Abu Alhaija, Elham S J; Abu AlReesh, Issam A; AlWahadni, Ahed M S
2010-06-01
The aims of this study were to evaluate the shear bond strength (SBS) of metal and ceramic brackets bonded to two different all-ceramic crowns, IPS Empress 2 and In-Ceram Alumina, to compare the SBS between hydrofluoric acid (HFA), phosphoric acid etched, and sandblasted, non-etched all-ceramic surfaces. Ninety-six all-ceramic crowns were fabricated resembling a maxillary left first premolar. The crowns were divided into eight groups: (1) metal brackets bonded to sandblasted 9.6 per cent HFA-etched IPS Empress 2 crowns; (2) metal brackets bonded to sandblasted 9.6 per cent HFA-etched In-Ceram crowns; (3) ceramic brackets bonded to sandblasted 9.6 per cent HFA-etched IPS Empress 2 crowns; (4) ceramic brackets bonded to sandblasted 9.6 per cent HFA-etched In-Ceram crowns; (5) metal brackets bonded to sandblasted 37 per cent phosphoric acid-etched IPS Empress 2 crowns; (6) metal brackets bonded to sandblasted 37 per cent phosphoric acid-etched In-Ceram crowns; (7) metal brackets bonded to sandblasted, non-etched IPS Empress 2 crowns; and (8) metal brackets bonded to sandblasted, non-etched In-Ceram crowns. Metal and ceramic orthodontic brackets were bonded using a conventional light polymerizing adhesive resin. An Instron universal testing machine was used to determine the SBS at a crosshead speed of 0.1 mm/minute. Comparison between groups was performed using a univariate general linear model and chi-squared tests. The highest mean SBS was found in group 3 (120.15 +/- 45.05 N) and the lowest in group 8 (57.86 +/- 26.20 N). Of all the variables studied, surface treatment was the only factor that significantly affected SBS (P < 0.001). Acid etch application to sandblasted surfaces significantly increased the SBS in groups 1, 2, 5, and 6. The SBS of metal brackets debonded from groups 1, 3, and 5 were not significantly different from those of groups 2, 4, and 6. All debonded metal brackets revealed a similar pattern of bond failure at the adhesive-restorative interface. However, ceramic brackets had a significantly different adhesive failure pattern with dominant failure at the adhesive-bracket interface. Ceramic fractures after bracket removal were found more often in groups 1-4. No significant difference in ceramic fracture was observed between the IPS Empress 2 and In-Ceram groups.
Shear Bond Strength of Orthodontic Brackets Bonded to Zirconium Crowns
Mehmeti, Blerim; Azizi, Bleron; Kelmendi, Jeta; Iljazi-Shahiqi, Donika; Alar, Željko
2017-01-01
Background An increasing demand for esthetic restorations has resulted in an increased use of all-ceramic restorations, such as zirconium. However, one of the challenges the orthodontist must be willing to face is how to increase bond strength between the brackets and various ceramic restorations.Bond strength can beaffected bybracket type, by the material that bracketsaremade of, and their base surface design or retention mode. Aim: of this study was to perform a comparative analysis of the shear bond strength (SBS) of metallic and ceramic orthodontic brackets bonded to all-zirconium ceramic surfaces used for prosthetic restorations, and also to evaluate the fracture mode of these two types of orthodontic brackets. Material and methods Twenty samples/semi-crowns of all-zirconium ceramic, on which orthodontic brackets were bonded, 10 metallic and 10 ceramic polycrystalline brackets, were prepared for this research. SBS has been testedby Universal Testing Machine, with a load applied using a knife edged rod moving at a fixed rate of 1 mm/min, until failure occurred. The force required to debond the brackets was recorded in Newton, then SBS was calculated to MPa. In addition, the samples were analyzed using a digital camera magnifier to determine Adhesive Remnant Index (ARI). Statistical data were processed using t-test, and the level of significance was set at α = 0.05. Results Higher shear bond strength values were observed in metallic brackets bonded to zirconium crowns compared tothoseof ceramic brackets, with a significant difference. During the test, two of the ceramic brackets were partially or totally damaged. Conclusion Metallic brackets, compared to ceramic polycrystalline brackets, seemed tocreate stronger adhesion with all-zirconium surfaces due to their better retention mode. Also, ceramic brackets showed higher fragility during debonding. PMID:28827846
Shear Bond Strength of Orthodontic Brackets Bonded to Zirconium Crowns.
Mehmeti, Blerim; Azizi, Bleron; Kelmendi, Jeta; Iljazi-Shahiqi, Donika; Alar, Željko; Anić-Milošević, Sandra
2017-06-01
An increasing demand for esthetic restorations has resulted in an increased use of all-ceramic restorations, such as zirconium. However, one of the challenges the orthodontist must be willing to face is how to increase bond strength between the brackets and various ceramic restorations.Bond strength can beaffected bybracket type, by the material that bracketsaremade of, and their base surface design or retention mode. : A im: of this study was to perform a comparative analysis of the shear bond strength (SBS) of metallic and ceramic orthodontic brackets bonded to all-zirconium ceramic surfaces used for prosthetic restorations, and also to evaluate the fracture mode of these two types of orthodontic brackets. Twenty samples/semi-crowns of all-zirconium ceramic, on which orthodontic brackets were bonded, 10 metallic and 10 ceramic polycrystalline brackets, were prepared for this research. SBS has been testedby Universal Testing Machine, with a load applied using a knife edged rod moving at a fixed rate of 1 mm/min, until failure occurred. The force required to debond the brackets was recorded in Newton, then SBS was calculated to MPa. In addition, the samples were analyzed using a digital camera magnifier to determine Adhesive Remnant Index (ARI). Statistical data were processed using t-test, and the level of significance was set at α = 0.05. Higher shear bond strength values were observed in metallic brackets bonded to zirconium crowns compared tothoseof ceramic brackets, with a significant difference. During the test, two of the ceramic brackets were partially or totally damaged. Metallic brackets, compared to ceramic polycrystalline brackets, seemed tocreate stronger adhesion with all-zirconium surfaces due to their better retention mode. Also, ceramic brackets showed higher fragility during debonding.
García-Sanz, Verónica; Bellot-Arcís, Carlos; Mendoza-Yero, Omel; Doñate-Buendía, Carlos; Montero, Javier; Albaladejo, Alberto
2017-01-01
Femtosecond laser has been proposed as a method for conditioning zirconia surfaces to boost bond strength. However, metallic or ceramic bracket bonding to femtosecond laser-treated zirconia surfaces has not been tested. This study compared the effects of four conditioning techniques, including femtosecond laser irradiation, on shear bond strength (SBS) of metallic and ceramic brackets to zirconia.Three hundred zirconia plates were divided into five groups: 1) control (C); 2) sandblasting (APA); 3) silica coating and silane (SC); 4) femtosecond laser (FS); 5) sandblasting followed by femtosecond laser (APA+SC). A thermal imaging camera measured temperature changes in the zirconia during irradiation. Each group was divided into 2 subgroups (metallic vs ceramic brackets). SBS was evaluated using a universal testing machine. The adhesive remnant index (ARI) was registered and surfaces were observed under SEM. Surface treatment and bracket type significantly affected the bracket-zirconia bond strength. SBS was significantly higher (p<0.001) for ceramic brackets in all groups (APA+FS > APA > FS > SC > control) than metallic brackets (APA+FS > FS > SC > APA > control). For metallic brackets, groups SC (5.99 ± 1.86 MPa), FS (6.72 ± 2.30 MPa) and APA+FS (7.22 ± 2.73 MPa) reported significantly higher bond strengths than other groups (p < 0.05). For ceramic brackets, the highest bond strength values were obtained in groups APA (25.01 ± 4.45 MPa), FS (23.18 ± 6.51 MPa) and APA+FS (29.22 ± 8.20 MPa).Femtosecond laser enhances bond strength of ceramic and metallic brackets to zirconia. Ceramic brackets provide significantly stronger adhesion than metallic brackets regardless of the surface treatment method. PMID:29049418
García-Sanz, Verónica; Paredes-Gallardo, Vanessa; Bellot-Arcís, Carlos; Mendoza-Yero, Omel; Doñate-Buendía, Carlos; Montero, Javier; Albaladejo, Alberto
2017-01-01
Femtosecond laser has been proposed as a method for conditioning zirconia surfaces to boost bond strength. However, metallic or ceramic bracket bonding to femtosecond laser-treated zirconia surfaces has not been tested. This study compared the effects of four conditioning techniques, including femtosecond laser irradiation, on shear bond strength (SBS) of metallic and ceramic brackets to zirconia.Three hundred zirconia plates were divided into five groups: 1) control (C); 2) sandblasting (APA); 3) silica coating and silane (SC); 4) femtosecond laser (FS); 5) sandblasting followed by femtosecond laser (APA+SC). A thermal imaging camera measured temperature changes in the zirconia during irradiation. Each group was divided into 2 subgroups (metallic vs ceramic brackets). SBS was evaluated using a universal testing machine. The adhesive remnant index (ARI) was registered and surfaces were observed under SEM. Surface treatment and bracket type significantly affected the bracket-zirconia bond strength. SBS was significantly higher (p<0.001) for ceramic brackets in all groups (APA+FS > APA > FS > SC > control) than metallic brackets (APA+FS > FS > SC > APA > control). For metallic brackets, groups SC (5.99 ± 1.86 MPa), FS (6.72 ± 2.30 MPa) and APA+FS (7.22 ± 2.73 MPa) reported significantly higher bond strengths than other groups (p < 0.05). For ceramic brackets, the highest bond strength values were obtained in groups APA (25.01 ± 4.45 MPa), FS (23.18 ± 6.51 MPa) and APA+FS (29.22 ± 8.20 MPa).Femtosecond laser enhances bond strength of ceramic and metallic brackets to zirconia. Ceramic brackets provide significantly stronger adhesion than metallic brackets regardless of the surface treatment method.
Er,Cr:YSGG Laser as a Novel Method for Rebonding Failed Ceramic Brackets.
Sohrabi, Aydin; Jafari, Sanaz; Kimyai, Soodabeh; Rikhtehgaran, Sahand
2016-10-01
Since there is no standard method for rebonding loose ceramic brackets, the aim of this study was to evaluate the possibility of using Er,Cr:YSGG laser to eliminate the remaining composite materials from the base of ceramic brackets and to compare the bond strength of rebonded brackets with the new ones. Sixty-two extracted human premolars were mounted in acrylic cylinders. Thirty-one ceramic brackets were bonded, and shear bond strength was tested using Hounsfield testing machine. The remnants of the bonding material were removed from the bases of brackets using Er,Cr:YSGG laser. These brackets were rebonded to 31 fresh teeth and again shear bond strength was measured. Pattern of debonding was assessed in both cases under a stereomicroscope and graded according to ARI index. Data were analyzed with independent t-test and Fisher's exact test. Mean shear bond strength of the bond and rebond groups was 12.29 ± 5.46 and 10.58 ± 5.16 MPa, respectively. There were no significant differences between the two groups (p = 0.21). Pattern of bond failure was not statistically different between the two groups. Er,Cr:YSGG laser was effective in removing the remnants of bonding material from the base of ceramic brackets without any interference with the ceramic base itself, demonstrating that it might be a suitable method for rebonding ceramic brackets.
Nd:YAG Laser-aided ceramic brackets debonding: Effects on shear bond strength and enamel surface
NASA Astrophysics Data System (ADS)
Han, Xianglong; Liu, Xiaolin; Bai, Ding; Meng, Yao; Huang, Lan
2008-11-01
In order to evaluate the efficiency of Nd:YAG laser-aided ceramic brackets debonding technique, both ceramic brackets and metallic brackets were bonded with orthodontic adhesive to 30 freshly extracted premolars. The specimens were divided into three groups, 10 in each, according to the brackets employed and the debonding techniques used: (1) metallic brackets with shear debonding force, (2) ceramic brackets with shear debonding force, and (3) ceramic brackets with Nd:YAG laser irradiation. The result showed that laser irradiation could diminish shear bond strength (SBS) significantly and produce the most desired ARI scores. Moreover, scanning electron microscopy investigation displayed that laser-aided technique induced little enamel scratch or loss. It was concluded that Nd:YAG laser could facilitate the debonding of ceramic brackets and diminish the amount of remnant adhesive without damaging enamel structure.
Atsü, Saadet Sağlam; Gelgör, Ibrahim Erhan; Sahin, Volkan
2006-09-01
To evaluate the effect of tribochemical silica coating and silane surface conditioning on the bond strength of metal and ceramic brackets bonded to enamel surfaces with light-cured composite resin. Twenty metal and 20 ceramic brackets were divided into four groups (n = 10 for each group). The specimens were randomly assigned to one of the following treatment conditions of the metal and ceramic brackets' surface: (1) tribochemical silica coating combined with silane and (2) no treatment. Brackets were bonded to the enamel surface on the labial and lingual sides of human maxillary premolars (20 total) with a light-polymerized resin composite. All specimens were stored in water for 1 week at 37 degrees C and then thermocycled (5000 cycles, 5 degrees C to 55 degrees C, 30 seconds). The shear bond strength values were measured on a universal testing machine. Student's t-test was used to compare the data (alpha = 0.05). The types of failures were observed using a stereomicroscope. Metal and ceramic brackets treated with silica coating with silanization had significantly greater bond strength values (metal brackets: 14.2 +/- 1.7 MPa, P < .01; ceramic brackets: 25.9 +/- 4.4 MPa, P < .0001) than the control groups (metal brackets: 11.9 +/- 1.3 MPa; ceramic brackets: 15.6 +/- 4.2 MPa). Treated specimens of metal and ceramic exhibited cohesive failures in resin and adhesive failures at the enamel-adhesive interface, whereas control specimens showed mixed types of failures. Silica coating with aluminum trioxide particles coated with silica followed by silanization gave higher bond strengths in both metal and ceramic brackets than in the control group.
Shear Bond Strength of DentStat(trademark) for Bracket Bonding to Gold, Ceramic, and Enamel
2012-12-21
i Shear bond strength of DentStatTM for bracket bonding to gold, ceramic, and enamel . A THESIS Presented to the Faculty of Uniform...in the thesis manuscript entitled: ’Shear Bond Strength of DentStatTM for Bracket Bonding to Gold, Ceramic, and Enamel ’ is appropriately...Ceramic, and Enamel ’ 7. Intended publication/meeting: June 2013 8. "Required by" date: 1 July 2013 9. Date of submission for USU approval: 6 June
Laser-Aided Ceramic Bracket Debonding: A Comprehensive Review
Ghazanfari, Rezvaneh; Nokhbatolfoghahaei, Hanieh; Alikhasi, Marzieh
2016-01-01
Different techniques have been introduced for the removal of ceramic brackets. Since the early 1990s, lasers have been used experimentally for debonding ceramic brackets. The goal of this study is to give a comprehensive literature review on laser-aided ceramic bracket debonding. PubMed and Google Scholar databases were used to identify dental articles with the following combination of key words: Ceramic brackets, Debonding, and Laser. Sixteen English articles from 2004 to 2015 were selected. The selected studies were categorized according to the variables investigated including the intrapulpal temperature, shear bond strength, debonding time, enamel damage and bracket failure. Most articles reported decreased shear bond strength and debonding time following laser irradiation without any critical and irritating increase in pulpal temperature. There were no reports of bracket failure or enamel damage. Laser irradiation is an efficient way to reduce shear bond strength of ceramic bracket and debonding time. This technique is a safe way for removing ceramic bracket with minimal impact on intrapulpal temperature and enamel surface and it reduces ceramic bracket failure. PMID:27330690
Shear bond strength of metallic and ceramic brackets using color change adhesives.
Stumpf, Aisha de Souza Gomes; Bergmann, Carlos; Prietsch, José Renato; Vicenzi, Juliane
2013-01-01
To determine the shear bond strength of orthodontic brackets using color change adhesives that are supposed to aid in removing excess of bonding material and compare them to a traditional adhesive. Ninety metallic and ninety ceramic brackets were bonded to bovine incisors using two color change adhesives and a regular one. A tensile stress was applied by a universal testing machine. The teeth were observed in a microscope after debonding in order to determine the Adhesive Remnant Index (ARI). The statistical analysis (ANOVA, Tukey, and Kruskall-Wallis tests) demonstrated that the mean bond strength presented no difference when metallic and ceramic brackets were compared, but the bond resistance values were significantly different for the three adhesives used. The most common ARI outcome was the entire adhesive remaining on the enamel. The bond strength was similar for metallic and ceramic brackets when the same adhesive system was used. ARI scores demonstrated that bonding with these adhesives is safe even when ceramic brackets were used. On the other hand, bond strength was too low for orthodontic purposes when Ortho Lite Cure was used.
Kommi, Pradeep Babu; Kumar, M Senthil; Hanumanth; Venkatesan; Aniruddh; Arvinth; Kumar, Arani Nanda
2016-01-01
Introduction Most of the patients seek orthodontic treatment to improve the smile, which improves the facial profile by means of fixed appliances i.e., brackets and wires. The brackets are of different types like stainless steel and ceramic. Ceramic brackets were considered as aesthetic appliance which was divided into mono-crystalline, polycrystalline and sapphire brackets. The light transmittance might influence the degree of curing adhesive material in mono crystalline, polycrystalline and sapphire brackets. Aim The aim of the present study was to evaluate the translucency and intensity of three different aesthetic brackets (mono crystalline, poly crystalline and sapphire ceramic brackets) and to determine their influence on shear bond strength of the brackets. The adhesive remnant index was also measured after debonding of the brackets from the tooth surface. Materials and Methods Twenty six samples each of monocrystalline, polycrystalline and sapphire brackets (total 78 ceramic brackets) were used for the study. The bracket samples were subjected to optical fluorescence test using spectrofluorometer to measure the intensity of the brackets. Seventy eight extracted premolar teeth were procured and divided into 3 groups. The brackets were then bonded to the tooth using Transbond XT (3M Unitek) light cure composite material and cured with new light cure unit (Light Emitting Diode) of wood pecker company (400-450nm) for 30 seconds, and these samples were subjected to shear bond strength test with Instron Universal Testing Machine (UNITEK-94100) with a load range between 0 to 100 KN with a maximum cross head speed of 0.5mm/min. ARI (Adhesive Remnant Index) scores were evaluated according to Artun and Bergland scoring system using stereomicroscope at 20x magnification. Results The light absorption values obtained from spectrofluorometeric study were 3300000–3500000 cps for group 1 (monocrystalline ceramic brackets), 6000000–6500000 cps for Group 2 (polycrystalline ceramic brackets) and 2700000 –3000000 cps for Group 3 (sapphire ceramic brackets) i.e., Group 2 showed the highest light absorption and the least translucency followed by groups 1 and 3. Shear bond strength results were 2.4 mpa, 1.9 mpa and 3.6 mpa for groups 1,2 and 3 respectively. Superior shear bond strength was recorded in group 3 (sapphire ceramic brackets). ARI results showed that group 3 had increased bond between bracket adhesive interfaces when compared to the other 2 groups. Conclusion From this study, it has been concluded that sapphire ceramic brackets (Group 3) was superior in translucency and shear bond strength followed by monocrystalline and polycrystalline ceramic brackets. PMID:27656556
Mohamed, Jauhar P; Kommi, Pradeep Babu; Kumar, M Senthil; Hanumanth; Venkatesan; Aniruddh; Arvinth; Kumar, Arani Nanda
2016-08-01
Most of the patients seek orthodontic treatment to improve the smile, which improves the facial profile by means of fixed appliances i.e., brackets and wires. The brackets are of different types like stainless steel and ceramic. Ceramic brackets were considered as aesthetic appliance which was divided into mono-crystalline, polycrystalline and sapphire brackets. The light transmittance might influence the degree of curing adhesive material in mono crystalline, polycrystalline and sapphire brackets. The aim of the present study was to evaluate the translucency and intensity of three different aesthetic brackets (mono crystalline, poly crystalline and sapphire ceramic brackets) and to determine their influence on shear bond strength of the brackets. The adhesive remnant index was also measured after debonding of the brackets from the tooth surface. Twenty six samples each of monocrystalline, polycrystalline and sapphire brackets (total 78 ceramic brackets) were used for the study. The bracket samples were subjected to optical fluorescence test using spectrofluorometer to measure the intensity of the brackets. Seventy eight extracted premolar teeth were procured and divided into 3 groups. The brackets were then bonded to the tooth using Transbond XT (3M Unitek) light cure composite material and cured with new light cure unit (Light Emitting Diode) of wood pecker company (400-450nm) for 30 seconds, and these samples were subjected to shear bond strength test with Instron Universal Testing Machine (UNITEK-94100) with a load range between 0 to 100 KN with a maximum cross head speed of 0.5mm/min. ARI (Adhesive Remnant Index) scores were evaluated according to Artun and Bergland scoring system using stereomicroscope at 20x magnification. The light absorption values obtained from spectrofluorometeric study were 3300000-3500000 cps for group 1 (monocrystalline ceramic brackets), 6000000-6500000 cps for Group 2 (polycrystalline ceramic brackets) and 2700000 -3000000 cps for Group 3 (sapphire ceramic brackets) i.e., Group 2 showed the highest light absorption and the least translucency followed by groups 1 and 3. Shear bond strength results were 2.4 mpa, 1.9 mpa and 3.6 mpa for groups 1,2 and 3 respectively. Superior shear bond strength was recorded in group 3 (sapphire ceramic brackets). ARI results showed that group 3 had increased bond between bracket adhesive interfaces when compared to the other 2 groups. From this study, it has been concluded that sapphire ceramic brackets (Group 3) was superior in translucency and shear bond strength followed by monocrystalline and polycrystalline ceramic brackets.
Quantitative analysis of enamel on debonded orthodontic brackets.
Cochrane, Nathan J; Lo, Thomas W G; Adams, Geoffrey G; Schneider, Paul M
2017-09-01
Iatrogenic damage to the tooth surface in the form of enamel tearouts can occur during removal of fixed orthodontic appliances. The aim of this study was to assess debonded metal and ceramic brackets attached with a variety of bonding materials to determine how frequently this type of damage occurs. Eighty-one patients close to finishing fixed orthodontic treatment were recruited. They had metal brackets bonded with composite resin and a 2-step etch-and-bond technique or ceramic brackets bonded with composite resin and a 2-step etch-and- bond technique, and composite resin with a self-etching primer or resin-modified glass ionomer cement. Debonded brackets were examined by backscattered scanning electron microscopy with energy dispersive x-ray spectroscopy to determine the presence and area of enamel on the base pad. Of the 486 brackets collected, 26.1% exhibited enamel on the bonding material on the bracket base pad. The incidences of enamel tearouts for each group were metal brackets, 13.3%; ceramic brackets, 30.2%; composite resin with self-etching primer, 38.2%; and resin-modified glass ionomer cement, 21.2%. The percentage of the bracket base pad covered in enamel was highly variable, ranging from 0% to 46.1%. Enamel damage regularly occurred during the debonding process with the degree of damage being highly variable. Damage occurred more frequently when ceramic brackets were used (31.9%) compared with metal brackets (13.3%). Removal of ceramic brackets bonded with resin-modified glass ionomer cement resulted in less damage compared with the resin bonding systems. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Mirzakouchaki, Behnam; Shirazi, Sajjad; Sharghi, Reza; Shirazi, Samaneh; Moghimi, Mahsan; Shahrbaf, Shirin
2016-02-01
Different in-vitro studies have reported various results regarding shear bond strength (SBS) of orthodontic brackets when SEP technique is compared to conventional system. This in-vivo study was designed to compare the effect of conventional acid-etching and self-etching primer adhesive (SEP) systems on SBS and debonding characteristics of metal and ceramic orthodontic brackets. 120 intact first maxillary and mandibular premolars of 30 orthodontic patients were selected and bonded with metal and ceramic brackets using conventional acid-etch or self-etch primer system. The bonded brackets were incorporated into the wire during the study period to simulate the real orthodontic treatment condition. The teeth were extracted and debonded after 30 days. The SBS, debonding characteristics and adhesive remnant indices (ARI) were determined in all groups. The mean SBS of metal brackets was 10.63±1.42 MPa in conventional and 9.38±1.53 MPa in SEP system, (P=0.004). No statistically significant difference was noted between conventional and SEP systems in ceramic brackets. The frequency of 1, 2 and 3 ARI scores and debonding within the adhesive were the most common among all groups. No statistically significant difference was observed regarding ARI or failure mode of debonded specimens in different brackets or bonding systems. The SBS of metal brackets bonded using conventional system was significantly higher than SEP system, although the SBS of SEP system was clinically acceptable. No significant difference was found between conventional and SEP systems used with ceramic brackets. Total SBS of metal brackets was significantly higher than ceramic brackets. Due to adequate SBS of SEP system in bonding the metal brackets, it can be used as an alternative for conventional system. Shear bond strength, Orthodontic brackets, Adhesive remnant index, self-etch.
Mirzakouchaki, Behnam; Sharghi, Reza; Shirazi, Samaneh; Moghimi, Mahsan; Shahrbaf, Shirin
2016-01-01
Background Different in-vitro studies have reported various results regarding shear bond strength (SBS) of orthodontic brackets when SEP technique is compared to conventional system. This in-vivo study was designed to compare the effect of conventional acid-etching and self-etching primer adhesive (SEP) systems on SBS and debonding characteristics of metal and ceramic orthodontic brackets. Material and Methods 120 intact first maxillary and mandibular premolars of 30 orthodontic patients were selected and bonded with metal and ceramic brackets using conventional acid-etch or self-etch primer system. The bonded brackets were incorporated into the wire during the study period to simulate the real orthodontic treatment condition. The teeth were extracted and debonded after 30 days. The SBS, debonding characteristics and adhesive remnant indices (ARI) were determined in all groups. Results The mean SBS of metal brackets was 10.63±1.42 MPa in conventional and 9.38±1.53 MPa in SEP system, (P=0.004). No statistically significant difference was noted between conventional and SEP systems in ceramic brackets. The frequency of 1, 2 and 3 ARI scores and debonding within the adhesive were the most common among all groups. No statistically significant difference was observed regarding ARI or failure mode of debonded specimens in different brackets or bonding systems. Conclusions The SBS of metal brackets bonded using conventional system was significantly higher than SEP system, although the SBS of SEP system was clinically acceptable. No significant difference was found between conventional and SEP systems used with ceramic brackets. Total SBS of metal brackets was significantly higher than ceramic brackets. Due to adequate SBS of SEP system in bonding the metal brackets, it can be used as an alternative for conventional system. Key words:Shear bond strength, Orthodontic brackets, Adhesive remnant index, self-etch. PMID:26855704
Han, Ruo-qiao; Yang, Kai; Ji, Ling-fei; Ling, Chen
2016-01-01
The aim of this study was to compare the recycling of deboned ceramic brackets via an Er:YAG laser or via the traditional chairside processing methods of flaming and sandblasting; shear bond strength and morphological changes were evaluated in recycled brackets versus new brackets. 3M Clarity Self-Ligating Ceramic Brackets with a microcrystalline base were divided into groups subjected to flaming, sandblasting, or exposure to an Er:YAG laser. New ceramic brackets served as a control group. Shear bond strengths were determined with an Electroforce test machine and tested for statistical significance through analysis of variance. Morphological examinations of the recycled ceramic bracket bases were conducted with scanning electron microscopy and confocal laser scanning microscopy. Residue on the bracket base was analyzed with Raman spectroscopy. Faded, dark adhesive was left on recycled bracket bases processed via flaming. Adhesive was thoroughly removed by both sandblasting and exposure to an Er:YAG laser. Compared with new brackets, shear bond strength was lower after sandblasting (p < 0.05), but not after exposure to an Er:YAG laser. The Er:YAG laser caused no damage to the bracket. Er:YAG lasers effectively remove adhesive from the bases of ceramic brackets without damaging them; thus, this method may be preferred over other recycling methods.
Analysis of Shear Bond Strength and Morphology of Er:YAG Laser-Recycled Ceramic Orthodontic Brackets
Han, Ruo-qiao; Ji, Ling-fei; Ling, Chen
2016-01-01
Objective. The aim of this study was to compare the recycling of deboned ceramic brackets via an Er:YAG laser or via the traditional chairside processing methods of flaming and sandblasting; shear bond strength and morphological changes were evaluated in recycled brackets versus new brackets. Materials and Methods. 3M Clarity Self-Ligating Ceramic Brackets with a microcrystalline base were divided into groups subjected to flaming, sandblasting, or exposure to an Er:YAG laser. New ceramic brackets served as a control group. Shear bond strengths were determined with an Electroforce test machine and tested for statistical significance through analysis of variance. Morphological examinations of the recycled ceramic bracket bases were conducted with scanning electron microscopy and confocal laser scanning microscopy. Residue on the bracket base was analyzed with Raman spectroscopy. Results. Faded, dark adhesive was left on recycled bracket bases processed via flaming. Adhesive was thoroughly removed by both sandblasting and exposure to an Er:YAG laser. Compared with new brackets, shear bond strength was lower after sandblasting (p < 0.05), but not after exposure to an Er:YAG laser. The Er:YAG laser caused no damage to the bracket. Conclusion. Er:YAG lasers effectively remove adhesive from the bases of ceramic brackets without damaging them; thus, this method may be preferred over other recycling methods. PMID:27047964
Effect of Er:YAG Laser and Sandblasting in Recycling of Ceramic Brackets.
Yassaei, Soghra; Aghili, Hossein; Hosseinzadeh Firouzabadi, Azadeh; Meshkani, Hamidreza
2017-01-01
Introduction: This study was performed to determine the shear bond strength of rebonded mechanically retentive ceramic brackets after recycling with Erbium-Doped Yttrium Aluminum Garnet (Er:YAG) laser or sandblasting. Methods: Twenty-eight debonded ceramic brackets plus 14 intact new ceramic brackets were used in this study. Debonded brackets were randomly divided into 2 groups of 14. One group was treated by Er:YAG laser and the other with sandblasting. All the specimens were randomly bonded to 42 intact human upper premolars. The shear bond strength of all specimens was determined with a universal testing machine at a crosshead speed of 0.5 mm/min until bond failure occurred. The recycled bracket base surfaces were observed under a scanning electron microscope (SEM). Analysis of variance (ANOVA) and Tukey tests were used to compare the shear bond strength of the 3 groups. Fisher exact test was used to evaluate the differences in adhesive remnant index (ARI) scores. Results: The highest bond strength belonged to brackets recycled by Sandblasting (16.83 MPa). There was no significant difference between the shear bond strength of laser and control groups. SEM photographs showed differences in 2 recycling methods. The laser recycled bracket appeared to have as well-cleaned base as the new bracket. Although the sandblasted bracket photographs showed no remnant adhesives, remarkable micro-roughening of the base of the bracket was apparent. Conclusion: According to the results of this study, both Er:YAG laser and sandblasting were efficient to mechanically recondition retentive ceramic brackets. Also, Er:YAG laser did not change the design of bracket base while removing the remnant adhesives which might encourage its application in clinical practice.
Effect of Er:YAG Laser and Sandblasting in Recycling of Ceramic Brackets
Yassaei, Soghra; Aghili, Hossein; Hosseinzadeh Firouzabadi, Azadeh; Meshkani, Hamidreza
2017-01-01
Introduction: This study was performed to determine the shear bond strength of rebonded mechanically retentive ceramic brackets after recycling with Erbium-Doped Yttrium Aluminum Garnet (Er:YAG) laser or sandblasting. Methods: Twenty-eight debonded ceramic brackets plus 14 intact new ceramic brackets were used in this study. Debonded brackets were randomly divided into 2 groups of 14. One group was treated by Er:YAG laser and the other with sandblasting. All the specimens were randomly bonded to 42 intact human upper premolars. The shear bond strength of all specimens was determined with a universal testing machine at a crosshead speed of 0.5 mm/min until bond failure occurred. The recycled bracket base surfaces were observed under a scanning electron microscope (SEM). Analysis of variance (ANOVA) and Tukey tests were used to compare the shear bond strength of the 3 groups. Fisher exact test was used to evaluate the differences in adhesive remnant index (ARI) scores. Results: The highest bond strength belonged to brackets recycled by Sandblasting (16.83 MPa). There was no significant difference between the shear bond strength of laser and control groups. SEM photographs showed differences in 2 recycling methods. The laser recycled bracket appeared to have as well-cleaned base as the new bracket. Although the sandblasted bracket photographs showed no remnant adhesives, remarkable micro-roughening of the base of the bracket was apparent. Conclusion: According to the results of this study, both Er:YAG laser and sandblasting were efficient to mechanically recondition retentive ceramic brackets. Also, Er:YAG laser did not change the design of bracket base while removing the remnant adhesives which might encourage its application in clinical practice. PMID:28912939
Toroglu, M Serdar; Yaylali, Sirin
2008-08-01
The aim of this study was to determine the bond strength of rebonded mechanically retentive ceramic brackets after treatment with 2 abrasive techniques. In addition to a group of new brackets, 3 groups were treated according to the following conditions of debonded ceramic bracket bases: sandblasting, sandblasting + silane, and silica coating + silane (15 in each group). Treated ceramic brackets were rebonded on premolars. The samples were stored in distilled deionized water for 24 hours at 37 degrees C in an incubator and then thermocycled for 1000 times between 5 degrees C and 55 degrees C. Shear force was applied to the enamel-adhesive interface until debonding. The highest bond strength values were in the silica coating + silane and the new bracket groups (12.7 and 12.0 MPa, respectively), followed by the sandblasting + silane group (10.5 MPa). The sandblasting group had a significantly lower bond strength value (4.5 MPa). No enamel fracture was noted in any sample tested. In the new bracket and the sandblasting + silane groups, 20% of the samples had adhesive remnant index scores of 2, and 80% had scores of 3. In the sandblasting group, all specimens debonded at the bracket-adhesive interface. The silica coating + silane group showed mixed failures. Sandblasting + silane and silica coating + silane applications on debonded ceramic bracket base can produce bond strengths comparable with new brackets.
Arima, Shiori; Namura, Yasuhiro; Tamura, Takahiko; Shimizu, Noriyoshi
2018-03-01
An easy debonding method for ceramic brackets using a light-cured Bis-GMA resin containing heat-expandable microcapsules and CO 2 laser was investigated. Ceramic brackets are used frequently in orthodontic treatment because of their desirable esthetic properties. However, the application of heavy force to ceramic brackets in debonding can fracture the tooth enamel and ceramic brackets, causing tooth pain. In total, 60 freshly extracted bovine permanent mandibular incisors were divided randomly into 10 groups of 6 specimens each, corresponding to the number of variables tested. Ceramic brackets were bonded to bovine permanent mandibular incisors using an orthodontic bonding agent containing heat-expandable microcapsules at different levels (0-30 wt%) and resin composite paste, and cured by a curing device. The bond strengths were measured before and after CO 2 laser irradiation, and the temperature increase in the pulp chamber in fresh human first premolars was also evaluated. With CO 2 laser irradiation for 5 sec to the bracket, the bond strength in the 25% microcapsule group decreased significantly, to ∼0.17-fold, compared with that of the no-laser group (p < 0.05). The maximum temperature increase in the pulp chamber was 5.3°C with laser irradiation, which was less than the level that induces pulp damage. From these results, it seems likely that the combined use of a light-cured orthodontic bonding agent containing microcapsules and a CO 2 laser is a simple debonding system for ceramic brackets, with less debonding time and enamel damage.
Atsü, Saadet; Çatalbaş, Bülent; Gelgör, İbrahim Erhan
2011-01-01
The aim of this study was to evaluate the effects of tribochemical silica coating and silane surface conditioning on the bond strength of rebonded metal and ceramic brackets. Twenty debonded metal and 20 debonded ceramic brackets were randomly assigned to receive one of the following surface treatments (n=10 for each group): (1) sandblasting (control); (2) tribochemical silica coating combined with silane. Brackets were rebonded to the enamel surface on the labial and lingual sides of premolars with a light-polymerized resin composite. All specimens were stored in distilled water for 1 week and then thermocycled (5,000 cycles) between 5-55ºC. Shear bond strength values were measured using a universal testing machine. Student's t-test was used to compare the data (α=0.05). Failure mode was assessed using a stereomicroscope, and the treated and non-treated bracket surfaces were observed by scanning electron microscopy. Rebonded ceramic brackets treated with silica coating followed by silanization had significantly greater bond strength values (17.7±4.4 MPa) than the sandblasting group (2.4±0.8 MPa, P<0.001). No significant difference was observed between the rebonded metal brackets treated with silica coating with silanization (15±3.9 MPa) and the sandblasted brackets (13.6±3.9 MPa). Treated rebonded ceramic specimens primarily exhibited cohesive failure in resin and adhesive failure at the enamel-adhesive interface. In comparison to sandblasting, silica coating with aluminum trioxide particles followed by silanization resulted in higher bond strengths of rebonded ceramic brackets.
Comparison of Shear Bond Strength of RMGI and Composite Resin for Orthodontic Bracket Bonding
Yassaei, Soghra; Davari, Abdolrahim; Goldani Moghadam, Mahjobeh; Kamaei, Ahmad
2014-01-01
Objective: The aim of this study was to compare the shear bond strength (SBS) of resin modified glass ionomer (RMGI) and composite resin for bonding metal and ceramic brackets. Materials and Methods: Eighty-eight human premolars extracted for orthodontic purposes were divided into 4 groups (n=22). In groups 1 and 2, 22 metal and ceramic brackets were bonded using composite resin (Transbond XT), respectively. Twenty-two metal and ceramic brackets in groups 3 and 4, respectively were bonded using RMGI (Fuji Ortho LC, Japan). After photo polymerization, the teeth were stored in water and thermocycled (500 cycles between 5° and 55°). The SBS value of each sample was determined using a Universal Testing Machine. The amount of residual adhesive remaining on each tooth was evaluated under a stereomicroscope. Statistical analyses were done using two-way ANOVA. Results: RMGI bonded brackets had significantly lower SBS value compared to composite resin bonded groups. No statistically significant difference was observed between metal and ceramic brackets bonded with either the RMGI or composite resin. The comparison of the adhesive remnant index (ARI) scores between the groups indicated that the bracket failure mode was significantly different among groups (P<0.001) with more adhesive remaining on the teeth bonded with composite resin. Conclusion: RMGIs have significantly lower SBS compared to composite resin for orthodontic bonding purposes; however the provided SBS is still within the clinically acceptable range. PMID:25628663
Is laser conditioning a valid alternative to conventional etching for aesthetic brackets?
Sfondrini, M F; Calderoni, G; Vitale, M C; Gandini, P; Scribante, A
2018-03-01
ER:Yag lasers have been described as a more conservative alternative to conventional acid-etching enamel conditioning technique, when bonding conventional metallic orthodontic brackets. Since the use of aesthetic orthodontic brackets is constantly increasing, the purpose of the present report has been to test laser conditioning with different aesthetic brackets. Study Design: Five different aesthetic brackets (microfilled copolymer, glass fiber, sapphire, polyoxymethylene and sintered ceramic) were tested for shear bond strength and Adhesive Remnant Index scores using two different enamel conditioning techniques (acid etching and ER:Yag laser application). Two hundred bovine incisors were extracted, cleaned and embedded in resin. Specimens were then divided into 10 groups with random tables. Half of the specimens were conditioned with conventional orthophosphoric acid gel, the other half with ER:Yag laser. Different aesthetic brackets (microfilled copolymer, glass fiber, sapphire, polyoxymethylene and sintered ceramic) were then bonded to the teeth. Subsequently all groups were tested in shear mode with a Universal Testing Machine. Shear bond strength values and adhesive remnant index scores were recorded. Statistical analysis was performed. When considering conventional acid etching technique, sapphire, polyoxymethylene and sintered ceramic brackets exhibited the highest SBS values. Lowest values were reported for microfilled copolymer and glass fiber appliances. A significant decrease in SBS values after laser conditioning was reported for sapphire, polyoxymethylene and sintered ceramic brackets, whereas no significant difference was reported for microfilled copolymer and glass fiber brackets. Significant differences in ARI scores were also reported. Laser etching can significantly reduce bonding efficacy of sapphire, polyoxymethylene and sintered ceramic brackets.
Ebert, Thomas; Elsner, Laura; Hirschfelder, Ursula; Hanke, Sebastian
2016-03-01
The purpose of this work was to analyze surfaces consisting of different restorative materials for shear bond strength (SBS) and failure patterns of metal and ceramic brackets. Bonding involved the use of a universal primer (Monobond® Plus, Ivoclar Vivadent). Six restorative materials were tested, including one composite resin (Clearfil Majesty™ Posterior, Kuraray Noritake Dental), one glass-ceramic material (IPS Empress® Esthetic, Ivoclar Vivadent), one oxide-ceramic material (CORiTEC Zr transpa Disc, imes-icore), two base-metal alloys (remanium® star, Dentaurum; Colado® CC, Ivoclar Vivadent), and one palladium-based alloy (Callisto® 75 Pd, Ivoclar Vivadent). Bovine incisors served as controls. Both metal and ceramic brackets (discovery®/discovery® pearl; Dentaurum) were bonded to the restorative surfaces after sandblasting and pretreatment with Monobond® Plus. A setup modified from DIN 13990-2 was used for SBS testing and adhesive remnant index (ARI)-based analysis of failure patterns. The metal brackets showed the highest mean SBS values on the glass-ceramic material (68.61 N/mm(2)) and the composite resin (67.58 N/mm(2)) and the lowest mean SBS on one of the base-metal alloys (Colado® CC; 14.01 N/mm(2)). The ceramic brackets showed the highest mean SBS on the glass-ceramic material (63.36 N/mm(2)) and the lowest mean SBS on the palladium-based alloy (38.48 N/mm(2)). Significant differences between the metal and ceramic brackets were observed in terms of both SBS values and ARI scores (p < 0.05). Under both bracket types, fractures of the composite-resin and the glass-ceramic samples were observed upon debonding. Opaque restorative materials under metal brackets were found to involve undercuring of the adhesive. Monobond® Plus succeeded in generating high bond strengths of both bracket types on all restorative surfaces. Given our observations of cohesive fracture (including cases of surface avulsion) of the composite-resin and the glass-ceramic samples, we recommend against using these material combinations in clinical practice.
The effect of remin pro and MI paste plus on bleached enamel surface roughness.
Ahmad Akhoundi, Mohammad Sadegh; Aghajani, Farzaneh; Chalipa, Javad; Sadrhaghighi, Amir Hooman
2014-03-01
Increased number of adult patients requesting orthodontic treatment result in bonding bracket to ceramic restorations more than before. The aim of this study was to evaluate and compare the shear bond strength of orthodontic brackets bonded to two types of ceramic bases with conventional orthodontic bonding resin and a new nano-filled composite resin. Twenty four feldespathic porcelain and 24 lithium disilicate ceramic disks were fabricated. All of the samples were conditioned by sandblasting, hydrofluoric acid and silane. Maxillary incisor metal brackets were bonded to half of the disks in each group by conventional orthodontic bonding resin and the other half bonded with a nano-filled composite. The samples then were thermocycled for 2000 cycle between 5-55° C. Shear bond strength was measured and the mode of failure was examined. Randomly selected samples were also evaluated by SEM. The lowest bond strength value was found infeldespathic ceramic bonded by nano-filled composite (p<0.05). There was not any statistically significant difference between other groups regarding bond strength. The mode of failure in the all groups except group 1 was cohesive and porcelain damages were detected. Since less damages to feldspathic porcelain was observed when the nano-filled composite was used to bond brackets, the use of nano-filled composite resins can be suggested for bonding brackets to feldspathic porcelain restorations.
The Effect of Remin Pro and MI Paste Plus on Bleached Enamel Surface Roughness
Ahmad Akhoundi, Mohammad Sadegh; Aghajani, Farzaneh; Chalipa, Javad; Sadrhaghighi, Amir Hooman
2014-01-01
Objective Increased number of adult patients requesting orthodontic treatment result in bonding bracket to ceramic restorations more than before. The aim of this study was to evaluate and compare the shear bond strength of orthodontic brackets bonded to two types of ceramic bases with conventional orthodontic bonding resin and a new nano-filled composite resin. Materials and Methods: Twenty four feldespathic porcelain and 24 lithium disilicate ceramic disks were fabricated. All of the samples were conditioned by sandblasting, hydrofluoric acid and silane. Maxillary incisor metal brackets were bonded to half of the disks in each group by conventional orthodontic bonding resin and the other half bonded with a nano-filled composite. The samples then were thermocycled for 2000 cycle between 5–55° C. Shear bond strength was measured and the mode of failure was examined. Randomly selected samples were also evaluated by SEM. Results: The lowest bond strength value was found infeldespathic ceramic bonded by nano-filled composite (p<0.05). There was not any statistically significant difference between other groups regarding bond strength. The mode of failure in the all groups except group 1 was cohesive and porcelain damages were detected. Conclusion: Since less damages to feldspathic porcelain was observed when the nano-filled composite was used to bond brackets, the use of nano-filled composite resins can be suggested for bonding brackets to feldspathic porcelain restorations. PMID:24910698
Elsaka, Shaymaa E
2016-01-01
This study evaluated the effect of four different surface treatments methods on the shear bond strength (SBS) of ceramic and metal brackets to Vita Enamic (VE) CAD/CAM hybrid ceramic. A total of 240 plates (10 mm × 10 mm × 3 mm) were cut from VE ceramic blocks and divided into two groups. In each group, four subgroups were prepared by hydrofluoric acid (HF); phosphoric acid (H3PO4); diamond ceramic grinding bur; and silica coating using CoJet system (CJ). Maxillary central incisor metal (Victory Series) and ceramic (Clarity) brackets were bonded with light-cure composite and then stored in artificial saliva for 1 week and thermocycled. The SBS test was performed, and the failure types were classified with adhesive remnant index scores. Surface morphology of the ceramic was characterized after treatment using a scanning electron microscope. Data were analyzed using two-way ANOVA, Tukey HSD test, and Weibull analysis. SBS was significantly affected by the type of bracket and by type of treatment (P < 0.001). Specimens treated with CJ presented with significantly higher SBS compared to other groups (P < 0.05). Improvements in SBS values (MPa) were found in the following order: CJ > HF > Bur > H3PO4. Ceramic bracket showed higher SBS compared to metal bracket. Adhesive failures between the ceramic and composite resin were the predominant mode of failure in all groups. Surface treatment of VE CAD/CAM hybrid ceramic with silica coating enhanced the adhesion with ceramic and metal brackets.
Effect of delayed polymerization time and bracket manipulation on orthodontic bracket bonding
NASA Astrophysics Data System (ADS)
Ponikvar, Michael J.
This study examined the effect of bracket manipulation in combination with delayed polymerization times on orthodontic bracket shear bond strength and degree of resin composite conversion. Orthodontics brackets were bonded to extracted third molars in a simulated oral environment after a set period of delayed polymerization time and bracket manipulation. After curing the bracket adhesive, each bracket underwent shear bond strength testing followed by micro-Raman spectroscopy analysis to measure the degree of conversion of the resin composite. Results demonstrated the shear bond strength and the degree of conversion of ceramic brackets did not vary over time. However, with stainless steel brackets there was a significant effect (p ≤ 0.05) of delay time on shear bond strength between the 0.5 min and 10 min bracket groups. In addition, stainless steel brackets showed significant differences related to degree of conversion over time between the 0.5 min and 5 min groups, in addition to the 0.5 min and 10 min groups. This investigation suggests that delaying bracket adhesive polymerization up to a period of 10 min then adjusting the orthodontic bracket may increase both shear bond strength and degree of conversion of stainless steel brackets while having no effect on ceramic brackets.
Buyuk, S Kutalmış; Kucukekenci, Ahmet Serkan
2018-03-01
To investigate the shear bond strength (SBS) of orthodontic metal brackets applied to different types of ceramic surfaces treated with different etching procedures and bonding agents. Monolithic CAD/CAM ceramic specimens (N = 120; n = 40 each group) of feldspathic ceramic Vita Mark II, resin nanoceramic Lava Ultimate, and hybrid ceramic Vita Enamic were fabricated (14 × 12 × 3 mm). Ceramic specimens were separated into four subgroups (n = 10) according to type of surface treatment and bonding onto the ceramic surface. Within each group, four subgroups were prepared by phosphoric acid, hydrofluoric acid, Transbond XT primer, and Clearfill Ceramic primer. Mandibular central incisor metal brackets were bonded with light-cure composite. The SBS data were analyzed using three-way analysis of variance (ANOVA) and Tukey HSD tests. The highest SBS was found in the Vita Enamic group, which is a hybrid ceramic, etched with hydrofluoric acid and applied Transbond XT Adhesive primer (7.28 ± 2.49 MPa). The lowest SBS was found in the Lava Ultimate group, which is a resin nano-ceramic etched with hydrofluoric acid and applied Clearfill ceramic primer (2.20 ± 1.21 MPa). CAD/CAM material types and bonding procedures affected bond strength ( P < .05), but the etching procedure did not ( P > .05). The use of Transbond XT as a primer bonding agent resulted in higher SBS.
Chauhan, Vikas; Kumar, Piush; Sharma, Payal; Shetty, Divya
2017-01-01
To investigate the effect of different intracoronal bleaching methods on the shear bond strength and site of failure of ceramic brackets. Sixty freshly extracted human maxillary incisors were randomly divided into four groups ( n = 15). Endodontic access cavity was prepared and root canals were filled, root fillings were removed 2mm apical to the cementoenamel junction, and a 2-mmthick layer of glass ionomer cement base was applied. Group 1 served as the control. Intracoronal bleaching was performed with 35% carbamide peroxide in group 2, sodium perborate in group 3, and 37.5% hydrogen peroxide in group 4. The teeth were immersed in artificial saliva for 4 weeks before bracket bonding. Ceramic brackets were bonded with composite resin and cured with LED light. After bonding, the shear bond strength of the brackets was tested with a universal testing machine. The site of bond failure was determined by modified ARI (Adhesive Remnant Index). The highest value of shear bond strength was measured in control group (18.67 ± 1.59 MPa), which was statistically significant from groups 2,3, and 4. There was no significant difference between groups 2 and 4. The lowest shear bond strength was measured in group 3. ARI scores were not significant from each other. Intracoronal bleaching significantly affected the shear bond strength of ceramic brackets even after 4 weeks of bleaching. Bleaching with sodium perborate affects shear bond strength more adversely than does bleaching with other agents like hydrogen peroxide and carbamide peroxide.
Akhoundi, Ms Ahmad; Kamel, M Rahmati; Hashemi, Sh Mahmood; Imani, M
2011-01-01
The objective of this study was to compare the tensile bond strength of metal brackets bonding to glazed ceramic surfaces using three various surface treatments. Forty two glazed ceramic disks were assigned to three groups. In the first and second groups the specimens were etched with 9.5% hydrofluoric acid (HFA). Subsequently in first group, ceramic primer and adhesive were applied, but in second group a bonding agent alone was used. In third group, specimens were treated with 35% phosphoric acid followed by ceramic primer and adhesive application. Brackets were bonded with light cure composites. The specimens were stored in distilled water in the room temperature for 24 hours and thermocycled 500 times between 5°C and 55°C. The universal testing machine was used to test the tensile bond strength and the adhesive remenant index scores between three groups was evaluated. The data were subjected to one-way ANOVA, Tukey and Kruskal-Wallis tests respectively. The tensile bond strength was 3.69±0.52 MPa forfirst group, 2.69±0.91 MPa for second group and 3.60±0.41 MPa for third group. Group II specimens showed tensile strength values significantly different from other groups (P<0.01). In spite of limitations in laboratory studies it may be concluded that in application of Scotch bond multipurpose plus adhesive, phosphoric acid can be used instead of HFA for bonding brackets to the glazed ceramic restorations with enough tensile bond strength.
Godard, Marion; Deuve, Benjamin; Lopez, Isabelle; Hippolyte, Marie-Pascale; Barthélemi, Stéphane
2017-09-01
The present study assessed a fracture analysis and compared the shear bond strength (SBS) of two 2-step etch-and-rinse (E&R) adhesives when bonding ceramic orthodontic brackets to bovine enamel. Thirty healthy bovine mandibular incisors were selected and were equally and randomly assigned to 2 experimental groups. Ceramic brackets (FLI Signature Clear ® , RMO) were bonded onto bovine enamel using an adhesive system. In group 1 (n=15), the conventional E&R adhesive (OrthoSolo ® +Enlight ® , Ormco) was used, and in group 2 (n=15), the new E&R adhesive limited to ceramic bracket bonding (FLI ceramic adhesive ® : FLI sealant resin ® +FLI adhesive paste ® , RMO) was used. In order to obtain appropriate enamel surfaces, the vestibular surfaces of mandibular bovine incisors were flat ground. After bonding, all the samples were stored in distilled water at room temperature for 21 days and subsequently tested for SBS, using the Instron ® universal testing machine. The Adhesive Remnant Index (ARI) scores were evaluated. Failure modes were assessed using optical microscopy at magnification ×40. A statistic data analysis was performed using the Mann-Whitney U-test (P<0.05). The test showed a significant difference (P=0.00155) between the two groups for the SBS values. Group 1 had significantly higher SBS values (9.79 to 20.83MPa) than group 2 (8.45 to 13.94MPa). Analysis of the ARI scores revealed that most of the failures occurred at the enamel/adhesive interface. A statistically significant difference was found for the ARI scores between the two groups (P=0.00996). Only two fractured brackets, which remained bonded onto the bovine enamel, were reported. Both occurred in group 1. When bonded to ceramic brackets, FLI ceramic adhesive ® (RMO) was demonstrated to be very predictable and safe for clinical application in enamel bonding, whereas the results obtained with the conventional adhesive system (OrthoSolo ® +Enlight ® , Ormco) were less reproducible and revealed slightly excessive shear bond strength values. Copyright © 2017 CEO. Published by Elsevier Masson SAS. All rights reserved.
The effect of enamel bleaching on the shear bond strengths of metal and ceramic brackets.
Oztaş, E; Bağdelen, G; Kiliçoğlu, H; Ulukapi, H; Aydin, I
2012-04-01
The aim of this study was to evaluate the effects of bleaching and delayed bonding on the shear bond strengths of metal and ceramic brackets bonded with light and chemically cure composite resin to human enamel. One hundred and twenty extracted human premolar teeth were randomly divided into three groups of 40 each. The first two groups were bleached with 20 per cent carbamide peroxide (CP) at-home bleaching agent. No bleaching procedures were applied to the third group and served as control. The first two and control groups were divided into equal subgroups according to different adhesive-bracket combinations. Specimens in group 1 (n = 40) were bonded 24 hours after bleaching process was completed while the specimens in group 2 (n = 40) were bonded 14 days after. The specimens in all groups were debonded with a Universal testing machine while the modified adhesive remnant index was used to evaluate fracture properties. No statistically significant differences were found between the shear bond strengths of metal and ceramic brackets bonded to bleached enamel after 24 hours, 14 days, and unbleached enamel with light or chemical cure adhesives (P > 0.05). The mode of failure was mostly at the bracket/adhesive interface and cohesive failures within the resin were also observed. Our findings indicated that at-home bleaching agents that contain 20 per cent CP did not significantly affect the shear bond strength of metal and ceramic orthodontic brackets to enamel when bonding is performed 24 hours or 14 days after bleaching.
Santin, Gabriela Cristina; Palma-Dibb, Regina Guenka; Romano, Fábio Lourenço; de Oliveira, Harley Francisco; Nelson Filho, Paulo; de Queiroz, Alexandra Mussolino
2015-08-01
The increasing success rates for cancer patients treated with radiotherapy and the frequent occurrence of tooth loss during treatment have led to an increased demand for orthodontic treatment after radiotherapy. The aim of this study was to evaluate tooth enamel of irradiated teeth after the bonding and debonding of metal and ceramic brackets. Ten permanent molars were cut into enamel fragments measuring 1 mm(2) and divided into an irradiated group (total dose of 60 Gy) and a nonirradiated group. The fragments were subjected to microshear testing to evaluate whether radiotherapy altered the strength of the enamel. Furthermore, 90 prepared premolars were divided into 6 groups and subgroups (n = 15): group 1, nonirradiated and nonaged; group 2, nonirradiated and aged (thermal cycled); group 3, irradiated and aged; each group was divided into 2 subgroups: metallic and ceramic brackets. After thermal cycling and radiotherapy, the brackets were bonded onto the specimens with Transbond XT (3M Unitek, Monrovia, Calif). After 24 hours, the specimens were subjected to the shear tests. Images of the enamel surfaces were classified using the adhesive remnant index. The composite resin-enamel interface was also evaluated. Enamel fragments subjected to radiation had lower strength than did the nonirradiated samples (P <0.05). The groups and subgroups submitted to radiation and bonded ceramic brackets had the lowest strength values. Groups 1 and 2 with metallic brackets had less adhesive on the surface, whereas groups 1 and 2 with ceramic brackets and group 3 with both metallic and ceramic brackets had more adhesive on the surfaces. On the images of the composite resin-enamel interface, resin tags were more extensive on irradiated tooth enamel. Radiation decreased tooth enamel strength, and the specimens treated with radiotherapy had higher frequencies of adhesive failure between the bracket and the composite resin as well as more extensive tags. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Comparison of the bond strength of stainless steel orthodontic brackets bonded to crown porcelains.
Chay, Siew Han; Wattanapayungkul, Pranee; Yap, Adrian U Jin; Loh, Poey Ling; Chung, Sew Meng
2005-05-01
The bond strengths and mode of failure of stainless steel orthodontic brackets bonded to the newer all-ceramic crown systems has not been fully investigated. To compare the shear-peel bond strengths and modes of failure of stainless steel Begg orthodontic brackets bonded to all-ceramic crown systems (Finesse, Empress II) and a conventional feldsphatic crown porcelain (Vita Omega 900). Fifteen flat-surface discs of three crown porcelains (Finesse, Vita Omega 900, Empress II) were made and mounted in acrylic moulds. The discs were pumiced, etched with phosphoric acid, primed with silane, and a flat stainless steel Begg bracket bonded to each disc with a chemical cure composite resin (Unite Bond). The discs were stored for one week in water and debonded with a sheer-peel load in an Instron uniaxial testing system with a crosshead speed of 0.5 mm/min. The composite remnants on the ceramic surfaces were classified using the Adhesive Remnant Index (ARI). The bond strength of Finesse (15.03 +/- 1.90 MPa) was significantly greater (p < 0.001) than Vita Omega 900 11.51 +/- 2.35 MPa) and Empress II (11.12 +/- 1.78 MPa). There were no significant differences among the ARI scores. The mode of failure was a mixture of adhesive and cohesive failure. The results indicate that the bond strengths of stainless steel orthodontic brackets bonded to Finesse and Empress II porcelains are clinically acceptable.
Rahul, M; Kumar, P Anil; Nair, Amal S; Mathew, Shino; Amaladas, Antony Shijoy; Ommen, Anna
2017-01-01
This study aimed to evaluate the effects of at-home and in-office bleaching on the shear bond strength (SBS) of metal, ceramic, and composite orthodontic brackets and to compare their SBSs. A total of 96 human lower premolar teeth were used for this study. Six teeth were used for scanning electron microscopic study while the remaining ninety were divided into three equal groups. Each group was further subdivided into three subgroups with ten samples each. Three protocols were used. In the at-home bleaching group (n = 30), opalescence non-PF (potassium nitrate and fluoride) bleaching agent (10% carbamide peroxide) was applied onto the teeth daily for 14 days and left for 8 h each day. Teeth in the in-office group (n = 30) were treated twice in consecutive days with Opalescence boost PF (40% hydrogen peroxide). After bleaching, the specimens were stored in distilled water for 1 day before bonding. SBS testing was performed on all teeth using Instron universal testing machine. Analysis of variance indicated a significant difference (P < 0.005) among the groups. Maximum SBS was shown by ceramic brackets in control group (Ib) and minimum was shown by composite brackets of in-office bleached group (IIIc). The results showed that at-home bleaching did not affect the SBS significantly whereas in-office bleaching reduced SBS of metal, ceramic, and composite brackets significantly. It is preferable to use metal or ceramic brackets than composite brackets for bonding 24 h after bleaching.
Factors Affecting the Shear Bond Strength of Orthodontic Brackets - a Review of In Vitro Studies.
Bakhadher, Waleed; Halawany, Hassan; Talic, Nabeel; Abraham, Nimmi; Jacob, Vimal
2015-01-01
The adhesive material used to bond orthodontic brackets to teeth should neither fail during the treatment period, resulting in treatment delays, untoward expenses or patient inconvenience nor should it damage the enamel on debonding at the end of the treatment. Although the effectiveness of a bonding system and any unfavorable effects on the enamel may be studied by conducting in-vivo studies, it is nearly impossible to independently analyze different variables that influence a specific bonding system in the oral environment. In-vitro studies, on the other hand, may utilize more standardized protocols for testing different bonding systems and materials available. Thus, the present review focused attention on in-vitro studies and made an attempt to discuss material-related, teeth-related (fluorotic vs non-fluorotic teeth) and other miscellaneous factors that influences the shear bond strength of orthodontic brackets. Within the limitations of this review, using conventional acid-etch technique, ceramic brackets and bonding to non-fluorotic teeth was reported to have a positive influence on the shear bond strength of orthodontic brackets, but higher shear bond strength found on using ceramic brackets can be dangerous for the enamel.
Saraç, Y Şinasi; Külünk, Tolga; Elekdağ-Türk, Selma; Saraç, Duygu; Türk, Tamer
2011-12-01
The aims of this study were to investigate the effects of two surface-conditioning methods on the shear bond strength (SBS) of metal brackets bonded to three different all-ceramic materials, and to evaluate the mode of failure after debonding. Twenty feldspathic, 20 fluoro-apatite, and 20 leucite-reinforced ceramic specimens were examined following two surface-conditioning methods: air-particle abrasion (APA) with 25 μm Al(2)O(3) and silica coating with 30 μm Al(2)O(3) particles modified by silica. After silane application, metal brackets were bonded with light cure composite and then stored in distilled water for 1 week and thermocycled (×1000 at 5-55°C for 30 seconds). The SBS of the brackets was measured on a universal testing machine. The ceramic surfaces were examined with a stereomicroscope to determine the amount of composite resin remaining using the adhesive remnant index. Two-way analysis of variance, Tukey's multiple comparison test, and Weibull analysis were used for evaluation of SBS. The lowest SBS was with APA for the fluoro-apatite ceramic (11.82 MPa), which was not significantly different from APA for the feldspathic ceramic (13.58 MPa). The SBS for the fluoro-apatite ceramic was significantly lower than that of leucite-reinforced ceramic with APA (14.82 MPa). The highest SBS value was obtained with silica coating of the leucite-reinforced ceramic (24.17 MPa), but this was not significantly different from the SBS for feldspathic and fluoro-apatite ceramic (23.51 and 22.18 MPa, respectively). The SBS values with silica coating showed significant differences from those of APA. For all samples, the adhesive failures were between the ceramic and composite resin. No ceramic fractures or cracks were observed. Chairside tribochemical silica coating significantly increased the mean bond strength values.
da Rocha, José Maurício; Gravina, Marco Abdo; Campos, Marcio José da Silva; Quintão, Cátia Cardoso Abdo; Elias, Carlos Nelson; Vitral, Robert Willer Farinazzo
2014-01-01
Objective To evaluate, in vitro, the shear bond strength presented by three brands of polycrystalline ceramic brackets and one brand of metallic bracket; verify the adhesive remnant index (ARI) after the tests, and analyze, through scanning electron microscopy (SEM) the enamel surface topography after debonding, detecting the release of mineral particles. Methods Sixty bovine lower incisors were used. Three ceramic brackets (Allure®, InVu®, and Clarity®) and one metallic bracket (Geneus®) were bonded with Transbond XT®. Kruskal-Wallis's test (significance level set at 5%) was applied to the results of share bond and ARI. Mann Whitney's test was performed to compare the pairs of brackets in relation to their ARI. Brown-Forsythe's test (significance level set at 5%) was applied to the results of enamel chemical composition. Comparisons between groups were made with Games-Howell's and the Post-hoc tests. Results No statistically significant difference was observed in relation to the shear bond strength loads. Clarity® brackets were the most affected in relation to the surface topography and to the release of mineral particles of enamel (calcium ions). Conclusion With regard to the ARI, there was a prevalence of score 4 (40.4%). As for enamel surface topography, the Geneus® bracket was the only one which did not show superficial tissue loss. The InVu® and Clarity® ones showed cohesive fractures in 33.3% and the Allure® in 50%, the latter being the one that presented most fractures during removal. PMID:24713563
Influence of Thermal Cycles Number on Bond Strength of Metallic Brackets to Ceramic.
Jurubeba, José Eliú Pereira; Costa, Ana Rosa; Correr-Sobrinho, Lourenço; Tubel, Carlos Alberto Malanconi; Correr, Américo Bortolazzo; Vedovello, Silvia Amélia; Crepaldi, Marcus Vinicius; Vedovello, Mário
2017-01-01
The aim of this study was to evaluate the effect of different number of thermal cycles on the shear bond strength (SBS) of metallic orthodontic brackets bonded to feldspathic ceramic by a composite resin. Twenty-five ceramic cylinders were etched with 10% hydrofluoric acid for 60 s and received two layers of silane. Brackets were bonded to the cylinders using Transbond XT and assigned to 5 groups (n=5): Group 1 - Control group (without thermal cycling); Group 2 - 500 thermal cycles; Group 3 - 5,000 thermal cycles; Group 4 - 7,000 thermal cycles and Group 5 - 10,000 thermal cycles. Light-activation was carried out by Radii Plus LED. SBS testing was carried out after 24 h of storage in deionized water and thermal cycling (5/55 oC and 30 s dwell time). Five brackets were bonded to each cylinder, totalizing 25 brackets for each group. Data were submitted to one-way ANOVA and Tukey's test (α=0.05). The Adhesive Remnant Index (ARI) was evaluated at 8× magnification. The SBS (MPa) of control group (9.3±0.8), 500 (9.0±0.7) and 5,000 (8.4±0.9) thermal cycles were significantly higher than those after 7,000 (6.8±0.6) and 10,000 (4.9±1.0) thermal cycles (p<0.05). The ARI showed a predominance of Scores 0 (adhesive failure) prevailed in all groups, as shown by the ARI, with increased scores 1 and 2 (mixed failures) for control group and 500 thermal cycles. In conclusion, thermal fatigue may compromise the bonding integration between metallic brackets and ceramic restorations. For in vitro testing, use of at least 7,000 cycles is advised to result in significant fatigue on the bonding interface.
Bond strengths evaluation of laser ceramic bracket debonding
NASA Astrophysics Data System (ADS)
Dostalová, T.; Jelinková, H.; Šulc, J.; Němec, M.; Fibrich, M.; Jelínek, M.; Michalík, P.; Bučková, M.
2012-09-01
Ceramic brackets often used for an orthodontic treatment can lead to problems such as enamel tear outs because of their low fracture resistance and high bond strengths. Therefore the aim of our study was to investigate the positive laser radiation effect on bracket debonding. Moreover, the influence of the enamel shape surface under the bracket and laser radiation power on the debonding strength was investigated. The source of the radiation was the longitudinally diode-pumped Tm:YAP laser operating at 1997 nm. To eliminate the tooth surface roughness the flat enamel surface was prepared artificially and the bracket was bonded on it. The debonding was accomplished by Tm:YAP laser radiation with different the power value while recording the temperature rise in the pulp. To simulate the debonding process in vivo the actual bond strength was measured by the digital force gauge. The results were analyzed by scanning electron microscope.
The use of easily debondable orthodontic adhesives with ceramic brackets.
Ryu, Chiyako; Namura, Yasuhiro; Tsuruoka, Takashi; Hama, Tomohiko; Kaji, Kaori; Shimizu, Noriyoshi
2011-01-01
We experimentally produced an easily debondable orthodontic adhesive (EDA) containing heat-expandable microcapsules. The purpose of this in vitro study was to evaluate the best debondable condition when EDA was used for ceramic brackets. Shear bond strengths were measured before and after heating and were compared statistically. Temperatures of the bracket base and pulp wall were also examined during heating. Bond strengths of EDA containing 30 wt% and 40 wt% heat-expandable microcapsules were 13.4 and 12.9 MPa, respectively and decreased significantly to 3.8 and 3.7 MPa, respectively, after heating. The temperature of the pulp wall increased 1.8-3.6°C after heating, less than that required to induce pulp damage. Based on the results, we conclude that heating for 8 s during debonding of ceramic brackets bonded using EDA containing 40 wt% heat-expandable microcapsules is the most effective and safest method for the enamel and pulp.
Gill, Vikas; Reddy, Y. N. N.; Sanadhya, Sudhanshu; Aapaliya, Pankaj; Sharma, Nidhi
2014-01-01
Background: Debonding procedure is time consuming and damaging to the enamel if performed with improper technique. Various debonding methods include: the conventional methods that use pliers or wrenches, an ultrasonic method, electrothermal devices, air pressure impulse devices, diamond burs to grind the brackets off the tooth surface and lasers. Among all these methods, using debonding pliers is most convenient and effective method but has been reported to cause damage to the teeth. Recently, a New Debonding Instrument designed specifically for ceramic and composite brackets has been introduced. As this is a new instrument, little information is available on efficacy of this instrument. The purpose of this study was to evaluate the debonding characteristics of both “the conventional debonding Pliers” and “the New debonding instrument” when removing ceramic, composite and metallic brackets. Materials and Methods: One Hundred Thirty eight extracted maxillary premolar teeth were collected and divided into two Groups: Group A and Group B (n = 69) respectively. They were further divided into 3 subGroups (n = 23) each according to the types of brackets to be bonded. In subGroups A1 and B1{stainless steel};A2 and B2{ceramic};A3 and B3{composite}adhesive precoated maxillary premolar brackets were used. Among them {ceramic and composite} adhesive pre-coated maxillary premolar brackets were bonded. All the teeth were etched using 37% phosphoric acid for 15 seconds and the brackets were bonded using Transbond XT primer. Brackets were debonded using Conventional Debonding Plier and New Debonding Instrument (Group B). After debonding, the enamel surface of each tooth was examined under stereo microscope (10X magnifications). Amodifiedadhesive remnant index (ARI) was used to quantify the amount of remaining adhesive on each tooth. Results: The observations demonstrate that the results of New Debonding Instrument for debonding of metal, ceramic and composite brackets were statistically significantly different (p = 0.04) and superior from the results of conventional debonding Pliers. Conclusion: The debonding efficiency of New Debonding Instrument is better than the debonding efficiency of Conventional Debonding Pliers for use of metal, ceramic and composite brackets respectively. PMID:25177639
Choudhary, Garima; Gill, Vikas; Reddy, Y N N; Sanadhya, Sudhanshu; Aapaliya, Pankaj; Sharma, Nidhi
2014-07-01
Debonding procedure is time consuming and damaging to the enamel if performed with improper technique. Various debonding methods include: the conventional methods that use pliers or wrenches, an ultrasonic method, electrothermal devices, air pressure impulse devices, diamond burs to grind the brackets off the tooth surface and lasers. Among all these methods, using debonding pliers is most convenient and effective method but has been reported to cause damage to the teeth. Recently, a New Debonding Instrument designed specifically for ceramic and composite brackets has been introduced. As this is a new instrument, little information is available on efficacy of this instrument. The purpose of this study was to evaluate the debonding characteristics of both "the conventional debonding Pliers" and "the New debonding instrument" when removing ceramic, composite and metallic brackets. One Hundred Thirty eight extracted maxillary premolar teeth were collected and divided into two Groups: Group A and Group B (n = 69) respectively. They were further divided into 3 subGroups (n = 23) each according to the types of brackets to be bonded. In subGroups A1 and B1{stainless steel};A2 and B2{ceramic};A3 and B3{composite}adhesive precoated maxillary premolar brackets were used. Among them {ceramic and composite} adhesive pre-coated maxillary premolar brackets were bonded. All the teeth were etched using 37% phosphoric acid for 15 seconds and the brackets were bonded using Transbond XT primer. Brackets were debonded using Conventional Debonding Plier and New Debonding Instrument (Group B). After debonding, the enamel surface of each tooth was examined under stereo microscope (10X magnifications). Amodifiedadhesive remnant index (ARI) was used to quantify the amount of remaining adhesive on each tooth. The observations demonstrate that the results of New Debonding Instrument for debonding of metal, ceramic and composite brackets were statistically significantly different (p = 0.04) and superior from the results of conventional debonding Pliers. The debonding efficiency of New Debonding Instrument is better than the debonding efficiency of Conventional Debonding Pliers for use of metal, ceramic and composite brackets respectively.
Laser debonding of ceramic orthodontic brackets: a theoretical approach
NASA Astrophysics Data System (ADS)
Kearney, Kristine L.; Marangoni, Roy D.; Rickabaugh, Jeff L.
1992-06-01
Ceramic brackets are an esthetic substitute for conventional stainless steel brackets in orthodontic patients. However, ceramic brackets are more brittle and have higher bond strengths which can lead to bracket breakage and enamel damage during debonding. It has been demonstrated that various lasers can facilitate ceramic bracket removal. One mechanism with the laser is through the softening of the bracket adhesive. The high energy density from the laser on the bracket and adhesive can have a resultant deleterious thermal effect on the pulp of the tooth which may lead to pulpal death. A theoretical computer model of bracket, adhesive, enamel and dentin has been generated for predicting heat flow through this system. Heat fluxes at varying intensities and modes have been input into the program and the resultant temperatures at various points or nodes were determined. Further pursuit should lead to optimum parameters for laser debonding which would have minimal effects on the pulp.
Electrothermal debonding of ceramic brackets. An in vitro study.
Brouns, E M; Schopf, P M; Kocjancic, B
1993-04-01
Two different kinds of devices for electrothermal debonding of ceramic brackets are evaluated. Thirty human premolars were bonded with two types of ceramic brackets. Both devices were tested for electrothermal removal of the two bracket types. The pulpal wall temperature increase during electrothermal debonding was recorded in vitro under various circumstances. After debonding, the fracture site was located. The data were compared to the temperature rise after simulated exposure of the teeth to warm beverages. Irreversible pulp damage due to electrothermal debonding of ceramic brackets with both instruments is not to be expected because the obtained results stayed below established primate threshold temperatures and significantly below that of the stimulated control groups. A significant difference was noted when air cooling was initiated during electrothermal debonding. Fracture site location was significantly different in the two ceramic bracket types after electrothermal debonding.
Thermal debonding of ceramic brackets: an in vitro study.
Crooks, M; Hood, J; Harkness, M
1997-02-01
Thermal debonding has been developed to overcome the problems of enamel damage and high forces when debonding ceramic orthodontic brackets. However, the temperature changes with thermal debonding have the potential to damage the tooth tissues. The principal aims of this study are, first, to investigate the effects of resin type, resin thickness, and debonding force on the temperature changes in human premolars during thermal debonding of ceramic brackets and, second, to record the sites of bond failure and damage to the tooth surface. Ceramic brackets were attached to each specimen by using one of four types of bonding resin in a controlled thick or thin resin layer. The ceramic debonding unit (Dentaurum, Pforzheim, Germany) was used to thermally debond the brackets with either a 40 or 80 Nmm torsional force. Higher temperature changes at the pulpal wall (> 10 degrees C in some 40 Nmm torsional force specimens) always occurred with Concise (3M Dental Products, St. Paul, Minn.) and Transbond (Unitek/3M Dental Products, Monrovia, Calif.) resins, and lower temperature changes (< 5 degrees C) with Quasar (Rocky Mountain Orthodontics, Denver, Colo.) and Ortho. B.S. (Dentaurum, Pforzheim, Germany) resins. In general, resin thickness was not significantly associated with buccal surface or pulpal wall temperature changes. However, temperature changes at the pulpal wall were significantly associated with the temperature changes at the buccal surface (r = 0.76), with the temperature of the thermal debonder blade for thin resin layer specimens (r = 0.50), and the time required to debond the bracket for both thick (r = 0.74) and thin (r = 0.63) resin layer specimens. In most specimens, the site of bond failure occurred at the bracket-resin interface. There was no evidence of enamel damage after bracket removal.
Lee, Ji-Yeon; Ahn, Jaechan; An, Sang In; Park, Jeong-Won
2018-02-01
The aim of this study is to compare the shear bond strengths of ceramic brackets bonded to zirconia surfaces using different zirconia primers and universal adhesive. Fifty zirconia blocks (15 × 15 × 10 mm, Zpex, Tosoh Corporation) were polished with 1,000 grit sand paper and air-abraded with 50 µm Al 2 O 3 for 10 seconds (40 psi). They were divided into 5 groups: control (CO), Metal/Zirconia primer (MZ, Ivoclar Vivadent), Z-PRIME Plus (ZP, Bisco), Zirconia Liner (ZL, Sun Medical), and Scotchbond Universal adhesive (SU, 3M ESPE). Transbond XT Primer (used for CO, MZ, ZP, and ZL) and Transbond XT Paste was used for bracket bonding (Gemini clear ceramic brackets, 3M Unitek). After 24 hours at 37°C storage, specimens underwent 2,000 thermocycles, and then, shear bond strengths were measured (1 mm/min). An adhesive remnant index (ARI) score was calculated. The data were analyzed using one-way analysis of variance and the Bonferroni test ( p = 0.05). Surface treatment with primers resulted in increased shear bond strength. The SU group showed the highest shear bond strength followed by the ZP, ZL, MZ, and CO groups, in that order. The median ARI scores were as follows: CO = 0, MZ = 0, ZP = 0, ZL = 0, and SU = 3 ( p < 0.05). Within this experiment, zirconia primer can increase the shear bond strength of bracket bonding. The highest shear bond strength is observed in SU group, even when no primer is used.
2018-01-01
Objectives The aim of this study is to compare the shear bond strengths of ceramic brackets bonded to zirconia surfaces using different zirconia primers and universal adhesive. Materials and Methods Fifty zirconia blocks (15 × 15 × 10 mm, Zpex, Tosoh Corporation) were polished with 1,000 grit sand paper and air-abraded with 50 µm Al2O3 for 10 seconds (40 psi). They were divided into 5 groups: control (CO), Metal/Zirconia primer (MZ, Ivoclar Vivadent), Z-PRIME Plus (ZP, Bisco), Zirconia Liner (ZL, Sun Medical), and Scotchbond Universal adhesive (SU, 3M ESPE). Transbond XT Primer (used for CO, MZ, ZP, and ZL) and Transbond XT Paste was used for bracket bonding (Gemini clear ceramic brackets, 3M Unitek). After 24 hours at 37°C storage, specimens underwent 2,000 thermocycles, and then, shear bond strengths were measured (1 mm/min). An adhesive remnant index (ARI) score was calculated. The data were analyzed using one-way analysis of variance and the Bonferroni test (p = 0.05). Results Surface treatment with primers resulted in increased shear bond strength. The SU group showed the highest shear bond strength followed by the ZP, ZL, MZ, and CO groups, in that order. The median ARI scores were as follows: CO = 0, MZ = 0, ZP = 0, ZL = 0, and SU = 3 (p < 0.05). Conclusions Within this experiment, zirconia primer can increase the shear bond strength of bracket bonding. The highest shear bond strength is observed in SU group, even when no primer is used. PMID:29487838
Shear Bond Strength of Ceramic Brackets with Different Base Designs: Comparative In-vitro Study
Ansari, Mohd. Younus; Agarwal, Deepak K; Bhattacharya, Preeti; Ansar, Juhi; Bhandari, Ravi
2016-01-01
Introduction Knowledge about the Shear Bond Strength (SBS) of ceramic brackets with different base design is essential as it affects bond strength to enamel. Aim The aim of the present study was to evaluate and compare the effect of base designs of different ceramic brackets on SBS, and to determine the fracture site after debonding. Materials and Methods Four groups of ceramic brackets and one group of metal brackets with different base designs were used. Adhesive precoated base of Clarity Advanced (APC Flash-free) (Unitek/3M, Monrovia, California), microcrystalline base of Clarity Advanced (Unitek/3M, Monrovia, California), polymer mesh base of InVu (TP Orthodontics, Inc., La Porte, IN, United States), patented bead ball base of Inspire Ice (Ormco, Glendora, California), and a mechanical mesh base of Gemini Metal bracket (Unitek/3M, Monrovia, California). Ten brackets of each type were bonded to 50 maxillary premolars with Transbond XT (Unitek/3M). Samples were stored in distilled water at room temperature for 24 hours and subsequently tested in shear mode on a universal testing machine (Model 3382; Instron Corp., Canton, Massachusetts, USA) at a cross head speed of 1mm/minute with the help of a chisel. The debonded interface was recorded and analyzed to determine the predominant bond failure site under an optical microscope (Stereomicroscope) at 10X magnification. One way analysis of variance (ANOVA) was used to compare SBS. Tukey’s significant differences tests were used for post-hoc comparisons. The Adhesive Remnant Index (ARI) scores were compared by chi-square test. Results Mean SBS of microcrystalline base (27.26±1.73), was the highest followed by bead ball base (23.45±5.09), adhesive precoated base (20.13±5.20), polymer mesh base (17.54±1.91), and mechanical mesh base (17.50±2.41) the least. Comparing the frequency (%) of ARI Score among the groups, chi-square test showed significantly different ARI scores among the groups (χ2 = 34.07, p<0.001). Conclusion Different base designs of metal and ceramic brackets influence SBS to enamel and all were clinically acceptable. PMID:28050507
NASA Astrophysics Data System (ADS)
Sinescu, Cosmin; Negrutiu, Meda L.; Hughes, Michael; Bradu, Adrian; Todea, Carmen; Rominu, Roxana; Dodenciu, Dorin; Laissue, Philippe L.; Podoleanu, Adrian G.
2008-04-01
Despite good diagnosis and treatment planning, orthodontic treatment can fail if bonding fails. It is now common practice to address the aesthetic appearance of patients using aesthetic brackets instead of metal ones. Therefore, bonding aesthetic brackets has become an issue for orthodontists today. Orthodontic bonding is mainly achieved using composite resin but can also be performed with glass ionomer or resin cements. For improving the quality of bonding, the enamel is acid etched for 30 seconds with 38% phosphoric acid and then a bonding agent is applied. In our study we investigated and compared the quality of bonding between ceramic brackets, polymeric brackets and enamel, respectively using a new investigation method-OCT. The aim of our study was to evaluate the resin layer at the bracket base-tooth interface.
NASA Astrophysics Data System (ADS)
Romînu, Roxana Otilia; Sinescu, Cosmin; Romînu, Mihai; Negrutiu, Meda; Laissue, Philippe; Mihali, Sorin; Cuc, Lavinia; Hughes, Michael; Bradu, Adrian; Podoleanu, Adrian
2008-09-01
Bonding has become a routine procedure in several dental specialties - from prosthodontics to conservative dentistry and even orthodontics. In many of these fields it is important to be able to investigate the bonded interfaces to assess their quality. All currently employed investigative methods are invasive, meaning that samples are destroyed in the testing procedure and cannot be used again. We have investigated the interface between human enamel and bonded ceramic brackets non-invasively, introducing a combination of new investigative methods - optical coherence tomography (OCT) and confocal microscopy (CM). Brackets were conventionally bonded on conditioned buccal surfaces of teeth The bonding was assessed using these methods. Three dimensional reconstructions of the detected material defects were developed using manual and semi-automatic segmentation. The results clearly prove that OCT and CM are useful in orthodontic bonding investigations.
Stein, Steffen; Hellak, Andreas; Schauseil, Michael; Korbmacher-Steiner, Heike; Braun, Andreas
2018-01-01
The aim of this study was to measure the effect of irradiation with a novel 445-nm diode laser on the shear bond strength (SBS) of ceramic brackets before debonding. Thirty ceramic brackets (In-Ovation ® C, GAC) were bonded in standard manner to the planed and polished buccal enamel surfaces of 30 caries-free human third molars. Each tooth was randomly allocated to the laser or control group, with 15 samples per group. The brackets in the laser group were irradiated with the diode laser (SIROLaser Blue ® ; Sirona) on three sides of the bracket bases for 5 sec each (lateral-coronal-lateral, a total of 15 sec) immediately before debonding. SBS values were measured for the laser group and control group. To assess the adhesive remnant index (ARI) and the degree of enamel fractures, micrographs of the enamel surface were taken with 10-fold magnification after debonding. The SBS values were significantly lower statistically in the laser group in comparison with the control group (p < 0.05). The ARI scores were also significantly lower statistically in the laser group in comparison with the control group (p < 0.05). No bracket fractures or enamel fractures occurred in either group after debonding. Irradiation of ceramic brackets with the novel diode laser before debonding significantly reduces the SBS values. This is of clinical importance, as it means that the risk of damage to the teeth, bracket fractures, and the overall treatment time can be reduced.
Influence of surface treatments on the shear bond strength of orthodontic brackets to porcelain
NASA Astrophysics Data System (ADS)
Wang, Cong; Zeng, Jishan; Wang, Shaoan; Yang, Zheng; Huang, Qian; Chen, Pixiu; Zhou, Shujuan; Liu, Xiaoqing
2008-11-01
The purpose of this study was to investigate the effect of various surface treatments after different storage time and thermocycling on the shear bond strength of orthodontic brackets to the feldspathic porcelain surfaces. 128 disc-shaped porcelain specimens were randomly assigned to the following surface treatments: 9.6% HFA, 9.6% HFA combined with silane, 50 μ aluminum trioxide sandblasting followed by silane and application of silane after 37% phosphoric acid. Metal or ceramic brackets were bonded onto each treated porcelain facet with light cured resin. The samples were stored in 37 °C water 1 day or 7 days, thermocycled 500 times from 5 to 55 °C. The shear bond strengths were measured (1 mm/min), and statistically analyzed. The bond failure sites were classified according to ARI system. The surface of the glazed, sandblasted, hydrofluoric and phosphoric acid etched porcelain were examined with SEM. All groups achieved reasonable bond strengths to withstand the application of orthodontic forces. Water storage for 7 days caused lower shear bond strength than that of 1 day. But there is no statistically significant difference between the two groups. The mean shear bond strength provided by ceramic bracket with mechanical retention had no statistical difference with that of metal bracket. Therefore, the optimal treatment for orthodontic brackets bonding to feldspathic porcelain was to apply phosphoric acid combined with silane.
Risk of pulp damage due to temperature increase during thermodebonding of ceramic brackets.
Jost-Brinkmann, P G; Radlanski, R J; Artun, J; Loidl, H
1997-12-01
The purpose of this study was to perform in vitro measurements of the temperature increase at the enamel-dentine interface during electrothermal removal of ceramic brackets, and to analyse, in vivo, whether signs of pulp damage can be observed 4 weeks after the procedure. In vitro study: a total of 29 caries-free human teeth were cut into buccal and lingual halves. The buccal halves were bonded with ceramic brackets, and miniature thermocouples were placed from the pulpal side into holes drilled to the enamel-dentine interface under the centre of the bracket slot. From the onset of thermodebonding, the temperature increase relative to room temperature was recorded for a period of 43 seconds. The maximum temperature increase at the enamel-dentine interface was 6.9 degrees C. In vivo study: a total of 12 human premolars scheduled for extraction for orthodontic reasons were bonded with ceramic brackets. Electrothermal debonding was performed the following day. After 4 weeks, the teeth were extracted and prepared for histological examination. Following demineralization, sections were prepared for light microscopic examination. No signs of pulpal inflammation were observed.
Saito, Ayano; Namura, Yasuhiro; Isokawa, Keitaro; Shimizu, Noriyoshi
2015-02-01
We have been studying an easy bracket debonding method using heating of an orthodontic adhesive containing thermal expansion microcapsules. However, heating with a high-temperature heater brings obvious risks of burns around the oral cavity. Thus, we examined safer and more effective bracket debonding methods. The purpose of this in vitro study was to examine the reduction in debonding strength and the time taken using a bracket bonded with an orthodontic adhesive containing thermal expansion microcapsules and a CO2 laser as the heating method while maintaining safety. Ceramic brackets were bonded to bovine permanent mandibular incisors using bonding materials containing various microcapsule contents (0, 30, and 40 wt%), and the bond strengths were measured after laser irradiation for 4, 5, and 6 s and compared with nonlaser-treated groups. Subsequently, the temperature in the pulp chamber during laser irradiation was measured. After laser irradiation for 5 or 6 s, the bond strengths of the adhesive containing 40 wt% microcapsules were significantly decreased to ∼0.40 - 0.48-fold (4.6-5.5 MPa) compared with the nonlaser groups. The mean temperature rise of the pulp chamber was 4.3 °C with laser irradiation for 6 s, which was less than that required to induce pulp damage. Based on these results, we conclude that the combined use of a CO2 laser and an orthodontic adhesive containing thermal expansion microcapsules can be effective and safe for debonding ceramic brackets with less enamel damage or tooth pain.
Shear bond strength and enamel fracture behavior of ceramic brackets Fascination® and Fascination®2.
Gittner, Robert; Müller-Hartwich, Ralf; Engel, Sylvia; Jost-Brinkmann, Paul-Georg
2012-01-01
The purpose of this study was to compare the shear bond strength and incidence of enamel fractures of the ceramic brackets Fascination® and Fascination®2. A total of 360 teeth (180 first upper bicuspids and 180 lower incisors) were stored in 96% ethanol, while 360 other teeth (180 first upper bicuspids and 180 lower incisors) were stored in 0.1% thymol. All 720 teeth were bonded one-half each with Fascination® and Fascination®2 brackets using three different adhesives and three different light curing units. The teeth were debonded with a debonding-device according to DIN EN ISO 10477 using a universal testing machine with a crosshead speed of 1 mm per minute. The enamel surface was then examined stereomicroscopically (10x and 40x magnification). The non-parametric Mann-Whitney U test was used, since the data were not normally distributed. The Fascination®2 brackets provided significantly lower shear bond strength than Fascination® brackets (p = 0.003). Fascination® brackets demonstrated significantly fewer, smaller enamel fractures than Fascination®2 brackets (p = 0.012). The lower shear bond strength of the Fascination®2 brackets is clinically acceptable, but our study's experimental design did not enable us to prove whether this is clinically associated with a lower risk of enamel fracture.
Ma, T; Marangoni, R D; Flint, W
1997-02-01
The aim of this study was to develop a method to reduce the fracture of ceramic orthodontics brackets during debonding procedures. Lasers have been used to thermally soften the bonding resin, which reduces the tensile debonding force. Thermal effects of lasers may create adverse effects to the dental pulp. Previous studies have shown that no pulpal injury occurs when the maximum intrapulpal temperature rise stayed below 2 degrees C. This study investigated the effect of lasing time on intrapulpal temperature increase and tensile debonding force with a 18 watt carbon dioxide laser. Ceramic brackets were bonded to mandibular deciduous bovine teeth and human mandibular first premolars with a photoactivated bonding resin. Modified debonding pliers was used to accurately position the laser beam onto the ceramic bracket. Lasing time required to keep the maximum intrapulpal temperature rise below 2 degrees C was determined by the use of thermocouples inserted into the pulp chambers of the specimens. A tensile debonding force was applied on the control group without lasing and the experimental group was debonded after applying a predetermined lasing time with a carbon dioxide laser. It was found that there was a significance difference (P < 0.05) in tensile debonding force between the control group and the experimental group. It is feasible to use a laser for the debonding of ceramic brackets while keeping the intrapulpal temperature rise below the threshold of pulpal damage.
Laser debonding of ceramic brackets: a comprehensive review.
Azzeh, Ezz; Feldon, Paul J
2003-01-01
Since the invention of the ruby laser in the early 1960s, tremendous advances have been made in optic laser technology. Orthodontists have found various uses for lasers, including the debonding of ceramic brackets. Laser energy degrades the adhesive resin used to bond brackets. Consequently, lower forces can be used than when mechanical debonding is performed, reducing the risk of enamel damage. However, the heat produced by some lasers can damage the tooth pulp. Selecting the appropriate laser, resin, and bracket combination can minimize risks and make debonding more efficient. The purpose of this article is to give the clinician an up-to-date, comprehensive literature review about the clinical characteristics of debonding ceramic brackets with lasers.
Shear Bond Strength of Metal Brackets to Zirconia Conditioned with Various Primer-Adhesive Systems
2016-07-01
Reynolds, 1979 ). Bonding orthodontic brackets to ceramic restorative materials poses a unique challenge. Abu et al. measured the strength between...forth by Reynolds and 34 others (Reynolds, 1979 ). The pertinent question is the following: should brackets be chemically bonded to zirconia...conditioned with a new silane coupling agent. Eur J Orthod. 2013 Feb;35(1):103-9. 40 Giannini M, Soares CJ, de Carvalho RM. Ultimate tensile
Zhang, Zhe-Chen; Qian, Yu-Fen; Yang, Yi-Ming; Feng, Qi-Ping; Shen, Gang
2016-09-01
The purpose of this work was to evaluate the effects of several surface treatment methods on the shear bond strengths of metal brackets bonded to a silica-based ceramic with a light-cured adhesive. Silica-based ceramic (IPS Classic(®)) with glazed surfaces was cut into discs that were used as substrates. A total of 80 specimens were randomly divided into four groups according to the method used: 9.6 % hydrofluoric acid (group 1), 9.6 % hydrofluoric acid (HF) + silane coupling agent (group 2), sandblasting (aluminum trioxide, 50 μm) + silane (group 3), and tribochemical silica coating (CoJet™ sand, 30 μm) + silane (group 4). Brackets were bonded to the treated specimens with a light-cure adhesive (Transbond XT, 3 M Unitek). Shear bond strength was tested after bracket bonding, and the Adhesive Remnant Index (ARI) scores were quantified after debonding. Group 4 showed the highest bond strength (12.3 ± 1.0 MPa), which was not significantly different from that of group 3 (11.6 ± 1.2 MPa, P > 0.05); however, the bond strength of group 4 was substantially higher than that of group 2 (9.4 ± 1.1 MPa, P < 0.05). The shear bond strength of group 1 (3.1 ± 0.6 MPa, P< 0.05) was significantly lower than that of the other groups. Shear bond strengths exceeded the optimal range of ideal bond strength for clinical practice, except for the isolated HF group. HF acid etching followed by silane was the best suited method for bonding on IPS Classic(®). Failure modes in the sandblasting and silica-coating groups revealed signs of damaged ceramic surfaces.
Effects of Diode Laser Debonding of Ceramic Brackets on Enamel Surface and Pulpal Temperature.
Yassaei, Soghra; Soleimanian, Azadeh; Nik, Zahra Ebrahimi
2015-04-01
Debonding of ceramic brackets due to their high bond strength and low fracture toughness is one of the most challenging complications of orthodontic clinicians. Application of lasers might be effective in the debonding of ceramic brackets as they reduce bond strength of resins and, therefore, can eliminate the risk of enamel damage. However, the thermal effects of laser radiation on dental tissue can cause undesirable results. The aim of this study is to evaluate the enamel surface characteristics and pulpal temperature changes of teeth after debonding of ceramic brackets with or without laser light. Thirty polycrystalline brackets were bonded to 30 intact extracted premolars, and later debonded conventionally or through a diode laser (2.5 W, 980 nm). The laser was applied for 10 seconds with sweeping movement. After debonding, the adhesive remnant index (ARI), the lengths and frequency of enamel cracks were compared among the groups. The increase in intrapulpal temperature was also measured. The collected data were analyzed by Chi-squared test and paired t-test using Statistical Package for Social Sciences (SPSS) software. There was no case of enamel fracture in none of the groups. Laser debonding caused a significant decrease in the frequency and lengths of enamel cracks, compared to conventional debonding. In laser debonding group, the increase in intrapulpal temperature (1.46°C) was significantly below the benchmark of 5.5°C for all the specimens. No significant difference was observed in ARI scores among the groups. Laser-assisted debonding of ceramic brackets could reduce the risk of enamel damage, without causing thermal damage to the pulp. However, some increases in the length and frequency of enamel cracks should be expected with all debonding methods.
Nagar, Namit; Vaz, Anna C
2013-01-01
To compare the shear bond strength of a nano-ceramic restorative composite Ceram-X Mono(TM♦), a restorative resin with the traditional orthodontic composite Transbond XT(TM†) and to evaluate the site of bond failure using Adhesive Remnant Index. Sixty extracted human premolars were divided into two groups of 30 each. Stainless steel brackets were bonded using Transbond XT(TM†) (Group I) and Ceram-X Mono(TM♦) (Group II) according to manufacturer's protocol. Shear bond strength was measured on Universal testing machine at crosshead speed of 1 mm/minute. Adhesive Remnant Index scores were assigned to debonded brackets of each group. Data was analyzed using unpaired 't' test and Chi square test. The mean shear bond strength of Group I (Transbond XT(TM†)) was 12.89 MPa ± 2.19 and that of Group II (Ceram-X Mono(TM)) was 7.29 MPa ± 1.76. Unpaired 't' test revealed statistically significant differences amongst the shear bond strength of the samples measured. Chi-square test revealed statistically insignificant differences amongst the ARI scores of the samples measured. Ceram-X Mono(TM♦) had a lesser mean shear bond strength when compared to Transbond XT(TM†) which was statistically significant difference. However, the mean shear bond of Ceram X Mono was within the clinically acceptable range for bonding. Ceram-X Mono(TM†) and Transbond XT(TM†) showed cohesive fracture of adhesive in 72.6% and 66.6% of the specimens, respectively.
Hofmann, Elisabeth; Elsner, Laura; Hirschfelder, Ursula; Ebert, Thomas; Hanke, Sebastian
2017-01-01
Selected combinations of materials were used to create tooth-adhesive-bracket complexes to evaluate shear bond strength (SBS) and the adhesive remnant index (ARI) with regard to enamel sealing. Four adhesive systems also appropriate for use as enamel sealants were combined with four bracket types, resulting in 16 adhesive-bracket combinations, each of which was tested on 15 permanent bovine incisors. Sealant-adhesives included two recently introduced fluoride-releasing systems (Riva bond LC ® and go! ® ), one established primer (Opal ® Seal™), and one commonly used adhesive as control (Transbond™ XT). Brackets included two metal (discovery ® by Dentaurum and Sprint ® ) and two ceramic (discovery ® pearl and GLAM ® ) systems. After embedding the bovine teeth, bonding the brackets to their surface, and storing the resultant samples as per DIN 13990-2 with modifications, an SBS test was performed by applying the shear force directly at the bracket base in an incisocervical direction. Then the ARI scores were determined. Discovery ® + Transbond™ XT yielded the highest (47.2 MPa) and GLAM ® + go! ® the lowest (17.0 MPa) mean SBS values. Significant differences (p < 0.0001) were found between metal and ceramic brackets of the same manufacturers (Dentaurum and Forestadent). Our ratings of the failure modes upon debonding predominantly yielded ARI 0 or 1. The high SBS values and low ARI scores observed with discovery ® + Transbond XT™ were reflected in a high rate of enamel fracture, which occurred on 11 of the 15 tooth specimens in this group. All sealant-bracket combinations were found to yield levels of SBS adequate for clinical application. SBS values and ARI scores varied significantly depending on which sealant-brackets were used.
Histologic investigation of the human pulp after thermodebonding of metal and ceramic brackets.
Jost-Brinkmann, P G; Stein, H; Miethke, R R; Nakata, M
1992-11-01
Twenty-five human permanent teeth scheduled for extraction for orthodontic reasons were used to study the effect of thermodebonding on the pulp tissue. One week before brackets were removed the teeth were bonded with either metal or ceramic brackets, with two alternative adhesives. For debonding, three different techniques were used: (1) debonding of ceramic brackets warmed up indirectly by resistance heating of a metallic bow applied to the bracket slot, (2) debonding of metal brackets warmed up directly by inductive heating of the bracket itself, and (3) debonding of ceramic brackets warmed up indirectly by inductive heating of metallic plier tips, applied to the mesial and distal bracket surfaces. Teeth with metal brackets removed without heat by squeezing the wings together served as a control group. The teeth were extracted 24 hours after debonding and subjected to a light microscopic study after histologic preparation and staining. In addition, the location of adhesive remnants was evaluated. While the thermodebonding of metal brackets worked properly and without any obvious pulp damage, there were problems related to the thermodebonding of ceramic brackets: (1) if more than one heating cycle was necessary, several teeth showed localized damage of the pulp with slight infiltration of inflammatory cells, (2) bracket fractures occurred frequently, and enamel damage could be shown, and (3) often with Transbond (Unitek/3M, Monrovia, Calif.) as the adhesive, more than one heating cycle was necessary for bracket removal, and thus patients complained about pain.
Intrapulpal Temperature Increase During Er:YAG Laser-Aided Debonding of Ceramic Brackets.
Yilanci, Hilal; Yildirim, Zeynep Beyza; Ramoglu, Sabri Ilhan
2017-04-01
The purpose of this study was to evaluate the temperature changes in the pulp chamber while using a newly introduced application of Er:YAG laser to debond ceramic brackets in a study model with a pulpal circulation with and without thermocycled samples. An esthetic alternative to stainless steel brackets, ceramic brackets have been proposed. However, because of their low fracture resistance and high bond strengths, ceramic brackets can cause a problem when they are being removed using conventional techniques. Experimental Groups A and B were established for samples with or without thermocycling. The same 20 maxillary central incisor and 20 premolar teeth were used in both groups. Pulpal blood microcirculation was simulated using an apparatus described in a previous study. Monocrystalline brackets were bonded by using Transbond XT. In Group A, brackets were debonded using the Er:YAG laser (600 mJ, 2 Hz, long pulse, and no air or water spray) after being stored in distilled water for 24 h. In Group B, brackets were debonded using the same laser system as that used in Group A after being stored in distilled water for 24 h and then thermocycled for a total of 5000 cycles between 5°C and 55°C. The laser irradiation duration and intrapulpal temperature changes were measured. In Group B, the intrapulpal temperature increase of the central incisors was significantly higher than that of the premolar teeth. In the central incisor and premolar teeth groups, there were no statistically significant difference between Groups A and B (p > 0.05). A positive correlation was found between laser irradiation duration and temperature increase (p < 0.01). The use of Er:YAG laser is an effective method for debonding the monocrystalline ceramic brackets. This method can be used safely under the consideration of intrapulpal temperature changes.
Adhesive performance of precoated brackets after expiration.
Cloud, Cayce C; Trojan, Terry M; Suliman, Sam N; Tantbirojn, Daranee; Versluis, Antheunis
2016-03-01
To evaluate adhesive performance in terms of debonding forces of precoated metal and ceramic brackets 4 years after expiration. Buccal and lingual surfaces of embedded extracted maxillary premolars were etched with 34% Tooth Conditioner Gel (Dentsply Caulk, Milford, Del), rinsed, and dried. Transbond MIP (3M Unitek, Monrovia, Calif) was applied prior to placing adhesive precoated brackets (APC II Victory stainless steel and APC Plus Clarity ceramic brackets, 3M Unitek). The preexpiration brackets had 29-35 months before, and the postexpiration brackets were 45-52 months past, their expiration dates. Sample size was 17-21 per group. Debonding forces were determined by subjecting the bonded brackets to a shear force in a universal testing machine. Debonding forces were compared using two-way ANOVA. Debonded surfaces were examined under a stereomicroscope to determine failure modes, which were compared using the chi-square test. No statistically significant difference was found in debonding forces (P = .8581) or failure modes (P = .4538) between expired and unexpired brackets. Metal brackets required statistically significantly higher debonding forces than did ceramic brackets (P = .0001). For both expired and unexpired brackets, failure modes were mostly cohesive in the adhesive layer for ceramic brackets, and mixed between adhesive and cohesive failure in the adhesive layer for metal brackets. Adhesive precoated brackets did not have any reduction in enamel-adhesion properties up to 4 years after their expiration date. Extended shelf life testing for precoated dental brackets may be worth considering.
Eslamian, Ladan; Borzabadi-Farahani, Ali; Mousavi, Nasim; Ghasemi, Amir
2012-10-01
This in vitro study evaluated the shear bond strength (SBS) between ceramic brackets (CBs) and resin composite restorations (RCRs) prepared using different surface treatments. The findings were also compared with a similar study that used stainless steel brackets (SSBs). Forty-five premolars were restored with a nano-hybrid composite resin (Tetric EvoCeram) and randomly assigned to three surface treatment groups: group 1, 5 per cent hydrofluoric acid (HF); group 2, air abrasion (50 μm alumina particles); and group 3, diamond bur. Specimens were bonded with CBs (Fascination) and exposed to thermo-cycling (500 cycles). The shear force at a crosshead speed of 1 mm/minute was transmitted to brackets. The adhesive remnant index (ARIs) scores were recorded after bracket failure. The analysis of SBS variance (P < 0.01) and chi-square test of ARIs scores (P < 0.01) revealed significant differences among three groups tested. The SBS in group 3 (mean: 26.34 ± 4.76 MPa) and group 2 (mean: 26.68 ± 5.93 MPa) was significantly higher than group 1 (mean: 16.25 ± 5.42 MPa). The SBS was significantly higher in CBs (mean: 23.09 ± 7.19 MPa) compared to SSBs (mean: 15.56 ± 5.13 MPa). High ARIs (100 per cent) occurred in SSBs treated with a diamond bur, whereas CBs primarily failed at the resin-adhesive interface (P < 0.01). In two-thirds of the specimens (SSBs or CBs), no adhesive was left on the restoration after HF conditioning. The ARIs profile of CBs and SSBs that received surface treatments with air abrasion were similar (P > 0.05) and bond failure occurred mainly in adhesive-bracket base and resin-adhesive interfaces. The diamond bur surface treatment is recommended as a safe and cost-effective method of bonding CBs to RCRs.
Stella, João Paulo Fragomeni; Oliveira, Andrea Becker; Nojima, Lincoln Issamu; Marquezan, Mariana
2015-01-01
OBJECTIVE: To assess four different chemical surface conditioning methods for ceramic material before bracket bonding, and their impact on shear bond strength and surface integrity at debonding. METHODS: Four experimental groups (n = 13) were set up according to the ceramic conditioning method: G1 = 37% phosphoric acid etching followed by silane application; G2 = 37% liquid phosphoric acid etching, no rinsing, followed by silane application; G3 = 10% hydrofluoric acid etching alone; and G4 = 10% hydrofluoric acid etching followed by silane application. After surface conditioning, metal brackets were bonded to porcelain by means of the Transbond XP system (3M Unitek). Samples were submitted to shear bond strength tests in a universal testing machine and the surfaces were later assessed with a microscope under 8 X magnification. ANOVA/Tukey tests were performed to establish the difference between groups (α= 5%). RESULTS: The highest shear bond strength values were found in groups G3 and G4 (22.01 ± 2.15 MPa and 22.83 ± 3.32 Mpa, respectively), followed by G1 (16.42 ± 3.61 MPa) and G2 (9.29 ± 1.95 MPa). As regards surface evaluation after bracket debonding, the use of liquid phosphoric acid followed by silane application (G2) produced the least damage to porcelain. When hydrofluoric acid and silane were applied, the risk of ceramic fracture increased. CONCLUSIONS: Acceptable levels of bond strength for clinical use were reached by all methods tested; however, liquid phosphoric acid etching followed by silane application (G2) resulted in the least damage to the ceramic surface. PMID:26352845
Iska, Divya; Devanna, Raghu; Singh, Madhvi; Chitumalla, Rajkiran; Balasubramanian, Sai C Bala; Goutam, Manish
2017-12-01
Esthetics is one of the common issues because of which patients consult dental orthodontic treatment. Two ways of tooth bleaching are available these days, which includes in-office bleach and home bleach. Various bleaching protocols are available these days for treating the tooth surfaces. Hence, we planned the present study for investigating the impact of various intracoronal bleaching protocols on shear bond strength of ceramic brackets bonded to tooth surface after bleaching. The present study included assessment of 100 extracted maxillary central incisors with the integrated buccal surface. A resin block was made and individual teeth were embedded in each block. Root canal therapy procedure was performed in all the teeth, after which 2 mm short of tooth apex up to the level of cementoenamel junction, removal of the root canal filling was done. All the samples were broadly divided into four study groups with 25 samples in each group. Bleaching procedure was carried in all the samples intracoronally followed by testing of shear bond strength using universal force testing machine. Following the modified adhesive remnant index (AI), assessment of remaining adhesive on the brackets was done. All the results were compiled and analyzed by Statistical Package for the Social Sciences (SPSS) software version 17.0. In the control group, mean shear bond strength was found to be 17.9 MPa. While comparing the carbamide peroxide (CP) group with sodium perborate study group, we observed a statistically significant difference. Nonsignificant results were obtained while comparing the shear bond strength in between sodium perborate group and hydrogen peroxide (HP) group. Intracoronal bleaching does affect the shear bond strength of ceramic brackets. Sodium perborate bleaching influences shear bond strength more strongly than other bleaching agents such as CP and HP. In patients undergoing orthodontic treatment, HP is a preferred agent where bleaching has to be followed by orthodontic bonding to the tooth surface.
Laser radiation bracket debonding
NASA Astrophysics Data System (ADS)
Dostálová, Tat'jana; Jelínková, Helena; Šulc, Jan; Koranda, Petr; Nemec, Michal; Racek, Jaroslav; Miyagi, Mitsunobu
2008-02-01
Ceramic brackets are an aesthetic substitute for conventional stainless steel brackets in orthodontic patients. However, ceramic brackets are more brittle and have higher bond strengths, which can lead to bracket breakage and enamel damage during classical type of debonding. This study examined the possibility of laser radiation ceramic brackets removing as well as the possible damage of a surface structure of hard dental tissue after this procedure. Two types of lasers were used for the experiments - a laser diode LIMO HLU20F400 generating a wavelength of 808 nm with the maximum output power 20W at the end of the fiber (core diameter 400 μm, numerical aperture 0.22). As a second source, a diode-pumped Tm:YAP laser system generating a wavelength of 1.9 μm, with up to 3.8 W maximum output power was chosen. For the investigation, extracted incisors with ceramic brackets were used. In both cases, laser radiation was applied for 0.5 minute at a maximum power of 1 W. Temperature changes of the irradiated tissue was registered by camera Electrophysics PV320. After the interaction experiment, the photo-documentation was prepared by the stereomicroscope Nikon SMZ 2T, Japan. The surface tissue analysis was processed in "low vacuum" (30 Pa) regime without desiccation. This technique was used to record back-scattered electron images. Selecting the appropriate laser, resin, and bracket combination can minimize risks of enamel degradation and make debonding more safe.
Femtosecond laser etching of dental enamel for bracket bonding.
Kabas, Ayse Sena; Ersoy, Tansu; Gülsoy, Murat; Akturk, Selcuk
2013-09-01
The aim is to investigate femtosecond laser ablation as an alternative method for enamel etching used before bonding orthodontic brackets. A focused laser beam is scanned over enamel within the area of bonding in a saw tooth pattern with a varying number of lines. After patterning, ceramic brackets are bonded and bonding quality of the proposed technique is measured by a universal testing machine. The results are compared to the conventional acid etching method. Results show that bonding strength is a function of laser average power and the density of the ablated lines. Intrapulpal temperature changes are also recorded and observed minimal effects are observed. Enamel surface of the samples is investigated microscopically and no signs of damage or cracking are observed. In conclusion, femtosecond laser exposure on enamel surface yields controllable patterns that provide efficient bonding strength with less removal of dental tissue than conventional acid-etching technique.
Effect of Ti:sapphire laser on shear bond strength of orthodontic brackets to ceramic surfaces.
Erdur, Emire Aybuke; Basciftci, Faruk Ayhan
2015-08-01
With increasing demand for orthodontic treatments in adults, orthodontists continue to debate the optimal way to prepare ceramic surfaces for bonding. This study evaluated the effects of a Ti:sapphire laser on the shear bond strength (SBS) of orthodontic brackets bonded to two ceramic surfaces (feldspathic and IPS Empress e-Max) and the results were compared with those using two other lasers (Er:YAG and Nd:YAG) and 'conventional' techniques, i.e., sandblasting (50 µm) and hydrofluoric (HF) acid. In total, 150 ceramic discs were prepared and divided into two groups. In each group, the following five subgroups were prepared: Ti:sapphire laser, Nd:YAG laser, Er:YAG laser, sandblasting, and HF acid. Mandibular incisor brackets were bonded using a light-cured adhesive. The samples were stored in distilled water for 24 hours at 37°C and then thermocycled. Extra samples were prepared and examined using scanning electron microscopy (SEM). SBS testing was performed and failure modes were classified. ANOVA and Tukey's HSD tests were used to compare SBS among the five subgroups (P < 0.05). Feldspathic and IPS Empress e-Max ceramics had similar SBS values. The Ti:sapphire femtosecond laser (16.76 ± 1.37 MPa) produced the highest mean bond strength, followed by sandblasting (12.79 ± 1.42 MPa) and HF acid (11.28 ± 1.26 MPa). The Er:YAG (5.43 ± 1.21 MPa) and Nd:YAG laser (5.36 ± 1.04 MPa) groups were similar and had the lowest SBS values. More homogeneous and regular surfaces were observed in the ablation pattern with the Ti:sapphire laser than with the other treatments by SEM analysis. Within the limitations of this in vitro study, Ti:sapphire laser- treated surfaces had the highest SBS values. Therefore, this technique may be useful for the pretreatment of ceramic surfaces as an alternative to 'conventional' techniques. © 2015 Wiley Periodicals, Inc.
Ho, Cindy S F; Ming, Yue; Foong, Kelvin W C; Rosa, Vinicius; Thuyen, Truong; Seneviratne, Chaminda J
2017-04-01
During orthodontic bonding procedures, excess adhesive is invariably left on the tooth surface at the interface between the bracket and the enamel junction; it is called excess adhesive flash (EAF). We comparatively evaluated the biofilm formation of Streptococcus mutans on EAF produced by 2 adhesives and examined the therapeutic efficacy of xylitol on S mutans formed on EAF. First, we investigated the biofilm formation of S mutans on 3 orthodontic bracket types: stainless steel preadjusted edgewise, ceramic preadjusted edgewise, and stainless steel self-ligating. Subsequently, tooth-colored Transbond XT (3M Unitek, Monrovia, Calif) and green Grengloo (Ormco, Glendora, Calif) adhesives were used for bonding ceramic brackets to extracted teeth. S mutans biofilms on EAF produced by the adhesives were studied using the crystal violet assay and scanning electron microscopy. Surface roughness and surface energy of the EAF were examined. The therapeutic efficacies of different concentrations of xylitol were tested on S mutans biofilms. Significantly higher biofilms were formed on the ceramic preadjusted edgewise brackets (P = 0.003). Transbond XT had significantly higher S mutans biofilms compared with Grengloo surfaces (P = 0.007). There was no significant difference in surface roughness between Transbond XT and Grengloo surfaces (P >0.05). Surface energy of Transbond XT had a considerably smaller contact angle than did Grengloo, suggesting that Transbond XT is a more hydrophilic material. Xylitol at low concentrations had no significant effect on the reduction of S mutans biofilms on orthodontic adhesives (P = 0.016). Transbond XT orthodontic adhesive resulted in more S mutans biofilm compared with Grengloo adhesive on ceramic brackets. Surface energy seemed to play a more important role than surface roughness for the formation of S mutans biofilm on EAF. Xylitol does not appear to have a therapeutic effect on mature S mutans biofilm. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Öztürk, Fırat; Ersöz, Mustafa; Öztürk, Seyit Ahmet; Hatunoğlu, Erdem; Malkoç, Sıddık
2016-04-01
The aim of this study was to evaluate microleakage under orthodontic ceramic brackets bonded with direct and different indirect bonding techniques and adhesives using micro-computed tomography. A total of 30 human maxillary premolars were randomly separated into five groups with six teeth in each group. In group I, teeth were bonded directly with Transbond XT (3M Unitek). In group II, group III, group IV, and group V, teeth were bonded through an indirect technique with Custom I.Q. (Reliance Orthodontic Products), Sondhi Rapid-Set (3M Unitek), RMbond (RMO), and Transbond IDB (3M Unitek), respectively, following the manufacturer's instructions. Micro-CT system model 1172 of Skyscan (Kontich, Belgium) was used to scan all samples. NRecon (Skyscan) version 1.6, CT-Analyser V.1.11 (Skyscan), and TView (SkyScan, Bvba) software programs were used for microleakage evaluation. Microleakage values between the test groups were assessed using the Kruskal-Wallis test, while the Wilcoxon signed rank test was used for within-group comparisons. The level of significance was set at P < 0.05. According to the Kruskal-Wallis analysis of variance test, there were no significant differences among the tested groups, with regard to volume and percentage (microleakage/region of interest × 100) of microleakage values (P < 0.05). The Wilcoxon signed rank test showed that coronal microleakage volume and percentage values significantly differed for RMbond and Transbond IDB groups. In the study, only ceramic brackets were used and microleakage into mini gaps did not show up on the micro-CT image because 50% silver nitrate solution could not penetrate into mini gaps which are smaller than silver nitrate particles. Use of direct and indirect bonding techniques with different adhesives did not significantly affect the amount of microleakage. © The Author 2015. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Asiry, Moshabab A; AlShahrani, Ibrahim; Alaqeel, Samer M; Durgesh, Bangalore H; Ramakrishnaiah, Ravikumar
2018-08-01
The adhesion strength of orthodontic brackets bonded to dental glass ceramics was evaluated after ceramic surface was treated with two-step and one-step surface conditioning systems, and subjecting to thermo-cycling. A total of forty specimens were fabricated from silica based glass ceramic (lithium disilicate) by duplicating the buccal surface of maxillary first premolar. The specimens were randomly assigned to two experimental groups (n = 20), group one specimens were treated with two-step surface conditioning system (IPS ceramic etching gel™ and Monobond plus™) and group two specimens were treated with one-step surface conditioning system (Monobond etch and prime™). The surface roughness of the specimens after treatment with two-step and one-step surface conditioning system was measured using non-contact surface profilometer. Ten randomly selected specimens from each group were subjected to thermo-cycling and the remaining ten served as baseline. The shear bond strength of the specimens was measured using universal material testing machine. The adhesive remnant index score was calculated, and the results of surface roughness and bond strength were tabulated and subjected to analysis of variance and post hoc tukey's test at a significance level of p < 0.05. The results of the study showed that the specimens treated with two-step conditioning system had higher surface roughness and bond strength than one-step conditioning system. The majority of the specimens treated with both two-step and one-step conditioned specimens showed adhesive failure after subjecting thermo-cycling. Traditional two-step conditioning provides better bond strength. The clinical importance of the study is that, the silane promoted adhesion significantly reduces on exposure to thermo-cycling. Copyright © 2018 Elsevier Ltd. All rights reserved.
Stein, Steffen; Wenzler, Johannes; Hellak, Andreas; Schauseil, Michael; Korbmacher-Steiner, Heike; Braun, Andreas
2018-04-01
This study investigated temperature increases in dental pulp resulting from laser-assisted debonding of ceramic brackets using a 445-nm diode laser. Eighteen ceramic brackets were bonded in standardized manner to 18 caries-free human third molars. Pulpal fluid circulation was simulated by pumping distilled water at 37°C through the pulp chamber. The brackets were irradiated with a 445-nm diode laser. Temperatures were measured using a thermal camera at points P1 (center of the pulp) and P2 (in the hard dental tissue) at the baseline (T0), at the start and end of laser application (T1 and T2), and the maximum during the sequence (T max ). Significant differences in the temperatures measured at P1 and P2 were observed among T0, T1, T2, and T max . Significant increases in temperature were noted at points P1 and P2, between T1 and T2, T1 and T max , and T2 and T max . The maximum P2 values were significantly higher than at P1. The maximum temperature increase measured in the pulp was 2.23°C, lower than the critical threshold of 5.5°C. On the basis of the laser settings used, there is no risk to the vitality of dental pulp during laser-assisted debonding of ceramic brackets with a 445-nm diode laser.
Etching of enamel for direct bonding with a thulium fiber laser
NASA Astrophysics Data System (ADS)
Kabaş Sarp, Ayşe S.; Gülsoy, Murat
2011-03-01
Background: Laser etching of enamel for direct bonding can decrease the risk of surface enamel loss and demineralization which are the adverse effects of acid etching technique. However, in excess of +5.5°C can cause irreversible pulpal responses. In this study, a 1940- nm Thulium Fiber Laser in CW mode was used for laser etching. Aim: Determination of the suitable Laser parameters of enamel surface etching for direct bonding of ceramic brackets and keeping that intrapulpal temperature changes below the threshold value. Material and Method: Polycrystalline ceramic orthodontic brackets were bonded on bovine teeth by using 2 different kinds of etching techniques: Acid and Laser Etching. In addition to these 3 etched groups, there was also a group which was bonded without etching. Brackets were debonded with a material testing machine. Breaking time and the load at the breaking point were measured. Intrapulpal temperature changes were recorded by a K-type Thermocouple. For all laser groups, intrapulpal temperature rise was below the threshold value of 5.5°C. Results and Conclusion: Acid-etched group ( 11.73 MPa) significantly required more debonding force than 3- second- irradiated ( 5.03 MPa) and non-etched groups ( 3.4 MPa) but the results of acid etched group and 4- second- irradiated group (7.5 MPa) showed no significant difference. Moreover, 4- second irradiated group was over the minimum acceptable value for clinical use. Also, 3- second lasing caused a significant reduction in time according to acid-etch group. As a result, 1940- nm laser irradiation is a promising method for laser etching.
Electrothermal debracketing: patient acceptance and effects on the dental pulp.
Dovgan, J S; Walton, R E; Bishara, S E
1995-09-01
Adhesives bond ceramic brackets so effectively that their removal by mechanical forces can fracture the brackets and may damage the tooth surface. Electrothermal debracketers have been developed to facilitate removal; whether the heat generated will damage the underlying pulp is unclear. In our experiment, a prototype device with a high heat tip was used to remove brackets from premolars in patients. The following parameters were evaluated: (1) time required for removal, (2) patient acceptance, and (3) histologic effect on the pulp. Forty-eight experimental teeth planned for orthodontic extraction were bonded by a filled Bis-GMA composite resin and a monocrystalline sapphire bracket. After the chemically cured composite set, debracketing was performed according to the manufacturer's recommendations. Seventeen premolars were not etched or bracketed and served as controls. The interval between heat application and removal of the bracket was timed. Patients were questioned as to sensations during debracketing. Teeth were extracted at 5 to 7 or 28 to 32 days and histologically prepared. Pulps were evaluated for alterations. Brackets were removed in an average of 2.1 seconds, usually at the bracket/composite interface. Patient acceptance was generally positive. Pulpal necrosis was not observed but, in a number of specimens, slight inflammation and odontoblastic disruption occurred at both observation periods.
Shear Bond Strength of Al2O3 Sandblasted Y-TZP Ceramic to the Orthodontic Metal Bracket
Byeon, Seon Mi; Lee, Min Ho; Bae, Tae Sung
2017-01-01
As the proportion of adult orthodontic treatment increases, mainly for aesthetic reasons, orthodontic brackets are directly attached to yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) restorations. This, study analyzed the shear bond strength (SBS) between various surface treated Y-TZP and orthodontic metal brackets. The Y-TZP specimens were conditioned by 110 μm Al2O3 sandblasting, or sandblasting followed by coating with one of the primers (silane, MDP, or an MDP-containing silane primer). After surface treatment, the orthodontic metal bracket was bonded to the specimen using a resin cement, and then 24 h storage in water and thermal cycling (5000 cycles, 5–55 °C), SBS was measured. Surface roughness was analyzed for surface morphology, and X-ray photoelectron spectroscopy (XPS) was employed for characterization of the chemical bond between the Y-TZP and the MDP-based primers (MDP, MDP containing silane primer). It was found that after surface treatment, the surface roughness of all groups increased. The groups treated with 110 μm Al2O3 sandblasting and MDP, or MDP-containing silane primer showed the highest SBS values, at 11.92 ± 1.51 MPa and 13.36 ± 2.31 MPa, respectively. The SBS values significantly decreased in all the groups after thermal cycling. Results from XPS analysis demonstrated the presence of chemical bonds between Y-TZP and MDP. Thus, the application of MDP-based primers after Al2O3 sandblasting enhances the resin bond strength between Y-TZP and the orthodontic metal bracket. However, bonding durability of all the surface-treated groups decreased after thermal cycling. PMID:28772508
Pasha, Azam; Vishwakarma, Swati; Narayan, Anjali; Vinay, K; Shetty, Smitha V; Roy, Partha Pratim
2015-09-01
Fixed orthodontic mechanotherapy is associated with friction between the bracket - wire - ligature interfaces during the sliding mechanics. A sound knowledge of the various factors affecting the magnitude of friction is of paramount importance. The present study was done to analyze and compare the frictional forces generated by a new ceramic (Clarity Advanced) bracket with the conventional, (metal and ceramic) brackets using unconventional and conventional ligation system, and the self-ligating (metal and ceramic) brackets in the dry condition. The various bracket wire ligation combinations were tested in dry condition. The brackets used were of 0.022″ × 0.028″ nominal slot dimension of MBT prescription: Stainless steel (SS) self-ligating bracket (SLB) of (SmartClip), SS Conventional bracket (CB) (Victory series), Ceramic SLB (Clarity SL), Conventional Ceramic bracket with metal slot (Clarity Bracket), Clarity Advanced Ceramic Brackets (Clarity(™) ADVANCED, 3M Unitek). These brackets were used with two types of elastomeric ligatures: Conventional Elastomeric Ligatures (CEL) (Clear medium mini modules) and Unconventional Elastomeric Ligatures (UEL) (Clear medium slide ligatures, Leone orthodontic products). The aligning and the retraction wires were used, i.e., 0.014″ nickel titanium (NiTi) wires and 0.019″ × 0.025″ SS wires, respectively. A universal strength testing machine was used to measure the friction produced between the different bracket, archwires, and ligation combination. This was done with the use of a custom-made jig being in position. Mean, standard deviation, and range were computed for the frictional values obtained. Results were subjected to statistical analysis through ANOVA. The frictional resistance observed in the new Clarity Advanced bracket with a conventional elastomeric ligature was almost similar with the Clarity metal slot bracket with a conventional elastomeric ligature. When using the UEL, the Clarity Advanced bracket produced lesser friction than the conventional metal bracket; but not less than the ceramic metal slot bracket. Ceramic SLB produced lesser friction when compared with the Clarity Advanced bracket with UEL, but the metal SLB produced the least friction among all the groups and subgroups. The present study concluded that the SS SLB produced least friction among all groups. Using the archwire and ligation method, frictional forces observed in the Clarity Advanced bracket and the conventional ceramic with metal slot bracket were almost similar; but the least resistance was determined in SS CB using both the ligation (CEL and UEL) system.
Microbial profile on metallic and ceramic bracket materials.
Anhoury, Patrick; Nathanson, Dan; Hughes, Christopher V; Socransky, Sigmund; Feres, Magda; Chou, Laisheng Lee
2002-08-01
The placement of orthodontic appliances creates a favorable environment for the accumulation of a microbiota and food residues, which, in time, may cause caries or exacerbate any pre-existing periodontal disease. The purpose of the present study was to compare the total bacterial counts present on metallic and ceramic orthodontic brackets in order to clarify which bracket type has a higher plaque retaining capacity and to determine the levels of Streptococcus mutans and Lactobacillus spp on both types of brackets. Thirty-two metallic brackets and 24 ceramic brackets were collected from orthodontic patients at the day of debonding. Two brackets were collected from each patient; one from a maxillary central incisor and another from a maxillary second premolar. Sixteen patients who used metallic brackets and 12 patients who used ceramic brackets were sampled. Bacterial populations were studied using "checkerboard" DNA-DNA hybridization, which uses DNA probes to identify species in complex microbial samples. The significance of differences between groups was determined using the Mann-Whitney U-test. Results showed no significant differences between metallic and ceramic brackets with respect to the caries-inducing S mutans and L acidophilus spp counts. Mean counts of 8 of 35 additional species differed significantly between metallic and ceramic brackets with no obvious pattern favoring one bracket type over the other. This study showed higher mean counts of Treponema denticola, Actinobacillus actinomycetemcomitans, Fusobacterium nucleatum ss vincentii, Streptococcus anginosus, and Eubacterium nodatum on metallic brackets while higher counts of Eikenella corrodens, Campylobacter showae, and Selenomonas noxia were found on ceramic brackets.
Study of force loss due to friction comparing two ceramic brackets during sliding tooth movement.
AlSubaie, Mai; Talic, Nabeel; Khawatmi, Said; Alobeid, Ahmad; Bourauel, Christoph; El-Bialy, Tarek
2016-09-01
To compare the percentage of force loss generated during canine sliding movements in newly introduced ceramic brackets with metal brackets. Two types of ceramic brackets, namely polycrystalline alumina (PCA) ceramic brackets (Clarity Advanced) and monocrystalline alumina (MCA) ceramic brackets (Inspire Ice) were compared with stainless steel (SS) brackets (Victory Series). All bracket groups (n = 5 each) were for the maxillary canines and had a 0.018-inch slot size. The brackets were mounted on an Orthodontic Measurement and Simulation System (OMSS) to simulate the canine retraction movement into the first premolar extraction space. Using elastic ligatures, 0.016 × 0.022″ (0.40 × 0.56 mm) stainless steel archwires were ligated onto the brackets. Retraction force was applied via a nickel-titanium coil spring with a nearly constant force of approximately 1 N. The OMSS measured the percentage of force loss over the retraction path by referring to the difference between the applied retraction force and actual force acting on each bracket. Between group comparisons were done with one-way analysis of variance. The metal brackets revealed the lowest percentage of force loss due to friction, followed by the PCA and MCA ceramic bracket groups (67 ± 4, 68 ± 7, and 76 ± 3 %, respectively). There was no significant difference between SS and PCA brackets (p = 0.97), but we did observe significant differences between metal and MCA brackets (p = 0.03) and between PCA and MCA ceramic brackets (p = 0.04). PCA ceramic brackets, whose slot surface is covered with an yttria-stabilized zirconia-based coating exhibited frictional properties similar to those of metal brackets. Frictional resistance resulted in an over 60 % loss of the applied force due to the use of elastic ligatures.
Isfeld, Darren M; Aparicio, Conrado; Jones, Robert S
2014-04-01
Secondary decay (caries) under ceramic orthodontic brackets remains a significant dental problem and near infrared cross-polarization optical coherence tomography (CP-OCT) has the potential to detect underlying demineralization. The purpose of this study was to determine the effect of crystalline structure and chemical composition of ceramic brackets on CP-OCT imaging. Four ceramic brackets types, which were divided into monocrystalline and polycrystalline, were examined using CP-OCT. The results of this study demonstrated that the crystallinity of the ceramic brackets affected the 1310 nm CP-OCT imaging with the greatest attenuation seen in polycrystalline alumina brackets. The alumina polycrystalline bracket materials had significantly higher attenuation and scattering than alumina monocrystalline brackets (p < 0.05, ANOVA, Bonferroni). Additionally, bracket base morphology and composition affected NIR light attenuation. There was considerable attenuation in bracket bases that contained additive zirconium spheres (∼30 µm) and this alteration was significantly greater than the jagged alumina crystallographic alterations found in the other bracket systems (p < 0.05, ANOVA, Bonferroni). Noninvasive, near infrared (NIR) cross-polarization optical coherence tomography (CP-OCT) has potential to effectively image through portions of ceramic brackets; however, further investigation into the optical effects of resin integration in the base portion of the brackets is warranted. © 2013 Wiley Periodicals, Inc.
The fracture strength of ceramic brackets: a comparative study.
Flores, D A; Caruso, J M; Scott, G E; Jeiroudi, M T
1990-01-01
Recent demand for esthetic brackets has led to the development and use of ceramic brackets in orthodontics. The purpose of this study was to compare the fracture strength of different ceramic brackets under different surface conditions and ligation methods using a torsional wire bending force. Five different bracket types (two polycrystalline, two single-crystal, and one metal) were tested using elastic and wire ligation, with half being scratched and the other half remaining unscratched. Results showed a significant difference between bracket types and surface conditions. Non-scratched single-crystal brackets had higher fracture strengths and slightly higher fracture loads than polycrystalline brackets. However, single-crystal brackets were significantly adversely affected by surface damage (scratching), while polycrystalline brackets were not significantly affected by surface damage. The fracture behavior of ceramic brackets followed the Griffith model where fracture strength decreased following surface damage.
Evaluation of mechanical properties of esthetic brackets.
Matsui, Shigeyuki; Umezaki, Eisaku; Komazawa, Daigo; Otsuka, Yuichiro; Suda, Naoto
2015-01-01
Plastic brackets, as well as ceramic brackets, are used in various cases since they have excellent esthetics. However, their mechanical properties remain uncertain. The purpose of this study was to determine how deformation and stress distribution in esthetic brackets differ among materials under the same wire load. Using the digital image correlation method, we discovered the following: (1) the strain of the wings of plastic brackets is within 0.2% and that of ceramic and metal brackets is negligible, (2) polycarbonate brackets having a stainless steel slot show significantly smaller displacement than other plastic brackets, and (3) there is a significant difference between plastic brackets and ceramic and stainless steel brackets in terms of the displacement of the bracket wing.
Evaluation of mechanical properties of esthetic brackets
Umezaki, Eisaku; Komazawa, Daigo; Otsuka, Yuichiro; Suda, Naoto
2015-01-01
Plastic brackets, as well as ceramic brackets, are used in various cases since they have excellent esthetics. However, their mechanical properties remain uncertain. The purpose of this study was to determine how deformation and stress distribution in esthetic brackets differ among materials under the same wire load. Using the digital image correlation method, we discovered the following: (1) the strain of the wings of plastic brackets is within 0.2% and that of ceramic and metal brackets is negligible, (2) polycarbonate brackets having a stainless steel slot show significantly smaller displacement than other plastic brackets, and (3) there is a significant difference between plastic brackets and ceramic and stainless steel brackets in terms of the displacement of the bracket wing. PMID:25755677
Assessment of Bracket Surface Morphology and Dimensional Change
Radhakrishnan, Pillai Devu; Sapna Varma, N. K.; Ajith, V. V.
2017-01-01
Objective: The objective of this study was to compare the surface morphology and dimensional stability of the bracket slot at the onset of treatment and after 12 months of intraoral exposure. The study also compared the amount of calcium at the bracket base which indicates enamel loss among the three orthodontic brackets following debonding after 12 months of intraoral exposure. Materials and Methods: The sample consisted of 60 (0.022” MBT) canine brackets. They were divided into three groups: self-ligating, ceramic bracket with metal slot, and stainless steel (SS) brackets. The slot dimensions, micromorphologic characteristics of as-received and retrieved brackets were measured with a stereomicroscope and scanning electron microscope (SEM), respectively. The amount of calcium at the bracket base which indicates enamel damage was quantified using energy-dispersive X-ray spectrometry (EDX). Results: The results showed statistically significant alterations (P < 0.05) in the right vertical dimension, internal tie wing width (cervical), right and left depth of the slot (Kruskal–Wallis test). Multiple comparison using Mann–Whitney test showed that ceramic brackets underwent (P < 0.05) minimal alterations in the right vertical dimension, internal tie wing width (cervical), right and left depth of the slot (0.01 mm, −0.003 mm, 0.006 mm, −0.002 mm, respectively) when compared with the changes seen in SS and self-ligating brackets. SEM analysis revealed an increase in the surface roughness of ceramic with metal slot brackets and self-ligating bracket showed the least irregularity. The presence of calcium was noted on all evaluated brackets under EDX, but ceramic with metal slot brackets showed a significantly greater amount of enamel loss (P = 0.001). Conclusion: Ceramic brackets were found to be dimensionally stable when compared to SS and self-ligating. Self-ligating bracket showed minimal surface irregularity. Ceramic with metal slot brackets showed a greater amount of enamel loss following debonding. PMID:28566855
Arici, Nursel
2015-01-01
Objective The coefficients of friction (COFs) of aesthetic ceramic and stainless steel brackets used in conjunction with stainless steel archwires were investigated using a modified linear tribometer and special computer software, and the effects of the bracket slot size (0.018 inches [in] or 0.022 in) and materials (ceramic or metal) on the COF were determined. Methods Four types of ceramic (one with a stainless steel slot) and one conventional stainless steel bracket were tested with two types of archwire sizes: a 0.017 × 0.025-in wire in the 0.018-in slots and a 0.019 × 0.025-in wire in the 0.022-in slot brackets. For pairwise comparisons between the 0.018-in and 0.022-in slot sizes in the same bracket, an independent sample t-test was used. One-way and two-way analysis of variance (ANOVA) and Tukey's post-hoc test at the 95% confidence level (α = 0.05) were also used for statistical analyses. Results There were significant differences between the 0.022-in and 0.018-in slot sizes for the same brand of bracket. ANOVA also showed that both slot size and bracket slot material had significant effects on COF values (p < 0.001). The ceramic bracket with a 0.022-in stainless steel slot showed the lowest mean COF (µ = 0.18), followed by the conventional stainless steel bracket with a 0.022-in slot (µ = 0.21). The monocrystalline alumina ceramic bracket with a 0.018-in slot had the highest COF (µ = 0.85). Conclusions Brackets with stainless steel slots exhibit lower COFs than ceramic slot brackets. All brackets show lower COFs as the slot size increases. PMID:25667915
Jakob, Sérgio Ricardo; Matheus, Davison; Jimenez-Pellegrin, Maria Cristina; Turssi, Cecília Pedroso; Amaral, Flávia Lucisano Botelho
2014-01-01
The aim of this study was to compare the friction between three bracket models: conventional stainless steel (Ovation, Dentsply GAC), self-ligating ceramic (In-Ovation, Denstply GAC) and self-ligating stainless steel brackets (In-Ovation R, Dentsply GAC). Five brackets were used for each model. They were bonded to an aluminum prototype that allowed the simulation of four misalignment situations (n = 10). Three of these situations occured at the initial phase (in which a 0.016-in nickel-titanium wire was used): 1. horizontal; 2. vertical; and 3. simultaneous horizontal/vertical. One of the situations occurred at the final treatment phase: 4. no misalignment (in which a 0.019 x 0.025-inch stainless steel rectangular wire was used). The wires slipped through the brackets and friction was measured by a Universal Testing Machine. Analysis of variance followed by Tukey's Test for multiple comparisons (α = 0.05) were applied to assess the results. Significant interaction (p < 0.01) among groups was found. For the tests that simulated initial alignment, Ovation® bracket produced the highest friction. The two self-ligating models resulted in lower and similar values, except for the horizontal situation, in which In-Ovation C® showed lower friction, which was similar to the In-Ovation R® metallic model. For the no misalignment situation, the same results were observed. The self-ligating system was superior to the conventional one due to producing less friction. With regard to the material used for manufacturing the brackets, the In-Ovation C® ceramic model showed less friction than the metallic ones.
Eslamian, Ladan; Borzabadi-Farahani, Ali; Mousavi, Nasim; Ghasemi, Amir
2011-05-01
To compare the shear bond strengths (SBS) of stainless steel brackets bonded to artificially-aged composite restorations after different surface treatments. Forty-five premolar teeth were restored with a nano-hybrid composite (Tetric EvoCeram), stored in deionised water for one week and randomly divided into three equal groups: Group I, he restorations were exposed to 5 per cent hydrofluoric acid for 60 seconds; Group II, the restorations were abraded with a micro-etcher (50 Iim alumina particles); Group III, the restorations were roughened with a coarse diamond bur. Similar premolar brackets were bonded to each restoration using the same resin adhesive and the specimens were then cycled in deionised water between 5 degrees C and 55 degrees C (500 cycles). The shear bond strengths were determined with a universal testing machine at a crosshead speed of 1 mm/min. The teeth and brackets were examined under a stereomicroscope and the adhesive remnants on the teeth scored with the adhesive remnant index (ARI). Specimens treated with the diamond bur had a significantly higher SBS (Mean: 18.45 +/- 3.82 MPa) than the group treated with hydrofluoric acid (Mean: 12.85 +/- 5.20 MPa). The mean SBS difference between the air-abrasion (Mean: 15.36 +/- 4.92 MPa) and hydrofluoric acid groups was not significant. High ARI scores occurred following abrasion with a diamond bur (100 per cent) and micro-etcher (80 per cent). In approximately two thirds of the teeth no adhesive was left on the restoration after surface treatment with hydofluoric acid. Surface treatment with a diamond bur resulted in a high bond strength between stainless steel brackets and artificially-aged composite restorations and was considered to be a safe and effective method of surface treatment. Most of the adhesive remained on the tooth following surface treatment with either the micro-etcher or the diamond bur.
Light energy attenuation through orthodontic ceramic brackets at different irradiation times.
Santini, Ario; Tiu, Szu Hui; McGuinness, Niall J P; Aldossary, Mohammed Saeed
2016-09-01
To evaluate the total light energy (TLE) transmission through three types of ceramic brackets with, bracket alone and with the addition of orthodontic adhesive, at different exposure durations, and to compare the microhardness of the cured adhesive. Three different makes of ceramic brackets, Pure Sapphire(M), Clarity™ ADVANCED(P) and Dual Ceramic(P) were used. Eighteen specimens of each make were prepared and allocated to three groups (n = 6). MARC(®)-resin calibrator was used to determine the light curing unit (LCU) tip irradiance (mW/cm(2)) and TLE (J/cm(2)) transmitted through the ceramic brackets, and through ceramic bracket plus Transbond™ XT Light Cure Adhesive, for 5, 10 and 20 s. Vickers-hardness values at the bottom of the cured adhesive were determined. Statistical analysis used one-way analysis of variance (ANOVA); P = 0.05. TLE transmission rose significantly among all samples with increasing exposure durations. TLE reaching the adhesive- enamel interface was less than 10 J/cm(2), and through monocrystalline and polycrystalline ceramic brackets was significantly different (P < 0.05). Pure Sapphire(M) showed the highest amount of TLE transmission and Vickers-hardness values for 5, 10 and 20 s. Following manufacturer's recommendations, insufficient TLE may be delivered to the adhesive: increasing the exposure durations may be required when adhesive is cured through ceramic brackets. Clinicians are advised to measure the tip irradiance of their LCUs and increase curing time beyond 5 s. Orthodontic clinicians should understand the type of light curing device and the orthodontic adhesive used in their practice.
Laboratory evaluations on thermal debonding of ceramic brackets.
Sernetz, F; Kraut, J
1991-01-01
The purpose of this laboratory study was to define the working parameters and physiological safety and efficacy of the Dentaurum Ceramic Debonding Unit. Extracted mandibular incisors were utilized because of their low thermal mass and low heat sensitivity. The teeth were embedded in plastic and placed on a turning force measuring apparatus. An electrothermal element was placed in the pulp chamber (filled with a conducting paste). The thermoelement temperature was registered on y-t recorder as was the turning momentum required to remove the ceramic brackets with the Dentaurum Ceramic Debonding Unit. Ceramic brackets from GAC (Allure III), Unitek (Transcend) and Dentaurum (Fascination) using one and two component adhesives (Monolok, Concise), were tested. Scanning electron microscopic views taken after debonding showed predictable (and favorable) adhesive failure at the bracket base/resin interface. No enamel damage was demonstrated. All brackets were removable under three seconds with a clinically reproducible turning force of 85-100 Nmm allowing for intrapulpal temperature increases under the 5 degrees C biocompatible threshold. The Dentaurum Ceramic Debonding Unit provided a safe, reliable, efficient modality of removing ceramic brackets while maintaining a physiologically acceptable rise in pulpal temperature without damage to tooth enamel or pulpal tissue.
Jakob, Sérgio Ricardo; Matheus, Davison; Jimenez-Pellegrin, Maria Cristina; Turssi, Cecília Pedroso; do Amaral, Flávia Lucisano Botelho
2014-01-01
Objective The aim of this study was to compare the friction between three bracket models: conventional stainless steel (Ovation, Dentsply GAC), self-ligating ceramic (In-Ovation, Denstply GAC) and self-ligating stainless steel brackets (In-Ovation R, Dentsply GAC). Methods Five brackets were used for each model. They were bonded to an aluminum prototype that allowed the simulation of four misalignment situations (n = 10). Three of these situations occurred at the initial phase (in which a 0.016-in nickel-titanium wire was used): 1. horizontal; 2. vertical; and 3. simultaneous horizontal/vertical. One of the situations occurred at the final treatment phase: 4. no misalignment (in which a 0.019 x 0.025-inch stainless steel rectangular wire was used). The wires slipped through the brackets and friction was measured by a Universal Testing Machine. Results Analysis of variance followed by Tukey's Test for multiple comparisons (α = 0.05) were applied to assess the results. Significant interaction (p < 0.01) among groups was found. For the tests that simulated initial alignment, Ovation® bracket produced the highest friction. The two self-ligating models resulted in lower and similar values, except for the horizontal situation, in which In-Ovation C® showed lower friction, which was similar to the In-Ovation R® metallic model. For the no misalignment situation, the same results were observed. Conclusion The self-ligating system was superior to the conventional one due to producing less friction. With regard to the material used for manufacturing the brackets, the In-Ovation C® ceramic model showed less friction than the metallic ones. PMID:25162570
Pulpal response in electrothermal debonding.
Takla, P M; Shivapuja, P K
1995-12-01
An alternative method to conventional bracket removal that minimizes the potential for ceramic bracket failure as well as trauma to the enamel surface is electrothermal debonding (ETD). However, the potential for pulpal damage using ETD on ceramic brackets still needs assessment. The purpose of this research is to investigate and assess any pulpal damage caused by ETD. Ten patients requiring four premolar extractions each were randomly selected (5 boys and 5 girls). Ceramic brackets were bonded to experimental and control teeth. A total of 30 teeth were used to provide histologic material of the human pulp. Fifteen teeth were extracted 24 hours after ETD, seven were extracted 28 to 32 days after ETD, and eight were the control teeth and debonded by a conventional method, with pliers. The pulp was normal in most cases in the control group. There was significant hyperemia seen 24 hours after debonding in teeth debonded by ETD. Teeth extracted 30 days afer ETD showed varied responses, ranging from complete recovery in some cases to persistence of inflammation and pulpal fibrosis. Teeth subjected to the conventional debonding were normal histologically. The teeth in our research were healthy teeth with a rich blood supply and were from a younger age group. Patients with compromised teeth that have large restorations or a questionable pulpal status could behave more adversely to this significant amount of heat applied. In compromised cases and on older patients, performing pulp vitality tests before ETD may inform the operator about the status of the pulp and thereby prevent the potential for pulpal damage.(ABSTRACT TRUNCATED AT 250 WORDS)
Berger, Sandrine Bittencourt; Guiraldo, Ricardo Danil; Lopes, Murilo Baena; Oltramari-Navarro, Paula Vanessa; Fernandes, Thais Maria; Schwertner, Renata de Castro Alves; Ursi, Wagner José Silva
2016-01-01
The application of bleaching agents before placement of resin-bonded fixed appliances significantly, but temporarily, reduces bond strength to tooth structure. Antioxidants have been studied as a means to remove residual oxygen that compromises bonding to bleached enamel. This in vitro study evaluated whether green tea (GT) could restore the shear bond strength between bonded orthodontic brackets and bleached enamel. Six experimental groups were compared: group 1, no bleaching plus bracket bonding (positive control); group 2, bleaching with 35% hydrogen peroxide (HP) plus bracket bonding (negative control); group 3, 35% HP plus 10% sodium ascorbate (SA) plus bracket bonding; group 4, 35% HP plus 10% GT plus bracket bonding; group 5, no bleaching plus 10% SA plus bracket bonding; group 6, no bleaching plus 10% GT plus bracket bonding. Results suggested that GT, like SA, may be beneficial for bracket bonding immediately after bleaching.
Colour stability of aesthetic brackets: ceramic and plastic.
Filho, Hibernon Lopes; Maia, Lúcio Henrique; Araújo, Marcus V; Eliast, Carlos Nelson; Ruellas, Antônio Carlos O
2013-05-01
The colour stability of aesthetic brackets may differ according to their composition, morphology and surface property, which may consequently influence their aesthetic performance. To assess the colour stability of aesthetic brackets (ceramic and plastic) after simulating aging and staining. Twelve commercially manufactured ceramic brackets and four different plastic brackets were assessed. To determine possible colour change (change of E*(ab)) and the value of the NBS (National Bureau of Standards) unit system, spectrophotometric colour measurements for CIE L*, a* and b* were taken before and after the brackets were aged and stained. Statistical analysis was undertaken using a one-way ANOVA analysis of variance and a Tukey multiple comparison test (alpha = 0.05). The colour change between the various (ceramic and plastic) materials was not significant (p > 0.05), but still varied significantly (p < 0.001) between the brackets of the same composition or crystalline structure and among commercial brands. Colour stability cannot be confirmed simply by knowing the type of material and crystalline composition or structure.
A quantitative AFM analysis of nano-scale surface roughness in various orthodontic brackets.
Lee, Gi-Ja; Park, Ki-Ho; Park, Young-Guk; Park, Hun-Kuk
2010-10-01
In orthodontics, the surface roughnesses of orthodontic archwire and brackets affect the effectiveness of arch-guided tooth movement, corrosion behavior, and the aesthetics of orthodontic components. Atomic force microscopy (AFM) measurements were used to provide quantitative information on the surface roughness of the orthodontic material. In this study, the changes in surface roughness of various orthodontic bracket slots before and after sliding movement of archwire in vitro and in vivo were observed through the utilization of AFM. Firstly, we characterized the surface of four types of brackets slots as follows: conventional stainless steel (Succes), conventional ceramic (Perfect), self-ligating stainless steel (Damon) and self-ligating ceramic (Clippy-C) brackets. Succes) and Damon brackets showed relatively smooth surfaces, while Perfect had the roughest surface among the four types of brackets used. Secondly, after in vitro sliding test with beta titanium wire in two conventional brackets (Succes and Perfect), there were significant increases in only stainless steel bracket, Succes. Thirdly, after clinical orthodontic treatment for a maximum of 2 years, the self-ligating stainless steel bracket, Damon, showed a significant increase in surface roughness. But self-ligating ceramic brackets, Clippy-C, represented less significant changes in roughness parameters than self-ligating stainless steel ones. Based on the results of the AFM measurements, it is suggested that the self-ligating ceramic bracket has great possibility to exhibit less friction and better biocompatibility than the other tested brackets. This implies that these bracket slots will aid in the effectiveness of arch-guided tooth movement.
In vitro study of color stability of polycrystalline and monocrystalline ceramic brackets
de Oliveira, Cibele Braga; Maia, Luiz Guilherme Martins; Santos-Pinto, Ary; Gandini Júnior, Luiz Gonzaga
2014-01-01
Objective The aim of this in vitro study was to analyze color stability of monocrystalline and polycrystalline ceramic brackets after immersion in dye solutions. Methods Seven ceramic brackets of four commercial brands were tested: Two monocrystalline and two polycrystalline. The brackets were immersed in four dye solutions (coffee, red wine, Coke and black tea) and in artificial saliva for the following times: 24 hours, 7, 14 and 21 days, respectively. Color changes were measured by a spectrophotometer. Data were assessed by Multivariate Profile Analysis, Analysis of Variance (ANOVA) and Multiple Comparison Tests of means. Results There was a perceptible change of color in all ceramic brackets immersed in coffee (ΔE* Allure = 7.61, Inspire Ice = 6.09, Radiance = 6.69, Transcend = 7.44), black tea (ΔE* Allure = 6.24, Inspire Ice = 5.21, Radiance = 6.51, Transcend = 6.14) and red wine (ΔE* Allure = 6.49, Inspire Ice = 4.76, Radiance = 5.19, Transcend = 5.64), but no change was noticed in Coke and artificial saliva (ΔE < 3.7). Conclusion Ceramic brackets undergo color change when exposed to solutions of coffee, black tea and red wine. However, the same crystalline structure, either monocrystalline or polycrystalline, do not follow the same or a similar pattern in color change, varying according to the bracket fabrication, which shows a lack of standardization in the manufacturing process. Coffee dye produced the most marked color changes after 21 days of immersion for most ceramic brackets evaluated. PMID:25279530
In vitro study of color stability of polycrystalline and monocrystalline ceramic brackets.
de Oliveira, Cibele Braga; Maia, Luiz Guilherme Martins; Santos-Pinto, Ary; Gandini Junior, Luiz Gonzaga
2014-01-01
The aim of this in vitro study was to analyze color stability of monocrystalline and polycrystalline ceramic brackets after immersion in dye solutions. Seven ceramic brackets of four commercial brands were tested: Two monocrystalline and two polycrystalline. The brackets were immersed in four dye solutions (coffee, red wine, Coke and black tea) and in artificial saliva for the following times: 24 hours, 7, 14 and 21 days, respectively. Color changes were measured by a spectrophotometer. Data were assessed by Multivariate Profile Analysis, Analysis of Variance (ANOVA) and Multiple Comparison Tests of means. There was a perceptible change of color in all ceramic brackets immersed in coffee (ΔE* Allure = 7.61, Inspire Ice = 6.09, Radiance = 6.69, Transcend = 7.44), black tea (ΔE* Allure = 6.24, Inspire Ice = 5.21, Radiance = 6.51, Transcend = 6.14) and red wine (ΔE* Allure = 6.49, Inspire Ice = 4.76, Radiance = 5.19, Transcend = 5.64), but no change was noticed in Coke and artificial saliva (ΔE < 3.7). Ceramic brackets undergo color change when exposed to solutions of coffee, black tea and red wine. However, the same crystalline structure, either monocrystalline or polycrystalline, do not follow the same or a similar pattern in color change, varying according to the bracket fabrication, which shows a lack of standardization in the manufacturing process. Coffee dye produced the most marked color changes after 21 days of immersion for most ceramic brackets evaluated.
[In-vitro research on the thermal debonding of ceramic brackets].
Bäzner, B; Ettwein, K H; Röhlcke, F; Sernetz, F
1991-12-01
The mechanical debonding of ceramic brackets using special instruments involves the use of a degree of force that is damaging to the enamel. For this reason, the authors have developed the Ceramic Debonding Unit for the thermal debonding of ceramic brackets. The unit reduces the force necessary for debonding, without overheating the tooth. The present article explains the principle of the unit. The influence on the temperature increase in the pulpa of the mechanical torque applied during debonding, and the time taken for debonding was investigated in extracted teeth (lower central incisors). Tests on ceramic brackets made by various manufacturers showed that safe debonding is possible if the debonding time does not exceed 3 seconds at a torque of 100 Nnm. The temperature increase in the pulpa will not exceed 5 degrees C when the Ceramic Debonding Unit is used under these conditions, so that harmful overheating of healthy teeth does not occur.
Porcelain surface conditioning protocols and shear bond strength of orthodontic brackets.
Lestrade, Ashley M; Ballard, Richard W; Xu, Xiaoming; Yu, Qingzhao; Kee, Edwin L; Armbruster, Paul C
2016-05-01
The objective of the present study was to determine which of six bonding protocols yielded a clinically acceptable shear bond strength (SBS) of metal orthodontic brackets to CAD/CAM lithium disilicate porcelain restorations. A secondary aim was to determine which bonding protocol produced the least surface damage at debond. Sixty lithium disilicate samples were fabricated to replicate the facial surface of a mandibular first molar using a CEREC CAD/CAM machine. The samples were split into six test groups, each of which received different mechanical/chemical pretreatment protocols to roughen the porcelain surface prior to bonding a molar orthodontic attachment. Shear bond strength testing was conducted using an Instron machine. The mean, maximum, minimal, and standard deviation SBS values for each sample group including an enamel control were calculated. A t-test was used to evaluate the statistical significance between the groups. No significant differences were found in SBS values, with the exception of surface roughening with a green stone prior to HFA and silane treatment. This protocol yielded slightly higher bond strength which was statistically significant. Chemical treatment alone with HFA/silane yielded SBS values within an acceptable clinical range to withstand forces applied by orthodontic treatment and potentially eliminates the need to mechanically roughen the ceramic surface.
Shashidhar, E P; Sahitya, M; Sunil, T; Murthy, Anup R; Rani, M S
2015-09-01
The purpose of this study was to evaluate and compare the adherence of microorganism to different types of brackets using the scanning electron microscope (SEM). A double-blinded study was undertaken to evaluate and adherence of microorganisms to different types of brackets using SEM. At random, 12 patients reporting for treatment to the department of Orthodontics VS Dental College and Hospital were selected. Four types of brackets were included in the present study stainless steel, titanium, composite, and ceramic. Brackets were bonded to teeth of the patient on all the four quadrants. The teeth included for bonding were lateral incisor, canine, first premolar, and second premolar. The brackets were left for 72 h. After 72 h brackets were debonded, and they were evaluated by SEM for adherence of microorganism in the slot and tie wings surface. The SEM images were graded, and the adherence of microorganism to the brackets in the surfaces and the four different quadrants were recorded. There is a significant difference in adherence of microorganisms to the various types of brackets (P < 0.001) and the surfaces (P < 0.05) included in the study. However, there is no significance in the mean adherence of microorganisms in the different quadrants (P > 0.05) included in the study. The interaction of bracket/surface, bracket/quadrant, surface/quadrants was analyzed, there was no significance of comparison of bracket/surfaces/quadrant but the interaction of bracket/quadrant was found to be significant (<0.011). The interaction of bracket/surfaces/quadrant was also found to be significant (<0.003). The maximum adherence of microorganisms was observed with the composite bracket material and the least adherence of microorganisms was observed with the titanium bracket material. The adherence of microorganisms is relatively more in the slot area, when compare to the tie wings surface maximum adherence of microorganism is observed in the upper left quadrant and least adherence of microorganism is observed in the lower right quadrant. There is a significant difference in adherence of microorganisms to various types of brackets and the surfaces included in the study. There is no significant difference in the adherence of microorganism to the bracket surfaces in the four quadrants included in the study.
Shashidhar, E P; Sahitya, M; Sunil, T; Murthy, Anup R; Rani, M S
2015-01-01
Background: The purpose of this study was to evaluate and compare the adherence of microorganism to different types of brackets using the scanning electron microscope (SEM). A double-blinded study was undertaken to evaluate and adherence of microorganisms to different types of brackets using SEM. Materials and Methods: At random, 12 patients reporting for treatment to the department of Orthodontics VS Dental College and Hospital were selected. Four types of brackets were included in the present study stainless steel, titanium, composite, and ceramic. Brackets were bonded to teeth of the patient on all the four quadrants. The teeth included for bonding were lateral incisor, canine, first premolar, and second premolar. The brackets were left for 72 h. After 72 h brackets were debonded, and they were evaluated by SEM for adherence of microorganism in the slot and tie wings surface. The SEM images were graded, and the adherence of microorganism to the brackets in the surfaces and the four different quadrants were recorded. Results: There is a significant difference in adherence of microorganisms to the various types of brackets (P < 0.001) and the surfaces (P < 0.05) included in the study. However, there is no significance in the mean adherence of microorganisms in the different quadrants (P > 0.05) included in the study. The interaction of bracket/surface, bracket/quadrant, surface/quadrants was analyzed, there was no significance of comparison of bracket/surfaces/quadrant but the interaction of bracket/quadrant was found to be significant (<0.011). The interaction of bracket/surfaces/quadrant was also found to be significant (<0.003). Conclusion: The maximum adherence of microorganisms was observed with the composite bracket material and the least adherence of microorganisms was observed with the titanium bracket material. The adherence of microorganisms is relatively more in the slot area, when compare to the tie wings surface maximum adherence of microorganism is observed in the upper left quadrant and least adherence of microorganism is observed in the lower right quadrant. There is a significant difference in adherence of microorganisms to various types of brackets and the surfaces included in the study. There is no significant difference in the adherence of microorganism to the bracket surfaces in the four quadrants included in the study. PMID:26435612
Air-powder polishing on self-ligating brackets after clinical use: effects on debris levels.
Aragón, Mônica L S Castro; Lima, Leandro Santiago; Normando, David
2016-01-01
Debris buildup on brackets and arch surfaces is one of the main factors that can influence the intensity of friction between bracket and orthodontic wire. This study sought to evaluate the effect of air-powder polishing cleaning on debris levels of self-ligating ceramic brackets at the end of orthodontic treatment, compared to the behavior of conventional brackets. Debris levels were evaluated in metal conventional orthodontic brackets (n = 42) and ceramic self-ligating brackets (n = 42) on canines and premolars, arranged in pairs. There were brackets with and without air-powder polishing. At the end of orthodontic treatment, a hemiarch served as control and the contralateral hemiarch underwent prophylaxis with air-powder polishing. Debris buildup in bracket slots was assessed through images, and Wilcoxon test was used to analyze the results. The median debris levels were statistically lower in the conventional metal brackets compared to self-ligating ones (p = 0.02), regarding brackets not submitted to air-powder polishing. Polishing significantly reduced debris buildup to zero in both systems, without differences between groups. Ceramic self-ligating brackets have a higher debris buildup in comparison to conventional metal brackets in vivo, but prophylaxis with sodium bicarbonate jet was effective in reducing debris levels in self-ligating and also in conventional brackets.
Kumar, B Sunil; Miryala, Suresh; Kumar, K Kiran; Shameem, K; Regalla, Ravindra Reddy
2014-09-01
The orthodontist seeks an archwire-bracket combination that has both good biocompatibility and low friction. Hence, the aim of this multicenter in vitro study was to evaluate and compare the frictional resistance generated between titanium (Ti), stainless steel (SS), ceramic and ceramic with metal insert (CMI) brackets with SS wires of varying dimensions in a specially designed apparatus. The material used in this study were Ti, SS, Ceramic and CMI with 0.018″ slot manufactured with zero degree tip and -7° torque premolar brackets (3M, Unitek) and SS wires of varying dimensions (0.016″ round, 0.016 × 0.016″ square, 0.016 × 0.022″ rectangular and 0.017 × 0.025″ rectangular) used. The frictional resistance was measured using Instron Universal testing machine (Model no. 4301). The specimen population in each center composed each of 160 brackets and wires. Differences among the all bracket/wire combinations were tested using (one-way) ANOVA, followed by the student Newman Keuls multiple comparisons of means ranking (at P < 0.05) for the determination of differences among the groups. Ti bracket in combination with 0.017 × 0.025″ SS rectangular wire produced significant force levels for an optimum orthodontic movement with least frictional resistance. Ti brackets have least resistance and rectangular wires produced significant force. These can be used to avoid hazards of Nickel. SS brackets revealed higher static frictional force values as the wire dimension increased and showed lower static friction than Ti brackets for all wires except the thicker wire. Our study recommends the preclusion of brackets with rough surface texture (Ti brackets) with SS ligature wire for ligating bracket and archwire are better to reduce friction.
3D-printed orthodontic brackets - proof of concept.
Krey, Karl-Friedrich; Darkazanly, Nawras; Kühnert, Rolf; Ruge, Sebastian
Today, orthodontic treatment with fixed appliances is usually carried out using preprogrammed straight-wire brackets made of metal or ceramics. The goal of this study was to determine the possibility of clinically implementing a fully digital workflow with individually designed and three-dimensionally printed (3D-printed) brackets. Edgewise brackets were designed using computer-aided design (CAD) software for demonstration purposes. After segmentation of the malocclusion model generated based on intraoral scan data, the brackets were digitally positioned on the teeth and a target occlusion model created. The thus-defined tooth position was used to generate a template for an individualized arch form in the horizontal plane. The base contours of the brackets were modified to match the shape of the tooth surfaces, and a positioning guide (fabricated beforehand) was used to ensure that the brackets were bonded at the correct angle and position. The brackets, positioning guide, and retainer splint, digitally designed on the target occlusion model, were 3D printed using a Digital Light Processing (DLP) 3D printer. The archwires were individually pre-bent using the template. In the treatment sequence, it was shown for the first time that, in principle, it is possible to perform treatment with an individualized 3D-printed brackets system by using the proposed fully digital workflow. Technical aspects of the system, problems encountered in treatment, and possible future developments are discussed in this article.
Dimensional accuracy of ceramic self-ligating brackets and estimates of theoretical torsional play.
Lee, Youngran; Lee, Dong-Yul; Kim, Yoon-Ji R
2016-09-01
To ascertain the dimensional accuracies of some commonly used ceramic self-ligation brackets and the amount of torsional play in various bracket-archwire combinations. Four types of 0.022-inch slot ceramic self-ligating brackets (upper right central incisor), three types of 0.018-inch ceramic self-ligating brackets (upper right central incisor), and three types of rectangular archwires (0.016 × 0.022-inch beta-titanium [TMA] (Ormco, Orange, Calif), 0.016 × 0.022-inch stainless steel [SS] (Ortho Technology, Tampa, Fla), and 0.019 × 0.025-inch SS (Ortho Technology)) were measured using a stereomicroscope to determine slot widths and wire cross-sectional dimensions. The mean acquired dimensions of the brackets and wires were applied to an equation devised by Meling to estimate torsional play angle (γ). In all bracket systems, the slot tops were significantly wider than the slot bases (P < .001), yielding a divergent slot profile. Clarity-SLs (3M Unitek, Monrovia, Calif) showed the greatest divergence among the 0.022-inch brackets, and Clippy-Cs (Tomy, Futaba, Fukushima, Japan) among the 0.018-inch brackets. The Damon Clear (Ormco) bracket had the smallest dimensional error (0.542%), whereas the 0.022-inch Empower Clear (American Orthodontics, Sheboygan, Wis) bracket had the largest (3.585%). The largest amount of theoretical play is observed using the Empower Clear (American Orthodontics) 0.022-inch bracket combined with the 0.016 × 0.022-inch TMA wire (Ormco), whereas the least amount occurs using the 0.018 Clippy-C (Tomy) combined with 0.016 × 0.022-inch SS wire (Ortho Technology).
Comparison of deflection forces of esthetic archwires combined with ceramic brackets*
MATIAS, Murilo; de FREITAS, Marcos Roberto; de FREITAS, Karina Maria Salvatore; JANSON, Guilherme; HIGA, Rodrigo Hitoshi; FRANCISCONI, Manoela Fávaro
2018-01-01
Abstract Coated archwires and ceramic brackets have been developed to improve facial esthetics during orthodontic treatment. However, their mechanical behavior has been shown to be different from metallic archwires and brackets. Therefore, the aim of this study was to compare the deflection forces in coated nickel-titanium (NiTi) and esthetic archwires combined with ceramic brackets. Material and Methods Non-coated NiTi (NC), rhodium coated NiTi (RC), teflon coated NiTi (TC), epoxy coated NiTi (EC), fiber-reinforced polymer (FRP), and the three different conventional brackets metal-insert polycrystalline ceramic (MI-PC), polycrystalline ceramic (PC) and monocrystalline ceramic (MC) were used. The specimens were set up on a clinical simulation device and evaluated in a Universal Testing Machine (Instron). An acrylic device, representative of the right maxillary central incisor was buccolingually activated and the unloading forces generated were recorded at 3, 2, 1 and 0.5 mm. The speed of the testing machine was 2 mm/min. ANOVA and Tukey tests were used to compare the different archwires and brackets. Results The brackets presented the following decreasing force ranking: monocrystalline, polycrystalline and polycrystalline metal-insert. The decreasing force ranking of the archwires was: rhodium coated NiTi (RC), non-coated NiTi (NC), teflon coated NiTi (TC), epoxy coated NiTi (EC) and fiber-reinforced polymer (FRP). At 3 mm of unloading the FRP archwire had a plastic deformation and produced an extremely low force in 2; 1 and 0.5 mm of unloading. Conclusion Combinations of the evaluated archwires and brackets will produce a force ranking proportional to the combination of their individual force rankings. PMID:29451650
Comparison of deflection forces of esthetic archwires combined with ceramic brackets.
Matias, Murilo; Freitas, Marcos Roberto de; Freitas, Karina Maria Salvatore de; Janson, Guilherme; Higa, Rodrigo Hitoshi; Francisconi, Manoela Fávaro
2018-01-01
Coated archwires and ceramic brackets have been developed to improve facial esthetics during orthodontic treatment. However, their mechanical behavior has been shown to be different from metallic archwires and brackets. Therefore, the aim of this study was to compare the deflection forces in coated nickel-titanium (NiTi) and esthetic archwires combined with ceramic brackets. Material and Methods Non-coated NiTi (NC), rhodium coated NiTi (RC), teflon coated NiTi (TC), epoxy coated NiTi (EC), fiber-reinforced polymer (FRP), and the three different conventional brackets metal-insert polycrystalline ceramic (MI-PC), polycrystalline ceramic (PC) and monocrystalline ceramic (MC) were used. The specimens were set up on a clinical simulation device and evaluated in a Universal Testing Machine (Instron). An acrylic device, representative of the right maxillary central incisor was buccolingually activated and the unloading forces generated were recorded at 3, 2, 1 and 0.5 mm. The speed of the testing machine was 2 mm/min. ANOVA and Tukey tests were used to compare the different archwires and brackets. Results The brackets presented the following decreasing force ranking: monocrystalline, polycrystalline and polycrystalline metal-insert. The decreasing force ranking of the archwires was: rhodium coated NiTi (RC), non-coated NiTi (NC), teflon coated NiTi (TC), epoxy coated NiTi (EC) and fiber-reinforced polymer (FRP). At 3 mm of unloading the FRP archwire had a plastic deformation and produced an extremely low force in 2; 1 and 0.5 mm of unloading. Conclusion Combinations of the evaluated archwires and brackets will produce a force ranking proportional to the combination of their individual force rankings.
NASA Astrophysics Data System (ADS)
Suharno, Bambang; Suharno, Lingga Pradinda; Saputro, Hantoro Restucondro; Irawan, Bambang; Prasetyadi, Tjokro; Ferdian, Deni; Supriyadi, Sugeng
2018-02-01
Surface roughness and microstructure play important role on orthodontic bracket quality. Therefore, orthodontic brackets need to have smooth surface roughness to reduce the friction and bacterial adhesion. Microstructure of orthodontic brackets also determine the mechanical properties and corrosion resistance. There are two methods to produce orthodontic bracket, investment casting and metal injection molding. The purpose of this study is to observe the surface roughness and microstructure of orthodontic bracket which were made from two different fabrication methods. To produce orthodontic bracket with metal injection molding method, 17-4 PH stainless steel feedstock was injected to the orthodontic bracket mold using injection molding machine. After injection, the binder was eliminated with solvent and thermal debinding. Solvent debinding process was conducted with hexane at 50 °C on magnetic stirrer for 1.5 hours. Thermal debinding process was conducted at 510 °C with 0.5 °C/min heat rate and 120 min holding time. Hereafter, sintering process were performed with vacuum tube furnace at 1360 °C with heat rate 5 °C/min and 90 min holding time in low vacuum atmosphere. To produce orthodontic bracket with investment casting method, the wax was injected into the mold then the wax pattern was arranged into the tree form. The tree form was then dipped into ceramic slurry and allowed to harden, the ceramic slurry has a thickness in the region of 10 mm. The ceramic mold was then heated at a temperature of over than 1100°C to strengthen the ceramic mold and to remove the remaining wax. After that, the molten 17-4 PH stainless steel was poured into the ceramic mold at a temperature of over 1600°C. The natural cooling process was carried out at temperature of 25°C, after which the ceramic mold was broken away. Then, the orthodontic bracket was cut from the tree form. The results show that the orthodontic bracket which were made with investment casting fabrication method have low porosity, high density, and there is no indication of secondary phase on the microstructure. However, it has rough brackets surface. Whereas, the production of orthodontic brackets using metal injection molding method resulted in better surface roughness. But, it has relatively high porosity, presence of another phase on the microstructure, and low density.
Porcelain surface alterations and refinishing after use of two orthodontic bonding methods.
Herion, Drew T; Ferracane, Jack L; Covell, David A
2010-01-01
To compare porcelain surfaces at debonding after use of two surface preparation methods and to evaluate a method for restoring the surface. Lava Ceram feldspathic porcelain discs (n = 40) underwent one of two surface treatments prior to bonding orthodontic brackets. Half the discs had sandblasting, hydrofluoric acid, and silane (SB + HF + S), and the other half, phosphoric acid and silane (PA + S). Brackets were debonded using bracket removing pliers, and resin was removed with a 12-fluted carbide bur. The surface was refinished using a porcelain polishing kit, followed by diamond polishing paste. Measurements for surface roughness (Ra), gloss, and color were made before bonding (baseline), after debonding, and after each step of refinishing. Surfaces were also examined by scanning electron microscopy (SEM). Data was analyzed with 2-way ANOVA followed by Tukey HSD tests (alpha = 0.05). The SB + HF + S bonding method increased Ra (0.160 to 1.121 microm), decreased gloss (41.3 to 3.7) and altered color (DeltaE = 4.37; P < .001). The PA + S method increased Ra (0.173 to 0.341 microm; P < .001), but the increase in Ra was significantly less than that caused by the SB + HF + S bonding method (P < . 001). The PA + S method caused insignificant changes in gloss (41.7 to 38.0) and color (DeltaE = 0.50). The measurements and SEM observations showed that changes were fully restored to baseline with refinishing. The PA + S method caused significantly less damage to porcelain than the SB + HF + S method. The refinishing protocol fully restored the porcelain surfaces.
Bahnasi, Faisal I; Abd-Rahman, Aida Na; Abu-Hassan, Mohame I
2013-10-01
1) to assess different methods of recycling orthodontic brackets, 2) to evaluate Shear Bond Strength (SBS) of (a) new, (b) recycled and (c) repeated recycled stainless steel brackets (i) with and (ii) without bracket base primer. A total of 180 extracted human premolar teeth and 180 premolar stainless steel brackets were used. One hundred teeth and 100 brackets were divided into five groups of 20-teeth each. Four methods of recycling orthodontic brackets were used in each of the first four groups while the last one (group V) was used as the control. Groups (I-V) were subjected to shear force within half an hour until the brackets debond. SBS was measured and the method showing the highest SBS was selected. A New group (VI) was recycled twice with the selected method. Six subgroups (1-6) were established; the primer was applied for three sub-groups, and the composite was applied for all brackets. Brackets were subjected to the same shear force, and SBS was measured for all sub-groups. There was a significant difference between the mean SBS of the sandblasting method and the means of SBS of each of the other three methods. There was however, no significant difference between the mean SBS of the new bracket and the mean SBS of recycled bracket using sandblasting. The mean SBS of all sub-groups were more than that recommended by Reynolds (17) in 1975. Brackets with primer showed slightly higher SBS compared to those of brackets without bonding agent. To decrease cost, sandblasted recycled orthodontic brackets can be used as an alternative to new brackets. It is recommended to apply a bonding agent on the bracket base to provide greater bond strength. Key words:Recycled bracket, shear bond strength, sandblasting, stainless steel orthodontic bracket.
Schnebel, Bradley; Mateer, Scott; Maganzini, Anthony Louis; Freeman, Katherine
2012-12-01
To determine whether two self-adhesive resin cements, Clearfil SA and RelyX, can be used to successfully bond orthodontic brackets to enamel. Seventy extracted premolars were custom mounted, cleaned and randomly divided into three groups. In group 1 (control), orthodontic brackets were bonded to 25 premolars using the Transbond Plus and Transbond XT two step adhesive systerm adhesive. In group 2, brackets were bonded to 25 premolars using Clearfil SA. In group 3, brackets were bonded to 20 premolars using RelyX. The brackets were debonded using a universal testing machine and shear bond strengths recorded. After debonding, each tooth was examined under 20× magnification to evaluate the residual adhesive remaining. An ANOVA with Duncan's Multiple Range Test was used to determine whether there were significant differences in shear bond strength between the groups. A Kruskal-Wallis Test and a Bonferroni multiple comparison procedure were used to compare the bond failure modes (adhesive remnant index scores) between the groups. The mean shear bond strengths for the brackets bonded using Clearfil SA and RelyX were 5·930±1·840 and 3·334±1·953 MPa, respectively. Both were significantly lower than that for the brackets bonded using Transbond (7·875±3·611 MPa). Both self-etch adhesive resin cement groups showed a greater incidence of bracket failure at the enamel/adhesive interface while the Transbond group showed a higher incidence at the bracket/adhesive interface. The shear bond strengths of the self-etch adhesive resin cements may be inadequate to successfully bond orthodontic brackets to enamel.
NASA Astrophysics Data System (ADS)
Rominu, R.; Sinescu, C.; Rominu, M.; Negrutiu, M.; Petrescu, E.; Pop, D.; Podoleanu, A. Gh.
2011-10-01
Orthodontic bonding is a simple yet important procedure that can influence the outcome of treatment in case it is performed incorrectly. An orthodontic treatment shadowed by repeated bonding failures can become unduly long and will decrease patient trust and compliance. Optical coherence tomography has been widely used in ophtalmology but is relatively new to dentistry. Using OCT one can detect aerial inclusions within the orthodontic adhesive or even identify incongruence between the bracket base and the tooth surface. The aim of our study was to identify bonding defects and reconstruct them three-dimensionally in order to be able to characterize them more accurately. We bonded 30 sound human permanent teeth with ceramic orthodontic brackets using a no-mix self-curing orthodontic adhesive. Prior to bonding all teeth were stored in tap water at 4°C and then professionally cleaned with rotary brushes and pumice. The samples were processed by the same person and the rotary brushes were changed after every fifth tooth. All interfaces were investigated by means of OCT and 4 defects were found. Subsequently, the defects were reconstructed threedimensionally using an open-source program. By identifying and reconstructing bonding defects we could assess the quality of the bonding procedure. Since bonding tends to be more accurate in vitro where the environmental conditions are close to ideal, it is probable that defects found in vivo be even greater in number, which leads to the conclusion that this type of investigation is potentially valuable.
Jurišić, Sanja; Kozomara, Davorin; Jurić, Hrvoje; Verzak, Željko; Jurišić, Gordan
2016-12-01
To detect the effect of two different types of brackets (ceramic and stainless steel) and investigate the effectiveness of two chlorhexidine mouthwashes 0.2% (CHX) on oral hygiene status and incidence of white spot lesions (WSLs) in adolescents wearing fixed orthodontic appliance. One hundred and twenty subjects (aged 11 to 18 years, mean age 14.5 years) were divided into six equal groups according to brackets type and to different mouthwashes: Group 1: metal brackets and conventional CHX, Group 2: metal brackets and CHX with anti-discoloration system (CHX-ADS), Group 3: ceramic brackets and conventional CHX, Group 4: ceramic brackets and CHX-ADS, Group 5: metal brackets and water correction flavors mouthwash (placebo), Group 6: ceramic brackets and placebo. Four weeks after the placement of fixed orthodontic appliance the subjects were provided with three different mouthwashes for use during the next two weeks. Assessment was carried out according to oral hygiene index-simplified (OHI-S) and WSL index performed: prior to placement of the appliance (baseline), four weeks, six weeks, eighteen weeks, and thirty weeks after the placement. The data were then subjected to statistical analysis. Group 4 showed reduction in the OHI-S scores when compared to the Group 5 (in the 6 th week), and Group 6 (in the 6 th and 18 th week), which was statistically significant, P<0.05. Group 4 showed decrease in the WSLs scores when compared to the Group 1 (in the 4 th , 6 th , 18 th and 30 th week), Group 5 (in the 18 th and 30 th week) and Group 6 (in the 6 th , 18 th and 30 th week), which was statistically significant, P<0.05. The ceramic brackets and the usage of CHX-ADS resulted in better oral hygiene status and lower incidence of WSLs.
Bahnasi, Faisal I.; Abu-Hassan, Mohame I.
2013-01-01
Objectives: 1) to assess different methods of recycling orthodontic brackets, 2) to evaluate Shear Bond Strength (SBS) of (a) new, (b) recycled and (c) repeated recycled stainless steel brackets (i) with and (ii) without bracket base primer. Study Design: A total of 180 extracted human premolar teeth and 180 premolar stainless steel brackets were used. One hundred teeth and 100 brackets were divided into five groups of 20-teeth each. Four methods of recycling orthodontic brackets were used in each of the first four groups while the last one (group V) was used as the control. Groups (I-V) were subjected to shear force within half an hour until the brackets debond. SBS was measured and the method showing the highest SBS was selected. A New group (VI) was recycled twice with the selected method. Six subgroups (1-6) were established; the primer was applied for three sub-groups, and the composite was applied for all brackets. Brackets were subjected to the same shear force, and SBS was measured for all sub-groups. Results: There was a significant difference between the mean SBS of the sandblasting method and the means of SBS of each of the other three methods. There was however, no significant difference between the mean SBS of the new bracket and the mean SBS of recycled bracket using sandblasting. The mean SBS of all sub-groups were more than that recommended by Reynolds (17) in 1975. Brackets with primer showed slightly higher SBS compared to those of brackets without bonding agent. Conclusion: To decrease cost, sandblasted recycled orthodontic brackets can be used as an alternative to new brackets. It is recommended to apply a bonding agent on the bracket base to provide greater bond strength. Key words:Recycled bracket, shear bond strength, sandblasting, stainless steel orthodontic bracket. PMID:24455081
Tam, Byron; Bollu, Prashanti; Chaudhry, Kishore; Subramani, Karthikeyan
2017-10-01
The purpose of this study was to determine the influence of linear and rotational pre-cure bracket displacement during the bonding procedure on shear bond strength (SBS) of orthodontic brackets. Stainless steel orthodontic premolar brackets were bonded to the buccal surfaces of 50 human pre-molars with a conventional two-step bonding protocol. Extracted human pre-molars were divided into 5 groups (n=10/group). In the Control Group, the brackets were bonded with no pre-cure bracket displacement or rotation. The Rotation Group was bonded with 45 degrees of pre-cure rotation. The Displacement Group was bonded with 2mm pre-cure linear displacement. The Rotation-Displacement Group was bonded with pre-cure movements of 45º counter-clockwise rotation and 2mm displacement. The Slippage Group was bonded with 2mm each of mesial and distal pre-cure linear displacement. Photo-activation was carried out on the lateral sides of the bracket. Shear debonding force was measured, 24 hours after initial bonding, with an Instron universal testing machine using a knife-edged chisel. Data was analyzed using one-way ANOVA test. Adhesive Remnant Index (ARI) was scored under 15x magnification. The ARI data was analyzed using the Chi-square test ( p -value < 0.05). No statistically significant differences were detected among the control and experimental groups ( p = 0.331). The rotation and displacement group showed the highest mean SBS than all other groups. Mean SBS for all groups were above the clinically acceptable range. No statistically significant differences were detected in ARI scores among groups ( p = 0.071). Linear and rotational pre-cure bracket displacements do not appear to effect the shear bond strength of orthodontic brackets. Key words: Shear bond strength, orthodontic bracket, displacement, rotation, adhesive remnant index, pre-cure movement.
Khanehmasjedi, Mashallah; Naseri, Mohammad Ali; Khanehmasjedi, Samaneh; Basir, Leila
2017-02-01
This study compared the shear bond strength of metallic brackets bonded with Single Bond and Assure bonding agents under dry and saliva-contamination conditions. Sixty sound premolar teeth were selected, and stainless-steel brackets were bonded on enamel surfaces with Single Bond and Assure bonding agents under dry condition or with saliva contamination. Shear bond strength values of brackets were measured in a universal testing machine. The adhesive remnant index scores were determined after debonding of the brackets under a stereomicroscope. One-way analysis of variance (ANOVA) was used to analyze bond strength. Two-by-two comparisons were made with post hoc Tukey tests (p<0.001). Frequencies of adhesive remnant index scores were analyzed by Kruskal-Wallis test. Bond strength values of brackets to tooth structure were 9.29±8.56 MPa and 21.25±8.93 MPa with the use of Assure resin bonding agent under saliva-contamination and dry conditions, respectively. These values were 10.13±6.69 MPa and 14.09±6.6 MPa, respectively, under the same conditions with the use of Single Bond adhesive. Contamination with saliva resulted in a significant decrease in the bond strength of brackets to tooth structure with the application of Assure adhesive resin (p<0.001). There were no significant differences in the adhesive remnant index scores between the study groups. Application of Single Bond and Assure bonding agents resulted in adequate bond strength of brackets to tooth structures. Contamination with saliva significantly decreased the bond strength of Assure bonding agent compared with dry conditions. Copyright © 2016. Published by Elsevier Taiwan LLC.
Gupta, Neeraj; Kumar, Dilip; Palla, Aparna
2017-04-01
Orthodontists are commonly faced with the decision of what to do with debonded or inaccurately positioned brackets. An economical option to this dilemma is to recycle the brackets. Many recycling methods have been proposed, but the optimal bond strength of these recycled brackets needs further evaluation. Objectives: To evaluate and compare the effect of three recycling methods: (i) Sandblasting (ii) Sandblasting / direct flaming (iii) Sandblasting /direct flaming /acid bath solution on shear bond strength (SBS) of stainless steel brackets. Eighty human premolars were bonded with premolar stainless steel brackets as per manufacturer's instructions. The teeth were divided into 4 groups (n=20): Recycling and initial debonding was not done in Control group (Group I). After initial bonding, the brackets in the rest of the three experimental groups were debonded and recycled by following methods: (i) Sandblasting (Group II) (ii) Sandblasting /direct flaming (Group III) (iii) Sandblasting /direct flaming /acid bath solution (Group IV). Further the recycled brackets were bonded. The specimens were then subjected to testing in a Universal machine. The evaluation of the variation of the shear bond strength (SBS) among test groups was done using one-way ANOVA test and inter-experimental group comparison was done by Newman-Keuls multiple post hoc procedure. Group I (8.6510±1.3943MPa) showed the highest bond strength followed by Group II (5.0185±0.9758MPa), Group IV (2.30±0.65MPa) and Group III (2.0455± 0.6196MPa). Statistically significant variations existed in the shear bond strength (SBS) in all groups analyzed except between Group III and Group IV. The following conclusions were drawn from the study: 1. Shear bond strength of new brackets is significantly higher than the recycled brackets. 2. Brackets sandblasted with 90µm aluminium oxide particle air-abrasion showed significantly higher shear bond strength compared to direct flaming/sandblasting and direct flaming/sandblasting/acid bath solution. 3. Sandblasting with 90µm aluminium oxide particle air-abrasion is the simplest, most efficient and hence, the preferred method of recycling debonded brackets. Key words: Orthodontic bracket, recycling, shear bond strength.
Hosseini, Mohammad Hashem; Sobouti, Farhad; Etemadi, Ardavan; Chiniforush, Nasim; Shariati, Mahsa
2015-02-01
Adult orthodontic treatment requires bonding orthodontic attachment to dental restorations. Ceramics are commonly used as esthetic restorative materials for the crowns and bridges. The present study evaluated the shear bond strength of metal orthodontic brackets to the feldspathic porcelain surfaces following conditioning by different powers of neodymium-doped yttrium aluminum garnet (Nd:YAG) laser and hydrofluoric acid as a conventional method. Seventy-two glazed porcelain samples were prepared and randomly attributed to six equal groups of 12. In the conventional hydrofluoric (HF) group, the specimens were etched by 9.6% hydrofluoric acid for 4 min. In laser groups, samples were conditioned by 0.75-, 1-, 1.25-, 1.5-, and 2-W Nd:YAG laser for 10 s. Metal brackets were bonded to porcelain samples and after being stored in distilled water for 24 h, they were subjected to thermocycling for 500 cycles. The debonding was carried out by a Zwick testing machine. The data were statistically analyzed by ANOVA and Tamhane multiple comparisons tests. The mean ± SD of the shear bond strength in the laser group 0.75, 1, 1.25, 1.5, and 2 W and HF group was 2.2 ± 0.9, 4.2 ± 1.1, 4.9 ± 2.4, 7 ± 1.7, 9.6 ± 2.7, and 9.4 ± 2.5, respectively. Together with the increased power of laser, the mean shear bond strength was increased continuously and no significant differences were found between the HF group and the laser groups with power of 1.5 or 2 W. Also, there was no significant difference between all test groups in ARI scores. There was no significant difference between bond strength of laser groups with power of 1.5 and 2 W and HF-etched group. So, Nd:YAG laser with appropriate parameters can be used as an alternative method for porcelain etching.
Oliveira, Adauê S; Barwaldt, Caroline K; Bublitz, Luana S; Moraes, Rafael R
2014-06-01
This study investigated the the influence of bracket displacement or rotation during fixation and the time of excess adhesive removal from around the bracket on bond strength to enamel. Stainless steel brackets were bonded to the buccal faces of bovine incisors using Transbond XT® adhesive resin. The teeth were divided into five groups (n = 20). In the control group, no displacement or rotation of the bracket was carried out. In the Displac-A group, excess adhesive was removed after the bracket was displaced 2 mm incisally. In the B-Displac group, excess adhesive was removed before the bracket was displaced incisally. In the Rotat-A group, excess adhesive was removed after the bracket was rotated 45°. In the B-Rotat group, excess adhesive was removed before the bracket was rotated. Photoactivation was carried out on the lateral sides of the bracket. A shear test was conducted 10 min after fixation using a knife-edged chisel. Bond strength data were analysed using ANOVA and Fisher's test (5%). The adhesive remnant index (ARI) was scored under magnification. ARI data were analysed using the Kruskal-Wallis test (5%). No significant differences were detected among the Control, Displac-A, Rotat-A and B-Rotat groups. The B-Displac group showed lower bond strength than all of the other groups, except Displac-A. No significant differences were observed in ARI scores across groups. Displacements of the brackets during fixation did not seem to affect the enamel bond strength when excess adhesive is removed after the final positioning of the bracket. © 2014 British Orthodontic Society.
Kumar, Dilip; Palla, Aparna
2017-01-01
Background Orthodontists are commonly faced with the decision of what to do with debonded or inaccurately positioned brackets. An economical option to this dilemma is to recycle the brackets. Many recycling methods have been proposed, but the optimal bond strength of these recycled brackets needs further evaluation. Objectives: To evaluate and compare the effect of three recycling methods: (i) Sandblasting (ii) Sandblasting / direct flaming (iii) Sandblasting /direct flaming /acid bath solution on shear bond strength (SBS) of stainless steel brackets. Material and Methods Eighty human premolars were bonded with premolar stainless steel brackets as per manufacturer’s instructions. The teeth were divided into 4 groups (n=20): Recycling and initial debonding was not done in Control group (Group I). After initial bonding, the brackets in the rest of the three experimental groups were debonded and recycled by following methods: (i) Sandblasting (Group II) (ii) Sandblasting /direct flaming (Group III) (iii) Sandblasting /direct flaming /acid bath solution (Group IV). Further the recycled brackets were bonded. The specimens were then subjected to testing in a Universal machine. The evaluation of the variation of the shear bond strength (SBS) among test groups was done using one-way ANOVA test and inter-experimental group comparison was done by Newman-Keuls multiple post hoc procedure. Results Group I (8.6510±1.3943MPa) showed the highest bond strength followed by Group II (5.0185±0.9758MPa), Group IV (2.30±0.65MPa) and Group III (2.0455± 0.6196MPa). Statistically significant variations existed in the shear bond strength (SBS) in all groups analyzed except between Group III and Group IV. Conclusions The following conclusions were drawn from the study: 1. Shear bond strength of new brackets is significantly higher than the recycled brackets. 2. Brackets sandblasted with 90µm aluminium oxide particle air-abrasion showed significantly higher shear bond strength compared to direct flaming/sandblasting and direct flaming/sandblasting/acid bath solution. 3. Sandblasting with 90µm aluminium oxide particle air-abrasion is the simplest, most efficient and hence, the preferred method of recycling debonded brackets. Key words:Orthodontic bracket, recycling, shear bond strength. PMID:28469821
An in vitro investigation on friction generated by ceramic brackets.
Tecco, Simona; Teté, Stefano; Festa, Mario; Festa, Felice
2010-01-01
To compare friction (F) of conventional and ceramic brackets (0.022-inch slot) using a model that tests the sliding of the archwire through 10 aligned brackets. Polycrystalline alumina brackets (PCAs), PCA brackets with a stainless steel slot (PCA-M), and monocrystalline sapphire brackets (MCS) were tested under elastic ligatures using various archwires in dry and wet (saliva) states. Conventional stainless steel brackets were used as controls. In both dry and wet states, PCA and MCS brackets expressed a statistically significant higher F value with respect to stainless steel and PCA-M brackets when combined with the rectangular archwires (P<.01). PCA brackets showed significantly higher friction than MCS brackets (P<.01) when coupled with 0.014 x 0.025-inch nickel-titanium (Ni-Ti) archwire. SEM analysis showed differences in the surfaces among stainless steel, MCS, PCA-M, and PCA brackets. In the wet state, the mean F values were generally higher than in the dry state. PCA brackets showed significantly higher F than MCS brackets only when combined with 0.014 x 0.025-inch Ni-Ti archwires. Thus, in this study, a 10 aligned-brackets study model showed similar results when compared to a single bracket system except for friction level with 0.014 × 0.025-inch Ni-Ti archwires. © 2011 BY QUINTESSENCE PUBLISHING CO, INC.
Sfondrini, Maria Francesca; Fraticelli, Danilo; Gandini, Paola; Scribante, Andrea
2013-01-01
The aim of this study was to assess the effect of water and saliva contamination on the shear bond strength and failure site of orthodontic brackets and lingual buttons. 120 bovine permanent mandibular incisors were randomly divided into 6 groups of 20 specimens each. Both orthodontic brackets and disinclusion buttons were tested under three different enamel surface conditions: (a) dry, (b) water contamination, and (c) saliva contamination. Brackets and buttons were bonded to the teeth and subsequently tested using a Instron universal testing machine. Shear bond strength values and adhesive failure rate were recorded. Statistical analysis was performed using ANOVA and Tukey tests (strength values) and Chi squared test (ARI Scores). Noncontaminated enamel surfaces showed the highest bond strengths for both brackets and buttons. Under water and saliva contamination orthodontic brackets groups showed significantly lower shear strengths than disinclusion buttons groups. Significant differences in debond locations were found among the groups under the various enamel surface conditions. Water and saliva contamination of enamel during the bonding procedure lowers bond strength values, more with orthodontic brackets than with disinclusion buttons.
2013-06-06
El Banna MS, Elsaka SE. Twelve-month bracket failure rate with amorphous calcium phosphate bonding system. Eur J Orthod 2012; doi:10.1093/ejo...material, Cambridge University Press. 1993;3. Willems G, Carels CEL, Verbeke G. In vitro peel /shear bond strength evaluation of orthodontic bracket
Andrighetto, Augusto Ricardo; de Leão Withers, Eduardo Henrique; Grando, Karlos Giovani; Ambrosio, Aldrieli Regina; Shimizu, Roberto Hideo; Melo, Ana Cláudia
2016-01-01
Tooth bleaching is, today, one of the most widespread cosmetic treatments in dental practice, so it is important to determine whether it can interfere with orthodontic bonding or not. The aim of this study was to assess the in vitro effects of 35% hydrogen peroxide bleaching agent on the shear bond strength of orthodontic brackets. Forty-five upper bicuspids were divided into three groups (n = 15). In the control Group (C), the brackets were bonded without previous bleaching treatment. Group 1 (G1) was treated with 35% hydrogen peroxide bleaching agent 24 h before bracket bonding. Group 2 was also bleached, and the brackets were bonded after 30 days. The shear bond strength of the brackets was measured using an EMIC machine, and the results were analyzed by ANOVA. There were no statistically significant differences between the three groups (P > 0.05), with Group C showing a mean bond strength of 9.72 ± 2.63 MPa, G1 of 8.09 ± 2.63 MPa, and G2 of 11.15 ± 4.42 MPa. It was possible to conclude that 35% hydrogen peroxide bleaching agent does not affect the shear strength of orthodontic brackets bonded 24 h and 30 days after bleaching.
Sfondrini, Maria Francesca; Gatti, Sara; Scribante, Andrea
2011-07-01
Our aim was to assess the effect of blood contamination on the shear bonding strength and sites of failure of orthodontic brackets and bondable buttons. We randomly divided 160 bovine permanent mandibular incisors into 8 groups of 20 specimens each. Both orthodontic brackets (Step brackets, Leone, Sesto Fiorentino, Italy) and bondable buttons (Flat orthodontic buttons, Leone, Sesto Fiorentino, Italy) were tested on four different enamel surfaces: dry; contamination with blood before priming; after priming; and before and after priming. Brackets and buttons were bonded to the teeth and subsequently tested using a Instron universal testing machine. Shear bonding strength and the rate of adhesive failures were recorded. Data were analysed using the analysis of variance (ANOVA), Scheffè tests, and the chi-square test. Uncontaminated enamel surfaces showed the highest bonding strengths for both brackets and buttons. When they were contaminated with blood, orthodontic brackets had significantly lower shear strengths than bondable buttons (P=0.0001). There were significant differences in sites of failure among the groups for the various enamel surfaces (P=0.001). Contamination of enamel by blood during bonding lowers the strength of the bond, more so with orthodontic brackets than with bondable buttons. Copyright © 2010 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Evaluation of a new nano-filled restorative material for bonding orthodontic brackets.
Bishara, Samir E; Ajlouni, Raed; Soliman, Manal M; Oonsombat, Charuphan; Laffoon, John F; Warren, John
2007-01-01
To compare the shear bond strength of a nano-hybrid restorative material, Grandio (Voco, Cuxhaven, Germany), to that of a traditional adhesive material (Transbond XT; 3M Unitek, Monrovia, CA, USA) when bonding orthodontic brackets. Forty teeth were randomly divided into 2 groups: 20 teeth were bonded with the Transbond adhesive system and the other 20 teeth with the Grandio restorative system, following manufacturer's instructions. Student t test was used to compare the shear bond strength of the 2 systems. Significance was predetermined at P 5 .05. The t test comparisons (t = 0.55) of the shear bond strength between the 2 adhesives indicated the absence of a significant (P = .585) difference. The mean shear bond strength for Grandio was 4.1 +/- 2.6 MPa and that for Transbond XT was 4.6 +/- 3.2 MPa. During debonding, 3 of 20 brackets (15%) bonded with Grandio failed without registering any force on the Zwick recording. None of the brackets bonded with Transbond XT had a similar failure mode. The newly introduced nano-filled composite materials can potentially be used to bond orthodontic brackets to teeth if its consistency can be more flowable to readily adhere to the bracket base.
Microbial complexes levels in conventional and self-ligating brackets.
Bergamo, Ana Zilda Nazar; Nelson-Filho, Paulo; Andrucioli, Marcela Cristina Damião; do Nascimento, Cássio; Pedrazzi, Vinícius; Matsumoto, Mírian Aiko Nakane
2017-05-01
The aims were to evaluate the levels of bacterial species in saliva and in situ and to assess whether the design of brackets influences the risk of developing periodontal disease. Twenty patients (13.3 mean age) were bonded with self-ligating brackets and a conventional bracket. Saliva was collected before bonding and 30 and 60 days after bonding. One sample of each bracket was removed 30 and 60 days after bonding. The analysis was determined by checkerboard DNA-DNA hybridization. The data was evaluated by the non-parametric test. A significant increase in the levels of bacterial species in the saliva occurred in 15 of the 22 analyzed species. The self-ligating brackets presented the highest incidence percentages for the orange and red complexes 60 days after bonding. In situ analyses showed different patterns according to the bracket design. The levels of Campylobacter rectus showed significant differences (p = 0.011) 60 days after bonding among the three brackets; the highest values were observed in the In-Ovation®R bracket. The bracket design seems to influence the levels of bacterial species involved in periodontal disease. Considering the wide variety of bacterial species, additional studies are needed to aid in the establishment of effective protocols to prevent the development of periodontal disease during orthodontic treatment. A dynamic alteration in the oral microbiota may lead to inflammatory reactions in the supporting soft and hard tissues. The different types of brackets interfere with bacterial adherence. Bracket design should be considered in orthodontic treatment.
Arash, Valiollah; Anoush, Keivan; Rabiee, Sayed Mahmood; Rahmatei, Manuchehr; Tavanafar, Saeid
2015-01-01
Aims of the present study was to measure frictional resistance between silver coated brackets and different types of arch wires, and shear bond strength of these brackets to the tooth. In an experimental clinical research 28 orthodontic brackets (standard, 22 slots) were coated with silver ions using electroplate method. Six brackets (coated: 3, uncoated: 3) were evaluated with Scanning Electron Microscopy and Atomic Force Microscopy. The amount of friction in 15 coated brackets was measured with three different kinds of arch wires (0.019 × 0.025-in stainless steel [SS], 0.018-in stainless steel [SS], 0.018-in Nickel-Titanium [Ni-Ti]) and compared with 15 uncoated steel brackets. In addition, shear bond strength values were compared between 10 brackets with silver coating and 10 regular brackets. Universal testing machine was used to measure shear bond strength and the amount of friction between the wires and brackets. SPSS 18 was used for data analysis with t-test. SEM and AFM results showed deposition of a uniform layer of silver, measuring 8-10 μm in thickness on bracket surfaces. Silver coating led to higher frictional forces in all the three types of arch wires, which was statistically significant in 0.019 × 0.025-in SS and 0.018-in Ni-Ti, but it did not change the shear bond strength significantly. Silver coating with electroplating method did not affect the bond strength of the bracket to enamel; in addition, it was not an effective method for decreasing friction in sliding mechanics. © Wiley Periodicals, Inc.
Costenoble, Aline; Vennat, Elsa; Attal, Jean-Pierre; Dursun, Elisabeth
2016-11-01
To investigate the shear bond strength (SBS) of orthodontic brackets bonded to eroded enamel treated with preventive approaches and to examine the enamel/bracket interfaces. Ninety-one brackets were bonded to seven groups of enamel samples: sound; eroded; eroded+treated with calcium silicate-sodium phosphate salts (CSP); eroded+infiltrated by ICON ® ; eroded+infiltrated by ICON ® and brackets bonded with 1-month delay; eroded+infiltrated by an experimental resin; and eroded+infiltrated by an experimental resin and brackets bonded with 1-month delay. For each group, 12 samples were tested in SBS and bond failure was assessed with the adhesive remnant index (ARI); one sample was examined using scanning electron microscopy (SEM). Samples treated with CSP or infiltration showed no significant differences in SBS values with sound samples. Infiltrated samples followed by a delayed bonding showed lower SBS values. All of the values remained acceptable. The ARI scores were significantly higher for sound enamel, eroded, and treated with CSP groups than for all infiltrated samples. SEM examinations corroborated the findings. Using CSP or resin infiltration before orthodontic bonding does not jeopardize the bonding quality. The orthodontic bonding should be performed shortly after the resin infiltration.
Atash, Ramin; Fneiche, Ali; Cetik, Sibel; Bahrami, Babak; Balon-Perin, Alain; Orellana, Maria; Glineur, Régine
2017-01-01
Adhesives systems have a drawback when utilized for bonding orthodontic brackets: they shrink during photopolymerization creating microleakage. The aim of this study was to assess the stability of different orthodontic adhesives around brackets and enamel. Sixty noncarious mandibular premolars extracted for orthodontic reasons were randomly divided into six groups of adhesives used for bonding brackets to dental enamel: NeoBond ® Light Cure Adhesive Kit, Transbond™ Plus Self-Etching, Victory V-Slot APC PLUS ® + Transbond™ MIP, Rely-A-Bond ® Kit, Light Cure Orthodontic Adhesive Kit (OptiBond ® ), and Transbond™ MIP. Following bonding, all teeth underwent 2500 cycles of thermal cycling in baths ranging from 5°C to 55°C before being immersed in 2% methylene blue for 24 h. All samples were examined under a binocular microscope to assess the degree of microleakage at the "bracket-adhesive" and "adhesive-enamel" interfaces in the gingival and occlusal regions of the bracket. A significant difference was found at the "occlusal bracket-adhesive" interface. The highest microleakage values were found in the occlusal region, although no significant. Microleakage was observed in all groups. Group 2 had the highest microleakage values whereas Group 6 had the lowest values.
Sfondrini, Maria Francesca; Fraticelli, Danilo; Gandini, Paola
2013-01-01
Purpose. The aim of this study was to assess the effect of water and saliva contamination on the shear bond strength and failure site of orthodontic brackets and lingual buttons. Materials and Methods. 120 bovine permanent mandibular incisors were randomly divided into 6 groups of 20 specimens each. Both orthodontic brackets and disinclusion buttons were tested under three different enamel surface conditions: (a) dry, (b) water contamination, and (c) saliva contamination. Brackets and buttons were bonded to the teeth and subsequently tested using a Instron universal testing machine. Shear bond strength values and adhesive failure rate were recorded. Statistical analysis was performed using ANOVA and Tukey tests (strength values) and Chi squared test (ARI Scores). Results. Noncontaminated enamel surfaces showed the highest bond strengths for both brackets and buttons. Under water and saliva contamination orthodontic brackets groups showed significantly lower shear strengths than disinclusion buttons groups. Significant differences in debond locations were found among the groups under the various enamel surface conditions. Conclusions. Water and saliva contamination of enamel during the bonding procedure lowers bond strength values, more with orthodontic brackets than with disinclusion buttons. PMID:23762825
Bond efficacy of recycled orthodontic brackets: A comparative in vitro evaluation of two methods.
Shetty, Vikram; Shekatkar, Yash; Kumbhat, Neesu; Gautam, G; Karbelkar, Shalan; Vandekar, Meghna
2015-01-01
Recycling of orthodontic brackets in developing orthodontic economies is an extremely common procedure. Bonding protocols and reliability of these brackets is, however, questionable, and still the subject of research. The aim was to evaluate and compare the shear bond strength of brackets recycled with sandblasting and silicoating. Ninety extracted human premolars were bonded with 0.022" SS brackets (American Orthodontics, Sheboygan USA) and then debonded. The debonded brackets were divided into three groups of 30 each. Group I: Sandblasting with 50-μm aluminum oxide (control group) Group II: Sandblasting with 50-μm aluminum oxide followed by metal primer application Group III: Silicoating with 30-μm Cojet sand followed by silane application and rebonded with Transbond XT. The sandblasted brackets and silicoated brackets were viewed under the scanning electron microscope, immediately after surface conditioning before rebonding. The shear bond strength with each group was tested. One-way analysis of variance, post-hoc Scheffe multiple comparison tests. The results showed that sandblasting created more irregularities and deeper erosions while silica coating created superficial irregularities and shallow erosions.
A novel biomimetic orthodontic bonding agent helps prevent white spot lesions adjacent to brackets.
Manfred, Lauren; Covell, David A; Crowe, Jennifer J; Tufekci, Eser; Mitchell, John C
2013-01-01
To compare changes in enamel microhardness adjacent to orthodontic brackets after using bonding agents containing various compositions of bioactive glass compared to a traditional resin adhesive following a simulated caries challenge. Extracted human third molars (n = 10 per group) had orthodontic brackets bonded using one of four novel bioactive glass (BAG)-containing orthodontic bonding agents (BAG-Bonds) or commercially available Transbond-XT. The four new adhesives contained BAG in varying percentages incorporated into a traditional resin monomer mixture. Teeth were cycled through low-pH demineralizing and physiologic-pH remineralizing solutions once each day over 14 days. Microhardness was measured on longitudinal sections of the teeth 100, 200, and 300 µm from the bracket edge and beneath the brackets, at depths of 25 to 200 µm from the enamel surface. Normalized hardness values were compared using three-way analysis of variance. Significantly less reduction in enamel microhardness was found with the experimental adhesives at depths of 25 and 50 µm at all distances from the bracket edge. In all groups, there were no significant changes in enamel microhardness past 125-µm depth. Results varied with the different BAG-Bonds, with 81BAG-Bond showing the smallest decrease in enamel microhardness. The BAG-Bonds tested in this study showed a reduction in the amount of superficial enamel softening surrounding orthodontic brackets compared to a traditional bonding agent. The results indicate that clinically, BAG-Bonds may aid in maintaining enamel surface hardness, therefore helping prevent white spot lesions adjacent to orthodontic brackets.
Development of an easy-debonding orthodontic adhesive using thermal heating.
Tsuruoka, Takashi; Namura, Yasuhiro; Shimizu, Noriyoshi
2007-01-01
We produced experimentally a new bonding material that consisted of a mixture of a base resin (4-META/MMA-TBB resin adhesive) and thermoexpandable microcapsules for safe, easy debonding. Microcapsules in the base resin would start expansion at 80 degrees C, leading to a remarkable decrease in bond strength. Stainless steel brackets were bonded to bovine permanent mandibular incisors using bonding materials containing the microcapsules at different contents. After thermal cycling or heating, the shear bond strength of the brackets was measured. Shear bond strength of the bonding materials containing 30-40 wt% microcapsules decreased to about one-third or one-fifth that of the base resin on heating. Heating the brackets for eight seconds increased the temperature in the pulp chamber by 2 degrees C, which should not induce pulp damage. Results obtained suggested that the new bonding material should prove useful for removing brackets easily at the time of bracket debonding without any pain or enamel cracks, while maintaining the bonding strength during active orthodontic treatment.
Montero, Manuela M Haro; Vicente, Ascensión; Alfonso-Hernández, Noelia; Jiménez-López, Manuel; Bravo-González, Luis-Alberto
2015-05-01
To evaluate in vitro the shear bond strength of brackets recycled by sandblasting with aluminum oxide particles of different sizes or reconditioned industrially after successive rebonding. Eighty brackets were bonded and debonded sequentially three times. After the first debonding, brackets were divided into four groups: (group 1) sandblasting with aluminum oxide particles of 25 μ, (group 2) 50 μ, and (group 3) 110 μ, and (group 4) industrial recycling. Bond strength and adhesive material remaining on debonded bracket bases were evaluated for each successive debond. No significant differences were detected between the four groups following the first recycle (P > .05). After the second recycle, bond strength was significantly greater for the industrially recycled group than the other groups (P < .016). When shear bond strength was compared within each recycling method, the bond strength of sandblasted brackets decreased with the increase of particle size and with each recycle; for the industrially recycled group, no significant differences were detected between the three sequences (P > .016). In the evaluation of bond material remnant, the industrially recycled group left significantly less bond material after successive recycling than the other groups did (P < .016). Within each recycling method, the adhesive remnant decreased significantly after successive debond (P < .016). Industrial recycling obtained better results than sandblasting after three successive debondings. The brackets' shear bond strength decreased as the size of the aluminum oxide particle used for sandblasting increased and as recycling was repeated.
Ergas, R P; Hondrum, S O; Mathieu, G P; Koonce, J D
1995-01-01
The adhesive monomer, Clearfil New Bond, was used to enhance the bond strength between orthodontic brackets and primary molars, premolars, and NiCr crowns. Twenty specimens of each had this dental adhesive applied according to the manufacturer's instructions in addition to a chemically cured composite material. The remaining specimens (20 each) were bonded without the adhesive monomer. Shear bond strengths were determined using a universal testing machine. Fracture sites were examined to determine the type of bond failure. All bond strengths were significantly increased with the addition of Clearfil New Bond (P < or = 0.0001). The shear bond strength to NiCr crowns with the addition of the adhesive monomer was 7.76 kg. This is comparable to the shear bond strength observed for primary molars (8.66 kg) and premolars (8.65 kg) without adhesive monomer. The observed decrease in adhesive bond failures with the addition of Clearfil New Bond indicated a stronger shear bond strength between the tooth surface and the bracket base. Clearfil New Bond can significantly increase the shear bond strength of orthodontic brackets to both primary molars and premolars. Additionally, it was shown that orthodontic brackets can be successfully bonded to Ni-Cr crowns at strengths comparable to primary or permanent enamel.
Arash, Valiollah; Javanmard, Saeed; Eftekhari, Zeinab; Rahmati-Kamel, Manouchehr; Bahadoram, Mohammad
2015-01-01
This research aimed to reduce the friction between the wire and brackets by Er:YAG laser. To measure the friction between the wires and brackets in 0° and 10° of wire angulations, 40 polycrystalline ceramic brackets (Hubit, South Korea) were divided into 8 study groups and irradiated by 100, 200, and 300 mj/s of Er:YAG laser power. Two groups of brackets were not irradiated. The friction between the wires and brackets was measured with universal testing machine (SANTAM) with a segment of .019 × .025 SS wire pulled out of the slot of bracket. ANOVA and t-test were used for analyzing the results. To evaluate the effect of the laser on surface morphology of the bracket, SEM evaluations were carried out. The mean frictional resistances between the brackets and wires with 0° of angulation by increasing the laser power decreased compared with control group, but, in 10° of angulation, the friction increased regardless of the laser power and was comparable to the friction of nonirradiated brackets. Furthermore, with each laser power, frictional resistance of brackets in 10° of angulation was significantly higher than 0° of angulation. These results were explained by SEM images too.
Vahid Dastjerdi, Elahe; Khaloo, Negar; Mojahedi, Seyed Masoud; Azarsina, Mohadese
2015-11-01
Bleaching treatments decrease shear bond strength between orthodontic brackets and teeth; although definite results have not been reported in this regard. This study determined the effects of different bleaching protocols on the shear bond strength of orthodontic brackets to teeth. This experimental study was performed in Iran. Forty-eight extracted human premolars were randomly assigned into four groups. In the control group, no bleaching treatment was performed. In groups 2 - 4, the bleaching procedures were performed using carbamide peroxide 45%, carbamide peroxide 20% and diode laser, respectively. Two weeks later, brackets were bonded to teeth and thermocycled. The shear bond strengths of the brackets to the teeth were measured. Data was analyzed by one-way ANOVA and Dunnett post-hoc test. Shear bond strength of the brackets to the teeth were 10.54 ± 1.51, 6.37 ± 0.92, 7.67 ± 1.01 and 7.49 ± 1.19 MPa, in groups 1 - 4, respectively. Significant differences were found between control group and all other groups (P < 0.001); and also between groups 2 and 3 (P < 0.05). No significant differences were found between the other groups. The bleaching procedures using 20% carbamide peroxide and 45% carbamide peroxide and diode laser significantly decreased shear bond strength of brackets to the teeth. 45% carbamide peroxide had a more significant effect on bond strength compared to 20% carbamide peroxide. The difference in bond strength was not significant between laser group and either carbamide peroxide groups.
The Effect on Final Bond Strength of Bracket Manipulation Subsequent To Initial Positioning
NASA Astrophysics Data System (ADS)
Beebe, David A.
The shear bond strength of light activated orthodontic adhesives varies according to the composition of the material, placement protocol, and time prior to light curing. Manipulating brackets after their initial placement on a tooth can disrupt the adhesive's polymerization and compromise final bond strength. No previous research has investigated how a specific degree of manipulation, and the amount of time elapsed prior to curing, under specific lighting conditions, affects the orthodontic adhesives shear bond strength. Victory SeriesRTM, MBT prescription, premolar (3M Unitek, Monrovia, CA) orthodontic brackets were bonded using three different adhesives to sixty (60) bicuspids and varying the time after bracket manipulation before curing. The shear bond strength was calculated for each specimen. The brackets were debonded and the same teeth were rebonded with new, identical brackets, using the same protocol and under the same conditions. The results showed a statistically significant difference between the shear bond strength of Transbond XT and Grengloo, with Transbond XT having the highest strength. There was also a statistically significance difference in bond strength between the group cured 30 seconds after manipulation and the groups manipulated at different intervals prior to curing, with the 30 second group having the highest bond strength. This study confirms that various orthodontic adhesives have different bond strengths depending on manipulation and varying times prior to curing each adhesive.
Orthodontic bracket bonding without previous adhesive priming: A meta-regression analysis.
Altmann, Aline Segatto Pires; Degrazia, Felipe Weidenbach; Celeste, Roger Keller; Leitune, Vicente Castelo Branco; Samuel, Susana Maria Werner; Collares, Fabrício Mezzomo
2016-05-01
To determine the consensus among studies that adhesive resin application improves the bond strength of orthodontic brackets and the association of methodological variables on the influence of bond strength outcome. In vitro studies were selected to answer whether adhesive resin application increases the immediate shear bond strength of metal orthodontic brackets bonded with a photo-cured orthodontic adhesive. Studies included were those comparing a group having adhesive resin to a group without adhesive resin with the primary outcome measurement shear bond strength in MPa. A systematic electronic search was performed in PubMed and Scopus databases. Nine studies were included in the analysis. Based on the pooled data and due to a high heterogeneity among studies (I(2) = 93.3), a meta-regression analysis was conducted. The analysis demonstrated that five experimental conditions explained 86.1% of heterogeneity and four of them had significantly affected in vitro shear bond testing. The shear bond strength of metal brackets was not significantly affected when bonded with adhesive resin, when compared to those without adhesive resin. The adhesive resin application can be set aside during metal bracket bonding to enamel regardless of the type of orthodontic adhesive used.
In vitro analysis of shear bond strength and adhesive remnant index of different metal brackets
Henkin, Fernanda de Souza; de Macêdo, Érika de Oliveira Dias; Santos, Karoline da Silva; Schwarzbach, Marília; Samuel, Susana Maria Werner; Mundstock, Karina Santos
2016-01-01
ABSTRACT Introduction: There is a great variety of orthodontic brackets in the Brazilian market, and constantly evaluating them is critical for professionals to know their properties, so as to be able to choose which product best suits their clinical practice. Objectives: To evaluate the bond strength and the adhesive remnant index (ARI) of different brands of metal brackets. Material and Methods: A total of 105 bovine incisors were used, and brackets of different brands were bonded to teeth. Seven different bracket brands were tested (MorelliTM, American OrthodonticsTM, TP OrthodonticsTM, Abzil-3MTM, OrthometricTM, TecnidentTM and UNIDENTM). Twenty-four hours after bonding, shear bond strength test was performed; and after debonding, the ARI was determined by using an optical microscope at a 10-fold increase. Results: Mean shear bond strength values ranged from 3.845 ± 3.997 (MorelliTM) to 9.871 ± 5.106 MPa (TecnidentTM). The majority of the ARI index scores was 0 and 1. Conclusion: Among the evaluated brackets, the one with the lowest mean shear bond strength values was MorelliTM. General evaluation of groups indicated that a greater number of bond failure occurred at the enamel/adhesive interface. PMID:28125142
Jung, Woo-Sun; Yang, Il-Hyung; Lim, Won Hee; Baek, Seung-Hak; Kim, Tae-Woo; Ahn, Sug-Joon
2015-12-01
To analyze in vivo mutans streptococci (MS) adhesion to self-ligating ceramic brackets [Clarity-SL (CSL) and Clippy-C (CC)] and the relationships between bacterial adhesion and oral hygiene indices. Four central incisor brackets from the maxilla and mandible were collected from 40 patients (20 patients per each bracket type) at debonding immediately after plaque and gingival indices were measured. Adhesions of Streptococcus mutans, S. sobrinus, and total bacteria were quantitatively determined using real-time polymerase chain reaction after genomic DNA was extracted. Factorial analysis of variance was used to analyze bacterial adhesion to the brackets with respect to the bracket type and jaw position. Correlation coefficients were calculated to determine the relationships of bacterial adhesion to oral hygiene indices. Adhesion of total bacteria and S. mutans to CSL was higher than that to CC (P < 0.001). Adhesion of total bacteria to the mandibular brackets was higher than that to the maxillary ones (P < 0.001), while adhesion of S. mutans to the maxillary brackets were higher than that in the mandibular ones (P < 0.001). In particular, the proportion of S. mutans to total bacteria in CSL was higher than CC (P < 0.05) in the maxillary anterior teeth (P < 0.001). There were no significant differences in adhesion of S. sobrinus between the brackets and jaw positions. Interestingly, no significant relationships were found between bacterial adhesions and oral hygiene indices. Complex bracket configurations may significantly influence bacterial adhesion to orthodontic brackets. Further in vivo study using bracket raw materials will help to define the relationships between bacteria adhesion and enamel demineralization. Because oral hygiene indices were not significantly correlated with adhesions of MS to self-ligating ceramic brackets, careful examinations around the brackets should be needed to prevent enamel demineralization, regardless of oral hygiene status. © The Author 2015. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Alrejaye, Najla; Pober, Richard; Giordano Ii, Russell
2017-01-01
To fabricate orthodontic brackets from esthetic materials and determine their fracture resistance during archwire torsion. Computer-aided design/computer-aided manufacturing technology (Cerec inLab, Sirona) was used to mill brackets with a 0.018 × 0.025-inch slot. Materials used were Paradigm MZ100 and Lava Ultimate resin composite (3M ESPE), Mark II feldspathic porcelain (Vita Zahnfabrik), and In-Ceram YZ zirconia (Vita Zahnfabrik). Ten brackets of each material were subjected to torque by a 0.018 × 0.025-inch stainless steel archwire (G&H) using a specially designed apparatus. The average moments and degrees of torsion necessary to fracture the brackets were determined and compared with those of commercially available alumina brackets, Mystique MB (Dentsply GAC). The YZ brackets were statistically significantly stronger than any other tested material in their resistance to torsion (P < .05). The mean torques at failure ranged from 3467 g.mm for Mark II to 11,902 g.mm for YZ. The mean torsion angles at failure ranged from 15.3° to 40.9°. Zirconia had the highest torsional strength among the tested esthetic brackets. Resistance of MZ100 and Lava Ultimate composite resin brackets to archwire torsion was comparable to commercially available alumina ceramic brackets.
Baherimoghadam, Tahreh; Akbarian, Sahar; Rasouli, Reza; Naseri, Navid
2016-01-01
To evaluate shear bond strength (SBS) of the orthodontic brackets bonded to fluorosed and nonfluorosed teeth using Light Bond with and without adhesion promoters and compare their enamel damages following debonding. In this study, 30 fluorosed (Thylstrup and Fejerskov Index = 4-5) and 30 nonfluorosed teeth were randomly distributed between two subgroups according to the bonding materials: Group 1, fluorosed teeth bonded with Light Bond; Group 2, fluorosed teeth bonded with adhesion promoters and Light Bond; Group 3, nonfluorosed teeth bonded with Light Bond; Group 4, nonfluorosed bonded with adhesion promoters and Light Bond. After bonding, the SBS of the brackets was tested with a universal testing machine. Stereomicroscopic evaluation was performed by unbiased stereology in all teeth to determine the amount of adhesive remnants and the number and length of enamel cracks before bonding and after debonding. The data were analyzed using two-way analysis of variance, Kruskal-Wallis, Wilcoxon Signed Rank, and Mann-Whitney test. While fluorosis reduced the SBS of orthodontic bracket (P = 0.017), Enhance Locus Ceruleus LC significantly increased the SBS of the orthodontic bracket in fluorosed and nonfluorosed teeth (P = 0.039). Significant increasing in the number and length of enamel crack after debonding was found in all four groups. There were no significant differences in the length of enamel crack increased after debonding among four groups (P = 0.768) while increasing in the number of enamel cracks after debonding was significantly different among the four groups (P = 0.023). Teeth in Group 2 showed the highest enamel damages among four groups following debonding. Adhesion promoters could improve the bond strength of orthodontic brackets, but conservative debonding methods for decreasing enamel damages would be necessary.
Endo, Toshiya; Ishida, Rieko; Komatsuzaki, Akira; Sanpei, Shinya; Tanaka, Satoshi; Sekimoto, Tsuneo
2014-01-01
Objective: The purpose of this study was to assess the effects of long-term repeated topical application of fluoride before bonding and an adhesion promoter on the bond strength of orthodontic brackets. Materials and Methods: A total of 76 bovine incisors were collected and divided equally into four groups. In group 1, the brackets were bonded without topical fluoride application or adhesion promoter. In group 2, before bonding, the adhesion promoter was applied to nonfluoridated enamel. In group 3, the brackets were bonded without the application of the adhesion promoter to enamel, which had undergone long-term repeated topical fluoride treatments. Teeth in group 4 received the long-term repeated topical applications of fluoride, and the brackets were bonded using the adhesion promoter. All the brackets were bonded using BeautyOrtho Bond self-etching adhesive. The shear bond strength was measured and the bond failure modes were evaluated with the use of the adhesive remnant index (ARI) after debonding. Results: The mean shear bond strength was significantly lower in group 3 than in groups 1, 2, and 4, and there were no significant differences between the groups except for group 3. There were significant differences in the distribution of ARI scores between groups 2 and 3, and between groups 3 and 4. Conclusions: The adhesion promoter can recover the bond strength reduced by the long-term repeated topical applications of fluoride to the prefluoridation level and had a significantly great amount of adhesives left on either fluoridated or nonfluoridated enamel. PMID:25512720
Bergamo, Ana Zn; Nelson-Filho, Paulo; Romano, Fábio L; da Silva, Raquel Ab; Saraiva, Maria Cp; da Silva, Lea Ab; Matsumoto, Mirian An
2016-12-01
The aim of this study was to evaluate the alterations on plaque index (PI), gingival index (GI), gingival bleeding index (GBI), and gingival crevicular fluid (GCF) volume after use of three different brackets types for 60 days. Setting Participants: The sample comprised 20 patients of both sexes aged 11-15 years (mean age: 13.3 years), with permanent dentition, adequate oral hygiene, and mild tooth crowding, overjet, and overbite. A conventional metallic bracket Gemini™, and two different brands of self-ligating brackets - In-Ovation ® R and SmartClip™ - were bonded to the maxillary incisors and canines. PI, GI, GBI scores, and GCF volume were measured before and 30 and 60 days after bonding of the brackets. Data were analysed statistically using non-parametric tests coefficient at a 5% significance level. There was no statistically significant correlation (P > 0.05) between tooth crowding, overjet, and overbite and the PI, GI, GBI scores, and GCF volume before bonding, indicating no influence of malocclusion on the clinical parameters. Regardless of the bracket design, no statistically significant difference (P > 0.05) was found for GI, GBI scores. PI and GCF volume showed a significant difference among the brackets in different periods. In pairwise comparisons a significant difference was observed when compared before with 60 days after bonding, for the teeth bonded with SmartClip™ self-ligating bracket, (PI P = 0.009; GCF volume P = 0.001). There was an increase in PI score and GCF volume 60 days after bonding of SmartClip™ self-ligating brackets, indicating the influence of bracket design on these clinical parameters.
Bracket debonding by mid-infrared laser radiation
NASA Astrophysics Data System (ADS)
Jelínková, H.; Šulc, J.; Dostálová, T.; Koranda, P.; Němec, M.; Hofmanova, P.
2009-03-01
The purpose of the study was to determine the proper laser radiation for ceramic bracket debonding and the investigation of the tooth root temperature injury. The debonding was investigated by diode-pumped continuously running Tm:YAP and Nd:YAG lasers, and by GaAs laser diode generating radiation with the wavelengths 1.997 μm, 1.444 μm, and 0.808 μm, respectively. The possibility of brackets removal by laser radiation was investigated together with the tooth and, it specifically, root temperature rise. From the results it follows that continuously running diode pumped Tm:YAG or Nd:YAG laser generating wavelengths 1.997 μm or 1.444 μm, respectively, having the output power 1 W can be good candidates for ceramic brackets debonding.
A retrospective survey of the causes of bracket- and tube-bonding failures.
Roelofs, Tom; Merkens, Nico; Roelofs, Jeroen; Bronkhorst, Ewald; Breuning, Hero
2017-01-01
To investigate the causes of bonding failures of orthodontic brackets and tubes and the effect of premedicating for saliva reduction. Premedication with atropine sulfate was administered randomly. Failure rate of brackets and tubes placed in a group of 158 consecutive patients was evaluated after a mean period of 67 weeks after bonding. The failure rate in the group without atropine sulfate premedication was 2.4%. In the group with premedication, the failure rate was 2.7%. The Cox regression analysis of these groups showed that atropine application did not lead to a reduction in bond failures. Statistically significant differences in the hazard ratio were found for the bracket regions and for the dental assistants who prepared for the bonding procedure. Premedication did not lead to fewer bracket failures. The roles of the dental assistant and patient in preventing failures was relevant. A significantly higher failure rate for orthodontic appliances was found in the posterior regions.
Influence of the bracket on bonding and physical behavior of orthodontic resin cements.
Bolaños-Carmona, Victoria; Zein, Bilal; Menéndez-Núñez, Mario; Sánchez-Sánchez, Purificación; Ceballos-García, Laura; González-López, Santiago
2015-01-01
The aim of the study is to determine the influence of the type of bracket, on bond strength, microhardness and conversion degree (CD) of four resin orthodontic cements. Micro-tensile bond strength (µTBS) test between the bracket base and the cement was carried out on glass-hour-shaped specimens (n=20). Vickers Hardness Number (VHN) and micro-Raman spectra were recorded in situ under the bracket base. Weibull distribution, ANOVA and non-parametric test were applied for data analysis (p<0.05). The highest values of ή as well as the β Weibull parameter were obtained for metallic brackets with Transbond™ plastic brackets with the self-curing cement showing the worst performance. The CD was from 80% to 62.5%.
Prototype to measure bracket debonding force in vivo.
Tonus, Jéssika Lagni; Manfroi, Fernanda Borguetti; Borges, Gilberto Antonio; Grigolo, Eduardo Correa; Helegda, Sérgio; Spohr, Ana Maria
2017-02-01
Material biodegradation that occurs in the mouth may interfere in the bonding strength between the bracket and the enamel, causing lower bond strength values in vivo, in comparison with in vitro studies. To develop a prototype to measure bracket debonding force in vivo and to evaluate, in vitro, the bond strength obtained with the prototype. A original plier (3M Unitek) was modified by adding one strain gauge directly connected to its claw. An electronic circuit performed the reading of the strain gauge, and the software installed in a computer recorded the values of the bracket debonding force, in kgf. Orthodontic brackets were bonded to the facial surface of 30 bovine incisors with adhesive materials. In Group 1 (n = 15), debonding was carried out with the prototype, while tensile bond strength testing was performed in Group 2 (n = 15). A universal testing machine was used for the second group. The adhesive remnant index (ARI) was recorded. According to Student's t test (α = 0.05), Group 1 (2.96 MPa) and Group 2 (3.08 MPa) were not significantly different. ARI score of 3 was predominant in the two groups. The prototype proved to be reliable for obtaining in vivo bond strength values for orthodontic brackets.
Lu, Jing; Ding, Xiao-jun; Yu, Xiao-ping; Gong, Yi-ming
2015-10-01
To evaluate the effect of casein phosphopeptide-amorphouscalcium phosphate (CPP-ACP) treatment on the shear bond strength of orthodontic brackets after tooth bleaching. One hundred extracted human premolars were randomly divided and treated according to 5 groups (n=20) : (1) no treatment; (2) 10% carbamide peroxide bleaching; (3) 38% hydrogen peroxide bleaching; (4)10% carbamide peroxide bleaching and CPP-ACP paste; (5)38% hydrogen peroxide bleaching and CPP-ACP paste. In all groups, the brackets were bonded using a conventional acid-etch and bond system (Transbond XT, 3M Unitek, Monrovia, Calif). The shear bond strength adhesive remnant index (ARI) of the brackets were determined and the data was analyzed by ANOVA and Bonferroni test using SPSS13.0 software package. The use of 10% carbamide peroxide and 38% hydrogen peroxide bleaching significantly decreased the shear bond strength of orthodontic brackets when compared with untreated group (P<0.05). After combination of tooth bleaching and CPP-ACP treatment, group 4 (10% carbamide peroxide bleaching + CPP-ACP) and group 5 (38% hydrogen peroxide bleaching + CPP-ACP) showed higher levels of shear bond strength than group 2 and 3; however, no significant difference was found (P>0.05). The ARI did not show any significant difference before and after CPP-ACP treatment. After tooth bleaching, CPP-ACP treatment have little influence on the shear bond strength of orthodontic brackets.
Kanashiro, Lylian K; Robles-Ruíz, Julissa J; Ciamponi, Ana L; Medeiros, Igor S; Tortamano, André; Paiva, João B
2014-09-01
To determine the influence on shear bond strength and bond failure location of four cleaning methods for orthodontic bracket custom bases. In vitro laboratory study. Eighty bovine teeth were divided at random into four groups. The bracket custom bases were cleaned with different methods: group 1 with methyl methacrylate monomer, group 2 with acetone, group 3 with 50 μm aluminium oxide particles and group 4 with detergent. The brackets were indirectly bonded onto the teeth with the Sondhi Rapid-Set self-curing adhesive. The maximum required shear bond strength to debond the brackets was recorded. The bond failure location was evaluated using the Adhesive Remnant Index (ARI). One-way analysis of variance (ANOVA) analysis (P<0·05) was used to detect significant differences in the bond strength. Kaplan-Meier survival plots and log-rank test were done to compare the survival distribution between the groups. The Kruskal-Wallis test (P<0·05) was used to evaluate the differences in the ARI scores. The mean bond strengths in groups 1, 2, 3 and 4 were 23·7±5·0, 25·3±5·1, 25·6±3·7 and 25·7±4·2 MPa, respectively. There were no significant statistically differences in either the bond strength or the ARI score between the groups. The four custom base-cleaning methods presented the same efficiencies on indirect bond of the brackets; thus, practitioners can choose the method that works best for them. © 2014 British Orthodontic Society.
SBS vs Inhouse Recycling Methods-An Invitro Evaluation
Verma, Jaya Krishanan; Arun; Sundari, Shanta; Chandrasekhar, Shyamala; Kumar, Aravind
2015-01-01
Introduction In today’s world of economic crisis it is not feasible for an orthodontist to replace each and every debonded bracket with a new bracket- quest for an alternative thrives Orthodontist. The concept of recycling bracket for its reuse has evolved over a period of time. Orthodontist can send the brackets to various commercial recycling companies for recycling, but it’s impractical as these are complex procedures and require time and usage of a new bracket would seem more feasible. Thereby, in-house methods have been developed. The aim of the study was to determine the SBS (Shear Bond Strength) and to compare, evaluate the efficiency of in house recycling methods with that of the SBS of new brackets. Materials and Methods Five in–house-recycling procedures-Adhesive Grinding Method, Sandblasting Method, Thermal Flaming Method, Buchman method and Acid Bath Method were used in the present study. Initial part of the study included the use of UV/Vis spectrophotometer where in the absorption level of base of new stainless steel bracket is compared with the base of a recycled bracket. The difference seen in the UV absorbance can be attributed to the presence of adhesive remnant. For each recycling procedure the difference in UV absorption is calculated. New stainless steel brackets and recycled brackets were tested for its shear bond strength with Instron testing machine. Comparisons were made between shear bond strength of new brackets with that of recycled brackets. The last part of the study involved correlating the findings of UV/Vis spectrophotometer with the shear bond strength for each recycling procedure. Results Among the recycled brackets the Sandblasting technique showed the highest shear bond strength (19.789MPa) and the least was shown by the Adhesive Grinding method (13.809MPa). Conclusion The study concludes that sand blasting can be an effective choice among the 5 in house methods of recycling methods. PMID:26501002
Heravi, Farzin; Moazzami, Saied Mostafa; Ghaffari, Negin; Jalayer, Javad; Bozorgnia, Yasaman
2013-11-21
Although using light-cured composites for bonding orthodontic brackets has become increasingly popular, curing light cannot penetrate the metallic bulk of brackets and polymerization of composites is limited to the edges. Limited access and poor direct sight may be a problem in the posterior teeth. Meanwhile, effectiveness of the trans-illumination technique is questionable due to increased bucco-lingual thickness of the posterior teeth. Light-emitting diode (LED) light-curing units cause less temperature rise and lower risk to the pulpal tissue. The purpose of this study was to evaluate the clinical effectiveness of trans-illumination technique in bonding metallic brackets to premolars, using different light intensities and curing times of an LED light-curing unit. Sixty premolars were randomly divided into six groups. Bonding of brackets was done with 40- and 80-s light curing from the buccal or lingual aspect with different intensities. Shear bond strengths of brackets were measured using a universal testing machine. Data were analyzed by one-way analysis of variance test and Duncan's post hoc test. The highest shear bond belonged to group 2 (high intensity, 40 s, buccal) and the lowest belonged to group 3 (low intensity, 40 s, lingual). Bond strength means in control groups were significantly higher than those in experimental groups. In all experimental groups except group 6 (80 s, high intensity, lingual), shear bond strength was below the clinically accepted values. In clinical limitations where light curing from the same side of the bracket is not possible, doubling the curing time and increasing the light intensity during trans-illumination are recommended for achieving acceptable bond strengths.
Cacciafesta, Vittorio; Sfondrini, Maria Francesca; Melsen, Birte; Scribante, Andrea
2004-08-01
The purpose of this prospective longitudinal randomized study was to compare the clinical performance of recycled brackets with that of new stainless steel brackets (Orthos). Twenty patients treated with fixed appliances were included in the investigation. Using a 'split-mouth' design, the dentition of each patient was divided into four quadrants. In 11 randomly selected patients, the maxillary left and mandibular right quadrants were bonded with recycled brackets, and the remaining quadrants with new stainless steel brackets. In the other nine patients the quadrants were inverted. Three hundred and ten stainless steel brackets were examined: 156 were recycled and the remaining 154 were new. All the brackets were bonded with a self-cured resin-modified glass ionomer (GC Fuji Ortho). The number, cause, and date of bracket failures were recorded over 12 months. Statistical analysis was performed by means of a paired t-test, Kaplan-Meier survival estimates, and the log-rank test. No statistically significant differences were found between: (a) the total bond failure rate of recycled and new stainless steel brackets; (b) the upper and lower arches; (c) the anterior and posterior segments. These findings demonstrate that recycling metallic orthodontic brackets can be of benefit to the profession, both economically and ecologically, as long as the orthodontist is aware of the various aspects of the recycling methods, and that patients are informed about the type of bracket that will be used for their treatment.
Wu, Hai-miao; Zhao, Bin-jiao; Chen, Dong
2015-06-01
To compare the shear bond strength (SBS) of rebonded orthodontic metal brackets with different resin removal methods. Forty extracted premolars were chosen as samples and divided into 4 experimental groups. The teeth were bonded with brackets. The brackets from 3 groups were debonded while adhesive remnants were removed from bracket bases by methods of grinding, sandblasting, and direct flaming, respectively and then rebonded. The SBS values of all rebonded brackets were determined after pH cycling experiment for 30 days. Some rebonded bracket bases were selected and observed under scanning electron microscope (SEM). The data was analyzed by one-way ANOVA test using SPSS 13.0 software package. Statistical analysis revealed a significant difference of SBS values among the 4 experimental groups (P<0.05). The SBS values of the group by direct flaming was significantly lower compared to the other groups (P<0.05). There was no significant difference of SBS values among the other groups. The rebonded brackets after resin removal by grinding and sandblasting have a similar SBS compared to the initial brackets adhesive.
Pimentel, Roberta Ferreira; de Oliveira, Roberto Sotto Maior Fortes; Chaves, Maria das Graças Afonso Miranda; Elias, Carlos Nelson; Gravina, Marco Abdo
2013-01-01
To evaluate and compare "in vitro" the maximum friction force generated by three types of esthetic brackets, two types of polycrystalline conventional ceramic brackets (20/40 and InVu) and one type of sapphire monocrystalline bracket (Radiance) in dry and artificial saliva wet settings. Also, to evaluate the influence exerted by artificial saliva on the friction forces of those brackets. Tests were performed in dry and artificial saliva wet setting (Oral Balance) by using an EMIC DL 10000 testing machine, simulating a 2 mm slide of 0.019 x 0.025-in rectangular stainless steel wires over the pre-angulated and pre-torqued (right superior canine, Roth prescription, slot 0.022 x 0.030-in) brackets (n = 18 for each bracket). In order to compare groups in dry and wet settings, the ANOVA was used. For comparisons related to the dry versus wet setting, the student t test was used for each group. The results showed that in the absence of saliva the Radiance monocrystalline brackets showed the highest friction coefficients, followed by the 20/40 and the InVu polycrystalline brackets. In tests with artificial saliva, the Radiance and the 20/40 brackets had statistically similar friction coefficients and both were greater than that presented by the InVu brackets. The artificial saliva did not change the maximum friction force of the Radiance brackets, but, for the others (20/40 and InVu), an increase of friction was observed in its presence. The InVu brackets showed, in the absence and in the presence of saliva, the lowest friction coefficient.
The impact of chlorhexidine mouth rinse on the bond strength of polycarbonate orthodontic brackets.
Hussein, Farouk Ahmed; Hashem, Mohammed Ibrahim; Chalisserry, Elna P; Anil, Sukumaran
2014-11-01
The purpose of the current in-vivo study was to assess the effect of using 0.12% chlorhexidine (CHX) mouth rinse, before bonding, on shear bond strength of polycarbonate brackets bonded with composite adhesive. Eighteen orthodontic patients with a mean age 21.41 ± 1.2 years, who were scheduled to have 2 or more first premolars extracted, were included in this study. Patients were referred for an oral prophylaxis program which included, in part, the use of a mouth rinse. Patients were divided into 2 groups, a test group of 9 patients who used 0.12% CHX gluconate mouth rinse twice daily and a control group of 9 patients who used a mouth rinse without CHX, but with same color. After 1 week, polycarbonate brackets were bonded to first premolars with Transbond XT composite adhesive. Premolars were extracted after 28 days and tested for shear bond strength on a universal testing machine. Student's t-test was used to compare shear bond strengths of both groups. No statistically significant difference was found in bond strengths' values between both groups. The test group (with CHX) has mean shear bond strength of 14.21 ± 2.42 MPa whereas the control group (without CHX) revealed a mean strength of 14.52 ± 2.31 MPa. The use of 0.12% CHX mouth rinse, for one week before bonding, did not affect the shear bond strength of polycarbonate brackets bonded with Transbond composite. Furthermore, these brackets showed clinically acceptable bond strength.
Can 10% hydrofluoric acid be used for reconditioning of orthodontic brackets?
Pompeo, Daniela D; Rosário, Henrique D; Lopes, Beatriz Mv; Cesar, Paulo F; Paranhos, Luiz Renato
2016-01-01
Bracket debonding is a common problem during orthodontic treatment. This type of failure is associated to masticatory forces, poor adhesion, and the need for repositioning the piece. The objective of this work was to compare the shear bond strength of debonded brackets that were reconditioned using different protocols (alumina blasting versus hydrofluoric etching). This was an in vitro experimental study with 45 stainless steel orthodontic brackets. They were randomly divided into three groups: (1) New brackets (n = 15), (2) brackets reconditioned using 10% hydrofluoric acid for 60 s (n = 15), and (3) brackets reconditioned by aluminum oxide blasting until complete removal of the remaining resin (n = 15). In Groups 2 and 3, the insertion of composite resin proceeded in two stages to simulate a type of bracket failure in which the bonding resin was left at the bracket base. For the shear test, the assembly composed by the metallic support, and specimen was taken to the Instron universal testing machine in which the specimens were loaded using a semicircle-shaped active tip in the region of the bonding interface parallel to the surface of the bracket at a speed of 0.5 mm/min. The data were subjected to D'Agostino's normality test to have their distribution checked. Analysis of variance and Tukey's test (P < 0.01) were used to compare the findings between groups. The results indicated that Group 1 (new brackets) showed higher bond strength than that obtained for the group treated with hydrofluoric acid (Group 2, P < 0.01). The bond strength value obtained for the group treated with alumina blasting (Group 3) was statistically similar to those obtained for Groups 1 and 2. The aluminum oxide blasting technique was effective for the reconditioning of orthodontic brackets. Nevertheless, the reconditioning technique using 10% fluoridric acid for 60 s was not efficient for clinical use.
Prototype to measure bracket debonding force in vivo
Tonus, Jéssika Lagni; Manfroi, Fernanda Borguetti; Borges, Gilberto Antonio; Grigolo, Eduardo Correa; Helegda, Sérgio; Spohr, Ana Maria
2017-01-01
ABSTRACT Introduction: Material biodegradation that occurs in the mouth may interfere in the bonding strength between the bracket and the enamel, causing lower bond strength values in vivo, in comparison with in vitro studies. Objective: To develop a prototype to measure bracket debonding force in vivo and to evaluate, in vitro, the bond strength obtained with the prototype. Methods: A original plier (3M Unitek) was modified by adding one strain gauge directly connected to its claw. An electronic circuit performed the reading of the strain gauge, and the software installed in a computer recorded the values of the bracket debonding force, in kgf. Orthodontic brackets were bonded to the facial surface of 30 bovine incisors with adhesive materials. In Group 1 (n = 15), debonding was carried out with the prototype, while tensile bond strength testing was performed in Group 2 (n = 15). A universal testing machine was used for the second group. The adhesive remnant index (ARI) was recorded. Results: According to Student’s t test (α = 0.05), Group 1 (2.96 MPa) and Group 2 (3.08 MPa) were not significantly different. ARI score of 3 was predominant in the two groups. Conclusion: The prototype proved to be reliable for obtaining in vivo bond strength values for orthodontic brackets. PMID:28444011
NASA Astrophysics Data System (ADS)
Silva, P. C. G.; Porto-Neto, S. T.; Lizarelli, R. F. Z.; Bagnato, V. S.
2008-03-01
We have investigated if a new LEDs system has enough efficient energy to promote efficient shear and tensile bonding strength resistance under standardized tests. LEDs 470 ± 10 nm can be used to photocure composite during bracket fixation. Advantages considering resistance to tensile and shear bonding strength when these systems were used are necessary to justify their clinical use. Forty eight human extracted premolars teeth and two light sources were selected, one halogen lamp and a LEDs system. Brackets for premolar were bonded through composite resin. Samples were submitted to standardized tests. A comparison between used sources under shear bonding strength test, obtained similar results; however, tensile bonding test showed distinct results: a statistical difference at a level of 1% between exposure times (40 and 60 seconds) and even to an interaction between light source and exposure time. The best result was obtained with halogen lamp use by 60 seconds, even during re-bonding; however LEDs system can be used for bonding and re-bonding brackets if power density could be increased.
Viskic, Josko; Jokic, Drazen; Jakovljevic, Suzana; Bergman, Lana; Ortolan, Sladana Milardovic; Mestrovic, Senka; Mehulic, Ketij
2018-01-01
To evaluate the surface of glazed lithium disilicate dental ceramics after irradiation under different irradiation settings of Nd:YAG and Er:YAG lasers using a scanning electron microscope (SEM). Three glazed-press lithium disilicate ceramic discs were treated with HF, Er:YAG, and Nd:YAG, respectively. The laser-setting variables tested were laser mode, repetition rate (Hz), power (W), time of exposure (seconds), and laser energy (mJ). Sixteen different variable settings were tested for each laser type, and all the samples were analyzed by SEM at 500× and 1000× magnification. Surface analysis of the HF-treated sample showed a typical surface texture with a homogenously rough pattern and exposed ceramic crystals. Er:YAG showed no effect on the surface under any irradiation setting. The surface of Nd:YAG-irradiated samples showed cracking, melting, and resolidifying of the ceramic glaze. These changes became more pronounced as the power increased. At the highest power setting (2.25 W), craters on the surface with large areas of melted or resolidified glaze surrounded by globules were visible. However, there was little to no exposure of ceramic crystals or visible regular surface roughening. Neither Er:YAG nor Nd:YAG dental lasers exhibited adequate surface modification for bonding of orthodontic brackets on glazed lithium disilicate ceramics compared with the control treated with 9.5% HF.
[Individual indirect bonding technique (IIBT) using set-up model].
Kyung, H M
1989-01-01
There has been much progress in Edgewise Appliance since E.H. Angle. One of the most important procedures in edgewise appliance is correct bracket position. Not only conventional edgewise appliance but also straight wire appliance & lingual appliance cannot be used more effectively unless the bracket position is accurate. Improper bracket positioning may reveal much problems during treatment, especially in finishing state. It may require either rebonding after the removal of the malpositioned bracket or the greater number of arch wire and the more complex wire bending, causing much difficulty in performing effective treatments. This made me invent Individual Indirect Bonding Technique with the use of multi-purpose set-up model in order to determine a correct and objective bracket position according to individual patients. This technique is more accurate than former indirect bonding techniques in bracket positioning, because it decides the bracket position on a set-up model which has produced to have the occlusal relationship the clinician desired. This technique is especially effective in straight wire appliance and lingual appliance in which the correct bracket positioning is indispensible.
Color stability of ceramic brackets immersed in potentially staining solutions
Guignone, Bruna Coser; Silva, Ludimila Karsbergen; Soares, Rodrigo Villamarim; Akaki, Emilio; Goiato, Marcelo Coelho; Pithon, Matheus Melo; Oliveira, Dauro Douglas
2015-01-01
OBJECTIVE: To assess the color stability of five types of ceramic brackets after immersion in potentially staining solutions. METHODS: Ninety brackets were divided into 5 groups (n = 18) according to brackets commercial brands and the solutions in which they were immersed (coffee, red wine, coke and artificial saliva). The brackets assessed were Transcend (3M/Unitek, Monrovia, CA, USA), Radiance (American Orthodontics, Sheboygan, WI, USA), Mystique (GAC International Inc., Bohemia, NY, USA) and Luxi II (Rocky Mountain Orthodontics, Denver, CO, USA). Chromatic changes were analyzed with the aid of a reflectance spectrophotometer and by visual inspection at five specific time intervals. Assessment periods were as received from the manufacturer (T0), 24 hours (T1), 72 hours (T2), as well as 7 days (T3) and 14 days (T4) of immersion in the aforementioned solutions. Results were submitted to statistical analysis with ANOVA and Bonferroni correction, as well as to a multivariate profile analysis for independent and paired samples with significance level set at 5%. RESULTS: The duration of the immersion period influenced color alteration of all tested brackets, even though these changes could not always be visually observed. Different behaviors were observed for each immersion solution; however, brackets immersed in one solution progressed similarly despite minor variations. CONCLUSIONS: Staining became more intense over time and all brackets underwent color alterations when immersed in the aforementioned solutions. PMID:26352842
Shahabi, Mostafa; Salari, Soheil; Poosti, Maryam; Abtahi, Mostafa
2017-01-01
During sliding mechanics, the frictional force (FF) is an important counterforce to orthodontic tooth movement. The purpose of this in vitro study was to investigate the static and kinetic FFs of S silica-insert ceramic (SIC) brackets with Teflon-coated (TC) and conventional S stainless steel (SS) archwires. The target group of this study included 80 maxillary canine 0.022 inch slot SIC brackets. Forty SS brackets were used as the control. TC and conventional uncoated SS archwires of different dimensions (0.016, 0.018, 0.016 × 0.022, and 0.018 × 0.025 inch) were examined. All tests were carried out under artificial saliva injected condition. Scanning Electron Micrographs were prepared for two samples of coated and uncoated archwires. Analysis of variance and Tukey post hoc tests were used for statistical purposes (level of significance P < 0.05). SIC brackets showed significantly lower levels of FFs than SS brackets. TC archwires had greater frictional values than conventional uncoated ones. They also exhibited an unusual behavior of increasing kinetic FFs with time. Indentation and delamination of coating were obvious under scanning electron microscopy observations. From the standpoint of friction, SIC brackets may serve well, even better than SS brackets, in sliding mechanics. The coating layer of the archwires may delaminate and lost, causing an impediment to tooth movement.
Shahabi, Mostafa; Salari, Soheil; Poosti, Maryam; Abtahi, Mostafa
2017-01-01
Background: During sliding mechanics, the frictional force (FF) is an important counterforce to orthodontic tooth movement. The purpose of this in vitro study was to investigate the static and kinetic FFs of S silica-insert ceramic (SIC) brackets with Teflon-coated (TC) and conventional S stainless steel (SS) archwires. Materials and Methods: The target group of this study included 80 maxillary canine 0.022 inch slot SIC brackets. Forty SS brackets were used as the control. TC and conventional uncoated SS archwires of different dimensions (0.016, 0.018, 0.016 × 0.022, and 0.018 × 0.025 inch) were examined. All tests were carried out under artificial saliva injected condition. Scanning Electron Micrographs were prepared for two samples of coated and uncoated archwires. Analysis of variance and Tukey post hoc tests were used for statistical purposes (level of significance P < 0.05). Results: SIC brackets showed significantly lower levels of FFs than SS brackets. TC archwires had greater frictional values than conventional uncoated ones. They also exhibited an unusual behavior of increasing kinetic FFs with time. Indentation and delamination of coating were obvious under scanning electron microscopy observations. Conclusion: From the standpoint of friction, SIC brackets may serve well, even better than SS brackets, in sliding mechanics. The coating layer of the archwires may delaminate and lost, causing an impediment to tooth movement. PMID:29238380
Color stability of ceramic brackets immersed in potentially staining solutions.
Guignone, Bruna Coser; Silva, Ludimila Karsbergen; Soares, Rodrigo Villamarim; Akaki, Emilio; Goiato, Marcelo Coelho; Pithon, Matheus Melo; Oliveira, Dauro Douglas
2015-01-01
To assess the color stability of five types of ceramic brackets after immersion in potentially staining solutions. Ninety brackets were divided into 5 groups (n = 18) according to brackets commercial brands and the solutions in which they were immersed (coffee, red wine, coke and artificial saliva). The brackets assessed were Transcend (3M/Unitek, Monrovia, CA, USA), Radiance (American Orthodontics, Sheboygan, WI, USA), Mystique (GAC International Inc., Bohemia, NY, USA) and Luxi II (Rocky Mountain Orthodontics, Denver, CO, USA). Chromatic changes were analyzed with the aid of a reflectance spectrophotometer and by visual inspection at five specific time intervals. Assessment periods were as received from the manufacturer (T0), 24 hours (T1), 72 hours (T2), as well as 7 days (T3) and 14 days (T4) of immersion in the aforementioned solutions. Results were submitted to statistical analysis with ANOVA and Bonferroni correction, as well as to a multivariate profile analysis for independent and paired samples with significance level set at 5%. The duration of the immersion period influenced color alteration of all tested brackets, even though these changes could not always be visually observed. Different behaviors were observed for each immersion solution; however, brackets immersed in one solution progressed similarly despite minor variations. Staining became more intense over time and all brackets underwent color alterations when immersed in the aforementioned solutions.
Fan, Cun-Hui; Chen, Jie; Liu, Xin-Qiang; Ma, Xin
2005-08-01
To investigate the influence of different porcelain surface treatment methods on the shear bond strength of metal brackets bonded to porcelain. 80 porcelain facets were divided randomly into two groups according to different adhesive material that was used to bond metal brackets. Adhesive material were Jing-Jin enamel adhesive and light-cured composite resin. Each group was further divided into 4 subgroups according to different surface treatment methods, which were acid etching with 37% phosphoric acid (H3PO4), acid etching with 9.6% hydrofluoric acid (HF), deglazing by grinding and silanating the porcelain surface. All specimens were stored in 37 degrees C water for 24 hours and then the shear bond strength and the porcelain fracture after debonding was determined. The porcelain surfaces after HF etching, H3PO4 etching and deglazing by grinding were examined by scanning electron microscopy respectively. The shear bond strengths in the HF etching groups, the deglazing groups and the silanating groups were much greater than that in the phosphoric etching groups (P < 0.01). Adequate orthodontic bonding strength was achieved both when bonded with light-cured composite resin after deglazing by grinding and when bonded with either of these adhesives after HF etching or surface silanating. There were no differences in the rates of porcelain fractures among groups (P > 0.05). HF etching, deglazing by grinding and silanating can all increase the shear bond strength between metal bracket and porcelain. Surface silanating of porcelain is a better surface treatment when metal brackets bonded to porcelain.
Jithesh, C; Venkataramana, V; Penumatsa, Narendravarma; Reddy, S N; Poornima, K Y; Rajasigamani, K
2015-08-01
To determine and compare the potential difference of nickel release from three different orthodontic brackets, in different artificial pH, in different time intervals. Twenty-seven samples of three different orthodontic brackets were selected and grouped as 1, 2, and 3. Each group was divided into three subgroups depending on the type of orthodontic brackets, salivary pH and the time interval. The Nickel release from each subgroup were analyzed by using inductively coupled plasma-Atomic Emission Spectrophotometer (Perkin Elmer, Optima 2100 DV, USA) model. Quantitative analysis of nickel was performed three times, and the mean value was used as result. ANOVA (F-test) was used to test the significant difference among the groups at 0.05 level of significance (P < 0.05). The descriptive method of statistics was used to calculate the mean, standard deviation, minimum and maximum. SPSS 18 software ((SPSS.Ltd, Quarry bay, Hong Kong, PASW-statistics 18) was used to analyze the study. The analysis shows a significant difference between three groups. The study shows that the nickel releases from the recycled stainless steel brackets have the highest at all 4.2 pH except in 120 h. The study result shows that the nickel release from the recycled stainless steel brackets is highest. Metal slot ceramic bracket release significantly less nickel. So, recycled stainless steel brackets should not be used for nickel allergic patients. Metal slot ceramic brackets are advisable.
Jithesh, C.; Venkataramana, V.; Penumatsa, Narendravarma; Reddy, S. N.; Poornima, K. Y.; Rajasigamani, K.
2015-01-01
Objectives: To determine and compare the potential difference of nickel release from three different orthodontic brackets, in different artificial pH, in different time intervals. Materials and Methods: Twenty-seven samples of three different orthodontic brackets were selected and grouped as 1, 2, and 3. Each group was divided into three subgroups depending on the type of orthodontic brackets, salivary pH and the time interval. The Nickel release from each subgroup were analyzed by using inductively coupled plasma-Atomic Emission Spectrophotometer (Perkin Elmer, Optima 2100 DV, USA) model. Quantitative analysis of nickel was performed three times, and the mean value was used as result. ANOVA (F-test) was used to test the significant difference among the groups at 0.05 level of significance (P < 0.05). The descriptive method of statistics was used to calculate the mean, standard deviation, minimum and maximum. SPSS 18 software ((SPSS.Ltd, Quarry bay, Hong Kong, PASW-statistics 18) was used to analyze the study. Result: The analysis shows a significant difference between three groups. The study shows that the nickel releases from the recycled stainless steel brackets have the highest at all 4.2 pH except in 120 h. Conclusion: The study result shows that the nickel release from the recycled stainless steel brackets is highest. Metal slot ceramic bracket release significantly less nickel. So, recycled stainless steel brackets should not be used for nickel allergic patients. Metal slot ceramic brackets are advisable. PMID:26538924
Effect of Argon Laser on Enamel Demineralization around Orthodontic Brackets: An In Vitro Study
Miresmaeili, Amirfarhang; Etrati Khosroshahi, Mohammad; Motahary, Pouya; Rezaei-Soufi, Loghman; Mahjub, Hossein; Dadashi, Maryam; Farhadian, Nasrin
2014-01-01
Objective This study was designed to evaluate the effect of argon laser irradiation on development and progress of enamel demineralization around orthodontic brackets. Materials and Methods: Fifty caries-free, intact human premolars were randomly assigned to one of the following five equal groups: Groups 1 (control) and 2: The brackets were bonded using conventional halogen light for 40s and argon laser for 10s, respectively. Teeth in group 3 were lased with argon laser for 10s before bracket bonding with halogen light. Group 4 was the same as group 3 except that brackets were also bonded with argon laser. In group 5 samples were bonded conventionally, immersed in an artificial caries solution for two days and then irradiated for 10s with argon laser. All samples were subjected to demineralization by artificial caries solution for 10 days. After bracket removal, samples were buccolingually sectioned and evaluated by polarized light microscopy. Decalcified lesion depth in each section was measured by a trained examiner in a blind fashion. Data were analyzed in SPSS 14 using one-way ANOVA and Tukey’s HSD post hoc test. Results: The control group showed the greatest mean lesion depth while group 5 revealed the lowest. The laser-treated groups had significantly lower mean lesion depth compared with the control group (P<0.05) except for group 4 (P=0.192). Conclusion: Argon laser irradiation for 10s before or during bracket bonding can increase caries resistance of intact and demineralized enamel. PMID:25584052
Friction behavior of ceramic injection-molded (CIM) brackets.
Reimann, Susanne; Bourauel, Christoph; Weber, Anna; Dirk, Cornelius; Lietz, Thomas
2016-07-01
Bracket material, bracket design, archwire material, and ligature type are critical modifiers of friction behavior during archwire-guided movement of teeth. We designed this in vitro study to compare the friction losses of ceramic injection-molded (CIM) versus pressed-ceramic (PC) and metal injection-molded (MIM) brackets-used with different ligatures and archwires-during archwire-guided retraction of a canine. Nine bracket systems were compared, including five CIM (Clarity™ and Clarity™ ADVANCED, both by 3M Unitek; discovery(®) pearl by Dentaurum; Glam by Forestadent; InVu by TP Orthodontics), two PC (Inspire Ice by Ormco; Mystique by DENTSPLY GAC), and two MIM (discovery(®) and discovery(®) smart, both by Dentaurum) systems. All of these were combined with archwires made of either stainless steel or fiberglass-reinforced resin (remanium(®) ideal arch or Translucent pearl ideal arch, both by Dentaurum) and with elastic ligatures or uncoated or coated stainless steel (all by Dentaurum). Archwire-guided retraction of a canine was simulated with a force of 0.5 N in the orthodontic measurement and simulation system (OMSS). Friction loss was determined by subtracting the effective orthodontic forces from the applied forces. Based on five repeated measurements performed on five brackets each, weighted means were calculated and evaluated by analysis of variance and a Bonferroni post hoc test with a significance level of 0.05. Friction losses were significantly (p < 0.05) higher (58-79 versus 20-30 %) for the combinations involving the steel versus the resin archwire in conjunction with the elastic ligature. The uncoated steel ligatures were associated with the lowest friction losses with Clarity™ (13 %) and discovery(®) pearl (16 %) on the resin archwire and the highest friction losses with Clarity™ ADVANCED (53 %) and Mystique (63 %) on the steel archwire. The coated steel ligatures were associated with friction losses similar to the uncoated steel ligatures on the steel archwire. Regardless of ligature types, mild signs of abrasion were noted on the resin archwire. The lowest friction losses were measured with rounded ceramic brackets used with a stainless-steel ligature and the resin archwire. No critical difference to friction behavior was apparent between the various manufacturing technologies behind the bracket systems.
Shamsedin, Mana; Arash, Valiollah; Jahromi, Masoud Babaei; Moghadamnia, Ali Akbar; Kamel, Manouchehr Rahmati; Ezoji, Fariba; Bijani, Ali; Kavoli, Samira; Ghasemi, Tania; Ramezani, Gholamhossein
2017-01-01
To evaluate comparatively the effect of quercetin on postbleaching shear bond strength (SBS) and adhesive remnant index (ARI). Intact maxillary premolars were divided randomly into 12 groups of 10 each: (1) bonding the bracket immediately after bleaching, (2) bonding 1 week after bleaching, (3-8) application of three experimental concentrations of quercetin (0.1%, 0.5%, and 1%) at two time durations (5 and 10 min), (9-10) application of the solvent of quercetin at two time periods (5 and 10 min), (11) application of 10% sodium ascorbate for 10 min, and (12) bonding the brackets on nonbleached teeth. Bleaching was performed using 15% carbamide peroxide gel for 5 days (6 h daily). After incubation and thermocycling, the SBS of brackets was measured. The ARI too was recorded at ×20. The data were analyzed statistically (α =0.05). Bleaching reduced the SBS below 10 Megapascal (MPa) level ( P < 0.05) while all the postbleaching treatments (except the application of the solvent of quercetin) recovered the SBS back to values greater than 10 MPa ( P < 0.05) and also back to nonbleached SBS levels ( P > 0.01). All eight postbleaching treatments had rather similar efficacies ( P = 0.1396). The concentration of quercetin (beta = 0.259, P = 0.042) but not its duration (beta = 0.213, P = 0.093) significantly improved its efficacy. Bleaching can weaken the bond strength of orthodontic brackets below acceptable levels. The application of quercetin or Vitamin C or delaying the bracket bonding improved the postbleaching SBS.
Endo, Toshiya; Ozoe, Rieko; Sanpei, Sugako; Shinkai, Koichi; Katoh, Yoshiroh; Shimooka, Shohachi
2008-07-01
The purposes of this study were to evaluate the effects of different degrees of water contamination on the shear bond strength of orthodontic brackets bonded to dental enamel with a moisture-insensitive primer (MIP) adhesive system and to compare the modes of bracket/adhesive failure. A total of 68 human premolars were divided into four groups by primers and enamel surface conditions (desiccated, blot dry, and overwet). In group I, the hydrophobic Transbond XT primer adhesive system was used under desiccated conditions for bonding the brackets; in group II, the hydrophilic Transbond MIP adhesive system was used under desiccated conditions; in group III, the hydrophilic Transbond MIP adhesive system was used under blot dry conditions; and in group IV, the hydrophilic Transbond MIP adhesive system was used under overwet conditions. Shear bond strength was measured with a universal testing machine, and the mode of bracket/adhesive failure was determined according to the adhesive remnant index. The mean shear bond strengths were not significantly different among groups I, II, and III, and were higher than the clinically required range of 6 to 8 MPa. The mean shear bond strength achieved in group IV was significantly lower than that achieved in groups I, II, and III, and also lower than the clinically required values. Bond failure occurred at the enamel-adhesive interface more frequently in group IV than in groups I and III. To achieve clinically sufficient bond strengths with the hydrophilic MIP adhesive system, excess water should be blotted from the water-contaminated enamel surface.
Enamel cracks evaluation - A method to predict tooth surface damage during the debonding.
Dumbryte, Irma; Jonavicius, Tomas; Linkeviciene, Laura; Linkevicius, Tomas; Peciuliene, Vytaute; Malinauskas, Mangirdas
2015-01-01
The objective of this in vitro study was to evaluate the effect of the enamel cracks on the tooth damage during the debonding. Measurements of the cracks characteristics (visibility, direction, length, and location) were performed utilizing a scanning electron microscopy (SEM) technique and mathematically derived formulas (x=h/30, l=n*x) before and following the removal of mechanically retained metal and ceramic brackets. The likelihood of having greater extent enamel defects was higher for the teeth with pronounced cracks (odds vatios, OR=3.728), increased when the crack was located in more than one zone of the tooth (OR=1.998), and the inclination did not exceed 30-45° (OR=0.505). Using ceramic brackets the risk of greater amount tooth structure defects raised 1.45 times (OR=1.450). Enamel crack showing all these characteristics at the beginning of the orthodontic treatment and the use of ceramic brackets might predispose to higher risk of greater extent tooth surface damage after the debonding by 20.4%.
Transparent magnesium aluminate spinel: a prospective biomaterial for esthetic orthodontic brackets.
Krishnan, Manu; Tiwari, Brijesh; Seema, Saraswathy; Kalra, Namitha; Biswas, Papiya; Rajeswari, Kotikalapudi; Suresh, Madireddy Buchi; Johnson, Roy; Gokhale, Nitin M; Iyer, Satish R; Londhe, Sanjay; Arora, Vimal; Tripathi, Rajendra P
2014-11-01
Adult orthodontics is recently gaining popularity due to its importance in esthetics, oral and general health. However, none of the currently available alumina or zirconia based ceramic orthodontic brackets meet the esthetic demands of adult patients. Inherent hexagonal lattice structure and associated birefringence limits the visible light transmission in polycrystalline alumina and make them appear white and non transparent. Hence focus of the present study was to assess the feasibility of using magnesium aluminate (MgAl2O4) spinel; a member of the transparent ceramic family for esthetic orthodontic brackets. Transparent spinel specimens were developed from commercially available white spinel powder through colloidal shaping followed by pressureless sintering and hot isostatic pressing at optimum conditions of temperature and pressure. Samples were characterized for chemical composition, phases, density, hardness, flexural strength, fracture toughness and optical transmission. Biocompatibility was evaluated with in-vitro cell line experiments for cytotoxicity, apoptosis and genotoxicity. Results showed that transparent spinel samples had requisite physico-chemical, mechanical, optical and excellent biocompatibility for fabricating orthodontic brackets. Transparent spinel developed through this method demonstrated its possibility as a prospective biomaterial for developing esthetic orthodontic brackets.
Comparison of frictional resistance of esthetic and semi-esthetic self-ligating brackets
Kannan, M. S.; Murali, R. V.; Kishorekumar, S.; Gnanashanmugam, K.; Jayanth, V.
2015-01-01
Aim: The frictional resistance encountered during sliding mechanics has been well established in the orthodontic literature, and it consists of complex interactions between the bracket, archwire, and method of ligation the claim of reduced friction with self-ligating brackets is often cited as a primary advantage over conventional brackets. This study was done to compare and evaluate the frictional forces generated between fully esthetic brackets and semi-aesthetic self-ligating brackets, which are of passive form and SEM (scanning electron microscope) study of the Brackets after Frictional evaluation. Materials and Methods: Two types of self-ligating esthetic brackets, Damon clear (Ormco) made of fully ceramic and Opal (Ultradent Products, USA) and, Two types of self-ligating semi-esthetic brackets, Clarity SL (3M Unitek) and Damon 3 (Ormco) both of which are made of ceramic with metal slot. Arch wires with different dimensions and quality 17 × 25, 19 × 25 Titanium Molybdenum Alloy (TMA) and 17 × 25, 19 × 25 stainless steel that came from plain strands of wire were used for frictional comparison test. The brackets used in this study had 0.022 × 0.028 inch slot. Results: The statistical tests showed significantly smaller amount of kinetic frictional forces is generated by Damon 3 (semi-esthetic self-ligating brackets). For each wire used, Damon 3 displayed significantly lower frictional forces (P ≤ 0.05) than any of the self-ligating system, followed by Opal (fully esthetic self-ligating brackets) which generated smaller amount of frictional forces but relatively on the higher side when compared with Damon 3. Damon clear (fully esthetic self-ligating brackets) generated the maximum amount of kinetic forces with all types of wire dimensions and properties when compared to the other three types of self-ligating system. Clarity SL (semi-esthetic self-ligating brackets) generated smaller amount of frictional forces when compared with Damon clear and relatively higher amount of frictional forces when compared to Opal and Damon 3 PMID:26015687
Comparison of frictional resistance of esthetic and semi-esthetic self-ligating brackets.
Kannan, M S; Murali, R V; Kishorekumar, S; Gnanashanmugam, K; Jayanth, V
2015-04-01
The frictional resistance encountered during sliding mechanics has been well established in the orthodontic literature, and it consists of complex interactions between the bracket, archwire, and method of ligation the claim of reduced friction with self-ligating brackets is often cited as a primary advantage over conventional brackets. This study was done to compare and evaluate the frictional forces generated between fully esthetic brackets and semi-aesthetic self-ligating brackets, which are of passive form and SEM (scanning electron microscope) study of the Brackets after Frictional evaluation. Two types of self-ligating esthetic brackets, Damon clear (Ormco) made of fully ceramic and Opal (Ultradent Products, USA) and, Two types of self-ligating semi-esthetic brackets, Clarity SL (3M Unitek) and Damon 3 (Ormco) both of which are made of ceramic with metal slot. Arch wires with different dimensions and quality 17 × 25, 19 × 25 Titanium Molybdenum Alloy (TMA) and 17 × 25, 19 × 25 stainless steel that came from plain strands of wire were used for frictional comparison test. The brackets used in this study had 0.022 × 0.028 inch slot. The statistical tests showed significantly smaller amount of kinetic frictional forces is generated by Damon 3 (semi-esthetic self-ligating brackets). For each wire used, Damon 3 displayed significantly lower frictional forces (P ≤ 0.05) than any of the self-ligating system, followed by Opal (fully esthetic self-ligating brackets) which generated smaller amount of frictional forces but relatively on the higher side when compared with Damon 3. Damon clear (fully esthetic self-ligating brackets) generated the maximum amount of kinetic forces with all types of wire dimensions and properties when compared to the other three types of self-ligating system. Clarity SL (semi-esthetic self-ligating brackets) generated smaller amount of frictional forces when compared with Damon clear and relatively higher amount of frictional forces when compared to Opal and Damon 3.
Robaski, Aliden-Willian; Pamato, Saulo; Tomás-de Oliveira, Marcelo; Pereira, Jefferson-Ricardo
2017-07-01
The enamel condition and the quality of surface are points that need to be considered for achieving optimal efficiency in the treatment with orthodontic brackets. The aim of this study was to assess the immediate bond strength of metallic brackets cemented to dental. Forty human premolars were double-sectioned, placed in PVC matrices and randomly divided into 10 groups (n=8). They received artificial saliva contamination before or after the application of adhesive systems, except for the control groups. The metallic brackets were cemented using two orthodontic cements (Transbond™ Plus Color Change, 3M Unitek e Transbond™ XT Light, 3M Unitek). The specimens were subjected to mechanical shear bond strength testing and classified according to the fracture pattern. The results were analyzed using a two-way ANOVA and Tukey's test for multiple comparisons ( p <0.05). ANOVA analysis showed statistically significant differences between the groups ( p =0.01). The Tukey's multiple comparison test indicated statistically significant difference between G6 and G7 groups ( p <0.05). A high prevalence of adhesive failure in the groups receiving the hydrophobic adhesive system. The saliva contamination prior to the application of a hydrophobic simplified conventional adhesive system was responsible for decreasing the immediate bond strength values of brackets cemented on the dental enamel. Key words: Bonding, orthodontic brackets, shear bond strength, saliva, adhesive systems.
NASA Astrophysics Data System (ADS)
Leão, Juliana C.; Mota, Cláudia C. B. O.; Cassimiro-silva, Patricia F.; Gomes, Anderson S. L.
2016-02-01
This study aimed to evaluate the shear bond strength (SBS) of teeth prepared for orthodontic bracket bonding with 37% phosphoric acid and Er:YAG laser. Forty bovine incisors were divided into two groups. In Group I, the teeth were conditioned with 37% phosphoric acid and brackets were bonded with Transbond XT; in Group II, the teeth were irradiated with Er:YAG and bonding with Transbond XT. After SBS test, the adhesive remnant index was determined. Adhesion to dental hard tissues after Er:YAG laser etching was inferior to that obtained after acid etching but exceeded what is believed to be clinically sufficient strength, and therefore can be used in patients.
Al-Bazi, Samar M; Abbassy, Mona A; Bakry, Ahmed S; Merdad, Leena A; Hassan, Ali H
2016-01-01
The objectives of this study were to evaluate the effects of applying 0.50% chlorhexidine (CHX) gel using the dental drug delivery system (3DS) on salivary Streptococcus mutans (S. mutans) and on the surface topography of metal and ceramic orthodontic brackets. The study involved 20 orthodontic patients with high levels of salivary S. mutans. The patients were treated with professional mechanical tooth cleaning followed by application of 0.50% CHX using individual trays (3DS). Salivary S. mutans levels were repeatedly measured 1, 2, 4, and 8 weeks post-treatment. In vitro study utilized forty ceramic and metallic brackets that were immersed in 0.50% CHX gel for 10 min, whereas another untreated forty brackets served as controls. The frictional resistances of stainless steel wires to the brackets before and after CHX treatment were recorded using a universal testing machine. Scanning electron microscopy was used to compare changes in the surface topography of brackets. Statistical analyses were used to determine the effect of CHX on bacterial count and to evaluate the effect of CHX on frictional resistance. According to the results of this study, S. mutans levels were reduced significantly (P < 0.05). There were no significant changes in the frictional resistance and surface topography of brackets before or after application of CHX. (J Oral Sci 58, 35-42, 2016).
Effect of Quaternary Ammonium Salt on Shear Bond Strength of Orthodontic Brackets to Enamel
Ghadirian, Hannaneh; Geramy, Allahyar; Najafi, Farhood; Heidari, Soolmaz
2017-01-01
Objectives: This study sought to assess the effect of quaternary ammonium salt (QAS) on shear bond strength of orthodontic brackets to enamel. Materials and Methods: In this in vitro experimental study, 0, 10, 20 and 30% concentrations of QAS were added to Transbond XT primer. Brackets were bonded to 60 premolar teeth using the afore-mentioned adhesive mixtures, and the shear bond strength of the four groups (n=15) was measured using a universal testing machine. After debonding, the adhesive remnant index (ARI) score was determined under a stereomicroscope. Data were analyzed using one-way ANOVA. Results: The mean and standard deviation of shear bond strength of the control and 10%, 20% and 30% groups were 23.54±6.31, 21.81±2.82, 20.83±8.35 and 22.91±5.66 MPa, respectively. No significant difference was noted in shear bond strength of the groups (P=0.83). Study groups were not different in terms of ARI scores (P=0.80). Conclusions: The results showed that addition of QAS to Transbond XT primer had no adverse effect on shear bond strength of orthodontic brackets. PMID:29167688
Mavreas, Dimitrios; Cuzin, Jean-François; Boonen, Guillaume; Vande Vannet, Bart
2018-05-25
The aim of this paper was to compare failure differences in precious metal customized lingual brackets bonded with three adhesive systems. Also, differences in failure of non-precious metal brackets with and without a silicatized base layer bonded with the same adhesive, as well as the influence of enamel etching prior to using a self-etching dual cure resin were explored. Five different groups were defined in a semi-randomized approach. Group 1 (IME): Maxcem Elite with 378 Incognito brackets and etched teeth, Group 2 (IMNE): Maxcem Elite with 193 Incognito brackets on non-etched teeth, Group 3 (INE): Nexus+Excite with 385 Incognito brackets, Group 4 (IRE): Relyx with 162 Incognito brackets, Group 5 (HRME) and Group 6 (HNRME): Maxcem Elite with 182 Harmony brackets with silicatized and non-slicatized bases respectively. Bracket failures were recorded over a 12-month period. The number of failures during the observation period was small in the various adhesives types of groups, as well as in HRME and HNRME groups, and the comparisons among those groups were non-significant (P > 0.05). A statistically significant difference (P < 0.05) was found between the IME and IMNE groups. 1. During the first year of treatment customized lingual brackets failure frequencies (rates) are not different for the three adhesive materials tested. 2. Eliminating the etching stage when using self-etch/self-adhesive adhesives, may lead to a dramatic increase in the failure rates. 3. Silicoating of stainless steel customized lingual brackets does not seem to influence the failure of the bonds.
Knösel, Michael; Mattysek, Simone; Jung, Klaus; Kubein-Meesenburg, Dietmar; Sadat-Khonsari, Reza; Ziebolz, Dirk
2010-07-01
To test the null hypothesis that there are no significant differences in the reusability of debonded brackets with regard to debonding technique and adhesive used. Ninety-six osteotomed third molars were randomly assigned to two study groups (n = 48) for bonding of a 0.018-inch bracket (Ormesh, Ormco) with either a composite adhesive (Mono-Lok2; RMO) or a glass ionomer cement (GIC; Fuji Ortho LC;GC). Each of these two groups were then randomly divided into four subgroups (n = 12) according to the method of debonding using (1) bracket removal pliers (BRP; Dentaurum), (2) a side cutter (SC; Dentaurum), (3) a lift-off debracketing instrument (LODI; 3M-Unitek), or (4) an air pressure pulse device (CoronaFlex; KaVo). The brackets were subsequently assessed visually for reusability and reworkability with 2x magnification and by pull testing with a 0.017- x 0.025-inch steel archwire. The proportions of reusable brackets were individually compared in terms of mode of removal and with regard to adhesives using the Fisher exact test (alpha = 5%). The null hypothesis was rejected. Not taking into account the debonding method, brackets bonded with GIC were judged to a significant extent (81%; n = 39; P < .01) to be reworkable compared with those bonded with composite (56%; n = 27). All brackets in both adhesive groups removed with either the LODI or the CoronaFlex were found to be reusable, whereas 79% (46%) of the brackets removed with the BRP (SC) were not. The proportion of reusable brackets differed significantly between modes of removal (P < .01). With regard to bracket reusability, the SC and the BRP cannot be recommended for debonding brackets, especially in combination with a composite adhesive.
Pellegrini, Peter; Sauerwein, Rebecca; Finlayson, Tyler; McLeod, Jennifer; Covell, David A; Maier, Tom; Machida, Curtis A
2009-04-01
Enamel decalcification is a common problem in orthodontics. The objectives of this randomized clinical study were to enumerate and compare plaque bacteria surrounding 2 bracket types, self-ligating (SL) vs elastomeric ligating (E), and to determine whether adenosine triphosphate (ATP)-driven bioluminescence could be used for rapid assessment of bacterial load in plaque. Patients (ages, 11-17 years) were bonded with SL and E brackets in 14 maxillary and 12 mandibular arches by using a split-mouth design. Recall visits were at 1 and 5 weeks after bonding. Plaque specimens were assayed for oral bacteria and subjected to ATP-driven bioluminescence determinations with a luciferin-based assay. In most patients, teeth bonded with SL attachments had fewer bacteria in plaque than did teeth bonded with E brackets. At 1 and 5 weeks after bonding, the means for SL vs E brackets were statistically lower for total bacteria and oral streptococci (P <0.05). ATP bioluminescence values were statistically correlated to the total oral bacteria and oral streptococci, with correlation coefficients of 0.895 and 0.843, respectively. SL appliances promote reduced retention of oral bacteria, and ATP bioluminescence might be a useful tool in the rapid quantification of bacterial load and the assessment of oral hygiene during orthodontic treatment.
Farhadian, Nasrin; Rezaei-Soufi, Loghman; Jamalian, Seyed Farzad; Farhadian, Maryam; Tamasoki, Shahrzad; Malekshoar, Milad; Javanshir, Bahareh
2017-01-01
ABSTRACT Introduction: Many patients seeking orthodontic treatment already have incipient enamel lesions and should be placed under preventive treatments. The aim of this in vitro study was to evaluate the effect of CPP-ACP paste and CO2 laser irradiation on demineralized enamel microhardness and shear bond strength of orthodontic brackets. Methods: Eighty caries-free human premolars were subjected to a demineralization challenge using Streptococcus mutans. After demineralization, the samples were randomly divided into five equal experimental groups: Group 1 (control), the brackets were bonded without any surface treatment; Group 2, the enamel surfaces were treated with CPP-ACP paste for 4 minutes before bonding; Group 3, the teeth were irradiated with CO2 laser beams at a wavelength of 10.6 µm for 20 seconds. The samples in Groups 4 and 5 were treated with CO2 laser either before or through CPP-ACP application. SEM photomicrographs of a tooth from each group were taken to observe the enamel surface. The brackets were bonded to the buccal enamel using a conventional method. Shear bond strength of brackets and ARI scores were measured. Vickers microhardness was measured on the non-bonded enamel surface. Data were analyzed with ANOVA and Tukey test at the p< 0.05 level. Results: The mean shear bond strength and microhardness of the laser group were higher than those in the control group and this difference was statistically significant (p< 0.05). All groups showed a higher percentage of ARI score 4. Conclusion: CO2 laser at a wavelength of 10.6 µm significantly increased demineralized enamel microhardness and enhanced bonding to demineralized enamel. PMID:28902250
Effects of self-ligating and conventional brackets on halitosis and periodontal conditions.
Kaygisiz, Emine; Uzuner, Fatma Deniz; Yuksel, Sema; Taner, Levent; Çulhaoğlu, Rana; Sezgin, Yasemin; Ateş, Can
2015-05-01
To evaluate the effects of fixed orthodontic treatment with steel-ligated conventional brackets and self-ligating brackets on halitosis and periodontal health. Sixty patients, at the permanent dentition stage aged 12 to 18 years, who had Angle Class I malocclusion with mild-to-moderate crowding were randomly selected. Inclusion criteria were nonsmokers, without systematic disease, and no use of antibiotics and oral mouth rinses during the 2-month period before the study. The patients were subdivided into three groups randomly: the group treated with conventional brackets (group 1, n = 20) ligated with steel ligature wires, the group treated with self-ligating brackets (group 2, n = 20), and the control group (group 3, n = 20). The periodontal records were obtained 1 week before bonding (T1), immediately before bonding (T2), 1 week after bonding (T3), 4 weeks after bonding (T4), and 8 weeks after bonding (T5). Measurements of the control group were repeated within the same periods. The volatile sulfur components determining halitosis were measured with the Halimeter at T2, T3, T4, and T5. A two-way repeated measures of analysis of variance (ANOVA) was used to compare the groups statistically. No statistically significant group × time interactions were found for plaque index, gingival index, pocket depth, bleeding on probing, and halitosis, which means three independent groups change like each other by time. The risk of tongue coating index (TCI) being 2 was 10.2 times higher at T1 than at T5 (P < .001). Therefore, the probability of higher TCI was decreased by time in all groups. The self-ligating brackets do not have an advantage over conventional brackets with respect to periodontal status and halitosis.
Comparative assessment of different recycling methods of orthodontic brackets for clinical use.
de Oliveira Correia, Ayla M; de Souza Matos, Felipe; Pilli Jóias, Renata; de Mello Rode, Sigmar; Cesar, Paulo F; Paranhos, Luiz R
2017-06-01
This study aimed to assess bond strength of the resin/bracket interface, under in-vitro shear stress, of metal brackets recycled by different clinical protocols. Sixty stainless steel orthodontic brackets were bonded on acrylic resin. The Transbond XT™ resin was applied at the base of the bracket aided by a matrix, obtaining 1 mm of thickness, and photoactivated with a LED device (40 s; 500 mW/cm2). Samples were randomly divided into four groups (N.=15) according to the reconditioning/recycling protocol: aluminum oxide (AO) 90 µm; hydrofluoric acid 60 s (HA60); hydrofluoric acid 120 s (HA120); hydrofluoric acid 60 s + silane (HA60S). After recycling, the resin was applied at the base of the bracket for shear testing in a universal testing machine (0.5 mm/min). After reconditioning/recycling, the surfaces were analyzed by Scanning Electron Microscopy. Data obtained after the shear test were subjected to ANOVA and Tukey's test (P<0.05). The AO group presented higher values of shear bond strength compared to the other reconditioning/recycling protocols (P<0.05). The HA120 and HA60S groups presented statistically similar results, but HA120 presented strength below the recommended limit. The recycling technique by aluminum oxide sandblasting was more effective for reconditioning orthodontic brackets when compared to the other protocols. The reconditioning technique with 10% hydrofluoric acid followed by the application of silane bonding agent may be used as an alternative protocol.
Bonding brackets on white spot lesions pretreated by means of two methods.
Vianna, Julia Sotero; Marquezan, Mariana; Lau, Thiago Chon Leon; Sant'Anna, Eduardo Franzotti
2016-01-01
The aim of this study was to evaluate the shear bond strength (SBS) of brackets bonded to demineralized enamel pretreated with low viscosity Icon Infiltrant resin (DMG) and glass ionomer cement (Clinpro XT Varnish, 3M Unitek) with and without aging. A total of 75 bovine enamel specimens were allocated into five groups (n = 15). Group 1 was the control group in which the enamel surface was not demineralized. In the other four groups, the surfaces were submitted to cariogenic challenge and white spot lesions were treated. Groups 2 and 3 were treated with Icon Infiltrant resin; Groups 4 and 5, with Clinpro XT Varnish. After treatment, Groups 3 and 5 were artificially aged. Brackets were bonded with Transbond XT adhesive system and SBS was evaluated by means of a universal testing machine. Statistical analysis was performed by one-way analysis of variance followed by Tukey post-hoc test. All groups tested presented shear bond strengths similar to or higher than the control group. Specimens of Group 4 had significantly higher shear bond strength values (p < 0.05) than the others. Pretreatment of white spot lesions, with or without aging, did not decrease the SBS of brackets.
Jurišić, S; Verzak, Ž; Jurišić, G; Jurić, H
2018-05-01
To investigate the efficacy of two formulations of chlorhexidine 0.2% (CHX) mouthrinses in terms of oral hygiene and gingival health status in adolescents with fixed orthodontic appliances wearing two different types of brackets during 18 weeks. Eighty subjects were randomly divided into two equal groups according to brackets type: (i) metal-stainless steel, (ii) ceramic. Four weeks after the placement of the fixed orthodontic appliances the subjects from each group were randomly allocated into two equal subgroups and were provided with two different mouthrinses for 14 days: (i) alcohol-free CHX, (ii) CHX with antidiscoloration system (CHX-ADS). Assessment was carried out according to gingival index (GI) and oral hygiene index-simplified (OHI-S) performed prior to the placement of the appliance (t 1 ), 6 weeks (t 2 ), and 18 weeks (t 3 ) after the placement. To analyse the data, two-way mixed model MANOVA. Pearson correlations, one-way ANOVA and Independent Samples t test were conducted. Statistically significant decrease in GI and OHI-S indices after 6 weeks and then increase after 18 weeks for all groups was found. Both GI and OHI-S values were lower in subjects wearing ceramic brackets, with statistically significant difference for GI after the usage of the mouthrinse for 14 days, at t 2 (P<.05). The results revealed that the ceramic brackets as well as usage of CHX-ADS resulted in improved gingival status. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
21 CFR 872.5470 - Orthodontic plastic bracket.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Orthodontic plastic bracket. 872.5470 Section 872...) MEDICAL DEVICES DENTAL DEVICES Therapeutic Devices § 872.5470 Orthodontic plastic bracket. (a) Identification. An orthodontic plastic bracket is a plastic device intended to be bonded to a tooth to apply...
21 CFR 872.5470 - Orthodontic plastic bracket.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Orthodontic plastic bracket. 872.5470 Section 872...) MEDICAL DEVICES DENTAL DEVICES Therapeutic Devices § 872.5470 Orthodontic plastic bracket. (a) Identification. An orthodontic plastic bracket is a plastic device intended to be bonded to a tooth to apply...
21 CFR 872.5470 - Orthodontic plastic bracket.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Orthodontic plastic bracket. 872.5470 Section 872...) MEDICAL DEVICES DENTAL DEVICES Therapeutic Devices § 872.5470 Orthodontic plastic bracket. (a) Identification. An orthodontic plastic bracket is a plastic device intended to be bonded to a tooth to apply...
21 CFR 872.5470 - Orthodontic plastic bracket.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Orthodontic plastic bracket. 872.5470 Section 872...) MEDICAL DEVICES DENTAL DEVICES Therapeutic Devices § 872.5470 Orthodontic plastic bracket. (a) Identification. An orthodontic plastic bracket is a plastic device intended to be bonded to a tooth to apply...
21 CFR 872.5470 - Orthodontic plastic bracket.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Orthodontic plastic bracket. 872.5470 Section 872...) MEDICAL DEVICES DENTAL DEVICES Therapeutic Devices § 872.5470 Orthodontic plastic bracket. (a) Identification. An orthodontic plastic bracket is a plastic device intended to be bonded to a tooth to apply...
Demirtas, Hatice Kubra; Akin, Mehmet; Ileri, Zehra; Basciftci, Faruk Ayhan
2015-01-01
The aim of this study was to evaluate the effects of different surface preparation methods on the shear bond strength (SBS) of orthodontic metal brackets to aged nano-hybrid resin composite surfaces in vitro. A total of 100 restorative composite resin discs, 6 mm in diameter and 3 mm thick, were obtained and treated with an ageing procedure. After ageing, the samples were randomly divided as follows according to surface preparation methods: (1)Control, (2)37% phosphoric acid gel, (3)Sandblasting, (4)Diamond bur, (5)Air-flow and 20 central incisor teeth were used for the control etched group. SBS test were applied on bonded metal brackets to all samples. SBS values and residual adhesives were evaluated. Analysis of variance showed a significant difference (p<0.001) between the groups. Sandblasted group had the highest SBS value (12.85 MPa) in experimental groups. The sandblasting surface treatment is recommended as an effective method of bonding orthodontic metal brackets to nano-hybrid composite resin surfaces.
Sajadi, Soodabeh Sadat; Eslami Amirabadi, Gholamreza; Sajadi, Sepideh
2014-07-01
Bond failure of brackets during orthodontic treatment is a common problem; which results in treatment interference, increased treatment time and prolonged clinical time for rebonding of failed brackets. The purpose of this study was to evaluate the effects of Coca-Cola and a non-alcoholic beer on the shear bond strength and adhesive remnant index (ARI) of orthodontic metal brackets in vitro. Eighty intact human premolars were divided into two experimental groups of Coca-Cola and non-alcoholic beer (Istak), and a control group of artificial saliva. Over a period of thirty days, the test groups were immersed in the respective soft drinks for 5 minutes, twice a day. For the remainder of the time, they were kept in artificial saliva at 37°C. The control group was stored in artificial saliva during the experiment. All samples were subjected to shearing forces using Universal Testing Machine. ARI was determined with a stereomicroscope at ×12 magnification. The data of shear bond strength were statistically analyzed by one-way ANOVA and Tukey's Post-Hoc test and the data of ARI scores were analyzed by Kruskal-Wallis test. No significant difference was observed in ARIs of the three groups (P≤ 0.552). The shear bond strength of Coke group was significantly lower than that of the two other groups (P≤ 0.035); but there was no significant difference between the shear bond strength of Istak and the control group (P≤ 0.999). Coca-Cola decreased the shear bond strength of orthodontic brackets.
Jurišić, Sanja; Jurišić, Gordan; Jurić, Hrvoje
2015-12-01
The objective of present study was to examine influence of adhesives and methods of enamel pretreatment on the shear bond strength (SBS) of orthodontic brackets. The adhesives used were resin-reinforced glass ionomer cements-GIC (Fuji Ortho LC) and composite resin (Transbond XT). The experimental sample consisted of 80 extracted human first premolars. The sample was divided into four equal groups, and the metal brackets were bonded with different enamel pretreatments by using two adhesives: group A-10% polyacrylic acid; Fuji Ortho LC, group B-37% phosphoric acid; Fuji Ortho LC, group C-self etching primer; Transbond XT, group D-37% phosphoric acid, primer; Transbond XT. SBS of brackets was measured. After debonding of brackets, the adhesive remnant index (ARI) was evaluated. After the statistical analysis of the collected data was performed (ANOVA; Sheffe post-hoc test), the results showed that significantly lower SBS of the group B was found in relation to the groups C (p=0.031) and D (p=0.026). The results of ARI were similar in all testing groups and it was not possible to determine any statistically significant difference of the ARI (Chi- square test) between all four experimental groups. The conclusion is that the use of composite resins material with appropriate enamel pretreatment according to manufacturer's recommendation is the "gold standard" for brackets bonding for fixed orthodontic appliances.
Al Jabbari, Youssef S; Al Taweel, Sara M; Al Rifaiy, Mohammed; Alqahtani, Mohammed Q; Koutsoukis, Theodoros; Zinelis, Spiros
2014-07-01
To evaluate the combined effects of material type, surface treatment, and thermocycling on the bond strength of orthodontic brackets to materials used for the fabrication of provisional crowns. Four materials were included in this study (ProTemp, Trim Plus, Trim II, and Superpont C+B). Sixty cylindrical specimens (1 × 3 cm) were prepared from each material and equally divided into three groups. The first group was ground with silica carbide paper, the second was polished with pumice, and the last group was sandblasted with 50-µm aluminum oxide particles. Stainless-steel maxillary central incisor brackets (Victory Series, 3M) were bonded to the provisional material specimens with Transbond XT light-cured composite resin, and half of the specimens from each group were thermocycled 500 times in 5°C and 55°C water baths. Then the brackets were debonded with shear testing, and the results were statistically analyzed by three-way analysis of variance and Tukey's multiple-comparison tests at α = 0.05. Adhesive Remnant Index (ARI) was also identified. Before and after thermocycling, ProTemp materials showed the highest shear bond strength with orthodontic brackets (10.3 and 13.1 MPa, respectively). The statistical analysis indicated an interaction among the three independent variables (P < .05) and statistically significant differences in bond strength among provisional materials (P < .001), surface treatments (P < .001), and thermocycling (P < .05). According to the ARI, most groups demonstrated adhesive failure. The provisional material type, surface treatment, and artificial aging have a significant effect on bond strength. Sandblasting treatment exerts a beneficial effect on shear bond strength.
Chacko, Prince K; Kodoth, Jithesh; John, Jacob; Kumar, Kishore
2013-07-01
TO DETERMINE THE EFFICIENCY OF ERBIUM: Yttrium aluminum garnet (Er:YAG) laser with Environmental Scanning Electron Microscope (ESEM) and shear bond strength analysis as a method of recycling stainless steel orthodontic brackets and compare with other methods of recycling. Eighty samples of extracted premolar teeth bonded to SS brackets were tested for rebonded shear bond strength after recycling by four methods and compared with a control group of 20 samples. These 80 samples were randomized into four groups which were recycled by four methods, namely, sandblasting, thermal method, adhesive grinding by tungsten carbide bur, and Er: YAG laser method. After recycling, ESEM and shear bond strength analysis were used to analyze the efficiency of the recycling methods. ER: YAG laser group was found to be having the greatest bond strength among the recycled brackets (8.33±2.51 followed by the sandblasting at 6.12±1.12 MPa, thermal and electropolishing at 4.44±0.95 MPa, and lastly the adhesive grinding method at 3.08±1.07 MPa. The shear bond strength of Er: YAG laser group was found to be having no statistically significant difference with that of the control group (P>0.05 and had statistical signifance with sandblasting, thermal and electropolishing and adhesive grinding groups at P>0.001. ESEM analysis showed complete removal of adhesive from the brackets recycled with Er: YAG laser which mimicked that of the control group. ER: YAG laser (2940 nm) was found to be the most efficient method for recycling, followed by the sandblasting, thermal, and the tungsten carbide methods, which had the least shear bond strength value and is not fit for clinical usage.
How and why of orthodontic bond failures: An in vivo study
Vijayakumar, R. K.; Jagadeep, Raju; Ahamed, Fayyaz; Kanna, Aprose; Suresh, K.
2014-01-01
Introduction: The bonding of orthodontic brackets and their failure rates by both direct and in-direct procedures are well-documented in orthodontic literature. Over the years different adhesive materials and various indirect bonding transfer procedures have been compared and evaluated for bond failure rates. The aim of our study is to highlight the use of a simple, inexpensive and ease of manipulation of a single thermo-plastic transfer tray and the use the of a single light cure adhesive to evaluate the bond failure rates in clinical situations. Materials and Methods: A total of 30 patients were randomly divided into two groups (Group A and Group B). A split-mouth study design was used, for, both the groups so that they were distributed equally with-out bias. After initial prophylaxis, both the procedures were done as per manufactures instructions. All patients were initially motivated and reviewed for bond failures rates for 6 months. Results: Bond failure rates were assessed for over-all direct and indirect procedures, anterior and posterior arches, and for individual tooth. Z-test was used for statistically analyzing, the normal distribution of the sample in a spilt mouth study. The results of the two groups were compared and P value was calculated using Z-proportion test to assess the significance of the bond failure. Conclusion: Over-all bond failure was more for direct bonding. Anterior bracket failure was more in-direct bonding than indirect procedure, which showed more posterior bracket failures. In individual tooth bond failure, mandibular incisor, and premolar brackets showed more failure, followed by maxillary premolars and canines. PMID:25210392
Itoh, T; Matsuo, N; Fukushima, T; Inoue, Y; Oniki, Y; Matsumoto, M; Caputo, A A
1999-10-01
The effect of water and saliva contamination on the bond strength of metal orthodontic brackets cemented to etched (10% polyacrylic acid) and unetched human premolar enamel was investigated. Two bonding agents were used: one commercially available product (LC) and one experimental (EX) light-cured glass ionomer. Shear bond strength was measured after aging for 5 minutes, 15 minutes, and 24 hours. The results were compared by ANOVA and Scheffe's tests at p = 0.05. For LC, the bond strength of brackets bonded to etched enamel, with and without contamination, was statistically higher than that of brackets bonded to unetched enamel for all aging times. An exception was the bond strength to unetched enamel with saliva contamination after 24 hours; for EX, this value was statistically higher than that measured on unetched enamel with water contamination. Contamination by saliva did not reduce bond strength to unetched enamel. For both etched and unetched enamel, there was no significant difference between LC and EX after 24 hours for all contamination conditions.
Olsen, M E; Bishara, S E; Damon, P; Jakobsen, J R
1997-05-01
Damage to the enamel surface during bonding and debonding of orthodontic brackets is a clinical concern. Alternative bonding methods that minimize enamel surface damage while maintaining a clinically useful bond strength is an aim of current research. The purpose of this study was to compare the effects on bond strength and bracket failure location of two adhesives (System 1+ and Scotchbond Multipurpose, 3M Dental Products Division) and two enamel conditioners (37% phosphoric acid and 10% maleic acid). Forty-eight freshly extracted human premolars were pumiced and divided into four groups of 12 teeth, and metal orthodontic brackets were attached to the enamel surface by one of four protocols: (1) System 1+ and phosphoric acid, (2) Scotchbond and phosphoric acid, (3) System 1+ and maleic acid, and (4) Scotchbond and maleic acid. After bracket attachment, the teeth were mounted in phenolic rings and stored in deionized water at 37 degrees C for 72 hours. A Zwick universal testing machine (Zwick GmbH & Co.) was used to determine shear bond strengths. The residual adhesive on the enamel surface was evaluated with the Adhesive Remnant Index. The analysis of variance was used to compare the four groups. Significance was predetermined at p < or = 0.05. The results indicated that there were no significant differences in bond strength among the four groups (p = 0.386). The results of the Chi square test, evaluating the residual adhesives on the enamel surfaces, revealed significant differences among the four groups (mean 2 = 0.005). A Duncan multiple range test revealed the difference occurred between the phosphoric acid and maleic acid groups, with maleic acid having bond failures at the enamel-adhesive interface. In conclusion, the use of Scotchbond Multipurpose and/or maleic acid does not significantly effect bond strength, however, the use of maleic acid resulted in an unfavorable bond failure location.
1989-01-01
Nitinol ; Unitek Corp., Monrovia, CA.) against the 3 bracket-slot. With increased angulation, however, the Nitinol wire created much less friction than...Palmer, F.: Friction, Sci. Am. 184:54-58, 1951. Petersen, L., Spencer, R., and Andreasen, G.: A com- parison of friction resistance for Nitinol and
Meeran, Nazeer Ahmed; George, Ashwin Mathew
2013-01-01
Alcohol is known to degrade and dissolve the bisphenol A glycidyl methacrylate present in the composite resin. The effect of alcohol containing mouthrinses on the shear bond strength of orthodontic metal brackets bonded with composite resin has not been verified until date and is the purpose of this study. The aims and objectives of the present study were to evaluate (1) Whether there is a significant difference in the shear bond strength of metal orthodontic brackets after the 1 year (12 h) and 2 years simulation (24 h) of mouth rinsing with 4 different commercially available mouthrinses (2 alcoholic and 2 alcohol-free mouthrinses) when compared to the control. (2) Whether alcohol containing mouthrinses have more adverse effect on the shear bond strength when compared with alcohol-free mouthrinses. (3) To assess the site of bond failure using adhesive remnant index. Experimental - laboratory based. A total of 100 upper premolars extracted for orthodontic purpose were collected immediately after extraction, cleared soft-tissue debris and blood and immediately stored in distilled water with 0.1% thymol crystals added to inhibit bacterial growth. Two alcohol containing mouthrinses and two alcohol-free mouthrinses were used and the bonded teeth were placed in the mouthrinses for a stipulated period of time (1 year simulation and 2 years simulation) and shear bond strength were tested using Lloyd Universal Testing Machine. The data were analyzed using analysis of variance and paired samples t-test. After the 1 year and 2 years simulation time, samples stored in alcohol containing mouthrinses showed lower bond strength (P < 0.05) when compared to samples stored in alcohol free mouthrinses and distilled water (control). Alcohol containing mouthrinses affect the shear bond strength of the metal orthodontic brackets bonded with composite resin (Transbond XT in the present study), more when compared with alcohol-free mouthrinses. It is, therefore, highly advisable to avoid alcohol containing mouthrinses in patients undergoing orthodontic treatment and use alcohol-free mouthrinses as adjuncts to regular oral hygiene procedures for maintaining good enamel integrity and periodontal health, without compromising the shear bond strength of the bonded metal brackets.
Spectrophotometric evaluation of dental bleaching under orthodontic bracket in enamel and dentin
Correr, Americo-Bortolazzo; Rastelli, Alessandra-Nara-Souza; Lima, Débora-Alves-Nunes-Leite; Consani, Rafael-Leonardo-Xediek
2014-01-01
Aware of the diffusion capacity of bleaching in the dental tissues, many orthodontists are subjecting their patients to dental bleaching during orthodontic treatment for esthetic purposes or to anticipate the exchange of esthetic restorations after the orthodontic treatment. For this purpose specific products have been developed in pre-loaded whitening trays designed to fit over and around brackets and wires, with clinical efficacy proven. Objective: The objective of this study was to evaluate, through spectrophotometric reflectance, the effectiveness of dental bleaching under orthodontic bracket. Material and Methods: Thirty-two bovine incisors crown blocks of 8 mm x 8 mm height lengths were used. Staining of tooth blocks with black tea was performed for six days. They were distributed randomly into 4 groups (1-home bleaching with bracket, 2- home bleaching without bracket, 3- office bleaching with bracket, 4 office bleaching without bracket). The color evaluation was performed (CIE L * a * b *) using color reflectance spectrophotometer. Metal brackets were bonded in groups 1 and 3. The groups 1 and 2 samples were subjected to the carbamide peroxide at 15%, 4 hours daily for 21 days. Groups 3 and 4 were subjected to 3 in-office bleaching treatment sessions, hydrogen peroxide 38%. After removal of the brackets, the second color evaluation was performed in tooth block, difference between the area under the bracket and around it, and after 7 days to verified color stability. Data analysis was performed using the paired t-test and two-way variance analysis and Tukey’s. Results: The home bleaching technique proved to be more effective compared to the office bleaching. There was a significant difference between the margin and center color values of the specimens that were subjected to bracket bonding. Conclusions: The bracket bond presence affected the effectiveness of both the home and office bleaching treatments. Key words:Tooth bleaching, spectrophotometry, orthodontics. PMID:25593650
Vinay, K; Venkatesh, M J; Nayak, Rabindra S; Pasha, Azam; Rajesh, M; Kumar, Pradeep
2014-01-01
Background: Friction between archwires and brackets is assuming greater importance for finishing with increased use of sliding mechanics in orthodontics as friction impedes the desired tooth movement. The following study is conducted to compare and evaluate the effect of ligation on friction in sliding mechanics using 0.022" slot bracket in dry condition. Materials & Methods: In the study 48 combinations of brackets, archwires and different ligation techniques were tested in order to provide best combination that offers less friction during sliding mechanics. Instron- 4467 machine was used to evaluate static and kinetic friction force values and the results were subjected to Statistical Analysis and Anova test. Results: The results of the study showed that 0.022" metal brackets, Stainless steel wires and Slick modules provided the optimum frictional resistance to sliding mechanics. It is observed that frictional forces of 0.019" x 0.025" were higher when compared with 0.016" x 0.022" Stainless steel archwire due to the increase in dimension. Self-ligating brackets offered least friction followed by mini twin, variable force, regular stainless steel, ceramic with metal insert bracket and ceramic brackets. The stainless steel ligature offered less resistance than slick and grey modules, and TMA wires recorded maximum friction. Conclusion: The stainless steel archwire of 0.019" x 0.025" dimension are preferred during sliding mechanics, these archwires with variable force brackets ligated with Slick Modules offer decreased friction and is cost effective combination which can be utilized during sliding mechanics. How to cite the article: Vinay K, Venkatesh MJ, Nayak RS, Pasha A, Rajesh M, Kumar P. A comparative study to evaluate the effects of ligation methods on friction in sliding mechanics using 0.022" slot brackets in dry state: An In-vitro study. J Int Oral Health 2014;6(2):76-83. PMID:24876706
Vinay, K; Venkatesh, M J; Nayak, Rabindra S; Pasha, Azam; Rajesh, M; Kumar, Pradeep
2014-04-01
Friction between archwires and brackets is assuming greater importance for finishing with increased use of sliding mechanics in orthodontics as friction impedes the desired tooth movement. The following study is conducted to compare and evaluate the effect of ligation on friction in sliding mechanics using 0.022" slot bracket in dry condition. In the study 48 combinations of brackets, archwires and different ligation techniques were tested in order to provide best combination that offers less friction during sliding mechanics. Instron- 4467 machine was used to evaluate static and kinetic friction force values and the results were subjected to Statistical Analysis and Anova test. The results of the study showed that 0.022" metal brackets, Stainless steel wires and Slick modules provided the optimum frictional resistance to sliding mechanics. It is observed that frictional forces of 0.019" x 0.025" were higher when compared with 0.016" x 0.022" Stainless steel archwire due to the increase in dimension. Self-ligating brackets offered least friction followed by mini twin, variable force, regular stainless steel, ceramic with metal insert bracket and ceramic brackets. The stainless steel ligature offered less resistance than slick and grey modules, and TMA wires recorded maximum friction. The stainless steel archwire of 0.019" x 0.025" dimension are preferred during sliding mechanics, these archwires with variable force brackets ligated with Slick Modules offer decreased friction and is cost effective combination which can be utilized during sliding mechanics. How to cite the article: Vinay K, Venkatesh MJ, Nayak RS, Pasha A, Rajesh M, Kumar P. A comparative study to evaluate the effects of ligation methods on friction in sliding mechanics using 0.022" slot brackets in dry state: An In-vitro study. J Int Oral Health 2014;6(2):76-83.
Bond strength of stainless steel orthodontic brackets bonded to prefabricated acrylic teeth.
Wan Abdul Razak, Wan Salbiah; Sherriff, Martyn; Bister, Dirk; Seehra, Jadbinder
2017-06-01
The purpose of this in-vitro study was to evaluate the force to debond stainless steel orthodontic brackets bonded to acrylic teeth using different combinations of adhesive and surface treatments. One hundred prefabricated upper lateral incisor acrylic teeth were divided into 4 equal groups: Transbond XT® adhesive only (Group 1, control), Transbond XT® adhesive with sandblasting (Group 2), Transbond XT® adhesive with abrasion / + methyl methacrylate (MMA) (Group 3) and Triad® Gel only (Group 4). The force in Newtons (N) to debond the brackets was measured. One-way analysis of variance (ANOVA) and pairwise multi-comparison of means (Šidak's adjustment) were undertaken. The highest force to debond was recorded for Group 2 (275.7 N; SD 89.0) followed by Group 3 (241.9 N; SD 76.0), Group 1 (142.7 N; SD 36.7) and Group 4 (67.9 N; SD 21.1). Significant differences in bond strength measurements between the experimental groups were detected. Mean force values for the groups revealed no significant differences between Group 2 and Group 3 (p>0.05). Both sandblasting and surface abrasion/+ application of methyl methacrylate (MMA) in combination with Transbond XT® adhesive are recommended for bonding stainless orthodontic brackets to acrylic teeth.
Influence of tooth brushing on adhesion strength of orthodontic brackets bonded to porcelain.
Durgesh, Bangalore H; Alhijji, Saleh; Hashem, Mohamed I; Al Kheraif, AbdulAziz A; Durgesh, Pavithra; Elsharawy, Mohamed; Vallittu, Pekka K
2016-09-28
Adhesive resin composite, which is used to bond orthodontic bracket to tooth surface is exposed to the influence of wear by tooth brushing and wear may influence loosening of the bracket. The aim of this study was to evaluate in vitro the effect of tooth brushing on the adhesion strength of orthodontic brackets bonded to surface treated porcelain. A total of 90 glazed porcelain fused to metal facets (PFM) were randomly assigned into 3 groups according to the surface treatment to be received. Group 1 was conditioned with hydrofluoric acid (HF), group 2 conditioned with grit-blasting (GB) and group 3 conditioned with tribochemical silica coating (RC). The groups were evaluated for surface roughness (Ra) before and after surface treatment. Next, 15 samples from each group were subjected to brushing and remaining 15 samples served as the baseline (n=15). Adhesion strength (shear bond strength)was recorded using a universal testing machine. Data collected were analyzed by ANOVA and Tukey's multiple comparison post hoc analysis. Tooth brushing decreased the bond strength in all groups. The highest adhesion strength (baseline and after brushing) was observed in group 3 (26.8 ± 1.77 MPa and 23.57 ± 1.02 MPa) and the lowest was found in group 1 (9.6 ± 1.5 MPa and 5.87 ± 0.77 MPa). Group 3 specimens exhibited the highest Ra (1.24 ± 0.08). It was found that tooth brushing of the exposed adhesive resin composite at the bracket-bonding substrate interface lowers the bonding strength regardless of the surface treatment of the substrate.
Relevance of Micro-leakage to Orthodontic Bonding - a Review
M, Karandish
2016-01-01
As it is seen, by passing the evolutionary process of banding of orthodontic attachments to the bonding ones, orthodontics have witnessed many developments, such as application of new adhesives, optimized base designs, new bracket materials, curing methods and more efficient primers. The studies often address the morphological, micro-leakage, and shear bond tests to evaluate bond efficacy. Among studies endeavored to develop the bond strength of brackets, some observed the reduction of micro-leakage of bracket-adhesive and enamel-adhesive interfaces. Owing to the importance of micro-leakage in orthodontics, this study aimed at reviewing the micro-leakage values directly relevant to the enamel decay and debonding of the brackets. To reach the best bond strength, the researchers tried to design different studies to evaluate the effect of variables and prevent any possible side effects in clinical situations. It is noticed that most studies have mainly focused on adhesives, enamel preparation and methods of curing which are discussed in this review. The literature was reviewed by searching databases, using micro-leakage and orthodontic bonding as the keywords . Having found the relevant studies, the researchers entered them into the database. After reviewing numerous studies conducted in this field, the type of adhesive or curing method was not found to have determinative role in the value of micro-leakage although more standardized studies are needed. PMID:28959751
Tiwari, Anil; Shyagali, Tarulatha; Kohli, Sarvraj; Joshi, Rishi; Gupta, Abhishek; Tiwari, Rana
2016-01-01
Aim: The aim of this in vitro study was to evaluate the influence of the Dental chair light on the bond strength of light cured composite resin. Materials and Methods: Sixty therapeutically extracted human premolar teeth were randomly allocated to two groups of 30 specimens each. In both groups light cured composite resin (Transbond XT) and MBT premolar metal brackets (3M Unitek) was used to bond brackets. In group I and II light curing was done using Light-emitting diode light curing units without and with the dental chair light respectively. After bonding, all samples were stored in distilled water at room temperature for 24 hours and subsequently tested for shear bond strength and Adhesive Remnant Index (ARI) scores. Data was subjected to Mann Whitney U statistical test. Results: Results indicated that there was significantly higher shear bond strength (7.71 ± 1.90) for the Group II (composite cured with LED and dental chair light) compared with Group I (composite cured with LED LCU only) (5.74 ± 1.13).the obtained difference was statistically significant. There was no statistical significant difference between ARI scores in between the groups. Conclusions: light cure bonding with dental chair light switched on will produce greater bond strength than the conventional bonding. However, the ARI score were similar to both the groups. It is advised that the inexperienced orthodontist should always switch off the dental chair light while bonding for enough working time during the bracket placement. PMID:28077886
Scribante, Andrea; Sfondrini, Maria Francesca; Collesano, Vittorio; Tovt, Gaia; Bernardinelli, Luisa; Gandini, Paola
2017-01-01
Dental hygienists are often faced with patients wearing lingual orthodontic therapy, as ultrasonic instrumentation (UI) is crucial for oral health. As the application of external forces can lead to premature bonding failure, the aim of this study was to evaluate the effect of UI on shear bond strength (SBS) and on adhesive remnant index (ARI) of different lingual orthodontic brackets. 200 bovine incisors were divided into 10 groups. Four different lingual (STB, Ormco; TTR, Rocky Mountain Orthodontics; Idea, Leone; 2D, Forestadent) and vestibular control (Victory, 3M) brackets were bonded. UI was performed in half of specimens, whereas the other half did not receive any treatment. All groups were tested with a universal testing machine. SBS and ARI values were recorded. Statistical analysis was performed (significance: P = 0.05). TTR, Idea, and 2D lingual brackets significantly lowered SBS after UI, whereas for other braces no effect was recorded. Appliances with lower mesh area significantly reduced their adhesion capacity after UI. Moreover groups subjected to UI showed higher ARI scores than controls. UI lowered SBS of lingual appliances of small dimensions so particular care should be posed avoiding prolonged instrumentation around bracket base during plaque removal. Moreover, UI influenced also ARI scores.
Collesano, Vittorio; Tovt, Gaia; Bernardinelli, Luisa; Gandini, Paola
2017-01-01
Dental hygienists are often faced with patients wearing lingual orthodontic therapy, as ultrasonic instrumentation (UI) is crucial for oral health. As the application of external forces can lead to premature bonding failure, the aim of this study was to evaluate the effect of UI on shear bond strength (SBS) and on adhesive remnant index (ARI) of different lingual orthodontic brackets. 200 bovine incisors were divided into 10 groups. Four different lingual (STB, Ormco; TTR, Rocky Mountain Orthodontics; Idea, Leone; 2D, Forestadent) and vestibular control (Victory, 3M) brackets were bonded. UI was performed in half of specimens, whereas the other half did not receive any treatment. All groups were tested with a universal testing machine. SBS and ARI values were recorded. Statistical analysis was performed (significance: P = 0.05). TTR, Idea, and 2D lingual brackets significantly lowered SBS after UI, whereas for other braces no effect was recorded. Appliances with lower mesh area significantly reduced their adhesion capacity after UI. Moreover groups subjected to UI showed higher ARI scores than controls. UI lowered SBS of lingual appliances of small dimensions so particular care should be posed avoiding prolonged instrumentation around bracket base during plaque removal. Moreover, UI influenced also ARI scores. PMID:28904955
Nalçacı, Ruhi; Üşümez, Serdar; Malkoç, Sıddık
2016-01-01
Abstract Objective: The purpose of this study was to investigate the demineralization around brackets and shear bond strength (SBS) of brackets bonded to Er:YAG laser-irradiated enamel at different power settings with various adhesive systems combinations. Methods: A total of 108 premolar teeth were used in this study. Teeth were assigned into three groups according to the etching procedure, then each group divided into three subgroups based on the application of different adhesive systems. There were a total of nine groups as follows. Group 1: Acid + Transbond XT Primer; group 2: Er:YAG (100 mJ, 10 Hz) etching + Transbond XT Primer; group 3: Er:YAG (200 mJ, 10 Hz) etching + Transbond XT Primer; group 4: Transbond Plus self-etching primer (SEP); group 5: Er:YAG (100 mJ, 10 Hz) etching + Transbond Plus SEP; group 6: Er:YAG (200 mJ, 10 Hz) etching + Transbond Plus SEP; group 7: Clearfil Protect Bond; group 8: Er:YAG (100 mJ, 10 Hz) etching + Clearfil Protect Bond; group 9: Er:YAG (200 mJ, 10 Hz) etching + Clearfil Protect Bond. Brackets were bonded with Transbond XT Adhesive Paste in all groups. Teeth to be evaluated for demineralization and SBS were exposed to pH and thermal cyclings, respectively. Then, demineralization samples were scanned with micro-CT to determine lesion depth values. For SBS test, a universal testing machine was used and adhesive remnant was index scored after debonding. Data were analyzed statistically. Results: No significant differences were found among the lesion depth values of the various groups, except for G7 and G8, in which the lowest values were recorded. The lowest SBS values were in G7, whereas the highest were in G9. The differences between the other groups were not significant. Conclusions: Er:YAG laser did not have a positive effect on prevention of enamel demineralization. When two step self-etch adhesive is preferred for bonding brackets, laser etching at 1 W (100 mJ, 10 Hz) is suggested to improve SBS of brackets. PMID:26987047
Çokakoğlu, Serpil; Nalçacı, Ruhi; Üşümez, Serdar; Malkoç, Sıddık
2016-04-01
The purpose of this study was to investigate the demineralization around brackets and shear bond strength (SBS) of brackets bonded to Er:YAG laser-irradiated enamel at different power settings with various adhesive systems combinations. A total of 108 premolar teeth were used in this study. Teeth were assigned into three groups according to the etching procedure, then each group divided into three subgroups based on the application of different adhesive systems. There were a total of nine groups as follows. Group 1: Acid + Transbond XT Primer; group 2: Er:YAG (100 mJ, 10 Hz) etching + Transbond XT Primer; group 3: Er:YAG (200 mJ, 10 Hz) etching + Transbond XT Primer; group 4: Transbond Plus self-etching primer (SEP); group 5: Er:YAG (100 mJ, 10 Hz) etching + Transbond Plus SEP; group 6: Er:YAG (200 mJ, 10 Hz) etching + Transbond Plus SEP; group 7: Clearfil Protect Bond; group 8: Er:YAG (100 mJ, 10 Hz) etching + Clearfil Protect Bond; group 9: Er:YAG (200 mJ, 10 Hz) etching + Clearfil Protect Bond. Brackets were bonded with Transbond XT Adhesive Paste in all groups. Teeth to be evaluated for demineralization and SBS were exposed to pH and thermal cyclings, respectively. Then, demineralization samples were scanned with micro-CT to determine lesion depth values. For SBS test, a universal testing machine was used and adhesive remnant was index scored after debonding. Data were analyzed statistically. No significant differences were found among the lesion depth values of the various groups, except for G7 and G8, in which the lowest values were recorded. The lowest SBS values were in G7, whereas the highest were in G9. The differences between the other groups were not significant. Er:YAG laser did not have a positive effect on prevention of enamel demineralization. When two step self-etch adhesive is preferred for bonding brackets, laser etching at 1 W (100 mJ, 10 Hz) is suggested to improve SBS of brackets.
Jurišić, Sanja; Jurišić, Gordan
2015-01-01
Aim The objective of present study was to examine influence of adhesives and methods of enamel pretreatment on the shear bond strength (SBS) of orthodontic brackets. The adhesives used were resin-reinforced glass ionomer cements-GIC (Fuji Ortho LC) and composite resin (Transbond XT). Material and Methods The experimental sample consisted of 80 extracted human first premolars. The sample was divided into four equal groups, and the metal brackets were bonded with different enamel pretreatments by using two adhesives: group A-10% polyacrylic acid; Fuji Ortho LC, group B–37% phosphoric acid; Fuji Ortho LC, group C–self etching primer; Transbond XT, group D–37% phosphoric acid, primer; Transbond XT. SBS of brackets was measured. After debonding of brackets, the adhesive remnant index (ARI) was evaluated. Results After the statistical analysis of the collected data was performed (ANOVA; Sheffe post-hoc test), the results showed that significantly lower SBS of the group B was found in relation to the groups C (p=0.031) and D (p=0.026). The results of ARI were similar in all testing groups and it was not possible to determine any statistically significant difference of the ARI (Chi- square test) between all four experimental groups. Conclusion The conclusion is that the use of composite resins material with appropriate enamel pretreatment according to manufacturer’s recommendation is the “gold standard” for brackets bonding for fixed orthodontic appliances. PMID:27688410
TiF4 varnish protects the retention of brackets to enamel after in vitro mild erosive challenge.
Medeiros, Maria Isabel Dantas de; Carlo, Hugo Lemes; Santos, Rogério Lacerda Dos; Sousa, Frederico Barbosa; Castro, Ricardo Dias de; França, Renata Cristina Sobreira; Carvalho, Fabíola Galbiatti de
2018-05-14
The effect of fluoride agents on the retention of orthodontic brackets to enamel under erosive challenge is little investigated. The aim of this study was to evaluate the effect of titanium tetrafluoride (TiF4) and sodium fluoride (NaF) agents on the shear bond strength of brackets to enamel and on the enamel microhardness around brackets under erosive challenge. Brackets were bonded to bovine incisors. Five groups were formed according to fluoride application (n=10): TiF4 varnish, TiF4 solution, NaF varnish, NaF solution and control (without application). The specimens were submitted to erosive challenge (90 s cola drink/2h artificial saliva, 4x per day for 7 days). Solutions were applied before each erosive cycle and varnishes were applied once. Vickers Microhardness (VHN) was obtained before and after all cycles of erosion and the percentage of microhardness loss was calculated. Shear bond strength, adhesive remnant index and polarized light microscopy were conducted after erosion. The data were analyzed by ANOVA, Tukey, Kruskal-Wallis and Mann-Whitney U tests (α=0.05). The %VHN had no statistically significant differences among the experimental groups. However, considering the comparisons of all groups with the control group, TiF4 varnish showed the highest protection from enamel demineralization (effect size of 2.94, while the effect size for the other groups was >2.4). The TiF4 varnish group had significantly higher shear bond strength compared to other groups. There was no difference among groups for adhesive remnant index. Polarized light microscopy showed higher demineralization depth for the control group. Application of NaF and TiF4 agents during mild erosive challenge minimized the enamel mineral loss around brackets, however only the experimental TiF4 varnish was able to prevent the reduction of shear bond strength of brackets to enamel.
Bond strength with various etching times on young permanent teeth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, W.N.; Lu, T.C.
1991-07-01
Tensile bond strengths of an orthodontic resin cement were compared for 15-, 30-, 60-, 90-, or 120-second etching times, with a 37% phosphoric acid solution on the enamel surfaces of young permanent teeth. Fifty extracted premolars from 9- to 16-year-old children were used for testing. An orthodontic composite resin was used to bond the bracket directly onto the buccal surface of the enamel. The tensile bond strengths were tested with an Instron machine. Bond failure interfaces between bracket bases and teeth surfaces were examined with a scanning electron microscope and calculated with mapping of energy-dispersive x-ray spectrometry. The results ofmore » tensile bond strength for 15-, 30-, 60-, or 90-second etching times were not statistically different. For the 120-second etching time, the decrease was significant. Of the bond failures, 43%-49% occurred between bracket and resin interface, 12% to 24% within the resin itself, 32%-40% between resin and tooth interface, and 0% to 4% contained enamel fragments. There was no statistical difference in percentage of bond failure interface distribution between bracket base and resin, resin and enamel, or the enamel detachment. Cohesive failure within the resin itself at the 120-second etching time was less than at other etching times, with a statistical significance. To achieve good retention, to decrease enamel loss, and to reduce moisture contamination in the clinic, as well as to save chairside time, a 15-second etching time is suggested for teenage orthodontic patients.« less
NASA Astrophysics Data System (ADS)
Loehman, Ronald E.
Methods for joining ceramics are outlined with attention given to their fundamental properties, and some examples of ceramic bonding in engineering ceramic systems are presented. Ceramic-ceramic bonds using no filler material include diffusion and electric-field bonding and ceramic welding, and bonds with filler materials can be provided by Mo-Mn brazing, microwave joining, and reactive nonmetallic liquid bonding. Ceramic-metal joints can be effected with filler material by means of the same ceramic-ceramic processes and without filler material by means of use of molten glass or diffusion bonding. Key properties of the bonding processes include: bonds with discontinuous material properties, energies that are positive relative to the bulk material, and unique chemical and mechanical properties. The processes and properties are outlined for ceramic-metal joints and for joining silicon nitride, and the factors that control wetting, adhesion, and reaction on the atomic scale are critical for establishing successful joints.
Katona, T R; Chen, J
1994-08-01
The stress levels within the cement layer (hence, the apparent strength) of a direct bonded orthodontic bracket depends, to a large extent, on the alignment of the tensile loads that are applied to the specimen. The purpose of this analysis was to determine how the construction of a ligature wire harness affects the alignment of the applied loads. Tensile tests conducted on a modified bracket/cement system showed large variations in the force-elongation curve profiles. An engineering model was developed to explain these deviations. The results indicate that it is virtually impossible to evenly apply tensile loads to the bracket. It was also proposed that long harnesses constructed with thin ligature wire, prestressing the harness, and lubrication may reduce some of the effects of unavoidable load-bracket misalignment.
Effect of bracket bonding with Er: YAG laser on nanomechanical properties of enamel.
Alavi, Shiva; Birang, Reza; Hajizadeh, Fatemeh; Banimostafaee, Hamed
2014-01-01
The aim of this study was to compare the effects of conventional acid etching and laser etching on the nano-mechanical properties of the dental enamel using nano-indentation test. In this experimental in vitro study, buccal surfaces of 10 premolars were divided into three regions. One of the regions was etched with 37% phosphoric acid and another etched with Er:YAG laser, the third region was not etched. The brackets were bonded to both of etched regions. After thermocycling for 500 cycles, the brackets were removed and the teeth were decoronated from the bracket bonding area. Seven nano-indentations were applied at 1-31 μm depth from the enamel surface in each region. Mean values of the hardness and elastic modulus were analyzed with repeated measures analysis of variance and Tukey HSD tests, using the SPSS software (SPSS Inc., version16.0, Chicago, Il, USA). P < 0.05 was considered as significant. The hardness up to 21 μm in depth and elastic modulus up to 6 μm in depth from the enamel surface for laser-etched enamel had significantly higher values than control enamel and the hardness up to 11 μm in depth and elastic modulus up to 6 μm in depth for acid-etched enamel had significantly lower values than the control enamel. The mechanical properties of the enamel were decreased after bracket bonding with conventional acid etching and increased after bonding with Er:YAG laser.
O'Dywer, Lian; Littlewood, Simon J; Rahman, Shahla; Spencer, R James; Barber, Sophy K; Russell, Joanne S
2016-01-01
To use a two-arm parallel trial to compare treatment efficiency between a self-ligating and a conventional preadjusted edgewise appliance system. A prospective multi-center randomized controlled clinical trial was conducted in three hospital orthodontic departments. Subjects were randomly allocated to receive treatment with either a self-ligating (3M SmartClip) or conventional (3M Victory) preadjusted edgewise appliance bracket system using a computer-generated random sequence concealed in opaque envelopes, with stratification for operator and center. Two operators followed a standardized protocol regarding bracket bonding procedure and archwire sequence. Efficiency of each ligation system was assessed by comparing the duration of treatment (months), total number of appointments (scheduled and emergency visits), and number of bracket bond failures. One hundred thirty-eight subjects (mean age 14 years 11 months) were enrolled in the study, of which 135 subjects (97.8%) completed treatment. The mean treatment time and number of visits were 25.12 months and 19.97 visits in the SmartClip group and 25.80 months and 20.37 visits in the Victory group. The overall bond failure rate was 6.6% for the SmartClip and 7.2% for Victory, with a similar debond distribution between the two appliances. No significant differences were found between the bracket systems in any of the outcome measures. No serious harm was observed from either bracket system. There was no clinically significant difference in treatment efficiency between treatment with a self-ligating bracket system and a conventional ligation system.
Shear bond strength of orthodontic brackets bonded with different self-etching adhesives.
Scougall Vilchis, Rogelio José; Yamamoto, Seigo; Kitai, Noriyuki; Yamamoto, Kohji
2009-09-01
The purpose of this study was to compare the shear bond strength (SBS) of orthodontic brackets bonded with 4 self-etching adhesives. A total of 175 extracted premolars were randomly divided into 5 groups (n = 35). Group I was the control, in which the enamel was etched with 37% phosphoric acid, and stainless steel brackets were bonded with Transbond XT (3M Unitek, Monrovia, Calif). In the remaining 4 groups, the enamel was conditioned with the following self-etching primers and adhesives: group II, Transbond Plus and Transbond XT (3M Unitek); group III, Clearfil Mega Bond FA and Kurasper F (Kuraray Medical, Tokyo, Japan); group IV, Primers A and B, and BeautyOrtho Bond (Shofu, Kyoto, Japan); and group V, AdheSE and Heliosit Orthodontic (Ivoclar Vivadent AG, Liechtenstein). The teeth were stored in distilled water at 37 degrees C for 24 hours and debonded with a universal testing machine. The adhesive remnant index (ARI) including enamel fracture score was also evaluated. Additionally, the conditioned enamel surfaces were observed under a scanning electron microscope. The SBS values of groups I (19.0 +/- 6.7 MPa) and II (16.6 +/- 7.3 MPa) were significantly higher than those of groups III (11.0 +/- 3.9 MPa), IV (10.1 +/- 3.7 MPa), and V (11.8 +/- 3.5 MPa). Fluoride-releasing adhesives (Kurasper F and BeautyOrtho Bond) showed clinically acceptable SBS values. Significant differences were found in the ARI and enamel fracture scores between groups I and II. The 4 self-etching adhesives yielded SBS values higher than the bond strength (5.9 to 7.8 MPa) suggested for routine clinical treatment, indicating that orthodontic brackets can be successfully bonded with any of these self-etching adhesives.
Noda, Yukari; Nakajima, Masatoshi; Takahashi, Masahiro; Mamanee, Teerapong; Hosaka, Keiichi; Takagaki, Tomohiro; Ikeda, Masaomi; Foxton, Richard M; Tagami, Junji
2017-11-29
This study evaluated the effects of ceramic surface treatment agents on shear bond strengths to ceramic materials with and without thermocycling. Ceramic plates were prepared from feldspathic ceramic; AAA, lithium disilicate ceramic material; IPS e.max Press, zirconia ceramic; Lava. Ceramic surfaces were pretreated with one of five surface treatment agents (Clearfil PhotoBond mixed with Porcelainbond activator (PB), Clearfil SE One mixed with Porcelainbond activator (SO), Ceramic Primer (CP), Universal Primer (UP), Scotchbond Universal (SU)), and then a resin cement (Clapearl DC) was filled. After 0, 5,000, and 10,000 thermocycles, micro-shear bond strengths between ceramic-cement interfaces were determined. SU exhibited significantly lower initial bond strength to AAA and e.max than PB, SO, CP, and UP. For Lava, PB, SO, CP and SU exhibited higher initial bond strengths than UP. Thermocycles reduced bond strengths to all the ceramic materials with any surface treatment.
Evaluation of shear bond strength of orthodontic brackets bonded with nano-filled composites.
Chalipa, Javad; Akhondi, Mohammad Sadegh Ahmad; Arab, Sepideh; Kharrazifard, Mohammad Javad; Ahmadyar, Maryam
2013-09-01
The purpose of this study was to evaluate the shear bond strength (SBS) of orthodontic brackets bonded with two types of nano-composites in comparison to a conventional orthodontic composite. Sixty extracted human first premolars were randomly divided into 3 groups each containing 20 teeth. In group I, a conventional orthodontic composite (Transbond XT) was used to bond the brackets, while two nano-composites (Filtek TM Supreme XT and AELITE Aesthetic Enamel) were used in groups II and III respectively. The teeth were stored in distilled water at 37°C for 24 hours, thermocycled in distilled water and debonded with a universal testing machine at a crosshead speed of 1 mm/min. The adhesive remnant index (ARI) was also evaluated using a stereomicroscope. AELITE Aesthetic Enamel nano-composite revealed a SBS value of 8.44±2.09 MPa, which was higher than Transbond XT (6.91±2.13) and Filtek TM Supreme XT (6.04±2.01). Statistical analysis revealed a significant difference between groups II and III (P < 0.05). No significant difference was found between groups I and III, and between groups I and II (P > 0.05). Evaluation of ARI showed that Transbond XT left fewer adhesive remains on teeth after debonding. Results of this study indicate that the aforementioned nano-composites can be successfully used for bonding orthodontic brackets.
Mirhashemi, Amirhossein; Emadian Razavi, Elham Sadat; Behboodi, Sara; Chiniforush, Nasim
2015-12-01
The aim of the present study was to assess the effect of laser-assisted bleaching with neodymium:yttrium-aluminum-garnet (Nd:YAG) and diode lasers on shear bond strength (SBS) of orthodontic brackets. One hundred and four extracted human premolars were randomly divided into four groups: group 1: No bleaching applied (control group); group 2: Teeth bleached with 40 % hydrogen peroxide; group 3: Teeth treated with 30 % hydrogen peroxide activated with Nd:YAG laser (1064 nm, 2.5 W, 25 Hz, pulse duration of 100 μs, 6 mm distance); and group 4: Teeth treated with 30 % hydrogen peroxide activated with diode laser (810 nm, 1 W, CW, 6 mm distance). Equal numbers of teeth in groups 2, 3, and 4 were bonded at start, 1 h, 24 h, and 1 week after bleaching. A universal testing machine measured the SBS of the samples 24 h after bonding. After bracket debonding, the amount of residual adhesive on the enamel surface was observed under a stereomicroscope to determine the adhesive remnant index (ARI) scores. The SBS in the unbleached group was significantly higher than that in the bleached groups bonded immediately and 1 h after laser-assisted bleaching (P < 0.05). In groups 3 and 4 at start and group 2 at start and 1 h after laser-assisted bleaching, the SBS was found to be significantly lower than that in the control group. Significant differences in the ARI scores existed among groups as well. The SBS of brackets seems to increase quickly within an hour after laser-assisted bleaching and 24 h after conventional bleaching. Thus, this protocol can be recommended if it is necessary to bond the brackets on the same day of bleaching.
Are nano-composites and nano-ionomers suitable for orthodontic bracket bonding?
Uysal, Tancan; Yagci, Ahmet; Uysal, Banu; Akdogan, Gülsen
2010-02-01
The aim of this study was to test nano-composite (Filtek Supreme Plus Universal) and a newly introduced nano-ionomer (Ketac N100 Light Curing Nano-Ionomer) restorative to determine their shear bond strength (SBS) and failure site locations in comparison with a conventional light-cure orthodontic bonding adhesive (Transbond XT). Sixty freshly extracted human maxillary premolar teeth were arbitrarily divided into three equal groups. The brackets were bonded to the teeth in each group with different composites, according to the manufacturers' instructions. The SBS values of the brackets were recorded in Megapascals (MPa) using a universal testing machine. Adhesive remnant index scores were determined after failure of the brackets. The data were analysed using analysis of variance, Tukey honestly significant difference, and chi-square tests. The results demonstrated that group 1 (Transbond XT, mean: 12.60 +/- 4.48 MPa) had a higher SBS than that of group 2 (nano-composite, mean: 8.33 +/- 5.16 MPa; P < 0.05) and group 3 (nano-ionomer, mean: 6.14 +/- 2.12 MPa; P < 0.001). No significant differences in debond locations were found among the three groups. Nano-composites and nano-ionomers may be suitable for bonding since they fulfil the previously suggested SBS ranges for clinical acceptability, but they are inferior to a conventional orthodontic composite.
Sharma, Sudhir; Tandon, Pradeep; Nagar, Amit; Singh, Gyan P; Singh, Alka; Chugh, Vinay K
2014-01-01
Objectives: The objective of this study is to compare the shear bond strength (SBS) of stainless steel (SS) orthodontic brackets bonded with four different orthodontic adhesives. Materials and Methods: Eighty newly extracted premolars were bonded to 0.022 SS brackets (Ormco, Scafati, Italy) and equally divided into four groups based on adhesive used: (1) Rely-a-Bond (self-cure adhesive, Reliance Orthodontic Product, Inc., Illinois, USA), (2) Transbond XT (light-cure adhesive, 3M Unitek, CA, USA), (3) Transbond Plus (sixth generation self-etch primer, 3M Unitek, CA, USA) with Transbond XT (4) Xeno V (seventh generation self-etch primer, Dentsply, Konstanz, Germany) with Xeno Ortho (light-cure adhesive, Dentsply, Konstanz, Germany) adhesive. Brackets were debonded with a universal testing machine (Model No. 3382 Instron Corp., Canton, Mass, USA). The adhesive remnant index (ARI) was recordedIn addition, the conditioned enamel surfaces were observed under a scanning electron microscope (SEM). Results: Transbond XT (15.49 MPa) attained the highest bond strength. Self-etching adhesives (Xeno V, 13.51 MPa; Transbond Plus, 11.57 MPa) showed clinically acceptable SBS values and almost clean enamel surface after debonding. The analysis of variance (F = 11.85, P < 0.0001) and Chi-square (χ2 = 18.16, P < 0.05) tests revealed significant differences among groups. The ARI score of 3 (i.e., All adhesives left on the tooth) to be the most prevalent in Transbond XT (40%), followed by Rely-a-Bond (30%), Transbond Plus with Transbond XT (15%), and Xeno V with Xeno Ortho (10%). Under SEM, enamel surfaces after debonding of the brackets appeared porous when an acid-etching process was performed on the surfaces of Rely-a-Bond and Transbond XT, whereas with self-etching primers enamel presented smooth and almost clean surfaces (Transbond Plus and Xeno V group). Conclusion: All adhesives yielded SBS values higher than the recommended bond strength (5.9-7–8 MPa), Seventh generation self-etching primer Xeno V with Xeno Ortho showed clinically acceptable SBS and the least amount of residual adhesive left on the enamel surface after debonding. PMID:24987660
Do we need primer for orthodontic bonding? A randomized controlled trial.
Nandhra, Sarabjit Singh; Littlewood, Simon J; Houghton, Nadine; Luther, Friedy; Prabhu, Jagadish; Munyombwe, Theresa; Wood, Simon R
2015-04-01
To evaluate the clinical performance of APC™II Victory Series™ (3M Unitek) brackets in direct orthodontic bonding with and without the use of primer. A single-operator, two-centre prospective, non-inferiority randomized controlled clinical trial. The Orthodontic departments at the Leeds Dental Institute and St Luke's Hospital, Bradford, UK. Ethical approval was granted by Leeds (East) Research Ethics Committee on 18th of December 2009 (Reference 09/H1306/102). The protocol was not published prior to trial commencement. Ninety-two patients requiring orthodontic treatment with fixed appliances were randomly allocated to the control (bonded with primer) or test groups (bonded without primer). Patients were randomly allocated to either the control or experimental group. This was performed by preparing opaque numbered sealed envelopes in advance using a random numbers table generated by a computer by an independent third party . Once the envelopes were opened, blinding of the operator and the patient was no longer possible due to the nature of the intervention. Patients were approached for inclusion in the trial if they qualified for NHS orthodontic treatment requiring fixed appliances and had no previous orthodontic treatment. Number of bracket failures, time to bond-up appliances, and the adhesive remnant index (ARI) when bracket failure occurred, over a 12-month period Failure rate with primer was 11.1 per cent and without primer was 15.8 per cent. Bonding without primer was shown statistically to be non-inferior to bonding with primer odds ratio 0.95-2.25 (P = 0.08). Mean difference in bond-up time per bracket was 0.068 minutes (4 seconds), which was not statistically significant (P = 0.402). There was a statistically significant difference in the Adhesive Remnant Index - ARI 0 with primer 49.4 per cent, no primer 76.5 per cent, (P < 0.0001). As the study was only performed by one operator, the results can therefore only be truly be applied to their practice. Also this study was powered to ascertain if there was no difference between the 2 groups up to 5%, however orthodontists may consider a change in the bracket failure rate of 2% to be clinically significant. When bonding with APC™II Victory Series™ brackets without primer was shown statistically to be non-inferior to bonding with primer (P =0.08). There was no significant difference in bond-up times. Bond failure was more likely to happen at the composite-enamel interface when bonded without a primer. No conflict of interest for all authors. No funding sources were used. Study was not registered on external databases. © The Author 2014. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Metallurgical characterization of orthodontic brackets produced by Metal Injection Molding (MIM).
Zinelis, Spiros; Annousaki, Olga; Makou, Margarita; Eliades, Theodore
2005-11-01
The aim of this study was to investigate the bonding base surface morphology, alloy type, microstructure, and hardness of four types of orthodontic brackets produced by Metal Injection Molding technology (Discovery, Extremo, Freedom, and Topic). The bonding base morphology of the brackets was evaluated by scanning electron microscopy (SEM). Brackets from each manufacturer were embedded in epoxy resin, and after metallographic grinding, polishing and coating were analyzed by x-ray energy-dispersive spectroscopic (EDS) microanalysis to assess their elemental composition. Then, the brackets were subjected to metallographic etching to reveal their metallurgical structure. The same specimen surfaces were repolished and used for Vickers microhardness measurements. The results were statistically analyzed with one-way analysis of variance and Student-Newman-Keuls multiple comparison test at the 0.05 level of significance. The findings of SEM observations showed a great variability in the base morphology design among the brackets tested. The x-ray EDS analysis demonstrated that each bracket was manufactured from different ferrous or Co-based alloys. Metallographic analysis showed the presence of a large grain size for the Discovery, Freedom, and Topic brackets and a much finer grain size for the Extremo bracket. Vickers hardness showed great variations among the brackets (Topic: 287 +/- 16, Freedom: 248 +/- 13, Discovery: 214 +/- 12, and Extremo: 154 +/- 9). The results of this study showed that there are significant differences in the base morphology, composition, microstructure, and microhardness among the brackets tested, which may anticipate significant clinical implications.
Harzer, W; Schröter, A; Gedrange, T; Muschter, F
2001-08-01
Titanium brackets are used in orthodontic patients with an allergy to nickel and other specific substances. In recent studies, the corrosive properties of fluoride-containing toothpastes with different pH values were investigated. The present in vivo study tested how the surfaces of titanium brackets react to the corrosive influence of acidic fluoride-containing toothpaste during orthodontic treatment. Molar bands were placed on 18 orthodontic patients. In these same patients, titanium brackets were bonded on the left quadrants and stainless steel brackets on the right quadrants of the upper and lower arches. Fifteen patients used Gel Kam containing soluble tin fluoride (pH 3.2), whereas 3 used fluoride-free toothpaste. The brackets were removed for evaluation by light microscopy and scanning microscopy 5.5 to 7.0 months and 7.5 to 17 months after bonding. The quality and quantity of elements present were measured by scanning microscopy. Macroscopic evaluation showed the matte gray color of titanium brackets dominating over the silver gleam of the steel brackets. The plaque accumulation on titanium brackets is high because of the very rough surface. Pitting and crevices were observed in only 3 of the 165 brackets tested. The present in vivo investigation confirms the results of in vitro studies, but the changes are so minor that titanium brackets can safely be used for up to 18 months. Wing surfaces should be improved by modifying the manufacturing process.
A Unique Bonding Technique for Immediate Orthognathic Surgery
Ayinipully, Hariprasad; Paul, Rosaline Tina; Ponnambathayil, Shaji Aboobacker; Rasheed, Althaf Thanimoottil
2015-01-01
Introduction A challenge in orthodontics is achieving ideal bracket position which determines treatment results and finishing. A new bonding method is done indirectly on the cast and bonded directly on the teeth, but it does not require conventional trays to carry the brackets to the teeth. Materials and Methods Heavy sized archwires like 0.019″x0.025″ or 0.018″ SS are bent to the malocclusion to generate a template which comprises of an Bracket -Archwire Assembly (BAA). This assembly is transferred onto the teeth using the molar bands with tubes which serves as a jig for proper orientation of the BAA, then the adhesive is cured at one shot to complete the bonding procedure. Results Two surgical cases successfully bonded with this technique is presented in this article. Conclusion This bonding method finds specific advantages in surgical orthodontics – when the surgeon decides on a surgery-first treatment objective, management of single or a couple of periodontally extruded teeth, management of impacted teeth and in patients needing fixed functional appliance immediately before the completion of growth spurt. PMID:26266212
Raji, S. Hamid; Ghorbanipour, Reza; Majdzade, Fateme
2011-01-01
Background: The aim of this study was to evaluate the shear bond strength of an antimicrobial and fluoride-releasing self-etch primer (clearfil protect bond) and compare it with transbond plus self-etch primer and conventional acid etching and priming system. Materials and Methods: Forty-eight extracted human premolars were divided randomly to three groups. In group 1, the teeth were bonded with conventional acid etching and priming method. In group 2, the teeth were bonded with clearfil protect bond self-etch primer, and transbond plus self-etch primer was used to bond the teeth in group 3. The samples were stored in 37°C distilled water and thermocycled. Then, the SBS of the sample was evaluated with Zwick testing machine. Descriptive statistics and the analysis of variances (ANOVA) and Tukey's test and Kruskal-Wallis were used to analyze the data. Results: The results of the ANOVA showed that the mean of group 3 was significantly lower than that of other groups. Most of the sample showed a pattern of failure within the adhesive resin. Conclusion: The shear bond strength of clearfil protect bond and transbond plus self-etch primer was enough for bonding the orthodontic brackets. The mode of failure of bonded brackets with these two self-etch primers is safe for enamel. PMID:23372605
Effect of bracket bonding with Er: YAG laser on nanomechanical properties of enamel
Alavi, Shiva; Birang, Reza; Hajizadeh, Fatemeh; Banimostafaee, Hamed
2014-01-01
Background: The aim of this study was to compare the effects of conventional acid etching and laser etching on the nano-mechanical properties of the dental enamel using nano-indentation test. Materials and Methods: In this experimental in vitro study, buccal surfaces of 10 premolars were divided into three regions. One of the regions was etched with 37% phosphoric acid and another etched with Er:YAG laser, the third region was not etched. The brackets were bonded to both of etched regions. After thermocycling for 500 cycles, the brackets were removed and the teeth were decoronated from the bracket bonding area. Seven nano-indentations were applied at 1-31 μm depth from the enamel surface in each region. Mean values of the hardness and elastic modulus were analyzed with repeated measures analysis of variance and Tukey HSD tests, using the SPSS software (SPSS Inc., version16.0, Chicago, Il, USA). P < 0.05 was considered as significant. Results: The hardness up to 21 μm in depth and elastic modulus up to 6 μm in depth from the enamel surface for laser-etched enamel had significantly higher values than control enamel and the hardness up to 11 μm in depth and elastic modulus up to 6 μm in depth for acid-etched enamel had significantly lower values than the control enamel. Conclusion: The mechanical properties of the enamel were decreased after bracket bonding with conventional acid etching and increased after bonding with Er:YAG laser. PMID:24688560
Surface modification for bonding between amalgam and orthodontic brackets.
Wongsamut, Wittawat; Satrawaha, Sirichom; Wayakanon, Kornchanok
2017-01-01
Testing of methods to enhance the shear bond strength (SBS) between orthodontic metal brackets and amalgam by sandblasting and different primers. Three hundred samples of amalgam restorations (KerrAlloy ® ) were prepared in self-cured acrylic blocks, polished, and divided into two groups: nonsandblasted and sandblasted. Each group was divided into five subgroups with different primers used in surface treatment methods, with a control group of bonded brackets on human mandibular incisors. Following the surface treatments, mandibular incisor brackets (Unitek ® ) were bonded on the amalgam with adhesive resin (Transbond XT ® ). The SBS of the samples was tested. The adhesive remnant index (ARI) and failure modes were then determined under a stereo-microscope. Two-way analysis of variance, Chi-square, and Kruskal-Wallis tests were performed to calculate the correlations between and among the SBS and ARI values, the failure modes, and surface roughness results. There were statistically significant differences of SBS among the different adhesive primers and sandblasting methods ( P < 0.05). The sandblasted amalgam with Assure Plus ® showed the highest SBS ( P < 0.001). Samples mainly showed an ARI score = 1 and mix-mode failure. There was a statistically significant difference of surface roughness between nonsandblasted amalgam and sandblasted amalgam ( P < 0.05), but no significant differences among priming agents ( P > 0.05). Using adhesive primers with sandblasting together effectively enhances the SBS between orthodontic metal brackets and amalgam. The two primers with the ingredient methacryloxydecyl dihydrogen phosphate (MDP) monomer, Alloy Primer ® and Assure Plus ® , were the most effective. Including sandblasting in the treatment is essential to achieve the bonding strength required.
Light curing in orthodontics; should we be concerned?
McCusker, Neil; Lee, Siu Man; Robinson, Stephen; Patel, Naresh; Sandy, Jonathan R; Ireland, Anthony J
2013-06-01
Light cured materials are increasingly used in orthodontic clinical practice and concurrent with developments in materials have been developments in light curing unit technology. In recent years the irradiances of these units have increased. The aim of this study was to determine the safe exposure times to both direct and reflected light. The weighted irradiance and safe exposure times of 11 dental curing lights (1 plasma arc, 2 halogen and 8 LED lights) were determined at 6 distances (2-60 cm) from the light guide tip using a spectroradiometer. In addition, using the single most powerful light, the same two parameters were determined for reflected light. This was done at a distance of 10 cm from the reflected light, but during simulated bonding of 8 different orthodontic brackets of three material types, namely stainless steel, ceramic and composite. The results indicate that the LED Fusion lamp had the highest weighted irradiance and the shortest safe exposure time. With this light the maximum safe exposure time without additional eye protection for the patient (at 10 cm), the operator (at 30 cm) and the assistant (at 60 cm) ranged from 2.5 min, 22.1 min and 88.8 min respectively. This indicates a relatively low short term risk during normal operation of dental curing lights. For reflected light at a distance of 10 cm the risk was even lower, but was affected by the material and shape of the orthodontic bracket under test. The short term risks associated with the use of dental curing lights, halogen, LED or plasma, appear to be low, particularly if as is the case adequate safety precautions are employed. The same is true for reflected light from orthodontic brackets during bonding. What is still unclear is the potential long term ocular effects of prolonged exposure to the blue light generated from dental curing lights. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Sunil, P C; Michael, Tony; Raju, Aravind S; Paul, Renji K; Mamatha, J; Ebin, T M
2015-01-01
Background: The objective of the study was to determine the sites of plaque accumulation and to compare the plaque accumulated with metal and self-ligating orthodontic brackets in order to know which bracket type had a higher plaque retaining capacity. Materials and Methods: The study was done on 20 subjects who were scheduled for orthodontic treatment including extraction of four premolars and fixed orthodontic appliances. Mesh-backed edgewise metal brackets ligated with steel ligatures and self-ligating brackets were bonded to the premolars to be extracted using composite (Transbond XT, 3M). The subjects were told to continue their normal oral hygiene regimen. Teeth were extracted at 1, 2, and 3 weeks after bracket bonding. Plaque attached to the buccal surfaces was stained using plaque disclosing agent. The teeth were then immersed in fixative containing 4% formaldehyde and 1% glutaraldehyde in phosphate buffer for 24 h, followed by 0.1 M phosphate buffer for 12 h. The specimens were then mounted on aluminum stubs, and sputter coated with gold prior to Scanning electron microscopy examination. Results: The results showed that increased retention of plaque in metal brackets ligated with steel ligatures and comparatively less in self-ligating brackets at the base of the brackets. Conclusions: This study highlights that higher retention of plaque in metal brackets ligated with steel ligatures and comparatively less plaque retention in self-ligating brackets. Excess composite around the bracket base is the critical site of plaque accumulation associated with fixed appliances due to its rough surface texture. PMID:26229372
Sunil, P C; Michael, Tony; Raju, Aravind S; Paul, Renji K; Mamatha, J; Ebin, T M
2015-07-01
The objective of the study was to determine the sites of plaque accumulation and to compare the plaque accumulated with metal and self-ligating orthodontic brackets in order to know which bracket type had a higher plaque retaining capacity. The study was done on 20 subjects who were scheduled for orthodontic treatment including extraction of four premolars and fixed orthodontic appliances. Mesh-backed edgewise metal brackets ligated with steel ligatures and self-ligating brackets were bonded to the premolars to be extracted using composite (Transbond XT, 3M). The subjects were told to continue their normal oral hygiene regimen. Teeth were extracted at 1, 2, and 3 weeks after bracket bonding. Plaque attached to the buccal surfaces was stained using plaque disclosing agent. The teeth were then immersed in fixative containing 4% formaldehyde and 1% glutaraldehyde in phosphate buffer for 24 h, followed by 0.1 M phosphate buffer for 12 h. The specimens were then mounted on aluminum stubs, and sputter coated with gold prior to Scanning electron microscopy examination. The results showed that increased retention of plaque in metal brackets ligated with steel ligatures and comparatively less in self-ligating brackets at the base of the brackets. This study highlights that higher retention of plaque in metal brackets ligated with steel ligatures and comparatively less plaque retention in self-ligating brackets. Excess composite around the bracket base is the critical site of plaque accumulation associated with fixed appliances due to its rough surface texture.
Dumbryte, Irma; Jonavicius, Tomas; Linkeviciene, Laura; Linkevicius, Tomas; Peciuliene, Vytaute; Malinauskas, Mangirdas
2016-05-01
To find a correlation between the severity of enamel microcracks (EMCs) and their increase during debonding and residual adhesive removal (RAR). Following their examination with scanning electron microscopy (SEM), 90 extracted human premolars were divided into three groups of 30: group 1, teeth having pronounced EMCs (visible with the naked eye under normal room illumination); group 2, teeth showing weak EMCs (not apparent under normal room illumination but visible by SEM); and group 3, a control group. EMCs have been classified into weak and pronounced, based on their visibility. Metal brackets (MB) and ceramic brackets (CB), 15 of each type, were bonded to all the teeth from groups 1 and 2. Debonding was performed with pliers, followed by RAR. The location, length, and width of the longest EMCs were measured using SEM before and after debonding. The mean overall width (Woverall) was higher for pronounced EMCs before and after debonding CB (P < .05), and after the removal of MB. Pronounced EMCs showed greater length values using both types of brackets. After debonding, the increase in Woverall of pronounced EMCs was 0.57 µm with MB (P < .05) and 0.30 µm with CB; for weak EMCs, - 0.32 µm with MB and 0.30 µm with CB. Although the teeth having pronounced EMCs showed higher width and length values, this did not predispose to greater EMCs increase after debonding MB and CB followed by RAR.
Effects of intraoral aging on surface properties of coated nickel-titanium archwires.
Rongo, Roberto; Ametrano, Gianluca; Gloria, Antonio; Spagnuolo, Gianrico; Galeotti, Angela; Paduano, Sergio; Valletta, Rosa; D'Antò, Vincenzo
2014-07-01
To evaluate the effects of intraoral aging on surface properties of esthetic and conventional nickel-titanium (NiTi) archwires. Five NiTi wires were considered for this study (Sentalloy, Sentalloy High Aesthetic, Superelastic Titanium Memory Wire, Esthetic Superelastic Titanium Memory Wire, and EverWhite). For each type of wire, four samples were analyzed as received and after 1 month of clinical use by an atomic force microscope (AFM) and a scanning electronic microscope (SEM). To evaluate sliding resistance, two stainless steel plates with three metallic or three monocrystalline brackets, bonded in passive configuration, were manufactured; four as-received and retrieved samples for every wire were pulled five times at 5 mm/min for 1 minute by means of an Instron 5566, recording the greatest friction value (N). Data were analyzed by one-way analysis of variance and by Student's t-test. After clinical use, surface roughness increased considerably. The SEM images showed homogeneity for the as-received control wires; however, after clinical use esthetic wires exhibited a heterogeneous surface with craters and bumps. The lowest levels of friction were observed with the as-received Superelastic Titanium Memory Wire on metallic brackets. When tested on ceramic brackets, all the wires exhibited an increase in friction (t-test; P < .05). Furthermore, all the wires, except Sentalloy, showed a statistically significant increase in friction between the as-received and retrieved groups (t-test; P < .05). Clinical use of the orthodontic wires increases their surface roughness and the level of friction.
Shear bond strength of orthodontic metal brackets to aged composite using three primers
Tayebi, Ali; Fallahzadeh, Farnoosh
2017-01-01
Background This study aimed to assess the effect of surface preparation with sandblasting and diamond bur along with the use of three primers on shear bond strength (SBS) of metal brackets to aged composite. Material and Methods In this in vitro, experimental study, 60 Filtek Z250 composite discs were fabricated (10×2mm), immersed in distilled water for 24 hours and subjected to 5000 thermal cycles. They were randomly divided into two groups (n=30) of sandblasting with aluminum oxide particles for 10 seconds and surface roughening with bur. Each group was randomly divided into three subgroups (n=10) for use of Transbond XT, Assure Plus and Composite Primer. Metal brackets were bonded and the samples were stored in distilled water for 24 hours followed by 2000 thermal cycles. The SBS of brackets was measured and the adhesive remnant index (ARI) score was calculated. The data were analyzed by one-way ANOVA, t-test and Chi square test. Results The difference in the mean SBS was not significant among the six subgroups. Conclusions All combinations of primers and surface preparation methods provided adequately high SBS between brackets and aged composite surfaces. Considering the ARI scores, surface roughening by bur is superior to sandblasting. Key words:Shear strength, composite resins, orthodontic brackets, aged composite, surface preparation. PMID:28638550
Lee, Souk Min
2015-01-01
Objective This study aimed to compare the frictional force (FR) in self-ligating brackets among different bracket-archwire angles, bracket materials, and archwire types. Methods Passive and active metal self-ligating brackets and active ceramic self-ligating brackets were included as experimental groups, while conventional twin metal brackets served as a control group. All brackets were maxillary premolar brackets with 0.022 inch [in] slots and a -7° torque. The orthodontic wires used included 0.018 round and 0.019 × 0.025 in rectangular stainless steel wires. The FR was measured at 0°, 5°, and 10° angulations as the wire was drawn through the bracket slots after attaching brackets from each group to the universal testing machine. Static and kinetic FRs were also measured. Results The passive self-ligating brackets generated a lower FR than all the other brackets. Static and kinetic FRs generally increased with an increase in the bracket-archwire angulation, and the rectangular wire caused significantly higher static and kinetic FRs than the round wire (p < 0.001). The metal passive self-ligating brackets exhibited the lowest static FR at the 0° angulation and a lower increase in static and kinetic FRs with an increase in bracket-archwire angulation than the other brackets, while the conventional twin brackets showed a greater increase than all three experimental brackets. Conclusions The passive self-ligating brackets showed the lowest FR in this study. Self-ligating brackets can generate varying FRs in vitro according to the wire size, surface characteristics, and bracket-archwire angulation. PMID:25667913
Evaluation of Shear Bond Strength of Orthodontic Brackets Bonded with Nano-Filled Composites
Chalipa, Javad; Akhondi, Mohammad Sadegh Ahmad; Arab, Sepideh; Kharrazifard, Mohammad Javad; Ahmadyar, Maryam
2013-01-01
Objectives: The purpose of this study was to evaluate the shear bond strength (SBS) of orthodontic brackets bonded with two types of nano-composites in comparison to a conventional orthodontic composite. Materials and Methods: Sixty extracted human first premolars were randomly divided into 3 groups each containing 20 teeth. In group I, a conventional orthodontic composite (Transbond XT) was used to bond the brackets, while two nano-composites (Filtek TM Supreme XT and AELITE Aesthetic Enamel) were used in groups II and III respectively. The teeth were stored in distilled water at 37°C for 24 hours, thermocycled in distilled water and debonded with a universal testing machine at a crosshead speed of 1 mm/min. The adhesive remnant index (ARI) was also evaluated using a stereomicroscope. Results: AELITE Aesthetic Enamel nano-composite revealed a SBS value of 8.44±2.09 MPa, which was higher than Transbond XT (6.91±2.13) and Filtek TM Supreme XT (6.04±2.01). Statistical analysis revealed a significant difference between groups II and III (P < 0.05). No significant difference was found between groups I and III, and between groups I and II (P > 0.05). Evaluation of ARI showed that Transbond XT left fewer adhesive remains on teeth after debonding. Conclusion: Results of this study indicate that the aforementioned nano-composites can be successfully used for bonding orthodontic brackets. PMID:24910655
Navarro, Raúl; Vicente, Ascensión; Ortiz, Antonio J; Bravo, Luis A
2011-02-01
The purpose of this study was to evaluate the effects of Coca-Cola and Schweppes Limón on bond strength, adhesive remnant, and microleakage beneath brackets. One hundred and twenty upper central incisor brackets were bonded to bovine incisors and divided into three groups: (1) Control, (2) Coca-Cola, and (3) Schweppes Limón. The teeth were submerged in the drinks three times a day for 15 minutes over a 15 day period. Shear bond strength (SBS) was measured with a universal testing machine, and adhesive remnant evaluated using image analysis equipment. Microleakage at the enamel-adhesive and adhesive-bracket interfaces was determined using methylene blue. One hundred and eight teeth were used for scanning electron microscopy to determine the effect of the drinks on intact and sealed enamel. SBS and adhesive remnant data were analysed using the Kruskal-Wallis test (P < 0.05) and microleakage using the Kruskal-Wallis and Mann-Whitney tests applying Bonferroni correction (P < 0.017). No significant differences were found in SBS and adhesive remnant between the groups (P > 0.05). Microleakage at the enamel-adhesive interface for groups 2 and 3 was significantly greater than for group 1 (P < 0.017). At the adhesive-bracket interface, microleakage was significantly greater in group 2 than in group 1 (P < 0.017) while microleakage in group 3 did not differ significantly from either group 1 or 2 (P < 0.017). The drinks produced enamel erosion, loss of adhesive and microleakage. Coca-Cola and Schweppes Limón did not affect the SBS of brackets or the adhesive remnant.
Bond strength of orthodontic light-cured resin-modified glass ionomer cement.
Cheng, Hsiang Yu; Chen, Chien Hsiu; Li, Chuan Li; Tsai, Hung Huey; Chou, Ta Hsiung; Wang, Wei Nan
2011-04-01
The purpose of this study was to compare the bond strengths and debonded interfaces achieved with light-cured resin-modified glass ionomer cement (RMGIC) and conventional light-cured composite resin. In addition, the effects of acid etching and water contamination were examined. One hundred human premolars were randomly divided into five equal groups. The mini Dyna-lock upper premolar bracket was selected for testing. The first four groups were treated with light-cured RMGIC with or without 15 per cent phosphoric acid-etching treatment and with or without water contamination preceding bracket bonding. The control samples were treated with the conventional light-cured Transbond composite resin under acid etching and without water contamination. Subsequently, the brackets were debonded by tensile force using an Instron machine. The modified adhesive remnant index (ARI) scores were assigned to the bracket base of the debonded interfaces using a scanning electron microscope. The bond strength and modified ARI scores were determined and analysed statistically by one-way analysis of variance and chi-square test. Under all four conditions, the bond strength of the light-cure RMGIC was equal to or higher than that of the conventional composite resin. The highest bond strength was achieved when using RMGIC with acid etching but without water contamination. The modified ARI scores were 2 for Fuji Ortho LC and 3 for Transbond. No enamel detachment was found in any group. Fifteen per cent phosphoric acid etching without moistening the enamel of Fuji Ortho LC provided the more favourable bond strength. Enamel surfaces, with or without water contamination and with or without acid etching, had the same or a greater bond strength than Transbond.
Richter, C; Jost-Brinkmann, P-G
2015-03-01
The purpose of this work was to analyze the shear bond strength (SBS) of different adhesives for orthodontic brackets in accordance with DIN 13990-1/-2, also taking into consideration potential effects arising from different scenarios of enamel conditioning and specimen storage. A total of 390 experiments were performed, with groups of 10 specimens subjected to identical treatments. Three adhesives were tested: Transbond™ XT (3M Unitek, Monrovia, USA), Beauty Ortho Bond (Shofu, Kyoto, Japan), and Fuji Ortho LC (GC Europe, Leuven, Belgium). SBS was evaluated separately at the bracket-adhesive and adhesive-enamel interfaces, as well as the total (enamel-adhesive-bracket) interface. The brackets were metal brackets for upper right central incisors (Discovery® from Dentaurum, Ispringen, Germany). A universal testing machine (Zwick Z010, Ulm, Germany) was used for testing the SBS after 15 min, or after storage in distilled water at 37 °C for 24 h, or after 24 h followed by 500 thermocycles alternating between 5 and 55 °C. Transbond™ XT produced the highest levels of SBS. The least favorable performance was observed with Fuji Ortho LC after enamel conditioning with 10 % polyacrylic acid. Thermocycling did not have a significant influence. Transbond™ XT and Beauty Ortho Bond (but not Fuji Ortho LC) yielded levels of SBS adequate for clinical application (≥ 7 MPa).
Della-Bona, Alvaro
2005-06-01
The clinical success of resin bonding procedures for indirect ceramic restorations and ceramic repairs depends on the quality and durability of the bond between the ceramic and the resin. The quality of this bond will depend upon the bonding mechanisms that are controlled in part by the surface treatment that promote micromechanical and/or chemical bonding to the substrate. The objective of this review is to correlate interfacial toughness (K A) with fracture surface morphological parameters of the dental ceramic-resin systems as a function of ceramic surface treatment. This analysis is designed to identify mechanisms that promote adhesion of these ceramic-resin systems and an appropriate bond test method to yield relevant adhesion performance data.
Interfacial adhesion of dental ceramic-resin systems
NASA Astrophysics Data System (ADS)
Della Bona, Alvaro
The clinical success of resin bonding procedures for indirect ceramic restorations and ceramic repairs depends on the quality and durability of the bond between the ceramic and the resin. The quality of this bond will depend upon the bonding mechanisms that are controlled in part by the surface treatment that promotes micromechanical and/or chemical bonding to the substrate. The objective of this study is to correlate interfacial toughness (K A) with fracture surface morphological parameters of the dental ceramic-resin systems as a function of ceramic surface treatment. The analytical procedures focused on characterizing the microstructure and fracture properties of EmpressRTM ceramics (a leucite-based core ceramic, two lithia disilicate-based core ceramics, and a glass veneer) and determining the ceramic-resin adhesion zone bond strength characteristics. Microstructure and composition are controlling factors in the development of micromechanical retention produced by etching. Silane treated ceramics negated the effect of surface roughening produced by etching, inducing lower surface energy of the ceramic and, reduced bonding effectiveness. There was a positive correlation between WA, tensile bond strength (a), and KA, i.e., higher mean WA value, and higher mean sigma and KA values. This study suggests that (1) the sigma and KA values for ceramic bonded to resin are affected by the ceramic microstructure and the ceramic surface treatments; (2) the definition of the adhesion zone is essential to classify the modes of failure, which should be an integral component of all failure analyses; (3) the microtensile test may be preferable to conventional shear or flexural tests as an indicator of composite-ceramic bond quality; and (4) careful microscopic analysis of fracture surfaces and an x-ray dot map can produce a more consistent and complete description of the fracture process and interpretation of the modes of failure. The mode of failure and fractographic analyses provide important a more comprehensive assessment of mechanisms that control the survival times of dental adhesive systems. Thus, the quality of the bond should not be assessed based on bond strength data alone.
Rechargeable calcium phosphate orthodontic cement with sustained ion release and re-release
NASA Astrophysics Data System (ADS)
Zhang, Ling; Weir, Michael D.; Chow, Laurence C.; Reynolds, Mark A.; Xu, Hockin H. K.
2016-11-01
White spot lesions (WSL) due to enamel demineralization are major complications for orthodontic treatments. Calcium phosphate (CaP) dental resins with Ca and P ion releases are promising for remineralization. However, previous Ca and P releases lasted for only weeks. Experimental orthodontic cements were developed using pyromellitic glycerol dimethacrylate (PMGDM) and ethoxylated bisphenol A dimethacrylate (EBPADMA) at mass ratio of 1:1 (PE); and PE plus 10% of 2-hydroxyethyl methacrylate (HEMA) and 5% of bisphenol A glycidyl dimethacrylate (BisGMA) (PEHB). Particles of amorphous calcium phosphate (ACP) were incorporated into PE and PEHB at 40% filler level. Specimens were tested for bracket-enamel shear bond strength, water sorption, CaP release, and ion recharge and re-release. PEHB+40ACP had higher bracket-enamel bond strength and ion release and rechargeability than PE+40ACP. ACP incorporation into the novel orthodontic cement did not adversely affect the bracket-enamel bond strength. Ion release and re-release from the novel ACP orthodontic cement indicated favorable release and re-release patterns. The recharged orthodontic cement could release CaP ions continuously for four weeks without further recharge. Novel rechargeable orthodontic cement containing ACP was developed with a high bracket-enamel bond strength and the ability to be repeatedly recharged to maintain long-term high levels of CaP ion releases.
Ahangar Atashi, Mohammad Hossein; Sadr Haghighi, Amir Hooman; Nastarin, Parastou; Ahangar Atashi, Sina
2018-01-01
Background. Bracket base design is a factor influencing shear bond strength. High shear bond strength leads to enamel crack formation during debonding. The aim of this study was to compare enamel damage variations, including the number and length of enamel cracks after debonding of two different base designs. Methods. Eighty-eight extracted human premolars were randomly divided into2 groups (n=44). The teeth in each group were bonded by two types of brackets with different base designs: 80-gauge mesh design versus anchor pylon design with pylons for adhesive retention. The number and length of enamel cracks before bonding and after debonding were evaluated under an optical stereomicroscope ×40 in both groups. Mann-Whitney U test was used to compare the number of cracks between the two groups. ANCOVA was used for comparison of crack lengths after and before debonding in each group and between the two groups. Results. There was a significant increase in enamel crack length and numbers in each group after debonding. There was no significant difference in enamel crack numbers after debonding between the two groups, whereas the length of enamel cracks was significantly greater in anchor pylon base design after debonding. Conclusion. Bracket bases with pylon design for adhesive retention caused more iatrogenic debonding damage to enamel surface.
Kitayama, Shuzo; Nikaido, Toru; Maruoka, Rena; Zhu, Lei; Ikeda, Masaomi; Watanabe, Akihiko; Foxton, Richard M; Miura, Hiroyuki; Tagami, Junji
2009-07-01
This study was conducted to enhance the tensile bond strengths of resin cements to zirconia ceramics. Fifty-six zirconia ceramic specimens (Cercon Base) and twenty-eight silica-based ceramic specimens (GN-1, GN-1 Ceramic Block) were air-abraded using alumina. Thereafter, the zirconia ceramic specimens were divided into two subgroups of 28 each according to the surface pretreatment; no pretreatment (Zr); and the internal coating technique (INT). For INT, the surface of zirconia was coated by fusing silica-based ceramics (Cercon Ceram Kiss). Ceramic surfaces were conditioned with/without a silane coupling agent followed by bonding with one of two resin cements; Panavia F 2.0 (PF) and Superbond C&B (SB). After 24 hours storage in water, the tensile bond strengths were tested (n=7). For both PF and SB, silanization significantly improved the bond strength to GN-1 and INT (p<0.05). The INT coating followed by silanizaton demonstrated enhancement of bonding to zirconia ceramics.
Material testing of reconditioned orthodontic brackets.
Reimann, S; Rewari, A; Keilig, L; Widu, F; Jäger, A; Bourauel, C
2012-12-01
While all manufacturers of orthodontic brackets label these products for single use, there are commercial providers offering bracket reconditioning (or "recycling"). We conducted this study to investigate the effects of different recycling techniques on material-related parameters in orthodontic brackets, aiming to derive indications for clinical use and conclusions about the biocompatibility, longevity, and application of recycled brackets. New metal brackets (equilibrium(®); Dentaurum, Ispringen, Germany) were compared to brackets recycled by different techniques, including direct flaming with a Bunsen burner, chemical reconditioning in an acid bath, a commercial unit (Big Jane; Esmadent, IL, USA), and outsourcing to a company (Ortho Clean, Dellstedt, Germany). Material-related examinations included the following: (1) corrosion behavior by static immersion testing and use of a mass spectrometer to determine nickel-ion concentrations in the corrosive medium, (2) surface features in scanning electron micrographs before and after corrosion testing, (3) Vickers hardness using a hardness testing machine, (4) shear bond strength as defined in DIN 13990-1, (5) dimensional stability of the bracket slots by light microscopy, and (6) frictional loss as assessed by an orthodontic measurement and simulation system (OMSS). Each examination was performed on ten brackets. Student's t-test was used for statistical analysis. Compared to the new brackets, those recycled in an acid bath or by a commercial provider revealed significant dimensional changes (p<0.05). Corrosion on the recycled brackets varied according to the recycling techniques employed. The group of brackets recycled by one company revealed hardness values that differed from those of all the other groups. No significant differences were observed in nickel-ion release, frictional loss, and shear bond strength. Recycling was found to significantly reduce the corrosion resistance and dimensional stability of orthodontic brackets. As the savings generated by recycling do not justify the risks involved, the practice of labeling orthodontic brackets for single use remains a responsible precaution that safeguards patients and orthodontists against definite risks.
The Effect of Different Soft Drinks on the Shear Bond Strength of Orthodontic Brackets
Omid Khoda, M.; Heravi, F.; Shafaee, H.; Mollahassani, H.
2012-01-01
Objective: It is proved that acidic soft drinks that are commonly used, have an adverse effect on dental structures, and may deteriorate oral heath of our patients and orthodontic appliances. The aim of this study was to compare the effect of yoghurt drink with other soft drinks on the shear bond strength of orthodontic brackets. Materials and Methods: Seventy-five first premolar teeth extracted for orthodontic purposes were selected and standard twin metal brackets were bonded on the center of buccal surface with No-Mix composite. The teeth were thermocycled for 625 cycles and randomly divided into five groups of artificial saliva, carbonated yoghurt drink with lactic acid base, non-carbonated yoghurt drink with lactic acid base, 7 up with citric acid base and Pepsi with phosphoric acid base. In all groups, the teeth were immersed in liquid for five-minute sessions three times with equal intervening intervals for 3 months. SBS was measured by a universal testing machine with a speed of 0.5mm/min. Data was analyzed statistically by one-way ANOVA. Results: The results showed that mean values for the shear bond strength of carbonated yoghurt drinks, non-carbonated yoghurt drinks, 7up and Pepsi groups were 12.98(±2.95), 13.26(±4.00), 16.11(±4.89), 14.73(±5.10), respectively. There was no statistically significant difference among the groups (P-value= 0.238) Conclusion: Soft drinks used in this study did not decrease the bond strength of the brackets bonded with this specific type of composite. PMID:23066479
The effect of different soft drinks on the shear bond strength of orthodontic brackets.
Omid Khoda, M; Heravi, F; Shafaee, H; Mollahassani, H
2012-01-01
It is proved that acidic soft drinks that are commonly used, have an adverse effect on dental structures, and may deteriorate oral heath of our patients and orthodontic appliances. The aim of this study was to compare the effect of yoghurt drink with other soft drinks on the shear bond strength of orthodontic brackets. Seventy-five first premolar teeth extracted for orthodontic purposes were selected and standard twin metal brackets were bonded on the center of buccal surface with No-Mix composite. The teeth were thermocycled for 625 cycles and randomly divided into five groups of artificial saliva, carbonated yoghurt drink with lactic acid base, non-carbonated yoghurt drink with lactic acid base, 7 up with citric acid base and Pepsi with phosphoric acid base. In all groups, the teeth were immersed in liquid for five-minute sessions three times with equal intervening intervals for 3 months. SBS was measured by a universal testing machine with a speed of 0.5mm/min. Data was analyzed statistically by one-way ANOVA. The results showed that mean values for the shear bond strength of carbonated yoghurt drinks, non-carbonated yoghurt drinks, 7up and Pepsi groups were 12.98(±2.95), 13.26(±4.00), 16.11(±4.89), 14.73(±5.10), respectively. There was no statistically significant difference among the groups (P-value= 0.238) Soft drinks used in this study did not decrease the bond strength of the brackets bonded with this specific type of composite.
Elnafar, Ayman A S; Alam, Mohammad K; Hasan, Rozita
2014-09-01
The aim of this study was to assess the effects of four enamel preparation techniques on shear bond strength (SBS) of brackets bonded with a resin-modified glass ionomer cement (RMGIC). Adhesive Remnant Index (ARI) and enamel surface roughness (Ra) were also investigated after cement removal. One hundred and forty-four human premolars were divided into four groups (n = 36 in each group) as follows: Group 1, 37% phosphoric acid (i.e. conventional); Group 2, sandblasting; Group 3, sodium hypochlorite and 37% phosphoric acid; and Group 4, sodium hypochlorite and sandblasting. Twenty-four hours after bonding, the brackets were debonded with an Instron machine using a crosshead speed of 1·0 mm/min; the ARI was evaluated by an image analyser system; the Ra was measured by profilometry; and the morphology of the tooth enamel surface was observed by scanning electron microscope evaluation. Data were submitted to ANOVA and the Kruskal-Wallis test (α = 0·05). Mean SBS values for Groups 1-4 were 13·86, 9·08, 17 and 9·63 MPa, respectively. Mean ARI for Groups 1-4 were 11·16, 2·06, 20·66 and 3·73%. The SBS and ARI showed statistically significant differences between the four groups (P<0·001). The Ra (μm) showed no significant differences between groups. Bracket bonding using RMGIC showed adequate adhesion for clinical use, and the type of enamel preparation had a significant influence. © 2014 British Orthodontic Society.
Turk, Tamer; Elekdag-Turk, Selma; Isci, Devrim
2007-01-01
To evaluate the effect of a self-etching primer on shear bond strengths (SBS) at the different debond times of 5, 15, 30, and 60 minutes and 24 hours. Brackets were bonded to human premolars with different etching protocols. In the control group (conventional method [CM]) teeth were etched with 37% phosphoric acid. In the study group, a self-etching primer (SEP; Transbond Plus Self Etching Primer; 3M Unitek, Monrovia, Calif) was applied as recommended by the manufacturer. Brackets were bonded with light-cure adhesive paste (Transbond XT; 3M Unitek) and light-cured for 20 seconds in both groups. The shear bond test was performed at the different debond times of 5, 15, 30 and 60 minutes and 24 hours. Lowest SBS was attained with a debond time of 5 minutes for the CM group (9.51 MPa) and the SEP group (8.97 MPa). Highest SBS was obtained with a debond time of 24 hours for the CM group (16.82 MPa) and the SEP group (19.11 MPa). Statistically significant differences between the two groups were not observed for debond times of 5, 15, 30, or 60 minutes. However, the SBS values obtained at 24 hours were significantly different (P < .001). Adequate SBS was obtained with self-etching primer during the first 60 minutes (5, 15, 30 and 60 minutes) when compared with the conventional method. It is reliable to load the bracket 5 minutes after bonding using self-etching primer (Transbond Plus) with the light-cure adhesive (Transbond XT).
Bond strength of the porcelain repair system to all-ceramic copings and porcelain.
Lee, Sang J; Cheong, Chan Wook; Wright, Robert F; Chang, Brian M
2014-02-01
The purpose of this study was to investigate the shear bond strength of the porcelain repair system on alumina and zirconia core ceramics, comparing this strength with that of veneering porcelain. Veneering ceramic (n = 12), alumina core (n = 24), and zirconia core (n = 24) blocks measuring 10 × 5 × 5 mm(3) were fabricated. Veneering ceramic blocks were used as the control. Alumina and zirconia core blocks were divided into 2 groups (n = 12 each), and a slot (2 × 2 × 4 mm(3)) filled with veneering ceramics was prepared into one of the alumina and zirconia core groups (n = 12). Followed by surface treatments of micro-abrasion with 30 μm alumina particles, etching with 35% phosphoric acid and silane primer and bond, composite resin blocks (2 × 2 × 2 mm(3)) were built up and light polymerized onto the treated surfaces by 3 configurations: (a) composite blocks bonded onto veneering ceramic surface alone, (b) composite blocks bonded onto alumina core or zirconia core surfaces, (c) a 50% surface area of the composite blocks bonded to veneering ceramics and the other 50% surface area of the composite blocks to alumina core or zirconia core surfaces. The shear bond strength of the composite to each specimen was tested by a universal testing machine at a 0.5 mm/min crosshead speed. The shear bond strength was analyzed by unpaired t-tests for within the configuration groups and ANOVA for among the different configuration groups. When the mean shear bond strength was compared within groups of the same configuration, there were no statistically significant differences. Comparison of the shear bond strength among groups of different configurations revealed statistically significant differences. The mean shear bond strength of composite onto 100% veneering ceramic surface and composite onto 50% veneering 50% all-ceramic cores was statistically higher than that of composite onto 100% all-ceramic cores; however, the differences of the shear bond strength of composite bonded only onto the veneering ceramic surface were not statistically significant from those of 50% surface area of composite bonded onto all-ceramic cores. No statistically significant differences in the bond strength of a porcelain repair system to alumina and zirconia copings were observed. Increasing the surface of veneering ceramics to a porcelain repair system improved the repair material's bond strength. © 2013 by the American College of Prosthodontists.
Kitayama, Shuzo; Nikaido, Toru; Ikeda, Masaomi; Alireza, Sadr; Miura, Hiroyuki; Tagami, Junji
2010-01-01
Resin bonding to zirconia ceramic cannot be established by standard methods that are utilized for conventional silica-based dental ceramics. This study was aimed to examine the tensile bond strength of resin cement to zirconia ceramic using a new laboratory technique. Sixty-four zirconia ceramic specimens were air-abraded using Al2O3 particles and divided into two groups; the control group with no pretreatment (Control), and the group pretreated using the internal coating technique (INT), in which the surface of the zirconia specimens were thinly coated by fusing silica-based ceramic and air-abraded in the same manner. The specimens in each group were further divided into two subgroups according to the silane coupling agents applied; a mixture of dentin primer/silane coupling agent (Clearfil SE Bond Primer/Porcelain Bond Activator) or a newly developed single-component silane coupling agent (Clearfil Ceramic Primer). After bonding with dual-cured resin cement (Panavia F 2.0), they were stored in water for 24 h and half of them were additionally subjected to thermal cycling. The tensile bond strengths were tested using a universal testing machine. ANOVAs revealed significant influence of ceramic surface pretreatment (p<0.001), silane coupling agent (p<0.001) and thermal cycling (p<0.001); the INT coating technique significantly increased the bond strengths of resin cement to zirconia ceramic, whereas thermal cycling significantly decreased the bond strengths. The use of a single-component silane coupling agent demonstrated significantly higher bond strengths than that of a mixture of dentin primer/silane coupling agent. The internal coating of zirconia dental restorations with silica-based ceramic followed by silanization may be indicated in order to achieve better bonding for the clinical success.
Mirhashemi, Amir Hossein; Chiniforush, Nasim; Sharifi, Nastaran; Hosseini, Amir Mehdi
2018-05-01
Several techniques have been proposed to obtain a durable bond, and the efficacy of these techniques is assessed by measuring parameters such as bond strength. Laser has provided a bond strength as high as that of acid etching in vitro and has simpler use with shorter clinical time compared to acid etching. This study aimed to compare the efficacy of Er:YAG and Er,Cr:YSGG lasers for etching and bonding of composite to orthodontic brackets. No previous study has evaluated the effect of these particular types of laser. A total of 70 composite blocks were randomly divided into five groups (n = 14): group 1, etching with phosphoric acid for 20 s; group 2, Er:YAG laser irradiation with 2 W power for 10 s; group 3, Er:YAG laser with 3 W power for 10 s; group 4, Er,Cr:YSGG laser with 2 W power for 10 s; group 5, Er,Cr:YSGG laser with 3 W power for 10 s. Metal brackets were then bonded to composites, and after 5000 thermal cycles, they were subjected to shear bond strength test in a universal testing machine after 24 h of water storage. One sample of each group was evaluated under a scanning electron microscope (SEM) to assess changes in composite surface after etching. The adhesive remnant index (ARI) was calculated under a stereomicroscope. Data were statistically analyzed. The mean and standard deviation of shear bond strength were 18.65 ± 3.36, 19.68 ± 5.34, 21.31 ± 4.03, 17.38 ± 6.94, and 16.45 ± 4.26 MPa in groups 1-5, respectively. The ARI scores showed that the bond failure mode in all groups was mainly mixed. The groups were not significantly different in terms of shear bond strength. Er:YAG and Er,Cr:YSGG lasers with the mentioned parameters yield optimal shear bond strength and can be used as an alternative to acid etching for bracket bond to composite.
Method of assembling an electric power
Rinehart, Lawrence E [Lake Oswego, OR; Romero, Guillermo L [Phoenix, AZ
2007-05-03
A method of assembling and providing an electric power apparatus. The method uses a heat resistant housing having a structure adapted to accommodate and retain a power circuit card and also including a bracket adapted to accommodate and constrain a rigid conductive member. A power circuit card having an electrical terminal is placed into the housing and a rigid conductive member into the bracket. The rigid conductive member is flow soldered to the electrical terminal, thereby exposing the heat resistant housing to heat and creating a solder bond. Finally, the rigid conductive member is affirmatively connected to the housing. The bracket constrains the rigid conductive member so that the act of affirmatively connecting does not weaken the solder bond.
Effect of bromelain and papain gel on enamel deproteinisation before orthodontic bracket bonding.
Pithon, Matheus Melo; Campos, Matheus Souza; Coqueiro, Raildo da Silva
2016-05-01
To test the hypothesis that enamel surface deproteinisation with different concentrations of bromelain in association with 10% papain increases the shear bond strength (SBS) of brackets bonded with orthodontic composite and resin modified glass ionomer cement (RMGIC). Orthodontic brackets were attached according to the following protocols to 195 bovine incisors, which were acquired and divided into 13 groups: 1) Transbond XT (TXT) according to the manufacturer's recommendations; 2) Deproteinisation with 3% bromelain (BD) plus 10% papain and TXT; 3) 6% BD plus 10% Papain and TXT; 4) RMGIC, without enamel deproteinisation and without acid etching; 5) RMGIC, with 3% BD plus 10% papain and without acid etching; 6) RMGIC, with 6% BD plus 10% papain and without acid etching; 7) attachment using RMGIC following etching with polyacrylic acid; 8) 3% BD plus 10% papain, attachment using RMGIC and etching with polyacrylic acid; 9) 6% BD plus 10% papain, and attachment using RMGIC following etching with polyacrylic acid; 10) etching with 37% phosphoric acid and attachment using RMGIC; 11) 3% BD plus 10% papain, etching with 37% phosphoric acid and attachment using RMGIC; 12) 6% BD plus 10% papain, etching with 37% phosphoric acid and attachment using RMGIC; 13) deproteinisation with 2.5% sodium hypochlorite (NaOCl), etching with polyacrylic acid and RMGIC. After bonding, the brackets were removed by a universal mechanical testing machine, which recorded shear bond strength at failure. The material remaining on the tooth was assessed using the adhesive remnant index (ARI). Deproteinisation with 3% and 6% bromelain gel plus papain significantly increased the shear bond strength (p < 0.05), when acid etching was performed with phosphoric acid, followed by primer application and attachment using Transbond XT (Group 3) and when attached with RMGIC without etching. Deproteinisation with 6% bromelain gel plus papain significantly increased (p < 0.05) the ARI score only when attachment was performed using RMGIC, without etching (Group 6). Deproteinisation with bromelain associated with papain in a gel increased the shear bond strength and is recommended before orthodontic bracket attachment.
Evaluation of enamel micro-cracks characteristics after removal of metal brackets in adult patients.
Dumbryte, Irma; Linkeviciene, Laura; Malinauskas, Mangirdas; Linkevicius, Tomas; Peciuliene, Vytaute; Tikuisis, Kristupas
2013-06-01
The purpose of this study was to evaluate and compare enamel micro-crack characteristics of adult patients before and after removal of metal brackets. After the examination with scanning electron microscopy (SEM), 45 extracted human teeth were divided into three groups of equal size: group 1, the teeth having enamel micro-cracks, group 2, the teeth without initial enamel micro-cracks, and group 3, control group to study the effect of dehydration on existing micro-cracks or formation of new ones. For all the teeth in groups 1 and 2, the same bonding and debonding procedures of metal brackets were conducted. The length and width of the longest enamel micro-crack were measured for all the teeth before and after removal of metal brackets. The changes in the location of the micro-cracks were also evaluated. In group 3, teeth were subjected to the same analysis but not bonded. The mean overall width of micro-cracks after removal of metal brackets was 3.82 μm greater than before bonding procedure (P < 0.05). Also, a significant difference was noticed between the width of micro-cracks in first zone (cervical third) and third zone (occlusal third) after debonding procedure (P < 0.05). New enamel micro-cracks were found in 6 of 15 (40 per cent) examined teeth. Greatest changes in the width of enamel micro-cracks after debonding procedure appear in the cervical third of the tooth. On the basis of this result, the dentist must pay extra care and attention to this specific area of enamel during removal of metal brackets in adult patients.
Dias, Francilena Maria Campos Santos; Pinzan-Vercelino, Célia Regina Maio; Tavares, Rudys Rodolfo de Jesus; Gurgel, Júlio de Araújo; Bramante, Fausto Silva; Fialho, Melissa Nogueira Proença
2015-01-01
To compare shear bond strength of different direct bonding techniques of orthodontic brackets to acrylic resin surfaces. The sample comprised 64 discs of chemically activated acrylic resin (CAAR) randomly divided into four groups: discs in group 1 were bonded by means of light-cured composite resin (conventional adhesive); discs in group 2 had surfaces roughened with a diamond bur followed by conventional direct bonding by means of light-cured composite resin; discs in group 3 were bonded by means of CAAR (alternative adhesive); and discs in group 4 had surfaces roughened with a diamond bur followed by direct bonding by means of CAAR. Shear bond strength values were determined after 24 hours by means of a universal testing machine at a speed of 0.5 mm/min, and compared by analysis of variance followed by post-hoc Tukey test. Adhesive remnant index (ARI) was measured and compared among groups by means of Kruskal-Wallis and Dunn tests. Groups 3 and 4 had significantly greater shear bond strength values in comparison to groups 1 and 2. Groups 3 and 4 yielded similar results. Group 2 showed better results when compared to group 1. In ARI analyses, groups 1 and 2 predominantly exhibited a score equal to 0, whereas groups 3 and 4 predominantly exhibited a score equal to 3. Direct bonding of brackets to acrylic resin surfaces using CAAR yielded better results than light-cured composite resin. Surface preparation with diamond bur only increased shear bond strength in group 2.
Clinically used adhesive ceramic bonding methods: a survey in 2007, 2011, and in 2015.
Klosa, K; Meyer, G; Kern, M
2016-09-01
The objective of the study is to evaluate practices of dentists regarding adhesive cementation of all-ceramic restorations over a period of 8 years. The authors developed a questionnaire regarding adhesive cementation procedures for all-ceramic restorations. Restorations were distinguished between made out of silicate ceramic or oxide ceramic. The questionnaire was handed out to all dentists participating in a local annual dental meeting in Northern Germany. The returned questionnaires were analyzed to identify incorrect cementation procedures based upon current evidence-based technique from the scientific dental literature. The survey was conducted three times in 2007, 2011, and 2015 and their results were compared. For silicate ceramic restorations, 38-69 % of the participants used evidence-based bonding procedures; most of the incorrect bonding methods did not use a silane containing primer. In case of oxide ceramic restorations, most participants did not use air-abrasion prior to bonding. Only a relatively low rate (7-14 %) of dentists used evidence-based dental techniques for bonding oxide ceramics. In adhesive cementation of all-ceramic restorations, the practices of surveyed dentists in Northern Germany revealed high rates of incorrect bonding. During the observation period, the values of evidence-based bonding procedures for oxide ceramics improved while the values for silicate ceramics declined. Based on these results, some survey participants need additional education for adhesive techniques. Neglecting scientifically accepted methods for adhesive cementation of all-ceramic restorations may result in reduced longevity of all-ceramic restorations.
An insight into current concepts and techniques in resin bonding to high strength ceramics.
Luthra, R; Kaur, P
2016-06-01
Reliable bonding between high strength ceramics and resin composite cement is difficult to achieve because of their chemical inertness and lack of silica content. The aim of this review was to assess the current literature describing methods for resin bonding to ceramics with high flexural strength such as glass-infiltrated alumina and zirconia, densely sintered alumina and yttria-partially stabilized tetragonal zirconia polycrystalline ceramic (Y-TZP) with respect to bond strength and bond durability. Suitable peer reviewed publications in the English language were identified through searches performed in PubMed, Google Search and handsearches. The keywords or phrases used were 'resin-ceramic bond', 'silane coupling agents', 'air particle abrasion', 'zirconia ceramic' and 'resin composite cements'. Studies from January 1989 to June 2015 were included. The literature demonstrated that there are multiple techniques available for surface treatments but bond strength testing under different investigations have produced conflicting results. Within the scope of this review, there is no evidence to support a universal technique of ceramic surface treatment for adhesive cementation. A combination of chemical and mechanical treatments might be the recommended solution. The hydrolytic stability of the resin ceramic bond should be enhanced. © 2016 Australian Dental Association.
Effect of Er:YAG laser irradiation on bonding property of zirconia ceramics to resin cement.
Lin, Yihua; Song, Xiaomeng; Chen, Yaming; Zhu, Qingping; Zhang, Wei
2013-12-01
This study aimed to investigate whether or not an erbium: yttrium-aluminum-garnet (Er:YAG) laser could improve the bonding property of zirconia ceramics to resin cement. Surface treatments can improve the bonding properties of dental ceramics. However, little is known about the effect of Er:YAG laser irradiated on zirconia ceramics. Specimens of zirconia ceramic pieces were made, and randomly divided into 11 groups according to surface treatments, including one control group (no treatment), one air abrasion group, and nine Er:YAG laser groups. The laser groups were subdivided by applying different energy intensities (100, 200, or 300 mJ) and irradiation times (5, 10, or 15 sec). After surface treatments, ceramic pieces had their surface morphology observed, and their surface roughness was measured. All specimens were bonded to resin cement. Shear bond strength was measured after the bonded specimens were stored in water for 24 h, and additionally aged by thermocycling. Statistical analyses were performed using one way analysis of variance (ANOVA) and Tukey's test for shear bond strength, and Dunnett's t test for surface roughness, with α=0.05. Er:YAG laser irradiation changed the morphological characteristics of zirconia ceramics. Higher energy intensities (200, 300 mJ) could roughen the ceramics, but also caused surface cracks. There were no significant differences in the bond strength between the control group and the laser groups treated with different energy intensities or irradiation times. Air abrasion with alumina particles induced highest surface roughness and shear bond strength. Er:YAG laser irradiation cannot improve the bonding property of zirconia ceramics to resin cement. Enhancing irradiation intensities and extending irradiation time have no benefit on the bond of the ceramics, and might cause material defect.
Ahrari, Farzaneh; Poosti, Maryam; Motahari, Pourya
2012-01-01
Background: Several studies have shown that laser-etching of enamel for bonding orthodontic brackets could be an appropriate alternative for acid conditioning, since a potential advantage of laser could or might be caries prevention. This study compared enamel resistance to demineralization following etching with acid phosphoric or Er:YAG laser for bonding orthodontic brackets. Materials and Methods: Fifty sound human premolars were divided into two equal groups. In the first group, enamel was etched with 37% phosphoric acid for 15 seconds. In the second group, Er:YAG laser (wavelength, 2 940 nm; 300 mJ/pulse, 10 pulses per second, 10 seconds) was used for tooth conditioning. The teeth were subjected to 4-day PH-cycling process to induce caries-like lesions. The teeth were then sectioned and the surface area of the lesion was calculated in each microphotographs and expressed in pixel. The total surface of each specimen was 196 608 pixels. Results: Mean lesion areas were 7 171 and 7532 pixels for Laser-etched and Acid-etched groups, respectively. The two sample t-test showed that there was no significant difference in lesion area between the two groups (P = 0.914). Conclusion: Although Er:YAG laser seems promising for etching enamel before bonding orthodontic brackets, it does not reduce enamel demineralization when exposed to acid challenge. PMID:23162591
Rechargeable calcium phosphate orthodontic cement with sustained ion release and re-release
Zhang, Ling; Weir, Michael D.; Chow, Laurence C.; Reynolds, Mark A.; Xu, Hockin H. K.
2016-01-01
White spot lesions (WSL) due to enamel demineralization are major complications for orthodontic treatments. Calcium phosphate (CaP) dental resins with Ca and P ion releases are promising for remineralization. However, previous Ca and P releases lasted for only weeks. Experimental orthodontic cements were developed using pyromellitic glycerol dimethacrylate (PMGDM) and ethoxylated bisphenol A dimethacrylate (EBPADMA) at mass ratio of 1:1 (PE); and PE plus 10% of 2-hydroxyethyl methacrylate (HEMA) and 5% of bisphenol A glycidyl dimethacrylate (BisGMA) (PEHB). Particles of amorphous calcium phosphate (ACP) were incorporated into PE and PEHB at 40% filler level. Specimens were tested for bracket-enamel shear bond strength, water sorption, CaP release, and ion recharge and re-release. PEHB+40ACP had higher bracket-enamel bond strength and ion release and rechargeability than PE+40ACP. ACP incorporation into the novel orthodontic cement did not adversely affect the bracket-enamel bond strength. Ion release and re-release from the novel ACP orthodontic cement indicated favorable release and re-release patterns. The recharged orthodontic cement could release CaP ions continuously for four weeks without further recharge. Novel rechargeable orthodontic cement containing ACP was developed with a high bracket-enamel bond strength and the ability to be repeatedly recharged to maintain long-term high levels of CaP ion releases. PMID:27808251
Low temperature joining of ceramic composites
Barton, Thomas J.; Anderson, Iver E.; Ijadi-Maghsoodi, Sina; Nosrati, Mohammad; Unal, Ozer
1999-07-13
A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix.
Low temperature joining of ceramic composites
Barton, T.J.; Anderson, I.E.; Ijadi-Maghsoodi, S.; Nosrati, M.; Unal, O.
1999-07-13
A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 C to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix. 3 figs.
Low temperature joining of ceramic composites
Barton, T.J.; Anderson, I.E.; Ijadi-Maghsoodi, S.; Nosrati, M.; Unal, O.
1999-01-12
A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix. 3 figs.
Effectiveness and efficiency of a CAD/CAM orthodontic bracket system.
Brown, Matthew W; Koroluk, Lorne; Ko, Ching-Chang; Zhang, Kai; Chen, Mengqi; Nguyen, Tung
2015-12-01
The first straight-wire appliance was introduced over 40 years ago to increase the consistency and efficiency of orthodontic treatment. More recently, computer-aided design and computer-aided manufacturing (CAD/CAM) technology has been used to create individualized orthodontic appliances. The purpose of this study was to investigate the clinical effectiveness and efficiency of CAD/CAM customized orthodontic appliances compared with direct and indirect bonded stock orthodontic brackets. This retrospective study included 3 treatment groups: group 1 patients were direct bonded with self-ligating appliances, group 2 patients were indirect bonded with self-ligating appliances, and group 3 patients were indirect bonded with CAD/CAM self-ligating appliances. Complete pretreatment and posttreatment records were obtained for all patients. The American Board of Orthodontics (ABO) Discrepancy Index was used to evaluate the pretreatment records, and the posttreatment outcomes were analyzed using the ABO Cast-Radiograph Evaluation. All data collection and analysis were completed by 1 evaluator. There were no statistically significant differences in the ABO Discrepancy Index or the ABO Cast-Radiograph Evaluation among the groups. Treatment times for the 3 groups were significantly different; the CAD/CAM group was the shortest at 13.8 ± 3.4 months, compared with 21.9 ± 5.0 and 16.9 ± 4.1 months for the direct bonded and indirect bonded groups, respectively. The number of treatment appointments for the CAD/CAM group was significantly fewer than for the direct bonded group. The CAD/CAM orthodontic bracket system evaluated in this study was as effective in treatment outcome measures as were standard brackets bonded both directly and indirectly. The CAD/CAM appliance was more efficient in regard to treatment duration, although the decrease in total archwire appointments was minimal. Further investigation is needed to better quantify the clinical benefits of CAD/CAM orthodontic appliances. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Durgesh, B. H.; Alkheraif, A. A.; Al Sharawy, M.; Varrela, J.; Vallittu, P. K.
2016-01-01
The aim of this study was to investigate the magnitude of debonding stress of an orthodontic bracket bonded to the enamel with resin systems having different elastic properties. For the same purpose, sixty human premolars were randomly divided into four groups according to the adhesive system used for bonding brackets: G Fix flowable resin (GFI) with Everstick NET (ESN), GFI, G Aenial Universal Flow (GAU) with ESN, and GAU. The brackets were stressed in the occlusogingival direction on a universal testing machine. The values of debonding load and displacement were determined at the point of debonding. The elastic modulus of the tested materials was determined using nanoindentation. An analysis of variance showed a significant difference in the loads required to debond the bracket among the groups tested. The GAU group had the highest elastic modulus, followed by the GFI and ESN groups. ARI (Adhesive Remnant Index) scores demonstrated more remnants of the adhesive material on the bracket surface with adhesives having a higher elastic modulus. Taking into consideration results of the present in-vitro study, it can be concluded that the incorporation of a glass-fiber-reinforced composite resin (FRC) with a low elastic modulus between the orthodontic bracket and enamel increases the debonding force and strain more than with adhesive systems having a higher elastic modulus.
de Almeida, Marcio Rodrigues; Futagami, Cristina; Conti, Ana Cláudia de Castro Ferreira; Oltramari-Navarro, Paula Vanessa Pedron; Navarro, Ricardo de Lima
2015-01-01
OBJECTIVE: The aim of the present study was to compare dentoalveolar changes in mandibular arch, regarding transversal measures and buccal bone thickness, in patients undergoing the initial phase of orthodontic treatment with self-ligating or conventional bracket systems. METHODS: A sample of 25 patients requiring orthodontic treatment was assessed based on the bracket type. Group 1 comprised 13 patients bonded with 0.022-in self-ligating brackets (SLB). Group 2 included 12 patients bonded with 0.022-in conventional brackets (CLB). Cone-beam computed tomography (CBCT) scans and a 3D program (Dolphin) assessed changes in transversal width of buccal bone (TWBB) and buccal bone thickness (BBT) before (T1) and 7 months after treatment onset (T2). Measurements on dental casts were performed using a digital caliper. Differences between and within groups were analyzed by Student's t-test; Pearson correlation coefficient was also calculated. RESULTS: Significant mandibular expansion was observed for both groups; however, no significant differences were found between groups. There was significant decrease in mandibular buccal bone thickness and transversal width of buccal bone in both groups. There was no significant correlation between buccal bone thickness and dental arch expansion. CONCLUSIONS: There were no significant differences between self-ligating brackets and conventional brackets systems regarding mandibular arch expansion and changes in buccal bone thickness or transversal width of buccal bone. PMID:26154456
Aglarci, Cahide; Demir, Necla; Aksakalli, Sertac; Dilber, Erhan; Sozer, Ozlem Akinci; Kilic, Hamdi Sukur
2016-08-01
The aim of this study was to compare femtosecond and Er:YAG laser systems with regard to enamel demineralization and bracket bond strength. Human-extracted premolars were randomized to three groups (n = 17) depending on the conditioning treatment used for the buccal surfaces: 37 % orthophosphoric acid, Er:YAG laser etching (MSP mode 120 mJ, 10 Hz, 1.2 W), and femtosecond laser etching (0.4 W, 800 nm, 90 fs/pulse, 1 kHz). Metal brackets were bonded with Transbond XT to the conditioned surfaces and light cured for 20 s. The samples were thermocycled (5000 cycles, 5-55 °C) and subjected to shear bond strength (SBS) testing using a universal testing machine. Failure types were analyzed under an optical stereomicroscope and SEM. The adhesive remnant index (ARI) was evaluated to assess residual adhesive on the enamel surface. The results revealed no significant differences in SBS between the Er:YAG laser (7.2 ± 3.3 MPa) and acid etching groups (7.3 ± 2.7 MPa; p < 0.05), whereas a significant difference was observed between the femtosecond laser etching group (3.3 ± 1.2 MPa) and the other two groups (p < 0.01). ARI scores were significantly different among the three groups. The results of our study suggest that laser conditioning with an Er:YAG system results in successful etching, similar to that obtained with acid. The sole use of a femtosecond laser system may not provide an adequate bond strength at the bracket-enamel interface.
Metal-composite adhesion based on diazonium chemistry.
Oweis, Yara; Alageel, Omar; Kozak, Paige; Abdallah, Mohamed-Nur; Retrouvey, Jean-Marc; Cerruti, Marta; Tamimi, Faleh
2017-11-01
Composite resins do not adhere well to dental alloys. This weak bond can result in failure at the composite-metal interface in fixed dental prostheses and orthodontic brackets. The aim of this study was to develop a new adhesive, based on diazonium chemistry, to facilitate chemical bonding between dental alloys and composite resin. Samples of two types of dental alloys, stainless steel and cobalt chromium were primed with a diazonium layer in order to create a surface coating favorable for composite adhesion. Untreated metal samples served as controls. The surface chemical composition of the treated and untreated samples was analyzed by X-ray photoelectron spectroscopy (XPS) and the tensile strength of the bond with composite resin was measured. The diazonium adhesive was also tested for shear bond strength between stainless steel orthodontic brackets and teeth. XPS confirmed the presence of a diazonium coating on the treated metals. The coating significantly increased the tensile and shear bond strengths by three and four folds respectively between the treated alloys and composite resin. diazonium chemistry can be used to develop composite adhesives for dental alloys. Diazonium adhesion can effectively achieve a strong chemical bond between dental alloys and composite resin. This technology can be used for composite repair of fractured crowns, for crown cementation with resin based cements, and for bracket bonding. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Aspects of bonding between resin luting cements and glass ceramic materials.
Tian, Tian; Tsoi, James Kit-Hon; Matinlinna, Jukka P; Burrow, Michael F
2014-07-01
The bonding interface of glass ceramics and resin luting cements plays an important role in the long-term durability of ceramic restorations. The purpose of this systematic review is to discuss the various factors involved with the bond between glass ceramics and resin luting cements. An electronic Pubmed, Medline and Embase search was conducted to obtain laboratory studies on resin-ceramic bonding published in English and Chinese between 1972 and 2012. Eighty-three articles were included in this review. Various factors that have a possible impact on the bond between glass ceramics and resin cements were discussed, including ceramic type, ceramic crystal structure, resin luting cements, light curing, surface treatments, and laboratory test methodology. Resin-ceramic bonding has been improved substantially in the past few years. Hydrofluoric acid (HF) etching followed by silanizaiton has become the most widely accepted surface treatment for glass ceramics. However, further studies need to be undertaken to improve surface preparations without HF because of its toxicity. Laboratory test methods are also required to better simulate the actual oral environment for more clinically compatible testing. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Ceramics-bonded Nd-Fe-B-type magnet with high electrical resistivity
NASA Astrophysics Data System (ADS)
Kang, M. S.; Kwon, H. W.; Kim, D. H.; Lee, J. G.; Yu, J. H.
2018-05-01
Ceramics-bonded magnet with remarkably high electrical resistivity was fabricated by hot-pressing the mixture of Nd13.6Fe73.6Co6.6Ga0.6B5.6 alloy melt-spun flakes and dielectric Bi2O3-SiO2-B2O3 ceramics powder with low melting point. Coercivity of the ceramics-bonded magnet decreased with increasing the addition of ceramics binder, and this was attributed to the increased demagnetizing factor. Thin oxidized layer on the flake surface formed by reaction between the flake and oxide binder also contributed to reducing coercivity in the ceramics-bonded magnet. Highly resistive ceramics-bonded magnet containing 30 vol% ceramics binder still had good magnetic performance and high mechanical strength at 175 oC: iHc = 5 kOe, Mr = 4.8 kG, (BH)max = 4.3 MGOe, and over 900 MPa.
[Effect of hydrofluoric acid etching time on the resin bond durability of glass ceramic].
Meng, Xiang-feng; Zhou, Xiao-lu; Luo, Xiao-ping
2010-05-01
To analyze the effect of hydrofluoric acid (HFA) etching time on the resin bond durability of glass ceramic. Three groups of samples of machinable glass ceramic (ProCAD) were etched by 4.8% HFA for 0, 30 and 60 s respectively. The roughness parameters (Ra, Sm, S) and surface area of the samples, were measured with a 3D-laser scanning microscope. Then the ceramic surfaces were bonded with four resin cements (silane coupler/resin cement), which were Monobond S/Variolink II, Clearfil Ceramic Primer/Clearfil Esthetic Cement, GC Ceramic Primer/Linkmax HV, and Porcelain Liner M/SuperBond. The micro-bond strengths between the ceramic and the resin were tested at baseline and after the samples had been treated in 30000 thermal cycles. The Ra [(3.89+/-1.94), (12.53+/-0.80), (13.58+/-1.10) microm] and surface area [(7.81+/-2.96), (30.18+/-2.05), (34.16+/-1.97) mm2] of ceramic increased with the increase of HFA etching time. The thermal cycling test reduced the bond strength of all test groups. The bond strength of Monobond S/Variolink II group [(3.59+/-3.51), (16.18+/-2.62), (20.33+/-2.45) MPa] and Clearfil Ceramic Primer/Clearfil Esthetic Cement group [(4.74+/-2.08), (7.77+/-1.55), (13.45+/-3.75) MPa] increased with the increase of HFA etching time; 30 s HFA etching group of Porcelain Liner M/SuperBond had higher bond strength [(22.00+/-1.64) MPa] than its 0 s HFA etching group [(12.96+/-4.17) MPa], and no significant difference was found between the 30 s and 60 s HFA etching groups of Porcelain Liner M/SuperBond [(20.42+/-3.01) MPa]. HFA etching time had no effect on the bond strength of GC Ceramic Primer/Linkmax HV. HFA etching can improve the resin bond durability of glass ceramic, and the etching time is not only related to the change of ceramic surface roughness and area, but also to the characteristics of resins.
Lee, Yong-Keun; Bin, Yu
2016-01-01
Since the color of esthetic brackets should match that of teeth, the aims of this study were to determine the color and translucency of esthetic brackets by means of the clinically relevant use of a spectroradiometer, and to compare the color of brackets with that of a commercial shade guide. The color of central and tie-wing regions of four plastic and four ceramic brackets was measured according to the CIE L*a*b* color scale over white and black backgrounds. Brackets were classified into five groups based on their composition. The color of Vitapan Classical Shade Guide tabs was also measured. Translucency parameter (TP) and contrast ratio (CR) were calculated to determine translucency. Color differences between brackets and the shade guide tabs were 10.4 - 34.5 ∆E*ab units. TP and CR values for the central region were 16.4 - 27.7 and 0.38 - 0.58, whereas for the tie-wings they were 24.0 - 39.9 and 0.25 - 0.45, respectively. The color coordinates, TP and CR values were significantly influenced by bracket composition and brand (p < 0.05). Esthetic brackets investigated herein showed unacceptable color differences (∆E*ab > 5.5) compared with the shade guide tabs. Differences in the translucency of brackets by brand were within the visually perceptible range (∆CR > 0.07). Therefore, brackets showing the best matching performance for each case should be selected considering esthetic and functional demands.
Moreira, Marília Rodrigues; Matos, Leonardo Gontijo; de Souza, Israel Donizeti; Brigante, Tamires Amabile Valim; Queiroz, Maria Eugênia Costa; Romano, Fábio Lourenço; Nelson-Filho, Paulo; Matsumoto, Mírian Aiko Nakane
2017-03-01
The objectives of this study were to quantify in vitro the Bisphenol A (BPA) release from 5 orthodontic composites and to assess in vivo the BPA level in patients' saliva and urine after bracket bonding with an orthodontic adhesive system. For the in-vitro portion of this study, 5 orthodontic composites were evaluated: Eagle Spectrum (American Orthodontics, Sheboygan, Wis), Enlight (Ormco, Orange, Calif), Light Bond (Reliance Orthodontic Products, Itasca, Ill), Mono Lok II (Rocky Mountain Orthodontics, Denver, Colo), and Transbond XT (3M Unitek, Monrovia, Calif). Simulating intraoral conditions, the specimens were immersed in a water/ethanol solution, and the BPA (ng.g -1 ) liberation was measured after 30 minutes, 24 hours, 1 day, 1 week, and 1 month by the gas chromatography system coupled with mass spectrometry. Twenty patients indicated for fixed orthodontic treatment participated in the in-vivo study. Saliva samples were collected before bracket bonding and then 30 minutes, 24 hours, 1 day, 1 week, and 1 month after bonding the brackets. Urine samples were collected before bonding and then at 1 day, 1 week, and 1 month after bonding. The results were analyzed statistically using analysis of variance and Tukey posttest, with a significance level of 5%. All composites evaluated in vitro released small amounts of BPA. Enlight composite showed the greatest release, at 1 month. Regarding the in-vivo study, the mean BPA level in saliva increased significantly only at 30 minutes after bonding in comparison with measurements recorded before bonding. All orthodontic composites released BPA in vitro. Enlight and Light Bond had, respectively, the highest and lowest BPA releases in vitro. The in-vivo experiment showed that bracket bonding with the Transbond XT orthodontic adhesive system resulted in increased BPA levels in saliva and urine. The levels were significant but still lower than the reference dose for daily ingestion. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Comparison of shear bond strength of orthodontic brackets using various zirconia primers.
Lee, Ji-Yeon; Kim, Jin-Seok; Hwang, Chung-Ju
2015-07-01
The aim of this study was to compare the shear bond strength (SBS) of orthodontic brackets bonded to zirconia surfaces using three different zirconia primers and one silane primer, and subjected to thermocycling. We designed 10 experimental groups following the surface treatment and thermocycling. The surface was treated with one of the following method: no-primer (NP), Porcelain Conditioner (PC), Z-PRIME Plus (ZP), Monobond Plus (MP) and Zirconia Liner Premium (ZL) (n=20). Then each group was subdivided to non-thermocycled and thermocycled groups (NPT, PC, ZPT, MPT, ZLT) (n=10). Orthodontic brackets were bonded to the specimens using Transbond™ XT Paste and light cured for 15 s at 1,100 mW/cm(2). The SBS was measured at a 1 mm/min crosshead speed. The failure mode was assessed by examination with a stereomicroscope and the amount of bonding resin remaining on the zirconia surface was scored using the modified adhesive remnant index (ARI). The SBS of all experimental groups decreased after thermocycling. Before thermocycling, the SBS was ZL, ZP ≥ MP ≥ PC > NP but after thermocycling, the SBS was ZLT ≥ MPT ≥ ZPT > PCT = NPT (p > 0.05). For the ARI score, both of the groups lacking primer (NP and NPT) displayed adhesive failure modes, but the groups with zirconia primers (ZP, ZPT, MP, MPT, ZL, and ZLT) were associated with mixed failure modes. Surface treatment with a zirconia primer increases the SBS relative to no-primer or silane primer application between orthodontic brackets and zirconia prostheses.
Evaluation of a reproduction technique for the study of the enamel composite/bracket base area.
Wilner, F J; Oliver, R G
2000-09-01
The objective of the study was to evaluate a reproduction method that would enable the study of the enamel/ bracket/composite interface in vivo, and consisted of in vitro assessment of two different impression materials to compare reproduction of brackets bonded to extracted teeth followed by in vivo assessment of the superior material. In vitro standard edgewise brackets were bonded to two extracted teeth and impressions were taken using two different types of low viscosity silicone-based impression materials. A medium viscosity silicone impression material was used to support the original impression. Three impressions of both the gingival and occlusal aspect of the bracket base region were obtained using each of the impression materials. Replicas were then prepared for SEM viewing and these compared to SEMs of the real teeth for reproduction of detail. A 3-point Reproducibility Index was used to compare the SEM photographs of the comparable replicas. One impression material was clearly superior to the other and produced an acceptably accurate representation of the true clinical situation in three out of four samples. This material also performed well in the in vivo situation. The technique described is satisfactory for the production and analysis of SEM pictures of the enamel/composite/ bracket base interface in vivo.
Zhang, Hong; Jing, Ye; Nie, Rongrong; Meng, Xiangfeng
2015-10-01
To evaluate the bond strength and durability of a self-adhesive resin cement with a zirconia ceramic pretreated by a zirconia primer. Zirconia ceramic (Vita Inceram YZ) plates with a thickness of 2.5 mm were fired, polished, and then cleaned. Half of the polished ceramic plates were sandblasted with 50 μm alumina particles at 0.3 MPa for 20 s. The surface compound weight ratios were measured via X-ray fluorescence microscopy. The polished and sandblasted ceramic plates were directly bonded with self-adhesive resin cement (Biscem) or were pretreated by a zirconia primer (Z Primer Plus) before bonding with Biscem. The specimens of each test group were divided into two subgroups (n=10) and subjected to the shear test after 0 and 10,000 thermal cycles. The data were analyzed via three-way ANOVA. After air abrasion, 8.27% weight ratio of alumina attached to the zirconia surface. Compared with air abrasion, primer treatment more significantly improved the primary resin bond strength of the zirconia ceramic. The primary resin bond strength of the zirconia ceramic with no primer treatment was not affected by thermocycling (P>0.05). However, the primary resin bond strength of the zirconia ceramic with primer treatment was significantly decreased by thermocycling (P<0.05). Primer treatment can improve the primary resin bond strengths of zirconia ceramics. However, the bond interface of the primer is not stable and rapidly degraded during thermocycling.
Zhou, Tuan feng; Wang, Xin zhi; Zhang, Gui rong
2011-02-18
To clinic observation of IPS Empress2 and IPS e.max all ceramic resin bonded fixed partial dentures used in one anterior teeth lost in upper jaw or less than two anterior tooth lost in lower jaw. 22 patients, 26 restorations had been made, which included 16 single-retainer all ceramic resin bonded fixed partial dentures and 10 two-retainers all ceramic resin bonded fixed partial dentures. Secondary caries of the abutments, shade in the margin of the retainers and the integrity of the restorations had been observed at 3 months, 6 months, 1 year, 2 years and 3 years after all ceramic resin bonded fixed partial dentures having been bonded. In the 3 years of clinic observation of the anterior all ceramic resin bonded fixed partial dentures, 1 two-retainers restoration lost bond after it had been made for 3 months, a retainer of one two-retainers restoration was broken after 6 months, but they are still used after modified as one-retainer all ceramic resin bonded fixed partial dentures, 1 two-retainers restoration lost bond two year later, It was integrity and re-bonded again that was still stable. No secondary carries and no shade in margin of the retainers had been found. Their color matches with the nature teeth excellently. The success rate was 88.5%. IPS Empress 2 and IPS e.max all ceramic resin bonded fixed partial dentures should be a good selection in one or two teeth lose in anterior jaws.
Irradiation conditions for fiber laser bonding of HAp-glass ceramics with bovine cortical bone.
Tadano, Shigeru; Yamada, Satoshi; Kanaoka, Masaru
2014-01-01
Orthopedic implants are widely used to repair bones and to replace articulating joint surfaces. It is important to develop an instantaneous technique for the direct bonding of bone and implant materials. The aim of this study was to develop a technique for the laser bonding of bone with an implant material like ceramics. Ceramic specimens (10 mm diameter and 1 mm thickness) were sintered with hydroxyapatite and MgO-Al2O3-SiO2 glass powders mixed in 40:60 wt% proportions. A small hole was bored at the center of a ceramic specimen. The ceramic specimen was positioned onto a bovine bone specimen and a 5 mm diameter area of the ceramic specimen was irradiated using a fiber laser beam (1070-1080 nm wavelength). As a result, the bone and the ceramic specimens bonded strongly under the irradiation conditions of a 400 W laser power and a 1.0 s exposure time. The maximum shear strength was 5.3 ± 2.3 N. A bonding substance that penetrated deeply into the bone specimen was generated around the hole in the ceramic specimen. On using the fiber laser, the ceramic specimen instantaneously bonded to the bone specimen. Further, the irradiation conditions required for the bonding were investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsunaga, Tadashi; Lin, Hua-Tay; Singh, Mrityunjay
2011-01-01
The stress-temperature-lifetime response of Si-Ti-C-O fiber-bonded ceramic (Tyrannohex ) and sintered SiC fiber-bonded ceramic (SA-Tyrannohex ) materials were investigated in air from 500 to 1150 C and 500 to 1400 C, respectively. The apparent threshold stress of Si-Ti-C-O fiber-bonded ceramic was about 175 MPa in the 500-1150 C temperature range. When the applied stress of the sintered SiC fiber-bonded ceramic was below an apparent threshold stress (e.g., ~225MPa) for tests conducted 1150 C, no failures were observed for lifetimes up to 1000h. In the case of sintered SiC fiber-bonded ceramic, at the temperature of 1300 C, the apparent threshold stressmore » decreased to 175 MPa. The decrease in strength seemed to be caused by grain growth which was confirmed from the SEM fractography. Both fiber-bonded ceramics exhibited much higher durability than a commercial SiC/SiC composite at temperatures above 500 C. In addition, results suggested that the sintered SiC fiber-bonded ceramic (SA-Tyrannohex) is more stable than a Hi-Nicalon/MI SiC composite with BN/SiC fiber coating at temperatures above 1300 C.« less
Aragón, Mônica L. C.; Bichara, Lívia M.; Flores-Mir, Carlos; Almeida, Guilherme; Normando, David
2017-01-01
ABSTRACT Objective: The purpose of this study was to assess the efficiency of compensatory orthodontic treatment of patients with mild Class III malocclusion with two preadjusted bracket systems. Method: Fifty-six matched patients consecutively treated for mild Class III malocclusion through compensatory dentoalveolar movements were retrospectively evaluated after analysis of orthodontic records. The sample was divided into two groups according to the brackets used: Group 1 = non-Class III compensated preadjusted brackets, Roth prescription (n = 28); Group 2 = compensated Class III preadjusted brackets, Capelozza III prescription (n = 28). Cephalometric analysis, number of appointments and missed appointments, months using Class III elastics, and bond/band failures were considered. Treatment time, Peer Assessment Rating (PAR) index at the beginning (PAR T1) and end of treatment (PAR T2) were used to calculate treatment efficiency. Comparison was performed using a MANOVA at p< 0.05. Results: Missed appointments, bond or band failures, number of months using the Class III intermaxillary elastics, and cephalometric measurements showed no statistically significant difference (p> 0.05) between groups. Patients treated with Roth brackets had a treatment time 7 months longer (p= 0.01). Significant improvement in the patient’s occlusion (PAR T2-T1) was observed for both groups without difference (p= 0.22). Conclusions: Orthodontic brackets designed for compensation of mild Class III malocclusions appear to be more efficient than non-compensated straight-wire prescription brackets. Treatment time for Class III patients treated with brackets designed for compensation was shorter than with Roth prescription and no difference in the quality of the occlusal outcome was observed. A prospective randomized study is suggested to provide a deeper look into this subject. PMID:29364379
Gupta, Sanjay Prasad; Shrestha, Basanta Kumar
2018-01-01
Purpose To determine and compare the shear bond strength (SBS) of bracket-bonding system cured with light-emitting diode (LED) and halogen-based light-curing unit at various polymerization times. Materials and methods Ninety six human maxillary premolar teeth extracted for orthodontic purpose were divided into four groups, according to the light-curing unit and exposure times used. In the halogen group, the specimens were light cured for 20 and 40 seconds. In the LED group, the specimens were light cured for 5 and 10 seconds. Stainless steel brackets were bonded with Enlight bonding system, stored in distilled water at 37°C for 24 hours and then submitted to SBS testing in a universal testing machine at a crosshead speed of 0.5 mm/minute. Adhesive remnant index (ARI) was used to evaluate the amount of adhesive remaining on the teeth determined by stereomicroscope at 10× magnification. Results The highest mean SBS was obtained with the halogen 40 seconds (18.27 MPa) followed by halogen 20 seconds (15.36 MPa), LED 10 seconds (14.60 MPa) and least with LED 5 seconds (12.49 MPa) group. According to analysis of variance (ANOVA) and Tukey’s multiple-comparison test, SBS of halogen 20 seconds group was not significantly different from halogen 40 seconds group, LED 5 seconds group and LED 10 seconds group, whereas halogen 40 seconds group was significantly different from LED 5 seconds and LED 10 seconds group. The method of light curing did not influence the ARI, with score 2 being predominant. Conclusion Polymerization with both halogen and LED resulted in SBS values that were clinically acceptable for orthodontic treatment in all groups. Hence, for bonding orthodontic brackets, photoactivation with halogen for 20 seconds and LED for 5 seconds is suggested. PMID:29692633
Kuriyama, Soichi; Terui, Yuichi; Higuchi, Daisuke; Goto, Daisuke; Hotta, Yasuhiro; Manabe, Atsufumi; Miyazaki, Takashi
2011-01-01
A novel method was developed to fabricate all-ceramic restorations which comprised CAD/CAM-fabricated machinable ceramic bonded to CAD/CAM-fabricated zirconia framework using resin cement. The feasibility of this fabrication method was assessed in this study by investigating the bonding strength of a machinable ceramic to zirconia. A machinable ceramic was bonded to a zirconia plate using three kinds of resin cements: ResiCem (RE), Panavia (PA), and Multilink (ML). Conventional porcelain-fused-to-zirconia specimens were also prepared to serve as control. Shear bond strength test (SBT) and Schwickerath crack initiation test (SCT) were carried out. SBT revealed that PA (40.42 MPa) yielded a significantly higher bonding strength than RE (28.01 MPa) and ML (18.89 MPa). SCT revealed that the bonding strengths of test groups using resin cement were significantly higher than those of Control. Notably, the bonding strengths of RE and ML were above 25 MPa even after 10,000 times of thermal cycling -adequately meeting the ISO 9693 standard for metal-ceramic restorations. These results affirmed the feasibility of the novel fabrication method, in that a CAD/CAM-fabricated machinable ceramic is bonded to a CAD/CAM-fabricated zirconia framework using a resin cement.
Low temperature joining of ceramic composites
Barton, Thomas J.; Anderson, Iver E.; Ijadi-Maghsoodi, Sina; Nosrati, Mohammad; Unal, Ozer
1999-01-12
A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or cermaic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix.
Low temperature joining of ceramic composites
Barton, Thomas J.; Anderson, Iver E.; Ijadi-Maghsoodi, Sina; Nosrati, Mohammad; Unal, Ozer
2001-04-10
A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or cermaic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix.
Ceramic susceptor for induction bonding of metals, ceramics, and plastics
NASA Technical Reports Server (NTRS)
Fox, Robert L.; Buckley, John D.
1991-01-01
A thin (.005) flexible ceramic susceptor (carbon) was discovered. It was developed to join ceramics, plastics, metals, and combinations of these materials using a unique induction heating process. Bonding times for laboratory specimens comparing state of the art technology to induction bonding were cut by a factor of 10 to 100 times. This novel type of carbon susceptor allows for applying heat directly and only to the bondline without heating the entire structure, supports, and fixtures of a bonding assembly. The ceramic (carbon film) susceptor produces molten adhesive or matrix material at the bond interface. This molten material flows through the perforated susceptor producing a fusion between the two parts to be joined, which in many instances has proven to be stronger than the parent material. Bonding can be accomplished in 2 minutes on areas submitted to the inductive heating. Because a carbon susceptor is used in bonding carbon fiber reinforced plastics and ceramics, there is no radar signature or return making it an ideal process for joining advanced aerospace composite structures.
Lee, Yong-Keun; Bin, Yu
2016-01-01
ABSTRACT Objective: Since the color of esthetic brackets should match that of teeth, the aims of this study were to determine the color and translucency of esthetic brackets by means of the clinically relevant use of a spectroradiometer, and to compare the color of brackets with that of a commercial shade guide. Methods: The color of central and tie-wing regions of four plastic and four ceramic brackets was measured according to the CIE L*a*b* color scale over white and black backgrounds. Brackets were classified into five groups based on their composition. The color of Vitapan Classical Shade Guide tabs was also measured. Translucency parameter (TP) and contrast ratio (CR) were calculated to determine translucency. Results: Color differences between brackets and the shade guide tabs were 10.4 - 34.5 ∆E*ab units. TP and CR values for the central region were 16.4 - 27.7 and 0.38 - 0.58, whereas for the tie-wings they were 24.0 - 39.9 and 0.25 - 0.45, respectively. The color coordinates, TP and CR values were significantly influenced by bracket composition and brand (p < 0.05). Conclusions: Esthetic brackets investigated herein showed unacceptable color differences (∆E*ab > 5.5) compared with the shade guide tabs. Differences in the translucency of brackets by brand were within the visually perceptible range (∆CR > 0.07). Therefore, brackets showing the best matching performance for each case should be selected considering esthetic and functional demands. PMID:27275619
Bonding to oxide ceramics—laboratory testing versus clinical outcome.
Kern, Matthias
2015-01-01
Despite a huge number of published laboratory bonding studies on dental oxide ceramics clinical long-term studies on resin bonded oxide ceramic restorations are rare. The purpose of this review is to present the best available clinical evidence for successful bonding of dental oxide ceramic restorations. Clinical trials with resin-bonded restorations that had no or only limited mechanical retention and were made from alumina or zirconia ceramic were identified using an electronic search in PubMed database. Overall 10 publications with clinical trials could be identified. Their clinical outcome was compared with that laboratory bond strength studies. Clinical data provide strong evidence that air-abrasion at a moderate pressure in combination with using phosphate monomer containing primers and/or luting resins provide long-term durable bonding to glass-infiltrated alumina and zirconia ceramic under the humid and stressful oral conditions. As simple and clinically reliable bonding methods to oxide ceramics exist, the rationale for development of alternative bonding methods might be reconsidered especially when these methods are more time consuming or require rather complicated and/or technique sensitive procedures. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Repair bond strength of resin composite to bilayer dental ceramics
2018-01-01
PURPOSE The purpose of this study was to investigate the effect of various surface treatments (ST) on the shear bond strength of resin composite to three bilayer dental ceramics made by CAD/CAM and two veneering ceramics. MATERIALS AND METHODS Three different bilayer dental ceramics and two different veneering ceramics were used (Group A: IPS e.max CAD+IPS e.max Ceram; Group B: IPS e.max ZirCAD+IPS e.max Ceram, Group C: Vita Suprinity+Vita VM11; Group D: IPS e.max Ceram; Group E: Vita VM11). All groups were divided into eight subgroups according to the ST. Then, all test specimens were repaired with a nano hybrid resin composite. Half of the test specimens were subjected to thermocycling procedure and the other half was stored in distilled water at 37℃. Shear bond strength tests for all test specimens were carried out with a universal testing machine. RESULTS There were statistically significant differences among the tested surface treatments within the all tested fracture types (P<.005). HF etching showed higher bond strength values in Groups A, C, D, and E than the other tested ST. However, bonding durability of all the surface-treated groups were similar after thermocycling (P>.00125). CONCLUSION This study revealed that HF etching for glass ceramics and sandblasting for zirconia ceramics were adequate for repair of all ceramic restorations. The effect of ceramic type exposed on the fracture area was not significant on the repair bond strength of resin composites to different ceramic types. PMID:29713430
Cossellu, Gianguido; Lanteri, Valentina; Butera, Andrea; Sarcina, Michele; Farronato, Giampietro
2015-01-01
Objective : The aim of this study is to evaluate the effect of six different prophylactic agents on shear bond strength (SBS) of orthodontic brackets. Materials and methods : One hundred twenty-six freshly extracted mandibular bovine incisors were used. Teeth were randomly divided into 7 equal groups (18 per group) as follows: group-1 served as control with no pre-treatment; group-2 enamel treated with fluoride varnish (Fluor Protector, Ivoclar Vivadent); group-3 containing casein-phosphopeptide-amorphous calcium-phosphate (CPP-ACP) paste (GC Tooth Mousse, RECALDENT™); group-4 with ozone (HealOzone, Kavo ) ; group-5 with glycine powder (Perio Flow, EMS); group-6 with hydroxyapatite powder 99.5% (Coswell S.p.A.); group-7 with a toothpaste made of hydroxyapatite nanocrystals (BioRepair® Plus, Coswell S.p.A). Brackets were all bonded using the same technique with transbond XT (3 M Unitek, Monrovia, CA). All the bonded specimens were stored for 24 h in deionized water (37 °C) and subjected to thermal cycling for 1000 cycles. The SBS was measured with an Instron Universal Testing machine and the adhesive remnant was assessed with the adhesive remnant index (ARI) using a stereomicroscope at 10× magnification. Results : Statistical differences (ANOVA) were found among the seven investigated groups ( F = 12.226, p < 0.001). SBS of groups 2, 5 and 6 were significantly lower than the control group ( p < 0.05). ARI scores (chi-square test) were correlated with the differences of SBS values. Conclusion: CPP-ACP paste, ozone or BioRepair® did not compromise on bracket bond strength. Fluoride, glycine or hydroxyapatite significantly decreased the SBS; only the fluoride group showed significant clinically low (<6 MPa) SBS values.
Melo, Mary A.S.; Wu, Junling; Weir, Michael D.; Xu, Hockin H. K.
2015-01-01
Demineralized lesions in tooth enamel around orthodontic brackets are caused by acids from cariogenic biofilm. This study aimed to develop a novel antibacterial orthodontic cement by incorporating a quaternary ammonium monomer dimethylaminododecyl methacrylate (DMADDM) into a commercial orthodontic cement, and to investigate the effects on microcosm biofilm response and enamel bond strength. DMADDM, a recently-synthetized antibacterial monomer, was incorporated into orthodontic cement at 0%, 1.5%, 3% and 5% mass fractions. Bond strength of brackets to enamel was measured. A microcosm biofilm model was used to measure metabolic activity, lactic acid production, and colony-forming units (CFU) on orthodontic cements. Shear bond strength was not reduced at 3% DAMDDM (p > 0.1), but was slightly reduced at 5% DMADDM, compared to 0% DMADDM. Biofilm viability was substantially inhibited when in contact with orthodontic cement containing 3% DMADDM. Biofilm metabolic activity, lactic acid production, and CFU were much lower on orthodontic cement containing DMADDM than control cement (p < 0.05). Therefore, the novel antibacterial orthodontic cement containing 3% DMADDM inhibited oral biofilms without compromising the enamel bond strength, and is promising to reduce or eliminate demineralization in enamel around orthodontic brackets. PMID:25035230
Scougall-Vilchis, Rogelio J; Zárate-Díaz, Chrisel; Kusakabe, Shusuke; Yamamoto, Kohji
2010-05-01
To determine the shear bond strengths (SBS) of stainless steel brackets bonded with seven light-cured orthodontic adhesives after the enamel was conditioned with the same self-etching primer. A total of 140 extracted human molars were randomly divided into seven groups (N = 20). In all the groups, the enamel was conditioned with Transbond Plus SEP (TPSEP). Stainless steel brackets were bonded with the following orthodontic adhesives: Group I, Transbond XT; Group II, Blūgloo; Group III, BeautyOrtho Bond; Group IV, Enlight; Group V, Light Bond; Group VI, Transbond CC; Group VII, Xeno Ortho. The teeth were stored in distilled water at 37 degrees C for 24 hours and debonded with a universal testing machine. The modified adhesive remnant index (ARI) was also recorded. There were no significant differences in the SBS values among the groups: I (18.0 +/- 7.4 MPa); II (18.3 +/- 5.1 MPa); III (14.8 +/- 4.3 MPa); IV (18.3 +/- 7.0 MPa); V (16.4 +/- 4.3 MPa); VI (20.3 +/- 5.3 MPa); VII (15.9 +/- 6.4 MPa), but significant differences in ARI were found. The seven orthodontic adhesives evaluated in this study can be successfully used for bonding stainless steel brackets when the enamel is conditioned with TPSEP, however, the differences among some groups might influence the clinical bond strengths. In addition, the amount of residual adhesive remaining on the teeth after debonding differed among the adhesives. Further studies are required to better understand the differences in SBS and ARI.
Lifshitz, Abraham B; Cárdenas, Marianela
2006-01-01
This study compared the shear bond strength of a light-cure resin-reinforced glass-ionomer cement with a bis-GMA light-cure resin system in the bonding of stainless steel brackets to glazed and deglazed porcelain surfaces. Porcelain surfaces were divided into 4 groups: group 1, deglazed porcelain surfaces with Transbond XT, group 2, glazed porcelain surfaces with Transbond XT; group 3, deglazed porcelain surfaces with Fuji Ortho LC; and group 4, porcelain surfaces with Fuji Ortho LC. Microetching with 50-microm aluminum oxide for 2 seconds at a distance of 5 mm deglazed the porcelain surfaces in groups 1 and 3. All brackets were bonded to the porcelain surfaces using the same procedure and light-cured for 40 seconds with a visible light. All samples were thermocycled between 5 degrees C and 55 degrees C for 300 cycles before testing for shear bond strength with a universal testing machine. The analysis of variance showed no significant difference (P < .05) among the 4 groups; ie, group 1, 10.12 MPa; group 2, 7.00 MPa; group 3, 6.78 MPa; and group 4, 11.15 MPa. The F test also failed to demonstrate any statistical difference among the groups. Conditioning the porcelain surfaces with 37% phosphoric acid immediately followed by a nonhydrolyzed silane coupling agent resulted in clinically adequate bond strength when using either a composite resin or a resin-reinforced glass-ionomer cement. Microetching of these porcelain surfaces apparently offers no bonding advantage.
Behroozian, Ahmad; Kachoei, Mojgan; Khatamian, Masumeh; Divband, Baharak
2016-01-01
Background. Any decrease in friction between orthodontic wire and bracket can accelerate tooth movement in the sliding technique and result in better control of anchorage. This study was carried out to evaluate frictional forces by coating orthodontic wires and porcelain brackets with zinc oxide nanoparticles (ZnO). Methods. In this in vitro study, we evaluated a combination of 120 samples of 0.019×0.025 stainless steel (SS) orthodonticwires and 22 mil system edgewise porcelain brackets with and without spherical zinc oxide nanoparticles. Spherical ZnOnanoparticles were deposited on wires and brackets by immersing them in ethanol solution and SEM (scanning electronmicroscope) evaluation confirmed the presence of the ZnO coating. The frictional forces were calculated between the wiresand brackets in four groups: group ZZ (coated wire and bracket), group OO (uncoated wire and bracket), group ZO (coatedwire and uncoated bracket) and group OZ (uncoated wire and coated bracket). Kolmogorov-Smirnov, Mann-Whitney andKruskal-Wallis tests were used for data analysis. Results. The frictional force in ZZ (3.07±0.4 N) was the highest (P <0.05), and OZ (2.18±0.5 N) had the lowest amount of friction (P <0.05) among the groups. There was no significant difference in frictional forces between the ZO and OO groups (2.65±0.2 and 2.70±0.2 N, respectively). Conclusion. Coating of porcelain bracket surfaces with ZnO nanoparticles can decrease friction in the sliding technique,and wire coating combined with bracket coating is not recommended due to its effect on friction. PMID:27429727
The effect of ligation method on friction in sliding mechanics.
Hain, Max; Dhopatkar, Ashish; Rock, Peter
2003-04-01
During orthodontic tooth movement with the preadjusted edgewise system, friction generated at the bracket/archwire interface tends to impede the desired movement. The method of ligation is an important contributor to this frictional force. This in vitro study investigated the effect of ligation method on friction and evaluated the efficacy of the new slick elastomeric modules from TP Orthodontics (La Porte, Ind), which are claimed to reduce friction at the module/wire interface. Slick modules were compared with regular nonslick modules, stainless steel ligatures, and the SPEED self-ligating bracket system (Strite Industries, Cambridge, Ontario, Canada). The effect of using slick modules with metal-reinforced ceramic (Clarity, 3M Unitek, Monrovia, Calif) and miniature brackets (Minitwin, 3M Unitek) was also examined. Results showed that, when considering tooth movement along a 0.019 x 0.025-in stainless steel archwire, saliva-lubricated slick modules can reduce static friction at the module/archwire interface by up to 60%, regardless of the bracket system. The SPEED brackets produced the lowest friction compared with the 3 other tested bracket systems when regular modules were used. The use of slick modules, however, with all of the ligated bracket types tested significantly reduced friction to below the values recorded in the SPEED groups. Loosely tied stainless steel ligatures were found to generate the least friction.
Suwa, N; Watari, F; Yamagata, S; Iida, J; Kobayashi, M
2003-11-15
A new testing apparatus for the measurement of frictional properties was designed and the frictional coefficients were obtained and compared with each other in various combinations of brackets and orthodontic wires, including esthetic fiber-reinforced plastic (FRP) wire that was especially designed and manufactured. Three kinds of wires (stainless steel, nickel-titanium, and FRP) and four brackets (single-crystal alumina, polycrystalline alumina, polycarbonate, and stainless steel) were used. The testing was done under dry and wet conditions. The friction testing equipment was designed to attach the bracket to a C-shaped bar suspended with a variable mass, and sliding along a fixed wire. The transition between static and dynamic friction was measured as a breakaway force, with the use of a universal test machine. In addition to material properties, this testing fixture eliminates geometrical factors, such as the rotational moment at the edge of the bracket slot, deflection of the orthodontic wire, and tension of the ligature wire. Nearly ideal frictional properties between materials are obtained. The frictional properties of FRP wire were similar to those of metal wires on all brackets, except the polycrystalline alumina bracket. The frictional coefficient between the polycrystalline ceramic bracket and FRP wire was larger than that of other combinations. There was little difference in frictional coefficients between dry and wet conditions. Copyright 2003 Wiley Periodicals, Inc.
Hailan, Qian; Lingyan, Ren; Rongrong, Nie; Xiangfeng, Meng
2017-12-01
This study aimed at determining the influence of hydrofluoric acid (HF) in varied concentrations on the surface morphology of lithium disilicate glass ceramics and bond durability between resin composites and post-treated lithium disilicate glass ceramics. After being sintered, ground, and washed, 72 as-prepared specimens of lithium disilicate glass ceramics with dimensions of 11 mm×13 mm×2 mm were randomly divided into three groups. Each group was treated with acid solution [32% phosphoric acid (PA) or 4% or 9.5% HF] for 20 s. Then, four acidified specimens from each group were randomly selected. One of the specimens was used to observe the surface morphology using scanning electron microscopy, and the others were used to observe the surface roughness using a surface roughness meter (including Ra, Rz, and Rmax). After treatment with different acid solutions in each group, 20 samples were further treated with silane coupling agent/resin adhesive/resin cement (Monobond S/Multilink Primer A&B/Multilink N), followed by bonding to a composite resin column (Filtek™ Z350) with a diameter of 3 mm. A total of 20 specimens in each group were randomly divided into two subgroups, which were used for measuring the microshear bond strength, with one of them subjected to cool-thermal cycle for 20 000 times. The surface roughness (Ra, Rz, and Rmax) of lithium disilicate glass ceramics treated with 4% or 9.5% HF was significantly higher than that of the ceramic treated with PA (P<0.05). The lithium disilicate glass ceramics treated with 9.5% HF also demonstrated better surface roughness (Rz and Rmax) than that of the ceramics treated with 4% HF. Cool-thermal cycle treatment reduced the bond strength of lithium disilicate glass ceramics in all groups (P<0.05). After cool-thermal cycle, the lithium disilicate glass ceramics treated with HF had higher bond strength than that of the ceramics treated with PA. The lithium disilicate glass ceramics treated with 4% HF had higher bond strength than that of the ceramics treated with 9.5% HF (P<0.05). During cool-thermal cycle, the lithium disilicate glass ceramics treated with 4% HF demonstrated higher reduction in bond strength than that of the samples treated with 9.5% HF (P<0.05). The concentration of HF significantly affected the surface morphology of lithium disilicate glass ceramics and the bond durability between resin composites and post-treated lithium disilicate glass ceramics. The bond strength between resin composites and post-treated lithium disilicate glass ceramic was more efficiently maintained by treatment with 9.5% HF.
Hammad, Shaza M.; El-Wassefy, Noha; Maher, Ahmed; Fawakerji, Shafik M.
2017-01-01
ABSTRACT Objective: To evaluate the effect of silica dioxide (SiO2) nanofillers in different bonding systems on shear bond strength (SBS) and mode of failure of orthodontic brackets at two experimental times. Methods: Ninety-six intact premolars were divided into four groups: A) Conventional acid-etch and primer Transbond XT; B) Transbond Plus self-etch primer; and two self-etch bonding systems reinforced with silica dioxide nanofiller at different concentrations: C) Futurabond DC at 1%; D) Optibond All-in-One at 7%. Each group was allocated into two subgroups (n = 12) according to experimental time (12 and 24 hours). SBS test was performed using a universal testing machine. ARI scores were determined under a stereomicroscope. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to determine the size and distribution of nanofillers. One-way ANOVA was used to compare SBS followed by the post-hoc Tukey test. The chi-square test was used to evaluate ARI scores. Results: Mean SBS of Futurabond DC and Optibond All-in-One were significantly lower than conventional system, and there were no significant differences between means SBS obtained with all self-etch bonding systems used in the study. Lower ARI scores were found for Futurabond DC and Optibond All-in-One. There was no significant difference of SBS and ARI obtained at either time points for all bonding systems. Relative homogeneous distribution of the fillers was observed with the bonding systems. Conclusion: Two nanofilled systems revealed the lowest bond strengths, but still clinically acceptable and less adhesive was left on enamel. It is advisable not to load the brackets immediately to the maximum. PMID:28444018
Ceramic-to-metal bonding for pressure transducers
NASA Technical Reports Server (NTRS)
Mackenzie, J. D.
1984-01-01
A solid-state diffusion technique involving the placement of a gold foil between INCONEL X-750 and a machinable glass-ceramic "MACOR" was shown to be successful in bonding these two materials. This technique was selected after an exhaustive literature search on ceramic-metal bonding methods. Small expansion mismatch between the Inconel and the MACOR resulted in fracture of the MACOR when the bonded body was subjected to tensile stress of 535 psi. The bonded parts were submitted to a cyclic loading test in an air atmosphere at 1 Hz from 0 to 60 KPa. Failure was observed after 700,000 cycles at 650 C. Ceramic-Inconel bonding was not achieved with this method for boron nitride and silica glass.
Valentini, Fernanda; Moraes, Rafael R; Pereira-Cenci, Tatiana; Boscato, Noéli
2014-05-01
This study investigated the effect of the filler particle size (micron or submicron) of experimental resin cements on the microtensile bond strength to a glass-ceramic pretreated with hydrofluoric acid (HFA) etching or alumina airborne-particle abrasion (AA). Cements were obtained from a Bis-GMA/TEGDMA mixture filled with 60 mass% micron-sized (1 ± 0.2 µm) or submicron-sized (180 ± 30 µm) Ba-Si-Al glass particles. Ceramic blocks (PM9; VITA) were treated with 10% HFA for 60 s or AA for 15 s. Silane and adhesive were applied. Ceramic blocks were bonded to resin composite blocks (Z250; 3M ESPE) using one of the cements. Bonded specimens were sectioned into beams (n = 20/group) and subjected to microtensile bond strength tests. Data were analyzed using ANOVA and Student-Newman-Keuls' tests (5%). Failure modes were classified under magnification. Morphologies of the treated ceramic surfaces and bonded interfaces were evaluated by scanning electron microscopy. The HFA-submicron group had lower bond strengths than the other groups. All AA-submicron specimens debonded prematurely. Mixed failures were predominant for HFA groups, whereas interfacial failures predominated for AA groups. SEM revealed a honeycomb-like aspect in the HFA-treated ceramic, whereas the AA-treated groups showed an irregular retentive pattern. Continuity of cement infiltration along the bonded interface was more uniform for HFA-treated compared to AA-treated specimens. Cracks toward the bulk of the ceramic were observed in AA-treated specimens. Particle size significantly influenced the ceramic bond strength, whereas surface treatment had a minor effect. Copyright © 2014 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Steve Xunhu
2015-09-01
Among glass-ceramic compositions modified with a variety of oxidants (AgO, FeO, NiO, PbO, SnO, CuO, CoO, MoO 3 and WO 3) only CuO and CoO doped glass-ceramics showed existence of bonding oxides through reduction-oxidation (redox) at the GC-SS interface. The CuO-modified glass-ceramics demonstrate the formation of a continuous layer of strong bonding Cr 2O 3 at the interface in low partial oxygen (PO 2) atmosphere. However, in a local reducing atmosphere, the CuO is preferentially reduced at the surface of glass-ceramic rather than the GC-SS interface for redox. The CoO-modified glass-ceramics demonstrate improved GC-SS bonding. But the low mobility ofmore » Co ++ ions in the GC limited the amount of CoO that can diffuse to and participate in redox at the interface.« less
NASA Astrophysics Data System (ADS)
Ongkowidjaja, F.; Soegiharto, B. M.; Purbiati, M.
2017-08-01
The shear bond strength (SBS) can be increased by removing protein pellicles from the enamel surface by deproteinization using 5.25% sodium hypochlorite (NaOCl). The SBS of a self-etch primer is lower than that of a total etch primer; nonetheless, it prevents white spot lesions. This study aimed to assess the SBS of the Anyetch (AE) total etch primer and FL-Bond II Shofu (FL) self-etch primer after enamel deproteinization using 5.25% NaOCl. Forty eight human maxillary first premolars were extracted, cleaned, and divided into four groups. In group A, brackets were bonded to the enamel without deproteinization before etching (A1: 10 teeth using total etch primer (AE); A2: 10 teeth using self-etch primer (FL)). In group B, brackets were bonded to the enamel after deproteinization with 5.25% NaOCl before etching (B1: 10 teeth using total etch primer (AE); B2: 10 teeth using self-etch primer (FL)). Brackets were bonded using Transbond XT, stored in artificial saliva for 24 h at 37°C, mounted on acrylic cylinders, and debonded using a Shimadzu AG-5000 universal testing machine. There were no significant differences in SBS between the total etch (AE) groups (p > 0.05) and between the self-etch (FL) groups (p > 0.05). There were significant differences in SBS between groups A and B. The mean SBS for groups A1, A2, B1, and B2 was 12.91±3.99, 4.46±2.47, 13.06±3.66, and 3.62±2.36 MPa, respectively. Deproteinization using NaOCl did not affect the SBS of the total etch primer (AE) group; it reduced the SBS of the self-etch primer (FL) group, but not with a statistically significant difference.
Gré, Cristina Parise; de Ré Silveira, Renan C; Shibata, Shizuma; Lago, Carlo Tr; Vieira, Luiz Cc
2016-02-01
This study evaluated the influence of a silane-coupling agent on the bond strength of a self-adhesive cement and a conventional resin cement to a lithium disilicate glass ceramic. A total of eight ceramic blocks were fabricated and divided into four groups (n = 2). In groups 1 and 3, ceramic surfaces were etched with hydrofluoric acid 10% for 20 seconds, rinsed for 30 seconds, and air-dried. One layer of a silane agent was applied onto all ceramic specimens and air-dried for 30 seconds. In groups 2 and 4, ceramic surfaces were etched with hydrofluoric acid, rinsed, and air-dried without application of the silane-coupling agent. The ceramic blocks were bonded to a block of composite with a self-adhesive resin cement or with a conventional resin cement, according to the manufacturer's instructions. After 24 hours in distilled water at 37°C, the specimens were sectioned perpendicular to the bonding interface area to obtain beams with a bonding area of 0.8 mm(2) and submitted to a microtensile bond strength test at a crosshead speed of 0.5 mm/min. Data were statistically analyzed with one-way analysis of variance and the Games-Howell post hoc test (p = 0.05). Fractured specimens were examined under optical microscopy at 40x magnification. Silanization resulted in higher microtensile bond strength compared to groups without silane. No significant differences were found between the conventional resin cement and the self-adhesive resin cement with silane agent (p = 0.983), and without silane agent (p = 0.877). Silanization appears to be crucial for resin bonding to a lithium disilicate-based ceramic, regardless of the resin cement used. The self-adhesive resin cement performed as well as the conventional resin cement. Applying one layer of a silane-coupling agent after etching the ceramic surface with hydrofluoric acid 10% enhanced the bond strength between resin cements and a glass ceramic.
Alencar, Estefania Queiroga de Santana e; Nobrega, Maria de Lourdes Martins; Dametto, Fabio Roberto; dos Santos, Patrícia Bittencourt Dutra; Pinheiro, Fabio Henrique de Sá Leitão
2016-01-01
ABSTRACT Objective: This study aimed to evaluate the effectiveness of two methods of visual magnification (operating microscope and light head magnifying glass) for removal of composite flash around orthodontic metal brackets. Material and Methods: Brackets were bonded in the center of the clinical crown of sixty well-preserved human premolars. Half of the sample was bonded with conventional Transbond XT (3M Unitek TM, USA), whereas the other half was bonded with Transbond TM Plus Color Change (3M Unitek TM, USA). For each type of composite, the choice of method to remove the flash was determined by randomly distributing the teeth into the following subgroups: A (removal by naked eye, n = 10), B (removal with the aid of light head magnifying glass, under 4x magnification, n = 10), and C (removal with the aid of an operating microscope, under 40x magnification, n = 10). Brackets were debonded and teeth taken to a scanning electron microscope (SS-x-550, Shimadzu, Japan) for visualization of their buccal surface. Quantification of composite flash was performed with Image Pro Plus software, and values were compared by Kruskal-Wallis test and Dunn’s post-hoc test at 5% significance level. Results: Removal of pigmented orthodontic adhesive with the aid of light head magnifying glass proved, in general, to be advantageous in comparison to all other methods. Conclusion: There was no advantage in using Transbond TM Plus Color Change alone. Further studies are necessary to draw a more definitive conclusion in regards to the benefits of using an operating microscope. PMID:28125139
Arash, Valiollah; Rabiee, Mahmoud; Rakhshan, Vahid; Khorasani, Sara; Sobouti, Farhad
2015-01-01
Purpose: The aim of this study was to compare frictional forces between monocrystalline alumina (MA), polycrystalline alumina (PA), and stainless steel (SS) brackets with two SS wires: Rectangular and round. Materials and Methods: In this in vitro study, 60 0.022 brackets [20 PA (0° torque, Forestadent, Germany) and 20 MA (0° torque, Ormco, California, USA)] brackets plus 20 SS brackets (0° torque, Foretadent, Germany) and 60 SS archwires (30 rectangular 0.019 ×0.025 archwires and 30 round 0.018 archwires, Ortho Technology, USA) were used in subgroups of 10 from the combination of all brackets and all archwires. A universal testing machine (Instron, Model STM 250, Germany) was used to investigate the static frictional resistance. The angulation between the bracket and wire was 0°, and the wires were pulled through the slots at a crosshead speed of 10 mm/min. Two-way and one-way analyses of variance (ANOVA) and Tukey tests were used to analyze the data. Results: Mean (SD) static frictional force for each group was as follows: MA + round: 3.47 (0.38); MA + rectangular: 4.05 (0.47); PA + round: 4.14 (0.37); PA + rectangular: 4.45 (0.65); SS + round: 3.28 (0.22); and SS + rectangular: 4.22 (0.61). Significant effects of bracket types (P = 0.001) and archwire types (P = 0.000) on the friction force were detected using ANOVA. Tukey test indicated significant differences between PA brackets with both SS and MA brackets (P < 0.05), but not between SS and MA brackets. The two archwires as well had significantly different effects (Tukey P = 0.000). Conclusions: Based on the present in-vitro study, the PA brackets might create higher frictional forces compared to both SS and MA brackets. The rectangular 0.019 ×0.025 archwire might create greater forces than round 0.018 archwire. PMID:26020037
Arash, Valiollah; Rabiee, Mahmoud; Rakhshan, Vahid; Khorasani, Sara; Sobouti, Farhad
2015-01-01
The aim of this study was to compare frictional forces between monocrystalline alumina (MA), polycrystalline alumina (PA), and stainless steel (SS) brackets with two SS wires: Rectangular and round. In this in vitro study, 60 0.022 brackets [20 PA (0° torque, Forestadent, Germany) and 20 MA (0° torque, Ormco, California, USA)] brackets plus 20 SS brackets (0° torque, Foretadent, Germany) and 60 SS archwires (30 rectangular 0.019 ×0.025 archwires and 30 round 0.018 archwires, Ortho Technology, USA) were used in subgroups of 10 from the combination of all brackets and all archwires. A universal testing machine (Instron, Model STM 250, Germany) was used to investigate the static frictional resistance. The angulation between the bracket and wire was 0°, and the wires were pulled through the slots at a crosshead speed of 10 mm/min. Two-way and one-way analyses of variance (ANOVA) and Tukey tests were used to analyze the data. Mean (SD) static frictional force for each group was as follows: MA + round: 3.47 (0.38); MA + rectangular: 4.05 (0.47); PA + round: 4.14 (0.37); PA + rectangular: 4.45 (0.65); SS + round: 3.28 (0.22); and SS + rectangular: 4.22 (0.61). Significant effects of bracket types (P = 0.001) and archwire types (P = 0.000) on the friction force were detected using ANOVA. Tukey test indicated significant differences between PA brackets with both SS and MA brackets (P < 0.05), but not between SS and MA brackets. The two archwires as well had significantly different effects (Tukey P = 0.000). Based on the present in-vitro study, the PA brackets might create higher frictional forces compared to both SS and MA brackets. The rectangular 0.019 ×0.025 archwire might create greater forces than round 0.018 archwire.
Influence of surface treatment on shear bond strength of orthodontic brackets.
Brunharo, Ione Helena Vieira Portella; Fernandes, Daniel Jogaib; de Miranda, Mauro Sayão; Artese, Flavia
2013-01-01
The shear bond strength of orthodontic brackets bonded to micro-hybrid and micro-particulate resins under different surface treatment methods was assessed. Two hundred and eighty test samples were divided into 28 groups (n = 10), where 140 specimens were filled with Durafill micro-particulate resin and 140 with Charisma composite. In 140 samples, a coupling agent (silane) was applied. The surface treatment methods were: Phosphoric and hydrofluoric acid etching, sodium bicarbonate and aluminum oxide blasting, stone and burs. A Universal Instron Machine was used to apply an occlusal shear force directly to the resin composite bracket surface at a speed of 0.5 mm/min. The means were compared using analysis of variance and multivariate regression to assess the interaction between composites and surface treatment methods. Means and standard deviations for the groups were: Sodium bicarbonate jet 11.27 ± 2.78; burs 9.26 ± 3.01; stone 7.95 ± 3.67; aluminum oxide blasting 7.04 ± 3.21; phosphoric acid 5.82 ± 1.90; hydrofluoric acid 4.54 ± 2.87, and without treatment 2.75 ± 1.49. An increase of 1.94 MPa in shear bond strength was seen in Charisma groups. Silane agent application reduced the Charisma shear bond strength by 0.68 Mpa, but increased Durafill means for bicarbonate blasting (0.83), burs (0.98) and stone drilling (0.46). The sodium bicarbonate blasting, burs and stone drilling methods produced adequate shear bond strength and may be suitable for clinical use. The Charisma micro hybrid resin composite showed higher shear bond means than Durafill micro particle composite.
Hammad, Shaza M; Enan, Enas T
2013-07-01
To evaluate the in vivo effects of two acidic soft drinks (Coca-Cola and Sprite) on the shear bond strength of metal orthodontic brackets with and without resin infiltration treatment. In addition, the enamel surface was evaluated, after debonding, using a scanning electron microscope. Sixty noncarious maxillary premolars, scheduled for extraction in 30 orthodontic patients, were used. Patients were randomly divided into two groups according to the soft drink tested (Coca-Cola or Sprite). In each group, application of resin infiltration (Icon. DMG, Hamburg, Germany) was done on one side only before bonding of brackets. Patients were told to rinse their mouth with their respective soft drink at room temperature for 5 minutes, three times a day for 3 months. Shear bond strength was tested with a universal testing machine. After shearing test, a scanning electron microscope was used to evaluate enamel erosion. Statistical analysis was performed by twoway analysis of variance followed by the least significant difference test. The Coca-Cola group without resin infiltration showed the lowest resistance to shearing forces. Scanning electron micrographs of both groups after resin application showed a significant improvement compared with results without resin use, as the enamel appeared smoother and less erosive. Pretreatment with the infiltrating resin has proved to result in a significant improvement in shear bond strength, regardless of the type of soft drink consumed.
Yin, Bao-di; Zhang, Xian-fang; Zheng, Hu; Han, Dong-wei
2010-04-01
To investigate the adequate luting cements for zirconia ceramics to dentin. Blocks of sintered zirconia ceramics were randomly divided into 4 groups with 8 slices in each. After saliva immersion,airborne-particle abraded ceramic specimens were cleaned with phosphoric acid gel(containing 35% phosphoric acid) and then bonded to dentin with these four kinds of luting cements. After preserved in 37 degrees centigrade distilled water for 24 hours, the shear bonding strength of these specimens was tested and the data was analyzed with SPSS12.0 software package. The Multilink Automix could attain the highest shear bonding strength and the 3M RelyXTM Unicem AplicapTM could attain higher shear bonding strength, which were both significantly higher than in the Tokuso Ionomer and Shofu Polycarboxylate Cement groups(P<0.05). Total etching resin luting cement is an ideal option to the bonding of zirconia ceramics and can provide a strong bonding.
NASA Astrophysics Data System (ADS)
Yao, Shu-Wei; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu
2018-01-01
Interlamellar bonding within plasma-sprayed coatings is one of the most important factors dominating the properties and performance of coatings. The interface bonding between lamellae significantly influences the erosion behavior of plasma-sprayed ceramic coatings. In this study, TiO2 and Al2O3 coatings with different microstructures were deposited at different deposition temperatures based on the critical bonding temperature concept. The erosion behavior of ceramic coatings was investigated. It was revealed that the coatings prepared at room temperature exhibit a typical lamellar structure with numerous unbonded interfaces, whereas the coatings deposited at the temperature above the critical bonding temperature present a dense structure with well-bonded interfaces. The erosion rate decreases sharply with the improvement of interlamellar bonding when the deposition temperature increases to the critical bonding temperature. In addition, the erosion mechanisms of ceramic coatings were examined. The unbonded interfaces in the conventional coatings act as pre-cracks accelerating the erosion of coatings. Thus, controlling interlamellar bonding formation based on the critical bonding temperature is an effective approach to improve the erosion resistance of plasma-sprayed ceramic coatings.
Toothpaste Prevents Debonded Brackets on Erosive Enamel
Barros, Érico Luiz Damasceno; Pinto, Shelon Cristina Souza; Borges, Alvaro Henrique; Tonetto, Mateus Rodrigues; Ellwood, Roger Phillip; Pretty, Ian; Bandéca, Matheus Coelho
2015-01-01
This study evaluated the effect of high fluoride dentifrice on the bond strength of brackets after erosive challenge. Eighty-four enamel specimens were divided into seven groups (n = 12): WN (distilled water/no acid challenge), W3C (distilled water/3 cycles of acid challenge), and W6C (distilled water/6 cycles of acid challenge) were not submitted to dentifrice treatment. Groups RF3C (regular fluoride dentifrice/3 cycles of acid challenge) and RF6C (regular fluoride dentifrice/6 cycles of acid challenge) were treated with dentifrices containing 1450 μg F−/g and HF3C (high fluoride dentifrice/3 cycles of acid challenge) and HF6C (high fluoride dentifrice/6 cycles of acid challenge) were with 5000 μg F−/g. Acid challenges were performed for seven days. After bond strength test, there was no significant difference among groups submitted to 3 cycles of acid challenge (P > 0.05). Statistically significant difference was found between the regular and high fluoride dentifrices after 6 cycles of acid challenge (<0.05). Similar areas of adhesive remaining were found among control groups and among groups W6C, RF3C, RF6C, HF3C, and HF6C. The high fluoride dentifrice was able to prevent the reduction of bond strength values of brackets submitted to acid challenge. Clinical relevance: the high fluoride toothpaste prevents debonded brackets on erosive enamel. PMID:25879058
Hosseini, M.H.; Namvar, F.; Chalipa, J.; Saber, K.; Chiniforush, N.; Sarmadi, S.; Mirhashemi, A.H.
2012-01-01
Introduction: The purpose of this study was to compare shear bond strength (SBS) of orthodontic brackets bonded to enamel prepared by Er:YAG laser with two different powers and conventional acid-etching. Materials and Methods: Forty-five human premolars extracted for orthodontic purposes were randomly assigned to three groups based on conditioning method: Group 1- conventional etching with 37% phosphoric acid; Group 2- irradiation with Er:YAG laser at 1 W; and Group 3- irradiation with Er:YAG laser at 1.5 W. Metal brackets were bonded on prepared enamel using a light-cured composite. All groups were subjected to thermocycling process. Then, the specimens mounted in auto-cure acryle and shear bond strength were measured using a universal testing machine with a crosshead speed of 0.5 mm per second. After debonding, the amount of resin remaining on the teeth was determined using the adhesive remnant index (ARI) scored 1 to 5. One-way analysis of variance was used to compare shear bond strengths and the Kruskal-Wallis test was performed to evaluate differences in the ARI for different etching types. Results: The mean and standard deviation of conventional acid-etch group, 1W laser group and 1.5W laser group was 3.82 ± 1.16, 6.97 ± 3.64 and 6.93 ± 4.87, respectively. Conclusion: The mean SBS obtained with an Er:YAG laser operated at 1W or 1.5W is approximately similar to that of conventional etching. However, the high variability of values in bond strength of irradiated enamel should be considered to find the appropriate parameters for applying Er:YAG laser as a favorable alternative for surface conditioning. PMID:22924098
Effect of Nd: YAG laser irradiation on surface properties and bond strength of zirconia ceramics.
Liu, Li; Liu, Suogang; Song, Xiaomeng; Zhu, Qingping; Zhang, Wei
2015-02-01
This study investigated the effect of neodymium-doped yttrium aluminum garnet (Nd: YAG) laser irradiation on surface properties and bond strength of zirconia ceramics. Specimens of zirconia ceramic pieces were divided into 11 groups according to surface treatments as follows: one control group (no treatment), one air abrasion group, and nine laser groups (Nd: YAG irradiation). The laser groups were divided by applying with different output power (1, 2, or 3 W) and irradiation time (30, 60, or 90 s). Following surface treatments, the morphological characteristics of ceramic pieces was observed, and the surface roughness was measured. All specimens were bonded to resin cement. After, stored in water for 24 h and additionally aged by thermocycling, the shear bond strength was measured. Dunnett's t test and one-way ANOVA were performed as the statistical analyses for the surface roughness and the shear bond strength, respectively, with α = .05. Rougher surface of the ceramics could be obtained by laser irradiation with higher output power (2 and 3 W). However, cracks and defects were also found on material surface. The shear bond strength of laser groups was not obviously increased, and it was significantly lower than that of air abrasion group. No significant differences of the shear bond strength were found among laser groups treated with different output power or irradiation time. Nd: YAG laser irradiation cannot improve the surface properties of zirconia ceramics and cannot increase the bond strength of the ceramics. Enhancing irradiation power and extending irradiation time cannot induce higher bond strength of the ceramics and may cause material defect.
Method of making sintered ductile intermetallic-bonded ceramic composites
Plucknett, Kevin; Tiegs, Terry N.; Becher, Paul F.
1999-01-01
A method of making an intermetallic-bonded ceramic composite involves combining a particulate brittle intermetallic precursor with a particulate reactant metal and a particulate ceramic to form a mixture and heating the mixture in a non-oxidizing atmosphere at a sufficient temperature and for a sufficient time to react the brittle intermetallic precursor and the reactant metal to form a ductile intermetallic and sinter the mixture to form a ductile intermetallic-bonded ceramic composite.
[Precision of three-dimensional printed brackets].
Zhang, D; Wang, L C; Zhou, Y H; Liu, X M; Li, J
2017-08-18
This study was based on digital orthodontic diagnosis work flow for indirect bonding transfer tray model design and three-dimensional (3D) printing, and the aim of this paper was to inspect the dimensional accuracyof 3D printed brackets, which is the foundation of the follow up work and hoped that will illuminate the clinical application of the digital orthodontics work flow. The samples which consisted of 14 cases of patients with malocclusion from Department of Orthodontics Peking University were selected, including 8 cases with tooth extraction and 6 cases without tooth extraction. All the 14 patients were taken intra-oral scan (Trios 3Shape, Denmark) and cone-beam computed tomography (CBCT, NewTom 3G volumetric scanner, Aperio Service,Italy)shooting after periodontal treatment. STL data and DICOM data were obtained from intraoral scans and CBCT images.Data segmentation, registration, fusion, automatic tooth arrangement, virtual positioning of orthodontic appliance and conversion the coordinates of malocclusion model were all done with self-programming software. The data of 3D printing model with brackets on it were output finally and printed out with EDEN260V (Objet Geometries, Israel) to make indirect bonding transfer tray. Digital vernier caliper was used to measure the length and width of upper and lower left brackets and buccal tubes on those 3D models after removal of surrounding supporting material by ultrasonic vibration and water-spray. Intra-examiner reliability was assessed by using intra-class correlation coefficients (ICC), and one-sample T test was used to compare the measurements with the standard dimensional data of the brackets. There were significant differences which range in 0.04-0.17 mm between the 13 items out of the 19 measurement items. Except for the length of the lower left premolars'brackets, mean values of the other items were greater than the test value. Although the measurement results in the width of brackets and the width and length of the buccal tubes obtained experimentally were slightly larger than the test value,this may not reduce the accuracy of indirect bonding procedure in clinic necessarily. Whether the differences which range in 0.04-0.17 mm would actually affect the retention and positioning of brackets needs to be confirmed by further studies.
Performance of universal adhesives on bonding to leucite-reinforced ceramic.
Kim, Ryan Jin-Young; Woo, Jung-Soo; Lee, In-Bog; Yi, Young-Ah; Hwang, Ji-Yun; Seo, Deog-Gyu
2015-01-01
This study aimed to investigate the microshear bond strength of universal bonding adhesives to leucite-reinforced glass-ceramic. Leucite-reinforced glass-ceramic blocks were polished and etched with 9.5% hydrofluoric acid for 1 min. The specimens were assigned to one of four groups based on their surface conditioning (n = 16): 1) NC: negative control with no further treatment; 2) SBU: Single Bond Universal (3M ESPE); 3) ABU: ALL-BOND Universal (Bisco); and 4) PC: RelyX Ceramic Primer and Adper Scotchbond Multi-Purpose Adhesive (3M ESPE) as a positive control. RelyX Ultimate resin cement (3M ESPE) was placed on the pretreated ceramic and was light cured. Eight specimens from each group were stored in water for 24 h, and the remaining eight specimens were thermocycled 10,000 times prior to microshear bond strength evaluation. The fractured surfaces were examined by stereomicroscopy and scanning electron microscopy (SEM). After water storage and thermocycling, the microshear bond strength values decreased in the order of PC > SBU and ABU > NC (P < 0.05). Thermocycling significantly reduced the microshear bond strength, regardless of the surface conditioning used (P < 0.05). Cohesive failure in the ceramic and mixed failure in the ceramic and resin cement were observed in the fractured specimens. The percentage of specimens with cohesive failure after 24 h of water storage was: NC (50%), SBU (75%), ABU (75%), and PC (87%). After thermocycling, the percentage of cohesive failure in NC decreased to 25%; however, yet the percentages of the other groups remained the same. Although the bond strength between resin and hydrofluoric acid-etched glass ceramic was improved when universal adhesives were used, conventional surface conditioning using a separate silane and adhesive is preferable to a simplified procedure that uses only a universal adhesive for cementation of leucite-reinforced glass-ceramic.
[In vitro study on shear bond strength of veneering ceramics to zirconia].
Hu, Xiaoping; Zhu, Hongshui; Zeng, Liwei
2012-12-01
To investigate the shear bond strength between veneering ceramic and zirconia core in different all-ceramic systems. Twenty disk-shaped specimens with 8 mm in diameter and 3 mm in height for each zirconia system (Lava, Cercon, IPS e.max ZirCAD, Procera) were fabricated respectively and divided into four groups: Lava group, Cercon group, IPS e.max ZirCAD group, Procera group. For each group, 10 specimens were sintered with 1 mm corresponding veneering ceramic, while the other were sintered with 2 mm corresponding veneering ceramic respectively. The shear bond strength and fracture mode of specimens were observed and determined. The values of shear bond strength for Lava, Cercon, IPS e.max ZirCAD and Procera were (13.82 +/- 3.71), (13.24 +/- 2.09), (6.37 +/- 4.15), (5.19 +/- 5.31) MPa in the group of 1 mm thicked veneering ceramics, respectively, while the values in the group of 2mm thicked veneering ceramics were (38.77 +/- 1.69), (21.67 +/- 3.34), (12.70 +/- 4.24), (9.94 +/- 6.67) MPa. The values of Lava and Cercon groups were significantly higher than that of IPS e.max ZirCAD and Procera groups (P < 0.05). And the values of 2 mm thicked veneering ceramic group were significantly higher than that in 1 mm thicked groups (P < 0.05). Adhesive fracture between core and veneering ceramics were observed in the fracture modes of most specimens. The shear bond strength of veneering ceramic to the zirconia framework are different from the zirconia system we chose, and the thickness of veneering ceramic has a great impact on its shear bond strength.
ANDRUCIOLI, Marcela Cristina Damião; FARIA, Gisele; NELSON-FILHO, Paulo; ROMANO, Fábio Lourenço; MATSUMOTO, Mírian Aiko Nakane
2017-01-01
Abstract Decalcification of enamel during fixed orthodontic appliance treatment remains a problem. White spot lesions are observed in nearly 50% of patients undergoing orthodontic treatment. The use of fluoride-containing orthodontic materials has shown inconclusive results on their ability to reduce decalcification. The aims of this investigation were to compare the levels of Streptococcus mutans (SM) in saliva and biofilm adjacent to orthodontic brackets retained with a resin-modified glass ionomer cement (RMGIC) (Fuji ORTHO LC) and a light cured composite resin (Transbond XT), and to analyze the influence of topical application of the 1.23% acidulated phosphate fluoride (APF) on SM counts. In a parallel study design, two groups (n=14/15) were used with random allocation and high salivary SM counts before treatment. Biofilm was collected from areas adjacent to the brackets on teeth 13, 22, 33, and 41. Both saliva and biofilm were collected on the 7th, 21st, 35th, and 49th days after appliance placement. Topical fluoride application was carried out on the 35th day. Bonding with RMGIC did not alter SM counts in saliva or biofilm adjacent to the brackets. On the other hand, the biofilm adjacent to brackets retained with composite resin showed a significant increase in SM counts along the trial period. Topical application of 1.23% APF did not reduce salivary or biofilm SM counts regardless of the bonding material. In conclusion, fluoride topical application did not show efficacy in reducing SM. The use of RMGIC as bonding materials allowed a better control of SM cfu counts in dental biofilm hindering the significant increase of these microorganisms along the trial period, which was observed in the biofilm adjacent to the composite material. PMID:28403360
Andrucioli, Marcela Cristina Damião; Faria, Gisele; Nelson-Filho, Paulo; Romano, Fábio Lourenço; Matsumoto, Mírian Aiko Nakane
2017-01-01
Decalcification of enamel during fixed orthodontic appliance treatment remains a problem. White spot lesions are observed in nearly 50% of patients undergoing orthodontic treatment. The use of fluoride-containing orthodontic materials has shown inconclusive results on their ability to reduce decalcification. The aims of this investigation were to compare the levels of Streptococcus mutans (SM) in saliva and biofilm adjacent to orthodontic brackets retained with a resin-modified glass ionomer cement (RMGIC) (Fuji ORTHO LC) and a light cured composite resin (Transbond XT), and to analyze the influence of topical application of the 1.23% acidulated phosphate fluoride (APF) on SM counts. In a parallel study design, two groups (n=14/15) were used with random allocation and high salivary SM counts before treatment. Biofilm was collected from areas adjacent to the brackets on teeth 13, 22, 33, and 41. Both saliva and biofilm were collected on the 7th, 21st, 35th, and 49th days after appliance placement. Topical fluoride application was carried out on the 35th day. Bonding with RMGIC did not alter SM counts in saliva or biofilm adjacent to the brackets. On the other hand, the biofilm adjacent to brackets retained with composite resin showed a significant increase in SM counts along the trial period. Topical application of 1.23% APF did not reduce salivary or biofilm SM counts regardless of the bonding material. In conclusion, fluoride topical application did not show efficacy in reducing SM. The use of RMGIC as bonding materials allowed a better control of SM cfu counts in dental biofilm hindering the significant increase of these microorganisms along the trial period, which was observed in the biofilm adjacent to the composite material.
Regenerator for gas turbine engine
Lewakowski, John J.
1979-01-01
A rotary disc-type counterflow regenerator for a gas turbine engine includes a disc-shaped ceramic core surrounded by a metal rim which carries a coaxial annular ring gear. Bonding of the metal rim to the ceramic core is accomplished by constructing the metal rim in three integral portions: a driving portion disposed adjacent the ceramic core which carries the ring gear, a bonding portion disposed further away from the ceramic core and which is bonded thereto by elastomeric pads, and a connecting portion connecting the bonding portion to the driving portion. The elastomeric pads are bonded to radially flexible mounts formed as part of the metal rim by circumferential slots in the transition portion and lateral slots extending from one end of the circumferential slots across the bonding portion of the rim.
Method of making sintered ductile intermetallic-bonded ceramic composites
Plucknett, K.; Tiegs, T.N.; Becher, P.F.
1999-05-18
A method of making an intermetallic-bonded ceramic composite involves combining a particulate brittle intermetallic precursor with a particulate reactant metal and a particulate ceramic to form a mixture and heating the mixture in a non-oxidizing atmosphere at a sufficient temperature and for a sufficient time to react the brittle intermetallic precursor and the reactant metal to form a ductile intermetallic and sinter the mixture to form a ductile intermetallic-bonded ceramic composite. 2 figs.
Elsayed, Adham; Younes, Feras; Lehmann, Frank; Kern, Matthias
2017-01-01
To test the bond strength and durability after artificial aging of so-called universal primers and universal multimode adhesives to lithium disilicate or zirconia ceramics. A total of 240 ceramic plates, divided into two groups, were produced and conditioned: 120 acid-etched lithium disilicate plates (IPS e.max CAD) and 120 air-abraded zirconia plates (Zenostar T). Each group was divided into five subgroups (n = 24), and a universal restorative primer or multimode universal adhesive was used for each subgroup to bond plexiglas tubes filled with a composite resin to the ceramic plate. The specimens were stored in water at 37°C for 3 days without thermal cycling, or for 30 or 150 days with 7500 or 37,500 thermal cycles between 5°C and 55°C, respectively. All specimens then underwent tensile bond strength testing. Initially, all bonding systems exhibited high TBS, but some showed a significant reduction after 30 and 150 days of storage. After 3, 30, and 150 days, Monobond Plus, which contains silane and phosphate monomer, showed significantly higher bond strengths than the other universal primer and adhesive systems. The bond strength to lithium disilicate and zirconia ceramic is significantly affected by the bonding system used. Using a separate primer containg silane and phosphate monomer provides more durable bonding than do silanes incorporated in universal multimode adhesives. Only one of five so-called universal primers and adhesives provided durable bonding to lithium disilicate and zirconia ceramic.
Mesquita, A M M; Ozcan, M; Souza, R O A; Kojima, A N; Nishioka, R S; Kimpara, E T; Bottino, M A
2010-01-01
This study compared the bond strength durability of a feldspathic veneering ceramic to glass-infiltrated reinforced ceramics in dry and aged conditions. Disc shaped (thickness: 4 mm, diameter: 4 mm) of glass-infiltrated alumina (In-Ceram Alumina) and glass-infiltrated alumina reinforced by zirconia (In-Ceram Zirconia) core ceramic specimens (N=48, N=12 per groups) were constructed according to the manufacturers' recommendations. Veneering ceramic (VITA VM7) was fired onto the core ceramics using a mold. The core-veneering ceramic assemblies were randomly divided into two conditions and tested either immediately after specimen preparation (Dry) or following 30000 thermocycling (5-55 ºC±1; dwell time: 30 seconds). Shear bond strength test was performed in a universal testing machine (cross-head speed: 1 mm/min). Failure modes were analyzed using optical microscope (x20). The bond strength data (MPa) were analyzed using ANOVA (α=0.05). Thermocycling did not decrease the bond strength results for both In-Ceram Alumina (30.6±8.2 MPa; P=0.2053) and In-Ceram zirconia (32.6±9 MPa; P=0.3987) core ceramic-feldspathic veneering ceramic combinations when compared to non-aged conditions (28.1±6.4 MPa, 29.7±7.3 MPa, respectively). There were also no significant differences between adhesion of the veneering ceramic to either In-Ceram Alumina or In-Ceram Zirconia ceramics (P=0.3289). Failure types were predominantly a mixture of adhesive failure between the veneering and the core ceramic together with cohesive fracture of the veneering ceramic. Long-term thermocycling aging conditions did not impair the adhesion of the veneering ceramic to the glass-infiltrated alumina core ceramics tested.
Ceramic coatings on smooth surfaces
NASA Technical Reports Server (NTRS)
Miller, R. A. (Inventor); Brindley, W. J. (Inventor); Rouge, C. J. (Inventor)
1991-01-01
A metallic coating is plasma sprayed onto a smooth surface of a metal alloy substitute or on a bond coating. An initial thin ceramic layer is low pressure sprayed onto the smooth surface of the substrate or bond coating. Another ceramic layer is atmospheric plasma sprayed onto the initial ceramic layer.
NASA Astrophysics Data System (ADS)
Lou, Leo; Nelson, Alan E.; Heo, Giseon; Major, Paul W.
2008-08-01
The surface chemical composition of dental enamel has been postulated as a contributing factor in the variation of bond strength of brackets bonded to teeth, and hence, the probability of bracket failure during orthodontic treatment. This study systematically investigated the chemical composition of 98 bonding surfaces of human maxillary premolars using X-ray photoelectron spectroscopy (XPS) to ascertain compositional differences between right and left first premolars. The major elements detected in all samples were calcium, phosphorus, oxygen, nitrogen and carbon. Surface compositions were highly variable between samples and several elements were found to be highly correlated. No statistical significant difference in the chemical composition of the maxillary right and left first premolars was found ( p > 0.05). Knowledge of the chemical composition of enamel surfaces will facilitate future studies that relate this information to the variations in dental enamel bond strength.
Bonded carbon or ceramic fiber composite filter vent for radioactive waste
Brassell, Gilbert W.; Brugger, Ronald P.
1985-02-19
Carbon bonded carbon fiber composites as well as ceramic or carbon bonded ceramic fiber composites are very useful as filters which can separate particulate matter from gas streams entraining the same. These filters have particular application to the filtering of radioactive particles, e.g., they can act as vents for containers of radioactive waste material.
Shear Bond Strength of Bracket Bases to Adhesives Based on Bracket Base Design
2016-04-13
moving in the right direction. And to my wife, Allyson, I’m forever grateful for your patience and support, enabling me to pursue dreams as we begin... intrusion and extrusion in Angle and post Angle eras. As a result, the strength and precision of systems to apply forces through teeth have also
Oliveira, Adauê S; Kaizer, Marina R; Azevedo, Marina S; Ogliari, Fabrício A; Cenci, Maximiliano S; Moraes, Rafael R
2015-11-03
This study was designed to apply (super)hydrophobic crosslinked coatings by means of a sol-gel process on the surface of orthodontic devices and investigate the potential effect of these coatings in reducing the early retention of oral biofilm. Two organosilane-based hydrophobic solutions (HSs) were prepared containing hexadecyltrimethoxysilane diluted in ethanol (HS1) or 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane diluted in dimethyl sulfoxide (HS2). Stainless steel plates and ceramic discs were coated with HS1 or HS2 and heated at 150 °C for 2 h for condensation of a crosslinked SiO x network. Organosilane coatings were applied after previous, or no, surface sandblasting. Commercial stainless steel and ceramic brackets were used to evaluate oral biofilm retention after 12 h or 24 h of biofilm growth, using a microcosm model with human saliva as the inoculum. Surface roughness analysis (Ra, μm) indicated that sandblasting associated with organosilane coatings increased roughness for stainless steel brackets only. Analysis of the water contact angle showed that the stainless steel surface treated with HS1 was hydrophobic (~123°), while the ceramic surface treated with HS2 was superhydrophobic (~155°). Biofilm retention after 24 h was significantly lower in groups treated with hydrophobic coatings. An exponential reduction in biofilm accumulation was associated with increased water contact angle for both stainless steel and ceramic at 24 h. Application of (super)hydrophobic coatings on the surface of stainless steel and ceramic orthodontic devices might reduce the retention of oral biofilm.
Influence of hydrophilic pre-treatment on resin bonding to zirconia ceramics.
Noro, Akio; Kameyama, Atsushi; Haruyama, Akiko; Takahashi, Toshiyuki
2015-01-01
Atmospheric plasma or ultraviolet (UV) treatment alters the surface characteristics of tetragonal zirconia polycrystal (TZP), increasing its hydrophilicity by reducing the contact angle against water to zero. This suggests that such treatment would increase the wettability of bonding resin. The purpose of this study was to determine how increasing the hydrophilicity of TZP through plasma irradiation, UV treatment, or application of ceramic primer affected initial bonding with resin composites. Here, the effect of each pre-treatment on the hydrophilicity of TZP surfaces was determined by evaluating change in shear bond strength. Plasma irradiation, UV, or ceramic primer pre-treatment showed no significant effect on bonding strength between TZP surfaces and resin composites. In addition, alumina blasting yielded no significant increase in bond strength. Plasma irradiation, UV treatment, or ceramic primer pre-treatment did not lead to significant increase in bond strength between TZP and resin composites.
Fundamental tribological properties of ceramics
NASA Technical Reports Server (NTRS)
Buckley, D. H.; Miyoshi, K.
1985-01-01
When a ceramic is brought into contact with itself, another ceramic, or a metal, strong bond forces can develop between the materials. Adhesion between a ceramic and itself or another solid are discussed from a theoretical consideration of the nature of the surfaces and experimentally by relating bond forces to the interface resulting from solid state contact. Elastic, plastic, and fracture behavior of ceramics in solid-state contact are discussed as they relate to friction and wear. The contact load necessary to initiate fracture in ceramics is shown to be appreciably reduced with tangential motion. Both friction and wear of ceramics are anisotropic and relate to crystal structure as with metals. Both free energy of oxide formation and the d valence bond character of metals are related to the friction and wear characteristics for metals in contact with ceramics. Lubrication is found to increase the critical load necessary to initiate fracture of ceramics with sliding or rubbing contact.
Composite Laser Ceramics by Advanced Bonding Technology
Kamimura, Tomosumi; Honda, Sawao
2018-01-01
Composites obtained by bonding materials with the same crystal structure and different chemical compositions can create new functions that do not exist in conventional concepts. We have succeeded in bonding polycrystalline YAG and Nd:YAG ceramics without any interstices at the bonding interface, and the bonding state of this composite was at the atomic level, similar to the grain boundary structure in ceramics. The mechanical strength of the bonded composite reached 278 MPa, which was not less than the strength of each host material (269 and 255 MPa). Thermal conductivity of the composite was 12.3 W/mK (theoretical value) which is intermediate between the thermal conductivities of YAG and Nd:YAG (14.1 and 10.2 W/mK, respectively). Light scattering cannot be detected at the bonding interface of the ceramic composite by laser tomography. Since the scattering coefficients of the monolithic material and the composite material formed by bonding up to 15 layers of the same materials were both 0.10%/cm, there was no occurrence of light scattering due to the bonding. In addition, it was not detected that the optical distortion and non-uniformity of the refractive index variation were caused by the bonding. An excitation light source (LD = 808 nm) was collimated to 200 μm and irradiated into a commercial 1% Nd:YAG single crystal, but fracture damage occurred at a low damage threshold of 80 kW/cm2. On the other hand, the same test was conducted on the bonded interface of 1% Nd:YAG-YAG composite ceramics fabricated in this study, but it was not damaged until the excitation density reached 127 kW/cm2. 0.6% Nd:YAG-YAG composite ceramics showed high damage resistance (up to 223 kW/cm2). It was concluded that composites formed by bonding polycrystalline ceramics are ideal in terms of thermo-mechanical and optical properties. PMID:29425152
Msallam, Ferial Ahmed; Grawish, Mohammed El-Awady; Hafez, Ahmad Mohammed; Abdelnaby, Yasser Lotfy
2017-12-01
The present study was conducted to evaluate the effect of different topical agents utilized for prevention of enamel decalcification around orthodontic brackets bonded to bleached and non-bleached enamel. Human maxillary premolars (n = 120) were divided into two equal groups. Teeth in group I were left without bleaching while those in group II were bleached with Vivastyle gel. Metal brackets were bonded to all the teeth using light-cured adhesive. Each group was divided into six equal subgroups (A, B, C, D, E, and F). In subgroup A, no material was applied (control). In subgroups B, C, D, E, and F, the following materials were applied respectively: Profluorid varnish, Enamel Pro Varnish, Ortho-Choice Ortho-Coat, GC Tooth Mousse, and GC MI Paste Plus. All teeth were cycled in a demineralization solution/artificial saliva for 15 days. Laser fluorescence was used to measure the level of enamel mineralization. The data were statistically analyzed. Regarding the non-bleaching subgroups, all studied material revealed significant demineralization reduction in comparison to the control subgroup (P < 0.05). Ortho-Choice Ortho-Coat revealed the highest significant effect while GC Tooth Mousse showed the least effect. In bleached subgroups, Profluorid varnish, Enamel Pro Varnish, and Ortho-Choice Ortho-Coat significantly reduced demineralization (P < 0.05) while either GC MI Paste Plus or GC Tooth Mousse had no significant effects (P > 0.05). Ortho-Choice Ortho-Coat, and Profluorid and Enamel Pro varnishes could be utilized successfully to reduce enamel demineralization around brackets bonded to either bleached or non-bleached enamel. GC MI Paste Plus and GC Tooth Mousse were effective only in non-bleached enamel.
Agarwal, R M; Yeluri, R; Singh, C; Munshi, A K
2015-01-01
To suggest Papacarie(®) as a new deproteinizing agent in comparison with indigenously prepared 10% papain gel before and after acid etching that may enhance the quality of the bond between enamel surface and composite resin complex. One hundred and twenty five extracted human premolars were utilized and divided into five groups: In the group 1, enamel surface was etched and primer was applied. In group 2, treatment with papacarie(®) for 60 seconds followed by etching and primer application. In group 3, etching followed by treatment with papacarie(®) for 60 seconds and primer application. In group 4, treatment with 10% papain gel for 60 seconds followed by etching and primer application. In group 5, etching followed by treatment with 10% papain gel for 60 seconds and primer application . After bonding the brackets, the mechanical testing was performed using a Universal testing machine. The failure mode was analyzed using an adhesive remnant index. The etching patterns before and after application of papacarie(®) and 10% papain gel was also evaluated using SEM. The values obtained for shear bond strength were submitted to analysis of variance and Tukey test (p < 0.05). It was observed that group 2 and group 4 had the highest shear bond strength and was statistically significant from other groups (p=0.001). Regarding Adhesive remnant index no statistical difference was seen between the groups (p=0.538). Papacarie(®) or 10% papain gel can be used to deproteinize the enamel surface before acid etching to enhance the bond strength of orthodontic brackets.
Sodagar, Ahmad; Akhoundi, Mohamad Sadegh Ahmad; Bahador, Abbas; Jalali, Yasamin Farajzadeh; Behzadi, Zahra; Elhaminejad, Farideh; Mirhashemi, Amir Hossein
2017-01-01
ABSTRACT Introduction: Plaque accumulation and bond failure are drawbacks of orthodontic treatment, which requires composite for bonding of brackets. As the antimicrobial properties of TiO2 nanoparticles (NPs) have been proven, the aim of this study was to evaluate the antimicrobial and mechanical properties of composite resins modified by the addition of TiO2 NPs. Methods: Orthodontics composite containing 0%, 1%, 5% and 10% NPs were prepared. 180 composite disks were prepared for elution test, disk agar diffusion test and biofilm inhibition test to collect the counts of microorganisms on three days, measure the inhibition diameter and quantify the viable counts of colonies consequently. For shear bond strength (SBS) test, 48 intact bovine incisors were divided into four groups. Composites containing 0%, 1%, 5% and 10% NPs were used for bonding of bracket. The bracket/tooth SBS was measured by using an universal testing machine. Results: All concentration of TiO2 NPs had a significant effect on creation and extension of inhibition zone. For S. mutans and S. sanguinis, all concentration of TiO2 NPs caused reduction of the colony counts. Composite containing 10% TiO2 NPs had significant effect on reduction of colony counts for S. mutans and S. sanguinis in all three days. The highest mean shear bond strength belonged to the control group, while the lowest value was seen in 10% NPs composite. Conclusions: Incorporating TiO2 nanoparticles into composite resins confer antibacterial properties to adhesives, while the mean shear bond of composite containing 1% and 5% NPs still in an acceptable range. PMID:29160346
Shear bond, wettability and AFM evaluations on CO2 laser-irradiated CAD/CAM ceramic surfaces.
El Gamal, Ahmed; Medioni, Etienne; Rocca, Jean Paul; Fornaini, Carlo; Muhammad, Omid H; Brulat-Bouchard, Nathalie
2017-05-01
The purpose of this study is to determine the CO 2 laser irradiation in comparison with sandblasting (Sb), hydrofluoric acid (Hf) and silane coupling agent (Si) on shear bond strength (SBS), roughness (Rg) and wettability (Wt) of resin cement to CAD/CAM ceramics. Sixty (CAD/CAM) ceramic discs were prepared and distributed into six different groups: group A, control lithium disilicate (Li); group B, control zirconia (Zr); group C, Li: CO 2 /HF/Si; group D, Li: HF/Si; group E, Zr: CO 2 /Sb/Si; group F, Zr: Sb/Si. Result showed significant difference between irradiated and non-irradiated in terms of shear bond strength for zirconia ceramics (p value = 0.014). Moreover, partial surface wettability for irradiated and non-irradiated ceramics. Irradiated surface demonstrated more rough surface in lithium disilicate than zirconia ceramics. CO 2 irradiation could increase shear bond strength, surface roughness and wettability for both CAD/CAM ceramics.
NASA Astrophysics Data System (ADS)
Jamaludin, L.; Abdullah, M. M. A. B.; Hussin, K.; Kadir, A. Abdul
2018-06-01
The study focus on effect of pre-heated ceramic surface on the adhesion bond strength between geopolymer coating coating and ceramic substrates. Ceramic substrates was pre-heated at different temperature (400 °C, 600 °C, 800 °C and 1000 °C). Fly ash geopolymer coating material potential used to protect surface used in exposure conditions after sintering at high temperature. Fly ash and alkali activator (Al2O3/Na2SiO3) were mixed with 2.0 solids-to-liquid ratios to prepare geopolymer coating material at constant NaOH concentration of 12M. Adhesion test was conducted to determine the adhesion bond between ceramic substrates and fly ash coating material. The results showed the pre-heated ceramic substrates effect the adhesion bond of coating compared with untreated substrates with increasing of strength up to 20 % for temperature 600 °C.
Transient liquid phase ceramic bonding
Glaeser, Andreas M.
1994-01-01
Ceramics are joined to themselves or to metals using a transient liquid phase method employing three layers, one of which is a refractory metal, ceramic or alloy. The refractory layer is placed between two metal layers, each of which has a lower melting point than the refractory layer. The three layers are pressed between the two articles to be bonded to form an assembly. The assembly is heated to a bonding temperature at which the refractory layer remains solid, but the two metal layers melt to form a liquid. The refractory layer reacts with the surrounding liquid and a single solid bonding layer is eventually formed. The layers may be designed to react completely with each other and form refractory intermetallic bonding layers. Impurities incorporated into the refractory metal may react with the metal layers to form refractory compounds. Another method for joining ceramic articles employs a ceramic interlayer sandwiched between two metal layers. In alternative embodiments, the metal layers may include sublayers. A method is also provided for joining two ceramic articles using a single interlayer. An alternate bonding method provides a refractory-metal oxide interlayer placed adjacent to a strong oxide former. Aluminum or aluminum alloys are joined together using metal interlayers.
Ceramic Inlays: Effect of Mechanical Cycling and Ceramic Type on Restoration-dentin Bond Strength.
Trindade, F Z; Kleverlaan, C J; da Silva, L H; Feilzer, A J; Cesar, P F; Bottino, M A; Valandro, L F
2016-01-01
This study aimed to evaluate the bond strength between dentin and five different ceramic inlays in permanent maxillary premolars, with and without mechanical cycling. One hundred permanent maxillary premolars were prepared and divided into 10 groups (n=10) according to the ceramic system (IPS e.Max Press; IPS e.Max CAD; Vita PM9; Vita Mark II; and Vita VM7) and the mechanical cycling factor (with and without [100 N, 2 Hz, 1.2×10(6) cycles]). The inlays were adhesively cemented, and all of the specimens were cut into microbars (1×1 mm, nontrimming method), which were tested under microtensile loading. The failure mode was classified and contact angle, roughness, and microtopographic analyses were performed on each ceramic surface. The mechanical cycling had a significant effect (p=0.0087) on the bond strength between dentin and IPS e.max Press. The Vita Mark II group had the highest bond strength values under both conditions, with mechanical cycling (9.7±1.8 MPa) and without (8.2±1.9 MPa), while IPS e.Max CAD had the lowest values (2.6±1.6 and 2.2±1.4, respectively). The adhesive failure mode at the ceramic/cement interface was the most frequent. Vita Mark II showed the highest value of average roughness. IPS e.max Press and Vita Mark II ceramics presented the lowest contact angles. In conclusion, the composition and manufacturing process of ceramics seem to have an influence on the ceramic surface and resin cement bond strength. Mechanical cycling did not cause significant degradation on the dentin and ceramic bond strength under the configuration used.
Klosa, Karsten; Wolfart, Stefan; Lehmann, Frank; Wenz, Hans-Jürgen; Kern, Matthias
2009-04-01
The purpose of this in-vitro study was to evaluate the resin bond strength to pre-etched lithium disilicate ceramic using different cleaning methods after two contamination modes (saliva or saliva and silicone). Plexiglas tubes filled with composite resin (MultiCore Flow) were bonded to etched and silanized ceramic disks made of lithium disilicate ceramic (IPS e.max Press) using a luting resin (Multilink Automix). Either etched or unetched ceramic surfaces were contaminated with saliva or with saliva followed by a disclosing silicone. Groups of 16 specimens each were bonded after pretreatment using 4 surface cleaning agents (37% phosphoric acid, 5% hydrofluoric acid, 96% isopropanol, air polishing device with sodium bicarbonate) in different combinations. Before measuring tensile bond strength, specimens were stored for 3 or 150 days with thermocycling. After 150 days of storage, etching of saliva-contaminated surfaces with 5% hydrofluoric acid and/or 37% phosphoric acid provided statistically significantly higher bond strengths (37.9 to 49.5 MPa) than the other cleaning methods (1.7 to 15.5 MPa). After saliva and silicone contamination, etching with 5% hydrofluoric acid provided statistically significantly higher bond strengths (44.5 to 50.3 MPa) than all other cleaning methods (0.3 to 13.5 MPa). Ceramic cleaning methods after try-in procedures have a significant influence on the resin bond strength and are dependent on the type of contamination. Re-etching lithium disilicate ceramic with 5% hydrofluoric acid is most effective in removing contamination with saliva and/or a silicone disclosing medium.
Kocaağaoğlu, Hasan; Manav, Taha; Albayrak, Haydar
2017-04-01
When fracture of an all-ceramic restoration occurs, it can be necessary to repair without removing the restoration. Although there are many studies about the repair of metal-ceramic restorations, there are few about all-ceramic restorations. The aim of this study was to evaluate the shear bond strength between ceramic repair systems and esthetic core materials and to evaluate the wettability of all-ceramic core materials. Disk-like specimens (N = 90) made of three dental ceramic infrastructure materials (zirconia ceramic, alumina ceramic, glass ceramic) were polished with silicon carbide paper, prepared for bonding (abrasion with 30 μm diamond rotary cutting instrument). Thirty specimens of each infrastructure were obtained. Each infrastructure group was divided into three subgroups; they were bonded using 3 repair systems: Bisco Intraoral Repair Kit, Cimara & Cimara Zircon Repair System, and Clearfil Repair System. After 1200 thermocycles, shear bond strength was measured in a universal testing machine at a 0.5 mm/min crosshead speed. In addition, the contact angle values of the infrastructures after surface treatments were examined for wettability. Data were analyzed by using ANOVA and Tukey post hoc tests. Although there were no significant differences among the repair systems (p > 0.05) in the glass ceramic and zirconia groups, a significant difference was found among the repair systems in alumina infrastructure (p < 0.001). There were no statistically significant differences among the infrastructures (p > 0.05); however, a statistically significant difference was found among the repair systems (p < 0.05). No difference was found among the infrastructures and repair systems in terms of contact angle values. Cimara & Cimara Zircon Repair System had higher bond strength values than the other repair systems. Although no difference was found among the infrastructures and repair systems, contact wettability angle was decreased by surface treatments compared with polished surfaces. © 2015 by the American College of Prosthodontists.
Buck, Tyson; Pellegrini, Peter; Sauerwein, Rebecca; Leo, Michael C; Covell, David A; Maier, Tom; Machida, Curtis A
2011-01-01
To (1) evaluate the use of adenosine triphosphate (ATP)-driven bioluminescence for quantification of total plaque bacteria in orthodontic patients, (2) compare plaque bacteria amounts at the bracket-tooth interface with use of elastomeric-ligated and self-ligating brackets after 1 year of orthodontic treatment, and (3) analyze formation of white spot lesions by photographic evaluation and laser-light fluorescence (DIAGNOdent). Thirteen subjects had fixed orthodontic appliances placed where lateral incisors were bonded with either elastomeric-ligated or self-ligating brackets. Plaque bacteria were collected from incisor surfaces after 1 year and quantified using plating methods and ATP-driven bioluminescence. White spot lesions were evaluated by photographic and DIAGNOdent determinations. A 2 x 2 x 2 mixed-design ANOVA was conducted to determine differences in plaque retention between elastomeric-ligated and self-ligating brackets. ATP-driven bioluminescence values correlated to numbers of total plaque bacteria (r = 0.80). However, unlike findings published in the original pilot study, which described increased plaque retention with elastomeric-ligated brackets at 5 weeks postbonding, there were no significant differences in bacterial numbers or ATP-driven bioluminescence values surrounding the elastomeric-ligated vs self-ligating brackets after 1 year of orthodontic treatment. Based on photographic and DIAGNOdent determinations, white spot lesions were found relatively equally on teeth bonded with either bracket type. DIAGNOdent measurements were found to have moderate sensitivity (0.71) and good specificity (0.88) when compared to white spot lesions determined using photographic evaluation. ATP-driven bioluminescence can be used as an accurate assessment of total plaque bacteria in orthodontic patients. After 1 year of orthodontic treatment for patients in this pilot study, there appeared to be no differences in retention of plaque bacteria or white spot lesions comparing the bracket types. The use of DIAGNOdent has some limitations, but may prove to be useful to monitor white spot lesions longitudinally.
Ekren, Orhun; Ozkomur, Ahmet; Ucar, Yurdanur
2018-03-01
Direct metal laser sintering (DMLS) and direct metal laser melting (DMLM) have become popular for fabricating the metal frameworks of metal-ceramic restorations. How the type of layered manufacturing device, layer thickness, and alloy powder may affect the bond strength of ceramic to metal substructure is unclear. The purpose of this in vitro study was to evaluate the bond strength of dental porcelain to metal frameworks fabricated using different layered manufacturing techniques (DMLS and DMLM), Co-Cr alloy powders, and layer thicknesses and to evaluate whether a correlation exists between the bond strength and the number of ceramic remnants on the metal surface. A total of 75 bar-shaped metal specimens (n=15) were fabricated using either DMLS or DMLM. The powder alloys used were Keramit NP-S and EOS-Cobalt-Chrome SP-2 with layer thicknesses of 20 μm and 30 μm. After ceramic application, the metal-ceramic bond strength was evaluated with a 3-point-bend test. Three-way ANOVA followed by the Tukey honest significance difference test were used for statistical analysis (α=.05). De-bonding surface microstructure was observed with scanning electron microscopy. Energy dispersive spectroscopy analysis was conducted to evaluate the correlation between ceramic remnants on the metal surface and bond strength values. The mean bond strength value of DMLS was significantly higher than that of DMLM. While no statistically significant difference was found between layer thicknesses, alloy powders closely affected bond strength. Statistical comparisons revealed that the highest bond strength could be achieved with DMLS-Cobalt-Chrome SP2-20μm, and the lowest bond strength was observed in DMLS-Keramit NP-S-20μm (P≤.05). No correlation was found between porcelain remnants on the metal surface and bond strength values. The layered manufacturing device and the alloy powders evaluated in the current study closely affected the bond strength of dental porcelain to a metal framework. However, layer thickness did not affect the bond strength. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Clinical effect of reducing curing times with high-intensity LED lights
Ward, Justin D.; Wolf, Bethany J.; Leite, Luis P.; Zhou, Jing
2016-01-01
Objective To evaluate the clinical performance of brackets cured with a high-intensity, light-emitting diode (LED) with a shorter curing time. Materials and Methods Thirty-four patients and a total of 680 brackets were examined using a randomized split-mouth design. The maxillary right and mandibular left quadrants were cured for 6 seconds with a high-intensity LED light (3200 mW/cm2) and the maxillary left and mandibular right quadrants were cured for 20 seconds with a standard-intensity LED light (1200 mW/cm2). Alternating patients had the quadrants inverted for the curing protocol. The number and date of each first-time bracket failure was recorded from 199 to 585 days posttreatment. Results The bracket failure rate was 1.18% for both curing methods. The proportion of bracket failure was not significantly different between curing methods (P = 1.000), genders (P = 1.000), jaws (P = .725), sides (P = .725), or quadrants (P = .547). Posterior teeth exhibited a greater proportion of failures (2.21%) relative to anterior teeth (0.49%), although the difference was not statistically significant (P = .065). Conclusions No difference was found in bond failure rates between the two curing methods. Both methods showed bond failure rates low enough to be considered clinically sufficient. The high-intensity LED light used with a shorter curing time may be considered an advantage due to the reduced chair time. PMID:25760887
Kaisarly, Dalia; El Gezawi, Moataz; Xu, Xiaohui; Rösch, Peter; Kunzelmann, Karl-Heinz
2018-01-01
Polymerization shrinkage of dental resin composites leads to stress build-up at the tooth-restoration interface that predisposes the restoration to debonding. In contrast to the heterogeneity of enamel and dentin, this study investigated the effect of boundary conditions in artificial cavity models such as ceramic and Teflon. Ceramic serves as a homogenous substrate that provides optimal bonding conditions, which we presented in the form of etched and silanized ceramic in addition to an etched, silanized and bonded ceramic cavity. In contrast, the Teflon cavity presented a non-adhesive boundary condition that provided an exaggerated condition of poor bonding as in the case of contamination during the application procedure or a poor bonding substrate such as sclerotic or deep dentin. The greatest 3D shrinkage vectors and movement in the axial direction were observed in the ceramic cavity with the bonding agent followed by the silanized ceramic cavity, and smallest shrinkage vectors and axial movements were observed in the Teflon cavity. The shrinkage vectors in the ceramic cavities exhibited downward movement toward the cavity bottom with great downward shrinkage of the free surface. The shrinkage vectors in the Teflon cavity pointed towards the center of the restoration with lateral movement greater at one side denoting the site of first detachment from the cavity walls. These results proved that the boundary conditions, in terms of bonding substrates, significantly influenced the shrinkage direction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Debris and friction of self-ligating and conventional orthodontic brackets after clinical use.
Araújo, Raíssa Costa; Bichara, Lívia Monteiro; Araujo, Adriana Monteiro de; Normando, David
2015-07-01
To compare the degree of debris and friction of conventional and self-ligating orthodontic brackets before and after clinical use. Two sets of three conventional and self-ligating brackets were bonded from the first molar to the first premolar in eight individuals, for a total of 16 sets per type of brackets. A passive segment of 0.019 × 0.025-inch stainless steel archwire was inserted into each group of brackets. Frictional force and debris level were evaluated as received and after 8 weeks of intraoral exposure. Two-way analysis of variance and Wilcoxon signed-rank test were applied at P < .05. After the intraoral exposure, there was a significant increase of debris accumulation in both systems of brackets (P < .05). However, the self-ligating brackets showed a higher amount of debris compared with the conventional brackets. The frictional force in conventional brackets was significantly higher when compared with self-ligating brackets before clinical use (P < .001). Clinical exposure for 8 weeks provided a significant increase of friction (P < .001) on both systems. In the self-ligating system, the mean of friction increase was 0.21 N (191%), while 0.52 N (47.2%) was observed for the conventional system. Self-ligating and conventional brackets, when exposed to the intraoral environment, showed a significant increase in frictional force during the sliding mechanics. Debris accumulation was higher for the self-ligating system.
Comparison of 3 bonded lingual appliances by auditive analysis and subjective assessment.
Hohoff, Ariane; Stamm, Thomas; Goder, Gerhard; Sauerland, Cristina; Ehmer, Ulrike; Seifert, Eberhard
2003-12-01
The aim of this prospective study was to compare for the first time the influences of lingual appliances of different dimensions on sound performance and oral comfort. The study group comprised 12 subjects (10 women, 2 men; mean age, 33.96 years). Their sound production was recorded by means of a digital audio tape recorder before, 10 minutes after, and 24 hours after placement of the different appliances for semiobjective assessment by 3 blinded speech professionals. This was followed by supplementary subjective ratings of sound performance and oral comfort by the patients. All lingual appliances induced significant impairment in sound performance and oral comfort. However, they varied significantly with respect to the degree of impairment. The smaller the appliance, the less pronounced the impairments it induced. The smallest changes were induced by a bonded canine-to-canine retainer, followed by customized lingual brackets and prefabricated lingual brackets. By using lower-profile customized brackets, the orthodontist can significantly enhance patient comfort and significantly reduce impairments of sound performance in comparison with prefabricated brackets with larger dimensions. Before placing a lingual appliance, however, patients should be briefed on possible effects such as impaired sound production and decreased oral comfort.
Mittal, Nitika; Xia, Zeyang; Chen, Jie; Stewart, Kelton T; Liu, Sean Shih-Yao
2013-05-01
To quantify the three-dimensional moments and forces produced by pretorqued nickel-titanium (NiTi) rectangular archwires fully engaged in 0.018- and 0.022-inch slots of central incisor and molar edgewise and prescription brackets. Ten identical acrylic dental models with retroclined maxillary incisors were fabricated for bonding with various bracket-wire combinations. Edgewise, Roth, and MBT brackets with 0.018- and 0.022-inch slots were bonded in a simulated 2 × 4 clinical scenario. The left central incisor and molar were sectioned and attached to load cells. Correspondingly sized straight and pretorqued NiTi archwires were ligated to the brackets using 0.010-inch ligatures. Each load cell simultaneously measured three force (Fx, Fy, Fz) and three moment (Mx, My, Mz) components. The faciolingual, mesiodistal, and inciso-occluso/apical axes of the teeth corresponded to the x, y, and z axes of the load cells, respectively. Each wire was removed and retested seven times. Three-way analysis of variance (ANOVA) examined the effects of wire type, wire size, and bracket type on the measured orthodontic load systems. Interactions among the three effects were examined and pair-wise comparisons between significant combinations were performed. The force and moment components on each tooth were quantified according to their local coordinate axes. The three-way ANOVA interaction terms were significant for all force and moment measurements (P < .05), except for Fy (P > .05). The pretorqued wire generates a significantly larger incisor facial crown torquing moment in the MBT prescription compared to Roth, edgewise, and the straight NiTi wire.
KommonBase - A precise direct bonding system for labial fixed appliances.
Miyashita, Wataru; Komori, Akira; Takemoto, Kyoto
2017-09-01
"KommonBase" is a system designed to customize the bracket base by means of an extended resin base covering the tooth. This system enables precise bracket placement and accurate fit on teeth. Moreover, KommonBase can be easily fabricated in a laboratory and bonded on each tooth using simple clinical procedures. Straight-wire treatment without wire bending was achieved in the clinical cases presented in this article using the KommonBase system for a labial fixed appliance. The application of KommonBase to the vestibular side enables efficient orthodontic treatment using simple mechanics. Copyright © 2017 CEO. Published by Elsevier Masson SAS. All rights reserved.
Shear Bond Strength of Three Orthodontic Bonding Systems on Enamel and Restorative Materials.
Hellak, Andreas; Ebeling, Jennifer; Schauseil, Michael; Stein, Steffen; Roggendorf, Matthias; Korbmacher-Steiner, Heike
2016-01-01
Objective. The aim of this in vitro study was to determine the shear bond strength (SBS) and adhesive remnant index (ARI) score of two self-etching no-mix adhesives (iBond ™ and Scotchbond ™ ) on different prosthetic surfaces and enamel, in comparison with the commonly used total etch system Transbond XT ™ . Materials and Methods . A total of 270 surfaces (1 enamel and 8 restorative surfaces, n = 30) were randomly divided into three adhesive groups. In group 1 (control) brackets were bonded with Transbond XT primer. In the experimental groups iBond adhesive (group 2) and Scotchbond Universal adhesive (group 3) were used. The SBS was measured using a Zwicki 1120 ™ testing machine. The ARI and SBS were compared statistically using the Kruskal-Wallis test ( P ≤ 0.05). Results . Significant differences in SBS and ARI were found between the control group and experimental groups. Conclusions . Transbond XT showed the highest SBS on human enamel. Scotchbond Universal on average provides the best bonding on all other types of surface (metal, composite, and porcelain), with no need for additional primers. It might therefore be helpful for simplifying bonding in orthodontic procedures on restorative materials in patients. If metal brackets have to be bonded to a metal surface, the use of a dual-curing resin is recommended.
[Effect of nano-silica coating on bonding strength of zirconia ceramics to dentin].
Zhang, Xian-Fang; Zheng, Hu; Han, Dong-Wei
2009-04-01
To investigate the effect of silica coating by sol-gel process on bonding strength of zirconia ceramics to dentin. Blocks of sintered zirconia ceramics were cut and randomly divided into 4 groups,16 slices in each group. Each group was subject to one of the 4 kinds of surface treatment (control group, sandblasting, sandblasting +silicone, sandblasting + silica coating + silicone) and then bonded to dentin with resin cement. After preservation in 37 degrees centigrade distilled water for 24 hours, the shear bonding strength of these specimens was tested and the data was analyzed with SAS6.12 software package for analysis of variance. The surface modality of the ceramics was observed under scanning electron microscopy (SEM). The group of sandblasting+ silica coating + silicone attained the highest shear bonding strength, which was significantly different from the other groups(P=0.000);There was no significant difference between the sandblasting and sandblasting + silicone group (P=0.827), which was significantly different from the control group(P=0.001). Silica coating by sol-gel process, coupled with silicone, can significantly increase the bonding strength of zirconia ceramics to dentin.
Method of bonding metals to ceramics
Maroni, Victor A.
1992-01-01
A method of forming a composite by providing a ceramic capable of having zero electrical resistance and complete diamagnetism at superconducting temperatures, bonding a thin layer of Ag, Au or alloys thereof with the ceramic. Thereafter, there is bonded a first metal to the ceramic surface at a temperature less than about 400.degree. C., and then a second metal is bonded to the first metal at a temperature less than about 400.degree. C. to form a composite wherein the first metal is selected from the class consisting of In, Ga, Sn, Bi, Zn, Cd, Pb, Ti and alloys thereof and wherein the second metal is selected from the class consisting of Al, Cu, Pb and Zn and alloys thereof.
The use of fixed appliances in the UK: a survey of specialist orthodontists.
Banks, Phil; Elton, Victoria; Jones, Yvonne; Rice, Peter; Derwent, Serena; Odondi, Lang'o
2010-03-01
To investigate the use of fixed appliances in the UK. Prospective postal questionnaire. UK. All members of the General Dental Council Specialist List in Orthodontics still in active practice and not in training posts. A preemptive letter of explanation was sent inviting orthodontists to participate in the survey. The questionnaire was subsequently posted to 935 specialists. Data analysis investigated differences in clinical practice related to varying provider groups, level of operator experience and geographical region. The response rate achieved was 66.3%. A majority of orthodontists routinely used the 0.022 inch pre-adjusted edgewise system, standard size Siamese pattern stainless steel brackets, conventionally ligated and bonded using standard etch and light cured composite. Nickel titanium and stainless steel were the most popular archwire materials. Anchorage was supported routinely by palatal and lingual arches in up to 25% and by headgear in over a third of respondents. Newer innovations showed variable popularity. Self-etching primer was used routinely by one-third of respondents with 11% use of self-ligating brackets. Banding of first molars was preferred by over 60% of clinicians. Bone screw implants were used by only 0.2% of respondents. Clinicians with less than 10 years experience used more headgear, light curing, MBT prescription and molar bonding. Operators with over 20 years experience used more chemically cured bonding, Roth prescription, banded first molars, 0.018 inch slot size and Tip-Edge(TM), with less use of headgear. Fixed appliance use differed from that reported in the US with lower use in the UK of standard edgewise and Roth systems, aesthetic, miniaturised and 0.018 inch slot brackets and rapid maxillary expansion. Most UK orthodontic specialists routinely used the 0.022 inch pre-adjusted edgewise system with standard size Siamese steel brackets bonded using standard etch and light cured composite with conventional ligation. Variations were seen between different provider groups, types of treatment funding, levels of operator seniority and geographical regions. Differences were noted particularly in the use of bracket prescription and design, types of molar attachment and anchorage control.
Effects of silicon coating on bond strength of two different titanium ceramic to titanium.
Ozcan, Isil; Uysal, Hakan
2005-08-01
This study investigated the effect of silicon coating (SiO2) by magnetron sputtering on bond strength of two different titanium ceramics to titanium. Sixty cast titanium specimens were prepared following the protocol ISO 9693. Titanium specimens were divided into two test and control groups with 15 specimens in each. Test groups were silicon coated by the magnetron sputtering technique. Two titanium ceramics (Triceram and Duceratin) were applied on both test (coated) and control (uncoated) metal specimens. The titanium-ceramic specimens were subjected to a three point flexural test. The groups were compared for their bond strength. SEM and SEM/EDS analyses were performed on the delaminated titanium surfaces to ascertain bond failure. The mean bond strength of Ti-Duceratin, Ti-Triceram, Si-coated Ti-Duceratin and Si-coated Ti-Triceram were 17.22+/-2.43, 23.31+/-3.18, 23.21+/-3.81 and 24.91+/-3.70 MPa, respectively. While the improvement in bond strength was 30% for Duceratin, it was statistically insignificant for Triceram. An adhesive mode of failure was observed in the Duceratin control group. In the silicoated Duceratin specimen, the bonded ceramic boundaries were wider but less than in the silicoated Triceram specimen. In the coated Triceram specimen, the ceramic retained areas were frequent and the failure mode was generally cohesive. Silicon coating was significantly effective in both preventing titanium oxide layer formation and in improving bond strength for Duceratin. However, it was of less value for Triceram.
Lazari, Priscilla Cardoso; Sotto-Maior, Bruno Salles; Rocha, Eduardo Passos; de Villa Camargos, Germana; Del Bel Cury, Altair Antoninha
2014-10-01
The chipping of ceramic veneers is a common problem for zirconia-based restorations and is due to the weak interface between both structures. The purpose of this study was to evaluate the mechanical behavior of ceramic veneers on zirconia and metal frameworks under 2 different bond-integrity conditions. The groups were created to simulate framework-veneer bond integrity with the crowns partially debonded (frictional coefficient, 0.3) or completely bonded as follows: crown with a silver-palladium framework cemented onto a natural tooth, ceramic crown with a zirconia framework cemented onto a natural tooth, crown with a silver-palladium framework cemented onto a Morse taper implant, and ceramic crown with a zirconia framework cemented onto a Morse taper implant. The test loads were 49 N applied to the palatal surface at 45 degrees to the long axis of the crown and 25.5 N applied perpendicular to the incisal edge of the crown. The maximum principal stress, shear stress, and deformation values were calculated for the ceramic veneer; and the von Mises stress was determined for the framework. Veneers with partial debonding to the framework (frictional coefficient, 0.3) had greater stress concentrations in all structures compared with the completely bonded veneers. The metal ceramic crowns experienced lower stress values than ceramic crowns in models that simulate a perfect bond between the ceramic and the framework. Frameworks cemented to a tooth exhibited greater stress values than frameworks cemented to implants, regardless of the material used. Incomplete bonding between the ceramic veneer and the prosthetic framework affects the mechanical performance of the ceramic veneer, which makes it susceptible to failure, independent of the framework material or complete crown support. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Zhang, Ronghe; Zhang, Weiwei; Bai, Xueyan; Song, Xiaotong; Wang, Chunyan; Gao, Xinxin; Tian, Xubiao; Liu, Fengzhen
2015-03-01
This paper aims to explore the antibacterial property of nano Ag/TiO2 coating bracket for the common bacteria in oral cavity, and discuss its biocompatibility. Micro morphology in the surface of nano Ag/TiO2 coating bracket was detected by scanning electron microscope (SEM), and surface roughness of ordinary mental bracket, nano TiO2 coating bracket and nano Ag/TiO2 coating bracket were measured. First, antibacterial property of nano Ag/TiO2 coating bracket on the common bacteria in oral cavity was studied by sticking membrane method. Secondly, bonding strength of nano TiO2 coating and nano Ag/TiO2 coating bracket in groups were detected by scratching test. The result showed that, the synthetic nano Ag/TiO2 coating was nanogranular films with rigorous organizational structure, presenting as smooth and clean surface, and antibacterial rate of nano Ag/TiO2 coating for the common bacteria in oral cavity for 20 min was more than 79% in the dark. All the findings suggested that, nano Ag/TiO2 coating bracket not only has antibacterial effect but also has good biocompatibility, therefore, it can satisfy the clinical request of orthodontic treatment.
Tudehzaeim, Mohamad Hossein; Yassaei, Soghra; Taherimoghadam, Shohreh
2015-02-01
Debonding is a common occurrence in orthodontic treatment and a considerable number of orthodontists prefer to rebond the detached brackets because of economic issues. The aim of this study was to compare the microleakage beneath rebonded stainless steel brackets using two methods of adhesive removal namely sandblast and laser. Sixty human premolar teeth were randomly divided into three groups. Following bonding the brackets, group 1 served as the control group. Brackets in groups 2 and 3 were debonded, and adhesive removal from the bracket bases was done by means of sandblasting and Er-YAG laser, respectively. After rebonding, teeth in each group were stained with 2% methylene blue for 24 hours, sectioned and examined under a stereomicroscope. Marginal microleakage at the adhesive-enamel and bracket-adhesive interfaces in the occlusal and gingival margins was determined. Statistical analysis was done using the Kruskal-Wallis test. Comparison of the microleakage scores among the three groups revealed no statistically significant difference (P > 0.05). At the enamel-adhesive interface, the gingival margins in all groups showed higher microleakage while in the adhesive-bracket interface, the occlusal margin exhibited greater microleakage. Er-YAG laser irradiation and sandblasting for adhesive removal from the debonded brackets yielded clinically acceptable microleakage scores.
Tudehzaeim, Mohamad Hossein; Yassaei, Soghra; Taherimoghadam, Shohreh
2015-01-01
Objectives: Debonding is a common occurrence in orthodontic treatment and a considerable number of orthodontists prefer to rebond the detached brackets because of economic issues. The aim of this study was to compare the microleakage beneath rebonded stainless steel brackets using two methods of adhesive removal namely sandblast and laser. Materials and Methods: Sixty human premolar teeth were randomly divided into three groups. Following bonding the brackets, group 1 served as the control group. Brackets in groups 2 and 3 were debonded, and adhesive removal from the bracket bases was done by means of sandblasting and Er-YAG laser, respectively. After rebonding, teeth in each group were stained with 2% methylene blue for 24 hours, sectioned and examined under a stereomicroscope. Marginal microleakage at the adhesive-enamel and bracket-adhesive interfaces in the occlusal and gingival margins was determined. Statistical analysis was done using the Kruskal-Wallis test. Results: Comparison of the microleakage scores among the three groups revealed no statistically significant difference (P > 0.05). At the enamel-adhesive interface, the gingival margins in all groups showed higher microleakage while in the adhesive-bracket interface, the occlusal margin exhibited greater microleakage. Conclusion: Er-YAG laser irradiation and sandblasting for adhesive removal from the debonded brackets yielded clinically acceptable microleakage scores. PMID:26056521
Castro, Martha C C; Sadek, Fernanda T; Batitucci, Eduardo; Miranda, Mauro S
2014-01-01
The bond strength of dental materials has been evaluated by tensile testing of micro-specimens. The cutting process used to obtain specimens may influence the results. The objective of this study was to investigate the influence of different types of diamond disks and cutting speeds on the bond strength of ceramic specimens and on specimen integrity. Lithium disilicate-based ceramic cubes were bonded with resin cement to composite resin cubes, according to the manufacturers' instructions. The ceramic/cement/resin blocks thus obtained were divided into two groups to be cut with Buehler(®) or Extec(®) disks and then sectioned at cutting speeds of 200 rpm and 400 rpm. The results showed that the bond strength values were affected by the cutting speed and disk/speed interaction (p<0.05). SEM analysis revealed better specimen properties when the blocks were cut at 200 rpm. It was concluded that ceramic specimens must be cut at low speeds.
Papageorgiou, Spyridon N; Sifakakis, Iosif; Doulis, Ioannis; Eliades, Theodore; Bourauel, Christoph
2016-01-01
The aim of this study was to compare the torque efficacy of square and rectangular wires in 0.018- and 0.022-in. conventionally ligated brackets. Brackets of the same prescription were evaluated in both slot dimensions. Identical acrylic resin models of the maxilla were bonded with the brackets and mounted on the Orthodontic Measurement and Simulation System. Ten 0.018 × 0.018 in., 0.018 × 0.022 in., and 0.018 × 0.025 in. stainless steel wires were evaluated in the 0.018-in. brackets and ten 0.019 × 0.019 in., 0.019 × 0.025 in., and 0.019 × 0.026 in. stainless steel wires were evaluated in the 0.022-in. brackets. A 15° buccal root torque was gradually applied to the right central incisor bracket, and the moments were recorded at this position. One-way ANOVA was applied for both bracket slot sizes along with post hoc analysis for the various archwire sizes. The mean measured moments varied between 10.78 and 30.60 Nmm among the assessed wire-and-bracket combinations. Both square and rectangular archwires in the 0.018-in. bracket system exerted statistically significantly higher moments in comparison with their counterparts in the 0.022-in. bracket system. Rectangular archwires exerted statistically significantly higher moments than square archwires, both for the 0.018- and the 0.022-in. bracket system. Rectangular archwires seem to be more efficient in torque exertion, especially in 0.018-in. brackets.
The Sapphire (0001) Surface, Clean and with d-metal Overlayers: Density Functional - LDA Results
NASA Astrophysics Data System (ADS)
Verdozzi, C.; Jennison, D. R.; Schultz, P. A.; Sears, M. P.
1998-03-01
Previous theoretical work for the a-Al2O3(0001) surface mostly used very thin slabs, and limited theoretical information is available on the binding of metal overlayers. Also, no systematic information is available about the dependence of the metal-ceramic interaction on metal coverage. We present here results using the local density approximation for the structural and electronic properties of the a-Al2O3(0001) surface, with and without d-metal overlayers Pt, Ag, Cu, and with sufficiently thick slabs to find the bottom of the unusually large and deep surface relaxation in this material. Our thick slab site-optimized calculations are performed for 1, 2/3 and 1/3 monolayer (ML) coverage. The adhesion energy and the nature of the interfacial bond vary greatly with metal coverage and can be understood in terms of the relative roles of the surface Madelung potential and the strength of the lateral metal-metal bond. Our study should in principle succeed in bracketing the phenomenology of adhesion and wetting at least for the right-most part of the d-metal periodic table. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000. Corresponding author: claudio@sandia.gov.
Adhesion, friction, and wear behavior of clean metal-ceramic couples
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1995-01-01
When a clean metal is brought into contact with a clean, harder ceramic in ultrahigh vacuum, strong bonds form between the two materials. The interfacial bond strength between the metal and ceramic surfaces in sliding contact is generally greater than the cohesive bond strength in the metal. Thus, fracture of the cohesive bonds in the metal results when shearing occurs. These strong interfacial bonds and the shearing fracture in the metal are the main causes of the observed wear behavior and the transfer of the metal to the ceramic. In the literature, the surface energy (bond energy) per unit area of the metal is shown to be related to the degree of interfacial bond strength per unit area. Because the two materials of a metal-ceramic couple have markedly different ductilities, contact can cause considerable plastic deformation of the softer metal. It is the ductility of the metal, then, that determines the real area of contact. In general, the less ductile the metal, the smaller the real area of contact. The coefficient of friction for clean surfaces of metal-ceramic couples correlates with the metals total surface energy in the real area of contact gamma A (which is the product of the surface energy per unit area of the metal gamma and the real area of contact (A)). The coefficient of friction increases as gamma A increases. Furthermore, gamma A is associated with the wear and transfer of the metal at the metal-ceramic interface: the higher the value of gamma A, the greater the wear and transfer of the metal.
Tribochemical Glass Ceramic Coating as a New Approach for Resin Adhesion to Zirconia.
Wandscher, Vinícius Felipe; Fraga, Sara; Pozzobon, João Luiz; Soares, Fabio Zovico Maxnuck; Foletto, Edson Luiz; May, Liliana Gressler; Valandro, Luiz Felipe
To investigate the effects of a novel tribochemical silica coating technique with powders made from feldspathic ceramic and leucite-based ceramic on the bond strength of zirconia to resin cement before and after aging. Zirconia blocks were divided into 3 groups according to the material used for airborne-particle abrasion: 1) SP (control): silica-coated alumina particles; 2) FP: feldspathic ceramic powder; 3) LP: leucite glass-ceramic powder. After silanization, composite resin cylinders were cemented on the zirconia surface using a dual-curing resin cement. Prior to the shear bond strength (SBS) test, half of the samples (n = 15) were stored in distilled water for 24 h; the other half (n = 15) were submitted to aging (10,000 thermocycles of 5°C to 55°C; 150 days of water storage). The bond strength data were analyzed using two-way ANOVA and Tukey's test (α = 0.05). Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and x-ray diffraction analysis were performed. The initial bond strengths did not differ significantly between the groups (p = 0.053). However, after aging procedures, airborne-particle abrasion with feldspathic ceramic powder (FP) resulted in higher values of bond strength (p = 0.0001). SEM and EDS indicated that all the treatments promoted silica deposition on the Y-TZP surface ceramic. Airborne-particle abrasion with FP and LP induced a lower percentage of the monoclinic phase. Airborne abrasion with fine feldspathic ceramic particles is a novel tribochemical technique and appears to be suitable for improving the bond strength between zirconia and resin cements.
Cossellu, Gianguido; Lanteri, Valentina; Butera, Andrea; Laffi, Nicola; Merlini, Alberto; Farronato, Giampietro
2017-01-01
Objectives: To assess the best temporal association between the application of a fluoride varnish on enamel and bonding procedures. Materials and Methods: Eighty mandibular bovine incisors were used. Teeth were divided into 4 groups (20 per group); Groups 1–3 were treated with fluoride varnish (Fluor Protector, Ivoclar Vivadent, Schaan, Liechtenstein), and Group 4 served as control with no pretreatment. Tooth were stored in deionized water (37°C) and subjected to thermal cycling for 400 (Group 1), 800 (Group 2), and 2500 (Group 3) cycles corresponding, respectively, to 15, 30, and 90 days in order to simulate the three different timing of bracket bonding. Shear bond strength (SBS) was measured using an Instron Universal Testing machine. Tooth surfaces were examined under a stereomicroscope at 10× magnification to assess the amount of adhesive remnant index (ARI). One-way analysis of variance (ANOVA) and Tukey's honestly significant difference post-hoc test were used for the comparison of SBS values between groups (P < 0.05). The Chi-square test was used to examine differences among ARI scores. (P < 0.05). Results: One-way ANOVA and Tukey post-hoc test showed that the SBS of different groups were significantly different and was impacted by different timing of bonding (P < 0.05). The main differences were between the control group (17.02 ± 6.38 MPa) and Group 1 (6.93 ± 4.3 MPa). The ARI scores showed that there were no significant differences between the four tested groups. Conclusions: The SBS of the brackets bonded 15 days after the application of the fluoride was set back to an optimal value. PMID:28197397
Modeling of Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Ferguson, B. L.; Petrus, G. J.; Krauss, T. M.
1992-01-01
The project examined the effectiveness of studying the creep behavior of thermal barrier coating system through the use of a general purpose, large strain finite element program, NIKE2D. Constitutive models implemented in this code were applied to simulate thermal-elastic and creep behavior. Four separate ceramic-bond coat interface geometries were examined in combination with a variety of constitutive models and material properties. The reason for focusing attention on the ceramic-bond coat interface is that prior studies have shown that cracking occurs in the ceramic near interface features which act as stress concentration points. The model conditions examined include: (1) two bond coat coefficient of thermal expansion curves; (2) the creep coefficient and creep exponent of the bond coat for steady state creep; (3) the interface geometry; and (4) the material model employed to represent the bond coat, ceramic, and superalloy base.
TEM Analysis of Diffusion-Bonded Silicon Carbide Ceramics Joined Using Metallic Interlayers
NASA Technical Reports Server (NTRS)
Ozaki, T.; Tsuda, H.; Halbig, M. C.; Singh, M.; Hasegawa, Y; Mori, S.; Asthana, R.
2017-01-01
Silicon Carbide (SiC) is a promising material for thermostructural applications due to its excellent high-temperature mechanical properties, oxidation resistance, and thermal stability. However, joining and integration technologies are indispensable for this material in order to fabricate large size and complex shape components with desired functionalities. Although diffusion bonding techniques using metallic interlayers have been commonly utilized to bond various SiC ceramics, detailed microstructural observation by Transmission Electron Microscopy (TEM) of the bonded area has not been carried out due to difficulty in preparing TEM samples. In this study, we tried to prepare TEM samples from joints of diffusion bonded SiC ceramics by Focused Ion Beam (FIB) system and carefully investigated the interfacial microstructure by TEM analysis. The samples used in this study were SiC fiber bonded ceramics (SA-Tyrannohex: SA-THX) diffusion bonded with metallic interlayers such as Ti, TiMo, Mo-B and TiCu. In this presentation, we report the microstructure of diffusion bonded SA-THX mainly with TiCu interlayers obtained by TEM observations, and the influence of metallic interlayers on the joint microstructure and microhardness will be discussed.
A comparative assessment of torque generated by lingual and conventional brackets.
Sifakakis, Iosif; Pandis, Nikolaos; Makou, Margarita; Eliades, Theodore; Katsaros, Christos; Bourauel, Christoph
2013-06-01
The aim of this study was to assess the effect of bracket type on the labiopalatal moments generated by lingual and conventional brackets. Incognito™ lingual brackets (3M Unitek), STb™ lingual brackets (Light Lingual System; ORMCO), In-Ovation L lingual brackets (DENTSPLY GAC), and conventional 0.018 inch slot brackets (Gemini; 3M Unitek) were bonded on identical maxillary acrylic resin models with levelled and aligned teeth. Each model was mounted on the orthodontic measurement and simulation system and 10 0.0175 × 0.0175 TMA wires were used for each bracket type. The wire was ligated with elastomerics into the Incognito, STb, and conventional brackets and each measurement was repeated once after religation. A 15 degrees buccal root torque (+15 degrees) and then a 15 degrees palatal root torque (-15 degrees) were gradually applied to the right central incisor bracket. After each activation, the bracket returned to its initial position and the moments in the sagittal plane were recorded during these rotations of the bracket. One-way analysis of variance with post hoc multiple comparisons (Tukey test at 0.05 error rate) was conducted to assess the effect on bracket type on the generated moments. The magnitude of maximum moment at +15 degrees ranged 8.8, 8.2, 7.1, and 5.8 Nmm for the Incognito, STb, conventional Gemini, and the In-Ovation L brackets, respectively; similar values were recorded at -15 degrees: 8.6, 8.1, 7.0, and 5.7 Nmm, respectively. The recorded differences of maximum moments were statistically significant, except between the Incognito and STb brackets. Additionally, the torque angles were evaluated at which the crown torque fell well below the minimum levels of 5.0 Nmm, as well as the moment/torque ratio at the last part of the activation/deactivation curve, between 10 and 15 degrees. The lowest torque expression was observed at the self-ligating lingual brackets, followed by the conventional brackets. The Incognito and STb lingual brackets generated the highest moments.
Joining of materials using laser heating
Cockeram, Brian V.; Hicks, Trevor G.; Schmid, Glenn C.
2003-07-01
A method for diffusion bonding ceramic layers such as boron carbide, zirconium carbide, or silicon carbide uses a defocused laser beam to heat and to join ceramics with the use of a thin metal foil insert. The metal foil preferably is rhenium, molybdenum or titanium. The rapid, intense heating of the ceramic/metal/ceramic sandwiches using the defocused laser beam results in diffusive conversion of the refractory metal foil into the ceramic and in turn creates a strong bond therein.
Method for adhesion of metal films to ceramics
Lowndes, Douglas H.; Pedraza, Anthony J.; DeSilva, Melvin J.; Kumar, Rajagopalan A.
1997-01-01
Methods for making strongly bonded metal-ceramic materials. The methods include irradiating a portion of the surface of the ceramic material with a pulsed ultraviolet laser having an energy density sufficient to effect activation of the irradiated surface of the ceramic material so that adhesion of metals subsequently deposited onto the irradiated surface is substantially increased. Advantages of the invention include (i) the need for only a small number of laser pulses at relatively low focused energy density, (ii) a smoother substrate surface, (iii) activation of the laser-treated surface which provides a chemical bond between the surface and a metal deposited thereon, (iv) only low temperature annealing is required to produce the strong metal-ceramic bond; (v) the ability to obtain strong adhesion between ceramic materials and oxidation resistant metals; (vi) ability to store the laser treated ceramic materials for later deposition of metals thereon.
Method for adhesion of metal films to ceramics
Lowndes, D.H.; Pedraza, A.J.; DeSilva, M.J.; Kumar, R.A.
1997-12-30
Methods for making strongly bonded metal-ceramic materials are disclosed. The methods include irradiating a portion of the surface of the ceramic material with a pulsed ultraviolet laser having an energy density sufficient to effect activation of the irradiated surface of the ceramic material so that adhesion of metals subsequently deposited onto the irradiated surface is substantially increased. Advantages of the invention include (i) the need for only a small number of laser pulses at relatively low focused energy density, (ii) a smoother substrate surface, (iii) activation of the laser-treated surface which provides a chemical bond between the surface and a metal deposited thereon, (iv) only low temperature annealing is required to produce the strong metal-ceramic bond; (v) the ability to obtain strong adhesion between ceramic materials and oxidation resistant metals; (vi) ability to store the laser treated ceramic materials for later deposition of metals thereon. 7 figs.
Shear Bond Strength of Three Orthodontic Bonding Systems on Enamel and Restorative Materials
Ebeling, Jennifer; Schauseil, Michael; Stein, Steffen; Roggendorf, Matthias; Korbmacher-Steiner, Heike
2016-01-01
Objective. The aim of this in vitro study was to determine the shear bond strength (SBS) and adhesive remnant index (ARI) score of two self-etching no-mix adhesives (iBond™ and Scotchbond™) on different prosthetic surfaces and enamel, in comparison with the commonly used total etch system Transbond XT™. Materials and Methods. A total of 270 surfaces (1 enamel and 8 restorative surfaces, n = 30) were randomly divided into three adhesive groups. In group 1 (control) brackets were bonded with Transbond XT primer. In the experimental groups iBond adhesive (group 2) and Scotchbond Universal adhesive (group 3) were used. The SBS was measured using a Zwicki 1120™ testing machine. The ARI and SBS were compared statistically using the Kruskal–Wallis test (P ≤ 0.05). Results. Significant differences in SBS and ARI were found between the control group and experimental groups. Conclusions. Transbond XT showed the highest SBS on human enamel. Scotchbond Universal on average provides the best bonding on all other types of surface (metal, composite, and porcelain), with no need for additional primers. It might therefore be helpful for simplifying bonding in orthodontic procedures on restorative materials in patients. If metal brackets have to be bonded to a metal surface, the use of a dual-curing resin is recommended. PMID:27738633
Ab-Ghani, Zuryati; Jaafar, Wahyuni; Foo, Siew Fon; Ariffin, Zaihan; Mohamad, Dasmawati
2015-01-01
To evaluate the shear bond strength between the dentin substrate and computer-aided design and computer-aided manufacturing feldspathic ceramic and nano resin ceramics blocks cemented with resin cement. Sixty cuboidal blocks (5 mm × 5 mm × 5 mm) were fabricated in equal numbers from feldspathic ceramic CEREC(®) Blocs PC and nano resin ceramic Lava™ Ultimate, and randomly divided into six groups (n = 10). Each block was cemented to the dentin of 60 extracted human premolar using Variolink(®) II/Syntac Classic (multi-steps etch-and-rinse adhesive bonding), NX3 Nexus(®) (two-steps etch-and-rinse adhesive bonding) and RelyX™ U200 self-adhesive cement. All specimens were thermocycled, and shear bond strength testing was done using the universal testing machine at a crosshead speed of 1.0 mm/min. Data were analyzed using one-way ANOVA. Combination of CEREC(®) Blocs PC and Variolink(®) II showed the highest mean shear bond strength (8.71 Mpa), while the lowest of 2.06 Mpa were observed in Lava™ Ultimate and RelyX™ U200. There was no significant difference in the mean shear bond strength between different blocks. Variolink(®) II cement using multi-steps etch-and-rinse adhesive bonding provided a higher shear bond strength than the self-adhesive cement RelyX U200. The shear bond strength was not affected by the type of blocks used.
NASA Technical Reports Server (NTRS)
Singh, M.
2011-01-01
During the last decades, a number of fiber reinforced ceramic composites have been developed and tested for various aerospace and ground based applications. However, a number of challenges still remain slowing the wide scale implementation of these materials. In addition to continuous fiber reinforced composites, other innovative materials have been developed including the fibrous monoliths and sintered fiber bonded ceramics. The sintered silicon carbide fiber bonded ceramics have been fabricated by the hot pressing and sintering of silicon carbide fibers. However, in this system reliable property database as well as various issues related to thermomechanical performance, integration, and fabrication of large and complex shape components has yet to be addressed. In this presentation, thermomechanical properties of sintered silicon carbide fiber bonded ceramics (as fabricated and joined) will be presented. In addition, critical need for manufacturing and integration technologies in successful implementation of these materials will be discussed.
Ghaffari, Hassanali; Mirhashemi, Amirhossein; Baherimoghadam, Tahereh; Azmi, Amir
2017-01-01
Objectives: This study sought to compare enamel cracks after orthodontic bracket debonding in the surfaces prepared with erbium, chromium: yttrium-scandium-galliumgarnet (Er,Cr:YSGG) laser and the conventional acid-etching technique. Materials and Methods: This in-vitro experimental study was conducted on 60 sound human premolars extracted for orthodontic purposes. The teeth were randomly divided into two groups (n=30). The teeth in group A were etched with 37% phosphoric acid gel, while the teeth in group B were subjected to Er,Cr:YSGG laser irradiation (gold handpiece, MZ8 tip, 50Hz, 4.5W, 60μs, 80% water and 60% air). Orthodontic brackets were bonded to the enamel surfaces and were then debonded in both groups. The samples were inspected under a stereomicroscope at ×38 magnification to assess the number and length of enamel cracks before bonding and after debonding. Independent-samples t-test was used to compare the frequency of enamel cracks in the two groups. Levene’s test was applied to assess the equality of variances. Results: No significant difference was noted in the frequency or length of enamel cracks between the two groups after debonding (P>0.05). Conclusions: Despite the same results of the frequency and length of enamel cracks in the two groups and by considering the side effects of acid-etching (demineralization and formation of white spot lesions), Er,Cr:YSGG laser may be used as an alternative to acid-etching for enamel surface preparation prior to bracket bonding. PMID:29296111
de Almeida, Marcio Rodrigues; Herrero, Francisco; Fattal, Amine; Davoody, Amirparviz R; Nanda, Ravindra; Uribe, Flavio
2013-11-01
To compare the efficiency in anchorage preservation of conventional and self-ligating brackets after the extraction of first maxillary premolars using differential moment mechanics. Thirty-eight patients requiring extraction of maxillary first premolars and maximum anchorage during space closure were evaluated based on bracket type. Group 1, comprising 23 patients, was bonded with preadjusted conventional brackets (CBs) with a slot of 0.022-inch × 0.030-inch. Group 2 comprised 15 patients who were bonded with 0.022 inch preadjusted self-ligating brackets (SLBs). Patients in both groups received a nickel titanium (NiTi) intrusion arch and a 150 g NiTi closing coil spring for separate canine retraction, followed by a continuous mushroom loop archwire to retract the incisors. Lateral cephalograms were available at the start of treatment (T1) and at the completion of space closure (T2). Statistical comparisons were performed with paired and unpaired Student's t-tests. No significant differences were found between the groups in maxillary molars anchorage loss (3.87 ± 1.35 mm and 3.65 ± 1.73 mm for the CB and SLB groups, respectively). Only the mean vertical movement of the tip of the incisor was significantly different between the groups (CB = -0.92 ± 1.46 mm; SLB = 0.56 ± 1.65 mm). There were no significant differences in the amount of anchorage loss of the maxillary first molars between SLB and CB systems during space closure using differential moments.
Maruo, Yukinori; Nishigawa, Goro; Yoshihara, Kumiko; Minagi, Shogo; Matsumoto, Takuya; Irie, Masao
2017-03-01
Dental ceramic surfaces are modified with silane coupling agents, such as γ-methacryloxypropyl trimethoxy silane (γ-MPTS), to improve bond strength. For bonding between lithium disilicate glass ceramic and resin cement, the objective was to investigate if 8-methacryloxyoctyl trimethoxy silane (8-MOTS) could yield a similar performance as the widely used γ-MPTS. One hundred and ten lithium disilicate glass ceramic specimens were randomly divided into 11 groups (n=10) according to pretreatment regime. All specimens were pretreated with a different solution composed of one or a combination of these agents: 10 or 20wt% silane coupling agent of γ-MPTS or 8-MOTS, followed by a hydrolysis solution of acetic acid or 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP). Each pretreated surface was luted to a stainless steel rod of 3.6mm diameter and 2.0mm height with resin cement. Shear bond strength between ceramic and cement was measured after 24-h storage in 37°C distilled water. 8-MOTS produced the same bonding performance as γ-MPTS. Both silane coupling agents significantly increased the bond strength of resin cement, depending on their concentration. When activated by 10-MDP hydrolysis solution, 20wt% concentration produced the highest values (γ-MPTS: 24.9±5.1MPa; 8-MOTS: 24.6±7.4MPa). Hydrolysis with acetic acid produced lower bond strengths than with 10-MDP. Silane coupling pretreatment with 8-MOTS increased the initial bond strength between lithium disilicate glass ceramic and resin cement, rendering the same bonding effect as the conventional γ-MPTS. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Effect of moisture on dental enamel in the interaction of two orthodontic bonding systems.
Bertoz, André Pinheiro de Magalhães; de Oliveira, Derly Tescaro Narcizo; Gimenez, Carla Maria Melleiro; Briso, André Luiz Fraga; Bertoz, Francisco Antonio; Santos, Eduardo César Almada
2013-01-01
The purpose of this study was to assess by means of scanning electron microscopy (SEM) the remaining adhesive interface after debonding orthodontic attachments bonded to bovine teeth with the use of hydrophilic and hydrophobic primers under different dental substrate moisture conditions. Twenty mandibular incisors were divided into four groups (n = 5). In Group I, bracket bonding was performed with Transbond MIP hydrophilic primer and Transbond XT adhesive paste applied to moist substrate, and in Group II a bonding system comprising Transbond XT hydrophobic primer and adhesive paste was applied to moist substrate. Brackets were bonded to the specimens in Groups III and IV using the same adhesive systems, but on dry dental enamel. The images were qualitatively assessed by SEM. The absence of moisture in etched enamel enabled better interaction between bonding materials and the adamantine structure. The hydrophobic primer achieved the worst micromechanical interlocking results when applied to a moist dental structure, whereas the hydrophilic system proved versatile, yielding acceptable results in moist conditions and excellent interaction in the absence of contamination. The authors assert that the best condition for the application of primers to dental enamel occurs in the absence of moisture.
Simple Heat Treatment of Zirconia Ceramic Pre-Treated with Silane Primer to Improve Resin Bonding.
Ha, Jung-Yun; Son, Jun Sik; Kim, Kyo-Han; Kwon, Tae-Yub
2015-01-01
Establishing a strong resin bond to dental zirconia ceramic remains difficult. Previous studies have shown that the conventional application of silane does not work well with zirconia. This paper reports that a silane pre-treatment of dental zirconia ceramic combined with subsequent heat treatment has potential as an adhesive cementation protocol for improving zirconia-resin bonding. Among the various concentrations (0.1 to 16 vol%) of experimental γ-methacryloxypropyltrimethoxysilane (γ-MPTS) primers assessed, the 1% solution was found to be the most effective in terms of the shear bond strength of the resin cement to dental zirconia ceramic. A high shear bond strength (approx. 30 MPa) was obtained when zirconia specimens were pre-treated with this primer and then heat-treated in a furnace for 60 min at 150 degrees C. Heat treatment appeared to remove the hydrophilic constituents from the silane film formed on the zirconia ceramic surface and accelerate the condensation reactions between the silanol groups of the hydrolyzed silane molecules at the zirconia/resin interface, finally making a more desirable surface for bonding with resin. This estimation was supported by Fourier transform infrared spectroscopy of the silanes prepared in this study.
Comparison of Self-Etch Primers with Conventional Acid Etching System on Orthodontic Brackets
Zope, Amit; Zope-Khalekar, Yogita; Chitko, Shrikant S.; Kerudi, Veerendra V.; Patil, Harshal Ashok; Jaltare, Pratik; Dolas, Siddhesh G
2016-01-01
Introduction The self-etching primer system consists of etchant and primer dispersed in a single unit. The etching and priming are merged as a single step leading to fewer stages in bonding procedure and reduction in the number of steps that also reduces the chance of introduction of error, resulting in saving time for the clinician. It also results in smaller extent of enamel decalcification. Aim To compare the Shear Bond Strength (SBS) of orthodontic bracket bonded with Self-Etch Primers (SEP) and conventional acid etching system and to study the surface appearance of teeth after debonding; etching with conventional acid etch and self-etch priming, using stereomicroscope. Materials and Methods Five Groups (n=20) were created randomly from a total of 100 extracted premolars. In a control Group A, etching of enamel was done with 37% phosphoric acid and bonding of stainless steel brackets with Transbond XT (3M Unitek, Monrovia, California). Enamel conditioning in left over four Groups was done with self-etching primers and adhesives as follows: Group B-Transbond Plus (3M Unitek), Group C Xeno V+ (Dentsply), Group D-G-Bond (GC), Group E-One-Coat (Coltene). The Adhesive Remnant Index (ARI) score was also evaluated. Additionally, the surface roughness using profilometer were observed. Results Mean SBS of Group A was 18.26±7.5MPa, Group B was 10.93±4.02MPa, Group C was 6.88±2.91MPa while of Group D was 7.78±4.13MPa and Group E was 10.39±5.22MPa respectively. In conventional group ARI scores shows that over half of the adhesive was remaining on the surface of tooth (score 1 to 3). In self-etching primer groups ARI scores show that there was no or minor amount of adhesive remaining on the surface of tooth (score 4 and 5). SEP produces a lesser surface roughness on the enamel than conventional etching. However, statistical analysis shows significant correlation (p<0.001) of bond strength with surface roughness of enamel. Conclusion All groups might show clinically useful SBS values and Transbond XT can be successfully used for bracket bonding after enamel conditioning with any of the SEPs tested. The SEPs used in Groups C (Xeno V+) and D (G-Bond) have significantly lowered SBS. Although, the values might still be clinically acceptable. PMID:28208997
Tulga, Ayca
2018-04-01
An annealing procedure is a heat treatment process to improve the mechanical properties of cobalt-chromium (Co-Cr) alloys. However, information is lacking about the effect of the annealing process on the bonding ability of ceramic to Co-Cr alloys fabricated by rapid prototyping. The purpose of this in vitro study was to evaluate the effects of the fabrication techniques and the annealing procedure on the shear bond strength of ceramic to Co-Cr alloys fabricated by different techniques. Ninety-six cylindrical specimens (10-mm diameter, 10-mm height) made of Co-Cr alloy were prepared by casting (C), milling (M), direct process powder-bed (LaserCUSING) with and without annealing (CL+, CL), and direct metal laser sintering (DMLS) with annealing (EL+) and without annealing (EL). After the application of ceramic to the metal specimens, the metal-ceramic bond strength was assessed using a shear force test at a crosshead speed of 0.5 mm/min. Shear bond strength values were statistically analyzed by 1-way ANOVA and Tukey multiple comparison tests (α=.05). Although statistically significant differences were found among the 3 groups (M, 29.87 ±2.06; EL, 38.92 ±2.04; and CL+, 40.93 ±2.21; P=.002), no significant differences were found among the others (P>.05). The debonding surfaces of all specimens exhibited mixed failure mode. These results showed that the direct process powder-bed method is promising in terms of metal-ceramic bonding ability. The manufacturing technique of Co-Cr alloys and the annealing process influence metal-ceramic bonding. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Veneer Ceramic to Y-TZP Bonding: Comparison of Different Surface Treatments.
Kirmali, Omer; Kapdan, Alper; Kustarci, Alper; Er, Kursat
2016-06-01
The purpose of this study was to evaluate the effects of various surface-treatment techniques for enhancing the bond strength between veneering ceramic and yttria-stabilized tetragonal zirconia polycrystals (Y-TZP). Pre-sintered Y-TZP specimens were divided into eight groups (n = 10) according to the surface-treatment technique used: (a) untreated (control); (b) air abrasion with aluminum oxide particles; (c) erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser irradiation at different energy intensities (1 to 6 W). All specimens were then sintered and veneered with veneering ceramic according to the manufacturer's instructions. The obtained zirconia-ceramic specimens were immersed in 37°C distilled water for 24 hours before a shear bond strength test using a universal testing device at a 1 mm/min crosshead speed. The average values were calculated. After debonding, the Y-TZP surfaces were examined under a stereomicroscope to determine their fracture pattern, and the surface topography was evaluated with scanning electron microscopy after surface treatments. The bond strength ranged from 13.24 to 20.54 MPa. All surface treatments increased the bond strength between the veneering ceramic and Y-TZP; however, the value for the 6 W irradiation group was significantly different from the values for other groups (p ˂ 0.05). The present study's findings showed that higher energy densities were needed for the laser irradiation to improve the bond strength between the veneering ceramic and zirconia. Y-TZP is commonly used as a core material in fixed restorations. The bond strength between zirconia and the veneering ceramic can be affected by various surface treatments. © 2015 by the American College of Prosthodontists.
Zhang, Shaoqing; Zhang, Xinyan; Xiong, Ya; Wang, Guoping; Zheng, Na
2015-02-01
In this study, two kinds of zeolites materials (natural zeolite and thiol-functionalised zeolite) were added to the chemically bonded phosphate ceramic processes to treat mercury-contaminated wastes. Strong promotion effects of zeolites (natural zeolite and thiol-functionalised zeolite) on the stability of mercury in the wastes were obtained and these technologies showed promising advantages toward the traditional Portland cement process, i.e. using Portland cement as a solidification agent and natural or thiol-functionalised zeolite as a stabilisation agent. Not only is a high stabilisation efficiency (lowered the Toxicity Characteristic Leaching Procedure Hg by above 10%) obtained, but also a lower dosage of solidification (for thiol-functionalised zeolite as stabilisation agent, 0.5 g g(-1) and 0.7 g g(-1) for chemically bonded phosphate ceramic and Portland cement, respectively) and stabilisation agents (for natural zeolite as stabilisation agent, 0.35 g g(-1) and 0.4 g g(-1) for chemically bonded phosphate ceramic and Portland cement, respectively) were used compared with the Portland cement process. Treated by thiol-functionalised zeolite and chemically bonded phosphate ceramic under optimum parameters, the waste containing 1500 mg Hg kg(-1) passed the Toxicity Characteristic Leaching Procedure test. Moreover, stabilisation/solidification technology using natural zeolite and chemically bonded phosphate ceramic also passed the Toxicity Characteristic Leaching Procedure test (the mercury waste containing 625 mg Hg kg(-1)). Moreover, the presence of chloride and phosphate did not have a negative effect on the chemically bonded phosphate ceramic/thiol-functionalised zeolite treatment process; thus, showing potential for future application in treatment of 'difficult-to-manage' mercury-contaminated wastes or landfill disposal with high phosphate and chloride content. © The Author(s) 2015.
The bonding effectiveness of five luting resin cements to the IPS Empress 2 all ceramic system.
Bookhan, V; Essop, A R M; Du Preez, I C
2005-04-01
Variolink II is the only resin cement used for bonding IPS (Ivoclar Porcelain System) Empress 2 ceramic restorations. Alternative luting resin cements need to be investigated for their bonding effectiveness with the IPS Empress 2 ceramic. To determine the shear bond strength (SBS) and the effect of thermocycling, on the bonding effectiveness, of five resin cements to IPS Empress 2 ceramic. The projecting surfaces of one hundred ceramic discs were ground wet on silicone carbide paper. The specimens were divided into 5 groups of 20. The resin cements were bonded to the prepared ceramic surfaces, in the form of a stub. The specimens were stored under distilled water at 37 degrees C in an oven for 24 hours. Ten specimens in each group were thermocycled for 300 cycles between 5 degrees C and 55 degrees C. All the specimens were stressed to failure in an Instron Materials Testing Machine. The results were subjected to a one-way analysis of variance (ANOVA). Statistically similar mean SBS values were grouped using the Bonferroni (Dunn) multiple comparison test. The means for the non-thermocycled group were: 26.21, 19.41, 17.69, 17.43, and 15.76. The means for the thermocycled group were: 22.90, 15.72, 14.34, 13.96 and 13.45. The differences between the means were highly significant (p < 0.0125). The shear bond strength of Variolink II and Rely XARC to IPS Empress 2 ceramic was effective. Thermocycling had a significant effect on the mean SBS values of Calibra. Thermocycling had no significant effect on the mean SBS values of the other resin cements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Steve Xunhu
Lithium silicate-based glass-ceramics with high coefficients of thermal expansion, designed to form matched hermetic seals in 304L stainless steel housing, show little evidence of interfacial chemical bonding, despite extensive inter-diffusion at the glass-ceramic-stainless steel (GC-SS) interface. A series of glass-ceramic compositions modified with a variety of oxidants, AgO, FeO, NiO, PbO, SnO, CuO, CoO, MoO 3 and WO 3, are examined for the feasibility of forming bonding oxides through reduction-oxidation (redox) at the GC-SS interface. The oxidants were selected according to their Gibbs free energy to allow for oxidation of Cr/Mn/Si from stainless steel, and yet to prevent a reductionmore » of P2O5 in the glass-ceramic where the P 2O 5 is to form Li 3PO 4 nuclei for growth of high expansion crystalline SiO 2 phases. Other than the CuO and CoO modified glass-ceramics, bonding from interfacial redox reactions were not achieved in the modified glass-ceramics, either because of poor wetting on the stainless steel or a reduction of the oxidants at the surface of glass-ceramic specimens rather than the GC-SS interface.« less
Sasse, Martin; Kern, Matthias
2014-06-01
This study evaluated the clinical outcome of all-ceramic resin-bonded fixed dental prostheses (RBFDPs) with a cantilevered single-retainer design made from zirconia ceramic. Forty-two anterior RBFDPs with a cantilevered single-retainer design were made from yttrium oxide-stabilized zirconium oxide ceramic. RBFDPs were inserted using Panavia 21 TC as luting agent after air-abrasion of the ceramic bonding surface. During a mean observation time of 61.8 months two debondings occurred. Both RBFDPs were rebonded using Panavia 21 TC and are still in function. A caries lesion was detected at one abutment tooth during recall and was treated with a composite filling. Therefore, the overall six-year failure-free rate according to Kaplan-Meier was 91.1%. If only debonding was defined as failure the survival rate increased to 95.2%. Since all RBFDPs are still in function the overall survival rate was 100% after six years. Cantilevered zirconia ceramic RBFDPs showed promising results within the observation period. Single-retainer resin-bonded fixed dental prostheses made from zirconia ceramic show very good mid-term clinical survival rates. They should therefore be considered as a viable treatment alternative for the replacement of single missing anterior teeth especially as compared to an implant therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Ozaki, T.; Tsuda, H.; Halbig, M. C.; Singh, M.; Hasegawa, Y.; Mori, S.; Asthana R.
2016-01-01
Silicon Carbide (SiC) is a promising material for thermo-structural applications due to its excellent high-temperature mechanical properties, oxidation resistance, and thermal stability. However, joining and integration technologies are indispensable for this material in order to fabricate large size and complex shape components with desired functionalities. Although diffusion bonding techniques using metallic interlayers have been commonly utilized to bond various SiC ceramics, detailed microstructural observation by Transmission Electron Microscopy (TEM) of the bonded area has not been carried out due to difficulty in preparing TEM samples. In this study, we tried to prepare TEM samples from joints of diffusion bonded SiC ceramics by Focused Ion Beam (FIB) system and carefully investigated the interfacial microstructure by TEM analysis. The samples used in this study were SiC fiber bonded ceramics (SA-Tyrannohex: SA-THX) diffusion bonded with metallic interlayers such as Ti, TiMo, and Mo-B. In this presentation, the result of microstructural analysis obtained by TEM observations and the influence of metallic interlayers and fiber orientation of SA-THX on the joint microstructure will be discussed.
Residual interface tensile strength of ceramic bonded to dentin after cyclic loading and aging.
Hernandez, Alfredo I; Roongruangphol, Thasanai; Katsube, Noriko; Seghi, Robert R
2008-03-01
To guard against the potential risk of cusp fracture, esthetic onlay restorations have been advocated for teeth with large restorations. The influence of the adhesive resin cement is believed to play a role in strengthening these restorations. The durability of this tooth/adhesive/ceramic interface is critical to ensure clinical longevity. The purpose of this study was to assess the effects of cyclic loading and environmental aging on the residual interface strength of a ceramic bonded to dentin structure. Eighteen simple trilayer specimens were fabricated, consisting of a 1.5-mm-thick ceramic plate (ProCAD) bonded to a flattened human molar tooth with exposed coronal dentin. The ceramic plates were bonded using resin cement (Nexus 2) and manufacturer-recommended bonding techniques. The specimens were divided into 3 equal groups and were stored in water at 37 degrees C for 10 weeks as a control group (CT), 9 months as an aging group (AG), or placed in water at 37 degrees C while being subjected to 10 million vertical loading cycles between 20 N to 200 N, as a fatigue group (FG). After the specimens were subjected to the experimental conditions, they were sectioned perpendicular to the flat ceramic surface into 1 x 1-mm sticks. The mean residual interface microtensile bond (MTB) strength was determined for each specimen using only those sticks which contained ceramic bonded to dentin. The MTB strength data were analyzed using Weibull analysis methods to determine differences between groups. All subsequent failed specimen surfaces were evaluated under a stereomicroscope at x10 magnification to determine the apparent failure modes. Some specimens were selected from each failure mode category for surface evaluation under a scanning electron microscope (SEM). The characteristic Weibull means for the 3 groups were CT, 19.2, FG, 14.7, and AG, 11.7. The bond strength of group CT was significantly greater than both AG (P=.007) and FG (P=.014). Light microscopic categorization of the failure modes suggests that adhesive failure at the ceramic/cement interface was the most common (65%) for all 3 groups. SEM evaluation of failed surfaces of select specimens from each group could not distinguish any interface appearance differences. For indirect adhesive-retained ceramic restorations, both cyclic masticatory loading and hydrolytic degradation may contribute to a weakening of the interface bond. The ceramic/resin interface may be more susceptible to these changes over the time frame of this investigation than the dentin/resin interface.
Lu, Xiao-li; Gao, Mei-qin; Cheng, Yu-ye; Zhang, Fei-min
2015-04-01
In order to choose the best veneering porcelain for diatomite-based dental ceramic substrate, the bonding strength between diatomite-based dental ceramics and veneering porcelains was measured, and the microstructure and elements distribution of interface were analyzed. The coefficient of thermal expansion (CTE) of diatomite-based dental ceramics was detected by dilatometry. Three veneering porcelain materials were selected with the best CTE matching including alumina veneering porcelain (group A), titanium porcelain veneering porcelain (group B), and E-max veneering porcelain (group C). Shear bonding strength was detected. SEM and EDS were used to observe the interface microstructure and element distribution. Statistical analysis was performed using SPSS 17.0 software package. The CTE of diatomite-based dental ceramics at 25-500 degrees centigrade was 8.85×10-6K-1. The diatomite-based substrate ceramics combined best with group C. Shear bonding strength between group A and C and group B and C both showed significant differences(P<0.05). SEM and EDS showed that the interface of group C sintered tightly and elements permeated on both sides of the interface. The diatomite-based substrate ceramics combines better with E-max porcelain veneer.
Steel bonded dense silicon nitride compositions and method for their fabrication
Landingham, R.L.; Shell, T.E.
1985-05-20
A two-stage bonding technique for bonding high density silicon nitride and other ceramic materials to stainless steel and other hard metals, and multilayered ceramic-metal composites prepared by the technique are disclosed. The technique involves initially slurry coating a surface of the ceramic material at about 1500/sup 0/C in a vacuum with a refractory material and the stainless steel is then pressure bonded to the metallic coated surface by brazing it with nickel-copper-silver or nickel-copper-manganese alloys at a temperature in the range of about 850/sup 0/ to 950/sup 0/C in a vacuum. The two-stage bonding technique minimizes the temperature-expansion mismatch between the dissimilar materials.
Composite of ceramic-coated magnetic alloy particles
Moorhead, Arthur J.; Kim, Hyoun-Ee
2000-01-01
A composite structure and method for manufacturing same, the composite structure being comprised of metal particles and an inorganic bonding media. The method comprises the steps of coating particles of a metal powder with a thin layer of an inorganic bonding media selected from the group of powders consisting of a ceramic, glass, and glass-ceramic. The particles are assembled in a cavity and heat, with or without the addition of pressure, is thereafter applied to the particles until the layer of inorganic bonding media forms a strong bond with the particles and with the layer of inorganic bonding media on adjacent particles. The resulting composite structure is strong and remains cohesive at high temperatures.
Steel bonded dense silicon nitride compositions and method for their fabrication
Landingham, Richard L.; Shell, Thomas E.
1987-01-01
A two-stage bonding technique for bonding high density silicon nitride and other ceramic materials to stainless steel and other hard metals, and multilayered ceramic-metal composites prepared by the technique are disclosed. The technique involves initially slurry coating a surface of the ceramic material at about 1500.degree. C. in a vacuum with a refractory material and the stainless steel is then pressure bonded to the metallic coated surface by brazing it with nickel-copper-silver or nickel-copper-manganese alloys at a temperature in the range of about 850.degree. to 950.degree. C. in a vacuum. The two-stage bonding technique minimizes the temperature-expansion mismatch between the dissimilar materials.
How Is the Enamel Affected by Different Orthodontic Bonding Agents and Polishing Techniques?
Heravi, Farzin; Shafaee, Hooman; Abdollahi, Mojtaba; Rashed, Roozbeh
2015-03-01
The objective of this study was to assess the effect of new bonding techniques on enamel surface. Sixty upper central incisors were randomly divided into two equal groups. In the first group, metal brackets were bonded using TransbondXT and, in the second group, the same brackets were bonded with Maxcem Elite. The shear bond strength (SBS) of both agents to enamel was measured and the number and length of enamel cracks before bonding, after debonding and after polishing were compared. The number of visible cracks and the adhesive remnant index (ARI) scores in each group were also measured. There were significantly more enamel cracks in the Transbond XT group after debonding and polishing compared to the Maxcem Elite group. There was no significant difference in the length of enamel cracks between the two groups; but, in each group, a significant increase in the length of enamel cracks was noticeable after debonding. Polishing did not cause any statistically significant change in crack length. The SBS of Maxcem Elite was significantly lower than that of Transbond XT (95% confidence interval). Maxcem Elite offers clinically acceptable bond strength and can thus be used as a routine adhesive for orthodontic purposes since it is less likely to damage the enamel.
Method of making a continuous ceramic fiber composite hot gas filter
Hill, Charles A.; Wagner, Richard A.; Komoroski, Ronald G.; Gunter, Greg A.; Barringer, Eric A.; Goettler, Richard W.
1999-01-01
A ceramic fiber composite structure particularly suitable for use as a hot gas cleanup ceramic fiber composite filter and method of making same from ceramic composite material has a structure which provides for increased strength and toughness in high temperature environments. The ceramic fiber composite structure or filter is made by a process in which a continuous ceramic fiber is intimately surrounded by discontinuous chopped ceramic fibers during manufacture to produce a ceramic fiber composite preform which is then bonded using various ceramic binders. The ceramic fiber composite preform is then fired to create a bond phase at the fiber contact points. Parameters such as fiber tension, spacing, and the relative proportions of the continuous ceramic fiber and chopped ceramic fibers can be varied as the continuous ceramic fiber and chopped ceramic fiber are simultaneously formed on the porous vacuum mandrel to obtain a desired distribution of the continuous ceramic fiber and the chopped ceramic fiber in the ceramic fiber composite structure or filter.
Adhesive bonding to polymer infiltrated ceramic.
Schwenter, Judith; Schmidli, Fredy; Weiger, Roland; Fischer, Jens
2016-01-01
Aim of this study was to investigate the mechanism of adhesive bonding to the polymer-infiltrated ceramic VITA Enamic [VE]. Shear bond strength was measured with three resin composite cements: RelyX Unicem 2 Automix, Clearfil SA and Variolink II on polished surfaces of VE and its components silicate ceramic [SC] and polymer [PM] (n=12). Further, the effect of etching VE with 5% HF for 15-240 s and the application of silane coupling agents was analyzed in a screening test (n=6). Shear bond strength measurements were performed after 24 h of water storage at 37°C. Significant bonding to polished substrates could only be achieved on VE and SC when silane coupling agents were used. Etching of VE with 5% HF increased shear bond strength. Following silanization of etched VE, a further increase in shear bond strength could be established. Etching for more than 30 s did not improve shear bond strength.
Ceramic microstructure and adhesion
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1984-01-01
When a ceramic is brought into contact with a ceramic, a polymer, or a metal, strong bond forces can develop between the materials. The bonding forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between a ceramic and another solid are discussed from a theoretical consideration of the nature of the surfaces and experimentally by relating bond forces to interface resulting from solid state contact. Surface properties of ceramics correlated with adhesion include, orientation, reconstruction and diffusion as well as the chemistry of the surface specie. Where a ceramic is in contact with a metal their interactive chemistry and bond strength is considered. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structures and crystallographic orientation. Materials examined with respect to interfacial adhesive interactions include silicon carbide, nickel zinc ferrite, manganese zinc ferrite, and aluminum oxide. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.
Ceramic microstructure and adhesion
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1985-01-01
When a ceramic is brought into contact with a ceramic, a polymer, or a metal, strong bond forces can develop between the materials. The bonding forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between a ceramic and another solid are discussed from a theoretical consideration of the nature of the surfaces and experimentally by relating bond forces to interface resulting from solid state contact. Surface properties of ceramics correlated with adhesion include, orientation, reconstruction and diffusion as well as the chemistry of the surface specie. Where a ceramic is in contact with a metal their interactive chemistry and bond strength is considered. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structures and crystallographic orientation. Materials examined with respect to interfacial adhesive interactions include silicon carbide, nickel zinc ferrite, manganese zinc ferrite, and aluminum oxide. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.
Diffusion Bonding of Silicon Carbide Ceramics using Titanium Interlayers
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Singh, Mrityunjay; Shpargel, Tarah P.; Kiser, James D.
2006-01-01
Robust joining approaches for silicon carbide ceramics are critically needed to fabricate leak free joints with high temperature mechanical capability. In this study, titanium foils and physical vapor deposited (PVD) titanium coatings were used to form diffusion bonds between SiC ceramics using hot pressing. Silicon carbide substrate materials used for bonding include sintered SiC and two types of CVD SiC. Microscopy results show the formation of well adhered diffusion bonds. The bond strengths as determined from pull tests are on the order of several ksi, which is much higher than required for a proposed application. Microprobe results show the distribution of silicon, carbon, titanium, and other minor elements across the diffusion bond. Compositions of several phases formed in the joint region were identified. Potential issues of material compatibility and optimal bond formation will also be discussed.
Pasha, Azam; Sindhu, D; Nayak, Rabindra S; Mamatha, J; Chaitra, K R; Vishwakarma, Swati
2015-01-01
This study was conducted to evaluate the effect of two soft drinks, Coca-Cola and Mirinda orange on bracket bond strength, on adhesive remnant on teeth after debonding the bracket, and to observe by means of scanning electron microscope (SEM) the effect of these drinks on intact and sealed enamel. 120 non-carious maxillary premolar teeth already extracted for Orthodontic purposes were taken and divided into three groups, i.e., Coca-Cola drink, Mirinda orange, and control (artificial saliva) group. Brackets were bonded using conventional methods. Teeth were kept in soft drinks for 15 days, for 15 min, 3 times a day, separated by intervals of 2 h. At other times, they were kept in artificial saliva. The samples, thus obtained were evaluated for shear bond strength using the universal testing machine and subsequently subjected for adhesive remnant index (ARI) scores. SEM study on all the three groups was done for evaluating enamel surface of the intact and sealed enamel. The lowest mean resistance to shearing forces was shown by Mirinda orange group (5.30 ± 2.74 Mpa) followed by Coca-Cola group (6.24 ± 1.59 Mpa) and highest resistance to shearing forces by control group (7.33 ± 1.72 Mpa). The ARI scores revealed a cohesive failure in control samples and an adhesive failure in Mirinda and cola samples. SEM results showed areas of defect due to erosion caused by acidic soft drinks on intact and sealed enamel surface. Mirinda group showed the lowest resistance to shearing forces, followed by Coca-Cola group and with the highest resistance to shearing forces by the control group. There were significant differences between the control group and the study groups. Areas of defects, which were caused by erosion related to acidic soft drinks on the enamel surface around the adhesive, were seen. Areas of defects caused by Coca-Cola were more extensive when compared to Mirinda orange drink.
Silva, Pollyanna Nogueira Ferreira da; Martinelli-Lobo, Carolina Machado; Bottino, Marco Antonio; Melo, Renata Marques de; Valandro, Luiz Felipe
2018-01-01
The effects of several ceramic surface treatments on bond strength of a polymer-infiltrated ceramic network and resin composite as repair material were evaluated. CAD-CAM blocks of a polymer-infiltrated ceramic network (Vita Enamic) were sliced and subjected to aging process, followed by embedding in acrylic resin. The bonding/repair area was treated as follows (n = 30): C- without treatment; UA- universal adhesive application; FM- 10% hydrofluoric acid and silane application; OM-airborne-particle abrasion with aluminum oxide and silane application; RP- tribochemical silica coating; and CA- surface grinding and application of universal adhesive. Composite resin cylinders were made on the treated surface. Specimens from each group were assigned randomly to two subgroups (n = 15) considering storage condition: Baseline (shear tests after 48 hours) or Storage (tests after 6 months under distilled water). The treated surfaces were analyzed by goniometry, roughness, and SEM. Two-way ANOVA and 1-way ANOVA were applied to analyze the bond data and roughness / contact angle data, respectively, followed by Tukey's test (α = 5%). Surface treatments and storage conditions affected bond strengths (p < 0.01). Surface grinding (CA) followed by universal adhesive promoted the highest value of bond strength (14.5 ± 4.8 MPa for baseline, 8.5 ± 3.4 MPa for storage) and the roughest ceramic surface. Grinding with silicon carbide paper (simulating diamond bur) followed by the application of a universal adhesive system is the best option for repairing fractures of the polymer-infiltrated ceramic network.
Novais, Veridiana Resende; Raposo, Luís Henrique Araújo; Miranda, Rafael Resende de; Lopes, Camila de Carvalho Almança; Simamoto, Paulo Cézar; Soares, Carlos José
2017-01-01
The aim of this study was to assess the performance of resin cements when different curing modes are used, by evaluating the degree of conversion and bond strength to a ceramic substrate. Three resin cements were evaluated, two dual-cured (Variolink II and RelyX ARC) and one light-cured (Variolink Veneer). The dual-cured resin cements were tested by using the dual activation mode (base and catalyst) and light-activation mode (base paste only). For degree of conversion (DC) (n=5), a 1.0 mm thick feldspathic ceramic disc was placed over the resin cement specimens and the set was light activated with a QTH unit. After 24 h storage, the DC was measured with Fourier transform infrared spectroscopy (FTIR). For microshear bond strength testing, five feldspathic ceramic discs were submitted to surface treatment, and three cylindrical resin cement specimens were bonded to each ceramic surface according to the experimental groups. After 24 h, microshear bond testing was performed at 0.5 mm/min crosshead speed until the failure. Data were submitted to one-way ANOVA followed by Tukey test (p<0.05). Scanning electron microscopy (SEM) was used for classifying the failure modes. Higher DC and bond strength values were shown by the resin cements cured by using the dual activation mode. The Variolink II group presented higher DC and bond strength values when using light-activation only when compared with the Variolink Veneer group. The base paste of dual-cured resin cements in light-activation mode can be used for bonding translucent ceramic restorations of up to or less than 1.0 mm thick.
Bonding effectiveness to different chemically pre-treated dental zirconia.
Inokoshi, Masanao; Poitevin, André; De Munck, Jan; Minakuchi, Shunsuke; Van Meerbeek, Bart
2014-09-01
The objective of this study was to evaluate the effect of different chemical pre-treatments on the bond durability to dental zirconia. Fully sintered IPS e.max ZirCAD (Ivoclar Vivadent) blocks were subjected to tribochemical silica sandblasting (CoJet, 3M ESPE). The zirconia samples were additionally pre-treated using one of four zirconia primers/adhesives (Clearfil Ceramic Primer, Kuraray Noritake; Monobond Plus, Ivoclar Vivadent; Scotchbond Universal, 3M ESPE; Z-PRIME Plus, Bisco). Finally, two identically pre-treated zirconia blocks were bonded together using composite cement (RelyX Ultimate, 3M ESPE). The specimens were trimmed at the interface to a cylindrical hourglass and stored in distilled water (7 days, 37 °C), after which they were randomly tested as is or subjected to mechanical ageing involving cyclic tensile stress (10 N, 10 Hz, 10,000 cycles). Subsequently, the micro-tensile bond strength was determined, and SEM fractographic analysis performed. Weibull analysis revealed the highest Weibull scale and shape parameters for the 'Clearfil Ceramic Primer/mechanical ageing' combination. Chemical pre-treatment of CoJet (3M ESPE) sandblasted zirconia using Clearfil Ceramic Primer (Kuraray Noritake) and Monobond Plus (Ivoclar Vivadent) revealed a significantly higher bond strength than when Scotchbond Universal (3M ESPE) and Z-PRIME Plus (Bisco) were used. After ageing, Clearfil Ceramic Primer (Kuraray Noritake) revealed the most stable bond durability. Combined mechanical/chemical pre-treatment, the latter with either Clearfil Ceramic Primer (Kuraray Noritake) or Monobond Plus (Ivoclar Vivadent), resulted in the most durable bond to zirconia. As a standard procedure to durably bond zirconia to tooth tissue, the application of a combined 10-methacryloyloxydecyl dihydrogen phosphate/silane ceramic primer to zirconia is clinically highly recommended.
[Comparative study of bond strength between zirconia ceramics and 4 luting cements].
Zheng, Hu; Zhang, Xian-Fang; Han, Dong-Wei
2007-02-01
To study the bonding strength of zirconia ceramics with 4 kinds of luting cement materials. Blocks of sintered zirconia ceramics were cut and randomly divided into 4 groups with 16 slices in each group. They were treated with sandblasting and bonded with 4 kinds of luting cements respectively. After preserved in 37 degrees C distilled-water for 24 hours and 30 days, the shear bonding strength of these specimens was tested and the data were analyzed by SAS6.12 software package and bond section were observed by scanning electron microscope. Two-way ANOVA revealed that the group of PanaviaF could attain the highest shear bonding strength: (34.7+/-3.44) MPa (after 24 hours), (31.5+/-3.44) MPa (after 1 month), which was significantly different from other treatment methods (P<0.01). The initial shear bonding strength of the groups of resin-reinforced glass ionomer was (15.5+/-2.71) MPa, (16.0+/-1.77) MPa (after 24 hours) but dropped markedly to (6.80+/-1.24) MPa, (3.38+/-2.32) MPa after 30 days (P<0.05). Resin luting cement containing phosphate monomer (MDP) can provide zirconia ceramics a strong and long-lasting bonding. Resin-reinforced glass ionomer can get good bonding strength too, but can't last long.
Bond strength of selected composite resin-cements to zirconium-oxide ceramic
Fons-Font, Antonio; Amigó-Borrás, Vicente; Granell-Ruiz, María; Busquets-Mataix, David; Panadero, Rubén A.; Solá-Ruiz, Maria F.
2013-01-01
Objectives: The aim of this study was to evaluate bond strengths of zirconium-oxide (zirconia) ceramic and a selection of different composite resin cements. Study Design: 130 Lava TM cylinders were fabricated. The cylinders were sandblasted with 80 µm aluminium oxide or silica coated with CoJet Sand. Silane, and bonding agent and/or Clearfil Ceramic Primer were applied. One hundred thirty composite cement cylinders, comprising two dual-polymerizing (Variolink II and Panavia F) and two autopolymerizing (Rely X and Multilink) resins were bonded to the ceramic samples. A shear test was conducted, followed by an optical microscopy study to identify the location and type of failure, an electron microscopy study (SEM and TEM) and statistical analysis using the Kruskal-Wallis test for more than two independent samples and Mann-Whitney for two independent samples. Given the large number of combinations, Bonferroni correction was applied (α=0.001). Results: Dual-polymerizing cements provided better adhesion values (11.7 MPa) than the autopolymerizing (7.47 MPa) (p-value M-W<0.001). The worst techniques were Lava TM + sandblasting + Silane + Rely X; Lava TM + sandblasting + Silane + Multilink and Lava TM + CoJet + silane + Multilink. Adhesive failure (separation of cement and ceramic) was produced at a lesser force than cohesive failure (fracture of cement) (p-value M-W<0.001). Electron microscopy confirmed that the surface treatments modified the zirconium-oxide ceramic, creating a more rough and retentive surface, thus providing an improved micromechanical interlocking between the cement and the ceramic. Key words:Shear bond strength, silica coating, surface treatment, zirconia ceramics, phosphate monomer. PMID:22926485
A review of the success and failure characteristics of resin-bonded bridges.
Miettinen, M; Millar, B J
2013-07-01
This literature review was designed to assess and compare the success rates and modes of failure of metal-framed, fibre-reinforced composite and all-ceramic resin-bonded bridges. A Medline search (Ovid), supplemented by hand searching, was conducted to identify prospective and retrospective cohort studies on different resin-bonded bridges within the last 16 years. A total of 49 studies met the pre-set inclusion criteria. Success rates of 25 studies on metal-framed, 17 studies on fibre-reinforced composite and 7 studies on all-ceramic resin-bonded bridges were analysed and characteristics of failures were identified. The analysis of the studies indicated an estimation of annual failure rates per year to be 4.6% (±1.3%, 95% CI) for metal-framed, 4.1% (±2.1%, 95% CI) for fibre-reinforced and 11.7% (±1.8%, 95% CI) for all-ceramic resin-bonded bridges. The most frequent complications were: debonding for metal-framed, resin-bonded bridges (93% of all failures); delamination of the composite veneering material for the fibre-reinforced bridges (41%) and fracture of the framework for the all-ceramic bridges (57%). All types of resin-bonded bridges provide an effective short- to medium-term option, with all-ceramic performing least well and having the least favourable mode of failure. The methods of failures were different for different bridges with metal frameworks performing the best over time.
Mick, Enrico; Tinschert, Joachim; Mitrovic, Aurica; Bader, Rainer
2015-01-01
Both titanium and ceramic materials provide specific advantages in dental implant technology. However, some problems, like hypersensitivity reactions, corrosion and mechanical failure, have been reported. Therefore, the combining of both materials to take advantage of their pros, while eliminating their respective cons, would be desirable. Hence, we introduced a new technique to bond titanium and ceramic materials by means of a silica-based glass ceramic solder. Cylindrical compound samples (Ø10 mm × 56 mm) made of alumina toughened zirconia (ATZ), as well as titanium grade 5, were bonded by glass solder on their end faces. As a control, a two-component adhesive glue was utilized. The samples were investigated without further treatment, after 30 and 90 days of storage in distilled water at room temperature, and after aging. All samples were subjected to quasi-static four-point-bending tests. We found that the glass solder bonding provided significantly higher bending strength than adhesive glue bonding. In contrast to the glued samples, the bending strength of the soldered samples remained unaltered by the storage and aging treatments. Scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analyses confirmed the presence of a stable solder-ceramic interface. Therefore, the glass solder technique represents a promising method for optimizing dental and orthopedic implant bondings. PMID:28793440
Wu, Jun-ling; Chao, Yong-lie; Ji, Ping; Gao, Xu
2007-10-01
To investigate the effect of a new engineering technique of vacuum deposition-plasma magnetron reactive sputter deposition technique on the metal-porcelain bond strength of a new type of Co-Cr ceramic and framework dental alloy. Before porcelain painted on the specimens, the standardized metal strips made from DA9-4 dental alloy were coated with a thin Al2O3 ceramic film by plasma magnetron reactive sputter deposition technique. The conformation, structure and thickness of the ceramic film were analyzed. The specimens for three-point bending test made from DA9-4 alloy and VMK95 porcelain were used for metal-porcelain bond strength measurement, in the same time the interface of metal-porcelain and element distribution were also observed. The flexural bonding strength of metal-porcelain of sputtering group and control group were (180.55+/-16.45) MPa and (143.80+/-24.49) MPa. The flexural bonding strength of metal-porcelain of sputtering group was higher than control group significantly through statistical analysis (P<0.01). The plasma magnetron reactive sputter deposition technique has a positive effect in improving the bonding strength of DA9-4 dental alloy and ceramic.
Bonding between oxide ceramics and adhesive cement systems: a systematic review.
Papia, Evaggelia; Larsson, Christel; du Toit, Madeleine; Vult von Steyern, Per
2014-02-01
The following aims were set for this systematic literature review: (a) to make an inventory of existing methods to achieve bondable surfaces on oxide ceramics and (b) to evaluate which methods might provide sufficient bond strength. Current literature of in vitro studies regarding bond strength achieved using different surface treatments on oxide ceramics in combination with adhesive cement systems was selected from PubMed and systematically analyzed and completed with reference tracking. The total number of publications included for aim a was 127 studies, 23 of which were used for aim b. The surface treatments are divided into seven main groups: as-produced, grinding/polishing, airborne particle abrasion, surface coating, laser treatment, acid treatment, and primer treatment. There are large variations, making comparison of the studies difficult. An as-produced surface of oxide ceramic needs to be surface treated to achieve durable bond strength. Abrasive surface treatment and/or silica-coating treatment with the use of primer treatment can provide sufficient bond strength for bonding oxide ceramics. This conclusion, however, needs to be confirmed by clinical studies. There is no universal surface treatment. Consideration should be given to the specific materials to be cemented and to the adhesive cement system to be used. Copyright © 2013 Wiley Periodicals, Inc.
Mahmoodi, Nasrin; Hooshmand, Tabassom; Heidari, Solmaz; Khoshro, Kimia
2016-02-01
The purpose of this in vitro study was to evaluate the effect of laser irradiation as well as other surface treatment methods on the microtensile bond strength of a dental zirconia ceramic to the two types of resin cements. Zirconia ceramic blocks (ICE Zirkon) were sintered according to the manufacturer's instructions and duplicated in resin composites. The ceramic specimens were divided into four groups according to the following surface treatments: no surface treatment (control), sandblasting with alumina, silica coating plus silanization, and Nd:YAG laser irradiation. The specimens were divided equally and then bonded with Panavia F2.0 (self-etching resin cement) and Clearfil SA Luting (self-adhesive resin cement) to the composite blocks. The bonded ceramic-composite blocks were stored in distilled water at 37 °C for 72 h, cut to prepare bar-shaped specimens with a bonding area of approximately 1 mm(2), and thermocycled for 3000 cycles between 5 and 55 °C, and the microtensile bond strengths were measured using a universal testing machine. The data were analyzed by ANOVA and Tukey post hoc test. The results showed that the self-adhesive resin cement used in this study did not improve the microtensile bond strength when the zirconia surface was sandblasted by alumina. The use of the Nd:YAG laser did not enhance the bond strength between the zirconia and both types of resin cements. In addition, silica coating of the zirconia surfaces plus silane application significantly improved the bond strength regardless of the type of resin cement utilized.
Xie, Haifeng; Wang, Xiaozu; Wang, Yu; Zhang, Feimin; Chen, Chen; Xia, Yang
2009-02-01
The aim of this study was to verify the effects of sol-gel processed silica coating on the bond strength between resin cement and glass-infiltrated aluminum oxide ceramic. Silica coatings were prepared on glass-infiltrated aluminum oxide ceramic surface via the sol-gel process. Atomic Force Microscope (AFM), Fourier Transmission Infrared spectrum (FTIR), and Energy Dispersive X-ray Spectroscopy (EDS) were used for coating characterization. Forty-eight blocks of glass-infiltrated aluminum oxide ceramic were fabricated. The ceramic surfaces were polished following sandblasting. Three groups of specimens (16 for each group) with different surface treatment were prepared. Group P: no treatment; group PO: treated with silane solution; group PTO: silica coating via sol-gel process, followed by silane application. Composite cylinders were luted with resin cement to the test specimens. Half of the specimens in each group were stored in distilled water for 24 h and the other half were stored in distilled water for 30 days before shear loading in a universal testing machine until failure. Selected ceramic surfaces were analyzed to identify the failure mode using a scanning electron microscopy (SEM). Nanostructured silica coatings were prepared on glass-infiltrated aluminum oxide ceramic surfaces by the sol-gel process. The silicon element on the ceramic surface increased significantly after the coating process. The mean shear bond strength values (standard deviation) before artificial aging were: group P: 1.882 +/- 0.156 MPa; group PO: 2.177 +/- 0.226 MPa; group PTO: 3.574 +/- 0.671 MPa. Statistically significant differences existed between group PTO and group P, and group PTO and groups PO. The failure mode for group P and group PO was adhesive, while group PTO was mixed. The mean shear bond strength values (standard deviation) after artificial aging were: group P: 1.594 +/- 0.111 MPa; group PO: 2.120 +/- 0.339 MPa; group PTO: 2.955 +/- 0.113 MPa. Statistically significant differences existed between each two groups after artificial aging, group P had the lowest bond durability, and group PTO had the highest bond durability. The sol-gel process is an effective way to prepare silica coating on dental glass-infiltrated alumina ceramic. Sol-gel processed silica coating can improve the resin bond strength of glass-infiltrated alumina ceramic.
Kim, Young Kyung; Park, Hyo-Sang; Kim, Kyo-Han; Kwon, Tae-Yub
2015-10-01
To test the null hypothesis that neither the flexural properties of orthodontic adhesive resins nor the enamel pre-treatment methods would affect metal bracket debonding behaviours, including enamel fracture. A dimethacrylate-based resin (Transbond XT, TX) and two methyl methacrylate (MMA)-based resins (Super-Bond C&B, SB; an experimental light-cured resin, EXP) were tested. Flexural strength and flexural modulus for each resin were measured by a three-point-bending test. Metal brackets were bonded to human enamel pretreated with total-etch (TE) or self-etch adhesive using one of the three resins (a total of six groups, n = 15). After 24 hours of storage in water at 37°C, a shear bond strength (SBS) test was performed using the wire loop method. After debonding, remaining resin on the enamel surfaces and occurrence of enamel fracture were assessed. Statistical significance was set at P < 0.05. The two MMA resins exhibited substantially lower flexural strength and modulus values than the TX resin. The mean SBS values of all groups (10.15-11.09MPa) were statistically equivalent to one another (P > 0.05), except for the TE-TX group (13.51MPa, P < 0.05). The two EXP groups showed less resin remnant. Only in the two TX groups were enamel fractures observed (three cases for each group). The results were drawn only from ex vivo experiments. The hypothesis is rejected. This study suggests that a more flexible MMA resin is favourable for avoiding enamel fracture during metal bracket debonding. © The Author 2014. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.
The influence of cyclic shear fatigue on the bracket-adhesive-enamel complex: an in vitro study.
Daratsianos, Nikolaos; Musabegovic, Ena; Reimann, Susanne; Grüner, Manfred; Jäger, Andreas; Bourauel, Christoph
2013-05-01
To describe the effect of fatigue on the strength of the bracket-adhesive-enamel complex and characterize the fatigue behavior of the materials tested. Upper central incisor brackets (Discovery(®), Dentaurum) were bonded with a light-curing (Transbond XT™, 3M Unitek) and a chemically-curing adhesive (Concise™, 3M Unitek) on bovine teeth embedded in cylindrical resign bases and stored in water at 37(±2)°C for 24 (±2)h. The first 15 specimens were tested with a universal testing machine ZMART.PRO(®) (Zwick GmbH & Co. KG, Ulm, Germany) for ultimate shear bond strength according to the DIN-13990-2-standard. The remaining three groups of 20 specimens underwent fatigue staircase testing of 100, 1000 and 3000 cycles at 1Hz with a self-made testing machine. The survived specimens were subjected to shear strength testing. The fatigued specimens showed decreased shear strength with both adhesives at all cycle levels. The shear strength after fatigue for 100, 1000 and 3000 cycles was in the Concise™-groups 34.8%, 59.0%, 47.3% and in the Transbond™ XT-groups 33.6%, 23.1%, 27.3% relative to the ultimate shear strength. The fatigue life of the Concise™-groups decreased with increasing stress and Transbond™ XT showed lower fatigue ratio with no obvious trend. The specimens bonded with Transbond™ XT showed typically favorable fracture modes in contrary to Concise™. Fatigue of the bracket-adhesive-enamel complex decreased its shear strength. The staircase method can provide a standardized experimental protocol for fatigue studies, however testing at various cycle numbers is recommended. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Drehmann, R.; Grund, T.; Lampke, T.; Wielage, B.; Wüstefeld, C.; Motylenko, M.; Rafaja, D.
2018-02-01
The present work summarizes the most important results of a research project dealing with the comprehensive investigation of the bonding mechanisms between cold-sprayed Al coatings and various poly- and monocrystalline ceramic substrates (Al2O3, AlN, Si3N4, SiC, MgF2). Due to their exceptional combination of properties, metallized ceramics are gaining more and more importance for a wide variety of applications, especially in electronic engineering. Cold spray provides a quick, flexible, and cost-effective one-step process to apply metallic coatings on ceramic surfaces. However, since most of the existing cold-spray-related publications focus on metallic substrates, only very little is known about the bonding mechanisms acting between cold-sprayed metals and ceramic substrates. In this paper, the essential factors influencing the bonding strength in such composites are identified. Besides mechanical tensile strength testing, a thorough analysis of the coatings and especially the metal/ceramic interfaces was conducted by means of HRTEM, FFT, STEM, EDX, EELS, GAXRD, and EBSD. The influence of substrate material, substrate temperature, and particle size is evaluated. The results suggest that, apart from mechanical interlocking, the adhesion of cold-sprayed metallic coatings on ceramics is based on a complex interplay of different mechanisms such as quasiadiabatic shearing, static recrystallization, and heteroepitaxial growth.
Gee, C; Weddell, J N; Swain, M V
2017-09-01
To quantify the adhesion of two bonding approaches of zirconia to more aesthetic glass-ceramic materials using the Schwickerath (ISO 9693-2:2016) three point bend (3PB) [1] test to determine the fracture initiation strength and strain energy release rate associated with stable crack extension with this test and the Charalamabides et al. (1989) [2] four point bend (4PB) test. Two glass-ceramic materials (VITABLOCS Triluxe forte, Vita Zahnfabrik, Germany and IPS.emax CAD, Ivoclar Vivadent, Liechtenstein) were bonded to sintered zirconia (VITA InCeram YZ). The former was resin bonded using a dual-cure composite resin (Panavia F 2.0, Kuraray Medical Inc., Osaka, Japan) following etching and silane conditioning, while the IPS.emax CAD was glass bonded (IPS e.max CAD Crystall/Connect) during crystallization of the IPS.emax CAD. Specimens (30) of the appropriate dimensions were fabricated for the Schwickerath 3PB and 4PB tests. Strength values were determined from crack initiation while strain energy release rate values were determined from the minima in the force-displacement curves with the 3PB test (Schneider and Swain, 2015) [3] and for 4PB test from the plateau region of stable crack extension. Strength values for the resin and glass bonded glass ceramics to zirconia were 22.20±6.72MPa and 27.02±3.49MPa respectively. The strain energy release rates for the two methods used were very similar and for the glass bonding, (4PB) 15.14±5.06N/m (or J/m 2 ) and (3PB) 16.83±3.91N/m and resin bonding (4PB) 8.34±1.93N/m and (3PB) 8.44±2.81N/m respectively. The differences in strength and strain energy release rate for the two bonding approaches were statistically significant (p<0.05). SEM observations showed fracture occurred adhesively for the resin bonding and cohesively for the glass bonding. The present results indicate 3PB and 4PB tests have very similar values for the strain energy release rate determination. However while strength tests reveal minimal differences between resin and glass bonding, strain energy release rates for the latter are superior for bonding CAD/CAM milled glass-ceramics to zirconia. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Abreu, Celina Wanderley; Santosb, Jarbas F; Passos, Sheila Pestana; Michida, Silvia Masae; Takahashi, Fernando Eidi; Bottino, Marco Antonio
2011-06-01
This study evaluated the effect of cutting initiation location and cutting speed on the bond strength between resin cement and feldspathic ceramic. Thirty-six blocks (6.4 x 6.4 x 4.8 mm) of ceramic (Vita VM7) were produced. The ceramic surfaces were etched with 10% hydrofluoric acid gel for 60 s and then silanized. Each ceramic block was placed in a silicon mold with the treated surface exposed. A resin cement (Variolink II) was injected into the mold over the treated surface and polymerized. The resin cement-ceramic blocks were divided into two groups according to experimental conditions: a) cutting initiation location - resin cement, ceramic and interface; and b) cutting speed - 10,000, 15,000, and 20,000 rpm. The specimens were sectioned to achieve non-trimmed bar specimens. The microtensile test was performed in a universal testing machine (1 mm/min). The failure modes were examined using an optical light microscope and SEM. Bond strength results were analyzed using one-way ANOVA and Tukey's test (α = 0.05). Significant influences of cutting speed and initiation location on bond strength (p < 0.05) were observed. The highest mean was achieved for specimens cut at 15,000 rpm at the interface (15.12 ± 5.36 MPa). The lowest means were obtained for specimens cut at the highest cutting speed in resin cement (8.50 ± 3.27 MPa), and cut at the lowest cutting speed in ceramic (8.60 ± 2.65 MPa). All groups showed mainly mixed failure (75% to 100%). The cutting speed and initiation location are important factors that should be considered during specimen preparation for microtensile bond strength testing, as both may influence the bond strength results.
TEM Analysis of Diffusion-Bonded Silicon Carbide Ceramics Joined Using Metallic Interlayers
NASA Technical Reports Server (NTRS)
Ozaki, T.; Hasegawa, Y.; Tsuda, H.; Mori, S.; Halbig, M. C.; Asthana, R.; Singh, M.
2017-01-01
SiC fiber-bonded ceramics (SA-Tyrannohex: SA-THX) diffusion-bonded with TiCu metallic interlayers were investigated. Thin samples of the ceramics were prepared with a focused ion beam (FIB) and the interfacial microstructure of the prepared samples was studied by transmission electron microscopy (TEM) and scanning TEM (STEM). In addition to conventional microstructure observation, for detailed analysis of reaction compounds in diffusion-bonded area, we performed STEM-EDS measurements and selected area electron diffraction (SAD) experiments. The TEM and STEM experiments revealed the diffusion-bonded area was composed of only one reaction layer, which was characterized by TiC precipitates in Cu-Si compound matrix. This reaction layer was in good contact with the SA-THX substrates, and it is concluded that the joint structure led to the excellent bonding strength.
Effect of surface condition of dental zirconia ceramic (Denzir) on bonding.
Uo, Motohiro; Sjögren, Göran; Sundh, Anders; Goto, Mitsunari; Watari, Fumio; Bergman, Maud
2006-09-01
Yttria partially stabilized zirconia (YPSZ) ceramics are suitable for dental and medical use because of their high fracture toughness and chemical durability. The purpose of this study was to examine the bonding behavior of a dental YPSZ ceramic, Denzir. After being subjected to various surface treatments, Denzir specimens were bonded to each other using an adhesive resin composite, glass ionomer, or zinc phosphate cement. Bonding strength was then determined by the shearing test. No significant differences (p>0.05) were observed between SiC- and Al2O3-blasted specimens. In all surface treatments, the shear bond strength significantly (p<0.05) increased in the order of adhesive resin composite cement > glass ionomer cement > zinc phosphate cement. Moreover, silanization with methacryloxy propyl trimethoxysilane slightly increased the bonding strength of the adhesive resin composite cement.
Liquid crystalline epoxy nanocomposite material for dental application.
Tai, Yun-Yuan; Hsu, Sheng-Hao; Chen, Rung-Shu; Su, Wei-Fang; Chen, Min-Huey
2015-01-01
Novel liquid crystalline epoxy nanocomposites, which exhibit reduced polymerization shrinkage and effectively bond to tooth structures, can be applied in esthetic dentistry, including core and post systems, direct and indirect restorations, and dental brackets. The purposes of this study were to investigate the properties of liquid crystalline epoxy nanocomposites including biocompatibility, microhardness, and frictional forces of bracket-like blocks with different filler contents for further clinical applications. In this study, we evaluated liquid crystalline epoxy nanocomposite materials that exhibited various filler contents, by assessing their cell activity performance using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and their microhardness with or without thermocycling. We also evaluated the frictional force between bracket-like duplicates and commercially available esthetic bracket systems using Instron 5566. The liquid crystalline epoxy nanocomposite materials showed good biocompatibility. The materials having high filler content demonstrated greater microhardness compared with commercially available bracket materials, before and after the thermocycling treatment. Thus, manufacturing processes are important to reduce frictional force experienced by orthodontic brackets. The microhardness of the bracket-like blocks made by our new material is superior to the commercially available brackets, even after thermocycling. Our results indicate that the evaluated liquid crystalline epoxy nanocomposite materials are of an appropriate quality for application in dental core and post systems and in various restorations. By applying technology to refine manufacturing processes, these new materials could also be used to fabricate esthetic brackets for orthodontic treatment. Copyright © 2014. Published by Elsevier B.V.
Pejda, Slavica; Varga, Marina Lapter; Milosevic, Sandra Anic; Mestrovic, Senka; Slaj, Martina; Repic, Dario; Bosnjak, Andrija
2013-01-01
To determine the effect of different bracket designs (conventional brackets and self-ligating brackets) on periodontal clinical parameters and periodontal pathogens in subgingival plaque. The following inclusion criteria were used: requirement of orthodontic treatment plan starting with alignment and leveling, good general health, healthy periodontium, no antibiotic therapy in the previous 6 months before the beginning of the study, and no smoking. The study sample totaled 38 patients (13 male, 25 female; mean age, 14.6 ± 2.0 years). Patients were divided into two groups with random distribution of brackets. Recording of clinical parameters was done before the placement of the orthodontic appliance (T0) and at 6 weeks (T1), 12 weeks (T2), and 18 weeks (T3) after full bonding of orthodontic appliances. Periodontal pathogens of subgingival microflora were detected at T3 using a commercially available polymerase chain reaction test (micro-Dent test) that contains probes for Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, Tannerella forsythia, and Treponema denticola. There was a statistically significant higher prevalence of A actinomycetemcomitans in patients with conventional brackets than in patients with self-ligating brackets, but there was no statistically significant difference for other putative periodontal pathogens. The two different types of brackets did not show statistically significant differences in periodontal clinical parameters. Bracket design does not seem to have a strong influence on periodontal clinical parameters and periodontal pathogens in subgingival plaque. The correlation between some periodontal pathogens and clinical periodontal parameters was weak.
Ramazanzadeh, Baratali; Jahanbin, Arezoo; Yaghoubi, Masoud; Shahtahmassbi, Nasser; Ghazvini, Kiarash; Shakeri, Mohammadtaghi; Shafaee, Hooman
2015-09-01
During the orthodontic treatment, microbial plaques may accumulate around the brackets and cause caries, especially in high-risk patients. Finding ways to eliminate this microbial plaque seems to be essential. The aim of this study was to compare the antibacterial effects of nano copper oxide (CuO) and nano zinc oxide (ZnO) coated brackets against Streptococcus mutans (S.mutans) in order to decrease the risk of caries around the orthodontic brackets during the treatment. Sixty brackets were coated with nanoparticles of ZnO (n=20), CuO (n=20) and CuO-ZnO (n=20). Twelve uncoated brackets constituted the control group. The brackets were bonded to the crowns of extracted premolars, sterilized and prepared for antimicrobial tests (S.mutans ATCC35668). The samples taken after 0, 2, 4, 6 and 24 hours were cultured on agar plates. Colonies were counted 24 hours after incubation. One-way ANOVA and Tukey tests were used for statistical analysis. In CuO and CuO-ZnO coated brackets, no colony growth was seen after two hours. Between 0-6 hours, the mean colony counts were not significantly different between the ZnO and the control group (p>0.05). During 6-24 hours, the growth of S.mutans was significantly reduced by ZnO nanoparticles in comparison with the control group (p< 0.001). However, these bacteria were not totally eliminated. CuO and ZnO-CuO nanoparticles coated brackets have better antimicrobial effect on S.mutans than ZnO coated brackets.
Zhang, Ping; Zhao, Yonggui; Wang, Xiuyu
2015-06-28
The crystalline structure refinement, chemical bond ionicity, lattice energy and coefficient of thermal expansion were carried out for Nd(Nb(1-x)Sb(x))O4 ceramics with a monoclinic fergusonite structure to investigate the correlations between the crystalline structure, phase stability, bond ionicity, lattice energy, coefficient of thermal expansion, and microwave dielectric properties. The bond ionicity, lattice energy, and coefficient of thermal expansion of Nd(Nb(1-x)Sb(x))O4 ceramics were calculated using a semiempirical method based on the complex bond theory. The phase structure stability varied with the lattice energy which was resulted by the substitution constant of Sb(5+). With the increasing of the Sb(5+) contents, the decrease of Nb/Sb-O bond ionicity was observed, which could be contributed to the electric polarization. The ε(r) had a close relationship with the Nb/Sb-O bond ionicity. The increase of the Q×f and |τ(f)| values could be attributed to the lattice energy and the coefficient of thermal expansion. The microwave dielectric properties of Nd(Nb(1-x)Sb(x))O4 ceramics with the monoclinic fergusonite structure were strongly dependent on the chemical bond ionicity, lattice energy and coefficient of thermal expansion.
Tiegs, Terry N.; Lindemer, Terrence B.
1991-01-01
Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparaging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.
Tiegs, T.N.; Lindemer, T.B.
1991-02-19
Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.
Ceramic composites reinforced with modified silicon carbide whiskers
Tiegs, Terry N.; Lindemer, Terrence B.
1990-01-01
Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparaging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.
Singh, Dileep; Wagh, Arun S.; Jeong, Seung-Young
2000-01-01
Known phosphate ceramic formulations are improved and the ability to produce iron-based phosphate ceramic systems is enabled by the addition of an oxidizing or reducing step during the acid-base reactions that form the phosphate ceramic products. The additives allow control of the rate of the acid-base reactions and concomitant heat generation. In an alternate embodiment, waste containing metal anions are stabilized in phosphate ceramic products by the addition of a reducing agent to the phosphate ceramic mixture. The reduced metal ions are more stable and/or reactive with the phosphate ions, resulting in the formation of insoluble metal species within the phosphate ceramic matrix, such that the resulting chemically bonded phosphate ceramic product has greater leach resistance.
Metallographic structure and hardness of titanium orthodontic brackets.
Zinelis, Spiros; Annousaki, Olga; Eliades, Theodore; Makou, Margarita
2003-11-01
To determine the elemental composition, microstructure, and hardness of two different brands of titanium (Ti) orthodontic brackets. Four specimens of each brand were embedded in epoxy resin and, after metallographic grinding and polishing, were studied under a metallographic microscope. The bonding base morphology of each bracket was studied in as-received brackets by scanning electron microscopy. Energy dispersive x-ray microanalysis (EDS) was used on polished specimens to assess the elemental composition of base and wing bracket components, and the brackets were subjected to metallographic etching to reveal the metallurgical structure. The same specimen surfaces were used for assessment of the Vickers hardness. The results were statistically analyzed by two-way analysis of variance (ANOVA) with the bracket brand and bracket region (base, wing) serving as discriminating variables, whilst further group differences were investigated with Tukey's multiple comparison test at the alpha = 0.05 level of significance. Metallographic imaging revealed that the Orthos2 brackets (Ormco, Glendora, CA, USA) consist of two parts joined together by laser welding, with large gaps along the base wing interface, whereas Rematitan brackets (Dentaurum, Ispringen, Germany) are single-piece appliances. Ti was the only element identified in Rematitan and Orthos2 base materials, while aluminium (Al) and vanadium (V) were also found in the Orthos2 wing component. Metallographic analysis showed the presence of a + b phase for Orthos2 and plate-like grains for Rematitan. The results of the Vickers hardness testing were: Orthos2 (wing): 371 +/- 22, Rematitan (wing): 272 +/- 4, Rematitan (base): 271 +/- 16, Orthos2 (base): 165 +/- 2. The findings of the present study suggest that there are significant differences in composition, microstructure and hardness between the two commercial types of Ti brackets tested; the clinical implications of the findings are discussed.
[Bonding of ceramic onlays. The effect on contour form].
Perelmuter, S; Liger, F
1990-01-01
Ceramic onlays have come into much wider use and experience has led to gradual modification of preparation contours. The aim was to improve two complementary aspects, aesthetics and mechanical strength. The use of ceramics to rebuild cusps enhances the structures' mimetic effect and mechanical qualities. If an isthmus exists connecting the occlusal and proximal cavities, it must be enlarged; if not, none must be created. The use of bonded ceramic overlays offers an original therapeutic result. They are indicated in order to even out occlusal patterns.
Effect of laser welding on the titanium ceramic tensile bond strength.
Galo, Rodrigo; Ribeiro, Ricardo Faria; Rodrigues, Renata Cristina Silveira; Pagnano, Valéria de Oliveira; Mattos, Maria da Glória Chiarello de
2011-08-01
Titanium reacts strongly with elements, mainly oxygen at high temperature. The high temperature of titanium laser welding modifies the surface, and may interfere on the metal-ceramic tensile bond strength. The influence of laser welding on the titanium-ceramic bonding has not yet been established. The purpose of this in vitro study was to analyze the influence of laser welding applied to commercially pure titanium (CpTi) substructure on the bond strength of commercial ceramic. The influence of airborne particle abrasion (Al2O3) conditions was also studied. Forty CpTi cylindrical rods (3 mm x 60 mm) were cast and divided into 2 groups: with laser welding (L) and without laser welding (WL). Each group was divided in 4 subgroups, according to the size of the particles used in airborne particle abrasion: A - Al2O3 (250 µm); B - Al2O3 (180 µm); C - Al2O3 (110 µm); D - Al2O3 (50 µm). Ceramic rings were fused around the CpTi rods. Specimens were invested and their tensile strength was measured at fracture with a universal testing machine at a crosshead speed of 2.0 mm/min and 200 kgf load cell. Statistical analysis was carried out with analysis of variance and compared using the independent t test (p<0.05). Significant differences were found among all subgroups (p<0.05). The highest and the lowest bond strength means were recorded in subgroups WLC (52.62 MPa) and LD (24.02 MPa), respectively. Airborne particle abrasion yielded significantly lower bond strength as the Al2O3 particle size decreased. Mechanical retention decreased in the laser-welded specimens, i.e. the metal-ceramic tensile bond strength was lower.
Determining efficacy of monitoring devices on ceramic bond to resin composite
Osorio, Estrella; Aguilera, Fátima S.; Osorio, Raquel; García-Godoy, Franklin; Cabrerizo-Vilchez, Miguel A.; Toledano, Manuel
2012-01-01
Objectives: This paper aims to assess the effectiveness of 3D nanoroughness and 2D microroughness evaluations, by their correlation with contact angle measurements and shear bond strength test, in order to evaluate the effect of two different acids conditioning on the bonding efficacy of a leucite-based glass-ceramic to a composite resin. Study Design: Ceramic (IPS Empress) blocks were treated as follows: 1) no treatment, 2) 37% phosphoric acid (H3PO4), 15 s, 3) 9% hydrofluoric acid (HF), 5 min. Micro- and nano-roughness were assessed with a profilometer and by means of an atomic force microscopy (AFM). Water contact angle (CA) measurements were determined to assess wettability of the ceramic surfaces with the asixymetric drop shape analysis contact diameter technique. Shear bond strength (SBS) was tested to a resin composite (Z100) with three different adhesive systems (Scotchbond Multipurpose Plus, Clearfil New Bond, ProBOND). Scanning electron microscopy (SEM) images were performed. Results: Nanoroughness values assessed in 50x50 μm areas were higher for the HF group, these differences were not detected by profilometric analysis. HF treatment created the nano- roughest surfaces and the smallest CA (p<0.05), producing the highest SBS to the composite resin with all tested adhesive systems (p<0.05). No differences existed between the SBS produced by the adhesive systems evaluated with any of the surface treatments tested. Conclusions: Nano-roughness obtained in a 50x50 µm scan size areas was the most reliable data to evaluate the topographical changes produced by the different acid treatments on ceramic surfaces. Key words:Dental ceramic, acid etching, bonding efficacy, resin composite, adhesive systems, contact angle, roughness. PMID:22549693
Bonding of Resin Cement to Zirconia with High Pressure Primer Coating
Wang, Ying-jie; Jiao, Kai; Liu, Yan; Zhou, Wei; Shen, Li-juan; Fang, Ming; Li, Meng; Zhang, Xiang; Tay, Franklin R.; Chen, Ji-hua
2014-01-01
Objectives To investigate the effect of air-drying pressure during ceramic primer coating on zirconia/resin bonding and the surface characteristics of the primed zirconia. Methods Two ceramic primers (Clearfil Ceramic Primer, CCP, Kuraray Medical Inc. and Z-Prime Plus, ZPP, Bisco Inc.) were applied on the surface of air-abraded zirconia (Katana zirconia, Noritake) and dried at 4 different air pressures (0.1–0.4 MPa). The primed zirconia ceramic specimens were bonded with a resin-based luting agent (SA Luting Cement, Kuraray). Micro-shear bond strengths of the bonded specimens were tested after 3 days of water storage or 5,000× thermocycling (n = 12). Failure modes of the fractured specimens were examined with scanning electron miscopy. The effects of air pressure on the thickness of the primer layers and the surface roughness (Sa) of primed zirconia were evaluated using spectroscopic ellipsometry (n = 6), optical profilometry and environmental scanning electron microscopy (ESEM) (n = 6), respectively. Results Clearfil Ceramic Primer air-dried at 0.3 and 0.4 MPa, yielding significantly higher µSBS than gentle air-drying subgroups (p<0.05). Compared to vigorous drying conditions, Z-Prime Plus air-dried at 0.2 MPa exhibited significantly higher µSBS (p<0.05). Increasing air-drying pressure reduced the film thickness for both primers. Profilometry measurements and ESEM showed rougher surfaces in the high pressure subgroups of CCP and intermediate pressure subgroup of ZPP. Conclusion Air-drying pressure influences resin/zirconia bond strength and durability significantly. Higher air-drying pressure (0.3-0.4 MPa) for CCP and intermediate pressure (0.2 MPa) for ZPP are recommended to produce strong, durable bonds between resin cement and zirconia ceramics. PMID:24992678
Feitosa, Fernanda A; de Araújo, Rodrigo M; Tay, Franklin R; Niu, Lina; Pucci, César R
2017-12-12
The present study evaluated the effect of different high-power-laser surface treatments on the bond strength between resin cement and disilicate ceramic. Lithium disilicate ceramic specimens with truncated cones shape were prepared and divided into 5 groups: HF (hydrofluoric acid-etching), Er:YAG laser + HF, Graphite + Er:YAG laser + HF, Nd:YAG laser + HF, and Graphite + Nd:YAG laser + HF. The treated ceramic surfaces were characterized with scanning electron microscopy and surface roughness measurement. Hourglasses-shaped ceramic- resin bond specimens were prepared, thermomechanically cycled and stressed to failure under tension. The results showed that for both the factors "laser" and "graphite", statistically significant differences were observed (p < 0.05). Multiple-comparison tests performed on the "laser" factor were in the order: Er:YAG > Nd:YAG (p < 0.05), and on the "graphite" factor were in the order: graphite coating < without coating (p < 0.05). The Dunnett test showed that Er:YAG + HF had significantly higher tensile strength (p = 0.00). Higher surface roughness was achieved after Er:YAG laser treatment. Thus Er:YAG laser treatment produces higher bond strength to resin cement than other surface treatment protocols. Surface-coating with graphite does not improve bonding of the laser-treated lithium disilicate ceramic to resin cement.
Bakeman, E M; Rego, N; Chaiyabutr, Y; Kois, J C
2015-01-01
This study evaluated the influence of ceramic thickness and ceramic materials on fracture resistance of posterior partial coverage ceramic restorations. Forty extracted molars were allocated into four groups (n=10) to test for two variables: 1) the thickness of ceramic (1 mm or 2 mm) and 2) the ceramic materials (a lithium disilicate glass-ceramic [IPS e.max] or leucite-reinforced glass ceramic [IPS Empress]). All ceramic restorations were luted with resin cement (Variolink II) on the prepared teeth. These luted specimens were loaded to failure in a universal testing machine, in the compression mode, with a crosshead speed of 1.0 mm/min. The data were analyzed using two-way analysis of variance and the Tukey Honestly Significantly Different multiple comparison test (α =0.05). The fracture resistance revealed a significant effect for materials (p<0.001); however, the thickness of ceramic was not significant (p=0.074), and the interaction between the thickness of ceramic and the materials was not significant (p=0.406). Mean (standard deviation) fracture resistance values were as follows: a 2-mm thickness of a lithium disilicate bonded to tooth structure (2505 [401] N) revealed a significantly higher fracture resistance than did a 1-mm thickness of leucite-reinforced (1569 [452] N) and a 2-mm thickness of leucite-reinforced ceramic bonded to tooth structure (1716 [436] N) (p<0.05). There was no significant difference in fracture resistance values between a lithium disilicate ceramic at 1-mm thickness (2105 [567] N) and at 2-mm thickness. Using a lithium disilicate glass ceramic for partial coverage restoration significantly improved fracture resistance compared to using a leucite-reinforced glass ceramic. The thickness of ceramic had no significant effect on fracture resistance when the ceramics were bonded to the underlying tooth structure.
Effect of soldering on the metal-ceramic bond strength of an Ni-Cr base alloy.
Nikellis, Ioannis; Levi, Anna; Zinelis, Spiros
2005-11-01
Although soldering is a common laboratory procedure, the use of soldering alloys may adversely affect metal-ceramic bond strength and potentially decrease the longevity of metal-ceramic restorations. The purpose of this study was to investigate the effect of soldering on metal-ceramic bond strength of a representative Ni-Cr base metal alloy. Twenty-eight rectangular (25 x 3 x 0.5 mm) Ni-based alloy (Wiron 99) specimens were equally divided into soldering (S) and reference (R) groups. Soldering group specimens were covered with a 0.1-mm layer of the appropriate solder (Wiron-Lot) and reduced by 0.1 mm on the opposite side. Five specimens of each group were used for the measurement of surface roughness parameter (R(z)) and hardness, and 3 were used for measurement of the modulus of elasticity. Six specimens of each group were covered with porcelain (Ceramco 3) and subjected to a 3-point bending test for evaluation of the metal-ceramic bond strength according to the ISO 9693 specification. The data from surface roughness, hardness, modulus of elasticity, and metal-ceramic bond strength were analyzed statistically, using independent t tests (alpha=.05). Statistical analysis of the R(z) surface roughness parameter (S: 3.4 +/- 0.3 mum; R: 3.7 +/- 0.7 microm; P=.07) and bond strength (S: 46 +/- 3 MPa; R: 40 +/- 5 MPa; P=.057) failed to reveal any significant difference between the 2 groups. The specimens of the soldering group demonstrated significantly lower values both in hardness (S: 128 +/- 11 VHN; R: 217 +/- 4 VHN; P<.001) and in modulus of elasticity (S: 135 +/- 4 GPa; R: 183 +/- 6 GPa; P=.035) than the reference group. Under the conditions of the present study, the addition of solder to the base metal alloy did not affect the metal-ceramic bond strength.
Roperto, Renato; Akkus, Anna; Akkus, Ozan; Lang, Lisa; Sousa-Neto, Manoel Damiao; Teich, Sorin; Porto, Thiago Soares
2016-01-01
The aim of this study was to determine the microtensile bond strength (μTBS) of ceramic and composite computer aided design-computer aided manufacturing (CAD-CAM) blocks bonded to dentin using different adhesive strategies. In this in vitro study, 30 crowns of sound freshly extracted human molars were sectioned horizontally 3 mm above the cementoenamel junction to produce flat dentin surfaces. Ceramic and composite CAD/CAM blocks, size 14, were sectioned into slices of 3 mm thick. Before bonding, CAD/CAM block surfaces were treated according to the manufacturer's instructions. Groups were created based on the adhesive strategy used: Group 1 (GI) - conventional resin cement + total-etch adhesive system, Group 2 (GII) - conventional resin cement + self-etch adhesive system, and Group 3 (GIII) - self-adhesive resin cement with no adhesive. Bonded specimens were stored in 100% humidity for 24h at 37C, and then sectioned with a slow-speed diamond saw to obtain 1 mm × 1 mm × 6 mm microsticks. Microtensile testing was then conducted using a microtensile tester. μTBS values were expressed in MPa and analyzed by one-way ANOVA with post hoc (Tukey) test at the 5% significance level. Mean values and standard deviations of μTBS (MPa) were 17.68 (±2.71) for GI/ceramic; 17.62 (±3.99) for GI/composite; 13.61 (±6.92) for GII/composite; 12.22 (±4.24) for GII/ceramic; 7.47 (±2.29) for GIII/composite; and 6.48 (±3.10) for GIII/ceramic; ANOVA indicated significant differences among the adhesive modality and block interaction (P < 0.05), and no significant differences among blocks only, except between GI and GII/ceramic. Bond strength of GIII was consistently lower (P < 0.05) than GI and GII groups, regardless the block used. Cementation of CAD/CAM restorations, either composite or ceramic, can be significantly affected by different adhesive strategies used.
Joining of Silicon Carbide Through the Diffusion Bonding Approach
NASA Technical Reports Server (NTRS)
Halbig, Michael .; Singh, Mrityunjay
2009-01-01
In order for ceramics to be fully utilized as components for high-temperature and structural applications, joining and integration methods are needed. Such methods will allow for the fabrication the complex shapes and also allow for insertion of the ceramic component into a system that may have different adjacent materials. Monolithic silicon carbide (SiC) is a ceramic material of focus due to its high temperature strength and stability. Titanium foils were used as an interlayer to form diffusion bonds between chemical vapor deposited (CVD) SiC ceramics with the aid of hot pressing. The influence of such variables as interlayer thickness and processing time were investigated to see which conditions contributed to bonds that were well adhered and crack free. Optical microscopy, scanning electron microscopy, and electron microprobe analysis were used to characterize the bonds and to identify the reaction formed phases.
Leesungbok, Richard; Lee, Sang-Min; Park, Su-Jung; Lee, Suk-Won; Lee, Do Yun; Im, Byung-Jin
2015-01-01
PURPOSE The purpose of this study was to find out the effect of immediate dentin sealing (IDS) on bond strength of ceramic restoration under various thermocycling periods with DBA (dentin bonding agent system). MATERIALS AND METHODS Fifty freshly extracted human mandibular third molars were divided into 5 groups (1 control and 4 experimental groups) of 10 teeth. We removed enamel layer of sound teeth and embedded them which will proceed to be IDS, using All Bond II. A thermocycling was applied to experimental groups for 1, 2, 7, 14 days respectively and was not applied to control group. IPS Empress II for ceramic was acid-etched with ceramic etchant (9.5% HF) and silane was applied. Each ceramic disc was bonded to specimens with Duo-link, dual curable resin cement by means of light curing for 100 seconds. After the cementation procedures, shear bond strength measurement and SEM analysis of the fractured surface were done. The data were analyzed with a one-way ANOVA and Tukey multiple comparison test (α=.05). RESULTS There were no statistically significant differences between 4 experimental groups and control group, however the mean value started to decrease in group 7d, and group 14d showed the lowest mean bond strength in all groups. Also, group 7d and 14d showed distinct exposed dentin and collapsed hybrid layer was observed in SEM analysis. CONCLUSION In the present study, it can be concluded that ceramic restorations like a laminate veneer restoration should be bonded using resin cement within one week after IDS procedure. PMID:26140174
Fibre-matrix bond strength studies of glass, ceramic, and metal matrix composites
NASA Technical Reports Server (NTRS)
Grande, D. H.; Mandell, J. F.; Hong, K. C. C.
1988-01-01
An indentation test technique for compressively loading the ends of individual fibers to produce debonding has been applied to metal, glass, and glass-ceramic matrix composites; bond strength values at debond initiation are calculated using a finite-element model. Results are correlated with composite longitudinal and interlaminar shear behavior for carbon and Nicalon fiber-reinforced glasses and glass-ceramics including the effects of matrix modifications, processing conditions, and high-temperature oxidation embrittlement. The data indicate that significant bonding to improve off-axis and shear properties can be tolerated before the longitudinal behavior becomes brittle. Residual stress and other mechanical bonding effects are important, but improved analyses and multiaxial interfacial failure criteria are needed to adequately interpret bond strength data in terms of composite performance.
Yao, Chenmin; Zhou, Liqun; Yang, Hongye; Wang, Yake; Sun, Hualing; Guo, Jingmei; Huang, Cui
2017-04-01
The aim of this study was to investigate the effect of silane pretreatment on the universal adhesive bonding between lithium disilicate glass ceramic and composite resin. IPS e.max ceramic blocks etched with hydrofluoric acid were randomly assigned to one of eight groups treated with one of four universal adhesives (two silane-free adhesives and two silane-containing adhesives), each with or without silane pretreatment. Bonded specimens were stored in water for 24 h. The shear bond strength (SBS) of the ceramic-resin interface was measured to evaluate bond strength, and the debonded interface after the SBS test was analysed using field-emission scanning electron microscopy to determine failure mode. Light microscopy was performed to analyse microleakage and marginal sealing ability. Silane pretreatment significantly and positively influenced SBS and marginal sealing ability. For all the universal adhesive groups, SBS increased and the percentage of microleakage decreased after the pretreatment. Without the pretreatment, SBS and the percentage of microleakage were not significantly different between the silane-containing universal adhesive groups and the silane-free groups. Cohesive failure was the main fracture pattern. The results suggest that additional silane pretreatment can effectively improve the bonding strength and marginal sealing of adhesives to lithium disilicate glass ceramics. The bonding performance of silane-containing universal adhesives without pretreatment is similar to that of silane-free adhesives. © 2017 Eur J Oral Sci.
[Enamel damage depending on the method of bracket removal].
Fischer-Brandies, H; Kremers, L; Reicheneder, C; Kluge, G; Hüsler, K
1993-04-01
Two different methods of removing brackets, on the one side by torsion and on the other by bending, were compared for the purpose of analyzing the respective enamel lesions. Each test group consisted of 19 extracted human molars with metal brackets attached to the molars by means of the "concise etching technique". Bracket removal was standardized through the use of a Wolpert "Universalprüfmaschine TZZ 707" with modified torsion and bending mechanism. A scanning electron microscope was used to analyze the enamel surface. When using the torsion method, the mean extension of the enamel lesions was 48.3% of the adhesive free enamel surface. These lesions often reached into the deeper enamel layers and were mainly to be found on the broad side of the bonded area. On the other hand, when using the bending method, the enamel lesions were less frequent. They were mainly superficial and were confined almost exclusively to the pressure zones. The stress required to remove the brackets and the stress distribution were calculated on mechanical models and these results corresponded well with the enamel lesions observed on the molars. It can thus be concluded that the method of removing brackets is clinically relevant in relation to enamel lesions.
Torque expression of 0.018 and 0.022 inch conventional brackets.
Sifakakis, Iosif; Pandis, Nikolaos; Makou, Margarita; Eliades, Theodore; Katsaros, Christos; Bourauel, Christoph
2013-10-01
The aim of this study was to assess the effect of the moments generated with low- and high-torque brackets. Four different bracket prescription-slot combinations of the same bracket type (Mini Diamond® Twin) were evaluated: high-torque 0.018 and 0.022 inch and low-torque 0.018 and 0.022 inch. These brackets were bonded on identical maxillary acrylic resin models with levelled and aligned teeth and each model was mounted on the orthodontic measurement and simulation system (OMSS). Ten specimens of 0.017 × 0.025 inch and ten 0.019 × 0.025 inch stainless steel archwires (ORMCO) were evaluated in the low- and high-torque 0.018 inch and 0.022 inch brackets, respectively. The wires were ligated with elastomerics into the brackets and each measurement was repeated once after religation. Two-way analysis of variance and t-test were conducted to compare the generated moments between wires at low- and high-torque brackets separately. The maximum moment generated by the 0.017 × 0.025 inch stainless steel archwire in the 0.018 inch brackets at +15 degrees ranged from 14.33 and 12.95 Nmm for the high- and low-torque brackets, respectively. The measured torque in the 0.022 inch brackets with the 0.019 × 0.025 inch stainless steel archwire was 9.32 and 6.48 Nmm, respectively. The recorded differences of maximum moments between the high- and low-torque series were statistically significant. High-torque brackets produced higher moments compared with low-torque brackets. Additionally, in both high- and low-torque configurations, the thicker 0.019 × 0.025 inch steel archwire in the 0.022 inch slot system generated lower moments in comparison with the 0.017 × 0.025 inch steel archwire in the 0.018 inch slot system.
Sayinsu, Korkmaz; Isik, Fulya; Sezen, Serdar; Aydemir, Bulent
2007-03-01
The application of a polymer coating to the labial enamel tooth surface before bonding can help keep white spot lesions from forming. Previous studies evaluating the effects of blood and saliva contamination on the bond strengths of light-cured composites showed significant reductions in bond strength values. The purpose of this study was to investigate whether the bond strength of a light-cured system (Transbond XT, 3M Unitek, Puchheim, Germany) used with a liquid polish (BisCover, Bisco, Schaumburg, Ill) is affected by contamination with blood or saliva. One hundred twenty permanent human premolars were randomly divided into 6 groups of 20. Various enamel surface conditions were studied: dry, blood contaminated, and saliva contaminated. A light-cured bonding system (Transbond XT) was used in all groups. The teeth in group 1 were bonded with Transbond XT. In the second group, BisCover polymeric resin polish was applied on the etched tooth surfaces before the brackets were bonded with Transbond XT resin. Comparison of the first and second groups showed no statistically significant difference. Groups 3 through 6 were bonded without Transbond XT. For groups 3 and 5, a layer of blood or saliva, respectively, was applied to the etched enamel followed by BisCover. In groups 4 and 6, blood or saliva, respectively, was applied on the light-cured BisCover. Shear forces were applied to the samples with a universal testing machine, and bond strengths were measured in megapascals. The protective liquid polish (BisCover) layer did not affect bond strength. Blood contamination on acid-etched surfaces affects bond strength more than saliva contamination. When a protective liquid polish (BisCover) is applied to the tooth surface, the effect of contamination by blood or saliva is prevented.
Osorio, Raquel; Monticelli, Francesca; Osorio, Estrella; Toledano, Manuel
2012-01-01
Objective: To evaluate the bond stability of resin cements when luted to glass-reinforced alumina and zirconia CAD/CAM dental ceramics. Study design: Eighteen glass-infiltrated alumina and eighteen densely sintered zirconia blocks were randomly conditioned as follows: Group 1: No treatment; Group 2: Sandblasting (125 µm Al2O3-particles); and Group 3: Silica-coating (50 µm silica-modified Al2O3-particles). Composite samples were randomly bonded to the pre-treated ceramic surfaces using different resin cements: Subgroup 1: Clearfil Esthetic Cement (CEC); Subgroup 2: RelyX Unicem (RXU); and Subgroup 3: Calibra (CAL). After 24 h, bonded specimens were cut into 1 ± 0.1 mm2 sticks. One-half of the beams were tested for microtensile bond strength (MTBS). The remaining one-half was immersed in 10 % NaOCl aqueous solution (NaOClaq) for 5 h before testing. The fracture pattern and morphology of the debonded surfaces were assessed with a field emission gun scanning electron microscope (FEG-SEM). A multiple ANOVA was conducted to analyze the contributions of ceramic composition, surface treatment, resin cement type, and chemical challenging to MTBS. The Tukey test was run for multiple comparisons (p < 0.05). Results: After 24 h, CEC luted to pre-treated zirconia achieved the highest MTBS. Using RXU, alumina and zirconia registered comparable MTBS. CAL failed prematurely, except when luted to sandblasted zirconia. After NaOClaq storage, CEC significantly lowered MTBS when luted to zirconia or alumina. RXU decreased MTBS only when bonded to silica-coated alumina. CAL recorded 100 % of pre-testing failures. Micromorphological alterations were evident after NaOClaq immersion. Conclusions: Resin-ceramic interfacial longevity depended on cement selection rather than on surface pre-treatments. The MDP-containing and the self-adhesive resin cements were both suitable for luting CAD/CAM ceramics. Despite both cements being prone to degradation, RXU luted to zirconia or untreated or sandblasted alumina showed the most stable interfaces. CAL experimented spontaneous debonding in all tested groups. Key words:CAD/CAM ceramic, alumina, zirconia, resin cement, surface pre-treatment, sandblasting, silica-coating, chemical aging, bond degradation, microtensile bond strength. PMID:22322517
Al-Thagafi, Rana; Al-Zordk, Walid; Saker, Samah
2016-01-01
To test the effect of surface conditioning protocols on the reparability of CAD/CAM zirconia-reinforced lithium silicate ceramic compared to lithium-disilicate glass ceramic. Zirconia-reinforced lithium silicate ceramic (Vita Suprinity) and lithium disilicate glass-ceramic blocks (IPS e.max CAD) were categorized into four groups based on the surface conditioning protocol used. Group C: no treatment (control); group HF: 5% hydrofluoric acid etching for 60 s, silane (Monobond-S) application for 60 s, air drying; group HF-H: 5% HF acid etching for 60 s, application of silane for 60 s, air drying, application of Heliobond, light curing for 20 s; group CO: sandblasting with CoJet sand followed by silanization. Composite resin (Tetric EvoCeram) was built up into 4 x 6 x 3 mm blocks using teflon molds. All specimens were subjected to thermocycling (5000x, 5°C to 55°C). The microtensile bond strength test was employed at a crosshead speed of 1 mm/min. SEM was employed for evaluation of all the debonded microbars, the failure type was categorized as either adhesive (failure at adhesive layer), cohesive (failure at ceramic or composite resin), or mixed (failure between adhesive layer and substrate). Two-way ANOVA and the Tukey's HSD post-hoc test were applied to test for significant differences in bond strength values in relation to different materials and surface pretreatment (p < 0.05). The highest microtensile repair bond strength for Vita Suprinity was reported in group CO (33.1 ± 2.4 MPa) and the lowest in group HF (27.4 ± 4.4 MPa). Regarding IPS e.max CAD, group CO showed the highest (30.5 ± 4.9 MPa) and HF the lowest microtensile bond strength (22.4 ± 5.7 MPa). Groups HF, HF-H, and CO showed statistically significant differences in terms of all ceramic types used (p < 0.05). The control group showed exclusively adhesive failures, while in HF, HF-H, and CO groups, mixed failures were predominant. Repair bond strength to zirconia-reinforced lithium silicate ceramics and lithium-disilicate glass ceramic could be improved when ceramic surfaces are sandblasted with CoJet sand followed by silanization.
Dalby, Robert; Ellakwa, Ayman; Millar, Brian; Martin, F. Elizabeth
2012-01-01
Objectives. To examine the effect of immediate dentin sealing (IDS), with dentin bonding agents (DBAs) applied to freshly cut dentin, on the shear bond strength of etched pressed ceramic luted to dentin with RelyX Unicem (RXU) cement. Method. Eighty extracted noncarious third molars were ground flat to expose the occlusal dentin surfaces. The teeth were randomly allocated to five groups (A to E) of sixteen teeth each. Groups A to D were allocated a dentin bonding agent (Optibond FL, One Coat Bond, Single Bond, or Go!) that was applied to the dentin surface to mimic the clinical procedure of IDS. These specimen groups then had etched glass ceramic discs (Authentic) luted to the sealed dentin surface using RXU. Group E (control) had etched glass ceramic discs luted to the dentin surface (without a dentin bonding agent) using RXU following the manufacturer's instructions. All specimens were stored for one week in distilled water at room temperature and then shear stressed at a constant cross-head speed of 1 mm per minute until failure. Statistical analysis was performed by ANOVA followed by post hoc Tukey HSD method (P < 0.05) applied for multiple paired comparisons. Results. The shear bond strength results for group A to E ranged from 6.94 ± 1.53 to 10.03 ± 3.50 MPa. One-way ANOVA demonstrated a difference (P < 0.05) between the groups tested and the Tukey HSD demonstrated a significant (P < 0.05) difference between the shear bond strength (SBS) of Optibond FL (Group A) and Go! (Group D). There was no statistical difference (P > 0.05) in the SBS between the test groups (A–D) or the control (group E). Conclusion. IDS using the dentin bonding agents tested does not statistically (P > 0.05) affect the shear bond strength of etched pressed ceramic luted to dentin with RXU when compared to the control. PMID:22287963
Hooshmand, Tabassom; Rostami, Golriz; Behroozibakhsh, Marjan; Fatemi, Mostafa; Keshvad, Alireza; van Noort, Richard
2012-02-01
To evaluate the effect of HF acid etching and silane treatment on the interfacial fracture toughness of a self-adhesive and two conventional resin-based cements bonded to a lithium disilicate glass ceramic. Lithium disilicate glass ceramic discs were prepared with two different surface preparations consisting of gritblasted with aluminium oxide, and gritblasted and etched with hydrofluoric acid. Ceramic surfaces with a chevron shaped circular hole were treated by an optimized silane treatment followed by an unfilled resin and then three different resin cements (Variolink II, Panavia F2, and Multilink Sprint). Specimens were kept in distilled water at 37°C for 24h and then subjected to thermocycling. The interfacial fracture toughness was measured and mode of failures was also examined. Data were analysed using analysis of variance followed by T-test analysis. No statistically significant difference in the mean fracture toughness values between the gritblasted and gritblasted and etched surfaces for Variolink II resin cement was found (P>0.05). For the gritblasted ceramic surfaces, no significant difference in the mean fracture toughness values between Panavia F2 and Variolink II was observed (P>0.05). For the gritblasted and etched ceramic surfaces, a significantly higher fracture toughness for Panavia F2 than the other cements was found (P<0.05). The interfacial fracture toughness for the lithium disilicate glass ceramic system was affected by the surface treatment and the type of luting agent. Dual-cured resin cements demonstrated a better bonding efficacy to the lithium disilicate glass ceramic compared to the self-adhesive resin cement. The lithium disilicate glass ceramic surfaces should be gritblasted and etched to get the best bond when used with Panavia F2 and Multilink Sprint resin cements, whereas for the Variolink II only gritblasting is required. The best bond overall is achieved with Panavia F2. Copyright © 2011 Elsevier Ltd. All rights reserved.
Adhesive bone bonding prospects for lithium disilicate ceramic implants
NASA Astrophysics Data System (ADS)
Vennila Thirugnanam, Sakthi Kumar
Temporomandibular Joint (TMJ) implants articulating mandible with temporal bone in humans have a very high failure rate. Metallic TMJ implants available in the medical market are not osseointegrated, but bond only by mechanical interlocking using screws which may fail, mandating a second surgery for removal. Stress concentration around fixture screws leads to aseptic loosening or fracture of the bone. It has been proposed that this problem can be overcome by using an all-ceramic TMJ implant bonded to bone with dental adhesives. Structural ceramics are promising materials with an excellent track record in the field of dentis.
Papageorgiou, Spyridon N; Keilig, Ludger; Vandevska-Radunovic, Vaska; Eliades, Theodore; Bourauel, Christoph
2017-12-01
Torque of the maxillary incisors is crucial to occlusal relationship and esthetics and can be influenced by many factors. The aim of this study was to assess the relative influence of the material of the orthodontic appliance (adhesive, bracket, ligature, and wire) on tooth displacements and developed stresses/strains after torque application. A three-dimensional upper right central incisor with its periodontal ligament (PDL) and alveolus was modeled. A 0.018-in. slot discovery® (Dentaurum, Ispringen, Germany) bracket with a rectangular 0.018 x 0.025-in. wire was generated. The orthodontic appliance varied in the material of its components: adhesive (composite resin or resin-modified glass ionomer cement), bracket (titanium, steel, or ceramic), wire (beta-titanium or steel), and ligature (elastomeric or steel). A total of 24 models were generated, and a palatal root torque of 5° was applied. Afterwards, crown and apex displacement, strains in the PDL, and stresses in the bracket were calculated and analyzed. The labial crown displacement and the palatal root displacement of the tooth were mainly influenced by the material of the wire (up to 150% variation), followed by the material of the bracket (up to 19% variation). The magnitude of strains developed in the PDL was primarily influenced by the material of the wire (up to 127% variation), followed by the material of the bracket (up to 30% variation) and the ligature (up to 13% variation). Finally, stresses developed at the bracket were mainly influenced by the material of the wire (up to 118% variation) and the bracket (up to 59% variation). The material properties of the orthodontic appliance and all its components should be considered during torque application. However, these in silico results need to be validated in vivo before they can be clinically extrapolated.
Foxton, Richard M; Cavalcanti, Andrea N; Nakajima, Masatoshi; Pilecki, Peter; Sherriff, Martyn; Melo, Luciana; Watson, Timothy F
2011-02-01
The erbium laser has been introduced for cutting enamel and dentin and may have an application in the surface modification of high-strength aluminum oxide and zirconia ceramics. The aim of this study was to evaluate the durability of the bond of conventional dual-cured resin cements to Procera Al(2)O(3) and zirconium oxide ceramics after surface treatment with air abrasion and erbium laser. One hundred twenty Al(2)O(3) and 120 zirconia specimens measuring 3 × 3 × 0.7 mm(3) were divided equally into three groups, and their surfaces treated as follows: either untreated (controls), air abraded with Al(2)O(3) particles, or erbium-laser-treated at a power setting of 200 mJ. The surface of each specimen was then primed and bonded with one of two dual-cured resin cements (either SCP-100 Ceramic Primer and NAC-100 or Monobond S and Variolink II) using a 1-mm thick Tygon tube mold with a 0.75-mm internal bore diameter. After 24 hours and 6 months of water storage at 37°C, a microshear bond strength test was performed at a crosshead speed of 1 mm/min. Surface morphology was examined using a confocal microscope, and failure modes were observed using an optical microscope. The data were analyzed using the Kaplan-Meier nonparametric survival analysis. In the case of zirconia, air abrasion and Erbium:yttrium-aluminum-garnet (Er:YAG) laser treatment of the ceramic surface resulted in a significant reduction in the bond strengths of both resin cements after 6 months water storage; however, when the zirconia surface was left untreated, the SCP-100/NAC-100 group did not significantly reduce in bond strength. In the case of alumina, no treatment, air abrasion and Er:YAG laser treatment of the surface led to no significant reduction in the bond strengths of the three SCP-100/NAC-100 groups after 6 months water storage, whereas all three Monobond S/Variolink II groups showed a significant reduction. Er:YAG laser treatment of the zirconia surface did not result in a durable resin cement/ceramic bond; however, a durable bond between a conventional dual-cured resin cement and Procera All Ceram and Procera All Zirkon was formed using a ceramic primer containing the phosphate monomer, MDP, without any additional surface treatment. © 2011 by The American College of Prosthodontists.
da Silva, Eduardo M; Miragaya, Luciana; Sabrosa, Carlos Eduardo; Maia, Lucianne C
2014-09-01
The behavior of the luting cement and the cementation protocol are essential in the clinical success of ceramic restorations. The purpose of this study was to evaluate the bond stability of 2 resin cements and a yttria-stabilized tetragonal polycrystalline zirconia (Y-TZP) ceramic submitted to 2 surface treatments. Sixty plates of a Y-TZP ceramic were assigned to 3 groups according to the surface treatments: control, as sintered surface; methacryloxydecyl dihydrogen phosphate (MDP), coated with an MDP-based primer, and tribochemical silica-coating (TSC), coated with tribochemical silica. The plates of each group were further divided into 2 subgroups according to the resin cement as follows: RelyX adhesive resin cement (conventional) and RelyX Unicem (self-adhesive). Cylinders of resin cements (∅=0.75 mm × 0.5 mm in height) were built up on the ceramic surfaces, and the plates stored in distilled water at 37°C for either 24 hours or 6 months before being submitted to a microshear bond strength test. The data were submitted to 3-way ANOVA and the Tukey honestly significant difference test (α=.05). Three-way ANOVA showed statistical significance for the 3 independent factors: resin cement, surface treatment, and period of water immersion (P<.001). Unicem presented the highest microshear bond strength after 24 hours (MDP, 37.4 ±2.3 and TSC, 36.2 ±2.1 MPa). Except for RelyX adhesive resin cement applied on ceramic surfaces treated with TSC, the microshear bond strength of all the other groups decreased after 6 months of aging in water. The microshear bond strength decreased most in the control groups (-81.5% for ARC and -93.1% for Unicem). In the group treated with TSC, the microshear bond strength for Unicem decreased by 54.8% and in that treated with MDP-based primer by -42.5%. In the group treated with MDP-based primer, the microshear bond strength for RelyX ARC decreased by -52.8%. Irrespective of surface treatments, self-adhesive resin cement was not able to maintain the bond to Y-TZP ceramic after 6 months of aging in water. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Borgia Botto, Ernesto; Baró, Rosario; Borgia Botto, José Luis
2016-08-01
This retrospective longitudinal study evaluated the clinical performance of bonded ceramic inlays/onlays, placed by the first author in his private practice, in a 5 to 18-year period. The patients evaluated had been treated in the office for at least 7 years and were still in the practice up to year 2013. 130 randomly selected patients agreed to participate in the study. 93 bonded ceramic inlays/onlays (BCRs), were placed on posterior teeth in 47 subjects. Gender, age, tooth preparation, number, type, extent, location, quality and survival of the restorations, ceramic materials, luting resins cements, parafunctional habits, secondary caries and maintenance therapy were the variables evaluated. Cohen 's Kappa coefficient, on the quality analysis of the restorations, ranged from 0.78 to 1. Fisher 's exact test, Chi Square test, Kruskal-Wallis test and Mann-Whitney non-parametric test were indicated to analyze significant differences. At the initial examination, 87 (93.5%) restorations were in function and six failed (6.5%). 81 (93%) were rated as clinical successes. The observed mean survival time of those that remained functional was 11 years. The standard deviation was 4 years, with a 95% CI for the overall observed mean survival time (10 years-11 years, 9 months). 87 of 93 BCRs had a functional success of 93.5%, with an observed mean survival of 11 years. The clinical performance of bonded ceramic onlays was very acceptable. Bonded ceramic onlays showed a predictable, esthetic, and functional treatment, with acceptable longevity.
Laminated composite of magnetic alloy powder and ceramic powder and process for making same
Moorhead, Arthur J.; Kim, Hyoun-Ee
1999-01-01
A laminated composite structure of alternating metal powder layers, and layers formed of an inorganic bonding media powder, and a method for manufacturing same are discosed. The method includes the steps of assembling in a cavity alternating layers of a metal powder and an inorganic bonding media of a ceramic, glass, and glass-ceramic. Heat, with or without pressure, is applied to the alternating layers until the particles of the metal powder are sintered together and bonded into the laminated composite structure by the layers of sintered inorganic bonding media to form a strong composite structure. The method finds particular application in the manufacture of high performance magnets wherein the metal powder is a magnetic alloy powder.
Laminated composite of magnetic alloy powder and ceramic powder and process for making same
Moorhead, A.J.; Kim, H.
1999-08-10
A laminated composite structure of alternating metal powder layers, and layers formed of an inorganic bonding media powder, and a method for manufacturing same are disclosed. The method includes the steps of assembling in a cavity alternating layers of a metal powder and an inorganic bonding media of a ceramic, glass, and glass-ceramic. Heat, with or without pressure, is applied to the alternating layers until the particles of the metal powder are sintered together and bonded into the laminated composite structure by the layers of sintered inorganic bonding media to form a strong composite structure. The method finds particular application in the manufacture of high performance magnets wherein the metal powder is a magnetic alloy powder. 9 figs.
Stephens, Jr., John J.; Hosking, F. Michael; Yost, Frederick G.
2003-12-16
A binary allow braze composition has been prepared and used in a bonded article of ceramic-ceramic and ceramic-metal materials. The braze composition comprises greater than approximately 95 wt % silver, greater than approximately 2 wt % hafnium and less than approximately 4.1 wt % hafnium, and less than approximately 0.2 wt % trace elements. The binary braze alloy is used to join a ceramic material to another ceramic material or a ceramic material, such as alumina, quartz, aluminum nitride, silicon nitride, silicon carbide, and mullite, to a metal material, such as iron-based metals, cobalt-based metals, nickel-based metals, molybdenum-based metals, tungsten-based metals, niobium-based metals, and tantalum-based metals. A hermetic bonded article is obtained with a strength greater than 10,000 psi.
The strength of sintered and adhesively bonded zirconia/veneer-ceramic bilayers.
Costa, Anna Karina F; Borges, Alexandre Luiz S; Fleming, Garry James P; Addison, Owen
2014-10-01
Recently all-ceramic restorative systems have been introduced that use CAD/CAM technology to fabricate both the Y-TZP core and veneer-ceramic layers. The aim was to identify whether the CAD/CAM approach resulted in more favourable stressing patterns in the veneer-ceramic when compared with a conventionally sintered Y-TZP core/veneer-ceramic. Nominally identical Vita VM9 veneer-ceramic disc-shaped specimens (0.7mm thickness, 12mm diameter) were fabricated. 20 specimens received a surface coating of resin-cement (Panavia 21); 20 specimens were bonded with the resin-cement to fully sintered Y-TZP (YZ Vita Inceram Vita) discs (0.27mm thickness, 12mm diameter). A final series of 20 Y-TZP core/veneer-ceramic specimens were manufactured using a conventional sintering route. Biaxial flexure strength was determined in a ball-on-ring configuration and stress at the fracture origin calculated using multilayer closed-form analytical solutions. Fractography was undertaken using scanning electron microscopy. The experimental test was simulated using Finite Element Analysis. Group mean BFS were compared using a one-way ANOVA and post hoc Tukey tests at a 95% significance level. Resin cement application resulted in significant strengthening of the veneer-ceramic and further significant strengthening of the veneer-ceramic (p<0.01) occurred following bonding to the Y-TZP core. The BFS calculated at the failure origin for conventionally sintered specimens was significantly reduced when compared with the adhesively bonded Y-TZP/veneer-ceramic. Under the test conditions employed adhesive cementation between CAD/CAM produced Y-TZP/veneer-ceramic layers appears to offer the potential to induce more favourable stress states within the veneer-ceramic when compared with conventional sintered manufacturing routes. The current investigation suggests that the stressing patterns that arise in all-ceramic restorations fabricated using CAD/CAM for both the core and veneer-ceramic layers differ from those that occur in conventionally sintered bilayer restorations. Further work is required to ascertain whether such differences will translate into improved clinical outcomes. Copyright © 2014 Elsevier Ltd. All rights reserved.
This experimental study was conducted to evaluate the stabilization and encapsulation technique developed by Argonne National Laboratory, called the Chemically Bonded Phosphate Ceramics technology for Hg- and HgCl2-contaminated synthetic waste materials. Leachability ...
Pasha, Azam; Sindhu, D; Nayak, Rabindra S; Mamatha, J; Chaitra, K R; Vishwakarma, Swati
2015-01-01
Background and Objectives: This study was conducted to evaluate the effect of two soft drinks, Coca-Cola and Mirinda orange on bracket bond strength, on adhesive remnant on teeth after debonding the bracket, and to observe by means of scanning electron microscope (SEM) the effect of these drinks on intact and sealed enamel. Methods: 120 non-carious maxillary premolar teeth already extracted for Orthodontic purposes were taken and divided into three groups, i.e., Coca-Cola drink, Mirinda orange, and control (artificial saliva) group. Brackets were bonded using conventional methods. Teeth were kept in soft drinks for 15 days, for 15 min, 3 times a day, separated by intervals of 2 h. At other times, they were kept in artificial saliva. The samples, thus obtained were evaluated for shear bond strength using the universal testing machine and subsequently subjected for adhesive remnant index (ARI) scores. SEM study on all the three groups was done for evaluating enamel surface of the intact and sealed enamel. Results: The lowest mean resistance to shearing forces was shown by Mirinda orange group (5.30 ± 2.74 Mpa) followed by Coca-Cola group (6.24 ± 1.59 Mpa) and highest resistance to shearing forces by control group (7.33 ± 1.72 Mpa). The ARI scores revealed a cohesive failure in control samples and an adhesive failure in Mirinda and cola samples. SEM results showed areas of defect due to erosion caused by acidic soft drinks on intact and sealed enamel surface. Conclusion: Mirinda group showed the lowest resistance to shearing forces, followed by Coca-Cola group and with the highest resistance to shearing forces by the control group. There were significant differences between the control group and the study groups. Areas of defects, which were caused by erosion related to acidic soft drinks on the enamel surface around the adhesive, were seen. Areas of defects caused by Coca-Cola were more extensive when compared to Mirinda orange drink. PMID:26668477
Effect of Jig Design and Assessment of Stress Distribution in Testing Metal-Ceramic Adhesion.
Özcan, Mutlu; Kojima, Alberto Noriyuki; Nishioka, Renato Sussumu; Mesquita, Alfredo Mikail Melo; Bottino, Marco Antonio; Filho, Gilberto Duarte
2016-12-01
In testing adhesion using shear bond test, a combination of shear and tensile forces occur at the interface, resulting in complex stresses. The jig designs used for this kind of test show variations in published studies, complicating direct comparison between studies. This study evaluated the effect of different jig designs on metal-ceramic bond strength and assessed the stress distribution at the interface using finite element analysis (FEA). Metal-ceramic (Metal: Ni-Cr, Wiron 99, Bego; Ceramic: Vita Omega 900, Vita) specimens (N = 36) (diameter: 4 mm, veneer thickness: 4 mm; base diameter: 5 mm, thickness: 1 mm) were fabricated and randomly divided into three groups (n = 12 per group) to be tested using one of the following jig designs: (a) chisel (CH) (ISO 11405), (b) steel strip (SS), (c) piston (PI). Metal-ceramic interfaces were loaded under shear until debonding in a universal testing machine (0.5 mm/min). Failure types were evaluated using scanning electron microscopy (SEM). FEA was used to study the stress distribution using different jigs. Metal-ceramic bond strength data (MPa) were analyzed using ANOVA and Tukey's tests (α = 0.05). The jig type significantly affected the bond results (p = 0.0001). PI type of jig presented the highest results (MPa) (p < 0.05) (58.2 ± 14.8), followed by CH (38.7 ± 7.6) and SS jig type (23.3 ± 4.2) (p < 0.05). Failure types were exclusively a combination of cohesive failure in the opaque ceramic and adhesive interface failure. FEA analysis indicated that the SS jig presented slightly more stress formation than with the CH jig. The PI jig presented small stress concentration with more homogeneous force distribution compared to the CH jig where the stress concentrated in the area where the force was applied. Metal-ceramic bond strength was affected by the jig design. Accordingly, the results of in vitro studies on metal-ceramic adhesion should be evaluated with caution. When adhesion of ceramic materials to metals is evaluated in in vitro studies, it should be noted that the loading jig type affects the results. Clinical observations should report on the location and type of ceramic fractures in metal-ceramic reconstructions so that the most relevant test method can be identified. © 2015 by the American College of Prosthodontists.
A subjective comparison of two lingual bracket systems.
Stamm, Thomas; Hohoff, Ariane; Ehmer, Ulrike
2005-08-01
The purpose of this prospective, longitudinal study was to compare the influence of two lingual bracket systems on subjective oral comfort, speech, mastication and oral hygiene. Forty-two native speakers of standard German (32 females, 10 males; mean age 27.1 years, standard deviation 12.2) were enrolled and completed a standardized questionnaire directly before insertion of lingual brackets (T0), within 24 hours of bond-up (T1) and 3 months (+/- 1 week) later (T2). Eighteen of the patients were treated with prefabricated brackets (Ormco, seventh generation) (PB group) and 24 with customized brackets (Incognito) (CB group). While no significant intergroup differences were recorded at any of the times with respect to tongue position, conversation pattern, swallowing or oral hygiene, the CB group experienced significantly fewer tongue space restrictions, speech disturbances and impairments in chewing and biting than the PB group at T1 and T2. At T2, pressure sores, reddening or lesions to the tongue were recorded significantly less often in the CB group than in the PB group. This enhanced patient comfort in the CB group was attributed to the smaller dimensions of the customized brackets. This aspect could play a role in attracting more patients to lingual orthodontics in the future. Information given to the patient on the duration and extent of the restrictions associated with lingual orthodontics must be differentiated according to the bracket system used.
Ceramic thermal barrier coating for rapid thermal cycling applications
Scharman, Alan J.; Yonushonis, Thomas M.
1994-01-01
A thermal barrier coating for metal articles subjected to rapid thermal cycling includes a metallic bond coat deposited on the metal article, at least one MCrAlY/ceramic layer deposited on the bond coat, and a ceramic top layer deposited on the MCrAlY/ceramic layer. The M in the MCrAlY material is Fe, Ni, Co, or a mixture of Ni and Co. The ceramic in the MCrAlY/ceramic layer is mullite or Al.sub.2 O.sub.3. The ceramic top layer includes a ceramic with a coefficient of thermal expansion less than about 5.4.times.10.sup.-6 .degree.C.sup.-1 and a thermal conductivity between about 1 J sec.sup.-1 m.sup.-1 .degree.C.sup.-1 and about 1.7 J sec.sup.-1 m.sup.-1 .degree.C.sup.-1.
Large Area Active Brazing of Multi-tile Ceramic-Metal Structures
2012-05-01
metallurgical bonds. The major disadvantage of using active brazing for metals and ceramics is the high processing temperature required that results in...steels) and form strong, metallurgical bonds. However, the high processing temperatures result in large strain (stress) build-up from the inherent...metals such as titanium alloys and stainless steels) and form strong, metallurgical bonds. However, the high processing temperatures result in large
Bone bonding in bioactive glass ceramics combined with a new synthesized agent TAK-778.
Kato, H; Neo, M; Tamura, J; Nakamura, T
2001-11-01
We studied the stimulatory effects of TAK-778, a new synthetic 3-benzothiepin derivative that promotes osteoblast differentiation, in the bonding of bone to bioactive glass ceramic implants in rabbit tibiae. Smooth-surfaced, rectangular plates (15 x 10 x 2 mm) made of apatite-wollastonite-containing glass ceramic were implanted bilaterally into the proximal metaphyses of rabbit tibiae. Sustained-release microcapsules containing TAK-778 were packed into the medullary cavity in one limb and untreated microcapsules were packed into the contralateral limb to serve as a paired control. At 4, 8, and 16 weeks after implantation, bonding at the bone/implant interfaces was evaluated using a detaching test and histological examination of undecalcified specimens. The tensile failure load increased during weeks 4 to 16 in both groups; the tensile failure load in the TAK-778-treated group was significantly greater than that in the control group at each interval after implantation. Histologically, the TAK-778-treated specimens showed greater active new bone formation mainly in the medullary cavity and more extensive bonding between the implant and bone than the untreated specimens. The results of this study suggest that adding the bone formation-promoting TAK-778 to bioactive glass ceramic implants may significantly accelerate bone apposition to the implants and improve the bonding process at the interface. This would help to establish earlier and stronger bonding of orthopedic ceramic implants to the surrounding bone tissue. Copyright 2001 John Wiley & Sons, Inc.
[Compatibility between high-strength dental ceramic (type A) and vintage AL veneering porcelain].
Cui, Jun; Chao, Yong-lie; Meng, Yu-kun
2006-05-01
To investigate the interface bond strength and compatibility between High-Strength Dental Ceramic (type A) and Vintage AL veneering porcelain. Twenty bar-shape specimens (ten Vintage AL and ten Vitadur alpha) were fabricated, and shear test was conducted to determine the bond strength. A bilayered composite (1 mm core ceramic and 0.8 mm Vintage AL) was prepared and then fractured for scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis. Ten all-ceramic anterior crowns were fabricated and the temperatures of thermal shock resistance were tested. The mean values of the bond strength measured were (55.52 +/- 14.64) MPa and (59.37 +/- 13.93) MPa for Vintage AL and Vitadur alpha respectively (P>0.05). SEM showed tight connection between the High-Strength Dental Ceramic (type A) and the veneering porcelain. Element diffusion was also confirmed by energy dispersive spectroscopy (EDS) analysis. The temperature of thermal shock resistance of this system was (179 +/- 15) degrees C. Vintage AL veneering porcelain has good thermal and chemical compatibility with High-Strength Dental Ceramic (type A).
Use of laser in orthodontics: applications and perspectives
Fornaini, C; Merigo, E; Vescovi, P; Lagori, G; Rocca, JP
2013-01-01
Laser technology got in these years a more and more important role in modern dentistry and, recently, also in orthodontics was proposed the utilization of laser devices. The aim of this work is to describe the utilization of this technology both in soft and hard oral tissues to improve orthodontic treatment. Several cases, with different wavelengths (532, 810, 980, 1064, 2940 and 10600 nm) and in different times of the treatment (before, during and after) are presented. All the cases reported showed, according to the literature, that the use of the laser related to orthodontic treatment offers several advantages when compared with conventional methods. In the soft tissues surgery it allows to reduce or eliminate the use of anesthetic injection, to avoid use of sutures and to bond bracket in dry enamel; associated with orthophosphoric acid, it gives a stronger adhesion of the brackets to the enamel and, in the case of porcelain brackets, it detaches them without damages; at low power (LLLT) it permits to control the pain of the first period after bonding and, by increasing the speed of teeth movement in the bone, reduces the time of the treatment. PMID:24155556
Enamel Thickness before and after Orthodontic Treatment Analysed in Optical Coherence Tomography
Koprowski, Robert; Safranow, Krzysztof; Woźniak, Krzysztof
2017-01-01
Despite the continuous development of materials and techniques of adhesive bonding, the basic procedure remains relatively constant. The technique is based on three components: etching substance, adhesive system, and composite material. The use of etchants during bonding orthodontic brackets carries the risk of damage to the enamel. Therefore, the article examines the effect of the manner of enamel etching on its thickness before and after orthodontic treatment. The study was carried out in vitro on a group of 80 teeth. It was divided into two subgroups of 40 teeth each. The procedure of enamel etching was performed under laboratory conditions. In the first subgroup, the classic method of enamel etching and the fifth-generation bonding system were used. In the second subgroup, the seventh-generation (self-etching) bonding system was used. In both groups, metal orthodontic brackets were fixed and the enamel was cleaned with a cutter fixed on the micromotor after their removal. Before and after the treatment, two-dimensional optical coherence tomography scans were performed. The enamel thickness was assessed on the two-dimensional scans. The average enamel thickness in both subgroups was not statistically significant. PMID:28243604
Wang, Xia; Zhang, Luyan; Chen, Gang
2011-11-01
As a self-regulating heating device, positive temperature coefficient ceramic heater was employed for hot embossing and thermal bonding of poly(methyl methacrylate) microfluidic chip because it supplied constant-temperature heating without electrical control circuits. To emboss a channel plate, a piece of poly(methyl methacrylate) plate was sandwiched between a template and a microscopic glass slide on a positive temperature coefficient ceramic heater. All the assembled components were pressed between two elastic press heads of a spring-driven press while a voltage was applied to the heater for 10 min. Subsequently, the embossed poly(methyl methacrylate) plate bearing negative relief of channel networks was bonded with a piece of poly(methyl methacrylate) cover sheet to obtain a complete microchip using a positive temperature coefficient ceramic heater and a spring-driven press. High quality microfluidic chips fabricated by using the novel embossing/bonding device were successfully applied in the electrophoretic separation of three cations. Positive temperature coefficient ceramic heater indicates great promise for the low-cost production of poly(methyl methacrylate) microchips and should find wide applications in the fabrication of other thermoplastic polymer microfluidic devices.
Modified silicon carbide whiskers
Tiegs, Terry N.; Lindemer, Terrence B.
1991-01-01
Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparaging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.
Modified silicon carbide whiskers
Tiegs, T.N.; Lindemer, T.B.
1991-05-21
Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.
Robust Joining and Integration Technologies for Advanced Metallic, Ceramic, and Composite Systems
NASA Technical Reports Server (NTRS)
Singh, M.; Shpargel, Tarah; Morscher, Gregory N.; Halbig, Michael H.; Asthana, Rajiv
2006-01-01
Robust integration and assembly technologies are critical for the successful implementation of advanced metallic, ceramic, carbon-carbon, and ceramic matrix composite components in a wide variety of aerospace, space exploration, and ground based systems. Typically, the operating temperature of these components varies from few hundred to few thousand Kelvin with different working times (few minutes to years). The wide ranging system performance requirements necessitate the use of different integration technologies which includes adhesive bonding, low temperature soldering, active metal brazing, diffusion bonding, ARCJoinT, and ultra high temperature joining technologies. In this presentation, a number of joining examples and test results will be provided related to the adhesive bonding and active metal brazing of titanium to C/C composites, diffusion bonding of silicon carbide to silicon carbide using titanium interlayer, titanium and hastelloy brazing to silicon carbide matrix composites, and ARCJoinT joining of SiC ceramics and SiC matrix composites. Various issues in the joining of metal-ceramic systems including thermal expansion mismatch and resulting residual stresses generated during joining will be discussed. In addition, joint design and testing issues for a wide variety of joints will be presented.
Saraçoğlu, A; Cura, C; Cötert, H S
2004-08-01
This in vitro study was conducted to evaluate the interaction between the shear bond strength and the surface treatment method for a commercial dental ceramic. Ninety bonded ceramic units were manufactured for this study. Each unit was made by luting two cylinder-shaped ceramic samples to each other with a resin-composite luting agent. The units were then divided into nine groups, containing 10 units in each group. Samples from each group were treated with one of the following: etching with 4.9% hydrofluoric acid for 10, 20 and 40 s, 9.5% hydrofluoric acid for 10, 20 and 40 s, 40% orthophosphoric acid for 40 s, air abrasion with alumina in 50-microm particles, and grinding with a high-speed diamond bur. The treated samples were then silanated and luted with a resin-composite luting agent. The luted units were then loaded to failure. Two samples from each group were neither silanated nor luted after the surface treatment procedure, and morphological changes obtained by various surface treatment regimens were investigated by scanning electron microscopy. A statistically significant difference was observed among the mean shear bond strengths of the groups prepared with different surface treatment techniques (P = 0.00). Hydrofluoric acid appeared to be the most suitable chemical medium to produce a reliable ceramic bond. Etching time and concentration of the acidic medium were also observed as important prognostic variates. Orthophosphoric acid treatment was observed to be the least effective surface treatment method on the heat-pressed ceramic samples. Physical applications such as bur grinding and air blasting maintained stronger bonds than the orthophosphoric acid, while producing weaker bonds than surfaces treated with hydrofluoric acid in all concentrations and etching periods. The effect of the silane priming agent was not considered in this study. Copyright 2004 Blackwell Publishing Ltd.
Sharon, Eldad; Sharabi, Revital; Eden, Adi; Zabrovsky, Asher; Ben-Gal, Gilad; Sharon, Esi; Houri-Haddad, Yael; Beyth, Nurit
2018-01-01
Enamel demineralization is a common problem found in patients using orthodontic devices, such as orthodontic braces. It was found that Streptoccocus mutans growth increases adjacent to orthodontic devices, which may result in caries development. Incorporated antibacterial quaternary ammonium polyethylenimine (QPEI) nanoparticles were previously shown to be highly efficacious against various bacteria. Combining antibacterial materials in orthodontic cement may be advantageous to prevent bacterial outgrowth adjacent to orthodontic brackets. The aim was to evaluate the efficiency of orthodontic cement containing QPEI nanoparticles in reducing S. mutans and Lactobacillus casei outgrowth adjacent to orthodontic brackets. Orthodontic brackets were bonded to the buccal surfaces of extracted lower incisors. The antibacterial effect on S. mutans and L. casei outgrowth of Neobond bracket adhesive orthodontic cement with and without QPEI nanoparticles was compared. The antibacterial effect was evaluated using crystal violet staining and bacterial count (CFU/mL). The teeth in the experimental group, with the QPEI nanoparticles cement, showed significantly lower optical density (OD) values and CFU counts of S. mutans and L. casei than the teeth in the control group (p < 0.05). Based on the results, it can be concluded that orthodontic cement containing QPEI nanoparticles significantly inhibits S. mutans and L. casei growth around orthodontic brackets. PMID:29584643
Sharon, Eldad; Sharabi, Revital; Eden, Adi; Zabrovsky, Asher; Ben-Gal, Gilad; Sharon, Esi; Pietrokovski, Yoav; Houri-Haddad, Yael; Beyth, Nurit
2018-03-27
Enamel demineralization is a common problem found in patients using orthodontic devices, such as orthodontic braces. It was found that Streptoccocus mutans growth increases adjacent to orthodontic devices, which may result in caries development. Incorporated antibacterial quaternary ammonium polyethylenimine (QPEI) nanoparticles were previously shown to be highly efficacious against various bacteria. Combining antibacterial materials in orthodontic cement may be advantageous to prevent bacterial outgrowth adjacent to orthodontic brackets. The aim was to evaluate the efficiency of orthodontic cement containing QPEI nanoparticles in reducing S. mutans and Lactobacillus casei outgrowth adjacent to orthodontic brackets. Orthodontic brackets were bonded to the buccal surfaces of extracted lower incisors. The antibacterial effect on S. mutans and L. casei outgrowth of Neobond bracket adhesive orthodontic cement with and without QPEI nanoparticles was compared. The antibacterial effect was evaluated using crystal violet staining and bacterial count (CFU/mL). The teeth in the experimental group, with the QPEI nanoparticles cement, showed significantly lower optical density (OD) values and CFU counts of S. mutans and L. casei than the teeth in the control group ( p < 0.05). Based on the results, it can be concluded that orthodontic cement containing QPEI nanoparticles significantly inhibits S. mutans and L. casei growth around orthodontic brackets.
Yetkiner, Enver; Ozcan, Mutlu; Wegehaupt, Florian Just; Wiegand, Annette; Eden, Ece; Attin, Thomas
2013-12-01
This study investigated the effect of a low-viscosity adhesive resin (Icon) applied after either hydrochloric (HCl) or phosphoric acid (H3PO4) on the adhesion of metal brackets to enamel. Failure types were analyzed. The crowns of bovine incisors (N = 20) were sectioned mesio-distally and inciso-gingivally, then randomly assigned to 4 groups according to the following protocols to receive mandibular incisor brackets: 1) H3PO4 (37%)+TransbondXT (3M UNITEK); 2) H3PO4 (37%)+Icon+TransbondXT; 3) HCl (15%)+Icon (DMG)+TransbondXT 4) HCl (15%)+Icon+Heliobond (Ivoclar Vivadent)+TransbondXT. Specimens were stored in distilled water at 37°C for 24 h and thermocycled (5000x, 5°C to 55°C). The shear bond strength (SBS) test was performed using a universal testing machine (1 mm/min). Failure types were classified according to the Adhesive Remnant Index (ARI). Contact angles of adhesive resins were measured (n = 5 per adhesive) on ceramic surfaces. No significant difference in SBS was observed, implying no difference between combinations of adhesive resins and etching agents (p = 0.712; ANOVA). The Weibull distribution presented significantly lower Weibull modulus (m) of group 3 (m = 2.97) compared to other groups (m = 5.2 to 6.6) (p < 0.05). The mean SBS results (MPa) in descending order were as follows: group 4 (46.7 ± 10.3) > group 1 (45.4 ± 7.9) > group 2 (44.2 ± 10.6) > group 3 (42.6 ± 15.5). While in groups 1, 3, and 4 exclusively an ARI score of 0 (no adhesive left on tooth) was observed, in group 2, only one specimen demonstrated score 1 (less than half of adhesive left on tooth). Contact angle measurements were as follows: Icon (25.86 ± 3.81 degrees), Heliobond (31.98 ± 3.17 degrees), TransbondXT (35 ± 2.21 degrees). Icon can be safely used with the conventional adhesives tested on surfaces etched with either HCl or H3PO4.
Monteiro, Jaiane Bandoli; Riquieri, Hilton; Prochnow, Catina; Guilardi, Luís Felipe; Pereira, Gabriel Kalil Rocha; Borges, Alexandre Luiz Souto; de Melo, Renata Marques; Valandro, Luiz Felipe
2018-06-01
To evaluate the effect of ceramic thickness on the fatigue failure load of two zirconia-reinforced lithium silicate (ZLS) glass-ceramics, adhesively cemented to a dentin analogue material. Disc-shaped specimens were allocated into 8 groups (n=25) considering two study factors: ZLS ceramic type (Vita Suprinity - VS; and Celtra Duo - CD), and ceramic thickness (1.0; 1.5; 2.0; and 2.5mm). A trilayer assembly (ϕ=10mm; thickness=3.5mm) was designed to mimic a bonded monolithic restoration. The ceramic discs were etched, silanized and luted (Variolink N) into a dentin analogue material. Fatigue failure load was determined using the Staircase method (100,000 cycles at 20Hz; initial fatigue load ∼60% of the mean monotonic load-to-failure; step size ∼5% of the initial fatigue load). A stainless-steel piston (ϕ=40mm) applied the load into the center of the specimens submerged in water. Fractographic analysis and Finite Element Analysis (FEA) were also performed. The ceramic thickness influenced the fatigue failure load for both ZLS materials: Suprinity (716N up to 1119N); Celtra (404N up to 1126N). FEA showed that decreasing ceramic thickness led to higher stress concentration on the cementing interface. Different ZLS glass-ceramic thicknesses influenced the fatigue failure load of the bonded system (i.e. the thicker the glass ceramic is, the higher the fatigue failure load will be). Different microstructures of the ZLS glass-ceramics might affect the fatigue behavior. FEA showed that the thicker the glass ceramic is, the lower the stress concentration at the tensile surface will be. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.
Reddy, Aileni Kaladhar; Kambalyal, Prabhuraj B; Patil, Santosh R; Vankhre, Mallikarjun; Khan, Mohammed Yaser Ahmed; Kumar, Thamtam Ramana
2016-01-01
Objective: To investigate the influence of silver (Ag), zinc oxide (ZnO), and titanium dioxide (TiO2) nanoparticles on shear bond strength (SBS). Materials and Methods: One hundred and twenty extracted premolars divided into four groups with thirty specimens in each group. Group 1 (control): brackets (American Orthodontics) were bonded with Transbond XT primer. Groups 2, 3, and 4: brackets (American Orthodontics) were bonded with adhesives incorporated with Ag, ZnO, and TiO2 nanoparticles in the concentration of 1.0% nanoparticles of Ag, 1.0% TiO2, and 1.0% ZnO weight/weight, respectively. An Instron universal testing machine AGS-10k NG (SHIMADZU) was used to measure the SBS. The data were analyzed by SPSS software and then, the normal distribution of the data was confirmed by Kolmogorov–Smirnov test. One-way ANOVA test and Tukey's multiple post hoc procedures were used to compare between groups. In all statistical tests, the significance level was set at 5% (P < 0.05). Results: A significant difference was observed between control (mean [standard deviation (SD)] 9.43 [3.03], confidence interval [CI]: 8.30–10.56), Ag (mean [SD]: 7.55 [1.29], CI: 7.07–8.03), ZnO (mean [SD]: 6.50 [1.15], CI: 6.07–6.93), and TiO2 (mean [SD]: 6.33 [1.51], CI: 5.77–0.89) with SBS (F = 16.8453, P < 0.05) at 5% level of significance. Conclusion: Incorporation of various nanoparticles into adhesive materials in minimal amounts may decrease SBS and may lead to the failure of bracket or adhesive. The limitation of this study is that it is an in vitro research and these results may not be comparable to what the expected bond strengths observed in vivo. Further clinical studies are needed to evaluate biological effects of adding such amounts of nanoparticles and approve such adhesives as clinically sustainable. PMID:27843887
Szep, Susanne; Schmid, Claudia; Weigl, Paul; Hahn, Lothar; Heidemann, Detlef
2003-01-01
There is no evidence-based information on how ceramic restorations with an adhesive bond between restoration material and composite cement may be influenced by a silicone disclosing agent. The aim of this study was to determine the effects of the silicone disclosing procedure on the shear bond strength of composite cements in the luting of industrial sintered and laboratory sintered ceramic restorations. Thirty standardized (15 x 10 x 9 mm) prefabricated ceramic specimens (Groups 1, 3, 5) and 30 standardized (15 x10 x 9 mm) conventionally sintered ceramic specimens (Groups 2, 4, 6) were roughened with sandpaper (800-grit). Each group contained 10 specimens. Groups 3 and 4 were conditioned with hydrofluoric acid and primed with silane solution after the use of a silicone disclosing procedure. Groups 1 and 2 served as the control groups, where no silicone disclosing procedure was performed. Groups 5 and 6 were insulated with glycerine before the silicone disclosing procedure. A glass tube (4.5 mm in diameter) was used to apply a cylinder of dual-polymerized composite cement to the conditioned surfaces. All specimens were submitted to 5000 thermocycles (5 degrees to 55 degrees C) to simulate the in vivo situation. The specimens were subjected to a shear-pull test at a constant crosshead speed of 5 mm/min with a universal testing machine. The comparative shear bond strengths were analyzed by use of Duncan's test (alpha=0.05). Shear bond strength values for Groups 1 (9.86 +/- 4.97 MPa) and 2 (9.56 +/- 4.47 Mpa) were obtained with no significant differences. Lower but significantly undifferent values were obtained for Groups 3 (7.49 +/- 4.67 MPa) and 4 (7.62 +/- 3.49 MPa) after the use of a silicone disclosing procedure. In Groups 5 (8.21 +/- 4.75 MPa) and 6 (8.22 +/- 3.59 MPa), including insulation with glycerine before the silicone disclosing procedure, no significant differences were obtained. Within the limitations of this study, the use of silicone disclosing procedures before conditioning the ceramic surface did not lead to a significant reduction of the shear bond strength between ceramic and composite cement. The ceramic materials used (industrial-sintered versus laboratory-sintered ceramic) had no significant influence on adhesion.
Xinyu, Luo; Xiangfeng, Meng
2017-02-01
This research estimated shear bond durability of zirconia and different substrates cemented by two self-adhesive resin cements (Clearfil SA Luting and RelyX U100) before and after aging conditioning. Machined zirconia ceramic discs were cemented with four kinds of core material (cobalt-chromium alloy, flowable composite resin core material, packable composite resin, and dentin) with two self-adhesive resin cements (Clearfil SA Luting and RelyX U100). All specimens were divided into eight test groups, and each test group was divided into two subgroups. Each subgroup was subjected to shear test before and after 10 000 thermal cycles. All factors (core materials, cements, and thermal cycle) significantly influenced bond durability of zirconia ceramic (P<0.00 1). After 10 000 thermal cycles, significant decrease was not observed in shear bond strength of cobalt-chromium alloy luted with Clearfil SA Luting (P>0.05); observed shear bond strength was significantly higher than those of other substrates (P<0.05). Significantly higher shear bond strength was noted in Clearfil SA Luting luted with cobalt-chromium alloy, flowable composite resin core material, and packable composite resin than that of RelyX U100 (P<0.05). However, significant difference was not observed in shear bond strength of dentin luted with Clearfil SA Luting and RelyX U100 (P>0.05). Different core materials and self-adhesive resin cements can significantly affect bond durability of zirconia ceramic. .
Influence of contamination on bonding to zirconia ceramic.
Yang, Bin; Scharnberg, Michael; Wolfart, Stefan; Quaas, Anne C; Ludwig, Klaus; Adelung, Rainer; Kern, Matthias
2007-05-01
The purpose of this study was to investigate the influences of contaminations and cleaning methods on bonding to dental zirconia ceramic. After saliva immersion and using silicone disclosing agent, airborne-particle abraded ceramic specimens were cleaned with isopropanol (AL), acetone (AC), 37% phosphoric acid (PA), additional airborne-particle abrasion (AA), or only with water rinsing (SS). Airborne-particle abraded specimens without contaminations (CL) were used as control group. For chemical analysis specimens of all groups were examined with X-ray photoelectron spectroscopy (XPS). Plexiglas tubes filled with composite resin were bonded to ceramic specimens using a phosphate-monomer containing composite luting resin. After 3-day water storage, tensile bond strengths (TBS) were tested. XPS analysis of group SS showed the presence of saliva and silicone (Si) contamination on the surface. The ratios of carbon/zirconium and oxygen/zirconium for groups PA and AA were comparable to those ratios obtained for group CL, indicating the removal of the organic saliva contamination. Airborne-particle abrasion and acetone completely removed Si contamination from ceramic surfaces. Isopropanol had little cleaning effect on the two contaminants. TBS (median +/- standard deviation) in MPa of the groups SS (11.6 +/- 3.1), AL (10.0 +/- 2.9), and AC (13.0 +/- 2.8) were statistically lower than those of groups PA (33.6 +/- 5.5), AA (40.1 +/- 3.6), and CL (47.0 +/- 8.1) (p < 0.001), while no differences were found in TBS between groups AA and CL (p > 0.5). Contamination significantly reduced bond strengths to zirconia ceramic. Airborne-particle abrasion was the most effective cleaning method.
Method of fabricating a microelectronic device package with an integral window
Peterson, Kenneth A.; Watson, Robert D.
2003-01-01
A method of fabricating a microelectronic device package with an integral window for providing optical access through an aperture in the package. The package is made of a multilayered insulating material, e.g., a low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC). The window is inserted in-between personalized layers of ceramic green tape during stackup and registration. Then, during baking and firing, the integral window is simultaneously bonded to the sintered ceramic layers of the densified package. Next, the microelectronic device is flip-chip bonded to cofired thick-film metallized traces on the package, where the light-sensitive side is optically accessible through the window. Finally, a cover lid is attached to the opposite side of the package. The result is a compact, low-profile package, flip-chip bonded, hermetically-sealed package having an integral window.
HOLST, Alexandra Ioana; HOLST, Stefan; HIRSCHFELDER, Ursula; von SECKENDORFF, Volker
2012-01-01
Objective The objective of this study was to investigate the applicability of micro-analytical methods with high spatial resolution to the characterization of the composition and corrosion behavior of two bracket systems. Material and methods The surfaces of six nickel-free brackets and six nickel-containing brackets were examined for signs of corrosion and qualitative surface analysis using an electron probe microanalyzer (EPMA), prior to bonding to patient's tooth surfaces and four months after clinical use. The surfaces were characterized qualitatively by secondary electron (SE) images and back scattered electron (BSE) images in both compositional and topographical mode. Qualitative and quantitative wavelength-dispersive analyses were performed for different elements, and by utilizing qualitative analysis the relative concentration of selected elements was mapped two-dimensionally. The absolute concentration of the elements was determined in specially prepared brackets by quantitative analysis using pure element standards for calibration and calculating correction-factors (ZAF). Results Clear differences were observed between the different bracket types. The nickel-containing stainless steel brackets consist of two separate pieces joined by a brazing alloy. Compositional analysis revealed two different alloy compositions, and reaction zones on both sides of the brazing alloy. The nickel-free bracket was a single piece with only slight variation in element concentration, but had a significantly rougher surface. After clinical use, no corrosive phenomena were detectable with the methods applied. Traces of intraoral wear at the contact areas between the bracket slot and the arch wire were verified. Conclusion Electron probe microanalysis is a valuable tool for the characterization of element distribution and quantitative analysis for corrosion studies. PMID:23032212
Haj-Younis, Samiha; Khattab, Tarek Z.; Hajeer, Mohammad Y.; Farah, Hassan
2016-01-01
ABSTRACT Objective: To compare speech performance and levels of oral impairment between two types of lingual brackets. Methods: A parallel-group randomized controlled trial was carried out on patients with Class II, Division 1 malocclusion treated at the University of Hama School of Dentistry in Hama, Syria. A total of 46 participants (mean age: 22.3 ± 2.3 years) with maxillary dentoalveolar protrusion were randomly distributed into two groups with 23 patients each (1:1 allocation ratio). Either STb (Ormco) or 7th Generation (Ormco) lingual brackets were applied. Fricative sound/s/ spectrograms were analyzed directly before intervention (T0), one week following premolar extraction prior to bracket placement (T1), within 24 hours of bracket bonding (T2), one month after (T3), and three months after (T4) bracket placement. Patients′ acceptance was assessed by means of standardized questionnaires. Results: After bracket placement, significant deterioration in articulation was recorded at all assessment times in the 7th Generation group, and up to T3 in the STb group. Significant intergroup differences were detected at T2 and T3. No statistically significant differences were found between the two groups in reported tongue irritation levels, whereas chewing difficulty was significantly higher in the 7th Generation group one month after bracket placement. Conclusions: 7th Generation brackets have more interaction with sound production than STb ones. Although patients in both groups complained of some degree of oral impairment, STb appliances appeared to be more comfortable than the 7th Generation ones, particularly within the first month of treatment. PMID:27653268
Haj-Younis, Samiha; Khattab, Tarek Z; Hajeer, Mohammad Y; Farah, Hassan
2016-01-01
To compare speech performance and levels of oral impairment between two types of lingual brackets. A parallel-group randomized controlled trial was carried out on patients with Class II, Division 1 malocclusion treated at the University of Hama School of Dentistry in Hama, Syria. A total of 46 participants (mean age: 22.3 ± 2.3 years) with maxillary dentoalveolar protrusion were randomly distributed into two groups with 23 patients each (1:1 allocation ratio). Either STb (Ormco) or 7th Generation (Ormco) lingual brackets were applied. Fricative sound/s/ spectrograms were analyzed directly before intervention (T0), one week following premolar extraction prior to bracket placement (T1), within 24 hours of bracket bonding (T2), one month after (T3), and three months after (T4) bracket placement. Patients' acceptance was assessed by means of standardized questionnaires. After bracket placement, significant deterioration in articulation was recorded at all assessment times in the 7th Generation group, and up to T3 in the STb group. Significant intergroup differences were detected at T2 and T3. No statistically significant differences were found between the two groups in reported tongue irritation levels, whereas chewing difficulty was significantly higher in the 7th Generation group one month after bracket placement. 7th Generation brackets have more interaction with sound production than STb ones. Although patients in both groups complained of some degree of oral impairment, STb appliances appeared to be more comfortable than the 7th Generation ones, particularly within the first month of treatment.
Gorler, Oguzhan; Saygin, Aysegul Goze
2017-06-01
Laser modalities and direct metal laser sintering (DMLS) have a potential to enhance micromechanical bonding between dental super- and infrastructures. However, the effect of different manufacturing methods on the metal-ceramic bond strength needs further evaluation. We investigated the effect of surface treatment with Er:YAG, Nd:YAG, and Ho:YAG lasers on the shear bond strength (SBS) of high-fusion dental porcelains (Vita and G-Ceram) to infrastructures prepared with DMLS in vitro settings. Study specimens (n = 128) were randomly divided into study subsets (n = 8), considering treatment types applied on the surface of infrastructures, including sandblasting and selected laser modalities; infrastructure types as direct laser sintered (DLS) and Ni-Cr based; and superstructure porcelains as Vita and G-Ceram. The SBS test was performed to assess the effectiveness of surface modifications that were also examined with a stereo microscope. Considering laser procedure types, the highest SBS values were obtained by Er:YAG laser, followed by, with a decreasing efficiency, Ho:YAG laser and sandblasting procedures, and Nd:YAG laser procedure (p < 0.05). Nd:YAG laser decreases the bonding of Vita and G-Ceram in all the infrastructures compared with sandblasting. Considering porcelains, the highest SBS values were obtained by Vita (p < 0.05). Considering infrastructures, the highest SBS values were obtained by DMLS procedure (p < 0.05). The laser procedures caused surface irregularities as revealed by the stereo microscopic examination. In current experimental settings, Er:YAG laser applied to DLS infrastructure veneered with Vita porcelain increases bonding strength more distinctly, and Nd:YAG laser applied to Ni-Cr-based infrastructure veneered with G-Ceram porcelain alters bonding strength unfavorably.
The effect of subpressure on the bond strength of resin to zirconia ceramic.
Li, Yong-Mei; Zhuge, Rui-Shen; Zhang, Zu-Tai; Tian, Yue-Ming; Ding, Ning
2017-01-01
This study was conducted to investigate the effect of subpressure on the bond strength of resin to zirconia ceramic. The subpressure would create a pressure gradient which could clean out the bubbles in the adhesives or bonding interface. Twenty-eight pre-sintered zirconia discs were fabricated. Half of them were polished (group P, n = 14), and the rest were sandblasted (group S, n = 14). After sintered,the surface roughness of the zirconia discs was measured. Then, they were randomly divided into two subgroups (n = 7). The groups were named as follows: PC: P + no additional treatments; PP: P + 0.04 MPa after application of adhesives; SC: S + no additional treatments; and SP: S + 0.04 MPa after application of adhesives. Resin columns were bonded to the zirconia specimens to determine shear bond strength (SBS). The bonding interfaces were observed and the fracture modes were evaluated. Statistical analysis was performed on all data. The surface roughness of group S was significantly higher than that of group P (P<0.05). The SBS values were PC = 13.48 ± 0.7 MPa, PP = 15.22 ± 0.8 MPa, SC = 17.23 ± 0.7 MPa and SP = 21.68 ± 1.4 MPa. There were significant differences among the groups (P<0.05). Scanning electron microscopy (SEM) results showed that the adhesives of group SP and PP were closer and denser to the zirconia ceramic than that of group PC and SC. The proportion of the mixed fracture mode significantly increased after adding subpressure (P< 0.05). Subpressure can improve the shear bond strength of resin to zirconia ceramics and increase micro-infiltration between the adhesives and the zirconia ceramics, especially on the rough surfaces.
Chai, Herzl; Kaizer, Marina; Chughtai, Asima; Tong, Hui; Tanaka, Carina; Zhang, Yu
2015-01-01
Objective A major limiting factor for the widespread use of zirconia in prosthetic dentistry is its poor resin-cement bonding capabilities. We show that this deficiency can be overcome by infiltrating the zirconia cementation surface with glass. Current methods for assessing the fracture resistance of resin-ceramic bonds are marred by uneven stress distribution at the interface, which may result in erroneous interfacial fracture resistance values. We have applied a wedge-loaded double-cantilever-beam testing approach to accurately measure the interfacial fracture resistance of adhesively bonded zirconia-based restorative materials. Methods The interfacial fracture energy GC was determined for adhesively bonded zirconia, graded zirconia and feldspathic ceramic bars. The bonding surfaces were subjected to sandblasting or acid etching treatments. Baseline GC was measured for bonded specimens subjected to 7 days hydration at 37 °C. Long-term GC was determined for specimens exposed to 20,000 thermal cycles between 5 and 55 °C followed by 2-month aging at 37 °C in water. The test data were interpreted with the aid of a 2D finite element fracture analysis. Results The baseline and long-term GC for graded zirconia was 2–3 and 8 times that for zirconia, respectively. More significantly, both the baseline and long-term GC of graded zirconia were similar to those for feldspathic ceramic. Significance The interfacial fracture energy of feldspathic ceramic and graded zirconia was controlled by the fracture energy of the resin cement while that of zirconia by the interface. GC for the graded zirconia was as large as for feldspathic ceramic, making it an attractive material for use in dentistry. PMID:26365987
Azari, Abbas; Nikzad Jamnani, Sakineh; Yazdani, Arash; Atri, Faezeh; Rasaie, Vania; Fazel Anvari Yazdi, Abbas
2017-03-01
Many advantages have been attributed to dental zirconia ceramics in terms of mechanical and physical properties; however, the bonding ability of this material to dental structure and/or veneering ceramics has always been a matter of concern. On the other hand, hydroxyapatite (HA) shows excellent biocompatibility and good bonding ability to tooth structure, with mechanically unstable and brittle characteristics, that make it clinically unacceptable for use in high stress bearing areas. The main purpose of this study was to introduce two simple yet practical methods to deposit the crystalline HA nanoparticles on zirconia ceramics. zirconia blocks were treated with HA via two different deposition methods namely thermal coating and air abrasion. Specimens were analyzed by scanning electron microscopy, energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). In both groups, the deposition techniques used were successfully accomplished, while the substrate showed no structural change. However, thermal coating group showed a uniform deposition of crystalline HA but in air abrasion method, there were dispersed thin islands of HA. Thermal coating method has the potential to significantly alter the surface characteristics of zirconia. The simple yet practical nature of the proposed method may be able to shift the bonding paradigm of dental zirconia ceramics. This latter subject needs to be addressed in future investigations.
This bench-scale study was conducted to evaluate the stabilization of mercury (Hg) and mercuric chloride-containing surrogate test materials by the chemically bonded phosphate ceramics technology. This study was performed as part of a U.S. EPA program to evaluate treatment and d...
Tanış, Merve Çakırbay; Akçaboy, Cihan
2015-01-01
Resin cements are generally preferred for cementation of zirconia ceramics. Resin bonding of zirconia ceramics cannot be done with the same methods of traditional ceramics because zirconia is a silica-free material. In recent years, many methods have been reported in the literature to provide the resin bonding of zirconia ceramics. The purpose of this in vitro study is to evaluate effects of different surface treatments and 10-metacryloxydecyl dihydrogen phosphate (MDP) monomer on shear bond strength between zirconia and resin cement. 120 zirconia specimens were treated as follows: Group I: sandblasting, group II: sandblasting + tribochemical silica coating + silane, group III: sandblasting + Nd:YAG (neodymium: yttrium-aluminum-garnet) laser. One specimen from each group was evaluated under scanning electron microscope (SEM). Specimens in each group were bonded either with conventional resin cement Variolink II or with a MDP containing resin cement Panavia F2.0. Subgroups of bonded specimens were stored in distilled water (37°C) for 24 hours or 14 days. Following water storage shear bond strength test was performed at a crosshead speed of 1 mm/min in a universal test machine. Then statistical analyses were performed. Highest shear bond strength values were observed in group II. No significant difference between group I and III was found when Panavia F2.0 resin cement was used. When Variolink II resin cement was used group III showed significantly higher bond strength than group I. In group I, Panavia F2.0 resin cement showed statistically higher shear bond strength than Variolink II resin cement. In group II no significant difference was found between resin cements. No significant difference was found between specimens stored in 37°C distilled water for 24 hours and 14 days. In group I surface irregularities with sharp edges and grooves were observed. In group II less roughened surface was observed with silica particles. In group III surface microcracks connecting each other were observed. Tribochemical silica coating is an effective method for achieving an acceptable bond between zirconia and resin cement. Use of a MDP monomer containing resin cement increases the bond strength of sandblasted zirconia.
Joining and Integration of Silicon Carbide for Turbine Engine Applications
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Singh, Mrityunjay; Coddington, Bryan; Asthana, Rajiv
2010-01-01
The critical need for ceramic joining and integration technologies is becoming better appreciated as the maturity level increases for turbine engine components fabricated from ceramic and ceramic matrix composite materials. Ceramic components offer higher operating temperatures and reduced cooling requirements. This translates into higher efficiencies and lower emissions. For fabricating complex shapes, diffusion bonding of silicon carbide (SiC) to SiC is being developed. For the integration of ceramic parts to the surrounding metallic engine system, brazing of SiC to metals is being developed. Overcoming the chemical, thermal, and mechanical incompatibilities between dissimilar materials is very challenging. This presentation will discuss the types of ceramic components being developed by researchers and industry and the benefits of using ceramic components. Also, the development of strong, crack-free, stable bonds will be discussed. The challenges and progress in developing joining and integration approaches for a specific application, i.e. a SiC injector, will be presented.
A comparative study on the bond strength of porcelain to the millingable Pd-Ag alloy
Hong, Jun-Tae
2014-01-01
PURPOSE The porcelain fused to gold has been widely used as a restoration both with the natural esthetics of the porcelain and durability and marginal fit of metal casting. However, recently, due to the continuous rise in the price of gold, an interest towards materials to replace gold alloy is getting higher. This study compared the bond strength of porcelain to millingable palladium-silver (Pd-Ag) alloy, with that of 3 conventionally used metal-ceramic alloys. MATERIALS AND METHODS Four types of metal-ceramic alloys, castable nonprecious nickel-chrome alloy, castable precious metal alloys containing 83% and 32% of gold, and millingable Pd-Ag alloy were used to make metal specimens (n=40). And porcelain was applied on the center area of metal specimen. Three-point bending test was performed with universal testing machine. The bond strength data were analyzed with a one-way ANOVA and post hoc Scheffe's tests (α=.05). RESULTS The 3-point bending test showed the strongest (40.42 ± 5.72 MPa) metal-ceramic bond in the nonprecious Ni-Cr alloy, followed by millingable Pd-Ag alloy (37.71 ± 2.46 MPa), precious metal alloy containing 83% of gold (35.89 ± 1.93 MPa), and precious metal alloy containing 32% of gold (34.59 ± 2.63 MPa). Nonprecious Ni-Cr alloy and precious metal alloy containing 32% of gold showed significant difference (P<.05). CONCLUSION The type of metal-ceramic alloys affects the bond strength of porcelain. Every metal-ceramic alloy used in this study showed clinically applicable bond strength with porcelain (25 MPa). PMID:25352959