group C (MCBS with enamel matrix derivative [EMD]), and group D (combination of EMD with bone ceramic). The primary outcome of bone quality was evaluated using light microscopy, backscatter scanning electron microscopy, and histomorphometrics. Reentry surgery provided an opportunity for clinical observation of the healed ridge morphology. Sixteen patients with buccal wall extraction socket defects were randomized into four treatment groups of equal size. Grafting was provided at the time of extraction with advancement of the buccal flap for primary closure. A trephine core biopsy of the implant site preparation was performed after 5 months for implant placement. Histologic examination identified new bone healing around the biomaterial scaffolds. Statistically significant differences in new bone formation were not observed among the treatment groups. There was a histomorphometric trend toward more new bone for the rhPDGF-BB-treated group (group B). This group had the most favorable ridge morphology for optimal implant placement.
ß-TCP bone substitutes in tibial plateau depression fractures.
Rolvien, Tim; Barvencik, Florian; Klatte, Till Orla; Busse, Björn; Hahn, Michael; Rueger, Johannes Maria; Rupprecht, Martin
2017-10-01
The use of beta-tricalciumphospate (ß-TCP, Cerasorb®) ceramics as an alternative for autologous bone-grafting has been outlined previously, however with no study focusing on both clinical and histological outcomes of ß-TCP application in patients with multi-fragment tibial plateau fractures. The aim of this study was to analyze the long-term results of ß-TCP in patients with tibial plateau fractures. 52 patients were included in this study. All patients underwent open surgery with ß-TCP block or granulate application. After a mean follow-up of 36months (14-64months), the patients were reviewed. Radiography and computed-tomography were performed, while the Rasmussen score was obtained for clinical outcome. Furthermore, seven patients underwent biopsy during hardware removal, which was subsequently analyzed by histology and backscattered electron microscopy (BSEM). An excellent reduction with two millimeters or less of residual incongruity was achieved in 83% of the patients. At follow-up, no further changes occurred and no nonunions were observed. Functional outcome was good to excellent in 82%. Four patients underwent revision surgery due to reasons unrelated to the bone substitute material. Histologic analyses indicated that new bone was built around the ß-TCP-grafts, however a complete resorption of ß-TCP was not observed. ß-TCP combined with internal fixation represents an effective and safe treatment of tibial plateau depression fractures with good functional recovery. While its osteoconductivity seems to be successful, the biological degradation and replacement of ß-TCP is less pronounced in humans than previous animal studies have indicated. Copyright © 2017 Elsevier B.V. All rights reserved.
Study on the neotype zirconia's implant coated nanometer hydroxyapatite ceramics
NASA Astrophysics Data System (ADS)
Zhu, J. W.; Yang, D. W.
2007-07-01
In recent years, biologic ceramics is a popular material of implants and bioactive surface modification of dental implant became a research emphasis, which aims to improve bioactivity of implants materials and acquire firmer implants-bone interface. The zirconia ceramic has excellent mechanical properties and nanometer HA ceramics is a bioceramic well known for its bioactivity, therefore, nanometer HA ceramics coating on zirconia, allows combining the excellent mechanical properties of zirconia substrates with its bioactivity. This paper shows a new method for implant shape design and bioactive modification of dental implants surface. Zirconia's implant substrate was prepared by sintered method, central and lateral tunnels were drilled in the zirconia hollow porous cylindrical implants by laser processing. The HA powders and needle-like HA crystals were made by a wet precipitation and calcining method. Its surface was coated with nanometer HA ceramics which was used brush HA slurry and vacuum sintering. Mechanical testing results revealed that the attachment strength of nanometer HA ceramics coated zirconia samples is high. SEM and interface observation after inserted experiment indicated that calcium and phosphor content increased and symmetrically around coated implant-bone tissue interface. A significantly higher affinity index was demonstrated in vivo by histomorphometric evaluation in coated versus uncoated implants. SEM analysis demonstrated better bone adhesion to the material in coated implant at any situation. In addition, the hollow porous cylindrical implant coated with nanometer HA ceramics increase the interaction of bone and implant, the new bone induced into the surface of hollow porous cylindrical implant and through the most tunnels filled into central hole. The branch-like structure makes the implant and bone a body, which increased the contact area and decreased elastic ratio. Therefore, the macroscopical and microcosmic nested structure of implant coated nanometer HA ceramics had increased biocompatibility and improved the osteointegration. It endows the implants with new vital activity.
Sphene ceramics for orthopedic coating applications: an in vitro and in vivo study.
Ramaswamy, Yogambha; Wu, Chengtie; Dunstan, Colin R; Hewson, Benjamin; Eindorf, Tanja; Anderson, Gail I; Zreiqat, Hala
2009-10-01
The host response to titanium alloy (Ti-6Al-4V) is not always favorable as a fibrous layer may form at the skeletal tissue-device interface, causing aseptic loosening. Recently, sphene (CaTiSiO(5)) ceramics were developed by incorporating Ti in the Ca-Si system, and found to exhibit improved chemical stability. The aim of this study is to evaluate the in vitro response of human osteoblast-like cells, human osteoclasts and human microvascular endothelial cells to sphene ceramics and determine whether coating Ti-6Al-4V implants with sphene enhances anchorage to surrounding bone. The study showed that sphene ceramics support human osteoblast-like cell attachment with organized cytoskeleton structure and express increased mRNA levels of osteoblast-related genes. Sphene ceramics were able to induce the differentiation of monocytes to form functional osteoclasts with the characteristic features of f-actin and alpha(v)beta(3) integrin, and express osteoclast-related genes. Human endothelial cells were also able to attach and express the endothelial cell markers ZO-1 and VE-Cadherin when cultured on sphene ceramics. Histological staining, enzyme histochemistry and immunolabelling were used for identification of mineralized bone and bone remodelling around the coated implants. Ti-6Al-4V implants coated with sphene showed new bone formation and filled the gap between the implants and existing bone in a manner comparable to that of the hydroxyapatite coatings used as control. The new bone was in direct contact with the implants, whereas fibrous tissue formed between the bone and implant with uncoated Ti-6Al-4V. The in vivo assessment of sphene-coated implants supports our in vitro observation and suggests that they have the ability to recruit osteogenic cells, and thus support bone formation around the implants and enhance osseointegration.
Guided bone regeneration using individualized ceramic sheets.
Malmström, J; Anderud, J; Abrahamsson, P; Wälivaara, D-Å; Isaksson, S G; Adolfsson, E
2016-10-01
Guided bone regeneration (GBR) describes the use of membranes to regenerate bony defects. A membrane for GBR needs to be biocompatible, cell-occlusive, non-toxic, and mouldable, and possess space-maintaining properties including stability. The purpose of this pilot study was to describe a new method of GBR using individualized ceramic sheets to perfect bone regeneration prior to implant placement; bone regeneration was assessed using traditional histology and three-dimensional (3D) volumetric changes in the bone and soft tissue. Three patients were included. After full-thickness flap reflection, the individualized ceramic sheets were fixed. The sites were left to heal for 7 months. All patients were evaluated preoperatively and at 7 months postoperative using cone beam computed tomography and 3D optical equipment. Samples of the regenerated bone and soft tissue were collected and analyzed. The bone regenerated in the entire interior volume of all sheets. Bone biopsies revealed newly formed trabecular bone with a lamellar structure. Soft tissue biopsies showed connective tissue with no signs of an inflammatory response. This was considered to be newly formed periosteum. Thus ceramic individualized sheets can be used to regenerate large volumes of bone in both vertical and horizontal directions independent of the bone defect and with good biological acceptance of the material. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
USE OF BIOCERAMICS IN FILLING BONE DEFECTS
Garrido, Carlos Antõnio; Sampaio, Tania Clarete Fonseca Vieira Sales
2015-01-01
Objective: To present the results from using biological ceramics for filling bone defects resulting from post-traumatic or orthopedic injuries. Methods: Thirty-six patients with bone defects caused by trauma or orthopedic injury were evaluated. Nineteen patients were male (52.8%) and 17 were female (47.2%). Their ages ranged from 19 to 84 years, with a mean of 45.7 years and median of 37 years. Only patients with defects that required at least five grams of biological ceramic were included. Eighteen cases were classified as orthopedic: bone defects were observed in 11 cases of total hip arthroplasty; one case of primary total hip arthroplasty, due to coxarthrosis; five cases of femoral or tibial open wedge osteotomy; and one case of tarsal arthrodesis. There were 18 cases of trauma-related defects; uninfected pseudarthrosis, eight cases; recent fractures of the tibial plateau with compression of the spongy bone, three cases; and exposed fractures treated with external fixators, seven cases. The surgical technique consisted of curetting and debriding the injury until bone suitable for grafting was found. Biological ceramic was then used to fill the defect and some kind of fixation was applied. Results: Among the 36 patients evaluated, it was seen that 35 (97.2%) presented integration of the biological ceramic, while one case of open fracture treated with external fixation had poor integration of the biological ceramic. Conclusion: Treatment of bone defects of orthopedic or post-traumatic etiology using a phosphocalcium ceramic composed of hydroxyapatite was shown to be a practical, effective and safe method. PMID:27022576
Bone bonding in bioactive glass ceramics combined with a new synthesized agent TAK-778.
Kato, H; Neo, M; Tamura, J; Nakamura, T
2001-11-01
We studied the stimulatory effects of TAK-778, a new synthetic 3-benzothiepin derivative that promotes osteoblast differentiation, in the bonding of bone to bioactive glass ceramic implants in rabbit tibiae. Smooth-surfaced, rectangular plates (15 x 10 x 2 mm) made of apatite-wollastonite-containing glass ceramic were implanted bilaterally into the proximal metaphyses of rabbit tibiae. Sustained-release microcapsules containing TAK-778 were packed into the medullary cavity in one limb and untreated microcapsules were packed into the contralateral limb to serve as a paired control. At 4, 8, and 16 weeks after implantation, bonding at the bone/implant interfaces was evaluated using a detaching test and histological examination of undecalcified specimens. The tensile failure load increased during weeks 4 to 16 in both groups; the tensile failure load in the TAK-778-treated group was significantly greater than that in the control group at each interval after implantation. Histologically, the TAK-778-treated specimens showed greater active new bone formation mainly in the medullary cavity and more extensive bonding between the implant and bone than the untreated specimens. The results of this study suggest that adding the bone formation-promoting TAK-778 to bioactive glass ceramic implants may significantly accelerate bone apposition to the implants and improve the bonding process at the interface. This would help to establish earlier and stronger bonding of orthopedic ceramic implants to the surrounding bone tissue. Copyright 2001 John Wiley & Sons, Inc.
Bioactivity and cytotoxicity of glass and glass-ceramics based on the 3CaO·P₂O₅--SiO₂--MgO system.
Daguano, Juliana K M F; Rogero, Sizue O; Crovace, Murilo C; Peitl, Oscar; Strecker, Kurt; Dos Santos, Claudinei
2013-09-01
The mechanical strength of bioactive glasses can be improved by controlled crystallization, turning its use as bulk bone implants viable. However, crystallization may affect the bioactivity of the material. The aim of this study was to develop glass-ceramics of the nominal composition (wt%) 52.75(3CaO·P₂O₅)-30SiO₂-17.25MgO, with different crystallized fractions and to evaluate their in vitro cytotoxicity and bioactivity. Specimens were heat-treated at 700, 775 and 975 °C, for 4 h. The major crystalline phase identified was whitlockite, an Mg-substituted tricalcium phosphate. The evaluation of the cytotoxicity was carried out by the neutral red uptake methodology. Ionic exchanges with the simulated body fluid SBF-K9 acellular solution during the in vitro bioactivity tests highlight the differences in terms of chemical reactivity between the glass and the glass-ceramics. The effect of crystallinity on the rates of hydroxycarbonate apatite (HCA) formation was followed by Fourier transformed infrared spectroscopy. Although all glass-ceramics can be considered bioactive, the glass-ceramic heat-treated at 775 °C (V775-4) presented the most interesting result, because the onset for HCA formation is at about 24 h and after 7 days the HCA layer dominates completely the spectrum. This occurs probably due to the presence of the whitlockite phase (3(Ca,Mg)O·P₂O₅). All samples were considered not cytotoxic.
Hydroxyapatite ceramic implants for cranioplasty in children: a single-center experience.
Zaccaria, Laura; Tharakan, Sasha Job; Altermatt, Stefan
2017-02-01
The use of hydroxyapatite ceramic (HAC) implants for the treatment of skull defects in pediatric patients started 2010 at our institution. Ceramic implants facilitate osteoblast migration and therefore optimize osteointegration with the host bone. The purpose of this study is to report a single-center experience with this treatment modality. A retrospective review of all patients from July 2010 through June 2014 undergoing a cranioplasty using hydroxyapatite ceramic implant and managed at a single institution was performed. Indication for cranioplasty, the hospital course, and follow-up were reviewed. Bone density was measured in Hounsfield Units (HU) and osteointegration was calculated using Mimics Software® (Mimics Innovation Suite v17.0 Medical, Materialize, Leuven, Belgium). Over the 4-year period, six patients met criteria for the study. Five patients had an osteointegration of nearly 100%. One patient had an incomplete osteointegration with a total bone-implant contact area of 69%. The mean bone density was 2800 HU (2300-3000 HU). Bone density alone is estimated to have a Hounsfield value between 400 and 2000 HU depending on the body region and bone quality. There were no major complications, and the patients were highly satisfied with the esthetical result. Hydroxyapatite ceramic implants for cranioplasty in pediatric patients are a good choice for different indications. The implants show excellent osteointegration and esthetical results.
Ectopic Osteoid and Bone Formation by Three Calcium-Phosphate Ceramics in Rats, Rabbits and Dogs
Wang, Liao; Zhang, Bi; Bao, Chongyun; Habibovic, Pamela; Hu, Jing; Zhang, Xingdong
2014-01-01
Calcium phosphate ceramics with specific physicochemical properties have been shown to induce de novo bone formation upon ectopic implantation in a number of animal models. In this study we explored the influence of physicochemical properties as well as the animal species on material-induced ectopic bone formation. Three bioceramics were used for the study: phase-pure hydroxyapatite (HA) sintered at 1200°C and two biphasic calcium phosphate (BCP) ceramics, consisting of 60 wt.% HA and 40 wt.% TCP (β-Tricalcium phosphate), sintered at either 1100°C or 1200°C. 108 samples of each ceramic were intramuscularly implanted in dogs, rabbits, and rats for 6, 12, and 24 weeks respectively. Histological and histomorphometrical analyses illustrated that ectopic bone and/or osteoid tissue formation was most pronounced in BCP sintered at 1100°C and most limited in HA, independent of the animal model. Concerning the effect of animal species, ectopic bone formation reproducibly occurred in dogs, while in rabbits and rats, new tissue formation was mainly limited to osteoid. The results of this study confirmed that the incidence and the extent of material-induced bone formation are related to both the physicochemical properties of calcium phosphate ceramics and the animal model. PMID:25229501
Novel Resorbable and Osteoconductive Calcium Silicophosphate Scaffold Induced Bone Formation
Ros-Tárraga, Patricia; Mazón, Patricia; Rodríguez, Miguel A.; Meseguer-Olmo, Luis; De Aza, Piedad N.
2016-01-01
This aim of this research was to develop a novel ceramic scaffold to evaluate the response of bone after ceramic implantation in New Zealand (NZ) rabbits. Ceramics were prepared by the polymer replication method and inserted into NZ rabbits. Macroporous scaffolds with interconnected round-shaped pores (0.5–1.5 mm = were prepared). The scaffold acted as a physical support where cells with osteoblastic capability were found to migrate, develop processes, and newly immature and mature bone tissue colonized on the surface (initially) and in the material’s interior. The new ceramic induced about 62.18% ± 2.28% of new bone and almost complete degradation after six healing months. An elemental analysis showed that the gradual diffusion of Ca and Si ions from scaffolds into newly formed bone formed part of the biomaterial’s resorption process. Histological and radiological studies demonstrated that this porous ceramic scaffold showed biocompatibility and excellent osteointegration and osteoinductive capacity, with no interposition of fibrous tissue between the implanted material and the hematopoietic bone marrow interphase, nor any immune response after six months of implantation. No histological changes were observed in the various organs studied (para-aortic lymph nodes, liver, kidney and lung) as a result of degradation products being released. PMID:28773906
Impedance and AC conductivity studies of Sm3+ substituted 0.8Ba0.2(Bi0.5K0.5)TiO3 lead free ceramics
NASA Astrophysics Data System (ADS)
Sastry, C. V. S. S.; Ramesh, M. N. V.; Ramesh, K. V.
2017-07-01
Samarium substituted 0.8Ba0.2(Bi0.5K0.5)TiO3 (here after abbreviated as BTBKT-20) lead free ceramics with composition 0.8Ba0.2(Bi0.5(1-x)Sm0.5xK0.5)TiO3 (where x=0.01,0.03,0.05) lead free ceramics have been prepared by solid state reaction and followed by high energy ball milling process. The present paper focuses the impedance and ac conductivity studies of Sm substituted BTBKT-20 lead free ceramics. Impedance spectroscopic studies revealthat temperature dependent relaxation process. Single depressed semi circle was observed in Cole-Cole plots, indicates non-Debye kind of relaxation process. Maximum grain resistance was observed for x=0.03 Sm substituted BTBKT-20 sample. Frequency and temperature dependent AC conductivity was calculated and it found to obey the universal Jonscher's power law and the values of activation energies suggest that conduction is ionic in nature.
Zhang, Xue; Li, Xiao-Wu; Li, Ji-Guang; Sun, Xu-Dong
2014-01-08
Magnesium has been recently recognized as a biodegradable metal for bone substitute applications. In order to improve the biocompatibility and osteointegration of pure Mg, two kinds of coatings, i.e., the Ca-P coating and bioglass ceramic cement (BGCC)/Ca-P coating, were prepared on the pure Mg ribbons in the present work. The Ca-P coating was obtained by aqueous solution method. Subsequently, Ca-P coated Mg was immersed into the BGCC slurry, which was prepared by the mix of SiO2-CaO-P2O5 bioglass ceramic (BGC) powders and phosphate liquid with a liquid-to-solid ratio (L/S) of 1.6, to obtain BGCC/Ca-P coating by a dipping-pulling method. The microstructures, morphologies, and compositions of these coatings have been characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS). The effect of these coatings on the mineralization activity of pure Mg has been investigated. The results indicated that both the Ca-P coating and BGCC/Ca-P coating could promote the nucleation of osteoconductive minerals, i.e., bone-like apatite, and the hydroxyapatite (HA) layer formed on the surface of the BGCC/Ca-P coating is obviously more dense, thick, and stable than that formed on the Ca-P coating after immersion in SBF solution for 15 days. The potentiodynamic polarization test indicated that the corrosion current density of the BGCC/Ca-P coated Mg is obviously lower than that of the Ca-P coating and 10 times lower than that of uncoated Mg. These results demonstrated that the BGCC/Ca-P coating can increase significantly the corrosion resistance of Mg and introduce a high biocompatibility of the bone-Mg substrate interface. In summary, the newly developed BGCC/Ca-P coated Mg has a good potential for biomedical applications.
Bioactive calcium silicate ceramics and coatings.
Liu, Xuanyong; Morra, Marco; Carpi, Angelo; Li, Baoe
2008-10-01
CaO-SiO2 based ceramics have been regarded as potential candidates for artificial bone due to their excellent bone bioactivity and biocompatibility. However, they cannot be used as implants under a heavy load because of their poor mechanical properties, in particular low fracture toughness. Plasma spraying CaO-SiO2 based ceramic coatings onto titanium alloys can expand their application to the hard tissue replacement under a heavy load. Plasma sprayed wollastonite, dicalcium silicate and diopside coatings have excellent bone bioactivity and high bonding strength to titanium alloys. It is possible that these plasma sprayed CaO-SiO2 based ceramic coatings will be applied in clinic after they are widely and systematically researched.
Nguyen, Thuy-Duong Thi; Bae, Tae-Sung; Yang, Dae-hyeok; Park, Myung-sik; Yoon, Sun-jung
2017-01-01
The management of severe acetabular bone defects in revision reconstructive orthopedic surgery is challenging. In this study, cyclic precalcification (CP) treatment was used on both nanotube-surface Ti-mesh and a bone graft substitute for the acetabular defect model, and its effects were assessed in vitro and in vivo. Nanotube-Ti mesh coated with hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) was manufactured by an anodizing and a sintering method, respectively. An 8 mm diameter defect was created on each acetabulum of eight rabbits, then treated by grafting materials and covered by Ti meshes. At four and eight weeks, postoperatively, biopsies were performed for histomorphometric analyses. The newly-formed bone layers under cyclic precalcified anodized Ti (CP-AT) meshes were superior with regard to the mineralized area at both four and eight weeks, as compared with that under untreated Ti meshes. Active bone regeneration at 2–4 weeks was stronger than at 6–8 weeks, particularly with treated biphasic ceramic (p < 0.05). CP improved the bioactivity of Ti meshes and biphasic grafting materials. Moreover, the precalcified nanotubular Ti meshes could enhance early contact bone formation on the mesh and, therefore, may reduce the collapse of Ti meshes into the defect, increasing the sufficiency of acetabular reconstruction. Finally, cyclic precalcification did not affect bone regeneration by biphasic grafting materials in vivo. PMID:28686210
Regenerating Articular Tissue by Converging Technologies
Paoluzzi, Luca; Pieper, Jeroen; de Wijn, Joost R.; van Blitterswijk, Clemens A.
2008-01-01
Scaffolds for osteochondral tissue engineering should provide mechanical stability, while offering specific signals for chondral and bone regeneration with a completely interconnected porous network for cell migration, attachment, and proliferation. Composites of polymers and ceramics are often considered to satisfy these requirements. As such methods largely rely on interfacial bonding between the ceramic and polymer phase, they may often compromise the use of the interface as an instrument to direct cell fate. Alternatively, here, we have designed hybrid 3D scaffolds using a novel concept based on biomaterial assembly, thereby omitting the drawbacks of interfacial bonding. Rapid prototyped ceramic particles were integrated into the pores of polymeric 3D fiber-deposited (3DF) matrices and infused with demineralized bone matrix (DBM) to obtain constructs that display the mechanical robustness of ceramics and the flexibility of polymers, mimicking bone tissue properties. Ostechondral scaffolds were then fabricated by directly depositing a 3DF structure optimized for cartilage regeneration adjacent to the bone scaffold. Stem cell seeded scaffolds regenerated both cartilage and bone in vivo. PMID:18716660
Duan, Yourong; Lü, Wanxin; Wang, Chaoyuan; Chen, Jiyong; Zhang, Xingdong
2002-06-01
Bone-like apatite formation on the surface of calcium phosphate ceramics has been believed to be the prerequisite of new bone growth on ceramics and to be related to the osteoinductivity of the material. The research of the factors effecting bone-like apatite formation is a great help in understanding the mechanism of osteoinduction. This paper is aimed to a comparative study of in vitro formation of bone-like apatite on the surface of dense and rough calcium phosphate ceramics with SBF flowing at different rates. The results showed that the rough surface was beneficial to the formation of bone-like apatite, and the apatite formed faster in 1.5 SBF than in SBF. Rough surface, namely, larger surface area, increased the dissolution of Ca2+ and HPO4(2-) and higher concentration of Ca2+ and HPO4(2-) ions of SBF and was in turn advantageous to the accumulation of Ca2+, HPO4(2-), PO4(3-) near the ceramic surface. Local supersaturating concentration of Ca2+, HPO4(2-), PO4(3-) near sample surface was essential to nucleation of apatite on the surface of sample.
Experimental verification of using nanostructured ceramic implants and osteograft
NASA Astrophysics Data System (ADS)
Rerikh, V. V.; Lastevskiy, A. D.; Sadovoy, M. A.; Zaidman, A. M.; Bataev, A. V.; Predein, Yu. A.; Avetisyan, A. R.; Romanenko, V. V.; Mamonova, E. V.; Nikulina, A. A.; Semantsova, E. S.; Smirnov, A. I.
2017-09-01
Ventral interbody fusion was carried out in 8 mini pigs in order to determine the effectiveness of anterior stabilization of the vertebral unit with implants made of nanostructured alumina ceramics using cellular technologies to form a bone block. A ceramic cage with a through cylindrical orifice in the center was implanted into the interbody gap; either cellular osteograft (group 1) or cellular autograft (group 2) was placed in it. The adjacent vertebrae were fixed anteriorly with a ceramic plate containing 4 screws. Bone block formation was studied radiographically, morphologically, and by MSCT. The signs of osteointegration of ceramic implants were observed in both groups after 90 days. MSCT and morphological analysis revealed the formation of the osteoceramic block and completed osteogenesis in the bone-graft contact region in group 1 compared to the control group (p < 0.05).
Electrically active bioceramics: a review of interfacial responses.
Baxter, F R; Bowen, C R; Turner, I G; Dent, A C E
2010-06-01
Electrical potentials in mechanically loaded bone have been implicated as signals in the bone remodeling cycle. Recently, interest has grown in exploiting this phenomenon to develop electrically active ceramics for implantation in hard tissue which may induce improved biological responses. Both polarized hydroxyapatite (HA), whose surface charge is not dependent on loading, and piezoelectric ceramics, which produce electrical potentials under stress, have been studied in order to determine the possible benefits of using electrically active bioceramics as implant materials. The polarization of HA has a positive influence on interfacial responses to the ceramic. In vivo studies of polarized HA have shown polarized samples to induce improvements in bone ingrowth. The majority of piezoelectric ceramics proposed for implant use contain barium titanate (BaTiO(3)). In vivo and in vitro investigations have indicated that such ceramics are biocompatible and, under appropriate mechanical loading, induce improved bone formation around implants. The mechanism by which electrical activity influences biological responses is yet to be clearly defined, but is likely to result from preferential adsorption of proteins and ions onto the polarized surface. Further investigation is warranted into the use of electrically active ceramics as the indications are that they have benefits over existing implant materials.
He, X; Zhang, Y Z; Mansell, J P; Su, B
2008-07-01
Zirconia toughened alumina (ZTA) has been regarded as the next generation orthopedic graft material due to its excellent mechanical properties and biocompatibility. Porous ZTA ceramics with good interconnectivity can potentially be used as bone grafts for load-bearing applications. In this work, three-dimensional (3D) interconnected porous ZTA ceramics were fabricated using a direct foaming method with egg white protein as binder and foaming agent. The results showed that the porous ZTA ceramics possessed a bimodal pore size distribution. Their mechanical properties were comparable to those of cancellous bone. Due to the bio-inertness of alumina and zirconia ceramics, surface bioactivation of the ZTA foams was carried out in order to improve their bioactivity. A simple NaOH soaking method was employed to change the surface chemistry of ZTA through hydroxylation. Treated samples were tested by conducting osteoblast-like cell culture in vitro. Improvement on cells response was observed and the strength of porous ZTA has not been deteriorated after the NaOH treatment. The porous 'bioactivated' ZTA ceramics produced here could be potentially used as non-degradable bone grafts for load-bearing applications.
Research of mechanics of the compact bone microvolume and porous ceramics under uniaxial compression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolmakova, T. V., E-mail: kolmakova@ftf.tsu.ru; Buyakova, S. P., E-mail: sbuyakova@ispms.tsc.ru; Kul’kov, S. N., E-mail: kulkov@ms.tsc.ru
2015-11-17
The research results of the mechanics are presented and the effective mechanical characteristics under uniaxial compression of the simulative microvolume of the compact bone are defined subject to the direction of the collagen-mineral fibers, porosity and mineral content. The experimental studies of the mechanics are performed and the effective mechanical characteristics of the produced porous zirconium oxide ceramics are defined. The recommendations are developed on the selection of the ceramic samples designed to replace the fragment of the compact bone of a definite structure and mineral content.
Rincón-López, July Andrea; Hermann-Muñoz, Jennifer Andrea; De Vizcaya-Ruiz, Andrea; Alvarado-Orozco, Juan Manuel
2018-01-01
The physicochemical properties and biological behavior of sintered-bovine-derived hydroxyapatite (BHAp) are here reported and compared to commercial synthetic-HAp (CHAp). Dense ceramics were sintered for 2 h and 4 h at 1200 °C to investigate their microstructure–structure–in-vitro behavior relationship for both HAp ceramics. Densification was directly proportional to sintering time, showing a grain coarsening behavior with a greater effect on BHAp. Lattice parameters, crystallite size, cell volume and Ca/P ratio were determined by Rietveld refinement of X-ray diffraction (XRD) patterns using GSAS®. Ionic substitutions (Na+, Mg2+, CO32−) related to BHAp structure were associated with their position changes in the vibrational modes and correlated with the structural parameters obtained from the XRD analysis. Variations in the structural parameters and surface morphology were also evaluated after different soaking periods in simulated body fluid, which is associated with the formation of bone-like apatite layer and thus bioactivity. Mitochondrial activity (MTS) and lactate dehydrogenase (LDH) assays showed that the material released by the ceramics does not induce toxicity after exposure in human fetal osteoblastic (hFOB) cells. Furthermore, no statistically significant differences were found between the HAp obtained from different sources. These results show that BHAp can be used with no restrictions for the same biomedical applications as CHAp. PMID:29495348
Rincón-López, July Andrea; Hermann-Muñoz, Jennifer Andrea; Giraldo-Betancur, Astrid Lorena; De Vizcaya-Ruiz, Andrea; Alvarado-Orozco, Juan Manuel; Muñoz-Saldaña, Juan
2018-02-25
The physicochemical properties and biological behavior of sintered-bovine-derived hydroxyapatite (BHAp) are here reported and compared to commercial synthetic-HAp (CHAp). Dense ceramics were sintered for 2 h and 4 h at 1200 °C to investigate their microstructure-structure-in-vitro behavior relationship for both HAp ceramics. Densification was directly proportional to sintering time, showing a grain coarsening behavior with a greater effect on BHAp. Lattice parameters, crystallite size, cell volume and Ca / P ratio were determined by Rietveld refinement of X-ray diffraction (XRD) patterns using GSAS ® . Ionic substitutions (Na⁺, Mg 2+ , CO₃ 2- ) related to BHAp structure were associated with their position changes in the vibrational modes and correlated with the structural parameters obtained from the XRD analysis. Variations in the structural parameters and surface morphology were also evaluated after different soaking periods in simulated body fluid, which is associated with the formation of bone-like apatite layer and thus bioactivity. Mitochondrial activity (MTS) and lactate dehydrogenase (LDH) assays showed that the material released by the ceramics does not induce toxicity after exposure in human fetal osteoblastic (hFOB) cells. Furthermore, no statistically significant differences were found between the HAp obtained from different sources. These results show that BHAp can be used with no restrictions for the same biomedical applications as CHAp.
The stability mechanisms of an injectable calcium phosphate ceramic suspension
Fatimi, Ahmed; Tassin, Jean-François; Axelos, Monique A. V.; Weiss, Pierre
2010-01-01
Calcium phosphate ceramics are widely used as bone substitutes in dentistry and orthopedic applications. For minimally invasive surgery an injectable calcium phosphate ceramic suspension (ICPCS) was developed. It consists in a biopolymer (hydroxypropylmethylcellulose: HPMC) as matrix and bioactive calcium phosphate ceramics (biphasic calcium phosphate: BCP) as fillers. The stability of the suspension is essential to this generation of “ready to use” injectable biomaterial. But, during storage, the particles settle down. The engineering sciences have long been interested in models describing the settling (or sedimentation) of particles in viscous fluids. Our work is dedicated to the comprehension of the effect of the formulation on the stability of calcium phosphate suspension before and after steam sterilization. The rheological characterization revealed the macromolecular behavior of the suspending medium. The investigations of settling kinetics showed the influence of the BCP particle size and the HPMC concentration on the settling velocity and sediment compactness before and after sterilization. To decrease the sedimentation process, the granule size has to be smaller and the polymer concentration has to increase. A much lower sedimentation velocity, as compared to Stokes law, is observed and interpreted in terms of interactions between the polymer network in solution and the particles. This experimentation highlights the granules spacer property of hydrophilic macromolecules that is a key issue for interconnection control, one of the better ways to improve osteoconduction and bioactivity. PMID:20229185
The stability mechanisms of an injectable calcium phosphate ceramic suspension.
Fatimi, Ahmed; Tassin, Jean-François; Axelos, Monique A V; Weiss, Pierre
2010-06-01
Calcium phosphate ceramics are widely used as bone substitutes in dentistry and orthopedic applications. For minimally invasive surgery an injectable calcium phosphate ceramic suspension (ICPCS) was developed. It consists in a biopolymer (hydroxypropylmethylcellulose: HPMC) as matrix and bioactive calcium phosphate ceramics (biphasic calcium phosphate: BCP) as fillers. The stability of the suspension is essential to this generation of "ready to use" injectable biomaterial. But, during storage, the particles settle down. The engineering sciences have long been interested in models describing the settling (or sedimentation) of particles in viscous fluids. Our work is dedicated to the comprehension of the effect of the formulation on the stability of calcium phosphate suspension before and after steam sterilization. The rheological characterization revealed the macromolecular behavior of the suspending medium. The investigations of settling kinetics showed the influence of the BCP particle size and the HPMC concentration on the settling velocity and sediment compactness before and after sterilization. To decrease the sedimentation process, the granule size has to be smaller and the polymer concentration has to increase. A much lower sedimentation velocity, as compared to Stokes law, is observed and interpreted in terms of interactions between the polymer network in solution and the particles. This experimentation highlights the granules spacer property of hydrophilic macromolecules that is a key issue for interconnection control, one of the better ways to improve osteoconduction and bioactivity.
Tang, Zhurong; Wang, Zhe; Qing, Fangzhu; Ni, Yilu; Fan, Yujiang; Tan, Yanfei; Zhang, Xingdong
2015-03-01
Porous calcium phosphate ceramics (CaP ceramics) could induce ectopic bone formation which was regulated by various signal molecules. In this work, bone marrow mesenchymal stem cells (MSCs) were cultured on the surface of osteoinductive hydroxyapatite (HA) and biphasic calcium phosphate (BCP) ceramics in comparison with control (culture plate) for up to 14 days to detect the signal molecules which might be affected by the CaP ceramics. Without adding osteogenic factors, MSCs cultured on HA and BCP both expressed higher Runx2, Osterix, collagen type I, osteopontin, bone sialoprotein, and osteocalcin at various stages compared with control, thus confirmed the osteoblastic differentiation of MSCs. Later study demonstrated the messenger RNA level of bone morphogenetic protein 2 (BMP2) and BMP4 were also significantly enhanced by HA and BCP. Furthermore, Smad1, 4, 5, and Dlx5, the main molecules in the BMP/Smads signaling pathway, were upregulated by HA and BCP. Moreover, the higher expression of Smads and BMP2, 4 in BCP over HA, corresponded to the better performance of BCP in stimulating in vitro osteoblastic differentiation of MSCs. This was in accordance with the better osteoinductivity of BCP over HA in vivo. Altogether, these results implied that the CaP ceramics may initiate the osteoblastic differentiation of MSCs by influencing the expression of molecules in BMP/Smads pathway. © 2014 Wiley Periodicals, Inc.
Maruta, Michito; Matsuya, Shigeki; Nakamura, Seiji; Ishikawa, Kunio
2011-01-01
Carbonate apatite (CO(3)Ap) foam may be an ideal bone substitute as it is sidelined to cancellous bone with respect to its chemical composition and structure. However, CO(3)Ap foam fabricated using α-tricalcium phosphate foam showed limited mechanical strength. In the present study, feasibility of the fabrication of calcite which could be a precursor of CO(3)Ap was studied. Calcite foam was successfully fabricated by the so-called "ceramic foam" method using calcium hydroxide coated polyurethane foam under CO(2)+O(2) atmosphere. Then the calcite foam was immersed in Na(2)HPO(4) aqueous solution for phase transformation based on dissolution-precipitation reaction. When CaO-free calcite foam was immersed in Na(2)HPO(4) solution, low-crystalline CO(3)Ap foam with 93-96% porosity and fully interconnected porous structure was fabricated. The compressive strength of the foam was 25.6 ± 6 kPa. In light of these results, we concluded that the properties of the precursor foam were key factors for the fabrication of CO(3)Ap foams.
A novel biphasic calcium phosphate derived from fish otoliths
NASA Astrophysics Data System (ADS)
Montañez-Supelano, N. D.; Sandoval-Amador, A.; Estupiñan-Durán, H. A.; Y Peña-Ballesteros, D.
2017-12-01
Calcium phosphates are bioceramics that have been widely used as bone substitutes because they encourage the formation of bone on their surface and can improve the healing of the bone. Hydroxyapatite HA (calcium/phosphorus ratio of 1.67) and tricalcium phosphate TCP (calcium/phosphorus ratio of 1.50) are the most common calcium phosphates. Natural materials have begun to be tested to make HA or TCP such as shells of cardiidae (family of mollusks) and eggshells. The calcium phosphate obtained has a high ability to precipitate apatite. In this work, the mixed phase ceramic of beta-Tri-calcium phosphate / hydroxyapatite (β-TCP/HA) was synthesized by aqueous precipitation from fish otoliths, which are monomineralic species composed of aragonite. Otoliths of the specie Plagioscion squamosissimus, commonly called the river croaker, were used. Techniques such as DRX, Raman spectroscopy and SEM-EDS were used to characterize the raw material and the obtained material. X-ray diffraction analysis revealed the presence of two crystalline phases of calcium phosphates with 86.2% crystallinity. SEM micrographs showed agglomeration of particles with porous structure and submicron particle sizes.
Ceramic coatings on smooth surfaces
NASA Technical Reports Server (NTRS)
Miller, R. A. (Inventor); Brindley, W. J. (Inventor); Rouge, C. J. (Inventor)
1991-01-01
A metallic coating is plasma sprayed onto a smooth surface of a metal alloy substitute or on a bond coating. An initial thin ceramic layer is low pressure sprayed onto the smooth surface of the substrate or bond coating. Another ceramic layer is atmospheric plasma sprayed onto the initial ceramic layer.
Carbon nanotube, graphene and boron nitride nanotube reinforced bioactive ceramics for bone repair.
Gao, Chengde; Feng, Pei; Peng, Shuping; Shuai, Cijun
2017-10-01
The high brittleness and low strength of bioactive ceramics have severely restricted their application in bone repair despite the fact that they have been regarded as one of the most promising biomaterials. In the last few years, low-dimensional nanomaterials (LDNs), including carbon nanotubes, graphene and boron nitride nanotubes, have gained increasing attention owing to their favorable biocompatibility, large surface specific area and super mechanical properties. These qualities make LDNs potential nanofillers in reinforcing bioactive ceramics. In this review, the types, characteristics and applications of the commonly used LDNs in ceramic composites are summarized. In addition, the fabrication methods for LDNs/ceramic composites, such as hot pressing, spark plasma sintering and selective laser sintering, are systematically reviewed and compared. Emphases are placed on how to obtain the uniform dispersion of LDNs in a ceramic matrix and maintain the structural stability of LDNs during the high-temperature fabrication process of ceramics. The reinforcing mechanisms of LDNs in ceramic composites are then discussed in-depth. The in vitro and in vivo studies of LDNs/ceramic in bone repair are also summarized and discussed. Finally, new developments and potential applications of LDNs/ceramic composites are further discussed with reference to experimental and theoretical studies. Despite bioactive ceramics having been regarded as promising biomaterials, their high brittleness and low strength severely restrict their application in bone scaffolds. In recent years, low-dimensional nanomaterials (LDNs), including carbon nanotubes, graphene and boron nitride nanotubes, have shown great potential in reinforcing bioactive ceramics owing to their unique structures and properties. However, so far it has been difficult to maintain the structural stability of LDNs during fabrication of LDNs/ceramic composites, due to the lengthy, high-temperature process involved. This review presents a comprehensive overview of the developments and applications of LDNs in bioactive ceramics. The newly-developed fabrication methods for LDNs/ceramic composites, the reinforcing mechanisms and the in vitro and in vivo performance of LDNs are also summarized and discussed in detail. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Looney, Mark; Shea, Helen O'; Gunn, Lynda; Crowley, Dolores; Boyd, Daniel
2013-05-01
The use of artificial bone grafts has increased in order to satisfy a growing demand for bone replacement materials. Initial mechanical stability of synthetic bone grafts is very advantageous for certain clinical applications. Coupled with the advantage of mechanical strength, a material with inherent antibacterial properties would be very beneficial. A series of strontium-doped zinc silicate (Ca-Sr-Na-Zn-Si) glass ceramics have been characterized in terms of their crystalline structure, biaxial flexural strength and antibacterial efficacy based on the identification of optimum sintering conditions. All three glass ceramics, namely, BT110, BT111, and BT112 were found to be fully crystalline, with BT111 and BT112 comprising of biocompatible crystalline phases. The biaxial flexural strengths of the three glass ceramics ranged from 70 to 149 MPa and were shown to be superior to those of clinically established ceramics in dry conditions and following incubation in simulated physiological conditions. The bacteriostatic effect for each glass ceramic was also established, where BT112 showed an inhibitory effect against three of the most common bacteria found at implantation sites, namely, Enterococcus faecalis, methicillin-resistant Staphylococcus aureus (MRSA), and Pseudomonas aeruginosa. The results of the evaluation suggest that the materials studied offer advantages over current clinical materials and indicate the potential suitability of the glass ceramics as therapeutic bone grafts.
Ciocca, L.; Donati, D.; Ragazzini, S.; Dozza, B.; Rossi, F.; Fantini, M.; Spadari, A.; Romagnoli, N.; Landi, E.; Tampieri, A.; Piattelli, A.; Iezzi, G.; Scotti, R.
2013-01-01
Purpose. This study evaluated the efficacy of a regenerative approach using mesenchymal stem cells (MSCs) and CAD-CAM customized pure and porous hydroxyapatite (HA) scaffolds to replace the temporomandibular joint (TMJ) condyle. Methods. Pure HA scaffolds with a 70% total porosity volume were prototyped using CAD-CAM technology to replace the two temporomandibular condyles (left and right) of the same animal. MSCs were derived from the aspirated iliac crest bone marrow, and platelets were obtained from the venous blood of the sheep. Custom-made surgical guides were created by direct metal laser sintering and were used to export the virtual planning of the bone cut lines into the surgical environment. Sheep were sacrificed 4 months postoperatively. The HA scaffolds were explanted, histological specimens were prepared, and histomorphometric analysis was performed. Results. Analysis of the porosity reduction for apposition of newly formed bone showed a statistically significant difference in bone formation between condyles loaded with MSC and condyles without (P < 0.05). The bone ingrowth (BI) relative values of split-mouth comparison (right versus left side) showed a significant difference between condyles with and without MSCs (P < 0.05). Analysis of the test and control sides in the same animal using a split-mouth study design was performed; the condyle with MSCs showed greater bone formation. Conclusion. The split-mouth design confirmed an increment of bone regeneration into the HA scaffold of up to 797% upon application of MSCs. PMID:24073409
Ciocca, L; Donati, D; Ragazzini, S; Dozza, B; Rossi, F; Fantini, M; Spadari, A; Romagnoli, N; Landi, E; Tampieri, A; Piattelli, A; Iezzi, G; Scotti, R
2013-01-01
This study evaluated the efficacy of a regenerative approach using mesenchymal stem cells (MSCs) and CAD-CAM customized pure and porous hydroxyapatite (HA) scaffolds to replace the temporomandibular joint (TMJ) condyle. Pure HA scaffolds with a 70% total porosity volume were prototyped using CAD-CAM technology to replace the two temporomandibular condyles (left and right) of the same animal. MSCs were derived from the aspirated iliac crest bone marrow, and platelets were obtained from the venous blood of the sheep. Custom-made surgical guides were created by direct metal laser sintering and were used to export the virtual planning of the bone cut lines into the surgical environment. Sheep were sacrificed 4 months postoperatively. The HA scaffolds were explanted, histological specimens were prepared, and histomorphometric analysis was performed. Analysis of the porosity reduction for apposition of newly formed bone showed a statistically significant difference in bone formation between condyles loaded with MSC and condyles without (P < 0.05). The bone ingrowth (BI) relative values of split-mouth comparison (right versus left side) showed a significant difference between condyles with and without MSCs (P < 0.05). Analysis of the test and control sides in the same animal using a split-mouth study design was performed; the condyle with MSCs showed greater bone formation. The split-mouth design confirmed an increment of bone regeneration into the HA scaffold of up to 797% upon application of MSCs.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-13
... fragments, 29 historic ceramic sherds, 1 prehistoric ceramic sherd, 128 unmodified faunal bone fragments, 1 modified deer rib, 3 bone buttons, 4 chipped stone flakes, 2 wooden buttons, 1 historic clay pipe bowl...
Methods of improving mechanical and biomedical properties of Ca-Si-based ceramics and scaffolds.
Wu, Chengtie
2009-05-01
CaSiO3 ceramics and porous scaffolds are regarded as potential materials for bone tissue regeneration owing to their excellent bioactivity. However, their low mechanical strength and high dissolution limit their further biomedical application. In this report, we introduce three methods to improve the mechanical and biomedical properties of CaSiO3 ceramics and scaffolds. Positive ions and polymer modification are two promising ways to improve the mechanical and biomedical properties of CaSiO3 ceramics and scaffolds for bone tissue regeneration.
Electric modulation of conduction in multiferroic Ni-doped GaFeO3 ceramics
NASA Astrophysics Data System (ADS)
Ghani, Awais; Yang, Sen; Rajput, S. S.; Ahmed, S.; Murtaza, Adil; Zhou, Chao; Yu, Zhonghai; Zhang, Yin; Song, Xiaoping; Ren, Xiaobing
2018-06-01
In this work, the effects of Ni substitution on the electrical leakage and multiferroic properties of GaFeO3 were examined. Structural analysis of grown ceramics using x-ray diffraction and Raman shows that all ceramics have pure phases with an orthorhombic structure and space group. Ni substitutions slightly modify lattice parameters and induce lattice distortion within the same crystalline structure. It is observed that with increasing Ni-content up to 0.10, the magnetic transition temperature () increases from 196 K to 407 K. Ni-doped samples showed better ferroelectric properties and a drastic reduction in leakage current (~three orders of magnitude) at room temperature. Enhanced characteristics behavior is observed for 10% Ni substitution (GaFe0.9Ni0.1O3) and higher substitution leads to deterioration of properties with a larger leakage current. It is proposed that the role of Ni substitution can reduce hopping between Fe+3 and Fe+2 as well as suppressing the oxygen vacancies. This work would open new possibilities for integrating polycrystalline GaFeO3 at room temperature for magnetoelectric applications.
Kinnari, Teemu J; Esteban, Jaime; Martin-de-Hijas, Nieves Z; Sánchez-Muñoz, Orlando; Sánchez-Salcedo, Sandra; Colilla, Montserrat; Vallet-Regí, María; Gomez-Barrena, Enrique
2009-01-01
Hydroxyapatite (HA) and biphasic calcium phosphate (BCP) ceramic materials are widely employed as bone substitutes due to their porous and osteoconductive structure. Their porosity and the lowering of surrounding pH as a result of surgical trauma may, however, predispose these materials to bacterial infections. For this reason, the influence of porosity and pH on the adherence of common Gram-positive bacteria to the surfaces of these materials requires investigation. Mercury intrusion porosimetry measurements revealed that the pore size distribution of both bioceramics had, on a logarithmic scale, a sinusoidal frequency distribution ranging from 50 to 300 nm, with a mean pore diameter of 200 nm. Moreover, total porosity was 20 % for HA and 50 % for BCP. Adherence of Staphylococcus aureus and Staphylococcus epidermidis was studied at a physiological pH of 7.4 and at a pH simulating bone infection of 6.8. Moreover, the effect of pH on the zeta potential of HA, BCP and of both staphylococci was evaluated. Results showed that when pH decreased from 7.4 to 6.8, the adherence of both staphylococci to HA and BCP surfaces decreased significantly, although at the same time the negative zeta-potential values of the ceramic surfaces and both bacteria diminished. At both pH values, the number of S. aureus adhered to the HA surface appeared to be lower than that for BCP. A decrease in pH to 6.8 reduced the adherence of both bacterial species (mean 57 %). This study provides evidence that HA and BCP ceramics do not have pores sufficiently large to allow the internalization of staphylococci. Their anti-adherent properties seemed to improve when pH value decreased, suggesting that HA and BCP bioceramics are not compromised upon orthopaedic use.
The review of various synthesis methods of barium titanate with the enhanced dielectric properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
More, S. P., E-mail: smitalomte@gmail.com; Topare, R. J., E-mail: r-topare@yahoo.com
2016-05-06
The Barium Titanate is a very well known dielectric ceramic belongs to perovskite structure. It has very wide applications in the field of electronic, electro ceramic, electromechanical and electro-optical applications. Barium Titanate has very high dielectric constant as well as low dielectric loss. Substituted dielectrics are one of the most important technological compounds in modern electro ceramics. Its electrical properties can be tuned flexibly by a simple substitution technique. This has encouraged researchers to select a typical cation to be substituted at cationic sites. In the present paper, the review of various synthesis methods of Barium Titanate compound with themore » effect of different dopants, the grain size on the dielectric properties at various temperatures is discussed.« less
Development of a ceramic surface replacement for the hip. An experimental Sialon model.
Clarke, I C; Phillips, W; McKellop, H; Coster, I R; Hedley, A; Amstutz, H C
1979-01-01
The objective of this study was to investigate the design and fixation advantages of Sialon ceramic surface replacements implanted without acrylic bone cement. The biocompatibility and friction and wear properties of Sialon ceramic were compared with more conventional prosthetic materials such as stainless steel and alumina. A functional load-bearing canine hip surface replacement model was established to test Sialon femoral cups designed for fixation by bone ingrowth. The results of the polyethylene wear tests on highly polished ceramic and stainless steel counterfaces were essentially similar. These laboratory data indicated that the in-vivo polyethylene wear performance on metal or ceramic prosthetic surfaces could be expected to be indistinguishable, i.e. the ceramic/polyethylene combination would not offer any improved wear resistance in-vivo. It was found possible to get bone ingrowth into the macrokeying areas of the ceramic femoral cups but not into the microporous surfaces due to the presence of a fibrous membrane lining their internal surfaces. The biocompatability specimens also appeared to be invested with a fibrous membrane. Further studies are under way to determine the relationship between reaming procedures, micro motion at the interfaces and Sialon biocompatibility.
NASA Astrophysics Data System (ADS)
Thongrueng, Jirawat; Tsuchiya, Toshio; Masuda, Yoichiro; Fujita, Shigetaka; Nagata, Kunihiro
1999-09-01
Soft BaTiO3 ceramics having a very low coercive field of 65 V/mm were prepared by substituting 9 mol% Hf Zr for the Ti-site of BaTiO3, for applications to ferroelectric thin-film devices. Electrical properties of the soft BaTiO3 ceramics were measured and compared with those of normal BaTiO3 ceramics. By substituting Hf Zr for Ti-site, the phase transition temperatures were controlled, and we could select the preferred crystal structure from the tetragonal, orthorhombic and rhombohedral phases at room temperature. In addition, the preparation and characterization of the soft BaTiO3 thin-films using a sol-gel process were carried out.
Onset of multiferroicity in nickel and lithium co-substituted barium titanate ceramics
NASA Astrophysics Data System (ADS)
Alkathy, Mahmoud S.; James Raju, K. C.
2018-04-01
The structural, magnetic and ferroelectric properties of nickel and lithium co-substituted barium titanate were investigated in this work. Ba(1-x)LixNix/2TiO3 (x = 0, 0.02, 0.04 and 0.08) ceramics were synthesized via solid-state reaction with the assistance of microwave heating of the starting materials. The tetragonal structure has been observed in all samples, and it is confirmed by the Rietveld refinement study. The morphological study has been carried out by FE-SEM. Electron spin resonance (ESR) has been used to study the electron interaction and to verify the magnetism behavior of present samples. No resonance signal was observed in pure BaTiO3 samples. However, the resonance signal has appeared in the co-substituted samples. The result shows that the electron interactions are strongly affected by Ni2+ and Li+ concentrations. M-H loop was traced using VSM at room temperature. The results confirm that the sample with x = 0 shows an anti-ferromagnetic response. However, a ferromagnetic hysteresis loop arises with co-substitution. The emergence of M-H loops confirms the appearance of magnetic properties in Ni2+ and Li+ co-substituted BaTiO3 ceramics. The origin of magnetic behavior could be due to the carrier-mediated exchange interactions. Room temperature P-E hysteresis loop has been investigated at an applied electric field of 35 kV/cm and 33 Hz frequency. Measurements of room temperature ferroelectric and magnetic hysteresis loops indicate that the Ni2+ and Li+ co-substituted BaTiO3 ceramics show ferroelectricity and ferromagnetism simultaneously.
Belouka, Sofia-Maria; Strietzel, Frank Peter
To compare the tissue composition of augmented sites after using two different synthetic bone substitute materials, nanocrystalline and nanoporous hydroxyapatite (HA), for sinus floor elevation and augmentation. Forty-four patients received 88 titanium screw implants (Camlog Promote plus) of 4.3-mm diameter and 11- or 13-mm length, placed simultaneously during sinus floor elevation and augmentation. Nanocrystalline (Ostim) or nanoporous (NanoBone) HA were used exclusively. Bone substitute materials and implant lengths were allocated by randomization. Bone biopsy specimens were obtained from the former area of the lateral access window at implant exposure during healing abutment placement after 6 months. Biopsy specimens were prepared and examined histologically and histomorphometrically. All implants were osseointegrated at the time of exposure. Clinically and histologically, no signs of inflammation in the augmented sites were present. The histomorphometric analysis of 44 biopsy specimens revealed 31.8% ± 11.6% newly formed bone for sites augmented with nanocrystalline HA and 34.6% ± 9.2% for nanoporous HA (P = .467). The proportion of remaining bone substitute material was 28.4% ± 18.6% and 30% ± 13%, respectively (P = .453). The proportion of soft tissue within the biopsy specimens was 39.9% ± 11.1% and 35.4% ± 6.8%, respectively (P = .064). No significant differences were found between the area fractions of bone, bone substitute material, and soft tissue concerning the bone substitute material utilized. Within the present study, both synthetic bone substitute materials, nanocrystalline and nanoporous HA, were found to support bone formation in sinus floor elevation and augmentation procedures by osteoconductivity. They were not completely resorbed after 6 months. The amounts of newly formed bone, soft tissue, and bone substitute material remnants were found to be similar, indicating that both materials are likewise suitable for sinus floor elevation and augmentation procedures.
Alimi, Marjan; Navarro-Ramirez, Rodrigo; Parikh, Karishma; Njoku, Innocent; Hofstetter, Christoph P; Tsiouris, Apostolos J; Härtl, Roger
2017-07-01
Retrospective cohort study. To evaluate the radiographic and clinical outcome of silicate-substituted calcium phosphate (Si-CaP), utilized as a graft substance in spinal fusion procedures. Specific properties of Si-CaP provide the graft with negative surface charge that can result in a positive effect on the osteoblast activity and neovascularization of the bone. This study included those patients who underwent spinal fusion procedures between 2007 and 2011 in which Si-CaP was used as the only bone graft substance. Fusion was evaluated on follow-up CT scans. Clinical outcome was assessed using Oswestry Disability Index, Neck Disability Index, and the visual analogue scale (VAS) for back, leg, neck, and arm pain. A total of 234 patients (516 spinal fusion levels) were studied. Surgical procedures consisted of 57 transforaminal lumbar interbody fusion, 49 anterior cervical discectomy and fusion, 44 extreme lateral interbody fusion, 30 posterior cervical fusions, 19 thoracic fusion surgeries, 17 axial lumbar interbody fusions, 16 combined anterior and posterior cervical fusions, and 2 anterior lumbar interbody fusion. At a mean radiographic follow-up of 14.2±4.3 months, fusion was found to be present in 82.9% of patients and 86.8% of levels. The highest fusion rate was observed in the cervical region. At the latest clinical follow-up of 21.7±14.2 months, all clinical outcome parameters showed significant improvement. The Oswestry Disability Index improved from 45.6 to 13.3 points, Neck Disability Index from 40.6 to 29.3, VAS back from 6.1 to 3.5, VAS leg from 5.6 to 2.4, VAS neck from 4.7 to 2.7, and VAS arm from 4.1 to 1.7. Of 7 cases with secondary surgical procedure at the index level, the indication for surgery was nonunion in 3 patients. Si-CaP is an effective bone graft substitute. At the latest follow-up, favorable radiographic and clinical outcome was observed in the majority of patients. Level-III.
Catalytic thermal barrier coatings
Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh
2009-06-02
A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.
NASA Astrophysics Data System (ADS)
Sisson, Kristin M.
Electrospinning provides an avenue to explore tissue engineering with the ability to produce nano- and micro-sized fibers in a non-woven construct with properties ideal for a tissue engineered scaffold including: small diameter fibers, which create a large surface to volume ratio, and an interconnected porous network that enables cell migration, good mechanical integrity and a three-dimensional structure. A tissue engineered scaffold also must be biocompatible, biodegradable, non-toxic and able to be sterilized. All of these requirements can be satisfied by choosing an appropriate polymer and solvent system for electrospinning. The main objective of this research is to create a non-toxic, flat, bone tissue engineered scaffold to place into a non-immune compromised mouse. The current bone tissue repair and replacement methodologies include using metal and ceramic replacements or autologous and autogenous bone grafts. Each of these has its own set of disadvantages. Autologous grafts are bone harvested in one location in a patient and used in another location. This procedure is expensive, often results in pain and infection at the replacement site, and the actual harvesting procedure can cause problems for the patient. Autogenous grafts are bone harvested in one patient and used in another patient. The shortcomings include low donor availability and the possibility of rejection of the implant. The other options include using metal and ceramics to create replacement bone. However, metals provide good mechanical stability but can fail due to infection and also have poor integration into natural tissue. Ceramics, on the other hand, are brittle and have very low tensile strength. The natural extracellular matrix (ECM) of bone consists mainly of collagen type I. Electrospun fiber diameters closely resemble those of the natural ECM of bone. Thus, electrospinning a natural polymer like collagen type I for bone tissue engineering could make sense. Applications for these electrospun tissue engineered scaffolds include flat bone repair (skull, scapula, pelvis and sternum) or replacement applications. In order to meet the main objective, several critical milestones must be completed. The first is to develop an electrospinning system that uses less toxic solvents. Until recently, fluorinated solvents have been used to electrospin collagen and gelatin. These fluorinated solvents are cytotoxic and, even with vacuum drying and extensive washing, these toxic solvents may remain in the electrospun scaffolds. A solvent system using less toxic, non-fluorinated solvents to electrospin collagen and gelatin is necessary. Due to the high expense of collagen type I, gelatin is being used as a material substitute since gelatin is simply denatured collagen. Gelatin, like collagen, will dissolve in aqueous media unless it is crosslinked. The chemical generally used for crosslinking gelatin is glutaraldehyde, which is considered toxic. Therefore, the second objective is to find a less toxic method to crosslink the electrospun gelatin while maintaining the fiber morphology. The new crosslinking methods must also prove to be biocompatible in vivo. Another important objective is to investigate cell penetration as a function of fiber size, which is directly proportional to pore size. The final objective involves growing bone cells such as MG63 (osteoblast-like) in the electrospun scaffolds and compare to two-dimensional culture.
The manufacture of synthetic non-sintered and degradable bone grafting substitutes.
Gerike, W; Bienengräber, V; Henkel, K-O; Bayerlein, T; Proff, P; Gedrange, T; Gerber, Th
2006-02-01
A new synthetic bone grafting substitute (NanoBone, ARTOSS GmbH, Germany) is presented. This is produced by a new technique, the sol-gel-method. This bone grafting substitute consists of nanocrystalline hydroxyapatite (HA) and nanostructured silica (SiO2). By achieving a highly porous structure good osteoconductivity can be seen. In addition, the material will be completely biodegraded and new own bone is formed. It has been demonstrated that NanoBone is biodegraded by osteoclasts in a manner comparable to the natural bone remodelling process.
[Osteosynthesis in facial bones: silicon nitride ceramic as material].
Neumann, A; Unkel, C; Werry, C; Herborn, C U; Maier, H R; Ragoss, C; Jahnke, K
2006-12-01
The favorable properties of silicon nitride (Si3N4) ceramic, such as high stability and biocompatibility suggest its biomedical use as an implant material. The aim of this study was to test its suitability for osteosynthesis. A Si3N4 prototype minifixation system was manufactured and implanted for osteosynthesis of artificial frontal bone defects in three minipigs. After 3 months, histological sections, CT and MRI scans were obtained. Finite element modeling (FEM) was used to simulate stresses and strains on Si3N4 miniplates and screws to calculate survival probabilities. Si3N4 miniplates and screws showed satisfactory intraoperative workability. There was no implant loss, displacement or fracture. Bone healing was complete in all animals and formation of new bone was observed in direct contact to the implants. Si3N4 ceramic showed a good biocompatibility outcome both in vitro and in vivo. This ceramic may serve as biomaterial for osteosynthesis, e.g. of the midface including reconstruction of the floor of the orbit and the skull base. Advantages compared to titanium are no risk of implantation to bone with mucosal attachment, no need for explantation, no interference with radiological imaging.
Duan, You-rong; Liu, Ke-wei; Chen, Ji-yong; Zhang, Xing-dong
2002-06-01
Objective. Bone-like apatite formation on the surface of calcium phosphate ceramics was believed to be the necessary step that new bone grows on the ceramics and to be relative to the osteoinductivity of the material. This study aimed at investigating the influence of the flow rate of simulated body fluid (SBF) (2 ml/min) in skeletal muscle upon the formation of bone-like apatite on porous calcium phosphate ceramics. Method. The dynamic condition was realized by controlling the SBF flowing in/out of the sample chamber of 100 ml. The flow rate of 2 ml/min is close to that in human muscle environment. The pH and inorganic ionic composition of SBF are close to those of human body fluid. Result. Bone-like apatite formation was relatively easier to occur in static SBF than in dynamic SBF. Experiment with flowing SBF (dynamic SBF) is better in mimicking the living body fluid than static SBF. Conclusion. The results from dynamic SBF may more truly show the relation between apatite layer formation and osteoinduction in biomaterials than that from in vitro experiments before.
Osseointegration of zirconia implants: an SEM observation of the bone-implant interface.
Depprich, Rita; Zipprich, Holger; Ommerborn, Michelle; Mahn, Eduardo; Lammers, Lydia; Handschel, Jörg; Naujoks, Christian; Wiesmann, Hans-Peter; Kübler, Norbert R; Meyer, Ulrich
2008-11-06
The successful use of zirconia ceramics in orthopedic surgery led to a demand for dental zirconium-based implant systems. Because of its excellent biomechanical characteristics, biocompatibility, and bright tooth-like color, zirconia (zirconium dioxide, ZrO2) has the potential to become a substitute for titanium as dental implant material. The present study aimed at investigating the osseointegration of zirconia implants with modified ablative surface at an ultrastructural level. A total of 24 zirconia implants with modified ablative surfaces and 24 titanium implants all of similar shape and surface structure were inserted into the tibia of 12 Göttinger minipigs. Block biopsies were harvested 1 week, 4 weeks or 12 weeks (four animals each) after surgery. Scanning electron microscopy (SEM) analysis was performed at the bone implant interface. Remarkable bone attachment was already seen after 1 week which increased further to intimate bone contact after 4 weeks, observed on both zirconia and titanium implant surfaces. After 12 weeks, osseointegration without interposition of an interfacial layer was detected. At the ultrastructural level, there was no obvious difference between the osseointegration of zirconia implants with modified ablative surfaces and titanium implants with a similar surface topography. The results of this study indicate similar osseointegration of zirconia and titanium implants at the ultrastructural level.
A comparative biomechanical study of bone ingrowth in two porous hydroxyapatite bioceramics
NASA Astrophysics Data System (ADS)
Ren, Li-Mei; Todo, Mitsugu; Arahira, Takaaki; Yoshikawa, Hideki; Myoui, Akira
2012-12-01
Calcium phosphate-based bioceramics have been widely used as artificial bone substitute materials because of their superior biocompatibility and osteoconductivity. In the present study, mechanical properties changes of two hydroxyapatite (HA) ceramics induced by bone ingrowth were tested and evaluated in a rabbit model. Both materials (NEOBONE®, Apaceram-AX®) have highly interconnected pores with a porosity of 75-85%. The major structural difference between them lies in that Apaceram-AX® has micropores smaller than 10 micrometers in diameter, whereas NEOBONE® does not contain such micropores. Both materials were implanted into the femoral condyles of rabbits for the specified observation period (1, 5, 12, 24, and 48 weeks) and then evaluated by experimental approach in combination with finite element method (FEM). Results indicate that two porous bioceramics exhibit different degradability in vivo, and remarkably different variation of total stiffness, elastic modulus distribution, as well as strain energy density distribution calculated by FE simulation. These results demonstrate how the internal microstructures affect the progress of bone regeneration and mechanical properties with the duration of implantation, emphasizing the importance of biomaterial design tailored to various clinic applications. Additionally, this study showed a potential for applying the computational method to monitor the time-dependent biomechanical changes of implanted porous bioceramics.
Hall, Deborah J; Turner, Thomas M; Urban, Robert M
2018-04-16
CaSO 4 /CaPO 4 -TCP bone graft substitute has been shown to be effective for treatment of bone lesion defects, but its mechanical, histological, and radiographic characteristics have not been studied in direct comparison with a conventional treatment such as cancellous allograft bone. Thirteen canines had a critical-size axial defect created bilaterally into the proximal humerus. CaSO 4 /CaPO 4 -TCP bone graft substitute (PRO-DENSE™, Wright Medical Technology) was injected into the defect in one humerus, and an equal volume of freeze-dried cancellous allograft bone chips was placed in the contralateral defect. The area fraction of new bone, residual graft, and fibrous tissue and the compressive strength and elastic modulus of bone within the defects were determined after 6, 13, or 26 weeks and correlated with radiographic changes. The data were analyzed using Friedman and Mann-Whitney tests. There was more bone in defects treated with the CaSO 4 /CaPO 4 -TCP bone graft substitute compared to defects treated with cancellous bone allograft at all three time points, and the difference at 13 weeks was significant (p = 0.025). The new bone was significantly stronger and stiffer in defects treated with the CaSO 4 /CaPO 4 -TCP bone graft substitute compared to defects treated with cancellous bone allograft at 13 (p = 0.046) and 26 weeks (p = 0.025). At 26 weeks, all defects treated with CaSO 4 /CaPO 4 -TCP bone graft substitute demonstrated complete healing with new bone, whereas healing was incomplete in all defects treated with cancellous allograft chips. The CaSO 4 /CaPO 4 -TCP bone graft substitute could provide faster and significantly stronger healing of bone lesions compared to the conventional treatment using freeze-dried cancellous allograft bone. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.
Physical properties of inorganic PMW-PNN-PZT ceramics
NASA Astrophysics Data System (ADS)
Sin, Sang-Hoon; Yoo, Ju-hyun; Kim, Yong-Jin; Baek, Sam-ki; Ha, Jun-Soo; No, Chung-Han; Song, Hyun-Seon; Shin, Dong-Chan
2015-07-01
In this work, inorganic Pb(Mg1/2W1/2)0.03(Ni1/3Nb2/3)x(Zr0.5Ti0.5)0.97-xO3 (x = 0.02 ∼ 0.12) composition ceramics were fabricated by the conventional solid state reaction method. And then their micro structure and ferroelectric properties were investigated according to the amount of PNN substitution. Small amounts of Li2CO3 and CaCO3 were used in order to decrease the sintering temperature of the ceramics. The 0.10 mol PNN-substituted PMW-PNN- PZT ceramics sintered at 920°C showed the excellent physical properties of piezoelectric constant (d33), electromechanical coupling factor (kp), mechanical quality coefficient (Qm), and dielectric constant of 566 pC/N, 0.61, 73, and 2183, respectively.
NASA Astrophysics Data System (ADS)
Kumar, Manoj; Yadav, K. L.
2007-12-01
Single-phase BiFe1-xMnxO3 multiferroic ceramics have been synthesized by rapid liquid phase sintering method to study the influence of Mn substitution on their crystal structure, dielectric, magnetic, and ferroelectric behaviors. From XRD analysis it is seen that Mn substitution does not affect the crystal structure of the BiFe1-xMnxO3 system. An enhancement in magnetization was observed for BiFe1-xMnxO3 ceramics. However, the ferooelectric hysteresis loops were not really saturated, we observed a spontaneous polarization of 10.23μC /cm2 under the applied field of 42kV/cm and remanent polarization of 3.99μC/cm2 for x =0.3 ceramic.
Osteogenically differentiated mesenchymal stem cells and ceramics for bone tissue engineering.
Ohgushi, Hajime
2014-02-01
In the human body, cells having self-renewal and multi-differentiation capabilities reside in many tissues and are called adult stem cells. In bone marrow tissue, two types of stem cells are well known: hematopoietic stem cells and mesenchymal stem cells (MSCs). Though the number of MSCs in bone marrow tissue is very low, it can be increased by in vitro culture of the marrow, and culture-expanded MSCs are available for various tissue regeneration. The culture-expanded MSCs can further differentiate into osteogenic cells such as bone forming osteoblasts by culturing the MSCs in an osteogenic medium. This paper discusses osteogenically differentiated MSCs derived from the bone marrow of patients. Importantly, the differentiation can be achieved on ceramic surfaces which demonstrate mineralized bone matrix formation as well as appearance of osteogenic cells. The cell/matrix/ceramic constructs could show immediate in vivo bone formation and are available for bone reconstruction surgery. Currently, MSCs are clinically available for the regeneration of various tissues due to their high proliferation/differentiation capabilities. However, the capabilities are still limited and thus technologies to improve or recover the inherent capabilities of MSCs are needed.
Effect of electrical polarization of hydroxyapatite ceramics on new bone formation.
Itoh, S; Nakamura, S; Kobayashi, T; Shinomiya, K; Yamashita, K; Itoh, S
2006-03-01
Large surface charges can be induced on hydroxyapatite (HAp) ceramics by proton transport polarization, but this does not affect beta-tricalcium phosphate (TCP) because of its low polarizability. We wished to examine differences in osteogenic cell activity and new bone growth between positively or negatively surface-charged HAp and HAp/TCP plates using a calvarial bone defect model. In the first group of rats, test pieces were placed with their positively charged surfaces face down on the dura mater. In the second group, test pieces were placed with their negatively charged surfaces face down on the dura mater. A third group received noncharged test pieces. Histological examination, including enzymatic staining for osteoblasts and osteoclasts, was carried out. While no bone formation was observed at the pericranium, direct bone formation on the cranial bone debris and new bone growth expanded from the margins of the sites of injury to bridge across both the positively and negatively charged surfaces of HAp and HAp/TCP plates occurred. Electrical polarization of implanted plates, including positive charge, led to enhanced osteoblast activity, though decreased osteoclast activity was seen on the positively charged plate surface. Thus, polarization of HAp ceramics may modulate new bone formation and resorption.
[Synthesis and characteristics of porous hydroxyapatite bioceramics].
Niu, Jinlong; Zhang, Zhenxi; Jiang, Dazong
2002-06-01
The macroporous structure of human bone allows the ingrowth of the soft tissues and organic cells into the bone matrix, profits the development and metabolism of bone tissue, and adapts the bone to the change of load. There is great requirement for artificial biomimic porous bioactive ceramics with the similar structure of bone tissue that can be used clinically for repairing lost bone. Fine hydroxyapatite (HAp) powder produced by wet chemical reaction was mixed with hydrogen peroxide (H2O2), polyvinyl alcohol, methyl cellulose or other pores-making materials to form green cake. After drying at low temperature (below 100 degrees C) and decarbonizing at about 300 degrees C-400 degrees C, the spongy ceramic block was sintered at high temperature, thus, macroporous HAp bioceramic with interconnected pores and reasonable porosity and pore-diameter was manufactured. This kind of porous HAp bioceramics were intrinsically osteoinductive to a certain degree, but its outstanding property was that they can absorb human bone morphogenetic proteins and other bone growth factors to form composites, so that the macroporous HAp bioactive ceramic has appropriate feasibility for clinical application. From the point of biomedical application, the recent developments in synthesis and characteristics investigation of macroporous HAp are reviewed in this paper.
Novel microinjector for carrying bone substitutes for bone regeneration in periodontal diseases.
Tsai, Hsiao-Cheng; Li, Yi-Chen; Young, Tai-Horng; Chen, Min-Huey
2016-01-01
Traditionally, guide bone regeneration (GBR) was a widely used method for repairing bone lost from periodontal disease. There were some disadvantages associated with the GBR method, such as the need for a stable barrier membrane and a new creative cavity during the surgical process. To address these disadvantages, the purpose of this study was to evaluate a novel microinjector developed for dental applications. The microinjector was designed to carry bone graft substitutes to restore bone defects for bone regeneration in periodontal diseases. The device would be used to replace the GBR method. In this study, the injected force and ejected volume of substitutes (including air, water, and ethanol) were defined by Hooke's law (n = 3). The optimal particle size of bone graft substitutes was determined by measuring the recycle ratio of bone graft substitutes from the microinjector (n = 3). Furthermore, a novel agarose gel model was used to evaluate the feasibility of the microinjector. The current study found that the injected force was less than 0.4 N for obtaining the ejected volume of approximately 2 mL, and when the particle size of tricalcium phosphate (TCP) was smaller than 0.5 mm, 80% TCP could be ejected from the microinjector. Furthermore, by using an agarose model to simulate the periodontal soft tissue, it was also found that bone graft substitutes could be easily injected into the gel. The results confirmed the feasibility of this novel microinjector for dental applications to carry bone graft substitutes for the restoration of bone defects of periodontal disease. Copyright © 2015. Published by Elsevier B.V.
Electrical conductivity and Hf 4+ ion substitution range in NaSICON system
NASA Astrophysics Data System (ADS)
Essoumhi, A.; Favotto, C.; Mansori, M.; Ouzaouit, K.; Satre, P.
2007-03-01
In this paper, we present the synthesis and characterizations of NaSICON-type ionic conducting ceramics of the general formula Na 1+ xM 1.775Si x-0.9P 3.9- xO 12 with 1.8 ≤ x ≤ 2.2 and M = Zr or Hf. The effect of the total substitution of zirconium by hafnium on electric properties has been studied. The various compositions were prepared by using the sol-gel method and the synthesized precursors were characterized by coupled DTA-TG. The oxides obtained after pyrolysis of the precursors were identified by X-ray diffraction. A sintering study by thermodilatometry permits to select the best thermal cycle adapted to our ceramics. Furthermore, the electric conductivity of the sintered ceramic samples was characterized by complex impedance spectroscopy. These results show that ceramics containing Zr synthesized by soft method, present a higher total conductivity than those obtained in literature (to be around 10 -4 S cm -1). The total substitution of Zr by Hf still improves this conductivity for some compositions.
[Biomaterials in bone repair].
Puska, Mervi; Aho, Allan J; Vallittu, Pekka K
2013-01-01
In orthopedics, traumatology, and craniofacial surgery, biomaterials should meet the clinical demands of bone that include shape, size and anatomical location of the defect, as well as the physiological load-bearing stresses. Biomaterials are metals, ceramics, plastics or materials of biological origin. In the treatment of large defects, metallic endoprostheses or bone grafts are employed, whereas ceramics in the case of small defects. Plastics are employed on the artificial joint surfaces, in the treatment of vertebral compression fractures, and as biodegradable screws and plates. Porosity, bioactivity, and identical biomechanics to bone are fundamental for achieving a durable, well-bonded, interface between biomaterial and bone. In the case of severe bone treatments, biomaterials should also imply an option to add biologically active substances.
Reichert, Christoph; Götz, Werner; Reimann, Susanne; Keilig, Ludger; Hagner, Martin; Bourauel, Christoph; Jäger, Andreas
2013-03-01
To develop an in vitro assay for quantitative analysis of the degradation to which a bone substitute is exposed by osteoclasts. The aim of establishing this method was to improve the predictability of carrying out tooth movements via bone substitutes and to provide a basis for verification in exemplary clinical cases. After populating a bone substitute (NanoBone®; ArtOss, Germany) with osteoclastic cells, inductively-coupled mass spectrometry was used to evaluate changing calcium levels in the culture medium as a marker of resorption activity. It was observed that calcium levels increased substantially in the culture medium with the cells populating the bone substitute. This in vitro assay is a valid method that can assist clinicians in selecting the appropriate materials for certain patients. While tooth movements occurring through this material were successful, uncertainty about the approach will remain as long-term results are not available.
He, Fupo; Ren, Weiwei; Tian, Xiumei; Liu, Wei; Wu, Shanghua; Chen, Xiaoming
2016-07-01
In a previous study, robust calcium carbonate composite ceramics (CC/PG) were prepared by using phosphate-based glass (PG) as an additive, which showed good cell response. In the present study the in vivo response of porous CC/PG was compared to that of porous biphasic calcium phosphate ceramics (BCP), using a rabbit femoral critical-size grafting model. The materials degradation and bone formation processes were evaluated by general observation, X-ray radiography, micro-computed tomography, and histological examination. The results demonstrated excellent biocompatibility and osteoconductivity, and progressive degradation of CC/PG and BCP. Although the in vitro degradation rate of CC/PG was distinctly faster than that of BCP, at 4week post-implantation, the bone generation and material degradation of CC/PG were less than those of BCP. Nevertheless, at postoperative week 8, the increment of bone formation and material degradation of CC/PG was pronouncedly larger than that of BCP. These results show that CC/PG is a potential resorbable bone graft aside from the traditional synthetic ones. Copyright © 2016 Elsevier B.V. All rights reserved.
Sun, Hongli; Wu, Chengtie; Dai, Kerong; Chang, Jiang; Tang, Tingting
2006-11-01
In the present study, the effects of a calcium magnesium silicate bioactive ceramic (akermanite) on proliferation and osteoblastic differentiation of human bone marrow stromal cells (hBMSC) have been investigated and compared with the classical ceramic (beta-tricalcium phosphate, beta-TCP). Akermanite and beta-TCP disks were seeded with hBMSC and kept in growth medium or osteogenic medium for 10 days. Proliferation and osteoblastic differentiation were evaluated on day 1, 4, 7 and 10. The data from the Alamar Blue assay and lactic acid production assay showed that hBMSC proliferated more significantly on akermanite than on beta-TCP. The analysis of osteoblast-related genes, including alkaline phosphatase (ALP), osteopontin (OPN), bone sialoprotein (BSP) and osteocalcin (OC), indicated that akermanite ceramics enhanced the expression of osteoblast-related genes, but type I collagen (COL I) showed no noticeable difference among akermanite and beta-TCP ceramics. Furthermore, this stimulatory effect was observed not only in osteogenic medium, but also in normal growth medium without osteogenic reagents such as l-ascorbic acid, glycerophosphate and dexamethasone. This result suggests that akermanite can promote osteoblastic differentiation of hBMSC in vitro even without osteogenic reagents, and may be used as a bioactive material for bone regeneration and tissue engineering applications.
Polymer ceramic composite that follows the rules of bone growth
NASA Astrophysics Data System (ADS)
Dry, Carolyn M.; Warner, Carrie
1998-07-01
Research at the University of Illinois School of Architecture Material's Lab is being done on a biomimetic building material with the unique properties of bone. This polymer/ceramic composite will mimic bone by controlling the (1) the structure and form of the material, (2) chemical makeup and sequencing of fabrication, (3) ability to adapt to environmental changes during fabrication, and (4) ability to later adapt and repair itself. Bones and shells obtain their great toughness and strength as a result of careful control of these four factors. The organic fibers are made first and the matrix grown around them as opposed to conventional ceramics in which any fibers are added to the matrix. Constituents are also placed in the material which allow it to later adapt to outside changes. The rules under which bone material naturally forms and adapts, albeit at a macroscale, are followed. Our efforts have concentrated on the chemical makeup, and basic sequencing of fabrication. Our research sought to match the intimate connection between material phases of bone by developing the chemical makeup.
Synthesis of β-tricalcium phosphate.
Chaair, H; Labjar, H; Britel, O
2017-09-01
Ceramics play a key role in several biomedical applications. One of them is bone grafting, which is used for treating bone defects caused by injuries or osteoporosis. Calcium-phosphate based ceramic are preferred as bone graft biomaterials in hard tissue surgery because their chemical composition is close to the composition of human bone. They also have a marked bioresorbability and bioactivity. In this work, we have developed methods for synthesis of β-tricalcium phosphate apatite (β-TCP). These products were characterized by different techniques such as X-ray diffraction, infrared spectroscopy, scanning electron microscopy and chemical analysis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Design and fabrication of biomimetic multiphased scaffolds for ligament-to-bone fixation.
He, Jiankang; Zhang, Wenyou; Liu, Yaxiong; Li, Xiang; Li, Dichen; Jin, Zhongmin
2015-05-01
Conventional ligament grafts with single material composition cannot effectively integrate with the host bones due to mismatched properties and eventually affect their long-term function in vivo. Here we presented a multi-material strategy to design and fabricate composite scaffolds including ligament, interface and bone multiphased regions. The interface region consists of triphasic layers with varying material composition and porous structure to mimic native ligament-to-bone interface while the bone region contains polycaprolactone (PCL) anchor and microchanneled ceramic scaffolds to potentially provide combined mechanical and biological implant-bone fixation. Finite element analysis (FEA) demonstrated that the multiphased scaffolds with interference value smaller than 0.5 mm could avoid the fracture of ceramic scaffold during the implantation process, which was validated by in-vitro implanting the multiphased scaffolds into porcine joint bones. Pull-out experiment showed that the initial fixation between the multiphased scaffolds with 0.47 mm interference and the host bones could withstand the maximum force of 360.31±97.51 N, which can be improved by reinforcing the ceramic scaffolds with biopolymers. It is envisioned that the multiphased scaffold could potentially induce the regeneration of a new bone as well as interfacial tissue with the gradual degradation of the scaffold and subsequently realize long-term biological fixation of the implant with the host bone. Copyright © 2015 Elsevier B.V. All rights reserved.
Manchón, Angel; Hamdan Alkhraisat, Mohammad; Rueda-Rodriguez, Carmen; Prados-Frutos, Juan Carlos; Torres, Jesús; Lucas-Aparicio, Julia; Ewald, Andrea; Gbureck, Uwe; López-Cabarcos, Enrique
2015-10-20
β-tricalcium phosphate (β-TCP) is an osteoconductive and biodegradable material used in bone regeneration procedures, while iron has been suggested as a tool to improve the biological performance of calcium phosphate-based materials. However, the mechanisms of interaction between these materials and human cells are not fully understood. In order to clarify this relationship, we have studied the iron role in β-TCP ceramics. Iron-containing β-TCPs were prepared by replacing CaCO3 with C6H5FeO7 at different molar ratios. X-ray diffraction analysis indicated the occurrence of β-TCP as the sole phase in the pure β-TCP and iron-containing ceramics. The incorporation of iron ions in the β-TCP lattice decreased the specific surface area as the pore size was shifted toward meso- and/or macropores. Furthermore, the human osteoblastlike cell line MG-63 was cultured onto the ceramics to determine cell proliferation and viability, and it was observed that the iron-β-TCP ceramics have better cytocompatibility than pure β-TCP. Finally, in vivo assays were performed using rabbit calvaria as a bone model. The scaffolds were implanted for 8 and 12 weeks in the defects created in the skullcap with pure β-TCP as the control. The in vivo behavior, in terms of new bone formed, degradation, and residual graft material were investigated using sequential histological evaluations and histomorphometric analysis. The in vivo implantation of the ceramics showed enhanced bone tissue formation and scaffold degradation for iron-β-TCPs. Thus, iron appears to be a useful tool to enhance the osteoconductive properties of calcium phosphate ceramics.
Method for preparing Pb-. beta. ''-alumina ceramic
Hellstrom, E.E.
1984-08-30
A process is disclosed for preparing impermeable, polycrystalline samples of Pb-..beta..''-alumina ceramic from Na-..beta..''-alumina ceramic by ion exchange. The process comprises two steps. The first step is a high-temperature vapor phase exchange of Na by K, followed by substitution of Pb for K by immersing the sample in a molten Pb salt bath. The result is a polycrystalline Pb-..beta..''-alumina ceramic that is substantially crack-free.
Method for preparing Pb-.beta."-alumina ceramic
Hellstrom, Eric E.
1986-01-01
A process is disclosed for preparing impermeable, polycrystalline samples of Pb-.beta."-alumina ceramic from Na-.beta."-alumina ceramic by ion exchange. The process comprises two steps. The first step is a high-temperature vapor phase exchange of Na by K, followed by substitution of Pb for K by immersing the sample in a molten Pb salt bath. The result is a polycrystalline Pb-.beta."-alumina ceramic that is substantially crack-free.
Gryshkov, Oleksandr; Klyui, Nickolai I; Temchenko, Volodymyr P; Kyselov, Vitalii S; Chatterjee, Anamika; Belyaev, Alexander E; Lauterboeck, Lothar; Iarmolenko, Dmytro; Glasmacher, Birgit
2016-11-01
Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO2) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO2 using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO2 to the initial HA powder resulted in significant decomposition of the final HA/ZrO2 coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO2 coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application. Copyright © 2016 Elsevier B.V. All rights reserved.
Dielectric and Piezoelectric Properties of Barium-substituted Sr1.9Ca0.1NaNb5O15 Ceramics
NASA Astrophysics Data System (ADS)
Xie, Rong-Jun; Akimune, Yoshio; Wang, Ruiping; Hirosaki, Naoto; Nishimura, Toshiyuki
2003-12-01
Highly dense piezoelectric ceramics of tungsten bronze-type (Sr1.9Ca0.1)1-0.5xBaxNaNb5O15 (where x=0.1--0.8) were prepared by spark plasma sintering. The crystallographic parameters, dielectric behaviors and piezoelectric properties of the sintered ceramics were investigated, and the effects of the Ba substitution on these electrical properties were discussed. The structural analysis and the electrical property measurements indicate a morphotropic phase boundary (MPB)-like phenomenon at x=0.4--0.5. In all compositions, a diffuse phase transition and a relaxor behavior are observed. The electrical properties are found to be crystallographically dependent.
Osteointegration of porous absorbable bone substitutes: A systematic review of the literature.
Paulo, Maria Júlia Escanhoela; Dos Santos, Mariana Avelino; Cimatti, Bruno; Gava, Nelson Fabrício; Riberto, Marcelo; Engel, Edgard Eduard
2017-07-01
Biomaterials' structural characteristics and the addition of osteoinductors influence the osteointegration capacity of bone substitutes. This study aims to identify the characteristics of porous and resorbable bone substitutes that influence new bone formation. An Internet search for studies reporting new bone formation rates in bone defects filled with porous and resorbable substitutes was performed in duplicate using the PubMed, Web of Science, Scielo, and University of São Paulo Digital Library databases. Metaphyseal or calvarial bone defects 4 to 10 mm in diameter from various animal models were selected. New bone formation rates were collected from the histomorphometry or micro-CT data. The following variables were analyzed: animal model, bone region, defect diameter, follow-up time after implantation, basic substitute material, osteoinductor addition, pore size and porosity. Of 3,266 initially identified articles, 15 articles describing 32 experimental groups met the inclusion criteria. There were no differences between the groups in the experimental model characteristics, except for the follow-up time, which showed a very weak to moderate correlation with the rate of new bone formation. In terms of the biomaterial and structural characteristics, only porosity showed a significant influence on the rate of new bone formation. Higher porosity is related to higher new bone formation rates. The influence of other characteristics could not be identified, possibly due to the large variety of experimental models and methodologies used to estimate new bone formation rates. We suggest the inclusion of standard control groups in future experimental studies to compare biomaterials.
NASA Astrophysics Data System (ADS)
Cheng, Lijia; Duan, Xin; Xiang, Zhou; Shi, Yujun; Lu, Xiaofeng; Ye, Feng; Bu, Hong
2012-12-01
Many studies have shown that calcium phosphate ceramics (CP) have osteoconductive and osteoinductive properties; however, the exact mechanism of bone induction has not yet been reported. This study was performed to investigate if destroying immunological function will influence osteogenesis, to explain the mechanism which is unclear. In this study, twenty C57BL/6 mice were divided into two groups (n = 10), in group 1, a hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) ceramic was implanted into both the left and right leg muscles of each mouse; in group 2, ten mice experienced lethal irradiation, then were injected bone marrow (BM) cells from green fluorescent protein (GFP) transgenic mice by tail veil, after bone marrow transplantation (BMT), heart, liver, spleen, lung, kidney, and muscle were harvested for biological analysis, after the GFP chimera model was established successfully, the same HA/β-TCP ceramic was implanted into both leg muscles of each mouse immediately after irradiation. 45 and 90 days after implantation, the ceramics of the two groups were harvested to perform with hematoxylin and eosin (HE) and immunohistochemistry (IHC) staining; the results showed that there was no bone formation in group 2, while new bone tissues were detected in group 1. Our findings suggest that the BM cell from GFP transgenic mice is a good biomarker and it could set a good platform for chimera model; it also shows that BM cell is one of cell resources of bone induction, and destruction of immune function will impede osteoinduction by CP. Overall, our results may shed light on clear mechanism study of bone induction in the future.
Renaudin, Guillaume; Gomes, Sandrine; Nedelec, Jean-Marie
2017-01-01
Doped calcium phosphate bioceramics are promising materials for bone repair surgery because of their chemical resemblance to the mineral constituent of bone. Among these materials, BCP samples composed of hydroxyapatite (Ca10(PO4)6(OH)2) and β-TCP (Ca3(PO4)2) present a mineral analogy with the nano-multi-substituted hydroxyapatite bio-mineral part of bones. At the same time, doping can be used to tune the biological properties of these ceramics. This paper presents a general overview of the doping mechanisms of BCP samples using cations from the first-row transition metals (from manganese to zinc), with respect to the applied sintering temperature. The results enable the preparation of doped synthetic BCP that can be used to tailor biological properties, in particular by tuning the release amounts upon interaction with biological fluids. Intermediate sintering temperatures stabilize the doping elements in the more soluble β-TCP phase, which favors quick and easy release upon integration in the biological environment, whereas higher sintering temperatures locate the doping elements in the weakly soluble HAp phase, enabling a slow and continuous supply of the bio-inspired properties. An interstitial doping mechanism in the HAp hexagonal channel is observed for the six investigated cations (Mn2+, Fe3+, Co2+, Ni2+, Cu2+ and Zn2+) with specific characteristics involving a shift away from the center of the hexagonal channel (Fe3+, Co2+), cationic oxidation (Mn3+, Co3+), and also cationic reduction (Cu+). The complete crystallochemical study highlights a complex HAp doping mechanism, mainly realized by an interstitial process combined with calcium substitution for the larger cations of the series leading to potentially calcium deficient HAp. PMID:28772452
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-01
... through the survey collection was conducted in 2010. One human bone fragment from the Adamsville site... ceramic jars, 1 ceramic scoop, 5 ceramic sherds, 4 pieces of chipped stone, and 1 flotation sample. Las...
Study of the structure and ferroelectric behavior of BaBi4-xLaxTi4O15 ceramics
NASA Astrophysics Data System (ADS)
Khokhar, Anita; Goyal, Parveen K.; Thakur, O. P.; Sreenivas, K.
2015-06-01
The structure and ferroelectric properties of Lanthanum substituted barium bismuth titanate BaBi4-xLaxTi4O15 (0 ≤ x ≤ 0.5) ceramics prepared by solid-state reaction method have been investigated. X-ray diffraction (XRD) confirms the formation of a single phase material. The distribution of lanthanum into the perovskite layers and (Bi2O2)2+ layers of BaBi4Ti4O15 ceramics have been revealed through Raman spectroscopy. At lower value of x, it is seen that La3+ ions prefer to substitute A-site Bi3+ ions in the perovskite layers while for higher x values, La3+ ions get incorporated into the (Bi2O2)2+ layers. A critical La content of x ˜ 0.2 in BaBi4-xLaxTi4O15 is seen to exhibit a large remnant polarization (Pr) with low coercive field (Ec). The improvement in the ferroelectric properties of La substituted BaBi4Ti4O15 ceramics has been explained in terms of changing oxygen vacancy concentration and structural relaxation. Tunable ferroelectric materials can be obtained by manipulating the doping amount of lanthanum ion.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-27
...,703 associated funerary objects are 4 animal bones, 3 animal claws, 7 antler artifacts, 1 antler fragment, 9 bone artifacts, 32 bone awls, 3 bone awl fragments, 4 bone beads, 2 bone hairpins, 2 bone needles, 1 bone needle fragment, 3 bone ornaments, 14 bone rings, 1 bone spatula, 1 bone wand, 556 ceramic...
Processed ball clay samples used in the production of ceramics and samples of the ceramic products were collected and analyzed for the presence and concentration of the 2,3,7,8-Cl substituted polychlorinated dibenzo-p-dioxins and furans (PCDDs/PCDFs). The processed ball clay had...
Athanasiou, Vasilis T; Papachristou, Dionysios J; Panagopoulos, Andreas; Saridis, Alkis; Scopa, Chrisoula D; Megas, Panagiotis
2010-01-01
Different types of bone-graft substitutes have been developed and are on the market worldwide to eliminate the drawbacks of autogenous grafting. This experimental animal study was undertaken to evaluate the different histological properties of various bone graft substitutes utilized in this hospital. Ninety New Zealand white rabbits were divided into six groups of 15 animals. Under general anesthesia, a 4.5 mm-wide hole was drilled into both the lateral femoral condyles of each rabbit, for a total of 180 condyles for analysis. The bone defects were filled with various grafts, these being 1) autograft, 2) DBM crunch allograft (Grafton), 3) bovine cancellous bone xenograft (Lubboc), 4) calcium phosphate hydroxyapatite substitute (Ceraform), 5) calcium sulfate substitute (Osteoset), and 6) no filling (control). The animals were sacrificed at 1, 3, and 6 months after implantation and tissue samples from the implanted areas were processed for histological evaluation. A histological grading scale was designed to determine the different histological parameters of bone healing. The highest histological grades were achieved with the use of cancellous bone autograft. Bovine xenograft (Lubboc) was the second best in the histological scale grading. The other substitutes (Grafton, Ceraform, Osteoset) had similar scores but were inferior to both allograft and xenograft. Bovine xenograft showed better biological response than the other bone graft substitutes; however, more clinical studies are necessary to determine its overall effectiveness.
In vitro bioactivity of novel tricalcium silicate ceramics.
Zhao, Wenyuan; Chang, Jiang; Wang, Junying; Zhai, Wanyin; Wang, Zheng
2007-05-01
In this study, bone-like apatite-formation ability of tricalcium silicate (Ca(3)SiO(5)) ceramics in simulated body fluid (SBF) was evaluated and the in vitro degradability was investigated by soaking in Ringer's solution. The effect of ionic products from Ca(3)SiO(5) dissolution on osteobalsts proliferation was investigated. The result indicated that hydroxyapatite (HA) was formed on the surface of the Ca(3)SiO(5) ceramics after soaking in SBF for 1 day, and Ca(3)SiO(5) ceramics could degraded in Ringer's solution. The Si ions from Ca(3)SiO(5) dissolution at certain concentration range significantly stimulated osteoblasts proliferation. Our results show that Ca(3)SiO(5) ceramics possess bone-like apatite-formation ability and degradability, and can release soluble ionic products to stimulate cell proliferation.
An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering.
Deepthi, S; Venkatesan, J; Kim, Se-Kwon; Bumgardner, Joel D; Jayakumar, R
2016-12-01
Chitin and chitosan based nanocomposite scaffolds have been widely used for bone tissue engineering. These chitin and chitosan based scaffolds were reinforced with nanocomponents viz Hydroxyapatite (HAp), Bioglass ceramic (BGC), Silicon dioxide (SiO 2 ), Titanium dioxide (TiO 2 ) and Zirconium oxide (ZrO 2 ) to develop nanocomposite scaffolds. Plenty of works have been reported on the applications and characteristics of the nanoceramic composites however, compiling the work done in this field and presenting it in a single article is a thrust area. This review is written with an aim to fill this gap and focus on the preparations and applications of chitin or chitosan/nHAp, chitin or chitosan/nBGC, chitin or chitosan/nSiO 2 , chitin or chitosan/nTiO 2 and chitin or chitosan/nZrO 2 in the field of bone tissue engineering in detail. Many reports so far exemplify the importance of ceramics in bone regeneration. The effect of nanoceramics over native ceramics in developing composites, its role in osteogenesis etc. are the gist of this review. Copyright © 2016 Elsevier B.V. All rights reserved.
Mineralized polymer composites as biogenic bone substitute material
NASA Astrophysics Data System (ADS)
Shah, Rushita; Saha, Nabanita; Kitano, Takeshi; Saha, Petr
2015-05-01
Mineralized polymer composites (MPC) are recognized as potential fillers of bone defects. Though bioceramics exhibits quite a good bone-bonding and vascularization, it is considered to be too stiff and brittle for using alone. Thus, the use of polymer scaffold instead of bioceramics has several advantages including combining the osteoconductivity and bone-bonding potential of the inorganic phase with the porosity and interconnectivity of the three-dimensional construction. Aiming the advantages of ceramic-polymer composite scaffolds, the calcium carbonate (CaCO3) based biomineralized scaffold was prepared, where the PVP-CMC hydrogel was used as an extracellular matrix. This paper is reported about the morphology, swelling trend (in physiological solution) and viscoelastic behavior of (90 min mineralized) MPC. The dry MPC are off-white, coarse in texture, comparatively less flexible than the original PVP-CMC based hydrogel film, and the deposition of granular structures on the surface of the hydrogel film confirms about the development of biomineralized scaffold/polymer composites. Irrespective of thickness, the dry MPC shows higher values of swelling ratio within 30 min, which varies between 200-250 approximately. The dynamic viscoelastic nature of freshly prepared MPC was investigated applying 1% and 10% strain. At higher strain the viscoelastic moduli (G' and G") show significant change, and the nature of MPC turns from elastic to viscous. Based on the observed basic properties, the MPC (calcite based polymer composites) can be recommended for the treatment of adyanamic bone disorder.
Banerjee, Pradipta; Madhu, S; Chandra Babu, N K; Shanthi, C
2015-04-01
Hydroxyapatite (HA) ceramics serve as an alternative to autogenous-free bone grafting by virtue of their excellent biocompatibility. However, chemically synthesized HA lacks the strong load-bearing capacity as required by bone. The bio-mimetic growth of HA crystals on collagen surface provides a feasible solution for synthesizing bone substitutes with the desired properties. This study deals with the utilization of the collagen hydrolysate recovered from leather waste as a substrate for promoting HA crystal growth. Bio-mimetic growth of HA was induced by subjecting the hydrolysate to various mineralization conditions. Parameters that would have a direct effect on crystal growth were varied to determine the optimal conditions necessary. Maximum mineralization was achieved with a combination of 10mM of CaCl2, 5mM of Na2HPO4, 100mM of NaCl and 0.575% glutaraldehyde at a pH of 7.4. The metal-protein interactions leading to formation of HA were identified through Fourier-transform infrared (FTIR) spectroscopy and x-ray diffraction (XRD) studies. The crystal dimensions were determined to be in the nanoscale range by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The size and crystallinity of bio-mimetically grown HA indicate that hydrolysate from leather waste can be used as an ideal alternative substrate for bone growth. Copyright © 2015 Elsevier B.V. All rights reserved.
Yazdimamaghani, Mostafa; Razavi, Mehdi; Vashaee, Daryoosh; Tayebi, Lobat
2015-04-01
A reduction in the degradation rate of magnesium (Mg) and its alloys is in high demand to enable these materials to be used in orthopedic applications. For this purpose, in this paper, a biocompatible polymeric layer reinforced with a bioactive ceramic made of polycaprolactone (PCL) and bioactive glass (BG) was applied on the surface of Mg scaffolds using dip-coating technique under low vacuum. The results indicated that the PCL-BG coated Mg scaffolds exhibited noticeably enhanced bioactivity compared to the uncoated scaffold. Moreover, the mechanical integrity of the Mg scaffolds was improved using the PCL-BG coating on the surface. The stable barrier property of the coatings effectively delayed the degradation activity of Mg scaffold substrates. Moreover, the coatings induced the formation of apatite layer on their surface after immersion in the SBF, which can enhance the biological bone in-growth and block the microcracks and pore channels in the coatings, thus prolonging their protective effect. Furthermore, it was shown that a three times increase in the concentration of PCL-BG noticeably improved the characteristics of scaffolds including their degradation resistance and mechanical stability. Since bioactivity, degradation resistance and mechanical integrity of a bone substitute are the key factors for repairing and healing fractured bones, we suggest that PCL-BG is a suitable coating material for surface modification of Mg scaffolds. Published by Elsevier B.V.
Osteointegration of porous absorbable bone substitutes: A systematic review of the literature
Paulo, Maria Júlia Escanhoela; dos Santos, Mariana Avelino; Cimatti, Bruno; Gava, Nelson Fabrício; Riberto, Marcelo; Engel, Edgard Eduard
2017-01-01
Biomaterials’ structural characteristics and the addition of osteoinductors influence the osteointegration capacity of bone substitutes. This study aims to identify the characteristics of porous and resorbable bone substitutes that influence new bone formation. An Internet search for studies reporting new bone formation rates in bone defects filled with porous and resorbable substitutes was performed in duplicate using the PubMed, Web of Science, Scielo, and University of São Paulo Digital Library databases. Metaphyseal or calvarial bone defects 4 to 10 mm in diameter from various animal models were selected. New bone formation rates were collected from the histomorphometry or micro-CT data. The following variables were analyzed: animal model, bone region, defect diameter, follow-up time after implantation, basic substitute material, osteoinductor addition, pore size and porosity. Of 3,266 initially identified articles, 15 articles describing 32 experimental groups met the inclusion criteria. There were no differences between the groups in the experimental model characteristics, except for the follow-up time, which showed a very weak to moderate correlation with the rate of new bone formation. In terms of the biomaterial and structural characteristics, only porosity showed a significant influence on the rate of new bone formation. Higher porosity is related to higher new bone formation rates. The influence of other characteristics could not be identified, possibly due to the large variety of experimental models and methodologies used to estimate new bone formation rates. We suggest the inclusion of standard control groups in future experimental studies to compare biomaterials. PMID:28793006
Elgendy, Enas Ahmed; Abo Shady, Tamer Elamer
2015-01-01
Background: Nano-sized ceramics may represent a promising class of bone graft substitutes due to their improved osseointegrative properties. Nanocrystalline hydroxyapatite (NcHA) binds to bone and stimulate bone healing by stimulation of osteoblast activity. Platelet-rich fibrin (PRF), an intimate assembly of cytokines, glycan chains, and structural glycoproteins enmeshed within a slowly polymerized fibrin network, has the potential to accelerate soft and hard tissue healing. The present study aims to explore the clinical and radiographical outcome of NcHA bone graft with or without PRF, in the treatment of intrabony periodontal defects. Materials and Methods: In a split-mouth study design, 20 patients having two almost identical intrabony defects with clinical probing depth of at least 6 mm were selected for the study. Selected sites were randomly divided into two groups. In Group I, mucoperiosteal flap elevation followed by the placement of NcHA was done. In Group II, mucoperiosteal flap elevation, followed by the placement of NcHA with PRF was done. Clinical and radiographic parameters were recorded at baseline and at 6-month postoperatively. Results: Both treatment groups showed a significant probing pocket depth (PPD) reduction, clinical attachment gain, increase bone density 6-month after surgery compared with baseline. However, there was a significantly greater PPD reduction and clinical attachment gain when PRF was added to NcHA. Conclusion: The NcHA bone graft in combination with PRF demonstrated clinical advantages beyond that achieved by the NcHA alone. PMID:25810595
The phase compositions and microwave dielectric properties of Li2Zn(Ti1-xSnx)3O8 ceramics
NASA Astrophysics Data System (ADS)
Lu, Xuepeng; Hu, Jie; Chen, Haoyuan; Xu, Wensheng; Li, Shuai
2017-08-01
The Li2Zn(Ti1-xSnx)3O8 (0.02≤x≤0.20) ceramics were prepared by the conventional solid-state ceramic route. The sintering behavior, phase compositions, microstructures and microwave dielectric properties of Li2Zn(Ti1-xSnx)3O8 ceramics were thoroughly investigated. The XRD patterns of Li2Zn(Ti1-xSnx)3O8 ceramics exhibited a single spinel as the main phase in the x value range of 0.02-0.08. The dielectric constants decreased linearly with increasing the substitution of Sn, which was mainly controlled by dielectric polarizabilities and secondary phase. The variation of Q×f values was dependent on average grain sizes and secondary phase. The τf values of Li2Zn(Ti1-xSnx)3O8 ceramics became more negative with higher substitution of Sn, which was related to the variations of their cell volumes. Typically, the Li2Zn(Ti0.92Sn0.08)3O8 ceramic sintered at 1075 °C for 4h exhibited good microwave dielectric properties: ɛr= 24.4, Q×f=89300 GHz, τf= -16.0 ppm/°C.
SPS-RS technique for solid-phase “in situ” synthesis of biocompatible ZrO2 porous ceramics
NASA Astrophysics Data System (ADS)
Shichalin, O. O.; Medkov, M. A.; Grishchenko, D. N.; Mayorov, V. Yu; Fedorets, A. N.; Belov, A. A.; Golub, A. V.; Gridasova, E. A.; Papynov, E. K.
2018-02-01
The prospective method of spark plasma sintering-reaction synthesis (SPS-RS) for fabrication of ceramics based on ZrO2 and biocompatible with living tissue is presented. Nanostructured ceramics has high mechanical strength (more than 400 MPa) and controlled porosity depending on specified sintering conditions. Biocompatible phases Ca10(PO4)6(OH)2 are formed “in situ” during SPS sintering of ZrO2 powder due to chemical interaction of phosphate precursors preliminary introduced into the mixture. The effective method to improve (to develop) porous structure of bioceramics obtained by SPS or SPS-RS techniques using poreforming agent (carbon black) is proposed. Suggested original SPS-RS “in situ” technique provides fabrication of new ZrO2 ceramics containing biocompatible phosphate components and possessing unique structural and mechanical characteristics. Such ceramics is indispensable for bone-ceramic implants that are able to activate processes of osteogenesis during bone tissue recovery.
Shakibaie-M, Behnam
2013-01-01
The aim of this study was to compare the effectiveness of two bone substitute materials for socket preservation after tooth extraction. Extraction sockets in 10 patients were filled with either inorganic bovine bone material (Bio-Oss) or with synthetic material consisting of hydroxyapatite and silicon dioxide (NanoBone). Extraction sockets without filling served as the control. The results demonstrate the effectiveness of the presented protocol for socket preservation and that the choice of a suitable bone substitute material is crucial. The dimensions of the alveolar ridge were significantly better preserved with Bio-Oss than with NanoBone or without treatment. Bio-Oss treatment resulted in better bone quality and quantity for successful implant placement.
Method for treating beta-spodumene ceramics
Day, J. Paul; Hickman, David L.
1994-09-27
A vapor-phase method for treating a beta-spodumene ceramic article to achieve a substitution of exchangeable hydrogen ions for the lithium present in the beta-spodumene crystals, wherein a barrier between the ceramic article and the source of exchangeable hydrogen ions is maintained in order to prevent lithium contamination of the hydrogen ion source and to generate highly recoverable lithium salts, is provided.
Engineering bone tissue substitutes from human induced pluripotent stem cells.
de Peppo, Giuseppe Maria; Marcos-Campos, Iván; Kahler, David John; Alsalman, Dana; Shang, Linshan; Vunjak-Novakovic, Gordana; Marolt, Darja
2013-05-21
Congenital defects, trauma, and disease can compromise the integrity and functionality of the skeletal system to the extent requiring implantation of bone grafts. Engineering of viable bone substitutes that can be personalized to meet specific clinical needs represents a promising therapeutic alternative. The aim of our study was to evaluate the utility of human-induced pluripotent stem cells (hiPSCs) for bone tissue engineering. We first induced three hiPSC lines with different tissue and reprogramming backgrounds into the mesenchymal lineages and used a combination of differentiation assays, surface antigen profiling, and global gene expression analysis to identify the lines exhibiting strong osteogenic differentiation potential. We then engineered functional bone substitutes by culturing hiPSC-derived mesenchymal progenitors on osteoconductive scaffolds in perfusion bioreactors and confirmed their phenotype stability in a subcutaneous implantation model for 12 wk. Molecular analysis confirmed that the maturation of bone substitutes in perfusion bioreactors results in global repression of cell proliferation and an increased expression of lineage-specific genes. These results pave the way for growing patient-specific bone substitutes for reconstructive treatments of the skeletal system and for constructing qualified experimental models of development and disease.
Zhang, Yumin; Wang, Jianru; Wang, Jue; Niu, Xiaojun; Liu, Jianchun; Gao, Lan; Zhai, Xiaoyan; Chu, Kaibo
2015-12-01
Bone substitutes are used in wide range of orthopaedic application. An ideal bone substitute should exhibit superior osteoinductive and osteoconductive properties. Neither bio-derived materials nor synthetic materials can meet the needs of an ideal bone substitute. Preparation of composite materials is a promising way to improve properties of biomaterial. In this study, the porous poly lactic acid (PLA)/demineralized bone matrix (DBM) composite biomaterials prepared by supercritical CO2 technique were implanted to repair rabbit radius segmental bone defect. By comparing with PLA and bone autograft, the X-ray result and histological analysis showed the repair effect of PLA/DBM porous composite materials is significantly better than that of the PLA group and the blank control group, and is similar to autologous bone. The PLA/DBM can promote the healing of bone defects and can be used as a kind of ideal alternative materials to repair bone defects.
Liang, Fan; Leland, Hyuma; Jedrzejewski, Breanna; Auslander, Allyn; Maniskas, Seija; Swanson, Jordan; Urata, Mark; Hammoudeh, Jeffrey; Magee, William
2018-05-01
Alveolar cleft reconstruction has historically relied on autologous iliac crest bone grafting (ICBG), but donor site morbidity, pain, and prolonged hospitalization have prompted the search for bone graft substitutes. The authors evaluated bone graft substitutes with the highest levels of evidence, and highlight the products that show promise in alveolar cleft repair and in maxillary augmentation. This comprehensive review guides the craniofacial surgeon toward safe and informed utilization of biomaterials in the alveolar cleft.A literature search was performed to identify in vitro human studies that fulfilled the following criteria: Level I or Level II of evidence, ≥30 subjects, and a direct comparison between a autologous bone graft and a bone graft substitute. A second literature search was performed that captured all studies, regardless of level of evidence, which evaluated bone graft substitutes for alveolar cleft repair or alveolar augmentation for dental implants. Adverse events for each of these products were tabulated as well.Sixteen studies featuring 6 bone graft substitutes: hydroxyapatite, demineralized bone matrix (DBM), β-tricalcium phosphate (TCP), calcium phosphate, recombinant human bone morphogenic protein-2 (rhBMP-2), and rhBMP7 fit the inclusion criteria for the first search. Through our second search, the authors found that DBM, TCP, rhBMP-2, and rhBMP7 have been studied most extensively in the alveolar cleft literature, though frequently in studies using less rigorous methodology (Level III evidence or below). rhBMP-2 was the best studied and showed comparable efficacy to ICBG in terms of volume of bone regeneration, bone density, and capacity to accommodate tooth eruption within the graft site. Pricing for products ranged from $290 to $3110 per 5 mL.The balance between innovation and safety is a complex process requiring constant vigilance and evaluation. Here, the authors profile several bone graft substitutes that demonstrate the most promise in alveolar cleft reconstruction.
Shimizu, Hideo; Jinno, Yohei; Ayukawa, Yasunori; Atsuta, Ikiru; Arahira, Takaaki; Todo, Mitsugu; Koyano, Kiyoshi
2016-10-01
The aim of this study was to evaluate the effectiveness of a novel bone substitute material fabricated using a biodegradable polymer-calcium phosphate nanoparticle composite. Porous structured poly-L-lactic acid (PLLA) and hydroxyapatite (HA) nanoparticle composite, which was fabricated using solid-liquid phase separation and freeze-drying methods, was grafted into bone defects created in rat calvarium or tibia. Rats were killed 4 weeks after surgery, and histological analyses were performed to evaluate new bone formation. Scanning electron microscopic observation showed the interconnecting pores within the material and the pore diameter was approximately 100 to 300 μm. HA nanoparticles were observed to be embedded into the PLLA beams. In the calvarial implantation model, abundant blood vessels and fibroblastic cells were observed penetrating into pores, and in the tibia model, newly formed bone was present around and within the composite. The PLLA-HA nanoparticle composite bone substitute developed in this study showed biocompatibility, elasticity, and operability and thus has potential as a novel bone substitute.
Ghanaati, Shahram; Barbeck, Mike; Willershausen, Ines; Thimm, Benjamin; Stuebinger, Stefan; Korzinskas, Tadas; Obreja, Karina; Landes, Constantin; Kirkpatrick, Charles J; Sader, Robert A
2013-12-01
In this study the de novo bone formation capacity of a nanocrystalline hydroxyapatite bone substitute was assessed 3 and 6 months after its insertion into the human sinus cavity. Sinus cavity augmentation was performed in a total of 14 patients (n = 7 implantation after 3 months; n = 7 implantation after 6 months) with severely atrophic maxillary bone. The specimens obtained after 3 and 6 months were analyzed histologically and histomorphometrically with special focus on bone metabolism within the residual bone and the augmented region. This study revealed that bone tissue formation started from the bone-biomaterial-interface and was directed into the most cranial parts of the augmented region. There was no statistically significant difference in new bone formation after 3 and 6 months (24.89 ± 10.22% vs 31.29 ± 2.29%), respectively. Within the limits of the present study and according to previously published data, implant insertion in regions augmented with this bone substitute material could be considered already after 3 months. Further clinical studies with bone substitute materials are necessary to validate these findings. © 2012 Wiley Periodicals, Inc.
Fabbri, M; Celotti, G C; Ravaglioli, A
1995-02-01
At the request of medical teams from the maxillofacial sector, a highly porous ceramic support based on hydroxyapatite of around 70-80% porosity was produced with a pore size distribution similar to bone texture (< 10 microns, approximately 3 vol%; 10-150 microns, approximately 110 vol%; > 150 microns, approximately 86 vol%). The ceramic substrates were conceived not only as a fillers for bone cavities, but also for use as drug dispensers and as supports to host cells to produce particular therapeutic agents. A method is suggested to obtain a substrate of high porosity, exploiting the impregnation of spongy substrate with hydroxyapatite ceramic particles. X-ray and scanning electron microscopy analyses were carried out to evaluate the nature of the new ceramic support in comparison with the most common commercial product; pore size distribution and porosity were controlled to known hydroxyapatite ceramic architecture for the different possible uses.
Moya, José S.; Martínez, Arturo; López-Píriz, Roberto; Guitián, Francisco; Díaz, Luis A.; Esteban-Tejeda, Leticia; Cabal, Belén; Sket, Federico; Fernández-García, Elisa; Tomsia, Antoni P.; Torrecillas, Ramón
2016-01-01
Bacterial and fungal infections remain a major clinical challenge. Implant infections very often require complicated revision procedures that are troublesome to patients and costly to the healthcare system. Innovative approaches to tackle infections are urgently needed. We investigated the histological response of novel free P2O5 glass-ceramic rods implanted in the jaws of beagle dogs. Due to the particular percolated morphology of this glass-ceramic, the dissolution of the rods in the animal body environment and the immature bone formation during the fourth months of implantation maintained the integrity of the glass-ceramic rod. No clinical signs of inflammation took place in any of the beagle dogs during the four months of implantation. This new glass-ceramic biomaterial with inherent bactericidal and fungicidal properties can be considered as an appealing candidate for bone tissue engineering. PMID:27515388
Strontium-doped calcium silicate bioceramic with enhanced in vitro osteogenic properties.
No, Young Jung; Roohaniesfahani, Seyediman; Lu, Zufu; Shi, Jeffrey; Zreiqat, Hala
2017-06-05
Gehlenite (GLN, Ca 2 SiAl 2 O 7 ) is a bioceramic that has been recently shown to possess excellent mechanical strength and in vitro osteogenic properties for bone regeneration. Substitutional incorporation of strontium in place of calcium is an effective way to further enhance biological properties of calcium-based bioceramics and glasses. However, such strategy has the potential to affect other important physicochemical parameters such as strength and degradation due to differences in the ionic radius of strontium and calcium. This study is the first to investigate the effect of a range of concentrations of strontium substitution of calcium at 1, 2, 5, 10 mol% (S1-GLN, S2-GLN, S5-GLN and S10-GLN) on the physicochemical and biological properties of GLN. We showed that up to 2 mol% strontium ion substitution retains the monophasic GLN structure when sintered at 1450 °C, whereas higher concentrations resulted in presence of calcium silicate impurities. Increased strontium incorporation resulted in changes in grain morphology and reduced densification when the ceramics were sintered at 1450 °C. Porous GLN, S1-GLN and S2-GLN scaffolds (∼80% porosity) showed compressive strengths of 2.05 ± 0.46 MPa, 1.76 ± 0.79 MPa and 1.57 ± 0.52 MPa respectively. S1-GLN and S2-GLN immersed in simulated body fluid showed increased strontium ion release but reduced calcium and silicon ion release compared to GLN without affecting overall weight loss and pH over a 21 d period. The bioactivity of the S2-GLN ceramics was significantly improved as reflected in the significant upregulation of HOB proliferation and differentiation compared to GLN. Overall, these results suggest that increased incorporation of strontium presents a trade-off between bioactivity and mechanical strength for GLN bioceramics. This is an important consideration in the development of strontium-doped bioceramics.
Towards the optimal design of an uncemented acetabular component using genetic algorithms
NASA Astrophysics Data System (ADS)
Ghosh, Rajesh; Pratihar, Dilip Kumar; Gupta, Sanjay
2015-12-01
Aseptic loosening of the acetabular component (hemispherical socket of the pelvic bone) has been mainly attributed to bone resorption and excessive generation of wear particle debris. The aim of this study was to determine optimal design parameters for the acetabular component that would minimize bone resorption and volumetric wear. Three-dimensional finite element models of intact and implanted pelvises were developed using data from computed tomography scans. A multi-objective optimization problem was formulated and solved using a genetic algorithm. A combination of suitable implant material and corresponding set of optimal thicknesses of the component was obtained from the Pareto-optimal front of solutions. The ultra-high-molecular-weight polyethylene (UHMWPE) component generated considerably greater volumetric wear but lower bone density loss compared to carbon-fibre reinforced polyetheretherketone (CFR-PEEK) and ceramic. CFR-PEEK was located in the range between ceramic and UHMWPE. Although ceramic appeared to be a viable alternative to cobalt-chromium-molybdenum alloy, CFR-PEEK seems to be the most promising alternative material.
Repair of segmental bone defects with bone marrow and BMP-2 adenovirus in the rabbit radius
NASA Astrophysics Data System (ADS)
Cheng, Lijia; Lu, Xiaofeng; Shi, Yujun; Li, Li; Xue, Jing; Zhang, Li; Xia, Jie; Wang, Yujia; Zhang, Xingdong; Bu, Hong
2012-12-01
Bone tissue engineering (BTE) is approached via implantation of autogenous mesenchymal stem cells (MSCs), marrow cells, or platelet-rich plasma, etc. To the contrary, gene therapy combining with the bone marrow (BM) has not been often reported. This study was performed to investigate whether a modified BTE method, that is, the BM and a recombinant human bone morphogenetic protein-2 adenovirus (Ad.hBMP-2) gene administering in hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) ceramics could accelerate the healing of segmental defects in the rabbit radius. In our study, ceramics were immersed in the adenovirus overnight, and half an hour before surgery, autologous BM aspirates were thoroughly mixed with the ceramics; at the same time, a 15-mm radius defect was introduced in the bilateral forelimbs of all animals, after that, this defect was filled with the following: (1) Ad.hBMP-2 + HA/β-TCP + autologous BM (group 1); (2) HA/β-TCP + Ad.hBMP-2 (group 2); (3) HA/β-TCP alone (group 3); (4) an empty defect as a control (group 4). Histological observation and μ-CT analyses were performed on the specimens at weeks 2, 4, 8, and 12, respectively. In group 1, new bone was observed at week 4 and BM appeared at week 12, in groups 2 and 3, new bone was observed at week 8 and it was more mature at week 12, in contrast, the defect was not bridged in group 4 at week 12. The new bone area percentage in group 1 was significantly higher than that in groups 2 and 3. Our study indicated that BM combined with hBMP-2 adenovirus and porous ceramics could significantly increase the amount of newly formed bone. And this modified BTE method thus might have potentials in future clinical application.
Fienitz, Tim; Moses, Ofer; Klemm, Christoph; Happe, Arndt; Ferrari, Daniel; Kreppel, Matthias; Ormianer, Zeev; Gal, Moti; Rothamel, Daniel
2017-04-01
The objective of this study is to histologically and radiologically compare a sintered and a non-sintered bovine bone substitute material in sinus augmentation procedures. Thirty-three patients were included in the clinically controlled randomized multicentre study resulting in a total of 44 treated sinuses. After lateral approach, sinuses were filled with either a sintered (SBM, Alpha Bio's Graft ® ) or a non-sintered (NSBM, Bio Oss ® ) deproteinized bovine bone substitute material. The augmentation sites were radiologically assessed before and immediately after the augmentation procedure as well as prior to implant placement. Bone trephine biopsies for histological analysis were harvested 6 months after augmentation whilst preparing the osteotomies for implant placement. Healing was uneventful in all patients. After 6 months, radiological evaluation of 43 sinuses revealed a residual augmentation height of 94.65 % (±2.74) for SBM and 95.76 % (±2.15) for NSBM. One patient left the study for personal reasons. Histological analysis revealed a percentage of new bone of 29.71 % (±13.67) for SBM and 30.57 % (±16.07) for NSBM. Residual bone substitute material averaged at 40.68 % (±16.32) for SBM compared to 43.43 % (±19.07) for NSBM. All differences between the groups were not statistically significant (p > 0.05, Student's t test). Both xenogeneic bone substitute materials showed comparable results regarding new bone formation and radiological height changes in external sinus grafting procedures. Both bone substitute materials allow for a predictable new bone formation following sinus augmentation procedures.
Surface reactivity and hydroxyapatite formation on Ca5MgSi3O12 ceramics in simulated body fluid
NASA Astrophysics Data System (ADS)
Xu, Jian; Wang, Yaorong; Huang, Yanlin; Cheng, Han; Seo, Hyo Jin
2017-11-01
In this work, the new calcium-magnesium-silicate Ca5MgSi3O12 ceramic was made via traditional solid-state reaction. The bioactivities were investigated by immerging the as-made ceramics in simulated body fluid (SBF) for different time at body temperature (37 °C). Then the samples were taken to measure X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), X-ray energy-dispersive spectra (EDS), and Fourier transform infrared spectroscopy (FT-IR) measurements. The bone-like hydroxyapatite nanoparticles formation was observed on the ceramic surfaces after the immersion in SBF solutions. Ca5MgSi3O12 ceramics possess the Young's modulus and the bending strength and of 96.3 ± 1.2 GPa and 98.7 ± 2.3 MPa, respectively. The data suggest that Ca5MgSi3O12 ceramics can quickly induce HA new layers after soaking in SBF. Ca5MgSi3O12 ceramics are potential to be used as biomaterials for bone-tissue repair. The cell adherence and proliferation experiments are conducted confirming the reliability of the ceramics as a potential candidate.
Prototype of a silicon nitride ceramic-based miniplate osteofixation system for the midface.
Neumann, Andreas; Unkel, Claus; Werry, Christoph; Herborn, Christoh U; Maier, Horst R; Ragoss, Christian; Jahnke, Klaus
2006-06-01
The favorable properties of silicon nitride (Si3N4) ceramics, such as high mean strength level and fracture toughness, suggest biomedical use as an implant material. Minor reservations about the biocompatibility of Si3N4 ceramics were cleared up by previous in vitro and in vivo investigations. A Si3N4 prototype minifixation system was manufactured and implanted for osteosynthesis of artificial frontal bone defects in 3 minipigs. After 3 months, histological sections, computed tomography (CT) scans, and magnetic resonance imaging (MRI) scans were obtained. Finite element modeling (FEM) was used to simulate stresses and strains on Si3N4 miniplates and screws to calculate survival probabilities. Si3N4 miniplates and screws showed satisfying intraoperative workability. There was no implant loss, displacement, or fracture. Bone healing was complete in all animals. The formation of new bone was observed in direct contact to the implants. The implants showed no artifacts on CT and MRI scanning. FEM simulation confirmed the mechanical reliability of the screws, whereas simulated plate geometries regarding pullout forces at maximum load showed limited safety in a bending situation. Si3N4 ceramics show a good biocompatibility outcome both in vitro and in vivo. In ENT surgery, this ceramic may serve as a biomaterial for osteosynthesis (eg, of the midface including reconstruction the floor of the orbit and the skull base). To our knowledge, this is the first introduction of a ceramic-based miniplate-osteofixation system. Advantages compared with titanium are no risk of implantation to bone with mucosal attachment, no need for explantation, and no interference with radiologic imaging. Disadvantages include the impossibility of individual bending of the miniplates.
Velasquez, Pablo; Luklinska, Zofia B; Meseguer-Olmo, Luis; Mate-Sanchez de Val, Jose E; Delgado-Ruiz, Rafael A; Calvo-Guirado, Jose L; Ramirez-Fernandez, Ma P; de Aza, Piedad N
2013-07-01
This study reports on the in vitro and in vivo behavior of α-tricalcium phosphate (αTCP) and also αTCP doped with either 1.5 or 3.0 wt % of dicalcium silicate (C2 S). The ceramics were successfully prepared by powder metallurgy method combined with homogenization and heat treatment procedures. All materials were composed of a single-phase, αTCP in the case of a pure material, or solid solution of C2 S in αTCP for the doped αTCP, which were stable at room temperature. The ceramics were tested for bioactivity in simulated body fluid, cell culture medium containing adult mesenchymal stem cells of human origin, and in animals. Analytical scanning electron microscopy combined with chemical elemental analysis was used and Fourier transform infrared and conventional histology methods. The in vivo behavior of the ceramics matched the in vitro results, independently of the C2 S content in αTCP. Carbonated hydroxyapatite (CHA) layer was formed on the surface and within the inner parts of the specimens in all cases. A fully mineralized new bone growing in direct contact with the implants was found under the in vivo conditions. The bioactivity and biocompatibility of the implants increased with the C2 S content in αTCP. The C2 S doped ceramics also favoured a phase transformation of αTCP into CHA, important for full implant integration during the natural bone healing processes. αTCP ceramic doped with 3.0 wt % C2 S showed the best bioactive in vitro and in vivo properties of all the compositions and hence could be of interest in specific applications for bone restorative purposes. Copyright © 2012 Wiley Periodicals, Inc.
Singh, Indrajeet; Gupta, Hemant; Pradhan, R; Sinha, VP; Gupta, Sumit
2012-01-01
Introduction Bone grafts are frequently used for the treatment of bone defects, but can cause postoperative complications, and sometimes a sufficient quantity of bone is not available. Hence, synthetic biomaterials have been used as an alternative to autogenous bone grafts. Recent clinical reports suggest that application of autologous blood plasma enriched with platelets can enhance the formation of new bone. There are very few in vitro or in vivo studies published on the efficiency of platelet-rich plasma (PRP). The objective of this study was to evaluate the alloplastic bone substitute for its osteogenic potential with or without PRP. Materials and Methods Twenty-three patients with periapical bony defects were selected for this study. Clinical parameters such as pain visual analog scale (VAS), swelling, infection, graft migration, rejection, radiographical interpretations at regular interval and scintigraphic evaluation were done to evaluate osteogenic potential of alloplastic bone substitute with or without PRP. Results The highest acceleration in bone formation was observed in groups where alloplastic bone substitute was used with PRP. There were no statistically significant differences between the two groups regarding other outcome variables throughout the postoperative period. Conclusion Addition of PRP significantly accelerates vascularization of the graft, improves soft tissue healing, reduces postoperative morbidity and enhances bone regeneration. PMID:25756013
Zhang, Wenyou; He, Jiankang; Li, Xiang; Liu, Yaxiong; Bian, Weiguo; Li, Dichen; Jin, Zhongmin
2014-03-01
To solve the fixation problem between ligament grafts and host bones in ligament reconstruction surgery by using ligament-bone composite scaffolds to repair the ligaments, to explore the fabrication method for ligament-bone composite scaffolds based on three-dimensional (3-D) printing technique, and to investigate their mechanical and biological properties in animal experiments. The model of bone scaffolds was designed using CAD software, and the corresponding negative mould was created by boolean operation. 3-D printing techinique was employed to fabricate resin mold. Ceramic bone scaffolds were obtained by casting the ceramic slurry in the resin mould and sintering the dried ceramics-resin composites. Ligament scaffolds were obtained by weaving degummed silk fibers, and then assembled with bone scaffolds and bone anchors. The resultant ligament-bone composite scaffolds were implanted into 10 porcine left anterior cruciate ligament rupture models at the age of 4 months. Mechanical testing and histological examination were performed at 3 months postoperatively, and natural anterior cruciate ligaments of the right sides served as control. Biomechanical testing showed that the natural anterior cruciate ligament of control group can withstand maximum tensile force of (1 384 +/- 181) N and dynamic creep of (0.74 +/- 0.21) mm, while the regenerated ligament-bone scaffolds of experimental group can withstand maximum tensile force of (370 +/- 103) N and dynamic creep of (1.48 +/- 0.49) mm, showing significant differences (t = 11.617, P = 0.000; t = 2.991, P = 0.020). In experimental group, histological examination showed that new bone formed in bone scaffolds. A hierarchical transition structure regenerated between ligament-bone scaffolds and the host bones, which was similar to the structural organizations of natural ligament-bone interface. Ligament-bone composite scaffolds based on 3-D printing technique facilitates the regeneration of biomimetic ligament-bone interface. It is expected to achieve physical fixation between ligament grafts and host bone.
Takeuchi, Ryohei; Woon-Hwa, Jung; Ishikawa, Hiroyuki; Yamaguchi, Yuichiro; Osawa, Katsunari; Akamatsu, Yasushi; Kuroda, Koichi
2017-12-01
The purpose of this study was to compare the mechanical fixation strengths of anteromedial and medial plate positions in osteotomy, and clarify the effects of bone substitute placement into the osteotomy site. Twenty-eight sawbone tibia models were used. Four different models were prepared: Group A, the osteotomy site was open and the plate position was anteromedial; Group B, bone substitutes were inserted into the osteotomy site and the plate position was anteromedial; Group C, the osteotomy site was open and the plate position was medial; and Group D, bone substitutes were inserted into the osteotomy site and the plate position was medial. The loading condition ranged from 0 to 800N and one hertz cycles were applied. Changes of the tibial posterior slope angle (TPS), stress on the plate and lateral hinge were measured. The changes in the TPS and the stress on the plate were significantly larger in Group A than in Group C. These were significantly larger in Group A than in Group B, and in Group C than in Group D. There was no significant difference between Group B and Group D, and no significant difference between knee flexion angles of 0° and 10°. Stress on the lateral hinge was significantly smaller when bone substitute was used. A medial plate position was biomechanically superior to an anteromedial position if bone substitute was not used. Bone substitute distributed the stress concentration around the osteotomy gap and prevented an increase in TPS angle regardless of the plate position. Copyright © 2017. Published by Elsevier B.V.
Wettability and surface free energy of polarised ceramic biomaterials.
Nakamura, Miho; Hori, Naoko; Namba, Saki; Toyama, Takeshi; Nishimiya, Nobuyuki; Yamashita, Kimihiro
2015-01-13
The surface modification of ceramic biomaterials used for medical devices is expected to improve osteoconductivity through control of the interfaces between the materials and living tissues. Polarisation treatment induced surface charges on hydroxyapatite, β-tricalcium phosphate, carbonate-substituted hydroxyapatite and yttria-stabilized zirconia regardless of the differences in the carrier ions participating in the polarisation. Characterization of the surfaces revealed that the wettability of the polarised ceramic biomaterials was improved through the increase in the surface free energies compared with conventional ceramic surfaces.
Method of making contamination-free ceramic bodies
NASA Technical Reports Server (NTRS)
Philipp, Warren H. (Inventor)
1991-01-01
Ceramic structures having high strength at temperatures above 1000 C after sintering are made by mixing ceramic powders with binder deflocculants such as guanidine salts of polymeric acids, guanidine salts of aliphatic organic carboxylic acids or guanidine alkylsulfates with the foregoing guanidine salts. The novelty of the invention appears to lie in the substitution of guanidine salts for the alkalai metal salt components or organic fatty acids of the prior art binder-deflocculant, ceramic processing aids whereby no undesirable metal contaminants are present in the final ceramic structure. Guanidine alkylsulfates also replace the Na or K alkylsulfates commonly used with binder-deflocculants in making high temperature ceramic structures.
Lorenz, Jonas; Kubesch, Alica; Korzinskas, Tadas; Barbeck, Mike; Landes, Constantin; Sader, Robert A; Kirkpatrick, Charles J; Ghanaati, Shahram
2015-12-01
This study compared the material-specific tissue response to the synthetic, hydroxyapatite-based bone substitute material NanoBone (NB) with that of the xenogeneic, bovine-based bone substitute material Bio-Oss (BO). The sinus cavities of 14 human patients were augmented with NB and BO in a split-mouth design. Six months after augmentation, bone biopsies were extracted for histological and histomorphometric investigation prior to dental implant insertion. The following were evaluated: the cellular inflammatory pattern, the induction of multinucleated giant cells, vascularization, the relative amounts of newly formed bone, connective tissue, and the remaining bone substitute material. NB granules were well integrated in the peri-implant tissue and were surrounded by newly formed bone tissue. Multinucleated giant cells were visible on the surfaces of the remaining granules. BO granules were integrated into the newly formed bone tissue, which originated from active osteoblasts on their surface. Histomorphometric analysis showed a significantly higher number of multinucleated giant cells and blood vessels in the NB group compared to the BO group. No statistical differences were observed in regard to connective tissue, remaining bone substitute, and newly formed bone. The results of this study highlight the different cellular reactions to synthetic and xenogeneic bone substitute materials. The significantly higher number of multinucleated giant cells within the NB implantation bed seems to have no effect on its biodegradation. Accordingly, the multinucleated giant cells observed within the NB implantation bed have characteristics more similar to those of foreign body giant cells than to those of osteoclasts.
Polar fluctuations in Mn substituted KTaO{sub 3} ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Axelsson, Anna-Karin; Pan Yuya; Valant, Matjaz
2010-09-15
Polar fluctuations were found in KTaO{sub 3} when K{sup +} was substituted with Mn{sup 2+} on the A-site. The temperature dependence of the real part of the dielectric permittivity of (K{sub 1-2x}Mn{sub x{open_square}x})TaO{sub 3} ceramics (x=0-0.05) shows a diffuse maximum between 50-100 K in the frequency range 10{sup 2}-10{sup 6} Hz, shifting to higher temperature with increasing frequency and Mn content. The results are analyzed using a modified Curie-Weiss law, the Cole-Cole equation and the Arrhenius law. Here it is suggested that the observed relaxor-type dielectric behavior is attributed to the formation of electric dipoles originating from two distinct sources;more » one from an atomic off-center position when Mn{sup 2+} substitutes for K{sup +} and one from the anion deficiencies formed by these aliovalent substitutions.« less
Bone grafts, bone substitutes and orthobiologics
Roberts, Timothy T.; Rosenbaum, Andrew J.
2012-01-01
The biology of fracture healing is better understood than ever before, with advancements such as the locking screw leading to more predictable and less eventful osseous healing. However, at times one’s intrinsic biological response, and even concurrent surgical stabilization, is inadequate. In hopes of facilitating osseous union, bone grafts, bone substitutes and orthobiologics are being relied on more than ever before. The osteoinductive, osteoconductive and osteogenic properties of these substrates have been elucidated in the basic science literature and validated in clinical orthopaedic practice. Furthermore, an industry built around these items is more successful and in demand than ever before. This review provides a comprehensive overview of the basic science, clinical utility and economics of bone grafts, bone substitutes and orthobiologics. PMID:23247591
Kolk, Andreas; Handschel, Jörg; Drescher, Wolf; Rothamel, Daniel; Kloss, Frank; Blessmann, Marco; Heiland, Max; Wolff, Klaus-Dietrich; Smeets, Ralf
2012-12-01
An autologous bone graft is still the ideal material for the repair of craniofacial defects, but its availability is limited and harvesting can be associated with complications. Bone replacement materials as an alternative have a long history of success. With increasing technological advances the spectrum of grafting materials has broadened to allografts, xenografts, and synthetic materials, providing material specific advantages. A large number of bone-graft substitutes are available including allograft bone preparations such as demineralized bone matrix and calcium-based materials. More and more replacement materials consist of one or more components: an osteoconductive matrix, which supports the ingrowth of new bone; and osteoinductive proteins, which sustain mitogenesis of undifferentiated cells; and osteogenic cells (osteoblasts or osteoblast precursors), which are capable of forming bone in the proper environment. All substitutes can either replace autologous bone or expand an existing amount of autologous bone graft. Because an understanding of the properties of each material enables individual treatment concepts this review presents an overview of the principles of bone replacement, the types of graft materials available, and considers future perspectives. Bone substitutes are undergoing a change from a simple replacement material to an individually created composite biomaterial with osteoinductive properties to enable enhanced defect bridging. Copyright © 2012 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Kauschke, E; Rumpel, E; Fanghänel, J; Bayerlein, T; Gedrange, T; Proff, P
2006-02-01
Different clinical applications, including dentistry, are making increasing demands on bone grafting material. In the present study we have analysed the viability, proliferation and growth characteristics of fibroblasts cultured in vitro together with two different bone grafting materials, NanoBone and Straumann Bone Ceramic, over a period of 24 and 28 days respectively. Viability was measured at least every 72 hours by using the alamarBlue assay, a test that measures quantitatively cell proliferation and viability but does not require cell fixation or extraction. After one week of culture fibroblast viability was as high as in controls for both grafting materials and remained high (> 90%) for the duration of the experiment. Cell growth was evaluated microscopically. Scanning electron microscopy revealed a dense fibroblast growth at the surface of both bone grafting materials after three weeks of in vitro culture. Generally, our in vitro analyses contribute to further insights into cell - scaffold interactions.
Sponer, P; Urban, K; Urbanová, E
2006-06-01
The aim of the study was to demonstrate, by three-phase bone scintigraphy, radionuclide uptake at the site of defects in long bones filled with the non-resorbable bioactive glass-ceramic material BAS-0 at a long follow-up. Twenty patients, 14 men and 6 women, operated on between 1990 and 2000 for benign bone tumors or tumor-like lesions localized in the femur, tibia or humerus were comprised in the study. Their average age at the time of operation was 14 years (range, 8 to 24). The diagnoses based on histological examination included juvenile bone cysts in 11, aneurysmal bone cyst in five, non-ossifying fibroma in two, and fibrous dysplasia in two patients. The lesions were localized in the femur, humerus and tibia in 11, five and four patients, respectively. The metaphysis was affected in eight and the diaphysis in 12 patients. Clinical, radiological and scintigraphic examinations were carried out at 2 to 12 years (7 years on average) after surgery. The clinical evaluation included subjective complaints and objective findings. Radiographs were made in standard projections and the osteo-integration of glass-ceramic material was investigated. Three-phase bone scans were made and the healthy and the affected limbs in each patient were compared by means of an index. Radionuclide uptake was considered normal when the index value was equal to 1.0, mildly increased at an index value of 1.2, moderately increased at 1.2-1.5 and markedly increased at an index value higher than 1.5. The clinical evaluation showed that, in the patients with glass-ceramic filling of metaphyses, six had no subjective complaints and two reported transient pain. In the patients with implants in diaphyses, subjective complaints were recorded in nine and no complaints in three patients. No inflammatory changes in soft tissues were found. No restriction in weightbearing of the limb treated was reported by any of the patients. On radiography, 18 patients were free from any disease residue or recurrence. Two patients had a residual defect. The bioactive glass-ceramic material BAS-0 was completely incorporated in all patients. On three-phase bone scans, radionuclide distribution on the flow phase and soft tissue phase was symmetrical in both limbs of all patients. For the metaphyseal location of implants, the delayed images demonstrated physiological radionuclide distribution in one patient, mildly increased distribution (index up to 1.2) in four, increased uptake (index up to 1.5) in two patients, and highly increased uptake (index above 1.5) in one patient. For the diaphyseal location of implants, the delayed scans demonstrated slightly increased radionuclide distribution in two, markedly increased in two and highly increased uptake in eight patients. The tissue during incorporation of a non-resorbable synthetic material is influenced by stress-shielding. This changes local mechanical signals, which has a negative effect on the adjacent bone tissue. Stress accumulating at the interface of a rigid implant and bone tissue may result in pain, and is detected by scintigraphy as an increased nucleotide uptake, particularly in diaphyseal grafts. This paper presents problems associated with implantation of the non-resorbable bioactive glass-ceramic material BAS-0 in the treatment of diaphyseal defects of long bones. The results show that, for filling of the defects described herein, non-resorbable glass-ceramic materials are not suitable.
Bioactive Scaffolds for Regeneration of Cartilage and Subchondral Bone Interface
Deng, Cuijun; Zhu, Huiying; Li, Jiayi; Feng, Chun; Yao, Qingqiang; Wang, Liming; Chang, Jiang; Wu, Chengtie
2018-01-01
The cartilage lesion resulting from osteoarthritis (OA) always extends into subchondral bone. It is of great importance for simultaneous regeneration of two tissues of cartilage and subchondral bone. 3D-printed Sr5(PO4)2SiO4 (SPS) bioactive ceramic scaffolds may achieve the aim of regenerating both of cartilage and subchondral bone. We hypothesized that strontium (Sr) and silicon (Si) ions released from SPS scaffolds play a crucial role in osteochondral defect reconstruction. Methods: SPS bioactive ceramic scaffolds were fabricated by a 3D-printing method. The SEM and ICPAES were used to investigate the physicochemical properties of SPS scaffolds. The proliferation and maturation of rabbit chondrocytes stimulated by SPS bioactive ceramics were measured in vitro. The stimulatory effect of SPS scaffolds for cartilage and subchondral bone regeneration was investigated in vivo. Results: SPS scaffolds significantly stimulated chondrocyte proliferation, and SPS extracts distinctly enhanced the maturation of chondrocytes and preserved chondrocytes from OA. SPS scaffolds markedly promoted the regeneration of osteochondral defects. The complex interface microstructure between cartilage and subchondral bone was obviously reconstructed. The underlying mechanism may be related to Sr and Si ions stimulating cartilage regeneration by activating HIF pathway and promoting subchondral bone reconstruction through activating Wnt pathway, as well as preserving chondrocytes from OA via inducing autophagy and inhibiting hedgehog pathway. Conclusion: Our findings suggest that SPS scaffolds can help osteochondral defect reconstruction and well reconstruct the complex interface between cartilage and subchondral bone, which represents a promising strategy for osteochondral defect regeneration. PMID:29556366
Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering
Gerhardt, Lutz-Christian; Boccaccini, Aldo R.
2010-01-01
Traditionally, bioactive glasses have been used to fill and restore bone defects. More recently, this category of biomaterials has become an emerging research field for bone tissue engineering applications. Here, we review and discuss current knowledge on porous bone tissue engineering scaffolds on the basis of melt-derived bioactive silicate glass compositions and relevant composite structures. Starting with an excerpt on the history of bioactive glasses, as well as on fundamental requirements for bone tissue engineering scaffolds, a detailed overview on recent developments of bioactive glass and glass-ceramic scaffolds will be given, including a summary of common fabrication methods and a discussion on the microstructural-mechanical properties of scaffolds in relation to human bone (structure-property and structure-function relationship). In addition, ion release effects of bioactive glasses concerning osteogenic and angiogenic responses are addressed. Finally, areas of future research are highlighted in this review. PMID:28883315
Bone healing and bone substitutes.
Costantino, Peter D; Hiltzik, David; Govindaraj, Satish; Moche, Jason
2002-02-01
With the advent of new biomaterials and surgical techniques, the reconstructive surgeon has a wider range of treatment modalities for the rehabilitation and reconstruction of craniofacial skeletal deformities than ever before. These innovative substances act as true bone graft substitutes, thereby allowing the surgeon to avoid the use of autogenous bone grafts and their associated donor site morbidity. Surgeons have long been interested in producing a composite graft that can heal faster by induction, incorporate with surrounding tissues, and be remodeled to resemble native bone. Currently, there are a host of bone graft substitutes available that vary in both their composition and properties. Craniomaxillofacial surgeons must therefore become comfortable with numerous biomaterials to best tailor the treatment for each patient individually. Ongoing investigations into the next phase of tissue engineering will continue to bring us closer to the ability to regenerate or replace bone.
Improvement in Mechanical Properties through Structural Hierarchies in Bio-Inspired Materials
2011-02-01
alloys , ceramics and their composites which show improvement in one mechanical property (e.g. stiffness) at the cost of another disparate one (e.g... properties of their base constituents. This is in contrast to many engineering materials, such as metals, alloys , ceramics and their composites which show...mnechanical properties seen in many synthetic nanoma- Collagen (a) Ccellous bone Collagen Collagen Lamella fibr ibi Cortical nBone Osteon C Crystak H I nm
Mechanical performance of a biocompatible biocide soda-lime glass-ceramic.
López-Esteban, S; Bartolomé, J F; Dí Az, L A; Esteban-Tejeda, L; Prado, C; López-Piriz, R; Torrecillas, R; Moya, J S
2014-06-01
A biocompatible soda-lime glass-ceramic in the SiO2-Na2O-Al2O3-CaO-B2O3 system containing combeite and nepheline as crystalline phases, has been obtained at 750°C by two different routes: (i) pressureless sintering and (ii) Spark Plasma Sintering. The SPS glass-ceramic showed a bending strength, Weibull modulus, and toughness similar values to the cortical human bone. This material had a fatigue limit slightly superior to cortical bone and at least two times higher than commercial dental glass-ceramics and dentine. The in vitro studies indicate that soda-lime glass-ceramic is fully biocompatible. The in vivo studies in beagle jaws showed that implanted SPS rods presented no inflammatory changes in soft tissues surrounding implants in any of the 10 different cases after four months implantation. The radiological analysis indicates no signs of osseointegration lack around implants. Moreover, the biocide activity of SPS glass-ceramic versus Escherichia coli, was found to be >4log indicating that it prevents implant infections. Because of this, the SPS new glass-ceramic is particularly promising for dental applications (inlay, crowns, etc). Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Florschutz, Anthony Vatroslav
Utilization of bone grafts for the treatment of skeletal pathology is a common practice in orthopaedic, craniomaxillofacial, dental, and plastic surgery. Autogenous bone graft is the established archetype but has disadvantages including donor site morbidity, limited supply, and prolonging operative time. In order to avoid these and other issues, bone graft substitute materials are becoming increasingly prevalent among surgeons for reconstructing skeletal defects and arthrodesis applications. Bone graft substitutes are biomaterials, biologics, and guided tissue/bone regenerative devices that can be used alone or in combinations as supplements or alternatives to autogenous bone graft. There is a growing interest and trend to specialize graft substitutes for specific indications and although there is good rationale for this indication-specific approach, the development and utility of a more universal bone graft substitute may provide a better answer for patients and surgeons. The aim of the present research focuses on the design, synthesis, and initial evaluation of D-glyceraldehyde crosslinked gelatin-hydroxyapatite composites for potential use as a bone graft substitutes. After initial establishment of rational material design, gelatinhydroxyapatite scaffolds were fabricated with different gelatin:hydroxyapatite ratios and crosslinking concentrations. The synthesized scaffolds were subsequently evaluated on the basis of their swelling behavior, porosity, density, percent composition, mechanical properties, and morphology and further assessed with respect to cell-biomaterial interaction and biomineralization in vitro. Although none of the materials achieved mechanical properties suitable for structural graft applications, a reproducible material design and synthesis was achieved with properties recognized to facilitate bone formation. Select scaffold formulations as well as a subset of scaffolds loaded with recombinant human bone morphogenetic protein-2 were implanted ectopically in a rodent animal model and histologically evaluated for biocompatibility, degradation, and bone formation in vivo. The gelatin-hydroxyapatite scaffolds retained dimensional structure over 28 days and did not elicit any undesirable systemic or local effects. Distinct areas of mineralization and osteoid/bone were noted in all the implanted scaffolds and quantitative differences were primarily dependent on the presence of hydroxyapatite.
Chen, Qiang; Baino, Francesco; Pugno, Nicola M; Vitale-Brovarone, Chiara
2013-04-01
A new approach based on the concepts of quantized fracture mechanics (QFM) is presented and discussed in this paper to estimate the bonding strength of trabecular-like coatings, i.e. glass-ceramic scaffolds mimicking the architecture of cancellous bone, to ceramic substrates. The innovative application of glass-derived scaffolds as trabecular-like coatings is proposed in order to enhance the osteointegration of prosthetic ceramic devices. The scaffolds, prepared by polymeric sponge replication, are joined to alumina substrates by a dense glass-ceramic coating (interlayer) and the so-obtained 3-layer constructs are investigated from micro-structural, morphological and mechanical viewpoints. In particular, the fracture strengths of three different crack propagation modes, i.e. glass-derived scaffold fracture, interface delamination or mixed fracture, are predicted in agreement with those of experimental mechanical tests. The approach proposed in this work could have interesting applications towards an ever more rational design of bone tissue engineering biomaterials and coatings, in view of the optimization of their mechanical properties for making them actually suitable for clinical applications. Copyright © 2012 Elsevier B.V. All rights reserved.
Bone ingrowth in bFGF-coated hydroxyapatite ceramic implants.
Schnettler, Reinhard; Alt, Volker; Dingeldein, Elvira; Pfefferle, Hans-Joachim; Kilian, Olaf; Meyer, Christof; Heiss, Christian; Wenisch, Sabine
2003-11-01
This experimental study was performed to evaluate angiogenesis, bone formation, and bone ingrowth in response to osteoinductive implants of bovine-derived hydroxyapatite (HA) ceramics either uncoated or coated with basic fibroblast growth factor (bFGF) in miniature pigs. A cylindrical bone defect was created in both femur condyles of 24 miniature pigs using a saline coated trephine. Sixteen of the 48 defects were filled with HA cylinders coated with 50 microg rhbFG, uncoated HA cylinders, and with autogenous transplants, respectively. Fluorochrome labelled histological analysis, histomorphometry, and scanning electron microscopy were performed to study angiogenesis, bone formation and bone ingrowth. Complete bone ingrowth into bFGF-coated HA implants and autografts was seen after 34 days compared to 80 days in the uncoated HA group. Active ring-shaped areas of fluorochrome labelled bone deposition with dynamic bone remodelling were found in all cylinders. New vessels could be found in all cylinders. Histomorphometric analysis showed no difference in bone ingrowth over time between autogenous transplants and bFGF-coated HA implants. The current experimental study revealed comparable results of bFGF-coated HA implants and autogenous grafts regarding angiogenesis, bone synthesis and bone ingrowth.
Lavrador, Catarina; Mascarenhas, Ramiro; Coelho, Paulo; Brites, Cláudia; Pereira, Alfredo; Gogolewski, Sylwester
2016-03-01
Bone substitutes have been a critical issue as the natural source can seldom provide enough bone to support full healing. No bone substitute complies with all necessary functions and characteristics that an autograft does. Polyurethane sponges have been used as a surgical alternative to cancellous bone grafts for critical bone defect donor sites. Critical bone defects were created on the tibial tuberosity and iliac crest using an ovine model. In group I (control-untreated), no bone regeneration was observed in any animal. In group II (defects left empty but covered with a microporous polymeric membrane), the new bone bridged the top ends in all animals. In groups III and IV, bone defects were implanted with polyurethane scaffolds modified with biologically active compounds, and bone regeneration was more efficient than in group II. In groups III and IV there were higher values of bone regeneration specific parameters used for evaluation (P < 0.05) although the comparison between these groups was not possible. The results obtained in this study suggest that biodegradable polyurethane substitutes modified with biologically active substances may offer an alternative to bone graft, reducing donor site morbidity associated with autogenous cancellous bone harvesting.
Filardo, Giuseppe; Tampieri, Anna; Cabezas-Rodríguez, Rafael; Di Martino, Alessandro; Fini, Milena; Giavaresi, Gianluca; Lelli, Marco; Martínez-Fernández, Julian; Martini, Lucia; Ramírez-Rico, Joaquin; Salamanna, Francesca; Sandri, Monica; Sprio, Simone; Marcacci, Maurilio
2014-01-01
Bone loss is still a major problem in orthopedics. The purpose of this experimental study is to evaluate the safety and regenerative potential of a new scaffold based on a bio-ceramization process for bone regeneration in long diaphyseal defects in a sheep model. The scaffold was obtained by transformation of wood pieces into porous biomorphic silicon carbide (BioSiC®). The process enabled the maintenance of the original wood microstructure, thus exhibiting hierarchically organized porosity and high mechanical strength. To improve cell adhesion and osseointegration, the external surface of the hollow cylinder was made more bioactive by electrodeposition of a uniform layer of collagen fibers that were mineralized with biomimetic hydroxyapatite, whereas the internal part was filled with a bio-hybrid HA/collagen composite. The final scaffold was then implanted in the metatarsus of 15 crossbred (Merinos-Sarda) adult sheep, divided into 3 groups: scaffold alone, scaffold with platelet-rich plasma (PRP) augmentation, and scaffold with bone marrow stromal cells (BMSCs) added during implantation. Radiological analysis was performed at 4, 8, 12 weeks, and 4 months, when animals were sacrificed for the final radiological, histological, and histomorphometric evaluation. In all tested treatments, these analyses highlighted the presence of newly formed bone at the bone scaffolds' interface. Although a lack of substantial effect of PRP was demonstrated, the scaffold+BMSC augmentation showed the highest value of bone-to-implant contact and new bone growth inside the scaffold. The findings of this study suggest the potential of bio-ceramization processes applied to vegetable hierarchical structures for the production of wood-derived bone scaffolds, and document a suitable augmentation procedure in enhancing bone regeneration, particularly when combined with BMSCs. PMID:24099033
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-06
.... The 12 unassociated funerary objects are: 7 projectile points, 4 bone whistles and 1 spindle whorl... bone awl. Based on the ceramic collection, material culture and architecture, the New Caves Site has... trumpet; 1 shell artifact; 1 bone needle; 1 bone hairpin; 1 bone knife; 5 stone knives; 1 stone hammer...
Shi, Jiajia; Sun, Jie; Zhang, Wen; Liang, Hui; Shi, Qin; Li, Xiaoran; Chen, Yanyan; Zhuang, Yan; Dai, Jianwu
2016-10-07
The reconstruction of bone usually depends on substitute transplantation, which has drawbacks including the limited bone substitutes available, comorbidity, immune rejection, and limited endogenous bone regeneration. Here, we constructed a functionalized bone substitute by combining application of the demineralized bone matrix (DBM) and collagen-binding stromal-cell-derived factor-1α (CBD-SDF-1α). DBM was a poriferous and biodegradable bone substitute, derived from bovine bone and consisting mainly of collagen. CBD-SDF-1α could bind to collagen and be controllably released from the DBM to mobilize stem cells. In a rat femur defect model, CBD-SDF-1α-modified DBM scaffolds could efficiently mobilize CD34 + and c-kit + endogenous stem cells homing to the injured site at 3 days after implantation. According to the data from micro-CT, CBD-SDF-1α-modified DBM scaffolds could help the bone defects rejoin with mineralization accumulated and bone volume expanded. Interestingly, osteoprotegerin (OPG) and osteopontin (OPN) were highly expressed in CBD-SDF-1α group at an early time after implantation, while osteocalcin (OCN) was more expanded. H&E and Masson's trichrome staining showed that the CBD-SDF-1α-modified DBM scaffold group had more osteoblasts and that the bone defect rejoined earlier. The ultimate strength of the regenerated bone was investigated by three-point bending, showing that the CBD-SDF-1α group had superior strength. In conclusion, CBD-SDF-1α-modified DBM scaffolds could promote bone regeneration by recruiting endogenous stem cells.
2013-01-01
Background Osteoinductive bone substitutes are defined by their ability to induce new bone formation even at heterotopic implantation sites. The present study was designed to analyze the potential osteoinductivity of two different bone substitute materials in caprine muscle tissue. Materials and methods One gram each of either a porous beta-tricalcium phosphate (β-TCP) or an hydroxyapatite/silicon dioxide (HA/SiO2)-based nanocrystalline bone substitute material was implanted in several muscle pouches of goats. The biomaterials were explanted at 29, 91 and 181 days after implantation. Conventional histology and special histochemical stains were performed to detect osteoblast precursor cells as well as mineralized and unmineralized bone matrix. Results Both materials underwent cellular degradation in which tartrate-resistant acid phosphatase (TRAP)-positive osteoclast-like cells and TRAP-negative multinucleated giant cells were involved. The ß-TCP was completely resorbed within the observation period, whereas some granules of the HA-groups were still detectable after 180 days. Neither osteoblasts, osteoblast precursor cells nor extracellular bone matrix were found within the implantation bed of any of the analyzed biomaterials at any of the observed time points. Conclusions This study showed that ß-TCP underwent a faster degradation than the HA-based material. The lack of osteoinductivity for both materials might be due to their granular shape, as osteoinductivity in goat muscle has been mainly attributed to cylindrical or disc-shaped bone substitute materials. This hypothesis however requires further investigation to systematically analyze various materials with comparable characteristics in the same experimental setting. PMID:23286366
Ghanaati, Shahram; Udeabor, Samuel E; Barbeck, Mike; Willershausen, Ines; Kuenzel, Oliver; Sader, Robert A; Kirkpatrick, C James
2013-01-04
Osteoinductive bone substitutes are defined by their ability to induce new bone formation even at heterotopic implantation sites. The present study was designed to analyze the potential osteoinductivity of two different bone substitute materials in caprine muscle tissue. One gram each of either a porous beta-tricalcium phosphate (β-TCP) or an hydroxyapatite/silicon dioxide (HA/SiO2)-based nanocrystalline bone substitute material was implanted in several muscle pouches of goats. The biomaterials were explanted at 29, 91 and 181 days after implantation. Conventional histology and special histochemical stains were performed to detect osteoblast precursor cells as well as mineralized and unmineralized bone matrix. Both materials underwent cellular degradation in which tartrate-resistant acid phosphatase (TRAP)-positive osteoclast-like cells and TRAP-negative multinucleated giant cells were involved. The ß-TCP was completely resorbed within the observation period, whereas some granules of the HA-groups were still detectable after 180 days. Neither osteoblasts, osteoblast precursor cells nor extracellular bone matrix were found within the implantation bed of any of the analyzed biomaterials at any of the observed time points. This study showed that ß-TCP underwent a faster degradation than the HA-based material. The lack of osteoinductivity for both materials might be due to their granular shape, as osteoinductivity in goat muscle has been mainly attributed to cylindrical or disc-shaped bone substitute materials. This hypothesis however requires further investigation to systematically analyze various materials with comparable characteristics in the same experimental setting.
Elution of lead from lead zirconate titanate ceramics to acid rain
NASA Astrophysics Data System (ADS)
Tsurumi, Takaaki; Takezawa, Shuhei; Hoshina, Takuya; Takeda, Hiroaki
2017-10-01
The amount of lead that eluted from lead zirconate titanate (PZT) ceramics to artificial acid rain was evaluated. Four kinds of PZT ceramics, namely, pure PZT at MPB composition, CuO-added PZT, PZT with 10 mol % substitution of Ba for Pb, and CuO-added PZT with 10 mol % substitution of Ba for Pb, were used as samples of the elution test. These PZT ceramics of 8 mm2 and 1.1-1.2 mm thickness were suspended in 300 ml of H2SO4 solution of pH 4.0. The concentration of lead eluted from PZT was in the range from 0.2 to 0.8 ppm. It was found that both liquid phase formation by the addition of CuO and the substitution of Ba for Pb were effective to reduce the amount of lead that eluted. By fitting the leaching out curve with a classical equation, a master curve assuming no sampling effect was obtained. The lead concentration evaluated from the amount of lead that eluted from a commercial PZT plate to H2SO4 solution of pH 5.3 was almost the same as the limit in city water. It is concluded that PZT is not harmful to health and the environment and the amount of lead that eluted from PZT can be controlled by modifying PZT composition.
Bose, Susmita; Banerjee, Dishary; Robertson, Samuel; Vahabzadeh, Sahar
2018-05-04
Calcium phosphate (CaP) ceramics show significant promise towards bone graft applications because of the compositional similarity to inorganic materials of bone. With 3D printing, it is possible to create ceramic implants that closely mimic the geometry of human bone and can be custom-designed for unusual injuries or anatomical sites. The objective of the study was to optimize the 3D-printing parameters for the fabrication of scaffolds, with complex geometry, made from synthesized tricalcium phosphate (TCP) powder. This study was also intended to elucidate the mechanical and biological effects of the addition of Fe +3 and Si +4 in TCP implants in a rat distal femur model for 4, 8, and 12 weeks. Doped with Fe +3 and Si +4 TCP scaffolds with 3D interconnected channels were fabricated to provide channels for micronutrients delivery and improved cell-material interactions through bioactive fixation. Addition of Fe +3 into TCP enhanced early-stage new bone formation by increasing type I collagen production. Neovascularization was observed in the Si +4 doped samples after 12 weeks. These findings emphasize that the additive manufacturing of scaffolds with complex geometry from synthesized ceramic powder with modified chemistry is feasible and may serve as a potential candidate to introduce angiogenic and osteogenic properties to CaPs, leading to accelerated bone defect healing.
NASA Astrophysics Data System (ADS)
Gotman, I.; Swain, S. K.; Sharipova, A.; Gutmanas, E. Y.
2016-11-01
Bioresorbable implants are increasingly gaining popularity as an attractive alternative to traditional permanent bone healing devices. The advantage of bioresorbable implantable devices is that they slowly degrade over time and disappear once their "mission" is accomplished. Thus, no foreign material is left behind that can cause adverse effects on the host, such as long term local or systemic immune response and stress-shielding related bone atrophy. Resorbable materials considered for surgical implant applications include degradable polymers, Ca phosphate ceramics (CaP) and corrodible metals. Degradable polymers, such as polycaprolactone and lactic acid are weak, lack osteoconductivity and degrade to acidic products that can cause late inflammation. Resorbable CaP ceramics (e.g., β-TCP) are attractive materials for bone regeneration bear close resemblance to the bone mineral, however they are intrinsically brittle and thus unsuitable for use in load-bearing sites. Moreover, introducing high porosity required to encourage better cellular ingrowth into bone regeneration scaffolds is detrimental to the mechanical strength of the material. In present work we review and discuss our results on development of strong bioresorbable Ca-phosphate-polymer/metal nanonocomposites and highly porous scaffolds from them. By introduction of nanoscale ductile polymer or metal phase into CaP ceramic an attempt was made to mimic structure of natural bone, where nanocrystallites of CaP ceramic are bonded by thin collagen layers. Recent results on development of high strength scaffolds from Fe-Ag nanocomposites are also reported. High energy milling of powders followed by cold sintering—high pressure consolidation at ambient temperature in combination with modified porogen leaching method was employed for processing. The developed nanocomposites and scaffolds exhibited high mechanical strength coupled with measurable ductility, gradual lost weight and strength during immersion in physiological media and high permeability falling in the range of trabecular bone. The proposed low-temperature processing approach allows for incorporation of drugs into the residual nanopores without damaging the biomolecule activity.
Boos, Anja M; Weigand, Annika; Deschler, Gloria; Gerber, Thomas; Arkudas, Andreas; Kneser, Ulrich; Horch, Raymund E; Beier, Justus P
2014-01-01
New therapeutic strategies are required for critical size bone defects, because the gold standard of transplanting autologous bone from an unharmed area of the body often leads to several severe side effects and disadvantages for the patient. For years, tissue engineering approaches have been seeking a stable, axially vascularized transplantable bone replacement suitable for transplantation into the recipient bed with pre-existing insufficient conditions. For this reason, the arteriovenous loop model was developed and various bone substitutes have been vascularized. However, it has not been possible thus far to engineer a primary stable and axially vascularized transplantable bone substitute. For that purpose, a primary stable silica-embedded nanohydroxyapatite (HA) bone substitute in combination with blood, bone marrow, expanded, or directly retransplanted mesenchymal stem cells, recombinant human bone morphogenetic protein 2 (rhBMP-2), and different carrier materials (fibrin, cell culture medium, autologous serum) was tested subcutaneously for 4 or 12 weeks in the sheep model. Autologous serum lead to an early matrix change during degradation of the bone substitute and formation of new bone tissue. The best results were achieved in the group combining mesenchymal stem cells expanded with 60 μg/mL rhBMP-2 in autologous serum. Better ingrowth of fibrovascular tissue could be detected in the autologous serum group compared with the control (fibrin). Osteoclastic activity indicating an active bone remodeling process was observed after 4 weeks, particularly in the group with autologous serum and after 12 weeks in every experimental group. This study clearly demonstrates the positive effects of autologous serum in combination with mesenchymal stem cells and rhBMP-2 on bone formation in a primary stable silica-embedded nano-HA bone grafting material in the sheep model. In further experiments, the results will be transferred to the sheep arteriovenous loop model in order to engineer an axially vascularized primary stable bone replacement in clinically relevant size for free transplantation. PMID:25429218
Ni, Siyu; Chang, Jiang; Chou, Lee; Zhai, Wanyin
2007-01-01
Calcium silicate ceramics have been proposed as new bone repair biomaterials, since they have proved to be bioactive, degradable, and biocompatible. Beta-tricalcium phosphate ceramic is a well-known degradable material for bone repair. This study compared the effects of CaSiO3 (alpha-, and beta-CaSiO3) and beta-Ca3(PO4)2 (beta-TCP) ceramics on the early stages of rat osteoblast-like cell attachment, proliferation, and differentiation. Osteoblast-like cells were cultured directly on CaSiO3 (alpha-, and beta-CaSiO3) and beta-TCP ceramics. Attachment of a greater number of cells was observed on CaSiO3 (alpha-, and beta-CaSiO3) ceramics compared with beta-TCP ceramics after incubation for 6 h. SEM observations showed an intimate contact between cells and the substrates, significant cells adhesion, and that the cells spread and grew on the surfaces of all the materials. In addition, the proliferation rate and alkaline phosphatase (ALP) activity of the cells on the CaSiO3 (alpha-, and beta-CaSiO3) ceramics were improved when compared with the beta-TCP ceramics. In the presence of CaSiO3, elevated levels of calcium and silicon in the culture medium were observed throughout the 7-day culture period. In conclusion, the results of the present study revealed that CaSiO3 ceramics showed greater ability to support cell attachment, proliferation, and differentiation than beta-TCP ceramic. 2006 Wiley Periodicals, Inc.
Muzio, Giuliana; Martinasso, Germana; Baino, Francesco; Frairia, Roberto; Vitale-Brovarone, Chiara; Canuto, Rosa A
2014-11-01
In this work, the role of shock wave-induced increase of bone morphogenetic proteins in modulating the osteogenic properties of osteoblast-like cells seeded on a bioactive scaffold was investigated using gremlin as a bone morphogenetic protein antagonist. Bone-like glass-ceramic scaffolds, based on a silicate experimental bioactive glass developed at the Politecnico di Torino, were produced by the sponge replication method and used as porous substrates for cell culture. Human MG-63 cells, exposed to shock waves and seeded on the scaffolds, were treated with gremlin every two days and analysed after 20 days for the expression of osteoblast differentiation markers. Shock waves have been shown to induce osteogenic activity mediated by increased expression of alkaline phosphatase, osteocalcin, type I collagen, BMP-4 and BMP-7. Cells exposed to shock waves plus gremlin showed increased growth in comparison with cells treated with shock waves alone and, conversely, mRNA contents of alkaline phosphatase and osteocalcin were significantly lower. Therefore, the shock wave-mediated increased expression of bone morphogenetic protein in MG-63 cells seeded on the scaffolds is essential in improving osteogenic activity; blocking bone morphogenetic protein via gremlin completely prevents the increase of alkaline phosphatase and osteocalcin. The results confirmed that the combination of glass-ceramic scaffolds and shock waves exposure could be used to significantly improve osteogenesis opening new perspectives for bone regenerative medicine. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Olesova, V N; Amkhadova, M A; Simakova, T G; Mirgazizov, M Z; Pozharitskaya, M M
2017-03-01
For evaluation of the efficiency of bone substitute, nanostructurized Gamalant-paste-FORTEPlus was placed into a mandibular defect in rats. Bone tissue reparation was evaluated after 30 days by histological methods under a microscope. Use of bone substitute in experimental mandibular defect ensured more complete and rapid restructuring of the bone tissue in comparison with the control (natural healing).
Lorenz, Jonas; Barbeck, Mike; Sader, Robert A; Kirkpatrick, Charles J; Russe, Philippe; Choukroun, Joseph; Ghanaati, Shahram
2016-06-01
Bone substitute materials of different origin and chemical compositions are frequently used in augmentation procedures to enlarge the local bone amount. However, relatively little data exist on the long-term tissue reactions. The presented case reports for the first time histological and histomorphometrical analyses of a nanocrystaline hydroxyapatite-based bone substitute material implanted in the human sinus cavity after an integration period of 3 years. The extracted biopsy was analyzed histologically and histomorphometrically with focus on the tissue reactions, vascularization, new bone formation, and the induction of a foreign body reaction. A comparably high rate of connective tissue (48.25%) surrounding the remaining bone substitute granules (42.13%) was observed. Accordingly, the amount of bone tissue (9.62%) built the smallest fraction within the biopsy. Further, tartrate-resistant acid phosphatase-positive and -negative multinucleated giant cells (4.35 and 3.93 cells/mm(2), respectively) were detected on the material-tissue interfaces. The implantation bed showed a mild vascularization of 10.03 vessels/mm(2) and 0.78%. The present case report shows that after 3 years, a comparable small amount of bone tissue was observable. Thus, the foreign body response to the bone substitute seems to be folded without further degradation or regeneration.
Srivastava, D; Azough, F; Freer, R; Combe, E; Funahashi, R; Kepaptsoglou, D M; Ramasse, Q M; Molinari, M; Yeandel, S R; Baran, J D; Parker, S C
2015-12-21
A combination of experimental and computational techniques has been employed to study doping effects in perovskite CaMnO 3 . High quality Sr-Mo co-substituted CaMnO 3 ceramics were prepared by the conventional mixed oxide route. Crystallographic data from X-ray and electron diffraction showed an orthorhombic to tetragonal symmetry change on increasing the Sr content, suggesting that Sr widens the transition temperature in CaMnO 3 preventing phase transformation-cracking on cooling after sintering, enabling the fabrication of high density ceramics. Atomically resolved imaging and analysis showed a random distribution of Sr in the A-site of the perovskite structure and revealed a boundary structure of 90° rotational twin boundaries across {101} orthorhombic ; the latter are predominant phonon scattering sources to lower the thermal conductivity as suggested by molecular dynamics calculations. The effect of doping on the thermoelectric properties was evaluated. Increasing Sr substitution reduces the Seebeck coefficient but the power factor remains high due to improved densification by Sr substitution. Mo doping generates additional charge carriers due to the presence of Mn 3+ in the Mn 4+ matrix, reducing electrical resistivity. The major impact of Sr on thermoelectric behaviour is the reduction of the thermal conductivity as shown experimentally and by modelling. Strontium containing ceramics showed thermoelectric figure of merit ( ZT ) values higher than 0.1 at temperatures above 850 K. Ca 0.7 Sr 0.3 Mn 0.96 Mo 0.04 O 3 ceramics exhibit enhanced properties with S 1000K = -180 μV K -1 , ρ 1000K = 5 × 10 -5 Ωm, k 1000K = 1.8 W m -1 K -1 and ZT ≈ 0.11 at 1000 K.
NASA Astrophysics Data System (ADS)
Liu, Zhanqing; Yang, Zupei
2017-10-01
New M1/2La1/2Cu3Ti4O12 (M = Li, Na, K) ceramics based on partial substitution of Li+, Na+, and K+ for La3+ in La2/3Cu3Ti4O12 (LCTO) have been prepared by a sol-gel method, and the effects of Li+, Na+, and K+ on the microstructure and electrical properties investigated in detail, revealing different results depending on the substituent. The cell parameter increased with increasing radius of the substituent ion (Li+, Na+, K+). Li1/2La1/2Cu3Ti4O12 (LLCTO) ceramic showed better frequency and temperature stability, but the dielectric constant decreased and the third abnormal dielectric peak disappeared from the dielectric temperature spectrum. Na1/2La1/2Cu3Ti4O12 (NLCTO) ceramic exhibited higher dielectric constant and better frequency and temperature stability, and displayed the second dielectric relaxation in electric modulus plots. The performance of K1/2La1/2Cu3Ti4O12 (KLCTO) ceramic was deteriorated. These different microstructures and electrical properties may be due to the effect of different defect structures generated in the ceramic as well as grain size. This work represents the first analysis and comparison of these remarkable differences in the electrical behavior of ceramics obtained by partial substitution of Li+, Na+, and K+ for La3+ in LCTO.
Roohani-Esfahani, Seyed-Iman; Newman, Peter; Zreiqat, Hala
2016-01-01
A challenge in regenerating large bone defects under load is to create scaffolds with large and interconnected pores while providing a compressive strength comparable to cortical bone (100–150 MPa). Here we design a novel hexagonal architecture for a glass-ceramic scaffold to fabricate an anisotropic, highly porous three dimensional scaffolds with a compressive strength of 110 MPa. Scaffolds with hexagonal design demonstrated a high fatigue resistance (1,000,000 cycles at 1–10 MPa compressive cyclic load), failure reliability and flexural strength (30 MPa) compared with those for conventional architecture. The obtained strength is 150 times greater than values reported for polymeric and composite scaffolds and 5 times greater than reported values for ceramic and glass scaffolds at similar porosity. These scaffolds open avenues for treatment of load bearing bone defects in orthopaedic, dental and maxillofacial applications. PMID:26782020
NASA Astrophysics Data System (ADS)
Roohani-Esfahani, Seyed-Iman; Newman, Peter; Zreiqat, Hala
2016-01-01
A challenge in regenerating large bone defects under load is to create scaffolds with large and interconnected pores while providing a compressive strength comparable to cortical bone (100-150 MPa). Here we design a novel hexagonal architecture for a glass-ceramic scaffold to fabricate an anisotropic, highly porous three dimensional scaffolds with a compressive strength of 110 MPa. Scaffolds with hexagonal design demonstrated a high fatigue resistance (1,000,000 cycles at 1-10 MPa compressive cyclic load), failure reliability and flexural strength (30 MPa) compared with those for conventional architecture. The obtained strength is 150 times greater than values reported for polymeric and composite scaffolds and 5 times greater than reported values for ceramic and glass scaffolds at similar porosity. These scaffolds open avenues for treatment of load bearing bone defects in orthopaedic, dental and maxillofacial applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramesh, M. N. V.; Ramesh, K. V., E-mail: kv-ramesh5@yahoo.co.in
2016-05-23
0.8BaTiO{sub 3} – 0.2(Bi{sub 0.5(1-x)}Nd{sub 0.5x}K{sub 0.5})TiO{sub 3} (0.01 ≤ x ≤ 0.06) lead free ceramic materials have been prepared by solid state reaction method and followed by high energy ball milling process. X-ray diffraction studies confirm the tetragonal structure of the materials at room temperature. Lattice parameters and density are decreasing with increase of Nd substitution. Microstructure studies were done by using Scanning electron microscope and it found that grain size is decreasing with increase of Nd substitution. Temperature and frequency dependent dielectric studies reveal relaxor behaviour of the materials. Dielectric constant, dielectric loss and Curie temperature are decreasingmore » with Nd substitution. Maximum Curie temperature of 195°C was observed at 1 MHz for x=0.01 Nd substituted sample. Degree of diffuseness was calculated from the modified Curie-Weiss law and it is increasing with Nd substitution. AC conductivity is increasing with increase of Nd substitution and observed maximum activation energy of 0.52 eV for x=0.02 Nd substituted sample.« less
NASA Astrophysics Data System (ADS)
Mahajan, Sandeep; Thakur, O P; Bhattacharya, D K; Sreenivas, K
2009-03-01
Bi2O3-doped barium zirconate titanate ceramics, Ba1-xBix(Zr0.05Ti0.95)O3, have been prepared by the conventional solid-state reaction method. The ferroelectric relaxor behaviour and dielectric properties have been investigated in detail. By XRD analysis, it is suggested that up to x = 0.04, Bi3+ substitutes A-site ion, and thereafter with higher Bi3+ content, it enters the B-site sub lattice. Substitution of Bi3+ ions induces ferroelectric relaxor behaviour and the degree of relaxation behaviour increases with bismuth concentration. The remanent polarization and strain behaviour show a slight increase with the substitution level. The degree of hysteresis (strain versus electric field) also reduces from 21.4% to 4.6% with bismuth substitution. Impedance measurements were made on the prepared sample over a wide range of temperatures (300-723 K) and frequencies (40 Hz-1 MHz), which show the presence of both bulk and grain boundary effects in the material. The bulk and grain boundary conductivities determined from impedance study indicate the Arrhenius-type thermally activated process. Impedance spectroscopy is shown to be an efficient method capable of detecting the contributions of the resistances of grains and grain boundaries to the complex impedance of a ceramic system, accurately estimating its electrical conductivity as well as its corresponding activation energies and drawing conclusions on its structural properties.
Zhang, Xiaojun; Chang, Wei; Lee, Paul; Wang, Yuhao; Yang, Min; Li, Jun; Kumbar, Sangamesh G.; Yu, Xiaojun
2014-01-01
For successful bone tissue engineering, a scaffold needs to be osteoconductive, porous, and biodegradable, thus able to support attachment and proliferation of bone cells and guide bone formation. Recently, hydroxyapatites (HA), a major inorganic component of natural bone, and biodegrade polymers have drawn much attention as bone scaffolds. The present study was designed to investigate whether the bone regenerative properties of nano-HA/polycaprolactone (PCL) spiral scaffolds are augmented in an HA dose dependent manner, thereby establishing a suitable composition as a bone formation material. Nano-HA/PCL spiral scaffolds were prepared with different weight ratios of HA and PCL, while porosity was introduced by a modified salt leaching technique. Human fetal osteoblasts (hFOBs) were cultured on the nano-HA/PCL spiral scaffolds up to 14 days. Cellular responses in terms of cell adhesion, viability, proliferation, differentiation, and the expression of bone-related genes were investigated. These scaffolds supported hFOBs adhesion, viability and proliferation. Cell proliferation trend was quite similar on polymer-ceramic and neat polymer spiral scaffolds on days 1, 7, and 14. However, the significantly increased amount of alkaline phosphatase (ALP) activity and mineralized matrix synthesis was evident on the nano-HA/PCL spiral scaffolds. The HA composition in the scaffolds showed a significant effect on ALP and mineralization. Bone phenotypic markers such as bone sialoprotein (BSP), osteonectin (ON), osteocalcin (OC), and type I collagen (Col-1) were semi-quantitatively estimated by reverse transcriptase polymerase chain reaction analysis. All of these results suggested the osteoconductive characteristics of HA/PCL nanocomposite and cell maturation were HA dose dependent. For instance, HA∶PCL = 1∶4 group showed significantly higher ALP mineralization and elevated levels of BSP, ON, OC and Col-I expression as compared other lower or higher ceramic ratios. Amongst the different nano-HA/PCL spiral scaffolds, the 1∶4 weight ratio of HA and PCL is shown to be the most optimal composition for bone tissue regeneration. PMID:24475056
Ferreira, André; Aslanian, Thierry; Dalin, Thibaud; Picaud, Jean
2017-05-01
Using a ceramic-ceramic bearings, cementless total hip arthroplasty (THA) has provided good clinical results. To ensure longevity a good quality fixation of the implants is mandatory. Different surface treatments had been used, with inconsistent results. We hypothesized that a "bilayer coating" applied to both THA components using validated technology will provide a long-lasting and reliable bone fixation. We studied the survival and bone integration of a continuous, single-surgeon, retrospective series of 126 THA cases (116 patients) with an average follow-up of 12.2 years (minimum 10 years). The THA consisted of cementless implants with a bilayer coating of titanium and hydroxyapatite and used a ceramic-ceramic bearing. With surgical revision for any cause (except infection) as the end point, THA survival was 95.1 % at 13 years. Stem (98.8 %) and cup (98.6 %) survival was similar at 13 years. Bone integration was confirmed in 100 % of implants (Engh-Massin score of 17.42 and ARA score of 5.94). There were no instances of loosening. Revisions were performed because of instability (1.6 %), prosthetic impingement or material-related issues. A bilayer titanium and hydroxyapatite coating provides strong, fast, reliable osseo integration, without deterioration at the interface or release of damaging particles. The good clinical outcomes expected of ceramic bearings were achieved, as were equally reliable stem and cup fixation.
He, Fupo; Qian, Guowen; Ren, Weiwei; Li, Jiyan; Fan, Peirong; Shi, Haishan; Shi, Xuetao; Deng, Xin; Wu, Shanghua; Ye, Jiandong
2017-04-24
Polymer sphere-based scaffolds, which are prepared by bonding the adjacent spheres via sintering the randomly packed spheres, feature uniform pore structure, full three-dimensional (3D) interconnection, and considerable mechanical strength. However, bioceramic sphere-based scaffolds fabricated by this method have never been reported. Due to high melting temperature of bioceramic, only limited diffusion rate can be achieved when sintering the bioceramic spheres, which is far from enough to form robust bonding between spheres. In the present study, for the first time we fabricated 3D interconnected β-tricalcium phosphate ceramic sphere-based (PG/TCP) scaffolds by introducing phosphate-based glass (PG) as sintering additive and placing uniaxial pressure during the sintering process. The sintering mechanism of PG/TCP scaffolds was unveiled. The PG/TCP scaffolds had hierarchical pore structure, which was composed by interconnected macropores (>200 μm) among spheres, pores (20–120 μm) in the interior of spheres, and micropores (1–3 μm) among the grains. During the sintering process, partial PG reacted with β-TCP, forming β-Ca2P2O7; metal ions from PG substituted to Ca2+ sites of β-TCP. The mechanical properties (compressive strength 2.8–10.6 MPa; compressive modulus 190–620 MPa) and porosity (30%–50%) of scaffolds could be tailored by manipulating the sintering temperatures. The introduction of PG accelerated in vitro degradation of scaffolds, and the PG/TCP scaffolds showed good cytocompatibility. This work may offer a new strategy to prepare bioceramic scaffolds with satisfactory physicochemical properties for application in bone regeneration.
Danoux, Charlène; Pereira, Daniel; Döbelin, Nicola; Stähli, Christoph; Barralet, Jake; van Blitterswijk, Clemens; Habibovic, Pamela
2016-07-01
Calcium phosphate (CaP) ceramics are extensively used for bone regeneration; however, their clinical performance is still considered inferior to that of patient's own bone. To improve the performance of CaP bone graft substitutes, it is important to understand the effects of their individual properties on a biological response. The aim of this study is to investigate the effects of the crystal phase and particle morphology on the behavior of human mesenchymal stromal cells (hMSCs). To study the effect of the crystal phase, brushite, monetite, and octacalcium phosphate (OCP) are produced by controlling the precipitation conditions. Brushite and monetite are produced as plate-shaped and as needle-shaped particles, to further investigate the effect of particle morphology. Proliferation of hMSCs is inhibited on OCP as compared to brushite and monetite in either morphology. Brushite needles consistently show the lowest expression of most osteogenic markers, whereas the expression on OCP is in general high. There is a trend toward a higher expression of the osteogenic markers on plate-shaped than on needle-shaped particles for both brushite and monetite. Within the limits of CaP precipitation, these data indicate the effect of both crystal phase and particle morphology of CaPs on the behavior of hMSCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, L; Chen, Z; Zhang, M
2001-12-01
To assess the effects of a piezoelectric biological ceramic on osteogenesis. Hydroxyapatite (HA) and piezoelectric biological ceramics (hydroxyapatite and barium titanate, HABT) were implanted in the jawbones of 5 dogs, and for sample collection, the dogs were killed separately at 1 week, 2 weeks, 1 month, 2 months and 3 months after implantation. The samples from a rhesus monkey and a blank control were collected 34 months after implantation. The implanted samples and surrounding tissues were subjected to histological observations using light microscopy (LM) and scanning electronmicroscopy (SEM) were made. Compared with the control groups, the HABTs promoted osteogenesis significantly. One week after implantation, new bone tissues were found on the surface vertical to the longitudinal direction of HABT; more bone tissues were found after 2 weeks. HABTs induced the bone tissues to arrange orderly. After two years and ten months of implantation, the piezoelectric bioceramic and bone became monolithic, and the structure of bone was normal. HABTs could promote osteogenesis.
Boaretto, Elisabetta; Wu, Xiaohong; Yuan, Jiarong; Bar-Yosef, Ofer; Chu, Vikki; Pan, Yan; Liu, Kexin; Cohen, David; Jiao, Tianlong; Li, Shuicheng; Gu, Haibin; Goldberg, Paul; Weiner, Steve
2009-01-01
Yuchanyan Cave in Daoxian County, Hunan Province (People's Republic of China), yielded fragmentary remains of 2 or more ceramic vessels, in addition to large amounts of ash, a rich animal bone assemblage, cobble and flake artifacts, bone tools, and shell tools. The artifacts indicate that the cave was a Late Paleolithic foragers' camp. Here we report on the radiocarbon ages of the sediments based on analyses of charcoal and bone collagen. The best-preserved charcoal and bone samples were identified by prescreening in the field and laboratory. The dates range from around 21,000 to 13,800 cal BP. We show that the age of the ancient pottery ranges between 18,300 and 15,430 cal BP. Charcoal and bone collagen samples located above and below one of the fragments produced dates of around 18,000. These ceramic potsherds therefore provide some of the earliest evidence for pottery making in China. PMID:19487667
Kasparek, Maximilian F; Töpker, Michael; Lazar, Mathias; Weber, Michael; Kasparek, Michael; Mang, Thomas; Apfaltrer, Paul; Kubista, Bernd; Windhager, Reinhard; Ringl, Helmut
2018-06-07
To evaluate the influence of different scan parameters for single-energy CT and dual-energy CT, as well as the impact of different material used in a TKA prosthesis on image quality and the extent of metal artifacts. Eight pairs of TKA prostheses from different vendors were examined in a phantom set-up. Each pair consisted of a conventional CoCr prosthesis and the corresponding anti-allergic prosthesis (full titanium, ceramic, or ceramic-coated) from the same vendor. Nine different (seven dual-energy CT and two single-energy CT) scan protocols with different characteristics were used to determine the most suitable CT protocol for TKA imaging. Quantitative image analysis included assessment of blooming artifacts (metal implants appear thicker on CT than they are, given as virtual growth in mm in this paper) and streak artifacts (thick dark lines around metal). Qualitative image analysis was used to investigate the bone-prosthesis interface. The full titanium prosthesis and full ceramic knee showed significantly fewer blooming artifacts compared to the standard CoCr prosthesis (mean virtual growth 0.6-2.2 mm compared to 2.9-4.6 mm, p < 0.001). Dual-energy CT protocols showed less blooming (range 3.3-3.8 mm) compared to single-energy protocols (4.6-5.5 mm). The full titanium and full ceramic prostheses showed significantly fewer streak artifacts (mean standard deviation 77-86 Hounsfield unit (HU)) compared to the standard CoCr prosthesis (277-334 HU, p < 0.001). All dual-energy CT protocols had fewer metal streak artifacts (215-296 HU compared to single-energy CT protocols (392-497 HU)). Full titanium and ceramic prostheses were ranked superior with regard to the image quality at the bone/prosthesis interface compared to a standard CoCr prosthesis, and all dual-energy CT protocols were ranked better than single-energy protocols. Dual-energy CT and ceramic or titanium prostheses reduce CT artifacts and provide superior image quality of total knee arthroplasty at the bone/prosthesis interface. These findings support the use of dual-energy CT as a solid imaging base for clinical decision-making and the use of full-titanium or ceramic prostheses to allow for better CT visualization of the bone-prosthesis interface.
Bone tissue engineering: state of the art and future trends.
Salgado, António J; Coutinho, Olga P; Reis, Rui L
2004-08-09
Although several major progresses have been introduced in the field of bone regenerative medicine during the years, current therapies, such as bone grafts, still have many limitations. Moreover, and in spite of the fact that material science technology has resulted in clear improvements in the field of bone substitution medicine, no adequate bone substitute has been developed and hence large bone defects/injuries still represent a major challenge for orthopaedic and reconstructive surgeons. It is in this context that TE has been emerging as a valid approach to the current therapies for bone regeneration/substitution. In contrast to classic biomaterial approach, TE is based on the understanding of tissue formation and regeneration, and aims to induce new functional tissues, rather than just to implant new spare parts. The present review pretends to give an exhaustive overview on all components needed for making bone tissue engineering a successful therapy. It begins by giving the reader a brief background on bone biology, followed by an exhaustive description of all the relevant components on bone TE, going from materials to scaffolds and from cells to tissue engineering strategies, that will lead to "engineered" bone. Scaffolds processed by using a methodology based on extrusion with blowing agents.
Application of Recycled Ceramic Aggregates for the Production of Mineral-Asphalt Mixtures.
Andrzejuk, Wojciech; Barnat-Hunek, Danuta; Siddique, Rafat; Zegardło, Bartosz; Łagód, Grzegorz
2018-04-24
This paper describes a method of designing and producing innovative mineral⁻asphalt mixtures, which utilize waste aggregate from the recycling of sanitary ceramics. The work presents the basic properties of the ceramic material, the investigation concerning the microstructure of the aggregate obtained from the grinding of waste, and a comparison with the images obtained for the aggregates usually employed in mineral⁻asphalt mixtures. The mixtures were designed for the application in the wearing course. Four series of mixtures were prepared. In the first and second, the ceramic aggregate constituted a partial substitute for dolomite, whereas in the third, we substituted granodiorite, and the fourth series contained only dolomite. The mixtures were examined for the content of soluble binder, the bulk density of samples, the presence of voids, the space filled with binder, and the susceptibility to water and frost corrosion. The obtained results were compared with the standard requirements. The microstructure as well as the contact zone in the considered mineral⁻asphalt mixtures are presented based on research conducted by means of a scanning electron microscope (SEM).
Application of Recycled Ceramic Aggregates for the Production of Mineral-Asphalt Mixtures
Andrzejuk, Wojciech; Barnat-Hunek, Danuta; Siddique, Rafat; Zegardło, Bartosz; Łagód, Grzegorz
2018-01-01
This paper describes a method of designing and producing innovative mineral–asphalt mixtures, which utilize waste aggregate from the recycling of sanitary ceramics. The work presents the basic properties of the ceramic material, the investigation concerning the microstructure of the aggregate obtained from the grinding of waste, and a comparison with the images obtained for the aggregates usually employed in mineral–asphalt mixtures. The mixtures were designed for the application in the wearing course. Four series of mixtures were prepared. In the first and second, the ceramic aggregate constituted a partial substitute for dolomite, whereas in the third, we substituted granodiorite, and the fourth series contained only dolomite. The mixtures were examined for the content of soluble binder, the bulk density of samples, the presence of voids, the space filled with binder, and the susceptibility to water and frost corrosion. The obtained results were compared with the standard requirements. The microstructure as well as the contact zone in the considered mineral–asphalt mixtures are presented based on research conducted by means of a scanning electron microscope (SEM). PMID:29695115
Bioceramics and Scaffolds: A Winning Combination for Tissue Engineering
Baino, Francesco; Novajra, Giorgia; Vitale-Brovarone, Chiara
2015-01-01
In the last few decades, we have assisted to a general increase of elder population worldwide associated with age-related pathologies. Therefore, there is the need for new biomaterials that can substitute damaged tissues, stimulate the body’s own regenerative mechanisms, and promote tissue healing. Porous templates referred to as “scaffolds” are thought to be required for three-dimensional tissue growth. Bioceramics, a special set of fully, partially, or non-crystalline ceramics (e.g., calcium phosphates, bioactive glasses, and glass–ceramics) that are designed for the repair and reconstruction of diseased parts of the body, have high potential as scaffold materials. Traditionally, bioceramics have been used to fill and restore bone and dental defects (repair of hard tissues). More recently, this category of biomaterials has also revealed promising applications in the field of soft-tissue engineering. Starting with an overview of the fundamental requirements for tissue engineering scaffolds, this article provides a detailed picture on recent developments of porous bioceramics and composites, including a summary of common fabrication technologies and a critical analysis of structure–property and structure–function relationships. Areas of future research are highlighted at the end of this review, with special attention to the development of multifunctional scaffolds exploiting therapeutic ion/drug release and emerging applications beyond hard tissue repair. PMID:26734605
The thermal stability of hydroxyapatite in biphasic calcium phosphate ceramics.
Nilen, R W N; Richter, P W
2008-04-01
Biphasic calcium phosphate ceramics (BCP) comprising a mix of non-resorbable hydroxyapatite (HA) and resorbable beta-tricalcium phosphate (beta-TCP) are particularly suitable materials for synthetic bone substitute applications. In this study, HA synthesised by solid state reaction was mechanically mixed with beta-TCP, then sintered to form a suite of BCP materials with a wide range of HA/beta-TCP phase content ratios. The influence of sintering temperature and composition on the HA thermal stability was quantified by X-ray diffraction (XRD). The pre-sinter beta-TCP content was found to strongly affect the post-sinter HA/beta-TCP ratio by promoting the thermal decomposition of HA to beta-TCP, even at sintering temperatures as low as 850 degrees C. For BCP material with pre-sinter HA/beta-TCP = 40/60 wt%, approximately 80% of the HA decomposed to beta-TCP during sintering at 1000 degrees C. Furthermore, the HA content appeared to influence the reverse transformation of alpha-TCP to beta-TCP expected upon gradual cooling from sintering temperatures greater than 1125 degrees C. Because the HA/beta-TCP ratio dominantly determines the rate and extent of BCP resorption in vivo, the possible thermal decomposition of HA during BCP synthesis must be considered, particularly if high temperature treatments are involved.
Rancitelli, Davide; Grossi, Giovanni Battista; Herford, Alan Scott
2016-01-01
The reconstruction of the atrophic alveolar ridges for implant placement is today a common procedure in dentistry daily practice. The surgical reconstruction provides for the optimization of the supporting bone for the implants and a restoration of the amount of keratinized gingiva for esthetic and functional reasons. In the past, tissue regeneration has been performed with autogenous bone and free gingival or connective tissue grafts. Nowadays, bone substitutes and specific collagen matrix allow for a complete restoration of the atrophic ridge without invasive harvesting procedures. A maxillary reconstruction of an atrophic ridge by means of tissue substitutes and its histological features are then presented. PMID:27022489
Maiorana, Carlo; Beretta, Mario; Rancitelli, Davide; Grossi, Giovanni Battista; Cicciù, Marco; Herford, Alan Scott
2016-01-01
The reconstruction of the atrophic alveolar ridges for implant placement is today a common procedure in dentistry daily practice. The surgical reconstruction provides for the optimization of the supporting bone for the implants and a restoration of the amount of keratinized gingiva for esthetic and functional reasons. In the past, tissue regeneration has been performed with autogenous bone and free gingival or connective tissue grafts. Nowadays, bone substitutes and specific collagen matrix allow for a complete restoration of the atrophic ridge without invasive harvesting procedures. A maxillary reconstruction of an atrophic ridge by means of tissue substitutes and its histological features are then presented.
Philippart, Anahí; Boccaccini, Aldo R; Fleck, Claudia; Schubert, Dirk W; Roether, Judith A
2015-01-01
Inorganic scaffolds with high interconnected porosity based on bioactive glasses and ceramics are prime candidates for applications in bone tissue engineering. These materials however exhibit relatively low fracture strength and high brittleness. A simple and effective approach to improve the toughness is to combine the basic scaffold structure with polymer coatings or through the formation of interpenetrating polymer-bioactive ceramic microstructures. The polymeric phase can additionally serve as a carrier for growth factors and therapeutic drugs, thus adding biological functionalities. The present paper reviews the state-of-the art in the field of polymer coated and infiltrated bioactive inorganic scaffolds. Based on the notable combination of bioactivity, improved mechanical properties and drug or growth factor delivery capability, this scaffold type is a candidate for bone and osteochondral regeneration strategies. Remaining challenges for the improvement of the materials are discussed and opportunities to broaden the application potential of this scaffold type are also highlighted.
NASA Astrophysics Data System (ADS)
Jindal, Shilpi; Devi, Sheela; Batoo, Khalid Mujasam; Kumar, Gagan; Vasishth, Ajay
2018-05-01
The copper substituted tungsten bronze ceramics with generic formula Ba5CaCuXTi2-xNb8O30(x = 0.0, 0.02, 0.04, 0.06 and 0.08) were successfully synthesized for the first time by solid state reaction method. X-ray diffraction (XRD), Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) were utilized to examine the different structural parameters and elemental compositions. XRD study depicted the single phase tetragonal structure having space group P4bm. The crystallite size was observed to be in the range 14.4-30.23 nm. The coexistent of ferroelectricity and magnetism was established by P-E and M-H measurements. The P-E loop study indicated an increase in the coercive field (11.805-23.736 kVcm-1) while the M-H study depicted adecrease in the magnetization (7.65 × 10-4-5.32 × 10-4 emu/g) with the incorporation of Cu2+ ions. Raman spectrum depicted that there is shift in the position of Raman modes with the substitution of copper which revealed one-mode behavior in the synthesized ceramics.
Fee, L
2017-04-21
Socket preservation maintains bone volume post-extraction in anticipation of an implant placement or fixed partial denture pontic site. This procedure helps compensate for the resorption of the facial bone wall. Socket preservation should be considered when implant placement needs to be delayed for patient or site-related reasons. The ideal healing time before implant placement is six months. Socket preservation can reduce the need for later bone augmentation. By reducing bone resorption and accelerating bone formation it increases implant success and survival. Biomaterials for socket grafting including autograft, allograft, xenograft and alloplast. A bone substitute with a low substitution rate is recommended.
Weigand, Annika; Beier, Justus P; Hess, Andreas; Gerber, Thomas; Arkudas, Andreas; Horch, Raymund E; Boos, Anja M
2015-05-01
During the last decades, a range of excellent and promising strategies in Bone Tissue Engineering have been developed. However, the remaining major problem is the lack of vascularization. In this study, extrinsic and intrinsic vascularization strategies were combined for acceleration of vascularization. For optimal biomechanical stability of the defect site and simplifying future transition into clinical application, a primary stable and approved nanostructured bone substitute in clinically relevant size was used. An arteriovenous (AV) loop was microsurgically created in sheep and implanted, together with the bone substitute, in either perforated titanium chambers (intrinsic/extrinsic) for different time intervals of up to 18 weeks or isolated Teflon(®) chambers (intrinsic) for 18 weeks. Over time, magnetic resonance imaging and micro-computed tomography (CT) analyses illustrate the dense vascularization arising from the AV loop. The bone substitute was completely interspersed with newly formed tissue after 12 weeks of intrinsic/extrinsic vascularization and after 18 weeks of intrinsic/extrinsic and intrinsic vascularization. Successful matrix change from an inorganic to an organic scaffold could be demonstrated in vascularized areas with scanning electron microscopy and energy dispersive X-ray spectroscopy. Using the intrinsic vascularization method only, the degradation of the scaffold and osteoclastic activity was significantly lower after 18 weeks, compared with 12 and 18 weeks in the combined intrinsic-extrinsic model. Immunohistochemical staining revealed an increase in bone tissue formation over time, without a difference between intrinsic/extrinsic and intrinsic vascularization after 18 weeks. This study presents the combination of extrinsic and intrinsic vascularization strategies for the generation of an axially vascularized bone substitute in clinically relevant size using a large animal model. The additional extrinsic vascularization promotes tissue ingrowth and remodeling processes of the bone substitute. Extrinsic vessels contribute to faster vascularization and finally anastomose with intrinsic vasculature, allowing microvascular transplantation of the bone substitute after a shorter prevascularization time than using the intrinsic method only. It can be reasonably assumed that the usage of perforated chambers can significantly reduce the time until transplantation of bone constructs. Finally, this study paves the way for further preclinical testing for proof of the concept as a basis for early clinical applicability.
Marx, B; Marx, R; Reisgen, U; Wirtz, D
2015-04-01
CoCrMo alloys are contraindicated for allergy sufferers. For these patients, uncemented and cemented prostheses made of titanium alloy are indicated. Knee prostheses machined from that alloy, however, may have poor tribological behaviour, especially in relation to UHMWPE inlays. Therefore, for knee replacement cemented high-strength oxide ceramic prostheses are suitable for allergy sufferers and in cases of particle-induced aseptic loosening. For adhesion of bone cement, the ceramic surface, however, only exposes inefficient mechanical retention spots as compared with a textured metal surface. Undercuts generated by corundum blasting which in the short-term are highly efficient on a CoCrMo surface are not possible on a ceramic surface due to the brittleness of ceramics. Textures due to blasting may initiate cracks which will weaken the strength of a ceramic prosthesis. Due to the lack of textures mechanical retention is poor or even not existent. Micromotions are promoted and early aseptic loosening is predictable. Instead silicoating of the ceramic surface will allow specific adhesion and result in better hydrolytic stability of bonding thereby preventing early aseptic loosening. Silicoating, however, presupposes a clean and chemically active surface which can be achieved by atmospheric plasma or thermal surface treatment. In order to evaluate the effectiveness of silicoating the bond strengths of atmospheric plasma versus thermal surface treated and silicate layered ZPTA surfaces were compared with "as-fired" surfaces by utilising TiAlV probes (diameter 6 mm) for traction-adhesive strength tests. After preparing samples for traction-adhesive strength tests (sequence: ceramic substrate, silicate and silane, protective lacquer [PolyMA], bone cement, TiAlV probe) they were aged for up to 150 days at 37 °C in Ringer's solution. The bond strengths observed for all ageing intervals were well above 20 MPa and much higher and more hydrolytically stable for silicate layered compared with "as-fired" ZPTA samples. Silicoating may be effective for achieving high initial bond strength of bone cement on surfaces of oxide ceramics and also suitable to stabilise bond strength under hydrolytic conditions as present in the human body in the long-term. Activation by atmospheric plasma or thermal surface treatment seems to be effective for activation prior to silicoating. Due the proposed silicate layer migration, micromotions and debonding should be widely reduced or even eliminated. Georg Thieme Verlag KG Stuttgart · New York.
The material and biological characteristics of osteoinductive calcium phosphate ceramics
Tang, Zhurong; Li, Xiangfeng; Tan, Yanfei
2018-01-01
Abstract The discovery of osteoinductivity of calcium phosphate (Ca-P) ceramics has set an enduring paradigm of conferring biological regenerative activity to materials with carefully designed structural characteristics. The unique phase composition and porous structural features of osteoinductive Ca-P ceramics allow it to interact with signaling molecules and extracellular matrices in the host system, creating a local environment conducive to new bone formation. Mounting evidence now indicate that the osteoinductive activity of Ca-P ceramics is linked to their physicochemical and three-dimensional structural properties. Inspired by this conceptual breakthrough, many laboratories have shown that other materials can be also enticed to join the rank of tissue-inducing biomaterials, and besides the bones, other tissues such as cartilage, nerves and blood vessels were also regenerated with the assistance of biomaterials. Here, we give a brief historical recount about the discovery of the osteoinductivity of Ca-P ceramics, summarize the underlying material factors and biological characteristics, and discuss the mechanism of osteoinduction concerning protein adsorption, and the interaction with different types of cells, and the involvement of the vascular and immune systems. PMID:29423267
Kulakov, A A; Volozhin, A I; Tkachenko, V M; Doktorov, A A; Salim, Ibrakhim Samir
2007-01-01
Influence of HAP-gel (2 g of 2% solution of hyaluronic acid mixed with 0,5 g of hydroxyapatite and 0,1 ml of colloidal silver) upon osseointegration in case of delayed introduction of titanium implantates in dog jaw. By scanning electron microscopy it was shown that solely use either of HAP-gel or of ceramic spraying increased direct contact area between bone and implantates in the 6 and 9 months time period. Combination of spray-coated ceramic with HAP-gel was effective in 3 months after implantation, when solely the HAP-gel or the ceramic spraying were little effective. In the following terms of experiment (6 and 9 months) significant differences between groups 3 and 4 (implantate with ceramic spraying but without HAP-gel in the alveolus and implantate with ceramic spraying and with HAP-gel in the alveolus) were not found. The area of implantate integration with jaw bone (cortical part of it was excluded) was equal to 80% and was maximal for the given conditions of the experiment.
Porous ceramic scaffolds with complex architectures
NASA Astrophysics Data System (ADS)
Munch, E.; Franco, J.; Deville, S.; Hunger, P.; Saiz, E.; Tomsia, A. P.
2008-06-01
This work compares two novel techniques for the fabrication of ceramic scaffolds for bone tissue engineering with complex porosity: robocasting and freeze casting. Both techniques are based on the preparation of concentrated ceramic suspensions with suitable properties for the process. In robocasting, the computer-guided deposition of the suspensions is used to build porous materials with designed three dimensional geometries and microstructures. Freeze casting uses ice crystals as a template to form porous lamellar ceramic materials. Preliminary results on the compressive strengths of the materials are also reported.
Verné, Enrica; Bruno, Matteo; Miola, Marta; Maina, Giovanni; Bianco, Carlotta; Cochis, Andrea; Rimondini, Lia
2015-08-01
In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO2-Na2O-CaO-P2O5-FeO-Fe2O3 and contains magnetite (Fe3O4) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite - HAp - layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. Copyright © 2015 Elsevier B.V. All rights reserved.
Kopp, Sigmar; Behrend, Detlef; Kundt, Günther; Ottl, Peter; Frerich, Bernhard; Warkentin, Mareike
2013-06-01
To examine the influence of bone-substitute application during implantation on the success of immediately placed and loaded dental implants. A total of 147 consecutive patients (age, 16.5-80.4 years) were provided with 696 immediately loaded implants. The mean follow-up time was 34.1 months. Of these implants, 50.4% (n=351) were immediately placed into extraction sockets. A total of 119 implants were added by simultaneous bone-substitute application (NanoBone, Artoss GmbH, Rostock Germany), whereas the other implants were placed in healed bone. Univariate and multivariate analysis was performed using IBM SPSS V.20. The overall implant success rate was 96.1%. Implants with simultaneous bone replacement had a hazard ratio of 0.877 (p=0.837); 95% CI, 0.253-3.04). Factors found to be statistically significant modifiers of success on multivariate analysis (p<0.05) included type of superstructure (p<0.001), implant-abutment connection (p<0.001), membrane use (p=0.010), and jaw (p=0.026). None of the other factors investigated were significant modifiers. The present study demonstrates high success rates for immediately loaded implants and their superstructures independent of the simultaneous application of bone substitute. The declared aim of socket preservation, the prevention avoiding bone loss, is achieved in the immediate implant placement scenario under immediate-loading conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khokhar, Anita, E-mail: mails4anita@gmail.com; Sreenivas, K.; Goyal, Parveen K.
2015-06-24
The structure and ferroelectric properties of Lanthanum substituted barium bismuth titanate BaBi{sub 4-x}La{sub x}Ti{sub 4}O{sub 15} (0 ≤ x ≤ 0.5) ceramics prepared by solid-state reaction method have been investigated. X-ray diffraction (XRD) confirms the formation of a single phase material. The distribution of lanthanum into the perovskite layers and (Bi{sub 2}O{sub 2}){sup 2+} layers of BaBi{sub 4}Ti{sub 4}O{sub 15} ceramics have been revealed through Raman spectroscopy. At lower value of x, it is seen that La{sup 3+} ions prefer to substitute A-site Bi{sup 3+} ions in the perovskite layers while for higher x values, La{sup 3+} ions get incorporatedmore » into the (Bi{sub 2}O{sub 2}){sup 2+} layers. A critical La content of x ∼ 0.2 in BaBi{sub 4-x}La{sub x}Ti{sub 4}O{sub 15} is seen to exhibit a large remnant polarization (P{sub r}) with low coercive field (E{sub c}). The improvement in the ferroelectric properties of La substituted BaBi{sub 4}Ti{sub 4}O{sub 15} ceramics has been explained in terms of changing oxygen vacancy concentration and structural relaxation. Tunable ferroelectric materials can be obtained by manipulating the doping amount of lanthanum ion.« less
Ghanaati, Shahram; Orth, Carina; Barbeck, Mike; Willershausen, Ines; Thimm, Benjamin W; Booms, Patrick; Stübinger, Stefan; Landes, Constantin; Sader, Robert Anton; Kirkpatrick, Charles James
2010-06-01
The clinical suitability of a bone substitute material is determined by the ability to induce a tissue reaction specific to its composition. The aim of this in vivo study was to analyze the tissue reaction to a silica matrix-embedded, nanocrystalline hydroxyapatite bone substitute.The subcutaneous implantation model in Wistar rats was chosen to assess the effect of silica degradation on the vascularization of the biomaterial and its biodegradation within a time period of 6 months. Already at day 10 after implantation, histomorphometrical analysis showed that the vascularization of the implantation bed reached its peak value compared to all other time points. Both vessel density and vascularization significantly decreased until day 90 after implantation. In this time period, the bone substitute underwent a significant degradation initiated by TRAP-positive and TRAP-negative multinucleated giant cells together with macrophages and lymphocytes. Although no specific tissue reaction could be related to the described silica degradation, the biomaterial was close to being fully degraded without a severe inflammatory response. These characteristics are advantageous for bone regeneration and remodeling processes.
Patel, K; Mardas, N; Donos, N
2013-06-01
The aim of this clinical study was to evaluate the interproximal radiographic bone levels and the survival/success rate of dental implants placed in alveolar ridges previously preserved with a synthetic bone substitute or a bovine xenograft. Alveolar ridge preservation was performed in 27 patients who were randomly assigned in two groups. In the test group (n = 14), the extraction socket was treated with a synthetic bone graft Straumann Bone Ceramic; SBC and a collagen barrier, whereas in the control group (n = 13) a deproteinized bovine bone mineral (DBBM) and the same collagen barrier were used. After 8 months of healing, titanium dental implants with a hydrophilic surface were placed in the preserved ridges. During surgery, 9/13 implants in the SBC group and 8/12 implants in the DBBM group presented with either dehiscence or fenestration defects and required additional bone augmentation. The implants were loaded at 4 months following placement and were followed up for 1 year post-loading. Interproximal radiographic bone levels were evaluated in standardized periapical radiographs at loading and 1 year post-loading. Probing pocket depth, gingival recession and bleeding upon probing were recorded at implants and neighbouring teeth. The success rate of the implants was evaluated according to criteria set by Albrektsson et al. (1986). The survival rate of the implants in both groups was 100% at 1-year post-loading. No statistically significant differences in any of the clinical and radiographic measurements were detected between the two groups (P < 0.05). The success rate of the implants was 84.6% (11/13) in the SBC group and 83.3% (10/12) in the DBBM group. Equivalent success and survival rates (as well as similar radiographic changes) of dental implants placed in alveolar ridges previously preserved with SBC or DBBM should be anticipated. © 2012 John Wiley & Sons A/S.
Bone formation within alumina tubes: effect of calcium, manganese, and chromium dopants.
Pabbruwe, Moreica B; Standard, Owen C; Sorrell, Charles C; Howlett, C Rolfe
2004-09-01
Alumina tubes (1.3mm outer diameter, 0.6mm inner diameter, 15 mm length) doped with Ca, Mn, or Cr at nominal concentrations of 0.5 and 5.0 mol% were implanted into femoral medullary canals of female rats for 16 weeks. Tissue formation within tubes was determined by histology and histomorphometry. Addition of Ca to alumina promoted hypertrophic bone formation at the advancing tissue fronts and tube entrances, and appeared to retard angiogenesis by limiting ongoing cellular migration into the tube. It is speculated that the presence of a secondary phase of calcium hexaluminate, probably having a solubility greater than that of alumina, possibly increased the level of extracellular Ca and, consequently, stimulated osteoclastic activity at the bone-ceramic interface. Addition of Mn significantly enhanced osteogenesis within the tubes. However, it is not possible to determine whether phase composition or microstructure of the ceramic was responsible for this because both were significantly altered by Mn addition. Addition of Cr to the alumina apparently stimulated bone remodelling as indicated by increased cellular activity and bone resorption at the tissue-implant interface. Cr was incorporated into the alumina as a solid solution and the tissue response was speculated to be an effect of surface chemistry rather than microstructure. The work demonstrates that doping a bioinert ceramic with small amounts of specific elements can significantly alter tissue ingrowth, differentiation, and osteogenesis within a porous implant.
Gahlert, Michael; Kniha, Heinz; Weingart, Dieter; Schild, Sabine; Gellrich, Nils-Claudius; Bormann, Kai-Hendrik
2016-12-01
Dental implants have traditionally been made from titanium or its alloys, but recently full-ceramic implants have been developed with comparable osseointegration properties and functional strength properties to titanium. These ceramic implants may have advantages in certain patients and situations, for example, where esthetic outcomes are particularly important. The objective of this investigation was to evaluate the performance of a newly developed full-ceramic ZrO 2 monotype implant design (PURE Ceramic Implant; Institut Straumann AG, Basel, Switzerland) in single-tooth gaps in the maxilla and mandible. This was a prospective, open-label, single-arm study in patients requiring implant rehabilitation in single-tooth gaps. Full-ceramic implants were placed, with provisional and final prostheses inserted after 3 and 6 months, respectively. Crestal bone level was measured at implant placement and after 6 and 12 months. Implant survival and success were evaluated after 6 and 12 months. Further evaluations are planned after 24 and 36 months. Forty-six patients were screened for potential study participation, of whom 44 (17 men and 27 women, mean age 48 ± 14 years) were recruited into the study. The majority of implants (90.9%) were placed in the maxilla. The implant survival and implant success rate after 12 months were 97.6%. A minor change of the mean bone level occurred between implant loading (final prosthesis insertion after 6 months) and 12 months (-0.14 mm) after initial bone remodeling was observed between implant placement and loading (-0.88 mm). The results indicated that monotype ceramic implants can achieve clinical outcomes comparable to published outcomes of equivalent titanium implants. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Biomimetic Materials by Freeze Casting
NASA Astrophysics Data System (ADS)
Porter, Michael M.; Mckittrick, Joanna; Meyers, Marc A.
2013-06-01
Natural materials, such as bone and abalone nacre, exhibit exceptional mechanical properties, a product of their intricate microstructural organization. Freeze casting is a relatively simple, inexpensive, and adaptable materials processing method to form porous ceramic scaffolds with controllable microstructural features. After infiltration of a second polymeric phase, hybrid ceramic-polymer composites can be fabricated that closely resemble the architecture and mechanical performance of natural bone and nacre. Inspired by the narwhal tusk, magnetic fields applied during freeze casting can be used to further control architectural alignment, resulting in freeze-cast materials with enhanced mechanical properties.
Rignon-Bret, Christophe; Hadida, Alain; Aidan, Alexis; Nguyen, Thien-Huong; Pasquet, Gerard; Fron-Chabouis, Helene; Wulfman, Claudine
2016-05-20
Bone preservation is an essential issue in the context of last teeth extraction and complete edentulism. The intended treatment, whether a complete denture or an implant placement, is facilitated with a voluminous residual ridge. Bone resorption after multiple extractions has not been as well studied as the bone resorption that occurs after the extraction of a single tooth. Recent advances in bone substitute materials have revived this issue. The purpose of this study is to evaluate the interest in using bone substitute material to fill the socket after last teeth extraction in a maxillary immediate complete denture procedure compared with the conventional protocol without socket filling. A randomized, controlled, clinical trial was designed. The 34 participants eligible for maxillary immediate complete denture were divided into two groups. Complete dentures were prepared despite persistence of the last anterior teeth. The control group received a conventional treatment including denture placement immediately after extractions. In the experimental group, in addition to the immediate denture placement, a xenograft bone-substitute material (Bio-Oss Collagen®) was placed in the fresh sockets. The primary outcome of the study is to compare mean bone ridge height loss 1 year after maxillary immediate complete denture placement, with or without bone-substitute material, in incisor and canine sockets. The secondary outcomes are to compare the average bone ridge height and width loss for each extraction site. An original quantitative evaluation method using cone beam computed tomography was designed for reproducible measurements, with a radio-opaque denture duplicate. Two independent operators perform the radiologic measurements. The immediate complete denture technique limits bone resorption in multiple extraction situations and thus allows better denture retention and better options for implant placement. To compare the benefit of using any bone socket-filling material, we proposed a quantitative evaluation protocol of resorption in the specific case of the last anterior maxillary teeth extraction with immediate denture placement. ClinicalTrials.gov, NCT02120053 . Registered on 18 April 2014.
[Osteogenic activity of porous calcium phosphate ceramics fabricated by rapid prototyping].
He, Chenguang; Zhao, Li; Lin, Liulan; Gu, Huijie; Zhou, Heng; Cui, Lei
2010-07-01
Calcium phosphate bioceramics has a broad application prospect because of good biocompatibility, but porous scaffolds with complex shape can not be prepared by the traditional methods. To fabricate porous calcium phosphate ceramics by rapid prototyping and to investigate the in vitro osteogenic activities. The porous calcium phosphate ceramics was fabricated by rapid prototyping. The bone marrow mesenchymal stem cells (BMSCs) were isolated from bone marrow of Beagle canine, and the 3rd passage BMSCs were seeded onto the porous ceramics. The cell/ceramics composite cultured in osteogenic medium were taken as the experimental group (group A) and the cell/ceramics composite cultured in growth medium were taken as the control group (group B). Meanwhile, the cells seeded on the culture plate were cultured in osteogenic medium or growth medium respectively as positive control (group C) or negative control (group D). After 1, 3, and 7 days of culture, the cell proliferation and osteogenic differentiation on the porous ceramics were evaluated by DNA quantitative analysis, histochemical staining and alkaline phosphatase (ALP) activity. After DiO fluorescent dye, the cell adhesion, growth, and proliferation on the porous ceramics were also observed by confocal laser scanning microscope (CLSM). DNA quantitative analysis results showed that the number of BMSCs in all groups increased continuously with time. Plateau phase was not obvious in groups A and B, but it was clearly observed in groups C and D. The CLSM observation indicated that the activity of BMSCs was good and the cells spread extensively, showing good adhesion and proliferation on the porous calcium phosphate ceramics prepared by rapid prototyping. ALP quantitative analysis results showed that the stain of cells on the ceramics became deeper and deeper with time in groups A and B, the staining degree in group A were stronger than that in group B. There was no significant difference in the change of the ALP activity among 4 groups at the first 3 days (P > 0.05); the ALP activity increased obviously in 4 groups at 7 days, group A was significantly higher than other groups (P < 0.05) and groups C, D were significantly higher than group D (P < 0.05). The porous calcium phosphate ceramics has good cytocompatibility and the designed pores are favorable for cell ingrowth. The porous ceramics fabricated by rapid prototyping has prominent osteogenic differentiation activity and can be used as a choice of scaffolds for bone tissue engineering.
Vascularized Bone Tissue Engineering: Approaches for Potential Improvement
Nguyen, Lonnissa H.; Annabi, Nasim; Nikkhah, Mehdi; Bae, Hojae; Binan, Loïc; Park, Sangwon; Kang, Yunqing
2012-01-01
Significant advances have been made in bone tissue engineering (TE) in the past decade. However, classical bone TE strategies have been hampered mainly due to the lack of vascularization within the engineered bone constructs, resulting in poor implant survival and integration. In an effort toward clinical success of engineered constructs, new TE concepts have arisen to develop bone substitutes that potentially mimic native bone tissue structure and function. Large tissue replacements have failed in the past due to the slow penetration of the host vasculature, leading to necrosis at the central region of the engineered tissues. For this reason, multiple microscale strategies have been developed to induce and incorporate vascular networks within engineered bone constructs before implantation in order to achieve successful integration with the host tissue. Previous attempts to engineer vascularized bone tissue only focused on the effect of a single component among the three main components of TE (scaffold, cells, or signaling cues) and have only achieved limited success. However, with efforts to improve the engineered bone tissue substitutes, bone TE approaches have become more complex by combining multiple strategies simultaneously. The driving force behind combining various TE strategies is to produce bone replacements that more closely recapitulate human physiology. Here, we review and discuss the limitations of current bone TE approaches and possible strategies to improve vascularization in bone tissue substitutes. PMID:22765012
Li, H C; Wang, D G; Hu, J H; Chen, C Z
2013-09-01
The partial substitution of MgO, TiO2, or CaF2 for CaO in the Na2O-CaO-SiO2-P2O5 (45S5) system was conducted by the sol-gel method and a comparative study on structural, mechanical properties, and bioactivity of the glasses was reported. Based on thermogravimetric and differential thermal analysis, the gels were sintered with a suitable heat treatment procedure. The glass-ceramic properties were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and so on, and the bioactivity of the glass-ceramic was evaluated by in vitro assays in simulated body fluid (SBF). Results indicate that with the partial substitution of MgO, TiO2, CaF2 for CaO in glass composition, the mechanical properties of the glass-ceramics have been significantly improved. Furthermore, CaF2 promotes glass crystallization and the crystallization does not inhibit the glass-ceramic bioactivity. All samples possess bioactivity; however, the bioactivity of these glass-ceramics is quite different. Compared with 45S5, the introduction of MgO decreases the ability of apatite induction. The addition of TiO2 does not significantly improve the bioactivity, and the replacement of CaO by CaF2 shows a higher bioactivity. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lu, Yanfei; Lekszycki, Tomasz
2018-03-01
A new description of graft substitution by bone tissue is proposed in this work. The studied domain is considered as a continuum model consisting of a mixture of the bone tissue and the graft material. Densities of both components evolve in time as a result of cellular activity and biodegradation. The proposed model focuses on the interaction between the bone cell activity, mechanical stimuli, nutrients supply and scaffold microstructure. Different combinations of degradation rate and stiffness of the graft material were examined by numerical simulation. It follows from the calculations that the degradation rate of the scaffold should be tuned to the synthesis/resorption rate of the tissue, which are dependent among the others on scaffold porosity changes. Simulation results imply potential criteria to choose proper bone substitute material in consideration of degradation rate, initial porosity and mechanical characteristics.
Investigations on Sm- and Nb-SUBSTITUTED PZT Ceramics
NASA Astrophysics Data System (ADS)
Prakash, Chandra; Juneja, J. K.
In the present paper, we report the effect of Samarium substitution and Niobium doping on the properties of a PZT(52:48). The properties studied are: structural, dielectric and ferroelectric. The samples with chemical formula Pb0.99Sm0.01Zr0.52Ti0.48O3 were prepared by solid-state dry ceramic method. Small amount (0.5 wt%) of Nb2O5 was also added. X-ray diffraction (XRD) analysis showed formation of a single phase with tetragonal structure. Dielectric properties were studied as a function of temperature and frequency. Transition temperature, Tc, was determined from dielectric constant versus temperature plot. The material shows well-defined ferroelectric (PE) hysteresis loop.
Han, Junjie; Wan, Peng; Ge, Ye; Fan, Xinmin; Tan, Lili; Li, Jianjun; Yang, Ke
2016-01-01
Bone defects are very challenging in orthopedic practice. There are many practical and clinical shortcomings in the repair of the defect by using autografts, allografts or xenografts, which continue to motivate the search for better alternatives. The ideal bone grafts should provide mechanical support, fill osseous voids and enhance the bone healing. Biodegradable magnesium-strontium (Mg-Sr) alloys demonstrate good biocompatibility and osteoconductive properties, which are promising biomaterials for bone substitutes. The aim of this study was to evaluate and pair the degradation of Mg-Sr alloys for grafting with their clinical demands. The microstructure and performance of Mg-Sr alloys, in vitro degradation and biological properties including in vitro cytocompatibility and in vivo implantation were investigated. The results showed that the as-cast Mg-Sr alloy exhibited a rapid degradation rate compared with the as-extruded alloy due to the intergranular distribution of the second phase and micro-galvanic corrosion. However, the initial degradation could be tailored by the coating protection, which was proved to be cytocompatible and also suitable for bone repair observed by in vivo implantation. The integrated fracture calluses were formed and bridged the fracture gap without gas bubble accumulation, meanwhile the substitutes simultaneously degraded. In conclusion, the as-cast Mg-Sr alloy with coating is potential to be used for bone substitute alternative. Copyright © 2015 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-04
... long bone shaft, 1 possible black bear phalanx, 1 possible crane carpometacarpus, 1 raptor carpometacarpus, 1 possible small bird long bone, 1 unidentified non-human cranium fragment, 2 bird or small mammal long bones and 2 probable bird phalanxes. In 1972, Middle Woodland period ceramic sherds were...
Accounting for structural compliance in nanoindentation measurements of bioceramic bone scaffolds
Juan Vivanco; Joseph E. Jakes; Josh Slane; Heidi-Lynn Ploeg
2014-01-01
Structural properties have been shown to be critical in the osteoconductive capacity and strength of bioactive ceramic bone scaffolds. Given the cellular foam-like structure of bone scaffolds, nanoindentation has been used as a technique to assess the mechanical properties of individual components of the scaffolds. Nevertheless, nanoindents placed on scaffolds may...
Lorenz, Jonas; Eichler, Kathrin; Barbeck, Mike; Lerner, Henriette; Stübinger, Stefan; Seipel, Catherine; Vogl, Thomas J; Kovács, Adorján F; Ghanaati, Shahram; Sader, Robert A
2016-01-01
In numerous animal and human studies, it could be detected that in bone augmentation procedures, material's physicochemical characteristics can influence the cellular inflammatory pattern and therefore the integration in the host tissue. Histological, histomorphometrical, and clinical analyses of the integration of the biomaterial in the surrounding tissue are well established methodologies; however, they do not make a statement on volume and density changes of the augmented biomaterial. The aim of the present study was to assess the volume and density of a xenogeneic (Bio-Oss ® , BO) and a synthetic (NanoBone ® , NB) bone substitute material in split-mouth sinus augmentations in former tumor patients to complete histological and histomorphometrical assessment. Immediately and 6 months after sinus augmentation computed tomography scans were recorded, bone grafts were marked, and the volume was calculated with radiologic RIS-PACS software (General Electric Healthcare, Chalfont St. Giles, Great Britain) to determine the integration and degradation behavior of both biomaterials. Radiographic analysis revealed a volume reduction of the initial augmented bone substitute material (i.e. 100%) to 77.36 (±11.68) % in the BO-group, respectively, 75.82 (±22.28) % in the NB-group six months after augmentation. In both materials, the volume reduction was not significant. Bone density significantly increased in both groups. The presented radiological investigation presents a favorable method to obtain clinically relevant information concerning the integration and degradation behavior of bone substitute materials.
NASA Astrophysics Data System (ADS)
Chaikina, M. V.; Komarova, E. G.; Sharkeev, Yu. P.; Bulina, N. V.; Prosanov, I. Yu.
2016-08-01
The paper presents the results of mechanochemical synthesis of hydroxyapatite (HAP) with simultaneous substitutions of lanthanum (La3+) for calcium ions and silicate ((SiO4)4--group) for the phosphate group with the substituent concentrations in the range 0.2-2.0 mol per HAP mol. The use of Si-substituted HAP as a coating material promotes accelerated osteosynthesis and osteointegration of implants into the bone tissue. The replacement of calcium ions by La3+ in the HAP structure plays an antimicrobial role preventing inflammatory processes. Annealing-induced variations in the lattice parameters of synthesized samples indicate the substituent incorporation into the HAP structure. It is known that complex compounds with lanthanides are used for cancer chemotherapy. In particular, La plays a key role in the course of treatment of injured defects of bone tissue. In addition, La-substituted HAP can be used for filling bone defects and coating implants in postoperational areas affected by bone cancer.
Paracrystalline Disorder from Phosphate Ion Orientation and Substitution in Synthetic Bone Mineral.
Marisa, Mary E; Zhou, Shiliang; Melot, Brent C; Peaslee, Graham F; Neilson, James R
2016-12-05
Hydroxyapatite is an inorganic mineral closely resembling the mineral phase in bone. However, as a biological mineral, it is highly disordered, and its composition and atomistic structure remain poorly understood. Here, synchrotron X-ray total scattering and pair distribution function analysis methods provide insight into the nature of atomistic disorder in a synthetic bone mineral analogue, chemically substituted hydroxyapatite. By varying the effective hydrolysis rate and/or carbonate concentration during growth of the mineral, compounds with varied degrees of paracrystallinity are prepared. From advanced simulations constrained by the experimental pair distribution function and density functional theory, the paracrystalline disorder prevalent in these materials appears to result from accommodation of carbonate in the lattice through random displacement of the phosphate groups. Though many substitution modalities are likely to occur in concert, the most predominant substitution places carbonate into the mirror plane of an ideal phosphate site. Understanding the mineralogical imperfections of a biologically analogous hydroxyapatite is important not only to potential bone grafting applications but also to biological mineralization processes themselves.
Comparing the Efficacy of Three Different Nano-scale Bone Substitutes: In vivo Study.
Razavi, Sayed Mohammad; Rismanchian, Mansour; Jafari-Pozve, Nasim; Nosouhian, Saied
2017-01-01
Synthetic biocompatible bone substitutions have been used widely for bone tissue regeneration as they are safe and effective. The aim of this animal study is to compare the effectiveness of three different biocompatible bone substitutes, including nano-hydroxyapatite (nano-HA) nano-bioglass (nano-BG) and forstrite scaffolds. In this interventional and experimental study, four healthy dogs were anesthetized, and the first to fourth premolars were extracted in each quadrant. After healing, the linear incision on the crestal ridge from molar to anterior segment prepared in each quadrant and 16 defects in each dog were prepared. Nano-HA, nano-BG, and forstrite scaffold was prepared according to the size of defects and placed in the 12 defects randomly, four defects remained as a control group. The dogs were sacrificed in four time intervals (15, 30, 45, and 60 days after) and the percentage of different types of regenerated bones (lamellar and woven) and connective tissue were recorded in histological process. The data were analyzed using Mann-Whitney test (α = 0.05). The difference in nano-HA and nano-BG with the control group was significant in three-time intervals regarding the amount of bone formation ( P < 0.01). After 15 days, the nano-HA showed the highest amount of woven and lamellar bone regeneration (18.37 ± 1.06 and 30.44 ± 0.54). Nano-HA and nano-BG groups showed a significant amount of bone regeneration, especially after 30 days, but paying more surveys and observation to these materials as bone substitutes seem to be needed.
Comparing the Efficacy of Three Different Nano-scale Bone Substitutes: In vivo Study
Razavi, Sayed Mohammad; Rismanchian, Mansour; Jafari-pozve, Nasim; Nosouhian, Saied
2017-01-01
Background: Synthetic biocompatible bone substitutions have been used widely for bone tissue regeneration as they are safe and effective. The aim of this animal study is to compare the effectiveness of three different biocompatible bone substitutes, including nano-hydroxyapatite (nano-HA) nano-bioglass (nano-BG) and forstrite scaffolds. Materials and Methods: In this interventional and experimental study, four healthy dogs were anesthetized, and the first to fourth premolars were extracted in each quadrant. After healing, the linear incision on the crestal ridge from molar to anterior segment prepared in each quadrant and 16 defects in each dog were prepared. Nano-HA, nano-BG, and forstrite scaffold was prepared according to the size of defects and placed in the 12 defects randomly, four defects remained as a control group. The dogs were sacrificed in four time intervals (15, 30, 45, and 60 days after) and the percentage of different types of regenerated bones (lamellar and woven) and connective tissue were recorded in histological process. The data were analyzed using Mann–Whitney test (α = 0.05). Results: The difference in nano-HA and nano-BG with the control group was significant in three-time intervals regarding the amount of bone formation (P < 0.01). After 15 days, the nano-HA showed the highest amount of woven and lamellar bone regeneration (18.37 ± 1.06 and 30.44 ± 0.54). Conclusion: Nano-HA and nano-BG groups showed a significant amount of bone regeneration, especially after 30 days, but paying more surveys and observation to these materials as bone substitutes seem to be needed. PMID:28603705
Heintze, S D; Zellweger, G; Cavalleri, A; Ferracane, J
2006-02-01
The aim of the study was to evaluate two ceramic materials as possible substitutes for enamel using two wear simulation methods, and to compare both methods with regard to the wear results for different materials. Flat specimens (OHSU n=6, Ivoclar n=8) of one compomer and three composite materials (Dyract AP, Tetric Ceram, Z250, experimental composite) were fabricated and subjected to wear using two different wear testing methods and two pressable ceramic materials as stylus (Empress, experimental ceramic). For the OHSU method, enamel styli of the same dimensions as the ceramic stylus were fabricated additionally. Both wear testing methods differ with regard to loading force, lateral movement of stylus, stylus dimension, number of cycles, thermocycling and abrasive medium. In the OHSU method, the wear facets (mean vertical loss) were measured using a contact profilometer, while in the Ivoclar method (maximal vertical loss) a laser scanner was used for this purpose. Additionally, the vertical loss of the ceramic stylus was quantified for the Ivoclar method. The results obtained from each method were compared by ANOVA and Tukey's test (p<0.05). To compare both wear methods, the log-transformed data were used to establish relative ranks between material/stylus combinations and assessed by applying the Pearson correlation coefficient. The experimental ceramic material generated significantly less wear in Tetric Ceram and Z250 specimens compared to the Empress stylus in the Ivoclar method, whereas with the OHSU method, no difference between the two ceramic antagonists was found with regard to abrasion or attrition. The wear generated by the enamel stylus was not statistically different from that generated by the other two ceramic materials in the OHSU method. With the Ivoclar method, wear of the ceramic stylus was only statistically different when in contact with Tetric Ceram. There was a close correlation between the attrition wear of the OHSU and the wear of the Ivoclar method (Pearson coefficient 0.83, p=0.01). Pressable ceramic materials can be used as a substitute for enamel in wear testing machines. However, material ranking may be affected by the type of ceramic material chosen. The attrition wear of the OHSU method was comparable with the wear generated with the Ivoclar method.
Konermann, A; Staubwasser, M; Dirk, C; Keilig, L; Bourauel, C; Götz, W; Jäger, A; Reichert, C
2014-04-01
The aim of this study was to determine the material composition and cell-mediated remodelling of different calcium phosphate-based bone substitutes. Osteoclasts were cultivated on bone substitutes (Cerabone, Maxresorb, and NanoBone) for up to 5 days. Bafilomycin A1 addition served as the control. To determine cellular activity, the supernatant content of calcium and phosphate was measured by inductively coupled plasma optical emission spectrometry. Cells were visualized on the materials by scanning electron microscopy. Material composition and surface characteristics were assessed by energy-dispersive X-ray spectroscopy. Osteoclast-induced calcium and phosphate release was material-specific. Maxresorb exhibited the highest ion release to the medium (P = 0.034; calcium 40.25mg/l day 5, phosphate 102.08 mg/l day 5) and NanoBone the lowest (P = 0.021; calcium 8.43 mg/l day 5, phosphate 15.15 mg/l day 5); Cerabone was intermediate (P = 0.034; calcium 16.34 mg/l day 5, phosphate 30.6 mg/l day 5). All investigated materials showed unique resorption behaviours. The presented methodology provides a new perspective on the investigation of bone substitute biodegradation, maintaining the material-specific micro- and macrostructure. Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Mid-term results of the BIOLOX delta ceramic-on-ceramic total hip arthroplasty.
Lee, Y K; Ha, Y C; Yoo, J-I; Jo, W L; Kim, K-C; Koo, K H
2017-06-01
We conducted a prospective study of a delta ceramic total hip arthroplasty (THA) to determine the rate of ceramic fracture, to characterise post-operative noise, and to evaluate the mid-term results and survivorship. Between March 2009 and March 2011, 274 patients (310 hips) underwent cementless THA using a delta ceramic femoral head and liner. At each follow-up, clinical and radiological outcomes were recorded. A Kaplan-Meier analysis was undertaken to estimate survival. Four patients (four hips) died and 18 patients (20 hips) were lost to follow-up within five years. The remaining 252 patients (286 hips) were followed for a mean of 66.5 months (60 to 84). There were 144 men (166 hips) and 108 women (120 hips) with a mean age of 49.7 years (16 to 83) at surgery. The mean pre-operative Harris Hip Score of 47.1 points improved to 93.8 points at final follow-up. Six patients reported squeaking in seven hips; however, none were audible. Radiolucent lines involving Gruen zones one and/or seven were seen in 52 hips (18.2%). No hip had detectable wear, focal osteolysis or signs of loosening. One hip was revised because of fracture of the ceramic liner, which occurred due to an undetected malseating of the ceramic liner at the time of surgery. One hip was revised for a periprosthetic fracture of the femur, and one hip was treated for periprosthetic joint infection. The six-year survivorship with re-operation for any reason as the endpoint was 99.0% (95% confidence interval 97.8% to 100%). The rate of delta ceramic fracture was 0.3% (one of 286). While ceramic head fracture was dominant in previous ceramic-on-ceramic THA, fracture of the delta ceramic liner due to malseating is a concern. Cite this article: Bone Joint J 2017;99-B:741-8. ©2017 The British Editorial Society of Bone & Joint Surgery.
Surface functionalization of 3D glass-ceramic porous scaffolds for enhanced mineralization in vitro
NASA Astrophysics Data System (ADS)
Ferraris, Sara; Vitale-Brovarone, Chiara; Bretcanu, Oana; Cassinelli, Clara; Vernè, Enrica
2013-04-01
Bone reconstruction after tissue loosening due to traumatic, pathological or surgical causes is in increasing demand. 3D scaffolds are a widely studied solution for supporting new bone growth. Bioactive glass-ceramic porous materials can offer a three-dimensional structure that is able to chemically bond to bone. The ability to surface modify these devices by grafting biologically active molecules represents a challenge, with the aim of stimulating physiological bone regeneration with both inorganic and organic signals. In this research work glass ceramic scaffolds with very high mechanical properties and moderate bioactivity have been functionalized with the enzyme alkaline phosphatase (ALP). The material surface was activated in order to expose hydroxyl groups. The activated surface was further grafted with ALP both via silanization and also via direct grafting to the surface active hydroxyl groups. Enzymatic activity of grafted samples were measured by means of UV-vis spectroscopy before and after ultrasonic washing in TRIS-HCl buffer solution. In vitro inorganic bioactivity was investigated by soaking the scaffolds after the different steps of functionalization in a simulated body fluid (SBF). SEM observations allowed the monitoring of the scaffold morphology and surface chemical composition after soaking in SBF. The presence of ALP enhanced the in vitro inorganic bioactivity of the tested material.
New nano-hydroxyapatite in bone defect regeneration: A histological study in rats.
Kubasiewicz-Ross, Paweł; Hadzik, Jakub; Seeliger, Julia; Kozak, Karol; Jurczyszyn, Kamil; Gerber, Hanna; Dominiak, Marzena; Kunert-Keil, Christiane
2017-09-01
Many types of bone substitute materials are available on the market. Researchers are refining new bone substitutes to make them comparable to autologous grafting materials in treatment of bone defects. The purpose of the study was to evaluate the osseoconductive potential and bone defect regeneration in rat calvaria bone defects treated with new synthetic nano-hydroxyapatite. The study was performed on 30 rats divided into 5 equal groups. New preproduction of experimental nano-hydroxyapatite material by NanoSynHap (Poznań, Poland) was tested and compared with commercially available materials. Five mm critical size defects were created and filled with the following bone grafting materials: 1) Geistlich Bio-Oss ® ; 2) nano-hydroxyapatite+β-TCP; 3) nano-hydroxyapatite; 4) nano-hydroxyapatite+collagen membrane. The last group served as controls without any augmentation. Bone samples from calvaria were harvested for histological and micro-ct evaluation after 8 weeks. New bone formation was observed in all groups. Histomorphometric analysis revealed an amount of regenerated bone between 34.2 and 44.4% in treated bone defects, whereas only 13.0% regenerated bone was found in controls. Interestingly, in group 3, no significant particles of the nano-HA material were found. In contrast, residual bone substitute material could be detected in all other test groups. Micro-CT study confirmed the results of the histological examinations. The new nano-hydroxyapatite provides comparable results to other grafts in the field of bone regeneration. Copyright © 2017 Elsevier GmbH. All rights reserved.
Liu, Jun; Zhang, Wei; Shi, Haigang; Yang, Kun; Wang, Gexia; Wang, Pingli; Ji, Junhui; Chu, Paul K
2016-05-01
Polymeric materials are commonly found in orthopedic implants due to their unique mechanical properties and biocompatibility but the poor surface hardness and bacterial infection hamper many biomedical applications. In this study, a ceramic-like surface structure doped with silver is produced by successive plasma implantation of silicon (Si) and silver (Ag) into the polyamine 66 (PA66) substrate. Not only the surface hardness and elastic modulus are greatly enhanced due to the partial surface carbonization and the ceramic-like structure produced by the reaction between energetic Si and the carbon chain of PA66, but also the antibacterial activity is improved because of the combined effects rendered by Ag and SiC structure. Furthermore, the modified materials which exhibit good cytocompatibility upregulate bone-related genes and proteins expressions of the contacted bone mesenchymal stem cells (BMSCs). For the first time, it explores out that BMSCs osteogenesis on the antibacterial ceramic-like structure is mediated via the iNOS and nNOS signal pathways. The results reveal that in situ plasma fabrication of an antibacterial ceramic-like structure can endow PA66 with excellent surface hardness, cytocompatibility, as well as antibacterial capability. © 2016 Wiley Periodicals, Inc.
Metal oxide porous ceramic membranes with small pore sizes
Anderson, Marc A.; Xu, Qunyin
1992-01-01
A method is disclosed for the production of metal oxide ceramic membranes of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.
Metal oxide porous ceramic membranes with small pore sizes
Anderson, Marc A.; Xu, Qunyin
1991-01-01
A method is disclosed for the production of metal oxide ceramic membranes of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.
Wang, Yichao; Uemura, Toshimasa; Dong, Jian; Kojima, Hiroko; Tanaka, Junzo; Tateishi, Tetsuya
2003-12-01
Composites of bone marrow-derived osteoblasts (BMOs) and porous ceramics have been widely used as a bone graft model for bone tissue engineering. Perfusion culture has potential utility for many cell types in three-dimensional (3D) culture. Our hypothesis was that perfusion of medium would increase the cell viability and biosynthetic activity of BMOs in porous ceramic materials, which would be revealed by increased levels of alkaline phosphate (ALP) activity and osteocalcin (OCN) and enhanced bone formation in vivo. For testing in vitro, BMO/beta-tricalcium phosphate composites were cultured in a perfusion container (Minucells and Minutissue, Bad Abbach, Germany) with fresh medium delivered at a rate of 2 mL/h by a peristaltic pump. The ALP activity and OCN content of composites were measured at the end of 1, 2, 3, and 4 weeks of subculture. For testing in vivo, after subculturing for 2 weeks, the composites were subcutaneously implanted into syngeneic rats. These implants were harvested 4 or 8 weeks later. The samples then underwent a biochemical analysis of ALP activity and OCN content and were observed by light microscopy. The levels of ALP activity and OCN in the composites were significantly higher in the perfusion group than in the control group (p < 0.01), both in vitro and in vivo. Histomorphometric analysis of the hematoxylin- and eosin-stained sections revealed a higher average ratio of bone to pore in BMO/beta-TCP composites of the perfusion group after implantation: 47.64 +/- 6.16 for the perfusion group and 26.22 +/- 4.84 for control at 4 weeks (n = 6, p < 0.01); 67.97 +/- 3.58 for the perfusion group and 47.39 +/- 4.10 for control at 8 weeks (n = 6, p < 0.05). These results show that the application of a perfusion culture system during the subculture of BMOs in a porous ceramic scaffold is beneficial to their osteogenesis. After differentiation culture in vitro with the perfusion culture system, the activity of the osteoblastic cells and the consequent bone formation in vivo were significantly enhanced. These results suggest that the perfusion culture system is a valuable and convenient tool for applications in tissue engineering, especially in the generation of artificial bone tissue.
Srivastava, D.; Azough, F.; Combe, E.; Funahashi, R.; Kepaptsoglou, D. M.; Ramasse, Q. M.; Molinari, M.; Yeandel, S. R.; Baran, J. D.
2015-01-01
A combination of experimental and computational techniques has been employed to study doping effects in perovskite CaMnO3. High quality Sr–Mo co-substituted CaMnO3 ceramics were prepared by the conventional mixed oxide route. Crystallographic data from X-ray and electron diffraction showed an orthorhombic to tetragonal symmetry change on increasing the Sr content, suggesting that Sr widens the transition temperature in CaMnO3 preventing phase transformation-cracking on cooling after sintering, enabling the fabrication of high density ceramics. Atomically resolved imaging and analysis showed a random distribution of Sr in the A-site of the perovskite structure and revealed a boundary structure of 90° rotational twin boundaries across {101}orthorhombic; the latter are predominant phonon scattering sources to lower the thermal conductivity as suggested by molecular dynamics calculations. The effect of doping on the thermoelectric properties was evaluated. Increasing Sr substitution reduces the Seebeck coefficient but the power factor remains high due to improved densification by Sr substitution. Mo doping generates additional charge carriers due to the presence of Mn3+ in the Mn4+ matrix, reducing electrical resistivity. The major impact of Sr on thermoelectric behaviour is the reduction of the thermal conductivity as shown experimentally and by modelling. Strontium containing ceramics showed thermoelectric figure of merit (ZT) values higher than 0.1 at temperatures above 850 K. Ca0.7Sr0.3Mn0.96Mo0.04O3 ceramics exhibit enhanced properties with S 1000K = –180 μV K–1, ρ 1000K = 5 × 10–5 Ωm, k 1000K = 1.8 W m–1 K–1 and ZT ≈ 0.11 at 1000 K. PMID:28496979
Huang, Guofeng; Liu, Guojun; Zhang, Feng; Gao, Jianting; Wang, Jiangze; Chen, Qi; Wu, Benwen; Ding, Zhenqi; Cai, Taoyi
2017-01-01
Under physiological conditions bone defects often occur at mechanical load bearing sites and bone substitutes used for regeneration should be similarly subjected to mechanical loading stress. In this study, we investigated whether a novel heel-strike like mechanical loading method can be used as a complementary therapy to promote bone regeneration following bone substitute grafting. To test this, three groups of rabbits with segmental bone defects in the tibia were implanted with bovine deproteinized cancellous bone scaffold (DCBS), with one group also receiving heel-strike like mechanical loading generated by a rap stress stimulator. From weeks 4-12 post-operation X-ray and micro-CT scanning showed that rabbits receiving combination therapy had significantly more callus at the bone defect. Moreover, bone defects in the combination group were completely replaced with new bone at week 12, while the DCBS implantation alone group healed only partially and rabbits receiving neither DCBS nor mechanical loading developed only small calluses throughout the observation period. Analysis of micro-CT scanning results demonstrated that new bone density in the combination group was significantly higher than the DCBS only group at weeks 4 and 12 ( p <0.05). H&E staining results also indicated a significantly higher percentage of new bone in the bone defect area and a lower percentage of residual scaffold in the combination group compared to the DCBS only group ( p <0.05). Thus, this heel-strike like mechanical loading method appears to accelerate bone regeneration following substitute implantation by restoring a local mechanical loading environment in segmental bone defects.
Ouyang, Shao-bo; Wang, Jun; Zhang, Hong-bin; Liao, Lan; Zhu, Hong-shui
2014-04-01
To investigate the stress distributions under load in 3 types of all-ceramic continuous crowns of the lower anterior teeth with differential shoulder thickness. Cone-beam CT (CBCT) was used to scan the in vitro mandibular central incisors, and achieve three-dimensional finite element model of all-ceramic continuous crowns with different shoulder width by using Mimics, Abaqus software. Different load conditions were simulated based on this model to study the effect of shoulder width variation on finite element analysis of 3 kinds of different all-ceramic materials of incisors fixed continuous crowns of the mandibular. Using CBCT, Mimics10.01 software and Abaqus 6.11 software, three-dimensional finite element model of all-ceramic continuous crowns of the mandibular incisor, abutment, periodontal ligament and alveolar bone was established. Different ceramic materials and various shoulder width had minor no impact on the equivalent stress peak of periodontal membrane, as well as alveolar bone. With the same shoulder width and large area of vertical loading of 120 N, the tensile stress was the largest in In-Ceram Alumina, followed by In-Ceram Zirconia and the minimum was IPS.Empress II. Under large area loading of 120 N 45° labially, when the material was IPS.Empress II, with the shoulder width increased, the porcelain plate edge of the maximum tensile stress value increased, while the other 2 materials had no obvious change. Finite element model has good geometric similarity. In the setting range of this study, when the elastic modulus of ceramic materials is bigger, the tensile stress of the continuous crown is larger. Supported by Research Project of Department of Education, Jiangxi Province (GJJ09130).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajmi, R.; Yahya, A. K.; Deni, M. S. M.
2010-07-07
Effects of Zn and Cr substitutions on dielectric properties of CaCu{sub 3-x}Zn{sub x}Ti{sub 4-y}Cr{sub y}O{sub 12} ceramics are reported. Dielectric measurements at room temperature for un-substituted CaCu{sub 3-x}Zn{sub x}Ti{sub 4-y}Cr{sub y}O{sub 12}(x = 0, y = 0) between 10{sup 2}-10{sup 6} Hz showed dielectric constant of 2.7x10{sup 4} at 10{sup 2} Hz. Substitution of Zn for Cu in CaCu{sub 3-x}Zn{sub xTi{sub 4{sub -{sub yCr{sub yO{sub 1{sub 2}}}}}}}(y = 0, x = 0.10, 0.50)caused dielectric constant to drop with increasing x. Cr substitution at Ti-site in CaCu{sub 3-x}Zn{sub xTi{sub 4{sub -{sub yCr{sub yO{sub 1{sub 2}}}}}}}(x = 0, x = 0,) alsomore » caused decrease in dielectric constant. However, at x = 0.50, the dielectric constant at low frequency was enhanced compared to the un-substituted sample. Our results indicate that Cu and Ti sites play an important role in the formation of Internal Barrier Layer Capacitance (IBLC) in CCTO.« less
Ikeda, Tohru; Kasai, Michiyuki; Tatsukawa, Eri; Kamitakahara, Masanobu; Shibata, Yasuaki; Yokoi, Taishi; Nemoto, Takayuki K; Ioku, Koji
2014-01-01
The biological activity of osteoblasts and osteoclasts is regulated not only by hormones but also by local growth factors, which are expressed in neighbouring cells or included in bone matrix. Previously, we developed hydroxyapatite (HA) composed of rod-shaped particles using applied hydrothermal methods (HHA), and it revealed mild biodegradability and potent osteoclast homing activity. Here, we compared serum proteins adsorbed to HHA with those adsorbed to conventional HA composed of globular-shaped particles (CHA). The two ceramics adsorbed serum albumin and γ-globulin to similar extents, but affinity for γ-globulin was much greater than that to serum albumin. The chemotactic activity for macrophages of serum proteins adsorbed to HHA was significantly higher than that of serum proteins adsorbed to CHA. Quantitative proteomic analysis of adsorbed serum proteins revealed preferential binding of vitamin D-binding protein (DBP) and complements C3 and C4B with HHA. When implanted with the femur of 8-week-old rats, HHA contained significantly larger amount of DBP than CHA. The biological activity of DBP was analysed and it was found that the chemotactic activity for macrophages was weak. However, DBP-macrophage activating factor, which is generated by the digestion of sugar chains of DBP, stimulated osteoclastogenesis. These results confirm that the microstructure of hydroxyapatite largely affects the affinity for serum proteins, and suggest that DBP preferentially adsorbed to HA composed of rod-shaped particles influences its potent osteoclast homing activity and local bone metabolism. PMID:24286277
Poly(vinyl alcohol) hydrogel coatings with tunable surface exposure of hydroxyapatite
Moreau, David; Villain, Arthur; Ku, David N; Corté, Laurent
2014-01-01
Insufficient bone anchoring is a major limitation of artificial substitutes for connective osteoarticular tissues. The use of coatings containing osseoconductive ceramic particles is one of the actively explored strategies to improve osseointegration and strengthen the bone-implant interface for general tissue engineering. Our hypothesis is that hydroxyapatite (HA) particles can be coated robustly on specific assemblies of PVA hydrogel fibers for the potential anchoring of ligament replacements. A simple dip-coating method is described to produce composite coatings made of microscopic hydroxyapatite (HA) particles dispersed in a poly(vinyl alcohol) (PVA) matrix. The materials are compatible with the requirements for implant Good Manufacturing Practices. They are applied to coat bundles of PVA hydrogel fibers used for the development of ligament implants. By means of optical and electronic microscopy, we show that the coating thickness and surface state can be adjusted by varying the composition of the dipping solution. Quantitative analysis based on backscattered electron microscopy show that the exposure of HA at the coating surface can be tuned from 0 to over 55% by decreasing the weight ratio of PVA over HA from 0.4 to 0.1. Abrasion experiments simulating bone-implant contact illustrate how the coating cohesion and wear resistance increase by increasing the content of PVA relative to HA. Using pullout experiments, we find that these coatings adhere well to the fiber bundles and detach by propagation of a crack inside the coating. These results provide a guide to select coated implants for anchoring artificial ligaments. PMID:25482413
Stereolithographic processing of ceramics: Photon diffusion in colloidal dispersion
NASA Astrophysics Data System (ADS)
Garg, Rajeev
The technique of ceramic stereolithography (CSL) has been developed for fabricating near net shape ceramic objects. In stereolithography, the three-dimensional computer design file of the object is sliced into thin layers. Each layer is physically fabricated by photocuring the surface of a liquid photo-polymerizable resin bath by raster scanning an ultra-violet laser across the surface of the resin. In CSL, the liquid resin is a high concentration colloidal dispersion in a solution of ultraviolet curable polymers. The ceramic green body fabricated by ceramic stereolithography technique is subjected to the post processing steps of drying, binder burnout and sintering to form a dense ceramic object. An aqueous alumina dispersion in photocuring polymers with particle volume fraction greater than 0.5 was formulated for CSL process. Low molecular weight solution polymers were found to be best suited for formulating ceramic resins due to their inherently low viscosity and favorable interactions with the ceramic dispersant. A hydroxyapatite ceramic resin was also developed for the use in the CSL technique. A model is developed to describe the photocuring process in concentrated ceramic dispersion. The curing profile in ceramic dispersion is governed by multiple scattering from the ceramic particles and absorption by the photocuring polymers. Diffusion theory of light transport is used to model the multiple scattering and absorption phenomena. It is found that diffusive transport adequately describes the phenomena of laser pulse propagation in highly concentrated colloidal dispersions. A model was developed to describe the absorption in highly concentrated ceramic dispersion. Various complex-shaped monolithic alumina and hydroxyapatite objects were fabricated by CSL and shown to possess uniform microstructure. The mechanical properties and sintering behavior of the parts fabricated by CSL are shown to be comparable to those fabricated by other ceramic processing technique. An application of CSL has been established for fabricating orthopedic implants. Orthopedic implants and biomedical devices of defined micro and macro architecture with controlled pore sizes and porosity were fabricated by CSL. The bone implants were also fabricated form in vivo scan of the bone. The structures were implanted in rats to understand the biocompatibility of CSL fabricated parts.
In vitro evaluation of bioactivity of SiO2-CaO-P2O5-Na2O-CaF2-ZnO glass-ceramics
NASA Astrophysics Data System (ADS)
Riaz, Madeeha; Zia, Rehana; Saleemi, Farhat; Bashir, Farooq; Hossain, Tousif; Kayani, Zohra
2014-09-01
Zinc is an essential trace element that stimulates bone formation but it is also known as an inhibitor of apatite crystal growth. In this work addition of ZnO to SiO2-CaO-P2O5-Na2O-CaF2 glass-ceramic system was made by conventional melt-quenching technique. DSC curves showed that the addition of ZnO moved the endothermic and exothermic peaks to lower temperatures. X-ray diffraction analysis did not reveal any additional phase caused by ZnO addition and showed the presence of wollastonite and hydroxyapatite crystalline phases only in all the glass-ceramic samples. As bio-implant apatite forming ability is an essential condition, the surface reactivity of the prepared glass-ceramic specimens was studied in vitro in Kokubo's simulated body fluid (SBF) [1] with ion concentration nearly equal to human blood plasma for 30 days at 37 °C under static condition. Atomic absorption spectroscopy (AAS) was used to study the changes in element concentrations in soaking solutions and XRD, FT-IR and SEM were used to elucidate surface properties of prepared glass-ceramics, which confirmed the formation of HCAp on the surface of all glass-ceramics. It was found that the addition of ZnO had a positive effect on bioactivity of glass-ceramics and made it a potential candidate for restoration of damaged bones.
Trace element doping in calcium phosphate ceramics to Understand osteogenesis and angiogenesis
Bose, Susmita; Fielding, Gary; Tarafder, Solaiman; Bandyopadhyay, Amit
2013-01-01
The general trends in synthetic bone grafting materials are shifting towards approaches that can illicit osteoinductive properties. Pharmacologics and biologics have been used in combination with calcium phosphate (CaP) ceramics, however, recently have become the target of scrutiny over the safety. The importance of trace elements in natural bone health is well documented. Ions, e.g. lithium, zinc, magnesium, manganese, silicon, strontium etc. have shown to increase osteogenesis and neovascularization. Incorporation of dopants into CaPs can provide a platform for safe and efficient delivery in clinical applications where increased bone healing is favorable. This review highlights use of trace elements in CaP biomaterials, and offers an insight into the mechanisms of how metal ions can enhance both osteogenesis and angiogenesis. PMID:24012308
Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics
Barrère, Florence; van Blitterswijk, Clemens A; de Groot, Klaas
2006-01-01
Calcium phosphate bioceramics are widely used in orthopedic and dental applications and porous scaffolds made of them are serious candidates in the field of bone tissue engineering. They have superior properties for the stimulation of bone formation and bone bonding, both related to the specific interactions of their surface with the extracellular fluids and cells, ie, ionic exchanges, superficial molecular rearrangement and cellular activity. PMID:17717972
Short-term implantation effects of a DCPD-based calcium phosphate cement.
Frayssinet, P; Gineste, L; Conte, P; Fages, J; Rouquet, N
1998-06-01
Calcium phosphate cements can be handled in paste form and set in a wet medium after precipitation of calcium phosphate crystals in the implantation site. Depending on the products entering into the chemical reaction leading to the precipitation of calcium phosphates, different phases can be obtained with different mechanical properties, setting times and injectability. We tested a cement composed of a powder, containing beta-tricalcium phosphate (beta-TCP) and sodium pyrophosphate mixed with a solution of phosphoric and sulphuric acids. The cement set under a dicalcium phosphate dihydrate (DCPD)-based matrix containing beta-TCP particles. This was injected with a syringe into a defect drilled in rabbit condyles, the control being an identical defect left empty in the opposite condyle. The condyles were analysed histologically 2, 6 and 18 weeks after implantation. After injection into the bone defect the cement set and formed a porous calcium phosphate structure. Two different calcium phosphate phases with different solubility rates could be identified by scanning electron microscopy (SEM) observation. The less-soluble fragments could be degraded by cell phagocytosis in cell compartments of low pH or integrated in the newly formed bone matrix. The degradation rate of the material was relatively high but compatible with the ingrowth of bone trabeculae within the resorbing material. The ossification process was different from the creeping substitution occurring at the ceramic contact. Bone did not form directly at the cement surface following the differentiation of osteoblasts at the material surface. The trabeculae came to the material surface from the edges of the implantation site. Bone formation in the implantation site was significantly higher than in the control region during the first week of implantation. In conclusion, this material set in situ was well tolerated, inducing a mild foreign-body reaction, which did not impair its replacement by newly formed bone within a few weeks.
Stroud, Nicholas J; DiPaola, Matthew J; Martin, Brian L; Steiler, Cindy A; Flurin, Pierre-Henri; Wright, Thomas W; Zuckerman, Joseph D; Roche, Christopher P
2013-11-01
Numerous glenoid implant designs have been introduced into the global marketplace in recent years; however, little comparative biomechanical data exist to substantiate one design consideration over another. This study dynamically evaluated reverse shoulder glenoid baseplate fixation and compared the initial fixation associated with 2 reverse shoulder designs having an equivalent center of rotation in low-density and high-density bone substitute substrates. Significant differences in fixation were observed between implant designs, where the circular-porous reverse shoulder was associated with approximately twice the micromotion per equivalent test than the oblong-grit-blasted design. Additionally, 6 of the 7 circular-porous reverse shoulders failed catastrophically in the low-density bone model at an average of 2603 ± 981 cycles. None of the oblong-grit-blasted designs failed in the low-or high-density bone models and none of the circular-porous designs failed in the high-density bone models after 10,000 cycles of loading. These results demonstrate that significant differences in initial fixation exist between reverse shoulder implants having an equivalent center of rotation and suggest that design parameters, other than the position of the center of rotation, significantly affect fixation in low-density and high-density polyurethane bone substitutes. Subtle changes in glenoid baseplate design can dramatically affect fixation, particularly in low-density bone substitutes that are intended to simulate the bone quality of the recipient population for reverse shoulders. Copyright © 2013 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
Lorenz, Jonas; Eichler, Kathrin; Barbeck, Mike; Lerner, Henriette; Stübinger, Stefan; Seipel, Catherine; Vogl, Thomas J.; Kovács, Adorján F.; Ghanaati, Shahram; Sader, Robert A.
2016-01-01
Background: In numerous animal and human studies, it could be detected that in bone augmentation procedures, material's physicochemical characteristics can influence the cellular inflammatory pattern and therefore the integration in the host tissue. Histological, histomorphometrical, and clinical analyses of the integration of the biomaterial in the surrounding tissue are well established methodologies; however, they do not make a statement on volume and density changes of the augmented biomaterial. Aims: The aim of the present study was to assess the volume and density of a xenogeneic (Bio-Oss®, BO) and a synthetic (NanoBone®, NB) bone substitute material in split-mouth sinus augmentations in former tumor patients to complete histological and histomorphometrical assessment. Methods: Immediately and 6 months after sinus augmentation computed tomography scans were recorded, bone grafts were marked, and the volume was calculated with radiologic RIS-PACS software (General Electric Healthcare, Chalfont St. Giles, Great Britain) to determine the integration and degradation behavior of both biomaterials. Results: Radiographic analysis revealed a volume reduction of the initial augmented bone substitute material (i.e. 100%) to 77.36 (±11.68) % in the BO-group, respectively, 75.82 (±22.28) % in the NB-group six months after augmentation. In both materials, the volume reduction was not significant. Bone density significantly increased in both groups. Conclusion: The presented radiological investigation presents a favorable method to obtain clinically relevant information concerning the integration and degradation behavior of bone substitute materials. PMID:28299254
Strength and fatigue properties of three-step sintered dense nanocrystal hydroxyapatite bioceramics
NASA Astrophysics Data System (ADS)
Guo, Wen-Guang; Qiu, Zhi-Ye; Cui, Han; Wang, Chang-Ming; Zhang, Xiao-Jun; Lee, In-Seop; Dong, Yu-Qi; Cui, Fu-Zhai
2013-06-01
Dense hydroxyapatite (HA) ceramic is a promising material for hard tissue repair due to its unique physical properties and biologic properties. However, the brittleness and low compressive strength of traditional HA ceramics limited their applications, because previous sintering methods produced HA ceramics with crystal sizes greater than nanometer range. In this study, nano-sized HA powder was employed to fabricate dense nanocrystal HA ceramic by high pressure molding, and followed by a three-step sintering process. The phase composition, microstructure, crystal dimension and crystal shape of the sintered ceramic were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Mechanical properties of the HA ceramic were tested, and cytocompatibility was evaluated. The phase of the sintered ceramic was pure HA, and the crystal size was about 200 nm. The compressive strength and elastic modulus of the HA ceramic were comparable to human cortical bone, especially the good fatigue strength overcame brittleness of traditional sintered HA ceramics. Cell attachment experiment also demonstrated that the ceramics had a good cytocompatibility.
Busse, Björn; Schilling, Arndt F.; Schinke, Thorsten; Amling, Michael; Lange, Tobias
2012-01-01
Bioactive bone substitute materials are a valuable alternative to autologous bone transplantations in the repair of skeletal defects. However, clinical studies have reported varying success rates for many commonly used biomaterials. While osteoblasts have traditionally been regarded as key players mediating osseointegration, increasing evidence suggests that bone-resorbing osteoclasts are of crucial importance for the longevity of applied biomaterials. As no standardized data on the resorbability of biomaterials exists, we applied an in vitro-assay to compare ten commonly used bone substitutes. Human peripheral blood mononuclear cells (PBMCs) were differentiated into osteoclasts in the co-presence of dentin chips and biomaterials or dentin alone (control) for a period of 28 days. Osteoclast maturation was monitored on day 0 and 14 by light microscopy, and material-dependent changes in extracellular pH were assessed twice weekly. Mature osteoclasts were quantified using TRAP stainings on day 28 and their resorptive activity was determined on dentin (toluidin blue staining) and biomaterials (scanning electron microscopy, SEM). The analyzed biomaterials caused specific changes in the pH, which were correlated with osteoclast multinuclearity (r = 0.942; p = 0.034) and activity on biomaterials (r = 0.594; p = 0.041). Perossal led to a significant reduction of pH, nuclei per osteoclast and dentin resorption, whereas Tutogen bovine and Tutobone human strikingly increased all three parameters. Furthermore, natural biomaterials were resorbed more rapidly than synthetic biomaterials leading to differential relative resorption coefficients, which indicate whether bone substitutes lead to a balanced resorption or preferential resorption of either the biomaterial or the surrounding bone. Taken together, this study for the first time compares the effects of widely used biomaterials on osteoclast formation and resorbability in an unbiased approach that may now aid in improving the preclinical evaluation of bone substitute materials. PMID:23071629
NASA Astrophysics Data System (ADS)
Domingues, Eddy M.; Gonçalves, Priscila; Figueiredo, Filipe M.
2012-07-01
The room temperature mechanosynthesis of La1-xSrxGa1-y-zMgyAlzO3-δ nanopowders is successfully demonstrated for a broad compositional range (x ≤ 0.1; y ≤ 0.2, z ≤ 0.4) by resorting to a nearly amorphous alumina precursor with enhanced reactivity. It is shown that ceramics with one single phase and free from open porosity can be obtained by sintering these nanopowders at 1350-1450 °C. Microstructural data show that the substitution of Ga by Al hinders densification and decreases the grain size of ceramics. This is explained assuming the segregation of aluminum cations to the grain boundaries as a result of the decrease of the cationic diffusion coefficients.
Lorenz, Jonas; Al-Maawi, Sarah; Sader, Robert; Ghanaati, Shahram
2018-05-21
Autologous bone transfer is regarded as the gold standard for ridge augmentation before dental implantation, especially in severe bony defects caused by tumor resection or atrophy. In addition to the advantages of autologous bone, transplantation has several disadvantages, such as secondary operation, increased morbidity and pain. The present study reports, for the first time, a combination of a xenogeneic bone substitute (BO) with platelet-rich fibrin (PRF), which is a fully autologous blood concentrate derived from the patient's own peripheral blood by centrifugation. Solid A-PRF+TM and liquid i-PRFTM together with an individualized 3-D planned titanium mesh were used for reconstruction of a severe tumor-related bony defect within the mandible of a former head and neck cancer patient. The BO enriched with regenerative components from PRF allowed the reconstruction of the mandibular resective defect under the 3-D-mesh without autologous bone transplantation. Complete rehabilitation and restoration of the patient´s oral function were achieved. Histological analysis of extracted bone biopsies confirmed that the new bone within the augmented region originated from the residual bone. Within the limitations of the presented case, the applied concept appears to be a promising approach to increase the regenerative capacity of a bone substitute material, as well as decrease the demand for autologous bone transplantation, even in cases in which autologous bone is considered the golden standard. PRF can be considered a reliable source for increasing the biological capacities of bone substitute materials.
Porous single-phase NiTi processed under Ca reducing vapor for use as a bone graft substitute.
Bertheville, Bernard
2006-03-01
Porous nickel-titanium alloys (NiTi, nitinol) have recently attracted attention in clinical surgery because they are a very interesting alternative to the more brittle and less machinable conventional porous Ca-based ceramics. The main remaining limitations come from the chemical homogeneity of the as-processed porous nickel-titanium alloys, which always contain undesired secondary Ti- and Ni-rich phases. These are known to weaken the NiTi products, to favor their cavitation corrosion and to decrease their biocompatibility. Elemental nickel must also be avoided because it could give rise to several adverse tissue reactions. Therefore, the synthesis of porous single-phase NiTi alloys by using a basic single-step sintering procedure is an important step towards the processing of safe implant materials. The sintering process used in this work is based on a vapor phase calciothermic reduction operating during the NiTi compound formation. The as-processed porous nickel-titanium microstructure is single-phase and shows a uniformly open pore distribution with porosity of about 53% and pore diameters in the range 20-100 microm. Furthermore, due to the process, fine CaO layers grow on the NiTi outer and inner surfaces, acting as possible promoting agents for the ingrowth of bone cells at the implantation site.
Barbanti Brodano, G; Mazzoni, E; Tognon, M; Griffoni, C; Manfrini, M
2012-05-01
Spine fusion is the gold standard treatment in degenerative and traumatic spine diseases. The bone regenerative medicine needs (i) in vitro functionally active osteoblasts, and/or (ii) the in vivo induction of the tissue. The bone tissue engineering seems to be a very promising approach for the effectiveness of orthopedic surgical procedures, clinical applications are often hampered by the limited availability of bone allograft or substitutes. New biomaterials have been recently developed for the orthopedic applications. The main characteristics of these scaffolds are the ability to induce the bone tissue formation by generating an appropriate environment for (i) the cell growth and (ii) recruiting precursor bone cells for the proliferation and differentiation. A new prototype of biomaterials known as "bioceramics" may own these features. Bioceramics are bone substitutes mainly composed of calcium and phosphate complex salt derivatives. In this study, the characteristics bioceramics bone substitutes have been tested with human mesenchymal stem cells obtained from the bone marrow of adult orthopedic patients. These cellular models can be employed to characterize in vitro the behavior of different biomaterials, which are used as bone void fillers or three-dimensional scaffolds. Human mesenchymal stem cells in combination with biomaterials seem to be good alternative to the autologous or allogenic bone fusion in spine surgery. The cellular model used in our study is a useful tool for investigating cytocompatibility and biological features of HA-derived scaffolds.
Burgo, F J; Mengelle, D E; Ozols, A; Fernandez, C; Autorino, C M
2016-11-01
Studies reporting specifically on squeaking in total hip arthroplasty have focused on cementless, and not on hybrid, fixation. We hypothesised that the cement mantle of the femur might have a damping effect on the sound transmitted through the metal stem. The objective of this study was to test the effect of cement on sound propagation along different stem designs and under different fixation conditions. An in vitro model for sound detection, composed of a mechanical suspension structure and a sound-registering electronic assembly, was designed. A pulse of sound in the audible range was propagated along bare stems and stems implanted in cadaveric bone femurs with and without cement. Two stems of different alloy and geometry were compared. The magnitudes of the maximum amplitudes of the bare stem were in the range of 10.8 V to 11.8 V, whereas the amplitudes for the same stems with a cement mantle in a cadaveric bone decreased to 0.3 V to 0.7 V, implying a pulse-attenuation efficiency of greater than 97%. The same magnitude is close to 40% when the comparison is made against stems implanted in cadaveric bone femurs without cement. The in vitro model presented here has shown that the cement had a remarkable effect on sound attenuation and a strong energy absorption in cement mantle and bone. The visco-elastic properties of cement can contribute to the dissipation of vibro-acoustic energy, thus preventing hip prostheses from squeaking. This could explain, at least in part, the lack of reports of squeaking when hybrid fixation is used.Cite this article: F. J. Burgo, D. E. Mengelle, A. Ozols, C. Fernandez, C. M. Autorino. The damping effect of cement as a potential mitigation factor of squeaking in ceramic-on-ceramic total hip arthroplasty. Bone Joint Res 2016;5:531-537. DOI: 10.1302/2046-3758.511.BJR-2016-0058.R1. © 2016 Burgo et al.
Carbon-centered radicals in γ-irradiated bone substituting biomaterials based on hydroxyapatite.
Sadlo, Jaroslaw; Strzelczak, Grazyna; Lewandowska-Szumiel, Malgorzata; Sterniczuk, Marcin; Pajchel, Lukasz; Michalik, Jacek
2012-09-01
Gamma irradiated synthetic hydroxyapatite, bone substituting materials NanoBone(®) and HA Biocer were examined using EPR spectroscopy and compared with powdered human compact bone. In every case, radiation-induced carbon centered radicals were recorded, but their molecular structures and concentrations differed. In compact bone and synthetic hydroxyapatite the main signal assigned to the CO(2) (-) anion radical was stable, whereas the signal due to the CO(3) (3-) radical dominated in NanoBone(®) and HA Biocer just after irradiation. However, after a few days of storage of these samples, also a CO(2) (-) signal was recorded. The EPR study of irradiated compact bone and the synthetic graft materials suggest that their microscopic structures are different. In FT-IR spectra of NanoBone(®), HA Biocer and synthetic hydroxyapatite the HPO(4) (2-) and CO(3) (2-) in B-site groups are detected, whereas in compact bone signals due to collagen dominate.
Fujishiro, Takaaki; Bauer, Thomas W; Kobayashi, Naomi; Kobayashi, Hideo; Sunwoo, Moon Hae; Seim, Howard B; Turner, A Simon
2007-09-01
Demineralized bone matrix (DBMs) preparations are a potential alternative or supplement to autogenous bone graft, but many DBMs have not been adequately tested in clinically relevant animal models. The aim of current study was to compare the efficacy of a new bone graft substitute composed of a combination of mineralized and demineralized allograft, along with hyaluronic acid (AFT Bone Void Filler) with several other bone graft materials in a sheep vertebral bone void model. A drilled defect in the sheep vertebral body was filled with either the new DBM preparation, calcium sulfate (OsteoSet), autologous bone graft, or left empty. The sheep were euthanized after 6 or 12 weeks, and the defects were examined by histology and quantitative histomorphometry. The morphometry data were analyzed by one-way analysis of variance with the post hoc Tukey-Kramer test or the Student's t-test. All of the bone defects in the AFT DBM preparation group showed good new bone formation with variable amounts of residual DBM and mineralized bone graft. The DBM preparation group at 12 weeks contained significantly more new bone than the defects treated with calcium sulfate or left empty (respectively, p < 0.05, p < 0.01). There was no significant difference between the DBM and autograft groups. No adverse inflammatory reactions were associated with any of the three graft materials. The AFT preparation of a mixture of mineralized and demineralized allograft appears to be an effective autograft substitute as tested in this sheep vertebral bone void model.
Chon, Jegyun; Shin, Sangyeop; Jang, Gunil; Jeon, Taehyeon
2016-01-01
Background We investigated the causes of impingement between the patella bone and the bearing post during high flexion in cruciate-substituting total knee arthroplasty and proposed a treatment strategy. Methods This prospective cohort study included 218 cases that had undergone cruciate-substituting total knee arthroplasty from February 2014 to January 2015; a single surgeon performed the operation using the same method without patellar resurfacing in all patients. Results In these patients, the occurrence of impingement was determined by performing more than 120° high knee flexion after inserting a bearing perioperatively. The incidence of impingement was significantly associated with bearing design, femoral implant size, patella bone length, and patella inferior pole angle (p < 0.05). The impingement was resolved by resection of the lower articular side of the patella bone. Conclusions In the cruciate-substituting high-flexion total knee arthroplasty, impingement between the patella bone and bearing post was more common in patients with mobile bearing, small-size femoral component, and a long patella or a large inferior pole angle. In cases of intraoperative impingement between the patella bone and the bearing post, resection in the lower portion of the patella prevented impingement of the bearing with soft tissue or the patella by widening the space between the patella and the bearing post, which in turn prevented postoperative reduction in range of motion. PMID:27247740
Chon, Jegyun; Lee, Bongju; Shin, Sangyeop; Jang, Gunil; Jeon, Taehyeon
2016-06-01
We investigated the causes of impingement between the patella bone and the bearing post during high flexion in cruciate-substituting total knee arthroplasty and proposed a treatment strategy. This prospective cohort study included 218 cases that had undergone cruciate-substituting total knee arthroplasty from February 2014 to January 2015; a single surgeon performed the operation using the same method without patellar resurfacing in all patients. In these patients, the occurrence of impingement was determined by performing more than 120° high knee flexion after inserting a bearing perioperatively. The incidence of impingement was significantly associated with bearing design, femoral implant size, patella bone length, and patella inferior pole angle (p < 0.05). The impingement was resolved by resection of the lower articular side of the patella bone. In the cruciate-substituting high-flexion total knee arthroplasty, impingement between the patella bone and bearing post was more common in patients with mobile bearing, small-size femoral component, and a long patella or a large inferior pole angle. In cases of intraoperative impingement between the patella bone and the bearing post, resection in the lower portion of the patella prevented impingement of the bearing with soft tissue or the patella by widening the space between the patella and the bearing post, which in turn prevented postoperative reduction in range of motion.
Formation of a sodium bicarbonate cluster in the structure of sodium-substituted hydroxyapatite
NASA Astrophysics Data System (ADS)
Tkachenko, M. V.; Kamzin, A. S.
2015-02-01
Ceramic sodium-substituted carbonated hydroxyapatite has been synthesized using the method of the solid-phase reaction in the temperature range of 640-820°C in water vapor. It has been established that substitutions of Ca2+ ions in the cation and anion subsystems with Na+ ions and the PO{4/3-} and OH- groups with CO{3/2-} ions lead to a considerable acceleration of the shrinkage and synthesis of dense ceramics at substantially lower temperatures than in the case of unsubstituted hydroxyapatite. Sintering in water vapor leads to densification of carbonate groups in channel positions, which induces the appearance of orderings of A2 and B2 types (bands with wave numbers 867 and 865 cm-1 in IR spectra, respectively) as well as the protonation of carbonate groups both in A and B sites and the formation of sodium bicarbonate clusters (856 and 859 cm-1) in addition to carbonate ordering of A1 and B1 types (879 and 872 cm-1).
Code of Federal Regulations, 2011 CFR
2011-04-01
... fixed in the intramedullary canal of the femur by impaction with or without use of bone cement. The... nonporous metal alloys, and used with or without bone cement. (b) Classification. Class II. [54 FR 48239...
Code of Federal Regulations, 2013 CFR
2013-04-01
... fixed in the intramedullary canal of the femur by impaction with or without use of bone cement. The... nonporous metal alloys, and used with or without bone cement. (b) Classification. Class II. [54 FR 48239...
Code of Federal Regulations, 2014 CFR
2014-04-01
... fixed in the intramedullary canal of the femur by impaction with or without use of bone cement. The... nonporous metal alloys, and used with or without bone cement. (b) Classification. Class II. [54 FR 48239...
Code of Federal Regulations, 2012 CFR
2012-04-01
... fixed in the intramedullary canal of the femur by impaction with or without use of bone cement. The... nonporous metal alloys, and used with or without bone cement. (b) Classification. Class II. [54 FR 48239...
Code of Federal Regulations, 2010 CFR
2010-04-01
... fixed in the intramedullary canal of the femur by impaction with or without use of bone cement. The... nonporous metal alloys, and used with or without bone cement. (b) Classification. Class II. [54 FR 48239...
Method for Waterproofing Ceramic Materials
NASA Technical Reports Server (NTRS)
Cagliostro, Domenick E. (Inventor); Hsu, Ming-Ta S. (Inventor)
1998-01-01
Hygroscopic ceramic materials which are difficult to waterproof with a silane, substituted silane or silazane waterproofing agent, such as an alumina containing fibrous, flexible and porous, fibrous ceramic insulation used on a reentry space vehicle, are rendered easy to waterproof if the interior porous surface of the ceramic is first coated with a thin coating of silica. The silica coating is achieved by coating the interior surface of the ceramic with a silica precursor converting the precursor to silica either in-situ or by oxidative pyrolysis and then applying the waterproofing agent to the silica coated ceramic. The silica precursor comprises almost any suitable silicon containing material such as a silane, silicone, siloxane, silazane and the like applied by solution, vapor deposition and the like. If the waterproofing is removed by e.g., burning, the silica remains and the ceramic is easily rewaterproofed. An alumina containing TABI insulation which absorbs more that five times its weight of water, absorbs less than 10 wt. % water after being waterproofed according to the method of the invention.
Paracrystalline Disorder from Phosphate Ion Orientation and Substitution in Synthetic Bone Mineral
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marisa, Mary E.; Zhou, Shiliang; Melot, Brent C.
Hydroxyapatite is an inorganic mineral closely resembling the mineral phase in bone. However, as a biological mineral, it is highly disordered, and its composition and atomistic structure remain poorly understood. Here, synchrotron X-ray total scattering and pair distribution function analysis methods provide insight into the nature of atomistic disorder in a synthetic bone mineral analogue, chemically substituted hydroxyapatite. By varying the effective hydrolysis rate and/or carbonate concentration during growth of the mineral, compounds with varied degrees of paracrystallinity are prepared. From advanced simulations constrained by the experimental pair distribution function and density functional theory, the paracrystalline disorder prevalent in thesemore » materials appears to result from accommodation of carbonate in the lattice through random displacement of the phosphate groups. Though many substitution modalities are likely to occur in concert, the most predominant substitution places carbonate into the mirror plane of an ideal phosphate site. Understanding the mineralogical imperfections of a biologically analogous hydroxyapatite is important not only to potential bone grafting applications but also to biological mineralization processes themselves.« less
Process for fabrication of cermets
Landingham, Richard L [Livermore, CA
2011-02-01
Cermet comprising ceramic and metal components and a molten metal infiltration method and process for fabrication thereof. The light weight cermets having improved porosity, strength, durability, toughness, elasticity fabricated from presintered ceramic powder infiltrated with a molten metal or metal alloy. Alumina titanium cermets biocompatible with the human body suitable for bone and joint replacements.
Chronic sinusitis associated with the use of unrecognized bone substitute: a case report.
Beklen, Arzu; Pihakari, Antti; Rautemaa, Riina; Hietanen, Jarkko; Ali, Ahmed; Konttinen, Yrjö T
2008-05-01
Bone grafts are used for bone augmentation to ensure optimal implant placement. However, this procedure may sometimes cause sinusitis. The case of a 44-year-old woman with the diagnosis of recurrent and chronic sinusitis of her right maxillary sinus with a history of dental implant surgery is presented. After several attempts with normal standard sinusitis therapy, unrecognized bone substitute was removed from the sinus cavity, which finally led to resolution of the sinusitis. This case reiterates the importance of a careful examination, consultation, and second opinion for the selection of optimal treatment.
NASA Astrophysics Data System (ADS)
Al-Akhras, M.-Ali H.; Hasan Qaseer, M. K.; Albiss, B. A.; Alebrhim, M. Anwar; Gezawa, Umar S.
2018-02-01
Valuable structural and chemical features can be obtained for spongy and hard bone by infrared spectroscopy and X-ray diffraction. A better understanding of chemical and structural differences between spongy and hard bone is a very important contributor to bone quality. Our data according to IR data showed that the collagen cross-links occurred to be higher in spongy bone, and crystallinity was lower in spongy bone. Deconvolution of the infrared band near 870 cm-1 reveals evidence for A2-type carbonate substitution on hydroxyapatite of spongy bone in addition to the A and B type carbonate substitution that are also found in hard bone. IR and XRD data confirmed the results of each other since full width at half maximum of 002-apatite pattern of XRD showed that the crystallinity was lower in spongy bone. The microstructure was examined by using scanning electron microscope and the result showed that the lattice of thin threads in spongy bone and is less dense than hard bone.
Wilson, Clayton E; Kruyt, Moyo C; de Bruijn, Joost D; van Blitterswijk, Clemens A; Oner, F Cumhur; Verbout, Abraham J; Dhert, Wouter J A
2006-01-01
This study presents a new screening model for evaluating the influence of multiple conditions on the initial process of bone formation in the posterior lumbar spine of a large animal. This model uses cages designed for placement on the decorticated transverse process of the goat lumbar spine. Five conduction channels per cage, each be defined by a different material treatment, are open to both the underlying bone and overlying soft tissue. The model was validated in ten adult Dutch milk goats, with each animal implanted with two cages containing a total of ten calcium phosphate material treatments according to a randomized complete block design. The ten calcium phosphate ceramic materials were created through a combination of material chemistry (BCP, TCP, HA), sintering temperature (low, medium, high), calcination and surface roughness treatments. To monitor the bone formation over time, fluorochrome markers were administered at 3, 5 and 7 weeks and the animals were sacrificed at 9 weeks after implantation. Bone formation in the conduction channels was investigated by histology and histomorphometry of non-decalcified sections using traditional light and epifluorescent microscopy. According to both observed and measured bone formation parameters, materials were ranked in order of increasing magnitude as follows: low sintering temperature BCP (rough and smooth) approximately medium sintering temperature BCP approximately = TCP > calcined low sintering temperature HA > non-calcined low sintering temperature HA > high sintering temperature BCP (rough and smooth) > high sintering temperature HA (calcined and non-calcined). These results agree closely with those obtained in previous studies of osteoconduction and bioactivity of ceramics thereby validating the screening model presented in this study.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-01
..., 5 chert flaked stone tools, 27 pieces of chert debitage, 15 ground stone tools, 75 bone tools, 1 basalt flake, 1 granite tool, 1 schist tool, 2 steatite ear plugs, 1 ceramic fragment, 1 bone bead, 1... individuals were identified. The 247 associated funerary objects are 128 bone tools, 78 obsidian tools, 18...
Arepalli, Sampath Kumar; Tripathi, Himanshu; Hira, Sumit Kumar; Manna, Partha Pratim; Pyare, Ram; S P Singh
2016-12-01
Strontium contained biomaterials have been reported as a potential bioactive material for bone regeneration, as it reduces bone resorption and stimulates bone formation. In the present investigation, the bioactive glasses were designed to partially substitute SrO for SiO2 in Na2O-CaO-SrO-P2O5-SiO2 system. This work demonstrates that the substitution of SrO for SiO2 has got significant benefit than substitution for CaO in the bioactive glass. Bioactivity was assessed by the immersion of the samples in simulated body fluid for different intervals. The formation of hydroxy carbonate apatite layer was identified by X-ray diffractometry, scanning electron microscopy (SEM) and energy dispersive spectroscopy. The elastic modulus of the bioactive glasses was measured and found to increase with increasing SrO for SiO2. The blood compatibility of the samples was evaluated. In vitro cell culture studies of the samples were performed using human osteosarcoma U2-OS cell lines and found a significant improvement in cell viability and proliferation. The investigation showed enhancement in bioactivity, mechanical and biological properties of the strontia substituted for silica in glasses. Thus, these bioactive glasses would be highly potential for bone regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.
Cementless Hydroxyapatite Coated Hip Prostheses
Herrera, Antonio; Mateo, Jesús; Gil-Albarova, Jorge; Lobo-Escolar, Antonio; Ibarz, Elena; Gabarre, Sergio; Más, Yolanda
2015-01-01
More than twenty years ago, hydroxyapatite (HA), calcium phosphate ceramics, was introduced as a coating for cementless hip prostheses. The choice of this ceramic is due to its composition being similar to organic apatite bone crystals. This ceramic is biocompatible, bioactive, and osteoconductive. These qualities facilitate the primary stability and osseointegration of implants. Our surgical experience includes the implantation of more than 4,000 cementless hydroxyapatite coated hip prostheses since 1990. The models implanted are coated with HA in the acetabulum and in the metaphyseal area of the stem. The results corresponding to survival and stability of implants were very satisfactory in the long-term. From our experience, HA-coated hip implants are a reliable alternative which can achieve long term survival, provided that certain requirements are met: good design selection, sound choice of bearing surfaces based on patient life expectancy, meticulous surgical technique, and indications based on adequate bone quality. PMID:25802848
The long range voice coil atomic force microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnard, H.; Randall, C.; Bridges, D.
2012-02-15
Most current atomic force microscopes (AFMs) use piezoelectric ceramics for scan actuation. Piezoelectric ceramics provide precision motion with fast response to applied voltage potential. A drawback to piezoelectric ceramics is their inherently limited ranges. For many samples this is a nonissue, as imaging the nanoscale details is the goal. However, a key advantage of AFM over other microscopy techniques is its ability to image biological samples in aqueous buffer. Many biological specimens have topography for which the range of piezoactuated stages is limiting, a notable example of which is bone. In this article, we present the use of voice coilsmore » in scan actuation for an actuation range in the Z-axis an order of magnitude larger than any AFM commercially available today. The increased scan size will allow for imaging an important new variety of samples, including bone fractures.« less
Method of making metal oxide ceramic membranes with small pore sizes
Anderson, Marc A.; Xu, Qunyin
1992-01-01
A method for the production of metal oxide ceramic membranes is composed of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.
Fernandes, João S; Gentile, Piergiorgio; Pires, Ricardo A; Reis, Rui L; Hatton, Paul V
2017-09-01
Bioactive glasses (BGs) and related glass-ceramic biomaterials have been used in bone tissue repair for over 30years. Previous work in this field was comprehensively reviewed including by their inventor Larry Hench, and the key features and properties of BGs are well understood. More recently, attention has focused on their modification to further enhance the osteogenic behaviour, or further compositional changes that may introduce additional properties, such as antimicrobial activity. Evidence is emerging that BGs and related glass-ceramics may be modified in such a way as to simultaneously introduce more than one desirable property. The aim of this review is therefore to consider the evidence that these more recent inorganic modifications to glass and glass-ceramic biomaterials are effective, and whether or not these new compositions represent sufficiently versatile systems to underpin the development of a new generation of truly multifunctional biomaterials to address pressing clinical needs in orthopaedic and dental surgery. Indeed, a number of classical glass compositions exhibited antimicrobial activity, however the structural design and the addition of specific ions, i.e. Ag + , Cu + , and Sr 2+ , are able to impart a multifunctional character to these systems, through the combination of, for example, bioactivity with bactericidal activity. In this review we demonstrate the multifunctional potential of bioactive glasses and related glass-ceramics as biomaterials for orthopaedic and craniofacial/dental applications. Therefore, it considers the evidence that the more recent inorganic modifications to glass and glass-ceramic biomaterials are able to impart antimicrobial properties alongside the more classical bone bonding and osteoconduction. These properties are attracting a special attention nowadays that bacterial infections are an increasing challenge in orthopaedics. We also focus the manuscript on the versatility of these systems as a basis to underpin the development of a new generation of truly multifunctional biomaterials to address pressing clinical needs in orthopaedic, craniofacial and dental surgery. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Vogel, Danny; Rathay, Andreas; Teufel, Stephanie; Ellenrieder, Martin; Zietz, Carmen; Sander, Manuela; Bader, Rainer
2017-01-01
In THA a sufficient primary implant stability is the precondition for successful secondary stability. Industrial foams of different densities have been used for primary stability investigations. The aim of this study was to analyse and compare the insertion behaviour of threaded and press-fit cups in vivo and ex vivo using bone substitutes with various densities. Two threaded (Bicon Plus®, Trident® TC) and one press-fit cup (Trident PSL®) were inserted by orthopaedic surgeons (S1, S2) into 10, 20 and 31 pcf blocks, using modified surgical instruments allowing measurements of the insertion forces and torques. Furthermore, the insertion behaviour of two cups were analysed intraoperatively. Torques for the threaded cups increased while bone substitute density increased. Maximum insertion torques were observed for S2 with 102 Nm for the Bicon Plus® in 20 pcf blocks and 77 Nm for the Trident® TC in 31 pcf blocks, which compares to the in vivo measurement (85 Nm). The average insertion forces for the press-fit cup varied from 5.2 to 6.8 kN (S1) and 7.2-11.5 kN (S2) ex vivo. Intraoperatively an average insertion force of 8.0 kN was determined. Implantation behaviour was influenced by acetabular cup design, bone substitute and experience of the surgeon. No specific density of bone substitute could be favoured for ex vivo investigations on the implantation behaviour of acetabular cups. The use synthetic bone blocks of high density (31 pcf) led to problems regarding cup orientation and seating. Therefore, bone substitutes used should be critically scrutinized in terms of the comparability to the in vivo situation.
Hydroxyapatite crystals as a bone graft substitute in benign lytic lesions of bone
Gupta, Anil Kumar; Kumar, Praganesh; Keshav, Kumar; Singh, Anant
2015-01-01
Background: Bone grafts are required to fill a cavity created after curettage of benign lytic lesions of the bone. To avoid the problems associated at donor site with autologous bone graft, we require allograft or bone graft substitutes. We evaluated the healing of lytic lesions after hydroxyapatite (HA) grafting by serial radiographs. Materials and Methods: Forty cases of benign lytic lesions of bone were managed by simple curettage and grafting using HA blocks. Commercially available HA of bovine origin (Surgiwear Ltd., Shahjahanpur, India) was used for this purpose. Mean duration of followup was 34.8 months (range 12–84 months). Mean patient age was 19.05 years (range 3–55 years). Radiological staging of graft incorporation was done as per criteria of Irwin et al. 2001. Results: In our series, two cases were in stage I. A total of 11 cases were in stage II and 27 were in stage III. Graft incorporation was radiologically complete by 15 months. Clinical recovery was observed before radiological healing. The average time taken to return to preoperative function was 3 months. Recurrence was observed in giant cell tumor (n = 3) and chondromyxoid fibroma (n = 1). There was no incidence of graft rejection, collapse, growth plate disturbances or antigenic response. Conclusions: We conclude that calcium HA is biologically acceptable bone graft substitute in the management of benign lytic lesions of bone. PMID:26806973
Atiya, Basim K; Shanmuhasuntharam, Palasuntharam; Huat, Siar; Abdulrazzak, Shurooq; Oon, Ha
2014-01-01
Different forms of dentin, including untreated, undemineralized, demineralized, boiled, or mixed with other materials, have been evaluated for efficacy as bone substitutes. However, the effects of application of liquid nitrogen-treated dentin for bone grafting remain unknown. The objective of this study was to chronologically evaluate bone healing following grafting with liquid nitrogen-treated dentin in a rabbit model. Autogenous dentin treated with liquid nitrogen at -196°C for 20 minutes was used. In 16 New Zealand White rabbits, a bone defect (5 mm in diameter) was created in each femur and randomly grafted with either autogenous dentin (experimental group) or autogenous bone grafts (positive control). In another four rabbits (negative control), a similar defect in each femur was left empty. The rabbits were sacrificed at 2, 4, 8, and 12 weeks. Explants of grafted sites were harvested for histologic and histomorphometric analysis. At 2 and 4 weeks in both the experimental and positive control groups, accelerated formation of new bone was observed, which was undergoing remodeling at 8 and 12 weeks. The mean new bone score was higher in the experimental than in the negative control groups, but this was not statistically significant. The present results demonstrated that liquid nitrogen-treated autogenous dentin has both osteoconductive and osteoinductive properties and therefore has potential as a bone substitute.
Larsson, Sune; Procter, Philip
2011-09-01
When stabilising a fracture the contact between the screw and the surrounding bone is crucial for mechanical strength. Through development of screws with new thread designs, as well as optimisation of other properties, improved screw purchase has been gained. Other alternatives to improve screw fixation in osteoporotic bone, as well as normal bone if needed, includes the use of various coatings on the screw that will induce a bonding between the implant surface and the bone implant, as well as application of drugs such as bisphosphonates locally in the screw hole to induce improved screw anchorage through their anticatabolic effect on the bone tissue. As failure of internal fixation of fractures in osteoporotic bone typically occurs through breakage of the bone that surrounds the implant, rather than the implant itself, an alternative strategy in osteoporotic bone can include augmentation of the bone around the screw. This is useful when screws alone are being used for fixation, as it will increase pull-out resistance, but also when conventional plates and screws are used. In angularly stable plate-screw systems, screw back-out is not a problem if the locking mechanism between the screws and the plate works. However, augmentation that will strengthen the bone around the screws can also be useful in conjunction with angle-stable plate-screw systems, as the augmentation will provide valuable support when subjected to loading that might cause cut-out. For many years conventional bone cement, polymethylmethacrylate (PMMA), has been used for augmentation, but due to side effects--including great difficulties if removal becomes necessary--the use of PMMA has never gained wide acceptance. With the introduction of bone substitutes, such as calcium phosphate cement, it has been shown that augmentation around screws can be achieved without the drawbacks seen with PMMA. When dealing with fixation of fractures in osteoporotic bone where screw stability might be inadequate, it therefore seems an attractive option to include bone substitutes for augmentation around screws as part of the armamentarium. Clinical studies now are needed to determine the indications in which bone augmentation with bone-graft substitutes (BGSs) would merit clinical usage. Copyright © 2011. Published by Elsevier Ltd.
Bioglass: A novel biocompatible innovation.
Krishnan, Vidya; Lakshmi, T
2013-04-01
Advancement of materials technology has been immense, especially in the past 30 years. Ceramics has not been new to dentistry. Porcelain crowns, silica fillers in composite resins, and glass ionomer cements have already been proved to be successful. Materials used in the replacement of tissues have come a long way from being inert, to compatible, and now regenerative. When hydroxyapatite was believed to be the best biocompatible replacement material, Larry Hench developed a material using silica (glass) as the host material, incorporated with calcium and phosphorous to fuse broken bones. This material mimics bone material and stimulates the regrowth of new bone material. Thus, due to its biocompatibility and osteogenic capacity it came to be known as "bioactive glass-bioglass." It is now encompassed, along with synthetic hydroxyapatite, in the field of biomaterials science known as "bioactive ceramics." The aim of this article is to give a bird's-eye view, of the various uses in dentistry, of this novel, miracle material which can bond, induce osteogenesis, and also regenerate bone.
Sogal, A; Tofe, A J
1999-09-01
Several commercial products are currently available for clinical application as bone graft substitutes. These products can be broadly classified into two categories: synthetic and natural. Bovine bone is a popular source for several of the natural bone substitutes. The availability of bovine derived xenogenic bone substitutes has made it possible to avoid traumatic and expensive secondary surgery to obtain autogenous bone once thought essential for effective bone replacement. While autogenous bone still remains the undisputed "gold standard" in bone grafting, the realization that bone requirement in several clinical applications is as effectively met by xenografts has lead to their widespread use. But the convenience of using xenografts is tempered by the possibility of disease transmission from cattle to humans. The recent incidents of bovine spongiform encephalopathies (BSE) in humans have underscored this likelihood. In this paper, we report a risk analysis performed to assess the possibility of such disease transmission from a commercially available bone graft substitute (BGS) that is popularly used in clinical dentistry. An extensive review of current literature on the status of risk assessment of BSE transmission was conducted, and two risk assessment models were identified as applicable to the present study. Risk assessment models developed by the German Federal Ministry of Health and by the Pharmaceutical Research and Manufacturers Association of America were applied to BGS. Results from the analyses conducted using both models showed that the risk of disease (BSE) transmission from BGS was negligible and could be attributed to the stringent protocols followed in sourcing and processing of the raw bovine bone used in the commercial product. Based on the risk analysis, it is evident that the risk of BSE infection from BGS is several orders of magnitude less than that posed by the risk of death related to, lightning, tornadoes, or similar remote events. However, this low risk can only be maintained as long as an effective and active risk management program is implemented in operations that involve processing xenogenic tissue for human use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lytkina, D. N., E-mail: darya-lytkina@yandex.ru; Shapovalova, Y. G., E-mail: elena.shapovalova@ro.ru; Rasskazova, L. A., E-mail: ly-2207@mail.ru
Relevance of the work is due to the need for new materials that are used in medicine (orthopedics, surgery, dentistry, and others) as a substitute for natural bone tissue injuries, fractures, etc. The aim of presented work is developing of a method of producing biocompatible materials based on polyesters of hydroxycarboxylic acids and calcium phosphate ceramic (hydroxyapatite, HA) with homogeneous distribution of the inorganic component. Bioactive composites based on poly-L-lactide (PL) and hydroxyapatite with homogeneous distribution were prepared. The results of scanning electron microscopy confirm homogeneous distribution of the inorganic filler in the polymer matrix. The positive effect of ultrasoundmore » on the homogeneity of the composites was determined. The rate of hydrolysis of composites was evaluated. The rate of hydrolysis of polylactide as an individual substance is 7 times lower than the rate of hydrolysis of the polylactide as a part of the composite. It was found that materials submarines HA composite and do not cause a negative response in the cells of the immune system, while contributing to anti-inflammatory cytokines released by cells.« less
Bioactive and inert dental glass-ceramics.
Montazerian, Maziar; Zanotto, Edgar Dutra
2017-02-01
The global market for dental materials is predicted to exceed 10 billion dollars by 2020. The main drivers for this growth are easing the workflow of dentists and increasing the comfort of patients. Therefore, remarkable research projects have been conducted and are currently underway to develop improved or new dental materials with enhanced properties or that can be processed using advanced technologies, such as CAD/CAM or 3D printing. Among these materials, zirconia, glass or polymer-infiltrated ceramics, and glass-ceramics (GCs) are of great importance. Dental glass-ceramics are highly attractive because they are easy to process and have outstanding esthetics, translucency, low thermal conductivity, high strength, chemical durability, biocompatibility, wear resistance, and hardness similar to that of natural teeth, and, in certain cases, these materials are bioactive. In this review article, we divide dental GCs into the following two groups: restorative and bioactive. Most restorative dental glass-ceramics (RDGCs) are inert and biocompatible and are used in the restoration and reconstruction of teeth. Bioactive dental glass-ceramics (BDGCs) display bone-bonding ability and stimulate positive biological reactions at the material/tissue interface. BDGCs are suggested for dentin hypersensitivity treatment, implant coating, bone regeneration and periodontal therapy. Throughout this paper, we elaborate on the history, processing, properties and applications of RDGCs and BDGCs. We also report on selected papers that address promising types of dental glass-ceramics. Finally, we include trends and guidance on relevant open issues and research possibilities. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 619-639, 2017. © 2016 Wiley Periodicals, Inc.
2012-12-27
Another super-valent substitution scheme involves either Nb (5þ) or Ta (5þ) on the 16a site ( Zr 4þ), that reduces the Li content and/or increases Li...substitution for Zr are as follows [20,22,23]: Ta$ Zr ¼ V0Li (3) Nb $ Zr ¼ V0Li (4) Likewise, super-valent substitution on the 24c (La 3þ) is...Substitution of La with Ce stabilizes the cubic LLZO garnet phase. < CeO2 precipitation at grain boundaries increases grain boundary resistance . < Super
[Current treatment situation and progress on bone defect of collapsed tibial plateau fractures].
Luo, Chang-qi; Fang, Yue; Tu, Chong-qi; Yang, Tian-fu
2016-02-01
Characteristics of collapsed tibial plateau fracture determines that the joint surface must remain anatomical reduction,line of force in tibial must exist and internal fixation must be strong. However, while renewing articular surface smoothness, surgeons have a lot of problems in dealing with bone defect under the joint surface. Current materials used for bone defect treatment include three categories: autologous bone, allograft bone and bone substitutes. Some scholars think that autologous bone grafts have a number of drawbacks, such as increasing trauma, prolonged operation time, the limited source, bone area bleeding,continuous pain, local infection and anesthesia,but most scholars believe that the autologous cancellous bone graft is still the golden standard. Allograft bone has the ability of bone conduction, but the existence of immune responses, the possibility of a virus infection, and the limited source of the allograft cannot meet the clinical demands. Likewise, bone substitutes have the problem that osteogenesis does not match with degradation in rates. Clinical doctors can meet the demand of the patient's bone graft according to patient's own situation and economic conditions.
Phase Composition and Disorder in La2(Sn,Ti)2O7 Ceramics: New Insights from NMR Crystallography.
Fernandes, Arantxa; McKay, David; Sneddon, Scott; Dawson, Daniel M; Lawson, Sebastian; Veazey, Richard; Whittle, Karl R; Ashbrook, Sharon E
2016-09-15
An NMR crystallographic approach, involving the combination of 119 Sn NMR spectroscopy, XRD, and DFT calculations, is demonstrated for the characterization of La 2 Sn 2- x Ti x O 7 ceramics. A phase change from pyrochlore (La 2 Sn 2 O 7 ) to a layered perovskite phase (La 2 Ti 2 O 7 ) is predicted (by radius ratio rules) to occur when x ≈ 0.95. However, the sensitivity of NMR spectroscopy to the local environment is able to reveal a significant two-phase region is present, extending from x = 1.8 to ∼0.2, with limited solid solution at the two extremes, in broad agreement with powder XRD measurements. DFT calculations reveal that there is preferential site substitution of Sn in La 2 Ti 2 O 7 , with calculated shifts for Sn substitution onto Ti1 and Ti2 sites (in the "bulk" perovskite layers) in better agreement with experiment than those for Ti3 and Ti4 ("edge" sites). Substitution onto these two sites also produces structural models with lower relative enthalpy. As the Sn content decreases, there is a further preference for substitution onto Sn2. In contrast, the relative intensities of the spectral resonances suggest that Ti substitution into the pyrochlore phase is random, although only a limited solid solution is observed (up to ∼7% Ti). DFT calculations predict very similar 119 Sn shifts for Sn substitution into the two proposed models of La 2 Ti 2 O 7 (monoclinic ( P 2 1 ) and orthorhombic ( Pna 2 1 )), indicating it is not possible to distinguish between them. However, the relative energy of the Sn-substituted orthorhombic phase was higher than that of substituted monoclinic cells, suggesting that the latter is the more likely structure.
Lin, Kaili; Liu, Yong; Huang, Hai; Chen, Lei; Wang, Zhen; Chang, Jiang
2015-06-01
The investigation of the bone regeneration ability, degradation and excretion of the grafts is critical for development and application of the newly developed biomaterials. Herein, the in vivo bone-regeneration, biodegradation and silicon (Si) excretion of the new type calcium silicate (CaSiO3, CS) bioactive ceramics were investigated using rabbit femur defect model, and the results were compared with the traditional β-tricalcium phosphate [β-Ca3(PO4)2, β-TCP] bioceramics. After implantation of the scaffolds in rabbit femur defects for 4, 8 and 12 weeks, the bone regenerative capacity and degradation were evaluated by histomorphometric analysis. While urine and some organs such as kidney, liver, lung and spleen were resected for chemical analysis to determine the excretion of the ionic products from CS implants. The histomorphometric analysis showed that the bioresorption rate of CS was similar to that of β-TCP in femur defect model, while the CS grafts could significantly stimulate bone formation capacity as compared with β-TCP bioceramics (P < 0.05). The chemical analysis results showed that Si concentration in urinary of the CS group was apparently higher than that in control group of β-TCP. However, no significant increase of the Si excretion was found in the organs including kidney, which suggests that the resorbed Si element is harmlessly excreted in soluble form via the urine. The present studies show that the CS ceramics can be used as safe, bioactive and biodegradable materials for hard tissue repair and tissue engineering applications.
In vivo evaluation of CaO-SiO2-P2O5-B2O3 glass-ceramics coating on Steinman pins.
Lee, Jae Hyup; Hong, Kug Sun; Baek, Hae-Ri; Seo, Jun-Hyuk; Lee, Kyung Mee; Ryu, Hyun-Seung; Lee, Hyun-Kyung
2013-07-01
Surface coating using ceramics improves the bone bonding strength of an implant. We questioned whether a new type of glass-ceramics (BGS-7) coating (CaO-SiO2 -P2 O5 -B2 O3 ) would improve the osseointegration of Steinman pins (S-pins) both biomechanically and histomorphometrically. An in vivo study was performed using rabbits by inserting three S-pins into each iliac bone. The pins were 2.2-mm S-pins with a coating of 30-μm-thick BGS-7 and 550-nm-thick hydroxyapatite (HA), as opposed to an S-pin without coating. A tensile strength test and histomorphometrical evaluation was performed. In the 2-week group, the BGS-7 implant showed a significantly higher tensile strength than the S-pin. In the 4- and 8-week groups, the BGS-7 implants had significantly higher tensile strengths than the S-pins and HA implants. The histomorphometrical study revealed that the BGS-7 implant had a significantly higher contact ratio than the S-pin and HA implants in the 4-week group. The biomechanical and histomorphometrical tests showed that the BGS-7 coating had superior bone bonding properties than the groups without the coating from the initial stage of insertion. The BGS-7 coating of an S-pin will enhance the bone bonding strength, and there might also be an advantage in human bone bonding. © 2013, Copyright the Authors. Artificial Organs © 2013, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Ha, Jooyeon; Ryu, Jiseung; Lee, Heesoo
2014-06-01
The doping effect of (Na0.5K0.5)NbO3 (NKN) as alternatives for rare-earth elements on the electrical properties of BaTiO3 has been investigated, in terms of their substitution behavior. The dielectric constant of a specimen with x = 0.05 was about 79% higher than that of pure BaTiO3, and the temperature coefficient of capacitance was satisfied by the X7R specification. The specimen with x = 0.05 showed the lowest tetragonality among the four compositions and had a fine grain size of <2 μm. Although the addition of NKN decreased the specimen's tetragonality, the electrical properties were enhanced by the formation of defect dipoles and conduction electrons, which resulted from an acceptor and donor substitution behavior. Through O K-edge near edge x-ray absorption fine structure spectroscopy, the practical substitution behavior was defined by the change in Ti 3d orbital states. The energy separation of the Ti 3d orbitals was more apparent with the specimen of x = 0.05, which is related to the donor level from the donor substitution of Nb5+ ion for Ti-sites. Therefore, the simultaneous substitution of Na+/K+ and Nb5+ ions into BaTiO3 can improve dielectric properties, based on the charge-transfer process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehler, E; Sterling, D; Higgins, P
Purpose: 3D printed phantoms constructed of multiple tissue approximating materials could be useful in both clinical and research aspects of radiotherapy. This work describes a 3D printed phantom constructed with tissue substitute plastics for both bone and soft tissue; air cavities were included as well. Methods: 3D models of an anonymized nasopharynx patient were generated for air cavities, soft tissues, and bone, which were segmented by Hounsfield Unit (HU) thresholds. HU thresholds were chosen to define air-to-soft tissue boundaries of 0.65 g/cc and soft tissue-to-bone boundaries of 1.18 g/cc based on clinical HU to density tables. After evaluation of severalmore » composite plastics, a bone tissue substitute was identified as an acceptable material for typical radiotherapy x-ray energies, composed of iron and PLA plastic. PET plastic was determined to be an acceptable soft tissue substitute. 3D printing was performed on a consumer grade dual extrusion fused deposition model 3D printer. Results: MVCT scans of the 3D printed heterogeneous phantom were acquired. Rigid image registration of the patient and the 3D printed phantom scans was performed. The average physical density of the soft tissue and bone regions was 1.02 ± 0.08 g/cc and 1.39 ± 0.14 g/cc, respectively, for the patient kVCT scan. In the 3D printed phantom MVCT scan, the average density of the soft tissue and bone was 1.01 ± 0.09 g/cc and 1.44 ± 0.12 g/cc, respectively. Conclusion: A patient specific phantom, constructed of heterogeneous tissue substitute materials was constructed by 3D printing. MVCT of the 3D printed phantom showed realistic tissue densities were recreated by the 3D printing materials. Funding provided by intra-department grant by University of Minnesota Department of Radiation Oncology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muraleedharan, K.; Rambabu, D.
1987-12-01
Substitution of Ag for Cu in the high-T/sub c/ ceramic superconductor La/sub 1.8/Sr/sub 0.2/CuO/sub 4/ has been found to reduce T/sub c/. The infrared absorption spectra of these superconducting systems show that the vibrational mode, which disappears at xapprox.0.15 for La/sub 2-//sub x/Sr/sub x/CuO/sub 4/ appears at a reduced frequency in the Ag-substituted systems. It is argued that the local distortions around the Ag sites result in both the reduction of T/sub c/ as well as the appearance of the absorption peak at 630 cm/sup -1/.
Guo, Xiaodong; Zheng, Qixin; Kulbatski, Iris; Yuan, Quan; Yang, Shuhua; Shao, Zengwu; Wang, Hong; Xiao, Baojun; Pan, Zhengqi; Tang, Shuo
2006-09-01
Large segmental bone defect repair remains a clinical and scientific challenge with increasing interest focused on combining gene transfer with tissue engineering techniques. Basic fibroblast growth factor (bFGF) is one of the most prominent osteogenic growth factors that has the potential to accelerate bone healing by promoting the proliferation and differentiation of mesenchymal stem cells (MSCs) and the regeneration of capillary vasculature. However, the short biological half-lives of growth factors may impose severe restraints on their clinical usefulness. Gene-based delivery systems provide a better way of achieving a sustained high concentration of growth factors locally in the defect and delivering a more biologically active product than that achieved by exogenous application of recombinant proteins. The objective of this experimental study was to investigate whether the bFGF gene modified MSCs could enhance the repair of large segmental bone defects. The pcDNA3-bFGF gene transfected MSCs were seeded on biodegradable porous beta tricalcium phosphate (beta-TCP) ceramics and allografted into the 15 mm critical-sized segmental bone defects in the radius of 18 New Zealand White rabbits. The pcDNA3 vector gene transfected MSCs were taken as the control. The follow-up times were 2, 4, 6, 8, 10 and 12 weeks. Scanning electron microscopic, roentgenographic, histologic and immunohistological studies were used to assess angiogenesis and bone regeneration. In vitro, the proliferation and differentiation of bFGF gene transfected MSCs were more active than that of the control groups. In vivo, significantly more new bone formation accompanied by abundant active capillary regeneration was observed in pores of the ceramics loaded with bFGF gene transfected MSCs, compared with control groups. Transfer of gene encoding bFGF to MSCs increases their osteogenic properties by enhancing capillary regeneration, thus providing a rich blood supply for new bone formation. This new bFGF gene enhanced tissue engineering strategy could be of potential benefit to accelerate bone healing, especially in defects caused by atrophic nonunion and avascular necrosis of the femoral head.
Kojima, Hiroko; Uemura, Toshimasa
2005-01-28
Core binding factor alpha-1 (Cbfa1), known as an essential transcription factor for osteogenic lineage, has two major N-terminal isoforms: Pebp2alphaA and Til-1. To study the roles of these isoforms in bone regeneration, we applied an adenoviral vector carrying their genes to transduce primary osteoprogenitor cells in vitro and in vivo. Overexpression of the two isoforms induced rapid and marked osteoblast differentiation, with Til-1 being more effective in vitro, by examination of the alkaline phosphatase activity, calcium content, and Alizarin red staining. Til-1 overexpressing cells/porous ceramic composites were transplanted into subcutaneous and bone defect sites in Fischer rats (cultured bone transplantation model) and markedly affected in vivo bone formation and osteoblast markers. The results demonstrated that the reconstitution of bone tissues, such as cortical bone and trabecular bone was accelerated by implantation of Til-1 overexpressing cells/porous ceramic composites. Moreover, the new bone formation by Til-1 overexpression appeared to reflect replacement of new bone within the implant boundaries. To ascertain whether implanted Cbfa1 overexpressing cells could differentiate into osteogenic cells to create bone or whether it stimulated the surrounding recipient tissue to regenerate bone, implanted male donor cells were visualized by fluorescent in situ hybridization analysis. The proportion of implanted cells in the presumptive bone forming region was over 80% and did not change throughout from 3 days to 8 weeks after implantation. These findings suggested that the newly formed bone in the porous area of the scaffold is mostly produced by the implanted donor cells or their derived cells, effectively by Til-1 overexpression.
Jazedje, Tatiana; Bueno, Daniela F; Almada, Bruno V P; Caetano, Heloisa; Czeresnia, Carlos E; Perin, Paulo M; Halpern, Silvio; Maluf, Mariangela; Evangelista, Lucila P; Nisenbaum, Marcelo G; Martins, Marília T; Passos-Bueno, Maria R; Zatz, Mayana
2012-06-01
We have recently reported that human fallopian tubes, which are discarded during surgical procedures of women submitted to sterilization or hysterectomies, are a rich source of human fallopian tube mesenchymal stromal cells (htMSCs). It has been previously shown that human mesenchymal stromal cells may be useful in enhancing the speed of bone regeneration. This prompted us to investigate whether htMSCs might be useful for the treatment of osteoporosis or other bone diseases, since they present a pronounced capacity for osteogenic differentiation in vitro. Based on this prior knowledge, our aim was to evaluate, in vivo, the osteogenic capacity of htMSCs to regenerate bone through an already described xenotransplantation model: nonimmunosuppressed (NIS) rats with cranial defects. htMSCs were obtained from five 30-50 years old healthy women and characterized by flow cytometry and for their multipotenciality in vitro capacity (osteogenic, chondrogenic and adipogenic differentiations). Two symmetric full-thickness cranial defects on each parietal region of seven NIS rats were performed. The left side (LS) of six animals was covered with CellCeram (Scaffdex)-a bioabsorbable ceramic composite scaffold that contains 60% hydroxyapatite and 40% β-tricalciumphosphate-only, and the right side (RS) with the CellCeram and htMSCs (10(6) cells/scaffold). The animals were euthanized at 30, 60 and 90 days postoperatively and cranial tissue samples were taken for histological analysis. After 90 days we observed neobone formation in both sides. However, in animals euthanized 30 and 60 days after the procedure, a mature bone was observed only on the side with htMSCs. PCR and immunofluorescence analysis confirmed the presence of human DNA and thus that human cells were not rejected, which further supports the imunomodulatory property of htMSCs. In conclusion, htMSCs can be used successfully to enhance bone regeneration in vivo, opening a new field for future treatments of osteoporosis and bone reconstruction.
Perić Kačarević, Zeljka; Kavehei, Faraz; Houshmand, Alireza; Franke, Jörg; Smeets, Ralf; Rimashevskiy, Denis; Wenisch, Sabine; Schnettler, Reinhard; Jung, Ole; Barbeck, Mike
2018-04-01
Xenogeneic bone substitute materials are widely used in oral implantology. Prior to their clinical use, purification of the former bone tissue has to be conducted to ensure the removal of immunogenic components and pathogens. Different physicochemical methods are applied for purification of the donor tissue, and temperature treatment is one of these methods. Differences in these methods and especially the application of different temperatures for purification may lead to different material characteristics, which may influence the tissue reactions to these materials and the related (bone) healing process. However, little is known about the different material characteristics and their influences on the healing process. Thus, the aim of this mini-review is to summarize the preparation processes and the related material characteristics, safety aspects, tissue reactions, resorbability and preclinical and clinical data of two widely used xenogeneic bone substitutes that mainly differ in the temperature treatment: sintered (cerabone ® ) and non-sintered (Bio-Oss ® ) bovine-bone materials. Based on the summarized data from the literature, a connection between the material-induced tissue reactions and the consequences for the healing processes are presented with the aim of translation into their clinical application.
Mozzati, Marco; Gallesio, Giorgia; Staiti, Giorgio; Iezzi, Giovanna; Piattelli, Adriano; Mortellaro, Carmen
2017-06-01
The aim of the present study was to evaluate the efficacy of biomimetic composite bone substitute composed of equine collagen I and Mg-hydroxyapatite in improving socket preservation after tooth extraction in humans. Thirty-two patients were subjected to a single tooth extraction, performed without elevation of the full-thickness flap. In each patient, socket was grafted with the bone substitute and specimens were retrieved 2 months after surgery and processed for histological observations. The clinical outcome variables were healing index, visual analog score for pain, postsurgery complications, and patient satisfaction evaluated through a questionnaire. No adverse reaction or infection occurred, in which healing index averaged 5.8 (range 4-7). Pain scores were lower. The patients' questionnaire outcomes were unanimously in favor of the test treatment. At low-power magnification, it was possible to see a portion of native bone with small marrow spaces and many areas of bone remodeling. At high-power magnification, it could be observed that small newly formed trabeculae originated from the preexisting bone and bone spicules in the middle of the defect. Grafting the postextraction socket with composite bone substitute may improve the healing process by accelerating socket closure and tissue maturation. Such a product demonstrated excellent biocompatibility as no inflammatory reaction could be detected histologically and was well accepted by patients.
Kruse, A; Jung, R E; Nicholls, F; Zwahlen, R A; Hämmerle, C H F; Weber, F E
2011-05-01
A comparison of synthetic hydroxyapatite/silica oxide, xenogenic hydroxyapatite-based bone substitute materials with empty control sites in terms of bone regeneration enhancement in a rabbit calvarial four non-critical-sized defect model. In each of six rabbits, four bicortical calvarial bone defects were generated. The following four treatment modalities were randomly allocated: (1) empty control site, (2) synthetic hydroxyapatite/silica oxide-based (HA/SiO) test granules, (3) xenogenic hydroxyapatite -based granules, (4) synthetic hydroxyapatite/silica oxide -based (HA/SiO) test two granules. The results of the latter granules have not been reported due to their size being three times bigger than the other two granule types. After 4 weeks, the animals were sacrificed and un-decalcified sections were obtained for histological analyses. For statistical analysis, the Kruskal-Wallis test was applied (P<0.05). Histomorphometric analysis showed an average area fraction of newly formed bone of 12.32±10.36% for the empty control, 17.47±6.42% for the xenogenic hydroxyapatite -based granules group, and 21.2±5.32% for the group treated with synthetic hydroxyapatite/silica oxide -based granules. Based on the middle section, newly formed bone bridged the defect to 38.33±37.55% in the empty control group, 54.33±22.12% in the xenogenic hydroxyapatite -based granules group, and to 79±13.31% in the synthetic hydroxyapatite/silica oxide -based granules group. The bone-to-bone substitute contact was 46.38±18.98% for the xenogenic and 59.86±14.92% for the synthetic hydroxyapatite/silica oxide-based granules group. No significant difference in terms of bone formation and defect bridging could be detected between the two bone substitute materials or the empty defect. There is evidence that the synthetic hydroxyapatite/silica oxide granules provide comparable results with a standard xenogenic bovine mineral in terms of bone formation and defect bridging in non-critical size defects. © 2010 John Wiley & Sons A/S.
NASA Astrophysics Data System (ADS)
Bishnoi, Bhagwanti Ben S.
In view of the processing and environmental issues pertaining to lead based ferroelectric materials, investigations on lead free ferroelectrics are carried intensively in recent years. These materials are interesting because, they are flexible with respect to structural changes and functional properties. These materials have potential device applications such as capacitors, sensors, actuators, and memory storage and microwave devices. This thesis is an attempt to elucidate the effect of substitution of isovalent ions (Sr, Ca) at the 'A' site of Hexagonal structured Barium Magnesium Niobate Ba(Mgl/3Nb 2/3)O3 (BMN) as well as effect of simultaneous substitution of divalent ions (Co2+ and Cu2+) on the 'B'-site' of Ba(Mg1/3Nb2/3)O3 (BMN) and Sr(Mg 1/3Nb2/3)O3 (SMN). Their structural, morphological, dielectric, impedance and optical properties are investigated. The XRD study on the ceramic compositions (SMN) showed single phase monoclinic hexagonal perovskite structure at room temperature. The SEM micrograph shows that the grains are uniformly distributed throughout the surface and the average grain size decreases with the substitution of divalent ion doping in Sr(Mg 1/3Nb2/3)O3 ceramic. The diffusivity of ceramics increases with increase in divalent ions substitution. The dielectric study confirmed that the relaxor nature is introduced in the Barium Niobate on replacement by other divalent ions at the A- or B'-site. Among various compositions in Sr(Cu1/3Nb2/3)O3 we obtained most promising dielectric properties. The impedance and modulus spectroscopy were employed to evaluate the different electrical properties of the grain and grain boundary of the ceramics. Ac Conductivity shows the two types of hopping conduction mechanism in frequency exponent vs temperature plots after the divalent ions replacement. The optical band gaps were calculated from UV-Visible spectroscopy ceramic suggested the presence of intermediately energy levels within the band gap. The single phase thin films of various compositions with A- and B'-site substitutions were successfully made using Pulsed laser deposition technique. Over all properties of films are identical to the respective bulk compositions except for some of the samples which exhibited relaxor behaviour only in the film form. Compared to O7+ irradiation the Ag15+ irradiation due to type of defects it created is more effective in reducing lattice strain induced dielectric losses along with marginal loss of dielectric constant. Significant increase in dielectric constant with low loss, on O 7+ as well as Ag15+ ion irradiation, may enhance the electro-optical properties which in turn increase compounds tuneablility for device applications.
Kotsakis, Georgios A; Joachim, Frederic P C; Saroff, Stephen A; Mahesh, Lanka; Prasad, Hari; Rohrer, Michael D
2014-01-01
The objective of this study was to evaluate bone regeneration in 24 sockets grafted with a calcium phosphosilicate putty alloplastic bone substitute. A core was obtained from 17 sockets prior to implant placement for histomorphometry at 5 to 6 months postextraction. Radiographic analysis during the same postextraction healing period showed radiopaque tissue in all sockets. Histomorphometric analysis revealed a mean vital bone content of 31.76% (± 14.20%) and residual graft content of 11.47% (± 8.99%) after a mean healing period of 5.7 months. The high percentage of vital bone in the healed sites in combination with its timely absorption rate suggest that calcium phosphosilicate putty can be a reliable choice for osseous regeneration in extraction sockets.
NASA Astrophysics Data System (ADS)
Shrivastava, Pragya; Dalai, Sridhar; Sudera, Prerna; Sivam, Santosh Param; Vijayalakshmi, S.; Sharma, Pratibha
2013-02-01
With an increasing demand of biocompatible bone substitutes for the treatment of bone diseases and bone tissue regeneration, bioactive glass composites are being tested to improvise the osteoconductive as well as osteoinductive properties. Nanobioactive glass (nBG) composites, having composition of SiO2 70 mol%, CaO 26 mol % and P2O5 4 mol% were prepared by Freeze drying method using PEG-PPG-PEG co-polymer. Polymer addition improves the mechanical strength and porosity of the scaffold of nBG. Nano Bioactive glass composites upon implantation undergo specific reactions leading to the formation of crystalline hydroxyapatite (HA). This is tested in vitro using Simulated Body Fluid (SBF). This high strength hydroxyapatite (HA) layer acts as osteoconductive in cellular environment, by acting as mineral base of bones, onto which new bone cells proliferate leading to new bone formation. Strength of the nBG composites as well as HA is in the range of cortical and cancellous bone, thus proving significant for bone tissue regeneration substitutes.
Cermets from molten metal infiltration processing
Landingham, Richard Lee
2012-09-18
New cermets with improved properties and applications are provided. These new cermets have lower density and/or higher hardness than B4C cermet. By incorporating other new ceramics into B4C powders or as a substitute for B4C, lower densities and/or higher hardness cermets result. The ceramic powders have much finer particle size than those previously used which significantly reduces grain size of the cermet microstructure and improves the cermet properties.
Cermets from molten metal infiltration processing
Landingham, Richard L.
2013-09-10
New cermets with improved properties and applications are provided. These new cermets have lower density and/or higher hardness than B4C cermet. By incorporating other new ceramics into B4C powders or as a substitute for B4C, lower densities and/or higher hardness cermets result. The ceramic powders have much finer particle size than those previously used which significantly reduces grain size of the cermet microstructure and improves the cermet properties.
Influence of interface point defect on the dielectric properties of Y doped CaCu3Ti4O12 ceramics
NASA Astrophysics Data System (ADS)
Deng, Jianming; Sun, Xiaojun; Liu, Saisai; Liu, Laijun; Yan, Tianxiang; Fang, Liang; Elouadi, Brahim
2016-04-01
CaCu3Ti4-xYxO12 (0≤x≤0.12) ceramics were fabricated with conventional solid-state reaction method. Phase structure and microstructure of prepared ceramics were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The impedance and modulus tests both suggested the existence of two different relaxation behavior, which were attributed to bulk and grain boundary response. In addition, the conductivity and dielectric permittivity showed a step-like behavior under 405K. Meanwhile, frequency independence of dc conduction became dominant when above 405K. In CCTO ceramic, rare earth element Y3+ ions as an acceptor were used to substitute Ti sites, decreasing the concentration of oxygen vacancy around grain-electrode and grain boundary. The reason to the reduction of dielectric behavior in low frequencies range was associated with the Y doping in CCTO ceramic.
Yang, Yi; Wu, Jiang; Jin, Gele; Li, Liang; Li, Zhongwei; Li, Cao
2015-01-01
Ceramic and polymer composite scaffolds are widely used in tissue engineering for bone tissue regeneration. Composite of β-tricalcium phosphate (β-TCP) and poly L-lactic acid (PLLA), due to its biocompatibility and biodegradability, is widely used in bioengineering. However, optimal ratio, porosity and pore size of this kind of scaffolds were not very clear yet. We cultured osteoblastic induced rMSCs on β-TCP/PLLA scaffolds to investigate the optimum construction, which owned better properties for supporting cells growth, proliferation and differentiation. A total of 24 mice were divided into three groups: rMSCs + β-TCP/PLLA, osteoblastic rMSCs + β-TCP/PLLA and β-TCP/PLLA without cells. 8 rude mice were implanted with rMSCs + β-TCP/PLLA in the left thighs and β-TCP/PLLA without cells in the right thighs. 8 rude mice were implanted with osteoblastic rMSCs + β-TCP/PLLA in the left thighs and the same treatments in the right thighs as the above. After 8 and 12 weeks, the mice were sacrificed and implants with the surrounding tissues were harvested together. Paraffin sections were got and HE stain and Masson-Goldner stain were employed to observe the ectopic bone formation. The scaffolds of β-TCP/PLLA = 2:1 significantly increased osteocalcin production of the cells. In addition, scaffolds with NaCl = 70 wt%, pore size 200~450 μm showed better compatibility to these seeding cells. A significantly larger area of bone formation in the osteoblastic rMSCs and β-TCP/PLLA composite than that in rMSCs/scaffold and in the scaffold without cells in vivo. compounds of osteoblastic induced rMSCs and the scaffold with β-TCP/PLLA = 2:1, NaCl = 70 wt%, pore size = 200-450 μm had good properties as a kind of bone substitute.
Can we improve fixation and outcomes? Use of bone substitutes.
Moroni, Antonio; Larsson, Sune; Hoang Kim, Amy; Gelsomini, Letizia; Giannoudis, Peter V
2009-07-01
Hip fractures secondary to osteoporosis are common in the elderly. Stabilizing these fractures until union is achieved is a challenge due to poor bone stock and insufficient purchase of the implant to the bone. The reported high rate of complications has prompted extensive research in the development of fixation techniques. Furthermore, manipulation of both the local fracture environment in terms of application of growth factors, scaffolds, and mesenchymal cells and the systemic administration of agents promoting bone formation and bone strength has been considered as a treatment option with promising results. There are only a few evidence-based studies reporting on fixation augmentation techniques. This article reports on the efficacy of bone graft substitutes for the fixation of hip fractures, in particular calcium phosphates, which have been used as granules, cements, and implant coatings.
Coralline hydroxyapatite bone graft substitutes.
Elsinger, E C; Leal, L
1996-01-01
The authors present a review of the various bone grafts currently available with special attention to coral bone grafts. Several of the benefits of coralline hydroxyapatite bone graft substitutes, such as safety and biocompatibility, will be addressed in this article, part of an ongoing investigation of coral bone grafts used in triple arthrodesis procedures. To date, eight cases have been performed. In seven cases, granular chips were employed to pack the subtalar joint. The final case, presented in this article, represents a 26-year-old male who, 2 years previously, sustained a calcaneal fracture with resultant shortening along the lateral column. A coralline hydroxyapatite block was used at the calcaneocuboid joint to achieve distraction. Clinically, the patient is progressing well at 10 months postoperatively. Radiographically, one can still clearly appreciate the margins of the bone graft at 5 months.
Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones.
Ignjatović, Nenad; Ajduković, Zorica; Savić, Vojin; Najman, Stevo; Mihailović, Dragan; Vasiljević, Perica; Stojanović, Zoran; Uskoković, Vuk; Uskoković, Dragan
2013-02-01
Indications exist that paramagnetic calcium phosphates may be able to promote regeneration of bone faster than their regular, diamagnetic counterparts. In this study, analyzed was the influence of paramagnetic cobalt-substituted hydroxyapatite nanoparticles on osteoporotic alveolar bone regeneration in rats. Simultaneously, biocompatibility of the material was tested in vitro, on osteoblastic MC3T3-E1 and epithelial Caco-2 cells in culture. The material was shown to be biocompatible and nontoxic when added to epithelial monolayers in vitro, while it caused a substantial decrease in the cell viability as well as deformation of the cytoskeleton and cell morphology when incubated with the osteoblastic cells. In the course of 6 months after the implantation of the material containing different amounts of cobalt, ranging from 5 to 12 wt%, in the osteoporotic alveolar bone of the lower jaw, the following parameters were investigated: histopathological parameters, alkaline phosphatase and alveolar bone density. The best result in terms of osteoporotic bone tissue regeneration was observed for hydroxyapatite nanoparticles with the largest content of cobalt ions. The histological analysis showed a high level of reparatory ability of the nanoparticulate material implanted in the bone defect, paralleled by a corresponding increase in the alveolar bone density. The combined effect of growth factors from autologous plasma admixed to cobalt-substituted hydroxyapatite was furthermore shown to have a crucial effect on the augmented osteoporotic bone regeneration upon the implantation of the biomaterial investigated in this study.
Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones
Ignjatović, Nenad; Ajduković, Zorica; Savić, Vojin; Najman, Stevo; Mihailović, Dragan; Vasiljević, Perica; Stojanović, Zoran; Uskoković, Vuk; Uskoković, Dragan
2012-01-01
Indications exist that paramagnetic calcium phosphates may be able to promote regeneration of bone faster than their regular, diamagnetic counterparts. In this study, analyzed was the influence of paramagnetic cobalt-substituted hydroxyapatite nanoparticles on osteoporotic alveolar bone regeneration in rats. Simultaneously, biocompatibility of the material was tested in vitro, on osteoblastic MC3T3-E1 and epithelial Caco-2 cells in culture. The material was shown to be biocompatible and nontoxic when added to epithelial monolayers in vitro, while it caused a substantial decrease in the cell viability as well as deformation of the cytoskeleton and cell morphology when incubated with the osteoblastic cells. In the course of six months after the implantation of the material containing different amounts of cobalt, ranging from 5 – 12 wt%, in the osteoporotic alveolar bone of the lower jaw, the following parameters were investigated: histopathological parameters, alkaline phosphatase and alveolar bone density. The best result in terms of osteoporotic bone tissue regeneration was observed for hydroxyapatite nanoparticles with the largest content of cobalt ions. The histological analysis showed a high level of reparatory ability of the nanoparticulate material implanted in the bone defect, paralleled by a corresponding increase in the alveolar bone density. The combined effect of growth factors from autologous plasma admixed to cobalt-substituted hydroxyapatite was furthermore shown to have a crucial effect on the augmented osteoporotic bone regeneration upon the implantation of the biomaterial investigated in this study. PMID:23090835
1992-02-01
467 Table 4 Personal Items from Shovel Tests, 160R130. SURF SURF SURF N15 N5 NO NO $5 S5 1 2 3 W20 El5 E20 W10 E20 EO Bone button, Type B-5 Ceramic...Table 4 . Personal Items from Shovel Tests, 160R130. S15 S20 S20 S25 S25 S30 S30 S30 S32.5 E5 E35 E20 E50 E25 E50 E35 E20 E35 Bone button, Type B-5...1 1 1 7 1 471 Table 4 Personal Items from Shovel Tests, 160R130. S30 S34 S35 S45 S50 TOTAL El0 E35 E30 E30 E55 Bone button, Type B-5 1 1 Ceramic
From brittle to ductile fracture of bone
NASA Astrophysics Data System (ADS)
Peterlik, Herwig; Roschger, Paul; Klaushofer, Klaus; Fratzl, Peter
2006-01-01
Toughness is crucial to the structural function of bone. Usually, the toughness of a material is not just determined by its composition, but by the ability of its microstructure to dissipate deformation energy without propagation of the crack. Polymers are often able to dissipate energy by viscoplastic flow or the formation of non-connected microcracks. In ceramics, well-known toughening mechanisms are based on crack ligament bridging and crack deflection. Interestingly, all these phenomena were identified in bone, which is a composite of a fibrous polymer (collagen) and ceramic nanoparticles (carbonated hydroxyapatite). Here, we use controlled crack-extension experiments to explain the influence of fibre orientation on steering the various toughening mechanisms. We find that the fracture energy changes by two orders of magnitude depending on the collagen orientation, and the angle between collagen and crack propagation direction is decisive in switching between different toughening mechanisms.
NASA Astrophysics Data System (ADS)
Baker, Kevin C.
Numerous clinical situations necessitate the use of bone graft materials to enhance bone formation. While autologous and allogenic materials are considered the gold standards in the setting of fracture healing and spine fusion, their disadvantages, which include donor site morbidity and finite supply have stimulated research and development of novel bone graft substitute materials. Among the most promising candidate materials are resorbable polymers, composed of lactic and/or glycolic acid. While the characteristics of these materials, such as predictable degradation kinetics and biocompatibility, make them an excellent choice for bone graft substitute applications, they lack mechanical strength when synthesized with the requisite porous morphology. As such, porous resorbable polymers are often reinforced with filler materials. In the presented work, we describe the use of supercritical carbon dioxide (scCO2) processing to create porous resorbable polymeric constructs reinforced by nanostructured, organically modified Montmorillonite clay (nanoclay). scCO2 processing simultaneously disperses the nanoclay throughout the polymeric matrix, while imparting a porous morphology to the construct conducive to facilitating cellular infiltration and neoangiogenesis, which are necessary components of bone growth. With the addition of as little as 2.5wt% of nanoclay, the compressive strength of the constructs nearly doubles putting them on par with human cortico-cancellous bone. Rheological measurements indicate that the dominant mode of reinforcement of the nanocomposite constructs is the restriction of polymer chain mobility. This restriction is a function of the positive interaction between polymer chains and the nanoclay. In vivo inflammation studies indicate biocompatibility of the constructs. Ectopic osteogenesis assays have determined that the scCO2-processed nanocomposites are capable of supporting growth-factor induced bone formation. scCO 2-processed resorbable polymer nanocomposites composed of resorbable polymers and nanocaly exhibit physical, mechanical and biologic properties that make them excellent candidate materials for structural bone graft substitute applications.
Evaluation of suitable porosity for sintered porous {beta}-tricalcium phosphate as a bone substitute
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jin-Hong; Bae, Ji-Yong; Shim, Jaebum
2012-09-15
Structural and mechanical characterization is performed for sintered porous beta tricalcium phosphate ({beta}-TCP) to determine the appropriate porosity for use as a bone substitute. Four different types of porous {beta}-TCP specimen with different porosities are fabricated through a sintering process. For structural characterization, scanning electron microscopy and a Microfocus X-ray computed tomography system are used to investigate the pore openings on the specimen's surface, pore size, pore distribution, and pore interconnections. Compression tests of the specimens are performed, and mechanical properties such as the elastic modulus and compressive strength are obtained. Also, the geometric shape and volume of the {beta}-TCPmore » around the contact region of two pores, which need to be initially resolved after implantation in order to increase the size of the pore openings, are evaluated through simple calculations. The results show that porous {beta}-TCP with 42.1% porosity may be a suitable bone substitute candidate in terms of sustaining external loads, and inducing and cultivating bone cells. - Highlights: Black-Right-Pointing-Pointer Structural and mechanical characterization was performed for sintered porous {beta}-TCP specimens. Black-Right-Pointing-Pointer For structural characterization, SEM and Microfocus X-ray CT system were used. Black-Right-Pointing-Pointer For mechanical characterization, compression tests were performed. Black-Right-Pointing-Pointer Porous {beta}-TCP with 42.1% porosity may be a suitable bone substitute.« less
Organic-Inorganic Composites Toward Biomaterial Application.
Miyazaki, Toshiki; Sugawara-Narutaki, Ayae; Ohtsuki, Chikara
2015-01-01
Bioactive ceramics are known to exhibit specific biological affinities and are able to show direct integration with surrounding bone when implanted in bony defects. However, their inadequate mechanical properties, such as low fracture toughness and high Young's modulus in comparison to natural bone, limit their clinical application. Bone is a kind of organic-inorganic composite where apatite nanocrystals are precipitated onto collagen fibre networks. Thus, one way to address these problems is to mimic the natural composition of bone by using bioactive ceramics via material designs based on organic-inorganic composites. In this chapter, the current research on the development of the various organic-inorganic composites designed for biomaterial applications has been reviewed. Various compounds such as calcium phosphate, calcium sulphate and calcium carbonate can be used for the inorganic phases to design composites with the desired mechanical and biological properties of bone. Not only classical mechanical mixing but also coating of the inorganic phase in aqueous conditions is available for the fabrication of such composites. Organic modifications using various polymers enable the control of the crystalline structure of the calcium carbonate in the composites. These approaches on the fabrication of organic-inorganic composites provide important options for biomedical materials with novel functions. © 2015 S. Karger AG, Basel.
Three-Dimensional Printing of Hollow-Struts-Packed Bioceramic Scaffolds for Bone Regeneration.
Luo, Yongxiang; Zhai, Dong; Huan, Zhiguang; Zhu, Haibo; Xia, Lunguo; Chang, Jiang; Wu, Chengtie
2015-11-04
Three-dimensional printing technologies have shown distinct advantages to create porous scaffolds with designed macropores for application in bone tissue engineering. However, until now, 3D-printed bioceramic scaffolds only possessing a single type of macropore have been reported. Generally, those scaffolds with a single type of macropore have relatively low porosity and pore surfaces, limited delivery of oxygen and nutrition to surviving cells, and new bone tissue formation in the center of the scaffolds. Therefore, in this work, we present a useful and facile method for preparing hollow-struts-packed (HSP) bioceramic scaffolds with designed macropores and multioriented hollow channels via a modified coaxial 3D printing strategy. The prepared HSP scaffolds combined high porosity and surface area with impressive mechanical strength. The unique hollow-struts structures of bioceramic scaffolds significantly improved cell attachment and proliferation and further promoted formation of new bone tissue in the center of the scaffolds, indicating that HSP ceramic scaffolds can be used for regeneration of large bone defects. In addition, the strategy can be used to prepare other HSP ceramic scaffolds, indicating a universal application for tissue engineering, mechanical engineering, catalysis, and environmental materials.
Zhou, Changchun; Ye, Xingjiang; Fan, Yujiang; Ma, Liang; Tan, Yanfei; Qing, Fangzu; Zhang, Xingdong
2014-09-01
A three-level hierarchical calcium phosphate/collagen/hydroxyapatite (CaP/Col/HAp) scaffold for bone tissue engineering was developed using biomimetic synthesis. Porous CaP ceramics were first prepared as substrate materials to mimic the porous bone structure. A second-level Col network was then composited into porous CaP ceramics by vacuum infusion. Finally, a third-level HAp layer was achieved by biomimetic mineralization. The three-level hierarchical biomimetic scaffold was characterized using scanning electron microscopy, energy-dispersive x-ray spectra, x-ray diffraction and Fourier transform infrared spectroscopy, and the mechanical properties of the scaffold were evaluated using dynamic mechanical analysis. The results show that this scaffold exhibits a similar structure and composition to natural bone tissues. Furthermore, this three-level hierarchical biomimetic scaffold showed enhanced mechanical strength compared with pure porous CaP scaffolds. The biocompatibility and osteoinductivity of the biomimetic scaffolds were evaluated using in vitro and in vivo tests. Cell culture results indicated the good biocompatibility of this biomimetic scaffold. Faster and increased bone formation was observed in these scaffolds following a six-month implantation in the dorsal muscles of rabbits, indicating that this biomimetic scaffold exhibits better osteoinductivity than common CaP scaffolds.
Intensive Survey at 11-Jd-126, Jo Daviess County, Illinois. Volume 2. Data Sheets.
1983-07-01
wes-t- of_(Thtum a CONTENTS: Ceramics _____ Lithics- 4-pieces (1 shattgr, _3_ lakesfi q) Rough Rock-________ __ Bone 1 bone fragment __ Charcoal...Historic I historic ceramic iOther__ ___________ Washed fly M.0. /M. T.,/J. C. Sorted ByJ. C./M.T./M. O./P. Labeled By- M.O. Date 10/6/82 Date___ 10/6/82...5it.cU 6 I: I 1. . (3l 1: 1 t- y 1 P L _ ) .11 0/612 t" ) 1 L*Tot N:tr 29-it--~~ ~- o’. l.-).- I)"se ’ 10 ’r , c1 Sorte Byrj * Da e2 3 2 Vst 0 821f Co
[Mechanical strength and mechano-compatibility of tissue-engineered bones].
Tanaka, Shigeo
2016-01-01
Current artificial bones made of metals and ceramics may be replaced around a decade after implantation due to its low durability, which is brought on by a large difference from the host bone in mechanical properties, i.e., low mechano-compatibility. On the other hand, tissue engineering could be a solution with regeneration of bone tissues from stem cells in vitro. However, there are still some problems to realize exactly the same mechanical properties as those of real bone. This paper introduces the technical background of bone tissue engineering and discusses possible methods for installation of mechano-compatibility into a regenerative bone. At the end, future directions toward the realization of ideal mechano-compatible regenerative bone are proposed.
Spalthoff, S; Jehn, P; Zimmerer, R; Möllmann, U; Gellrich, N-C; Kokemueller, H
2015-06-01
We previously generated viable heterotopic bone in living animals and found that 3 months of intrinsic vascularization improved bone formation and matrix degeneration. In this study, we varied the pre-vascularization time to determine its effects on the kinetics of bone formation and ceramic degradation. Two 25-mm-long cylindrical β-tricalcium phosphate scaffolds were filled intraoperatively with autogenous iliac crest bone marrow and implanted in the latissimus dorsi muscle in six sheep. To examine the effect of axial perfusion, one scaffold was surgically implanted with (group C) or without (group D) a central vascular bundle. All animals were sacrificed 6 months postoperatively and histomorphometric measurements were compared to previous results. All implanted scaffolds exhibited ectopic bone growth. However, bone growth was not significantly different between the 3-month (group A, 0.191±0.097 vs. group C, 0.237±0.075; P=0.345) and 6-month (group B, 0.303±0.105 vs. group D, 0.365±0.258; P=0.549) pre-vascularization durations, regardless of vessel supply; early differences between surgically and extrinsically vascularized constructs disappeared after 6 months. Here, we describe a reliable procedure for generating ectopic bone in vivo. A 3-month pre-vascularization duration appears sufficient and ceramic degradation proceeds in accordance with bone generation, supporting the hypothesis of cell-mediated resorption. Copyright © 2014 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Scaffold Design for Bone Regeneration
Polo-Corrales, Liliana; Latorre-Esteves, Magda; Ramirez-Vick, Jaime E.
2014-01-01
The use of bone grafts is the standard to treat skeletal fractures, or to replace and regenerate lost bone, as demonstrated by the large number of bone graft procedures performed worldwide. The most common of these is the autograft, however, its use can lead to complications such as pain, infection, scarring, blood loss, and donor-site morbidity. The alternative is allografts, but they lack the osteoactive capacity of autografts and carry the risk of carrying infectious agents or immune rejection. Other approaches, such as the bone graft substitutes, have focused on improving the efficacy of bone grafts or other scaffolds by incorporating bone progenitor cells and growth factors to stimulate cells. An ideal bone graft or scaffold should be made of biomaterials that imitate the structure and properties of natural bone ECM, include osteoprogenitor cells and provide all the necessary environmental cues found in natural bone. However, creating living tissue constructs that are structurally, functionally and mechanically comparable to the natural bone has been a challenge so far. This focus of this review is on the evolution of these scaffolds as bone graft substitutes in the process of recreating the bone tissue microenvironment, including biochemical and biophysical cues. PMID:24730250
Ceccarelli, Gabriele; Bloise, Nora; Vercellino, Marco; Battaglia, Rosalia; Morgante, Lucia; De Angelis, Maria Gabriella Cusella; Imbriani, Marcello; Visai, Livia
2013-04-01
Tissue engineering (by culturing cells on appropriate scaffolds, and using bioreactors to drive the correct bone structure formation) is an attractive alternative to bone grafting or implantation of bone substitutes. Osteogenesis is a biological process that involves many molecular intracellular pathways organized to optimize bone modeling. The use of bioreactor systems and especially the perfusion bioreactor, provides both the technological means to reveal fundamental mechanisms of cell function in a 3D environment, and the potential to improve the quality of engineered tissues. In this mini-review all the characteristics for the production of an appropriate bone construct are analyzed: the stem cell source, scaffolds useful for the seeding of pre-osteoblastic cells and the effects of fluid flow on differentiation and proliferation of bone precursor cells. By automating and standardizing tissue manufacture in controlled closed systems, engineered tissues may reduce the gap between the process of bone formation in vitro and subsequent graft of bone substitutes in vivo.
Polymeric scaffolds as stem cell carriers in bone repair.
Rossi, Filippo; Santoro, Marco; Perale, Giuseppe
2015-10-01
Although bone has a high potential to regenerate itself after damage and injury, the efficacious repair of large bone defects resulting from resection, trauma or non-union fractures still requires the implantation of bone grafts. Materials science, in conjunction with biotechnology, can satisfy these needs by developing artificial bones, synthetic substitutes and organ implants. In particular, recent advances in polymer science have provided several innovations, underlying the increasing importance of macromolecules in this field. To address the increasing need for improved bone substitutes, tissue engineering seeks to create synthetic, three-dimensional scaffolds made from polymeric materials, incorporating stem cells and growth factors, to induce new bone tissue formation. Polymeric materials have shown a great affinity for cell transplantation and differentiation and, moreover, their structure can be tuned in order to maintain an adequate mechanical resistance and contemporarily be fully bioresorbable. This review emphasizes recent progress in polymer science that allows relaible polymeric scaffolds to be synthesized for stem cell growth in bone regeneration. Copyright © 2013 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrivastava, Pragya; Dalai, Sridhar; Vijayalakshmi, S.
With an increasing demand of biocompatible bone substitutes for the treatment of bone diseases and bone tissue regeneration, bioactive glass composites are being tested to improvise the osteoconductive as well as osteoinductive properties. Nanobioactive glass (nBG) composites, having composition of SiO{sub 2} 70 mol%, CaO 26 mol % and P{sub 2}O{sub 5} 4 mol% were prepared by Freeze drying method using PEG-PPG-PEG co-polymer. Polymer addition improves the mechanical strength and porosity of the scaffold of nBG. Nano Bioactive glass composites upon implantation undergo specific reactions leading to the formation of crystalline hydroxyapatite (HA). This is tested in vitro using Simulatedmore » Body Fluid (SBF). This high strength hydroxyapatite (HA) layer acts as osteoconductive in cellular environment, by acting as mineral base of bones, onto which new bone cells proliferate leading to new bone formation. Strength of the nBG composites as well as HA is in the range of cortical and cancellous bone, thus proving significant for bone tissue regeneration substitutes.« less
NASA Astrophysics Data System (ADS)
Restrepo, S.; Ocampo, S.; Ramírez, J. A.; Paucar, C.; García, C.
2017-12-01
Repairing tissues and organs has been the main goal of surgical procedures. Since the 1990s, the main goal of tissue engineering has been reparation, using porous scaffolds that serve as a three-dimensional template for the initial fixation of cells and subsequent tissue formation both in vitro and in vivo. A scaffold must have specific characteristics of porosity, interconnectivity, surface area, pore volume, surface tortuosity, permeability and mechanical properties, which makes its design, manufacturing and characterization a complex process. Inspired by nature, triply periodic minimal surfaces (TPMS) have emerged as an alternative for the manufacture of porous pieces with design requirements, such as scaffolds for tissue repair. In the present work, we used the technique of 3D printing to obtain ceramic structures with Gyroid, Schwarz Primitive and Schwarz Diamond Surfaces shapes, three TPMS that fulfil the geometric requirements of a bone tissue scaffold. The main objective of this work is to compare the mechanical properties of ceramic pieces of three different forms of TPMS printed in 3D using a commercial ceramic paste. In this way it will be possible to clarify which is the TPMS with appropriate characteristics to construct scaffolds of ceramic materials for bone repair. A dependence of the mechanical properties with the geometry was found being the Primitive Surface which shows the highest mechanical properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaikina, M. V., E-mail: chaikinam@solid.nsc.ru; Bulina, N. V., E-mail: bulina@solid.nsc.ru; Prosanov, I. Yu., E-mail: prosanov@mail.ru
The paper presents the results of mechanochemical synthesis of hydroxyapatite (HAP) with simultaneous substitutions of lanthanum (La{sup 3+}) for calcium ions and silicate ((SiO{sub 4}){sup 4−}-group) for the phosphate group with the substituent concentrations in the range 0.2–2.0 mol per HAP mol. The use of Si-substituted HAP as a coating material promotes accelerated osteosynthesis and osteointegration of implants into the bone tissue. The replacement of calcium ions by La{sup 3+} in the HAP structure plays an antimicrobial role preventing inflammatory processes. Annealing-induced variations in the lattice parameters of synthesized samples indicate the substituent incorporation into the HAP structure. It ismore » known that complex compounds with lanthanides are used for cancer chemotherapy. In particular, La plays a key role in the course of treatment of injured defects of bone tissue. In addition, La-substituted HAP can be used for filling bone defects and coating implants in postoperational areas affected by bone cancer.« less
Biomechanical behavior of a cemented ceramic knee replacement under worst case scenarios
NASA Astrophysics Data System (ADS)
Kluess, D.; Mittelmeier, W.; Bader, R.
2009-12-01
In connection with technological advances in the manufacturing of medical ceramics, a newly developed ceramic femoral component was introduced in total knee arthroplasty (TKA). The motivation to consider ceramics in TKA is based on the allergological and tribological benefits as proven in total hip arthroplasty. Owing to the brittleness and reduced fracture toughness of ceramic materials, the biomechanical performance has to be examined intensely. Apart from standard testing, we calculated the implant performance under different worst case scenarios including malposition, bone defects and stumbling. A finite-element-model was developed to calculate the implant performance in situ. The worst case conditions revealed principal stresses 12.6 times higher during stumbling than during normal gait. Nevertheless, none of the calculated principal stress amounts were above the critical strength of the ceramic material used. The analysis of malposition showed the necessity of exact alignment of the implant components.
Biomechanical behavior of a cemented ceramic knee replacement under worst case scenarios
NASA Astrophysics Data System (ADS)
Kluess, D.; Mittelmeier, W.; Bader, R.
2010-03-01
In connection with technological advances in the manufacturing of medical ceramics, a newly developed ceramic femoral component was introduced in total knee arthroplasty (TKA). The motivation to consider ceramics in TKA is based on the allergological and tribological benefits as proven in total hip arthroplasty. Owing to the brittleness and reduced fracture toughness of ceramic materials, the biomechanical performance has to be examined intensely. Apart from standard testing, we calculated the implant performance under different worst case scenarios including malposition, bone defects and stumbling. A finite-element-model was developed to calculate the implant performance in situ. The worst case conditions revealed principal stresses 12.6 times higher during stumbling than during normal gait. Nevertheless, none of the calculated principal stress amounts were above the critical strength of the ceramic material used. The analysis of malposition showed the necessity of exact alignment of the implant components.
Endoscopic Surgery for Symptomatic Unicameral Bone Cyst of the Proximal Femur
Miyamoto, Wataru; Takao, Masato; Yasui, Youichi; Miki, Shinya; Matsushita, Takashi
2013-01-01
Recently, surgical treatment of a symptomatic unicameral cyst of the proximal femur has been achieved with less invasive procedures than traditional open curettage with an autologous bone graft. In this article we introduce endoscopic surgery for a symptomatic unicameral cyst of the proximal femur. The presented technique, which includes minimally invasive endoscopic curettage of the cyst and injection of a bone substitute, not only minimizes muscle damage around the femur but also enables sufficient curettage of the fibrous membrane in the cyst wall and the bony septum through direct detailed visualization by an endoscope. Furthermore, sufficient initial strength after curettage can be obtained by injecting calcium phosphate cement as a bone substitute. PMID:24892010
Endoscopic Surgery for Symptomatic Unicameral Bone Cyst of the Proximal Femur.
Miyamoto, Wataru; Takao, Masato; Yasui, Youichi; Miki, Shinya; Matsushita, Takashi
2013-11-01
Recently, surgical treatment of a symptomatic unicameral cyst of the proximal femur has been achieved with less invasive procedures than traditional open curettage with an autologous bone graft. In this article we introduce endoscopic surgery for a symptomatic unicameral cyst of the proximal femur. The presented technique, which includes minimally invasive endoscopic curettage of the cyst and injection of a bone substitute, not only minimizes muscle damage around the femur but also enables sufficient curettage of the fibrous membrane in the cyst wall and the bony septum through direct detailed visualization by an endoscope. Furthermore, sufficient initial strength after curettage can be obtained by injecting calcium phosphate cement as a bone substitute.
Synthesis and microwave dielectric behavior of (Bi1-xPbx)NbO4 ceramics
NASA Astrophysics Data System (ADS)
Butee, S. P.; Kambale, K. R.; Upadhyay, Shaishav; Bashaiah, S.; Raju, K. C. James; Panda, Himanshu
2016-03-01
Ceramic samples of (Bi1-xPbx)NbO4 (x=0, 0.025, 0.05, 0.10, 0.15, 0.20) with 0.75wt.% V2O5 addition sintered at 920∘C, 940∘C and 960∘C are investigated. Pb is selected as a substitute for Bi3+ in BiNbO4 ceramics as it exists in two stable valence states of +2 and +4 and the average valency matches to that of Bi3+. The average Shannon radius (for octahedral coordination) of Pb2+ (1.19Å) and Pb4+(0.775Å) cations is 0.9825Å, which is similar to that of Bi3+ ion (1.03Å). The dense (>94%) polycrystalline (Bi1-xPbx)NbO4 samples fabricated mostly reveal orthorhombic (Pnna) phase (α-BiNbO4, Sp. Gp. 52) by powder XRD. Presence of satellite Pb2Nb2O7 phase, the amount of which is increasing with increase in Pb content, is also noticed. The microwave dielectric constant (ɛr‧) values of the niobates are found to increase from 42 to 71, whereas the quality factor (Qu.f) values are found to decrease from 5400 to 550 GHz with increasing substitution of Pb. The compositions so synthesized are important as hardly there are any microwave dielectric ceramics available with 45<ɛr‧<75.
Influence of Samarium Substitution on Dielectric Properties of Barium Titanate Based Ceramics
NASA Astrophysics Data System (ADS)
Kumar, Parveen; Singh, Sangeeta; Juneja, J. K.; Prakash, Chandra; Raina, K. K.
In this paper we report samarium substituted Ba0.80Pb0.20Ti0.90Zr0.10O3 (BPZT) ceramics. The material series with compositional formula Ba0.80-xSmxPb0.20Ti0.90Zr0.10O3 with x varying from 0 to 0.01 in the steps of 0.0025 was chosen for investigations. The material was synthesized by solid state reaction method. Reacted powders compacted in the form of circular discs were sintered at 1325°C. All the samples were subjected to X-ray analysis and found to be single phase. Dielectric behavior was studied as a function of frequency and temperature and Curie temperature (Tc) was determined. Tc was found to decrease with increasing x. The details are discussed and presented here.
Ferroelectric Properties of La Substituted PZT Ceramics
NASA Astrophysics Data System (ADS)
Rani, Rekha; Juneja, J. K.; Raina, K. K.; Prakash, Chandra
2011-11-01
For the present study, La substituted PZT ceramics having compositional formula Pb1-3x/2LaxZr0.65Ti0.35O3 were prepared by conventional solid state method. La content was varied from x = 0 to 0.03 in the steps of 0.01. XRD analyses of all the samples were done and were found to have single phase with rhombohedral structure. In this paper, we are reporting the variation in ferroelectric properties of Pb1-3x/2LaxZr0.65Ti0.35O3 by varying La content. P-E hysteresis loops were recorded using P-E loop tracer based on Sawyer- Tower circuit for all the samples at 20 Hz. Increase in coercive field (Ec), remanant polarization (Pr), saturation polarization (Ps) and squareness ratio (Pr/Ps) was observed with increase in x.
Dielectric behaviour of La substituted BPZT ceramics
NASA Astrophysics Data System (ADS)
Kumar, Parveen; Singh, Sangeeta; Juneja, J. K.; Prakash, Chandra; Raina, K. K.
2009-08-01
Here, we report dielectric behaviour of lanthanum substituted Ba 0.80Pb 0.20Ti 0.90Zr 0.10O 3 (BPZT) ceramics. The material series with compositional formula Ba 0.80-xLa xPb 0.20Ti 0.90Zr 0.10O 3 (BLPZT) with x varying from 0 to 0.01 in the steps of 0.0025 was chosen for investigations. The material was synthesized by solid state reaction method. Reacted powder compacted in form of circular discs were sintered at 1325 °C. All the samples were subjected to X-ray diffraction (XRD) analysis and found to be single phase. Dielectric behaviour was studied as a function of frequency and temperature and Curie temperature ( Tc) was determined. Tc was found to decrease with increasing x. The details are discussed and presented in this paper.
The lanthanum gallate-based mixed conducting perovskite ceramics
NASA Astrophysics Data System (ADS)
Politova, E. D.; Stefanovich, S. Yu.; Aleksandrovskii, V. V.; Kaleva, G. M.; Mosunov, A. V.; Avetisov, A. K.; Sung, J. S.; Choo, K. Y.; Kim, T. H.
2005-01-01
The structure, microstructure, dielectric, and transport properties of the anion deficient perovskite solid solutions (La,Sr)(Ga,Mg,M)O3- with M=Fe, Ni have been studied. Substitution of iron and nickel for gallium up to about 20 and 40 at.% respectively, leads to the perovskite lattice contraction due to the cation substitutions by the transition elements. The transition from pure ionic to mixed ionic-electronic conductivity was observed for both the systems studied. Both the enhancement of total conductivity and increasing in the thermal expansion coefficient values has been proved to correlate with the increasing amount of weakly bounded oxygen species in the Fe or Ni-doped ceramics. The oxygen ionic conductivity has been estimated from the kinetic experiments using the dc-conductivity and dilatometry methods under the condition of the stepwise change of the atmosphere from nitrogen to oxygen.
Kovalevsky, A V; Yaremchenko, A A; Populoh, S; Thiel, P; Fagg, D P; Weidenkaff, A; Frade, J R
2014-12-28
Donor-substituted strontium titanate ceramics demonstrate one of the most promising performances among n-type oxide thermoelectrics. Here we report a marked improvement of the thermoelectric properties in rare-earth substituted titanates Sr0.9R0.1TiO3±δ (R = La, Ce, Pr, Nd, Sm, Gd, Dy, Y) to achieve maximal ZT values of as high as 0.42 at 1190 K < T < 1225 K, prepared via a conventional solid state route followed by sintering under strongly reducing conditions (10%H2-90%N2, 1773 K). As a result of complex defect chemistry, both electrical and thermal properties were found to be dependent on the nature of the rare-earth cation and exhibit an apparent correlation with the unit cell size. High power factors of 1350-1550 μW m(-1) K(-2) at 400-550 K were observed for R = Nd, Sm, Pr and Y, being among the largest reported so far for n-type conducting bulk-ceramic SrTiO3-based materials. Attractive ZT values at high temperatures arise primarily from low thermal conductivity, which, in turn, stem from effective phonon scattering in oxygen-deficient perovskite layers formed upon reduction. The results suggest that highly-reducing conditions are essential and should be employed, whenever possible, in other related micro/nanostructural engineering approaches to suppress the thermal conductivity in target titanate-based ceramics.
Zhang, Qinghao; Schmelzer, Eva; Gerlach, Jörg C; Nettleship, Ian
2017-04-01
Hydroxyapatite pellets, partially densified in a low-temperature heat treatment, were infiltrated with calcium nitrate solution followed by in-situ precipitation of Ca(OH) 2 and CaCO 3 . The infiltrated bodies were then densified to high relative density and the calcium carbonate transformed to calcium oxide during sintering and resulted in biphasic hydroxyapatite-CaO ceramics. This work investigated the influence of the infiltration on surface morphology, weight change, and microstructural-level degradation caused by exposure to saline at pH=7.4 and a temperature of 20°C. The CaO rendered the materials more susceptible to degradation, and released calcium into the saline faster than single phase, calcium deficient hydroxyapatite (HA) that were used as a control. In consequence, these ceramics could be used to release calcium into the culture microenvironments of bone tissue or bone marrow cells next to a scaffold surface. Copyright © 2016 Elsevier B.V. All rights reserved.
Osteoinduction by Ca-P biomaterials implanted into the muscles of mice*
Yang, Rui-na; Ye, Feng; Cheng, Li-jia; Wang, Jin-jing; Lu, Xiao-feng; Shi, Yu-jun; Fan, Hong-song; Zhang, Xing-dong; Bu, Hong
2011-01-01
The osteoinduction of porous biphasic calcium phosphate ceramics (BCP) has been widely reported and documented, but little research has been performed on rodent animals, e.g., mice. In this study, we report osteoinduction in a mouse model. Thirty mice were divided into two groups. BCP materials (Sample A) and control ceramics (Sample B) were implanted into the leg muscle, respectively. Five mice in each group were killed at 15, 30, and 45 d after surgery. Sample A and Sample B were harvested and used for hematoxylin and eosin (HE) staining, immunohistochemistry (IHC) staining, and Alizarin Red S staining to check bone formation in the biomaterials. Histological analysis showed that no bone tissue was formed 15 d after implantation (0/5) in either of the two groups. Newly-formed bone tissues were observed in Sample A at 30 d (5/5) and 45 d (5/5) after implantation; the average amounts of newly-formed bone tissues were approximately 5.2% and 8.6%, respectively. However, we did not see any bone tissue in Sample B until 45 d after implantation. Bone-related molecular makers such as bone morphogenesis protein-2 (BMP-2), collagen type I, and osteopontin were detected by IHC staining in Sample A 30 d after implantation. In addition, the newly-formed bone was also confirmed by Alizarin Red S staining. Because this is the report of osteoinduction in the rodent animal on which all the biotechnologies were available, our results may contribute to further mechanism research. PMID:21726066
Applications of Metals for Bone Regeneration.
Glenske, Kristina; Donkiewicz, Phil; Köwitsch, Alexander; Milosevic-Oljaca, Nada; Rider, Patrick; Rofall, Sven; Franke, Jörg; Jung, Ole; Smeets, Ralf; Schnettler, Reinhard; Wenisch, Sabine; Barbeck, Mike
2018-03-12
The regeneration of bone tissue is the main purpose of most therapies in dental medicine. For bone regeneration, calcium phosphate (CaP)-based substitute materials based on natural (allo- and xenografts) and synthetic origins (alloplastic materials) are applied for guiding the regeneration processes. The optimal bone substitute has to act as a substrate for bone ingrowth into a defect, as well as resorb in the time frame needed for complete regeneration up to the condition of restitution ad integrum . In this context, the modes of action of CaP-based substitute materials have been frequently investigated, where it has been shown that such materials strongly influence regenerative processes such as osteoblast growth or differentiation and also osteoclastic resorption due to different physicochemical properties of the materials. However, the material characteristics needed for the required ratio between new bone tissue formation and material degradation has not been found, until now. The addition of different substances such as collagen or growth factors and also of different cell types has already been tested but did not allow for sufficient or prompt application. Moreover, metals or metal ions are used differently as a basis or as supplement for different materials in the field of bone regeneration. Moreover, it has already been shown that different metal ions are integral components of bone tissue, playing functional roles in the physiological cellular environment as well as in the course of bone healing. The present review focuses on frequently used metals as integral parts of materials designed for bone regeneration, with the aim to provide an overview of currently existing knowledge about the effects of metals in the field of bone regeneration.
Applications of Metals for Bone Regeneration
Glenske, Kristina; Donkiewicz, Phil; Köwitsch, Alexander; Milosevic-Oljaca, Nada; Rider, Patrick; Rofall, Sven; Franke, Jörg; Jung, Ole; Smeets, Ralf; Schnettler, Reinhard; Wenisch, Sabine
2018-01-01
The regeneration of bone tissue is the main purpose of most therapies in dental medicine. For bone regeneration, calcium phosphate (CaP)-based substitute materials based on natural (allo- and xenografts) and synthetic origins (alloplastic materials) are applied for guiding the regeneration processes. The optimal bone substitute has to act as a substrate for bone ingrowth into a defect, as well as resorb in the time frame needed for complete regeneration up to the condition of restitution ad integrum. In this context, the modes of action of CaP-based substitute materials have been frequently investigated, where it has been shown that such materials strongly influence regenerative processes such as osteoblast growth or differentiation and also osteoclastic resorption due to different physicochemical properties of the materials. However, the material characteristics needed for the required ratio between new bone tissue formation and material degradation has not been found, until now. The addition of different substances such as collagen or growth factors and also of different cell types has already been tested but did not allow for sufficient or prompt application. Moreover, metals or metal ions are used differently as a basis or as supplement for different materials in the field of bone regeneration. Moreover, it has already been shown that different metal ions are integral components of bone tissue, playing functional roles in the physiological cellular environment as well as in the course of bone healing. The present review focuses on frequently used metals as integral parts of materials designed for bone regeneration, with the aim to provide an overview of currently existing knowledge about the effects of metals in the field of bone regeneration. PMID:29534546
A new hydroxyapatite-based biocomposite for bone replacement.
Bellucci, Devis; Sola, Antonella; Gazzarri, Matteo; Chiellini, Federica; Cannillo, Valeria
2013-04-01
Since the 1970s, various types of ceramic, glass and glass-ceramic materials have been proposed and used to replace damaged bone in many clinical applications. Among them, hydroxyapatite (HA) has been successfully employed thanks to its excellent biocompatibility. On the other hand, the bioactivity of HA and its reactivity with bone can be improved through the addition of proper amounts of bioactive glasses, thus obtaining HA-based composites. Unfortunately, high temperature treatments (1200°C÷1300°C) are usually required in order to sinter these systems, causing the bioactive glass to crystallize into a glass-ceramic and hence inhibiting the bioactivity of the resulting composite. In the present study novel HA-based composites are realized and discussed. The samples can be sintered at a relatively low temperature (800 °C), thanks to the employment of a new glass (BG_Ca) with a reduced tendency to crystallize compared to the widely used 45S5 Bioglass®. The rich glassy phase, which can be preserved during the thermal treatment, has excellent effects in terms of in vitro bioactivity; moreover, compared to composites based on 45S5 Bioglass® having the same HA/glass proportions, the samples based on BG_Ca displayed an earlier response in terms of cell proliferation. Copyright © 2012 Elsevier B.V. All rights reserved.
Design of Natural Hydroxyapatite as bio-composite ceramics (HAP): Experimental and Numerical Study
NASA Astrophysics Data System (ADS)
Belghazi, Z.; Katundi, D.; Ayari, F.; Bayraktar, E.
2011-01-01
Hydroxyapatite (HAP—Ca10(PO4)6 (OH)2), which exhibits excellent biocompatibility in the body, is one of the most widely used bioactive ceramics for biomedical applications. Along with the ability to carry the load, one of the most important properties of materials used for bone replacement is biocompatibility. In fact, HAP is a bioactive material and it can incorporate into bone structures, supporting bone in-growth without breaking down or dissolving, and it interacts with the living tissue due to the presence of free calcium and phosphate compounds. Generally, Al2O3 powder is added to HAP powder in order to obtain high fracture toughness. Al2O3 has good mechanical properties as compared with HAP, and exhibits extremely high stability with human tissues [1-6]. In this paper, the effect of microwave sintering temperature on the relative density, hardness, and phase purity of compacted bovine Hydroxyapatite (BHA) powder was reported. This research is a comprehensive attempt to develop Hydroxyapatite bio composite ceramics reinforced with alumina—Al2O3, pure titanium and pure pulverised boron powder. A Finite Element (FEM) analysis is also used for modelling to simulate the macroscopic behaviour of this material, taking into account the relevant microscopic scales.
Tian, Ye; Lu, Teliang; He, Fupo; Xu, Yubin; Shi, Haishan; Shi, Xuetao; Zuo, Fei; Wu, Shanghua; Ye, Jiandong
2018-04-13
β-tricalcium phosphate (β-TCP) is well known as a resorbable bone repair material due to its inherent excellent biocompatibility and osteoconductivity. However, β-TCP is encountered with osteostimulation-deficiency and poor mechanical strength because of poor sinterability. Herein, we prepared novel β-TCP composite ceramics (TCP/SPGs) by introducing strontium-containing phosphate-based glass (SPG; 45P 2 O 5 -32SrO-23Na 2 O) as sintering additive. The SPG helped to achieve efficient liquid-phase sintering of β-TCP at 1100 °C. The compressive strength of TCP/SPGs with 15 wt.% SPG (TCP/SPG15) was 2.65 times as high as that of plain β-TCP ceramic. The SPG reacted with β-TCP, and the Sr 2+ and Na 2+ from SPG replaced Ca 2+ in the lattice structure of β-TCP, enabling the sustained release of strontium from TCP/SPGs. In vitro cytological test indicated that TCP/SPGs with certain amount of SPG were highly biocompatible, and noticeably promoted osteogenesis, and inhibited osteoclastic activities. Our results suggested that the TCP/SPG15 might be potential high-strength bone grafts used for bone defect repair, especially in the osteoporotic condition. Copyright © 2018 Elsevier B.V. All rights reserved.
Simple additive manufacturing of an osteoconductive ceramic using suspension melt extrusion.
Slots, Casper; Jensen, Martin Bonde; Ditzel, Nicholas; Hedegaard, Martin A B; Borg, Søren Wiatr; Albrektsen, Ole; Thygesen, Torben; Kassem, Moustapha; Andersen, Morten Østergaard
2017-02-01
Craniofacial bone trauma is a leading reason for surgery at most hospitals. Large pieces of destroyed or resected bone are often replaced with non-resorbable and stock implants, and these are associated with a variety of problems. This paper explores the use of a novel fatty acid/calcium phosphate suspension melt for simple additive manufacturing of ceramic tricalcium phosphate implants. A wide variety of non-aqueous liquids were tested to determine the formulation of a storable 3D printable tricalcium phosphate suspension ink, and only fatty acid-based inks were found to work. A heated stearic acid-tricalcium phosphate suspension melt was then 3D printed, carbonized and sintered, yielding implants with controllable macroporosities. Their microstructure, compressive strength and chemical purity were analyzed with electron microscopy, mechanical testing and Raman spectroscopy, respectively. Mesenchymal stem cell culture was used to assess their osteoconductivity as defined by collagen deposition, alkaline phosphatase secretion and de-novo mineralization. After a rapid sintering process, the implants retained their pre-sintering shape with open pores. They possessed clinically relevant mechanical strength and were chemically pure. They supported adhesion of mesenchymal stem cells, and these were able to deposit collagen onto the implants, secrete alkaline phosphatase and further mineralize the ceramic. The tricalcium phosphate/fatty acid ink described here and its 3D printing may be sufficiently simple and effective to enable rapid, on-demand and in-hospital fabrication of individualized ceramic implants that allow clinicians to use them for treatment of bone trauma. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Tajbakhsh, Saeid; Hajiali, Faezeh
2017-01-01
The fabrication of a suitable scaffold material is one of the major challenges for bone tissue engineering. Poly(lactic acid) (PLA) is one of the most favorable matrix materials in bone tissue engineering owing to its biocompatibility and biodegradability. However, PLA suffers from some shortcomings including low degradation rate, low cell adhesion caused by its hydrophobic property, and inflammatory reactions in vivo due to its degradation product, lactic acid. Therefore, the incorporation of bioactive reinforcements is considered as a powerful method to improve the properties of PLA. This review presents a comprehensive study on recent advances in the synthesis of PLA-based biocomposites containing ceramic reinforcements, including various methods of production and the evaluation of the scaffolds in terms of porosity, mechanical properties, in vitro and in vivo biocompatibility and bioactivity for bone tissue engineering applications. The production routes range from traditional approaches such as the use of porogens to provide porosity in the scaffolds to novel methods such as solid free-form techniques. Copyright © 2016 Elsevier B.V. All rights reserved.
Arinc, Hakan
2018-06-01
To evaluate the effects of prosthetic material on the degree of stress to the cortical bone, trabecular bone, framework, and implants using finite element analysis (FEA). A mandibular implant-supported fixed prosthesis was designed. Different prosthetic materials [cobalt-chromium-supported ceramic, zirconia-supported ceramic, and zirconia-reinforced polymethyl methacrylate (ZRPMMA)-supported resin] were used. FEA was used to evaluate stress under different loading conditions. Maximum principal (σmax), minimum principal (σmin), and von Mises (σvM) stress values were obtained. Similar σmax, σmin, and σvM values were observed in the cortical and trabecular bones and in implants under both loading conditions, with the exception of the ZRPMMA model, which showed the highest σmax, σmin, and σvM values in oblique loading. The ZRPMMA model had the lowest σvM value in the framework under both loading conditions. ZRPMMA had the lowest stress values in the framework, with increased stress values in the implants and bone tissue. Framework and veneering materials may influence stress values under different loading conditions.
Chen, Lu; Zhou, Wen-qing; Wu, Yan-ping; Lu, Jing-hua
2011-06-01
To evaluate the clinical value of using the patient's autogenous bone mixed with beta-tricalcium phosphate ceramics(β-TCP) for maxillary sinus lift with simultaneous implantation. Patients with loss of posterior teeth and bone height of maxillary sinus floor between 4-10mm underwent internal sinus floor elevation, the proportion of bone to β-TCP was 1:1 and the mixture was inserted into the sinus floor. All cases had simultaneously placed ITI implants.The final crown fabrication was taken 4-6 months after implanting. Twenty-one implants were inserted in 16 cases, the mean increase height was 4.2mm(2-6mm). There was clinical complaint of maxillary sinus inflammation in 1 case within 2 weeks, but the symptoms disappeared after antibiotic therapy. The remaining of 20 implants had no obvious complications. All implants had loaded for 32 months and were stable and well osseointegration on X-ray film. Maxillary sinus elevation with simultaneous implantation is an easy procedure. Implants can be stable for a long time.
Asa'ad, Farah; Giannì, Aldo Bruno; Giannobile, William V.; Rasperini, Giulio
2016-01-01
To ensure a successful dental implant therapy, the presence of adequate vertical and horizontal alveolar bone is fundamental. However, an insufficient amount of alveolar ridge in both dimensions is often encountered in dental practice due to the consequences of oral diseases and tooth loss. Although postextraction socket preservation has been adopted to lessen the need for such invasive approaches, it utilizes bone grafting materials, which have limitations that could negatively affect the quality of bone formation. To overcome the drawbacks of routinely employed grafting materials, bone graft substitutes such as 3D scaffolds have been recently investigated in the dental field. In this review, we highlight different biomaterials suitable for 3D scaffold fabrication, with a focus on “3D-printed” ones as bone graft substitutes that might be convenient for various applications related to implant therapy. We also briefly discuss their possible adoption for periodontal regeneration. PMID:27366149
Smith, Lauren M.; Bigelow, Erin M.R.; Nolan, Bonnie T.; Faillace, Meghan E.; Nadeau, Joseph H.; Jepsen, Karl J.
2014-01-01
Functional adaptation may complicate the choice of phenotype used in genetic studies that seek to identify genes contributing to fracture susceptibility. Often, genetic variants affecting one trait are compensated by coordinated changes in other traits. Bone fracture is a prototypic example because mechanical function of long bones (stiffness and strength) depends on how the system coordinately adjusts the amount (cortical area) and quality (tissue-mineral density, TMD) of bone tissue to mechanically offset the natural variation in bone robustness (total area/length). We propose that efforts aimed at identifying genes regulating fracture resistance will benefit from better understanding how functional adaptation contributes to the genotype-phenotype relationship. We analyzed the femurs of C57BL/6J – ChrA/J/NaJ Chromosome Substitution Strains (CSSs) to systemically interrogate the mouse genome for chromosomes harboring genes that regulate mechanical function. These CSSs (CSS-i, i = the substituted chromosome) showed changes in mechanical function on the order of -26.6 to 11.5% relative to the B6 reference strain after adjusting for body size. Seven substitutions showed altered robustness, cortical area, or TMD, but no effect on mechanical function (CSS-4, 5, 8, 9, 17, 18, 19); six substitutions showed altered robustness, cortical area, or TMD, and reduced mechanical function (CSS-1, 2, 6, 10, 12, 15); and one substitution also showed reduced mechanical function but exhibited no significant changes in the three physical traits analyzed in this study (CSS-3). A key feature that distinguished CSSs that maintained function from those with reduced function was whether the system adjusted cortical area and TMD to the levels needed to compensate for the natural variation in bone robustness. These results provide a novel biomechanical mechanism linking genotype with phenotype, indicating that genes control function not only by regulating individual traits, but also by regulating how the system coordinately adjusts multiple traits to establish function. PMID:25003813
Kim, Ju-Ang; Lim, Jiwon; Naren, Raja; Yun, Hui-Suk; Park, Eui Kyun
2016-10-15
Similar to calcium phosphates, magnesium phosphate (MgP) ceramics have been shown to be biocompatible and support favorable conditions for bone cells. Micropores below 25μm (MgP25), between 25 and 53μm (MgP53), or no micropores (MgP0) were introduced into MgP scaffolds using different sizes of an NaCl template. The porosities of MgP25 and MgP53 were found to be higher than that of MgP0 because of their micro-sized pores. Both in vitro and in vivo analysis showed that MgP scaffolds with high porosity promoted rapid biodegradation. Implantation of the MgP0, MgP25, and MgP53 scaffolds into rabbit calvarial defects (with 4- and 6-mm diameters) was assessed at two times points (4 and 8weeks), followed by analysis of bone regeneration. The micro-CT and histologic analyses of the 4-mm defect showed that the MgP25 and MgP53 scaffolds were degraded completely at 4weeks with simultaneous bone and marrow-like structure regeneration. For the 6-mm defect, a similar pattern of regeneration was observed. These results indicate that the rate of degradation is associated with bone regeneration. The MgP25 and MgP53 scaffold-implanted bone showed a better lamellar structure and enhanced calcification compared to the MgP0 scaffold because of their porosity and degradation rate. Tartrate-resistant acid phosphatase (TRAP) staining indicated that the newly formed bone was undergoing maturation and remodeling. Overall, these data suggest that the pore architecture of MgP ceramic scaffolds greatly influence bone formation and remodeling activities and thus should be considered in the design of new scaffolds for long-term bone tissue regeneration. The pore structural conditions of scaffold, including porosity, pore size, pore morphology, and pore interconnectivity affect cell ingrowth, mechanical properties and biodegradabilities, which are key components of scaffold in bone tissue regeneration. In this study, we designed hierarchical pore structure of the magnesium phosphate (MgP) scaffold by combination of the 3D printing process, self-setting reaction and salt-leaching technique, and first studied the effect of pore structures of bioceramic scaffolds on bone tissue regeneration through both in vitro and in vivo studies (rabbit calvarial model). The MgP scaffolds with higher porosity promoted more rapid biodegradation and enhanced new bone formation and remodeling activities at the same time. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Mesenchymal Tissue Response to Heterotopically Placed Demineralized Bone Powder Particles in the Rat
1987-01-01
Press, Cambridge, England, pp. 329-356. Hurt, W. 1968. Freeze-dried bone homografts in periodontal lesions in dogs. J. Periodontology , JI89. Hynes, R...1974. Biodegradable ceramic in periodontal defects. Oral Surg., 11t344. Lindhe, J. 1983. Textbook of Clinical Periodontology . Philadelphia, Munskgaard... Periodontology , 58:129. Turner, D.W. and Mellonig, J. 1981. Antigenicity of freeze- dried bone allografts in periodontal osseous defects. J. Periodont. Res
Brown, Desmond A; Mallory, Grant W; Higgins, Dominique M; Abdulaziz, Mohammed; Huddleston, Paul M; Nassr, Ahmad; Fogelson, Jeremy L; Clarke, Michelle J
2014-07-01
A cost-effective procurement process for harvesting, storing, and using femoral head allografts is described. A brief review of the literature on the use of these allografts and a discussion of costs are provided. To describe a cost-effective method for the harvesting, storage, and use of femoral heads from patients undergoing total hip arthroplasty at our institution as a source of allograft bone. Spine fusion surgery uses a large proportion of commercially available bone grafts and bone substitutes. As the number of such surgical procedures performed in the United States continues to rise, these materials are at a historically high level of demand, which is projected to continue. Iliac crest bone autograft has historically been the standard of care, although this may be losing favor due to potential donor site morbidity. Although many substitutes are effective in promoting arthrodesis, their use is limited because of cost. Femoral heads are harvested under sterile conditions during total hip arthroplasty. The patient is tested per Food and Drug Administration regulations, and the tissue sample is cultured. The tissue is frozen and quarantined for a 6-month minimum pending repeat testing of donors and subsequently released for use. The relative cost-effectiveness of this tissue as a source of allograft bone is discussed. The average femoral head allograft is 54 to 56 mm in diameter and yields 50 cm of bone graft, with an average cost of US $435 for processing of the tissue resulting in a cost of US $8.70 per cm of allograft produced. Average production costs are significantly lower than those for other commonly available commercial bone grafts and substitutes. Femoral head allograft is a cost-effective alternative to commercially available allografts and bone substitutes. The method of procurement, storage, and use described could be adopted by other institutions in an effort to mitigate cost and increase supply. N/A.
Zhang, Jingwei; Dalbay, Melis T; Luo, Xiaoman; Vrij, Erik; Barbieri, Davide; Moroni, Lorenzo; de Bruijn, Joost D; van Blitterswijk, Clemens A; Chapple, J Paul; Knight, Martin M; Yuan, Huipin
2017-07-15
The surface topography of synthetic biomaterials is known to play a role in material-driven osteogenesis. Recent studies show that TGFβ signalling also initiates osteogenic differentiation. TGFβ signalling requires the recruitment of TGFβ receptors (TGFβR) to the primary cilia. In this study, we hypothesize that the surface topography of calcium phosphate ceramics regulates stem cell morphology, primary cilia structure and TGFβR recruitment to the cilium associated with osteogenic differentiation. We developed a 2D system using two types of tricalcium phosphate (TCP) ceramic discs with identical chemistry. One sample had a surface topography at micron-scale (TCP-B, with a bigger surface structure dimension) whilst the other had a surface topography at submicron scale (TCP-S, with a smaller surface structure dimension). In the absence of osteogenic differentiation factors, human bone marrow stromal cells (hBMSCs) were more spread on TCP-S than on TCP-B with alterations in actin organization and increased primary cilia prevalence and length. The cilia elongation on TCP-S was similar to that observed on glass in the presence of osteogenic media and was followed by recruitment of transforming growth factor-β RII (p-TGFβ RII) to the cilia axoneme. This was associated with enhanced osteogenic differentiation of hBMSCs on TCP-S, as shown by alkaline phosphatase activity and gene expression for key osteogenic markers in the absence of additional osteogenic growth factors. Similarly, in vivo after a 12-week intramuscular implantation in dogs, TCP-S induced bone formation while TCP-B did not. It is most likely that the surface topography of calcium phosphate ceramics regulates primary cilia length and ciliary recruitment of p-TGFβ RII associated with osteogenesis and bone formation. This bioengineering control of osteogenesis via primary cilia modulation may represent a new type of biomaterial-based ciliotherapy for orthopedic, dental and maxillofacial surgery applications. The surface topography of synthetic biomaterials plays important roles in material-driven osteogenesis. The data presented herein have shown that the surface topography of calcium phosphate ceramics regulates mesenchymal stromal cells (e.g., human bone marrow mesenchymal stromal cells, hBMSCs) with respect to morphology, primary cilia structure and TGFβR recruitment to the cilium associated with osteogenic differentiation in vitro. Together with bone formation in vivo, our results suggested a new type of biomaterial-based ciliotherapy for orthopedic, dental and maxillofacial surgery by the bioengineering control of osteogenesis via primary cilia modulation. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Roh, Jiyeon; Kim, Ji-Youn; Choi, Young-Muk; Ha, Seong-Min; Kim, Kyoung-Nam; Kim, Kwang-Mahn
2016-01-01
The demand of bone graft materials has been increasing. Among various origins of bone graft materials, natural coral composed of up to 99% calcium carbonate was chosen and converted into hydroxyapatite (HA); silicon was then substituted into the HA. Then, the Si-HA was mixed with β-tricalcium phosphate (TCP) in the ratios 100:0 (S100T0), 70:30 (S70T30), 60:40 (S60T40), and 50:50 (S50T50). The materials were implanted for four and eight weeks in a rat calvarial bone defect model (8 mm). The MBCPTM (HA:β-TCP = 60:40, Biomatalante, Vigneux de Bretagne, France) was used as a control. After euthanasia, the bone tissue was analyzed by making histological slides. From the results, S60T40 showed the fastest bone regeneration in four weeks (p < 0.05). In addition, S60T40, S50T50, and MBCPTM showed significant new bone formation in eight weeks (p < 0.05). In conclusion, Si-HA/TCP showed potential as a bone graft material. PMID:28787903
Roh, Jiyeon; Kim, Ji-Youn; Choi, Young-Muk; Ha, Seong-Min; Kim, Kyoung-Nam; Kim, Kwang-Mahn
2016-02-06
The demand of bone graft materials has been increasing. Among various origins of bone graft materials, natural coral composed of up to 99% calcium carbonate was chosen and converted into hydroxyapatite (HA); silicon was then substituted into the HA. Then, the Si-HA was mixed with β-tricalcium phosphate (TCP) in the ratios 100:0 (S100T0), 70:30 (S70T30), 60:40 (S60T40), and 50:50 (S50T50). The materials were implanted for four and eight weeks in a rat calvarial bone defect model (8 mm). The MBCPTM (HA:β-TCP = 60:40, Biomatalante, Vigneux de Bretagne, France) was used as a control. After euthanasia, the bone tissue was analyzed by making histological slides. From the results, S60T40 showed the fastest bone regeneration in four weeks (p < 0.05). In addition, S60T40, S50T50, and MBCPTM showed significant new bone formation in eight weeks (p < 0.05). In conclusion, Si-HA/TCP showed potential as a bone graft material.
Kleinhans, Claudia; Mohan, Ramkumar Ramani; Vacun, Gabriele; Schwarz, Thomas; Haller, Barbara; Sun, Yang; Kahlig, Alexander; Kluger, Petra; Finne-Wistrand, Anna; Walles, Heike; Hansmann, Jan
2015-09-01
Critical size bone defects and non-union fractions are still challenging to treat. Cell-loaded bone substitutes have shown improved bone ingrowth and bone formation. However, a lack of methods for homogenously colonizing scaffolds limits the maximum volume of bone grafts. Additionally, therapy robustness is impaired by heterogeneous cell populations after graft generation. Our aim was to establish a technology for generating grafts with a size of 10.5 mm in diameter and 25 mm of height, and thus for grafts suited for treatment of critical size bone defects. Therefore, a novel tailor-made bioreactor system was developed, allowing standardized flow conditions in a porous poly(L-lactide-co-caprolactone) material. Scaffolds were seeded with primary human mesenchymal stem cells derived from four different donors. In contrast to static experimental conditions, homogenous cell distributions were accomplished under dynamic culture. Additionally, culture in the bioreactor system allowed the induction of osteogenic lineage commitment after one week of culture without addition of soluble factors. This was demonstrated by quantitative analysis of calcification and gene expression markers related to osteogenic lineage. In conclusion, the novel bioreactor technology allows efficient and standardized conditions for generating bone substitutes that are suitable for the treatment of critical size defects in humans. © 2015 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial Licence, which permits use, distribution and reproduction in any medium, provided the Contribution is properly cited and is not used for commercial purpose.
3D microenvironment as essential element for osteoinduction by biomaterials.
Habibovic, Pamela; Yuan, Huipin; van der Valk, Chantal M; Meijer, Gert; van Blitterswijk, Clemens A; de Groot, Klaas
2005-06-01
In order to unravel the mechanism of osteoinduction by biomaterials, in this study we investigated the influence of the specific surface area on osteoinductive properties of two types of calcium phosphate ceramics. Different surface areas of the ceramics were obtained by varying their sintering temperatures. Hydroxyapatite (HA) ceramic was sintered at 1150 and 1250 degrees C. Biphasic calcium phosphate (BCP) ceramic, consisting of HA and beta-tricalcium phosphate (beta-TCP), was sintered at 1100, 1150 and 1200 degrees C. Changes in sintering temperature did not influence the chemistry of the ceramics; HA remained pure after sintering at different temperatures and the weight ratio of HA and beta-TCP in the BCP was independent of the temperature as well. Similarly, macroporosity of the ceramics was unaffected by the changes of the sintering temperature. However, microporosity (pore diameter <10 microm) significantly decreased with increasing sintering temperature. In addition to the decrease of the microporosity, the crystal size increased with increasing sintering temperature. These two effects resulted in a significant decrease of the specific surface area of the ceramics with increasing sintering temperatures. Samples of HA1150, HA1250, BCP1100, BCP1150 and BCP1200 were implanted in the back muscles of Dutch milk goats and harvested at 6 and 12 weeks post implantation. After explantation, histomorphometrical analysis was performed on all implants. All implanted materials except HA1250 induced bone. However, large variations in the amounts of induced bone were observed between different materials and between individual animals. Histomorphometrical results showed that the presence of micropores within macropore walls is necessary to make a material osteoinductive. We postulate that introduction of microporosity within macropores, and consequent increase of the specific surface area, affects the interface dynamics of the ceramic in such a way that relevant cells are triggered to differentiate into the osteogenic lineage.
Comparative study of 2mol% Li- and Mn-substituted lead-free potassium sodium niobate ceramics
NASA Astrophysics Data System (ADS)
Dahiya, Asha; Thakur, O. P.; Juneja, J. K.; Singh, Sangeeta; Dipti
2014-12-01
The effect of Li and Mn substitution on the dielectric, ferroelectric and piezoelectric properties of lead free K0.5Na0.5NbO3 (KNN) was investigated. Samples were prepared using a conventional solid state reaction method. The sintering temperature for all the samples was 1050°C. The optimum doping concentration for the enhancement of different properties without the introduction of any other co-dopants such as Ti, Sb, and La was investigated. X-ray diffraction analysis confirmed that all the samples crystallize in a single phase perovskite structure. The dielectric properties were investigated as a function of temperature and applied electric field frequency. Compared with Li-substituted KNN (KLNN), Mn-substituted KNN (KMNN) exhibited a higher dielectric constant ɛ max (i.e., 4840) at its critical transition temperature T c (i.e., 421°C) along with a lower value of tangent loss at 10 kHz and greater values of saturation polarisation P s (i.e., 20.14 μC/cm2) and remnant polarisation P r (i.e., 15.48 μC/cm2). The piezoelectric constant ( d 33) of KMNN was 178 pC/N, which is comparable to that of lead-based hard ceramics. The results presented herein suggest that B-site or Mn substitution at the optimum concentration results in good enhancement of different properties required for materials used in memory devices and other applications.
Fabrication of porous low crystalline calcite block by carbonation of calcium hydroxide compact.
Matsuya, Shigeki; Lin, Xin; Udoh, Koh-ichi; Nakagawa, Masaharu; Shimogoryo, Ryoji; Terada, Yoshihiro; Ishikawa, Kunio
2007-07-01
Calcium carbonate (CaCO(3)) has been widely used as a bone substitute material because of its excellent tissue response and good resorbability. In this experimental study, we propose a new method obtaining porous CaCO(3) monolith for an artificial bone substitute. In the method, calcium hydroxide compacts were exposed to carbon dioxide saturated with water vapor at room temperature. Carbonation completed within 3 days and calcite was the only product. The mechanical strength of CaCO(3) monolith increased with carbonation period and molding pressure. Development of mechanical strength proceeded through two steps; the first rapid increase by bonding with calcite layer formed at the surface of calcium hydroxide particles and the latter increase by the full conversion of calcium hydroxide to calcite. The latter process was thought to be controlled by the diffusion of CO(2) through micropores in the surface calcite layer. Porosity of calcite blocks thus prepared had 36.8-48.1% depending on molding pressure between 1 MPa and 5 MPa. We concluded that the present method may be useful for the preparation of bone substitutes or the preparation of source material for bone substitutes since this method succeeded in fabricating a low-crystalline, and thus a highly reactive, porous calcite block.
Sheydaeian, Esmat; Vlasea, Mihaela; Woo, Ami; Pilliar, Robert; Hu, Eugene; Toyserkani, Ehsan
2017-05-01
This article addresses the effects of glycerol (GLY) concentrations on the mechanical properties of calcium polyphosphate (CPP) bone substitute structures manufactured using binder jetting additive manufacturing. To achieve this goal, nine types of water-based binder solutions were prepared with 10, 12.5, and 15 wt % GLY liquid-binding agent, mixed, respectively, with 0, 0.75, and 1.5 wt % ethylene glycol diacetate (EGD) flow enhancer. The print quality of each of the solutions was established quantitatively using an image processing algorithm. The print quality analysis narrowed down the solutions to three batches containing 1.5 wt % EGD and variable amount of GLY. These solutions were used to manufacture porous CPP bone substitute samples, which were characterized physically to determine shrinkage, porosity, microstructure, and compression strength. The 12.5 wt % GLY, 1.5 wt % EGD solution resulted in the highest mechanical strength after sintering (34.6 ± 5.8 MPa), illustrating similar mechanical properties when compared to previous studies (33.9 ± 6.3 MPa) of additively manufactured CPP bone substitutes using a commercially available binder. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 828-835, 2017. © 2016 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suaste, Ernesto; Castillo, Victor; Gonzalez, Ruben
2004-07-15
A method for determination of the phase transition in piezoelectric ceramic based on the relationship expressed by the Stefan-Boltzmann law is reported, i.e., by means of the radiation that the piezoelectric ceramic emits when it is subjected to different temperatures. The experiment is performed in piezoelectric ceramic based on PbTiO{sub 3} modified by the partial substitution of rare earths for Pb in the Pb{sub 0.88}(Ln){sub 0.08}Ti{sub 0.98}Mn{sub 0.02}O{sub 3} system (Ln=La, Sm, Eu). From the measured emitted radiation, the value of the emissivity is calculated for each type of piezoelectric ceramic.
2013-01-01
with Al [16,20]. In KrogereVink notation, the relationships for Ta and Nb substitution for Zr are as follows [20,22,23]: Ta$ Zr ¼ V0Li (3) Nb ...garnet phase. < CeO2 precipitation at grain boundaries increases grain boundary resistance . < Super-valent cation substitution likely stabilizes the...Introduction Li-ion batteries have played a vital role in the development of current generation mobile devices, microelectronics and electric vehicles [1]. Due
YAG glass-ceramic phosphor for white LED (II): luminescence characteristics
NASA Astrophysics Data System (ADS)
Tanabe, Setsuhisa; Fujita, Shunsuke; Yoshihara, Satoru; Sakamoto, Akihiko; Yamamoto, Shigeru
2005-09-01
Optical properties of the Ce:YAG glass-ceramic (GC) phosphor for the white LED were investigated. Concentration dependence of fluorescence intensity of Ce3+:5d→4f transition in the GC showed a maximum at 0.5mol%Ce2O3. Quantum efficiency (QE) of Ce3+ fluorescence in the GC materials, the color coordinate and luminous flux of electroluminescence of LED composite were evaluated with an integrating sphere. QE increased with increasing ceramming temperature of the as-made glass. The color coordinates (x,y) of the composite were increased with increasing thickness of the GC mounted on a blue LED chip. The effect of Gd2O3 substitution on the optical properties of the GC materials was also investigated. The excitation and emission wavelength shifted to longer side up to Gd/(Y+Gd)=0.40 in molar composition. As a result, the color coordinate locus of the LED with various thickness of the GdYAG-GC shifted to closer to the Planckian locus for the blackbody radiation. These results were explained by partial substitution of Gd3+ ions in the precipitated YAG micro-crystals, leading to the increase of lattice constant of unit cell, which was confirmed by X-ray diffraction.
Ghoveizi, Rahab; Alikhasi, Marzieh; Siadat, Mohammad-Reza; Siadat, Hakimeh; Sorouri, Majid
2013-01-01
Objective: Crestal bone loss is a biological complication in implant dentistry. The aim of this study was to compare the effect of progressive and conventional loading on crestal bone height and bone density around single osseointegrated implants in the posterior maxilla by a longitudinal radiographic assessment technique. Materials and Methods: Twenty micro thread implants were placed in 10 patients (two implants per patient). One of the two implants in each patient was assigned to progressive and the other to conventional loading groups. Eight weeks after surgery, conventional implants were restored with a metal ceramic crown and the progressive group underwent a progressive loading protocol. The progressive loading group took different temporary acrylic crowns at 2, 4 and 6 months. After eight months, acrylic crowns were replaced with a metal ceramic crown. Computer radiography of both progressive and conventional implants was taken at 2, 4, 6, and 12 months. Image analysis was performed to measure the height of crestal bone loss and bone density. Results: The mean values of crestal bone loss at month 12 were 0.11 (0.19) mm for progressively and 0.36 (0.36) mm for conventionally loaded implants, with a statistically significant difference (P < 0.05) using Wilcoxon sign rank. Progressively loaded group showed a trend for higher bone density gain compared to the conventionally loaded group, but when tested with repeated measure ANOVA, the differences were not statistically significant (P > 0.05). Conclusion: The progressive group showed less crestal bone loss in single osseointegrated implant than the conventional group. Bone density around progressively loaded implants showed increase in crestal, middle and apical areas. PMID:23724215
Bernhardt, Anne; Lode, Anja; Peters, Fabian; Gelinsky, Michael
2013-04-01
Granule-shaped calcium phosphate-based bone graft materials are often required for bone regeneration especially in implant dentistry. Two newly developed bone graft materials are Ceracell(®) , an open-celled highly porous bioceramic from β-tricalcium phosphate (β-TCP) under addition of bioglass and Osseolive(®) , an open porous glass ceramic with the general formula Ca2 KNa(PO4 )2 . The goal of this study was to characterize different modifications of the two bone graft materials in vitro in comparison to already established ceramic bone grafts Cerasorb M(®) , NanoBone(®) and BONIT Matrix(®) . Adhesion and proliferation of SaOS-2 osteoblast-like cells were evaluated quantitatively by determining DNA content and lactate dehydrogenase (LDH) activity and qualitatively by scanning electron microscopy (SEM). In addition, MTT cell-vitality staining was applied to confirm the attachment of viable cells to the different materials. Osteogenic differentiation was evaluated by measurement of alkaline phosphatase (ALP) activity as well as gene expression analysis of osteogenic markers using reverse transcriptase PCR. DNA content and LDH activity revealed good cell attachment and proliferation for Ceracell and Cerasorb M. When pre-incubated with cell-culture medium, also Osseolive showed good cell attachment and proliferation. Attachment and proliferation of osteoblast-like cells on NanoBone and BONIT Matrix was very low, even after pre-incubation with cell-culture medium. Specific ALP activity on Ceracell(®) , Osseolive (®) and Cerasorb M(®) increased with time and expression of bone-related genes ALP, osteonectin, osteopontin and bone sialoprotein II was demonstrated. Ceracell as well as Osseolive granules support proliferation and osteogenic differentiation in vitro and may be promising candidates for in vivo applications. © 2011 John Wiley & Sons A/S.
Lorenz, Jonas; Korzinskas, Tadas; Chia, Poju; Maawi, Sarah Al; Eichler, Katrin; Sader, Robert A; Ghanaati, Shahram
2018-02-01
The present prospective randomized split-mouth trial reports on the 3-year clinical and radiological follow-up investigation of implants placed 7 months after sinus augmentation with 2 different bone substitute materials. The aim of the study was to complete the histologic observation of cellular reactions by analyses of the implants and the volumetric changes of the augmented bone substitute materials. A sinus augmentation split-mouth trial was performed in 14 patients with the synthetic bone substitute material Nanobone (NB) and the xenogeneic Bio-Oss (BO). Changes in volume and density of the augmented biomaterials were investigated by analysis of computed tomography scans, taken immediately after augmentation and after 7 months. Clinical implant parameters were assessed after 3 years of loading. Both bone substitute materials underwent nonsignificant volume reduction and significant increase in bone density over an integration period of 7 months. No significant differences concerning volume and bone density were observed between the groups. Three years after loading, 51 of 53 implants were in situ with no peri-implant infections, and only a few soft-tissue variations were present. The present prospective randomized study showed that no differences could be observed clinically and radiologically. Accordingly, it seems that both biomaterials, independent of their physicochemical composition, enable clinical success and long-time stability for dental implants. Interestingly, the histological results showed distinct differences in cellular reactions: While the xenogeneic BO induced a mild tissue reaction with only few multinucleated giant cells and comparably low vascularization, the synthetic NB induced a multinucleated giant cell-triggered tissue reaction with an increase of vascularization. Thus, the present study showed that a combination analysis-histological, clinical, and radiological-is necessary for a detailed assessment of a biomaterial's quality for clinical application.
NASA Astrophysics Data System (ADS)
Jindal, Shilpi; Devi, Sheela; Vasishth, Ajay; Batoo, Khalid Mujasam; Kumar, Gagan
Polycrystalline cobalt-substituted tungsten bronze ferroelectric ceramics with chemical composition Ba5CaTi2-xCoXNb8O30 (x=0.00, 0.02, 0.04 and 0.08) were synthesized by solid state reaction technique. X-ray diffraction (XRD) technique was used to confirm the phase formation and it revealed the formation of single phase tetragonal structure with space group P4bm. The surface morphology of the samples was studied by using the scanning electron microscopy (SEM) technique. The dielectric properties such as dielectric constant and dielectric loss have been investigated as a function of temperature and frequency. The P-E and M-H studies confirmed the coexistent of ferroelectricity and magnetism at room temperature. The P-E loop study indicated an increase in the coercive field while the M-H study depicted a decrease in the magnetization with the incorporation of cobalt ions.
Chemical Composition of Ceramic Tile Glazes
NASA Astrophysics Data System (ADS)
Anufrik, S. S.; Kurian, N. N.; Zhukova, I. I.; Znosko, K. F.; Belkov, M. V.
2016-11-01
We have carried out laser emission and x-ray fluorescence spectral analysis of glaze before and after its application to ceramic tile produced by Keramin JSC (Belarus). We have studied the internal microstructure of the ceramic samples. It was established that on the surface and within the bulk interior of all the samples, there are micropores of sizes ranging from a few micrometers to tens of micrometers and microcracks as long as several hundred micrometers. The presence of micropores on the surface of the ceramic tile leads to an increase in the water absorption level and a decrease in frost resistance. It was found that a decrease in the surface tension of ceramic tile coatings is promoted by substitution of sodium by potassium, silica by boric anhydride, magnesium and barium by calcium, CaO by sodium oxide, and SiO2 by chromium oxide. We carried out a comparative analysis of the chemical composition of glaze samples using S4 Pioneer and ElvaX x-ray fluorescence spectrometers and also an LIBS laser emission analyzer.
Design and Characterization of Calcium Phosphate Ceramic Scaffolds for Bone Tissue Engineering
Kuhn, Liisa T.
2015-01-01
Objectives Our goal is to review design strategies for the fabrication of calcium phosphate ceramic scaffolds (CPS), in light of their transient role in bone tissue engineering and associated requirements for effective bone regeneration. Methods We examine the various design options available to meet mechanical and biological requirements of CPS and later focus on the importance of proper characterization of CPS in terms of architecture, mechanical properties and time-sensitive properties such as biodegradability. Finally, relationships between in vitro vs. in vivo testing are addressed, with an attempt to highlight reliable performance predictors. Results A combinatory design strategy should be used with CPS taking into consideration 3D architecture, adequate surface chemistry and topography, all of which are needed to promote bone formation. CPS represent the media of choice for delivery of osteogenic factors and anti-infectives. Non-osteoblast mediated mineral deposition can confound in vitro osteogenesis testing of CPS and therefore the expression of a variety of proteins or genes including collagen type I, bone sialoprotein and osteocalcin should be confirmed in addition to increased mineral content. Conclusions CPS are a superior scaffold material for bone regeneration because they actively promote osteogenesis. Biodegradability of CPS via calcium and phosphate release represents a unique asset. Structural control of CPS at the macro, micro and nanoscale and their combination with cells and polymeric materials is likely to lead to significant developments in bone tissue engineering. PMID:26423007
Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering.
Denry, Isabelle; Kuhn, Liisa T
2016-01-01
Our goal is to review design strategies for the fabrication of calcium phosphate ceramic scaffolds (CPS), in light of their transient role in bone tissue engineering and associated requirements for effective bone regeneration. We examine the various design options available to meet mechanical and biological requirements of CPS and later focus on the importance of proper characterization of CPS in terms of architecture, mechanical properties and time-sensitive properties such as biodegradability. Finally, relationships between in vitro versus in vivo testing are addressed, with an attempt to highlight reliable performance predictors. A combinatory design strategy should be used with CPS, taking into consideration 3D architecture, adequate surface chemistry and topography, all of which are needed to promote bone formation. CPS represent the media of choice for delivery of osteogenic factors and anti-infectives. Non-osteoblast mediated mineral deposition can confound in vitro osteogenesis testing of CPS and therefore the expression of a variety of proteins or genes including collagen type I, bone sialoprotein and osteocalcin should be confirmed in addition to increased mineral content. CPS are a superior scaffold material for bone regeneration because they actively promote osteogenesis. Biodegradability of CPS via calcium and phosphate release represents a unique asset. Structural control of CPS at the macro, micro and nanoscale and their combination with cells and polymeric materials is likely to lead to significant developments in bone tissue engineering. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Alveolar bone repair with strontium- containing nanostructured carbonated hydroxyapatite.
Carmo, André Boziki Xavier do; Sartoretto, Suelen Cristina; Alves, Adriana Terezinha Neves Novellino; Granjeiro, José Mauro; Miguel, Fúlvio Borges; Calasans-Maia, Jose; Calasans-Maia, Monica Diuana
2018-01-18
This study aimed to evaluate bone repair in rat dental sockets after implanting nanostructured carbonated hydroxyapatite/sodium alginate (CHA) and nanostructured carbonated hydroxyapatite/sodium alginate containing 5% strontium microspheres (SrCHA) as bone substitute materials. Twenty male Wistar rats were randomly divided into two experimental groups: CHA and SrCHA (n=5/period/group). After one and 6 weeks of extraction of the right maxillary central incisor and biomaterial implantation, 5 μm bone blocks were obtained for histomorphometric evaluation. The parameters evaluated were remaining biomaterial, loose connective tissue and newly formed bone in a standard area. Statistical analysis was performed by Mann-Withney and and Wilcoxon tests at 95% level of significance. The histomorphometric results showed that the microspheres showed similar fragmentation and bio-absorbation (p>0.05). We observed the formation of new bones in both groups during the same experimental periods; however, the new bone formation differed significantly between the weeks 1 and 6 (p=0.0039) in both groups. The CHA and SrCHA biomaterials were biocompatible, osteoconductive and bioabsorbable, indicating their great potential for clinical use as bone substitutes.
[Nano-hydroxyapatite/collagen composite for bone repair].
Feng, Qing-ling; Cui, Fu-zhai; Zhang, Wei
2002-04-01
To develop nano-hydroxyapatite/collagen (NHAC) composite and test its ability in bone repairing. NHAC composite was developed by biomimetic method. The composite showed some features of natural bone in both composition and microstructure. The minerals could contribute to 50% by weight of the composites in sheet form. The inorganic phase in the composite was carbonate-substituted hydroxyapatite (HA) with low crystallinity and nanometer size. HA precipitates were uniformly distributed on the type I collagen matrix without preferential orientation. The composite exhibited an isotropic mechanical behavior. However, the resistance of the composite to localized pressure could reach the lower limit of that of femur compacta. The tissue response to the NHAC composite implanted in marrow cavity was investigated. Knoop micro-hardness test was performed to compare the mechanical behavior of the composite and bone. At the interface of the implant and marrow tissue, solution-mediated dissolution and macrophage-mediated resorption led to the degradation of the composite, followed by interfacial bone formation by osteoblasts. The process of implant degradation and bone substitution was reminiscent of bone remodeling. The composite can be incorporated into bone metabolism instead of being a permanent implant.
2005-01-01
demongtrated the synthesis of degradable scaffolds from PLAGA /calcium phosphate composite microspheres in which an amorphous calcium phosphate is...EXPERIMENTAL DETAILS Scaffold Preparation Scaffolds were prepared as described in detail previously [3]. Briefly, PLAGA /calcium phosphate composite...culture polystyrene (TCPS) 2- pure PLAGA microspheres 64 3- composite microsphere matrices with a low polymer/ceramic ratio 4- composite microsphere
Nasal Floor Augmentation for the Reconstruction of the Atrophic Maxilla: A Case Series
El-Ghareeb, Moustafa; Pi-Anfruns, Joan; Khosousi, Mohammed; Aghaloo, Tara; Moy, Peter
2012-01-01
Purpose The severely atrophic edentulous maxilla imposes a challenge for dental implant rehabilitation. Nasal floor augmentation (NFA) is a method of augmenting bone height in the anterior maxilla. Autogenous bone has been commonly used as a graft material. Because of variations in results and lack of insufficient studies reporting the use of bone substitutes to graft the nasal floor, this study aims to evaluate the survival and success of dental implants placed in nasally grafted maxillae with osteoconductive bone substitutes. Materials and Methods Six patients with completely edentulous maxillae and inadequate height in the anterior to support implants underwent NFA. The nasal floor was exposed through an intraoral approach and grafted with osteoconductive bone graft substitutes. Twenty-four dental implants were placed, restored with a bar-retained implant-supported overdenture after a traditional healing period, and followed up after prosthetic loading. Patient satisfaction was evaluated with a questionnaire, and responses were expressed on a visual analog scale from 1 to 10. Bone levels were quantified radiographically based on a score ranging from 1 to 3, where 3 represented the highest bone support. Implants were evaluated for thread exposure and soft tissue health and were considered successful if the following criteria were met: absence of mobility; lack of symptoms; bone score of 3; and healthy peri-implant soft tissue without thread exposure. Results The age of patients ranged from 48 to 84 years, with a mean of 71.2 years. Three patients underwent NFA and simultaneous implant placement, whereas the other 3 had a mean healing period of 6.5 months before implant placement. Post-loading follow-up ranged from 4 to 29 months, with a mean of 14.2 months. The implant survival rate was 100%, with no complications. Ninety-three percent of the responses to the treatment satisfaction questionnaire had a score of 7 or greater. Bone scores ranged from 2 to 3, with 87.5% of implants having a score of 3 and 12.5% having a score of 2. None of the implants had a bone score of 1. Conclusions The use of osteoconductive bone substitutes for NFA, as shown in this small case series, is a reliable method for reconstruction of the anterior atrophic maxilla for implant-supported overdentures. PMID:22177805
NASA Astrophysics Data System (ADS)
Garbout, A.; Férid, M.
2018-06-01
Considering the features in changing the structure and properties of rare earth titanates pyrochlores, the substituted Dy2Ti2O7 may be very attractive for various applications. Effect of Sm and Y substitution on the structural properties of Dy2Ti2O7 ceramic was established. These ceramics were prepared by solid-state reaction and characterized by X-ray diffraction and Raman spectroscopy. Both analysis show that YDyTi2O7 with the pyrochlore structure is obtained after heating at 1400 °C, but SmDyTi2O7 has already formed after sintering at 1200 °C. SEM images revealed that the average grain size was increased with the increase of heating temperature, and an un-homogeneous grain growth was detected. The average size was about 37 nm and 135 nm for the SmDyTi2O7 and YDyTi2O7 particles, respectively. Structural Rietveld refinements indicate that all prepared ceramics crystallize in cubic structure with space group of Fd3m. The refined cell parameters demonstrate an almost linear correlation with the ionic radius of Ln3+. The vibrational spectra revealed that the positions of bands are sensitive to the Ln3+-ionic radius, and the Tisbnd O bond strength decreased linearly with the increase of cubic lattice parameter. Raman spectra indicate that the wavenumber of Osbnd Tisbnd O bending mode is considerably shifted to lower region with increasing in mass of the Ln atom. This paper provides solid foundations for additional research of these solid solutions, which are very attractive for different fields as promising catalytic compounds for combustion applications or as frustrated magnetic pyrochlore ceramics.
Evaluation of sol-gel based magnetic 45S5 bioglass and bioglass-ceramics containing iron oxide.
Shankhwar, Nisha; Srinivasan, A
2016-05-01
Multicomponent oxide powders with nominal compositions of (45-x)·SiO2·24.5CaO·24.5Na2O·6P2O5xFe2O3 (in wt.%) were prepared by a modified sol-gel procedure. X-ray diffraction (XRD) patterns and high resolution transmission electron microscope images of the sol-gel products show fully amorphous structure for Fe2O3 substitutions up to 2 wt.%. Sol-gel derived 43SiO2·24.5CaO·24.5Na2O·6P2O5·2Fe2O3 glass (or bioglass 45S5 with SiO2 substituted with 2 wt.% Fe2O3), exhibited magnetic behavior with a coercive field of 21 Oe, hysteresis loop area of 33.25 erg/g and saturation magnetization of 0.66 emu/g at an applied field of 15 kOe at room temperature. XRD pattern of this glass annealed at 850 °C for 1h revealed the formation of a glass-ceramic containing sodium calcium silicate and magnetite phases in nanocrystalline form. Temperature dependent magnetization and room temperature electron spin resonance data have been used to obtain information on the magnetic phase and distribution of iron ions in the sol-gel glass and glass-ceramic samples. Sol-gel derived glass and glass-ceramic exhibit in-vitro bioactivity by forming a hydroxyapatite surface layer under simulated physiological conditions and their bio-response is superior to their melt quenched bulk counterparts. This new form of magnetic bioglass and bioglass ceramics opens up new and more effective biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Paramita Mantry, Snigdha; Yadav, Abhinav; Fahad, Mohd; Sarun, P. M.
2018-03-01
Vanadium (V) substituted SrTiO3 (SrTi1-x V x O3 and x = 0.00-0.20) ceramic powders were synthesized by conventional solid state reaction method at sintering temperature 1250 ◦C for 2 hr. The structural, surface morphology and elemental valancy of the prepared samples were studied by using X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM) and X-ray photoelectron spectroscopy (XPS). The XRD analysis of SrTi1-x V x O3 confirmed the formation of single phase cubic crystal structure. The average grain size significantly increases from 0.5 μm to 7.2 μm with increasing V concentration. XPS spectrum confirms the partial reduction of Ti4+ to Ti3+ due to the doping of V5 + in SrTiO3 ceramics. The effect of V2O5 on the dielectric properties, impedance spectroscopy, Nyquist analysis and conductivity properties of SrTiO3 ceramics were investigated over a wide range of frequency (100 Hz—5 MHz) at 100 ◦C. The magnitude of dielectric constant and dielectric loss decreases with increase in frequency for all the samples. The maximum value of dielectric constant (ɛ r ˜ 500) is observed for x = 0.05 composition. The complex impedance analysis shows that the electrical conduction mechanism is mainly due to grain effect. The optimal dielectric constant (ɛ r ˜ 500) and effective capacitance (C eff = 35.80 nF) is observed for the sample with x = 0.05. Doping of donor cations lead to a drastic change in the microstructure and electrical behavior of SrTiO3 ceramics.
NASA Astrophysics Data System (ADS)
Prahara, E.; Meilani
2014-03-01
Pervious concrete was introduced in America in 2003, popularized by Dan Brown and used as a rigid pavement in the open parking lot. Rigid pavement using pervious concrete can absorb water in the surface to go straight through the concrete to the ground below.This water flow is one of the benefit of using the pervious concrete. Using of wastes such as broken roof and ceramics tiles are not commonly used in Indonesia. Utilization these kind of wastes is predicted lower the compressive strength of pervious concrete as they are used as a substitute for coarse aggregate.In this research, pervious concrete is made using a mixture of the fragment of ceramics and roof tiles.This research using broken ceramics and roof tiles with a grain size that loose from 38 mm sieve, retained on 19 mm sieve and the coarse aggregate from crushed stone that loose 12.5 mm sieve, retained on 9.5 mm sieve. The water cement ratio is 0.3 and to assist the mixing process, the addition of addictive in pervious concrete is used.The size of coarse aggregate used in the mixture affects the strength of pervious concrete. The larger the size of aggregate, the obtained compressive strength becomes smaller. It also affects the density of pervious concrete. The using of mixture of ceramics and roof tiles only reduce 2 MPa of pervious concrete compressive strength so this mixture can be used as a substitute for coarse aggregate with a maximum portion of 30 %. The high porosity of the specimens causes the reduction of pervious concrete density that affect the compressive strength. This high level of porosity can be seen from the high level of water absorption that exceed the required limit of water infiltration.
Zhang, C; Wang, J; Feng, H; Lu, B; Song, Z; Zhang, X
2001-03-05
A porous ceramic material [hydroxyapatitetricalcium phosphate (HA-TCP)] was implanted in the femora of 30 dogs to investigate the possibility of using this material to repair segmental bone defects. A bone segment, 1.5 cm in length, was removed from the diaphysis of one femur in each dog to create the defect. Cylinders of corresponding size were inserted into the defects. The animals were divided into three groups with recovery times of 2 months, 4 months, and 6 months, respectively. The implants were harvested and subjected to biomechanic tests (bending strength) and X-ray diffraction analysis. The bending strengths of the implant construct increased gradually over time postoperatively. The values of strength for the three different time groups had significant variations (p < 0.05). The X-ray diffraction analysis indicated that the peaks of the TCP included in the cylinders decreased in intensity after implantation and tended to be similar to those of natural bone by 6 months after operation. Conversely, the peaks for the HA had fewer changes compared with preimplantation values. Based on the results of this experiment it was concluded that the porous HA-TCP ceramic cylinders have potential for repair of segmental bone defects if assisted by adequate stabilizing fixtures during the early postoperative period.
Bioactive ceramic coating on orthopedic implants for enhanced bone tissue integration
NASA Astrophysics Data System (ADS)
Aniket
Tissue integration between bone and orthopedic implant is essential for implant fixation and longevity. An immunological response leads to fibrous encapsulation of metallic implants leading to implant instability and failure. Bioactive ceramics have the ability to directly bond to bone; however, they have limited mechanical strength for load bearing applications. Coating bioactive ceramics on metallic implant offers the exciting opportunity to enhance bone formation without compromising the mechanical strength of the implant. In the present study, we have developed a novel bioactive silica-calcium phosphate nanocomposite (SCPC) coating on medical grade Ti-6Al-4V orthopedic implant using electrophoretic deposition (EPD) and evaluated bone tissue response to the coated implant at the cellular level. The effect of SCPC composition and suspending medium pH on the zeta potential of three different SCPC formulations; SCPC25, SCPC50 and SCPC75 were analyzed. The average zeta potential of SCPC50 in pure ethanol was more negative than that of SCPC25 or SCPC75; however the difference was not statistically significant. Ti-6Al-4V discs were passivated, coated with SCPC50 (200 nm - 10 mum) and thermally treated at 600 - 800 ºC to produce a coating thickness in the range of 43.1 +/- 5.7 to 30.1 +/- 4.6 μm. After treatment at 600, 700 and 800 ºC, the adhesion strength at the SCPC50/Ti-6Al-4V interface was 42.6 +/- 3.6, 44.7 +/- 8.7 and 47.2 +/- 4.3 MPa, respectively. XRD analyses of SCPC50 before and after EPD coating indicated no change in the crystallinity of the material. Fracture surface analyses showed that failure occurred within the ceramic layer or at the ceramic/polymer interface; however, the ceramic/metal interface was intact in all samples. The adhesion strength of SCPC50-coated substrates after immersion in PBS for 2 days (11.7 +/- 3.9 MPa) was higher than that measured on commercially available hydroxyapatite (HA) coated substrates (5.5 +/- 2.7 MPa), although the difference was not statistically significant. SEM - EDX analyses of SCPC50-coated Ti-6Al-4V pre-immersed in PBS for 7 days showed the formation of a Ca-deficient HA surface layer. Bone cells attached to the SCPC50-coated implants expressed significantly higher (p < 0.05) alkaline phosphatase activity (82.4 +/- 25.6 nmoles p-NP/mg protein/min) than that expressed by cells attached to HA-coated or uncoated implants. Protein adsorption analyses showed that SCPC50-coated substrates adsorbed significantly more (p < 0.05) serum protein (14.9 +/- 1.2 mug) than control uncoated substrates (8.9 +/- 0.7 mug). Moreover, Western blot analysis showed that the SCPC50 coating has a high affinity for serum fibronectin. Protein conformation analyses by FTIR showed that the ratio of the area under the peak for amide I/amide II bands was significantly higher (p < 0.05) on the surface of SCPC50-coated substrate (5.0 +/- 0.6) than that on the surface of the control uncoated substrates (2.2 +/- 0.3). Moreover, ICP-OES analyses indicated that SCPC50-coated substrates withdrew Ca ions from, and released P and Si ions into, the tissue culture medium, respectively. In conjunction with the favorable protein adsorption and modifications in medium composition, MC3T3-E1 osteoblast-like cells attached to SCPC50-coated substrates expressed 10-fold higher level of mRNA encoding osteocalcin and had significantly higher production of osteopontin and osteocalcin proteins than cells attached to the uncoated Ti-6Al-4V substrate. In addition, osteoblast-like cells attached to the SCPC50-coated substrates produced significantly lower levels of the inflammatory and osteoclastogenic cytokines, IL-6, IL-12p40 and RANKL than those attached to uncoated Ti-6Al-4V. Surface topography analyses using AFM suggested that the SCPC50 particles deposit onto the metal surface in a manner that preferentially fills the grooves on the substrate created during substrate preparation. An increase in the surface roughness of the SCPC50-coated substrate from 217.8 +/- 54.6 nm to 284.3 +/- 37.3 nm was accompanied by enhanced material dissolution, reduced cell proliferation and poor actin cytoskeleton organization, which are characteristics typical of differentiating bone cells on bioactive ceramic surfaces. Results of the study demonstrate that bioactive SCPC50 can efficiently be coated on Ti-6Al-4V using EPD. Moreover, the in vitro bone cell response suggests that SCPC50-coating has the potential to enhance bone integration with orthopedic and maxillofacial implants while minimizing the induction of inflammatory bone cell responses.
Weigand, Annika; Beier, Justus P; Schmid, Rafael; Knorr, Tobias; Kilian, David; Götzl, Rebekka; Gerber, Thomas; Horch, Raymund E; Boos, Anja M
2017-03-01
For decades, researchers have been developing a range of promising strategies in bone tissue engineering with the aim of producing a significant clinical benefit over existing therapies. However, a major problem concerns the traditional use of xenogeneic substances for the expansion of cells, which complicates direct clinical transfer. The study's aim was to establish a totally autologous sheep model as a basis for further preclinical studies and future clinical application. Ovine mesenchymal stromal cells (MSC) were cultivated in different concentrations (0%, 2%, 5%, 10%, and 25%) of either autologous serum (AS) or fetal calf serum (FCS). With an increase of serum concentration, enhanced metabolic activity and proliferation could be observed. There were minor differences between MSC cultivated in AS or FCS, comparing gene and protein expression of osteogenic and stem cell markers, morphology, and osteogenic differentiation. MSC implanted subcutaneously in the sheep model, together with a nanostructured bone substitute, either in stable block or moldable putty form, induced similar vascularization and remodeling of the bone substitute irrespective of cultivation of MSC in AS or FCS and osteogenic differentiation. The bone substitute in block form together with MSC proved particularly advantageous in the induction of ectopic bone formation compared to the cell-free control and putty form. It could be demonstrated that AS is suitable for replacement of FCS for cultivation of ovine MSC for bone tissue engineering purposes. Substantial progress has been made in the development of a strictly xenogeneic-free preclinical animal model to bring future clinical application of bone tissue engineering strategies within reach.
Early matrix change of a nanostructured bone grafting substitute in the rat.
Xu, Weiguo; Holzhüter, Gerd; Sorg, Heiko; Wolter, Daniel; Lenz, Solvig; Gerber, Thomas; Vollmar, Brigitte
2009-11-01
A nanocrystalline bone substitute embedded in a highly porous silica gel matrix (NanoBone) has previously been shown to bridge bone defects by an organic matrix. As the initial host response on the bone graft substitute might be a determinant for subsequent bone formation, our present purpose was to characterize the early tissue reaction on this biomaterial. After implantation of 80 mg of NanoBone into the adipose neck tissue of a total of 35 rats, grafts were harvested for subsequent analysis at days 3, 6, 9, 12, and 21. The biomaterial was found encapsulated by granulation tissue which partly penetrated the implant at day 3 and completely pervaded the graft at day 12 on implantation. Histology revealed tartrate-resistant acid phosphatase (TRAP)-positive giant cells covering the biomaterial. ED1 (CD68) immunopositivity of these cells further indicated their osteoclast-like phenotype. Scanning electron microscopy revealed organic tissue components within the periphery of the graft already at day 9, whereas the central hematoma region still presented the silica-surface of the biomaterial. Energy dispersive X-ray spectroscopy further demonstrated that the silica gel was degraded faster in the peripheral granulation tissue than in the central hematoma and was replaced by organic host components by day 12. In conclusion, the silica gel matrix is rapidly replaced by carbohydrate macromolecules. This might represent a key step in the process of graft degradation on its way toward induction of bone formation. The unique composition and structure of this nanoscaled biomaterial seem to support its degradation by host osteoclast-like giant cells.
Fu, Qiang; Saiz, Eduardo; Tomsia, Antoni P
2011-10-01
The quest for synthetic materials to repair load-bearing bone lost because of trauma, cancer, or congenital bone defects requires the development of porous, high-performance scaffolds with exceptional mechanical strength. However, the low mechanical strength of porous bioactive ceramic and glass scaffolds, compared with that of human cortical bone, has limited their use for these applications. In the present work bioactive 6P53B glass scaffolds with superior mechanical strength were fabricated using a direct ink writing technique. The rheological properties of Pluronic® F-127 (referred to hereafter simply as F-127) hydrogel-based inks were optimized for the printing of features as fine as 30 μm and of three-dimensional scaffolds. The mechanical strength and in vitro degradation of the scaffolds were assessed in a simulated body fluid (SBF). The sintered glass scaffolds showed a compressive strength (136 ± 22 MPa) comparable with that of human cortical bone (100-150 MPa), while the porosity (60%) was in the range of that of trabecular bone (50-90%). The strength is ~100-times that of polymer scaffolds and 4-5-times that of ceramic and glass scaffolds with comparable porosities. Despite the strength decrease resulting from weight loss during immersion in SBF, the value (77 MPa) is still far above that of trabecular bone after 3 weeks. The ability to create both porous and strong structures opens a new avenue for fabricating scaffolds for load-bearing bone defect repair and regeneration. Published by Elsevier Ltd.
Fu, Qiang; Saiz, Eduardo; Tomsia, Antoni P.
2011-01-01
The quest for synthetic materials to repair load-bearing bone lost because of trauma, cancer, or congenital bone defects requires development of porous and high-performance scaffolds with exceptional mechanical strength. However, the low mechanical strength of porous bioactive ceramic and glass scaffolds, compared with that of human cortical bone, has limited their use for these applications. In the present work, bioactive 6P53B glass scaffolds with superior mechanical strength were fabricated using a direct ink writing technique. The rheological properties of Pluronic® F-127 (referred to hereafter simply as F-127) hydrogel-based inkswere optimized for the printing of features as fine as 30 μm and of the three-dimensional scaffolds. The mechanical strength and in vitro degradation of the scaffolds were assessed in a simulated body fluid (SBF). The sintered glass scaffolds show a compressive strength (136 ± 22 MPa) comparable to that of human cortical bone (100-150 MPa), while the porosity (60%) is in the range of that of trabecular bone (50-90%).The strength is ~100 times that of polymer scaffolds and 4–5 times that of ceramic and glass scaffolds with comparable porosities. Despite the strength decrease resulting from weight loss during immersion in an SBF, the value (77 MPa) is still far above that of trabecular bone after three weeks. The ability to create both porous and strong structures opens a new avenue for fabricating scaffolds for load-bearing bone defect repair and regeneration. PMID:21745606
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajabtabar-Darvishi, A.; Center for Surface and Nanoanalytics; Bayati, R., E-mail: reza.bayati@intel.com, E-mail: mbayati@ncsu.edu, E-mail: wdfei@hit.edu.cn
2015-03-07
This study sheds light on the effect of alumina on dielectric constant and dielectric loss of novel CaCu{sub 3}Ti{sub 4}O{sub 12} composite ceramics. Alumina, at several concentrations, was deposited on the surface of CaCu{sub 3}Ti{sub 4}O{sub 12} particles via sol-gel technique. The dielectric constant significantly increased for all frequencies and the dielectric loss substantially decreased for low and intermediate frequencies. These observations were attributed to the change in characteristics of grains and grain boundaries. It was found that the insulating properties of the grain boundaries are improved following the addition of Al{sub 2}O{sub 3}. The relative density of CaCu{sub 3}Ti{submore » 4}O{sub 12}/Al{sub 2}O{sub 3} composite ceramics decreased compared to the pure CaCu{sub 3}Ti{sub 4}O{sub 12} and the grain size was greatly changed with the alumina content affecting the dielectric properties. With the addition of alumina into CaCu{sub 3}Ti{sub 4}O{sub 12}, tighter interfaces formed. The 6%- and 10%-alumina ceramics showed the minimum dielectric loss and the maximum dielectric constant, respectively. Both the dielectric constant and loss tangent decreased in the 20%-alumina ceramic due to the formation of CuO secondary phase. It was revealed that Al serves as an electron acceptor decreasing the electron concentration, if Al{sup 3+} ions substitute for Ti{sup 4+} ions, and as an electron donor increasing the electron concentration, if Al{sup 3+} ions substitute for Ca{sup 2+} ions. We established a processing-microstructure-properties paradigm which opens new avenues for novel applications of CaCu{sub 3}Ti{sub 4}O{sub 12}/Al{sub 2}O{sub 3} composite ceramics.« less
Yang, C Y; Chen, C R; Chang, E; Lee, T M
2007-08-01
A porous metal coating applied to solid substrate implants has been shown, in vivo, to anchor implants by bone ingrowth. Calcium phosphate ceramics, in particular hydroxyapatite [Ca(10)(PO(4))(6)(OH)(2), HA], are bioactive ceramics, which are known to be biocompatible and osteoconductive, and these ceramics deposited on to porous-coated devices may enhance bone ingrowth and implant fixation. In this study, bi-feedstock of the titanium powder and composite (Na(2)CO(3)/HA) powder were simultaneously deposited on a Ti-6Al-4V substrate by a plasma sprayed method. At high temperature of plasma torch, the solid state of Na(2)CO(3) would decompose to release CO(2) gas and then eject the molten Ti powder to induce the interconnected pores in the coatings. After cleaning and soaking in deionized water, the residual Na(2)CO(3) in the coating would dissolve to form the open pores, and the HA would exist at the surface of pores in the inner coatings. By varying the particle size of the composite powder, the porosity of porous coating could be varied from 25.0 to 34.0%, and the average pore size of the porous coating could be varied to range between 158.5 and 202.0 microm. Using a standard adhesive test (ASTM C-633), the bonding strength of the coating is between 27.3 and 38.2 MPa. By SEM, the HA was observed at the surface of inner pore in the porous coating. These results suggest that the method exhibits the potential to manufacture the bioactive ceramics on to porous-coated specimen to achieve bone ingrowth fixation for biomedical applications.
Guided bone regeneration with a synthetic biodegradable membrane: a comparative study in dogs.
Jung, Ronald E; Kokovic, Vladimir; Jurisic, Milan; Yaman, Duygu; Subramani, Karthikeyan; Weber, Franz E
2011-08-01
The aim of the present study was to compare a newly developed biodegradable polylactide/polyglycolide/N-methyl-2-pyrrolidone (PLGA/NMP) membrane with a standard resorbable collagen membrane (RCM) in combination with and without the use of a bone substitute material (deproteinized bovine bone mineral [DBBM]) looking at the proposed tenting effect and bone regeneration. In five adult German sheepdogs, the mandibular premolars P2, P3, P4, and the molar M1 were bilaterally extracted creating two bony defects on each site. A total of 20 dental implants were inserted and allocated to four different treatment modalities within each dog: PLGA/NMP membrane only (Test 1), PLGA/NMP membrane with DBBM (Test 2), RCM only (negative control), and RCM with DBBM (positive control). A histomorphometric analysis was performed 12 weeks after implantation. For statistical analysis, a Friedman test and subsequently a Wilcoxon signed ranks test were applied. In four out of five PLGA/NMP membrane-treated defects, the membranes had broken into pieces without the support of DBBM. This led to a worse outcome than in the RCM group. In combination with DBBM, both membranes revealed similar amounts of area of bone regeneration and bone-to-implant contact without significant differences. On the level of the third implant thread, the PLGA/NMP membrane induced more horizontal bone formation beyond the graft than the RCM. The newly developed PLGA/NMP membrane performs equally well as the RCM when applied in combination with DBBM. Without bone substitute material, the PLGA/NMP membrane performed worse than the RCM in challenging defects, and therefore, a combination with a bone substitute material is recommended. © 2010 John Wiley & Sons A/S.
Orthobiologics in Pediatric Sports Medicine.
Bray, Christopher C; Walker, Clark M; Spence, David D
2017-07-01
Orthobiologics are biological substances that allow injured muscles, tendons, ligaments, and bone to heal more quickly. They are found naturally in the body; at higher concentrations they can aid in the healing process. These substances include autograft bone, allograft bone, demineralized bone matrix, bone morphogenic proteins, growth factors, stem cells, plasma-rich protein, and ceramic grafts. Their use in sports medicine has exploded in efforts to increase graft incorporation, stimulate healing, and get athletes back to sport with problems including anterior cruciate ligament ruptures, tendon ruptures, cartilage injuries, and fractures. This article reviews orthobiologics and their applications in pediatric sports medicine. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhang, L; Tan, J; He, Z Y; Jiang, Y H
2018-09-01
β-type Ti-35Nb-7Zr alloy has attracted considerable attentions as a bone implant material. The alloy, however, has poor bioactivity, which difficult to form a strong osseointegration between the bone tissues. Combining Ti alloy with a bioactive and biodegradable ceramic has been of interest to researchers. But the large difference in physicochemical property of high-melting metal and ceramic elements would bring the manufacturing restriction. In this work, Ti-35Nb-7Zr-CPP composites were fabricated with mechanical alloy of Ti, Nb, Zr and Nano calcium pyrophosphate (CPP) powders mixture followed by spark plasma sintering (SPS) routes. The effect of CPP ceramic on microstructural evolution and in vitro biocompatibility were investigated. As the addition of CPP (10-30 wt%), ceramic elements spreading towards the matrix, the generated metal-ceramic bioactive phases CaTiO 3 are observed well consolidated with β-Ti matrix. With the CPP increasing, Ca and P atoms rapidly migrated to the β-Ti matrix to form granulated Ti 5 P 3 , which leads to the increasing porosity (10%-18%) in the composites. The results demonstrated that the favorable cell viability (the cell proliferation rates were higher than 100%) and growth inside the pores of the composites arise from the rough micro-porous surface and the release of bioactive metal-ceramic phase ions into the biological environment. The enhanced bioactivity and microstructural evolution behaviors of the Ti-35Nb-7Zr-CPP composites may provide a strategy for designing and fabricating multifunctional implants. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kumar, Alesh; Mariappan, C. R.
2018-04-01
Bioactive glass-ceramics 45.8 mol% SiO- 45.8 CaO - 8.4 B2O3 doped with Ag2O were synthesized by sol-gel method. The glass-ceramic nature of samples was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis. Fourier transform infrared (FT-IR) spectra reveal the probable stretching and bending vibration modes of silicate and borate groups. UV-Visible spectra reveal the presence of Ag+ ions and metallic Ag in the glass matrix for Ag2O doped ceramic sample. Biocompatibility of the glass nature of samples was studied by soaking of samples in Dulbecco's Modified Eagle's Medium (DMEM) with subsequent XRD studies. It was found that bone-like apatite formation on the glasses after soaked in DMEM. Antibacterial studies of glass ceramics powder against gram positive and negative microorganisms were carried out.
Hip arthroplasty today and tomorrow.
Amstutz, H C
1987-12-01
Acrylic-fixed total hip and surface replacement arthroplasty have been very effective in affording immediate relief of pain and providing improved function. Complications have been reduced by improvements in design, materials, and especially technique. They are now very low in the elderly, and the stem type acrylic-fixed design remains the procedure of choice. The failure rates in youthful patients and those with bone-stock deficiencies have been high in both THR and surface types, although the latter had the advantage of preserving femoral stock. On the femoral side, the new "macro" femoral designs from Europe and "micro" femoral porous designs have shown promise, but thigh pain, incomplete and difficult to predict bone ingrowth patterns, coupled with removal problems have influenced design and technique changes. Both press-fit stem types and porous surface replacements have produced promising initial results with less potential downside risks. On the acetabular side, both the cementless hemispherical with screw-type adjuvant fixation, or the chamfered cylinder designs, used primarily with the UCLA porous surface replacements, but also with stem-type devices, appear to achieve best short-term results, while the entire variety of screw rings are disappointing. The future will bring further refinements in technique and specific indications for certain types of replacement stem in specific types of bone stock deficiencies. The all ceramic-ceramic and ceramic-polyethylene bearings show promise of reducing wear and, hence, should improve longevity of implant fixation.
Structural properties of a bone-ceramic composite as a promising material in spinal surgery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirilova, I. A., E-mail: IKirilova@mail.ru; Sadovoy, M. A.; Podorozhnaya, V. T., E-mail: VPodorognaya@niito.ru
The paper describes the results of in vitro tests of composite bone-ceramic implants and procedures for modifying implant surfaces to enhance osteogenesis. Analysis of CBCI ESs demonstrated that they have a porous structure with the mean longitudinal pore size of 70 µm and the mean transverse pore size of 46 µm; surface pores are open, while inner pores are closed. Elemental analysis of the CBCI surface demonstrates that CBCIs are composed of aluminum and zirconium oxides and contain HA inclusions. Profilometry of the CBCI ES surface revealed the following deviations: the maximum deviation of the profile in the sample center is 15 µmmore » and 16 µm on the periphery, while the arithmetical mean and mean square deviations of the profile are 2.65 and 3.4 µm, respectively. In addition, CBCI biodegradation products were pre-examined; a 0.9% NaCl solution was used as a comparison group. Potentially toxic and tissue accumulated elements, such as cadmium, cobalt, mercury, and lead, are present only in trace amounts and have no statistically significant differences with the comparison group, which precludes their potential toxic effects on the macroorganism. Ceramic-based CBCI may be effective and useful in medicine for restoration of the anatomic integrity and functions of the bone tissue.« less
Shao, Huifeng; Ke, Xiurong; Liu, An; Sun, Miao; He, Yong; Yang, Xianyan; Fu, Jianzhong; Liu, Yanming; Zhang, Lei; Yang, Guojing; Xu, Sanzhong; Gou, Zhongru
2017-04-12
Three-dimensional (3D) printing bioactive ceramics have demonstrated alternative approaches to bone tissue repair, but an optimized materials system for improving the recruitment of host osteogenic cells into the bone defect and enhancing targeted repair of the thin-wall craniomaxillofacial defects remains elusive. Herein we systematically evaluated the role of side-wall pore architecture in the direct-ink-writing bioceramic scaffolds on mechanical properties and osteogenic capacity in rabbit calvarial defects. The pure calcium silicate (CSi) and dilute Mg-doped CSi (CSi-Mg6) scaffolds with different layer thickness and macropore sizes were prepared by varying the layer deposition mode from single-layer printing (SLP) to double-layer printing (DLP) and then by undergoing one-, or two-step sintering. It was found that the dilute Mg doping and/or two-step sintering schedule was especially beneficial for improving the compressive strength (∼25-104 MPa) and flexural strength (∼6-18 MPa) of the Ca-silicate scaffolds. The histological analysis for the calvarial bone specimens in vivo revealed that the SLP scaffolds had a high osteoconduction at the early stage (4 weeks) but the DLP scaffolds displayed a higher osteogenic capacity for a long time stage (8-12 weeks). Although the DLP CSi scaffolds displayed somewhat higher osteogenic capacity at 8 and 12 weeks, the DLP CSi-Mg6 scaffolds with excellent fracture resistance also showed appreciable new bone tissue ingrowth. These findings demonstrate that the side-wall pore architecture in 3D printed bioceramic scaffolds is required to optimize for bone repair in calvarial bone defects, and especially the Mg doping wollastontie is promising for 3D printing thin-wall porous scaffolds for craniomaxillofacial bone defect treatment.
Morita, Yusuke; Nakata, Kenichi; Kim, Yoon-Ho; Sekino, Tohru; Niihara, Koichi; Ikeuchi, Ken
2004-01-01
While only alumina is applied to all-ceramic joint prostheses at present, a stronger ceramic is required to prevent fracture and chipping due to impingement and stress concentration. Zirconia could be a potential substitute for alumina because it has high strength and fracture toughness. However, the wear of zirconia/zirconia combination is too high for clinical use. Although some investigations on composite ceramics revealed that mixing of different ceramics was able to improve the mechanical properties of ceramics, there are few reports about wear properties of composite ceramics for joint prosthesis. Since acetabular cup and femoral head of artificial hip joint are finished precisely, they indicate high geometric conformity. Therefore, wear test under flat contact was carried out with an end-face wear testing apparatus for four kinds of ceramics: alumina monolith, zirconia monolith, alumina-based composite ceramic, and zirconia based composite ceramic. Mean contact pressure was 10 MPa and sliding velocity was 40 mm/s. The wear test continued for 72 hours and total sliding distance was 10 km. After the test, the wear factor was calculated. Worn surfaces were observed with a scanning electron micrograph (SEM). The results of this wear test show that the wear factors of the both composite ceramics are similarly low and their mechanical properties are much better than those of the alumina monolith and the zirconia monolith. According to these results, it is predicted that joint prostheses of the composite ceramics are safer against break down and have longer lifetime compared with alumina/alumina joint prostheses.