Sample records for ceramic composite interface

  1. Acoustic emission as a screening tool for ceramic matrix composites

    NASA Astrophysics Data System (ADS)

    Ojard, Greg; Goberman, Dan; Holowczak, John

    2017-02-01

    Ceramic matrix composites are composite materials with ceramic fibers in a high temperature matrix of ceramic or glass-ceramic. This emerging class of materials is viewed as enabling for efficiency improvements in many energy conversion systems. The key controlling property of ceramic matrix composites is a relatively weak interface between the matrix and the fiber that aids crack deflection and fiber pullout resulting in greatly increased toughness over monolithic ceramics. United Technologies Research Center has been investigating glass-ceramic composite systems as a tool to understand processing effects on material performance related to the performance of the weak interface. Changes in the interface have been shown to affect the mechanical performance observed in flexural testing and subsequent microstructural investigations have confirmed the performance (or lack thereof) of the interface coating. Recently, the addition of acoustic emission testing during flexural testing has aided the understanding of the characteristics of the interface and its performance. The acoustic emission onset stress changes with strength and toughness and this could be a quality tool in screening the material before further development and use. The results of testing and analysis will be shown and additional material from other ceramic matrix composite systems may be included to show trends.

  2. Ceramic matrix composite article and process of fabricating a ceramic matrix composite article

    DOEpatents

    Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert

    2016-01-12

    A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.

  3. The Nature of the Microstructure and Interface Boundary Formation in Directionally Solidified Ceramic Boride Composites

    DTIC Science & Technology

    2015-02-19

    boride composites *Volodymyr Borysovych Filipov SCIENCE AND TECHNOLOGY CENTER IN UKRAINE METALISTIV 7A, KYIV, UKRAINE *FRANTSEVICH...microstructure and interface boundary formation in directionally solidified ceramic boride composites 5a. CONTRACT NUMBER STCU P-512 5b. GRANT NUMBER...BOUNDARY FORMATION IN DIRECTIONALLY SOLIDIFIED CERAMIC BORIDE COMPOSITES Project manager: Filipov Volodymyr Borysovych Phone: (+380.44) 424-13-67

  4. Vertically Aligned and Continuous Nanoscale Ceramic-Polymer Interfaces in Composite Solid Polymer Electrolytes for Enhanced Ionic Conductivity.

    PubMed

    Zhang, Xiaokun; Xie, Jin; Shi, Feifei; Lin, Dingchang; Liu, Yayuan; Liu, Wei; Pei, Allen; Gong, Yongji; Wang, Hongxia; Liu, Kai; Xiang, Yong; Cui, Yi

    2018-06-13

    Among all solid electrolytes, composite solid polymer electrolytes, comprised of polymer matrix and ceramic fillers, garner great interest due to the enhancement of ionic conductivity and mechanical properties derived from ceramic-polymer interactions. Here, we report a composite electrolyte with densely packed, vertically aligned, and continuous nanoscale ceramic-polymer interfaces, using surface-modified anodized aluminum oxide as the ceramic scaffold and poly(ethylene oxide) as the polymer matrix. The fast Li + transport along the ceramic-polymer interfaces was proven experimentally for the first time, and an interfacial ionic conductivity higher than 10 -3 S/cm at 0 °C was predicted. The presented composite solid electrolyte achieved an ionic conductivity as high as 5.82 × 10 -4 S/cm at the electrode level. The vertically aligned interfacial structure in the composite electrolytes enables the viable application of the composite solid electrolyte with superior ionic conductivity and high hardness, allowing Li-Li cells to be cycled at a small polarization without Li dendrite penetration.

  5. Ceramic composites: A review of toughening mechanisms and demonstration of micropillar compression for interface property extraction

    DOE PAGES

    Kabel, Joey; Hosemann, Peter; Zayachuk, Yevhen; ...

    2018-01-24

    We present that ceramic fiber–matrix composites (CFMCs) are exciting materials for engineering applications in extreme environments. By integrating ceramic fibers within a ceramic matrix, CFMCs allow an intrinsically brittle material to exhibit sufficient structural toughness for use in gas turbines and nuclear reactors. Chemical stability under high temperature and irradiation coupled with high specific strength make these materials unique and increasingly popular in extreme settings. This paper first offers a review of the importance and growing body of research on fiber–matrix interfaces as they relate to composite toughening mechanisms. Second, micropillar compression is explored experimentally as a high-fidelity method formore » extracting interface properties compared with traditional fiber push-out testing. Three significant interface properties that govern composite toughening were extracted. For a 50-nm-pyrolytic carbon interface, the following were observed: a fracture energy release rate of ~2.5 J/m 2, an internal friction coefficient of 0.25 ± 0.04, and a debond shear strength of 266 ± 24 MPa. Lastly, this research supports micromechanical evaluations as a unique bridge between theoretical physics models for microcrack propagation and empirically driven finite element models for bulk CFMCs.« less

  6. Ceramic composites: A review of toughening mechanisms and demonstration of micropillar compression for interface property extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabel, Joey; Hosemann, Peter; Zayachuk, Yevhen

    We present that ceramic fiber–matrix composites (CFMCs) are exciting materials for engineering applications in extreme environments. By integrating ceramic fibers within a ceramic matrix, CFMCs allow an intrinsically brittle material to exhibit sufficient structural toughness for use in gas turbines and nuclear reactors. Chemical stability under high temperature and irradiation coupled with high specific strength make these materials unique and increasingly popular in extreme settings. This paper first offers a review of the importance and growing body of research on fiber–matrix interfaces as they relate to composite toughening mechanisms. Second, micropillar compression is explored experimentally as a high-fidelity method formore » extracting interface properties compared with traditional fiber push-out testing. Three significant interface properties that govern composite toughening were extracted. For a 50-nm-pyrolytic carbon interface, the following were observed: a fracture energy release rate of ~2.5 J/m 2, an internal friction coefficient of 0.25 ± 0.04, and a debond shear strength of 266 ± 24 MPa. Lastly, this research supports micromechanical evaluations as a unique bridge between theoretical physics models for microcrack propagation and empirically driven finite element models for bulk CFMCs.« less

  7. Composite Laser Ceramics by Advanced Bonding Technology

    PubMed Central

    Kamimura, Tomosumi; Honda, Sawao

    2018-01-01

    Composites obtained by bonding materials with the same crystal structure and different chemical compositions can create new functions that do not exist in conventional concepts. We have succeeded in bonding polycrystalline YAG and Nd:YAG ceramics without any interstices at the bonding interface, and the bonding state of this composite was at the atomic level, similar to the grain boundary structure in ceramics. The mechanical strength of the bonded composite reached 278 MPa, which was not less than the strength of each host material (269 and 255 MPa). Thermal conductivity of the composite was 12.3 W/mK (theoretical value) which is intermediate between the thermal conductivities of YAG and Nd:YAG (14.1 and 10.2 W/mK, respectively). Light scattering cannot be detected at the bonding interface of the ceramic composite by laser tomography. Since the scattering coefficients of the monolithic material and the composite material formed by bonding up to 15 layers of the same materials were both 0.10%/cm, there was no occurrence of light scattering due to the bonding. In addition, it was not detected that the optical distortion and non-uniformity of the refractive index variation were caused by the bonding. An excitation light source (LD = 808 nm) was collimated to 200 μm and irradiated into a commercial 1% Nd:YAG single crystal, but fracture damage occurred at a low damage threshold of 80 kW/cm2. On the other hand, the same test was conducted on the bonded interface of 1% Nd:YAG-YAG composite ceramics fabricated in this study, but it was not damaged until the excitation density reached 127 kW/cm2. 0.6% Nd:YAG-YAG composite ceramics showed high damage resistance (up to 223 kW/cm2). It was concluded that composites formed by bonding polycrystalline ceramics are ideal in terms of thermo-mechanical and optical properties. PMID:29425152

  8. Requirements of frictional debonding at fiber/matrix interfaces for tough ceramic composites

    NASA Astrophysics Data System (ADS)

    Hsueh, Chun-Hway

    1992-11-01

    Optimum toughening of fiber-reinforced ceramic composites requires debonding at fiber/matrix interfaces and subsequent frictional sliding between the fibers and the matrix as the main crack extends through the composite. Criteria of both interfacial debonding vs fiber fracture, and frictional debonding vs frictionless debonding, are illustrated. To achieve interfacial debonding, the ratio of the fiber strength to the interfacial shear strength must exceed a critical value; to achieve a frictional interface after interfacial debonding, the ratio of the interfacial residual clamping stress to the interfacial shear strength must also exceed a critical value. While interfacial debonding is not sensitive to Poisson's effect, the frictional interface is sensitive to Poisson's effect.

  9. Damage evolution and mechanical response of cross-ply ceramic composite laminates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weitsman, Y.; Yu, N.; Zhu, H.

    1995-12-31

    A mechanistic model for the damage evolution and mechanical response of cross-ply ceramic composite laminates under monotonically increasing uniaxial tension is presented. The model accounts for a variety of damage mechanisms evolving in cross-ply ceramic composite laminates, such as fiber-bridged matrix cracks in 0{degrees}-plies, transversely oriented matrix cracks in 90{degrees}-plies, and slips at 0{degrees}/90{degrees} ply interfaces as well as at the fiber/matrix interfaces. Energy criteria are developed to determine the creation and progression of matrix cracks and slip zones. The model predicts that the crack density in 0{degrees}-plies becomes higher than that within the 90{degrees}-plies as the applied load ismore » incrementally increased, which agrees with the experimental observation. It is also shown that the model provides a reasonable prediction for the nonlinear stress-strain behavior of crossply SiC/CAS ceramic composites.« less

  10. Local-global analysis of crack growth in continuously reinfoced ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Ballarini, Roberto; Ahmed, Shamim

    1989-01-01

    This paper describes the development of a mathematical model for predicting the strength and micromechanical failure characteristics of continuously reinforced ceramic matrix composites. The local-global analysis models the vicinity of a propagating crack tip as a local heterogeneous region (LHR) consisting of spring-like representation of the matrix, fibers and interfaces. Parametric studies are conducted to investigate the effects of LHR size, component properties, and interface conditions on the strength and sequence of the failure processes in the unidirectional composite system.

  11. Modeling Strength Degradation of Fiber-Reinforced Ceramic-Matrix Composites Subjected to Cyclic Loading at Elevated Temperatures in Oxidative Environments

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2018-02-01

    In this paper, the strength degradation of non-oxide and oxide/oxide fiber-reinforced ceramic-matrix composites (CMCs) subjected to cyclic loading at elevated temperatures in oxidative environments has been investigated. Considering damage mechanisms of matrix cracking, interface debonding, interface wear, interface oxidation and fibers fracture, the composite residual strength model has been established by combining the micro stress field of the damaged composites, the damage models, and the fracture criterion. The relationships between the composite residual strength, fatigue peak stress, interface debonding, fibers failure and cycle number have been established. The effects of peak stress level, initial and steady-state interface shear stress, fiber Weibull modulus and fiber strength, and testing temperature on the degradation of composite strength and fibers failure have been investigated. The evolution of residual strength versus cycle number curves of non-oxide and oxide/oxide CMCs under cyclic loading at elevated temperatures in oxidative environments have been predicted.

  12. Synergistic Effects of Temperature and Oxidation on Matrix Cracking in Fiber-Reinforced Ceramic-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2017-06-01

    In this paper, the synergistic effects of temperatrue and oxidation on matrix cracking in fiber-reinforced ceramic-matrix composites (CMCs) has been investigated using energy balance approach. The shear-lag model cooperated with damage models, i.e., the interface oxidation model, interface debonding model, fiber strength degradation model and fiber failure model, has been adopted to analyze microstress field in the composite. The relationships between matrix cracking stress, interface debonding and slipping, fiber fracture, oxidation temperatures and time have been established. The effects of fiber volume fraction, interface properties, fiber strength and oxidation temperatures on the evolution of matrix cracking stress versus oxidation time have been analyzed. The matrix cracking stresses of C/SiC composite with strong and weak interface bonding after unstressed oxidation at an elevated temperature of 700 °C in air condition have been predicted for different oxidation time.

  13. Testing of felt-ceramic materials for combustor applications

    NASA Technical Reports Server (NTRS)

    Venkat, R. S.; Roffe, G.

    1983-01-01

    The feasibility of using composite felt ceramic materials as combustor liners was experimentally studied. The material consists of a porous felt pad sandwiched between a layer of ceramic and one of solid metal. Flat, rectangular test panels, which encompassed several design variations of the basic composite material, were tested, two at a time, in a premixed gas turbine combustor as sections of the combustor wall. Tests were conducted at combustor inlet conditions of 0.5 MPa and 533 K with a reference velocity of 25 m/s. The panels were subjected to a hot gas temperature of 2170 K with 1% of the total airflow used to film cool the ceramic surface of the test panel. In general, thin ceramic layers yield low ceramic stress levels with high felt ceramic interface temperatures. On the other hand, thick ceramic layers result in low felt ceramic interface temperatures but high ceramic stress levels. Extensive thermal cycling appears to cause material degradation, but for a limited number of cycles, the survivability of felt ceramic materials, even under extremely severe combustor operating conditions, was conclusively demonstrated.

  14. Parameters Identification of Interface Friction Model for Ceramic Matrix Composites Based on Stress-Strain Response

    NASA Astrophysics Data System (ADS)

    Han, Xiao; Gao, Xiguang; Song, Yingdong

    2017-10-01

    An approach to identify parameters of interface friction model for Ceramic Matrix composites based on stress-strain response was developed. The stress distribution of fibers in the interface slip region and intact region of the damaged composite was determined by adopting the interface friction model. The relation between maximum strain, secant moduli of hysteresis loop and interface shear stress, interface de-bonding stress was established respectively with the method of symbolic-graphic combination. By comparing the experimental strain, secant moduli of hysteresis loop with computation values, the interface shear stress and interface de-bonding stress corresponding to first cycle were identified. Substituting the identification of parameters into interface friction model, the stress-strain curves were predicted and the predicted results fit experiments well. Besides, the influence of number of data points on identifying the value of interface parameters was discussed. And the approach was compared with the method based on the area of hysteresis loop.

  15. Emerging Applications of Ceramic and Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Divya; Ramolina, Dheeyana; Sandou, Sherleena

    2012-07-01

    Almost 500 papers were presented during the 43 sessions of the 27th Annual Cocoa Beach Conference & Exposition on Advanced Ceramics & Composites, which was organized by the Engineering Ceramics Division of the American Ceramic Society and sponsored by several federal agencies: NASA Glenn Research Center, the Army Research Office, the Department of Energy, and the Air Force Office of Scientific Research. Many of these papers focused on composites, both ceramic and metal matrix, and discussed mechanical behavior, design, fibers/interfaces, processing, and applications. Potential applications under development include components for armor, nuclear energy, and automobiles. A few of these applications have reached commercialization.

  16. Tensile behavior of glass/ceramic composite materials at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Mandell, J. F.; Grande, D. H.; Jacobs, J.

    1987-01-01

    This paper describes the tensile behavior of high-temperature composite materials containing continuous Nicalon ceramic fiber reinforcement and glass and glass/ceramic matrices. The longitudinal properties of these materials can approach theoretical expectations for brittle matrix composites, failing at a strength and ultimate strain level consistent with those of the fibers. The brittle, high-modulus matrices result in a nonlinear stress-strain curve due to the onset of stable matrix cracking at 10 to 30 percent of the fiber strain to failure, and at strains below this range in off-axis plies. Current fibers and matrices can provide attractive properties well above 1000 C, but composites experience embrittlement in oxidizing atmospheres at 800 to 1000 C due to oxidation of a carbon interface reaction layer.The oxidation effect greatly increases the interface bond strength, causing composite embrittlement.

  17. Reduction-oxidation Enabled Glass-ceramics to Stainless Steel Bonding Part II interfacial bonding analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Steve Xunhu

    2015-09-01

    Among glass-ceramic compositions modified with a variety of oxidants (AgO, FeO, NiO, PbO, SnO, CuO, CoO, MoO 3 and WO 3) only CuO and CoO doped glass-ceramics showed existence of bonding oxides through reduction-oxidation (redox) at the GC-SS interface. The CuO-modified glass-ceramics demonstrate the formation of a continuous layer of strong bonding Cr 2O 3 at the interface in low partial oxygen (PO 2) atmosphere. However, in a local reducing atmosphere, the CuO is preferentially reduced at the surface of glass-ceramic rather than the GC-SS interface for redox. The CoO-modified glass-ceramics demonstrate improved GC-SS bonding. But the low mobility ofmore » Co ++ ions in the GC limited the amount of CoO that can diffuse to and participate in redox at the interface.« less

  18. Ultra-high polarity ceramics induced extrinsic high permittivity of polymers contributing to high permittivity of 2-2 series composites

    NASA Astrophysics Data System (ADS)

    Feng, Yefeng; Zhang, Jianxiong; Hu, Jianbing; Peng, Cheng; He, Renqi

    2018-01-01

    Induced polarization at interface has been confirmed to have significant impact on the dielectric properties of 2-2 series composites bearing Si-based semi-conductor sheet and polymer layer. By compositing, the significantly elevated high permittivity in Si-based semi-conductor sheet should be responsible for the obtained high permittivity in composites. In that case, interface interaction could include two aspects namely a strong electrostatic force from high polarity polymeric layer and a newborn high polarity induced in Si-based ceramic sheet. In this work, this class of interface induced polarization was successfully extended into another 2-2 series composite system made up of ultra-high polarity ceramic sheet and high polarity polymer layer. By compositing, the greatly improved high permittivity in high polarity polymer layer was confirmed to strongly contribute to the high permittivity achieved in composites. In this case, interface interaction should consist of a rather large electrostatic force from ultra-high polarity ceramic sheet with ionic crystal structure and an enhanced high polarity induced in polymer layer based on a large polarizability of high polarity covalent dipoles in polymer. The dielectric and conductive properties of four designed 2-2 series composites and their components have been detailedly investigated. Increasing of polymer inborn polarity would lead to a significant elevating of polymer overall polarity in composite. Decline of inherent polarities in two components would result in a mild improving of polymer total polarity in composite. Introducing of non-polarity polymeric layer would give rise to a hardly unaltered polymer overall polarity in composite. The best 2-2 composite could possess a permittivity of ˜463 at 100 Hz 25.7 times of the original permittivity of polymer in it. This work might offer a facile route for achieving the promising composite dielectrics by constructing the 2-2 series samples from two high polarity components.

  19. Geopolymers for Structural Ceramic Applications

    DTIC Science & Technology

    2006-08-31

    Applications of geopolymers have included ceramic matrix composites ,ŕ, 3 waste encapsulation 9-11and alternative cements.7,12,14 As adhesives... compositions of the geopolymer adhesive interfaces were studied with scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Durable...after thermal shock testing. In response, chopped-fiber reinforced geopolymer composites were processed as possible candidate mold materials for casting

  20. Effect of Fiber Poisson Contraction on Matrix Multicracking Evolution of Fiber-Reinforced Ceramic-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2015-12-01

    An analytical methodology has been developed to investigate the effect of fiber Poisson contraction on matrix multicracking evolution of fiber-reinforced ceramic-matrix composites (CMCs). The modified shear-lag model incorporated with the Coulomb friction law is adopted to solve the stress distribution in the interface slip region and intact region of the damaged composite. The critical matrix strain energy criterion which presupposes the existence of an ultimate or critical strain energy limit beyond which the matrix fails has been adopted to describe matrix multicracking of CMCs. As more energy is placed into the composite, matrix fractures and the interface debonding occurs to dissipate the extra energy. The interface debonded length under the process of matrix multicracking is obtained by treating the interface debonding as a particular crack propagation problem along the fiber/matrix interface. The effects of the interfacial frictional coefficient, fiber Poisson ratio, fiber volume fraction, interface debonded energy and cycle number on the interface debonding and matrix multicracking evolution have been analyzed. The theoretical results are compared with experimental data of unidirectional SiC/CAS, SiC/CAS-II and SiC/Borosilicate composites.

  1. Characterization of Elastic Properties of Interfaces in Composite Materials

    DTIC Science & Technology

    1990-09-01

    ceramic Imatrix composites. These types of composite materials offer the advantages of being lighter, stiffer, stronger, and more resistant to creep and...actual composite materials. śi 3 II. Introduction The advantages offered by metal and ceramic matrix composites for strw, ural aerispace applications...minimum when ( VST /Vs) 2 = 0.8453... This corresponds to a situation analogous to a Rayleigh wave. As the ratio of the displacements increases, the ratio of

  2. Topical report to Morgantown Energy Technology Center for the interfacial coatings for ceramic-matrix composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-01-09

    This report summarizes the task conducted to examine various activities on interface development for ceramic-matrix composites (CMCs) intended for high-temperature applications. While several articles have been published on the subject of CMC interfaces, the purpose of this report is to describe the various ongoing efforts on interface concepts, material selection, and issues related to processing methods employed for developing interface coatings. The most exciting and new development in the field is the discovery of monazite as a potential interface material for mullite- and alumina-based composites. Monazite offers two critical properties to the CMC system; a weakly bonded layer due tomore » its non-wetting behavior and chemical compatibility with both alumina and mullite up to very high temperatures (> 1,600 C). A description of the Department of Energy-related activities and some thoughts on processing issues, interface testing, and effects of processing on fiber strength are given.« less

  3. A Study of the Critical Factors Controlling the Synthesis of Ceramic Matrix Composites from Preceramic Polymers.

    DTIC Science & Technology

    1988-04-15

    physical properties of a polycarbosilane preceramic polymer as a function of temperature to derive synthesis methodology for SiC matrix composites , (2...investigate the role of interface modification in creating tough carbon fiber reinforced SiC matrix composites . RESEARCH PROGRESS Preceramic Polymer ...Classfication) A STUDY OF THE CRITICAL FACTORS CONTROLLING THE SYNTHESIS OF CERAMIC MATRIX COMPOSITES FROM PRECERAMIC POLYMERS 12. PERSONAL AUTHOR(S

  4. Joining of dissimilar materials

    DOEpatents

    Tucker, Michael C; Lau, Grace Y; Jacobson, Craig P

    2012-10-16

    A method of joining dissimilar materials having different ductility, involves two principal steps: Decoration of the more ductile material's surface with particles of a less ductile material to produce a composite; and, sinter-bonding the composite produced to a joining member of a less ductile material. The joining method is suitable for joining dissimilar materials that are chemically inert towards each other (e.g., metal and ceramic), while resulting in a strong bond with a sharp interface between the two materials. The joining materials may differ greatly in form or particle size. The method is applicable to various types of materials including ceramic, metal, glass, glass-ceramic, polymer, cermet, semiconductor, etc., and the materials can be in various geometrical forms, such as powders, fibers, or bulk bodies (foil, wire, plate, etc.). Composites and devices with a decorated/sintered interface are also provided.

  5. Tension-Tension Fatigue Behavior of Unidirectional C/Sic Ceramic-Matrix Composite at Room Temperature and 800 °C in Air Atmosphere

    PubMed Central

    Li, Longbiao

    2015-01-01

    The tension-tension fatigue behavior of unidirectional C/SiC ceramic-matrix composite at room temperature and 800 °C under air has been investigated. The fatigue hysteresis modulus and fatigue hysteresis loss energy corresponding to different number of applied cycles have been analyzed. The fatigue hysteresis loops models for different interface slip cases have been derived based on the fatigue damage mechanism of fiber slipping relative to matrix in the interface debonded region upon unloading and subsequent reloading. The fiber/matrix interface shear stress has been estimated for different numbers of applied cycles. By combining the interface shear stress degradation model and fibers strength degradation model with fibers failure model, the tension-tension fatigue life S-N curves of unidirectional C/SiC composite at room temperature and 800 °C under air have been predicted.

  6. Modeling Cyclic Fatigue Hysteresis Loops of 2D Woven Ceramic Matrix Composites at Elevated Temperatures in Steam

    PubMed Central

    Li, Longbiao

    2016-01-01

    In this paper, the cyclic fatigue hysteresis loops of 2D woven SiC/SiC ceramic matrix composites (CMCs) at elevated temperatures in steam have been investigated. The interface slip between fibers and the matrix existing in matrix cracking modes 3 and 5, in which matrix cracking and interface debonding occurred in longitudinal yarns, is considered as the major reason for hysteresis loops of 2D woven CMCs. The hysteresis loops of 2D SiC/SiC composites corresponding to different peak stresses, test conditions, and loading frequencies have been predicted using the present analysis. The damage parameter, i.e., the proportion of matrix cracking mode 3 in the entire matrix cracking modes of the composite, and the hysteresis dissipated energy increase with increasing fatigue peak stress. With increasing cycle number, the interface shear stress in the longitudinal yarns decreases, leading to transition of interface slip types of matrix cracking modes 3 and 5. PMID:28773544

  7. Modeling the Monotonic and Cyclic Tensile Stress-Strain Behavior of 2D and 2.5D Woven C/SiC Ceramic-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Li, L. B.

    2018-05-01

    The deformation of 2D and 2.5 C/SiC woven ceramic-matrix composites (CMCs) in monotonic and cyclic loadings has been investigated. Statistical matrix multicracking and fiber failure models and the fracture mechanics interface debonding approach are used to determine the spacing of matrix cracks, the debonded length of interface, and the fraction of broken fibers. The effects of fiber volume fraction and fiber Weibull modulus on the damage evolution in the composites and on their tensile stress-strain curves are analyzed. When matrix multicracking and fiber/matrix interface debonding occur, the fiber slippage relative to the matrix in the debonded interface region of the 0° warp yarns is the main reason for the emergance of stress-strain hysteresis loops for 2D and 2.5D woven CMCs. A model of these loops is developed, and histeresis loops for the composites in cyclic loadings/unloadings are predicted.

  8. Synergistic Effects of Frequency and Temperature on Damage Evolution and Life Prediction of Cross-Ply Ceramic Matrix Composites under Tension-Tension Fatigue Loading

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2017-10-01

    In this paper, the synergistic effects of loading frequency and testing temperature on the fatigue damage evolution and life prediction of cross-ply SiC/MAS ceramic-matrix composite have been investigated. The damage parameters of the fatigue hysteresis modulus, fatigue hysteresis dissipated energy and the interface shear stress were used to monitor the damage evolution inside of SiC/MAS composite. The evolution of fatigue hysteresis dissipated energy, the interface shear stress and broken fibers fraction versus cycle number, and the fatigue life S-N curves of SiC/MAS composite under the loading frequency of 1 and 10 Hz at 566 °C and 1093 °C in air condition have been predicted. The synergistic effects of the loading frequency and testing temperature on the degradation rate of fatigue hysteresis dissipated energy and the interface shear stress have been analyzed.

  9. The Effect of Water or Wax-based Binders on the Chemical and Morphological Characteristics of the Margin Ceramic-Framework Interface.

    PubMed

    Güler, Umut; de Queiroz, José Renato Cavalcanti; de Oliveira, Luiz Fernando Cappa; Canay, Senay; Ozcan, Mutlu

    2015-09-01

    This study evaluated the effect of binder choice in mixing ceramic powder on the chemical and morphological features between the margin ceramic-framework interfaces. Titanium and zirconia frameworks (15 x 5 x 0.5 mm3) were veneered with margin ceramics prepared with two different binders, namely a) water/conventional or b) wax-based. For each zirconia framework material, four different margin ceramics were used: a- Creation Zi (Creation Willi Geller International); b- GC Initial Zr (GC America); Triceram (Dentaurum); and d- IPS emax (voclar Vivadent). For the titanium framework, three different margin ceramics were used: a- Creation Ti (Creation Willi Geller International); b- Triceram (Dentaurum); and c- VITA Titaniumkeramik (Vita Zahnfabrik). The chemical composition of the framework-margin ceramic interface was analyzed using Energy Dispersive X-ray Spectroscopy (EDS) and porosity level was quantified within the margin ceramic using an image program (ImageJ) from four random areas (100 x 100 pixels) on each SEM image. EDS analysis showed the presence of Carbon at the margin ceramic-framework interface in the groups where wax-based binder technique was used with the concentration being the highest for the IPS emax ZirCAD group. While IPS system (IPS ZirCAD and IPS Emax) presented higher porosity concentration using wax binder, in the other groups wax-based binder reduced the porosity of margin ceramic, except for Titanium - Triceram combination.

  10. The Processing and Mechanical Properties of High Temperature/High Performance Composites. Book 5. Interface Effects

    DTIC Science & Technology

    1994-04-01

    Interfacial Mechanical Properties in Fiber Reinforced Ceramic Composites," 1. Am. Ceram. Soc., 70 (1987) 542-48. [25] P.D. Jero, R.J. Kerans and T.A...Mater., 40 [611251-57 (1992). [16] D.B. Marshall and W. Oliver, "Measurement of Interfacial Mechanical Properties in Fiber-Reinforced Ceramic...Charlottesville. VA 22903, U.S.A. (Received 14 July 1993;fl/al version acepted IS AustrW 1993) Abstract-The interfacial structure / property relationships of a

  11. Surfaces and interfaces of glass and ceramics; Proceedings of the International Symposium on Special Topics in Ceramics, Alfred University, Alfred, N.Y., August 27-29, 1973

    NASA Technical Reports Server (NTRS)

    Frechette, V. D. (Editor); Lacourse, W. C.; Burdick, V. L.

    1974-01-01

    The characterization of surfaces and interfaces is considered along with the infrared spectra of several N-containing compounds absorbed on montmorillonites, applications of surface characterization techniques to glasses, the observation of electronic spectra in glass and ceramic surfaces, a method for determining the preferred orientation of crystallites normal to a surface, and the friction and wear behavior of glasses and ceramics. Attention is given to the wear behavior of cast surface composites, an experimental investigation of the dynamic and thermal characteristics of the ceramic stock removal process, a dynamic elastic model of ceramic stock removal, and the structure and properties of solid surfaces. Individual items are announced in this issue.

  12. Ceramic composites reinforced with modified silicon carbide whiskers and method for modifying the whiskers

    DOEpatents

    Tiegs, Terry N.; Lindemer, Terrence B.

    1991-01-01

    Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparaging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

  13. Ceramic composites reinforced with modified silicon carbide whiskers and method for modifying the whiskers

    DOEpatents

    Tiegs, T.N.; Lindemer, T.B.

    1991-02-19

    Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

  14. Ceramic composites reinforced with modified silicon carbide whiskers

    DOEpatents

    Tiegs, Terry N.; Lindemer, Terrence B.

    1990-01-01

    Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparaging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

  15. Workshop on High Temperature Metal-Ceramic Composites Held in Aurora, New York on 10-11 September 1990

    DTIC Science & Technology

    1990-12-26

    to mechanical properties , atomic structure , electronic bonding, and long term stability of interfaces at high temperature. The objective of this...discussion. The subjects were measurement of the local mechanical properties of-interfaces, constrained deformation, reactions at metal ceramic...as a function of oxygen activity and the effect of these reactions on mechanical properties understood, (iv) local deformation on the scale of

  16. Push-out tests on a new silicon carbide/reaction-bonded silicon carbide ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Curtin, William A.; Eldridge, Jeffrey I.; Srinivasan, Gajawalli V.

    1993-01-01

    Fiber push-out tests have been performed on a ceramic matrix composite consisting of carborundum-sintered SiC fibers, with a BN coating, embedded in a reaction-bonded SiC matrix. Analysis of the push-out data, utilizing the most complete theory presently available, shows that one of the fiber/coating/matrix interfaces has a low fracture energy (one-tenth that of the fiber) and a moderate sliding resistance of about 8 MPa. The debonded sliding interface shows some continuous but minor abrasion, which appears to increase the sliding resistance, but overall the system exhibits very clean smooth sliding. The tensile response of a full-scale composite is then modeled using data obtained here and known fiber strengths to demonstrate the good composite behavior predicted for this material.

  17. Thermal and mechanical behavior of metal matrix and ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Kennedy, John M. (Editor); Moeller, Helen H. (Editor); Johnson, W. S. (Editor)

    1990-01-01

    The present conference discusses local stresses in metal-matrix composites (MMCs) subjected to thermal and mechanical loads, the computational simulation of high-temperature MMCs' cyclic behavior, an analysis of a ceramic-matrix composite (CMC) flexure specimen, and a plasticity analysis of fibrous composite laminates under thermomechanical loads. Also discussed are a comparison of methods for determining the fiber-matrix interface frictional stresses of CMCs, the monotonic and cyclic behavior of an SiC/calcium aluminosilicate CMC, the mechanical and thermal properties of an SiC particle-reinforced Al alloy MMC, the temperature-dependent tensile and shear response of a graphite-reinforced 6061 Al-alloy MMC, the fiber/matrix interface bonding strength of MMCs, and fatigue crack growth in an Al2O3 short fiber-reinforced Al-2Mg matrix MMC.

  18. FIB/SEM and SEM/EDS microstructural analysis of metal-ceramic and zirconia-ceramic interfaces.

    PubMed

    Massimi, F; Merlati, G; Sebastiani, M; Battaini, P; Menghini, P; Bemporad, E

    2012-01-10

    Recently introduced FIB/SEM analysis in microscopy seems to provide a high-resolution characterization of the samples by 3D (FIB) cross-sectioning and (SEM) high resolution imaging. The aim of this study was to apply the FIB/SEM and SEM/EDS analysis to the interfaces of a metal-ceramic vs. two zirconia-ceramic systems. Plate samples of three different prosthetic systems were prepared in the dental lab following the manufacturers' instructions, where metal-ceramic was the result of a ceramic veneering (porcelain-fused-to-metal) and the two zirconia-ceramic systems were produced by the dedicated CAD-CAM procedures of the zirconia cores (both with final sintering) and then veneered by layered or heat pressed ceramics. In a FIB/SEM equipment (also called DualBeam), a thin layer of platinum (1 μm) was deposited on samples surface crossing the interfaces, in order to protect them during milling. Then, increasingly deeper trenches were milled by a focused ion beam, first using a relatively higher and later using a lower ion current (from 9 nA to 0.28 nA, 30KV). Finally, FEG-SEM (5KV) micrographs (1000-50,000X) were acquired. In a SEM the analysis of the morphology and internal microstructure was performed by 13KV secondary and backscattered electrons signals (in all the samples). The compositional maps were then performed by EDS probe only in the metal-ceramic system (20kV). Despite the presence of many voids in all the ceramic layers, it was possible to identify: (1) the grain structures of the metallic and zirconia substrates, (2) the thin oxide layer at the metal-ceramic interface and its interactions with the first ceramic layer (wash technique), (3) the roughness of the two different zirconia cores and their interactions with the ceramic interface, where the presence of zirconia grains in the ceramic layer was reported in two system possibly due to sandblasting before ceramic firing.

  19. Effect of Matrix Multicracking on the Hysteresis Loops of Carbon-Fiber-Reinforced Cross-Ply Ceramic-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Li, L. B.

    2017-01-01

    The effect of matrix multicracking on the stress-strain hysteresis loops of cross-ply C/SiC ceramic-matrix composites (CMCs) under cyclic loading/unloading was investigated. When matrix multicracking and fiber/matrix interface debonding occur in the 0° plies, fiber slipping relative to the matrix in the debonded region of interface is the mainly reason for occurrence of the loops. The interfacial slip lengths, i.e., the debonded lengths of interface are determined, with consideration of matrix multicracking in the 90° and 0° plies, by using the fracture mechanics approach. The effects of peak stress, fiber volume content, fiber/matrix interfacial shear stress, and number of cycles on the hysteresis loops are analyzed. The stress-strain hysteresis loops of cross-ply C/SiC composites corresponding to different peak stresses and numbers of cycles are predicted.

  20. Fatigue Life Prediction of Fiber-Reinforced Ceramic-Matrix Composites with Different Fiber Preforms at Room and Elevated Temperatures

    PubMed Central

    Li, Longbiao

    2016-01-01

    In this paper, the fatigue life of fiber-reinforced ceramic-matrix composites (CMCs) with different fiber preforms, i.e., unidirectional, cross-ply, 2D (two dimensional), 2.5D and 3D CMCs at room and elevated temperatures in air and oxidative environments, has been predicted using the micromechanics approach. An effective coefficient of the fiber volume fraction along the loading direction (ECFL) was introduced to describe the fiber architecture of preforms. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. Under cyclic fatigue loading, the fiber broken fraction was determined by combining the interface wear model and fiber statistical failure model at room temperature, and interface/fiber oxidation model, interface wear model and fiber statistical failure model at elevated temperatures, based on the assumption that the fiber strength is subjected to two-parameter Weibull distribution and the load carried by broken and intact fibers satisfies the Global Load Sharing (GLS) criterion. When the broken fiber fraction approaches the critical value, the composites fatigue fracture. PMID:28773332

  1. Metal/ceramic interface structures and segregation behavior in aluminum-based composites

    DOE PAGES

    Zhang, Xinming; Hu, Tao; Rufner, Jorgen F.; ...

    2015-06-14

    Trimodal Al alloy (AA) matrix composites consisting of ultrafine-­grained (UFG) and coarse-­ grained (CG) Al phases and micron-­sized B 4C ceramic reinforcement particles exhibit combinations of strength and ductility that render them useful for potential applications in the aerospace, defense and automotive industries. Tailoring of microstructures with specific mechanical properties requires a detailed understanding of interfacial structures to enable strong interface bonding between ceramic reinforcement and metal matrix, and thereby allow for effective load transfer. Trimodal AA metal matrix composites typically show three characteristics that are noteworthy: nanocrystalline grains in the vicinity of the B4C reinforcement particles; Mg segregation atmore » AA/B 4C interfaces; and the presence of amorphous interfacial layers separating nanocrystalline grains from B 4C particles. Interestingly, however, fundamental information related to the mechanisms responsible for these characteristics as well as information on local compositions and phases are absent in the current literature. Here in this study, we use high-­resolution transmission electron microscopy, energy-­dispersive X-­ray spectroscopy, electron energy-­loss spectroscopy, and precession assisted electron diffraction to gain fundamental insight into the mechanisms that affect the characteristics of AA/B 4C interfaces. Specifically, we determined interfacial structures, local composition and spatial distribution of the interfacial constituents. Near atomic resolution characterization revealed amorphous multilayers and a nanocrystalline region between Al phase and B 4C reinforcement particles. The amorphous multilayers consist of nonstoichiometric Al xO y, while the nanocrystalline region is comprised of MgO nanograins. The experimental results are discussed in terms of the possible underlying mechanisms at AA/B 4C interfaces.« less

  2. Effects of Fiber/Matrix Interface and its Composition on Mechanical Properties of Hi Nicalon/Celsian Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Eldridge, Jeffrey I.

    1998-01-01

    Fiber-reinforced ceramic matrix composites (CMC) are prospective candidate materials for high temperature structural applications in aerospace, energy conservation, power generation, nuclear, petrochemical, and other industries. At NASA Lewis, we are investigating celsian matrix composites reinforced with various types of silicon carbide fibers. The objective of the present study was to investigate the effects of fiber/matrix interface and its composition on the mechanical properties of silicon carbide (Hi-Nicalon) fiber-reinforced celsian matrix composites.

  3. The Effect of Ti on Microstructural Characteristics and Reaction Mechanism in Bonding of Al-Ceramic Composite

    NASA Astrophysics Data System (ADS)

    Juan, Li; Kehong, Wang; Deku, Zhang

    2016-09-01

    The effect of Ti on microstructural characteristics and reaction mechanism in bonding of Al-Ceramic composite was studied. Ti and Al-Ceramic composite were diffusion welded at 550, 600, 700, 800, and 900 °C in a vacuum furnace. The microstructures and compositions of the interface layers were analyzed, and the mechanical properties and fracture morphology of the joints were examined. The results indicated that there was a systematic switch from Ti/Ti7Al5Si12/composite at 600 °C and Ti/TiAl3/Ti7Al5Si12/composite at 700 °C to Ti/Ti7Al5Si12/TiAl3/Ti7Al5Si12/composite at 800 °C and Ti/Ti7Al5Si12/TiAl3/composite at 900 °C. The formation of TiAl3 at 700 and 800 °C depended on Al segregation, which was an uphill diffusion driven by chemical potential. The maximum shear strength was 40.9 MPa, found in the joint welded at 700 °C. Most joints fractured between Ti7Al5Si12 and Al-Ceramic composite. In any case, Ti7Al5Si12 was favorable for Al-Ceramic composite welding, which attached to Al-Ceramic composite, reducing the differences in physiochemical properties between SiC and metal, improving the mechanical properties of the joints and increasing the surface wettability of Al-Ceramic composite.

  4. Composite Polymer-Garnet Solid State Electrolytes

    NASA Astrophysics Data System (ADS)

    Villa, Andres; Oduncu, Muhammed R.; Scofield, Gregory D.; Marinero, Ernesto E.; Forbey, Scott

    Solid-state electrolytes provide a potential solution to the safety and reliability issues of Li-ion batteries. We have synthesized cubic-phase Li7-xLa3Zr2-xBixO12 compounds utilizing inexpensive, scalable Sol-gel synthesis and obtained ionic conductivities 1.2 x 10-4 S/cm at RT in not-fully densified pellets. In this work we report on the fabrication of composite polymer-garnet ceramic particle electrolytes to produce flexible membranes that can be integrated with standard battery electrodes without the need for a separator. As a first step we incorporated the ceramic particles into polyethylene oxide polymers (PEO) to form flexible membranes. Early results are encouraging yielding ionic conductivity values 1.0 x 10-5 S/cm at RT. To increment the conductivity in the membranes, we are optimizing amongst other: the ceramic particle size distribution and weight load, the polymer molecular weight and chemical composition and the solvated Li-salt composition and content. Unhindered ion transport across interfaces between the composites and the battery electrode materials is paramount for battery performance. To this end, we are investigating the effect of interface morphology, its atomic composition and exploring novel electrode structures that facilitate ionic transport.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuoka, T., E-mail: ta-matsuoka@mg.ngkntk.co.jp; Kozuka, H.; Kitamura, K.

    A (K,Na)NbO₃-based lead-free piezoelectric ceramic was successfully densified. It exhibited an enhanced electromechanical coupling factor of kₚ=0.52, a piezoelectric constant d₃₃=252 pC/N, and a frequency constant Nₚ=3170 Hz m because of the incorporation of an elaborate secondary phase composed primarily of KTiNbO₅. The ceramic's nominal composition was 0.92K₀.₄₂Na₀.₄₄Ca₀.₀₄Li₀.₀₂Nb₀.₈₅O₃–0.047K₀.₈₅Ti₀.₈₅Nb₁.₁₅O₅–0.023BaZrO₃ –0.0017Co₃O₄–0.002Fe₂O₃–0.005ZnO, abbreviated herein as KNN–NTK composite. The KNN–NTK ceramic exhibited a dense microstructure with few microvoids which significantly degraded its piezoelectric properties. Elemental maps recorded using transmission electron microscopy with energy-dispersive X-ray spectroscopy (TEM–EDS) revealed regions of high concentrations of Co and Zn inside the NTK phase. In addition, X-ray diffraction patternsmore » confirmed that a small portion of the NTK phase was converted into K₂(Ti,Nb,Co,Zn)₆O₁₃ or CoZnTiO₄ by a possible reaction between Co and Zn solutes and the NTK phase during a programmed sintering schedule. TEM studies also clarified a distortion around the KNN/NTK interfaces. Such an NTK phase filled voids between KNN particles, resulting in an improved chemical stability of the KNN ceramic. The manufacturing process was subsequently scaled to 100 kg per batch for granulated ceramic powder using a spray-drying technique. The properties of the KNN–NTK composite ceramic produced using the scaled-up method were confirmed to be identical to those of the ceramic prepared by conventional solid-state reaction sintering. Consequently, slight changes in the NTK phase composition and the distortion around the KNN/NTK interfaces affected the KNN–NTK composite ceramic's piezoelectric characteristics.« less

  6. Modeling for Matrix Multicracking Evolution of Cross-ply Ceramic-Matrix Composites Using Energy Balance Approach

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2015-12-01

    The matrix multicracking evolution of cross-ply ceramic-matrix composites (CMCs) has been investigated using energy balance approach. The multicracking of cross-ply CMCs was classified into five modes, i.e., (1) mode 1: transverse multicracking; (2) mode 2: transverse multicracking and matrix multicracking with perfect fiber/matrix interface bonding; (3) mode 3: transverse multicracking and matrix multicracking with fiber/matrix interface debonding; (4) mode 4: matrix multicracking with perfect fiber/matrix interface bonding; and (5) mode 5: matrix multicracking with fiber/matrix interface debonding. The stress distributions of four cracking modes, i.e., mode 1, mode 2, mode 3 and mode 5, are analysed using shear-lag model. The matrix multicracking evolution of mode 1, mode 2, mode 3 and mode 5, has been determined using energy balance approach. The effects of ply thickness and fiber volume fraction on matrix multicracking evolution of cross-ply CMCs have been investigated.

  7. Transformation Weakening of Ceramic Composite Interfaces.

    DTIC Science & Technology

    1996-12-06

    20 90 80 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 "Plastic" Shear Strain, yp (rn/rn)(b) "Plastic" stain due to transformation in MgSiQ3 with 2 molo Mn2...for Ceramic Matrix Composites," C. M. Huang, F. Xiong, Y. Xu, A. Zangvil and W. M. Kriven, J. Materials Science and Engineering, A191 (1995) 249-256

  8. Micromorphological characterization of adhesive interface of sound dentin and total-etch and self-etch adhesives.

    PubMed

    Drobac, Milan; Stojanac, Igor; Ramić, Bojana; Premović, Milica; Petrović, Ljubomir

    2015-01-01

    The ultimate goal in restorative dentistry has always been to achieve strong and permanent bond between the dental tissues and filling materials. It is not easy to achieve this task because the bonding process is different for enamel and dentin-dentin is more humid and more organic than enamel. It is moisture and organic nature of dentin that make this hard tissue very complex to achieve adhesive bond. One of the first and most widely used tools for examining the adhesive bond between hard dental tissues and composite restorative materials is scanning electron microscopy. The aim of this study was scanning electron microscopy analyzes the interfacial micro morphology of total-etch and self-etch adhesives. Micro morphological characteristics of interface between total-etch adhesive (Prime & Bond NT) in combination with the corresponding composite (Ceram X Mono) were compared with those of self-etching adhesive (AdheSE One) in, combination with the corresponding composite (Tetric EvoCeram). The specimens were observed under 1000 x magnification of scanning electron microscopy (JEOL, JSM-6460 Low Vacuum). Measurement of the thickness of the hybrid layer of the examined com posite systems was performed with the software of the device used (NIH Image Analyser). Micromorphological analysis of interface showed that the hybrid layer in sound dentin was well formed, its average thickness being 2.68 microm, with a large number of resin tags and a large amount of lateral branches for specimens with a composite system Prime & Bond NT-Ceram X Mono. However, the specimens' with composite systems Adhese One-Tetric EvoCeram did not show the presence of hybrid layer and the resin tags were poorly represented. The results of this study suggest that total-etch adhesives bond better with sound dentin than self-etch adhesive.

  9. Auger analysis of a fiber/matrix interface in a ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Honecy, Frank S.; Pepper, Stephen V.

    1988-01-01

    Auger electron spectroscopy (AES) depth profiling was used to characterize the fiber/matrix interface of an SiC fiber, reaction bonded Si3N4 matrix composite. Depth profiles of the as received double coated fiber revealed concentration oscillations which disappeared after annealing the fiber in the environment used to fabricate the composite. After the composite was fractured, the Auger depth profiles showed that failure occurred in neither the Beta-SiC fiber body nor in the Si3N4 matrix but, concurrently, at the fiber coating/matrix interface and within the fiber coating itself.

  10. Mechanical and fracture behavior of veneer-framework composites for all-ceramic dental bridges.

    PubMed

    Studart, André R; Filser, Frank; Kocher, Peter; Lüthy, Heinz; Gauckler, Ludwig J

    2007-01-01

    High-strength ceramics are required in dental posterior restorations in order to withstand the excessive tensile stresses that occur during mastication. The aim of this study was to investigate the fracture behavior and the fast-fracture mechanical strength of three veneer-framework composites (Empress 2/IPS Eris, TZP/Cercon S and Inceram-Zirconia/Vita VM7) for all-ceramic dental bridges. The load bearing capacity of the veneer-framework composites were evaluated using a bending mechanical apparatus. The stress distribution through the rectangular-shaped layered samples was assessed using simple beam calculations and used to estimate the fracture strength of the veneer layer. Optical microscopy of fractured specimens was employed to determine the origin of cracks and the fracture mode. Under fast fracture conditions, cracks were observed to initiate on, or close to, the veneer outer surface and propagate towards the inner framework material. Crack deflection occurred at the veneer-framework interface of composites containing a tough framework material (TZP/Cercon S and Inceram-Zirconia/Vita VM7), as opposed to the straight propagation observed in the case of weaker frameworks (Empress 2/IPS Eris). The mechanical strength of dental composites containing a weak framework (K(IC)<3 MPam(1/2)) is ultimately determined by the low fracture strength of the veneer layer, since no crack arresting occurs at the veneer-framework interface. Therefore, high-toughness ceramics (K(IC)>5 MPam(1/2)) should be used as framework materials of posterior all-ceramic bridges, so that cracks propagating from the veneer layer do not lead to a premature failure of the prosthesis.

  11. Modified silicon carbide whiskers

    DOEpatents

    Tiegs, Terry N.; Lindemer, Terrence B.

    1991-01-01

    Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparaging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

  12. Modified silicon carbide whiskers

    DOEpatents

    Tiegs, T.N.; Lindemer, T.B.

    1991-05-21

    Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

  13. Elasto-plastic analysis of interface layers for fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Doghri, I.; Leckie, F. A.

    1991-01-01

    The mismatch in coefficients of thermal expansion (CTE) of fiber and matrix in metal matrix composites reinforced with ceramic fibers induces high thermal stresses in the matrix. Elasto-plastic analyses - with different degrees of simplification and modelization - show that an interface layer with a sufficiently high CTE can reduce the tensile hoop stress in the matrix substantially.

  14. Reduction-oxidation Enabled Glass-ceramics to Stainless Steel Bonding Part I: screening of doping oxidants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Steve Xunhu

    Lithium silicate-based glass-ceramics with high coefficients of thermal expansion, designed to form matched hermetic seals in 304L stainless steel housing, show little evidence of interfacial chemical bonding, despite extensive inter-diffusion at the glass-ceramic-stainless steel (GC-SS) interface. A series of glass-ceramic compositions modified with a variety of oxidants, AgO, FeO, NiO, PbO, SnO, CuO, CoO, MoO 3 and WO 3, are examined for the feasibility of forming bonding oxides through reduction-oxidation (redox) at the GC-SS interface. The oxidants were selected according to their Gibbs free energy to allow for oxidation of Cr/Mn/Si from stainless steel, and yet to prevent a reductionmore » of P2O5 in the glass-ceramic where the P 2O 5 is to form Li 3PO 4 nuclei for growth of high expansion crystalline SiO 2 phases. Other than the CuO and CoO modified glass-ceramics, bonding from interfacial redox reactions were not achieved in the modified glass-ceramics, either because of poor wetting on the stainless steel or a reduction of the oxidants at the surface of glass-ceramic specimens rather than the GC-SS interface.« less

  15. An Investigation of Reliability Models for Ceramic Matrix Composites and their Implementation into Finite Element Codes

    NASA Technical Reports Server (NTRS)

    Duffy, Stephen F.

    1998-01-01

    The development of modeling approaches for the failure analysis of ceramic-based material systems used in high temperature environments was the primary objective of this research effort. These materials have the potential to support many key engineering technologies related to the design of aeropropulsion systems. Monolithic ceramics exhibit a number of useful properties such as retention of strength at high temperatures, chemical inertness, and low density. However, the use of monolithic ceramics has been limited by their inherent brittleness and a large variation in strength. This behavior has motivated material scientists to reinforce the monolithic material with a ceramic fiber. The addition of a second ceramic phase with an optimized interface increases toughness and marginally increases strength. The primary purpose of the fiber is to arrest crack growth, not to increase strength. The material systems of interest in this research effort were laminated ceramic matrix composites, as well as two- and three- dimensional fabric reinforced ceramic composites. These emerging composite systems can compete with metals in many demanding applications. However, the ongoing metamorphosis of ceramic composite material systems, and the lack of standardized design data has in the past tended to minimize research efforts related to structural analysis. Many structural components fabricated from ceramic matrix composites (CMC) have been designed by "trial and error." The justification for this approach lies in the fact that during the initial developmental phases for a material system fabrication issues are paramount. Emphasis is placed on demonstrating feasibility rather than fully understanding the processes controlling mechanical behavior. This is understandable during periods of rapid improvements in material properties for any composite system. But to avoid the ad hoc approach, the analytical methods developed under this effort can be used to develop rational structural design protocols.

  16. Cement-based piezoelectric ceramic composites for sensor applications in civil engineering

    NASA Astrophysics Data System (ADS)

    Dong, Biqin

    The objectives of this thesis are to develop and apply a new smart composite for the sensing and actuation application of civil engineering. Piezoelectric ceramic powder is incorporated into cement-based composite to achieve the sensing and actuation capability. The research investigates microstructure, polarization and aging, material properties and performance of cement-based piezoelectric ceramic composites both theoretically and experimentally. A hydrogen bonding is found at the interface of piezoelectric ceramic powder and cement phase by IR (Infrared Ray), XPS (X-ray Photoelectron Spectroscopy) and SIMS (Secondary Ion Mass Spectroscopy). It largely affects the material properties of composites. A simple first order model is introduced to explain the poling mechanism of composites and the dependency of polarization is discussed using electromechanical coupling coefficient kt. The mechanisms acting on the aging effect is explored in detail. Dielectrical, piezoelectric and mechanical properties of the cement-based piezoelectric ceramic composites are studied by experiment and theoretical calculation based on modified cube model (n=1) with chemical bonding . A complex circuit model is proposed to explain the unique feature of impedance spectra and the instinct of high-loss of cement-based piezoelectric ceramic composite. The sensing ability of cement-based piezoelectric ceramic composite has been evaluated by using step wave, sine wave, and random wave. It shows that the output of the composite can reflects the nature and characteristics of mechanical input. The work in this thesis opens a new direction for the current actuation/sensing technology in civil engineering. The materials and techniques, developed in this work, have a great potential in application of health monitoring of buildings and infrastructures.

  17. Synergistic Effects of Temperature, Oxidation and Stress Level on Fatigue Damage Evolution and Lifetime Prediction of Cross-Ply SiC/CAS Ceramic-Matrix Composites Through Hysteresis-Based Parameters

    NASA Astrophysics Data System (ADS)

    Li, Longbiao

    2017-12-01

    The damage development and cyclic fatigue lifetime of cross-ply SiC/CAS ceramic-matrix composites have been investigated at different testing temperatures in air atmosphere. The relationships between the fatigue hysteresis-based damage parameters, i.e., fatigue hysteresis dissipated energy, fatigue hysteresis modulus and fatigue peak strain and the damage mechanisms of matrix multicracking, fiber/matrix interface debonding, interface sliding and fibers failure, have been established. With the increase in the cycle number, the evolution of the fatigue hysteresis modulus, fatigue peak strain and fatigue hysteresis dissipated energy depends upon the fatigue peak stress levels, interface and fibers oxidation and testing temperature. The fatigue life S-N curves of cross-ply SiC/CAS composite at room and elevated temperatures have been predicted, and the fatigue limit stresses at room temperature, 750 and 850 °C, are 50, 36 and 30% of the tensile strength, respectively.

  18. Formation and corrosion of a 410 SS/ceramic composite

    NASA Astrophysics Data System (ADS)

    Chen, X.; Ebert, W. L.; Indacochea, J. E.

    2016-11-01

    This study addressed the possible use of alloy/ceramic composite waste forms to immobilize metallic and oxide waste streams generated during the electrochemical reprocessing of spent reactor fuel using a single waste form. A representative composite material was made to evaluate the microstructure and corrosion behavior at alloy/ceramic interfaces by reacting 410 stainless steel with Zr, Mo, and a mixture of lanthanide oxides. Essentially all of the available Zr reacted with lanthanide oxides to generate lanthanide zirconates, which combined with the unreacted lanthanide oxides to form a porous ceramic network that filled with alloy to produce a composite puck. Alloy present in excess of the pore volume of the ceramic generated a metal bead on top of the puck. The alloys in the composite and forming the bead were both mixtures of martensite grains and ferrite grains bearing carbide precipitates; FeCrMo intermetallic phases also precipitated at ferrite grain boundaries within the composite puck. Micrometer-thick regions of ferrite surrounding the carbides were sensitized and corroded preferentially in electrochemical tests. The lanthanide oxides dissolved chemically, but the lanthanide zirconates did not dissolve and are suitable host phases. The presence of oxide phases did not affect corrosion of the neighboring alloy phases.

  19. Structural characterization of high temperature composites

    NASA Technical Reports Server (NTRS)

    Mandell, J. F.; Grande, D. H.

    1991-01-01

    Glass, ceramic, and carbon matrix composite materials have emerged in recent years with potential properties and temperature resistance which make them attractive for high temperature applications such as gas turbine engines. At the outset of this study, only flexural tests were available to evaluate brittle matrix composites at temperatures in the 600 to 1000 C range. The results are described of an ongoing effort to develop appropriate tensile, compression, and shear test methods for high temperature use. A tensile test for unidirectional composites was developed and used to evaluate the properties and behavior of ceramic fiber reinforced glass and glass-ceramic matrix composites in air at temperatures up to 1000 C. The results indicate generally efficient fiber reinforcement and tolerance to matrix cracking similar to polymer matrix composites. Limiting properties in these materials may be an inherently very low transverse strain to failure, and high temperature embrittlement due to fiber/matrix interface oxidation.

  20. Electrostatic Assembly Preparation of High-Toughness Zirconium Diboride-Based Ceramic Composites with Enhanced Thermal Shock Resistance Performance.

    PubMed

    Zhang, Baoxi; Zhang, Xinghong; Hong, Changqing; Qiu, Yunfeng; Zhang, Jia; Han, Jiecai; Hu, PingAn

    2016-05-11

    The central problem of using ceramic as a structural material is its brittleness, which associated with rigid covalent or ionic bonds. Whiskers or fibers of strong ceramics such as silicon carbide (SiC) or silicon nitride (Si3N4) are widely embedded in a ceramic matrix to improve the strength and toughness. The incorporation of these insulating fillers can impede the thermal flow in ceramic matrix, thus decrease its thermal shock resistance that is required in some practical applications. Here we demonstrate that the toughness and thermal shock resistance of zirconium diboride (ZrB2)/SiC composites can be improved simultaneously by introducing graphene into composites via electrostatic assembly and subsequent sintering treatment. The incorporated graphene creates weak interfaces of grain boundaries (GBs) and optimal thermal conductance paths inside composites. In comparison to pristine ZrB2-SiC composites, the toughness of (2.0%) ZrB2-SiC/graphene composites exhibited a 61% increasing (from 4.3 to 6.93 MPa·m(1/2)) after spark plasma sintering (SPS); the retained strength after thermal shock increased as high as 74.8% at 400 °C and 304.4% at 500 °C. Present work presents an important guideline for producing high-toughness ceramic-based composites with enhanced thermal shock properties.

  1. Manufacturing issues and optical properties of rare-earth (Y, Lu, Sc, Nd) aluminate garnets composite transparent ceramics

    NASA Astrophysics Data System (ADS)

    Bonnet, Loïck; Boulesteix, Rémy; Maître, Alexandre; Sallé, Christian; Couderc, Vincent; Brenier, Alain

    2015-12-01

    In this work, a comparative study of reactive sintering and optical properties of three laser composite transparent ceramics doped with neodymium: Nd:YAG/Nd:YS1AG, Nd:YAG/Nd:LuAG and Nd:YS1AG/Nd:LuAG has been achieved. Samples were manufactured thanks to pressureless co-sintering under vacuum of bilayer powder compacts. The reaction sequence from primary oxides to final garnet phases has been investigated. Similar dilatometric behavior was observed during reactive-sintering for each composition. Differential shrinkage can be thus accommodated to some extent. Second, this work has shown that the intermediate zone at composites interface is composed of single-phased garnet solid-solution with continuous evolution from one side to the other. The thickness of the interdiffusion zone was found to be limited to about 100 μm in all cases and appeared to be well described by classical diffusion laws of Fick and Whipple-Le Claire. The analyses of spectroscopic properties of transparent ceramics composites have finally shown that composite ceramics should be suitable to produce dual wavelength emission for terahertz generation.

  2. Ceramic Technology Project semiannual progress report, October 1992--March 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.R.

    1993-09-01

    This project was developed to meet the ceramic technology requirements of the OTS`s automotive technology programs. Although progress has been made in developing reliable structural ceramics, further work is needed to reduce cost. The work described in this report is organized according to the following work breakdown structure project elements: Materials and processing (monolithics [Si nitride, carbide], ceramic composites, thermal and wear coatings, joining, cost effective ceramic machining), materials design methodology (contact interfaces, new concepts), data base and life prediction (structural qualification, time-dependent behavior, environmental effects, fracture mechanics, nondestructive evaluation development), and technology transfer.

  3. Using graphene networks to build bioinspired self-monitoring ceramics

    PubMed Central

    Picot, Olivier T.; Rocha, Victoria G.; Ferraro, Claudio; Ni, Na; D'Elia, Eleonora; Meille, Sylvain; Chevalier, Jerome; Saunders, Theo; Peijs, Ton; Reece, Mike J.; Saiz, Eduardo

    2017-01-01

    The properties of graphene open new opportunities for the fabrication of composites exhibiting unique structural and functional capabilities. However, to achieve this goal we should build materials with carefully designed architectures. Here, we describe the fabrication of ceramic-graphene composites by combining graphene foams with pre-ceramic polymers and spark plasma sintering. The result is a material containing an interconnected, microscopic network of very thin (20–30 nm), electrically conductive, carbon interfaces. This network generates electrical conductivities up to two orders of magnitude higher than those of other ceramics with similar graphene or carbon nanotube contents and can be used to monitor ‘in situ' structural integrity. In addition, it directs crack propagation, promoting stable crack growth and increasing the fracture resistance by an order of magnitude. These results demonstrate that the rational integration of nanomaterials could be a fruitful path towards building composites combining unique mechanical and functional performances. PMID:28181518

  4. Shear damage mechanisms in a woven, Nicalon-reinforced ceramic-matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keith, W.P.; Kedward, K.T.

    The shear response of a Nicalon-reinforced ceramic-matrix composite was investigated using Iosipescu tests. Damage was characterized by X-ray, optical, and SEM techniques. The large inelastic strains which were observed were attributed to rigid body sliding of longitudinal blocks of material. These blocks are created by the development and extension of intralaminar cracks and ply delaminations. This research reveals that the debonding and sliding characteristics of the fiber-matrix interface control the shear strength, strain softening, and cyclic degradation of the material.

  5. Fatigue Life Prediction of 2D Woven Ceramic-Matrix Composites at Room and Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2017-03-01

    In this paper, the fatigue life of 2D woven ceramic-matrix composites, i.e., SiC/SiC, SiC/Si-N-C, SiC/Si-B4C, and Nextel 610™/Aluminosilicate, at room and elevated temperatures has been predicted using the micromechanics approach. An effective coefficient of the fiber volume fraction along the loading direction (ECFL) was introduced to describe the fiber architecture of preforms. The Budiansky-Hutchinson-Evans shear-lag model was used to describe the microstress field of the damaged composite considering fibers failure. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. The interface shear stress and fibers strength degradation model and oxidation region propagation model have been adopted to analyze the fatigue and oxidation effects on fatigue life of the composite, which is controlled by interface frictional slip and diffusion of oxygen gas through matrix multicrackings. Under cyclic fatigue loading, the fibers broken fraction was determined by combining the interface/fiber oxidation model, interface wear model and fibers statistical failure model at elevated temperatures, based on the assumption that the fiber strength is subjected to two-parameter Weibull distribution and the load carried by broken and intact fibers satisfy the Global Load Sharing (GLS) criterion. When the broken fibers fraction approaches to the critical value, the composites fatigue fractures. The fatigue life S- N curves of 2D SiC/SiC, SiC/Si-N-C, SiC/Si-B4C, and Nextel 610™/Aluminosilicate composites at room temperature and 800, 1000 and 1200 °C in air and steam have been predicted.

  6. Synergistic Effects of Temperature, Oxidation and Multicracking Modes on Damage Evolution and Life Prediction of 2D Woven Ceramic-Matrix Composites under Tension-Tension Fatigue Loading

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2017-08-01

    In this paper, the synergistic effects of temperature, oxidation and multicracking modes on damage evolution and life prediction in 2D woven ceramic-matrix composites (CMCs) have been investigated. The damage parameter of fatigue hysteresis dissipated energy and the interface shear stress were used to monitor the damage evolution inside of CMCs. Under cyclic fatigue loading, the fibers broken fraction was determined by combining the interface/fiber oxidation model, interface wear model and fibers statistical failure model at elevated temperature, based on the assumption that the fiber strength is subjected to two-parameter Weibull distribution and the load carried by broken and intact fibers satisfy the Global Load Sharing (GLS) criterion. When the broken fibers fraction approaches to the critical value, the composite fatigue fractures. The evolution of fatigue hysteresis dissipated energy, the interface shear stress and broken fibers fraction versus cycle number, and the fatigue life S-N curves of SiC/SiC at 1000, 1200 and 1300 °C in air and steam condition have been predicted. The synergistic effects of temperature, oxidation, fatigue peak stress, and multicracking modes on the evolution of interface shear stress and fatigue hysteresis dissipated energy versus cycle numbers curves have been analyzed.

  7. Biomechanical Assessment of Restored Mandibular Molar by Endocrown in Comparison to a Glass Fiber Post-Retained Conventional Crown: 3D Finite Element Analysis.

    PubMed

    Helal, Mohammed Abu; Wang, Zhigang

    2017-10-25

    To compare equivalent and contact stresses in a mandibular molar restored by all-ceramic crowns through two methods: ceramic endocrowns and ceramic crowns supported by fiber-reinforced composite (FRC) posts and core, by using 3D finite element analysis during normal masticatory load. Three 3D models of a mandibular first molar were made and labeled as such: intact molar with no restoration (A); ceramic endocrown-restored molar (B); ceramic crown supported by FRC posts and core restored molar (C). By using 3D FE analysis with contact components, normal masticatory load was simulated. The mvM stresses in all models were calculated. Maximal mvM stresses in the ceramic of restorations, dentin, and luting cement were contrasted among models and to values of materials' strength. Contact shear and tensile stresses in the restoration/tooth interface around restorations were also calculated. The highest mvM stress levels in the enamel and dentin for the tooth restored by ceramic endocrown were lower in the crown ceramic than in tooth restored with FRC posts and all-ceramic crowns; however, in the resin adhesive cement interface it was lower for ceramic crown supported by FRC posts than the in ceramic endocrown restoration. The maximum contact shear and tensile stress values along the restoration/tooth interface of ceramic endocrowns were lower than those with ceramic crowns supported by FRC posts. Ceramic endocrown restorations presented a lower mvM stress level in dentin than the conventional ceramic crowns supported by FRC posts and core. Ceramic endocrown restorations in molars are less susceptible to damage than those with conventional ceramic crowns retained by FRC posts. Ceramic endocrowns properly cemented in molars must not be fractured or loosen during normal masticatory load. Therefore, ceramic endocrowns are advised as practicable, minimally invasive, and esthetic restorations for root canal treated mandibular molars. © 2017 by the American College of Prosthodontists.

  8. Elastic Properties of Lithium Disilicate Versus Feldspathic Inlays: Effect on the Bonding by 3D Finite Element Analysis.

    PubMed

    Trindade, Flávia Zardo; Valandro, Luiz Felipe; de Jager, Niek; Bottino, Marco Antônio; Kleverlaan, Cornelis Johannes

    2016-10-03

    To determine the elastic properties of five ceramic systems with different compositions (lithium disilicate vs. feldspathic ceramics) and processing methods and compare the stress distribution in premolars in the interface with inlays made with these systems loaded with the maximum normal bite force (665 N) using 3D finite element analysis (FEA). The elastic properties of five ceramic restoration materials (IPS e.max Press, IPS e.max CAD, Vita PM9, Vita Mark II, Vita VM7) were obtained using the ultrasonic pulse-echo method. Three-dimensional FEA simplified models of maxillary premolars restored with these ceramic materials were created. The models were loaded with a load at the two nodes on the occlusal surface in the middle of the tooth, 2 mm from the outside of the tooth, simulating a loading ball with a radius of 6 mm. The means values of density (g/cm³), Young's modulus (GPa), and Poison's ratio was 2.6 ± 0.3, 82.3 ± 18.3, and 0.22 ± 0.01 for IPS e.max Press; 2.3 ± 0.1, 83.5 ± 15.0, and 0.21 ± 0.01 for IPS e.max CAD; 2.5 ± 0.1, 44.4 ± 11.5, and 0.26 ± 0.08 for PM9; 2.4 ± 0.1, 70.6 ± 4.9, and 0.22 ± 0.01 for Vitamark II; 2.4 ± 0.1, 63.3 ± 3.9, and 0.23 ± 0.01 for VM7, respectively. The 3D FEA showed the tensile stress at the interface between the tooth and the inlay was dependent on the elastic properties of the materials, since the Vita PM9 and IPS e.max CAD ceramics presented the lowest and the highest stress concentration in the interface, respectively. The elastic properties of ceramic materials were influenced by composition and processing methods, and these differences influenced the stress concentration at the bonding interface between tooth and restoration. The lower the elastic modulus of inlays, the lower is the stress concentration at the bonding interfaces. © 2016 by the American College of Prosthodontists.

  9. Behavior of ceramic particles at the solid-liquid metal interface in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Stefanescu, D. M.; Dhindaw, B. K.; Kacar, S. A.; Moitra, A.

    1988-01-01

    Directional solidification results were obtained in order to investigate particle behavior at the solid-liquid interface in Al-2 pct Mg (cellular interface) and Al-6.1 pct Ni (eutectic interface) alloys. It is found that particles can be entrapped in the solid if adequate solidification rates and temperature gradients are used. Model results showed critical velocity values slightly higher than those obtained experimentally.

  10. Formation and corrosion of a 410 SS/ceramic composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, X.; Ebert, W. L.; Indacochea, J. E.

    This study evaluates the possible use of alloy/ceramic composite waste forms to immobilize metallic and oxide waste streams generated during the electrochemical reprocessing of spent reactor fuel in a single waste form. A representative composite material AOC410 was made to evaluate the microstructure and corrosion behavior at alloy/ceramic interfaces by reacting 410 stainless steel with Zr, Mo, and a mixture of lanthanide oxides. Essentially all of the Zr reacted with lanthanide oxides to form lanthanide zirconate, which combined with the remaining lanthanide oxides to form a porous ceramic network encapsulated by alloy as a composite puck. Excess alloy formed amore » metal bead on top of the composite. The alloys in the composite and bead were both mixture of martensite grains and ferrite grains with carbide precipitates. FeCrMo intermetallic phases also precipitated in the ferrite grains in the composite part. Ferrite surrounding carbides was sensitized and the least corrosion resistant in electrochemical corrosion tests conducted in an acidic brine electrolyte; ferrite neighboring martensite grains and intermetallics corroded galvanically. The lanthanide oxide domains dissolved chemically, but lanthanide zirconate domains did not dissolve. The presence of oxide phases did not affect corrosion of the neighboring alloy phases. These results suggest the longterm corrosion of a composite waste form can be evaluated by using separate material degradation models for the alloy and ceramic phases.« less

  11. Design and fabrication of biomimetic multiphased scaffolds for ligament-to-bone fixation.

    PubMed

    He, Jiankang; Zhang, Wenyou; Liu, Yaxiong; Li, Xiang; Li, Dichen; Jin, Zhongmin

    2015-05-01

    Conventional ligament grafts with single material composition cannot effectively integrate with the host bones due to mismatched properties and eventually affect their long-term function in vivo. Here we presented a multi-material strategy to design and fabricate composite scaffolds including ligament, interface and bone multiphased regions. The interface region consists of triphasic layers with varying material composition and porous structure to mimic native ligament-to-bone interface while the bone region contains polycaprolactone (PCL) anchor and microchanneled ceramic scaffolds to potentially provide combined mechanical and biological implant-bone fixation. Finite element analysis (FEA) demonstrated that the multiphased scaffolds with interference value smaller than 0.5 mm could avoid the fracture of ceramic scaffold during the implantation process, which was validated by in-vitro implanting the multiphased scaffolds into porcine joint bones. Pull-out experiment showed that the initial fixation between the multiphased scaffolds with 0.47 mm interference and the host bones could withstand the maximum force of 360.31±97.51 N, which can be improved by reinforcing the ceramic scaffolds with biopolymers. It is envisioned that the multiphased scaffold could potentially induce the regeneration of a new bone as well as interfacial tissue with the gradual degradation of the scaffold and subsequently realize long-term biological fixation of the implant with the host bone. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Preceramic Polymers for Use as Fiber Coatings

    NASA Technical Reports Server (NTRS)

    Heimann, P. J.; Hurwitz, F. I.; Wheeler, D.; Eldridge, J.; Baranwal, R.; Dickerson, R.

    1996-01-01

    Polymeric precursors to Si-C-O, SI-B-N and Si-C were evaluated for use as ceramic interfaces in ceramic matrix composites. Use of the preceramic polymers allows for easy dip coating of fibers from dilute solutions of a polymer, which are then pyrolyzed to obtain the ceramic. SCS-0 fibers (Textron Specialty Materials, Lowell, MA) were coated with polymers from three systems: polysilsesquioxanes, polyborosilazanes and polycarbosilanes. The polysilsesquioxane systems were shown to produce either silicon oxycarbide or silicon oxynitride, depending on the pyrolysis conditions, and demonstrated some promise in an RBSN (reaction-bonded silicon nitride) matrix model system. Polyborosilazanes were shown, in studies of bulk polymers, to give rise to oxidation resistant Si-B-N ceramics which remain amorphous to temperatures of 1600 C, and should therefore provide a low modulus interface. Polycarbosilanes produce amorphous carbon-rich Si-C materials which have demonstrated oxidation resistance.

  13. Comparison of Cyclic Hysteresis Behavior between Cross-Ply C/SiC and SiC/SiC Ceramic-Matrix Composites

    PubMed Central

    Li, Longbiao

    2016-01-01

    In this paper, the comparison of cyclic hysteresis behavior between cross-ply C/SiC and SiC/SiC ceramic-matrix composites (CMCs) has been investigated. The interface slip between fibers and the matrix existed in the matrix cracking mode 3 and mode 5, in which matrix cracking and interface debonding occurred in the 0° plies are considered as the major reason for hysteresis loops of cross-ply CMCs. The hysteresis loops of cross-ply C/SiC and SiC/SiC composites corresponding to different peak stresses have been predicted using present analysis. The damage parameter, i.e., the proportion of matrix cracking mode 3 in the entire matrix cracking modes of the composite, and the hysteresis dissipated energy increase with increasing peak stress. The damage parameter and hysteresis dissipated energy of C/SiC composite under low peak stress are higher than that of SiC/SiC composite; However, at high peak stress, the damage extent inside of cross-ply SiC/SiC composite is higher than that of C/SiC composite as more transverse cracks and matrix cracks connect together. PMID:28787861

  14. Comparison of Cyclic Hysteresis Behavior between Cross-Ply C/SiC and SiC/SiC Ceramic-Matrix Composites.

    PubMed

    Li, Longbiao

    2016-01-19

    In this paper, the comparison of cyclic hysteresis behavior between cross-ply C/SiC and SiC/SiC ceramic-matrix composites (CMCs) has been investigated. The interface slip between fibers and the matrix existed in the matrix cracking mode 3 and mode 5, in which matrix cracking and interface debonding occurred in the 0° plies are considered as the major reason for hysteresis loops of cross-ply CMCs. The hysteresis loops of cross-ply C/SiC and SiC/SiC composites corresponding to different peak stresses have been predicted using present analysis. The damage parameter, i.e. , the proportion of matrix cracking mode 3 in the entire matrix cracking modes of the composite, and the hysteresis dissipated energy increase with increasing peak stress. The damage parameter and hysteresis dissipated energy of C/SiC composite under low peak stress are higher than that of SiC/SiC composite; However, at high peak stress, the damage extent inside of cross-ply SiC/SiC composite is higher than that of C/SiC composite as more transverse cracks and matrix cracks connect together.

  15. Aluminum alloy/alumina-based ceramic interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebeau, T.; Strom-Olsen, J.O.; Gruzleski, J.E.

    1995-07-01

    Wetting experiments were performed on eutectic ZrO{sub 2}/Al{sub 2}O{sub 3} (ZA), ZrO{sub 2}/Al{sub 2}O{sub 3}/TiO{sub 2} (ZAT), and ZrO{sub 2}/Al{sub 2}O{sub 3}/SiO{sub 2} (ZAS) ceramic substrates with different Al alloys. Four major variables were tested to study the wetting behavior of the different ceramic-metal systems. Variable include holding time, melt temperature, ally, and ceramic compositions. An experimental setup was designed to measure in situ contact angles using the sessile drop method. For any ceramic substrate, a temperature over 950 C was necessary to observe an equilibrium wetting angle of less than 90{degree} with pure Al; by alloying the aluminum, wettingmore » could be observed at lower temperatures ({theta} = 76--86{degree} at 900 C for Al-10 wt. % Si, {theta} {approximately}72{degree} at 850 C for Al-2.4 wt. % Mg) forming clean interfaces. Finally, ZAS specimens reacted with molten Al alloys over 900 C to produce Zr-Al based intermetallics at the metal-ceramic interface.« less

  16. Electric-Field-Directed Parallel Alignment Architecting 3D Lithium-Ion Pathways within Solid Composite Electrolyte.

    PubMed

    Liu, Xueqing; Peng, Sha; Gao, Shuyu; Cao, Yuancheng; You, Qingliang; Zhou, Liyong; Jin, Yongcheng; Liu, Zhihong; Liu, Jiyan

    2018-05-09

    It is of great significance to seek high-performance solid electrolytes via a facile chemistry and simple process for meeting the requirements of solid batteries. Previous reports revealed that ion conducting pathways within ceramic-polymer composite electrolytes mainly occur at ceramic particles and the ceramic-polymer interface. Herein, one facile strategy toward ceramic particles' alignment and assembly induced by an external alternating-current (AC) electric field is presented. It was manifested by an in situ optical microscope that Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 particles and poly(ethylene glycol) diacrylate in poly(dimethylsiloxane) (LATP@PEGDA@PDMS) assembled into three-dimensional connected networks on applying an external AC electric field. Scanning electron microscopy revealed that the ceramic LATP particles aligned into a necklacelike assembly. Electrochemical impedance spectroscopy confirmed that the ionic conductivity of this necklacelike alignment was significantly enhanced compared to that of the random one. It was demonstrated that this facile strategy of applying an AC electric field can be a very effective approach for architecting three-dimensional lithium-ion conductive networks within solid composite electrolyte.

  17. Multilayer Fiber Interfaces for Improved Environmental Resistance and Slip in Carbon Fiber Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Babcock, Jason R.; Ramachandran, Gautham; Williams, Brian E.; Effinger, Michael R.

    2004-01-01

    Ultraviolet-enhanced chemical vapor deposition (UVCVD) has been developed to lower the required substrate temperature thereby allowing for the application of metal oxide-based coatings to carbon and ceramic fibers without causing significant fiber damage. An effort to expand this capability to other ceramic phases chosen to maximize oxidation protection in the likely event of matrix cracking and minimize possible reaction between the coating and fiber during long-term high temperature use will be presented along with studies aimed at the demonstration of these and other benefits for the next-generation interface coating systems being developed herein.

  18. Fabrication Routes for Continuous Fiber-Reinforced Ceramic Composites (CFCC)

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.; Bansal, Narottam P.

    1998-01-01

    The primary approaches used for fabrication of continuous fiber-reinforced ceramic composite (CFCC) components have been reviewed. The CFCC fabrication issues related to fiber, interface, and matrix have been analyzed. The capabilities, advantages and limitations of the five matrix-infiltration routes have been compared and discussed. Today, the best fabrication route for the CFCC end-user is not clear and compromises need to be made depending on the details of the CFCC application. However, with time, this problem should be reduced as research continues to develop advanced CFCC constituents and fabrication routes.

  19. Fabrication Routes for Continuous Fiber-Reinforced Ceramic Composites (CFCC)

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.; Bansal, Narottam P.

    1998-01-01

    The primary approaches used for fabrication of continuous fiber-reinforced ceramic composite (CFCC) components have been reviewed. The CFCC fabrication issues related to fiber, interface, and matrix have been analyzed. The capabilities. advantages and limitations of the five matrix-infiltration routes have been compared and discussed. Today. the best fabrication route for the CFCC end-user is not clear and compromises need to be made depending on the details of the CFCC application. However, with time, this problem should be reduced as research continues to develop advanced CFCC constituents and fabrication routes.

  20. Boron-carbide-aluminum and boron-carbide-reactive metal cermets

    DOEpatents

    Halverson, Danny C.; Pyzik, Aleksander J.; Aksay, Ilhan A.

    1986-01-01

    Hard, tough, lightweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidation step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modulus of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi.sqroot.in. These composites and methods can be used to form a variety of structural elements.

  1. Boron-carbide-aluminum and boron-carbide-reactive metal cermets. [B/sub 4/C-Al

    DOEpatents

    Halverson, D.C.; Pyzik, A.J.; Aksay, I.A.

    1985-05-06

    Hard, tough, lighweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidated step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modules of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi..sqrt..in. These composites and methods can be used to form a variety of structural elements.

  2. JPRS Report, Science & Technology, USSR: Materials Science, Mechanics and Technology of Metal and Metal Ceramic Composite Material Products

    DTIC Science & Technology

    1990-09-27

    value computed according to an additive rule [1], while on the other hand inelastic ( microplastic ) deformation starts earlier (practically at aw -* 0...and transverse directions. The development of microplastic zones in the matrix and their influence on macroscopic proper- ties are illustrated... microplastic zones starts at the phase interface, while in titanium-boron composites it starts at some distance from the interface. In the first case the

  3. Review: mechanical behavior of metal/ceramic interfaces in nanolayered composites—experiments and modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Nan; Liu, Xiang-Yang

    In this study, recent experimental and modeling studies in nanolayered metal/ceramic composites are reviewed, with focus on the mechanical behaviors of metal/nitrides interfaces. The experimental and modeling studies of the slip systems in bulk TiN are reviewed first. Then, the experimental studies of interfaces, including co-deformation mechanism by micropillar compression tests, in situ TEM straining tests for the dynamic process of the co-deformation, thickness-dependent fracture behavior, and interrelationship among the interfacial bonding, microstructure, and mechanical response, are reviewed for the specific material systems of Al/TiN and Cu/TiN multilayers at nanoscale. The modeling studies reviewed cover first-principles density functional theory-based modeling,more » atomistic molecular dynamics simulations, and mesoscale modeling of nanolayered composites using discrete dislocation dynamics. The phase transformation between zinc-blende and wurtzite AlN phases in Al/AlN multilayers at nanoscale is also reviewed. Finally, a summary and perspective of possible research directions and challenges are given.« less

  4. Review: mechanical behavior of metal/ceramic interfaces in nanolayered composites—experiments and modeling

    DOE PAGES

    Li, Nan; Liu, Xiang-Yang

    2017-11-03

    In this study, recent experimental and modeling studies in nanolayered metal/ceramic composites are reviewed, with focus on the mechanical behaviors of metal/nitrides interfaces. The experimental and modeling studies of the slip systems in bulk TiN are reviewed first. Then, the experimental studies of interfaces, including co-deformation mechanism by micropillar compression tests, in situ TEM straining tests for the dynamic process of the co-deformation, thickness-dependent fracture behavior, and interrelationship among the interfacial bonding, microstructure, and mechanical response, are reviewed for the specific material systems of Al/TiN and Cu/TiN multilayers at nanoscale. The modeling studies reviewed cover first-principles density functional theory-based modeling,more » atomistic molecular dynamics simulations, and mesoscale modeling of nanolayered composites using discrete dislocation dynamics. The phase transformation between zinc-blende and wurtzite AlN phases in Al/AlN multilayers at nanoscale is also reviewed. Finally, a summary and perspective of possible research directions and challenges are given.« less

  5. Micro-mechanics modelling of smart materials

    NASA Astrophysics Data System (ADS)

    Shah, Syed Asim Ali

    Metal Matrix ceramic-reinforced composites are rapidly becoming strong candidates as structural materials for many high temperature and engineering applications. Metal matrix composites (MMC) combine the ductile properties of the matrix with a brittle phase of the reinforcement, leading to high stiffness and strength with a reduction in structural weight. The main objective of using a metal matrix composite system is to increase service temperature or improve specific mechanical properties of structural components by replacing existing super alloys.The purpose of the study is to investigate, develop and implement second phase reinforcement alloy strengthening empirical model with SiCp reinforced A359 aluminium alloy composites on the particle-matrix interface and the overall mechanical properties of the material.To predict the interfacial fracture strength of aluminium, in the presence of silicon segregation, an empirical model has been modified. This model considers the interfacial energy caused by segregation of impurities at the interface and uses Griffith crack type arguments to predict the formation energies of impurities at the interface. Based on this, model simulations were conducted at nano scale specifically at the interface and the interfacial strengthening behaviour of reinforced aluminium alloy system was expressed in terms of elastic modulus.The numerical model shows success in making prediction possible of trends in relation to segregation and interfacial fracture strength behaviour in SiC particle-reinforced aluminium matrix composites. The simulation models using various micro scale modelling techniques to the aluminum alloy matrix composite, strengthenedwith varying amounts of silicon carbide particulate were done to predict the material state at critical points with properties of Al-SiC which had been heat treated.In this study an algorithm is developed to model a hard ceramic particle in a soft matrix with a clear distinct interface and a strain based relationship has been proposed for the strengthening behaviour of the MMC at the interface rather than stress based, by successfully completing the numerical modelling of particulate reinforced metal matrix composites.

  6. Interaction of multiferroic properties and interfaces in hexagonal LuMnO3 ceramics

    NASA Astrophysics Data System (ADS)

    Baghizadeh, A.; Vieira, J. M.; Stroppa, D. G.; Mirzadeh Vaghefi, P.; Graça, M. P.; Amaral, J. S.; Willinger, M.-G.; Amaral, V. S.

    2017-02-01

    A study on the underlying interaction mechanisms between lattice constants, magnetic and dielectric properties with inhomogeneities or internal interfaces in hexagonal, off-stoichiometric LuMnO3 oxide is presented. By increasing Mn content the a-axis constant and volume of the unit cell, the antiferromagnetic (AFM) Néel temperature, T N, and frustration factor of the frustrated Mn3+ trimmers in basal plane show decreasing trends. It was found that increasing the annealing time improves the properties of the lattices and progressively eliminates secondary phases for compositions within the solid solution stability limits. A magnetic contribution below T N is observed for all samples. Two regimes of magnetization below and above 45 K were observed in the AFM state. The magnetic contribution below T N is assigned to either the secondary phase or internal interfaces like ferroelectric (FE) domain walls. Magneto-dielectric coupling at T N is preserved in off-stoichiometric ceramics. The presence of a low temperature anomaly of the dielectric constant is correlated to the composition of the solid solution in off-stoichiometric ceramics. Large FE domains are observed in piezoresponse force microscopy (PFM) images of doped and un-doped ceramics, whereas atomic structure analysis indicates the parallel formation of nano-sized FE domains. A combination of measured properties and microscopy images of micron- and nano-sized domains ascertain the role of lattice distortion and stability of solid solution on multiferroic properties.

  7. Modeling Geometry and Progressive Failure of Material Interfaces in Plain Weave Composites

    NASA Technical Reports Server (NTRS)

    Hsu, Su-Yuen; Cheng, Ron-Bin

    2010-01-01

    A procedure combining a geometrically nonlinear, explicit-dynamics contact analysis, computer aided design techniques, and elasticity-based mesh adjustment is proposed to efficiently generate realistic finite element models for meso-mechanical analysis of progressive failure in textile composites. In the procedure, the geometry of fiber tows is obtained by imposing a fictitious expansion on the tows. Meshes resulting from the procedure are conformal with the computed tow-tow and tow-matrix interfaces but are incongruent at the interfaces. The mesh interfaces are treated as cohesive contact surfaces not only to resolve the incongruence but also to simulate progressive failure. The method is employed to simulate debonding at the material interfaces in a ceramic-matrix plain weave composite with matrix porosity and in a polymeric matrix plain weave composite without matrix porosity, both subject to uniaxial cyclic loading. The numerical results indicate progression of the interfacial damage during every loading and reverse loading event in a constant strain amplitude cyclic process. However, the composites show different patterns of damage advancement.

  8. A ceramic/slag interface as an analog for accretion of hot refractory objects and rim formation

    NASA Technical Reports Server (NTRS)

    Paque, J. M.; Bunch, T. E.

    1994-01-01

    Refractory inclusions or Ca-Al-rich inclusions (CAI's) from carbonaceous chondrites span a wide range of bulk compositions that cannot be explained either by segregation from a gas of solar composition at different points in the condensation sequence or by fractional crystallization from a parent liquid. CAI's are commonly rimmed by Wark-Lovering (W-L) rims, a series of nearly monomineralic layers that have been a source of controversy since the variety of rim sequences occurring on different types of CAI's from Allende were described. The origin of these distinctive features has not yet been resolved, with proponents of accretion, condensation, flash heating, ablation, evaporation, etc. Rims have generated considerable interest because they potentially contain clues to conditions experienced by CAI's after the formation of the inclusion and prior to incorporation into the parent body. Ceramic bricks in contact with hot steel slag may produce reaction products in rimlike fashion similar to those found in CAI's. The similarity between the mineralogy of blast furnace slags and CAI's has long been recognized, with both containing unusual phases not found in terrestrial materials. We provide here a comparison between a ceramic brick/slag multiple-layered interface and a multiple-layered interface between a melilite-perovskite object and a melilite-spinel object in the Allende inclusion USNM 4691-1. These results have implications in interpreting the origin of rims and the textures and compositions of CAI's.

  9. Modeling the Tensile Behavior of Cross-Ply C/SiC Ceramic-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Li, L. B.; Song, Y. D.; Sun, Y. C.

    2015-07-01

    The tensile behavior of cross-ply C/SiC ceramic-matrix composites (CMCs) at room temperature has been investigated. Under tensile loading, the damage evolution process was observed with an optical microscope. A micromechanical approach was developed to predict the tensile stress-strain curve, which considers the damage mechanisms of transverse multicracking, matrix multicracking, fiber/matrix interface debonding, and fiber fracture. The shear-lag model was used to describe the microstress field of the damaged composite. By combining the shear-lag model with different damage models, the tensile stress-strain curve of cross-ply CMCs corresponding to each damage stage was modeled. The predicted tensile stress-strain curves of cross-ply C/SiC composites agreed with experimental data.

  10. Theory and experimental technique for nondestructive evaluation of ceramic composites

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    1990-01-01

    The important ultrasonic scattering mechanisms for SiC and Si3N4 ceramic composites were identified by examining the interaction of ultrasound with individual fibers, pores, and grains. The dominant scattering mechanisms were identified as asymmetric refractive scattering due to porosity gradients in the matrix material, and symmetric diffractive scattering at the fiber-to-matrix interface and at individual pores. The effect of the ultrasonic reflection coefficient and surface roughness in the ultrasonic evaluation was highlighted. A new nonintrusive ultrasonic evaluation technique, angular power spectrum scanning (APSS), was presented that is sensitive to microstructural variations in composites. Preliminary results indicate that APSS will yield information on the composite microstructure that is not available by any other nondestructive technique.

  11. Critical Issues for Producing UHTC-Brazed Joints: Wetting and Reactivity

    NASA Astrophysics Data System (ADS)

    Passerone, A.; Muolo, M. L.; Valenza, F.

    2016-08-01

    A brief survey is presented of the most important interaction phenomena occurring at the solid-liquid interfaces in metal-ceramic systems at high temperatures, with special attention to the most recent developments concerning wetting and joining transition metals diborides. These phenomena are described and discussed from both the experimental and theoretical points of view in relation to joining ceramic and metal-ceramic systems by means of processes in the presence of a liquid phase (brazing, TLPB etc.). It is shown that wetting and the formation of interfacial dissolution regions are the results of the competition between different phenomena: dissolution of the ceramic in the liquid phase, reaction and formation of new phases at the solid-liquid interface, and drop spreading along the substrate surface. We emphasize the role of phase diagrams to support both the design of the experiments and the choice of active alloying elements, and to interpret the evolution of the system in relation to temperature and composition. In this respect, the sessile-drop technique has been shown to be helpful in assessing critical points of newly calculated phase diagrams. These studies are essential for the design of joining processes, for the creation of composite materials, and are of a particular relevance when applied to UHTC materials.

  12. Comparisons of Damage Evolution between 2D C/SiC and SiC/SiC Ceramic-Matrix Composites under Tension-Tension Cyclic Fatigue Loading at Room and Elevated Temperatures

    PubMed Central

    Li, Longbiao

    2016-01-01

    In this paper, comparisons of damage evolution between 2D C/SiC and SiC/SiC ceramic-matrix composites (CMCs) under tension–tension cyclic fatigue loading at room and elevated temperatures have been investigated. Fatigue hysteresis loops models considering multiple matrix cracking modes in 2D CMCs have been developed based on the damage mechanism of fiber sliding relative to the matrix in the interface debonded region. The relationships between the fatigue hysteresis loops, fatigue hysteresis dissipated energy, fatigue peak stress, matrix multiple cracking modes, and interface shear stress have been established. The effects of fiber volume fraction, fatigue peak stress and matrix cracking mode proportion on fatigue hysteresis dissipated energy and interface debonding and sliding have been analyzed. The experimental fatigue hysteresis dissipated energy of 2D C/SiC and SiC/SiC composites at room temperature, 550 °C, 800 °C, and 1100 °C in air, and 1200 °C in vacuum corresponding to different fatigue peak stresses and cycle numbers have been analyzed. The interface shear stress degradation rate has been obtained through comparing the experimental fatigue hysteresis dissipated energy with theoretical values. Fatigue damage evolution in C/SiC and SiC/SiC composites has been compared using damage parameters of fatigue hysteresis dissipated energy and interface shear stress degradation rate. It was found that the interface shear stress degradation rate increases at elevated temperature in air compared with that at room temperature, decreases with increasing loading frequency at room temperature, and increases with increasing fatigue peak stress at room and elevated temperatures. PMID:28773966

  13. Inorganic Polymer Matrix Composite Strength Related to Interface Condition

    PubMed Central

    Radford, Donald W.; Grabher, Andrew; Bridge, John

    2009-01-01

    Resin transfer molding of an inorganic polymer binder was successfully demonstrated in the preparation of ceramic fiber reinforced engine exhaust valves. Unfortunately, in the preliminary processing trials, the resulting composite valves were too brittle for in-engine evaluation. To address this limited toughness, the effectiveness of a modified fiber-matrix interface is investigated through the use of carbon as a model material fiber coating. After sequential heat treatments composites molded from uncoated and carbon-coated fibers are compared using room temperature 3-point bend testing. Carbon-coated Nextel fiber reinforced geopolymer composites demonstrated a 50% improvement in strength, versus that of the uncoated fiber reinforced composites, after the 250 °C postcure.

  14. Ceramic transactions - Materials processing and design: Grain-boundary-controlled properties of fine ceramics II. Volume 44

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niihara, Koichi; Ishizaki, Kozo; Isotani, Mitsuo

    This volume contains selected papers presented at a workshop by the Japan Fine Ceramics Center, `Materials Processing and Design Through Better Control of Grain Boundaries: Emphasizing Fine Ceramics II,` which was held March 17-19, 1994, in Koda-cho, Aichi, Japan. The focus of the workshop was the application of grain boundary phenomena to materials processing and design. The topics covered included electronic materials, evaluation methods, structural materials, and interfaces. Also included is an illuminating overview of the current status of work on grain boundary assisted materials processing and design, particularly for fine ceramics. The volume`s chapter titles are: Electron Microscopy, Evaluation,more » Grain Boundary Control and Design, Functional Ceramics, Composite Materials, Synthesis and Sintering, and Mechanical Properties.« less

  15. The effect of weak interface on transverse properties of a ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Shimansky, R. A.; Hahn, H. T.; Salamon, N. J.

    1990-01-01

    Experimental studies conducted at NASA Lewis on SiC reaction-bonded Si3N4 composite system showed that transverse stiffness and strength were much lower than those predicted from existing analytical models based on good interfacial bonding. It was believed that weakened interfaces were responsible for the decrease in tranverse properties. To support this claim, a two-dimensional FEM analysis was performed for a transverse representative volume element. Specifically, the effect of fiber/matrix displacement compatibility at the interface was studied under both tensile and compressive transverse loadings. Interface debonding was represented using active gap elements connecting the fiber and matrix. The analyses show that the transverse tensile strength and stiffness are best predicted when a debonded interface is assumed for the composite. In fact, the measured properties can be predicted by simply replacing the fibers by voids. Thus, it is found that little or no interfacial bonding exists in the composite, and that an elastic analysis can predict the transverse stiffness and strength.

  16. Fatigue Damage and Lifetime of SiC/SiC Ceramic-Matrix Composite under Cyclic Loading at Elevated Temperatures

    PubMed Central

    Li, Longbiao

    2017-01-01

    In this paper, the fatigue damage and lifetime of 2D SiC/SiC ceramic-matrix composites (CMCs) under cyclic fatigue loading at 750, 1000, 1100, 1200 and 1300 °C in air and in steam atmosphere have been investigated. The damage evolution versus applied cycles of 2D SiC/SiC composites were analyzed using fatigue hysteresis dissipated energy, fatigue hysteresis modulus, fatigue peak strain and interface shear stress. The presence of steam accelerated the damage development inside of SiC/SiC composites, which increased the increasing rate of the fatigue hysteresis dissipated energy and the fatigue peak strain, and the decreasing rate of the fatigue hysteresis modulus and the interface shear stress. The fatigue life stress-cycle (S-N) curves and fatigue limit stresses of 2D SiC/SiC composites at different temperatures in air and in steam condition have been predicted. The fatigue limit stresses approach 67%, 28%, 39% 17% and 28% tensile strength at 750, 1000, 1100, 1200 and 1300 °C in air, and 49%, 10%, 9% and 19% tensile strength at 750, 1000, 1200 and 1300 °C in steam conditions, respectively. PMID:28772736

  17. Microstructure and properties of aluminium-aluminium oxide graded composite materials

    NASA Astrophysics Data System (ADS)

    Kamaruzaman, F. F.; Nuruzzaman, D. M.; Ismail, N. M.; Hamedon, Z.; Iqbal, A. K. M. A.; Azhari, A.

    2018-03-01

    In this research works, four-layered aluminium-aluminium oxide (Al-Al2O3) graded composite materials were fabricated using powder metallurgy (PM) method. In processing, metal-ceramic graded composite materials of 0%, 10%, 20% and 30% weight percentage of ceramic concentration were prepared under 30 ton compaction load using a cylindrical die-punch set made of steel. After that, two-step pressureless sintering was carried out at sintering temperature and time 600°C and 3 hours respectively. It was observed that the sintered cylindrical specimens of 30 mm diameter were prepared successfully. The graded composite specimens were analysed and the properties such as density, microstructure and hardness were measured. It was found that after sintering process, the diameter of the graded cylindrical structure was decreased. Using both Archimedes method and rule of mixture (ROM), he density of structure was measured. The obtained results revealed that the microvickers hardness was increased as the ceramic component increases in the graded layer. Moreover, it was observed that the interface of the graded structure is clearly distinguished within the multilayer stack and the ceramic particles are almost uniformly distributed in the Al matrix.

  18. Piezoelectric properties and temperature stability of Mn-doped Pb(Mg1/3Nb2/3)-PbZrO3-PbTiO3 textured ceramics

    NASA Astrophysics Data System (ADS)

    Yan, Yongke; Cho, Kyung-Hoon; Priya, Shashank

    2012-03-01

    In this letter, we report the electromechanical properties of textured 0.4Pb(Mg1/3Nb2/3)O3-0.25PbZrO3-0.35PbTiO3 (PMN-PZT) composition which has relatively high rhombohedral to tetragonal (R-T) transition temperature (TR-T of 160 °C) and Curie temperature (TC of 234 °C) and explore the effect of Mn-doping on this composition. It was found that MnO2-doped textured PMN-PZT ceramics with 5 vol. % BaTiO3 template (T-5BT) exhibited inferior temperature stability. The coupling factor (k31) of T-5BT ceramic started to degrade from 75 °C while the random counterpart showed a very stable tendency up to 180 °C. This degradation was associated with the "interface region" formed in the vicinity of BT template. MnO2 doped PMN-PZT ceramics textured with 3 vol. % BT and subsequently poled at 140 °C (T-3BT140) exhibited very stable and high k31 (>0.53) in a wide temperature range from room temperature to 130 °C through reduction in the interface region volume. Further, the T-3BT140 ceramic exhibited excellent hard and soft combinatory piezoelectric properties of d33 = 720 pC/N, k31 = 0.53, Qm = 403, tan δ = 0.3% which are very promising for high power and magnetoelectric applications.

  19. Some developments on ceramic-to-metal and glass-ceramics-to-metal seals and related studies

    NASA Astrophysics Data System (ADS)

    Kothiyal, G. P.; Goswami, M.; Shrikhande, V. K.

    2008-05-01

    Seals and coatings based on ceramics and glass-ceramics find numerous applications in different disciplines of science and technology including space, accelerators, nuclear energy, chemical industry. Ceramic-to-metal (CM) seals based on conventional design (using brazing alloys) and glass-ceramics have been prepared. While Ag-Cu brazing alloy has been used in conventional CM seal, we have employed lithium zinc silicate (LZS) and lithium aluminum silicate (LAS) glass-ceramics for glass-ceramics-to-metal (GCM) seals. LZS glass-ceramics based on two different compositions; (a) LZSL composition (wt.%)- Li2O: 12.65, ZnO: 1.85, SiO2: 74.4, Al2O3: 3.8, K2O: 2.95, P2O5: 3.15, and B2O3: 1.2 (low ZnO) and (b) LZSH composition (wt.%)- Li2O: 8.9, ZnO: 24.03, SiO2: 53.7, Na2O: 5.42, P2O5: 2.95, and B2O3: 5.0 (high ZnO) were prepared with desired sealing characteristics for matched type seals. In addition, (wt.%) 12.6Li2O-71.7SiO2-5.1Al2O3-4.9K2O-3.2B2O3-2.5P2O5 (LAS-GC) was investigated for compressive type of seal. LZS glass-ceramics-to-Cu as well as SS-321 seals were found to withstand a vacuum of 10-6 Torr with leak rate 10-9 Torr. 1/s and LAS GC-to-SS304 seal showed high pressure endurance of 12000psi. In order to understand the mechanism of sealing, glass-ceramics-to-metal interface study has also been carried out.

  20. Kinetics and thermodynamics of ceramic/metal interface reactions related to high T(sub c) superconducting applications

    NASA Technical Reports Server (NTRS)

    Notis, Michael R.; Oh, Min-Seok

    1990-01-01

    Superconducting ceramic materials, no matter what their form, size or shape, must eventually make contact with non-superconducting materials in order to accomplish current transfer to other parts of a real operating system, or for testing and measurement of properties. Thus, whether the configuration is a clad wire, a bulk superconducting disc, tape, or a thick or thin superconducting film on a substrate, the physical and mechanical behavior of interface (interconnections, joints, etc.) between superconductors and normal conductor materials of all kinds is of extreme importance to the technological development of these systems. Fabrication heat treatments associated with the particular joining process allow possible reactions between the superconducting ceramic and the contact to occur, and consequently influence properties at the interface region. The nature of these reactions is therefore of great broad interest, as these may be a primary determinant for the real capability of these materials. Research related both to fabrication of composite sheathed wire products, and the joining contacts for physical property measurements, as well as, a review of other related literature in the field are described. Comparison are made between 1-2-3, Bi-, and Tl-based ceramic superconductors joined to a variety of metals including Cu, Ni, Fe, Cr, Ag, Ag-Pd, Au, In, and Ga. The morphology of reaction products and the nature of interface degradation as a function of time will be highlighted.

  1. Physical and adhesive properties of dental enamel after radiotherapy and bonding of metal and ceramic brackets.

    PubMed

    Santin, Gabriela Cristina; Palma-Dibb, Regina Guenka; Romano, Fábio Lourenço; de Oliveira, Harley Francisco; Nelson Filho, Paulo; de Queiroz, Alexandra Mussolino

    2015-08-01

    The increasing success rates for cancer patients treated with radiotherapy and the frequent occurrence of tooth loss during treatment have led to an increased demand for orthodontic treatment after radiotherapy. The aim of this study was to evaluate tooth enamel of irradiated teeth after the bonding and debonding of metal and ceramic brackets. Ten permanent molars were cut into enamel fragments measuring 1 mm(2) and divided into an irradiated group (total dose of 60 Gy) and a nonirradiated group. The fragments were subjected to microshear testing to evaluate whether radiotherapy altered the strength of the enamel. Furthermore, 90 prepared premolars were divided into 6 groups and subgroups (n = 15): group 1, nonirradiated and nonaged; group 2, nonirradiated and aged (thermal cycled); group 3, irradiated and aged; each group was divided into 2 subgroups: metallic and ceramic brackets. After thermal cycling and radiotherapy, the brackets were bonded onto the specimens with Transbond XT (3M Unitek, Monrovia, Calif). After 24 hours, the specimens were subjected to the shear tests. Images of the enamel surfaces were classified using the adhesive remnant index. The composite resin-enamel interface was also evaluated. Enamel fragments subjected to radiation had lower strength than did the nonirradiated samples (P <0.05). The groups and subgroups submitted to radiation and bonded ceramic brackets had the lowest strength values. Groups 1 and 2 with metallic brackets had less adhesive on the surface, whereas groups 1 and 2 with ceramic brackets and group 3 with both metallic and ceramic brackets had more adhesive on the surfaces. On the images of the composite resin-enamel interface, resin tags were more extensive on irradiated tooth enamel. Radiation decreased tooth enamel strength, and the specimens treated with radiotherapy had higher frequencies of adhesive failure between the bracket and the composite resin as well as more extensive tags. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  2. Interfacially Optimized, High Energy Density Nanoparticle-Polymer Composites for Capacitive Energy Storage

    NASA Astrophysics Data System (ADS)

    Shipman, Joshua; Riggs, Brian; Luo, Sijun; Adireddy, Shiva; Chrisey, Douglas

    Energy storage is a green energy technology, however it must be cost effective and scalable to meet future energy demands. Polymer-nanoparticle composites are low cost and potentially offer high energy storage. This is based on the high breakdown strength of polymers and the high dielectric constant of ceramic nanoparticles, but the incoherent nature of the interface between the two components prevents the realization of their combined full potential. We have created inkjet printable nanoparticle-polymer composites that have mitigated many of these interface effects, guided by first principle modelling of the interface. We detail density functional theory modelling of the interface and how it has guided our use in in specific surface functionalizations and other inorganic layers. We have validated our approach by using finite element analysis of the interface. By choosing the correct surface functionalization we are able to create dipole traps which further increase the breakdown strength of our composites. Our nano-scale understanding has allowed us to create the highest energy density composites currently available (>40 J/cm3).

  3. Effect of ceramic calcium-phosphorus ratio on chondrocyte-mediated biosynthesis and mineralization.

    PubMed

    Boushell, Margaret K; Khanarian, Nora T; LeGeros, Raquel Z; Lu, Helen H

    2017-10-01

    The osteochondral interface functions as a structural barrier between cartilage and bone, maintaining tissue integrity postinjury and during homeostasis. Regeneration of this calcified cartilage region is thus essential for integrative cartilage healing, and hydrogel-ceramic composite scaffolds have been explored for calcified cartilage formation. The objective of this study is to test the hypothesis that Ca/P ratio of the ceramic phase of the composite scaffold regulates chondrocyte biosynthesis and mineralization potential. Specifically, the response of deep zone chondrocytes to two bioactive ceramics with different calcium-phosphorus ratios (1.35 ± 0.01 and 1.41 ± 0.02) was evaluated in agarose hydrogel scaffolds over two weeks in vitro. It was observed that the ceramic with higher calcium-phosphorus ratio enhanced chondrocyte proliferation, glycosaminoglycan production, and induced an early onset of alkaline phosphorus activity, while the ceramic with lower calcium-phosphorus ratio performed similarly to the ceramic-free control. These results underscore the importance of ceramic bioactivity in directing chondrocyte response, and demonstrate that Ca/P ratio is a key parameter to be considered in osteochondral scaffold design. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2694-2702, 2017. © 2017 Wiley Periodicals, Inc.

  4. Ceramic technology for advanced heat engines project. Semiannual progress report, April-September 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-05-01

    An assessment of needs was completed, and a five-year project plan was developed with input from private industry. Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. Focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. The work described in this report is organized according to the following WBS project elements: management and coordination; materials and processing (monolithics, ceramic composites, thermal and wear coatings, joining); materials design methodology (contact interfaces, newmore » concepts); data base and life prediction (time-dependent behavior, environmental effects, fracture mechanics, NDE development); and technology transfer. This report includes contributions from all currently active project participants.« less

  5. Grinding damage assessment for CAD-CAM restorative materials.

    PubMed

    Curran, Philippe; Cattani-Lorente, Maria; Anselm Wiskott, H W; Durual, Stéphane; Scherrer, Susanne S

    2017-03-01

    To assess surface/subsurface damage after grinding with diamond discs on five CAD-CAM restorative materials and to estimate potential losses in strength based on crack size measurements of the generated damage. The materials tested were: Lithium disilicate (LIT) glass-ceramic (e.max CAD), leucite glass-ceramic (LEU) (Empress CAD), feldspar ceramic (VM2) (Vita Mark II), feldspar ceramic-resin infiltrated (EN) (Enamic) and a composite reinforced with nano ceramics (LU) (Lava Ultimate). Specimens were cut from CAD-CAM blocs and pair-wise mirror polished for the bonded interface technique. Top surfaces were ground with diamond discs of respectively 75, 54 and 18μm. Chip damage was measured on the bonded interface using SEM. Fracture mechanics relationships were used to estimate fracture stresses based on average and maximum chip depths assuming these to represent strength limiting flaws subjected to tension and to calculate potential losses in strength compared to manufacturer's data. Grinding with a 75μm diamond disc induced on a bonded interface critical chips averaging 100μm with a potential strength loss estimated between 33% and 54% for all three glass-ceramics (LIT, LEU, VM2). The softer materials EN and LU were little damage susceptible with chips averaging respectively 26μm and 17μm with no loss in strength. Grinding with 18μm diamond discs was still quite detrimental for LIT with average chip sizes of 43μm and a potential strength loss of 42%. It is essential to understand that when grinding glass-ceramics or feldspar ceramics with diamond discs surface and subsurface damage are induced which have the potential of lowering the strength of the ceramic. Careful polishing steps should be carried out after grinding especially when dealing with glass-ceramics. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Characterization of fatigue behavior of 2-D woven fabric reinforced ceramic matrix composite at elevated temperature. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groner, D.J.

    This study investigated the fatigue behavior and associated damage mechanisms in notched and unnotched enhanced SiC/SiC ceramic matrix composite specimens at 1100 deg C. Stiffness degradation, strain variation, and hysteresis were evaluated to characterize material behavior. Microscopic examination was performed to characterize damage mechanisms. During high cycle/low stress fatigue tests, far less fiber/matrix interface debond was evident than in low cycle/high stress fatigue tests. Notched specimens exhibited minimal stress concentration during monotonic tensile testing and minimal notch sensitivity during fatigue testing. Damage mechanisms were also similar to unnotched.

  7. Acoustic emission monitoring of damage in ceramic matrix composites: Effects of weaves and feature

    NASA Astrophysics Data System (ADS)

    Ojard, Greg; Mordasky, Matt; Kumar, Rajesh

    2018-04-01

    Ceramic matrix composites (CMCs) are a class of high temperature materials with better damage tolerance properties compared to monolithic ceramics. The improved toughness is attributed to weak interface coating between the fiber and the matrix that allows for crack deflection and fiber pull-out. Thus, CMCs have gained consideration over monolithic materials for high temperature applications such as in gas turbines. The current standard fiber architecture for CMCs is a harness satin (HS) balanced weave (5HS and 8HS); however, other architectures such as uni-weave materials (tape layup) are now being considered due to fiber placement control and higher fiber volume fraction in the tensile loading direction. Engineering components require additional features in the CMC laminates, such as holes for attachments. Past work has shown that acoustic emission could differentiate the effect of changing interface conditions due to heat treatment effects. The focus of the present work is to investigate the effects of different weaves and the presence of a feature on damage behavior of CMCs as observed via acoustic emission technique. The results of the tensile testing with acoustic emission monitoring will be presented and discussed.

  8. Shear bond strength comparison between conventional porcelain fused to metal and new functionally graded dental restorations after thermal-mechanical cycling.

    PubMed

    Henriques, B; Gonçalves, S; Soares, D; Silva, F S

    2012-09-01

    The aim of this study was to evaluate the effect of thermo-mechanical cycling on the metal-ceramic bond strength of conventional porcelain fused to metal restorations (PFM) and new functionally graded metal-ceramic dental restorations (FGMR). Two types of specimens were produced: PFM and FGMR specimens. PFM specimens were produced by conventional PFM technique. FGMR specimens were hot pressed and prepared with a metal/ceramic composite interlayer (50 M, vol%) at the metal-ceramic interface. They were manufactured and standardized in cylindrical format and then submitted to thermal (3000, 6000 and 12,000 cycles; between 5 °C and 60 °C; dwell time: 30s) and mechanical (25,000, 50,000 and 100,000 cycles under a load of 50 N; 1.6 Hz) cycling. The shear bond strength tests were performed in a universal testing machine (crosshead speed: 0.5mm/min), using a special device to concentrate the tension at the metal-ceramic interface and the load was applied until fracture. The metal-ceramic interfaces were examined with SEM/EDS prior to and after shear tests. The Young's modulus and hardness were measured across the interfaces of both types of specimens using nanoindentation tests. Data was analyzed with Shapiro-Wilk test to test the assumption of normality. The 2-way ANOVA was used to compare shear bond strength results (p<0.05). FGMR specimens showed significantly (p<0.001) higher shear bond strength results than PFM specimens, irrespective of fatigue conditions. Fatigue conditions significantly (p<0.05) affected the shear bond strength results. The analysis of surface fracture revealed adhesive fracture type for PFM specimens and mixed fracture type for FGMR specimens. Nanoindentation tests showed differences in mechanical properties measured across the metal-ceramic interface for the two types of specimens, namely Young's Modulus and hardness. This study showed significantly better performance of the new functionally graded restorations relative to conventional PFM restorations, under fatigue testing conditions and for the materials tested. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Mullite fiber reinforced reaction bonded Si3N4 composites

    NASA Technical Reports Server (NTRS)

    Saleh, T.; Sayir, A.; Lightfoot, A.; Haggerty, J.

    1996-01-01

    Fracture toughnesses of brittle ceramic materials have been improved by introducing reinforcements and carefully tailored interface layers. Silicon carbide and Si3N4 have been emphasized as matrices of structural composites intended for high temperature service because they combine excellent mechanical, chemical, thermal and physical properties. Both matrices have been successfully toughened with SiC fibers, whiskers and particles for ceramic matrix composite (CMC) parts made by sintering, hot pressing or reaction forming processes. These SiC reinforced CMCs have exhibited significantly improved toughnesses at low and intermediate temperature levels, as well as retention of properties at high temperatures for selected exposures; however, they are vulnerable to attack from elevated temperature dry and wet oxidizing atmospheres after the matrix has cracked. Property degradation results from oxidation of interface layers and/or reinforcements. The problem is particularly acute for small diameter (-20 tim) polymer derived SiC fibers used for weavable toes. This research explored opportunities for reinforcing Si3N4 matrices with fibers having improved environmental stability; the findings should also be applicable to SiC matrix CMCs.

  10. Mechanical energy dissipation in natural ceramic composites.

    PubMed

    Mayer, George

    2017-12-01

    Ceramics and glasses, in their monolithic forms, typically exhibit low fracture toughness values, but rigid natural marine ceramic and glass composites have shown remarkable resistance to mechanical failure. This has been observed in load-extension behavior by recognizing that the total area under the curve, notably the part beyond the yield point, often conveys substantial capacity to carry mechanical load. The mechanisms underlying the latter observations are proposed as defining factors for toughness that provide resistance to failure, or capability to dissipate energy, rather than fracture toughness. Such behavior is exhibited in the spicules of glass sponges and in mollusk shells. There are a number of similarities in the manner in which energy dissipation takes place in both sponges and mollusks. It was observed that crack diversion, a new form of crack bridging, creation of new surface area, and other important energy-dissipating mechanisms occur and aid in "toughening". Crack tolerance, key to energy dissipation in these natural composite materials, is assisted by promoting energy distribution over large volumes of loaded specimens by minor components of organic constituents that also serve important roles as adhesives. Viscoelastic deformation was a notable characteristic of the organic component. Some of these energy-dissipating modes and characteristics were found to be quite different from the toughening mechanisms that are utilized for more conventional structural composites. Complementary to those mechanisms found in rigid natural ceramic/organic composites, layered architectures and very thin organic layers played major roles in energy dissipation in these structures. It has been demonstrated in rigid natural marine composites that not only architecture, but also the mechanical behavior of the individual constituents, the nature of the interfaces, and interfacial bonding play important roles in energy dissipation. Additionally, the controlling effects of thin organic layers have been observed in other natural ceramic composite structures, such as teeth and bones, indicating that a variety of similar energy dissipating mechanisms in natural ceramic composites may operate as means to resist failure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Unprecedented simultaneous enhancement in damage tolerance and fatigue resistance of zirconia/Ta composites

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Beltrán, J. I.; Rodriguez-Suarez, T.; Pecharromán, C.; Muñoz, M. C.; Moya, J. S.; Bartolomé, J. F.

    2017-03-01

    Dense (>98 th%) and homogeneous ceramic/metal composites were obtained by spark plasma sintering (SPS) using ZrO2 and lamellar metallic powders of tantalum or niobium (20 vol.%) as starting materials. The present study has demonstrated the unique and unpredicted simultaneous enhancement in toughness and strength with very high flaw tolerance of zirconia/Ta composites. In addition to their excellent static mechanical properties, these composites also have exceptional resistance to fatigue loading. It has been shown that the major contributions to toughening are the resulting crack bridging and plastic deformation of the metallic particles, together with crack deflection and interfacial debonding, which is compatible with the coexistence in the composite of both, strong and weak ceramic/metal interfaces, in agreement with predictions of ab-initio calculations. Therefore, these materials are promising candidates for designing damage tolerance components for aerospace industry, cutting and drilling tools, biomedical implants, among many others.

  12. Unprecedented simultaneous enhancement in damage tolerance and fatigue resistance of zirconia/Ta composites

    PubMed Central

    Smirnov, A.; Beltrán, J. I.; Rodriguez-Suarez, T.; Pecharromán, C.; Muñoz, M. C.; Moya, J. S.; Bartolomé, J. F.

    2017-01-01

    Dense (>98 th%) and homogeneous ceramic/metal composites were obtained by spark plasma sintering (SPS) using ZrO2 and lamellar metallic powders of tantalum or niobium (20 vol.%) as starting materials. The present study has demonstrated the unique and unpredicted simultaneous enhancement in toughness and strength with very high flaw tolerance of zirconia/Ta composites. In addition to their excellent static mechanical properties, these composites also have exceptional resistance to fatigue loading. It has been shown that the major contributions to toughening are the resulting crack bridging and plastic deformation of the metallic particles, together with crack deflection and interfacial debonding, which is compatible with the coexistence in the composite of both, strong and weak ceramic/metal interfaces, in agreement with predictions of ab-initio calculations. Therefore, these materials are promising candidates for designing damage tolerance components for aerospace industry, cutting and drilling tools, biomedical implants, among many others. PMID:28322343

  13. Damage Evolution and Life Prediction of Cross-Ply C/SiC Ceramic-Matrix Composite under Cyclic Fatigue Loading at Room Temperature and 800 °C in Air

    PubMed Central

    Li, Longbiao

    2015-01-01

    The damage evolution and life prediction of cross-ply C/SiC ceramic-matrix composite (CMC) under cyclic-fatigue loading at room temperature and 800 °C in air have been investigated using damage parameters derived from fatigue hysteresis loops, i.e., fatigue hysteresis modulus and fatigue hysteresis loss energy. The experimental fatigue hysteresis modulus and fatigue hysteresis loss energy degrade with increasing applied cycles attributed to transverse cracks in the 90° plies, matrix cracks and fiber/matrix interface debonding in the 0° plies, interface wear at room temperature, and interface and carbon fibers oxidation at 800 °C in air. The relationships between fatigue hysteresis loops, fatigue hysteresis modulus and fatigue hysteresis loss energy have been established. Comparing experimental fatigue hysteresis loss energy with theoretical computational values, the fiber/matrix interface shear stress corresponding to different cycle numbers has been estimated. It was found that the degradation rate at 800 °C in air is much faster than that at room temperature due to serious oxidation in the pyrolytic carbon (PyC) interphase and carbon fibers. Combining the fiber fracture model with the interface shear stress degradation model and the fibers strength degradation model, the fraction of broken fibers versus the cycle number can be determined for different fatigue peak stresses. The fatigue life S-N curves of cross-ply C/SiC composite at room temperature and 800 °C in air have been predicted. PMID:28793728

  14. Damage Evolution and Life Prediction of Cross-Ply C/SiC Ceramic-Matrix Composite under Cyclic Fatigue Loading at Room Temperature and 800 °C in Air.

    PubMed

    Li, Longbiao

    2015-12-09

    The damage evolution and life prediction of cross-ply C/SiC ceramic-matrix composite (CMC) under cyclic-fatigue loading at room temperature and 800 °C in air have been investigated using damage parameters derived from fatigue hysteresis loops, i.e. , fatigue hysteresis modulus and fatigue hysteresis loss energy. The experimental fatigue hysteresis modulus and fatigue hysteresis loss energy degrade with increasing applied cycles attributed to transverse cracks in the 90° plies, matrix cracks and fiber/matrix interface debonding in the 0° plies, interface wear at room temperature, and interface and carbon fibers oxidation at 800 °C in air. The relationships between fatigue hysteresis loops, fatigue hysteresis modulus and fatigue hysteresis loss energy have been established. Comparing experimental fatigue hysteresis loss energy with theoretical computational values, the fiber/matrix interface shear stress corresponding to different cycle numbers has been estimated. It was found that the degradation rate at 800 °C in air is much faster than that at room temperature due to serious oxidation in the pyrolytic carbon (PyC) interphase and carbon fibers. Combining the fiber fracture model with the interface shear stress degradation model and the fibers strength degradation model, the fraction of broken fibers versus the cycle number can be determined for different fatigue peak stresses. The fatigue life S-N curves of cross-ply C/SiC composite at room temperature and 800 °C in air have been predicted.

  15. Interface modification during oxidation of a glass-ceramic matrix/SiC fibre composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, A.M.; Martin-Meizoso, A.; Plucknett, K.P.

    Oxidation heat treatments between 375{degrees}C and 600{degrees}C for 100 hours in air, have been performed on the calcium aluminosilicate glass-ceramic matrix/SiC fibre reinforced composite CAS/Nicalon (manufactured by Corning, USA). Using a commercial nano-indentation system to perform fibre push-down tests, the fibre-matrix interfacial debond fracture surface energy (G{sub i}) and frictional shear stress ({tau}) have been determined. Modification of interface properties, compared to the as-fabricated material, was observed at heat treatment temperatures as low as 375{degrees}C, where a significant drop in G{sub i} and an increase in {tau} were recorded. With 450{degrees}C, 525{degrees}C and 600{degrees}C heat treatments, an increase in G{submore » i} but a dramatic increase in {tau} were recorded. Under four-point flexure testing, the as fabricated and the 375{degrees}C heat treated materials displayed tough, composite behaviour with extensive fibre pull out, but at {ge}450{degrees}C, brittle failure with minimal fibre pull out, was observed. This transition from tough mechanical response to one of brittleness is due to the large increase in {tau} reducing fibre pull out to a minimum and therefore reducing the total required work of fracture. The large increases in {tau} and G{sub i} have been attributed to the oxidative removal of the lubricating, carbon interface and the compressive residual stresses across the interface.« less

  16. Interface modification during oxidation of a glass-ceramic matrix/SiC fibre composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, A.M.; Martin-Meizoso, A.; Plucknett, K.P.

    Oxidation heat treatments between 375{degrees}C and 600{degrees}C for 100 hours in air, have been performed on the calcium aluminosilicate glass-ceramic matrix/SiC fibre reinforced composite CAS/Nicalon (manufactured by Coming, USA). Using a commercial nano-indentation system to perform fibre push-down tests, the fibre-matrix interfacial debond fracture surface energy (G{sub i}) and frictional shear stress ({tau}) have been determined. Modification of interface properties, compared to the as fabricated material, was observed at heat treatment temperatures as low as 375{degrees}C, where a significant drop in G{sub i} and an increase in {tau} were recorded. With 450{degrees}C, 525{degrees}C and 600{degrees}C heat treatments, an increase inmore » G{sub i} but a dramatic increase in {tau} were recorded. Under four-point flexure testing, the as fabricated and the 375{degrees}C heat treated materials displayed tough, composite behaviour with extensive fibre pull out, but at {le}450{degrees}C, brittle failure with minimal fibre pull out, was observed. This transition from tough mechanical response to one of brittleness is due to the large increase in {tau} reducing fibre pull out to a minimum and therefore reducing the total required work of fracture. The large increases in {tau} and G{sub i} have been attributed to the oxidative removal of the lubricating, carbon interface and the compressive residual stresses across the interface.« less

  17. Bonding of TRIP-Steel/Al2O3-(3Y)-TZP Composites and (3Y)-TZP Ceramic by a Spark Plasma Sintering (SPS) Apparatus

    PubMed Central

    Miriyev, Aslan; Grützner, Steffen; Krüger, Lutz; Kalabukhov, Sergey; Frage, Nachum

    2016-01-01

    A combination of the high damage tolerance of TRIP-steel and the extremely low thermal conductivity of partially stabilized zirconia (PSZ) can provide controlled thermal-mechanical properties to sandwich-shaped composite specimens comprising these materials. Sintering the (TRIP-steel-PSZ)/PSZ sandwich in a single step is very difficult due to differences in the sintering temperature and densification kinetics of the composite and the ceramic powders. In the present study, we successfully applied a two-step approach involving separate SPS consolidation of pure (3Y)-TZP and composites containing 20 vol % TRIP-steel, 40 vol % Al2O3 and 40 vol % (3Y)-TZP ceramic phase, and subsequent diffusion joining of both sintered components in an SPS apparatus. The microstructure and properties of the sintered and bonded specimens were characterized. No defects at the interface between the TZP and the composite after joining in the 1050–1150 °C temperature range were observed. Only limited grain growth occurred during joining, while crystallite size, hardness, shear strength and the fraction of the monoclinic phase in the TZP ceramic virtually did not change. The slight increase of the TZP layer’s fracture toughness with the joining temperature was attributed to the effect of grain size on transformation toughening. PMID:28773680

  18. Thermal barrier coatings

    DOEpatents

    Alvin, Mary Anne [Pittsburg, PA

    2010-06-22

    This disclosure addresses the issue of providing a metallic-ceramic overlay coating that potentially serves as an interface or bond coat layer to provide enhanced oxidation resistance to the underlying superalloy substrate via the formation of a diffusion barrier regime within the supporting base material. Furthermore, the metallic-ceramic coating is expected to limit the growth of a continuous thermally grown oxide (TGO) layer that has been primarily considered to be the principal cause for failure of existing TBC systems. Compositional compatibility of the metallic-ceramic with traditional yttria-stabilized zirconia (YSZ) top coats is provided to further limit debond or spallation of the coating during operational use. A metallic-ceramic architecture is disclosed wherein enhanced oxidation resistance is imparted to the surface of nickel-based superalloy or single crystal metal substrate, with simultaneous integration of the yttria stabilized zirconia (YSZ) within the metallic-ceramic overlayer.

  19. Role of segregation and precipitates on interfacial strengthening mechanisms in metal matrix composites when subjected to thermo-mechanical processing

    NASA Astrophysics Data System (ADS)

    Myriounis, Dimitrios

    Metal Matrix ceramic-reinforced composites are rapidly becoming strong candidates as structural materials for many high temperatures and aerospace applications. Metal matrix composites combine the ductile properties of the matrix with a brittle phase of the reinforcement, leading to high stiffness and strength with a reduction in structural weight. The main objective of using a metal matrix composite system is to increase service temperature or improve specific mechanical properties of structural components by replacing existing superalloys.The satisfactory performance of metal matrix composites depends critically on their integrity, the heart of which is the quality of the matrix-reinforcement interface. The nature of the interface depends on the processing of the metal matrix composite component. At the micro-level the development of local stress concentration gradients around the ceramic reinforcement, as the metal matrix attempts to deform during processing, can be very different to the nominal conditions and play a crucial role in important microstructural events such as segregation and precipitation at the matrix-reinforcement interface. These events dominate the cohesive strength and subsequent mechanical properties of the interface.At present the relationship between the strength properties of metal matrix composites and the details of the thermo-mechanical forming processes is not well understood.The purpose of the study is to investigate several strengthening mechanisms and the effect of thermo-mechanical processing of SiCp reinforced A359 aluminium alloy composites on the particle-matrix interface and the overall mechanical properties of the material. From experiments performed on composite materials subjected to various thermo-mechanical conditions and by observation using SEM microanalysis and mechanical testing, data were obtained, summarised and mathematically/statistically analysed upon their significance.The Al/SiCp composites studied, processed in specific thermo-mechanical conditions in order to attain higher values of interfacial fracture strength, due to precipitation hardening and segregation mechanisms, also exhibited enhanced bulk mechanical and fracture resistant properties.An analytical model to predict the interfacial fracture strength in the presence of material segregation was also developed during this research effort. Its validity was determined based on the data gathered from the experiments.The tailoring of the properties due to the microstructural modification of the composites was examined in relation to the experimental measurements obtained, which define the macroscopical behaviour of the material.

  20. Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix and Polymer Matrix Composite Structures

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Bednarcyk, Brett A.; Pineda, Evan J.; Walton, Owen J.; Arnold, Steven M.

    2016-01-01

    Stochastic-based, discrete-event progressive damage simulations of ceramic-matrix composite and polymer matrix composite material structures have been enabled through the development of a unique multiscale modeling tool. This effort involves coupling three independently developed software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/ Life), and (3) the Abaqus finite element analysis (FEA) program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating unit cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC. Abaqus is used at the global scale to model the overall composite structure. An Abaqus user-defined material (UMAT) interface, referred to here as "FEAMAC/CARES," was developed that enables MAC/GMC and CARES/Life to operate seamlessly with the Abaqus FEA code. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events, which incrementally progress and lead to ultimate structural failure. This report describes the FEAMAC/CARES methodology and discusses examples that illustrate the performance of the tool. A comprehensive example problem, simulating the progressive damage of laminated ceramic matrix composites under various off-axis loading conditions and including a double notched tensile specimen geometry, is described in a separate report.

  1. Reliability analysis of laminated CMC components through shell subelement techniques

    NASA Technical Reports Server (NTRS)

    Starlinger, Alois; Duffy, Stephen F.; Gyekenyesi, John P.

    1992-01-01

    An updated version of the integrated design program Composite Ceramics Analysis and Reliability Evaluation of Structures (C/CARES) was developed for the reliability evaluation of ceramic matrix composites (CMC) laminated shell components. The algorithm is now split into two modules: a finite-element data interface program and a reliability evaluation algorithm. More flexibility is achieved, allowing for easy implementation with various finite-element programs. The interface program creates a neutral data base which is then read by the reliability module. This neutral data base concept allows easy data transfer between different computer systems. The new interface program from the finite-element code Matrix Automated Reduction and Coupling (MARC) also includes the option of using hybrid laminates (a combination of plies of different materials or different layups) and allows for variations in temperature fields throughout the component. In the current version of C/CARES, a subelement technique was implemented, enabling stress gradients within an element to be taken into account. The noninteractive reliability function is now evaluated at each Gaussian integration point instead of using averaging techniques. As a result of the increased number of stress evaluation points, considerable improvements in the accuracy of reliability analyses were realized.

  2. Spark plasma sintering of silicon carbide, multi-walled carbon nanotube and graphene reinforced zirconium diboride ceramic composite

    NASA Astrophysics Data System (ADS)

    Balaraman Yadhukulakrishnan, Govindaraajan

    Scope and Method of Study: Space vehicles re-entering the earth's atmosphere experience very high temperatures due to aerodynamic heating. Ultra-high temperature ceramics (UHTC) with melting point higher than 3200°C are promising materials for thermal protection systems of such space vehicles re-entering the earth's atmosphere. Among several UHTC systems ZrB2 based ceramic composites are particularly important for thermal protection systems due to their better mechanical and thermoelectric properties and high oxidation resistance. In this study spark plasma sintering of SiC, carbon nanotubes (CNT) and graphene nano platelets (GNP) reinforced ZrB2 ultra-high temperature ceramic matrix composites is reported. Findings and Conclusions: Systematic investigations on the effect of reinforcement type (SiC, CNTs and GNP) and content (10-40 vol.% SiC, 2-6 vol.% CNTs and 2-6 vol.% GNP) on densification behavior, microstructure development, and mechanical properties (microhardness, bi-axial flexural strength, and indentation fracture toughness) are reported. With the similar SPS parameters near-full densification (>99% relative density) was achieved with 10-40 vol.% SiC, 4-6 vol.% CNT reinforced composites. Highly dense composites were obtained in 4-6 vol.% GNP reinforced composites. The SiC, CNT and GNP reinforcement improved the indentation fracture toughness of the composites through a range of toughening mechanisms, including particle shearing, crack deflection at the particle-matrix interface, and grain pull-outs for ZrB2-SiC composites, CNT pull-outs and crack deflection in ZrB2-CNT composites and crack deflection, crack bridging and GNP sheet pull-out for ZrB2 -GNP composites.

  3. Influence of a cellulosic ether carrier on the structure of biphasic calcium phosphate ceramic particles in an injectable composite material.

    PubMed

    Dupraz, A; Nguyen, T P; Richard, M; Daculsi, G; Passuti, N

    1999-04-01

    An injectable composite material based on biphasic calcium phosphate (BCP) and a nonionic cellulose ether has been elaborated for use in percutaneous surgery for spine fusion. This paper reports the characterization results of this material by spectroscopic techniques including X-ray diffraction (XRD), infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) fitted with an energy dispersive X-Ray analysis system and high-resolution transmission electron microscopy (HR-TEM). From FTIR and XPS results, it was observed that the adhesion between the polymer and the ceramic might be insured by oxygen bridging developed through an ionic bonding between calcium ions and (C-O) groups of the polymer. Moreover, XPS showed attraction of Ca2+ ions in the polymer matrix, while the ceramic surface was modified in a HPO4(2-) -rich layer. These results suggest a possible dissolution/precipitation process at the interface ceramic/polymer. HR-TEM observations supported this hypothesis, showing a light contrasted fringe at the surface of the ceramic grains in the composite paste. As well, changes in the XRD spectra could indicate a small decrease in the crystal size of the BCP powder through the contact to polymer solution. In addition, SEM observation showed a decrease of the initial BCP granulometry. Aggregates of 80-200 microm seemed to be mostly dissociated in micrograins. The ceramic grains were coated with and bonded between each other by the polymer matrix, which acted as spacer in between the ceramic grains, creating a macroporous-like material structure.

  4. Structural and Chemical Analysis of the Zirconia-Veneering Ceramic Interface.

    PubMed

    Inokoshi, M; Yoshihara, K; Nagaoka, N; Nakanishi, M; De Munck, J; Minakuchi, S; Vanmeensel, K; Zhang, F; Yoshida, Y; Vleugels, J; Naert, I; Van Meerbeek, B

    2016-01-01

    The interfacial interaction of veneering ceramic with zirconia is still not fully understood. This study aimed to characterize morphologically and chemically the zirconia-veneering ceramic interface. Three zirconia-veneering conditions were investigated: 1) zirconia-veneering ceramic fired on sandblasted zirconia, 2) zirconia-veneering ceramic on as-sintered zirconia, and 3) alumina-veneering ceramic (lower coefficient of thermal expansion [CTE]) on as-sintered zirconia. Polished cross-sectioned ceramic-veneered zirconia specimens were examined using field emission gun scanning electron microscopy (Feg-SEM). In addition, argon-ion thinned zirconia-veneering ceramic interface cross sections were examined using scanning transmission electron microscopy (STEM)-energy dispersive X-ray spectrometry (EDS) at high resolution. Finally, the zirconia-veneering ceramic interface was quantitatively analyzed for tetragonal-to-monoclinic phase transformation and residual stress using micro-Raman spectroscopy (µRaman). Feg-SEM revealed tight interfaces for all 3 veneering conditions. High-resolution transmission electron microscopy (HRTEM) disclosed an approximately 1.0-µm transformed zone at sandblasted zirconia, in which distinct zirconia grains were no longer observable. Straight grain boundaries and angular grain corners were detected up to the interface of zirconia- and alumina-veneering ceramic with as-sintered zirconia. EDS mapping disclosed within the zirconia-veneering ceramic a few nanometers thick calcium/aluminum-rich layer, touching the as-sintered zirconia base, with an equally thick silicon-rich/aluminum-poor layer on top. µRaman revealed t-ZrO2-to-m-ZrO2 phase transformation and residual compressive stress at the sandblasted zirconia surface. The difference in CTE between zirconia- and the alumina-veneering ceramic resulted in residual tensile stress within the zirconia immediately adjacent to its interface with the veneering ceramic. The rather minor chemical elemental shifts recorded in the veneering ceramic did not suffice to draw definitive conclusions regarding potential chemical interaction of the veneering ceramic with zirconia. Sandblasting damaged the zirconia surface and induced phase transformation that also resulted in residual compressive stress. Difference in CTE of zirconia versus that of the veneering ceramic resulted in an unfavorable residual tensile stress at the zirconia-veneering ceramic interface. © International & American Associations for Dental Research 2015.

  5. Processing of a fiber-reinforced transparent glass matrix composite and study of micromechanics of load transfer from matrix to fiber using micro-fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Banerjee, Debangshu

    The brittleness of monolithic ceramic materials can be overcome by reinforcing them with high strength, high modulus ceramic fibers. These ceramic matrix composites exhibit improved strength, toughness, and work of fracture. Successful design of a ceramic matrix composite (CMC) depends on two factors: proper choice of fiber, matrix, and interface material, and understanding the mechanics of fracture. The conventional techniques for measuring stress and strain at a local level in CMCs are based on indirect experiments and analytical models. In recent years a couple of optical techniques have been explored for non- contact and direct evaluation of the stress and strain in materials, such as laser Raman spectroscopy and fluorescence spectroscopy. In order to employ spectroscopy to study stress in a composite, a transparent matrix was needed. In this study a SiC fiber reinforced transparent glass matrix composite was developed. A tape casting, binder burnout, and sintering route was adopted to achieve the optimum transparency with proper fiber alignment and interfacial properties. Sapphire fibers were used to act as probe to generate fluorescence signals for measuring stress. A fugitive carbon coating was developed to act as a weak interface for the sapphire fiber, which otherwise, forms a strong bond with the matrix. A fixture was designed to apply stress on the composite specimen, in situ, under the microscope of the spectrometer. Using fluorescence spectroscopy, the micromechanics of load transfer from matrix to fibers were studied. Studies were conducted on both strongly and weakly bonded fibers, as well as on single fiber, and multi fiber situations. Residual stresses arising from thermal expansion mismatch have been mapped along the fiber length with resolution in microns. Residual axial stress was found to follow a shear lag profile along the fiber length. A finite residual axial stress was detected at the fiber ends. Correction of the measured stress for sample probe interaction could not eliminate this finite stress completely. Residual axial stress was also found to vary across the fiber cross section. Analytical models predicting the stress variation along the fiber length and across fiber cross section were developed. (Abstract shortened by UMI.)

  6. The Nature of the Microstructure and Interface Boundary Formation in Directionally Solidified Ceramic Boride Composites

    DTIC Science & Technology

    2011-05-01

    failure resistance, which results from their different microplasticity (microbrittleness) and relaxation ability. In order to evaluate the... microplasticity (microbrittleness) in the series of isomorphic hexaborides produced by zone melting we have plotted a number of statistical curves that show

  7. Interfacial Studies of Chemical Vapor Infiltrated (CVI) Ceramic Matrix Composites

    DTIC Science & Technology

    1988-10-01

    carbon layer exists at the fiber/matrix interface. From Fig. 6, it can also be seen that a small amount of Cl exists at the interface and in the CVD SiC...matrix interface, most of which stayed on the fiber surface upon fracture. A small amount of oxygen (3-5 at*/) was found to be present in the CVI SiC. The... small amount of oxygen (1-2%). The results of MTS precursor coatings applied to Nextel 440 and Nicalon fibers preceded by an argon flush of the reactor

  8. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].

    PubMed

    Lian, Qin; Zhuang, Pei; Li, Changhai; Jin, Zhongmin; Li, Dichen

    2014-03-01

    To improve the poor mechanical strength of porous ceramic scaffold, an integrated method based on three-dimensional (3-D) printing technique is developed to incorporate the controlled double-channel porous structure into the polylactic acid/beta-tricalcium phosphate (PLA/beta-TCP) reinforced composite scaffolds (double-channel composite scaffold) to improve their tissue regeneration capability and the mechanical properties. The designed double-channel structure inside the ceramic scaffold consisted of both primary and secondary micropipes, which parallel but un-connected. The set of primary channels was used for cell ingrowth, while the set of secondary channels was used for the PLA perfusion. Integration technology of 3-D printing technique and gel-casting was firstly used to fabricate the double-channel ceramic scaffolds. PLA/beta-TCP composite scaffolds were obtained by the polymer gravity perfusion process to pour PLA solution into the double-channel ceramic scaffolds through the secondary channel set. Microscope, porosity, and mechanical experiments for the standard samples were used to evaluate the composite properties. The ceramic scaffold with only the primary channel (single-channel scaffold) was also prepared as a control. Morphology observation results showed that there was no PLA inside the primary channels of the double-channel composite scaffolds but a dense interface layer between PLA and beta-TCP obviously formed on the inner wall of the secondary channels by the PLA penetration during the perfusion process. Finite element simulation found that the compressive strength of the double-channel composite scaffold was less than that of the single-channel scaffold; however, mechanical tests found that the maximum compressive strength of the double-channel composite scaffold [(21.25 +/- 1.15) MPa] was higher than that of the single-channel scaffold[ (9.76 +/- 0.64) MPa]. The double-channel composite scaffolds fabricated by 3-D printing technique have controlled complex micropipes and can significantly enhance mechanical properties, which is a promising strategy to solve the contradiction of strength and high-porosity of the ceramic scaffolds for the bone tissue engineering application.

  9. Comparison of Fatigue Life Between C/SiC and SiC/SiC Ceramic-Matrix Composites at Room and Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2016-10-01

    In this paper, the comparison of fatigue life between C/SiC and SiC/SiC ceramic-matrix composites (CMCs) at room and elevated temperatures has been investigated. An effective coefficient of the fiber volume fraction along the loading direction (ECFL) was introduced to describe the fiber architecture of preforms. Under cyclic fatigue loading, the fibers broken fraction was determined by combining the interface wear model and fibers statistical failure model at room temperature, and interface/fibers oxidation model, interface wear model and fibers statistical failure model at elevated temperatures in the oxidative environments. When the broken fibers fraction approaches to the critical value, the composites fatigue fracture. The fatigue life S-N curves and fatigue limits of cross-ply, 2D and 3D C/SiC and SiC/SiC composites at room temperature, 550 °C in air, 750 °C in dry and humid condition, 800 °C in air, 1000 °C in argon and air, 1100 °C, 1300 °C and 1500 °C in vacuum, have been predicted. At room temperature, the fatigue limit of 2D C/SiC composite with ECFL of 20 % lies between 0.78 and 0.8 tensile strength; and the fatigue limit of 2D SiC/SiC composite with ECFL of 20 % lies between 0.75 and 0.85 tensile strength. The fatigue limit of 2D C/SiC composite increases to 0.83 tensile strength with ECFL increasing from 20 to 22.5 %, and the fatigue limit of 3D C/SiC composite is 0.85 tensile strength with ECFL of 37 %. The fatigue performance of 2D SiC/SiC composite is better than that of 2D C/SiC composite at elevated temperatures in oxidative environment.

  10. Effects of off-axis loading on the tensile behavior of a ceramic-matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynch, C.S.; Evans, A.G.

    A 0{degree}/90{degree} ceramic-matrix composite (CMC) comprised of Nicalon fibers in magnesium aluminosilicate (MAS) has been loaded in tension in three orientations relative to the fiber direction: 0, 30, and 45{degree}. The off-axis loaded samples exhibit inelastic deformation at appreciably lower stresses than samples loads at 0{degree}. Matrix cracking governs the inelastic strains in all orientations. But, important differences in the morphologies and sequencing of the cracks account for the differences in the stress levels. Off-axis failure also occurs at substantially lower stresses than on-axis failure. On-axis composite failure is governed by fiber fracture, but off-axis failure involves matrix-crack coalescence. Tomore » facilitate interpretation and modeling of these behaviors, the interface friction and debond stresses have been determined from hysteresis measurements.« less

  11. High Temperature Advanced Structural Composites. Volume 2. Ceramic Matrix Composites, Fiber Processing and Properties, and Interfaces

    DTIC Science & Technology

    1993-04-02

    1977) 97. 3 W. Wieswieler, E. Fitzer, G . Nagel, and H. Jager, Thin Solid Film, 148 (1987) 93. 4 T. A. Chernyshova , L. I. Kobelova, J. Mater. Scl., 20...AD-A267 023 I[E[gh ’Temperature kdvanced Structural (Composites Rensselaer Polytechnic Institute , \\ G Troy, N. Y. 12180-3590 - Final Report -- Book 2...thermodynamic data (heats of forma- ,(T p, comp.) °+p, comp.) (1) tion, absolute entropies, heat capacities) of reactants where g ’ is the chemical

  12. Comparison of Reactive and Non-Reactive Spark Plasma Sintering Routes for the Fabrication of Monolithic and Composite Ultra High Temperature Ceramics (UHTC) Materials

    PubMed Central

    Orrù, Roberto; Cao, Giacomo

    2013-01-01

    A wider utilization of ultra high temperature ceramics (UHTC) materials strongly depends on the availability of efficient techniques for their fabrication as dense bodies. Based on recent results reported in the literature, it is possible to state that Spark Plasma Sintering (SPS) technology offers a useful contribution in this direction. Along these lines, the use of two different SPS-based processing routes for the preparation of massive UHTCs is examined in this work. One method, the so-called reactive SPS (R-SPS), consists of the synthesis and densification of the material in a single step. Alternatively, the ceramic powders are first synthesized by Self-propagating High-temperature Synthesis (SHS) and then sintered by SPS. The obtained results evidenced that R-SPS method is preferable for the preparation of dense monolithic products, while the sintering of SHS powders requires relatively milder conditions when considering binary composites. The different kinetic mechanisms involved during R-SPS of the monolithic and composite systems, i.e., combustion-like or gradual solid-diffusion, respectively, provides a possible explanation. An important role is also played by the SHS process, particularly for the preparation of composite powders, since stronger interfaces are established between the ceramic constituents formed in situ, thus favoring diffusion processes during the subsequent SPS step. PMID:28809229

  13. Shrinkage vectors of a flowable composite in artificial cavity models with different boundary conditions: Ceramic and Teflon.

    PubMed

    Kaisarly, Dalia; El Gezawi, Moataz; Xu, Xiaohui; Rösch, Peter; Kunzelmann, Karl-Heinz

    2018-01-01

    Polymerization shrinkage of dental resin composites leads to stress build-up at the tooth-restoration interface that predisposes the restoration to debonding. In contrast to the heterogeneity of enamel and dentin, this study investigated the effect of boundary conditions in artificial cavity models such as ceramic and Teflon. Ceramic serves as a homogenous substrate that provides optimal bonding conditions, which we presented in the form of etched and silanized ceramic in addition to an etched, silanized and bonded ceramic cavity. In contrast, the Teflon cavity presented a non-adhesive boundary condition that provided an exaggerated condition of poor bonding as in the case of contamination during the application procedure or a poor bonding substrate such as sclerotic or deep dentin. The greatest 3D shrinkage vectors and movement in the axial direction were observed in the ceramic cavity with the bonding agent followed by the silanized ceramic cavity, and smallest shrinkage vectors and axial movements were observed in the Teflon cavity. The shrinkage vectors in the ceramic cavities exhibited downward movement toward the cavity bottom with great downward shrinkage of the free surface. The shrinkage vectors in the Teflon cavity pointed towards the center of the restoration with lateral movement greater at one side denoting the site of first detachment from the cavity walls. These results proved that the boundary conditions, in terms of bonding substrates, significantly influenced the shrinkage direction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Ceramic susceptor for induction bonding of metals, ceramics, and plastics

    NASA Technical Reports Server (NTRS)

    Fox, Robert L.; Buckley, John D.

    1991-01-01

    A thin (.005) flexible ceramic susceptor (carbon) was discovered. It was developed to join ceramics, plastics, metals, and combinations of these materials using a unique induction heating process. Bonding times for laboratory specimens comparing state of the art technology to induction bonding were cut by a factor of 10 to 100 times. This novel type of carbon susceptor allows for applying heat directly and only to the bondline without heating the entire structure, supports, and fixtures of a bonding assembly. The ceramic (carbon film) susceptor produces molten adhesive or matrix material at the bond interface. This molten material flows through the perforated susceptor producing a fusion between the two parts to be joined, which in many instances has proven to be stronger than the parent material. Bonding can be accomplished in 2 minutes on areas submitted to the inductive heating. Because a carbon susceptor is used in bonding carbon fiber reinforced plastics and ceramics, there is no radar signature or return making it an ideal process for joining advanced aerospace composite structures.

  15. Preparation and characterization of highly transparent Nd:YAG/YAG composite ceramics

    NASA Astrophysics Data System (ADS)

    Ma, Benyuan; Zhang, Wei; Shen, Bizhou; Wang, Yuezhong; Song, Haizhi; Li, Feng; Xie, Xiumin; Zhang, Zhibin; Yang, Yongqiang; Guan, Zhouguo

    2018-05-01

    Using the co-precipitated Nd:YAG and YAG powders as raw materials, the Nd:YAG/YAG composite ceramics (Ф 50 mm × 5 mm) were prepared by vacuum sintering (1790 °C 50 h), followed by hot isostatic pressing (HIP) post treatment (1700 °C 2 h, 200 MPa Ar atmosphere) and air annealing (1250 °C 100 h). The optical properties of Nd:YAG/YAG samples were improved markedly by HIP post-treatment, mainly due to the elimination of residual pores in the samples. The composite sample showed a perfect bonding interface from Nd:YAG to YAG regions without obvious grain size difference, pores or other defects. This structure should be responsible for the thermal conductivity larger than that of non-composite sample. The composite sample revealed good optical properties with transmittance up to 83.9% at 1064 nm and 80.8% at 400 nm, and a maximum laser output power of 1.38 KW with the slope efficiency of 36.7% was obtained.

  16. Flight-vehicle materials, structures, and dynamics - Assessment and future directions. Vol. 3 - Ceramics and ceramic-matrix composites

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R. (Editor)

    1992-01-01

    The present volume discusses ceramics and ceramic-matrix composites in prospective aerospace systems, monolithic ceramics, transformation-toughened and whisker-reinforced ceramic composites, glass-ceramic matrix composites, reaction-bonded Si3N4 and SiC composites, and chemical vapor-infiltrated composites. Also discussed are the sol-gel-processing of ceramic composites, the fabrication and properties of fiber-reinforced ceramic composites with directed metal oxidation, the fracture behavior of ceramic-matrix composites (CMCs), the fatigue of fiber-reinforced CMCs, creep and rupture of CMCs, structural design methodologies for ceramic-based materials systems, the joining of ceramics and CMCs, and carbon-carbon composites.

  17. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites.

    PubMed

    Estili, Mehdi; Sakka, Yoshio

    2014-12-01

    Since the discovery of carbon nanotubes (CNTs), commonly referred to as ultimate reinforcement, the main purpose for fabricating CNT-ceramic matrix composites has been mainly to improve the fracture toughness and strength of the ceramic matrix materials. However, there have been many studies reporting marginal improvements or even the degradation of mechanical properties. On the other hand, those studies claiming noticeable toughening measured using indentation, which is an indirect/unreliable characterization method, have not demonstrated the responsible mechanisms applicable to the nanoscale, flexible CNTs; instead, those studies proposed those classical methods applicable to microscale fiber/whisker reinforced ceramics without showing any convincing evidence of load transfer to the CNTs. Therefore, the ability of CNTs to directly improve the macroscopic mechanical properties of structural ceramics has been strongly questioned and debated in the last ten years. In order to properly discuss the reinforcing ability (and possible mechanisms) of CNTs in a ceramic host material, there are three fundamental questions to our knowledge at both the nanoscale and macroscale levels that need to be addressed: (1) does the intrinsic load-bearing ability of CNTs change when embedded in a ceramic host matrix?; (2) when there is an intimate atomic-level interface without any chemical reaction with the matrix, could one expect any load transfer to the CNTs along with effective load bearing by them during crack propagation?; and (3) considering their nanometer-scale dimensions, flexibility and radial softness, are the CNTs able to improve the mechanical properties of the host ceramic matrix at the macroscale when individually, intimately and uniformly dispersed? If so, how? Also, what is the effect of CNT concentration in such a defect-free composite system? Here, we briefly review the recent studies addressing the above fundamental questions. In particular, we discuss the new reinforcing mechanism at the nanoscale responsible for unprecedented, simultaneous mechanical improvements and highlight the scalable processing method enabling the fabrication of defect-free CNT-concentered ceramics and CNT-graded composites with unprecedented properties. Finally, possible future directions will be briefly presented.

  18. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites

    PubMed Central

    Estili, Mehdi; Sakka, Yoshio

    2014-01-01

    Since the discovery of carbon nanotubes (CNTs), commonly referred to as ultimate reinforcement, the main purpose for fabricating CNT–ceramic matrix composites has been mainly to improve the fracture toughness and strength of the ceramic matrix materials. However, there have been many studies reporting marginal improvements or even the degradation of mechanical properties. On the other hand, those studies claiming noticeable toughening measured using indentation, which is an indirect/unreliable characterization method, have not demonstrated the responsible mechanisms applicable to the nanoscale, flexible CNTs; instead, those studies proposed those classical methods applicable to microscale fiber/whisker reinforced ceramics without showing any convincing evidence of load transfer to the CNTs. Therefore, the ability of CNTs to directly improve the macroscopic mechanical properties of structural ceramics has been strongly questioned and debated in the last ten years. In order to properly discuss the reinforcing ability (and possible mechanisms) of CNTs in a ceramic host material, there are three fundamental questions to our knowledge at both the nanoscale and macroscale levels that need to be addressed: (1) does the intrinsic load-bearing ability of CNTs change when embedded in a ceramic host matrix?; (2) when there is an intimate atomic-level interface without any chemical reaction with the matrix, could one expect any load transfer to the CNTs along with effective load bearing by them during crack propagation?; and (3) considering their nanometer-scale dimensions, flexibility and radial softness, are the CNTs able to improve the mechanical properties of the host ceramic matrix at the macroscale when individually, intimately and uniformly dispersed? If so, how? Also, what is the effect of CNT concentration in such a defect-free composite system? Here, we briefly review the recent studies addressing the above fundamental questions. In particular, we discuss the new reinforcing mechanism at the nanoscale responsible for unprecedented, simultaneous mechanical improvements and highlight the scalable processing method enabling the fabrication of defect-free CNT-concentered ceramics and CNT-graded composites with unprecedented properties. Finally, possible future directions will be briefly presented. PMID:27877730

  19. Effect of toughened epoxy resin on partial discharge at solid-solid interface

    NASA Astrophysics Data System (ADS)

    Li, Manping; Wu, Kai; Zhang, Zhao; Cheng, Yonghong

    2017-02-01

    A series of solid-solid interfaces, consisting of ceramic-epoxy resin interface samples with a tip-plate electrode, were investigated by performing partial discharge tests and real-time electrical tree observations. A toughening agent was added to the epoxy resin at different ratios for comparison. The impact strength, differential scanning calorimetry (DSC) and dielectric properties of the cured compositions and ceramic were tested. The electric field strength at the tip was calculated based on Maxwell’s theory. The test results show that the addition of a toughener can improve the impact strength of epoxy resin but it decreases the partial discharge inception voltage (PDIV) of the interface sample. At the same time, toughening leads to complex branches of the electrical tree. The simulation result suggests that this reduction of the PDIV cannot be explained by a change of permittivity due to the addition of a toughening agent. The microstructural change caused by toughening was considered to be the key factor for lower PDIV and complex electrical tree branches. Supported by China Academy of Engineering Physics (Project 2014B05005).

  20. The influence of loading frequency on the high-temperature fatigue behavior of a Nicalon-fabric-reinforced polymer-derived ceramic-matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanswijgenhoven, E.; Holmes, J.; Wevers, M.

    Fiber-reinforced ceramic-matrix composites are under development for high-temperature structural applications. These applications involve fatigue loading under a wide range of frequencies. To date, high-temperature fatigue experiments have typically been performed at loading frequencies of 10 Hz or lower. At higher frequencies, a strong effect of loading frequency on fatigue life has been demonstrated for certain CMC`s tested at room temperature. The fatigue life of CMC`s with weak fiber-matrix interfaces typically decreases as the loading frequency increases. This decrease is attributed to frictional heating and frequency dependent interface and fiber damage. More recently, it has been shown that the room temperaturemore » fatigue life of a Nicalon-fabric-reinforced composite with a strong interface (SYLRAMIC{trademark}) appears to be independent of loading frequency. The high-temperature low-frequency fatigue behavior of the SYLRAMIC composite has also been investigated. For a fatigue peak stress {sigma}{sub peak} above a proportional limit stress of 70 MPa, the number of cycles to failure N{sub f} decreased with an increase in {sigma}{sub peak}. The material endured more than 10{sup 6} cycles for {sigma}{sub peak} below 70 MPa. In this paper, the influence of loading frequency on the high-temperature fatigue behavior of the SYLRAMIC composite is reported. It will be shown that the fatigue limit is unaffected by the loading frequency, that the number of fatigue cycles to failure N{sub f} increases with an increase in frequency, and that the time to failure t{sub f} decreases with an increase in frequency.« less

  1. Biaxial (Tension-Torsion) Testing of an Oxide/Oxide Ceramic Matrix Composite

    DTIC Science & Technology

    2013-03-01

    estimation algorithms and constants . . . . . . . . . . . . . 61 4.27 Biaxial (tension-torsion) load spreadsheet with independent axial load and torsion...through the composite and provides the main load - bearing capability. The interaction of the two (or more) phases takes place in the interface. The...transfer loads between fibers[15]. The fiber-to-fiber load transfer mechanism provided by the matrix plays a major role in the load - bearing properties of the

  2. [Fabrication and in vivo implantation of ligament-bone composite scaffolds based on three-dimensional printing technique].

    PubMed

    Zhang, Wenyou; He, Jiankang; Li, Xiang; Liu, Yaxiong; Bian, Weiguo; Li, Dichen; Jin, Zhongmin

    2014-03-01

    To solve the fixation problem between ligament grafts and host bones in ligament reconstruction surgery by using ligament-bone composite scaffolds to repair the ligaments, to explore the fabrication method for ligament-bone composite scaffolds based on three-dimensional (3-D) printing technique, and to investigate their mechanical and biological properties in animal experiments. The model of bone scaffolds was designed using CAD software, and the corresponding negative mould was created by boolean operation. 3-D printing techinique was employed to fabricate resin mold. Ceramic bone scaffolds were obtained by casting the ceramic slurry in the resin mould and sintering the dried ceramics-resin composites. Ligament scaffolds were obtained by weaving degummed silk fibers, and then assembled with bone scaffolds and bone anchors. The resultant ligament-bone composite scaffolds were implanted into 10 porcine left anterior cruciate ligament rupture models at the age of 4 months. Mechanical testing and histological examination were performed at 3 months postoperatively, and natural anterior cruciate ligaments of the right sides served as control. Biomechanical testing showed that the natural anterior cruciate ligament of control group can withstand maximum tensile force of (1 384 +/- 181) N and dynamic creep of (0.74 +/- 0.21) mm, while the regenerated ligament-bone scaffolds of experimental group can withstand maximum tensile force of (370 +/- 103) N and dynamic creep of (1.48 +/- 0.49) mm, showing significant differences (t = 11.617, P = 0.000; t = 2.991, P = 0.020). In experimental group, histological examination showed that new bone formed in bone scaffolds. A hierarchical transition structure regenerated between ligament-bone scaffolds and the host bones, which was similar to the structural organizations of natural ligament-bone interface. Ligament-bone composite scaffolds based on 3-D printing technique facilitates the regeneration of biomimetic ligament-bone interface. It is expected to achieve physical fixation between ligament grafts and host bone.

  3. Effect of TiO, nanoparticles on the interface in the PET-rubber composites.

    PubMed

    Vladuta, Cristina; Andronic, Luminita; Duta, Anca

    2010-04-01

    Usually, ceramic powders (SiO2, ZnO) are used as fillers for enhancing rubber mechanical strength. Poly-ethylene terephthalate (PET)-rubber nanocomposites were prepared by compression molding using titanium oxide (TiO2) nanoparticles as low content fillers (<2% wt). The interface properties of PET-rubber nanocomposites were studied before and after keeping the samples under UV-radiation for a week. UV-radiation has interesting potential for the photochemical modification of polymers and TiO2. The influence of UV radiation on the properties of the interface polymer-TiO2 nanoparticles was evaluated. The impact of nanoparticle aggregates on the nanometer to micrometer organization of PET-rubber composites was studied with Atomic Force Microscopy (AFM). The interface properties were explained by measuring the contact angles and surface tensions. The interactions between components of nanocomposites were investigated with Fourier Transform-Infrared (FTIR) and the effects of TiO2 nanoparticle on the interfaces and composites crystalline structure were evaluated by X-ray diffraction (XRD). The results proved that the TiO2 nanoparticles, in different weight percentages, did not alter the nanocomposites crystallinity or the average crystallites size, but improve the interface properties.

  4. Autonomous self-healing structural composites with bio-inspired design

    PubMed Central

    D’Elia, Eleonora; Eslava, Salvador; Miranda, Miriam; Georgiou, Theoni K.; Saiz, Eduardo

    2016-01-01

    Strong and tough natural composites such as bone, silk or nacre are often built from stiff blocks bound together using thin interfacial soft layers that can also provide sacrificial bonds for self-repair. Here we show that it is possible exploit this design in order to create self-healing structural composites by using thin supramolecular polymer interfaces between ceramic blocks. We have built model brick-and-mortar structures with ceramic contents above 95 vol% that exhibit strengths of the order of MPa (three orders of magnitude higher than the interfacial polymer) and fracture energies that are two orders of magnitude higher than those of the glass bricks. More importantly, these properties can be fully recovered after fracture without using external stimuli or delivering healing agents. This approach demonstrates a very promising route towards the design of strong, ideal self-healing materials able to self-repair repeatedly without degradation or external stimuli. PMID:27146382

  5. Autonomous self-healing structural composites with bio-inspired design.

    PubMed

    D'Elia, Eleonora; Eslava, Salvador; Miranda, Miriam; Georgiou, Theoni K; Saiz, Eduardo

    2016-05-05

    Strong and tough natural composites such as bone, silk or nacre are often built from stiff blocks bound together using thin interfacial soft layers that can also provide sacrificial bonds for self-repair. Here we show that it is possible exploit this design in order to create self-healing structural composites by using thin supramolecular polymer interfaces between ceramic blocks. We have built model brick-and-mortar structures with ceramic contents above 95 vol% that exhibit strengths of the order of MPa (three orders of magnitude higher than the interfacial polymer) and fracture energies that are two orders of magnitude higher than those of the glass bricks. More importantly, these properties can be fully recovered after fracture without using external stimuli or delivering healing agents. This approach demonstrates a very promising route towards the design of strong, ideal self-healing materials able to self-repair repeatedly without degradation or external stimuli.

  6. Autonomous self-healing structural composites with bio-inspired design

    NASA Astrophysics Data System (ADS)

    D'Elia, Eleonora; Eslava, Salvador; Miranda, Miriam; Georgiou, Theoni K.; Saiz, Eduardo

    2016-05-01

    Strong and tough natural composites such as bone, silk or nacre are often built from stiff blocks bound together using thin interfacial soft layers that can also provide sacrificial bonds for self-repair. Here we show that it is possible exploit this design in order to create self-healing structural composites by using thin supramolecular polymer interfaces between ceramic blocks. We have built model brick-and-mortar structures with ceramic contents above 95 vol% that exhibit strengths of the order of MPa (three orders of magnitude higher than the interfacial polymer) and fracture energies that are two orders of magnitude higher than those of the glass bricks. More importantly, these properties can be fully recovered after fracture without using external stimuli or delivering healing agents. This approach demonstrates a very promising route towards the design of strong, ideal self-healing materials able to self-repair repeatedly without degradation or external stimuli.

  7. Performance of Nanotube-Based Ceramic Composites: Modeling and Experiment

    NASA Technical Reports Server (NTRS)

    Curtin, W. A.; Sheldon, B. W.; Xu, J.

    2004-01-01

    The excellent mechanical properties of carbon-nanotubes are driving research into the creation of new strong, tough nanocomposite systems. In this program, our initial work presented the first evidence of toughening mechanisms operating in carbon-nanotube- reinforced ceramic composites using a highly-ordered array of parallel multiwall carbon-nanotubes (CNTs) in an alumina matrix. Nanoindentation introduced controlled cracks and the damage was examined by SEM. These nanocomposites exhibit the three hallmarks of toughening in micron-scale fiber composites: crack deflection at the CNT/matrix interface; crack bridging by CNTs; and CNT pullout on the fracture surfaces. Furthermore, for certain geometries a new mechanism of nanotube collapse in shear bands was found, suggesting that these materials can have multiaxial damage tolerance. The quantitative indentation data and computational models were used to determine the multiwall CNT axial Young's modulus as 200-570 GPa, depending on the nanotube geometry and quality.

  8. Influence of glass particle size of resin cements on bonding to glass ceramic: SEM and bond strength evaluation.

    PubMed

    Valentini, Fernanda; Moraes, Rafael R; Pereira-Cenci, Tatiana; Boscato, Noéli

    2014-05-01

    This study investigated the effect of the filler particle size (micron or submicron) of experimental resin cements on the microtensile bond strength to a glass-ceramic pretreated with hydrofluoric acid (HFA) etching or alumina airborne-particle abrasion (AA). Cements were obtained from a Bis-GMA/TEGDMA mixture filled with 60 mass% micron-sized (1 ± 0.2 µm) or submicron-sized (180 ± 30 µm) Ba-Si-Al glass particles. Ceramic blocks (PM9; VITA) were treated with 10% HFA for 60 s or AA for 15 s. Silane and adhesive were applied. Ceramic blocks were bonded to resin composite blocks (Z250; 3M ESPE) using one of the cements. Bonded specimens were sectioned into beams (n = 20/group) and subjected to microtensile bond strength tests. Data were analyzed using ANOVA and Student-Newman-Keuls' tests (5%). Failure modes were classified under magnification. Morphologies of the treated ceramic surfaces and bonded interfaces were evaluated by scanning electron microscopy. The HFA-submicron group had lower bond strengths than the other groups. All AA-submicron specimens debonded prematurely. Mixed failures were predominant for HFA groups, whereas interfacial failures predominated for AA groups. SEM revealed a honeycomb-like aspect in the HFA-treated ceramic, whereas the AA-treated groups showed an irregular retentive pattern. Continuity of cement infiltration along the bonded interface was more uniform for HFA-treated compared to AA-treated specimens. Cracks toward the bulk of the ceramic were observed in AA-treated specimens. Particle size significantly influenced the ceramic bond strength, whereas surface treatment had a minor effect. Copyright © 2014 Wiley Periodicals, Inc.

  9. Interfacial characterization of ceramic core materials with veneering porcelain for all-ceramic bi-layered restorative systems.

    PubMed

    Tagmatarchis, Alexander; Tripodakis, Aris-Petros; Filippatos, Gerasimos; Zinelis, Spiros; Eliades, George

    2014-01-01

    The aim of the study was to characterize the elemental distribution at the interface between all-ceramic core and veneering porcelain materials. Three groups of all-ceramic cores were selected: A) Glass-ceramics (Cergo, IPS Empress, IPS Empress 2, e-max Press, Finesse); B) Glass-infiltrated ceramics (Celay Alumina, Celay Zirconia) and C) Densely sintered ceramics (Cercon, Procera Alumina, ZirCAD, Noritake Zirconia). The cores were combined with compatible veneering porcelains and three flat square test specimens were produced for each system. The core-veneer interfaces were examined by scanning electron microscopy and energy dispersive x-ray microanalysis. The glass-ceramic systems showed interfacial zones reach in Si and O, with the presence of K, Ca, Al in core and Ca, Ce, Na, Mg or Al in veneer material, depending on the system tested. IPS Empress and IPS Empress 2 demonstrated distinct transitional phases at the core-veneer interface. In the glassinfiltrated systems, intermixing of core (Ce, La) with veneer (Na, Si) elements occurred, whereas an abrupt drop of the core-veneer elemental concentration was documented at the interfaces of all densely sintered ceramics. The results of the study provided no evidence of elemental interdiffusion at the core-veneer interfaces in densely sintered ceramics, which implies lack of primary chemical bonding. For the glass-containing systems (glassceramics and glass-infiltrated ceramics) interdiffusion of the glass-phase seems to play a critical role in establishing a primary bonding condition between ceramic core and veneering porcelain.

  10. Attritional wear and abrasive surface alterations of composite resin materials in vitro.

    PubMed

    Göhring, T N; Besek, M J; Schmidlin, P R

    2002-01-01

    A laboratory study was performed with 232 specimens and 72 human enamel, 24 gold, 24 ceramic and 12 composite antagonists in 22 groups to test attritional and abrasive wear behavior of composite materials compared to wear behavior of human enamel. Belleglass HP, Concept Inlay/Onlay, Targis and Targis Upgrade 99 composite resin for lab-made restorations was tested as well as Tetric Ceram and FHC Merz light as resins for direct restorations. Natural human enamel specimens served as control. All specimens were subjected to long-term thermo-mechanical loading in a computer-controlled masticator, chemical degradation and toothbrush/toothpaste abrasion. Wear of specimen in occlusal contact area (OCA), contact-free occlusal area and wear of natural enamel cusps as well as antagonists made of gold, ceramic and composite in identical form was measured after 120,000, 240,000, 640,000 and 1200,000 load cycles. A qualitative SEM analysis was performed to support quantitative data. Belleglass HP and Targis Upgrade 99 restorative materials showed wear resistance comparable to human enamel when loaded with enamel cusps. Wear of Targis versus composite and gold antagonists was significantly higher (p<0.0001). Analysis of surface alterations showed hygroscopic expansion in all composite resins during the test. As a consequence of this study, necessity to further improve physical properties of composites for long lasting restorations was obvious. Beside of attritional wear in OCA, attention must be given to stable filler-matrix interfaces and prevention of water sorption.

  11. Thermally stimulated depolarization currents and dielectric properties of Mg0.95Ca0.05TiO3 filled HDPE composites

    NASA Astrophysics Data System (ADS)

    Shi, Yunzhou; Zhang, Li; Zhang, Jie; Yue, Zhenxing

    2017-12-01

    Mg0.95Ca0.05TiO3 (MCT) filled high density polyethylene (HDPE) composites were prepared by twin-screw extrusion followed by hot pressing technique. The thermally stimulated depolarization current (TSDC) measurement was performed to analyze the contribution of charge distribution and interfacial characteristics to the dielectric loss. TSDC spectra under different polarization conditions show that the introduction of ceramic fillers engenders shallow traps in the vicinity of ceramic-polymer interface, which hinders the injection of space charge from the electrode into the polymer matrix. In the composite materials applied to an external field, charges tend to be captured by these traps. The temperature dependence of relative permittivity and dielectric loss of the composites was measured, and a strong reliance of dielectric loss on temperature was observed. In the heating process, the release of charges accumulating at interfacial region is considered to contribute to the rise in dielectric loss with the increase of temperature.

  12. Reinforcing effect of graphene on the mechanical properties of Al2O3/TiC ceramics

    NASA Astrophysics Data System (ADS)

    Li, Zuo-li; Zhao, Jun; Sun, Jia-lin; Gong, Feng; Ni, Xiu-ying

    2017-12-01

    Multilayer graphene (MLG)-reinforced Al2O3/TiC ceramics were fabricated through hot pressing sintering, and the reinforcing effect of MLG on the microstructure and mechanical properties of the composites was investigated by experiment and simulation. The simulation of dynamic crack initiation and propagation was investigated based on the cohesive zone method. The results show that the composite added with 0.2wt% MLG has excellent flexural strength and high fracture toughness. The major reinforcing mechanisms are the synergistic effect by strong and weak bonding interfaces, MLG pull-out, and grain refinement resulting from the addition of MLG. In addition, the aggravating of crack deflection, branching, blunting, and bridging have indispensable contribution to the improvement of the as-designed materials.

  13. Preparation and Physical Properties of Segmented Thermoelectric YBa2Cu3O7-x -Ca3Co4O9 Ceramics

    NASA Astrophysics Data System (ADS)

    Wannasut, P.; Keawprak, N.; Jaiban, P.; Watcharapasorn, A.

    2018-01-01

    Segmented thermoelectric ceramics are now well known for their high conversion efficiency and are currently being investigated in both basic and applied energy researches. In this work, the successful preparation of the segmented thermoelectric YBa2Cu3O7-x -Ca3Co4O9 (YBCO-CCO) ceramic by hot pressing method and the study on its physical properties were presented. Under the optimum hot pressing condition of 800 °C temperature, 1-hour holding time and 1-ton weight, the segmented YBCO-CCO sample showed two strongly connected layers with the relative density of about 96%. The X-ray diffraction (XRD) patterns indicated that each segment showed pure phase corresponding to each respective composition. Scanning electron microscopy (SEM) results confirmed the sharp interface and good adhesion between YBCO and CCO layers. Although the chemical analysis indicated the limited inter-layer diffusion near the interface, some elemental diffusion at the boundary was expected to be the source of this strong bonding.

  14. Method of making a continuous ceramic fiber composite hot gas filter

    DOEpatents

    Hill, Charles A.; Wagner, Richard A.; Komoroski, Ronald G.; Gunter, Greg A.; Barringer, Eric A.; Goettler, Richard W.

    1999-01-01

    A ceramic fiber composite structure particularly suitable for use as a hot gas cleanup ceramic fiber composite filter and method of making same from ceramic composite material has a structure which provides for increased strength and toughness in high temperature environments. The ceramic fiber composite structure or filter is made by a process in which a continuous ceramic fiber is intimately surrounded by discontinuous chopped ceramic fibers during manufacture to produce a ceramic fiber composite preform which is then bonded using various ceramic binders. The ceramic fiber composite preform is then fired to create a bond phase at the fiber contact points. Parameters such as fiber tension, spacing, and the relative proportions of the continuous ceramic fiber and chopped ceramic fibers can be varied as the continuous ceramic fiber and chopped ceramic fiber are simultaneously formed on the porous vacuum mandrel to obtain a desired distribution of the continuous ceramic fiber and the chopped ceramic fiber in the ceramic fiber composite structure or filter.

  15. Effects of silica coating and silane surface conditioning on the bond strength of metal and ceramic brackets to enamel.

    PubMed

    Atsü, Saadet Sağlam; Gelgör, Ibrahim Erhan; Sahin, Volkan

    2006-09-01

    To evaluate the effect of tribochemical silica coating and silane surface conditioning on the bond strength of metal and ceramic brackets bonded to enamel surfaces with light-cured composite resin. Twenty metal and 20 ceramic brackets were divided into four groups (n = 10 for each group). The specimens were randomly assigned to one of the following treatment conditions of the metal and ceramic brackets' surface: (1) tribochemical silica coating combined with silane and (2) no treatment. Brackets were bonded to the enamel surface on the labial and lingual sides of human maxillary premolars (20 total) with a light-polymerized resin composite. All specimens were stored in water for 1 week at 37 degrees C and then thermocycled (5000 cycles, 5 degrees C to 55 degrees C, 30 seconds). The shear bond strength values were measured on a universal testing machine. Student's t-test was used to compare the data (alpha = 0.05). The types of failures were observed using a stereomicroscope. Metal and ceramic brackets treated with silica coating with silanization had significantly greater bond strength values (metal brackets: 14.2 +/- 1.7 MPa, P < .01; ceramic brackets: 25.9 +/- 4.4 MPa, P < .0001) than the control groups (metal brackets: 11.9 +/- 1.3 MPa; ceramic brackets: 15.6 +/- 4.2 MPa). Treated specimens of metal and ceramic exhibited cohesive failures in resin and adhesive failures at the enamel-adhesive interface, whereas control specimens showed mixed types of failures. Silica coating with aluminum trioxide particles coated with silica followed by silanization gave higher bond strengths in both metal and ceramic brackets than in the control group.

  16. Multi-fracture response of cross-ply ceramic composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdman, D.L.; Weitsman, Y.J.

    1996-12-31

    Ceramic matrix composites are candidate materials for high temperature applications due to their ability to retain mechanical properties. However, in view of the relatively low transverse strength and ductility associated with unidirectional ceramic matrix lay-ups, it is necessary to consider multi-directional reinforcement for any practical structural application. The simplest laminate that would provide multi-directional toughness would be the cross-ply lay-up. Although there are numerous publications concerned with modeling of the stress-strain response of unidirectional ceramic matrix laminates, there are relatively few investigations in the current literature which deal with laminates such as the cross-ply lay-up. Additionally, the aforementioned publications aremore » often incomplete since they fail to address the failure mechanisms associated with this lay-up in a comprehensive manner and consequently have limited success in correlating experimental stress-strain response with mechanical test results. Furthermore, many current experimental investigations fail to report the details of damage evolution and stress-strain response which are required for correlation with analyses. This investigation presents a comprehensive extended shear-lag type analysis that considers transverse matrix cracking in the 90{degree} plies, the non-linearity of the 0{degree} plies, and slip at the 0/90 ply interface.« less

  17. [Interface bond and compatibility between GI-II glass/alumina composite and Vitadur alpha veneering porcelain].

    PubMed

    Meng, Yukun; Chao, Yonglie; Liao, Yunmao

    2002-01-01

    Multiple layer techniques were commonly employed in fabricating all-ceramic restorations. Bond and compatibility between layers were vitally important for the clinical success of the restorations. The purposes of this study were to investigate the bond of the interface between the GI-II glass/alumina composite and Vitadur alpha veneering porcelain, and to study the thermal compatibility between them. Prepared a bar shaped specimen of GI-II glass/alumina composite 25 mm x 5 mm x 1 mm in size, with bottom surface pre-notched. The upper surface was veneered with Vitadur alpha veneering porcelain (0.2 mm opaque dentin and 0.6 mm dentin porcelain), then fractured and the fracture surface were examined under scanning electron microscope (SEM) and electron microprobe analyzer (EMPA) with electron beam of 10 micrometer in diameter; ten all-ceramic single crowns for an upper right central incisor were fabricated and the temperatures of thermal shock resistance were tested. SEM observation showed tight bond between the composite and the porcelain; The results of EMPA showed that penetration of Na, Al elements from glass/alumina into veneering porcelain and Si, K, Ca elements from veneering porcelain into glass/alumina occurred after sintering baking; The temperature of thermal shock resistance for anterior crowns in this study was 158 +/- 10.3 degrees C, cracks were mainly distributed in veneering porcelain with thicker layer. Chemical bond exists between the GI-II glass/alumina composite and Vitadur alpha veneering porcelain, and there is good thermal compatibility between them.

  18. Solid Oxide Fuel Cell Seal Glass - BN Nanotubes Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Choi, Sung R.; Hurst, Janet B.; Garg, Anita

    2005-01-01

    Solid oxide fuel cell seal glass G18 composites reinforced with approx.4 weight percent of BN nanotubes were fabricated via hot pressing. Room temperature strength and fracture toughness of the composite were determined by four-point flexure and single edge V-notch beam methods, respectively. The strength and fracture toughness of the composite were higher by as much as 90% and 35%, respectively, than those of the glass G18. Microscopic examination of the composite fracture surfaces using SEM and TEM showed pullout of the BN nanotubes, similar in feature to fiber-reinforced ceramic matrix composites with weak interfaces. Other mechanical and physical properties of the composite will also be presented.

  19. Mechanical properties of Al/Al[sub 2]O[sub 3] and Cu/Al[sub 2]O[sub 3] composites with interpenetrating networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knechtel, M.; Prielipp, H.; Claussen, N.

    The rising fracture resistance with crack length in metal-toughened ceramics due to ductile bridging has been discussed from some selected microstructures and metal-ceramic combinations. An intriguing feature of these composites is the influence of interfacial fracture strength. Strong interfacial bonding leads to high geometrical constraint for the metal and high degree of triaxial tension in the metal ligament, thereby increasing the uniaxial yield strength by a factor of 5--7. This in turn increases the closure stress of the metal ligament, but ultimately limits the total plastic dissipation in the ductile reinforcement. The intent of this paper is to provide somemore » insight on the influence of metal ligament size on both fracture toughness and fracture strength. The materials chosen are Al/Al[sub 2]O[sub 3] and Cu/Al[sub 2]O[sub 3] composites, both prepared by gas-pressure metal-infiltration of porous alumina preforms. SEM observations of fracture surfaces in conjunction with preliminary TEM and PEELS investigations of the metal-ceramic interfaces are used to explain the trends in mechanical property data.« less

  20. [Compatibility between high-strength dental ceramic (type A) and vintage AL veneering porcelain].

    PubMed

    Cui, Jun; Chao, Yong-lie; Meng, Yu-kun

    2006-05-01

    To investigate the interface bond strength and compatibility between High-Strength Dental Ceramic (type A) and Vintage AL veneering porcelain. Twenty bar-shape specimens (ten Vintage AL and ten Vitadur alpha) were fabricated, and shear test was conducted to determine the bond strength. A bilayered composite (1 mm core ceramic and 0.8 mm Vintage AL) was prepared and then fractured for scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis. Ten all-ceramic anterior crowns were fabricated and the temperatures of thermal shock resistance were tested. The mean values of the bond strength measured were (55.52 +/- 14.64) MPa and (59.37 +/- 13.93) MPa for Vintage AL and Vitadur alpha respectively (P>0.05). SEM showed tight connection between the High-Strength Dental Ceramic (type A) and the veneering porcelain. Element diffusion was also confirmed by energy dispersive spectroscopy (EDS) analysis. The temperature of thermal shock resistance of this system was (179 +/- 15) degrees C. Vintage AL veneering porcelain has good thermal and chemical compatibility with High-Strength Dental Ceramic (type A).

  1. A novel strategy to increase separated electron-hole dipoles in commercial Si based solar panel to assist photovoltaic effect

    NASA Astrophysics Data System (ADS)

    Feng, Yefeng; He, Cheng-En; Xu, Zhichao; Hu, Jianbing; Peng, Cheng

    2018-01-01

    Interface induced polarization has been found to have a significant impact on dielectric properties of 2-2 type polymer composites bearing Si based semi-conducting ceramic sheets. Inherent overall polarity of polymer layers in 2-2 composites has been verified to be closely connected with interface effect and achieved permittivity in composites. In present work, conducting performances of monocrystalline Si sheets coated by varied high polarity material layers were deeply researched. The positive results inspired us to propose a novel strategy to improve separated electron-hole dipoles in commercial Si based solar cell panel for assisting photovoltaic effect, based on strong interface induced polarization. Conducting features of solar panels coated by two different high polarity polymer layers were detected to be greatly elevated compared with solar panel standalone, thanks to interface induced polarization between panel and polymer. Polymer coating with higher polarity would lead to more separated electron-hole dipole pairs in solar panel contributing to higher conductivity of panel. Valid synergy of interface effect and photovoltaic effect was based on their unidirectional traits of electron transfer. Dielectric properties of solar panels in composites further confirmed that strategy. This work might provide a facile route to prepare promising Si based solar panels with higher photoelectric conversion efficiency by enhancing interface induced polarization between panel and polymer coating.

  2. Shear Strength and Interfacial Toughness Characterization of Sapphire-Epoxy Interfaces for Nacre-Inspired Composites.

    PubMed

    Behr, Sebastian; Jungblut, Laura; Swain, Michael V; Schneider, Gerold A

    2016-10-12

    The common tensile lap-shear test for adhesive joints is inappropriate for brittle substrates such as glasses or ceramics where stress intensifications due to clamping and additional bending moments invalidate results. Nevertheless, bonding of glasses and ceramics is still important in display applications for electronics, in safety glass and ballistic armor, for dental braces and restoratives, or in recently developed bioinspired composites. To mechanically characterize adhesive bondings in these fields nonetheless, a novel approach based on the so-called Schwickerath test for dental sintered joints is used. This new method not only matches data from conventional analysis but also uniquely combines the accurate determination of interfacial shear strength and toughness in one simple test. The approach is verified for sapphire-epoxy joints that are of interest for bioinspired composites. For these, the procedure not only provides quantitative interfacial properties for the first time, it also exemplarily suggests annealing of sapphire at 1000 °C for 10 h for mechanically and economically effective improvements of the interfacial bond strength and toughness. With increases of strength and toughness from approximately 8 to 29 MPa and from 2.6 to 35 J/m 2 , respectively, this thermal modification drastically enhances the properties of unmodified sapphire-epoxy interfaces. At the same time, it is much more convenient than wet-chemical approaches such as silanization. Hence, besides the introduction of a new testing procedure for adhesive joints of brittle or expensive substrates, a new and facile annealing process for improvements of the adhesive properties of sapphire is suggested and quantitative data for the mechanical properties of sapphire-epoxy interfaces that are common in synthetic nacre-inspired composites are provided for the first time.

  3. Method for non-destructive evaluation of ceramic coatings

    DOEpatents

    Peterson, Kristen A.; Rosen, Elias P.; Jordan, Eric H.; Shahbazmohamadi, Sina; Vakhtin, Andrei B.

    2016-11-08

    A method for evaluating the condition of a ceramic coating deposited on a substrate comprising illuminating the ceramic coating with light, measuring the intensity of light returned from the ceramic coating as function of depth in the coating and transverse position on the coating, and analyzing the measured light intensities to obtain one or more of intensity of the light returned from the exposed coating surface relative to the intensity of light returned from the coating/substrate interface, intensity of the light returned from the coating/substrate interface relative to the intensity of light returned from the bulk of the ceramic coating, determination of roughness at the exposed surface of the ceramic coating, and determination of roughness of the interface between the ceramic coating and underlying bond coat or substrate.

  4. Creep Behavior and Durability of Cracked CMC

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Fox, Dennis; Smith, Craig

    2015-01-01

    To understand failure mechanisms and durability of cracked Ceramic matrix composites (CMCs), Melt Infiltration (MI) SiCSiC composites with Sylramic-iBN fibers and full Chemical vapour infiltration SiCSiC composites with Sylramic-ion bombarded BN (iBN) and Hi-Nicalon -S fibers were pre-cracked between 150 to 200 megapascal and then creep and Sustained Peak Low Cycle Fatigue (SPLCF) tested at 13150 C at stress levels from 35 to 103 megapascal for up to 200 hours under furnace and burner rig conditions. In addition creep testing was also conducted on pre-cracked full Chemical vapour infiltration SiCSiC composites at 14500 C between 35 and 103 megapascal for up to 200 hours under furnace conditions. If the specimens survived the 200 hour durability tests, then they were tensile tested at room temperature to determine their residual tensile properties. The failed specimens were examined by Scanning electron microscope (SEM) to determine the failure modes and mechanisms. The influence of crack healing matrix, fiber types, crack density, testing modes and interface oxidation on durability of cracked Ceramic matrix composites (CMCs) will be discussed.

  5. Method of forming a ceramic matrix composite and a ceramic matrix component

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Diego, Peter; Zhang, James

    A method of forming a ceramic matrix composite component includes providing a formed ceramic member having a cavity, filling at least a portion of the cavity with a ceramic foam. The ceramic foam is deposited on a barrier layer covering at least one internal passage of the cavity. The method includes processing the formed ceramic member and ceramic foam to obtain a ceramic matrix composite component. Also provided is a method of forming a ceramic matrix composite blade and a ceramic matrix composite component.

  6. Reliability analysis of laminated CMC components through shell subelement techniques

    NASA Technical Reports Server (NTRS)

    Starlinger, A.; Duffy, S. F.; Gyekenyesi, J. P.

    1992-01-01

    An updated version of the integrated design program C/CARES (composite ceramic analysis and reliability evaluation of structures) was developed for the reliability evaluation of CMC laminated shell components. The algorithm is now split in two modules: a finite-element data interface program and a reliability evaluation algorithm. More flexibility is achieved, allowing for easy implementation with various finite-element programs. The new interface program from the finite-element code MARC also includes the option of using hybrid laminates and allows for variations in temperature fields throughout the component.

  7. Effect of silane pretreatment on the immediate bonding of universal adhesives to computer-aided design/computer-aided manufacturing lithium disilicate glass ceramics.

    PubMed

    Yao, Chenmin; Zhou, Liqun; Yang, Hongye; Wang, Yake; Sun, Hualing; Guo, Jingmei; Huang, Cui

    2017-04-01

    The aim of this study was to investigate the effect of silane pretreatment on the universal adhesive bonding between lithium disilicate glass ceramic and composite resin. IPS e.max ceramic blocks etched with hydrofluoric acid were randomly assigned to one of eight groups treated with one of four universal adhesives (two silane-free adhesives and two silane-containing adhesives), each with or without silane pretreatment. Bonded specimens were stored in water for 24 h. The shear bond strength (SBS) of the ceramic-resin interface was measured to evaluate bond strength, and the debonded interface after the SBS test was analysed using field-emission scanning electron microscopy to determine failure mode. Light microscopy was performed to analyse microleakage and marginal sealing ability. Silane pretreatment significantly and positively influenced SBS and marginal sealing ability. For all the universal adhesive groups, SBS increased and the percentage of microleakage decreased after the pretreatment. Without the pretreatment, SBS and the percentage of microleakage were not significantly different between the silane-containing universal adhesive groups and the silane-free groups. Cohesive failure was the main fracture pattern. The results suggest that additional silane pretreatment can effectively improve the bonding strength and marginal sealing of adhesives to lithium disilicate glass ceramics. The bonding performance of silane-containing universal adhesives without pretreatment is similar to that of silane-free adhesives. © 2017 Eur J Oral Sci.

  8. Patterned solid state growth of barium titanate crystals

    NASA Astrophysics Data System (ADS)

    Ugorek, Michael Stephen

    An understanding of microstructure evolution in ceramic materials, including single crystal development and abnormal/enhanced grain growth should enable more controlled final ceramic element structures. In this study, two different approaches were used to control single crystal development in a patterned array. These two methods are: (1) patterned solid state growth in BaTiO 3 ceramics, and (2) metal-mediated single crystal growth in BaTiO 3. With the patterned solid state growth technique, optical photolithography was used to pattern dopants as well as [001] and [110] BaTiO3 single crystal template arrays with a 1000 microm line pattern array with 1000 microm spacings. These patterns were subsequently used to control the matrix grain growth evolution and single crystal development in BaTiO3. It was shown that the growth kinetics can be controlled by a small initial grain size, atmosphere conditions, and the introduction of a dopant at selective areas/interfaces. By using a PO2 of 1x10-5 atm during high temperature heat treatment, the matrix coarsening has been limited (to roughly 2 times the initial grain size), while retaining single crystal boundary motion up to 0.5 mm during growth for dwell times up to 9 h at 1300°C. The longitudinal and lateral growth rates were optimized at 10--15 microm/h at 1300°C in a PO2 of 1x10 -5 atm for single crystal growth with limited matrix coarsening. Using these conditions, a patterned microstructure in BaTiO3 was obtained. With the metal-mediated single crystal growth technique, a novel approach for fabricating 2-2 single crystal/polymer composites with a kerf < 5 microns was demonstrated. Surface templated grain growth was used to propagate a single crystal interface into a polycrystalline BaTiO3 or Ba(Zr0.05 Ti0.95)O3 matrix with lamellar nickel layers. The grain growth evolution and texture development were studied using both [001] and [110] BaTiO3 single crystals templates. By using a PO 2 of 1x10-11 atm during high temperature heat treatment, matrix coarsening was limited while enabling single crystal boundary motion up to 0.35 mm during growth between 1250°C and 1300°C with growth rates ˜ 3--4 microm/h for both single crystal orientations. By removing the inner electrodes, 2-2 single crystal (or ceramic) composites were prepared. The piezoelectric and dielectric properties of the composites of the two compositions were measured. The d33 and d31 of the composites were similar to the polycrystalline ceramic of the same composition.

  9. Crack barriers improve the mechanical and thermal properties of non-metallic sinter materials

    NASA Technical Reports Server (NTRS)

    Gruenthaler, K. H.; Heinrich, W.; Janes, S.; Nixdorf, J.

    1979-01-01

    Means of improving the tensile strength of ceramic composites by introducing ductile intermediate layers capable of absorbing the elastic energy at the rupture front are studied. Tests with an Al203 laminate with niobium inclusions showed that crack propagation could be successfully precluded by dissipation of the energy by deformation and/or delamination at the inclusion/matrix interface.

  10. Analysis of the Microstructure and Mechanical Properties of Titanium-Based Composites Reinforced by Secondary Phases and B4C Particles Produced via Direct Hot Pressing

    PubMed Central

    Montealegre-Melendez, Isabel; Arévalo, Cristina; Ariza, Enrique; Rubio-Escudero, Cristina; Kitzmantel, Michael; Neubauer, Erich

    2017-01-01

    In the last decade, titanium metal matrix composites (TMCs) have received considerable attention thanks to their interesting properties as a consequence of the clear interface between the matrix and the reinforcing phases formed. In this work, TMCs with 30 vol % of B4C are consolidated by hot pressing. This technique is a powder metallurgy rapid process. Incorporation of the intermetallic to the matrix, 20 vol % (Ti-Al), is also evaluated. Here, the reinforcing phases formed by the reaction between the titanium matrix and the ceramic particles, as well as the intermetallic addition, promote substantial variations to the microstructure and to the properties of the fabricated composites. The influences of the starting materials and the consolidation temperature (900 °C and 1000 °C) are investigated. By X-ray diffraction, scanning and transmission electron microscopy analysis, the in-situ-formed phases in the matrix and the residual ceramic particles were studied. Furthermore, mechanical properties are studied through tensile and bending tests in addition to other properties, such as Young’s modulus, hardness, and densification of the composites. The results show the significant effect of temperature on the microstructure and on the mechanical properties from the same starting powder. Moreover, the Ti-Al addition causes variation in the interface between the reinforcement and the matrix, thereby affecting the behaviour of the TMCs produced at the same temperature. PMID:29077066

  11. Growth Kinetics of Magnesio-Aluminate Spinel in Al/Mg Lamellar Composite Interface

    NASA Astrophysics Data System (ADS)

    Fouad, Yasser; Rabeeh, Bakr Mohamed

    The synthesis of Mg-Al2O3 double layered interface is introduced via the application of hot isostatic pressing, HIPing, in Al-Mg foils. Polycrystalline spinel layers are grown experimentally at the interfacial contacts between Al-Mg foils. The growth behavior of the spinel layers along with the kinetic parameters characterizing interface motion and long-range diffusion is established. Low melting depressant (LMD), Zn, and alloying element segregation tends to form micro laminated and/or Nano structure interphase in a lamellar composite solid state processing. Nano composite ceramic interphase materials offer interesting mechanical properties not achievable in other materials, such as superplastic flow and metal-like machinability. Microstructural characterization, mechanical characterization is also established via optical microscopy scanning electron microscopy, energy dispersive X-ray spectroscopy and tensile testing. Chemical and mechanical bonding via inter diffusion processing with alloy segregation are dominant for interphase kinetics. Mechanical characterization with interfacial shear strength is also introduced. HIPing processing is successfully applied on 6082 Al-alloy and AZ31 magnesium alloy for either particulate or micro-laminated interfacial composite processing. The interphase kinetic established through localized micro plasticity, metal flow, alloy segregation and delocalized Al oxide and Mg oxide. The kinetic of interface/interphase induce new nontraditional crack mitigation a long with new bridging and toughening mechanisms.

  12. Heat treatment of transparent Yb:YAG and YAG ceramics and its influence on laser performance

    NASA Astrophysics Data System (ADS)

    Fujioka, Kana; Mochida, Tetsuo; Fujimoto, Yasushi; Tokita, Shigeki; Kawanaka, Junji; Maruyama, Momoko; Sugiyama, Akira; Miyanaga, Noriaki

    2018-05-01

    Composite transparent ceramic materials are promising for improving the performance of high-average-power lasers. A combination of room-temperature bonding via surface treatment by a fast atom beam and diffusion bonding via heating, which effectively controls the ion diffusion distance near the interface, makes the laser materials suitable for a variety of oscillator/amplifier. During the heat treatment of yttrium aluminum garnet (YAG) ceramics, the Si ions in the solid solution of the sintering aid incorporated within the grains were seen to segregate at the grain boundary, resulting in an increase of scattering sites. The number density and size of the scattering sites strongly depended on the post-heating temperature rather than the heating time. Specifically, heating at 1300 °C did not affect the transmittance of the YAG ceramic, whereas both the size and number of scattering sites substantially increased with a heat treatment at 1400 °C. The laser oscillation experiment using cryogenically-cooled Yb:YAG ceramics exhibited heating temperature dependence of the slope efficiency owing to the increasing scattering loss.

  13. Electron microscopy and microanalysis of the fiber-matrix interface in monolithic silicone carbide-based ceramic composite material for use in a fusion reactor application.

    PubMed

    Toplisek, Tea; Drazic, Goran; Novak, Sasa; Kobe, Spomenka

    2008-01-01

    A composite material made from continuous monolithic silicone carbide (SiC) fibers and a SiC-based matrix (SiC(f)/SiC), was prepared using a novel technique, i.e. adapted dip coating and infiltration of SiC fibers with a water suspension containing SiC particles and a sintering additive. This kind of material could be used in the first-wall blanket of a future fusion reactor. Using magnetron sputtering, the SiC fibers were coated with various thin layers (TiC, CrN, CrC, WC, DLC-diamond-like carbon) of the interface material by physical vapor deposition (PVD). Using scanning and transmission electron microscopy and microanalysis, detailed microstructural studies of the fiber-matrix interface were performed. Both samples, with coated and uncoated fibers, were examined under a load. The microcracks introduced by the Vickers indenter continued their path through the fibers, and thus caused the failure of the composite material, in the case of the uncoated fibers or deviated from their primary direction at the fiber-matrix interface in the case of the coated fibers.

  14. Adhesive strength of total knee endoprostheses to bone cement - analysis of metallic and ceramic femoral components under worst-case conditions.

    PubMed

    Bergschmidt, Philipp; Dammer, Rebecca; Zietz, Carmen; Finze, Susanne; Mittelmeier, Wolfram; Bader, Rainer

    2016-06-01

    Evaluation of the adhesive strength of femoral components to the bone cement is a relevant parameter for predicting implant safety. In the present experimental study, three types of cemented femoral components (metallic, ceramic and silica/silane-layered ceramic) of the bicondylar Multigen Plus knee system, implanted on composite femora were analysed. A pull-off test with the femoral components was performed after different load and several cementing conditions (four groups and n=3 components of each metallic, ceramic and silica/silane-layered ceramic in each group). Pull-off forces were comparable for the metallic and the silica/silane-layered ceramic femoral components (mean 4769 N and 4298 N) under standard test condition, whereas uncoated ceramic femoral components showed reduced pull-off forces (mean 2322 N). Loading under worst-case conditions led to decreased adhesive strength by loosening of the interface implant and bone cement using uncoated metallic and ceramic femoral components, respectively. Silica/silane-coated ceramic components were stably fixed even under worst-case conditions. Loading under high flexion angles can induce interfacial tensile stress, which could promote early implant loosening. In conclusion, a silica/silane-coating layer on the femoral component increased their adhesive strength to bone cement. Thicker cement mantles (>2 mm) reduce adhesive strength of the femoral component and can increase the risk of cement break-off.

  15. Microshear bond strength and finite element analysis of resin composite adhesion to press-on-metal ceramic for repair actions after various conditioning methods.

    PubMed

    Kanat, Burcu; Cömlekoğlu, M Erhan; Cömlekoğlu, Mine Dündar; Culha, Osman; Ozcan, Mutlu; Güngör, Mehmet Ali

    2014-02-01

    This study evaluated the repair bond strength of differently surface-conditioned press-on-metal ceramic to repair composites and determined the location of the accumulated stresses by finite element analysis. Press-on-metal ceramic disks (IPS InLine PoM, Ivoclar Vivadent) (N = 45, diameter: 3 mm, height: 2 mm) were randomly divided into 3 groups (n = 15 per group) and conditioned with one of the following methods: 9.5% hydrofluoric acid (HF) (Porcelain etch), tribochemical silica coating (TS) (CoJet), and an unconditioned group acted as the control (C). Each group was divided into three subgroups depending on the repair composite resins: a) Arabesk Top (V, a microhybrid; VOCO), b) Filtek Z250 (F, a hybrid;3M ESPE); c) Tetric EvoCeram (T, a nanohybrid; Ivoclar Vivadent) (n = 5 per subgroup). Repair composites disks (diameter: 1 mm, height: 1 mm) were photopolymerized on each ceramic block. Microshear bond strength (MSB) tests were performed (1 mm/min) and the obtained data were statistically analyzed using 2-way ANOVA and Tukey's post-hoc test (α = 0.05). Failure types were analyzed under SEM. Vickers indentation hardness, Young's modulus, and finite element analysis (FEA) were performed complementary to MSB tests to determine stress accumulation areas. MSB results were significantly affected by the surface conditioning methods (p = 0.0001), whereas the repair composite types did not show a significant effect (p = 0.108). The interaction terms between the repair composite and surface conditioning method were also statistically significant (p = 0.0001). The lowest MSB values (MPa ± SD) were obtained in the control group (V = 4 ± 0.8; F = 3.9 ± 0.7; T = 4.1 ± 0.7) (p < 0.05). While the group treated with T composite resulted in significantly lower MSB values for the HF group (T= 4.1 ± 0.8) compared to those of other composites (V = 8.1 ± 2.6; F = 7.6 ± 2.2) (p < 0.05), there were no significant differences when TS was used as a conditioning method (V = 5 ± 1.7; F = 4.7 ± 1; T = 6.2 ± 0.8) (p > 0.05). The control group presented exclusively adhesive failures. Cohesive failures in composite followed by mixed failure types were more common in HF and TS conditioned groups. Elasticity modulus of the composites were 22.9, 12.09, and 10.41 GPa for F, T, and V, respectively. Vickers hardness of the composites were 223, 232, and 375 HV for V, T, and F, respectively. Von Mises stresses in the FEA analysis for the V and T composites spread over a large area due to the low elastic modulus of the composite, whereas the F composite material accumulated more stresses at the bonded interface. Press-on-metal ceramic could best be repaired using tribochemical silica coating followed by silanization, regardless of the repair composite type in combination with their corresponding adhesive resins, providing that no cohesive ceramic failure was observed.

  16. Method of making a modified ceramic-ceramic composite

    DOEpatents

    Weaver, Billy L.; McLaughlin, Jerry C.; Stinton, David P.

    1995-01-01

    The present invention provides a method of making a shaped ceramic-ceramic composite articles, such as gas-fired radiant heat burner tubes, heat exchangers, flame dispersers, and other furnace elements, having a formed-on ceramic-ceramic composite thereon.

  17. Velcro-Inspired SiC Fuzzy Fibers for Aerospace Applications.

    PubMed

    Hart, Amelia H C; Koizumi, Ryota; Hamel, John; Owuor, Peter Samora; Ito, Yusuke; Ozden, Sehmus; Bhowmick, Sanjit; Syed Amanulla, Syed Asif; Tsafack, Thierry; Keyshar, Kunttal; Mital, Rahul; Hurst, Janet; Vajtai, Robert; Tiwary, Chandra Sekhar; Ajayan, Pulickel M

    2017-04-19

    The most recent and innovative silicon carbide (SiC) fiber ceramic matrix composites, used for lightweight high-heat engine parts in aerospace applications, are woven, layered, and then surrounded by a SiC ceramic matrix composite (CMC). To further improve both the mechanical properties and thermal and oxidative resistance abilities of this material, SiC nanotubes and nanowires (SiCNT/NWs) are grown on the surface of the SiC fiber via carbon nanotube conversion. This conversion utilizes the shape memory synthesis (SMS) method, starting with carbon nanotube (CNT) growth on the SiC fiber surface, to capitalize on the ease of dense surface morphology optimization and the ability to effectively engineer the CNT-SiC fiber interface to create a secure nanotube-fiber attachment. Then, by converting the CNTs to SiCNT/NWs, the relative morphology, advantageous mechanical properties, and secure connection of the initial CNT-SiC fiber architecture are retained, with the addition of high temperature and oxidation resistance. The resultant SiCNT/NW-SiC fiber can be used inside the SiC ceramic matrix composite for a high-heat turbo engine part with longer fatigue life and higher temperature resistance. The differing sides of the woven SiCNT/NWs act as the "hook and loop" mechanism of Velcro but in much smaller scale.

  18. The interaction of reaction-bonded silicon carbide and inconel 600 with a nickel-based brazing alloy

    NASA Astrophysics Data System (ADS)

    McDermid, J. R.; Pugh, M. D.; Drew, R. A. L.

    1989-09-01

    The objective of the present research was to join reaction-bonded silicon carbide (RBSC) to INCONEL 600 (a nickel-based superalloy) for use in advanced heat engine applications using either direct brazing or composite interlayer joining. Direct brazing experiments employed American Welding Society (AWS) BNi-5, a commercial nickel-based brazing alloy, as a filler material; composite interlayers consisted of intimate mixtures of α-SiC and BNi-5 powders. Both methods resulted in the liquid filler metal forming a Ni-Si liquid with the free Si in the RBSC, which, in turn, reacted vigorously with the SiC component of the RBSC to form low melting point constituents in both starting materials and Cr carbides at the metal-ceramic interface. Using solution thermodynamics, it was shown that a Ni-Si liquid of greater than 60 at. pct Ni will decompose a-SiC at the experimental brazing temperature of 1200 ‡C; these calculations are consistent with the experimentally observed composition profiles and reaction morphology within the ceramic. It was concluded that the joining of RBSC to INCONEL 600 using a nickel-based brazing alloy is not feasible due to the inevitability of the filler metal reacting with the ceramic, degrading the high-temperature properties of the base materials.

  19. Regenerating Articular Tissue by Converging Technologies

    PubMed Central

    Paoluzzi, Luca; Pieper, Jeroen; de Wijn, Joost R.; van Blitterswijk, Clemens A.

    2008-01-01

    Scaffolds for osteochondral tissue engineering should provide mechanical stability, while offering specific signals for chondral and bone regeneration with a completely interconnected porous network for cell migration, attachment, and proliferation. Composites of polymers and ceramics are often considered to satisfy these requirements. As such methods largely rely on interfacial bonding between the ceramic and polymer phase, they may often compromise the use of the interface as an instrument to direct cell fate. Alternatively, here, we have designed hybrid 3D scaffolds using a novel concept based on biomaterial assembly, thereby omitting the drawbacks of interfacial bonding. Rapid prototyped ceramic particles were integrated into the pores of polymeric 3D fiber-deposited (3DF) matrices and infused with demineralized bone matrix (DBM) to obtain constructs that display the mechanical robustness of ceramics and the flexibility of polymers, mimicking bone tissue properties. Ostechondral scaffolds were then fabricated by directly depositing a 3DF structure optimized for cartilage regeneration adjacent to the bone scaffold. Stem cell seeded scaffolds regenerated both cartilage and bone in vivo. PMID:18716660

  20. The Influence of Al2O3 Powder Morphology on the Properties of Cu-Al2O3 Composites Designed for Functionally Graded Materials (FGM)

    NASA Astrophysics Data System (ADS)

    Strojny-Nędza, Agata; Pietrzak, Katarzyna; Węglewski, Witold

    2016-08-01

    In order to meet the requirements of an increased efficiency applying to modern devices and in more general terms science and technology, it is necessary to develop new materials. Combining various types of materials (such as metals and ceramics) and developing composite materials seem to be suitable solutions. One of the most interesting materials includes Cu-Al2O3 composite and gradient materials (FGMs). Due to their potential properties, copper-alumina composites could be used in aerospace industry as rocket thrusters and components in aircraft engines. The main challenge posed by copper matrix composites reinforced by aluminum oxide particles is obtaining the uniform structure with no residual porosity (existing within the area of the ceramic phase). In the present paper, Cu-Al2O3 composites (also in a gradient form) with 1, 3, and 5 vol.% of aluminum oxide were fabricated by the hot pressing and spark plasma sintering methods. Two forms of aluminum oxide (αAl2O3 powder and electrocorundum) were used as a reinforcement. Microstructural investigations revealed that near fully dense materials with low porosity and a clear interface between the metal matrix and ceramics were obtained in the case of the SPS method. In this paper, the properties (mechanical, thermal, and tribological) of composite materials were also collected and compared. Technological tests were preceded by finite element method analyses of thermal stresses generated in the gradient structure, and additionally, the role of porosity in the formation process of composite properties was modeled. Based on the said modeling, technological conditions for obtaining FGMs were proposed.

  1. High-Performance Protonic Ceramic Fuel Cells with Thin-Film Yttrium-Doped Barium Cerate-Zirconate Electrolytes on Compositionally Gradient Anodes.

    PubMed

    Bae, Kiho; Lee, Sewook; Jang, Dong Young; Kim, Hyun Joong; Lee, Hunhyeong; Shin, Dongwook; Son, Ji-Won; Shim, Joon Hyung

    2016-04-13

    In this study, we used a compositionally gradient anode functional layer (AFL) consisting of Ni-BaCe(0.5)Zr(0.35)Y(0.15)O(3-δ) (BCZY) with increasing BCZY contents toward the electrolyte-anode interface for high-performance protonic ceramic fuel cells. It is identified that conventional homogeneous AFLs fail to stably accommodate a thin film of BCZY electrolyte. In contrast, a dense 2 μm thick BCZY electrolyte was successfully deposited onto the proposed gradient AFL with improved adhesion. A fuel cell containing this thin electrolyte showed a promising maximum peak power density of 635 mW cm(-2) at 600 °C, with an open-circuit voltage of over 1 V. Impedance analysis confirmed that minimizing the electrolyte thickness is essential for achieving a high power output, suggesting that the anode structure is important in stably accommodating thin electrolytes.

  2. Creep of Refractory Fibers and Modeling of Metal and Ceramic Matrix Composite Creep Behavior

    NASA Technical Reports Server (NTRS)

    Tewari, S.N.

    1995-01-01

    Our concentration during this research was on the following subprograms. (1) Ultra high vacuum creep tests on 218, ST300 and WHfC tungsten and MoHfC molybdenum alloy wires, temperature range from 1100 K to 1500 K, creep time of 1 to 500 hours. (2) High temperature vacuum tensile tests on 218, ST300 and WHfC tungsten and MoHfC molybdenum alloy wires. (3) Air and vacuum tensile creep tests on polycrystalline and single crystal alumina fibers, such as alumina-mullite Nextel fiber, yttrium aluminum ganet (YAG) and Saphikon, temperature range from 1150 K to 1470 K, creep time of 2 to 200 hours. (4) Microstructural evaluation of crept fibers, TEM study on the crept metal wires, SEM study on the fracture surface of ceramic fibers. (5) Metal Matrix Composite creep models, based on the fiber creep properties and fiber-matrix interface zone formation.

  3. The microstructural characterization of an in situ grown Si{sub 3}N{sub 4} whisker-reinforced BAS glass-ceramic matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Feng; Ortiz-Longo, C.R.; White, K.W.

    The microstructure of barium aluminum silicate (BAS)/silicon nitride in situ whisker reinforced ceramic matrix composite was examined by X-ray diffraction, transmission electron microscopy, electron diffraction and energy-dispersive X-ray microanalysis. Although the authors can not conclusively exclude the presence of orthorhombic BAS, hexagonal BAS and both {alpha}-Si{sub 3}N{sub 4} and {beta}-Si{sub 3}N{sub 4} were identified in this material. The {beta}-Si{sub 3}N{sub 4} whiskers nucleate and grow in random directions in the nearly continuous matrix of metastable hexacelsian. The crystallization process of the glass phase can be taken almost to completion but a small proportion of residual glass phase is present atmore » the interface and grains-junction. Both whisker-like and equiaxed {beta}-Si{sub 3}N{sub 4} exist in this material.« less

  4. Challenges and Opportunities in Design, Fabrication, and Testing of High Temperature Joints in Ceramics and Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Singh, M.; Levine, S. R. (Technical Monitor)

    2001-01-01

    Ceramic joining has been recognized as an enabling technology for successful utilization of advanced ceramics and composite materials. A number of joint design and testing issues have been discussed for ceramic joints in silicon carbide-based ceramics and fiber-reinforced composites. These joints have been fabricated using an affordable, robust ceramic joining technology (ARCJoinT). The microstructure and good high temperature mechanical capability (compressive and flexural strengths) of ceramic joints in silicon carbide-based ceramics and composite materials are reported.

  5. [Preliminary study of bonding strength between diatomite-based dental ceramic and veneering porcelains].

    PubMed

    Lu, Xiao-li; Gao, Mei-qin; Cheng, Yu-ye; Zhang, Fei-min

    2015-04-01

    In order to choose the best veneering porcelain for diatomite-based dental ceramic substrate, the bonding strength between diatomite-based dental ceramics and veneering porcelains was measured, and the microstructure and elements distribution of interface were analyzed. The coefficient of thermal expansion (CTE) of diatomite-based dental ceramics was detected by dilatometry. Three veneering porcelain materials were selected with the best CTE matching including alumina veneering porcelain (group A), titanium porcelain veneering porcelain (group B), and E-max veneering porcelain (group C). Shear bonding strength was detected. SEM and EDS were used to observe the interface microstructure and element distribution. Statistical analysis was performed using SPSS 17.0 software package. The CTE of diatomite-based dental ceramics at 25-500 degrees centigrade was 8.85×10-6K-1. The diatomite-based substrate ceramics combined best with group C. Shear bonding strength between group A and C and group B and C both showed significant differences(P<0.05). SEM and EDS showed that the interface of group C sintered tightly and elements permeated on both sides of the interface. The diatomite-based substrate ceramics combines better with E-max porcelain veneer.

  6. Essential Factors Influencing the Bonding Strength of Cold-Sprayed Aluminum Coatings on Ceramic Substrates

    NASA Astrophysics Data System (ADS)

    Drehmann, R.; Grund, T.; Lampke, T.; Wielage, B.; Wüstefeld, C.; Motylenko, M.; Rafaja, D.

    2018-02-01

    The present work summarizes the most important results of a research project dealing with the comprehensive investigation of the bonding mechanisms between cold-sprayed Al coatings and various poly- and monocrystalline ceramic substrates (Al2O3, AlN, Si3N4, SiC, MgF2). Due to their exceptional combination of properties, metallized ceramics are gaining more and more importance for a wide variety of applications, especially in electronic engineering. Cold spray provides a quick, flexible, and cost-effective one-step process to apply metallic coatings on ceramic surfaces. However, since most of the existing cold-spray-related publications focus on metallic substrates, only very little is known about the bonding mechanisms acting between cold-sprayed metals and ceramic substrates. In this paper, the essential factors influencing the bonding strength in such composites are identified. Besides mechanical tensile strength testing, a thorough analysis of the coatings and especially the metal/ceramic interfaces was conducted by means of HRTEM, FFT, STEM, EDX, EELS, GAXRD, and EBSD. The influence of substrate material, substrate temperature, and particle size is evaluated. The results suggest that, apart from mechanical interlocking, the adhesion of cold-sprayed metallic coatings on ceramics is based on a complex interplay of different mechanisms such as quasiadiabatic shearing, static recrystallization, and heteroepitaxial growth.

  7. Adhesion mechanisms at the interface between Y-TZP and veneering ceramic with and without modifier.

    PubMed

    Monaco, Carlo; Tucci, Antonella; Esposito, Leonardo; Scotti, Roberto

    2014-11-01

    This study investigated the mechanism of action at the interface between a commercially available Y-TZP and its veneering ceramic after final firing. Particular attention was paid, from a microstructural point of view, to evaluating the effects of different surface treatments carried out on the zirconia. In total, 32 specimens of presintered zirconia Y-TZP (LavaFrame, 3M ESPE, Germany) were cut with a low-speed diamond blade. The specimens were divided in two major groups, for testing after fracture or after mirror finishing, and were sintered following the manufacturer's instructions. Each major group was then randomly divided into four subgroups, according to using or not using the dedicated framework modifier, with or without a preliminary silica coating (CoJet, 3M ESPE). A suitable veneering ceramic was used for each group (Lava Ceram Overlay Porcelain, 3M ESPE). A detailed microstructural study of the interfaces of the zirconia-veneering ceramic was performed using a scanning electron microscope equipped with an energy-dispersive X-ray spectrometer to evaluate chemical variation at the interfaces. When the framework modifier was not applied on the Y-TZP surface, microdetachments, porosities, and openings in the ceramic layer were observed at the interlayers. A degree of diffusion of different elements through the interfaces from both the zirconia and veneering layers was detected. Application of the framework modifier can increase the wettability of the zirconia surfaces, allowing a continuous contact with the veneering layer. The micro-analysis performed showed the presence of a reaction area at the interface between the different materials. the increase of the wettability of the zirconia surface could improve the adhesion at interface with the veneering ceramic and reduce the clinical failure as chipping or delamination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Residual interface tensile strength of ceramic bonded to dentin after cyclic loading and aging.

    PubMed

    Hernandez, Alfredo I; Roongruangphol, Thasanai; Katsube, Noriko; Seghi, Robert R

    2008-03-01

    To guard against the potential risk of cusp fracture, esthetic onlay restorations have been advocated for teeth with large restorations. The influence of the adhesive resin cement is believed to play a role in strengthening these restorations. The durability of this tooth/adhesive/ceramic interface is critical to ensure clinical longevity. The purpose of this study was to assess the effects of cyclic loading and environmental aging on the residual interface strength of a ceramic bonded to dentin structure. Eighteen simple trilayer specimens were fabricated, consisting of a 1.5-mm-thick ceramic plate (ProCAD) bonded to a flattened human molar tooth with exposed coronal dentin. The ceramic plates were bonded using resin cement (Nexus 2) and manufacturer-recommended bonding techniques. The specimens were divided into 3 equal groups and were stored in water at 37 degrees C for 10 weeks as a control group (CT), 9 months as an aging group (AG), or placed in water at 37 degrees C while being subjected to 10 million vertical loading cycles between 20 N to 200 N, as a fatigue group (FG). After the specimens were subjected to the experimental conditions, they were sectioned perpendicular to the flat ceramic surface into 1 x 1-mm sticks. The mean residual interface microtensile bond (MTB) strength was determined for each specimen using only those sticks which contained ceramic bonded to dentin. The MTB strength data were analyzed using Weibull analysis methods to determine differences between groups. All subsequent failed specimen surfaces were evaluated under a stereomicroscope at x10 magnification to determine the apparent failure modes. Some specimens were selected from each failure mode category for surface evaluation under a scanning electron microscope (SEM). The characteristic Weibull means for the 3 groups were CT, 19.2, FG, 14.7, and AG, 11.7. The bond strength of group CT was significantly greater than both AG (P=.007) and FG (P=.014). Light microscopic categorization of the failure modes suggests that adhesive failure at the ceramic/cement interface was the most common (65%) for all 3 groups. SEM evaluation of failed surfaces of select specimens from each group could not distinguish any interface appearance differences. For indirect adhesive-retained ceramic restorations, both cyclic masticatory loading and hydrolytic degradation may contribute to a weakening of the interface bond. The ceramic/resin interface may be more susceptible to these changes over the time frame of this investigation than the dentin/resin interface.

  9. Chemical Stability of the Fiber Coating/Matrix Interface in Silicon-Based Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.; Jacobson, Nathan S.

    1995-01-01

    Carbon and boron nitride are used as fiber coatings in silicon-based composites. In order to assess the long-term stability of these materials, reactions of carbon/Si3N4 and BN/SiC were studied at high temperatures with Knudsen effusion, coupon tests, and microstructural examination. In the carbon/Si3N4 system, carbon reacted with Si3N4 to form gaseous N2 and SiC. The formation of SiC limited further reaction by physically separating the carbon and Si3N4. Consequently, the development of high p(N2) at the interface, predicted from thermochemical calculations, did not occur, thus limiting the potential deleterious effects of the reaction on the composite. Strong indications of a reaction between BN and SiC were shown by TEM and SIMS analysis of the BN/SiC interface. In long-term exposures, this reaction can lead to a depletion of a BN coating and/or an unfavorable change of the interfacial properties, limiting the beneficial effects of the coating.

  10. Simulation of Impact Phenomena on the Composite Structures Containing Ceramic Plates and High Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Geantă, V.; Cherecheș, T.; Lixandru, P.; Voiculescu, I.; Ștefănoiu, R.; Dragnea, D.; Zecheru, T.; Matache, L.

    2017-06-01

    Due to excellent mechanical properties, high entropy alloys from the system AlxCrFeCoNi can be used successfully to create composite structures containing both metallic and ceramic plates, which resists at dynamic load during high speeds impact (like projectiles, explosion). The paper presents four different composite structures made from a combination of metallic materials and ceramics plates: duralumin-ceramics, duralumin-ceramics-HEA, HEA-ceramics-HEA, HEA-ceramics-duralumin. Numerical simulation of impact behavior of the composite structures was performed by virtual methods, taking into account the mechanical properties of both materials. The best results were obtained using composite structures HEA-ceramics-HEA, HEA-ceramics-duralumin.

  11. Competing mechanisms in the wear resistance behavior of biomineralized rod-like microstructures

    NASA Astrophysics Data System (ADS)

    Escobar de Obaldia, Enrique; Herrera, Steven; Grunenfelder, Lessa Kay; Kisailus, David; Zavattieri, Pablo

    2016-11-01

    The remarkable mechanical properties observed in biological composite materials relative to those of their individual constituents distinguish them from common engineering materials. Some naturally occurring high-performance ceramics, like the external veneer of the Chiton (Cryptochiton stelleri) tooth, have been shown to have superior hardness and impressive abrasion resistance properties. The mechanical performance of the chiton tooth has been attributed to a hierarchical arrangement of nanostructured magnetite rods surrounded with organic material. While nanoindentation tests provide useful information about the overall performance of this biological composite, understanding the key microstructural features and energy dissipation mechanisms at small scales remains a challenging task. We present a combined experimental/numerical approach to elucidate the role of material deformation in the rods, debonding at the rod interfaces and the influence of energy dissipation mechanisms on the ability of the microstructure to distribute damage under extreme loading conditions. We employ a 3D finite element-based micromechanical model to simulate the nanoindentation tests performed in geological magnetite and cross-sections of the chiton tooth. This proposed model is capable of capturing the inelastic deformation of the rods and the failure of their interfaces, while damage, fracture and fragmentation of the mineralized rods is assessed using a probabilistic function. Our results show that these natural materials achieve their abrasion resistant properties by controlling the interface strength between rods, alleviating the tensile stress on the rods near the indentation tip and therefore decreasing the probability of catastrophic failure without significantly sacrificing resistance to penetration. The understanding of these competing energy dissipating mechanisms provides a path to the prediction of new combination of materials. In turns, these results suggest certain guidelines for abrasion resistance rod-like microstructures in composites with high volume fraction of brittle minerals or ceramics with tailored performance for specific applications.

  12. Processing and mechanical properties of metal-ceramic composites with controlled microstructure formed by reactive metal penetration

    NASA Astrophysics Data System (ADS)

    Ellerby, Donald Thomas

    1999-12-01

    Compared to monolithic ceramics, metal-reinforced ceramic composites offer the potential for improved toughness and reliability in ceramic materials. As such, there is significant scientific and commercial interest in the microstructure and properties of metal-ceramic composites. Considerable work has been conducted on modeling the toughening behavior of metal reinforcements in ceramics; however, there has been limited application and testing of these concepts on real systems. Composites formed by newly developed reactive processes now offer the flexibility to systematically control metal-ceramic composite microstructure, and to test some of the property models that have been proposed for these materials. In this work, the effects of metal-ceramic composite microstructure on resistance curve (R-curve) behavior, strength, and reliability were systematically investigated. Al/Al2O3 composites were formed by reactive metal penetration (RMP) of aluminum metal into aluminosilicate ceramic preforms. Processing techniques were developed to control the metal content, metal composition, and metal ligament size in the resultant composite microstructure. Quantitative stereology and microscopy were used to characterize the composite microstructures, and then the influence of microstructure on strength, toughness, R-curve behavior, and reliability, was investigated. To identify the strength limiting flaws in the composite microstructure, fractography was used to determine the failure origins. Additionally, the crack bridging tractions produced by the metal ligaments in metal-ceramic composites formed by the RMP process were modeled. Due to relatively large flaws and low bridging stresses in RMP composites, no dependence of reliability on R-curve behavior was observed. The inherent flaws formed during reactive processing appear to limit the strength and reliability of composites formed by the RMP process. This investigation has established a clear relationship between processing, microstructure, and properties in metal-ceramic composites formed by the RMP process. RMP composite properties are determined by the metal-ceramic composite microstructure (e.g., metal content and ligament size), which can be systematically varied by processing. Furthermore, relative to the ceramic preforms used to make the composites, metal-ceramic composites formed by RMP generally have improved properties and combinations of properties that make them more desirable for advanced engineering applications.

  13. Simulation of the infiltration process of a ceramic open-pore body with a metal alloy in semi-solid state to design the manufacturing of interpenetrating phase composites

    NASA Astrophysics Data System (ADS)

    Schomer, Laura; Liewald, Mathias; Riedmüller, Kim Rouven

    2018-05-01

    Metal-ceramic Interpenetrating Phase Composites (IPC) belong to a special subcategory of composite materials and reveal enhanced properties compared to conventional composite materials. Currently, IPC are produced by infiltration of a ceramic open-pore body with liquid metal applying high pressure and I or high temperature to avoid residual porosity. However, these IPC are not able to gain their complete potential, because of structural damages and interface reactions occurring during the manufacturing process. Compared to this, the manufacturing of IPC using the semi-solid forming technology offers great perspectives due to relative low processing temperatures and reduced mechanical pressure. In this context, this paper is focusing on numerical investigations conducted by using the FLOW-3D software for gaining a deeper understanding of the infiltration of open-pore bodies with semi-solid materials. For flow simulation analysis, a geometric model and different porous media drag models have been used. They have been adjusted and compared to get a precise description of the infiltration process. Based on these fundamental numerical investigations, this paper also shows numerical investigations that were used for basically designing a semi-solid forming tool. Thereby, the development of the flow front and the pressure during the infiltration represent the basis of the evaluation. The use of an open and closed tool cavity combined with various geometries of the upper die shows different results relating to these evaluation arguments. Furthermore, different overflows were designed and its effects on the pressure at the end of the infiltration process were investigated. Thus, this paper provides a general guideline for a tool design for manufacturing of metal-ceramic IPC using semi-solid forming.

  14. Theoretical prediction of energy release rate for interface crack initiation by thermal stress in environmental barrier coatings for ceramics

    NASA Astrophysics Data System (ADS)

    Kawai, E.; Umeno, Y.

    2017-05-01

    As weight reduction of turbines for aircraft engines is demanded to improve fuel consumption and curb emission of carbon dioxide, silicon carbide (SiC) fiber reinforced SiC matrix composites (SiC/SiC) are drawing enormous attention as high-pressure turbine materials. For preventing degradation of SiC/SiC, environmental barrier coatings (EBC) for ceramics are deposited on the composites. The purpose of this study is to establish theoretical guidelines for structural design which ensures the mechanical reliability of EBC. We conducted finite element method (FEM) analysis to calculate energy release rates (ERRs) for interface crack initiation due to thermal stress in EBC consisting of Si-based bond coat, Mullite and Ytterbium (Yb)-silicate layers on a SiC/SiC substrate. In the FEM analysis, the thickness of one EBC layer was changed from 25 μm to 200 μm while the thicknesses of the other layers were fixed at 25 μm, 50 μm and 100 μm. We compared ERRs obtained by the FEM analysis and a simple theory for interface crack in a single-layered structure where ERR is estimated as nominal strain energy in the coating layers multiplied by a constant factor (independent of layer thicknesses). We found that, unlike the case of single-layered structures, the multiplication factor is no longer a constant but is determined by the combination of consisting coating layer thicknesses.

  15. Alumina-based ceramic composite

    DOEpatents

    Alexander, Kathleen B.; Tiegs, Terry N.; Becher, Paul F.; Waters, Shirley B.

    1996-01-01

    An improved ceramic composite comprising oxide ceramic particulates, nonoxide ceramic particulates selected from the group consisting of carbides, borides, nitrides of silicon and transition metals and mixtures thereof, and a ductile binder selected from the group consisting of metallic, intermetallic alloys and mixtures thereof is described. The ceramic composite is made by blending powders of the ceramic particulates and the ductile to form a mixture and consolidating the mixture of under conditions of temperature and pressure sufficient to produce a densified ceramic composite.

  16. Giant dielectric response and low dielectric loss in Al{sub 2}O{sub 3} grafted CaCu{sub 3}Ti{sub 4}O{sub 12} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajabtabar-Darvishi, A.; Center for Surface and Nanoanalytics; Bayati, R., E-mail: reza.bayati@intel.com, E-mail: mbayati@ncsu.edu, E-mail: wdfei@hit.edu.cn

    2015-03-07

    This study sheds light on the effect of alumina on dielectric constant and dielectric loss of novel CaCu{sub 3}Ti{sub 4}O{sub 12} composite ceramics. Alumina, at several concentrations, was deposited on the surface of CaCu{sub 3}Ti{sub 4}O{sub 12} particles via sol-gel technique. The dielectric constant significantly increased for all frequencies and the dielectric loss substantially decreased for low and intermediate frequencies. These observations were attributed to the change in characteristics of grains and grain boundaries. It was found that the insulating properties of the grain boundaries are improved following the addition of Al{sub 2}O{sub 3}. The relative density of CaCu{sub 3}Ti{submore » 4}O{sub 12}/Al{sub 2}O{sub 3} composite ceramics decreased compared to the pure CaCu{sub 3}Ti{sub 4}O{sub 12} and the grain size was greatly changed with the alumina content affecting the dielectric properties. With the addition of alumina into CaCu{sub 3}Ti{sub 4}O{sub 12}, tighter interfaces formed. The 6%- and 10%-alumina ceramics showed the minimum dielectric loss and the maximum dielectric constant, respectively. Both the dielectric constant and loss tangent decreased in the 20%-alumina ceramic due to the formation of CuO secondary phase. It was revealed that Al serves as an electron acceptor decreasing the electron concentration, if Al{sup 3+} ions substitute for Ti{sup 4+} ions, and as an electron donor increasing the electron concentration, if Al{sup 3+} ions substitute for Ca{sup 2+} ions. We established a processing-microstructure-properties paradigm which opens new avenues for novel applications of CaCu{sub 3}Ti{sub 4}O{sub 12}/Al{sub 2}O{sub 3} composite ceramics.« less

  17. High temperature composites. Status and future directions

    NASA Technical Reports Server (NTRS)

    Signorelli, R. A.

    1982-01-01

    A summary of research investigations of manufacturing methods, fabrication methods, and testing of high temperature composites for use in gas turbine engines is presented. Ceramic/ceramic, ceramic/metal, and metal/metal composites are considered. Directional solidification of superalloys and eutectic alloys, fiber reinforced metal and ceramic composites, ceramic fibers and whiskers, refractory coatings, metal fiber/metal composites, matrix metal selection, and the preparation of test specimens are discussed.

  18. Active Metal Brazing and Characterization of Brazed Joints in C-C and C-SiC Composites to Copper-Clad-Molybdenum System

    NASA Technical Reports Server (NTRS)

    Singh, M.; Asthana, R.

    2008-01-01

    Carbon/carbon composites with CVI and resin-derived matrices, and C/SiC composites reinforced with T-300 carbon fibers in a CVI SiC matrix were joined to Cu-clad Mo using two Ag-Cu braze alloys, Cusil-ABA (1.75% Ti) and Ticusil (4.5% Ti). The brazed joints revealed good interfacial bonding, preferential precipitation of Ti at the composite/braze interface, and a tendency toward delamination in resin-derived C/C composite. Extensive braze penetration of the inter-fiber channels in the CVI C/C composites was observed. The Knoop microhardness (HK) distribution across the C/C joints indicated sharp gradients at the interface, and a higher hardness in Ticusil than in Cusil-ABA. For the C/SiC composite to Cu-clad-Mo joints, the effect of composite surface preparation revealed that ground samples did not crack whereas unground samples cracked. Calculated strain energy in brazed joints in both systems is comparable to the strain energy in a number of other ceramic/metal systems. Theoretical predictions of the effective thermal resistance suggest that such joined systems may be promising for thermal management applications.

  19. 3D Fiber-Network-Reinforced Bicontinuous Composite Solid Electrolyte for Dendrite-free Lithium Metal Batteries.

    PubMed

    Li, Dan; Chen, Long; Wang, Tianshi; Fan, Li-Zhen

    2018-02-28

    Replacement of flammable organic liquid electrolytes with solid Li + conductors is a promising approach to realize excellent performance of Li metal batteries. However, ceramic electrolytes are either easily reduced by Li metal or penetrated by Li dendrites through their grain boundaries, and polymer electrolytes are also faced with instability on the electrode/electrolyte interface and weak mechanical property. Here, we report a three-dimensional fiber-network-reinforced bicontinuous solid composite electrolyte with flexible Li + -conductive network (lithium aluminum titanium phosphate (LATP)/polyacrylonitrile), which helps to enhance electrochemical stability on the electrode/electrolyte interface by isolating Li and LATP and suppress Li dendrites growth by mechanical reinforcement of fiber network for the composite solid electrolyte. The composite electrolyte shows an excellent electrochemical stability after 15 days of contact with Li metal and has an enlarged tensile strength (10.72 MPa) compared to the pure poly(ethylene oxide)-bistrifluoromethanesulfonimide lithium salt electrolyte, leading to a long-term stability and safety of the Li symmetric battery with a current density of 0.3 mA cm -2 for 400 h. In addition, the composite electrolyte also shows good electrochemical and thermal stability. These results provide such fiber-reinforced membranes that present stable electrode/electrolyte interface and suppress lithium dendrite growth for high-safety all-solid-state Li metal batteries.

  20. Alumina-based ceramic composite

    DOEpatents

    Alexander, K.B.; Tiegs, T.N.; Becher, P.F.; Waters, S.B.

    1996-07-23

    An improved ceramic composite comprising oxide ceramic particulates, nonoxide ceramic particulates selected from the group consisting of carbides, borides, nitrides of silicon and transition metals and mixtures thereof, and a ductile binder selected from the group consisting of metallic, intermetallic alloys and mixtures thereof is described. The ceramic composite is made by blending powders of the ceramic particulates and the ductile to form a mixture and consolidating the mixture of under conditions of temperature and pressure sufficient to produce a densified ceramic composite. 5 figs.

  1. Functionally Graded Multifunctional Hybrid Composites for Extreme Environments

    DTIC Science & Technology

    2010-02-01

    Develop multifunctional FGHC with multiple layers: a ceramic thermal barrier layer, a graded ceramic /metal composite (GCMeC) layer and a high...AFOSR-MURI Functionally Graded Hybrid Composites Actively Cooled PMC White (UIUC) FGHC Fabrication Team Graded Ceramic Metal Composites (GCMeC...Composites Fabrication and Characterization of Bulk Ceramic MAX Phase and MAX–Metal Composites AFOSR-MURI Functionally Graded Hybrid Composites Mn

  2. Economical Fabrication of Thick-Section Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Babcock, Jason; Ramachandran, Gautham; Williams, Brian; Benander, Robert

    2010-01-01

    A method was developed for producing thick-section [>2 in. (approx.5 cm)], continuous fiber-reinforced ceramic matrix composites (CMCs). Ultramet-modified fiber interface coating and melt infiltration processing, developed previously for thin-section components, were used for the fabrication of CMCs that were an order of magnitude greater in thickness [up to 2.5 in. (approx.6.4 cm)]. Melt processing first involves infiltration of a fiber preform with the desired interface coating, and then with carbon to partially densify the preform. A molten refractory metal is then infiltrated and reacts with the excess carbon to form the carbide matrix without damaging the fiber reinforcement. Infiltration occurs from the inside out as the molten metal fills virtually all the available void space. Densification to <5 vol% porosity is a one-step process requiring no intermediate machining steps. The melt infiltration method requires no external pressure. This prevents over-infiltration of the outer surface plies, which can lead to excessive residual porosity in the center of the part. However, processing of thick-section components required modification of the conventional process conditions, and the means by which the large amount of molten metal is introduced into the fiber preform. Modification of the low-temperature, ultraviolet-enhanced chemical vapor deposition process used to apply interface coatings to the fiber preform was also required to accommodate the high preform thickness. The thick-section CMC processing developed in this work proved to be invaluable for component development, fabrication, and testing in two complementary efforts. In a project for the Army, involving SiC/SiC blisk development, nominally 0.8 in. thick x 8 in. diameter (approx. 2 cm thick x 20 cm diameter) components were successfully infiltrated. Blisk hubs were machined using diamond-embedded cutting tools and successfully spin-tested. Good ply uniformity and extremely low residual porosity (<2 percent) were achieved, the latter being far lower than that achieved with SiC matrix composites fabricated via CVI or PIP. The pyrolytic carbon/zirconium nitride interface coating optimized in this work for use on carbon fibers was incorporated in the SiC/SiC composites and yielded a >41 ksi (approx. 283 MPa) flexural strength.

  3. 3D-Finite element analysis of molars restored with endocrowns and posts during masticatory simulation.

    PubMed

    Dejak, Beata; Młotkowski, Andrzej

    2013-12-01

    The objective was to compare equivalent stresses in molars restored with endocrowns as well as posts and cores during masticatory simulation using finite element analysis. Four three-dimensional models of first mandibular molars were created: A - intact tooth; B - tooth restored by ceramic endocrown; C - tooth with FRC posts, composite core and ceramic crown; D - tooth with cast post and ceramic crown. The study was performed using finite element analysis, with contact elements. The computer simulations of mastication were conducted. The equivalent stresses of modified von Mises failure criterion (mvM) in models were calculated, Tsai-Wu index for FRC post was determinate. Maximal values of the stresses in the ceramic, cement and dentin were compared between models and to strength of the materials. Contact stresses in the cement-tissue adhesive interface around restorations were considered as well. During masticatory simulation, the lowest mvM stresses in dentin arisen in molar restored with endocrown (Model B). Maximal mvM stress values in structures of restored molar were 23% lower than in the intact tooth. The mvM stresses in the endocrown did not exceed the tensile strength of ceramic. In the molar with an FRC posts (Model C), equivalent stress values in dentin increased by 42% versus Model B. In ceramic crown of Model C the stresses were 31% higher and in the resin luting cement were 61% higher than in the tooth with endocrown. Tensile contact stresses in the adhesive cement-dentin interface around FRC posts achieved 4 times higher values than under endocrown and shear stresses increased twice. The contact stress values around the appliances were several time smaller than cement-dentin bond strength. Teeth restored by endocrowns are potentially more resistant to failure than those with FRC posts. Under physiological loads, ceramic endocrowns ideally cemented in molars should not be demaged or debonded. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Reliability and life prediction of ceramic composite structures at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Duffy, Stephen F.; Gyekenyesi, John P.

    1994-01-01

    Methods are highlighted that ascertain the structural reliability of components fabricated of composites with ceramic matrices reinforced with ceramic fibers or whiskers and subject to quasi-static load conditions at elevated temperatures. Each method focuses on a particular composite microstructure: whisker-toughened ceramics, laminated ceramic matrix composites, and fabric reinforced ceramic matrix composites. In addition, since elevated service temperatures usually involve time-dependent effects, a section dealing with reliability degradation as a function of load history has been included. A recurring theme throughout this chapter is that even though component failure is controlled by a sequence of many microfailure events, failure of ceramic composites will be modeled using macrovariables.

  5. Effect of fiber reinforcement on thermo-oxidative stability and mechanical properties of polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.

    1992-01-01

    A number of studies have investigated the thermooxidative behavior of polymer matrix composites. Two significant observations have been made from these research efforts: (1) fiber reinforcement has a significant effect on composite thermal stability; and (2) geometric effects must be considered when evaluating thermal aging data. The polyimide PMR-15 was the matrix material used in these studies. The control composite material was reinforced with Celion 6000 graphite fiber. T-4OR graphite fibers, along with some very stable ceramic fibers were selected as reinforcing fibers because of their high thermal stability. The ceramic fibers were Nicalon (silicon carbide) and Nextel 312 (alumina-silica-boron oxide). The mechanical properties of the two graphite fiber composites were significantly different, probably owing to variations in interfacial bonding between the fibers and the polyimide matrix. Three oxidation mechanisms were observed: (1) the preferential oxidation of the Celion 6000 fiber ends at cut surfaces, leaving a surface of matrix material with holes where the fiber ends were originally situated; (2) preferential oxidation of the composite matrix; and (3) interfacial degradation by oxidation. The latter two mechanisms were also observed on fiber end cut surfaces. The fiber and interface attacks appeared to initiate interfiber cracking along these surfaces.

  6. Oxide-Based Composite Electrolytes Using Na3Zr2Si2PO12/Na3PS4 Interfacial Ion Transfer.

    PubMed

    Noi, Kousuke; Nagata, Yuka; Hakari, Takashi; Suzuki, Kenji; Yubuchi, So; Ito, Yusuke; Sakuda, Atsushi; Hayashi, Akitoshi; Tatsumisago, Masahiro

    2018-05-31

    All-solid-state sodium batteries using Na 3 Zr 2 Si 2 PO 12 (NASICON) solid electrolytes are promising candidates for safe and low-cost advanced rechargeable battery systems. Although NASICON electrolytes have intrinsically high sodium-ion conductivities, their high sintering temperatures interfere with the immediate development of high-performance batteries. In this work, sintering-free NASICON-based composites with Na 3 PS 4 (NPS) glass ceramics were prepared to combine the high grain-bulk conductivity of NASICON and the interfacial formation ability of NPS. Before the composite preparation, the NASICON/NPS interfacial resistance was investigated by modeling the interface between the NASICON sintered ceramic and the NPS glass thin film. The interfacial ion-transfer resistance was very small above room temperature; the area-specific resistances at 25 and 100 °C were 15.8 and 0.40 Ω cm 2 , respectively. On the basis of this smooth ion transfer, NASICON-rich (70-90 wt %) NASICON-NPS composite powders were prepared by ball-milling fine powders of each component. The composite powders were well-densified by pressing at room temperature. Scanning electron microscopy observation showed highly dispersed sub-micrometer NASICON grains in a dense NPS matrix to form closed interfaces between the oxide and sulfide solid electrolytes. The composite green (unfired) compacts with 70 and 80 wt % NASICON exhibited high total conductivities at 100 °C of 1.1 × 10 -3 and 6.8 × 10 -4 S cm -1 , respectively. An all-solid-state Na 15 Sn 4 /TiS 2 cell was constructed using the 70 wt % NASICON composite electrolyte by the uniaxial pressing of the powder materials, and its discharge properties were evaluated at 100 °C. The cell showed the reversible capacities of about 120 mAh g -1 under the current density of 640 μA cm -2 . The prepared oxide-based composite electrolytes were thus successfully applied in all-solid-state sodium rechargeable batteries without sintering.

  7. Polymer coating for immobilizing soluble ions in a phosphate ceramic product

    DOEpatents

    Singh, Dileep; Wagh, Arun S.; Patel, Kartikey D.

    2000-01-01

    A polymer coating is applied to the surface of a phosphate ceramic composite to effectively immobilize soluble salt anions encapsulated within the phosphate ceramic composite. The polymer coating is made from ceramic materials, including at least one inorganic metal compound, that wet and adhere to the surface structure of the phosphate ceramic composite, thereby isolating the soluble salt anions from the environment and ensuring long-term integrity of the phosphate ceramic composite.

  8. Modeling of Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Ferguson, B. L.; Petrus, G. J.; Krauss, T. M.

    1992-01-01

    The project examined the effectiveness of studying the creep behavior of thermal barrier coating system through the use of a general purpose, large strain finite element program, NIKE2D. Constitutive models implemented in this code were applied to simulate thermal-elastic and creep behavior. Four separate ceramic-bond coat interface geometries were examined in combination with a variety of constitutive models and material properties. The reason for focusing attention on the ceramic-bond coat interface is that prior studies have shown that cracking occurs in the ceramic near interface features which act as stress concentration points. The model conditions examined include: (1) two bond coat coefficient of thermal expansion curves; (2) the creep coefficient and creep exponent of the bond coat for steady state creep; (3) the interface geometry; and (4) the material model employed to represent the bond coat, ceramic, and superalloy base.

  9. Surface Cracking and Interface Reaction Associated Delamination Failure of Thermal and Environmental Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Choi, Sung R.; Eldridge, Jeffrey I.; Lee, Kang N.; Miller, Robert A.

    2003-01-01

    In this paper, surface cracking and interface reactions of a BSAS coating and a multi-layer ZrO2-8wt%Y2O3 and mullite/BSAS/Si thermal and environmental barrier coating system on SiC/SiC ceramic matrix composites were characterized after long-term combined laser thermal gradient and furnace cyclic tests in a water vapor containing environment. The surface cracking was analyzed based on the coating thermal gradient sintering behavior and thermal expansion mismatch stress characteristics under the thermal cyclic conditions. The interface reactions, which were largely enhanced by the coating surface cracking in the water vapor environment, were investigated in detail, and the reaction phases were identified for the coating system after the long-term exposure. The accelerated coating delamination failure was attributed to the increased delamination driving force under the thermal gradient cyclic loading and the reduced interface adhesion due to the detrimental interface reactions.

  10. Surface Cracking and Interface Reaction Associated Delamination Failure of Thermal and Environmental Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Eldridge, Jeffrey I.; Lee, Kang N.; Miller, Robert A.

    2003-01-01

    In this paper, surface cracking and interface reactions of a BSAS coating and a multi-layer ZTO2-8wt%Y2O3 and mullite/BSAS/Si thermal and environmental barrier coating system on SiC/SiC ceramic matrix composites were characterized after long-term combined laser thermal gradient and furnace cyclic tests in a water vapor containing environment. The surface cracking was analyzed based on the coating thermal gradient sintering behavior and thermal expansion mismatch stress characteristics under the thermal cyclic conditions. The interface reactions, which were largely enhanced by the coating surface cracking in the water vapor environment, were investigated in detail, and the reaction phases were identified for the coating system after the long- term exposure. The accelerated coating delamination failure was attributed to the increased delamination driving force under the thermal gradient cyclic loading and the reduced interface adhesion due to the detrimental interface reactions.

  11. Turbine component, turbine blade, and turbine component fabrication process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delvaux, John McConnell; Cairo, Ronald Ralph; Parolini, Jason Robert

    A turbine component, a turbine blade, and a turbine component fabrication process are disclosed. The turbine component includes ceramic matrix composite plies and a feature configured for preventing interlaminar tension of the ceramic matrix composite plies. The feature is selected from the group consisting of ceramic matrix composite tows or precast insert tows extending through at least a portion of the ceramic matrix composite plies, a woven fabric having fiber tows or a precast insert preventing contact between a first set of the ceramic matrix composite plies and a second set of the ceramic matrix composite plies, and combinations thereof.more » The process includes laying up ceramic matrix composite plies in a preselected arrangement and securing a feature configured for interlaminar tension.« less

  12. Robust Joining and Integration of Advanced Ceramics and Composites: Challenges, Opportunities, and Realities

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2006-01-01

    Advanced ceramics and fiber reinforced composites are under active consideration for use in a wide variety of high temperature applications within the aeronautics, space transportation, energy, and nuclear industries. The engineering designs of ceramic and composite components require fabrication and manufacturing of large and complex shaped parts of various thicknesses. In many instances, it is more economical to build up complex shapes by joining simple geometrical shapes. In addition, these components have to be joined or assembled with metallic sub-components. Thus, joining and attachment have been recognized as enabling technologies for successful utilization of ceramic components in various demanding applications. In this presentation, various challenges and opportunities in design, fabrication, and testing of high temperature joints in advanced ceramics and ceramic matrix composites will be presented. Silicon carbide based advanced ceramics and fiber reinforced composites in different shapes and sizes, have been joined using an affordable, robust ceramic joining technology. In addition, some examples of metal-ceramic brazing will also be presented. Microstructure and high temperature mechanical properties of joints in silicon carbide ceramics and composites will be reported. Various joint design philosophies and design issues in joining of ceramics and composites will be discussed.

  13. Resorption kinetics of four hydroxyapatite-based ceramics by particle induced X-ray emission and neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Jallot, E.; Irigaray, J. L.; Oudadesse, H.; Brun, V.; Weber, G.; Frayssinet, P.

    1999-05-01

    From the viewpoint of hard tissue response to implant materials, calcium phosphates are probably the most compatible materials presently known. During the last few years, much attention has been paid to hydroxyapatite and β-tricalcium phosphate as potential biomaterials for bone substitute. A good implantation of biomaterials in the skeleton is to reach full integration of non-living implant with living bone. The aim of this study is to compare the resorption kinetics of four kinds of calcium phosphate ceramics: hydroxyapatite (Ca{10}(PO4)6(OH)2), hydroxyapatite doped with manganese or zinc and a composite material of 75% hydroxyapatite and 25% β-tricalcium phosphate (Ca3(PO4)2). Cylinders (5 6 mm in diameter) of these ceramics were packed into holes made in the femur diaphysis of mature ovine. At 2, 4, 8, 12, 16, 20, 28, 36 and 48 weeks after the operation, bone/implant interface was embedded in polymethylmethacrylate. We used the PIXE method (particle induced X-ray emission) to measure the distribution of mineral elements (Ca, P, Sr, Zn, Mn and Fe) at the bone/implant interface. At 4, 8, 16, 28 and 48 weeks after implantation we studied a biopsy of the ceramics by neutron activation method. Then, we have a global measurement of mineral elements in the biomaterial. The results showed that the resorption kinetics of hydroxyapatite doped with zinc was faster than that of the three other bioceramics.

  14. Joining Dental Ceramic Layers With Glass

    PubMed Central

    Saied, MA; Lloyd, IK; Haller, WK; Lawn, BR

    2011-01-01

    Objective Test the hypothesis that glass-bonding of free-form veneer and core ceramic layers can produce robust interfaces, chemically durable and aesthetic in appearance and, above all, resistant to delamination. Methods Layers of independently produced porcelains (NobelRondo™ Press porcelain, Nobel BioCare AB and Sagkura Interaction porcelain, Elephant Dental) and matching alumina or zirconia core ceramics (Procera alumina, Nobel BioCare AB, BioZyram yttria stabilized tetragonal zirconia polycrystal, Cyrtina Dental) were joined with designed glasses, tailored to match thermal expansion coefficients of the components and free of toxic elements. Scanning electron microprobe analysis was used to characterize the chemistry of the joined interfaces, specifically to confirm interdiffusion of ions. Vickers indentations were used to drive controlled corner cracks into the glass interlayers to evaluate the toughness of the interfaces. Results The glass-bonded interfaces were found to have robust integrity relative to interfaces fused without glass, or those fused with a resin-based adhesive. Significance The structural integrity of the interfaces between porcelain veneers and alumina or zirconia cores is a critical factor in the longevity of all-ceramic dental crowns and fixed dental prostheses. PMID:21802131

  15. Specific Features of the Structure and the Dielectric Properties of Sodium-Bismuth Titanate-Based Ceramics

    NASA Astrophysics Data System (ADS)

    Politova, E. D.; Golubko, N. V.; Kaleva, G. M.; Mosunov, A. V.; Sadovskaya, N. V.; Bel'kova, D. A.; Stefanovich, S. Yu.

    2018-03-01

    The phase formation, specific features, and the dielectric properties of the ceramics of compositions from the region of morphotropic interface in the (Na0.5Bi0.5)TiO3-BaTiO3 system modified by Bi(Mg0.5Ti0.5)O3 and also low-melting additions KCl, NaCl-LiF, CuO, and MnO2 that favor the control of the stoichiometry and the properties of the ceramics have been studied. The ceramics are characterized by ferroelectric phase transitions that are observed as jumps at temperatures near 400 K and maxima at T m 600 K in the temperature dependences of the dielectric permittivity. The phase transitions at 400 K demonstrate the relaxor behavior indicating the existence of polar domains in the nonpolar matrix. An increase in the content of Bi(Mg0.5Ti0.5)O3 favor a decrease in the electrical conductivity and dielectric losses of the samples, and the relative dielectric permittivity at room temperature ɛrt is retained quite high, achieving the highest values ɛrt = 1080-1350 in the ceramics modified with KCl.

  16. Influence of Ni-P Coated SiC and Laser Scan Speed on the Microstructure and Mechanical Properties of IN625 Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Sateesh, N. H.; Kumar, G. C. Mohan; Krishna, Prasad

    2015-12-01

    Nickel based Inconel-625 (IN625) metal matrix composites (MMCs) were prepared using pre-heated nickel phosphide (Ni-P) coated silicon carbide (SiC) reinforcement particles by Direct Metal Laser Sintering (DMLS) additive manufacturing process under inert nitrogen atmosphere to obtain interface influences on MMCs. The distribution of SiC particles and microstructures were characterized using optical and scanning electron micrographs, and the mechanical behaviours were thoroughly examined. The results clearly reveal that the interface integrity between the SiC particles and the IN625 matrix, the mixed powders flowability, the SiC ceramic particles and laser beam interaction, and the hardness, and tensile characteristics of the DMLS processed MMCs were improved effectively by the use of Ni-P coated SiC particles.

  17. A review on the advances in 3D printing and additive manufacturing of ceramics and ceramic matrix composites for optical applications

    NASA Astrophysics Data System (ADS)

    Goodman, William A.

    2017-09-01

    This paper provides a review of advances in 3D printing and additive manufacturing of ceramic and ceramic matrix composites for optical applications. Dr. Goodman has been pioneering additive manufacturing of ceramic matrix composites since 2008. He is the inventor of HoneySiC material, a zero-CTE additively manufactured carbon fiber reinforced silicon carbide ceramic matrix composite, briefly mentioned here. More recently Dr. Goodman has turned his attention to the direct printing of ceramics for optical applications via various techniques including slurry and laser sintering of silicon carbide and other ceramic materials.

  18. Thermal Gradient Cyclic Behavior of a Thermal/Environmental Barrier Coating System on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Lee, Kang N.; Miller, Robert A.

    2002-01-01

    Thermal barrier and environmental barrier coatings (TBCs and EBCs) will play a crucial role in future advanced gas turbine engines because of their ability to significantly extend the temperature capability of the ceramic matrix composite (CMC) engine components in harsh combustion environments. In order to develop high performance, robust coating systems for effective thermal and environmental protection of the engine components, appropriate test approaches for evaluating the critical coating properties must be established. In this paper, a laser high-heat-flux, thermal gradient approach for testing the coatings will be described. Thermal cyclic behavior of plasma-sprayed coating systems, consisting of ZrO2-8wt%Y2O3 thermal barrier and NASA Enabling Propulsion Materials (EPM) Program developed mullite+BSAS/Si type environmental barrier coatings on SiC/SiC ceramic matrix composites, was investigated under thermal gradients using the laser heat-flux rig in conjunction with the furnace thermal cyclic tests in water-vapor environments. The coating sintering and interface damage were assessed by monitoring the real-time thermal conductivity changes during the laser heat-flux tests and by examining the microstructural changes after the tests. The coating failure mechanisms are discussed based on the cyclic test results and are correlated to the sintering, creep, and thermal stress behavior under simulated engine temperature and heat flux conditions.

  19. A comparative study of shear bond strength between metal and ceramic brackets and artificially aged composite restorations using different surface treatments.

    PubMed

    Eslamian, Ladan; Borzabadi-Farahani, Ali; Mousavi, Nasim; Ghasemi, Amir

    2012-10-01

    This in vitro study evaluated the shear bond strength (SBS) between ceramic brackets (CBs) and resin composite restorations (RCRs) prepared using different surface treatments. The findings were also compared with a similar study that used stainless steel brackets (SSBs). Forty-five premolars were restored with a nano-hybrid composite resin (Tetric EvoCeram) and randomly assigned to three surface treatment groups: group 1, 5 per cent hydrofluoric acid (HF); group 2, air abrasion (50 μm alumina particles); and group 3, diamond bur. Specimens were bonded with CBs (Fascination) and exposed to thermo-cycling (500 cycles). The shear force at a crosshead speed of 1 mm/minute was transmitted to brackets. The adhesive remnant index (ARIs) scores were recorded after bracket failure. The analysis of SBS variance (P < 0.01) and chi-square test of ARIs scores (P < 0.01) revealed significant differences among three groups tested. The SBS in group 3 (mean: 26.34 ± 4.76 MPa) and group 2 (mean: 26.68 ± 5.93 MPa) was significantly higher than group 1 (mean: 16.25 ± 5.42 MPa). The SBS was significantly higher in CBs (mean: 23.09 ± 7.19 MPa) compared to SSBs (mean: 15.56 ± 5.13 MPa). High ARIs (100 per cent) occurred in SSBs treated with a diamond bur, whereas CBs primarily failed at the resin-adhesive interface (P < 0.01). In two-thirds of the specimens (SSBs or CBs), no adhesive was left on the restoration after HF conditioning. The ARIs profile of CBs and SSBs that received surface treatments with air abrasion were similar (P > 0.05) and bond failure occurred mainly in adhesive-bracket base and resin-adhesive interfaces. The diamond bur surface treatment is recommended as a safe and cost-effective method of bonding CBs to RCRs.

  20. Shear bond strength of veneering porcelain to zirconia: Effect of surface treatment by CNC-milling and composite layer deposition on zirconia.

    PubMed

    Santos, R L P; Silva, F S; Nascimento, R M; Souza, J C M; Motta, F V; Carvalho, O; Henriques, B

    2016-07-01

    The purpose of this study was to evaluate the shear bond strength of veneering feldspathic porcelain to zirconia substrates modified by CNC-milling process or by coating zirconia with a composite interlayer. Four types of zirconia-porcelain interface configurations were tested: RZ - porcelain bonded to rough zirconia substrate (n=16); PZ - porcelain bonded to zirconia substrate with surface holes (n=16); RZI - application of a composite interlayer between the veneering porcelain and the rough zirconia substrate (n=16); PZI - application of a composite interlayer between the porcelain and the zirconia substrate treated by CNC-milling (n=16). The composite interlayer was composed of zirconia particles reinforced porcelain (30%, vol%). The mechanical properties of the ceramic composite have been determined. The shear bond strength test was performed at 0.5mm/min using a universal testing machine. The interfaces of fractured and untested specimens were examined by FEG-SEM/EDS. Data was analyzed with Shapiro-Wilk test to test the assumption of normality. The one-way ANOVA followed by Tukey HSD multiple comparison test was used to compare shear bond strength results (α=0.05). The shear bond strength of PZ (100±15MPa) and RZI (96±11MPa) specimens were higher than that recorded for RZ (control group) specimens (89±15MPa), although not significantly (p>0.05). The highest shear bond strength values were recorded for PZI specimens (138±19MPa), yielding a significant improvement of 55% relative to RZ specimens (p<0.05). This study shows that it is possible to highly enhance the zirconia-porcelain bond strength - even by ~55% - by combining surface holes in zirconia frameworks and the application of a proper ceramic composite interlayer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Affordable, Robust Ceramic Joining Technology (ARCJoinT) for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.

    1998-01-01

    Ceramic joining is recognized as one of the enabling technologies for the successful utilization of silicon carbide-based monolithic ceramic and fiber reinforced composite components in a number of demanding and high temperature applications in aerospace and ground-based systems. An affordable, robust ceramic joining technology (ARCJoinT) for joining of silicon carbide-based ceramics and fiber reinforced composites has been developed. This technique is capable of producing joints with tailorable thickness and composition. A wide variety of silicon carbide-based ceramics and composites, in different shapes and sizes, have been joined using this technique. The room and high temperature mechanical properties and fractography of ceramic joints have been reported. In monolithic silicon carbide ceramics, these joints maintain their mechanical strength up to 1350 C in air. There is no change in the mechanical strength of joints in silicon carbide matrix composites up to 1200 C in air. In composites, simple butt joints yield only about 20% of the ultimate strength of the parent materials. This technology is suitable for the joining of large and complex shaped ceramic and composite components, and with certain modifications, can be applied to repair of ceramic components damaged in service.

  2. Multi-susceptibile Single-Phased Ceramics with Both Considerable Magnetic and Dielectric Properties by Selectively Doping

    PubMed Central

    Liu, Chuyang; Zhang, Yujing; Jia, Jingguo; Sui, Qiang; Ma, Ning; Du, Piyi

    2015-01-01

    Multiferroic ceramics with extraordinary susceptibilities coexisting are vitally important for the multi-functionality and integration of electronic devices. However, multiferroic composites, as the most potential candidates, will introduce inevitable interface deficiencies and thus dielectric loss from dissimilar phases. In this study, single-phased ferrite ceramics with considerable magnetic and dielectric performances appearing simultaneously were fabricated by doping target ions in higher valence than that of Fe3+, such as Ti4+, Nb5+ and Zr4+, into BaFe12O19. In terms of charge balance, Fe3+/Fe2+ pair dipoles are produced through the substitution of Fe3+ by high-valenced ions. The electron hopping between Fe3+ and Fe2+ ions results in colossal permittivity. Whilst the single-phased ceramics doped by target ions exhibit low dielectric loss naturally due to the diminishment of interfacial polarization and still maintain typical magnetic properties. This study provides a convenient method to attain practicable materials with both outstanding magnetic and dielectric properties, which may be of interest to integration and multi-functionality of electronic devices. PMID:25835175

  3. Multi-susceptibile single-phased ceramics with both considerable magnetic and dielectric properties by selectively doping.

    PubMed

    Liu, Chuyang; Zhang, Yujing; Jia, Jingguo; Sui, Qiang; Ma, Ning; Du, Piyi

    2015-04-02

    Multiferroic ceramics with extraordinary susceptibilities coexisting are vitally important for the multi-functionality and integration of electronic devices. However, multiferroic composites, as the most potential candidates, will introduce inevitable interface deficiencies and thus dielectric loss from dissimilar phases. In this study, single-phased ferrite ceramics with considerable magnetic and dielectric performances appearing simultaneously were fabricated by doping target ions in higher valence than that of Fe(3+), such as Ti(4+), Nb(5+) and Zr(4+), into BaFe12O19. In terms of charge balance, Fe(3+)/Fe(2+) pair dipoles are produced through the substitution of Fe(3+) by high-valenced ions. The electron hopping between Fe(3+) and Fe(2+) ions results in colossal permittivity. Whilst the single-phased ceramics doped by target ions exhibit low dielectric loss naturally due to the diminishment of interfacial polarization and still maintain typical magnetic properties. This study provides a convenient method to attain practicable materials with both outstanding magnetic and dielectric properties, which may be of interest to integration and multi-functionality of electronic devices.

  4. Multi-susceptibile Single-Phased Ceramics with Both Considerable Magnetic and Dielectric Properties by Selectively Doping

    NASA Astrophysics Data System (ADS)

    Liu, Chuyang; Zhang, Yujing; Jia, Jingguo; Sui, Qiang; Ma, Ning; Du, Piyi

    2015-04-01

    Multiferroic ceramics with extraordinary susceptibilities coexisting are vitally important for the multi-functionality and integration of electronic devices. However, multiferroic composites, as the most potential candidates, will introduce inevitable interface deficiencies and thus dielectric loss from dissimilar phases. In this study, single-phased ferrite ceramics with considerable magnetic and dielectric performances appearing simultaneously were fabricated by doping target ions in higher valence than that of Fe3+, such as Ti4+, Nb5+ and Zr4+, into BaFe12O19. In terms of charge balance, Fe3+/Fe2+ pair dipoles are produced through the substitution of Fe3+ by high-valenced ions. The electron hopping between Fe3+ and Fe2+ ions results in colossal permittivity. Whilst the single-phased ceramics doped by target ions exhibit low dielectric loss naturally due to the diminishment of interfacial polarization and still maintain typical magnetic properties. This study provides a convenient method to attain practicable materials with both outstanding magnetic and dielectric properties, which may be of interest to integration and multi-functionality of electronic devices.

  5. Raman Mapping for the Investigation of Nano-phased Materials

    NASA Astrophysics Data System (ADS)

    Gouadec, G.; Bellot-Gurlet, L.; Baron, D.; Colomban, Ph.

    Nanosized and nanophased materials exhibit special properties. First they offer a good compromise between the high density of chemical bonds by unit volume, needed for good mechanical properties and the homogeneity of amorphous materials that prevents crack initiation. Second, interfaces are in very high concentration and they have a strong influence on many electrical and redox properties. The analysis of nanophased, low crystallinity materials is not straigtforward. The recording of Raman spectra with a geometric resolution close to 0.5 \\upmu {text{ m}^3} and the deep understanding of the Raman signature allow to locate the different nanophases and to predict the properties of the material. Case studies are discussed: advanced polymer fibres, ceramic fibres and composites, textured piezoelectric ceramics and corroded (ancient) steel.

  6. Mechanical behavior of bioactive composite cements consisting of resin and glass-ceramic powder in a simulated body fluid: effect of silane coupling agent.

    PubMed

    Miyata, N; Matsuura, W; Kokubo, T; Nakamura, T

    2004-09-01

    Time-dependent strength behavior was investigated for bisphenol-a-glycidyl methacrylate/triethylene glycol dimethacrylate (Bis-GMA/TEGDMA) resin cements combined with glass-ceramic A-W filler treated with various kinds of silane coupling agents. The fracture strength of the composite resin cements was measured by three-point bending as a function of stressing rate in a simulated body fluid (SBF), and thereby the stress-corrosion susceptibility constant was evaluated. The fracture strength was found to depend on the kind of coupling agent used. For the present Bis-GMA/TEGDMA resin, the silane coupling agents without hydrophilic amine groups can be used to obtain good adhesion between resin and A-W filler owing to their nature of co-polymerizing with the resin. On the other hand, all the composite resin cements showed nearly the same degree of stress-corrosion susceptibility whether the A-W fillers were treated or untreated with silane coupling agents. This means that the stress-corrosion susceptibility of the present composite cements is predominantly affected by that of the matrix resin. Thus, the microcrack formation and growth at the resin matrix near particle - resin interface were thought to determine overall time-dependent strength behavior of the composite cements.

  7. The use of solid-state reactions with volume loss to engineer stress and porosity into the fiber-matrix interface of a ceramic composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, R.S.

    The effect of the 11 vol% losing during reaction of yttrium-aluminas garnet (YAG) and zirconia was observed in zirconia coated single-crystal alumina fiber-YAG matrix composites. The reaction caused plastic deformation in the alumina fibers, and possibly a minor amount of porosity at fiber-matrix interfaces that was usually indistinguishable from matrix porosity. The results were analyzed by models for diffusive cavitation modified to use reaction self-stress. Crack-healing, tensile stress states along the reaction front that approach plane stress, and the small volume of self-stressed material make crack-like pores unlikely at the high temperatures required for reaction. Smaller matrix grains might promotemore » formation of smaller cavities but are also incompatible with high temperature. Both modeling and experiment suggest that sufficient porosity for crack deflection and fiber pullout cannot form unless processing methods that form dense composites at lower temperatures are used.« less

  8. Method for producing ceramic composition having low friction coefficient at high operating temperatures

    DOEpatents

    Lankford, Jr., James

    1988-01-01

    A method for producing a stable ceramic composition having a surface with a low friction coefficient and high wear resistance at high operating temperatures. A first deposition of a thin film of a metal ion is made upon the surface of the ceramic composition and then a first ion implantation of at least a portion of the metal ion is made into the near surface region of the composition. The implantation mixes the metal ion and the ceramic composition to form a near surface composite. The near surface composite is then oxidized sufficiently at high oxidizing temperatures to form an oxide gradient layer in the surface of the ceramic composition.

  9. Dielectric and varistor properties of rare-earth-doped ZnO and CaCu3Ti4O12 composite ceramics

    NASA Astrophysics Data System (ADS)

    Lu, Huafei; Lin, Yuanhua; Yuan, Jiancong; Nan, Cewen; Chen, Kexin

    2013-02-01

    To investigate the multi-functional ceramics with both high permittivity and large nonlinear coefficient, we have prepared rare-earth Tb-and-Co doped ZnO and TiO2-rich CaCu3Ti4O12 (TCCTO) powders by chemical co-precipitation and sol-gel methods respectively, and then obtained the TCCTO/ZnO composite ceramics, sintered at 1100°C for 3 h in air. Analyzing the composite ceramics of the microstructure and phase composition indicated that the composite ceramics were composed of the main phases of ZnO and CaCu3Ti4O12 (CCTO). Our results revealed that the TCCTO/ZnO composite ceramics showed both high dielectric and good nonlinear electrical behaviors. The composite ceramic of TCCTO: ZnO = 0.3 exhibited a high dielectric constant of 210(1 kHz) with a nonlinear coefficient of 11. The dielectric behavior of TCCTO/ZnO composite could be explained by the mixture rule. With the high dielectric permittivity and tunable varistor behaviors, the composite ceramics has a potential application for the higher voltage transportation devices.

  10. Ultrasonic Guided-Wave Scan System Used to Characterize Microstructure and Defects in Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Cosgriff, Laura M.; Martin, Richard E.; Verrilli, Michael J.; Bhatt, Ramakrishna T.

    2004-01-01

    Ceramic matrix composites (CMCs) are being developed for advanced aerospace propulsion applications to save weight, improve reuse capability, and increase performance. However, mechanical and environmental loads applied to CMCs can cause discrete flaws and distributed microdamage, significantly reducing desirable physical properties. Such microdamage includes fiber/matrix debonding (interface failure), matrix microcracking, fiber fracture and buckling, oxidation, and second phase formation. A recent study (ref. 1) of the durability of a C/SiC CMC discussed the requirement for improved nondestructive evaluation (NDE) methods for monitoring degradation in these materials. Distributed microdamage in CMCs has proven difficult to characterize nondestructively because of the complex microstructure and macrostructure of these materials. This year, an ultrasonic guided-wave scan system developed at the NASA Glenn Research Center was used to characterize various microstructural and flaw conditions in SiC/SiC (silicon carbide fiber in silicon carbide matrix) and C/SiC (carbon fiber in silicon carbide matrix) CMC samples.

  11. Solid composite electrolytes for lithium batteries

    DOEpatents

    Kumar, Binod; Scanlon, Jr., Lawrence G.

    2000-01-01

    Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.

  12. Methods of enhancing conductivity of a polymer-ceramic composite electrolyte

    DOEpatents

    Kumar, Binod

    2003-12-02

    Methods for enhancing conductivity of polymer-ceramic composite electrolytes are provided which include forming a polymer-ceramic composite electrolyte film by a melt casting technique and uniaxially stretching the film from about 5 to 15% in length. The polymer-ceramic composite electrolyte is also preferably annealed after stretching such that it has a room temperature conductivity of from 10.sup.-4 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1. The polymer-ceramic composite electrolyte formed by the methods of the present invention may be used in lithium rechargeable batteries.

  13. Modeling the Mechanical Behavior of Ceramic Matrix Composite Materials

    NASA Technical Reports Server (NTRS)

    Jordan, William

    1998-01-01

    Ceramic matrix composites are ceramic materials, such as SiC, that have been reinforced by high strength fibers, such as carbon. Designers are interested in using ceramic matrix composites because they have the capability of withstanding significant loads while at relatively high temperatures (in excess of 1,000 C). Ceramic matrix composites retain the ceramic materials ability to withstand high temperatures, but also possess a much greater ductility and toughness. Their high strength and medium toughness is what makes them of so much interest to the aerospace community. This work concentrated on two different tasks. The first task was to do an extensive literature search into the mechanical behavior of ceramic matrix composite materials. This report contains the results of this task. The second task was to use this understanding to help interpret the ceramic matrix composite mechanical test results that had already been obtained by NASA. Since the specific details of these test results are subject to the International Traffic in Arms Regulations (ITAR), they are reported in a separate document (Jordan, 1997).

  14. Interfacial microstructure and shear strength of reactive air brazed oxygen transport membrane ceramic-metal alloy joints

    NASA Astrophysics Data System (ADS)

    FR, Wahid Muhamad; Yoon, Dang-Hyok; Raju, Kati; Kim, Seyoung; Song, Kwang-sup; Yu, Ji Haeng

    2018-01-01

    To fabricate a multi-layered structure for maximizing oxygen production, oxygen transport membrane (OTM) ceramics need to be joined or sealed hermetically metal supports for interfacing with the peripheral components of the system. Therefore, in this study, Ag-10 wt% CuO was evaluated as an effective filler material for the reactive air brazing of dense Ce0.9Gd0.1O2-δ-La0.7Sr0.3MnO3±δ (GDC-LSM) OTM ceramics. Thermal decomposition in air and wetting behavior of the braze filler was performed. Reactive air brazing was performed at 1050 °C for 30 min in air to join GDC-LSM with four different commercially available high temperature-resistant metal alloys, such as Crofer 22 APU, Inconel 600, Fecralloy, and AISI 310S. The microstructure and elemental distribution of the ceramic-ceramic and ceramic-metal interfaces were examined from polished cross-sections. The mechanical shear strength at room temperature for the as-brazed and isothermally aged (800 °C for 24 h) joints of all the samples was compared. The results showed that the strength of the ceramic-ceramic joints was decreased marginally by aging; however, in the case of metal-ceramic joints, different decreases in strengths were observed according to the metal alloy used, which was explained based on the formation of different oxide layers at the interfaces.

  15. Ablation Resistant Zirconium and Hafnium Ceramics

    NASA Technical Reports Server (NTRS)

    Bull, Jeffrey (Inventor); White, Michael J. (Inventor); Kaufman, Larry (Inventor)

    1998-01-01

    High temperature ablation resistant ceramic composites have been made. These ceramics are composites of zirconium diboride and zirconium carbide with silicon carbide, hafnium diboride and hafnium carbide with silicon carbide and ceramic composites which contain mixed diborides and/or carbides of zirconium and hafnium. along with silicon carbide.

  16. Baseline UT Measurements for Armor Inspection

    NASA Astrophysics Data System (ADS)

    Margetan, Frank J.; Richter, Nate; Barnard, Dan; Hsu, David; Gray, Tim; Brasche, Lisa; Bruce Thompson, R.

    2010-02-01

    Some prototype armor panels are fabricated from several layers of dissimilar material bonded together. These may include ceramics, graphite composites, fiberglass composites and rubber. The ultrasonic properties of these layers influence inspections for armor defects. In this paper we describe measurements of ultrasonic velocity, attenuation, sound beam distortion and signal fluctuations for the individual layers comprising one armor prototype. We then discuss how knowledge of these properties can be used when choosing an optimum frequency for an ultrasonic pitch/catch immersion inspection. In our case an effective inspection frequency near 1.5 MHz affords: (1) adequate strength of through-transmitted signals in unflawed armor; (2) adequate lateral resolution for detecting small disbonds at interfaces; and (3) low levels of UT signal fluctuations due to the natural inhomogeneity of certain armor layers. The utility of this approach is demonstrated using armor panels containing artificial disbonds at selected interfaces.

  17. Manipulating electronic and mechanical properties at metal-ceramic interfaces with a nanomolecular layer

    NASA Astrophysics Data System (ADS)

    Kwan, Matthew P.

    This work demonstrates that inserting nanomolecular layers (NMLs) can profoundly change and/or lead to novel electronic and mechanical properties of metal-ceramic interfaces. The first set of results demonstrate that organophosphonate NMLs up to 1.8 nm thick can alter metal work functions by +/- 0.6 eV. This work function change is a strong function of the NML terminal groups (methyl, mercaptan, carboxylic acid, or phosphonic acid), morphology (up right, lying down, or mixed orientation), and the nature of the bonding (covalent, polar, or Van der Waals) between NML and the adjacent layers. Additionally, while NML-ceramic bond type and strength can influence and counteract the effect of NML morphology, the metal-NML bond appears to be independent of the morphology of the NML underlayer. The second set of results demonstrate that inserting an organosilane NML at a metal-ceramic interface can lead to multifold fracture toughening under both static (stress corrosion) and cyclic loads (fatigue) tested in four-point bend. Nanolayer-induced interface strengthening during static loading activates metal plasticity above the metal yield strength, leading to two-fold fracture toughening. Metal plasticity-induced toughening increases as temperature is increased up to 85 °C due to decreasing yield stress. In the fatigue fracture tests I report for the first time a loading-frequency-dependent tripling in fracture toughening in the 75-300 Hz range upon inserting a mercapto-silane NML at the weakest interface of a ceramic-polymer-metal-ceramic stack. This unusual behavior arises from the NML strengthened interface enabling load transfer to- and plasticity in the polymer layer, while the fatigue toughening magnitude and frequency range are determined by polymer rheology.

  18. Hybrid Metal/Electrolyte Monolithic Low Temperature SOFCs

    DTIC Science & Technology

    2004-10-15

    Glasses , and Composites VII Ceramic Transactions, 154,131-140, (2003). 9. R. Oh, K. M. Hurysz, and J. K. Cochran, “Effects of Die Geometry and...Paste Rheology on Extrusion Pressure”, Innovative Processes/Synthesis: Ceramics, Glasses , and Composites VII, Ceramic Transactions, 154,153-163, (2003...Processes/Synthesis: Ceramics, Glasses , and Composites VII, Ceramic Transactions, 154, pp.165-175, (2003). 11. Jason H. Nadler, Thomas H. Sanders, Jr

  19. Ceramic Inlays: Effect of Mechanical Cycling and Ceramic Type on Restoration-dentin Bond Strength.

    PubMed

    Trindade, F Z; Kleverlaan, C J; da Silva, L H; Feilzer, A J; Cesar, P F; Bottino, M A; Valandro, L F

    2016-01-01

    This study aimed to evaluate the bond strength between dentin and five different ceramic inlays in permanent maxillary premolars, with and without mechanical cycling. One hundred permanent maxillary premolars were prepared and divided into 10 groups (n=10) according to the ceramic system (IPS e.Max Press; IPS e.Max CAD; Vita PM9; Vita Mark II; and Vita VM7) and the mechanical cycling factor (with and without [100 N, 2 Hz, 1.2×10(6) cycles]). The inlays were adhesively cemented, and all of the specimens were cut into microbars (1×1 mm, nontrimming method), which were tested under microtensile loading. The failure mode was classified and contact angle, roughness, and microtopographic analyses were performed on each ceramic surface. The mechanical cycling had a significant effect (p=0.0087) on the bond strength between dentin and IPS e.max Press. The Vita Mark II group had the highest bond strength values under both conditions, with mechanical cycling (9.7±1.8 MPa) and without (8.2±1.9 MPa), while IPS e.Max CAD had the lowest values (2.6±1.6 and 2.2±1.4, respectively). The adhesive failure mode at the ceramic/cement interface was the most frequent. Vita Mark II showed the highest value of average roughness. IPS e.max Press and Vita Mark II ceramics presented the lowest contact angles. In conclusion, the composition and manufacturing process of ceramics seem to have an influence on the ceramic surface and resin cement bond strength. Mechanical cycling did not cause significant degradation on the dentin and ceramic bond strength under the configuration used.

  20. Nonlinear fracture of concrete and ceramics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Albert S.; Du, Jia-Ji; Hawkins, Niel M.; Bradt, Richard C.

    1989-01-01

    The nonlinear fracture process zones in an impacted unnotched concrete bend specimen, a prenotched ceramic bend specimen, and an unnotched ceramic/ceramic composite bend specimen were estimated through hybrid experimental numerical analysis. Aggregate bridging in concrete, particulate bridging in ceramics, and fiber bridging in ceramic/ceramic composite are modeled by Barenblatt-type cohesive zones which are incorporated into the finite-element models of the bend specimens. Both generation and propagation analyses are used to estimate the distribution of crack closure stresses in the nonlinear fracture process zones. The finite-element models are then used to simulate fracture tests consisting of rapid crack propagation in an impacted concrete bend specimen, and stable crack growth and strain softening in a ceramic and ceramic/ceramic composite bend specimens.

  1. Environmental durability of ceramics and ceramic composites

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.

    1992-01-01

    An account is given of the current understanding of the environmental durability of both monolithic ceramics and ceramic-matrix composites, with a view to the prospective development of methods for the characterization, prediction, and improvement of ceramics' environmental durability. Attention is given to the environmental degradation behaviors of SiC, Si3N4, Al2O3, and glass-ceramic matrix compositions. The focus of corrosion prevention in Si-based ceramics such as SiC and Si3N4 is on the high and low sulfur fuel combustion-product effects encountered in heat engine applications of these ceramics; sintering additives and raw material impurities are noted to play a decisive role in ceramics' high temperature environmental response.

  2. The plasma electrolytic oxidation micro-discharge channel model and its microstructure characteristic based on Ti tracer

    NASA Astrophysics Data System (ADS)

    Gao, Fangyuan; Hao, Li; Li, Guang; Xia, Yuan

    2018-02-01

    This study focuses on the individual discharge channel of ceramic coating prepared by plasma electrolytic oxidation (PEO), and attempts to reveal the mechanism of breakdown discharge at low voltage. Titanium (Ti) was employed as a substrate with the layer of aluminum deposited on it (aluminized Ti). The shape and microstructure of the discharge channels in PEO coatings were investigated using transmission electron microscope (TEM) and scanning electron microscopy (SEM). A schematic model of the individual discharge channel was proposed based on Ti tracer method. The shape of the discharge channel was mainly cylinder-shaped in the compact coating, with a groove-like oxidation region existed at the coating/substrate interface. In the groove-like oxidation region, the phase composition mainly composed of amorphous and mixed polycrystalline (aluminum titanate and mullite). β-Al2O3 was found in the ceramic coating. TEM morphology showed that nanometer sized micro channels existed in the ceramic coatings.

  3. Improving Erosion Resistance of Plasma-Sprayed Ceramic Coatings by Elevating the Deposition Temperature Based on the Critical Bonding Temperature

    NASA Astrophysics Data System (ADS)

    Yao, Shu-Wei; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2018-01-01

    Interlamellar bonding within plasma-sprayed coatings is one of the most important factors dominating the properties and performance of coatings. The interface bonding between lamellae significantly influences the erosion behavior of plasma-sprayed ceramic coatings. In this study, TiO2 and Al2O3 coatings with different microstructures were deposited at different deposition temperatures based on the critical bonding temperature concept. The erosion behavior of ceramic coatings was investigated. It was revealed that the coatings prepared at room temperature exhibit a typical lamellar structure with numerous unbonded interfaces, whereas the coatings deposited at the temperature above the critical bonding temperature present a dense structure with well-bonded interfaces. The erosion rate decreases sharply with the improvement of interlamellar bonding when the deposition temperature increases to the critical bonding temperature. In addition, the erosion mechanisms of ceramic coatings were examined. The unbonded interfaces in the conventional coatings act as pre-cracks accelerating the erosion of coatings. Thus, controlling interlamellar bonding formation based on the critical bonding temperature is an effective approach to improve the erosion resistance of plasma-sprayed ceramic coatings.

  4. Electronic materials high-T(sub c) superconductivity polymers and composites structural materials surface science and catalysts industry participation

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The fifth year of the Center for Advanced Materials was marked primarily by the significant scientific accomplishments of the research programs. The Electronics Materials program continued its work on the growth and characterization of gallium arsenide crystals, and the development of theories to understand the nature and distribution of defects in the crystals. The High Tc Superconductivity Program continued to make significant contributions to the field in theoretical and experimental work on both bulk materials and thin films and devices. The Ceramic Processing group developed a new technique for cladding YBCO superconductors for high current applications in work with the Electric Power Research Institute. The Polymers and Composites program published a number of important studies involving atomistic simulations of polymer surfaces with excellent correlations to experimental results. The new Enzymatic Synthesis of Materials project produced its first fluorinated polymers and successfully began engineering enzymes designed for materials synthesis. The structural Materials Program continued work on novel alloys, development of processing methods for advanced ceramics, and characterization of mechanical properties of these materials, including the newly documented characterization of cyclic fatigue crack propagation behavior in toughened ceramics. Finally, the Surface Science and Catalysis program made significant contributions to the understanding of microporous catalysts and the nature of surface structures and interface compounds.

  5. New three-phase polymer-ceramic composite materials for miniaturized microwave antennas

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Zhang, Jie; Yue, Zhenxing; Li, Longtu

    2016-09-01

    Unique polymer-ceramic composites for microwave antenna applications were prepared via melt extrusion using high-density polyethylene (HDPE) as the matrix and low-density polyethylene (LDPE) coated BaO-Nd2O3-TiO2 (BNT) ceramic-powders as the filler. By incorporating LDPE into the composites via a coating route, high ceramic-powder volume content (up to 50 vol%) could be achieved. The composites exhibited good microwave dielectric and thermomechanical behaviors. As BNT ceramic content increased from 10 vol% to 50 vol%, the permittivity of the composites increased from 3.45 (9 GHz) to 11.87 (7 GHz), while the dielectric loss remained lower than 0.0016. Microstrip antennas for applications in global positioning systems (GPS) were designed and fabricated from the composites containing 50 vol% BNT ceramics. The results indicate that the composites that have suitable permittivity and low dielectric loss are promising candidates for applications in miniaturized microwave devices, such as antennas.

  6. Wear properties of alumina/zirconia composite ceramics for joint prostheses measured with an end-face apparatus.

    PubMed

    Morita, Yusuke; Nakata, Kenichi; Kim, Yoon-Ho; Sekino, Tohru; Niihara, Koichi; Ikeuchi, Ken

    2004-01-01

    While only alumina is applied to all-ceramic joint prostheses at present, a stronger ceramic is required to prevent fracture and chipping due to impingement and stress concentration. Zirconia could be a potential substitute for alumina because it has high strength and fracture toughness. However, the wear of zirconia/zirconia combination is too high for clinical use. Although some investigations on composite ceramics revealed that mixing of different ceramics was able to improve the mechanical properties of ceramics, there are few reports about wear properties of composite ceramics for joint prosthesis. Since acetabular cup and femoral head of artificial hip joint are finished precisely, they indicate high geometric conformity. Therefore, wear test under flat contact was carried out with an end-face wear testing apparatus for four kinds of ceramics: alumina monolith, zirconia monolith, alumina-based composite ceramic, and zirconia based composite ceramic. Mean contact pressure was 10 MPa and sliding velocity was 40 mm/s. The wear test continued for 72 hours and total sliding distance was 10 km. After the test, the wear factor was calculated. Worn surfaces were observed with a scanning electron micrograph (SEM). The results of this wear test show that the wear factors of the both composite ceramics are similarly low and their mechanical properties are much better than those of the alumina monolith and the zirconia monolith. According to these results, it is predicted that joint prostheses of the composite ceramics are safer against break down and have longer lifetime compared with alumina/alumina joint prostheses.

  7. Relation between the microstructure and the electromagnetic properties of BaTiO3/Ni0.5Zn0.5Fe2O4 ceramic composite

    NASA Astrophysics Data System (ADS)

    Xiao, Bin; Tang, Yu; Ma, Guodong; Ma, Ning; Du, Piyi

    2015-06-01

    The microstructure-property relation in ferroelectric/ferromagnetic composite is investigated in detail, exemplified by typical sol-gel-derived 0.3BTO/0.7NZFO ceramic composite. The effect of microstructural factors including intergrain connectivity, grain size and interfaces on the dielectric and magnetic properties of the composite prepared by conventional ceramic method and three-step sintering method is discussed both experimentally and theoretically. It reveals that the dielectric behavior of the composite is controlled by a hybrid dielectric process that combines the contribution of Debye-like dipoles and Maxwell-Wagner (M-W or interfacial) polarization. Enhanced dielectric, magnetic and conductive behaviors appear in the composite with better intergrain connectivity and larger grain size derived by sol-gel route and three-step sintering method. The effective permittivity contributed by Debye-like dipoles exhibits a value of ~130,000 in three-step sintered composite, which is almost the same as that in conventionally sintered one, but that contributed by M-W response is much smaller in the former. Compared with conventionally prepared samples, the relaxation time ( τ) is 3.476 × 10-6 s, about one order of magnitude smaller, and the dc electrical conductivity is 3.890 × 10-3 S/m, one order of magnitude higher in three-step sintered composite. The minimum dielectric loss reveals almost the same (~0.2) for all samples, but shows distinguishable difference in low-frequency region. Meanwhile, an initial permeability of 84, twice as large as that of conventionally prepared composite and 56 % the value of single-phased NZFO ferrite (~150), and a saturation magnetization of 63.5 emu/g, 32 % higher than that of conventional one and approximately 84 % the value of single-phased NZFO ferrite (~76 emu/g), appear simultaneously in three-step sintered composite with larger grain size and better intergrain connectivity. It is clear that the discovery is helpful for establishing a more explicit view on the physics of multi-functional composite materials, while the composite with optimized microstructure is beneficial to be used as a high-performance material.

  8. Mechanical fatigue degradation of ceramics versus resin composites for dental restorations.

    PubMed

    Belli, Renan; Geinzer, Eva; Muschweck, Anna; Petschelt, Anselm; Lohbauer, Ulrich

    2014-04-01

    For posterior partial restorations an overlap of indication exists where either ceramic or resin-based composite materials can be successfully applied. The aim of this study was to compare the fatigue resistance of modern dental ceramic materials versus dental resin composites in order to address such conflicts. Bar specimens of five ceramic materials and resin composites were produced according to ISO 4049 and stored for 14 days in distilled water at 37°C. The following ceramic materials were selected for testing: a high-strength zirconium dioxide (e.max ZirCAD, Ivoclar), a machinable lithium disilicate (e.max CAD, Ivoclar), a pressable lithium disilicate ceramic (e-max Press, Ivoclar), a fluorapatite-based glass-ceramic (e.max Ceram, Ivoclar), and a machinable color-graded feldspathic porcelain (Trilux Forte, Vita). The composite materials selected were: an indirect machinable composite (Lava Ultimate, 3M ESPE) and four direct composites with varying filler nature (Clearfil Majesty Posterior, Kuraray; GrandioSO, Voco; Tetric EvoCeram, Ivoclar-Vivadent; and CeramX Duo, Dentsply). Fifteen specimens were tested in water for initial strength (σin) in 4-point bending. Using the same test set-up, the residual flexural fatigue strength (σff) was determined using the staircase approach after 10(4) cycles at 0.5 Hz (n=25). Weibull parameters σ0 and m were calculated for the σin specimens, whereas the σff and strength loss in percentage were obtained from the fatigue experiment. The zirconium oxide ceramic showed the highest σin and σff (768 and 440 MPa, respectively). Although both lithium disilicate ceramics were similar in the static test, the pressable version showed a significantly higher fatigue resistance after cyclic loading. Both the fluorapatite-based and the feldspathic porcelain showed equivalent initial and cyclic fatigue properties. From the composites, the highest filled direct material Clearfil Majesty Posterior showed superior fatigue performance. From all materials, e.max Press and Clearfil Majesty Posterior showed the lowest strength loss (29.6% and 32%, respectively), whereas the other materials lost between 41% and 62% of their flexural strength after cyclic loading. Dental ceramics and resin composite materials show equivalent fatigue strength degradation at loads around 0.5σin values. Apart from the zirconium oxide and the lithium disilicate ceramics, resin composites generally showed better σff after 10,000 cycles than the fluorapatite glass-ceramic and the feldspathic porcelain. Resin composite restorations may be used as an equivalent alternative to glass-rich-ceramic inlays regarding mechanical performance. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Joining and Assembly of Silicon Carbide-based Advanced Ceramics and Composites for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2004-01-01

    Silicon carbide based advanced ceramics and fiber reinforced composites are under active consideration for use in wide variety of high temperature applications within the aeronautics, space transportation, energy, and nuclear industries. The engineering designs of ceramic and composite component require fabrication and manufacturing of large and complex shaped parts of various thicknesses. In many instances, it is more economical to build up complex shapes by joining simple geometrical shapes. In addition these components have to be joined or assembled with metallic sub-components. Thus, joining and attachment have been recognized as enabling technologies for successful utilization of ceramic components in various demanding applications. In this presentation, various challenges and opportunities in design, fabrication, and testing o high temperature joints in ceramic matrix composites will be presented. Silicon carbide based advanced ceramics (CVD and hot pressed), and C/SiC and SiC/SiC composites, in different shapes and sizes, have been joined using an affordable, robust ceramic joining technology (ARCJoinT). Microstructure and high temperature mechanical properties of joints in silicon carbide ceramics and CVI and melt infiltrated SiC matrix composites will,be reported. Various joint design philosophies and design issues in joining of ceramics and composites well be discussed.

  10. ADM guidance-Ceramics: all-ceramic multilayer interfaces in dentistry.

    PubMed

    Lohbauer, Ulrich; Scherrer, Susanne S; Della Bona, Alvaro; Tholey, Michael; van Noort, Richard; Vichi, Alessandro; Kelly, J Robert; Cesar, Paulo F

    2017-06-01

    This guidance document describes the specific issues involved in dental multilayer ceramic systems. The material interactions with regard to specific thermal and mechanical properties are reviewed and the characteristics of dental tooth-shaped processing parameters (sintering, geometry, thickness ratio, etc.) are discussed. Several techniques for the measurement of bond quality and residual stresses are presented with a detailed discussion of advantages and disadvantages. In essence no single technique is able to describe adequately the all-ceramic interface. Invasive or semi-invasive methods have been shown to distort the information regarding the residual stress state while non-invasive methods are limited due to resolution, field of focus or working depth. This guidance document has endeavored to provide a scientific basis for future research aimed at characterizing the ceramic interface of dental restorations. Along with the methodological discussion it is seeking to provide an introduction and guidance to relatively inexperienced researchers. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. High Temperature Tolerant Ceramic Composites Having Porous Interphases

    DOEpatents

    Kriven, Waltraud M.; Lee, Sang-Jin

    2005-05-03

    In general, this invention relates to a ceramic composite exhibiting enhanced toughness and decreased brittleness, and to a process of preparing the ceramic composite. The ceramic composite comprises a first matrix that includes a first ceramic material, preferably selected from the group including alumina (Al2O3), mullite (3Al2O3.2SiO2), yttrium aluminate garnet (YAG), yttria stabilized zirconia (YSZ), celsian (BaAl2Si2O8) and nickel aluminate (NiAl2O4). The ceramic composite also includes a porous interphase region that includes a substantially non-sinterable material. The non-sinterable material can be selected to include, for example, alumina platelets. The platelets lie in random 3-D orientation and provide a debonding mechanism, which is independent of temperature in chemically compatible matrices. The non-sinterable material induces constrained sintering of a ceramic powder resulting in permanent porosity in the interphase region. For high temperature properties, addition of a sinterable ceramic powder to the non-sinterable material provides sufficiently weak debonding interphases. The ceramic composite can be provided in a variety of forms including a laminate, a fibrous monolith, and a fiber-reinforced ceramic matrix. In the laminated systems, intimate mixing of strong versus tough microstructures were tailored by alternating various matrix-to-interphase thickness ratios to provide the bimodal laminate.

  12. Recent Advances in the Development of Thick-Section Melt-Infiltrated C/SiC Composites

    NASA Technical Reports Server (NTRS)

    Babcock, Jason R.; Ramachandran, Gautham; Williams, Brian E.; Effinger, Michael R.

    2004-01-01

    Using a pressureless melt infiltration and in situ reaction process to form the silicon carbide (SiC) matrix, Ultramet has been developing a means to rapidly fabricate ceramic matrix composites (CMCs) targeting thicker sections. The process also employs a unique route for the application of oxide fiber interface coatings designed to protect the fiber and impart fiber-matrix debond. Working toward a 12 inch diameter, 2.5 inch thick demonstrator component, the effect of various processing parameters on room temperature flexure strength is being studied with plans for more extensive elevated temperature mechanical strength evaluation to follow this initial optimization process.

  13. Bone formation within alumina tubes: effect of calcium, manganese, and chromium dopants.

    PubMed

    Pabbruwe, Moreica B; Standard, Owen C; Sorrell, Charles C; Howlett, C Rolfe

    2004-09-01

    Alumina tubes (1.3mm outer diameter, 0.6mm inner diameter, 15 mm length) doped with Ca, Mn, or Cr at nominal concentrations of 0.5 and 5.0 mol% were implanted into femoral medullary canals of female rats for 16 weeks. Tissue formation within tubes was determined by histology and histomorphometry. Addition of Ca to alumina promoted hypertrophic bone formation at the advancing tissue fronts and tube entrances, and appeared to retard angiogenesis by limiting ongoing cellular migration into the tube. It is speculated that the presence of a secondary phase of calcium hexaluminate, probably having a solubility greater than that of alumina, possibly increased the level of extracellular Ca and, consequently, stimulated osteoclastic activity at the bone-ceramic interface. Addition of Mn significantly enhanced osteogenesis within the tubes. However, it is not possible to determine whether phase composition or microstructure of the ceramic was responsible for this because both were significantly altered by Mn addition. Addition of Cr to the alumina apparently stimulated bone remodelling as indicated by increased cellular activity and bone resorption at the tissue-implant interface. Cr was incorporated into the alumina as a solid solution and the tissue response was speculated to be an effect of surface chemistry rather than microstructure. The work demonstrates that doping a bioinert ceramic with small amounts of specific elements can significantly alter tissue ingrowth, differentiation, and osteogenesis within a porous implant.

  14. Biodegradable ceramic-polymer composites for biomedical applications: A review.

    PubMed

    Dziadek, Michal; Stodolak-Zych, Ewa; Cholewa-Kowalska, Katarzyna

    2017-02-01

    The present work focuses on the state-of-the-art of biodegradable ceramic-polymer composites with particular emphasis on influence of various types of ceramic fillers on properties of the composites. First, the general needs to create composite materials for medical applications are briefly introduced. Second, various types of polymeric materials used as matrices of ceramic-containing composites and their properties are reviewed. Third, silica nanocomposites and their material as well as biological characteristics are presented. Fourth, different types of glass fillers including silicate, borate and phosphate glasses and their effect on a number of properties of the composites are described. Fifth, wollastonite as a composite modifier and its effect on composite characteristics are discussed. Sixth, composites containing calcium phosphate ceramics, namely hydroxyapatite, tricalcium phosphate and biphasic calcium phosphate are presented. Finally, general possibilities for control of properties of composite materials are highlighted. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Interphase for ceramic matrix composites reinforced by non-oxide ceramic fibers

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A. (Inventor); Bhatt, Ramakrishna (Inventor); Morscher, Gregory N. (Inventor); Yun, Hee-Mann (Inventor)

    2008-01-01

    A ceramic matrix composite material is disclosed having non-oxide ceramic fibers, which are formed in a complex fiber architecture by conventional textile processes; a thin mechanically weak interphase material, which is coated on the fibers; and a non-oxide or oxide ceramic matrix, which is formed within the interstices of the interphase-coated fiber architecture. During composite fabrication or post treatment, the interphase is allowed to debond from the matrix while still adhering to the fibers, thereby providing enhanced oxidative durability and damage tolerance to the fibers and the composite material.

  16. Continuous Fiber Ceramic Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fareed, Ali; Craig, Phillip A.

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  17. Geopolymer Porous Nanoceramics for Structural Smart and Thermal Shock Resistant Applications

    DTIC Science & Technology

    2011-02-02

    porous membranes and foams, ceramic armor composites , iron-based geopolymer analogues, geopolymer composites reinforced with chopped polypropylene... geopolymers and geopolymer composites , as fabricated and upon conversion to ceramics with heating. The microstucture consisted of nanoporous...ceramic armore composites , iron-based geopolymer analogues, geopolymer composites reinforced with chopped polypropylene or basalt fibers and

  18. Effects of Fiber Content on Mechanical Properties of CVD SiC Fiber-Reinforced Strontium Aluminosilicate Glass-Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1996-01-01

    Unidirectional CVD SiC(f)(SCS-6) fiber-reinforced strontium aluminosilicate (SAS) glass-ceramic matrix composites containing various volume fractions, approximately 16 to 40 volume %, of fibers were fabricated by hot pressing at 1400 C for 2 h under 27.6 MPa. Monoclinic celsian, SrAl2Si2O8, was the only crystalline phase formed, with complete absence of the undesired hexacelsian phase, in the matrix. Room temperature mechanical properties were measured in 3-point flexure. The matrix microcracking stress and the ultimate strength increased with increase in fiber volume fraction, reached maximum values for V(sub f) approximately equal to 0.35, and degraded at higher fiber loadings. This degradation in mechanical properties is related to the change in failure mode, from tensile at lower V(sub f) to interlaminar shear at higher fiber contents. The extent of fiber loading did not have noticeable effect on either fiber-matrix debonding stress, or frictional sliding stress at the interface. The applicability of micromechanical models in predicting the mechanical properties of the composites was also examined. The currently available theoretical models do not appear to be useful in predicting the values of the first matrix cracking stress, and the ultimate strength of the SCS-6/SAS composites.

  19. Characterization of composite materials based on cement-ceramic powder blended binder

    NASA Astrophysics Data System (ADS)

    Kulovaná, Tereza; Pavlík, Zbyšek

    2016-06-01

    Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO2 emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzed by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.

  20. Characterization of composite materials based on cement-ceramic powder blended binder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulovaná, Tereza; Pavlík, Zbyšek

    Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO{sub 2} emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzedmore » by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.« less

  1. Low temperature joining of ceramic composites

    DOEpatents

    Barton, Thomas J.; Anderson, Iver E.; Ijadi-Maghsoodi, Sina; Nosrati, Mohammad; Unal, Ozer

    1999-07-13

    A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix.

  2. Low temperature joining of ceramic composites

    DOEpatents

    Barton, T.J.; Anderson, I.E.; Ijadi-Maghsoodi, S.; Nosrati, M.; Unal, O.

    1999-07-13

    A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 C to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix. 3 figs.

  3. Low temperature joining of ceramic composites

    DOEpatents

    Barton, T.J.; Anderson, I.E.; Ijadi-Maghsoodi, S.; Nosrati, M.; Unal, O.

    1999-01-12

    A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix. 3 figs.

  4. Creep-induced residual stress strengthening in a Nicalon-fiber-reinforced BMAS-glass-ceramic-matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widjaja, S.; Jakus, K.; Ritter, J.E.

    The feasibility of inducing a compressive residual stress in the matrix of a Nicalon-fiber-reinforced BMAS-glass-ceramic-matrix composite through a creep-load transfer treatment was studied. Specimens were crept at 1100 C under constant tensile load to cause load transfer from the matrix to the fibers, then cooled under load. Upon removal of the load at room temperature, the matrix was put into compression by the elastic recovery of the fibers. This compressive residual stress in the matrix increased the room-temperature proportional limit stress of the composite. The increase in the proportional limit stress was found to be dependent upon the applied creepmore » stress, with an increase in creep stress resulting in an increase in the proportional limit stress. Acoustic emission results showed that the onset of significant matrix cracking correlated closely to the proportional limit stress. Changes in the state of residual stress in the matrix were supported by X-ray diffraction results. Fracture surfaces of all specimens exhibited fiber pullout behavior, indicating that the creep-load transfer process did not embrittle the fiber/matrix interface.« less

  5. Continuous fiber ceramic matrix composites for heat engine components

    NASA Technical Reports Server (NTRS)

    Tripp, David E.

    1988-01-01

    High strength at elevated temperatures, low density, resistance to wear, and abundance of nonstrategic raw materials make structural ceramics attractive for advanced heat engine applications. Unfortunately, ceramics have a low fracture toughness and fail catastrophically because of overload, impact, and contact stresses. Ceramic matrix composites provide the means to achieve improved fracture toughness while retaining desirable characteristics, such as high strength and low density. Materials scientists and engineers are trying to develop the ideal fibers and matrices to achieve the optimum ceramic matrix composite properties. A need exists for the development of failure models for the design of ceramic matrix composite heat engine components. Phenomenological failure models are currently the most frequently used in industry, but they are deterministic and do not adequately describe ceramic matrix composite behavior. Semi-empirical models were proposed, which relate the failure of notched composite laminates to the stress a characteristic distance away from the notch. Shear lag models describe composite failure modes at the micromechanics level. The enhanced matrix cracking stress occurs at the same applied stress level predicted by the two models of steady state cracking. Finally, statistical models take into consideration the distribution in composite failure strength. The intent is to develop these models into computer algorithms for the failure analysis of ceramic matrix composites under monotonically increasing loads. The algorithms will be included in a postprocessor to general purpose finite element programs.

  6. Ceramic matrix and resin matrix composites: A comparison

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  7. Ceramic matrix and resin matrix composites - A comparison

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  8. Research on self-propagating high temperature synthesis prepared ZrC-ZrB2 composite ceramic

    NASA Astrophysics Data System (ADS)

    Yong, Cheng; Xunjia, Su; Genliang, Hou; YaKun, Xing

    2013-03-01

    ZrC-ZrB2 composite ceramic material is prepared by self-propagating high temperature synthesis, using Zr powders, CrO2 powders and Al powders as raw materials. Samples are studied by XRD and SEM, the results show that: ZrC-ZrB2 composite ceramic is attained after self-propagating high-temperature reaction, with Zr+ B4C as the main reactive system, and which is added respectively different content (CrO3 + Al) system. The study finds that the ceramic composite products are mainly composed of ZrC and ZrB2 phase, and other subphase. Compared to the main reactive system composite ceramic, composite ceramic grains grow up obviously, after introduction of the highly exothermic system (CrO3 + Al) in the main reactive system, and with the gradual increase of the content (CrO3 + Al).

  9. Bond strength of the porcelain repair system to all-ceramic copings and porcelain.

    PubMed

    Lee, Sang J; Cheong, Chan Wook; Wright, Robert F; Chang, Brian M

    2014-02-01

    The purpose of this study was to investigate the shear bond strength of the porcelain repair system on alumina and zirconia core ceramics, comparing this strength with that of veneering porcelain. Veneering ceramic (n = 12), alumina core (n = 24), and zirconia core (n = 24) blocks measuring 10 × 5 × 5 mm(3) were fabricated. Veneering ceramic blocks were used as the control. Alumina and zirconia core blocks were divided into 2 groups (n = 12 each), and a slot (2 × 2 × 4 mm(3)) filled with veneering ceramics was prepared into one of the alumina and zirconia core groups (n = 12). Followed by surface treatments of micro-abrasion with 30 μm alumina particles, etching with 35% phosphoric acid and silane primer and bond, composite resin blocks (2 × 2 × 2 mm(3)) were built up and light polymerized onto the treated surfaces by 3 configurations: (a) composite blocks bonded onto veneering ceramic surface alone, (b) composite blocks bonded onto alumina core or zirconia core surfaces, (c) a 50% surface area of the composite blocks bonded to veneering ceramics and the other 50% surface area of the composite blocks to alumina core or zirconia core surfaces. The shear bond strength of the composite to each specimen was tested by a universal testing machine at a 0.5 mm/min crosshead speed. The shear bond strength was analyzed by unpaired t-tests for within the configuration groups and ANOVA for among the different configuration groups. When the mean shear bond strength was compared within groups of the same configuration, there were no statistically significant differences. Comparison of the shear bond strength among groups of different configurations revealed statistically significant differences. The mean shear bond strength of composite onto 100% veneering ceramic surface and composite onto 50% veneering 50% all-ceramic cores was statistically higher than that of composite onto 100% all-ceramic cores; however, the differences of the shear bond strength of composite bonded only onto the veneering ceramic surface were not statistically significant from those of 50% surface area of composite bonded onto all-ceramic cores. No statistically significant differences in the bond strength of a porcelain repair system to alumina and zirconia copings were observed. Increasing the surface of veneering ceramics to a porcelain repair system improved the repair material's bond strength. © 2013 by the American College of Prosthodontists.

  10. Geopolymer Porous Nanoceramics for Structural, for Smart and Thermal Shock Resistant Applications

    DTIC Science & Technology

    2011-02-02

    porous membranes and foams, ceramic armor composites , iron-based geopolymer analogues, geopolymer composites reinforced with chopped polypropylene...the microstructure of geopolymers and geopolymer composites , as fabricated and upon conversion to ceramics with heating. The microstructure consisted...porous membranes and foams, ceramic armor composites , iron-based geopolymer analogues, geopolymer composites reinforced with chopped polypropylene or

  11. Adaptation of adhesive post and cores to dentin after in vitro occlusal loading: evaluation of post material influence.

    PubMed

    Dietschi, Dider; Ardu, Stefano; Rossier-Gerber, Anne; Krejci, Ivo

    2006-12-01

    Fatigue resistance of post and cores is critical to the long term behavior of restored nonvital teeth. The purpose of this in vitro trial was to evaluate the influence of the post material's physical properties on the adaptation of adhesive post and core restorations after cyclic mechanical loading. Composite post and cores were made on endodontically treated deciduous bovine teeth using 3 anisotropic posts (made of carbon, quartz, or quartz-and-carbon fibers) and 3 isotropic posts (zirconium, stainless steel, titanium). Specimens were submitted to 3 successive loading phases--250,000 cycles at 50 N, 250,000 at 75 N, and 500,000 at 100 N--at a rate of 1.5 Hz. Restoration adaptation was evaluated under SEM, before and during loading (margins) and after test completion (margins and internal interfaces). Six additional samples were fabricated for the characterization of interface micromorphology using confocal microscopy. Mechanical loading increased the proportion of marginal gaps in all groups; carbon fiber posts presented the lowest final gap proportion (7.11%) compared to other stiffer metal-ceramic or softer fiber posts (11.0% to 19.1%). For internal adaptation, proportions of debonding between dentin and core or cement varied from 21.69% (carbon post) to 47.37% (stainless steel post). Debonding at the post-cement interface occurred only with isotropic materials. Confocal microscopy observation revealed that gaps were generally associated with an incomplete hybrid layer and reduced resin tags. Regardless of their rigidity, metal and ceramic isotropic posts proved less effective than fiber posts at stabilizing the post and core structure in the absence of the ferrule effect, due to the development of more interfacial defects with either composite or dentin.

  12. Biofunctionalized Ceramic with Self-Assembled Networks of Nanochannels

    PubMed Central

    Jang, Hae Lin; Lee, Keunho; Kang, Chan Soon; Lee, Hye Kyoung; Ahn, Hyo-Yong; Jeong, Hui-Yun; Park, Sunghak; Kim, Seul Cham; Jin, Kyoungsuk; Park, Jimin; Yang, Tae-Youl; Kim, Jin Hong; Shin, Seon Ae; Han, Heung Nam; Oh, Kyu Hwan; Lee, Ho-Young; Lim, Jun; Hong, Kug Sun; Snead, Malcolm L.; Xu, Jimmy; Nam, Ki Tae

    2015-01-01

    Nature designs circulatory systems with hierarchically organized networks of gradually tapered channels ranging from micrometer to nanometer in diameter. In most hard tissues in biological systems, fluid, gasses, nutrients and wastes are constantly exchanged through such networks. Here, we developed a biologically-inspired, hierarchically-organized structure in ceramic to achieve effective permeation with minimum void region, using fabrication methods that create a long-range, highly-interconnected nanochannel system in a ceramic biomaterial. This design of a synthetic model-material was implemented through a novel pressurized sintering process formulated to induce a gradual tapering in channel diameter based on pressure-dependent polymer agglomeration. The resulting system allows long range, efficient transport of fluid and nutrients into sites and interfaces that conventional fluid conduction cannot reach without external force. We demonstrate the ability of mammalian bone-forming cells placed at the distal transport termination of the nanochannel system to proliferate in a manner dependent solely upon the supply of media by the self-powering nanochannels. This approach mimics the significant contribution that nanochannel transport plays in maintaining living hard tissues by providing nutrient supply that facilitates cell growth and differentiation, and thereby makes the ceramic composite ‘alive’. PMID:25827409

  13. Mechanical Properties and Fatigue Behavior of Unitized Composite Airframe Structures at Elevated Temperature

    DTIC Science & Technology

    2016-09-01

    investigated. The unitized composite consisted of a polymer matrix composite (PMC) co-cured with a ceramic matrix composite (CMC). The PMC portion...ply non- crimp 3D orthogonal weave composite consisting of a ceramic matrix reinforced with glass fibers. In order to assess the performance and...2.3 Ceramic Matrix Composites ...................................................................................5  2.4 2D vs 3D Reinforcement

  14. The Effect of Palladium Additions on the Solidus/Liquidus Temperatures and Wetting Properties of Ag-CuO Based Air Brazes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darsell, Jens T.; Weil, K. Scott

    2007-05-16

    As a means of increasing the use temperature of ceramic-ceramic and ceramic-metal air brazes, palladium was investigated as possible ternary addition to the currently employed silver - copper oxide system. The silver component was directly substituted with palladium to form the following series of alloys: (100-y)[(100-z)Pd - (z)Ag] - (y)CuOx where y = 0 - 34 mol% CuOx, z = 50 - 100 mol% silver, and x = 0, 0.5, and 1, denoting copper metal, Cu2O, or CuO. From differential scanning calorimetry, it was determined that the addition of palladium causes an increase in the solidus and liquidus temperatures ofmore » the resulting Pd-Ag-CuO brazes. In general, the liquidus was found to increase by approximately 220°C for the (100-y)(25Pd - 75Ag) - (z)CuOx filler metal compositions relative to comparable Ag-CuOx alloys. Likewise, the solidus was found to increase for these alloys, respectively by 185°C and 60°C, respectively for CuOx contents of y = 0 - 1mol% and 4 - 10 mol%. For the (100-y)(50Pd - 50Ag) - (y)CuOx alloys, the solidus increased between 280 - 390°C over a copper oxide compositional range of x = 0 to 8 mol%. It was determined from sessile drop experiments conducted on alumina substrates that in all cases the palladium causes an increase in the wetting angle relative to the corresponding binary braze. Alloy compositions of (100-y)(25Pd - 75Ag) - (y)CuOx displayed increased wetting angles of 5-20° relative to comparable binary compositions. (100-y)(50Pd - 50Ag) - (y)CuOx alloys exhibited an increase in contact angle of 10-60° and compositions containing less than 10 mol% CuOx were not able to wet the substrate. Scanning electron microscopy indicated that the microstructure of the braze consists of discrete CuOx precipitates in an alloyed silver-palladium matrix. In both the binary and ternary filler metal formulations, a reaction layer consisting of CuAlO2 was observed along the interface with the alumina substrate. This reaction product appears to be beneficial in promoting wetting by the remaining braze filler metal. However the formation of this layer is hindered as the concentration of palladium in the filler metal is increased, which appears to be the primary cause of poor wettability in these compositions, as indicated by the substantial amount of porosity found along the braze/substrate interface.« less

  15. Ceramic-ceramic shell tile thermal protection system and method thereof

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R. (Inventor); Smith, Marnell (Inventor); Goldstein, Howard E. (Inventor); Zimmerman, Norman B. (Inventor)

    1986-01-01

    A ceramic reusable, externally applied composite thermal protection system (TPS) is proposed. The system functions by utilizing a ceramic/ceramic upper shell structure which effectively separates its primary functions as a thermal insulator and as a load carrier to transmit loads to the cold structure. The composite tile system also prevents impact damage to the atmospheric entry vehicle thermal protection system. The composite tile comprises a structurally strong upper ceramic/ceramic shell manufactured from ceramic fibers and ceramic matrix meeting the thermal and structural requirements of a tile used on a re-entry aerospace vehicle. In addition, a lightweight high temperature ceramic lower temperature base tile is used. The upper shell and lower tile are attached by means effective to withstand the extreme temperatures (3000 to 3200F) and stress conditions. The composite tile may include one or more layers of variable density rigid or flexible thermal insulation. The assembly of the overall tile is facilitated by two or more locking mechanisms on opposing sides of the overall tile assembly. The assembly may occur subsequent to the installation of the lower shell tile on the spacecraft structural skin.

  16. Design, Fabrication and Characterization of High Temperature Joints in Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Singh, M.

    1999-01-01

    Ceramic joining has been recognized as one of the enabling technologies for the successful utilization of ceramic components in a number of demanding, high temperature applications. Various joint design philosophies and design issues have been discussed along with an affordable, robust ceramic joining technology (ARCJoinT). A wide variety of silicon carbide-based composite materials, in different shapes and sizes, have been joined using this technology. This technique is capable of producing joints with tailorable thickness and composition. The room and high temperature mechanical properties and fractography of ceramic joints have been reported. These joints maintain their mechanical strength up to 1200 C in air. This technology is suitable for the joining of large and complex shaped ceramic composite components and with certain modifications, can be applied to repair of ceramic components damaged in service.

  17. Design, Fabrication, and Characterization of High Temperature Joints in Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Singh, M.

    1999-01-01

    Ceramic joining has been recognized as one of the enabling technologies for the successful utilization of ceramic components in a number of demanding, high temperature applications. Various joint design philosophies and design issues have been discussed along with an affordable, robust ceramic joining technology (ARCJoinT). A wide variety of silicon carbide-based composite materials, in different shapes and sizes, have been joined using this technology. This technique is capable of producing joints with tailorable thickness and composition. The room and high temperature mechanical properties and fractography of ceramic joints have been reported. These joints maintain their mechanical strength up to 1200C in air. This technology is suitable for the joining of large and complex shaped ceramic composite components and with certain modifications, can be applied to repair of ceramic components damaged in service.

  18. Carbon Fiber Reinforced Ceramic Composites for Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Freedman, Marc (Technical Monitor); Shivakumar, Kunigal N.

    2003-01-01

    Fiber reinforced ceramic composites are materials of choice for gas turbine engines because of their high thermal efficiency, thrust/weight ratio, and operating temperatures. However, the successful introduction of ceramic composites to hot structures is limited because of excessive cost of manufacturing, reproducibility, nonuniformity, and reliability. Intense research is going on around the world to address some of these issues. The proposed effort is to develop a comprehensive status report of the technology on processing, testing, failure mechanics, and environmental durability of carbon fiber reinforced ceramic composites through extensive literature study, vendor and end-user survey, visits to facilities doing this type of work, and interviews. Then develop a cooperative research plan between NASA GRC and NCA&T (Center for Composite Materials Research) for processing, testing, environmental protection, and evaluation of fiber reinforced ceramic composites.

  19. Effects of the dielectric properties of the ceramic-solvent interface on the binding of proteins to oxide ceramics: a non-local electrostatic approach.

    PubMed

    Rubinstein, Alexander I; Sabirianov, Renat F; Namavar, Fereydoon

    2016-10-14

    The rapid development of nanoscience and nanotechnology has raised many fundamental questions that significantly impede progress in these fields. In particular, understanding the physicochemical processes at the interface in aqueous solvents requires the development and application of efficient and accurate methods. In the present work we evaluate the electrostatic contribution to the energy of model protein-ceramic complex formation in an aqueous solvent. We apply a non-local (NL) electrostatic approach that accounts for the effects of the short-range structure of the solvent on the electrostatic interactions of the interfacial systems. In this approach the aqueous solvent is considered as a non-ionic liquid, with the rigid and strongly correlated dipoles of the water molecules. We have found that an ordered interfacial aqueous solvent layer at the protein- and ceramic-solvent interfaces reduces the charging energy of both the ceramic and the protein in the solvent, and significantly increases the electrostatic contribution to their association into a complex. This contribution in the presented NL approach was found to be significantly shifted with respect to the classical model at any dielectric constant value of the ceramics. This implies a significant increase of the adsorption energy in the protein-ceramic complex formation for any ceramic material. We show that for several biocompatible ceramics (for example HfO2, ZrO2, and Ta2O5) the above effect predicts electrostatically induced protein-ceramic complex formation. However, in the framework of the classical continuum electrostatic model (the aqueous solvent as a uniform dielectric medium with a high dielectric constant ∼80) the above ceramics cannot be considered as suitable for electrostatically induced complex formation. Our results also show that the protein-ceramic electrostatic interactions can be strong enough to compensate for the unfavorable desolvation effect in the process of protein-ceramic complex formation.

  20. Effects of the dielectric properties of the ceramic-solvent interface on the binding of proteins to oxide ceramics: a non-local electrostatic approach

    NASA Astrophysics Data System (ADS)

    Rubinstein, Alexander I.; Sabirianov, Renat F.; Namavar, Fereydoon

    2016-10-01

    The rapid development of nanoscience and nanotechnology has raised many fundamental questions that significantly impede progress in these fields. In particular, understanding the physicochemical processes at the interface in aqueous solvents requires the development and application of efficient and accurate methods. In the present work we evaluate the electrostatic contribution to the energy of model protein-ceramic complex formation in an aqueous solvent. We apply a non-local (NL) electrostatic approach that accounts for the effects of the short-range structure of the solvent on the electrostatic interactions of the interfacial systems. In this approach the aqueous solvent is considered as a non-ionic liquid, with the rigid and strongly correlated dipoles of the water molecules. We have found that an ordered interfacial aqueous solvent layer at the protein- and ceramic-solvent interfaces reduces the charging energy of both the ceramic and the protein in the solvent, and significantly increases the electrostatic contribution to their association into a complex. This contribution in the presented NL approach was found to be significantly shifted with respect to the classical model at any dielectric constant value of the ceramics. This implies a significant increase of the adsorption energy in the protein-ceramic complex formation for any ceramic material. We show that for several biocompatible ceramics (for example HfO2, ZrO2, and Ta2O5) the above effect predicts electrostatically induced protein-ceramic complex formation. However, in the framework of the classical continuum electrostatic model (the aqueous solvent as a uniform dielectric medium with a high dielectric constant ˜80) the above ceramics cannot be considered as suitable for electrostatically induced complex formation. Our results also show that the protein-ceramic electrostatic interactions can be strong enough to compensate for the unfavorable desolvation effect in the process of protein-ceramic complex formation.

  1. Effect of ceramic thickness and composite bases on stress distribution of inlays--a finite element analysis.

    PubMed

    Durand, Letícia Brandão; Guimarães, Jackeline Coutinho; Monteiro Junior, Sylvio; Baratieri, Luiz Narciso

    2015-01-01

    The purpose of this study was to determine the effect of cavity depth, ceramic thickness, and resin bases with different elastic modulus on von Mises stress patterns of ceramic inlays. Tridimensional geometric models were developed with SolidWorks image software. The differences between the models were: depth of pulpal wall, ceramic thickness, and presence of composite bases with different thickness and elastic modulus. The geometric models were constrained at the proximal surfaces and base of maxillary bone. A load of 100 N was applied. The stress distribution pattern was analyzed with von Mises stress diagrams. The maximum von Mises stress values ranged from 176 MPa to 263 MPa and varied among the 3D-models. The highest von Mises stress value was found on models with 1-mm-thick composite resin base and 1-mm-thick ceramic inlay. Intermediate values (249-250 MPa) occurred on models with 2-mm-thick composite resin base and 1-mm-thick ceramic inlay and 1-mm-thick composite resin base and 2-mm-thick ceramic inlay. The lowest values were observed on models restored exclusively with ceramic inlay (176 MPa to 182 MPa). It was found that thicker inlays distribute stress more favorably and bases with low elastic modulus increase stress concentrations on the internal surface of the ceramic inlay. The increase of ceramic thickness tends to present more favorable stress distribution, especially when bonded directly onto the cavity without the use of supporting materials. When the use of a composite base is required, composite resin with high elastic modulus and reduced thickness should be preferred.

  2. Fabrication and microstructures of functional gradient SiBCN–Nb composite by hot pressing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Min, E-mail: lcxsunmin@163.com; Fu, Ruoyu; Chen, Jun

    2016-04-15

    A functional gradient material with five layers composed of SiBCN ceramic and niobium (Nb) was prepared successfully by hot pressing. The phase composition, morphology features and microstructures were investigated in each layer of the gradient material. The Nb-containing compounds involving NbC, Nb{sub 6}C{sub 5}, Nb{sub 4}C{sub 3}, Nb{sub 5}Si{sub 3} and NbN increase with the volume fraction of Nb increasing in the sub-layer. They are randomly scattered (≤ 25 vol.% Nb), then strip-like, and finally distribute continuously (≥ 75 vol.% Nb). The size of BN(C) and SiC grains in Nb-containing layers is larger than in 100% SiBCN layer due tomore » the loss of the capsule-like structures. No distinct interfaces form in the transition regions indicating the gradual changes in phase composition and microstructures. - Highlights: • A functional gradient SiBCN–Nb material was prepared successfully by hot pressing. • Phase composition, morphology features and microstructures were investigated. • Thermodynamic calculation was used to aid in the phase analysis. • No distinct interfaces form typical of the functional gradient material.« less

  3. Robust Joining and Assembly Technologies for Ceramic Matrix Composites: Technical Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Mrityunjay, Singh; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Fiber reinforced ceramic matrix composites are under active consideration for use in a wide variety of high temperature applications within the aeronautics, energy, process, and nuclear industries. The engineering designs require fabrication and manufacturing of complex shaped parts. In many instances, it is more economical to build up complex shapes by Joining simple geometrical shapes. Thus, joining and attachment have been recognized as enabling technologies for successful utilization of ceramic components in various demanding applications. In this presentation, various challenges and opportunities in design, fabrication, and testing of high temperature joints in ceramic matrix composites will be presented. Various joint design philosophies and design issues in joining of composites will be discussed along with an affordable, robust ceramic joining technology (ARCJoinT). A wide variety of ceramic composites, in different shapes and sizes, have been joined using this technology. Microstructure and mechanical properties of joints will be reported. Current status of various ceramic joining technologies and future prospects for their applications will also be discussed.

  4. Properties and Applications of High Emissivity Composite Films Based on Far-Infrared Ceramic Powder

    PubMed Central

    Xiong, Yabo; Huang, Shaoyun; Wang, Wenqi; Liu, Xinghai; Li, Houbin

    2017-01-01

    Polymer matrix composite materials that can emit radiation in the far-infrared region of the spectrum are receiving increasing attention due to their ability to significantly influence biological processes. This study reports on the far-infrared emissivity property of composite films based on far-infrared ceramic powder. X-ray fluorescence spectrometry, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray powder diffractometry were used to evaluate the physical properties of the ceramic powder. The ceramic powder was found to be rich in aluminum oxide, titanium oxide, and silicon oxide, which demonstrate high far-infrared emissivity. In addition, the micromorphology, mechanical performance, dynamic mechanical properties, and far-infrared emissivity of the composite were analyzed to evaluate their suitability for strawberry storage. The mechanical properties of the far-infrared radiation ceramic (cFIR) composite films were not significantly influenced (p ≥ 0.05) by the addition of the ceramic powder. However, the dynamic mechanical analysis (DMA) properties of the cFIR composite films, including a reduction in damping and shock absorption performance, were significant influenced by the addition of the ceramic powder. Moreover, the cFIR composite films showed high far-infrared emissivity, which has the capability of prolonging the storage life of strawberries. This research demonstrates that cFIR composite films are promising for future applications. PMID:29186047

  5. Properties and Applications of High Emissivity Composite Films Based on Far-Infrared Ceramic Powder.

    PubMed

    Xiong, Yabo; Huang, Shaoyun; Wang, Wenqi; Liu, Xinghai; Li, Houbin

    2017-11-29

    Polymer matrix composite materials that can emit radiation in the far-infrared region of the spectrum are receiving increasing attention due to their ability to significantly influence biological processes. This study reports on the far-infrared emissivity property of composite films based on far-infrared ceramic powder. X-ray fluorescence spectrometry, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray powder diffractometry were used to evaluate the physical properties of the ceramic powder. The ceramic powder was found to be rich in aluminum oxide, titanium oxide, and silicon oxide, which demonstrate high far-infrared emissivity. In addition, the micromorphology, mechanical performance, dynamic mechanical properties, and far-infrared emissivity of the composite were analyzed to evaluate their suitability for strawberry storage. The mechanical properties of the far-infrared radiation ceramic (cFIR) composite films were not significantly influenced ( p ≥ 0.05) by the addition of the ceramic powder. However, the dynamic mechanical analysis (DMA) properties of the cFIR composite films, including a reduction in damping and shock absorption performance, were significant influenced by the addition of the ceramic powder. Moreover, the cFIR composite films showed high far-infrared emissivity, which has the capability of prolonging the storage life of strawberries. This research demonstrates that cFIR composite films are promising for future applications.

  6. Molecular dynamic simulations of the intergranular films between alumina and silicon nitride crystal grains

    NASA Astrophysics Data System (ADS)

    Zhang, Shenghong

    The intergranular films (IGFs) between the ceramics grains have very important effects on the structure and mechanical properties on the whole ceramics and have been studied for many decades. In the thesis, molecular dynamic (MD) computer simulations were applied to study the IGFs between the alumina and silicon nitride ceramic grains. Preferential adsorption of specific ions from the IGFs to the contacting surfaces of the alumina crystals was observed in the study of calcium-alumino-silicate glassy (CAS) IGFs formed between the combined basal and prism orientations of alpha-Al2O3 crystals. This segregation of specific ions to the interface enables formation of localized, ordered structures between the IGF and the crystals. However, the segregation behavior of the ions is anisotropic, depending on the orientation of the alpha-Al2O 3 crystals. Self-diffusion of calcium ions between these CAS IGFs was also carried out by MD simulations. The results show that the diffusion coefficients adjacent to the interfaces are smaller and the activation energies are much higher than those in the interior of the IGF and in bulk glasses. It was also suggested that Ca transport is mainly though the interior of the IGF and implies that diffusion would be significantly inhibited by sufficiently thin IGFs. The growth of the alumina ceramic grains was simulated in the contacting with IGFs containing high concentrations of aluminum ions. Five different compositions in the IGFs were studied. Results show preferential growth along the [1120] of the (1120) surface in comparison to growth along the [0001] direction on the (0001) surface for compositions near a Ca/Al ratio of 0.5. The simulations also show the mechanism by which Ca ions in the IGF inhibit growth on the basal surface. The simulations provide an atomistic view of attachment onto crystal surfaces, affecting grain growth in alumina. The dissolution of the alumina crystal grains in the silicate melts is another important issue in the application of alumina ceramics. The simulations results showed that alumina grains dissolved into the melts homogeneously at very high temperatures. The orientation of the crystals and the compositions of the melts only take effect at some intermediate temperatures, to make the alumina grains dissolution anisotropic. The fracture phenomena of the pure silica IGFs between the basal silicon nitride crystals were studied by applying the constant tensile strain on the simulated IGF system, as well as for the bulk silica glass for the comparison. The data indicated that the fracture was happened in the interior of the IGFs and the thickness of the IGFs has important effect on the fracture stress/strain relationships.

  7. A review of failure models for unidirectional ceramic matrix composites under monotonic loads

    NASA Technical Reports Server (NTRS)

    Tripp, David E.; Hemann, John H.; Gyekenyesi, John P.

    1989-01-01

    Ceramic matrix composites offer significant potential for improving the performance of turbine engines. In order to achieve their potential, however, improvements in design methodology are needed. In the past most components using structural ceramic matrix composites were designed by trial and error since the emphasis of feasibility demonstration minimized the development of mathematical models. To understand the key parameters controlling response and the mechanics of failure, the development of structural failure models is required. A review of short term failure models with potential for ceramic matrix composite laminates under monotonic loads is presented. Phenomenological, semi-empirical, shear-lag, fracture mechanics, damage mechanics, and statistical models for the fast fracture analysis of continuous fiber unidirectional ceramic matrix composites under monotonic loads are surveyed.

  8. Effect of Jig Design and Assessment of Stress Distribution in Testing Metal-Ceramic Adhesion.

    PubMed

    Özcan, Mutlu; Kojima, Alberto Noriyuki; Nishioka, Renato Sussumu; Mesquita, Alfredo Mikail Melo; Bottino, Marco Antonio; Filho, Gilberto Duarte

    2016-12-01

    In testing adhesion using shear bond test, a combination of shear and tensile forces occur at the interface, resulting in complex stresses. The jig designs used for this kind of test show variations in published studies, complicating direct comparison between studies. This study evaluated the effect of different jig designs on metal-ceramic bond strength and assessed the stress distribution at the interface using finite element analysis (FEA). Metal-ceramic (Metal: Ni-Cr, Wiron 99, Bego; Ceramic: Vita Omega 900, Vita) specimens (N = 36) (diameter: 4 mm, veneer thickness: 4 mm; base diameter: 5 mm, thickness: 1 mm) were fabricated and randomly divided into three groups (n = 12 per group) to be tested using one of the following jig designs: (a) chisel (CH) (ISO 11405), (b) steel strip (SS), (c) piston (PI). Metal-ceramic interfaces were loaded under shear until debonding in a universal testing machine (0.5 mm/min). Failure types were evaluated using scanning electron microscopy (SEM). FEA was used to study the stress distribution using different jigs. Metal-ceramic bond strength data (MPa) were analyzed using ANOVA and Tukey's tests (α = 0.05). The jig type significantly affected the bond results (p = 0.0001). PI type of jig presented the highest results (MPa) (p < 0.05) (58.2 ± 14.8), followed by CH (38.7 ± 7.6) and SS jig type (23.3 ± 4.2) (p < 0.05). Failure types were exclusively a combination of cohesive failure in the opaque ceramic and adhesive interface failure. FEA analysis indicated that the SS jig presented slightly more stress formation than with the CH jig. The PI jig presented small stress concentration with more homogeneous force distribution compared to the CH jig where the stress concentrated in the area where the force was applied. Metal-ceramic bond strength was affected by the jig design. Accordingly, the results of in vitro studies on metal-ceramic adhesion should be evaluated with caution. When adhesion of ceramic materials to metals is evaluated in in vitro studies, it should be noted that the loading jig type affects the results. Clinical observations should report on the location and type of ceramic fractures in metal-ceramic reconstructions so that the most relevant test method can be identified. © 2015 by the American College of Prosthodontists.

  9. Low temperature joining of ceramic composites

    DOEpatents

    Barton, Thomas J.; Anderson, Iver E.; Ijadi-Maghsoodi, Sina; Nosrati, Mohammad; Unal, Ozer

    1999-01-12

    A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or cermaic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix.

  10. Low temperature joining of ceramic composites

    DOEpatents

    Barton, Thomas J.; Anderson, Iver E.; Ijadi-Maghsoodi, Sina; Nosrati, Mohammad; Unal, Ozer

    2001-04-10

    A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or cermaic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix.

  11. Comparison of Heavy-Duty Scuffing Behavior between Chromium-Based Ceramic Composite and Nickel-Chromium-Molybdenum-Coated Ring Sliding against Cast Iron Liner under Starvation

    PubMed Central

    Shen, Yan; Yu, Baihong; Lv, Yutao; Li, Bin

    2017-01-01

    A running-in and starved lubrication experiment is designed to investigate the heavy-duty scuffing behavior of piston ring coatings against cast iron (Fe) cylinder liner using the piston ring reciprocating liner test rig. The scuffing resistance of the piston ring with the chromium-based ceramic composite coating (CKS), and that with the thermally sprayed nickel-chromium-molybdenum coating (NCM) is compared at different nominal pressures (40~100 MPa) and temperatures (180~250 °C). With the failure time as a criterion, the rank order is as follows: NCM/Fe > CKS/Fe. Before the scoring occurs at the interface of the piston ring and cylinder liner (PRCL), the cast iron liner enters into a “polish wear” stage, and iron-based adhesive materials begin to form on the piston ring surface. With the macroscopic adhesion formation, the plastic shearing cycle causes surface damages mainly due to abrasive effects for the CKS/Fe pairs and adhesive effects for the NCM/Fe pairs. PMID:29036911

  12. Joining and Integration of Silicon Carbide-Based Materials for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Singh, Mrityunjay

    2016-01-01

    Advanced joining and integration technologies of silicon carbide-based ceramics and ceramic matrix composites are enabling for their implementation into wide scale aerospace and ground-based applications. The robust joining and integration technologies allow for large and complex shapes to be fabricated and integrated with the larger system. Potential aerospace applications include lean-direct fuel injectors, thermal actuators, turbine vanes, blades, shrouds, combustor liners and other hot section components. Ground based applications include components for energy and environmental systems. Performance requirements and processing challenges are identified for the successful implementation different joining technologies. An overview will be provided of several joining approaches which have been developed for high temperature applications. In addition, various characterization approaches were pursued to provide an understanding of the processing-microstructure-property relationships. Microstructural analysis of the joint interfaces was conducted using optical, scanning electron, and transmission electron microscopy to identify phases and evaluate the bond quality. Mechanical testing results will be presented along with the need for new standardized test methods. The critical need for tailoring interlayer compositions for optimum joint properties will also be highlighted.

  13. Examination of ceramic/enamel interfacial debonding using acoustic emission and optical coherence tomography.

    PubMed

    Lin, Chun-Li; Kuo, Wen-Chuan; Chang, Yen-Hsiang; Yu, Jin-Jie; Lin, Yun-Chu

    2014-08-01

    This study investigates monitored micro-crack growth and damage in the ceramic/enamel adhesive interface using the acoustic emission (AE) technique with optical coherence tomography (OCT) under fatigue shear testing. Shear bond strength (SBS) was measured first with eight prepared ceramic/enamel adhesive specimens under static loads. The fatigue shear testing was performed with three specimens at each cyclic load according to a modified ISO14801 method, applying at 80%, 75%, 70%, and 65% of the SBS to monitor interface debonding. The number of cycles at each load was recorded until ceramic/enamel adhesive interface debonding occurred. The AE technique was used to detect micro-crack signals in static and fatigue shear bond tests. The results showed that the average SBS value in the static tests was 18.07 ± 1.72 MPa (mean ± standard deviation), expressed in Newton's at 56.77 ± 5.40N. The average number of fatigue cycles in which ceramic/enamel interface damage was detected in 80%, 75%, 70% and 65% of the SBS were 41, 410, 8141 and 76,541, respectively. The acoustic behavior varied according to the applied load level. Events were emitted during 65% and 70% fatigue tests. A good correlation was observed between the crack location in OCT images and the number of AE signal hits. The AE technique combined with OCT images as a pre-clinical assessment tool to determine the integrity of cemented load bearing restored ceramic material. Sustainable cyclic load stresses in ceramic/enamel bonded specimens were substantially lower than the measured SBS. Predicted S-N curve showed that the maximum endured load was 10.98 MPa (about 34.48 N) passing 10(6) fatigue cyclic. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Role of laser beam radiance in different ceramic processing: A two wavelengths comparison

    NASA Astrophysics Data System (ADS)

    Shukla, Pratik; Lawrence, Jonathan

    2013-12-01

    Effects of laser beam radiance (brightness) of the fibre and the Nd3+:YAG laser were investigated during surface engineering of the ZrO2 and Si3N4 advanced ceramics with respect to dimensional size and microstructure of both of the advanced ceramics. Using identical process parameters, the effects of radiance of both the Nd3+:YAG laser and a fibre laser were compared thereon the two selected advanced ceramics. Both the lasers showed differences in each of the ceramics employed in relation to the microstructure and grain size as well as the dimensional size of the laser engineered tracks-notwithstanding the use of identical process parameters namely spot size; laser power; traverse speed; Gaussian beam modes; gas flow rate and gas composition as well the wavelengths. From this it was evident that the difference in the laser beam radiance between the two lasers would have had much to do with this effect. The high radiance fibre laser produced larger power per unit area in steradian when compared to the lower radiance of the Nd3+:YAG laser. This characteristically produced larger surface tracks through higher interaction temperature at the laser-ceramic interface. This in turn generated bigger melt-zones and different cooling rates which then led to the change in the microstructure of both the Si3N4 and ZrO2 advance ceramics. Owing to this, it was indicative that lasers with high radiance would result in much cheaper and cost effective laser assisted surface engineering processes, since lower laser power, faster traverse speeds, larger spot sizes could be used in comparison to lasers with lower radiance which require much slower traverse speed, higher power levels and finer spot sizes to induce the same effect thereon materials such as the advanced ceramics.

  15. Organosilicon Polymers as Precursors for Silicon-Containing Ceramics.

    DTIC Science & Technology

    1987-02-23

    preceramic polymer , shrinkage on pyrolysis could be considerable. Ceramic fibers of diverse chemical compositions are sought for...In the design of preceramic polymers , achievement of the desired elemental composition in the ceramic obtained from them ( SiC and Si3N4 in the...approximately one, pyrolysis of the product polymer gave a black ceramic solid in 84% yield which analysis showed to have a composition (1 SiC + 0.22

  16. The biomechanical behavior on the interface of tumor arthrosis/allograft prosthetic composite by finite element analysis

    NASA Astrophysics Data System (ADS)

    Chen, H. Z.; Jiang, W.; Zou, W.; Luo, J. M.; Chen, J. Y.; Tu, C. Q.; Xing, B. B.; Gu, Z. W.; Zhang, X. D.

    2008-11-01

    The biomechanical behavior of the uniting interface between the allograft bone and the autogenetic bone plays an important role in the treatment of the proximal femur massive defects with artificial tumor arthrosis/allograft prosthetic composite (TAAPC). According to the CT data of a patient, a 3D medical treatment model of TAAPC was established. Under the loads of 1.5 and 2.5 times standard body weight (70 kg), the mechanical behavior of the treatment model was analyzed by finite element analysis (FEA) for three typical healing periods. The results show that there are significant differences in the stress values and distribution in different healing periods. With healing of osteotomy, the hardness of the tissue of the uniting interface increases, the stress in uniting area was increased greatly and the stress concentration decreased. After cured the stress almost reached the level of normal bone. In the initial stage of healing, the healing training is not encouraged because there is an obvious risk of fracture of prosthesis and bone cement. In addition, porous hydroxyapatite (HA) ceramic used as bone tissue scaffold for this case, not only facilitates the generation of new bone, but also can avoid this risk caused by the non-uniting interface.

  17. Resistance to bond degradation between dual-cure resin cements and pre-treated sintered CAD-CAM dental ceramics

    PubMed Central

    Osorio, Raquel; Monticelli, Francesca; Osorio, Estrella; Toledano, Manuel

    2012-01-01

    Objective: To evaluate the bond stability of resin cements when luted to glass-reinforced alumina and zirconia CAD/CAM dental ceramics. Study design: Eighteen glass-infiltrated alumina and eighteen densely sintered zirconia blocks were randomly conditioned as follows: Group 1: No treatment; Group 2: Sandblasting (125 µm Al2O3-particles); and Group 3: Silica-coating (50 µm silica-modified Al2O3-particles). Composite samples were randomly bonded to the pre-treated ceramic surfaces using different resin cements: Subgroup 1: Clearfil Esthetic Cement (CEC); Subgroup 2: RelyX Unicem (RXU); and Subgroup 3: Calibra (CAL). After 24 h, bonded specimens were cut into 1 ± 0.1 mm2 sticks. One-half of the beams were tested for microtensile bond strength (MTBS). The remaining one-half was immersed in 10 % NaOCl aqueous solution (NaOClaq) for 5 h before testing. The fracture pattern and morphology of the debonded surfaces were assessed with a field emission gun scanning electron microscope (FEG-SEM). A multiple ANOVA was conducted to analyze the contributions of ceramic composition, surface treatment, resin cement type, and chemical challenging to MTBS. The Tukey test was run for multiple comparisons (p < 0.05). Results: After 24 h, CEC luted to pre-treated zirconia achieved the highest MTBS. Using RXU, alumina and zirconia registered comparable MTBS. CAL failed prematurely, except when luted to sandblasted zirconia. After NaOClaq storage, CEC significantly lowered MTBS when luted to zirconia or alumina. RXU decreased MTBS only when bonded to silica-coated alumina. CAL recorded 100 % of pre-testing failures. Micromorphological alterations were evident after NaOClaq immersion. Conclusions: Resin-ceramic interfacial longevity depended on cement selection rather than on surface pre-treatments. The MDP-containing and the self-adhesive resin cements were both suitable for luting CAD/CAM ceramics. Despite both cements being prone to degradation, RXU luted to zirconia or untreated or sandblasted alumina showed the most stable interfaces. CAL experimented spontaneous debonding in all tested groups. Key words:CAD/CAM ceramic, alumina, zirconia, resin cement, surface pre-treatment, sandblasting, silica-coating, chemical aging, bond degradation, microtensile bond strength. PMID:22322517

  18. Analytical Solution for the Critical Velocity of Pushing/Engulfment Transition

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Stefanescu, Doru M.; Sen, Subhayu

    2004-01-01

    The distribution of ceramic particles in a metal matrix composite material depends primarily on the interaction of the particles with the solid/liquid interface during the solidification process. A numerical model that describes the evolution of the shape of the solid/liquid interface in the proximity of a foreign particle will presented in this paper. The model accounts for the influence of the temperature gradient and the Gibbs-Thomson and disjoining pressure effects. It shows that for the systems characterized by k(sub p) < k(sub L) the disjoining pressure causes the interface curvature to change its sign in the close-contact particle/interface region. It also shows that the increase of the temperature gradient diminishes the effect of the disjoining pressure. The analysis of the numerical results obtained for a large range of processing conditions and materials parameters has led to the development of an analytical solution for the critical velocity of pushing/engulfinent transition. The theoretical results will be discussed and compared with the experimental measurements performed under microgravity conditions.

  19. Morphology and Shear Strength of Lead-Free Solder Joints with Sn3.0Ag0.5Cu Solder Paste Reinforced with Ceramic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Yakymovych, A.; Plevachuk, Yu.; Švec, P.; Švec, P.; Janičkovič, D.; Šebo, P.; Beronská, N.; Roshanghias, A.; Ipser, H.

    2016-12-01

    To date, additions of different oxide nanoparticles is one of the most widespread procedures to improve the mechanical properties of metals and metal alloys. This research deals with the effect of minor ceramic nanoparticle additions (SiO2, TiO2 and ZrO2) on the microstructure and mechanical properties of Cu/solder/Cu joints. The reinforced Sn3.0Ag0.5Cu (SAC305) solder alloy with 0.5 wt.% and 1.0 wt.% of ceramic nanoparticles was prepared through mechanically stirring. The microstructure of as-solidified Cu/solder/Cu joints was studied using scanning electron microscopy. The additions of ceramic nanoparticles suppressed the growth of the intermetallic compound layer Cu6Sn5 at the interface solder/Cu and improved the microstructure of the joints. Furthermore, measurements of mechanical properties showed improved shear strength of Cu/composite solder/Cu joints compared to joints with unreinforced solder. This fact related to all investigated ceramic nanoinclusions and should be attributed to the adsorption of nanoparticles on the grain surface during solidification. However, this effect is less pronounced on increasing the nanoinclusion content from 0.5 wt.% to 1.0 wt.% due to agglomeration of nanoparticles. Moreover, a comparison analysis showed that the most beneficial influence was obtained by minor additions of SiO2 nanoparticles into the SAC305 solder alloy.

  20. Evaluation of metal-ceramic bond characteristics of three dental Co-Cr alloys prepared with different fabrication techniques.

    PubMed

    Wang, Hongmei; Feng, Qing; Li, Ning; Xu, Sheng

    2016-12-01

    Limited information is available regarding the metal-ceramic bond strength of dental Co-Cr alloys fabricated by casting (CAST), computer numerical control (CNC) milling, and selective laser melting (SLM). The purpose of this in vitro study was to evaluate the metal-ceramic bond characteristics of 3 dental Co-Cr alloys fabricated by casting, computer numerical control milling, and selective laser melting techniques using the 3-point bend test (International Organization for Standardization [ISO] standard 9693). Forty-five specimens (25×3×0.5 mm) made of dental Co-Cr alloys were prepared by CAST, CNC milling, and SLM techniques. The morphology of the oxidation surface of metal specimens was evaluated by scanning electron microscopy (SEM). After porcelain application, the interfacial characterization was evaluated by SEM equipped with energy-dispersive spectrometry (EDS) analysis, and the metal-ceramic bond strength was assessed with the 3-point bend test. Failure type and elemental composition on the debonding interface were assessed by SEM/EDS. The bond strength was statistically analyzed by 1-way ANOVA and Tukey honest significant difference test (α=.05). The oxidation surfaces of the CAST, CNC, and SLM groups were different. They were porous in the CAST group but compact and irregular in the CNC and SLM groups. The metal-ceramic interfaces of the SLM and CNC groups showed excellent combination compared with those of the CAST group. The bond strength was 37.7 ±6.5 MPa for CAST, 43.3 ±9.2 MPa for CNC, and 46.8 ±5.1 MPa for the SLM group. Statistically significant differences were found among the 3 groups tested (P=.028). The debonding surfaces of all specimens exhibited cohesive failure mode. The oxidation surface morphologies and thicknesses of dental Co-Cr alloys are dependent on the different fabrication techniques used. The bond strength of all 3 groups exceed the minimum acceptable value of 25 MPa recommended by ISO 9693; hence, dental Co-Cr alloy fabricated with the SLM techniques could be a promising alternative for metal ceramic restorations. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  1. Processing and optimization of functional ceramic coatings and inorganic nanomaterials

    NASA Astrophysics Data System (ADS)

    Nyutu, Edward Kennedy G.

    Processing of functional inorganic materials including zero (0-D) dimensional (e.g. nanoparticles), 1-D (nanorods, nanofibers), and 2-D (films/coating) structures is of fundamental and technological interest. This research will have two major sections. The first part of section one focuses on the deposition of silicon dioxide onto a pre-deposited molybdenum disilicide coating on molybdenum substrates for both high (>1000 °C) and moderate (500-600 °C) temperature oxidation protection. Chemical vapor deposition (CVD/MOCVD) techniques will be utilized to deposit the metal suicide and oxide coatings. The focus of this study will be to establish optimum deposition conditions and evaluate the metal oxide coating as oxidation - thermal barriers for Mo substrates under both isothermal (static) and cyclic oxidation conditions. The second part of this section will involve a systematic evaluation of a boron nitride (BN) interface coating prepared by chemical vapor deposition. Ceramic matrix composites (CMCs) are prospective candidates for high (>1000 °C) temperature applications and fiber- matrix interfaces are the dominant design parameters in ceramic matrix composites (CMCs). An important goal of the study is to determine a set of process parameters, which would define a boron nitride (BN) interface coating by a chemical vapor deposition (CVD) process with respect to coating. In the first part of the second section, we will investigate a new approach to synthesize ultrafine metal oxides that combines microwave heating and an in-situ ultrasonic mixing of two or more liquid precursors with a tubular flow reactor. Different metal oxides such as nickel ferrite and zinc aluminate spinels will be studied. The synthesis of metal oxides were investigated in order to study the effects of the nozzle and microwave (INM process) on the purity, composition, and particle size of the resulting powders. The second part of this research section involves a study of microwave frequency effects on the synthesis of nanocrystalline tetragonal barium titanate. The effects of microwave frequency (fixed and variable), microwave bandwidths sweep time, and aging time on the microstructure, particle sizes, phase purity, surface areas, and porosities of the as-prepared BaTiO3 were systematically investigated. The final part of the research involves a new rapid and facile synthetic route to prepare size-tunable, ultranarrow, high surface area OMS-2 nanomaterials via open-vessel microwave-assisted refluxing preparations without employing templates or surfactants. The particle size control is achieved by varying the concentration or type of non-aqueous co-solvent. The structural, textural, and catalytic application properties of the prepared nanomaterials are investigated.

  2. Multiscale Modeling of Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Mital, Subodh K.; Pineda, Evan J.; Arnold, Steven M.

    2015-01-01

    Results of multiscale modeling simulations of the nonlinear response of SiC/SiC ceramic matrix composites are reported, wherein the microstructure of the ceramic matrix is captured. This micro scale architecture, which contains free Si material as well as the SiC ceramic, is responsible for residual stresses that play an important role in the subsequent thermo-mechanical behavior of the SiC/SiC composite. Using the novel Multiscale Generalized Method of Cells recursive micromechanics theory, the microstructure of the matrix, as well as the microstructure of the composite (fiber and matrix) can be captured.

  3. Experimental investigation on IXV TPS interface effects in Plasmatron

    NASA Astrophysics Data System (ADS)

    Ceglia, Giuseppe; Trifoni, Eduardo; Gouriet, Jean-Baptiste; Chazot, Olivier; Mareschi, Vincenzo; Rufolo, Giuseppe; Tumino, Giorgio

    2016-06-01

    An experimental investigation related to the thermal protection system (TPS) interfaces of the intermediate experimental vehicle has been carried out in the Plasmatron facility at the von Karman Institute for fluid dynamics. The objective of this test campaign is to qualify the thermal behaviours of two different TPS interfaces under flight representative conditions in terms of heat flux and integral heat load ( 180 kW/m2 for 700 s). Three test samples are tested in off-stagnation configuration installed on an available flat plate holder under the same test conditions. The first junction is composed of an upstream ceramic matrix composite (CMC) plate and an ablative P50 cork composite block separated by a gap of 2 mm. The second one is made of an upstream P50 block and a downstream ablative SV2A silicon elastomer block with silicon-based filler in between. A sample composed of P50 material is tested in order to obtain reference results without TPS interface effect. The overheating at the CMC-P50 interface due to the jump of the catalytic properties of the materials, and the recession/swelling behaviour of the P50-SV2A interface are under investigation. All the test samples withstand relatively well the imposed heat flux for the test duration. As expected, both the ablative materials undergo a thermal degradation. The P50 exhibits the formation of a porous char layer and its recession; on the other hand, the SV2A swells and forms a fragile char layer.

  4. Infiltration processing of metal matrix composites using coated ceramic particulates

    NASA Astrophysics Data System (ADS)

    Leon-Patino, Carlos Alberto

    2001-07-01

    A new process was developed to fabricate particulate metal matrix composites (MMCs). The process involves three steps: (1) modifying the particulate surface by metal coating, (2) forming a particulate porous compact; and (3) introducing metal into the channel network by vacuum infiltration. MMCs with different reinforcements, volume fractions, and sizes can be produced by this technique. Powders of alumina and silicon carbide were successfully coated with nickel and copper in preparation for infiltration with molten aluminum. Electroless Ni and Cu deposition was used since it enhances the wettability of the reinforcements for composite fabrication. While Cu deposits were polycrystalline, traces of phosphorous co-deposited from the electroless bath gave an amorphous Ni-P coating. The effect of metal coating on wetting behavior was evaluated at 800°C on plain and metal-coated ceramic plates using a sessile drop technique. The metallic films eliminated the non-wetting behavior of the uncoated ceramics, leading to equilibrium contact angles in the order of 12° and below 58° for Ni and Cu coated ceramics, respectively. The spreading data indicated that local diffusion at the triple junction was the governing mechanism of the wetting process. Precipitation of intermetallic phases in the drop/ceramic interface delayed the formation of Al4C3. Infiltration with molten Al showed that the coated-particulates are suitable as reinforcing materials for fabricating MMCs, giving porosity-free components with a homogeneously distributed reinforcing phase. The coating promoted easy metal flow through the preform, compared to the non-infiltration behavior of the uncoated counterparts. Liquid state diffusion kinetics due to temperature dependent viscosity forces controlled the infiltration process. Microstructural analysis indicated the formation of intermetallic phases such as CuAl 2, in the case of Cu coating, and Ni2Al3 and NiAl 3 when Ni-coated powders were infiltrated. The overall Ni and Cu content increased from bottom to top of the samples due to dissolution of the metal film by the stream of liquid Al during infiltration. The strengths of the Al/Ni-SiC composites, measured by four-point bending, were 205 and 225 MPa for samples reinforced with 78 mum and 49 mum Ni-SiC, respectively. The mode of fracture was mainly controlled by SiC particle fracture.

  5. Oxidation and Corrosion of Ceramics and Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Opila, Elizabeth J.; Lee, Kang N.

    2000-01-01

    Ceramics and ceramic matrix composites are candidates for numerous applications in high temperature environments with aggressive gases and possible corrosive deposits. There is a growing realization that high temperature oxidation and corrosion issues must be considered. There are many facets to these studies, which have been extensively covered in some recent reviews. The focus of this paper is on current research, over the past two years. In the authors' view, the most important oxidation and corrosion studies have focused on four major areas during this time frame. These are; (I) Oxidation of precursor-based ceramics; (II) Studies of the interphase material in ceramic matrix composites; (III) Water vapor interactions with ceramics, particularly in combustion environments; and (IV) Development of refractory oxide coatings for silicon-based ceramics. In this paper, we shall explore the most current work in each of these areas.

  6. Method of making sintered ductile intermetallic-bonded ceramic composites

    DOEpatents

    Plucknett, Kevin; Tiegs, Terry N.; Becher, Paul F.

    1999-01-01

    A method of making an intermetallic-bonded ceramic composite involves combining a particulate brittle intermetallic precursor with a particulate reactant metal and a particulate ceramic to form a mixture and heating the mixture in a non-oxidizing atmosphere at a sufficient temperature and for a sufficient time to react the brittle intermetallic precursor and the reactant metal to form a ductile intermetallic and sinter the mixture to form a ductile intermetallic-bonded ceramic composite.

  7. Mechanical Behavior of a Hi-Nicalon(tm)/SiC Composite Having a Polycarbosilane Derived Matrix

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.; Calomino, Anthony M.; McCue, Terry R.

    1999-01-01

    Polymer infiltration of a rigidized preform, followed by pyrolysis to convert the polymer to a ceramic, potentially offers a lower cost alternative to CVD. It also offers more moderate temperature requirements than melt infiltration approaches, which should minimize potential fiber damage during processing. However, polymer infiltration and pyrolysis results in a more microcracked matrix. Preliminary mechanical property characterization, including elevated temperature (1204 C) tensile, 500 h stress rupture behavior and low cycle fatigue, was conducted on Hi-Nicalon (TM)/Si-C-(O) composites having a dual layer BN/SiC interface and a matrix derived by impregnation and pyrolysis of allylhydridopolycarbosilane (AHPCS). Microstructural evaluation of failure surfaces and of polished transverse and longitudinal cross sections of the failed specimens was used to identify predominant failure mechanisms. In stress rupture testing at 1093 C, the failure was interface dominated, while at 1204 C in both stress rupture and two hour hold/fatigue tests failure was matrix dominated, resulting in specimen delamination.

  8. Effect of fiber reinforcements on thermo-oxidative stability and mechanical properties of polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.

    1991-01-01

    A number of studies have investigated the thermo-oxidative behavior of polymer matrix composites. Two significant observations have been made from these research efforts: (1) fiber reinforcement has a significant effect on composite thermal stability; and (2) geometric effects must be considered when evaluating thermal aging data. A compilation of some results from these studies is presented, and this information shows the influence of the reinforcement fibers on the oxidative degradation of various polymer matrix composites. The polyimide PMR-15 was the matrix material that was used in these studies. The control composite material was reinforced with Celion 6000 graphite fiber. T-40R graphite fibers, along with some very stable ceramic fibers were selected as reinforcing fibers because of their high thermal stability. The ceramic fibers were Nicalon (silicon carbide) and Nextel 312 (alumina-silica-boron oxide). The mechanical properties of the two graphite fiber composites were significantly different, probably owing to variations in interfacial bonding between the fibers and the polyimide matrix. The Celion 6000/PMR-15 bond is very tight but the T-40/PMR-15 bond is less tight. Three oxidation mechanisms were observed: (1) the preferential oxidation of the Celion 6000 fiber ends at cut surfaces, leaving a surface of matrix material with holes where the fiber ends were originally situated; (2) preferential oxidation of the composite matrix; and (3) interfacial degradation by oxidation. The latter two mechanisms were also observed on fiber end cut surfaces. The fiber and interface attacks appeared to initiate interfiber cracking along these surfaces.

  9. Microstructure & properties of SiC-AlN multiphase ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Y.B.; Tan, S.H.; Jiang, D.L.

    It is that AlN and SiC mixture could form solid solution at the temperature from 1800{degrees}C to 2100{degrees}C, its result will be conducive to important benefits for the improving to study and develop on the silicon carbide ceramics. The effect of AlN as a mainly additive phase on silicon carbide ceramic were investigated in this paper. For the optimum hot press(HP) process, SiC and AlN mixture formed solid solution at the 1950{degrees}C--2050{degrees}C in Ar environment. The properties of SiC-AlN composition were that bending strength more than 600 MPa and fracture toughness more than 7 MPa.m{sup 1/2} at the room temperature(R.T)more » could be received, at the same time the strength hold ascertain value from R.T. to 1400{degrees}C in air. The dense samples were examined by metallograph, X-ray diffraction (XRD), scanning electron microscope (SEM) & transmission electron microscope (TEM) to determine the fracture structure, interface phase, crack spread etc.« less

  10. Effect of Impact Angle on Ceramic Deposition Behavior in Composite Cold Spray: A Finite-Element Study

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Rohan; Song, Jun

    2017-10-01

    During the cold spraying of particle-reinforced metal matrix composite coatings (ceramic and metal particles mixture) on metal substrates, ceramic particles may either get embedded in the substrate/deposited coating or may rebound from the substrate surface. In this study, the dependence of the ceramic rebounding phenomenon on the spray angle and its effect on substrate erosion have been analyzed using finite-element analysis. From the numerical simulations, it was found that the ceramic particle density and substrate material strength played the major roles in determining the embedding and ceramic retention behavior. Substrate material erosion also influenced the ceramic retention, and the material loss increased as the impact angles decreased from normal. In general, the results concluded that decreasing the impact angle promoted the retention possibility of ceramics in the substrate. This study provides new theoretical insights into the effect of spray angles on the ceramic retention and suggests a new route toward optimizing the spraying process to increase the ceramic retention in composite coatings cold spray.

  11. Influence of interfacial shear strength on the mechanical properties of SiC fiber reinforced reaction-bonded silicon nitride matrix composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.

    1990-01-01

    The influence of fiber/matrix interface microstructure and interfacial shear strength on the mechanical properties of a fiber-reinforced ceramic composite was evaluated. The composite consisted of approximately 30 vol percent uniaxially aligned 142 microns diameter SiC fibers (Textron SCS-6) in a reaction-bonded Si3N4 matrix (SiC/RBSN). The interface microstructure was varied by controlling the composite fabrication conditions and by heat treating the composite in an oxidizing environment. Interfacial shear strength was determined by the matrix crack spacing method. The results of microstructural examination indicate that the carbon-rich coating provided with the as-produced SiC fibers was stable in composites fabricated at 1200 C in a nitrogen or in a nitrogen plus 4 percent hydrogen mixture for 40 hr. However this coating degraded in composites fabricated at 1350 C in N2 + 4 percent H2 for 40 and 72 hr and also in composites heat treated in an oxidizing environment at 600 C for 100 hr after fabrication at 1200 C in a nitrogen. It was determined that degradation occurred by carbon removal which in turn had a strong influence on interfacial shear strength and other mechanical properties. Specifically, as the carbon coating was removed, the composite interfacial shear strength, primary elastic modulus, first matrix cracking stress, and ultimate tensile strength decreased, but the first matrix cracking strain remained nearly the same.

  12. Effects of graphene plates' adoption on the microstructure, mechanical properties, and in vivo biocompatibility of calcium silicate coating.

    PubMed

    Xie, Youtao; Li, Hongqin; Ding, Chuanxian; Zheng, Xuebin; Li, Kai

    2015-01-01

    Calcium silicate (CS) ceramic is a good coating candidate for biomedical implants to improve biocompatibility and accelerate early osseointegration. However, the poor fracture toughness and wear resistance of this ceramic material restricts the long-term performance of implants. In this study, graphene plates (GPs) were used as reinforcement to improve the mechanical properties of CS coating. Composite coating containing 1.5 weight % GPs was prepared by vacuum plasma spraying technology. The good survival of the GPs in the composite coating was demonstrated by Raman analysis, although the defects of the GPs were increased after plasma spraying. Effects of the GPs' adoption on the microstructure of the coating were studied by scanning electron microscopy and transmission electron microscopy. Results showed that the GPs were homogenously distributed in the CS grains interface or enwrapped on the particles, and exhibited good wetting behavior with the CS matrix. The wear properties of the composite coating were obviously enhanced by the reinforcement of GPs. The reinforcement mechanism was attributed to the enhanced micro-hardness and interfacial bonding of the particles in the coating. In vivo experiments demonstrated that the composite coating possessed similarly good biocompatibility compared to pure CS coating. The bone-implant contact ratio reached 84.3%±7.4% for GPs/CS coating and 79.6%±9.4% for CS coating after 3 months' implantation.

  13. Effects of graphene plates’ adoption on the microstructure, mechanical properties, and in vivo biocompatibility of calcium silicate coating

    PubMed Central

    Xie, Youtao; Li, Hongqin; Ding, Chuanxian; Zheng, Xuebin; Li, Kai

    2015-01-01

    Calcium silicate (CS) ceramic is a good coating candidate for biomedical implants to improve biocompatibility and accelerate early osseointegration. However, the poor fracture toughness and wear resistance of this ceramic material restricts the long-term performance of implants. In this study, graphene plates (GPs) were used as reinforcement to improve the mechanical properties of CS coating. Composite coating containing 1.5 weight % GPs was prepared by vacuum plasma spraying technology. The good survival of the GPs in the composite coating was demonstrated by Raman analysis, although the defects of the GPs were increased after plasma spraying. Effects of the GPs’ adoption on the microstructure of the coating were studied by scanning electron microscopy and transmission electron microscopy. Results showed that the GPs were homogenously distributed in the CS grains interface or enwrapped on the particles, and exhibited good wetting behavior with the CS matrix. The wear properties of the composite coating were obviously enhanced by the reinforcement of GPs. The reinforcement mechanism was attributed to the enhanced micro-hardness and interfacial bonding of the particles in the coating. In vivo experiments demonstrated that the composite coating possessed similarly good biocompatibility compared to pure CS coating. The bone-implant contact ratio reached 84.3%±7.4% for GPs/CS coating and 79.6%±9.4% for CS coating after 3 months’ implantation. PMID:26089662

  14. Carbon nanotube, graphene and boron nitride nanotube reinforced bioactive ceramics for bone repair.

    PubMed

    Gao, Chengde; Feng, Pei; Peng, Shuping; Shuai, Cijun

    2017-10-01

    The high brittleness and low strength of bioactive ceramics have severely restricted their application in bone repair despite the fact that they have been regarded as one of the most promising biomaterials. In the last few years, low-dimensional nanomaterials (LDNs), including carbon nanotubes, graphene and boron nitride nanotubes, have gained increasing attention owing to their favorable biocompatibility, large surface specific area and super mechanical properties. These qualities make LDNs potential nanofillers in reinforcing bioactive ceramics. In this review, the types, characteristics and applications of the commonly used LDNs in ceramic composites are summarized. In addition, the fabrication methods for LDNs/ceramic composites, such as hot pressing, spark plasma sintering and selective laser sintering, are systematically reviewed and compared. Emphases are placed on how to obtain the uniform dispersion of LDNs in a ceramic matrix and maintain the structural stability of LDNs during the high-temperature fabrication process of ceramics. The reinforcing mechanisms of LDNs in ceramic composites are then discussed in-depth. The in vitro and in vivo studies of LDNs/ceramic in bone repair are also summarized and discussed. Finally, new developments and potential applications of LDNs/ceramic composites are further discussed with reference to experimental and theoretical studies. Despite bioactive ceramics having been regarded as promising biomaterials, their high brittleness and low strength severely restrict their application in bone scaffolds. In recent years, low-dimensional nanomaterials (LDNs), including carbon nanotubes, graphene and boron nitride nanotubes, have shown great potential in reinforcing bioactive ceramics owing to their unique structures and properties. However, so far it has been difficult to maintain the structural stability of LDNs during fabrication of LDNs/ceramic composites, due to the lengthy, high-temperature process involved. This review presents a comprehensive overview of the developments and applications of LDNs in bioactive ceramics. The newly-developed fabrication methods for LDNs/ceramic composites, the reinforcing mechanisms and the in vitro and in vivo performance of LDNs are also summarized and discussed in detail. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Silicon carbide whisker reinforced ceramic composites and method for making same

    DOEpatents

    Wei, G.C.

    1989-01-24

    The present invention is directed to the fabrication of ceramic composites which possess improved mechanical properties especially increased fracture toughness. In the formation of these ceramic composites, the single crystal SiC whiskers are mixed with fine ceramic powders of a ceramic material such as Al{sub 2}O{sub 3}, mullite, or B{sub 4}C. The mixtures which contain a homogeneous dispersion of the SiC whiskers are hot pressed at pressures in a range of about 28 to 70 MPa and temperatures in the range of about 1,600 to 1,950 C with pressing times varying from about 0.75 to 2.5 hours. The resulting ceramic composites show an increase in fracture toughness which represents as much as a two-fold increase over that of the matrix material.

  16. Effect of Silanization on Microtensile Bond Strength of Different Resin Cements to a Lithium Disilicate Glass Ceramic.

    PubMed

    Gré, Cristina Parise; de Ré Silveira, Renan C; Shibata, Shizuma; Lago, Carlo Tr; Vieira, Luiz Cc

    2016-02-01

    This study evaluated the influence of a silane-coupling agent on the bond strength of a self-adhesive cement and a conventional resin cement to a lithium disilicate glass ceramic. A total of eight ceramic blocks were fabricated and divided into four groups (n = 2). In groups 1 and 3, ceramic surfaces were etched with hydrofluoric acid 10% for 20 seconds, rinsed for 30 seconds, and air-dried. One layer of a silane agent was applied onto all ceramic specimens and air-dried for 30 seconds. In groups 2 and 4, ceramic surfaces were etched with hydrofluoric acid, rinsed, and air-dried without application of the silane-coupling agent. The ceramic blocks were bonded to a block of composite with a self-adhesive resin cement or with a conventional resin cement, according to the manufacturer's instructions. After 24 hours in distilled water at 37°C, the specimens were sectioned perpendicular to the bonding interface area to obtain beams with a bonding area of 0.8 mm(2) and submitted to a microtensile bond strength test at a crosshead speed of 0.5 mm/min. Data were statistically analyzed with one-way analysis of variance and the Games-Howell post hoc test (p = 0.05). Fractured specimens were examined under optical microscopy at 40x magnification. Silanization resulted in higher microtensile bond strength compared to groups without silane. No significant differences were found between the conventional resin cement and the self-adhesive resin cement with silane agent (p = 0.983), and without silane agent (p = 0.877). Silanization appears to be crucial for resin bonding to a lithium disilicate-based ceramic, regardless of the resin cement used. The self-adhesive resin cement performed as well as the conventional resin cement. Applying one layer of a silane-coupling agent after etching the ceramic surface with hydrofluoric acid 10% enhanced the bond strength between resin cements and a glass ceramic.

  17. Facile and scalable fabrication of polymer-ceramic composite electrolyte with high ceramic loadings

    NASA Astrophysics Data System (ADS)

    Pandian, Amaresh Samuthira; Chen, X. Chelsea; Chen, Jihua; Lokitz, Bradley S.; Ruther, Rose E.; Yang, Guang; Lou, Kun; Nanda, Jagjit; Delnick, Frank M.; Dudney, Nancy J.

    2018-06-01

    Solid state electrolytes are a promising alternative to flammable liquid electrolytes for high-energy lithium battery applications. In this work polymer-ceramic composite electrolyte membrane with high ceramic loading (greater than 60 vol%) is fabricated using a model polymer electrolyte poly(ethylene oxide) + lithium trifluoromethane sulfonate and a lithium-conducting ceramic powder. The effects of processing methods, choice of plasticizer and varying composition on ionic conductivity of the composite electrolyte are thoroughly investigated. The physical, structural and thermal properties of the composites are exhaustively characterized. We demonstrate that aqueous spray coating followed by hot pressing is a scalable and inexpensive technique to obtain composite membranes that are amazingly dense and uniform. The ionic conductivity of composites fabricated using this protocol is at least one order of magnitude higher than those made by dry milling and solution casting. The introduction of tetraethylene glycol dimethyl ether further increases the ionic conductivity. The composite electrolyte's interfacial compatibility with metallic lithium and good cyclability is verified by constructing lithium symmetrical cells. A remarkable Li+ transference number of 0.79 is discovered for the composite electrolyte.

  18. Integration Science and Technology of Silicon-Based Ceramics and Composites:Technical Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2013-01-01

    Ceramic integration technologies enable hierarchical design and manufacturing of intricate ceramic and composite parts starting with geometrically simpler units that are subsequently joined to themselves and/or to metals to create components with progressively higher levels of complexity and functionality. However, for the development of robust and reliable integrated systems with optimum performance for high temperature applications, detailed understanding of various thermochemical and thermomechanical factors is critical. Different technical approaches are required for the integration of ceramic to ceramic and ceramic to metal systems. Active metal brazing, in particular, is a simple and cost-effective method to integrate ceramic to metallic components. Active braze alloys usually contain a reactive filler metal (e.g., Ti, Cr, V, Hf etc) that promotes wettability and spreading by inducing chemical reactions with the ceramics and composites. In this presentation, various examples of brazing of silicon nitride to themselves and to metallic systems are presented. Other examples of joining of ceramic composites (C/SiC and SiC/SiC) using ceramic interlayers and the resulting microstructures are also presented. Thermomechanical characterization of joints is presented for both types of systems. In addition, various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Potential opportunities and need for the development of innovative design philosophies, approaches, and integrated system testing under simulated application conditions will also be presented.

  19. Methods for providing ceramic matrix composite components with increased thermal capacity

    NASA Technical Reports Server (NTRS)

    Steibel, James Dale (Inventor); Utah, David Alan (Inventor)

    2001-01-01

    A method for enhancing the cooling capability of a turbine component made from a ceramic matrix composite. The method improves the thermal performance of the component by producing a surface having increased cooling capacity, thereby allowing the component to operate at a higher temperature. The method tailors the available surface area on the cooling surface of the composite component by depositing a particulate layer of coarse grained ceramic powders of preselected size onto the surface of the ceramic matrix composite component. The size of the particulate is selectively tailored to match the desired surface finish or surface roughness of the article. The article may be designed to have different surface finishes for different locations, so that the application of different sized powders can provide different cooling capabilities at different locations, if desired. The compositions of the particulates are chemically compatible with the ceramic material comprising the outer surface or portion of the ceramic matrix composite. The particulates are applied using a slurry and incorporated into the article by heating to an elevated temperature without melting the matrix, the particulates or the fiber reinforcement.

  20. Method of making sintered ductile intermetallic-bonded ceramic composites

    DOEpatents

    Plucknett, K.; Tiegs, T.N.; Becher, P.F.

    1999-05-18

    A method of making an intermetallic-bonded ceramic composite involves combining a particulate brittle intermetallic precursor with a particulate reactant metal and a particulate ceramic to form a mixture and heating the mixture in a non-oxidizing atmosphere at a sufficient temperature and for a sufficient time to react the brittle intermetallic precursor and the reactant metal to form a ductile intermetallic and sinter the mixture to form a ductile intermetallic-bonded ceramic composite. 2 figs.

  1. CERAMIC FUEL ELEMENT MATERIAL FOR A NEUTRONIC REACTOR AND METHOD OF FABRICATING SAME

    DOEpatents

    Duckworth, W.H.

    1957-12-01

    This patent relates to ceramic composition, and to neutronic reactor fuel elements formed therefrom. These ceramic elements have high density and excellent strength characteristics and are formed by conventional ceramic casting and sintering at a temperature of about 2700 deg F in a nitrogen atmosphere. The composition consists of silicon carbide, silicon, uranium oxide and a very small percentage of molybdenum. Compositions containing molybdenum are markedly stronger than those lacking this ingredient.

  2. Field-assisted sintering and phase transition of ZnS-CaLa 2S 4 composite ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yiyu; Zhang, Lihua; Kisslinger, Kim

    In the present study, zinc sulfide (ZnS) and calcium lanthanum sulfide (CaLa 2S 4, CLS) composite ceramics were consolidated via field-assisted sintering of 0.5ZnS-0.5CLS (volume ratio) composite powders at 800–1050 °C. Through sintering curve analyses and microstructural observations, it was determined that between 800 and 1000 °C, grain boundary diffusion was the main mechanism controlling grain growth for both the ZnS and CLS phases within the composite ceramics. The consolidated composite ceramics were determined to be composed of sphalerite ZnS, wurtzite ZnS and thorium phosphate CLS. The sphalerite-wurtzite phase transition of ZnS was further demonstrated to be accompanied by themore » formation of stacking faults and twins in the ceramics. Furthermore, it was also found that the addition of the CLS phase improved the indentation hardness of the ceramics relative to pure ZnS by homogeneous dispersion of ZnS and CLS small grains.« less

  3. Field-assisted sintering and phase transition of ZnS-CaLa 2S 4 composite ceramics

    DOE PAGES

    Li, Yiyu; Zhang, Lihua; Kisslinger, Kim; ...

    2017-07-17

    In the present study, zinc sulfide (ZnS) and calcium lanthanum sulfide (CaLa 2S 4, CLS) composite ceramics were consolidated via field-assisted sintering of 0.5ZnS-0.5CLS (volume ratio) composite powders at 800–1050 °C. Through sintering curve analyses and microstructural observations, it was determined that between 800 and 1000 °C, grain boundary diffusion was the main mechanism controlling grain growth for both the ZnS and CLS phases within the composite ceramics. The consolidated composite ceramics were determined to be composed of sphalerite ZnS, wurtzite ZnS and thorium phosphate CLS. The sphalerite-wurtzite phase transition of ZnS was further demonstrated to be accompanied by themore » formation of stacking faults and twins in the ceramics. Furthermore, it was also found that the addition of the CLS phase improved the indentation hardness of the ceramics relative to pure ZnS by homogeneous dispersion of ZnS and CLS small grains.« less

  4. The Evolution of Interfacial Sliding Stresses During Cyclic Push-in Testing of C- and BN-Coated Hi-Nicalon Fiber-Reinforced CMCs

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Bansal, N. P.; Bhatt, R. T.

    1998-01-01

    Interfacial debond cracks and fiber/matrix sliding stresses in ceramic matrix composites (CMCs) can evolve under cyclic fatigue conditions as well as with changes in the environment, strongly affecting the crack growth behavior, and therefore, the useful service lifetime of the composite. In this study, room temperature cyclic fiber push-in testing was applied to monitor the evolution of frictional sliding stresses and fiber sliding distances with continued cycling in both C- and BN-coated Hi-Nicalon SiC fiber-reinforced CMCs. A SiC matrix composite reinforced with C-coated Hi-Nical on fibers as well as barium strontium aluminosilicate (BSAS) matrix composites reinforced with BN-coated (four different deposition processes compared) Hi-Nicalon fibers were examined. For failure at a C interface, test results indicated progressive increases in fiber sliding distances during cycling in room air but not in nitrogen. These results suggest the presence of moisture will promote crack growth when interfacial failure occurs at a C interface. While short-term testing environmental effects were not apparent for failure at the BN interfaces, long-term exposure of partially debonded BN-coated fibers to humid air resulted in large increases in fiber sliding distances and decreases in interfacial sliding stresses for all the BN coatings, presumably due to moisture attack. A wide variation was observed in debond and frictional sliding stresses among the different BN coatings.

  5. Advanced Ceramic Armor Materials

    DTIC Science & Technology

    1990-05-11

    materials, toughened alumina, fiber -reinforced glass matrix composites, and multilayer-gradient materials for ballistic testing. Fabrication and...material systems: Multilayer advanced armor materials consisting of a hard ceramic faceplate bonded to a graphite fiber -reinforced glass matrix...toughened alumina, and fiber - applied studies of advanced reinforced ceramic matrix glass and glass -ceramic composites for ballistic testing. technologies

  6. Ceramic fiber-reinforced monoclinic celsian phase glass-ceramic matrix composite material

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P. (Inventor); Dicarlo, James A. (Inventor)

    1994-01-01

    A hyridopolysilazane-derived ceramic fiber reinforced monoclinic celsian phase barium aluminum silicate glass-ceramic matrix composite material is prepared by ball-milling an aqueous slurry of BAS glass powder and fine monoclinic celsian seeds. The fibers improve the mechanical strength and fracture toughness and with the matrix provide superior dielectric properties.

  7. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Sheffler, K. D.; Demasi, J. T.

    1985-01-01

    A methodology was established to predict thermal barrier coating life in an environment simulative of that experienced by gas turbine airfoils. Specifically, work is being conducted to determine failure modes of thermal barrier coatings in the aircraft engine environment. Analytical studies coupled with appropriate physical and mechanical property determinations are being employed to derive coating life prediction model(s) on the important failure mode(s). An initial review of experimental and flight service components indicates that the predominant mode of TBC failure involves thermomechanical spallation of the ceramic coating layer. This ceramic spallation involves the formation of a dominant crack in the ceramic coating parallel to and closely adjacent to the metal-ceramic interface. Initial results from a laboratory test program designed to study the influence of various driving forces such as temperature, thermal cycle frequency, environment, and coating thickness, on ceramic coating spalling life suggest that bond coat oxidation damage at the metal-ceramic interface contributes significantly to thermomechanical cracking in the ceramic layer. Low cycle rate furnace testing in air and in argon clearly shows a dramatic increase of spalling life in the non-oxidizing environments.

  8. Mechanical Properties and Plasma Erosion Resistance of ZrO2p(3Y)/BN-SiO2 Ceramic Composites under Different Sintering Temperature

    NASA Astrophysics Data System (ADS)

    Zhou, Yu; Duan1, Xiaoming; Jia, Dechang; Yang, Zhihua; Meng, Qingchang; Yu, Yang; Yu, Daren; Ding, Yongjie

    2011-10-01

    ZrO2p(3Y)/BN-SiO2 ceramic composites were hot pressed under different sintering temperature. The ceramic composites were composed by BN, m-ZrO2, t-ZrO2 and SiO2. The relative density, bending strength, elastic modulus and fracture toughness increase with the sintering temperature increasing, the maximum value of which at the sintering temperature of 1800°C are 97.5%, 229.9MPa, 60.8GPa and 3.55MPam1/2, respectively. The erosion resistance ability of ZrO2p(3Y)/BN-SiO2 ceramic composites rise gradually with the sintering temperature increasing, and the erosion rate of the ceramic composite sintered at 1800°C is 8.03×10-3mm/h.

  9. Dependence of Crack Propagation/Deflection Mechanism on Characteristics of Fiber Coating or Interphase in Ceramics Matrix Continuous Fiber Reinforced Composites (Postprint)

    DTIC Science & Technology

    2014-07-01

    c ) (d) (e) (f) (g) (h) (i) ( j ) (k) (l) Figure 2. Distinct scenarios...Strength MPa Coating Fracture Energy J /m 2 D ef le ct io n a 800 50 5 b 1200 100 30 c 400 75 5 d 1200 300 15 e 400 100 20 f 1200 50 5 g...1993. [11] W. Lee, S. J . Howard, and W. J . Clegg , "Growth of interface defects and its effect on crack deflection and toughening criteria,"

  10. Development of piezoelectric composites for transducers

    NASA Astrophysics Data System (ADS)

    Safari, A.

    1994-07-01

    For the past decade and a half, many different types of piezoelectric ceramic-polymer composites have been developed intended for transducer applications. These diphasic composites are prepared from non-active polymer, such as epoxy, and piezoelectric ceramic, such as PZT, in the form of filler powders, elongated fibers, multilayer and more complex three-dimensional structures. For the last four years, most of the efforts have been given to producing large area and fine scale PZT fiber composites. In this paper, processing of piezoelectric ceramic-polymer composites with various connectivity patterns are reviewed. Development of fine scale piezoelectric composites by lost mold, injection molding and the relic method are described. Research activities of different groups for preparing large area piezocomposites for hydrophone and actuator applications are briefly reviewed. Initial development of electrostrictive ceramics and composites are also

  11. NASA Glenn Research Center UEET (Ultra-Efficient Engine Technology) Program: Agenda and Abstracts

    NASA Technical Reports Server (NTRS)

    Manthey, Lri

    2001-01-01

    Topics discussed include: UEET Overview; Technology Benefits; Emissions Overview; P&W Low Emissions Combustor Development; GE Low Emissions Combustor Development; Rolls-Royce Low Emissions Combustor Development; Honeywell Low Emissions Combustor Development; NASA Multipoint LDI Development; Stanford Activities In Concepts for Advanced Gas Turbine Combustors; Large Eddy Simulation (LES) of Gas Turbine Combustion; NASA National Combustion Code Simulations; Materials Overview; Thermal Barrier Coatings for Airfoil Applications; Disk Alloy Development; Turbine Blade Alloy; Ceramic Matrix Composite (CMC) Materials Development; Ceramic Matrix Composite (CMC) Materials Characterization; Environmental Barrier Coatings (EBC) for Ceramic Matrix Composite (CMC) Materials; Ceramic Matrix Composite Vane Rig Testing and Design; Ultra-High Temperature Ceramic (UHTC) Development; Lightweight Structures; NPARC Alliance; Technology Transfer and Commercialization; and Turbomachinery Overview; etc.

  12. Low-loss electromagnetic composites for RF and microwave applications.

    PubMed

    Wang, Hong; Yang, Haibo; Xiang, Feng; Yao, Xi

    2011-09-01

    Low-loss electromagnetic composites with high permittivity and permeability will benefit the miniaturization and multifunctional of RF devices. A kind of low-loss dielectric-magnetic ceramic-ceramic composite was developed by hybrid processing technology with the goal of integrating the dielectric properties and magnetic properties. The hybrid processing technology exhibits the advantage of lowered sintering temperatures for the composites while retaining good microstructure and high performance. By introducing elastomer as matrix, a kind of flexible low-loss dielectric-magnetic ceramic-polymer composite was prepared and studied. The obtained flexible dielectric-magnetic ceramic-polymer composite exhibited low loss and good mechanical properties. The results show good effects on lowering the dielectric loss and extending the cut-off magnetic frequency of the electromagnetic composite. Methods for tailoring the properties of the multifunctional composites were proposed and discussed.

  13. Low-cost shape-control synthesis of porous carbon film on β″-alumina ceramics for Na-based battery application

    NASA Astrophysics Data System (ADS)

    Hu, Yingying; Wen, Zhaoyin; Wu, Xiangwei; Jin, Jun

    2012-12-01

    Porous carbon films with tunable pore structure to modify the β″-alumina electrolyte surface are fabricated through a low-cost and direct wet chemistry method with glucose and poly(methyl-methacrylate) (PMMA) as precursors. FTIR analysis confirms the effective connection between the carbohydrate and the pore-forming agent PMMA through hydrogen bonds. The experimental results indicate that the structural parameters of the porous carbon films, including mean pore size and film thickness, can be tuned simply by adjusting the amount of PMMA in the glucose/PMMA composite. This soft-template-assisted method could be readily extended to modify any other ceramic surfaces. The porous carbon films are demonstrated to greatly improve the wettability of the β″-alumina ceramics by molten sodium. Na/β″-alumina/Na cells are used to investigate the interfacial properties between sodium and the β″-alumina electrolyte. The results obtained at 350 °C reveal that the polarization behavior of the cell is alleviated by the porous coating. This work represents a successful method to coat ceramics with porous carbon and offers a promising solution to overcome the polarization problems of the sodium/β″-alumina interface in Na-based batteries.

  14. Development of Porous Piezoceramics for Medical and Sensor Applications.

    PubMed

    Ringgaard, Erling; Lautzenhiser, Frans; Bierregaard, Louise M; Zawada, Tomasz; Molz, Eric

    2015-12-21

    The use of porosity to modify the functional properties of piezoelectric ceramics is well known in the scientific literature as well as by the industry, and porous ceramic can be seen as a 2-phase composite. In the present work, examples are given of applications where controlled porosity is exploited in order to optimise the dielectric, piezoelectric and acoustic properties of the piezoceramics. For the optimisation efforts it is important to note that the thickness coupling coefficient k t will be maximised for some non-zero value of the porosity that could be above 20%. On the other hand, with a good approximation, the acoustic velocity decreases linearly with increasing porosity, which is obviously also the case for the density. Consequently, the acoustic impedance shows a rather strong decrease with porosity, and in practice a reduction of more than 50% may be obtained for an engineered porous ceramic. The significance of the acoustic impedance is associated with the transmission of acoustic signals through the interface between the piezoceramic and some medium of propagation, but when the porous ceramic is used as a substrate for a piezoceramic thick film, the attenuation may be equally important. In the case of open porosity it is possible to introduce a liquid into the pores, and examples of modifying the properties in this way are given.

  15. Method of making multilayered titanium ceramic composites

    DOEpatents

    Fisher, G.T. II; Hansen, J.S.; Oden, L.L.; Turner, P.C.; Ochs, T.L.

    1998-08-25

    A method making a titanium ceramic composite involves forming a hot pressed powder body having a microstructure comprising at least one titanium metal or alloy layer and at least one ceramic particulate reinforced titanium metal or alloy layer and hot forging the hot pressed body followed by hot rolling to substantially reduce a thickness dimension and substantially increase a lateral dimension thereof to form a composite plate or sheet that retains in the microstructure at least one titanium based layer and at least one ceramic reinforced titanium based layer in the thickness direction of the composite plate or sheet. 3 figs.

  16. Photopyroelectric response of PTCa∕PEEK composite.

    PubMed

    Estevam, Giuliano Pierre; de Melo, Washington Luiz Barros; Sakamoto, Walter Katsumi

    2011-02-01

    A pyroelectric composite made of calcium modified lead titanate ceramic and polyether-ether-ketone high performance polymer was obtained in the film form by hot pressing the ceramic/polymer mixture into the desired composition. After polarization with a suitable electric field, a ceramic composite film (60% vol.) exhibited a pyroelectric figure of merit three times higher than that of a lead zirconate titanate ceramic. The material was used as infrared radiation sensor. The voltage responsivity decreases with the inverse of the frequency showing the same behavior of the thermally thick sensor. The reproducibility of the sensor responses was observed.

  17. Method of making multilayered titanium ceramic composites

    DOEpatents

    Fisher, George T., II; Hansen; Jeffrey S.; Oden; Laurance L.; Turner; Paul C.; Ochs; Thomas L.

    1998-08-25

    A method making a titanium ceramic composite involves forming a hot pressed powder body having a microstructure comprising at least one titanium metal or alloy layer and at least one ceramic particulate reinforced titanium metal or alloy layer and hot forging the hot pressed body follwed by hot rolling to substantially reduce a thickness dimension and substantially increase a lateral dimension thereof to form a composite plate or sheet that retains in the microstructure at least one titanium based layer and at least one ceramic reinforced titanium based layer in the thickness direction of the composite plate or sheet.

  18. Method of making multilayered titanium ceramic composites

    DOEpatents

    Fisher, II, George T.; Hansen, Jeffrey S.; Oden, Laurance L.; Turner, Paul C.; Ochs, Thomas L.

    1998-01-01

    A method making a titanium ceramic composite involves forming a hot pressed powder body having a microstructure comprising at least one titanium metal or alloy layer and at least one ceramic particulate reinforced titanium metal or alloy layer and hot forging the hot pressed body follwed by hot rolling to substantially reduce a thickness dimension and substantially increase a lateral dimension thereof to form a composite plate or sheet that retains in the microstructure at least one titanium based layer and at least one ceramic reinforced titanium based layer in the thickness direction of the composite plate or sheet.

  19. Fabrication of Carbon Nanotube - Chromium Carbide Composite Through Laser Sintering

    NASA Astrophysics Data System (ADS)

    Liu, Ze; Gao, Yibo; Liang, Fei; Wu, Benxin; Gou, Jihua; Detrois, Martin; Tin, Sammy; Yin, Ming; Nash, Philip; Tang, Xiaoduan; Wang, Xinwei

    2016-03-01

    Ceramics often have high hardness and strength, and good wear and corrosion resistance, and hence have many important applications, which, however, are often limited by their poor fracture toughness. Carbon nanotubes (CNTs) may enhance ceramic fracture toughness, but hot pressing (which is one typical approach of fabricating CNT-ceramic composites) is difficult to apply for applications that require localized heat input, such as fabricating composites as surface coatings. Laser beam may realize localized material sintering with little thermal effect on the surrounding regions. However, for the typical ceramics for hard coating applications (as listed in Ref.[1]), previous work on laser sintering of CNT-ceramic composites with mechanical property characterizations has been very limited. In this paper, research work has been reported on the fabrication and characterization of CNT-ceramic composites through laser sintering of mixtures of CNTs and chromium carbide powders. Under the studied conditions, it has been found that laser-sintered composites have a much higher hardness than that for plasma-sprayed composites reported in the literature. It has also been found that the composites obtained by laser sintering of CNTs and chromium carbide powder mixtures have a fracture toughness that is ~23 % higher than the material obtained by laser sintering of chromium carbide powders without CNTs.

  20. A Li-Garnet composite ceramic electrolyte and its solid-state Li-S battery

    NASA Astrophysics Data System (ADS)

    Huang, Xiao; Liu, Cai; Lu, Yang; Xiu, Tongping; Jin, Jun; Badding, Michael E.; Wen, Zhaoyin

    2018-04-01

    A high strength Li-Garnet solid electrolyte composite ceramic is successfully prepared via conventional solid state method with Li6.4La3Zr1.4Ta0.6O12 and nano MgO powders. Well sintered ceramic pellets and bars are obtained with 0-9 wt.% MgO. Fracture strength is approximately 135 MPa for composite ceramics with 5-9 wt.% MgO, which is ∼50% higher than that of pure Li6.4La3Zr1.4Ta0.6O12 (90 MPa). Lithium-ion conductivity of the composite is above 5 × 10-4 S cm-1 at room temperature; comparable to the pure Li6.4La3Zr1.4Ta0.6O12 material. SEM cross-sections of the composite ceramic shows a much more uniform microstructure comparing with pure ones, owing to the grain growth inhibition effect of the MgO second phase. A battery cell consisting of Li/composite ceramics/Sulfur-Carbon at 25 °C exhibits a capacity of 685 mAh g-1 at 0.2 C at the 200th cycle, while maintaining a coulombic efficiency of 100%. These results indicate that the composite ceramic Li6.4La3Zr1.4Ta0.6O12-MgO is promising for the production of electrolyte membrane and fabrication of Li-Sulfur batteries.

  1. New generation Li+ NASICON glass-ceramics for solid state Li+ ion battery applications

    NASA Astrophysics Data System (ADS)

    Sharma, Neelakshi; Dalvi, Anshuman

    2018-04-01

    Lithiumion conducting NASICON glass-ceramics have been prepared by a novel planetary ball milling assisted synthesis route. Structural, thermal and electrical investigations have been carried out on the novel composites composed of LiTi(PO4)3 (LTP) and 50[Li2SO4]-50[Li2O-P2O5] ionic glass reveal interesting results. Composites were prepared keeping the concentration of the ionic glass fixed at 20 wt%. X-ray diffraction and diffe rential thermal analysis confirm the glass-ceramic formation. Moreover, the structure of LTP remains intact during the glass -ceramic formation. Electrical conductivity of the glass-ceramic composite is found to be higher than that of the pristine glass (50LSLP) and LTP. The bulk and grain boundary conductivities of LTP exhibit improvement in composite. Owing to high ionic conductivity and thermal stability, novel glass -ceramic seems to be a promising candidate for all solid-state battery applications.

  2. Silicon carbide whisker reinforced ceramic composites and method for making same

    DOEpatents

    Wei, George C.

    1993-01-01

    The present invention is directed to the fabrication of ceramic composites which possess improved mechanical properties especially increased fracture toughness. In the formation of these ceramic composites, the single crystal SiC whiskers are mixed with fine ceramic powders of a ceramic material such as Al.sub.2 O.sub.3, mullite, or B.sub.4 C. The mixtures which contain a homogeneous disperson of the SiC whiskers are hot pressed at pressures in a range of about 28 to 70 MPa and temperatures in the range of about 1600.degree. to 1950.degree. C. with pressing times varying from about 0.075 to 2.5 hours. The resulting ceramic composites show an increase in fracture toughness of up to about 9 MPa.m.sup.1/2 which represents as much as a two-fold increase over that of the matrix material.

  3. Silicon carbide whisker reinforced ceramic composites and method for making same

    DOEpatents

    Wei, George C.

    1985-01-01

    The present invention is directed to the fabrication of ceramic composites which possess improved mechanical properties especially increased fracture toughness. In the formation of these ceramic composites, the single crystal SiC whiskers are mixed with fine ceramic powders of a ceramic material such as Al.sub.2 O.sub.3, mullite, or B.sub.4 C. The mixtures which contain a homogeneous dispersion of the SiC whiskers are hot pressed at pressures in a range of about 28 to 70 MPa and temperatures in the range of about 1600.degree. to 1950.degree. C. with pressing times varying from about 0.75 to 2.5 hours. The resulting ceramic composites show an increase in fracture toughness of up to about 9 MPa.m.sup.1/2 which represents as much as a two-fold increase over that of the matrix material.

  4. Silicon carbide whisker reinforced ceramic composites and method for making same

    DOEpatents

    Wei, George C.

    1993-11-16

    The present invention is directed to the fabrication of ceramic composites which possess improved mechanical properties especially increased fracture toughness. In the formation of these ceramic composites, the single crystal SiC whiskers are mixed with fine ceramic powders of a ceramic material such as Al.sub.2 O.sub.3, mullite, or B.sub.4 C. The mixtures which contain a homogeneous disperson of the SiC whiskers are hot pressed at pressures in a range of about 28 to 70 MPa and temperatures in the range of about 1600.degree. to 1950.degree. C. with pressing times varying from about 0.075 to 2.5 hours. The resulting ceramic composites show an increase in fracture toughness of up to about 9 MPa.m.sup.1/2 which represents as much as a two-fold increase over that of the matrix material.

  5. Silicon carbide whisker reinforced ceramic composites and method for making same

    DOEpatents

    Wei, George C.

    1989-01-24

    The present invention is directed to the fabrication of ceramic composites which possess improved mechanical properties especially increased fracture toughness. In the formation of these ceramic composites, the single crystal SiC whiskers are mixed with fine ceramic powders of a ceramic material such as Al.sub.2 O.sub.3, mullite, or B.sub.4 C. The mixtures which contain a homogeneous disperson of the SiC whiskers are hot pressed at pressures in a range of about 28 to 70 MPa and temperatures in the range of about 1600.degree. to 1950.degree. C. with pressing times varying from about 0.75 to 2.5 hours. The resulting ceramic composites show an increase in fracture toughness of up to about 9 MP.am.sup.1/2 which represents as much as a two-fold increase over that of the matrix material.

  6. Development of BEM for ceramic composites

    NASA Technical Reports Server (NTRS)

    Henry, D. P.; Banerjee, P. K.; Dargush, G. F.

    1991-01-01

    It is evident that for proper micromechanical analysis of ceramic composites, one needs to use a numerical method that is capable of idealizing the individual fibers or individual bundles of fibers embedded within a three-dimensional ceramic matrix. The analysis must be able to account for high stress or temperature gradients from diffusion of stress or temperature from the fiber to the ceramic matrix and allow for interaction between the fibers through the ceramic matrix. The analysis must be sophisticated enough to deal with the failure of fibers described by a series of increasingly sophisticated constitutive models. Finally, the analysis must deal with micromechanical modeling of the composite under nonlinear thermal and dynamic loading. This report details progress made towards the development of a boundary element code designed for the micromechanical studies of an advanced ceramic composite. Additional effort has been made in generalizing the implementation to allow the program to be applicable to real problems in the aerospace industry.

  7. Effect of tooth brush abrasion and thermo-mechanical loading on direct and indirect veneer restorations.

    PubMed

    Rosentritt, Martin; Sawaljanow, Alexander; Behr, Michael; Kolbeck, Carola; Preis, Verena

    2015-01-01

    This study investigated toothbrush abrasion and in vitro aging on ceramic (indirect technique) and composite veneers (direct technique). Identical composite and individual human incisors were restored with industrially preformed composite veneers, indirectly produced ceramic veneers, and direct composite restorations. Surface roughness was determined before and after tooth brushing. A 5-year period of oral service was simulated by thermal cycling and mechanical loading (TCML). After TCML, all specimens were examined with microscopy and scanning electron microscopy. Specimens without failures during TCML were loaded until failure. analysis of variance; Bonferroni's post hoc analysis, Kaplan-Meier-Log Rank test (α = 0.05). Tooth brushing yielded a non-significant increase (p = 0.560) in roughness in all materials (industrial veneer, 0.12+/-0.07 μm, direct restoration, 0.18+/-0.14 μm, ceramic, 0.35+/-0.16 μm). No significant differences in roughness could be determined between the materials, neither before nor after testing (p < 0.001). After TCML of artificial teeth, direct and preformed composite veneers on composite teeth showed no failures or damages. Two ceramic veneers showed cracking in the labial area. After TCML of human teeth, transmission microscopy indicated a facial crack in a ceramic veneer and chipping in the cervical area of a preformed veneer. Two direct composite veneers lost retention. No significantly different survival rates were found between the three veneer groups. Fracture force on human teeth varied between 527.8+/-132.4 N (ceramic), 478.3+/-165.4 N (preformed composite), and 605.0+/-263.5 N (direct composite). All materials revealed comparable wear resistance. Indirect ceramic, direct restorative composite, and preformed composite veneers showed comparable failure rates and satisfying longevity. The results indicate similar longevity of the chosen materials for veneer restorations.

  8. High-temperature testing of glass/ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Mandell, John F.; Grande, Dodd H.; Dannemann, Kathryn A.

    1989-01-01

    Recent advances in ceramic and other high-temperature composites have created a need for test methods that can be used at 1000 C and above. Present test methods usually require adhesively bonded tabs that cannot be used at high temperatures. This paper discusses some of the difficulties with high-temperature test development and describes several promising test methods. Stress-strain data are given for Nicalon ceramic fiber reinforced glass and glass-ceramic matrix composites tested in air at temperatures up to 1000 C.

  9. Fabrication and characterization of biomimetic ceramic/polymer composite materials for dental restoration.

    PubMed

    Petrini, Morena; Ferrante, Maurizio; Su, Bo

    2013-04-01

    Conventional dental composites with randomly dispersed inorganic particles within a polymer matrix fail to recapitulate the aligned and anisotropic structure of the dentin and enamel. The aim of the study was to produce a biomimetic composite consisting of a ceramic preform with graded and continuously aligned open pores, infiltrated with epoxy resin. The freeze casting technique was used to obtain the hierarchically structured architecture of the ceramic preforms. Optical and scanning electron microscopy (SEM) and differential thermal analysis and thermogravimetry (TG-DTA) were used to characterize the samples. Three point bending test and compression test were also performed. All analysis confirmed that the biomimetic composite was characterized by a multi-level hierarchical structure along the freezing direction. In the bottom layers close to the cooling plate (up to 2mm thick), a randomly packed ceramic with closed pores were formed, which resulted in incomplete infiltration with resin and resultant poor mechanical propertiesof the composite. Above 2mm, all ceramic samples showed an aligned structure with an increasing lamellae spacing (wavelength) and a decreasing wall thickness. Mechanical tests showed that the properties of the composites made from ceramic preforms above 2mm from cooling plate are similar to those of the dentin. The fabrication processing reported in this work offers a viable route for the fabrication of biomimetic composites, which could be potentially used in a range of dental restorations to compete with the current dental composites and ceramics. Copyright © 2012 Academy of Dental Materials. All rights reserved.

  10. Mussel-inspired bioceramics with self-assembled Ca-P/polydopamine composite nanolayer: preparation, formation mechanism, improved cellular bioactivity and osteogenic differentiation of bone marrow stromal cells.

    PubMed

    Wu, Chengtie; Han, Pingping; Liu, Xiaoguo; Xu, Mengchi; Tian, Tian; Chang, Jiang; Xiao, Yin

    2014-01-01

    The nanostructured surface of biomaterials plays an important role in improving their in vitro cellular bioactivity as well as stimulating in vivo tissue regeneration. Inspired by the mussel's adhesive versatility, which is thought to be due to the plaque-substrate interface being rich in 3,4-dihydroxy-l-phenylalamine (DOPA) and lysine amino acids, in this study we developed a self-assembly method to prepare a uniform calcium phosphate (Ca-P)/polydopamine composite nanolayer on the surface of β-tricalcium phosphate (β-TCP) bioceramics by soaking β-TCP bioceramics in Tris-dopamine solution. It was found that the addition of dopamine, reaction temperature and reaction time are three key factors inducing the formation of a uniform Ca-P/polydopamine composite nanolayer. The formation mechanism of a Ca-P/polydopamine composite nanolayer involved two important steps: (i) the addition of dopamine to Tris-HCl solution decreases the pH value and accelerates Ca and P ionic dissolution from the crystal boundaries of β-TCP ceramics; (ii) dopamine is polymerized to form self-assembled polydopamine film and, at the same time, nanosized Ca-P particles are mineralized with the assistance of polydopamine, in which the formation of polydopamine occurs simultaneously with Ca-P mineralization (formation of nanosized microparticles composed of calcium phosphate-based materials), and finally a self-assembled Ca-P/polydopamine composite nanolayer forms on the surface of the β-TCP ceramics. Furthermore, the formed self-assembled Ca-P/polydopamine composite nanolayer significantly enhances the surface roughness and hydrophilicity of β-TCP ceramics, and stimulates the attachment, proliferation, alkaline phosphate (ALP) activity and bone-related gene expression (ALP, OCN, COL1 and Runx2) of human bone marrow stromal cells. Our results suggest that the preparation of self-assembled Ca-P/polydopamine composite nanolayers is a viable method to modify the surface of biomaterials by significantly improving their surface physicochemical properties and cellular bioactivity for bone regeneration application. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Method for preparing ceramic composite

    DOEpatents

    Alexander, Kathleen B.; Tiegs, Terry N.; Becher, Paul F.; Waters, Shirley B.

    1996-01-01

    A process for preparing ceramic composite comprising blending TiC particulates, Al.sub.2 O.sub.3 particulates and nickle aluminide and consolidating the mixture at a temperature and pressure sufficient to produce a densified ceramic composite having fracture toughness equal to or greater than 7 MPa m.sup.1/2, a hardness equal to or greater than 18 GPa.

  12. Processing of Fine-Scale Piezoelectric Ceramic/Polymer Composites for Sensors and Actuators

    NASA Technical Reports Server (NTRS)

    Janas, V. F.; Safari, A.

    1996-01-01

    The objective of the research effort at Rutgers is the development of lead zirconate titanate (PZT) ceramic/polymer composites with different designs for transducer applications including hydrophones, biomedical imaging, non-destructive testing, and air imaging. In this review, methods for processing both large area and multifunctional ceramic/polymer composites for acoustic transducers were discussed.

  13. Bonded carbon or ceramic fiber composite filter vent for radioactive waste

    DOEpatents

    Brassell, Gilbert W.; Brugger, Ronald P.

    1985-02-19

    Carbon bonded carbon fiber composites as well as ceramic or carbon bonded ceramic fiber composites are very useful as filters which can separate particulate matter from gas streams entraining the same. These filters have particular application to the filtering of radioactive particles, e.g., they can act as vents for containers of radioactive waste material.

  14. Development of membranes and a study of their interfaces for rechargeable lithium-air battery

    NASA Astrophysics Data System (ADS)

    Kumar, Jitendra; Kumar, Binod

    This paper describes an investigation with an objective to screen and select high performance membrane materials for a working, rechargeable lithium-air battery. Membrane laminates comprising glass-ceramic (GC) and polymer-ceramic (PC) membranes were assembled, evaluated and analyzed. A superionic conducting GC membrane with a chemical composition of Li 1+ xAl xGe 2- x(PO 4) 3 (x = 0.5) was used. Polymer membranes comprising of PC(BN), PC(AlN), PC(Si 3N 4) and PC(Li 2O) electrochemically coupled the GC membrane with the lithium anode. The cell and membrane laminates were characterized by determining cell conductivity, open circuit voltage and carrier concentration and its mobility. The measurements identified Li 2O and BN as suitable dopants in polymer matrix which catalyzed anodic charge transfer reaction, formed stable SEI layer and provided high lithium ion conductivity.

  15. Development of Detonation Flame Sprayed Cu-Base Coatings Containing Large Ceramic Particles

    NASA Astrophysics Data System (ADS)

    Tillmann, Wolfgang; Vogli, Evelina; Nebel, Jan

    2007-12-01

    Metal-matrix composites (MMCs) containing large ceramic particles as superabrasives are typically used for grinding stone, minerals, and concrete. Sintering and brazing are the key manufacturing technologies for grinding tool production. However, restricted geometry flexibility and the absence of repair possibilities for damaged tool surfaces, as well as difficulties of controlling material interfaces, are the main weaknesses of these production processes. Thermal spraying offers the possibility to avoid these restrictions. The research for this paper investigated a fabrication method based on the use of detonation flame spraying technology to bond large superabrasive particles (150-600 μm, needed for grinding minerals and stones) in a metallic matrix. Layer morphology and bonding quality are evaluated with respect to superabrasive material, geometry, spraying, and powder-injection parameters. The influence of process temperature and the possibilities of thermal treatment of MMC layers are analyzed.

  16. High-temperature ultrasonic characterization of the mechanical and microstructural behavior of a fibrous composite with a magnesium lithium aluminum silicate glass-ceramic matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cutard, T.; Huger, M.; Fargeot, D.

    The mechanical behavior and the microstructural modifications of a SiC-fiber-reinforced magnesium lithium aluminum silicate glass-ceramic (SiC/MASL) have been characterized by ultrasonic measurement of uniaxial Young`s modulus at high temperature. Under vacuum, long isothermal agings in the 750--1,000 C temperature range have shown matrix modifications in terms of crystallization of residual glassy phases, and of phase transformations in the Li{sub 2}O-Al{sub 2}O{sub 3}-SiO{sub 2} system. In air, long isothermal agings performed under the same conditions have led to the same matrix transformations but in competition with oxidation mechanisms of the carbon fiber-matrix interphase. All of these matrix and/or interface transformations havemore » been confirmed by X-ray diffraction analysis, scanning electron microscopy, scanning acoustic microscopy, and microindentation tests.« less

  17. Interfaces - Weak Links, Yet Great Opportunities

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Dimofte, Florin; Chupp, Raymond E.; Steinetz, Bruce M.

    2011-01-01

    Inadequate turbomachine interface design can rapidly degrade system performance, yet provide great opportunity for improvements. Engineered coatings of seals and bearing interfaces are major issues in the operational life of power systems. Coatings, films, and combined use of both metals and ceramics play a major role in maintaining component life. Interface coatings, like lubricants, are sacrificial for the benefit of the component. Bearing and sealing surfaces are routinely protected by tribologically paired coatings such as silicon diamond like coatings (SiDLC) in combination with an oil lubricated wave bearing that prolongs bearing operational life. Likewise, of several methods used or researched for detecting interface failures, dopants within coatings show failures in functionally graded ceramic coatings. The Bozzolo-Ferrante-Smith (BFS) materials models and quantum mechanical tools, employed in interface design, are discussed.

  18. Mammalian Cell Interactions with Nanophase Materials

    DTIC Science & Technology

    2005-01-01

    alumina , titania and hydroxylapatite) as well as on composites of these ceramics with either poly(L-lactic) acid or poly(methyl) methacrylate. Most...osteoblasts on flat, nanophase (versus microphase/conventional) ceramics ( alumina , titania and hydroxylapatite) as a function of decreasing ceramic grain size...acid (PLA) and nanophase (but not on polymer/conventional) ceramics ( alumina , titania and hydroxylapatite) composites [4]. Specifically, osteoblast

  19. Process for making a ceramic composition for immobilization of actinides

    DOEpatents

    Ebbinghaus, Bartley B.; Van Konynenburg, Richard A.; Vance, Eric R.; Stewart, Martin W.; Walls, Philip A.; Brummond, William Allen; Armantrout, Guy A.; Herman, Connie Cicero; Hobson, Beverly F.; Herman, David Thomas; Curtis, Paul G.; Farmer, Joseph

    2001-01-01

    Disclosed is a process for making a ceramic composition for the immobilization of actinides, particularly uranium and plutonium. The ceramic is a titanate material comprising pyrochlore, brannerite and rutile. The process comprises oxidizing the actinides, milling the oxides to a powder, blending them with ceramic precursors, cold pressing the blend and sintering the pressed material.

  20. Relationship between chemistry, microstructure and mechanical properties of alpha-silicon aluminum oxynitride

    NASA Astrophysics Data System (ADS)

    Shuba, Roman

    The aim of this thesis was to improve the mechanical properties of Y-alpha-SiAlON ceramics by controlling microstructure and tailoring grain boundary composition. Three properties of importance for engineering applications were targeted: strength retention and oxidation resistance at high temperature, fracture toughness at room temperature, and machinability. As a result of this work, several ceramics with one or more of the above properties optimized have been developed. The performance of Si3N4/SiAlON-based ceramics at high (>1000 degree C) temperature is generally limited by the softening of grain-boundary glass. Refractory alpha-SiAlONs was obtained by three methods: reducing residual liquid by minimizing nitride powder oxidation during processing, promoting liquid/SiAlON conversion by adding excess AlN, and improving refractoriness by incorporating La2O3 into glass. Ceramics thus, obtained featured excellent room-temperature strength (1050 MPa) and high-temperature strength (650 MPa at 1300 degree C), as well as good oxidation resistance. In all cases grain growth was inhibited, which resulted in a relatively low toughness (5--7 MPa x m1/2). In-situ toughened Y-alpha-SiAlON (9 MPa x m1/2) was obtained through growth of large elongated grains with low debonding strength. This was achieved by introducing seed crystals to the starting powder mixtures, in addition to using sintering aids and dopants. Additives modified the properties of grain boundary glass, while dopants lowered the strength of glass/grain interface. Through the use of nanosized turbostratic BN precursor obtained via pyrolysis of melamine borate salt, which yielded finely dispersed hexagonal BN particles in alpha-SiAlON, high-strength (800 MPa) Y-alpha-SiAlON/BN composites, machinable using WC/Co tools, were also fabricated.

  1. Effect of resin coating and occlusal loading on microleakage of Class II computer-aided design/computer-aided manufacturing fabricated ceramic restorations: a confocal microscopic study.

    PubMed

    Kitayama, Shuzo; Nasser, Nasser A; Pilecki, Peter; Wilson, Ron F; Nikaido, Toru; Tagami, Junji; Watson, Timothy F; Foxton, Richard M

    2011-05-01

    To evaluate the effect of resin coating and occlusal loading on microleakage of class II computer-aided design/computer-aided manufacturing (CAD/CAM) ceramic restorations. Molars were prepared for an mesio-occlusal-distal (MOD) inlay and were divided into two groups: non-coated (controls); and resin-coated, in which the cavity was coated with a combination of a dentin bonding system (Clearfil Protect Bond) and a flowable resin composite (Clearfil Majesty Flow). Ceramic inlays were fabricated using the CAD/CAM technique (CEREC 3) and cemented with resin cement (Clearfil Esthetic Cement). After 24 h of water storage, the restored teeth in each group were divided into two subgroups: unloaded or loaded with an axial force of 80 N at a rate of 2.5 cycles/s for 250,000 cycles while stored in water. After immersion in 0.25% Rhodamine B solution, the teeth were sectioned bucco-lingually at the mesial and distal boxes. Tandem scanning confocal microscopy (TSM) was used for evaluation of microleakage. The locations of the measurements were assigned to the cavity walls and floor. Loading did not have a significant effect on microleakage in either the resin-coated or non-coated group. Resin coating significantly reduced microleakage regardless of loading. The cavity floor exhibited greater microleakage compared to the cavity wall. TSM observation also revealed that microleakage at the enamel surface was minimal regardless of resin coating. In contrast, non-coated dentin showed extensive leakage, whereas resin-coated dentin showed decreased leakage. Resin coating with a combination of a dentin-bonding system and a flowable resin composite may be indicated prior to impression-taking when restoring teeth with CAD/CAM ceramic inlays in order to reduce microleakage at the tooth-resin interface.

  2. Microstructure-property relationships of chemically vapor deposited zirconia fiber coating for environmentally durable silicon carbide/silicon carbide composites

    NASA Astrophysics Data System (ADS)

    Li, Hao

    In SiC/SiC ceramic matrix composites, toughness is obtained by adding a fiber coating, which provides a weak interface for crack deflection and debonding between the fiber and the matrix. However, the most commonly used fiber coatings, carbon and boron nitride, are unstable in oxidative environments. In the present study, the feasibility of using a chemically vapor deposited zirconia (CVD-ZrO2) fiber coating as an oxidation-resistant interphase for SiC/SiC composites was investigated. A study of morphological evolution in the CVD-ZrO2 coating suggested that a size-controlled displacive phase transformation from tetragonal ZrO2 ( t-ZrO2) to monoclinic ZrO2 (m-ZrO 2) was the key mechanism responsible for the weak interface behavior exhibited by the ZrO2 coating. It appeared that a low oxygen partial pressure in the CVD reactor chamber was essential for the nucleation of t-ZrO2 and therefore was responsible for the delamination behavior. With this understanding of the weak interface mechanism, minicomposite specimens containing various ZrO2 fiber coating morphologies were fabricated and tested. A fractographic analysis showed that in-situ fiber strength and minicomposite failure loads were strongly dependent on the phase contents and microstructure of the ZrO2 coating. We determined that an optimum microstructure of the ZrO2 coating should contain a predelaminated interface surrounded by a dense outer layer. The outer layer was needed to protect the fiber from degradation during the subsequent SiC matrix infiltration procedure. A preliminary tensile stress-rupture study indicated that the ZrO2 coating exhibited promising performance in terms of providing the weak interface behavior and maintaining the thermal and oxidative stability at elevated temperatures.

  3. Effects of silica coating and silane surface conditioning on the bond strength of rebonded metal and ceramic brackets.

    PubMed

    Atsü, Saadet; Çatalbaş, Bülent; Gelgör, İbrahim Erhan

    2011-01-01

    The aim of this study was to evaluate the effects of tribochemical silica coating and silane surface conditioning on the bond strength of rebonded metal and ceramic brackets. Twenty debonded metal and 20 debonded ceramic brackets were randomly assigned to receive one of the following surface treatments (n=10 for each group): (1) sandblasting (control); (2) tribochemical silica coating combined with silane. Brackets were rebonded to the enamel surface on the labial and lingual sides of premolars with a light-polymerized resin composite. All specimens were stored in distilled water for 1 week and then thermocycled (5,000 cycles) between 5-55ºC. Shear bond strength values were measured using a universal testing machine. Student's t-test was used to compare the data (α=0.05). Failure mode was assessed using a stereomicroscope, and the treated and non-treated bracket surfaces were observed by scanning electron microscopy. Rebonded ceramic brackets treated with silica coating followed by silanization had significantly greater bond strength values (17.7±4.4 MPa) than the sandblasting group (2.4±0.8 MPa, P<0.001). No significant difference was observed between the rebonded metal brackets treated with silica coating with silanization (15±3.9 MPa) and the sandblasted brackets (13.6±3.9 MPa). Treated rebonded ceramic specimens primarily exhibited cohesive failure in resin and adhesive failure at the enamel-adhesive interface. In comparison to sandblasting, silica coating with aluminum trioxide particles followed by silanization resulted in higher bond strengths of rebonded ceramic brackets.

  4. Repair bond strength of resin composite to bilayer dental ceramics

    PubMed Central

    2018-01-01

    PURPOSE The purpose of this study was to investigate the effect of various surface treatments (ST) on the shear bond strength of resin composite to three bilayer dental ceramics made by CAD/CAM and two veneering ceramics. MATERIALS AND METHODS Three different bilayer dental ceramics and two different veneering ceramics were used (Group A: IPS e.max CAD+IPS e.max Ceram; Group B: IPS e.max ZirCAD+IPS e.max Ceram, Group C: Vita Suprinity+Vita VM11; Group D: IPS e.max Ceram; Group E: Vita VM11). All groups were divided into eight subgroups according to the ST. Then, all test specimens were repaired with a nano hybrid resin composite. Half of the test specimens were subjected to thermocycling procedure and the other half was stored in distilled water at 37℃. Shear bond strength tests for all test specimens were carried out with a universal testing machine. RESULTS There were statistically significant differences among the tested surface treatments within the all tested fracture types (P<.005). HF etching showed higher bond strength values in Groups A, C, D, and E than the other tested ST. However, bonding durability of all the surface-treated groups were similar after thermocycling (P>.00125). CONCLUSION This study revealed that HF etching for glass ceramics and sandblasting for zirconia ceramics were adequate for repair of all ceramic restorations. The effect of ceramic type exposed on the fracture area was not significant on the repair bond strength of resin composites to different ceramic types. PMID:29713430

  5. Effectiveness of metal matrix and ceramic matrix composites as orbital debris shield materials

    NASA Technical Reports Server (NTRS)

    Mcgill, Preston B.; Mount, Angela R.

    1992-01-01

    The effectiveness of two metal matrix composites and one ceramic matrix material in defeating hypervelocity impacts at about 3.8 km/s are evaluated to determine the potential of these composites as spacecraft shield materials. The metal matrix composites investigated consist of SiC particles (70 percent by volume) in an aluminum matrix and Al2O3 particles (50 percent by volume) in an Al matrix. The ceramic composite consists of ZrB2 platelets in a ZrC matrix. Both the metal matrix and ceramic matrix composites are found to perform as well or better than 6061-T6 aluminum, which is presently used in the Whipple type bumper shield of Space Station Freedom. Test results indicate that the composites tested may have applications as micrometeoroid/orbital debris shield materials.

  6. Evolution of In-Situ Generated Reinforcement Precipitates in Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Sen, S.; Kar, S. K.; Catalina, A. V.; Stefanescu, D. M.; Dhindaw, B. K.

    2004-01-01

    Due to certain inherent advantages, in-situ production of Metal Matrix Composites (MMCs) have received considerable attention in the recent past. ln-situ techniques typically involve a chemical reaction that results in precipitation of a ceramic reinforcement phase. The size and spatial distribution of these precipitates ultimately determine the mechanical properties of these MMCs. In this paper we will investigate the validity of using classical growth laws and analytical expressions to describe the interaction between a precipitate and a solid-liquid interface (SLI) to predict the size and spatial evolution of the in-situ generated precipitates. Measurements made on size and distribution of Tic precipitates in a Ni&I matrix will be presented to test the validity of such an approach.

  7. Reactive processing and mechanical properties of polymer derived silicon nitride matrix composites and their use in coating and joining ceramics and ceramic matrix composites

    NASA Astrophysics Data System (ADS)

    Stackpoole, Margaret Mary

    Use of preceramic polymers offers many advantages over conventional ceramic processing routes. Advantages include being able to plastically form the part, form a pyrolized ceramic material at lower temperatures and form high purity microstructures which are tailorable depending on property requirements. To date preceramic polymers are mostly utilized in the production of low dimensional products such as fibers since loss of volatiles during pyrolysis leads to porosity and large shrinkage (in excess of 30%). These problems have been partially solved by use of active fillers (e.g. Ti, Cr, B). The reactive filler converts to a ceramic material with a volume expansion and this increases the density and reduces shrinkage and porosity. The expansion of the reactive filler thus compensates for the polymer shrinkage if the appropriate volume fraction of filler is present in a reactive atmosphere (e.g. N2 or NH3). This approach has resulted in structural composites with limited success. The present research investigates the possibility of using filled preceramic polymers to form net shaped ceramic composite materials and to investigate the use of these unique composite materials to join and coat ceramics and ceramic composites. The initial research focused on phase and microstructural development of bulk composites from the filled polymer/ceramic systems. A processing technique was developed to insure consistency between different samples and the most promising filler/polymer choices for this application have been determined. The processing temperatures and atmospheres have also been optimized. The work covers processing and characterization of bulk composites, joints and coatings. With careful control of processing near net shape bulk composites were fabricated. Both ambient and high temperature strength and fracture toughness was obtained for these composite systems. The potential of using reactively filled preceramic polymers to process joints and coatings was also investigated. A critical thickness below which crack free joints/coatings could be processed was determined. Finally, mechanical properties of the joints and coatings at ambient and elevated temperatures (including oxidation studies) have been evaluated. The interfacial fracture behavior of the joints and coatings was also evaluated.

  8. 3D-characterization of the veneer-zirconia interface using FIB nano-tomography.

    PubMed

    Mainjot, Amélie K; Douillard, Thierry; Gremillard, Laurent; Sadoun, Michaël J; Chevalier, Jérôme

    2013-02-01

    The phenomena occurring during zirconia frameworks veneering process are not yet fully understood. In particular the study of zirconia behavior at the interface with the veneer remains a challenge. However this interface has been reported to act on residual stress in the veneering ceramic, which plays a significant role in clinical failures such as chipping. The objective of this study was thus to investigate the veneer-zirconia interface using a recent 3D-analysis tool and to confront these observations to residual stress measurements in the veneering ceramic. Two cross-sectioned bilayered disc samples (veneer on zirconia), exhibiting different residual stress profiles in the veneering ceramic, were investigated using 2D and 3D imaging (respectively Scanning Electron Microscopy (SEM) and Focused Ion Beam nanotomography (FIB-nt), associated with chemical analysis by Energy Dispersive X-ray Spectroscopy (EDS). The observations did not reveal any structural change in the bulk of zirconia layer of both samples. However the presence of structural alterations and sub-surface microcracks were highlighted in the first micrometer of zirconia surface, exclusively for the sample exhibiting interior tensile stress in the veneering ceramic. No interdiffusion phenomena were observed. FIB nanotomography was proven to be a powerful technique to study the veneer-zirconia interface. The determination of the origin and the nature of zirconia alterations need to be further studied. The results of the present study support the hypothesis that zirconia surface property changes could be involved in the development of tensile stress in the veneering ceramic, increasing the risk of chipping. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Facile and scalable fabrication of polymer-ceramic composite electrolyte with high ceramic loadings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandian, Amaresh Samuthira; Chen, Xi Chelsea; Chen, Jihua

    Solid state electrolytes are a promising alternative to flammable liquid electrolytes for high-energy lithium battery applications. In this work polymer-ceramic composite electrolyte membrane with high ceramic loading (greater than 60 vol%) is fabricated using a model polymer electrolyte poly(ethylene oxide) + lithium trifluoromethane sulfonate and a lithium-conducting ceramic powder. The effects of processing methods, choice of plasticizer and varying composition on ionic conductivity of the composite electrolyte are thoroughly investigated. The physical, structural and thermal properties of the composites are exhaustively characterized. We demonstrate that aqueous spray coating followed by hot pressing is a scalable and inexpensive technique to obtainmore » composite membranes that are amazingly dense and uniform. The ionic conductivity of composites fabricated using this protocol is at least one order of magnitude higher than those made by dry milling and solution casting. The introduction of tetraethylene glycol dimethyl ether further increases the ionic conductivity. The composite electrolyte's interfacial compatibility with metallic lithium and good cyclability is verified by constructing lithium symmetrical cells. As a result, a remarkable Li + transference number of 0.79 is discovered for the composite electrolyte.« less

  10. Facile and scalable fabrication of polymer-ceramic composite electrolyte with high ceramic loadings

    DOE PAGES

    Pandian, Amaresh Samuthira; Chen, Xi Chelsea; Chen, Jihua; ...

    2018-04-24

    Solid state electrolytes are a promising alternative to flammable liquid electrolytes for high-energy lithium battery applications. In this work polymer-ceramic composite electrolyte membrane with high ceramic loading (greater than 60 vol%) is fabricated using a model polymer electrolyte poly(ethylene oxide) + lithium trifluoromethane sulfonate and a lithium-conducting ceramic powder. The effects of processing methods, choice of plasticizer and varying composition on ionic conductivity of the composite electrolyte are thoroughly investigated. The physical, structural and thermal properties of the composites are exhaustively characterized. We demonstrate that aqueous spray coating followed by hot pressing is a scalable and inexpensive technique to obtainmore » composite membranes that are amazingly dense and uniform. The ionic conductivity of composites fabricated using this protocol is at least one order of magnitude higher than those made by dry milling and solution casting. The introduction of tetraethylene glycol dimethyl ether further increases the ionic conductivity. The composite electrolyte's interfacial compatibility with metallic lithium and good cyclability is verified by constructing lithium symmetrical cells. As a result, a remarkable Li + transference number of 0.79 is discovered for the composite electrolyte.« less

  11. Method for preparing ceramic composite

    DOEpatents

    Alexander, K.B.; Tiegs, T.N.; Becher, P.F.; Waters, S.B.

    1996-01-09

    A process is disclosed for preparing ceramic composite comprising blending TiC particulates, Al{sub 2}O{sub 3} particulates and nickel aluminide and consolidating the mixture at a temperature and pressure sufficient to produce a densified ceramic composite having fracture toughness equal to or greater than 7 MPa m{sup 1/2}, a hardness equal to or greater than 18 GPa. 5 figs.

  12. Glass/Ceramic Composites for Sealing Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Choi, Sung R.

    2007-01-01

    A family of glass/ceramic composite materials has been investigated for use as sealants in planar solid oxide fuel cells. These materials are modified versions of a barium calcium aluminosilicate glass developed previously for the same purpose. The composition of the glass in mole percentages is 35BaO + 15CaO + 5Al2O3 + 10B2O3 + 35SiO2. The glass seal was found to be susceptible to cracking during thermal cycling of the fuel cells. The goal in formulating the glass/ ceramic composite materials was to (1) retain the physical and chemical advantages that led to the prior selection of the barium calcium aluminosilicate glass as the sealant while (2) increasing strength and fracture toughness so as to reduce the tendency toward cracking. Each of the composite formulations consists of the glass plus either of two ceramic reinforcements in a proportion between 0 and 30 mole percent. One of the ceramic reinforcements consists of alumina platelets; the other one consists of particles of yttria-stabilized zirconia wherein the yttria content is 3 mole percent (3YSZ). In preparation for experiments, panels of the glass/ceramic composites were hot-pressed and machined into test bars.

  13. Critical stresses for extension of filament-bridged matrix cracks in ceramic-matrix composites: An assessment with a model composite with tailored interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danchaivijit, S.; Shetty, D.K.; Eldridge, J.

    Matrix cracking was studied in a model unidirectional composite of SiC filaments in an epoxy-bonded alumina matrix. The residual clamping stress on the filaments due to the shrinkage of the epoxy was moderated with the addition of the alumina filler, and the filament surface was coated with a releasing agent to produce unbonded frictional interfaces. Uniaxial tension specimens with controlled through-cracks with bridging filaments were fabricated by a two-step casting technique. Critical stresses for extension of the filament-bridged cracks of various lengths were measured in uniaxial tension using a high-sensitivity extensometer. The measured crack-length dependence of the critical stress wasmore » in good agreement with the prediction of a stress-intensity analysis that employed a new force-displacement law for the bridging filaments. The analysis required independent experimental evaluation of the matrix fracture toughness, the interfacial sliding friction stress, and the residual tension in the matrix. The matrix-cracking stress for the test specimens without the deliberately introduced cracks was significantly higher than the steady-state cracking stress measured for the long, filament-bridged cracks.« less

  14. The Microstructural Design of Trimodal Aluminum Composites

    NASA Astrophysics Data System (ADS)

    Jiang, Lin; Ma, Kaka; Yang, Hanry; Li, Meijuan; Lavernia, Enrique J.; Schoenung, Julie M.

    2014-06-01

    Trimodal composites, consisting of nanocrystalline or ultrafine grains (UFGs), coarse grains (CGs), and ceramic particles, were originally formulated to achieve combinations of physical and mechanical properties that are unattainable with the individual phases, such as strength, ductility, and high-strain-rate deformation. The concept of a trimodal structure is both scientifically novel as well as technologically promising because it provides multiple controllable degrees of freedom that allow for extensive microstructure design. The UFGs provide efficient obstacles for dislocation movement, such as grain boundaries and other crystalline defects. The size, distribution, and spatial arrangement of the CGs can be controlled to provide plasticity during deformation. The size, morphology, and distribution of the reinforcement particles can be tailored to attain various engineering and physical properties. Moreover, the interfaces that form among the various phases also help determine the overall behavior of the trimodal composites. In this article, a review is provided to discuss the selection and design of each component in trimodal Al composites. The toughening and strengthening mechanisms in the trimodal composite structure are discussed, paying particular attention to strategies that can be implemented to tailor microstructures for optimal mechanical behavior. Recent results obtained with high-performance trimodal Al composites that contain nanometric reinforcements are also discussed to highlight the ability to control particle-matrix interface characteristics. Finally, a perspective is provided on potential approaches that can be explored to develop the next generation of trimodal composites, and interesting scientific paradigms that evolve from the proposed design strategies are discussed.

  15. Progressive Failure And Life Prediction of Ceramic and Textile Composites

    NASA Technical Reports Server (NTRS)

    Xue, David Y.; Shi, Yucheng; Katikala, Madhu; Johnston, William M., Jr.; Card, Michael F.

    1998-01-01

    An engineering approach to predict the fatigue life and progressive failure of multilayered composite and textile laminates is presented. Analytical models which account for matrix cracking, statistical fiber failures and nonlinear stress-strain behavior have been developed for both composites and textiles. The analysis method is based on a combined micromechanics, fracture mechanics and failure statistics analysis. Experimentally derived empirical coefficients are used to account for the interface of fiber and matrix, fiber strength, and fiber-matrix stiffness reductions. Similar approaches were applied to textiles using Repeating Unit Cells. In composite fatigue analysis, Walker's equation is applied for matrix fatigue cracking and Heywood's formulation is used for fiber strength fatigue degradation. The analysis has been compared with experiment with good agreement. Comparisons were made with Graphite-Epoxy, C/SiC and Nicalon/CAS composite materials. For textile materials, comparisons were made with triaxial braided and plain weave materials under biaxial or uniaxial tension. Fatigue predictions were compared with test data obtained from plain weave C/SiC materials tested at AS&M. Computer codes were developed to perform the analysis. Composite Progressive Failure Analysis for Laminates is contained in the code CPFail. Micromechanics Analysis for Textile Composites is contained in the code MicroTex. Both codes were adapted to run as subroutines for the finite element code ABAQUS and CPFail-ABAQUS and MicroTex-ABAQUS. Graphic user interface (GUI) was developed to connect CPFail and MicroTex with ABAQUS.

  16. Lead-Free KNbO3:xZnO Composite Ceramics.

    PubMed

    Lv, Xiang; Li, Zhuoyun; Wu, Jiagang; Xiao, Dingquan; Zhu, Jianguo

    2016-11-09

    It is a tough issue to develop dense and water resistant KNbO 3 ceramics due to high evaporation and hygroscopicity of K 2 O. Here, KNbO 3 :xZnO composite ceramics were used to successfully solve this problem, where ZnO particles were randomly distributed into a KNbO 3 matrix. The addition of ZnO hardly affects the phase structure of KNbO 3 , and moreover, the enhancement of electrical properties, thermal stability, and aging characteristics was observed in KNbO 3 :xZnO composite ceramics. The composites possessed the maximum d 33 of 120 ± 5 pC/N, which is superior to that of pure KNbO 3 (d 33 = 80 pC/N). More importantly, a strong water resistance and an aging-free characteristic were observed in KNbO 3 :0.4ZnO. This is the first time for KNbO 3 ceramics to simultaneously improve electrical properties and resolve the water-absorbing properties. We believe that these composite ceramics are promising for practical applications.

  17. Computational Simulation of Continuous Fiber-Reinforced Ceramic Matrix Composites Behavior

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Chamis, Christos C.; Mital, Subodh K.

    1996-01-01

    This report describes a methodology which predicts the behavior of ceramic matrix composites and has been incorporated in the computational tool CEMCAN (CEramic Matrix Composite ANalyzer). The approach combines micromechanics with a unique fiber substructuring concept. In this new concept, the conventional unit cell (the smallest representative volume element of the composite) of the micromechanics approach is modified by substructuring it into several slices and developing the micromechanics-based equations at the slice level. The methodology also takes into account nonlinear ceramic matrix composite (CMC) behavior due to temperature and the fracture initiation and progression. Important features of the approach and its effectiveness are described by using selected examples. Comparisons of predictions and limited experimental data are also provided.

  18. Experimental study of the fracture toughness of a ceramic/ceramic-matrix composite sandwich structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Z.; Taya, M.; Dunn, M.L.

    A hybrid experimental-numerical approach has been used to measure the fracture resistance of a sandwich structure consisting of a 304 stainless steel/partially stabilized zirconia ceramic-matrix composite crack-arresting layer embedded in a partially stabilized zirconia ceramic specimen. The mode 1 fracture toughness increases significantly when the crack propagates from the ceramic into the ceramic-matrix composite region. The increased toughening due to the stainless steel particles is explained reasonably well by a toughening model based on processing-induced thermal residual stresses. In addition, several experimental modifications were made to the chevron-notch wedge-loaded double cantilever beam specimen to overcome numerous problems encountered in generatingmore » a precrack in the small, brittle specimens used in this study.« less

  19. NDE of ceramics and ceramic composites

    NASA Technical Reports Server (NTRS)

    Vary, Alex; Klima, Stanley J.

    1991-01-01

    Although nondestructive evaluation (NDE) techniques for ceramics are fairly well developed, they are difficult to apply in many cases for high probability detection of the minute flaws that can cause failure in monolithic ceramics. Conventional NDE techniques are available for monolithic and fiber reinforced ceramic matrix composites, but more exact quantitative techniques needed are still being investigated and developed. Needs range from flaw detection to below 100 micron levels in monolithic ceramics to global imaging of fiber architecture and matrix densification anomalies in ceramic composites. NDE techniques that will ultimately be applicable to production and quality control of ceramic structures are still emerging from the lab. Needs are different depending on the processing stage, fabrication method, and nature of the finished product. NDE techniques are being developed in concert with materials processing research where they can provide feedback information to processing development and quality improvement. NDE techniques also serve as research tools for materials characterization and for understanding failure processes, e.g., during thermomechanical testing.

  20. All ceramic structure for molten carbonate fuel cell

    DOEpatents

    Smith, James L.; Kucera, Eugenia H.

    1992-01-01

    An all-ceramic molten carbonate fuel cell having a composition formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The structure includes an anode and cathode separated by an electronically conductive interconnect. The electrodes and interconnect are compositions ceramic materials. Various combinations of ceramic compositions for the anode, cathode and interconnect are disclosed. The fuel cell exhibits stability in the fuel gas and oxidizing environments. It presents reduced sealing and expansion problems in fabrication and has improved long-term corrosion resistance.

  1. Morphological characterization of dental prostheses interfaces using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Sinescu, Cosmin; Negrutiu, Meda L.; Ionita, Ciprian; Marsavina, Liviu; Negru, Radu; Caplescu, Cristiana; Bradu, Adrian; Topala, Florin; Rominu, Roxana O.; Petrescu, Emanuela; Leretter, Marius; Rominu, Mihai; Podoleanu, Adrian G.

    2010-03-01

    Fixed partial prostheses as integral ceramic, polymers, metal-ceramic or metal-polymers bridges are mainly used in the frontal part of the dental arch (especially the integral bridges). They have to satisfy high stress as well as esthetic requirements. The masticatory stress may induce fractures of the bridges. These may be triggered by initial materials defects or by alterations of the technological process. The fractures of these bridges lead to functional, esthetic and phonetic disturbances which finally render the prosthetic treatment inefficient. Dental interfaces represent one of the most significant aspects in the strength of the dental prostheses under the masticatory load. The purpose of this study is to evaluate the capability of optical coherence tomography (OCT) to characterize the dental prostheses interfaces. The materials used were several fixed partial prostheses integral ceramic, polymers, metal-ceramic and metal-polymers bridges. It is important to produce both C-scans and B-scans of the defects in order to differentiate morphological aspects of the bridge infrastructures. The material defects observed with OCT were investigated with micro-CT in order to prove their existence and positions. In conclusion, it is important to have a non invasive method to investigate dental prostheses interfaces before the insertion of prostheses in the oral cavity.

  2. Laser Cladding of Composite Bioceramic Coatings on Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Xu, Xiang; Han, Jiege; Wang, Chunming; Huang, Anguo

    2016-02-01

    In this study, silicon nitride (Si3N4) and calcium phosphate tribasic (TCP) composite bioceramic coatings were fabricated on a Ti6Al4V (TC4) alloy using Nd:YAG pulsed laser, CO2 CW laser, and Semiconductor CW laser. The surface morphology, cross-sectional microstructure, mechanical properties, and biological behavior were carefully investigated. These investigations were conducted employing scanning electron microscope, energy-dispersive x-ray spectroscopy, and other methodologies. The results showed that both Si3N4 and Si3N4/TCP composite coatings were able to form a compact bonding interface between the coating and the substrate by using appropriate laser parameters. The coating layers were dense, demonstrating a good surface appearance. The bioceramic coatings produced by laser cladding have good mechanical properties. Compared with that of the bulk material, microhardness of composite ceramic coatings on the surface significantly increased. In addition, good biological activity could be obtained by adding TCP into the composite coating.

  3. Characterization of Nanoreinforcement Dispersion in Inorganic Nanocomposites: A Review

    PubMed Central

    Saheb, Nouari; Qadir, Najam Ul; Siddiqui, Muhammad Usama; Arif, Abul Fazl Muhammad; Akhtar, Syed Sohail; Al-Aqeeli, Nasser

    2014-01-01

    Metal and ceramic matrix composites have been developed to enhance the stiffness and strength of metals and alloys, and improve the toughness of monolithic ceramics, respectively. It is possible to further improve their properties by using nanoreinforcement, which led to the development of metal and ceramic matrix nanocomposites, in which case, the dimension of the reinforcement is on the order of nanometer, typically less than 100 nm. However, in many cases, the properties measured experimentally remain far from those estimated theoretically. This is mainly due to the fact that the properties of nanocomposites depend not only on the properties of the individual constituents, i.e., the matrix and reinforcement as well as the interface between them, but also on the extent of nanoreinforcement dispersion. Therefore, obtaining a uniform dispersion of the nanoreinforcement in the matrix remains a key issue in the development of nanocomposites with the desired properties. The issue of nanoreinforcement dispersion was not fully addressed in review papers dedicated to processing, characterization, and properties of inorganic nanocomposites. In addition, characterization of nanoparticles dispersion, reported in literature, remains largely qualitative. The objective of this review is to provide a comprehensive description of characterization techniques used to evaluate the extent of nanoreinforcement dispersion in inorganic nanocomposites and critically review published work. Moreover, methodologies and techniques used to characterize reinforcement dispersion in conventional composites, which may be used for quantitative characterization of nanoreinforcement dispersion in nanocomposites, is also presented. PMID:28788670

  4. Risk of pulp damage due to temperature increase during thermodebonding of ceramic brackets.

    PubMed

    Jost-Brinkmann, P G; Radlanski, R J; Artun, J; Loidl, H

    1997-12-01

    The purpose of this study was to perform in vitro measurements of the temperature increase at the enamel-dentine interface during electrothermal removal of ceramic brackets, and to analyse, in vivo, whether signs of pulp damage can be observed 4 weeks after the procedure. In vitro study: a total of 29 caries-free human teeth were cut into buccal and lingual halves. The buccal halves were bonded with ceramic brackets, and miniature thermocouples were placed from the pulpal side into holes drilled to the enamel-dentine interface under the centre of the bracket slot. From the onset of thermodebonding, the temperature increase relative to room temperature was recorded for a period of 43 seconds. The maximum temperature increase at the enamel-dentine interface was 6.9 degrees C. In vivo study: a total of 12 human premolars scheduled for extraction for orthodontic reasons were bonded with ceramic brackets. Electrothermal debonding was performed the following day. After 4 weeks, the teeth were extracted and prepared for histological examination. Following demineralization, sections were prepared for light microscopic examination. No signs of pulpal inflammation were observed.

  5. Radiographic, microcomputer tomography, and optical coherence tomography investigations of ceramic interfaces

    NASA Astrophysics Data System (ADS)

    Sinescu, Cosmin; Negrutiu, Meda Lavinia; Ionita, Ciprian; Topala, Florin; Petrescu, Emanuela; Rominu, Roxana; Pop, Daniela Maria; Marsavina, Liviu; Negru, Radu; Bradu, Adrian; Rominu, Mihai; Podoleanu, Adrian Gh.

    2010-12-01

    Imagistic investigation of the metal-ceramic crowns and fixed partial prostheses represent a very important issue in nowadays dentistry. At this time, in dental office, it is difficult or even impossible to evaluate a metal ceramic crown or bridge before setting it in the oral cavity. The possibilities of ceramic fractures are due to small fracture lines or material defects inside the esthetic layers. Material and methods: In this study 25 metal ceramic crowns and fixed partial prostheses were investigated by radiographic method (Rx), micro computer tomography (MicroCT) and optical coherence tomography (OCT) working in Time Domain, at 1300 nm. The OCT system contains two interferometers and one scanner. For each incident analysis a stuck made of 100 slices was obtain. These slices were used in order to obtain a 3D model of the ceramic interface. Results: RX and MicroCT are very powerful instruments that provide a good characterization of the dental construct. It is important to observe the reflections due to the metal infrastructure that could affect the evaluation of the metal ceramic crowns and bridges. The OCT investigations could complete the imagistic evaluation of the dental construct by offering important information when it is need it.

  6. Crack Opening Displacement Behavior in Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Sevener, Kathy; Tracy, Jared; Chen, Zhe; Daly, Sam; Kiser, Doug

    2017-01-01

    Ceramic Matrix Composites (CMC) modeling and life prediction strongly depend on oxidation, and therefore require a thorough understanding of when matrix cracks occur, the extent of cracking for given conditions (time-temperature-environment-stress), and the interactions of matrix cracks with fibers and interfaces. In this work, the evolution of matrix cracks in a melt-infiltrated Silicon Carbide/Silicon Carbide (SiC/SiC) CMC under uniaxial tension was examined using scanning electron microscopy (SEM) combined with digital image correlation (DIC) and manual crack opening displacement (COD) measurements. Strain relaxation due to matrix cracking, the relationship between COD's and applied stress, and damage evolution at stresses below the proportional limit were assessed. Direct experimental observation of strain relaxation adjacent to regions of matrix cracking is presented and discussed. Additionally, crack openings were found to increase linearly with increasing applied stress, and no crack was found to pass fully through the gage cross-section. This observation is discussed in the context of the assumption of through-cracks for all loading conditions and fiber architectures in oxidation modeling. Finally, the combination of SEM with DIC is demonstrated throughout to be a powerful means for damage identification and quantification in CMC's at stresses well below the proportional limit.

  7. High-Performance Acousto-Ultrasonic Scan System Being Developed

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Martin, Richard E.; Cosgriff, Laura M.; Gyekenyesi, Andrew L.; Kautz, Harold E.

    2003-01-01

    Acousto-ultrasonic (AU) interrogation is a single-sided nondestructive evaluation (NDE) technique employing separated sending and receiving transducers. It is used for assessing the microstructural condition and distributed damage state of the material between the transducers. AU is complementary to more traditional NDE methods, such as ultrasonic cscan, x-ray radiography, and thermographic inspection, which tend to be used primarily for discrete flaw detection. Throughout its history, AU has been used to inspect polymer matrix composites, metal matrix composites, ceramic matrix composites, and even monolithic metallic materials. The development of a high-performance automated AU scan system for characterizing within-sample microstructural and property homogeneity is currently in a prototype stage at NASA. This year, essential AU technology was reviewed. In addition, the basic hardware and software configuration for the scanner was developed, and preliminary results with the system were described. Mechanical and environmental loads applied to composite materials can cause distributed damage (as well as discrete defects) that plays a significant role in the degradation of physical properties. Such damage includes fiber/matrix debonding (interface failure), matrix microcracking, and fiber fracture and buckling. Investigations at the NASA Glenn Research Center have shown that traditional NDE scan inspection methods such as ultrasonic c-scan, x-ray imaging, and thermographic imaging tend to be more suited to discrete defect detection rather than the characterization of accumulated distributed micro-damage in composites. Since AU is focused on assessing the distributed micro-damage state of the material in between the sending and receiving transducers, it has proven to be quite suitable for assessing the relative composite material state. One major success story at Glenn with AU measurements has been the correlation between the ultrasonic decay rate obtained during AU inspection and the mechanical modulus (stiffness) seen during fatigue experiments with silicon carbide/silicon carbide (SiC/SiC) ceramic matrix composite samples. As shown in the figure, ultrasonic decay increased as the modulus decreased for the ceramic matrix composite tensile fatigue samples. The likely microstructural reason for the decrease in modulus (and increase in ultrasonic decay) is the matrix microcracking that commonly occurs during fatigue testing of these materials. Ultrasonic decay has shown the capability to track the pattern of transverse cracking and fiber breakage in these composites.

  8. High-Performance Acousto-Ultrasonic Scan System Being Developed

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Martin, Richard E.; Cosgriff, Laura M.; Gyekenyesi, Andrew L.; Kautz, Harold E.

    2003-01-01

    Acousto-ultrasonic (AU) interrogation is a single-sided nondestructive evaluation (NDE) technique employing separated sending and receiving transducers. It is used for assessing the microstructural condition and distributed damage state of the material between the transducers. AU is complementary to more traditional NDE methods, such as ultrasonic cscan, x-ray radiography, and thermographic inspection, which tend to be used primarily for discrete flaw detection. Throughout its history, AU has been used to inspect polymer matrix composites, metal matrix composites, ceramic matrix composites, and even monolithic metallic materials. The development of a high-performance automated AU scan system for characterizing within-sample microstructural and property homogeneity is currently in a prototype stage at NASA. This year, essential AU technology was reviewed. In addition, the basic hardware and software configuration for the scanner was developed, and preliminary results with the system were described. Mechanical and environmental loads applied to composite materials can cause distributed damage (as well as discrete defects) that plays a significant role in the degradation of physical properties. Such damage includes fiber/matrix debonding (interface failure), matrix microcracking, and fiber fracture and buckling. Investigations at the NASA Glenn Research Center have shown that traditional NDE scan inspection methods such as ultrasonic c-scan, x-ray imaging, and thermographic imaging tend to be more suited to discrete defect detection rather than the characterization of accumulated distributed microdamage in composites. Since AU is focused on assessing the distributed microdamage state of the material in between the sending and receiving transducers, it has proven to be quite suitable for assessing the relative composite material state. One major success story at Glenn with AU measurements has been the correlation between the ultrasonic decay rate obtained during AU inspection and the mechanical modulus (stiffness) seen during fatigue experiments with silicon carbide/silicon carbide (SiC/SiC) ceramic matrix composite samples. As shown in the figure, ultrasonic decay increased as the modulus decreased for the ceramic matrix composite tensile fatigue samples. The likely microstructural reason for the decrease in modulus (and increase in ultrasonic decay) is the matrix microcracking that commonly occurs during fatigue testing of these materials. Ultrasonic decay has shown the capability to track the pattern of transverse cracking and fiber breakage in these composites.

  9. Systematic approach to preparing ceramic-glass composites with high translucency for dental restorations.

    PubMed

    Yoshimura, Humberto N; Chimanski, Afonso; Cesar, Paulo F

    2015-10-01

    Ceramic composites are promising materials for dental restorations. However, it is difficult to prepare highly translucent composites due to the light scattering that occurs in multiphase ceramics. The objective of this work was to verify the effectiveness of a systematic approach in designing specific glass compositions with target properties in order to prepare glass infiltrated ceramic composites with high translucency. First it was necessary to calculate from literature data the viscosity of glass at the infiltration temperature using the SciGlass software. Then, a glass composition was designed for targeted viscosity and refractive index. The glass of the system SiO2-B2O3-Al2O3-La2O3-TiO2 prepared by melting the oxide raw materials was spontaneously infiltrated into porous alumina preforms at 1200°C. The optical properties were evaluated using a refractometer and a spectrophotometer. The absorption and scattering coefficients were calculated using the Kubelka-Munk model. The light transmittance of prepared composite was significantly higher than a commercial ceramic-glass composite, due to the matching of glass and preform refractive indexes which decreased the scattering, and also to the decrease in absorption coefficient. The proposed systematic approach was efficient for development of glass infiltrated ceramic composites with high translucency, which benefits include the better aesthetic performance of the final prosthesis. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Processing and mechanical characterization of alumina laminates

    NASA Astrophysics Data System (ADS)

    Montgomery, John K.

    2002-08-01

    Single-phase ceramics that combine property gradients or steps in monolithic bodies are sought as alternatives to ceramic composites made of dissimilar materials. This work describes novel processing methods to produce stepped-density (or laminated) alumina single-phase bodies that maintain their mechanical integrity. One arrangement consists of a stiff, dense bulk material with a thin, flaw tolerant, porous exterior layer. Another configuration consists of a lightweight, low-density bulk material with a thin, hard, wear resistant exterior layer. Alumina laminates with strong interfaces have been successfully produced in this work using two different direct-casting processes. Gelcasting is a useful near-net shape processing technique that has been combined with several techniques, such as reaction bonding of aluminum oxide and the use of starch as a fugative filler, to successfully produced stepped-density alumina laminates. The other direct casting process that has been developed in this work is thermoreversible gelcasting (TRG). This is a reversible gelation process that has been used to produce near-net shape dense ceramic bodies. Also, individual layers can be stacked together and heated to produce laminates. Bilayer laminate samples were produced with varied thickness of porous and dense layers. It was shown that due to the difference in modulus and hardness, transverse cracking is found upon Hertzian contact when the dense layer is on the exterior. In the opposite arrangement, compacted damage zones formed in the porous material and no damage occurred in the underlying dense layer. Flaw tolerant behavior of the porous exterior/dense underlayer was examined by measuring biaxial strength as a function of Vickers indentation load. It was found that the thinnest layer of porous material results in the greatest flaw tolerance. Also, higher strength was exhibited at large indentation loads when compared to dense monoliths. The calculated stresses on the surfaces and interface afforded an explanation of the behavior that failure initiates at the interface between the layers for the thinnest configuration, rather than the sample surface.

  11. Fracture Toughness and Reliability in High-Temperature Structural Ceramics and Composites: Prospects and Challenges for the 21st Century

    NASA Technical Reports Server (NTRS)

    Dutta, Sunil

    1999-01-01

    The importance of high fracture toughness and reliability in Si3N4, and SiC-based structural ceramics and ceramic matrix composites is reviewed. The potential of these ceramics and ceramic matrix composites for high temperature applications in defense and aerospace applications such as gas turbine engines, radomes, and other energy conversion hardware have been well recognized. Numerous investigations were pursued to improve fracture toughness and reliability by incorporating various reinforcements such as particulate-, whisker-, and continuous fiber into Si3N4 and SiC matrices. All toughening mechanisms, e.g. crack deflection, crack branching, crack bridging, etc., essentially redistribute stresses at the crack tip and increase the energy needed to propagate a crack through the composite material, thereby resulting in improved fracture toughness and reliability. Because of flaw insensitivity, continuous fiber reinforced ceramic composite (CFCC) was found to have the highest potential for higher operating temperature and longer service conditions. However, the ceramic fibers should display sufficient high temperature strength and creep resistance at service temperatures above 1000 'C. The greatest challenge to date is the development of high quality ceramic fibers with associate coatings able to maintain their high strength in oxidizing environment at high temperature. In the area of processing, critical issues are, preparation of optimum matrix precursors, precursor infiltration into fiber array, and matrix densification at a temperature, where grain crystallization and fiber degradation do not occur. A broad scope of effort is required for improved processing and properties with a better understanding of all candidate composite systems.

  12. Aerospace Ceramic Materials: Thermal, Environmental Barrier Coatings and SiC/SiC Ceramic Matrix Composites for Turbine Engine Applications

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2018-01-01

    Ceramic materials play increasingly important roles in aerospace applications because ceramics have unique properties, including high temperature capability, high stiffness and strengths, excellent oxidation and corrosion resistance. Ceramic materials also generally have lower densities as compared to metallic materials, making them excellent candidates for light-weight hot-section components of aircraft turbine engines, rocket exhaust nozzles, and thermal protection systems for space vehicles when they are being used for high-temperature and ultra-high temperature ceramics applications. Ceramic matrix composites (CMCs), including non-oxide and oxide CMCs, are also recently being incorporated in gas turbine engines for high pressure and high temperature section components and exhaust nozzles. However, the complexity and variability of aerospace ceramic processing methods, compositions and microstructures, the relatively low fracture toughness of the ceramic materials, still remain the challenging factors for ceramic component design, validation, life prediction, and thus broader applications. This ceramic material section paper presents an overview of aerospace ceramic materials and their characteristics. A particular emphasis has been placed on high technology level (TRL) enabling ceramic systems, that is, turbine engine thermal and environmental barrier coating systems and non-oxide type SiC/SiC CMCs. The current status and future trend of thermal and environmental barrier coatings and SiC/SiC CMC development and applications are described.

  13. Sandblasting and silica coating of a glass-infiltrated alumina ceramic: volume loss, morphology, and changes in the surface composition.

    PubMed

    Kern, M; Thompson, V P

    1994-05-01

    Silica coating can improve bonding of resin to glass-infiltrated aluminum oxide ceramic (In-Ceram), and sandblasting is a pretreatment to thermal silica coating (Silicoater MD system) or a tribochemical coating process (Rocatec system). This study evaluated the effects of sandblasting and coating techniques on volume loss, surface morphology, and surface composition of In-Ceram ceramic. Volume loss through sandblasting was 36 times less for In-Ceram ceramic compared with a feldspathic glass ceramic (IPS-Empress), and sandblasting of In-Ceram ceramic did not change its surface composition. After tribochemical coating with the Rocatec system, a layer of small silica particles remained that elevated the silica content to 19.7 weight percentage (energy-dispersive spectroscopy). Ultrasonic cleaning removed loose silica particles from the surface and decreased the silica content to 15.8 weight percentage, which suggested firm attachment of most of the silica layer to the surface. After treatment with the Silicoater MD system, the silica content increased only slightly from that of the sandblasted specimen. The silica layer created by these systems differs greatly in both morphology and thickness, which could result in different bond strengths. Sandblasting of all ceramic clinical restorations with feldspathic glass materials should be avoided, but for In-Ceram ceramic the volume loss was within an acceptable range and similar to that of noble metals.

  14. Dielectric response of high permittivity polymer ceramic composite with low loss tangent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subodh, G.; 1.Physikalisches Institut, Universitat Stuttgart, Pfaffenwaldring 57, Stuttgart 70550; Deepu, V.

    2009-08-10

    The present communication investigates the dielectric response of the Sr{sub 9}Ce{sub 2}Ti{sub 12}O{sub 36} ceramics loaded high density polyethylene and epoxy resin. Sr{sub 9}Ce{sub 2}Ti{sub 12}O{sub 36} ceramic filled polyethylene and epoxy composites were prepared using hot blending and mechanical mixing, respectively. 40 vol % ceramic loaded polyethylene has relative permittivity of 12.1 and loss tangent of 0.004 at 8 GHz, whereas the corresponding composite using epoxy as matrix has permittivity and loss tangent of 14.1 and 0.022, respectively. The effective medium theory fits relatively well for the observed permittivity of these composites.

  15. Study on the neotype zirconia's implant coated nanometer hydroxyapatite ceramics

    NASA Astrophysics Data System (ADS)

    Zhu, J. W.; Yang, D. W.

    2007-07-01

    In recent years, biologic ceramics is a popular material of implants and bioactive surface modification of dental implant became a research emphasis, which aims to improve bioactivity of implants materials and acquire firmer implants-bone interface. The zirconia ceramic has excellent mechanical properties and nanometer HA ceramics is a bioceramic well known for its bioactivity, therefore, nanometer HA ceramics coating on zirconia, allows combining the excellent mechanical properties of zirconia substrates with its bioactivity. This paper shows a new method for implant shape design and bioactive modification of dental implants surface. Zirconia's implant substrate was prepared by sintered method, central and lateral tunnels were drilled in the zirconia hollow porous cylindrical implants by laser processing. The HA powders and needle-like HA crystals were made by a wet precipitation and calcining method. Its surface was coated with nanometer HA ceramics which was used brush HA slurry and vacuum sintering. Mechanical testing results revealed that the attachment strength of nanometer HA ceramics coated zirconia samples is high. SEM and interface observation after inserted experiment indicated that calcium and phosphor content increased and symmetrically around coated implant-bone tissue interface. A significantly higher affinity index was demonstrated in vivo by histomorphometric evaluation in coated versus uncoated implants. SEM analysis demonstrated better bone adhesion to the material in coated implant at any situation. In addition, the hollow porous cylindrical implant coated with nanometer HA ceramics increase the interaction of bone and implant, the new bone induced into the surface of hollow porous cylindrical implant and through the most tunnels filled into central hole. The branch-like structure makes the implant and bone a body, which increased the contact area and decreased elastic ratio. Therefore, the macroscopical and microcosmic nested structure of implant coated nanometer HA ceramics had increased biocompatibility and improved the osteointegration. It endows the implants with new vital activity.

  16. High temperature insulation for ceramic matrix composites

    DOEpatents

    Merrill, Gary B.; Morrison, Jay Alan

    2001-01-01

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.

  17. High temperature insulation for ceramic matrix composites

    DOEpatents

    Merrill, Gary B.; Morrison, Jay Alan

    2000-01-01

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composite comprises a plurality of hollow oxide-based spheres of varios dimentions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substates are also provided.

  18. High temperature insulation for ceramic matrix composites

    DOEpatents

    Merrill, Gary B.; Morrison, Jay Alan

    2004-01-13

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.

  19. Cladding material, tube including such cladding material and methods of forming the same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garnier, John E.; Griffith, George W.

    A multi-layered cladding material including a ceramic matrix composite and a metallic material, and a tube formed from the cladding material. The metallic material forms an inner liner of the tube and enables hermetic sealing of thereof. The metallic material at ends of the tube may be exposed and have an increased thickness enabling end cap welding. The metallic material may, optionally, be formed to infiltrate voids in the ceramic matrix composite, the ceramic matrix composite encapsulated by the metallic material. The ceramic matrix composite includes a fiber reinforcement and provides increased mechanical strength, stiffness, thermal shock resistance and highmore » temperature load capacity to the metallic material of the inner liner. The tube may be used as a containment vessel for nuclear fuel used in a nuclear power plant or other reactor. Methods for forming the tube comprising the ceramic matrix composite and the metallic material are also disclosed.« less

  20. Modeling of stress/strain behavior of fiber-reinforced ceramic matrix composites including stress redistribution

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Murthy, Pappu L. N.; Chamis, Christos C.

    1994-01-01

    A computational simulation procedure is presented for nonlinear analyses which incorporates microstress redistribution due to progressive fracture in ceramic matrix composites. This procedure facilitates an accurate simulation of the stress-strain behavior of ceramic matrix composites up to failure. The nonlinearity in the material behavior is accounted for at the constituent (fiber/matrix/interphase) level. This computational procedure is a part of recent upgrades to CEMCAN (Ceramic Matrix Composite Analyzer) computer code. The fiber substructuring technique in CEMCAN is used to monitor the damage initiation and progression as the load increases. The room-temperature tensile stress-strain curves for SiC fiber reinforced reaction-bonded silicon nitride (RBSN) matrix unidirectional and angle-ply laminates are simulated and compared with experimentally observed stress-strain behavior. Comparison between the predicted stress/strain behavior and experimental stress/strain curves is good. Collectively the results demonstrate that CEMCAN computer code provides the user with an effective computational tool to simulate the behavior of ceramic matrix composites.

  1. RAINBOWS and CERAMBOWS: The Technologies of Pre-Stressed Piezo Actuators

    NASA Technical Reports Server (NTRS)

    Haertling, Gene H.

    1996-01-01

    Amplified mechanical displacement effects, similar to those observed in the recently reported Rainbow actuators, have also been found to exist in prestressed ceramic/metal composite structures coined as CERAMBOW's - an acronym for CERamic And Metal Biased Oxide Wafer. Mimicking the Rainbows in many ways, the intentionally created internal compressive and tensile stresses within the Cerambows are used to amplify their displacement properties via the combined effects of piezoelectric d31 strain and domain reorientation. They are fabricated from ferroelectric, piezoelectric or electrostrictive materials and metal substrates of significantly different thermal expansions which are largely responsible for the creation of the stress. Typical ceramics used in Cerambows are PZT, PLZT, PBZT, PSZT and PMN and some typical metal substrates are Al, Ag, Ni, brass, steel and Be/Cu foil. Shapes can vary from round disks to square plates and rectangular bars. Formed at an elevated temperature of approximately 250 C, the stresses on cooling to room temperature are generally sufficient to produce displacements as large as 0.125mm (5 mils) when activated unipolar and 0.25mm (10 mils) when operated bipolar at 450 volts in a dome mode. Comparing equal structures of a Cerambow with a Rainbow, the Cerambow was found to achieve approximately 70% of the displacement that would normally be obtained with a Rainbow. Although this difference in displacement is sufficient to prefer a Rainbow for many applications, there are some advantages for the Cerambow. Among these are (1) the processing temperatures are lower, (2) high lead-containing ceramics are not required and (3) in some instances the metal substrate is more convenient to interface with other elements of a device. However, the disadvantages include (1) lower displacement in the dome mode of operation, (2) the higher displacement saddle mode has not yet been demonstrated with a Cerambow and (3) the ceramic/metal bond interface is a possible failure area when operated for extended periods of time. The applications for Cerambows are considered to be similar to Rainbows, i.e., actuators, pumps, deflectors, vibrators, speakers, hydrophones, hydroprojectors, switches, etc.

  2. Nanoscale mapping of heterogeneity of the polarization reversal in lead-free relaxor–ferroelectric ceramic composites

    DOE PAGES

    Gobeljic, D.; Shvartsman, V. V.; Belianinov, A.; ...

    2016-01-05

    Relaxor/ferroelectric ceramic/ceramic composites have shown to be promising in generating large electromechanical strain at moderate electric fields. However, the mechanisms of polarization and strain coupling between grains of different nature in the composites remain unclear. To rationalize the coupling mechanisms we performed advanced piezoresponse force microscopy (PFM) studies of 0.92BNT-0.06BT-0.02KNN/0.93BNT-0.07BT (ergodic/non-ergodic relaxor) composites. PFM is able to distinguish grains of different phases by characteristic domain patterns. Polarization switching has been probed locally, on a sub-grain scale. k-Means clustering analysis applied to arrays of local hysteresis loops reveals variations of polarization switching characteristics between the ergodic and non-ergodic relaxor grains. Here,more » we report a different set of switching parameters for grains in the composites as opposed to the pure phase samples. These results confirm ceramic/ceramic composites to be a viable approach to tailor the piezoelectric properties and optimize the macroscopic electromechanical characteristics.« less

  3. Amino Acid Hydrolysis and Analysis System for Investigation of Site Directed Nucleation and Growth of Ceramic Films on Metallic Surfaces

    DTIC Science & Technology

    2008-09-30

    that composed the proteinaceous polymers found at the interface between calcite crystals deposited by oyster cells and the various n1etal substrates...proteinaceous polymers found at the interface between calcite crystals deposited by oyster cells and the various metal substrates. A recently...required for the mechanism of biomineralization and site-specific deposition of ceramic crystals on aluminum alloy substrates. These calcite crystals

  4. Ceramic fiber reinforced glass-ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P. (Inventor)

    1993-01-01

    A slurry of BSAS glass powders is cast into tapes which are cut to predetermined sizes. Mats of continuous chemical vapor deposition (CVD)-SiC fibers are alternately stacked with these matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite which is heated to burn out organic constituents. The remaining interim material is then hot-pressed to form a BSAS glass-ceramic fiber-reinforced composite.

  5. Processing of Piezoelectric (Li,Na,K)NbO3 Porous Ceramics and (Li,Na,K)NbO3/KNbO3 Composites

    NASA Astrophysics Data System (ADS)

    Kakimoto, Ken-ichi; Imura, Tomoya; Fukui, Yasuchika; Kuno, Masami; Yamagiwa, Katsuya; Mitsuoka, Takeshi; Ohbayashi, Kazushige

    2007-10-01

    Porous Li0.06(Na0.5K0.5)0.94NbO3 (LNKN-6) ceramics with different pore volumes have been prepared using preceramic powder and phenol resin fiber (KynolTM) as a pore former. It was confirmed that the porous ceramics synthesized by the “two-stage firing method” suppressed the loss of alkali elements from the porous body during heat treatment. The porous LNKN-6 ceramics were then converted to LNKN-6/KNbO3 composites through soaking and heat treatment using a sol-gel precursor source composed of KNbO3 to form 3-3-type composites. The microstructure, dielectric, and piezoelectric properties of the porous LNKN-6 ceramics and LNKN-6/KNbO3 composites were characterized and compared. The LNKN-6/KNbO3 composites had a hollow structure whose pores in the region near the surface were filled and coated with KNbO3 precipitates; however, a large amount of residual air was trapped in the pores inside the composites. As a result, the LNKN-6/KNbO3 composites fabricated using 30 vol % KynolTM showed an enhanced piezoelectric voltage output coefficient (g33) of 63.0× 10-3 V\\cdotm/N, compared with monolithic LNKN-6 ceramics having a g33 of 30.2× 10-3 V\\cdotm/N.

  6. Identifying Opportunities in the Development of Ceramic Matrix Composite (CMC) Materials for Armor Applications

    DTIC Science & Technology

    2017-03-01

    a state of compression (Gooch 2002). At the same time research continues within the ceramics community to develop stronger and tougher ceramics...ARL-TR-7987 ● MAR 2017 US Army Research Laboratory Identifying Opportunities in the Development of Ceramic Matrix Composite (CMC...unless so designated by other authorized documents. Citation of manufacturer’s or trade names does not constitute an official endorsement or

  7. Composite airfoil assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Crespo, Andres Jose

    A composite blade assembly for mounting on a turbine wheel includes a ceramic airfoil and an airfoil platform. The ceramic airfoil is formed with an airfoil portion, a blade shank portion and a blade dovetail tang. The metal platform includes a platform shank and a radially inner platform dovetail. The ceramic airfoil is captured within the metal platform, such that in use, the ceramic airfoil is held within the turbine wheel independent of the metal platform.

  8. Updating Classifications of Ceramic Dental Materials: A Guide to Material Selection.

    PubMed

    McLaren, Edward A; Figueira, Johan

    2015-06-01

    The indications for and composition of today's dental ceramic materials serve as the basis for determining the appropriate class of ceramics to use for a given case. By understanding the classifications, composition, and characteristics of the latest all-ceramic materials, which are presented in this article in order of most to least conservative, dentists and laboratory technicians can best determine the ideal material for a particular treatment.

  9. Composite phase ceramic phosphor of Al₂O₃-Ce:YAG for high efficiency light emitting.

    PubMed

    Tang, Yanru; Zhou, Shengming; Chen, Chong; Yi, Xuezhuan; Feng, Yue; Lin, Hui; Zhang, Shuai

    2015-07-13

    We present our achievement which is a ceramic plate phosphorable to produce white light when directly combined with commercially available blue light emitting diodes. The ceramic phase structure is that the Al₂O₃ particle is uniformly distributed in the Ce:YAG matrix. The Al₂O₃-Ce:YAG ceramic phosphor has a better luminous efficacy than the transparent Ce:YAG ceramic phosphor under the same test condition. The Al₂O₃ particle plays an important role in promoting the luminous efficacy. The Al₂O₃ particle changes the propagation of the light in ceramic, and it reduces the total internal reflection. That is why the composite phase ceramic phosphor improves extraction efficiency of light.

  10. Influence of substituting B2O3 for CaF2 on the bonding behaviour to bone of glass-ceramics containing apatite and wollastonite.

    PubMed

    Kitsugi, T; Yamamuro, T; Nakamura, T; Yoshii, S; Kokubo, T; Takagi, M; Shibuya, T

    1992-01-01

    Glass-ceramics containing crystalline oxy-fluoroapatite (Ca10(PO4)6(O,F2)) and wollastonite (CaSiO3) (designated AWGC) are reported to have a fairly high mechanical strength as well as the capability of forming a chemical bond with bone tissue. The chemical composition is MgO 4.6, CaO 44.9, SiO2 34.2, P2O5 16.3, and CaF2 0.5 in weight ratio. In this study the influence of substituting B2O3 for CaF2 on the bonding behaviour of glass-ceramics containing apatite and wollastonite to bone tissue was investigated. Two kinds of glass-ceramics containing apatite and wollastonite were prepared. CaF2 0.5 was replaced with B2O3 at 0.5 and 2.0 in weight ratio (designated AWGC-0.5B and AWGC-2.0B). Rectangular ceramic plates (15 x 10 x 2 mm, abraded with No. 2000 alumina powder) were implanted into a rabbit tibia. The failure load, when an implant detached from the bone, or the bone itself broke, was measured. The failure load of AWGC-0.5B was 8.00 +/- 1.82 kg at 10 weeks after implantation and 8.16 +/- 1.36 kg at 25 weeks after implantation. The failure load of AWGC-2B was 8.08 +/- 1.70 kg at 10 weeks after implantation and 9.92 +/- 2.46 kg at 25 weeks after implantation. None of the loads for the two kinds of glass-ceramics decreased as time passed. Giemsa surface staining and contact microradiography revealed direct bonding between glass-ceramics and bone. SEM-EPMA showed a calcium-phosphorus rich layer (reaction zone) at the interface of ceramics and bone tissue. The thickness of the reaction zone was 10 to -15 microns and did not increase as time passed.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Metal matrix composite of an iron aluminide and ceramic particles and method thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneibel, Joachim H.

    A metal matrix composite comprising an iron aluminide binder phase and a ceramic particulate phase such as titanium diboride, zirconium diboride, titanium carbide and tungsten carbide is made by heating a mixture of iron aluminide powder and particulates of one of the ceramics such as titanium diboride, zirconium diboride, titanium carbide and tungsten carbide in a alumina crucible at about 1450.degree. C. for about 15 minutes in an evacuated furnace and cooling the mixture to room temperature. The ceramic particulates comprise greater than 40 volume percent to about 99 volume percent of the metal matrix composite.

  12. Metal matrix composite of an iron aluminide and ceramic particles and method thereof

    DOEpatents

    Schneibel, J.H.

    1997-06-10

    A metal matrix composite comprising an iron aluminide binder phase and a ceramic particulate phase such as titanium diboride, zirconium diboride, titanium carbide and tungsten carbide is made by heating a mixture of iron aluminide powder and particulates of one of the ceramics such as titanium diboride, zirconium diboride, titanium carbide and tungsten carbide in a alumina crucible at about 1,450 C for about 15 minutes in an evacuated furnace and cooling the mixture to room temperature. The ceramic particulates comprise greater than 40 volume percent to about 99 volume percent of the metal matrix composite.

  13. Metal matrix composite of an iron aluminide and ceramic particles and method thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneibel, J.H.

    A metal matrix composite comprising an iron aluminide binder phase and a ceramic particulate phase such as titanium diboride, zirconium diboride, titanium carbide and tungsten carbide is made by heating a mixture of iron aluminide powder and particulates of one of the ceramics such as titanium diboride, zirconium diboride, titanium carbide and tungsten carbide in a alumina crucible at about 1,450 C for about 15 minutes in an evacuated furnace and cooling the mixture to room temperature. The ceramic particulates comprise greater than 40 volume percent to about 99 volume percent of the metal matrix composite.

  14. A Homemade Instrument for Collecting Soil Water From Porous Ceramic Cups

    Treesearch

    M. Dean Knighton; Dwight E. Streblow

    1981-01-01

    An efficient Ceramic-Cup Water Collection Instrument (CCWCI, "quickie") is described. Soil water collection from ceramic-cup samplers may require compositing by equal volume from distantly spaced samplers, or simultaneous water collection spaced samplers, or simultaneous water collection from closely spaced samplers without compositing. All collection must...

  15. [Effect of silicon coating on bonding strength of ceramics and titanium].

    PubMed

    Zhou, Shu; Wang, Yu; Zhang, Fei-Min; Guang, Han-Bing

    2009-06-01

    This study investigated the effect of silicon coating (SiO2) by solution-gelatin (Sol-Gel) technology on bonding strength of titanium and ceramics. Sixteen pure titanium specimens with the size of 25 mm x 3 mm x 0.5 mm were divided into two groups (n=8), test group was silicon coated by Sol-Gel technology, the other one was control group. The middle area of the samples were veneered with Vita Titankeramik system, the phase composition of two specimens were characterized by X-ray diffraction (XRD). The bonding strength of titanium/porcelain was evaluated using three-point bending test. The interface of titanium and porcelain and fractured titanium surface were investigated by scanning electron microscope (SEM) with energy depressive spectrum (EDS). Contents of surface silicon increased after modification with silicon coated by Sol-Gel technology. The mean bonding strength of test group and control group were (37.768 +/- 0.777) MPa and (29.483 +/- 1.007) MPa. There was a statistically significant difference (P=0.000) between them. The bonded ceramic boundary of test group was wider than control group. Silicon coating by Sol-Gel technology was significant in improving bonding strength of titanium/Vita Titankeramik system.

  16. Robust numerical simulation of porosity evolution in chemical vapor infiltration III: three space dimension

    NASA Astrophysics Data System (ADS)

    Jin, Shi; Wang, Xuelei

    2003-04-01

    Chemical vapor infiltration (CVI) process is an important technology to fabricate ceramic matrix composites (CMC's). In this paper, a three-dimension numerical model is presented to describe pore microstructure evolution during the CVI process. We extend the two-dimension model proposed in [S. Jin, X.L. Wang, T.L. Starr, J. Mater. Res. 14 (1999) 3829; S. Jin. X.L. Wang, T.L. Starr, X.F. Chen, J. Comp. Phys. 162 (2000) 467], where the fiber surface is modeled as an evolving interface, to the three space dimension. The 3D method keeps all the virtue of the 2D model: robust numerical capturing of topological changes of the interface such as the merging, and fast detection of the inaccessible pores. For models in the kinetic limit, where the moving speed of the interface is constant, some numerical examples are presented to show that this three-dimension model will effectively track the change of porosity, close-off time, location and shape of all pores.

  17. Thermal behavior of silicone rubber-based ceramizable composites characterized by Fourier transform infrared (FT-IR) spectroscopy and microcalorimetry.

    PubMed

    Anyszka, Rafał; Bieliński, Dariusz M; Jędrzejczyk, Marcin

    2013-12-01

    Ceramizable (ceramifiable) silicone rubber-based composites are commonly used for cable insulation. These materials are able to create a protective ceramic layer during fire due to the ceramization process, which occurs at high temperature. When the temperature is increased, the polymer matrix is degraded and filler particles stick together by the fluxing agent, producing a solid, continuous ceramic phase that protects the copper wire from heat and mechanical stress. Despite increasing interest in these materials that has resulted in growing applications in the cable industry, their thermal behavior and ceramization process are still insufficiently described in the literature. In this paper, the thermal behavior of ceramizable silicone rubber-based composites is studied using microcalorimetry and Fourier transform infrared spectroscopy. The analysis of the experimental data made it possible to develop complete information on the mechanism of composite ceramization.

  18. Piezoelectric and pyroelectric properties of PZT/P(VDF-TrFE) composites with constituent phases poled in parallel or antiparallel directions.

    PubMed

    Ng, K L; Chan, H L; Choy, C L

    2000-01-01

    Composites of lead zirconate titanate (PZT) powder dispersed in a vinylidene fluoride-trifluoroethylene copolymer [P(VDF-TrFE)] matrix have been prepared by compression molding. Three groups of polarized samples have been prepared by poling: only the ceramic phase, the ceramic and polymer phases in parallel directions, and the two phases in antiparallel directions. The measured permittivities of the unpoled composites are consistent with the predictions of the Bruggeman model. The changes in the pyroelectric and piezoelectric coefficients of the poled composites with increasing ceramic volume fraction can be described by modified linear mixture rules. When the ceramic and copolymer phases are poled in the same direction, their pyroelectric activities reinforce while their piezoelectric activities partially cancel. However, when the ceramic and copolymer phases are poled in opposite directions, their piezoelectric activities reinforce while their pyroelectric activities partially cancel.

  19. Silicon carbide whisker reinforced composites and method for making same

    DOEpatents

    Wei, G.C.

    1984-02-09

    The present invention is directed to the fabrication of ceramic composites which possess improved mechanical properties, especially increased fracture toughness. In the formation of these ceramic composites, the single-crystal SiC whiskers are mixed with fine ceramic powders of a ceramic material such as Al/sub 2/O/sub 3/, mullite, or B/sub 4/C. The mixtures which contain a homogeneous dispersion of the SiC whiskers are hot pressed at pressures in a range of about 28 to 70 MPa and temperatures in the range of about 1600 to 1950/sup 0/C with pressing times varying from about 0.75 to 2.5 hours. The resulting ceramic composites show an increase in fracture toughness of up to about 9 MPa.m/sup 1/2/ which represents as much as a two-fold increase over that of the matrix material.

  20. [Effect of core: dentin thickness ratio on the flexure strength of IPS Empress II heat-pressed all-ceramic restorative material].

    PubMed

    Liu, Yi-hong; Feng, Hai-lan; Bao, Yi-wang; Qiu, Yan

    2007-02-18

    To evaluate the effect of core:dentin thickness ratio on the flexure strength, fracture mode and origin of bilayered IPS Empress II ceramic composite specimens. IPS Empress II core ceramic, dentin porcelain and bilayered composite specimens with core:dentin thickness ratio of 2:1 and 1:1 were tested in three-point flexure strength. Mean strengths and standard deviations were determined. The optical microscopy was employed for identification of the fracture mode and origin. The flexure strength of dentin porcelain was the smallest(62.7 MPa), and the strength of bilayered composite specimens was smaller than single-layered core ceramic(190.2 MPa). The core: dentin ratio did not influence the strength of bilayered composite specimens. The frequency of occurrence of bilayered specimen delaminations was higher in the group of core: dentin thickness ratio of 1:1 than in the group of 2:1. IPS Empress II core ceramic was significantly stronger than veneering dentin porcelain. Core:dentin thickness ratio could significantly influence the fracture mode and origin, and bilayered IPS Empress II ceramic composite specimens showed little influence in the fracture strength.

  1. New ceramics containing dispersants for improved fracture toughness

    DOEpatents

    Nevitt, M.V.; Aldred, A.T.; Chan, Sai-Kit

    1985-07-01

    The invention is a ceramic composition containing a new class of dispersant for hindering crack propagation by means of one or more energy-dissipative mechanisms. The composition is composed of a ceramic matrix with dispersed particles of a transformation-prone rare-earth niobate, tantalate or mixtures of these with each other and/or with a rare-earth vanadate. The dispersants, having a generic composition tRBO/sub 4/, where R is a rare-earth element, B if Nb or Ta and O is oxygen, are mixed in powder form with a powder of the matrix ceramic and sintered to produce a ceramic form or body. The crack-hindering mechanisms operates to provide improved performance over a wide range of temperature and operating conditions.

  2. Ceramics containing dispersants for improved fracture toughness

    DOEpatents

    Nevitt, Michael V.; Aldred, Anthony T.; Chan, Sai-Kit

    1987-07-07

    The invention is a ceramic composition containing a new class of dispersant for hindering crack propagation by means of one or more energy-dissipative mechanisms. The composition is composed of a ceramic matrix with dispersed particles of a transformation-prone rare-earth niobate, tantalate or mixtures of these with each other and/or with a rare-earth vanadate. The dispersants, having a generic composition tRMO.sub.4, where R is a rare-earth element, B is Nb or Ta and O is oxygen, are mixed in powder form with a powder of the matrix ceramic and sintered to produce a ceramic form or body. The crack-hindering mechanisms operates to provide improved performance over a wide range of temperature and operating conditions.

  3. Ceramics containing dispersants for improved fracture toughness

    DOEpatents

    Nevitt, Michael V.; Aldred, Anthony T.; Chan, Sai-Kit

    1987-01-01

    The invention is a ceramic composition containing a new class of dispersant for hindering crack propagation by means of one or more energy-dissipative mechanisms. The composition is composed of a ceramic matrix with dispersed particles of a transformation-prone rare-earth niobate, tantalate or mixtures of these with each other and/or with a rare-earth vanadate. The dispersants, having a generic composition tRMO.sub.4, where R is a rare-earth element, B is Nb or Ta and O is oxygen, are mixed in powder form with a powder of the matrix ceramic and sintered to produce a ceramic form or body. The crack-hindering mechanisms operates to provide improved performance over a wide range of temperature and operating conditions.

  4. Direct Imaging and First Principles Studies of Si3N4/SiO2 Interface

    NASA Astrophysics Data System (ADS)

    Walkosz, Weronika; Klie, Robert; Ogut, Serdar; Mikijelj, Bilijana; Pennycook, Stephen; Idrobo, Juan C.

    2010-03-01

    It is well known that the composition of the integranular films (IGFs) in sintered polycrystalline silicon nitride (Si3N4) ceramics controls many of their physical and mechanical properties. A considerable effort has been made to characterize these films on the atomic scale using both experimental and theoretical methods. In this talk, we present results from a combined atomic-resolution Z-contrast and annular bright field imaging, electron energy-loss spectroscopy, as well as ab initio studies of the interface between β-Si3N4 (10-10) and SiO2 intergranular film. Our results show that O replaces N at the interface between the two materials in agreement with our theoretical calculations and that N is present in the SiO2 IGF. Moreover, they indicate the presence of atomic columns completing Si3N4 open rings, which have not been observed experimentally at the recently imaged Si3N4/rare-earth oxides interfaces, but have been predicted theoretically on bare Si3N4 surfaces. The structural and electronic variations at the Si3N4/SiO2 interface will be discussed in detail, focusing in particular on bonding characteristics.

  5. Internal strain analysis of ceramics using scanning laser acoustic microscopy

    NASA Technical Reports Server (NTRS)

    Kent, Renee M.

    1993-01-01

    Quantitative studies of material behavior characteristics are essential for predicting the functionality of a material under its operating conditions. A nonintrusive methodology for measuring the in situ strain of small dimeter (to 11 microns) ceramic fibers under uniaxial tensile loading and the local internal strains of ceramics and ceramic composites under flexural loading is introduced. The strain measurements and experimentally observed mechanical behavior are analyzed in terms of the microstructural development and fracture behavior of each test specimen evaluated. Measurement and analysis of Nicalon silicon carbide (SiC) fiber (15 microns diameter) indicate that the mean elastic modulus of the individual fiber is 185.3 GPa. Deviations observed in the experimentally determined elastic modulus values between specimens were attributed to microstructural variations which occur during processing. Corresponding variations in the fracture surface morphology were also observed. The observed local mechanical behavior of a lithium alumino-silicate (LAS) glass ceramic, a LAS/SiC monofilament composite, and a calcium alumino-silicate (CAS)/SiC fully reinforced composite exhibits nonlinearities and apparent hysteresis due to the subcritical mechanical loading. Local hysteresis in the LAS matrices coincided with the occurrence of multiple fracture initiation sites, localized microcracking, and secondary cracking. The observed microcracking phenomenon was attributed to stress relaxation of residual stresses developed during processing, and local interaction of the crack front with the microstructure. The relaxation strain and stress predicted on apparent mechanical hysteresis effects were defined and correlated with the magnitude of the measured fracture stress for each specimen studied. This quantitative correlation indicated a repeatable measure of the stress at which matrix microcracking occurred for stress relief of each material system. Stress relaxation occurred prior to the onset of steady state cracking conditions. The relaxation stress occurred at 18.5 percent of the fracture stress in LAS and 11.0 percent of the yield stress in CAS/SiC. The relaxation stress ratio was dependent upon the dominant fracture mode of the LAS/SiC specimens. Relaxation stress ratios greater than 0.30 were observed for specimens which fractured due to shear at the fiber matrix interface; specimens which fracture due to tensile cracking had relaxation stress ratios less than 0.30. The stress relaxation ratio appeared to be a specific characteristic of the glass ceramic material. The measured stress relaxation for LAS indicated a measure of the inherent residual stresses in the material due to processing and suggested localized toughening mechanisms for brittle material structures.

  6. Method for fabrication of ceramic dielectric films on copper foils

    DOEpatents

    Ma, Beihai; Narayanan, Manoj; Dorris, Stephen E.; Balachandran, Uthamalingam

    2015-03-10

    The present invention provides a method for fabricating a ceramic film on a copper foil. The method comprises applying a layer of a sol-gel composition onto a copper foil. The sol-gel composition comprises a precursor of a ceramic material suspended in 2-methoxyethanol. The layer of sol-gel is then dried at a temperature up to about 250.degree. C. The dried layer is then pyrolyzed at a temperature in the range of about 300 to about 450.degree. C. to form a ceramic film from the ceramic precursor. The ceramic film is then crystallized at a temperature in the range of about 600 to about 750.degree. C. The drying, pyrolyzing and crystallizing are performed under a flowing stream of an inert gas. In some embodiments an additional layer of the sol-gel composition is applied onto the ceramic film and the drying, pyrolyzing and crystallizing steps are repeated for the additional layer to build up a thicker ceramic layer on the copper foil. The process can be repeated one or more times if desired.

  7. Bonding effectiveness to different chemically pre-treated dental zirconia.

    PubMed

    Inokoshi, Masanao; Poitevin, André; De Munck, Jan; Minakuchi, Shunsuke; Van Meerbeek, Bart

    2014-09-01

    The objective of this study was to evaluate the effect of different chemical pre-treatments on the bond durability to dental zirconia. Fully sintered IPS e.max ZirCAD (Ivoclar Vivadent) blocks were subjected to tribochemical silica sandblasting (CoJet, 3M ESPE). The zirconia samples were additionally pre-treated using one of four zirconia primers/adhesives (Clearfil Ceramic Primer, Kuraray Noritake; Monobond Plus, Ivoclar Vivadent; Scotchbond Universal, 3M ESPE; Z-PRIME Plus, Bisco). Finally, two identically pre-treated zirconia blocks were bonded together using composite cement (RelyX Ultimate, 3M ESPE). The specimens were trimmed at the interface to a cylindrical hourglass and stored in distilled water (7 days, 37 °C), after which they were randomly tested as is or subjected to mechanical ageing involving cyclic tensile stress (10 N, 10 Hz, 10,000 cycles). Subsequently, the micro-tensile bond strength was determined, and SEM fractographic analysis performed. Weibull analysis revealed the highest Weibull scale and shape parameters for the 'Clearfil Ceramic Primer/mechanical ageing' combination. Chemical pre-treatment of CoJet (3M ESPE) sandblasted zirconia using Clearfil Ceramic Primer (Kuraray Noritake) and Monobond Plus (Ivoclar Vivadent) revealed a significantly higher bond strength than when Scotchbond Universal (3M ESPE) and Z-PRIME Plus (Bisco) were used. After ageing, Clearfil Ceramic Primer (Kuraray Noritake) revealed the most stable bond durability. Combined mechanical/chemical pre-treatment, the latter with either Clearfil Ceramic Primer (Kuraray Noritake) or Monobond Plus (Ivoclar Vivadent), resulted in the most durable bond to zirconia. As a standard procedure to durably bond zirconia to tooth tissue, the application of a combined 10-methacryloyloxydecyl dihydrogen phosphate/silane ceramic primer to zirconia is clinically highly recommended.

  8. Examination of ceramic restorative material interfacial debonding using acoustic emission and optical coherence tomography.

    PubMed

    Lin, Chun-Li; Kuo, Wen-Chuan; Yu, Jin-Jie; Huang, Shao-Fu

    2013-04-01

    CAD/CAM ceramic restorative material is routinely bonded to tooth substrates using adhesive cement. This study investigates micro-crack growth and damage in the ceramic/dentin adhesive interface under fatigue shear testing monitored using the acoustic emission (AE) technique with optical coherence tomography (OCT). Ceramic/dentin adhesive samples were prepared to measure the shear bond strength (SBS) under static load. Fatigue shear testing was performed using a modified ISO14801 method. Loads in the fatigue tests were applied at 80%, 70%, and 60% of the SBS to monitor interface debonding. The AE technique was used to detect micro-crack signals in static and fatigue shear bond tests. The results showed that the average SBS value in the static tests was 10.61±2.23MPa (mean±standard deviation). The average number of fatigue cycles in which ceramic/dentin interface damage was detected in 80%, 70% and 60% of the SBS were 152, 1962 and 9646, respectively. The acoustic behavior varied according to the applied load level. Events were emitted during 60% and 70% fatigue tests. A good correlation was observed between crack location in OCT images and the number of AE signal hits. The AE technique and OCT images employed in this study could potentially be used as a pre-clinical assessment tool to determine the integrity of cemented load bearing restored ceramic material. Sustainable cyclic load stresses in ceramic/dentin-bonded specimens were substantially lower than the measured SBS. Predicted S-N curve showed that the maximum endured load was 4.18MPa passing 10(6) fatigue cyclic. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Advanced composites in Japan

    NASA Technical Reports Server (NTRS)

    Diefendorf, R. Judd; Hillig, William G.; Grisaffe, Salvatore J.; Pipes, R. Byron; Perepezko, John H.; Sheehan, James E.

    1994-01-01

    The JTEC Panel on Advanced Composites surveyed the status and future directions of Japanese high-performance ceramic and carbon fibers and their composites in metal, intermetallic, ceramic, and carbon matrices. Because of a strong carbon and fiber industry, Japan is the leader in carbon fiber technology. Japan has initiated an oxidation-resistant carbon/carbon composite program. With its outstanding technical base in carbon technology, Japan should be able to match present technology in the U.S. and introduce lower-cost manufacturing methods. However, the panel did not see any innovative approaches to oxidation protection. Ceramic and especially intermetallic matrix composites were not yet receiving much attention at the time of the panel's visit. There was a high level of monolithic ceramic research and development activity. High temperature monolithic intermetallic research was just starting, but notable products in titanium aluminides had already appeared. Matrixless ceramic composites was one novel approach noted. Technologies for high temperature composites fabrication existed, but large numbers of panels or parts had not been produced. The Japanese have selected aerospace as an important future industry. Because materials are an enabling technology for a strong aerospace industry, Japan initiated an ambitious long-term program to develop high temperature composites. Although just starting, its progress should be closely monitored in the U.S.

  10. Manufacture, characterisation and properties of novel fluorcanasite glass-ceramics.

    PubMed

    Pollington, Sarah; van Noort, Richard

    2012-11-01

    The aim of this study was to investigate the manufacture and characterisation of different compositions of fluorcanasite glass-ceramics with reduced fluorine content and to assess their mechanical and physical properties. Three compositional variations (S80, S81 and S82) of a fluorcanasite glass were investigated. Differential thermal analysis (DTA) and X-ray diffraction (XRD) identified crystallisation temperatures and phases. X-ray fluorescence (XRF) determined the element composition in the glass-ceramics. Different heat treatments [2 h nucleation and either 2 or 4 h crystallisation] were used for the glasses. Scanning electron microscopy (SEM) examined the microstructure of the cerammed glass. The chemical solubility, biaxial flexural strength, fracture toughness, hardness and brittleness index of S81 and S82 fluorcanasite were investigated with lithium disilicate (e.max CAD, Ivoclar Vivadent) as a commercial comparison. Statistical analysis was performed using one-way ANOVA with Tukey's multiple comparison tests (P<0.05). Weibull analysis was employed to examine the reliability of the strength data. All compositions successfully produced glasses. XRD analysis confirmed fluorcanasite formation with the S81 and S82 compositions, with the S82 (2+2h) showing the most prominent crystal structure. The chemical solubility of the glass-ceramics was significantly different, varying from 2565 ± 507 μg/cm(2) for the S81 (2+2 h) to 722 ± 177 μg/cm(2) for the S82 (2+2 h) to 37.4 ± 25.2 μg/cm(2) for the lithium disilicate. BFS values were highest for the S82 (2+2 h) composition (250 ± 26 MPa) and lithium disilicate (266 ± 37 MPa) glass-ceramics. The fracture toughness was higher for the S82 compositions, with the S82 (2+2h) attaining the highest value of 4.2 ± 0.3 MPa m(1/2)(P=0.01). The S82 (2+2 h) fluorcanasite glass-ceramic had the lowest brittleness index. The S82 (2+2 h) fluorcanasite glass-ceramic has acceptable chemical solubility, high biaxial flexural strength, fracture toughness and hardness. A novel glass-ceramic has been developed with potential as a restorative material. The S82 (2+2 h) has mechanical and physical properties that would allow the glass-ceramic to be used as a machinable core material for veneered resin-bonded ceramic restorations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Homogeneity of Gd-based garnet transparent ceramic scintillators for gamma spectroscopy

    NASA Astrophysics Data System (ADS)

    Seeley, Z. M.; Cherepy, N. J.; Payne, S. A.

    2013-09-01

    Transparent polycrystalline ceramic scintillators based on the composition Gd1.49Y1.49Ce0.02Ga2.2Al2.8O12 are being developed for gamma spectroscopy detectors. Scintillator light yield and energy resolution depend on the details of various processing steps, including powder calcination, green body formation, and sintering atmosphere. We have found that gallium sublimation during vacuum sintering creates compositional gradients in the ceramic and can degrade the energy resolution. While sintering in oxygen produces ceramics with uniform composition and little afterglow, light yields are reduced, compared to vacuum sintering. By controlling the atmosphere during the various process steps, we were able to minimize the gallium sublimation, resulting in a more homogeneous composition and improved gamma spectroscopy performance.

  12. Turbine repair process, repaired coating, and repaired turbine component

    DOEpatents

    Das, Rupak; Delvaux, John McConnell; Garcia-Crespo, Andres Jose

    2015-11-03

    A turbine repair process, a repaired coating, and a repaired turbine component are disclosed. The turbine repair process includes providing a turbine component having a higher-pressure region and a lower-pressure region, introducing particles into the higher-pressure region, and at least partially repairing an opening between the higher-pressure region and the lower-pressure region with at least one of the particles to form a repaired turbine component. The repaired coating includes a silicon material, a ceramic matrix composite material, and a repaired region having the silicon material deposited on and surrounded by the ceramic matrix composite material. The repaired turbine component a ceramic matrix composite layer and a repaired region having silicon material deposited on and surrounded by the ceramic matrix composite material.

  13. Fatigue resistance and microleakage of CAD/CAM ceramic and composite molar crowns.

    PubMed

    Kassem, Amr S; Atta, Osama; El-Mowafy, Omar

    2012-01-01

    The aim of this study was to determine effect of compressive cyclic loading on fatigue resistance and microleakage of monolithic CAD/CAM molar ceramic and composite crowns. Thirty-two extracted molars were prepared to receive CEREC crowns according to manufacturer's guidelines using a special paralleling device (Parallel-A-Prep). Sixteen feldspathic ceramic crowns (VITABLOCS Mark II) (VMII) and 16 resin-composite crowns (Paradigm-MZ100 blocks) (PMZ) were milled using a CEREC-3D machine. Eight crowns of each group were cemented to their respective teeth using self-etching resin cement (Panavia-F-2.0) (PAN), and eight were cemented using self-adhesive resin cement (RelyX-Unicem-Clicker) (RXU). Following storage for 1 week in water, specimens were subjected to uniaxial compressive cyclic loading in an Instron testing machine at 12 Hz for 1,000,000 cycles. Load was applied at the central fossa, and the cycle range was 60-600 N. Specimens were then subjected to microleakage testing. Data were statistically analyzed using factorial ANOVA and Post Hoc (Tukey HSD) tests. All composite crowns survived compressive cyclic loading without fracture, while three ceramic crowns from the subgroup cemented with RXU developed surface cracks at the center of occlusal surfaces, extending laterally. Microleakage scores of ceramic crowns cemented with PAN were significantly lower than those of the other three subgroups (p < 0.05). After 1,000,000 cycles of compressive cyclic loading, PMZ composite molar crowns were more fatigue-resistant than VMII ceramic crowns. Cement type had a significant effect on fatigue resistance of the ceramic crowns but not the composite ones. Microleakage scores of ceramic crowns cemented with PAN were significantly lower than those of the other subgroups (p < 0.05). © 2011 by The American College of Prosthodontists.

  14. Method of producing a ceramic fiber-reinforced glass-ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P. (Inventor)

    1994-01-01

    A fiber-reinforced composite composed of a BaO-Al2O3-2SiO2 (BAS) glass ceramic matrix is reinforced with CVD silicon carbide continuous fibers. A slurry of BAS glass powders is prepared and celsian seeds are added during ball melting. The slurry is cast into tapes which are cut to the proper size. Continuous CVD-SiC fibers are formed into mats of the desired size. The matrix tapes and the fiber mats are alternately stacked in the proper orientation. This tape-mat stack is warm pressed to produce a 'green' composite. The 'green' composite is then heated to an elevated temperature to burn out organic constituents. The remaining interim material is then hot pressed to form a silicon carbide fiber-reinforced celsian (BAS) glass-ceramic matrix composite which may be machined to size.

  15. Ceramic strengthening by tuning the elastic moduli of resin-based luting agents.

    PubMed

    Spazzin, Aloísio O; Bacchi, Ataís; Alessandretti, Rodrigo; Santos, Mateus B; Basso, Gabriela R; Griggs, Jason; Moraes, Rafael R

    2017-03-01

    Resin-based luting agents (RBLAs) with tuned elastic moduli (E) were prepared and their influence on the strengthening, reliability, and mode of failure of luted feldspar ceramic was investigated. RBLAs with low E (2.6GPa), intermediate E (6.6GPa), and high E (13.3GPa) were prepared and used to coat acid-etched ceramic disks. Positive (untreated ceramic) and negative (acid-etched ceramic) control groups were tested. The response variables (n=30) were biaxial flexural strength (σ bf , MPa), characteristic strength (σ 0 , MPa), and Weibull modulus at the ceramic surface (z=0) and luting agent surface (z=-t 2 ). A 3D finite element analysis simulated the biaxial flexural test. Fractographic analysis and morphology of the bonded interfaces were analyzed using scanning electron microscopy. The RBLAs improved σ bf and σ 0 at z=0, particularly those with intermediate and high E, whereas the mechanical reliability was only affected in the negative control. At z=-t 2 , differences between all RBLAs were observed but the structural reliability was independent of the RBLA tested. Increasing E of the RBLA was associated with increased stress concentration at the RBLA and reduced stresses reaching the ceramic. Failures originated on the ceramic surface at the ceramic-cement interface. In the high E group, failure sometimes originated from the RBLA free surface. All RBLAs completely filled the ceramic irregularities. Increased E of the RBLA reduced the variability of strength, the stress reaching the ceramic structure, and sometimes altered the origin of failure. The use of high E RBLAs seems beneficial for luting feldspar ceramics. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Critical Needs for Robust and Reliable Database for Design and Manufacturing of Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Singh, M.

    1999-01-01

    Ceramic matrix composite (CMC) components are being designed, fabricated, and tested for a number of high temperature, high performance applications in aerospace and ground based systems. The critical need for and the role of reliable and robust databases for the design and manufacturing of ceramic matrix composites are presented. A number of issues related to engineering design, manufacturing technologies, joining, and attachment technologies, are also discussed. Examples of various ongoing activities in the area of composite databases. designing to codes and standards, and design for manufacturing are given.

  17. High Temperature Mechanical Behavior of Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Hemann, John

    1996-01-01

    The research accomplishments under this grant were very extensive in the areas of the high temperature behavior of ceramics, ceramic composites and testing standards for these materials. Rather than try to summarize all this research I have enclosed research papers and reports which were completed with the funding provided by the grant.

  18. A new classification system for all-ceramic and ceramic-like restorative materials.

    PubMed

    Gracis, Stefano; Thompson, Van P; Ferencz, Jonathan L; Silva, Nelson R F A; Bonfante, Estevam A

    2015-01-01

    Classification systems for all-ceramic materials are useful for communication and educational purposes and warrant continuous revisions and updates to incorporate new materials. This article proposes a classification system for ceramic and ceramic-like restorative materials in an attempt to systematize and include a new class of materials. This new classification system categorizes ceramic restorative materials into three families: (1) glass-matrix ceramics, (2) polycrystalline ceramics, and (3) resin-matrix ceramics. Subfamilies are described in each group along with their composition, allowing for newly developed materials to be placed into the already existing main families. The criteria used to differentiate ceramic materials are based on the phase or phases present in their chemical composition. Thus, an all-ceramic material is classified according to whether a glass-matrix phase is present (glass-matrix ceramics) or absent (polycrystalline ceramics) or whether the material contains an organic matrix highly filled with ceramic particles (resin-matrix ceramics). Also presented are the manufacturers' clinical indications for the different materials and an overview of the different fabrication methods and whether they are used as framework materials or monolithic solutions. Current developments in ceramic materials not yet available to the dental market are discussed.

  19. Development and characterization of powder metallurgically produced discontinuous tungsten fiber reinforced tungsten composites

    NASA Astrophysics Data System (ADS)

    Mao, Y.; Coenen, J. W.; Riesch, J.; Sistla, S.; Almanstötter, J.; Jasper, B.; Terra, A.; Höschen, T.; Gietl, H.; Bram, M.; Gonzalez-Julian, J.; Linsmeier, Ch; Broeckmann, C.

    2017-12-01

    In future fusion reactors, tungsten is the prime candidate material for the plasma facing components. Nevertheless, tungsten is prone to develop cracks due to its intrinsic brittleness—a major concern under the extreme conditions of fusion environment. To overcome this drawback, tungsten fiber reinforced tungsten (Wf/W) composites are being developed. These composite materials rely on an extrinsic toughing principle, similar to those in ceramic matrix composite, using internal energy dissipation mechanisms, such as crack bridging and fiber pull-out, during crack propagation. This can help Wf/W to facilitate a pseudo-ductile behavior and allows an elevated damage resilience compared to pure W. For pseudo-ductility mechanisms to occur, the interface between the fiber and matrix is crucial. Recent developments in the area of powder-metallurgical Wf/W are presented. Two consolidation methods are compared. Field assisted sintering technology and hot isostatic pressing are chosen to manufacture the Wf/W composites. Initial mechanical tests and microstructural analyses are performed on the Wf/W composites with a 30% fiber volume fraction. The samples produced by both processes can give pseudo-ductile behavior at room temperature.

  20. Metals and Ceramics Division Materials Sciences Program. Annual progress report for period ending December 31, 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stiegler, J.O.

    1986-06-01

    The report is divided into the following: structural characterization, high-temperature alloy research, structural ceramics, radiation effects, structure and properties of surfaces and interfaces, and collaborative research centers. (DLC)

  1. Investigation of failure mechanism of thermal barrier coatings (TBCs) deposited by EB-PVD technique

    NASA Astrophysics Data System (ADS)

    Shahid, M. R.; Abbas, Musharaf

    2013-06-01

    Failure mechanism of thermal barrier coatings (TBCs) prepared by electron beam physical vapor deposition (EB-PVD) technique owing to formation of micro cracks was investigated. The TBCs were deposited on the Ni-based super alloy IN-100 and the micro cracks were observed within the top ceramic coat of thermally cycled TBCs at 1050°C. It was observed that these cracks propagate in the ceramic coat in the direction normal to interface while no cracks were observed in the bond coat. SEM/EDS studies revealed that some non-uniform oxides were formed on the interface between ceramic top and metallic bond coat just below the cracks. Study proposed that the cracks were initiated due to stress owing to big difference in Pilling-Bed worth ratio of non-uniform oxides as well as thermal stress, which caused the formation of cracks in top ceramic coat leading to failure of TBCs

  2. Fractographic Analysis of a Dental Zirconia Framework: a Case Study on Design Issues

    PubMed Central

    Lohbauer, Ulrich; Amberger, Gudrun; Quinn, George D.; Scherrer, Susanne S.

    2011-01-01

    Fractographic analysis of clinically failed dental ceramics can provide insights as to the failure origin and related mechanisms. One anterior 6-unit all-ceramic zirconia fixed partial denture (FPD) (Cercon®) has been clinically recovered and examined using qualitative fractography. The purpose was to identify the fracture origin and to state the reasons for failure. The recovered parts of the zirconia FPD were microscopically examined to identify classic fractographic patterns such as arrest lines, hackle, twist hackle and wake hackle. The direction of crack propagation was mapped and interpreted back to the origin of failure at the interface of the occlusalpalatal tip of the core and the veneering ceramic. An inappropriate core drop design favoring localized stress concentration combined with a pore cluster in the veneering ceramic at the core tip interface were the reasons for this premature through-the-core thickness failure. PMID:20826369

  3. Ceramic porous material and method of making same

    DOEpatents

    Liu, Jun; Kim, Anthony Y.; Virden, Jud W.

    1997-01-01

    The invention is a mesoporous ceramic membrane having substantially uniform pore size. Additionally, the invention includes aqueous and non-aqueous processing routes to making the mesoporous ceramic membranes. According to one aspect of the present invention, inserting a substrate into a reaction chamber at pressure results in reaction products collecting on the substrate and forming a membrane thereon. According to another aspect of the present invention, a second aqueous solution that is sufficiently immiscible in the aqueous solution provides an interface between the two solutions whereon the mesoporous membrane is formed. According to a further aspect of the present invention, a porous substrate is placed at the interface between the two solutions permitting formation of a membrane on the surface or within the pores of the porous substrate. According to yet another aspect of the present invention, mesoporous ceramic materials are formed using a non-aqueous solvent and water-sensitive precursors.

  4. Ceramic porous material and method of making same

    DOEpatents

    Liu, J.; Kim, A.Y.; Virden, J.W.

    1997-07-08

    The invention is a mesoporous ceramic membrane having substantially uniform pore size. Additionally, the invention includes aqueous and non-aqueous processing routes to making the mesoporous ceramic membranes. According to one aspect of the present invention, inserting a substrate into a reaction chamber at pressure results in reaction products collecting on the substrate and forming a membrane thereon. According to another aspect of the present invention, a second aqueous solution that is sufficiently immiscible in the aqueous solution provides an interface between the two solutions whereon the mesoporous membrane is formed. According to a further aspect of the present invention, a porous substrate is placed at the interface between the two solutions permitting formation of a membrane on the surface or within the pores of the porous substrate. According to yet another aspect of the present invention, mesoporous ceramic materials are formed using a non-aqueous solvent and water-sensitive precursors. 21 figs.

  5. Celsian Glass-Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Dicarlo, James A.

    1996-01-01

    Glass-ceramic matrix reinforced fiber composite materials developed for use in low dielectric applications, such as radomes. Materials strong and tough, exhibit low dielectric properties, and endure high temperatures.

  6. Effect of various intermediate ceramic layers on the interfacial stability of zirconia core and veneering ceramics.

    PubMed

    Yoon, Hyung-In; Yeo, In-Sung; Yi, Yang-Jin; Kim, Sung-Hun; Lee, Jai-Bong; Han, Jung-Suk

    2015-01-01

    The purposes of this study were to evaluate the effects of intermediate ceramics on the adhesion between the zirconia core and veneer ceramics. The polished surfaces of fully sintered Y-TZP blocks received three different treatments: (1) connector (C), (2) liner (L) or (3) wash layer (W). All the treated zirconia blocks were veneered with either (a) fluorapatite glass-ceramic (E) or (b) feldspathic porcelain (V) and divided into four groups (CE, CV, LE and WV). For the control group, the testing surfaces of metal blocks were veneered with feldspathic porcelain (VM). A half of the samples in each group (n = 21) were exposed to thermocycling, while the other half of the specimens were stored at room temperature under dry conditions. All specimens were subjected to the shear test and the failed surfaces were microscopically examined. The elemental distribution at the zirconia core/veneer interface was analyzed. The specimens in Groups CE and CV exhibited significantly greater mean bond strength values than those in Groups LE and WV, respectively (p < 0.05). However, the mean bond strengths significantly decreased in the connector groups (CE and CV) after thermal cycling (p < 0.05). The elemental analysis suggested diffusion of ceramic substances into the zirconia surface. A glass-ceramic based connector is significantly more favorable to core/veneer adhesion than the other intermediate ceramics evaluated in the study. However, thermal cycling affected the bond strength at the core/veneer interface differently according to the intermediate ceramics.

  7. A novel biomimetic approach to the design of high-performance ceramic/metal composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Launey, Maximilien E.; Munch, Etienne; Alsem, Daan Hein

    2009-08-01

    The prospect of extending natural biological design to develop new synthetic ceramic-metal composite materials is examined. Using ice-templating of ceramic suspensions and subsequent metal infiltration, we demonstrate that the concept of ordered hierarchical design can be applied to create fine-scale laminated ceramic-metal (bulk) composites that are inexpensive, lightweight and display exceptional damage-tolerance properties. Specifically, Al{sub 2}O{sub 3}/Al-Si laminates with ceramic contents up to approximately 40 vol% and with lamellae thicknesses down to 10 {micro}m were processed and characterized. These structures achieve an excellent fracture toughness of 40 MPa{radical}m at a tensile strength of approximately 300 MPa. Salient toughening mechanisms aremore » described together with further toughening strategies.« less

  8. Nuclear Magnetic Resonance Used to Quantify the Effect of Pyrolysis Conditions on the Oxidative Stability of Silicon Oxycarbide Ceramics

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This work was undertaken in support of the Low Cost Ceramic Composite Virtual Company, (LC^3), whose members include Northrop Grumman Corporation, AlliedSignal Inc., and Allison Advanced Development Company. LC^3 is a cost-shared effort funded by the Advanced Research Projects Agency (ARPA) and the LC^3 participants to develop a low-cost fabrication methodology for manufacturing ceramic matrix composite structural components. The program, which is being administered by the U.S. Air Force Wright Laboratory Materials Directorate, is focused on demonstrating a ceramic matrix composite turbine seal for a regional aircraft engine. This part is to be fabricated by resin transfer molding of a siloxane polymer into a fiber preform that will be transformed into a ceramic by pyrolytic conversion.

  9. Li.sub.2 O-Al.sub.2 O.sub.3 -SiO.sub.2 glass ceramic-aluminum containing austenitic stainless steel composite body and a method of producing the same

    DOEpatents

    Cassidy, Roger T.

    1990-05-01

    The present invention relates to a hermetically sealed Li.sub.2 O-Al.sub.2 O.sub.3 -SiO.sub.2 glass ceramic-aluminum containing stainless steel composite body and a method of producing the body. The composite body includes an oxide interfacial region between the glass ceramic and metal, wherein the interfacial region consists essentially of an Al.sub.2 O.sub.3 layer. The interfacial Al.sub.2 O.sub.3 region includes constituents of both the metal and glass ceramic.

  10. Analyses of fine paste ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabloff, J A

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics. (DLC)

  11. Influence of implant abutment material on the color of different ceramic crown systems.

    PubMed

    Dede, Doğu Ömür; Armağanci, Arzu; Ceylan, Gözlem; Celik, Ersan; Cankaya, Soner; Yilmaz, Burak

    2016-11-01

    Ceramics are widely used for anterior restorations; however, clinical color reproduction still constitutes a challenge particularly when the ceramic crowns are used on titanium implant abutments. The purpose of this in vitro study was to investigate the effect of implant abutment material on the color of different ceramic material systems. Forty disks (11×1.5 mm, shade A2) were fabricated from medium-opacity (mo) and high-translucency (ht) lithium disilicate (IPS e.max) blocks, an aluminous ceramic (VITA In-Ceram Alumina), and a zirconia (Zirkonzahn) ceramic system. Disks were fabricated to represent 3 different implant abutments (zirconia, gold-palladium, and titanium) and dentin (composite resin, A2 shade) as background (11×2 mm). Disk-shaped composite resin specimens in A2 shade were fabricated to represent the cement layer. The color measurements of ceramic specimens were made on composite resin abutment materials using a spectrophotometer. CIELab color coordinates were recorded, and the color coordinates measured on composite resin background served as the control group. Color differences (ΔE 00 ) between the control and test groups were calculated. The data were analyzed with 2-way analysis of variance (ANOVA) and compared with the Tukey HSD test (α=.05). The ceramics system, abutment material, and their interaction were significant for ΔE 00 values (P<.001). Clinically unacceptable results (ΔE 00 >2.25) were observed for lithium disilicate ceramics on titanium abutments (2.46-2.50). The ΔE 00 values of lithium disilicate ceramics for gold-palladium and titanium abutments were significantly higher than for other groups (P<.05). The color results (ΔE 00 >2.25) of an implant-supported lithium disilicate ceramic restoration may be clinically unacceptable if it is fabricated over a titanium abutment. Zirconia may be a more suitable abutment material for implant-supported ceramic restorations. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  12. Shear Bond Strength of Resin Buttons to Lithium Disilicate and Leucite Reinforced Feldspathic Restorations

    DTIC Science & Technology

    2016-05-01

    Hydrofluoric acid, silane coupling agent, light cured composite and ceramic restoration specimens (10 of each IPS e.max and Empress). The surface treatment...cured composite and ceramic restoration specimens (10 of each IPS e.max and Empress). The surface treatment in group C was applied to all specimens...and light cured for 20 seconds. 4) Group D: 5% Hydrofluoric acid, silane coupling agent, light cured composite and ceramic restoration (10 of

  13. Analysis of the Atomic-Scale Defect Chemistry at Interfaces in Fluorite Structured Oxides by Electron Energy Loss Spectroscopy

    DTIC Science & Technology

    2001-11-01

    electronic properties, i.e. oxygen coordination and cation valence at grain boundaries of the fluorite structured Gdo]2Ceo.gO 2_x ceramic membrane material...required to obtain a detailed understanding of the atomic scale phenomena in ceramics, as the polycrystalline nature of Gdo.2Ceo.802- ceramic membrane material

  14. Fabrication and characterisation of a novel biomimetic anisotropic ceramic/polymer-infiltrated composite material.

    PubMed

    Al-Jawoosh, Sara; Ireland, Anthony; Su, Bo

    2018-04-10

    To fabricate and characterise a novel biomimetic composite material consisting of aligned porous ceramic preforms infiltrated with polymer. Freeze-casting was used to fabricate and control the microstructure and porosity of ceramic preforms, which were subsequently infiltrated with 40-50% by volume UDMA-TEGDMA polymer. The composite materials were then subjected to characterisation, namely density, compression, three-point bend, hardness and fracture toughness testing. Samples were also subjected to scanning electron microscopy and computerised tomography (Micro-CT). Three-dimensional aligned honeycomb-like ceramic structures were produced and full interpenetration of the polymer phase was observed using micro-CT. Depending on the volume fraction of the ceramic preform, the density of the final composite ranged from 2.92 to 3.36g/cm 3 , compressive strength ranged from 206.26 to 253.97MPa, flexural strength from 97.73 to 145.65MPa, hardness ranged from 1.46 to 1.62GPa, and fracture toughness from 3.91 to 4.86MPam 1/2 . Freeze-casting provides a novel method to engineer composite materials with a unique aligned honeycomb-like interpenetrating structure, consisting of two continuous phases, inorganic and organic. There was a correlation between the ceramic fraction and the subsequent, density, strength, hardness and fracture toughness of the composite material. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  15. Effect of phase inversion on microporous structure development of Al 2O 3/poly(vinylidene fluoride-hexafluoropropylene)-based ceramic composite separators for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Jeong, Hyun-Seok; Kim, Dong-Won; Jeong, Yeon Uk; Lee, Sang-Young

    To improve the thermal shrinkage of the separators that are essential to securing the electrical isolation between electrodes in lithium-ion batteries, we develop a new separator based on a ceramic composite membrane. Introduction of microporous, ceramic coating layers onto both sides of a polyethylene (PE) separator allows such a progress. The ceramic coating layers consist of nano-sized alumina (Al 2O 3) powders and polymeric binders (PVdF-HFP). The microporous structure of the ceramic coating layers is observed to be crucial to governing the thermal shrinkage as well as the ionic transport of the ceramic composite separators. This microporous structure is determined by controlling the phase inversion, more specifically, nonsolvent (water) contents in the coating solutions. To provide a theoretical basis for this approach, a pre-investigation on the phase diagram for a ternary mixture comprising PVdF-HFP, acetone, and water is conducted. On the basis of this observation, the effect of phase inversion on the morphology and air permeability (i.e. Gurley value) of ceramic coating layers is systematically discussed. In addition, to explore the application of ceramic composite separators to lithium-ion batteries, the influence of the structural change in the coating layers on the thermal shrinkage and electrochemical performance of the separators is quantitatively identified.

  16. Compositional dependence of phase structure and electrical properties in (K0.42Na0.58)NbO3-LiSbO3 lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Wu, Jiagang; Xiao, Dingquan; Wang, Yuanyu; Zhu, Jianguo; Yu, Ping; Jiang, Yihang

    2007-12-01

    (1-x)(K0.42Na0.58)NbO3-xLiSbO3 [(1-x)KNN-xLS] lead-free piezoelectric ceramics were prepared by the conventional mixed oxide method. The compositional dependence of the phase structure and the electrical properties of the ceramics were studied. A morphotropic phase boundary (MPB) between the orthorhombic and tetragonal phases was identified in the composition range of 0.04

  17. Novel Approach for Positioning Sensor Lead Wires on SiC-Based Monolithic Ceramic and FRCMC Components/Subcomponents Having Flat and Curved Surfaces

    NASA Technical Reports Server (NTRS)

    Kiser, J. Douglas; Singh, Mrityunjay; Lei, Jin-Fen; Martin, Lisa C.

    1999-01-01

    A novel attachment approach for positioning sensor lead wires on silicon carbide-based monolithic ceramic and fiber reinforced ceramic matrix composite (FRCMC) components has been developed. This approach is based on an affordable, robust ceramic joining technology, named ARCJoinT, which was developed for the joining of silicon carbide-based ceramic and fiber reinforced composites. The ARCJoinT technique has previously been shown to produce joints with tailorable thickness and good high temperature strength. In this study, silicon carbide-based ceramic and FRCMC attachments of different shapes and sizes were joined onto silicon carbide fiber reinforced silicon carbide matrix (SiC/ SiC) composites having flat and curved surfaces. Based on results obtained in previous joining studies. the joined attachments should maintain their mechanical strength and integrity at temperatures up to 1350 C in air. Therefore they can be used to position and secure sensor lead wires on SiC/SiC components that are being tested in programs that are focused on developing FRCMCs for a number of demanding high temperature applications in aerospace and ground-based systems. This approach, which is suitable for installing attachments on large and complex shaped monolithic ceramic and composite components, should enhance the durability of minimally intrusive high temperature sensor systems. The technology could also be used to reinstall attachments on ceramic components that were damaged in service.

  18. Process for making a titanium diboride-chromium diboride-yttrium titanium oxide ceramic composition

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.

    1992-01-01

    A ceramic composition composition is described. The ceramic composition consists essentially of from about 84 to 96 w/o titanium diboride, from about 1 to 9 w/o chromium diboride, and from about 3 to aobut 15 w/o yttrium-titanium-oxide. A method of making the ceramic composition is also described. The method of making the ceramic composition comprises the following steps: Step 1--A consolidated body containing stoichiometric quantities of titanium diboride and chromium diboride is provided. Step 2--The consolidated body is enclosed in and in contact with a thermally insulated package of yttria granules having a thickness of at least 0.5 inches. Step 3--The consolidated body enclosed in the thermally insulated package of yttria granules is heated in a microwave oven with microwave energy to a temperature equal to or greater than 1,900 degrees centigrade to sinter and uniformly disperse yttria particles having a size range from about 1 to about 12 microns throughout the consolidated body forming a densified body consisting essentially of titanium diboride, chromium diboride, and yttrium-titanium-oxide. The resulting densified body has enhanced fracture toughness and hardness.

  19. Organic-inorganic composites designed for biomedical applications.

    PubMed

    Miyazaki, Toshiki; Ishikawa, Kunio; Shirosaki, Yuki; Ohtsuki, Chikara

    2013-01-01

    Several varieties of ceramics, such as Bioglass-type glasses, sintered hydroxyapatite and glass-ceramic A-W, exhibit specific biological affinity, i.e., direct bonding to surrounding bone, when implanted in bony defects. These bone-bonding ceramics are called bioactive ceramics and are utilized as important bone substitutes in the medical field. However, there is a limitation to their clinical applications because of their inappropriate mechanical properties. Natural bone takes a kind of organic-inorganic composite, where apatite nanocrystals are precipitated on collagen fibers. Therefore, problems with the bioactive ceramics can be solved by material design based on the composites. In this paper, current research topics on the development of bioactive organic-inorganic composites inspired by actual bone microstructure have been reviewed in correlation with preparation methods and various properties. Several kinds of inorganic components have been found to exhibit bioactivity in the body environment. Combination of the inorganic components with various organic polymers enables the development of bioactive organic-inorganic composites. In addition, novel biomedical applications of the composites to drug delivery systems, scaffolds for tissue regeneration and injectable biomaterials are available by combining drugs or biological molecules with appropriate control of its microstructure.

  20. Modeling the Nonlinear, Strain Rate Dependent Deformation of Woven Ceramic Matrix Composites With Hydrostatic Stress Effects Included

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Carney, Kelly S.

    2004-01-01

    An analysis method based on a deformation (as opposed to damage) approach has been developed to model the strain rate dependent, nonlinear deformation of woven ceramic matrix composites with a plain weave fiber architecture. In the developed model, the differences in the tension and compression response have also been considered. State variable based viscoplastic equations originally developed for metals have been modified to analyze the ceramic matrix composites. To account for the tension/compression asymmetry in the material, the effective stress and effective inelastic strain definitions have been modified. The equations have also been modified to account for the fact that in an orthotropic composite the in-plane shear stiffness is independent of the stiffness in the normal directions. The developed equations have been implemented into a commercially available transient dynamic finite element code, LS-DYNA, through the use of user defined subroutines (UMATs). The tensile, compressive, and shear deformation of a representative plain weave woven ceramic matrix composite are computed and compared to experimental results. The computed values correlate well to the experimental data, demonstrating the ability of the model to accurately compute the deformation response of woven ceramic matrix composites.

  1. Rapid Prototyping of Continuous Fiber Reinforced Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, R.; Green, C.; Phillips, T.; Cipriani, R.; Yarlagadda, S.; Gillespie, J.; Effinger, M.; Cooper, K. C.; Gordon, Gail (Technical Monitor)

    2002-01-01

    For ceramics to be used as structural components in high temperature applications, their fracture toughness is improved by embedding continuous ceramic fibers. Ceramic matrix composite (CMC) materials allow increasing the overall operating temperature, raising the temperature safety margins, avoiding the need for cooling, and improving the damping capacity, while reducing the weight at the same time. They also need to be reliable and available in large quantities as well. In this paper, an innovative rapid prototyping technique to fabricate continuous fiber reinforced ceramic matrix composites is described. The process is simple, robust and will be widely applicable to a number of high temperature material systems. This technique was originally developed at the University of Delaware Center for Composite Materials (UD-CCM) for rapid fabrication of polymer matrix composites by a technique called automated tow placement or ATP. The results of mechanical properties and microstructural characterization are presented, together with examples of complex shapes and parts. It is believed that the process will be able to create complex shaped parts at an order of magnitude lower cost than current CVI and PIP processes.

  2. Electric Properties of Pb(Sb1/2Nb1/2)O3 PbTiO3 PbZrO3 Ceramics

    NASA Astrophysics Data System (ADS)

    Kawamura, Yasushi; Ohuchi, Hiromu

    1994-09-01

    Solid-solution ceramics of ternary system xPb(Sb1/2Nb1/2)O3 yPbTiO3 zPbZrO3 were prepared by the solid-state reaction of powder materials. Ceramic, electric, dielectric and piezoelectric properties and crystal structures of the system were studied. Sintering of the system xPb(Sb1/2Nb1/2)O3 yPbTiO3 zPbZrO3 is much easier than that of each end composition, and well-sintered high-density ceramics were obtained for the compositions near the morphotropic transformation. Piezoelectric ceramics with high relative dielectric constants, high radial coupling coefficient and low resonant resistance were obtained for the composition near the morphotropic transformation. The composition Pb(Sb1/2Nb1/2)0.075Ti0.45Zr0.475O3 showed the highest dielectric constant (ɛr=1690), and the composition Pb(Sb1/2Nb1/2)0.05Ti0.45Zr0.5O3 showed the highest radial coupling coefficient (kp=64%).

  3. Thermal conductivity investigation of adhesive-free bond laser components

    NASA Astrophysics Data System (ADS)

    Li, Da; Hong, Pengda; Vedula, MahaLakshmi; Meissner, Helmuth E.

    2017-02-01

    An interferometric method has been developed and employed at Onyx Optics, Inc. to accurately measure the thermal conductivity of laser-active crystals as function of dopant concentration or inactive materials such as single crystals, optical ceramics and glasses relative to a standard of assumed to be known thermal conductivity [1]. This technique can also provide information on heat transfer resistance at the interface between two materials in close thermal contact. While the technique appears generally applicable to composites between optically homogeneous materials, we report on thermal conductivities and heat transfer coefficients of selected adhesive-free bond (AFB®) laser composites. Single crystal bars and AFB bonded crystal doublets with the combinations of various rare-earth (Nd3+, Yb3+, Er3+, and Tm3+ trivalent ion doped YAG, and un-doped YAG have been fabricated with the AFB technique. By loading the test sample in a vacuum cryostat, with a precisely controlled heat load at one end of the doublets, the temperature distribution inside the single crystal or the composite samples can been precisely mapped by measuring the optical path difference interferometrically, given the material's thermal-optical properties. No measurable heat transfer resistance can be identified for the AFB interfaces between low-concentration doped YAG and un-doped YAG. For the heavily doped RE3+:YAG, for example, 10% Yb:YAG, the thermal conductivity measured in our experiment is 8.3 W/m•K, using the thermal conductivity of undoped YAG reported in [1] as basis. The thermal transfer resistance of the AFB interface with un-doped YAG, if there is any at the AFB interface, could be less than 1.29×10-6 m2•K/W.

  4. Effect of esthetic core shades on the final color of IPS Empress all-ceramic crowns.

    PubMed

    Azer, Shereen S; Ayash, Ghada M; Johnston, William M; Khalil, Moustafa F; Rosenstiel, Stephen F

    2006-12-01

    Clinically relevant assessment of all-ceramic crowns supported by esthetic composite resin foundations has not been evaluated with regard to color reproducibility. This in vitro study quantitatively evaluated the influence of different shades of composite resin foundations and resin cement on the final color of a leucite-reinforced all-ceramic material. A total of 128 disks were fabricated; 64 (20 x 1 mm) were made of all-ceramic material (IPS Empress) and 64 (20 x 4 mm) of 4 different shades composite resin (Tetric Ceram). The ceramic and composite resin disks were luted using 2 shades (A3 and Transparent) of resin cement (Variolink II). Color was measured using a colorimeter configured with a diffuse illumination/0-degree viewing geometry, and Commission Internationale de l'Eclairage (CIE) L( *)a( *)b( *) values were directly calculated. Descriptive statistical analysis was performed, and color differences (DeltaE) for the average L( *), a( *) and b( *) color parameters were calculated. Repeated measures analysis of variance (ANOVA) was used to compare mean values and SDs between the different color combinations (alpha=.05). The CIE L( *)a( *)b( *) color coordinate values showed no significant differences for variation in color parameters due to the effect of the different composite resin shades (P=.24) or cement shades (P=.12). The mean color difference (DeltaE) value between the groups was 0.8. Within the limitations of this study, the use of different shades for composite resin cores and resin cements presented no statistically significant effect on the final color of IPS Empress all-ceramic material.

  5. Clinical efficacy of composite versus ceramic inlays and onlays: a systematic review.

    PubMed

    Fron Chabouis, Hélène; Smail Faugeron, Violaine; Attal, Jean-Pierre

    2013-12-01

    Large tooth substance losses are frequent in posterior teeth because of primary caries or aging restorations. Inlays and onlays are often the minimal invasive solution in such cases, but the efficacy of the composite and ceramic materials used is unknown. We performed a systematic review of randomized controlled trials comparing the efficacy of composite and ceramic inlays or onlays. MEDLINE, Embase and the Cochrane Central Register of Controlled Trials were searched without any restriction on date or language, as were references of eligible studies and ClinicalTrials.gov. Eligible studies were randomized trials comparing the clinical efficacy of composite to ceramic inlays or onlays in adults with any clinical outcome for at least 6 months. From 172 records identified, we examined reports of 2 randomized controlled trials involving 138 inlays (no onlays evaluated) in 80 patients and exhibiting a high-risk of bias. Outcomes were clinical scores and major failures. The 3-year overall failure risk ratio was 2 [0.38-10.55] in favor of ceramic inlays although not statistically significant. The reported clinical scores (United States Public Health Services and Californian Dental Association) showed considerable heterogeneity between trials and could not be combined. We have very limited evidence that ceramics perform better than composite material for inlays in the short term. However, this result may not be valid in the long term, and other trials are needed. Trials should follow Fédération dentaire internationale recommendations and enhance their methodology. Trials comparing composite and ceramic onlays are needed. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Fracture loads of all-ceramic crowns under wet and dry fatigue conditions.

    PubMed

    Borges, Gilberto A; Caldas, Danilo; Taskonak, Burak; Yan, Jiahau; Sobrinho, Lourenco Correr; de Oliveira, Wildomar José

    2009-12-01

    The aim of this study was to test the hypothesis that fracture loads of fatigued dental ceramic crowns are affected by testing environment and luting cement. One hundred and eighty crowns were prepared from bovine teeth using a lathe. Ceramic crowns were prepared from three types of ceramic systems: an alumina-infiltrated ceramic, a lithia-disilicate-based glass ceramic, and a leucite-reinforced ceramic. For each ceramic system, 30 crowns were cemented with a composite resin cement, and the remaining 30 with a resin-modified glass ionomer cement. For each ceramic system and cement, ten specimens were loaded to fracture without fatiguing. A second group (n = 10) was subjected to cyclic fatigue and fracture tested in a dry environment, and a third group (n = 10) was fatigued and fractured in distilled water. The results were statistically analyzed using one-way ANOVA and Tukey HSD test. The fracture loads of ceramic crowns decreased significantly after cyclic fatigue loading (p

  7. Continuous Fiber Ceramic Composite (CFCC) Program: Gaseous Nitridation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Suplinskas G. DiBona; W. Grant

    2001-10-29

    Textron has developed a mature process for the fabrication of continuous fiber ceramic composite (CFCC) tubes for application in the aluminum processing and casting industry. The major milestones in this project are System Composition; Matrix Formulation; Preform Fabrication; Nitridation; Material Characterization; Component Evaluation

  8. Efficacy of composite versus ceramic inlays and onlays: study protocol for the CECOIA randomized controlled trial

    PubMed Central

    2013-01-01

    Background Dental caries is a common disease and affects many adults worldwide. Inlay or onlay restoration is widely used to treat the resulting tooth substance loss. Two esthetic materials can be used to manufacture an inlay/onlay restoration of the tooth: ceramic or composite. Here, we present the protocol of a multicenter randomized controlled trial (RCT) comparing the clinical efficacy of both materials for tooth restoration. Other objectives are analysis of overall quality, wear, restoration survival and prognosis. Methods The CEramic and COmposite Inlays Assessment (CECOIA) trial is an open-label, parallel-group, multicenter RCT involving two hospitals and five private practices. In all, 400 patients will be included. Inclusion criteria are adults who need an inlay/onlay restoration for one tooth (that can be isolated with use of a dental dam and has at least one intact cusp), can tolerate restorative procedures and do not have severe bruxism, periodontal or carious disease or poor oral hygiene. The decayed tissue will be evicted, the cavity will be prepared for receiving an inlay/onlay and the patient will be randomized by use of a centralized web-based interface to receive: 1) a ceramic or 2) composite inlay or onlay. Treatment allocation will be balanced (1:1). The inlay/onlay will be adhesively luted. Follow-up will be for 2 years and may be extended; two independent examiners will perform the evaluations. The primary outcome measure will be the score obtained with use of the consensus instrument of the Fédération Dentaire Internationale (FDI) World Dental Federation. Secondary outcomes include this instrument’s items, inlay/onlay wear, overall quality and survival of the inlay/onlay. Data will be analyzed by a statistician blinded to treatments and an adjusted ordinal logistic regression model will be used to compare the efficacy of both materials. Discussion For clinicians, the CECOIA trial results may help with evidence-based recommendations concerning the choice of materials for inlay/onlay restoration. For patients, the results may lead to improvement in long-term restoration. For researchers, the results may provide ideas for further research concerning inlay/onlay materials and prognosis. This trial is funded by a grant from the French Ministry of Health. Trial registration ClinicalTrials.gov Identifier: NCT01724827 PMID:24004961

  9. The effect of five kinds of surface treatment agents on the bond strength to various ceramics with thermocycle aging.

    PubMed

    Noda, Yukari; Nakajima, Masatoshi; Takahashi, Masahiro; Mamanee, Teerapong; Hosaka, Keiichi; Takagaki, Tomohiro; Ikeda, Masaomi; Foxton, Richard M; Tagami, Junji

    2017-11-29

    This study evaluated the effects of ceramic surface treatment agents on shear bond strengths to ceramic materials with and without thermocycling. Ceramic plates were prepared from feldspathic ceramic; AAA, lithium disilicate ceramic material; IPS e.max Press, zirconia ceramic; Lava. Ceramic surfaces were pretreated with one of five surface treatment agents (Clearfil PhotoBond mixed with Porcelainbond activator (PB), Clearfil SE One mixed with Porcelainbond activator (SO), Ceramic Primer (CP), Universal Primer (UP), Scotchbond Universal (SU)), and then a resin cement (Clapearl DC) was filled. After 0, 5,000, and 10,000 thermocycles, micro-shear bond strengths between ceramic-cement interfaces were determined. SU exhibited significantly lower initial bond strength to AAA and e.max than PB, SO, CP, and UP. For Lava, PB, SO, CP and SU exhibited higher initial bond strengths than UP. Thermocycles reduced bond strengths to all the ceramic materials with any surface treatment.

  10. Polymer, metal and ceramic matrix composites for advanced aircraft engine applications

    NASA Technical Reports Server (NTRS)

    Mcdanels, D. L.; Serafini, T. T.; Dicarlo, J. A.

    1985-01-01

    Advanced aircraft engine research within NASA Lewis is being focused on propulsion systems for subsonic, supersonic, and hypersonic aircraft. Each of these flight regimes requires different types of engines, but all require advanced materials to meet their goals of performance, thrust-to-weight ratio, and fuel efficiency. The high strength/weight and stiffness/weight properties of resin, metal, and ceramic matrix composites will play an increasingly key role in meeting these performance requirements. At NASA Lewis, research is ongoing to apply graphite/polyimide composites to engine components and to develop polymer matrices with higher operating temperature capabilities. Metal matrix composites, using magnesium, aluminum, titanium, and superalloy matrices, are being developed for application to static and rotating engine components, as well as for space applications, over a broad temperature range. Ceramic matrix composites are also being examined to increase the toughness and reliability of ceramics for application to high-temperature engine structures and components.

  11. Resin-composite blocks for dental CAD/CAM applications.

    PubMed

    Ruse, N D; Sadoun, M J

    2014-12-01

    Advances in digital impression technology and manufacturing processes have led to a dramatic paradigm shift in dentistry and to the widespread use of computer-aided design/computer-aided manufacturing (CAD/CAM) in the fabrication of indirect dental restorations. Research and development in materials suitable for CAD/CAM applications are currently the most active field in dental materials. Two classes of materials are used in the production of CAD/CAM restorations: glass-ceramics/ceramics and resin composites. While glass-ceramics/ceramics have overall superior mechanical and esthetic properties, resin-composite materials may offer significant advantages related to their machinability and intra-oral reparability. This review summarizes recent developments in resin-composite materials for CAD/CAM applications, focusing on both commercial and experimental materials. © International & American Associations for Dental Research.

  12. Thermally Stable and Electrically Conductive, Vertically Aligned Carbon Nanotube/Silicon Infiltrated Composite Structures for High-Temperature Electrodes.

    PubMed

    Zou, Qi Ming; Deng, Lei Min; Li, Da Wei; Zhou, Yun Shen; Golgir, Hossein Rabiee; Keramatnejad, Kamran; Fan, Li Sha; Jiang, Lan; Silvain, Jean-Francois; Lu, Yong Feng

    2017-10-25

    Traditional ceramic-based, high-temperature electrode materials (e.g., lanthanum chromate) are severely limited due to their conditional electrical conductivity and poor stability under harsh circumstances. Advanced composite structures based on vertically aligned carbon nanotubes (VACNTs) and high-temperature ceramics are expected to address this grand challenge, in which ceramic serves as a shielding layer protecting the VACNTs from the oxidation and erosive environment, while the VACNTs work as a conductor. However, it is still a great challenge to fabricate VACNT/ceramic composite structures due to the limited diffusion of ceramics inside the VACNT arrays. In this work, we report on the controllable fabrication of infiltrated (and noninfiltrated) VACNT/silicon composite structures via thermal chemical vapor deposition (CVD) [and laser-assisted CVD]. In laser-assisted CVD, low-crystalline silicon (Si) was quickly deposited at the VACNT subsurfaces/surfaces followed by the formation of high-crystalline Si layers, thus resulting in noninfiltrated composite structures. Unlike laser-assisted CVD, thermal CVD activated the precursors inside and outside the VACNTs simultaneously, which realized uniform infiltrated VACNT/Si composite structures. The growth mechanisms for infiltrated and noninfiltrated VACNT/ceramic composites, which we attributed to the different temperature distributions and gas diffusion mechanism in VACNTs, were investigated. More importantly, the as-farbicated composite structures exhibited excellent multifunctional properties, such as excellent antioxidative ability (up to 1100 °C), high thermal stability (up to 1400 °C), good high velocity hot gas erosion resistance, and good electrical conductivity (∼8.95 Sm -1 at 823 K). The work presented here brings a simple, new approach to the fabrication of advanced composite structures for hot electrode applications.

  13. Dual-energy CT and ceramic or titanium prostheses material reduce CT artifacts and provide superior image quality of total knee arthroplasty.

    PubMed

    Kasparek, Maximilian F; Töpker, Michael; Lazar, Mathias; Weber, Michael; Kasparek, Michael; Mang, Thomas; Apfaltrer, Paul; Kubista, Bernd; Windhager, Reinhard; Ringl, Helmut

    2018-06-07

    To evaluate the influence of different scan parameters for single-energy CT and dual-energy CT, as well as the impact of different material used in a TKA prosthesis on image quality and the extent of metal artifacts. Eight pairs of TKA prostheses from different vendors were examined in a phantom set-up. Each pair consisted of a conventional CoCr prosthesis and the corresponding anti-allergic prosthesis (full titanium, ceramic, or ceramic-coated) from the same vendor. Nine different (seven dual-energy CT and two single-energy CT) scan protocols with different characteristics were used to determine the most suitable CT protocol for TKA imaging. Quantitative image analysis included assessment of blooming artifacts (metal implants appear thicker on CT than they are, given as virtual growth in mm in this paper) and streak artifacts (thick dark lines around metal). Qualitative image analysis was used to investigate the bone-prosthesis interface. The full titanium prosthesis and full ceramic knee showed significantly fewer blooming artifacts compared to the standard CoCr prosthesis (mean virtual growth 0.6-2.2 mm compared to 2.9-4.6 mm, p < 0.001). Dual-energy CT protocols showed less blooming (range 3.3-3.8 mm) compared to single-energy protocols (4.6-5.5 mm). The full titanium and full ceramic prostheses showed significantly fewer streak artifacts (mean standard deviation 77-86 Hounsfield unit (HU)) compared to the standard CoCr prosthesis (277-334 HU, p < 0.001). All dual-energy CT protocols had fewer metal streak artifacts (215-296 HU compared to single-energy CT protocols (392-497 HU)). Full titanium and ceramic prostheses were ranked superior with regard to the image quality at the bone/prosthesis interface compared to a standard CoCr prosthesis, and all dual-energy CT protocols were ranked better than single-energy protocols. Dual-energy CT and ceramic or titanium prostheses reduce CT artifacts and provide superior image quality of total knee arthroplasty at the bone/prosthesis interface. These findings support the use of dual-energy CT as a solid imaging base for clinical decision-making and the use of full-titanium or ceramic prostheses to allow for better CT visualization of the bone-prosthesis interface.

  14. Engineered high expansion glass-ceramics having near linear thermal strain and methods thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Steve Xunhu; Rodriguez, Mark A.; Lyon, Nathanael L.

    The present invention relates to glass-ceramic compositions, as well as methods for forming such composition. In particular, the compositions include various polymorphs of silica that provide beneficial thermal expansion characteristics (e.g., a near linear thermal strain). Also described are methods of forming such compositions, as well as connectors including hermetic seals containing such compositions.

  15. Lightweight high performance ceramic material

    DOEpatents

    Nunn, Stephen D [Knoxville, TN

    2008-09-02

    A sintered ceramic composition includes at least 50 wt. % boron carbide and at least 0.01 wt. % of at least one element selected from the group consisting of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy Ho, Er, Tm, Yb, and Lu, the sintered ceramic composition being characterized by a density of at least 90% of theoretical density.

  16. Hermetic electronic packaging of an implantable brain-machine-interface with transcutaneous optical data communication.

    PubMed

    Schuettler, Martin; Kohler, Fabian; Ordonez, Juan S; Stieglitz, Thomas

    2012-01-01

    Future brain-computer-interfaces (BCIs) for severely impaired patients are implanted to electrically contact the brain tissue. Avoiding percutaneous cables requires amplifier and telemetry electronics to be implanted too. We developed a hermetic package that protects the electronic circuitry of a BCI from body moisture while permitting infrared communication through the package wall made from alumina ceramic. The ceramic package is casted in medical grade silicone adhesive, for which we identified MED2-4013 as a promising candidate.

  17. NDE of cylindrically symmetric components with piezofilm transducers

    NASA Astrophysics Data System (ADS)

    Hsu, David K.; Zhang, Zhong

    PVDF polymer film transducers are presently shown to exhibit the flexibility and comformability required for inspection of components with curved surfaces. Although these transducers are less efficient than rigid ceramic ones, and are less accurately matched to the acoustic impedance of metals as well as ceramic transducers, their advantages are presently shown to outweigh their disadvantages in some applications involving tube and rod shaped components. Interface measurements of a Zr/Zircalloy-2 tube allowed the detailed evaluation of weakly reflecting interfaces.

  18. The uniformity and imaging properties of some new ceramic scintillators

    NASA Astrophysics Data System (ADS)

    Chac, George T. L.; Miller, Brian W.; Shah, Kanai; Baldoni, Gary; Domanik, Kenneth J.; Bora, Vaibhav; Cherepy, Nerine J.; Seeley, Zachary; Barber, H. Bradford

    2012-10-01

    Results are presented of investigations into the composition, uniformity and gamma-ray imaging performance of new ceramic scintillators with synthetic garnet structure. The ceramic scintillators were produced by a process that uses flame pyrolysis to make nanoparticles which are sintered into a ceramic and then compacted by hot isostatic compression into a transparent material. There is concern that the resulting ceramic scintillator might not have the uniformity of composition necessary for use in gamma-ray spectroscopy and gamma-ray imaging. The compositional uniformity of four samples of three ceramic scintillator types (GYGAG:Ce, GLuGAG:Ce and LuAG:Pr) was tested using an electron microprobe. It was found that all samples were uniform in elemental composition to the limit of sensitivity of the microprobe (few tenths of a percent atomic) over distance scales from ~ 1 cm to ~ 1 um. The light yield and energy resolution of all ceramic scintillator samples were mapped with a highly collimated 57Co source (122 keV) and performance was uniform at mapping scale of 0.25 mm. Good imaging performance with single gamma-ray photon detection was demonstrated for all samples using a BazookaSPECT system, and the imaging spatial resolution, measured as the FWHM of a LSF was 150 um.

  19. Tribological properties of structural ceramics

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.; Miyoshi, K.

    1985-01-01

    The tribological and lubricated behavior of both oxide and nonoxide ceramics are reviewed in this chapter. Ceramics are examined in contact with themselves, other harder materials and metals. Elastic, plastic and fracture behavior of ceramics in solid state contact is discussed. The contact load necessary to initiate fracture in ceramics is shown to be appreciably reduced with tangential motion. Both friction and wear of ceramics are anisotropic and relate to crystal structure as has been observed with metals. Grit size effects in two and three body abrasive wear are observed for ceramics. Both free energy of oxide formation and the d valence bond character of metals are related to the friction and wear characteristics for metals in contact with ceramics. Surface contaminants affect friction and adhesive wear. For example, carbon on silicon carbide and chlorine on aluminum oxide reduce friction while oxygen on metal surfaces in contact with ceramics increases friction. Lubrication increases the critical load necessary to initiate fracture of ceramics both in indentation and with sliding or rubbing. Ceramics compositions both as coatings and in composites are described for the high temperature lubrication of both alloys and ceramics.

  20. Transmitted irradiance through ceramics: effect on the mechanical properties of a luting resin cement.

    PubMed

    Ilie, Nicoleta

    2017-05-01

    The study aims to characterise the curing behaviour of a light-curing luting composite (Variolink® Aesthetic LC, Ivoclar Vivadent) polymerised at different exposure times (10 s, 20 s) through different ceramics (IPS Empress CAD and IPS e.max CAD, Ivoclar Vivadent) and ceramic thicknesses (no ceramic, 0.5, 1, 1.5 and 2 mm). Curing units' (Bluephase Style, Ivoclar Vivadent) variation in irradiance delivered up to 10-mm exposure distance as well as the incident and transmitted irradiance and radiant exposure up to 6-mm ceramic thickness were assessed on a laboratory-grade spectrometer. A total of 216 (18 groups, n = 12) thin and flat luting composite specimens of 500-μm thickness were prepared and stored after curing in a saturated vapour atmosphere for 24 h at 37 °C. Micro-mechanical properties (Vickers hardness, HV and indentation modulus, Y HU ) were determined by means of an automatic micro-hardness indenter. Within the study design, the radiant exposure received by the luting composite varied from 2.56 to 24.75 J/cm 2 , showing a high impact on the measured properties. Comparing the effect of the parameters exposure time, ceramic thickness and type, the highest influence on the micro-mechanical parameters was identified for exposure time, while this influence was stronger on HV (p < 0.001, η P 2  = 0.452) than on Y HU (p < 0.001, η P 2  = 0.178). The influence of ceramic type was significant but low (η P 2  = 0.161 on HV and 0.113 on Y HU ), while the influence of ceramic thickness was the lowest (η P 2  = 0.04 and 0.05, respectively). Slightly higher irradiance values were transmitted through Empress CAD up to a ceramic thickness of 3 mm (p < 0.001), while being comparable with e.max for thicker slices. Differences in translucency between ceramics were reflected in the micro-mechanical properties of the luting composite. The radiant exposure reaching the luting composite is determined by the incident irradiance, exposure time, ceramic type and ceramic thickness. At the analysed incident irradiance, exposure time was the most consistent parameter affecting the micro-mechanical properties of the luting composite, and this effect was strongly reflected in the more translucent ceramic Empress CAD. Within the curing conditions, an exposure time of 20 s is recommended.

  1. Derivative effect of laser cladding on interface stability of YSZ@Ni coating on GH4169 alloy: An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Zheng, Haizhong; Li, Bingtian; Tan, Yong; Li, Guifa; Shu, Xiaoyong; Peng, Ping

    2018-01-01

    Yttria-stabilized zirconia YSZ@Ni core-shell nanoparticles were used to prepare a thermal barrier coating (TBC) on a GH4169 alloy by laser cladding. Microstructural analysis showed that the TBC was composed of two parts: a ceramic and a bonding layer. In places where the ZrO2/Al2O3 eutectic structure was present in the ceramic layer, the Ni atoms diffused into the bonding layer, as confirmed by energy-dispersive X-ray spectroscopy (EDS). The derivative effect of laser cladding results in the original YSZ@Ni core-shell nanoparticles being translated into the Al2O3 crystal, activating the YSZ. The mechanism of ceramic/metal interface cohesion was studied in depth via first-principles and molecular dynamics simulation. The results show that the trend in the diffusion coefficients of Ni, Fe, Al, and Ti is DNi > DFe > DTi > DAl in the melting or solidification process of the material. The enthalpy of formation for Al2O3 is less than that of TiO2, resulting in a thermally grown oxide (TGO) Al2O3 phase transformation. With regard to the electronic structure, the trend in Mulliken population is QO-Ni > QZr-O > QO-Al. Although the bonding is slightly weakened between ZrO2/Al2O3 (QZr-O = 0.158 < QO-Ni = 0.220) compared to that in ZrO2/Ni, TGO Al2O3 can improve the oxidation resistance of the metal matrix. Thus, by comparing the connective and diffusive processes, our findings lay the groundwork for detailed and comprehensive studies of the laser cladding process for the production of composite materials.

  2. Wettability and surface free energy of polarised ceramic biomaterials.

    PubMed

    Nakamura, Miho; Hori, Naoko; Namba, Saki; Toyama, Takeshi; Nishimiya, Nobuyuki; Yamashita, Kimihiro

    2015-01-13

    The surface modification of ceramic biomaterials used for medical devices is expected to improve osteoconductivity through control of the interfaces between the materials and living tissues. Polarisation treatment induced surface charges on hydroxyapatite, β-tricalcium phosphate, carbonate-substituted hydroxyapatite and yttria-stabilized zirconia regardless of the differences in the carrier ions participating in the polarisation. Characterization of the surfaces revealed that the wettability of the polarised ceramic biomaterials was improved through the increase in the surface free energies compared with conventional ceramic surfaces.

  3. Ceramic tamper-revealing seals

    DOEpatents

    Kupperman, David S.; Raptis, Apostolos C.; Sheen, Shuh-Haw

    1992-01-01

    A flexible metal or ceramic cable with composite ceramic ends, or a u-shaped ceramic connecting element attached to a binding element plate or block cast from alumina or zirconium, and connected to the connecting element by shrink fitting.

  4. Development of BEM for ceramic composites

    NASA Technical Reports Server (NTRS)

    Henry, D. P.; Banerjee, P. K.; Dargush, G. F.

    1990-01-01

    Details on the progress made during the first three years of a five-year program towards the development of a boundary element code are presented. This code was designed for the micromechanical studies of advance ceramic composites. Additional effort was made in generalizing the implementation to allow the program to be applicable to real problems in the aerospace industry. The ceramic composite formulations developed were implemented in the three-dimensional boundary element computer code BEST3D. BEST3D was adopted as the base for the ceramic composite program, so that many of the enhanced features of this general purpose boundary element code could by utilized. Some of these facilities include sophisticated numerical integration, the capability of local definition of boundary conditions, and the use of quadratic shape functions for modeling geometry and field variables on the boundary. The multi-region implementation permits a body to be modeled in substructural parts; thus dramatically reducing the cost of the analysis. Furthermore, it allows a body consisting of regions of different ceramic matrices and inserts to be studied.

  5. Collagen/hydroxyapatite composite materials with desired ceramic properties.

    PubMed

    Andronescu, Ecaterina; Voicu, Georgeta; Ficai, Maria; Mohora, Ioana Anita; Trusca, Roxana; Ficai, Anton

    2011-01-01

    Our purpose was to obtain and characterize some collagen/hydroxyapatite (COLL/HA) hybrid composite materials with desired ceramic properties. The ceramic properties of these materials were achieved by combining two drying methods: controlled air drying at 30°C followed by freeze-drying. Through the function of the air drying times, the materials morphology varies from porous materials (when the materials are freeze-dried) up to dense materials (when the materials are air-dried), while the combined drying allows us to obtain an intermediary morphology. The composite materials intended to be used as bone grafts and in a drug delivery system were characterized by XRD, FTIR, SEM, and also by determining the ceramic properties by using the Arthur method. The ceramic properties of these COLL/HA composite materials vary in large range, for instance the density of the materials varies from 0.06 up to 1.5 g/cm(3) while the porosity varies from 96.5% down to 27.5%.

  6. Effects of magnetic field treatment on dielectric properties of CCTO@Ni/PVDF composite with low concentration of ceramic fillers

    NASA Astrophysics Data System (ADS)

    Chi, Q. G.; Gao, L.; Wang, X.; Chen, Y.; Dong, J. F.; Cui, Y.; Lei, Q. Q.

    2015-11-01

    Using melt mixing, we produced a ceramic/polymer composite with a matrix of polyvinylidene fluoride (PVDF) and a filler of 5 vol.% Ni-deposited CaCu3Ti4O12 core-shell ceramic particles (CCTO@Ni), and studied its prominent dielectric characteristics for the first. Its phase composition and morphology were analyzed by X-ray diffraction and scanning electron microscopy, respectively. After treating the composite films with various durations of a magnetic field treatment, we compared their dielectric properties. We found that the CCTO@Ni ceramic had a typical urchin-like core-shell structure, and that different durations of the magnetic field treatment produced different distributions of ceramic particles in the PVDF matrix. The dielectric permittivity of the untreated CCTO@Ni/PVDF composite was 20% higher than that of neat PVDF, and it had a low loss tangent. However, only the composite treated for 30 min in the magnetic field had an ultra-high dielectric permittivity of 1.41 × 104 at 10 Hz, three orders of magnitude higher than the untreated composite, which declined dramatically with increasing frequency, accompanied by an insulating-conducting phase transition and an increase in loss tangent. Our results demonstrate that changes in the dielectric properties of PVDF composites with magnetic field treatment are closely related to the percolation effect and interfacial polarization.

  7. Ceramic on ceramic arthroplasty of the hip: new materials confirm appropriate use in young patients.

    PubMed

    Sentuerk, U; von Roth, P; Perka, C

    2016-01-01

    The leading indication for revision total hip arthroplasty (THA) remains aseptic loosening owing to wear. The younger, more active patients currently undergoing THA present unprecedented demands on the bearings. Ceramic-on-ceramic (CoC) bearings have consistently shown the lowest rates of wear. The recent advances, especially involving alumina/zirconia composite ceramic, have led to substantial improvements and good results in vitro. Alumina/zirconia composite ceramics are extremely hard, scratch resistant and biocompatible. They offer a low co-efficient of friction and superior lubrication and lower rates of wear compared with other bearings. The major disadvantage is the risk of fracture of the ceramic. The new composite ceramic has reduced the risk of fracture of the femoral head to 0.002%. The risk of fracture of the liner is slightly higher (0.02%). Assuming that the components are introduced without impingement, CoC bearings have major advantages over other bearings. Owing to the superior hardness, they produce less third body wear and are less vulnerable to intra-operative damage. The improved tribology means that CoC bearings are an excellent choice for young, active patients requiring THA. ©2016 The British Editorial Society of Bone & Joint Surgery.

  8. Transverse Cracking in a Fiber Reinforced Ceramic Matrix Composite

    DTIC Science & Technology

    1990-12-01

    failure if the off-axis ply was very thin. Wang and Parvizi- Majidi (3) investigated transverse cracking in Nicalon/CAS, a ceramic composite with silicon...the off-axis ply was very thin. 7 Wang and Parvizi- Majidi (3) investigated transverse I cracking in Nicalon/CAS, a ceramic composite with silicon...were quite 3 prevalent in the three lay-ups with the 900 plies in the center, less so in the 0/90/04/90/0 lay-up. Wang and Parvizi- Majidi also

  9. Modified Y-TZP Core Design Improves All-ceramic Crown Reliability

    PubMed Central

    Silva, N.R.F.A.; Bonfante, E.A.; Rafferty, B.T.; Zavanelli, R.A.; Rekow, E.D.; Thompson, V.P.; Coelho, P.G.

    2011-01-01

    This study tested the hypothesis that all-ceramic core-veneer system crown reliability is improved by modification of the core design. We modeled a tooth preparation by reducing the height of proximal walls by 1.5 mm and the occlusal surface by 2.0 mm. The CAD-based tooth preparation was replicated and positioned in a dental articulator for core and veneer fabrication. Standard (0.5 mm uniform thickness) and modified (2.5 mm height lingual and proximal cervical areas) core designs were produced, followed by the application of veneer porcelain for a total thickness of 1.5 mm. The crowns were cemented to 30-day-aged composite dies and were either single-load-to-failure or step-stress-accelerated fatigue-tested. Use of level probability plots showed significantly higher reliability for the modified core design group. The fatigue fracture modes were veneer chipping not exposing the core for the standard group, and exposing the veneer core interface for the modified group. PMID:21057036

  10. Quantitative description of yttrium aluminate ceramic composition by means of Er+3 microluminescence spectrum

    NASA Astrophysics Data System (ADS)

    Videla, F. A.; Tejerina, M. R.; Moreira-Osorio, L.; Conconi, M. S.; Orzi, D. J. O.; Flores, T.; Ponce, L. V.; Bilmes, G. M.; Torchia, G. A.

    2018-05-01

    The composition of erbium-doped yttrium aluminate ceramics was analyzed by means of confocal luminescence spectroscopy, EDX, and X-ray diffraction. A well-defined linear correlation was found between a proposed estimator computed from the luminescence spectrum and the proportion of ceramic phases coexisting in different samples. This result shows the feasibility of using erbium luminescence spectroscopy to perform a quantitative determination of different phases of yttrium aluminates within a micrometric region in nanograined ceramics.

  11. Research into properties of wear resistant ceramic metal plasma coatings

    NASA Astrophysics Data System (ADS)

    Ivancivsky, V. V.; Skeeba, V. Yu; Zverev, E. A.; Vakhrushev, N. V.; Parts, K. A.

    2018-03-01

    The study considers one of the promising ways to improve the quality of wear resistant plasma ceramic coatings by implementing various powder mixtures. The authors present the study results of the nickel-ceramic and cobalt-ceramic coating properties and describe the specific character of the investigated coatings composition. The paper presents the results of the coating microhardness, chemical and adhesive strength studies. The authors conducted wear resistance tests of composite coatings in comparison with the plasma coatings of initial powder components.

  12. Synthesis and processing of composites by reactive metal penetration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loehman, R.E.; Ewsuk, K.G.; Tomsia, A.P.

    1997-04-01

    Achieving better performance in commercial products and processes often is dependent on availability of new and improved materials. Ceramic-metal composites have advantages over more conventional materials because of their high stiffness-to-weight ratios, good fracture toughness, and because their electrical and thermal properties can be varied through control of their compositions and microstructures. However, ceramic composites will be more widely used only when their costs are competitive with other materials and when designers have more confidence in their reliability. Over the past four years reactive metal penetration has been shown to be a promising technique for making ceramic and metal-matrix compositesmore » to near-net-shape with control of both composition and microstructure. It appears that, with sufficient development, reactive metal penetration could be an economical process for manufacturing many of the advanced ceramic composites that are needed for light-weight structural and wear applications for transportation and energy conversion devices. Near-net-shape fabrication of parts is a significant advantage because costly and energy intensive grinding and machining operations are substantially reduced, and the waste generated from such finishing operations is minimized. The most promising compositions to date consist of Al and Al{sub 2}O{sub 3}; thus, these composites should be of particular interest to the aluminum industry. The goals of this ceramic-metal composite research and development program are: (1) to identify compositions favorable for making composites by reactive metal penetration; (2) to understand the mechanism(s) by which these composites are formed; (3) to control and optimize the process so that composites and composite coatings can be made economically; and (4) to apply R&D results to problems of interest to the aluminum industry.« less

  13. Ceramic honeycomb structures and the method thereof

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R. (Inventor); Cagliostro, Domenick E. (Inventor)

    1987-01-01

    The subject invention pertains to a method of producing an improved composite-composite honeycomb structure for aircraft or aerospace use. Specifically, the subject invention relates to a method for the production of a lightweight ceramic-ceramic composite honeycomb structure, which method comprises: (1) pyrolyzing a loosely woven fabric/binder having a honeycomb shape and having a high char yield and geometric integrity after pyrolysis at between about 700 and 1,100 C; (2) substantially evenly depositing at least one layer of ceramic material on the pyrolyzed fabric/binder of step (1); (3) recovering the coated ceramic honeycomb structure; (4) removing the pyrolyzed fabric/binder of the structure of step (3) by slow pyrolysis at between 700 and 1000 C in between about a 2 to 5% by volume oxygen atmosphere for between about 0.5 and 5 hr.; and (5) substantially evenly depositing on and within the rigid hollow honeycomb structure at least one additional layer of the same or a different ceramic material by chemical vapor deposition and chemical vapor infiltration. The honeycomb shaped ceramic articles have enhanced physical properties and are useful in aircraft and aerospace uses.

  14. Wear of human enamel opposing monolithic zirconia, glass ceramic, and composite resin: an in vitro study.

    PubMed

    Sripetchdanond, Jeerapa; Leevailoj, Chalermpol

    2014-11-01

    Demand is increasing for ceramic and composite resin posterior restorations. However, ceramics are recognized for their high abrasiveness to opposing dental structure. The purpose of this study was to investigate the wear of enamel as opposed to dental ceramics and composite resin. Twenty-four test specimens (antagonists), 6 each of monolithic zirconia, glass ceramic, composite resin, and enamel, were prepared into cylindrical rods. Enamel specimens were prepared from 24 extracted human permanent molar teeth. Enamel specimens were abraded against each type of antagonist with a pin-on-disk wear tester under a constant load of 25 N at 20 rpm for 4800 cycles. The maximum depth of wear (Dmax), mean depth of wear (Da), and mean surface roughness (Ra) of the enamel specimens were measured with a profilometer. All data were statistically analyzed by 1-way ANOVA, followed by the Tukey test (α=.05). A paired t test was used to compare the Ra of enamel at baseline and after testing. The wear of both the enamel and antagonists was evaluated qualitatively with scanning electron microscopic images. No significant differences were found in enamel wear depth (Dmax, Da) between monolithic zirconia (2.17 ±0.80, 1.83 ±0.75 μm) and composite resin (1.70 ±0.92, 1.37 ±0.81 μm) or between glass ceramic (8.54 ±2.31, 7.32 ±2.06 μm) and enamel (10.72 ±6.31, 8.81 ±5.16 μm). Significant differences were found when the enamel wear depth caused by monolithic zirconia and composite resin was compared with that of glass ceramic and enamel (P<.001). The Ra of enamel specimens increased significantly after wear tests with monolithic zirconia, glass ceramic, and enamel (P<.05); however, no difference was found among these materials. Within the limitations of this in vitro study, monolithic zirconia and composite resin resulted in less wear depth to human enamel compared with glass ceramic and enamel. All test materials except composite resin similarly increased the enamel surface roughness after wear testing. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  15. Sensing/actuating materials made from carbon nanotube polymer composites and methods for making same

    NASA Technical Reports Server (NTRS)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)

    2008-01-01

    An electroactive sensing or actuating material comprises a composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation of the composite when such composite is affected by an external stimulus. In another embodiment, the composite comprises a third component of micro-sized to nano-sized particles of an electroactive ceramic that is also incorporated in the polymer matrix. The method for making the three-phase composite comprises either incorporating the carbon nanotubes in the polymer matrix before incorporation of the particles of ceramic or mixing the carbon nanotubes and particles of ceramic together in a solution before incorporation in the polymer matrix.

  16. Method of Making an Electroactive Sensing/Actuating Material for Carbon Nanotube Polymer Composite

    NASA Technical Reports Server (NTRS)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)

    2009-01-01

    An electroactive sensing or actuating material comprises a composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation of the composite when such composite is affected by an external stimulus. In another embodiment, the composite comprises a, third component of micro -sized to nano-sized particles of an electroactive ceramic that is also incorporated in the polymer matrix. The method for making the three-phase composite comprises either incorporating the carbon nanotubes in the polymer matrix before incorporation of the particles of ceramic or mixing the carbon nanotubes and particles of ceramic together in a solution before incorporation in the polymer matrix.

  17. Key Durability Issues with Mullite-Based Environmental Barrier Coatings for Si-Based Ceramics

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.

    1999-01-01

    Plasma-sprayed mullite (3Al2O3 central dot 2SiO2) and mullite/yttria-stabilized-zirconia (YSZ) dual layer coatings have been developed to protect silicon-based ceramics from environmental attack. Mullite-based coating systems show excellent durability in air. However, in combustion environments, corrosive species such as molten salt or water vapor penetrate through cracks in the coating and attack the Si-based ceramics along the interface, Thus modification of the coating system for enhanced crack-resistance is necessary for long-term durability in combustion environments. Other key durability issues include interfacial contamination and coating/substrate bonding. Interfacial contamination leads to enhanced oxidation and interfacial pore formation, while weak coating/substrate bonding leads to rapid attack of the interface by corrosive species, both of which can cause premature failure of the coating. Interfacial contamination can be minimized by limiting impurities in coating and substrate materials. The interface may be modified to improve the coating/substrate bond.

  18. Key Durability Issues with Mullite-Based Environmental Barrier Coatings for Si-Based Ceramics

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.

    2000-01-01

    Plasma-sprayed mullite (3Al2O3.2SiO2) and mullite/yttria-stabilized-zirconia (YSZ) dual layer coatings have been developed to protect silicon -based ceramics from environmental attack. Mullite-based coating systems show excellent durability in air. However, in combustion environments, corrosive species such as molten salt or water vapor penetrate through cracks in the coating and attack the Si-based ceramics along the interface. Thus the modification of the coating system for enhanced crack-resistance is necessary for long-term durability in combustion environments. Other key durability issues include interfacial contamination and coating/substrate bonding. Interfacial contamination leads to enhanced oxidation and interfacial pore formation, while a weak coating/substrate bonding leads to rapid attack of the interface by corrosive species, both of which can cause a premature failure of the coating. Interfacial contamination can be minimized by limiting impurities in coating and substrate materials. The interface may be modified to improve the coating/substrate bond.

  19. Silicon nitride/silicon carbide composite densified materials prepared using composite powders

    DOEpatents

    Dunmead, S.D.; Weimer, A.W.; Carroll, D.F.; Eisman, G.A.; Cochran, G.A.; Susnitzky, D.W.; Beaman, D.R.; Nilsen, K.J.

    1997-07-01

    Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

  20. Mechanical behavior of glass and Blackglas{reg_sign} ceramic matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stawovy, R.H.; Kampe, S.L.; Curtin, W.A.

    Room temperature tensile tests are reported on two low-cost ceramic matrix composite materials, comprised of matrices of Blackglas{reg_sign} and a proprietary glass composition each reinforced with Nicalon{reg_sign} SiC-based fibers. The measured mechanical behaviors, supplemented by post-fracture analysis of fiber pullout and fiber fracture mirrors, are compared in detail to the performance predicted theoretically. This allows for an assessment of the roles of the matrix, fiber strength, residual stresses, fiber geometry, and the fiber/matrix interfacial properties in determining mechanical response. The Blackglas{reg_sign} matrix cracks extensively during processing, and so the mechanical response is controlled by the deformation and fracture of themore » fiber bundle. The interfacial sliding resistance, {tau}, is determined to be {approx} 17 MPa and the in-situ (post-processed) fiber characteristic strength, {sigma}{sub c} is found to be {approx} 2.0 GPa, both similar to values reported in the literature for Nicalon{reg_sign}/CAS-glass systems. For the glass matrix, the unidirectional and cross-ply materials show marked differences in mechanical behavior. In the cross-ply composites, {tau} {approx} 14 MPa and {sigma}{sub c} {approx} 2.9 GPa; in the unidirectional variants, these values were 1.7 MPa and 1.6 GPa, respectively. With these data and other derived micromechanical parameters, the stress-strain and failure point of these materials was predicted using existing models, and excellent agreement with the experiments was obtained. These materials thus perform as expected given the in-situ fiber and interface properties. Notably, the cross-ply glass matrix composites exhibit high fiber strength retention and hence show tensile strengths that are better than other Nicalon{reg_sign}-based materials tested to date.« less

Top