Filter unit for use at high temperatures
Ciliberti, David F.; Lippert, Thomas E.
1988-01-01
A filtering unit for filtering particulates from high temperature gases uses a spiral ceramic spring to bias a ceramic, tubular filter element into sealing contact with a flange about an aperture of a metallic tube sheet. The ceramic spiral spring may contact the upper edge of the filter element and be restrained by a stop member spaced from one end of the tube sheet, or the spring may contact the bottom of the filter element and be restrained by a support member spaced from the opposite end of the tube sheet. The stop member and support member are adjustably secured to the tube sheet. A filtering system uses the ceramic spiral spring to bias a plurality of ceramic, tubular filter elements in a respective plurality of apertures in a tube sheet which divides a vessel into upper and lower enclosed sections.
Transient Heating and Thermomechanical Stress Modeling of Ceramic HEPA Filters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogle, Brandon; Kelly, James; Haslam, Jeffrey
The purpose of this report is to showcase an initial finite-element analysis model of a ceramic High-Efficiency Particulate (HEPA) Air filter design. Next generation HEPA filter assemblies are being developed at LLNL to withstand high-temperature fire scenarios by use of ceramics and advanced materials. The filters are meant for use in radiological and nuclear facilities, and are required to survive 500°C fires over an hour duration. During such conditions, however, collecting data under varying parameters can be challenging; therefore, a Finite Element Analysis model of the filter was conducted using COMSOL ® Multiphysics to analyze the effects of fire. Finitemore » Element Analysis (FEA) modelling offers several opportunities: researchers can quickly and easily consider impacts of potential design changes, material selection, and flow characterization on filter performance. Specifically, this model provides stress references for the sealant at high temperatures. Modeling of full filter assemblies was deemed inefficient given the computational requirements, so a section of three tubes from the assembly was modeled. The model looked at the transient heating and thermomechanical stress development during a 500°C air flow at 6 CFM. Significant stresses were found at the ceramic-metal interfaces of the filter, and conservative temperature profiles at locations of interest were plotted. The model can be used for the development of sealants that minimize stresses at the ceramic-metal interface. Further work on the model would include the full filter assembly and consider heat losses to make more accurate predictions.« less
Kong, Peter C [Idaho Falls, ID
2008-12-23
A self-cleaning porous cermet material, filter and system utilizing the same may be used in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The porous cermet filter may be made from a transition metal aluminide phase and an alumina phase. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The porous filter may also be electrically conductive so that a current may be passed therethrough to heat the filter during use. Further, a heating element may be incorporated into the porous cermet filter during manufacture. This heating element can be coated with a ceramic material to electrically insulate the heating element. An external heating element may also be provided to heat the cermet filter during use.
Cermet materials, self-cleaning cermet filters, apparatus and systems employing same
Kong, Peter C.
2005-07-19
A self-cleaning porous cermet material, filter and system utilizing the same may be used in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The porous cermet filter may be made from a transition metal aluminide phase and an alumina phase. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The porous filter may also be electrically conductive so that a current may be passed therethrough to heat the filter during use. Further, a heating element may be incorporated into the porous cermet filter during manufacture. This heating element can be coated with a ceramic material to electrically insulate the heating element. An external heating element may also be provided to heat the cermet filter during use.
High flow ceramic pot filters.
van Halem, D; van der Laan, H; Soppe, A I A; Heijman, S G J
2017-11-01
Ceramic pot filters are considered safe, robust and appropriate technologies, but there is a general consensus that water revenues are limited due to clogging of the ceramic element. The objective of this study was to investigate the potential of high flow ceramic pot filters to produce more water without sacrificing their microbial removal efficacy. High flow pot filters, produced by increasing the rice husk content, had a higher initial flow rate (6-19 L h -1 ), but initial LRVs for E. coli of high flow filters was slightly lower than for regular ceramic pot filters. This disadvantage was, however, only temporarily as the clogging in high flow filters had a positive effect on the LRV for E. coli (from below 1 to 2-3 after clogging). Therefore, it can be carefully concluded that regular ceramic pot filters perform better initially, but after clogging, the high flow filters have a higher flow rate as well as a higher LRV for E. coli. To improve the initial performance of new high flow filters, it is recommended to further utilize residence time of the water in the receptacle, since additional E. coli inactivation was observed during overnight storage. Although a relationship was observed between flow rate and LRV of MS2 bacteriophages, both regular and high flow filters were unable to reach over 2 LRV. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hot gas cross flow filtering module
Lippert, Thomas E.; Ciliberti, David F.
1988-01-01
A filter module for use in filtering particulates from a high temperature gas has a central gas duct and at least one horizontally extending support mount affixed to the duct. The support mount supports a filter element thereon and has a chamber therein, which communicates with an inner space of the duct through an opening in the wall of the duct, and which communicates with the clean gas face of the filter element. The filter element is secured to the support mount over an opening in the top wall of the support mount, with releasable securement provided to enable replacement of the filter element when desired. Ceramic springs may be used in connection with the filter module either to secure a filter element to a support mount or to prevent delamination of the filter element during blowback.
Apparatus and method for removing particulate deposits from high temperature filters
Nakaishi, Curtis V.; Holcombe, Norman T.; Micheli, Paul L.
1992-01-01
A combustion of a fuel-air mixture is used to provide a high-temperature and high-pressure pulse of gaseous combustion products for the back-flush cleaning of ceramic filter elements contained in a barrier filter system and utilized to separate particulates from particulate-laden process gases at high temperature and high pressure. The volume of gaseous combustion products provided by the combustion of the fuel-air mixture is preferably divided into a plurality of streams each passing through a sonic orifice and conveyed to the open end of each filter element as a high pressure pulse which passes through the filter elements and dislodges dust cake supported on a surface of the filter element.
Fracture Mechanical Analysis of Open Cell Ceramic Foams Under Thermal Shock Loading
NASA Astrophysics Data System (ADS)
Settgast, C.; Abendroth, M.; Kuna, M.
2016-11-01
Ceramic foams made by replica techniques containing sharp-edged cavities, which are potential crack initiators and therefore have to be analyzed using fracture mechanical methods. The ceramic foams made of novel carbon bonded alumina are used as filters in metal melt filtration applications, where the filters are exposed to a thermal shock. During the casting process the filters experience a complex thermo-mechanical loading, which is difficult to measure. Modern numerical methods allow the simulation of such complex processes. As a simplified foam structure an open Kelvin cell is used as a representative volume element. A three-dimensional finite element model containing realistic sharp-edged cavities and three-dimensional sub-models along these sharp edges are used to compute the transient temperature, stress and strain fields at the Kelvin foam. The sharp edges are evaluated using fracture mechanical methods like the J-integral technique. The results of this study describe the influence of the pore size, relative density of the ceramic foam, the heat transfer and selected material parameters on the fracture mechanical behaviour.
Corundum ceramic materials modified with silica nanopowders: structure and mechanical properties
NASA Astrophysics Data System (ADS)
Kostytsyn, M. A.; Muratov, D. S.; Lysov, D. V.; Chuprunov, K. O.; Yudin, A. G.; Leybo, D. V.
2016-01-01
Filtering elements are often used in the metallurgy of rare earth metals. Corundum ceramic is one of the most suitable materials for this purpose. The process of formation and the properties of nanomodified ceramic materials, which are proposed as filtering materials with tunable effective porosity, are described. A silica nanopowder is used as a porosity-increasing agent. Vortex layer apparatus is used for mixing of precursor materials. The obtained results show that nanomodification with the vortex layer apparatus using 0.04 wt. % silica nanopowder as a modifying agent leads to an increase in the compression strength of corundum ceramic by the factor of 1.5.
Wegmann, Markus; Michen, Benjamin; Luxbacher, Thomas; Fritsch, Johannes; Graule, Thomas
2008-03-01
The purpose of this study was to test the feasibility of modifying commercial microporous ceramic bacteria filters to promote adsorption of viruses. The internal surface of the filter medium was coated with ZrO(2) nanopowder via dip-coating and heat-treatment in order to impart a filter surface charge opposite to that of the target viruses. Streaming potential measurements revealed a shift in the isoelectric point from pH <3 to between pH 5.5 and 9, respectively. While the base filter elements generally exhibited only 75% retention with respect to MS2 bacteriophages, the modified elements achieved a 7log removal (99.99999%) of these virus-like particles. The coating process also increased the specific surface area of the filters from approximately 2m(2)/g to between 12.5 and 25.5m(2)/g, thereby also potentially increasing their adsorption capacity. The results demonstrate that, given more development effort, the chosen manufacturing process has the potential to yield effective virus filters with throughputs superior to those of current virus filtration techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schemmel, A.
High Efficiency Particulate Air (HEPA) filters are defined as extended-medium, dry-type filters with: (1) a minimum particle removal efficiency of no less than 99.97 percent for 0.3 micrometer particles, (2) a maximum, clean resistance of 1.0 inch water column (in. WC) when operated at 1,000 cubic feet per minute (CFM), and (3) a rigid casing that extends the full depth of the medium. Specifically, ceramic media HEPA filters provide better performance at elevated temperatures, are moisture resistant and nonflammable, can perform their function if wetted and exposed to greater pressures, and can be cleaned and reused. This paper describes themore » modification and design of a large scale test stand which properly evaluates the filtration characteristics of a range of ceramic media filters challenged with a nuclear aerosol agent in order to develop Section FO of ASME AG-1.« less
Sjögren, G; Sletten, G; Dahl, J E
2000-08-01
Biocompatibility of dental materials is dependent on the release of elements from the materials. In addition, the composition, pretreatment, and handling of the materials influence the element release. This study evaluated the cytotoxicity of dental alloys, metals, and ceramics, with specific emphasis on the effects of altering the composition and the pretreatment. By using cells from a mouse fibroblast cell line and the agar overlay test, Millipore filter test, and MTT test, cytotoxicity of various metals, metal alloys, and ceramics for dental restoration were studied. Effects of altering the composition of a high noble gold alloy and of pretreatment of a ceramic-bonding alloy were also studied. In addition, the release of elements into the cell culture medium by the materials studied was measured using an inductively coupled plasma optical emission spectrophotometer. The results of the MTT test were analyzed statistically using ANOVA and Scheffé test at a significance level of P <.05. Specimens manufactured from materials intended for dental restorations and handled in accordance with the manufacturers' instructions were ranked from "noncytotoxic" to "mildly cytotoxic" according to the agar overlay and Millipore filter tests. For the MTT test, no significant differences were observed between these materials and controls, with the exception of JS C-gold and unalloyed titanium. The modified materials were ranked from "mildly cytotoxic" to "moderately cytotoxic" in the agar overlay and Millipore filter tests and from "noncytotoxic" to "moderately cytotoxic" in the MTT test. Thus, cytotoxicity was related to the alloy composition and treatment. The release of Cu and Zn seemed to be important for the cytotoxic effect. Alterations in the composition and the pretreatment can greatly influence the cytotoxicity, and the results stress the importance of carefully following the manufacturers' instructions when handling dental materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noble, J.H.; Davie, R.L.
1961-05-01
Filter tests were conducted to determine the most suitable filter for removing large quantities of aluminum corrosion product (boehmite) from reactor water. Filters tested included the following: wire-wound, sintered filter elements, sintered ceramic fllter elements, cotton stringwound filter elements, felted-cotton filter elements, cation resin, adsorption resin, diatomaceous earth precoat filter, and a wood-cellulose precoat filter. Parameters measured were flow rate, filter-influent and -effluent boehmite concentration, pressure drop, and final filter load. The pressure drop and efficiency of the filters was correlated with boehmite load. Boehmite deposits on filters as a nonporous gelatinous cake, and causes a rapidly increasing pressure drop.more » Tests indicate that the optimum load with filter elements and precoat filters is achieved at a pressure drop of 25 psi. Very little additional load can be obtained by operating to a higher pressure drop. Of the filters tested, the precoat filter snd 40 to 60 mesh cation resin were the more effective in removing boehmite. The efficiency of the precoat filter was in excess of 99%, and the efficiency of the cation resin was for the most part in excess of 95%. For various reasons, the other filters were eliminated from final consideration. The test program and available literature indicated that an element type precoat filter using wood cellulose as the precoat media would be most suitable for the proposed application. (auth)« less
The history of ceramic filters.
Fujishima, S
2000-01-01
The history of ceramic filters is surveyed. Included is the history of piezoelectric ceramics. Ceramic filters were developed using technology similar to that of quartz crystal and electro-mechanical filters. However, the key to this development involved the theoretical analysis of vibration modes and material improvements of piezoelectric ceramics. The primary application of ceramic filters has been for consumer-market use. Accordingly, a major emphasis has involved mass production technology, leading to low-priced devices. A typical ceramic filter includes monolithic resonators and capacitors packaged in unique configurations.
van der Laan, H; van Halem, D; Smeets, P W M H; Soppe, A I A; Kroesbergen, J; Wubbels, G; Nederstigt, J; Gensburger, I; Heijman, S G J
2014-03-15
In 2012 more than 4 million people used a ceramic pot filter (CPF) as household water treatment system for their daily drinking water needs. In the normal production protocol most low cost filters are impregnated with a silver solution to enhance the microbial removal efficiency. The aim of this study was to determine the role of silver during the filtration and subsequent storage. Twenty-two CPFs with three different silver applications (non, only outside and both sides) were compared in a long-term loading experiment with Escherichia coli (K12 and WR1) and MS2 bacteriophages in natural challenge water under highly controlled laboratory circumstances. No significant difference in Log Removal Values were found between the filters with different silver applications. The results show that the storage time in the receptacle is the dominant parameter to reach E. coli inactivation by silver, and not the contact time during the filtration phase. The hypothesis that the absence of silver would enhance the virus removal, due to biofilm formation on the ceramic filter element, could not be confirmed. The removal effectiveness for viruses is still of major concern for the CPF. This study suggests that the ceramic pot filter characteristics, such as burnt material content, do not determine E. coli removal efficacies, but rather the contact time with silver during storage is the dominant parameter to reach E. coli inactivation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Method of making a continuous ceramic fiber composite hot gas filter
Hill, Charles A.; Wagner, Richard A.; Komoroski, Ronald G.; Gunter, Greg A.; Barringer, Eric A.; Goettler, Richard W.
1999-01-01
A ceramic fiber composite structure particularly suitable for use as a hot gas cleanup ceramic fiber composite filter and method of making same from ceramic composite material has a structure which provides for increased strength and toughness in high temperature environments. The ceramic fiber composite structure or filter is made by a process in which a continuous ceramic fiber is intimately surrounded by discontinuous chopped ceramic fibers during manufacture to produce a ceramic fiber composite preform which is then bonded using various ceramic binders. The ceramic fiber composite preform is then fired to create a bond phase at the fiber contact points. Parameters such as fiber tension, spacing, and the relative proportions of the continuous ceramic fiber and chopped ceramic fibers can be varied as the continuous ceramic fiber and chopped ceramic fiber are simultaneously formed on the porous vacuum mandrel to obtain a desired distribution of the continuous ceramic fiber and the chopped ceramic fiber in the ceramic fiber composite structure or filter.
Method of producing monolithic ceramic cross-flow filter
Larsen, D.A.; Bacchi, D.P.; Connors, T.F.; Collins, E.L. III
1998-02-10
Ceramic filter of various configuration have been used to filter particulates from hot gases exhausted from coal-fired systems. Prior ceramic cross-flow filters have been favored over other types, but those previously have been assemblies of parts somehow fastened together and consequently subject often to distortion or delamination on exposure hot gas in normal use. The present new monolithic, seamless, cross-flow ceramic filters, being of one-piece construction, are not prone to such failure. Further, these new products are made by a novel casting process which involves the key steps of demolding the ceramic filter green body so that none of the fragile inner walls of the filter is cracked or broken. 2 figs.
Method of producing monolithic ceramic cross-flow filter
Larsen, David A.; Bacchi, David P.; Connors, Timothy F.; Collins, III, Edwin L.
1998-01-01
Ceramic filter of various configuration have been used to filter particulates from hot gases exhausted from coal-fired systems. Prior ceramic cross-flow filters have been favored over other types, but those previously horn have been assemblies of parts somehow fastened together and consequently subject often to distortion or delamination on exposure hot gas in normal use. The present new monolithic, seamless, cross-flow ceramic filters, being of one-piece construction, are not prone to such failure. Further, these new products are made by novel casting process which involves the key steps of demolding the ceramic filter green body so that none of the fragile inner walls of the filter is cracked or broken.
High temperature alkali corrosion of ceramics in coal gas: Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickrell, G.R.; Sun, T.; Brown, J.J. Jr.
1994-12-31
There are several ceramic materials which are currently being considered for use as structural elements in coal combustion and coal conversion systems because of their thermal and mechanical properties. These include alumina (refractories, membranes, heat engines); silicon carbide and silicon nitride (turbine engines, internal combustion engines, heat exchangers, particulate filters); zirconia (internal combustion engines, turbine engines, refractories); and mullite and cordierite (particulate filters, refractories, heat exchangers). High temperature alkali corrosion has been known to cause premature failure of ceramic components used in advanced high temperature coal combustion systems such as coal gasification and clean-up, coal fired gas turbines, and highmore » efficiency heat engines. The objective of this research is to systematically evaluate the alkali corrosion resistance of the most commonly used structural ceramics including silicon carbide, silicon nitride, cordierite, mullite, alumina, aluminum titanate, and zirconia. The study consists of identification of the alkali reaction products and determination of the kinetics of the alkali reactions as a function of temperature and time. 145 refs., 29 figs., 12 tabs.« less
1993-04-01
years have been a continuous inspiration to me. AGARD-R-769, NATO-AGARD, 1988. I thank them for allowing me to assist them in their learning endeavors...ceramics. These ceramic filters have been very effective in improving VIM ingot quality in r.cnt years. Eddy Current Might be applicable to deep ...appropriately defined material behavior. In general. all these sample can become prohibitively large. elements: fractography of failed test pieces
Shivaraju, H Puttaiah; Egumbo, Henok; Madhusudan, P; Anil Kumar, K M; Midhun, G
2018-02-01
Affordable clay-based ceramic filters with multifunctional properties were prepared using low-cost and active ingredients. The characterization results clearly revealed well crystallinity, structural elucidation, extensive porosity, higher surface area, higher stability, and durability which apparently enhance the treatment efficiency. The filtration rates of ceramic filter were evaluated under gravity and the results obtained were compared with a typical gravity slow sand filter (GSSF). All ceramic filters showed significant filtration rates of about 50-180 m/h, which is comparatively higher than the typical GSSF. Further, purification efficiency of clay-based ceramic filters was evaluated by considering important drinking water parameters and contaminants. A significant removal potential was achieved by the clay-based ceramic filter with 25% and 30% activated carbon along with active agents. Desired drinking water quality parameters were achieved by potential removal of nitrite (98.5%), nitrate (80.5%), total dissolved solids (62%), total hardness (55%), total organic pollutants (89%), and pathogenic microorganisms (100%) using ceramic filters within a short duration. The remarkable purification and disinfection efficiencies were attributed to the extensive porosity (0.202 cm 3 g -1 ), surface area (124.61 m 2 g -1 ), stability, and presence of active nanoparticles such as Cu, TiO 2 , and Ag within the porous matrix of the ceramic filter.
Bonded carbon or ceramic fiber composite filter vent for radioactive waste
Brassell, Gilbert W.; Brugger, Ronald P.
1985-02-19
Carbon bonded carbon fiber composites as well as ceramic or carbon bonded ceramic fiber composites are very useful as filters which can separate particulate matter from gas streams entraining the same. These filters have particular application to the filtering of radioactive particles, e.g., they can act as vents for containers of radioactive waste material.
Ceramic High Efficiency Particulate Air (HEPA) Filter Final Report CRADA No. TC02160.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, M.; Bergman, W.
2017-08-25
The technical objective of this project was to develop a ceramic HEPA filter technology, by initially producing and testing coupon ceramics, small scale prototypes, and full scale prototype HEPA filters, and to address relevant manufacturing and commercialization technical issues.
Particulate Hot Gas Stream Cleanup Technical Issues: Quarterly report, July 1-September 30, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pontius, D.H.
1996-12-09
This is the eighth in a series of quarterly reports describing the activities performed under Contract No. DE-AC21-94MC31160. Analyses of Hot Gas Stream Cleanup (HGCU) ashes and descriptions of filter performance address aspects of filter operation that are apparently linked to the characteristics of the collected ash or the performance of the ceramic barrier filter elements. Task 1 is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters (APFS) and to relate these ash properties to the operation and performance of these filters. Task 2 concerns testing and failure analysis ofmore » ceramic filter elements. Under Task I during the past quarter, additional analyses were performed on ashes from the Ahlstrom 10 MWt Pressurized Fluidized Circulating Fluid Bed (PCFB) facility located at Karhula, Finland. Work continued on the HGCU data base being constructed in Microsoft Access. A variety of information has been entered into the data base, including numerical values, short or long text entries, and photographs. Detailed design of a bench top device for high temperature measurement of ash permeability has also begun. In addition to these activities, a paper was prepared and a poster was presented summarizing recent work performed under this contract at the 1996 DOE/METC Contractor`s Conference. A presentation was also given corresponding to the manuscript entitled Particle Characteristics and High-Temperature Filtration that was prepared for publication in the Proceedings of the Thirteenth Annual International Pittsburgh Coal Conference held this September in Pittsburgh, PA. Arrangements have been made to be present at the DOE/METC Modular Gas Cleanup Rig (MGCR) at the conclusion of the next run of the DOE/METC air blown Fluid Bed Gasifier (FBG). This visit will include on-site sampling to collect and characterize the filter cakes collected during FGB operation. Task 2 efforts during the past quarter focused on hoop tensile testing of Schumacher FT20 and Refractron 326 candle filter elements removed from the Karhula APF after 540 hours of service.« less
Zhang, Hongyin; Oyanedel-Craver, Vinka
2013-09-15
This study compares the disinfection performance of ceramic water filters impregnated with two antibacterial compounds: silver nanoparticles and a polymer based quaternary amine functiaonalized silsesquioxane (poly(trihydroxysilyl) propyldimethyloctadecyl ammonium chloride (TPA)). This study evaluated these compounds using ceramic disks manufactures with clay obtained from a ceramic filter factory located in San Mateo Ixtatan, Guatemala. Instead of using full size ceramic water filters, manufactured 6.5 cm diameter ceramic water filter disks were used. Results showed that TPA can achieve a log bacterial reduction value of 10 while silver nanoparticles reached up to 2 log reduction using a initial concentration of bacteria of 10(10)-10(11)CFU/ml. Similarly, bacterial transport demonstrated that ceramic filter disks painted with TPA achieved a bacterial log reduction value of 6.24, which is about 2 log higher than the values obtained for disks painted with silver nanoparticles (bacterial log reduction value: 4.42). The release of both disinfectants from the ceramic materials to the treated water was determined measuring the effluent concentrations in each test performed. Regarding TPA, about 3% of the total mass applied to the ceramic disks was released in the effluent over 300 min, which is slightly lower than the release percentage for silver nanoparticles (4%). This study showed that TPA provides a comparable disinfection performance than silver nanoparticles in ceramic water filter. Another advantage of using TPA is the cost as the price of TPA is considerable lower than silver nanoparticles. In spite of the use of TPA in several medical related products, there is only partial information regarding the health risk associated with the ingestion of this compound. Additional long-term toxicological information for TPA should be evaluated before its future application in ceramic water filters. Copyright © 2013 Elsevier B.V. All rights reserved.
MANUFACTURING FACILITY FOR ACTIVATED CARBON AND CERAMIC WATER FILTERS AT THE SONGHAI CENTER, BENIN
Ceramic filters will be manufactured at the Songhai Center in Porto-Novo, Benin for cost-effective drinking water treatment. The efficiency of the ceramic filters will be improved by adding activated carbon cartridges to remove organic and inorganic impurities. The activate...
Evaluating the sustainability of ceramic filters for point-of-use drinking water treatment.
Ren, Dianjun; Colosi, Lisa M; Smith, James A
2013-10-01
This study evaluates the social, economic, and environmental sustainability of ceramic filters impregnated with silver nanoparticles for point-of-use (POU) drinking water treatment in developing countries. The functional unit for this analysis was the amount of water consumed by a typical household over ten years (37,960 L), as delivered by either the POU technology or a centralized water treatment and distribution system. Results indicate that the ceramic filters are 3-6 times more cost-effective than the centralized water system for reduction of waterborne diarrheal illness among the general population and children under five. The ceramic filters also exhibit better environmental performance for four of five evaluated life cycle impacts: energy use, water use, global warming potential, and particulate matter emissions (PM10). For smog formation potential, the centralized system is preferable to the ceramic filter POU technology. This convergence of social, economic, and environmental criteria offers clear indication that the ceramic filter POU technology is a more sustainable choice for drinking water treatment in developing countries than the centralized treatment systems that have been widely adopted in industrialized countries.
A dense cell retention culture system using stirred ceramic membrane reactor.
Suzuki, T; Sato, T; Kominami, M
1994-11-20
A novel reactor design incorporating porous ceramic tubes into a stirred jar fermentor was developed. The stirred ceramic membrane reactor has two ceramic tubular membrane units inside the vessel and maintains high filtration flux by alternating use for filtering and recovering from clogging. Each filter unit was linked for both extraction of culture broth and gas sparging. High permeability was maintained for long periods by applying the periodical control between filtering and air sparging during the stirred retention culture of Saccharomyces cerevisiae. The ceramic filter aeration system increased the k(L)a to about five times that of ordinary gas sparing. Using the automatic feeding and filtering system, cell mass concentration reached 207 g/L in a short time, while it was 64 g/L in a fed-batch culture. More than 99% of the growing cells were retained in the fermentor by the filtering culture. Both yield and productivity of cells were also increased by controlling the feeding of fresh medium and filtering the supernatant of the dense cells culture. (c) 1994 John Wiley & Sons, Inc.
Ehdaie, Beeta; Rento, Chloe T.; Son, Veronica; Turner, Sydney S.; Samie, Amidou; Dillingham, Rebecca A.
2017-01-01
The World Health Organization (WHO) recognizes point-of-use water treatment (PoUWT) technologies as effective means to improve water quality. This paper investigates long-term performance and social acceptance of a novel PoUWT technology, a silver-infused ceramic tablet, in Limpopo Province, South Africa. When placed in a water storage container, the silver-embedded ceramic tablet releases silver ions into water, thereby disinfecting microbial pathogens and leaving the water safe for human consumption. As a result of its simplicity and efficiency, the silver-embedded ceramic tablet can serve as a stand-alone PoUWT method and as a secondary PoUWT to improve exisitng PoUWT methods, such as ceramic water filters. In this paper, three PoUWT interventions were conducted to evaluate the silver-embedded ceramic tablet: (1) the silver-embedded ceramic tablet as a stand-alone PoUWT method, (2) ceramic water filters stand-alone, and (3) a filter-tablet combination. The filter-tablet combination evaluates the silver-embedded ceramic tablet as a secondary PoUWT method when placed in the lower reservoir of the ceramic water filter system to provide residual disinfection post-filtration. Samples were collected from 79 households over one year and analyzed for turbidity, total silver levels and coliform bacteria. Results show that the silver-embedded ceramic tablet effectively reduced total coliform bacteria (TC) and E. coli when used as a stand-alone PoUWT method and when used in combination with ceramic water filters. The silver-embedded ceramic tablet’s performance as a stand-alone PoUWT method was comparable to current inexpensive, single-use PoUWT methods, demonstrating 100% and 75% median reduction in E. coli and TC, respectively, after two months of use. Overall, the the filter-tablet combination performed the best of the three interventions, providing a 100% average percent reduction in E. coli over one year. User surveys were also conducted and indicated that the silver-embedded ceramic tablet was simple to use and culturally appropriate. Also, silver levels in all treated water samples remained below 20 μg/L, significantly lower than the drinking water standard of 100 μg/L, making it safe for consumption. Long-term data demonstrates that the silver-embedded ceramic tablet has beneficial effects even after one year of use. This study demonstrates that the silver-embedded ceramic tablet can effectively improve water quality when used alone, or with ceramic water filters, to reduce rates of recontamination. Therefore, the tablet has the potential to provide a low-cost means to purify water in resource-limited settings. PMID:28095435
Ehdaie, Beeta; Rento, Chloe T; Son, Veronica; Turner, Sydney S; Samie, Amidou; Dillingham, Rebecca A; Smith, James A
2017-01-01
The World Health Organization (WHO) recognizes point-of-use water treatment (PoUWT) technologies as effective means to improve water quality. This paper investigates long-term performance and social acceptance of a novel PoUWT technology, a silver-infused ceramic tablet, in Limpopo Province, South Africa. When placed in a water storage container, the silver-embedded ceramic tablet releases silver ions into water, thereby disinfecting microbial pathogens and leaving the water safe for human consumption. As a result of its simplicity and efficiency, the silver-embedded ceramic tablet can serve as a stand-alone PoUWT method and as a secondary PoUWT to improve exisitng PoUWT methods, such as ceramic water filters. In this paper, three PoUWT interventions were conducted to evaluate the silver-embedded ceramic tablet: (1) the silver-embedded ceramic tablet as a stand-alone PoUWT method, (2) ceramic water filters stand-alone, and (3) a filter-tablet combination. The filter-tablet combination evaluates the silver-embedded ceramic tablet as a secondary PoUWT method when placed in the lower reservoir of the ceramic water filter system to provide residual disinfection post-filtration. Samples were collected from 79 households over one year and analyzed for turbidity, total silver levels and coliform bacteria. Results show that the silver-embedded ceramic tablet effectively reduced total coliform bacteria (TC) and E. coli when used as a stand-alone PoUWT method and when used in combination with ceramic water filters. The silver-embedded ceramic tablet's performance as a stand-alone PoUWT method was comparable to current inexpensive, single-use PoUWT methods, demonstrating 100% and 75% median reduction in E. coli and TC, respectively, after two months of use. Overall, the the filter-tablet combination performed the best of the three interventions, providing a 100% average percent reduction in E. coli over one year. User surveys were also conducted and indicated that the silver-embedded ceramic tablet was simple to use and culturally appropriate. Also, silver levels in all treated water samples remained below 20 μg/L, significantly lower than the drinking water standard of 100 μg/L, making it safe for consumption. Long-term data demonstrates that the silver-embedded ceramic tablet has beneficial effects even after one year of use. This study demonstrates that the silver-embedded ceramic tablet can effectively improve water quality when used alone, or with ceramic water filters, to reduce rates of recontamination. Therefore, the tablet has the potential to provide a low-cost means to purify water in resource-limited settings.
High speed infrared radiation thermometer, system, and method
Markham, James R.
2002-01-01
The high-speed radiation thermometer has an infrared measurement wavelength band that is matched to the infrared wavelength band of near-blackbody emittance of ceramic components and ceramic thermal barrier coatings used in turbine engines. It is comprised of a long wavelength infrared detector, a signal amplifier, an analog-to-digital converter, an optical system to collect radiation from the target, an optical filter, and an integral reference signal to maintain a calibrated response. A megahertz range electronic data acquisition system is connected to the radiation detector to operate on raw data obtained. Because the thermometer operates optimally at 8 to 12 .mu.m, where emittance is near-blackbody for ceramics, interferences to measurements performed in turbine engines are minimized. The method and apparatus are optimized to enable mapping of surface temperatures on fast moving ceramic elements, and the thermometer can provide microsecond response, with inherent self-diagnostic and calibration-correction features.
Ceramic media amended with metal oxide for the capture of viruses in drinking water.
Brown, J; Sobsey, M D
2009-04-01
Ceramic materials that can adsorb and/or inactivate viruses in water may find widespread application in low-tech drinking-water treatment technologies in developing countries, where porous ceramic filters and ceramic granular media filters are increasingly promoted for that purpose. We examined the adsorption and subsequent inactivation of bacteriophages MS2 and (phiX-174 on five ceramic media in batch adsorption studies to determine media suitability for use in a ceramic water filter application. The media examined were a kaolinitic ceramic medium and four kaolinitic ceramic media amended with iron or aluminium oxides that had been incorporated into the kaolinitic clays before firing. Batch adsorption tests indicate increased sorption and inactivation of surrogate viruses by media amended with Fe and Al oxide, with FeOOH-amended ceramic inactivating all bacteriophages up to 8 log10. Unmodified ceramic was a poor adsorbent of bacteriophages at less than 1 log10 adsorption-inactivation and high recovery of sorbed phages. These studies suggest that contact with ceramic media, modified with electropositive Fe or Al oxides, can reduce bacteriophages in waters to a greater extent than unmodified ceramic.
NASA Astrophysics Data System (ADS)
Mosier-Boss, P. A.; Sorensen, K. C.; George, R. D.; Sims, P. C.; O'braztsova, A.
2017-06-01
It was found that spectra obtained for bacteria on SERS substrates fabricated by filtering citrate-generated Ag nanoparticles (NPs) onto rigid, ceramic filters exhibited peaks due to citrate as well as the bacteria. In many cases the citrate spectrum overwhelmed that of the bacteria. Given the simplicity of the method to prepare these substrates, means of eliminating this citrate interference were explored. It was found that allowing a mixture of bacteria suspension and citrate-generated Ag NPs to incubate prior to filtering onto the ceramic filter eliminated this interference.
Application of a low cost ceramic filter to a membrane bioreactor for greywater treatment.
Hasan, Md Mahmudul; Shafiquzzaman, Md; Nakajima, Jun; Ahmed, Abdel Kader T; Azam, Mohammad Shafiul
2015-03-01
The performance of a low cost and simple ceramic filter to a membrane bioreactor (MBR) process was evaluated for greywater treatment. The ceramic filter was submerged in an acrylic cylindrical column bioreactor. Synthetic greywater (prepared by shampoo, dish cleaner and laundry detergent) was fed continuously into the reactor. The filter effluent was obtained by gravitational pressure. The average flux performance was observed to be 11.5 LMH with an average hydraulic retention time of 1.7 days. Complete biodegradation of surfactant (methylene blue active substance removal: 99-100%) as well as high organic removal performance (biochemical oxygen demand: 97-100% and total organic carbon: >88%) was obtained. The consistency of flux (11.5 LMH) indicated that the filter can be operated for a long time without fouling. The application of this simple ceramic filter would make MBR technology cost-effective in developing countries for greywater reclamation and reuse.
Removing Pathogens Using Nano-Ceramic-Fiber Filters
NASA Technical Reports Server (NTRS)
Tepper, Frederick; Kaledin, Leonid
2005-01-01
A nano-aluminum-oxide fiber of only 2 nanometers in diameter was used to develop a ceramic-fiber filter. The fibers are electropositive and, when formulated into a filter material (NanoCeram(TradeMark)), would attract electro-negative particles such as bacteria and viruses. The ability to detect and then remove viruses as well as bacteria is of concern in space cabins since they may be carried onboard by space crews. Moreover, an improved filter was desired that would polish the effluent from condensed moisture and wastewater, producing potable drinking water. A laboratory- size filter was developed that was capable of removing greater than 99.9999 percent of bacteria and virus. Such a removal was achieved at flow rates hundreds of times greater than those through ultraporous membranes that remove particles by sieving. Because the pore size of the new filter was rather large as compared to ultraporous membranes, it was found to be more resistant to clogging. Additionally, a full-size cartridge is being developed that is capable of serving a full space crew. During this ongoing effort, research demonstrated that the filter media was a very efficient adsorbent for DNA (deoxyribonucleic acid), RNA (ribonucleic acid), and endotoxins. Since the adsorption is based on the charge of the macromolecules, there is also a potential for separating proteins and other particulates on the basis of their charge differences. The separation of specific proteins is a major new thrust of biotechnology. The principal application of NanoCeram filters is based on their ability to remove viruses from water. The removal of more than 99.9999 percent of viruses was achieved by a NanoCeram polishing filter added to the effluent of an existing filtration device. NanoCeram is commercially available in laboratory-size filter discs and in the form of a syringe filter. The unique characteristic of the filter can be demonstrated by its ability to remove particulate dyes such as Metanyl yellow. Its particle size is only 2 nanometers, about the size of a DNA molecule, yet the NanoCeram syringe filter is capable of retaining the dyes as the fluid is passed through the syringe, without much back-pressure. Endotoxins, which are contaminants that are part of the residue of destroyed bacteria, can cause toxic shock and are therefore of major concern in pharmaceutical products. The NanoCeram syringe filter is capable of removing greater than 99.96 percent of the endotoxins.
Mosier-Boss, P A; Sorensen, K C; George, R D; Sims, P C; O'braztsova, A
2017-06-05
It was found that spectra obtained for bacteria on SERS substrates fabricated by filtering citrate-generated Ag nanoparticles (NPs) onto rigid, ceramic filters exhibited peaks due to citrate as well as the bacteria. In many cases the citrate spectrum overwhelmed that of the bacteria. Given the simplicity of the method to prepare these substrates, means of eliminating this citrate interference were explored. It was found that allowing a mixture of bacteria suspension and citrate-generated Ag NPs to incubate prior to filtering onto the ceramic filter eliminated this interference. Copyright © 2017 Elsevier B.V. All rights reserved.
Process for making ceramic hot gas filter
Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam
2001-01-01
A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.
Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam
1999-01-01
A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.
Connolly, E.S.; Forsythe, G.D.; Domanski, D.M.; Chambers, J.A.; Rajendran, G.P.
1999-05-11
A ceramic hot-gas candle filter is described having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during back pulse cleaning and is resistant to chemical degradation at high temperatures.
Lantagne, Daniele; Klarman, Molly; Mayer, Ally; Preston, Kelsey; Napotnik, Julie; Jellison, Kristen
2010-06-01
Diarrhoeal diseases cause an estimated 1.87 million child deaths per year. Point-of-use filtration using locally made ceramic filters improves microbiological quality of stored drinking water and prevents diarrhoeal disease. Scaling-up ceramic filtration is inhibited by lack of universal quality control standards. We investigated filter production variables to determine their affect on microbiological removal during 5-6 weeks of simulated normal use. Decreases in the clay:sawdust ratio and changes in the burnable decreased effectiveness of the filter. Method of silver application and shape of filter did not impact filter effectiveness. A maximum flow rate of 1.7 l(-hr) was established as a potential quality control measure for one particular filter to ensure 99% (2- log(10)) removal of total coliforms. Further research is indicated to determine additional production variables associated with filter effectiveness and develop standardized filter production procedures prior to scaling-up.
Lantagne, Daniele; Rayner, Justine; Mittelman, Anjuliee; Pennell, Kurt
2017-11-13
We wish to thank Fewtrell, Majuru, and Hunter for their article highlighting genotoxic risks associated with the use of particulate silver for primary drinking water treatment. The recent promotion of colloidal silver products for household water treatment in developing countries is problematic due to previously identified concerns regarding manufacturing quality and questionable advertising practices, as well as the low efficiency of silver nanoparticles to treat bacteria, viruses, and protozoa in source waters. However, in the conclusion statement of the manuscript, Fewtrell et al. state, "Before colloidal Ag or AgNP are used in filter matrices for drinking water treatment, consideration needs to be given to how much silver is likely to be released from the matrix during the life of the filter." Unfortunately, it appears Fewtrell et al. were unaware that studies of silver nanoparticle and silver ion elution from ceramic filters manufactured and used in developing countries have already been completed. These existing studies have found that: 1) silver ions, not silver nanoparticles, are eluted from ceramic filters treated with silver nanoparticles or silver nitrate; and, 2) silver ions have not been shown to be genotoxic. Thus, the existing recommendation of applying silver nanoparticles to ceramic filters to prevent biofilm formation within the filter and improve microbiological efficacy should still be adhered to, as there is no identified risk to people who drink water from ceramic filters treated with silver nanoparticles or silver nitrate. We note that efforts should continue to minimize exposure to silver nanoparticles (and silica) to employees in ceramic filter factories in collaboration with the organizations that provide technical assistance to ceramic filter factories.
NASA Astrophysics Data System (ADS)
Hirabayashi, Katsuhiko
2005-03-01
Simple Pb_1-x La_x(Zr_y Ti_z)_1-x/4 O3 (PLZT) electrooptic ceramic photonic device arrays for surface-normal operation have been developed for application to polarization-controller arrays and Fabry-Pérot tunable filter arrays. These arrays are inserted in trenches cut across fiber arrays. Each element of the arrayed structure corresponds to one optical beam and takes the form of a cell. Each sidewall of the cell (width: 50-80 μm) is coated to form an electrode. The arrays have 16 elements at a pitch of 250 μm. The phase modulator has about 1 dB of loss and a half-wavelength voltage of 120 V. A cascade of two PLZT phase modulators (thickness: 300 μm), with each attached to a polyimide lambda/2 plate (thickness:15 μm), is capable of converting an arbitrary polarization to the transverse-electric (TE) or transverse-magnetic (TM) polarization. The response time is 1 μs. The Fabry-Pérot tunable filters have a thickness of 50 μm . The front and back surfaces of each cell are coated by 99%-reflective mirror. The free spectral range (FSR) of the filters is about 10 nm, tunable range is about 10 nm, loss is 2.2 dB, and finesse is 150. The tuning speed of these devices is high, taking only 1 μs.
Gibbons, C D; Rodríguez, R A; Tallon, L; Sobsey, M D
2010-08-01
To evaluate the electropositive, alumina nanofibre (NanoCeram) cartridge filter as a primary concentration method for recovering adenovirus, norovirus and male-specific coliphages from natural seawater. Viruses were concentrated from 40 l of natural seawater using a NanoCeram cartridge filter and eluted from the filter either by soaking the filter in eluent or by recirculating the eluent continuously through the filter using a peristaltic pump. The elution solution consisted of 3% beef extract and 0.1 mol l(-1) of glycine. The method using a peristaltic pump was more effective in removing the viruses from the filter. High recoveries of norovirus and male-specific coliphages (>96%) but not adenovirus (<3%) were observed from seawater. High adsorption to the filter was observed for adenovirus and male-specific coliphages (>98%). The adsorption and recovery of adenovirus and male-specific coliphages were also determined for fresh finished water and source water. The NanoCeram cartridge filter was an effective primary concentration method for the concentration of norovirus and male-specific coliphages from natural seawater, but not for adenovirus, in spite of the high adsorption of adenovirus to the filter. This study demonstrates that NanoCeram cartridge filter is an effective primary method for concentrating noroviruses and male-specific coliphages from seawater, thereby simplifying collection and processing of water samples for virus recovery.
Nanoceramics for blood-borne virus removal.
Zhao, Yufeng; Sugiyama, Sadahiro; Miller, Thomas; Miao, Xigeng
2008-05-01
The development of nanoscience and nanotechnology in the field of ceramics has brought new opportunities for the development of virus-removal techniques. A number of nanoceramics, including nanostructured alumina, titania and zirconia, have been introduced for the applications in virus removal or separation. Filtration or adsorption of viruses, and thus the removal of viruses through nanoceramics, such as nanoporous/mesoporous ceramic membranes, ceramic nanofibers and ceramic nanoparticles, will make it possible to produce an efficient system for virus removal from blood and one with excellent chemical/thermal stability. Currently, nanoceramic membranes and filters based on sol-gel alumina membranes and NanoCeram nanofiber filters have been commercialized and applied to remove viruses from the blood. Nevertheless, filtration using nanoporous filters is limited to the removal of only free viruses in the bloodstream.
Method of concurrently filtering particles and collecting gases
Mitchell, Mark A; Meike, Annemarie; Anderson, Brian L
2015-04-28
A system for concurrently filtering particles and collecting gases. Materials are be added (e.g., via coating the ceramic substrate, use of loose powder(s), or other means) to a HEPA filter (ceramic, metal, or otherwise) to collect gases (e.g., radioactive gases such as iodine). The gases could be radioactive, hazardous, or valuable gases.
Brown, Joe; Sobsey, Mark D
2010-03-01
Low-cost options for the treatment of drinking water at the household level are being explored by the Cambodian government and non-governmental organizations (NGOs) working in Cambodia, where many lack access to improved drinking water sources and diarrhoeal diseases are the most prevalent cause of death in children under 5 years of age. The ceramic water purifier (CWP), a locally produced, low-cost ceramic filter, is now being implemented by several NGOs, and an estimated 100,000+households in the country now use them for drinking water treatment. Two candidate filters were tested for the reduction of bacterial and viral surrogates for waterborne pathogens using representative Cambodian drinking water sources (rainwater and surface water) spiked with Escherichia coli and bacteriophage MS2. Results indicate that filters were capable of reducing key microbes in the laboratory with mean reductions of E. coli of approximately 99% and mean reduction of bacteriophages of 90-99% over >600 litres throughput. Increased effectiveness was not observed in filters with an AgNO3 amendment. At under US$10 per filter, locally produced ceramic filters may be a promising option for drinking water treatment and safe storage at the household level.
Deashing of coal liquids with ceramic membrane microfiltration and diafiltration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishop, B.; Goldsmith, R.
1995-12-31
Removal of mineral matter from liquid hydrocarbons derived from the direct liquefaction of coal is required for product acceptability. Current methods include critical solvent deashing (Rose{sup {reg_sign}} process from Kerr-McGee) and filtration (U.S. Filter leaf filter as used by British Coal). These methods produce ash reject streams containing up to 15% of the liquid hydrocarbon product. Consequently, CeraMem proposed the use of low cost, ceramic crossflow membranes for the filtration of coal liquids bottoms to remove mineral matter and subsequent diafiltration (analogous to cake washing in dead-ended filtration) for the removal of coal liquid from the solids stream. The usemore » of these ceramic crossflow membranes overcomes the limitations of traditional polymeric crossflow membranes by having the ability to operate at elevated temperature and to withstand prolonged exposure to hydrocarbon and solvent media. In addition, CeraMem`s membrane filters are significantly less expensive than competitive ceramic membranes due to their unique construction. With these ceramic membrane filters, it may be possible to reduce the product losses associated with traditional deashing processes at an economically attractive cost. The performance of these ceramic membrane microfilters is discussed.« less
Sustainable colloidal-silver-impregnated ceramic filter for point-of-use water treatment.
Oyanedel-Craver, Vinka A; Smith, James A
2008-02-01
Cylindrical colloidal-silver-impregnated ceramic filters for household (point-of-use) water treatment were manufactured and tested for performance in the laboratory with respect to flow rate and bacteria transport. Filters were manufactured by combining clay-rich soil with water, grog (previously fired clay), and flour, pressing them into cylinders, and firing them at 900 degrees C for 8 h. The pore-size distribution of the resulting ceramic filters was quantified by mercury porosimetry. Colloidal silver was applied to filters in different quantities and ways (dipping and painting). Filters were also tested without any colloidal-silver application. Hydraulic conductivity of the filters was quantified using changing-head permeability tests. [3H]H2O water was used as a conservative tracer to quantify advection velocities and the coefficient of hydrodynamic dispersion. Escherichia coli (E. coli) was used to quantify bacterial transport through the filters. Hydraulic conductivity and pore-size distribution varied with filter composition; hydraulic conductivities were on the order of 10(-5) cm/s and more than 50% of the pores for each filter had diameters ranging from 0.02 to 15 microm. The filters removed between 97.8% and 100% of the applied bacteria; colloidal-silver treatments improved filter performance, presumably by deactivation of bacteria. The quantity of colloidal silver applied per filter was more important to bacteria removal than the method of application. Silver concentrations in effluent filter water were initially greater than 0.1 mg/L, but dropped below this value after 200 min of continuous operation. These results indicate that colloidal-silver-impregnated ceramic filters, which can be made using primarily local materials and labor, show promise as an effective and sustainable point-of-use water treatment technology for the world's poorest communities.
High-temperature sapphire optical sensor fiber coatings
NASA Astrophysics Data System (ADS)
Desu, Seshu B.; Claus, Richard O.; Raheem, Ruby; Murphy, Kent A.
1990-10-01
Advanced coal-fired power generation systems, such as pressurized fluidized-bed combustors and integrated gasifier-combined cycles, may provide cost effective future alternatives for power generation, improve our utilization of coal resources, and decrease our dependence upon oil and gas. When coal is burned or converted to combustible gas to produce energy, mineral matter and chemical compounds are released as solid and gaseous contaminants. The control of contaminants is mandatory to prevent pollution as well as degradation of equipment in advanced power generation. To eliminate the need for expensive heat recovery equipment and to avoid efficiency losses it is desirable to develop a technology capable of cleaning the hot gas. For this technology the removal of particle contaminants is of major concern. Several prototype high temperature particle filters have been developed, including ceramic candle filters, ceramic bag filters, and ceramic cross-flow (CXF) filters. Ceramic candle filters are rigid, tubular filters typically made by bonding silicon carbide or alumina-silica grains with clay bonding materials and perhaps including alumina-silica fibers. Ceramic bag filters are flexible and are made from long ceramic fibers such as alumina-silica. CXF filters are rigid filters made of stacks of individual lamina through which the dirty and clean gases flow in cross-wise directions. CXF filters are advantageous for hot gas cleanup applications since they offer a large effective filter surface per unit volume. The relatively small size of the filters allows the pressurized vessel containing them to be small, thus reducing potential equipment costs. CXF filters have shown promise but have experienced degradation at normal operational high temperatures (close to 1173K) and high pressures (up to 24 bars). Observed degradation modes include delamination of the individual tile layers, cracking at either the tile-torid interface or at the mounting flange, or plugging of the filter. These modes may be attributed to a number of material degradation mechanisms, such as thermal shock, oxidation corrosion of the material, mechanical loads, or phase changes in the filter material. Development of high temperature optical fiber (sapphire) sensors embedded in the CXF filters would be very valuable for both monitoring the integrity of the filter during its use and understanding the mechanisms of degradation such that durable filter development will be facilitated. Since the filter operating environment is very harsh, the high temperature sapphire optical fibers need to be protected and for some sensing techniques the fiber must also be coated with low refractive index film (cladding). The objective of the present study is to identify materials and develop process technologies for the application of claddings and protective coatings that are stable and compatible with sapphire fibers at both high temperatures and pressures.
Behavior of micro-particles in monolith ceramic membrane filtration with pre-coagulation.
Yonekawa, H; Tomita, Y; Watanabe, Y
2004-01-01
This paper is intended to clarify the characteristics unique to monolith ceramic membranes with pre-coagulation by referring to the behavior of micro-particles. Flow analysis and experiments have proved that monolith ceramic membranes show a unique flow pattern in the channels within the element, causing extremely rapid flocculation in the channel during dead-end filtration. It was assumed that charge-neutralized micro-particles concentrated near the membrane surface grow in size due to flocculation, and as a result, coarse micro-particles were taken up by the shearing force to flow out. As the dead end points of flow in all the channels are located near the end of the channels with higher filterability, most of the flocculated coarse particles are formed to a columnar cake intensively at the dead end point. Therefore cake layer forming on the membrane other than around the dead end point is alleviated. This behavior of particle flocculation and cake formation at the dead end point within the channels are unique characteristics of monolith ceramic membranes. This is why all monolith ceramic membrane water purification systems operating in Japan do not have pretreatment equipment for flocculation and sedimentation.
Yue, Qinyan; Han, Shuxin; Yue, Min; Gao, Baoyu; Li, Qian; Yu, Hui; Zhao, Yaqin; Qi, Yuanfeng
2009-11-01
Two lab-scale upflow biological anaerobic filters (BAF) packed with sludge-fly ash ceramic particles (SFCP) and commercial ceramic particles (CCP) were employed to investigate effects of the C/N ratios and filter media on the BAF performance during the restart period. The results indicated that BAF could be restarted normally after one-month cease. The C/N ratio of 4.0 was the thresholds of nitrate removal and nitrite accumulation. TN removal and phosphate uptake reached the maximum value at the same C/N ratio of 5.5. Ammonia formation was also found and excreted a negative influence on TN removal, especially when higher C/N ratios were applied. Nutrients were mainly degraded within the height of 25 cm from the bottom. In addition, SFCP, as novel filter media manufactured by wastes-dewatered sludge and fly ash, represented a better potential in inhibiting nitrite accumulation, TN removal and phosphate uptake due to their special characteristics in comparison with CCP.
Ceramic fiber reinforced filter
Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.
1991-01-01
A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.
du Preez, Martella; Conroy, Ronán M; Wright, James A; Moyo, Sibonginkosi; Potgieter, Natasha; Gundry, Stephen W
2008-11-01
To determine the effectiveness of ceramic filters in reducing diarrhea, we conducted a randomized controlled trial in Zimbabwe and South Africa, in which 61 of 115 households received ceramic filters. Incidence of non-bloody and bloody diarrhea was recorded daily over 6 months using pictorial diaries for children 24-36 months of age. Poisson regression was used to compare incidence rates in intervention and control households. Adjusted for source quality, intervention household drinking water showed reduced Escherichia coli counts (relative risk, 0.67; 95% CI, 0.50-0.89). Zero E. coli were obtained for drinking water in 56.9% of intervention households. The incidence rate ratio for bloody diarrhea was 0.20 (95% CI, 0.09-0.43; P < 0.001) and for non-bloody diarrhea was 0.17 (95% CI, 0.08-0.38; P < 0.001), indicating much lower diarrhea incidence among filter users. The results suggest that ceramic filters are effective in reducing diarrheal disease incidence.
Clasen, Thomas F; Brown, Joseph; Collin, Simon; Suntura, Oscar; Cairncross, Sandy
2004-06-01
Ceramic water filters have been identified as one of the most promising and accessible technologies for treating water at the household level. In a six-month trial, water filters were distributed randomly to half of the 50 participating households in a rural community in Bolivia; the remaining households continued to use customary water handling practices and served as controls. In four rounds of sampling following distribution of the filters, 100% of the 96 water samples from the filter households were free of thermotolerant coliforms compared with 15.5% of the control household samples. Diarrheal disease risk for individuals in intervention households was 70% lower than for controls (95% confidence interval [CI] = 53-80%; P < 0.001). For children less than five years old, the reduction in risk was 83% (95% CI = 51-94%; P < 0.001). These results show that affordable ceramic water filters enable low-income households to treat and maintain the microbiologic quality of their drinking water.
Hydraulic modeling of clay ceramic water filters for point-of-use water treatment.
Schweitzer, Ryan W; Cunningham, Jeffrey A; Mihelcic, James R
2013-01-02
The acceptability of ceramic filters for point-of-use water treatment depends not only on the quality of the filtered water, but also on the quantity of water the filters can produce. This paper presents two mathematical models for the hydraulic performance of ceramic water filters under typical usage. A model is developed for two common filter geometries: paraboloid- and frustum-shaped. Both models are calibrated and evaluated by comparison to experimental data. The hydraulic models are able to predict the following parameters as functions of time: water level in the filter (h), instantaneous volumetric flow rate of filtrate (Q), and cumulative volume of water produced (V). The models' utility is demonstrated by applying them to estimate how the volume of water produced depends on factors such as the filter shape and the frequency of filling. Both models predict that the volume of water produced can be increased by about 45% if users refill the filter three times per day versus only once per day. Also, the models predict that filter geometry affects the volume of water produced: for two filters with equal volume, equal wall thickness, and equal hydraulic conductivity, a filter that is tall and thin will produce as much as 25% more water than one which is shallow and wide. We suggest that the models can be used as tools to help optimize filter performance.
The Influence of Grain Refiners on the Efficiency of Ceramic Foam Filters
NASA Astrophysics Data System (ADS)
Towsey, Nicholas; Schneider, Wolfgang; Krug, Hans-Peter; Hardman, Angela; Keegan, Neil J.
An extensive program of work has been carried out to evaluate the efficiency of ceramic foam filters under carefully controlled conditions. Work reported at previous TMS meetings showed that in the absence of grain refiners, ceramic foam filters have the capacity for high filtration efficiency and consistent, reliable performance. The current phase of the investigation focuses on the impact grain refiner additions have on filter performance. The high filtration efficiencies obtained using 50 or 80ppi CFF's in the absence of grain refiners diminish when Al-3%Ti-1%B grain refiners are added. This, together with the impact of incoming inclusion loading on filter performance and the level of grain refiner addition are considered in detail. The new generation Al-3%Ti-0.15%C grain refiner has also been included. At typical addition levels (1kg/tonne) the effect on filter efficiency is similar to that for TiB2based grain refiners. The work was again conducted on a production scale using AA1050 alloy. Metal quality was determined using LiMCA and PoDFA. Spent filters were also analysed.
Wang, Hongyu; He, Jiajie; Yang, Kai
2010-01-01
This study evaluated the partial nitrification performances of two biofilm filters over a synthetic non-ammonium-rich wastewater at a 20°C room temperature under both limited DO (∼2.0 mg/L) and unlimited DO (∼4.0 mg/L) conditions. The two filters were each of 80 cm long and used different biofilm carriers: activated carbon and ceramic granule. Results showed that partial nitrification was accomplished for both filters under the limited DO condition. However, the effluent NO(2)-N was higher in the ceramic granule filter than in the activated carbon filter, and was less susceptible to the influent COD/N changes. Further investigation into the water phase COD and NH(4)-N depth profiles and bacteria population within the two filters showed that by putting upper filter layer (upstream) to confront relatively higher influent COD/N ratios, the filtration process naturally put lower filter layers (downstream) relatively more favorable for nitrifying bacteria (ammonia oxidizing bacteria in this study) to prosper, making the filter depth left for nitrification a crucial factor for the effectiveness of nitrification with a filter. The potentially different porous flow velocities of the two filters might be the reason to cause their different partial nitrification performances, with a lower porous flow velocity (the ceramic granule filter) favoring partial nitrification more. In summation, DO, filter depth, and filtration speed should be played together to successfully operate a biofilm filter for partial nitrification.
Improved virus removal in ceramic depth filters modified with MgO.
Michen, Benjamin; Fritsch, Johannes; Aneziris, Christos; Graule, Thomas
2013-02-05
Ceramic filters, working on the depth filtration principle, are known to improve drinking water quality by removing human pathogenic microorganisms from contaminated water. However, these microfilters show no sufficient barrier for viruses having diameters down to 20 nm. Recently, it was shown that the addition of positively charged materials, for example, iron oxyhydroxide, can improve virus removal by adsorption mechanisms. In this work, we modified a common ceramic filter based on diatomaceous earth by introducing a novel virus adsorbent material, magnesium oxyhydroxide, into the filter matrix. Such filters showed an improved removal of about 4-log in regard to bacteriophages MS2 and PhiX174. This is explained with the electrostatic enhanced adsorption approach that is the favorable adsorption of negatively charged viruses onto positively charged patches in an otherwise negatively charged filter matrix. Furthermore, we provide theoretical evidence applying calculations according to Derjaguin-Landau-Verwey-Overbeek theory to strengthen our experimental results. However, modified filters showed a significant variance in virus removal efficiency over the course of long-term filtration experiments with virus removal increasing with filter operation time (or filter aging). This is explained by transformational changes of MgO in the filter upon contact with water. It also demonstrates that filter history is of great concern when filters working on the adsorption principles are evaluated in regard to their retention performance as their surface characteristics may alter with use.
SERS substrates fabricated using ceramic filters for the detection of bacteria
NASA Astrophysics Data System (ADS)
Mosier-Boss, P. A.; Sorensen, K. C.; George, R. D.; Obraztsova, A.
2016-01-01
SERS substrates were fabricated by filtering either Ag or Au colloidal particles onto rigid, ceramic filters - onto which suspensions of bacteria were then filtered. SERS spectra of the bacteria were obtained using a Raman spectrometer that has an 'orbital raster scan' capability. It was shown that bacteria samples prepared in this manner were uniformly distributed onto the surface of the SERS substrate. The effect of common buffer systems on the SERS spectra was investigated and the utility of using the SERS technique for speciation of bacteria was explored.
Ceramic tamper-revealing seals
Kupperman, David S.; Raptis, Apostolos C.; Sheen, Shuh-Haw
1992-01-01
A flexible metal or ceramic cable with composite ceramic ends, or a u-shaped ceramic connecting element attached to a binding element plate or block cast from alumina or zirconium, and connected to the connecting element by shrink fitting.
NASA Astrophysics Data System (ADS)
Luo, Chunya; Ma, Zhichao; Hu, Laisheng; Hu, Mingzhe; Huang, Xiaomin
2015-12-01
The microwave dielectric properties of 0.95%MgTiO3-0.05%CaTiO3 (abbreviated as 95MCT hereafter) ceramics have been studied for application in dielectric cross coupling filters. ZnO and Nb2O5 were selected as liquid sintering aids to lower the sintering temperature and enhance the Qf value of 95MCT and simultaneously we varied the mole ratio of ZnO : Nb2O5 to tune the microwave dielectric properties of 95MCT. When the ZnO : Nb2O5 mole ratio was 1.5 and the co-doping content was 0.25 wt.%, the optimal sintering temperature of 95MCT ceramic could be lowered from 1400∘C to 1320∘C and the Qf value could be improved by about 7.7%. The optimal microwave dielectric properties obtained under this condition were Qf = 72730 GHz (6.8 GHz), ɛr = 20.29 and τf = -6.84ppm/∘C, which demonstrated great potential usage in ceramic industry. High values of Qf ceramic were used to design the dielectric cross coupling filter. The dielectric filter measured at 2.35 GHz exhibited a 6.7% bandwidth (insert loss > -3 dB) of center frequency.
Ceramic tamper-revealing seals
Kupperman, D.S.; Raptis, A.C.; Sheen, S.H.
1992-12-08
A flexible metal or ceramic cable is described with composite ceramic ends, or a U-shaped ceramic connecting element attached to a binding element plate or block cast from alumina or zirconium, and connected to the connecting element by shrink fitting. 7 figs.
High temperature electrically conducting ceramic heating element and control system
NASA Technical Reports Server (NTRS)
Halbach, C. R.; Page, R. J.
1975-01-01
Improvements were made in both electrode technology and ceramic conductor quality to increase significantly the lifetime and thermal cycling capability of electrically conducting ceramic heater elements. These elements were operated in vacuum, inert and reducing environments as well as oxidizing atmospheres adding to the versatility of the conducting ceramic as an ohmic heater. Using stabilized zirconia conducting ceramic heater elements, a furnace was fabricated and demonstrated to have excellent thermal response and cycling capability. The furnace was used to melt platinum-20% rhodium alloy (melting point 1904 C) with an isothermal ceramic heating element having a nominal working cavity size of 2.5 cm diameter by 10.0 cm long. The furnace was operated to 1940 C with the isothermal ceramic heating element. The same furnace structure was fitted with a pair of main heater elements to provide axial gradient temperature control over a working cavity length of 17.8 cm.
Automatically Inspecting Thin Ceramics For Pinholes
NASA Technical Reports Server (NTRS)
Honaker, James R.
1988-01-01
Proposed apparatus for inspecting prefired ceramic materials detects minute flaws that might escape ordinary visual inspections. Method detects flaws and marks locations. Intended for such thin ceramic parts as insulation in capacitors and some radio-frequency filters.
Brown, Joe; Sobsey, Mark D; Loomis, Dana
2008-09-01
A randomized, controlled intervention trial of two household-scale drinking water filters was conducted in a rural village in Cambodia. After collecting four weeks of baseline data on household water quality, diarrheal disease, and other data related to water use and handling practices, households were randomly assigned to one of three groups of 60 households: those receiving a ceramic water purifier (CWP), those receiving a second filter employing an iron-rich ceramic (CWP-Fe), and a control group receiving no intervention. Households were followed for 18 weeks post-baseline with biweekly follow-up. Households using either filter reported significantly less diarrheal disease during the study compared with a control group of households without filters as indicated by longitudinal prevalence ratios CWP: 0.51 (95% confidence interval [CI]: 0.41-0.63); CWP-Fe: 0.58 (95% CI: 0.47-0.71), an effect that was observed in all age groups and both sexes after controlling for clustering within households and within individuals over time.
SERS substrates fabricated using ceramic filters for the detection of bacteria.
Mosier-Boss, P A; Sorensen, K C; George, R D; Obraztsova, A
2016-01-15
SERS substrates were fabricated by filtering either Ag or Au colloidal particles onto rigid, ceramic filters - onto which suspensions of bacteria were then filtered. SERS spectra of the bacteria were obtained using a Raman spectrometer that has an 'orbital raster scan' capability. It was shown that bacteria samples prepared in this manner were uniformly distributed onto the surface of the SERS substrate. The effect of common buffer systems on the SERS spectra was investigated and the utility of using the SERS technique for speciation of bacteria was explored. Published by Elsevier B.V.
Evaluation of a bonded particle cartridge filtration system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, W.; Krug, H.P.; Dopp, V.
1996-10-01
Metal cleanliness is a major issue in today`s aluminum casthouse, especially in the production of critical products such as canstock, litho sheet and foil. Bonded particle cartridge filters are widely regarded as the most effective means available for inclusion removal from critical production items. V.A.W. and Foseco have carried out a joint program of evaluation of a cartridge filter system in conjunction with ceramic foam filters and an in-line degassing unit--in various configurations. The ceramic foam filters ranged from standard, coarse pore types to new generation all-ceramic bonded, fine pore types. Metal cleanliness was assessed using LiMCA, PoDFA, and LAISmore » sampling techniques, as well as metallographic and scanning electron microscope examinations. This paper outlines the findings of this work which was carried out a V.A.W.`s full scale experimental D.C. slab casting unit as Neuss in Germany.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wereszczak, Andrew; Jadaan, Osama; Modugno, Max
In this paper, the apparent fracture toughness of a porous cordierite ceramic was estimated using a large specimen whose geometry was inspired by the ASTM-C1421-standardized chevron-notch beam. In this paper, using the same combination of experiment and analysis used to develop the standardized chevron-notch test for small, monolithic ceramic bend bars, an apparent fracture toughness of 0.6 and 0.9 MPa√m were estimated for an unaged and aged cordierite diesel particulate filter structure, respectively. Finally, the effectiveness and simplicity of this adapted specimen geometry and test method lends itself to the evaluation of (macroscopic) apparent fracture toughness of an entire porous-ceramic,more » diesel particulate filter structure.« less
Wereszczak, Andrew; Jadaan, Osama; Modugno, Max; ...
2017-01-18
In this paper, the apparent fracture toughness of a porous cordierite ceramic was estimated using a large specimen whose geometry was inspired by the ASTM-C1421-standardized chevron-notch beam. In this paper, using the same combination of experiment and analysis used to develop the standardized chevron-notch test for small, monolithic ceramic bend bars, an apparent fracture toughness of 0.6 and 0.9 MPa√m were estimated for an unaged and aged cordierite diesel particulate filter structure, respectively. Finally, the effectiveness and simplicity of this adapted specimen geometry and test method lends itself to the evaluation of (macroscopic) apparent fracture toughness of an entire porous-ceramic,more » diesel particulate filter structure.« less
Mukhopadhyay, N; Bose, P K
2009-10-01
Soot particulate emission reduction from diesel engine is one of the most emerging problems associated with the exhaust pollution. Diesel particulate filters (DPF) hold out the prospects of substantially reducing regulated particulate emissions but the question of the reliable regeneration of filters still remains a difficult hurdle to overcome. Many of the solutions proposed to date suffer from design complexity, cost, regeneration problem and energy demands. This study presents a computer aided theoretical analysis for controlling diesel soot particulate emission by cyclone separator--a non contact type particulate removal system considering outer vortex flow, inner vortex flow and packed ceramic fiber filter at the end of vortex finder tube. Cyclone separator with low initial cost, simple construction produces low back pressure and reasonably high collection efficiencies with reduced regeneration problems. Cyclone separator is modified by placing a continuous ceramic packed fiber filter placed at the end of the vortex finder tube. In this work, the grade efficiency model of diesel soot particulate emission is proposed considering outer vortex, inner vortex and the continuous ceramic packed fiber filter. Pressure drop model is also proposed considering the effect of the ceramic fiber filter. Proposed model gives reasonably good collection efficiency with permissible pressure drop limit of diesel engine operation. Theoretical approach is predicted for calculating the cut size diameter considering the effect of Cunningham molecular slip correction factor. The result shows good agreements with existing cyclone and DPF flow characteristics.
de Freitas, Normanda L; Gonçalves, José A S; Innocentini, Murilo D M; Coury, José R
2006-08-25
The performance of double-layered ceramic filters for aerosol filtration at high temperatures was evaluated in this work. The filtering structure was composed of two layers: a thin granular membrane deposited on a reticulate ceramic support of high porosity. The goal was to minimize the high pressure drop inherent of granular structures, without decreasing their high collection efficiency for small particles. The reticulate support was developed using the technique of ceramic replication of polyurethane foam substrates of 45 and 75 pores per inch (ppi). The filtering membrane was prepared by depositing a thin layer of granular alumina-clay paste on one face of the support. Filters had their permeability and fractional collection efficiency analyzed for filtration of an airborne suspension of phosphatic rock in temperatures ranging from ambient to 700 degrees C. Results revealed that collection efficiency decreased with gas temperature and was enhanced with filtration time. Also, the support layer influenced the collection efficiency: the 75 ppi support was more effective than the 45 ppi. Particle collection efficiency dropped considerably for particles below 2 microm in diameter. The maximum collection occurred for particle diameters of approximately 3 microm, and decreased again for diameters between 4 and 8 microm. Such trend was successfully represented by the proposed correlation, which is based on the classical mechanisms acting on particle collection. Inertial impaction seems to be the predominant collection mechanism, with particle bouncing/re-entrainment acting as detachment mechanisms.
Impact of chlorination on silver elution from ceramic water filters.
Lyon-Marion, Bonnie A; Mittelman, Anjuliee M; Rayner, Justine; Lantagne, Daniele S; Pennell, Kurt D
2018-06-05
Applying silver nanoparticles (nAg) or silver nitrate (AgNO 3 ) to ceramic water filters improves microbiological efficacy, reduces biofilm formation, and protects stored water from recontamination. A challenge in ceramic filter production is adding sufficient silver to achieve these goals without exceeding the maximum recommended silver concentration in drinking water. Silver release is affected by silver type, application method, and influent water chemistry. Despite a lack of data, there is an assumption that chlorinated water should not be used as influent water because it may increase silver elution. Thus, the objective of this work was to systematically evaluate the impact of chlorinated water (0-4 mg/L free chlorine residual, FCR) on silver release from ceramic filter disks painted with casein-coated nAg, painted with AgNO 3 , or containing fired-in nAg over a range of ionic strength (IS = 0-10 mM as NaNO 3 ) in the presence or absence of natural organic matter (NOM). Influent deionized water containing chlorine increased silver release 2-5-fold compared to controls. However, this effect of chlorine was mitigated at higher IS (≥1 mM) or in the presence of NOM (3 mg C/L). For filter disks painted with nAg or AgNO 3 , silver release increased with increasing IS (with or without chlorine), and effluent concentrations remained above the World Health Organization (WHO) guideline of 0.1 mg/L even after 30 h (80 pore volumes, PVs) of flow with a background solution of 10 mM NaNO 3 . Silver speciation (nAg vs. Ag + ) was monitored in effluent samples from painted or fired-in nAg filter disks. Results indicated that in general, greater than 90% of the eluted silver was due to Ag + dissolution rather than nAg release. Additionally, a filter disk prepared with fired-in nAg exhibited a lower % released in the nanoparticle form (nAg = 5% of total Ag in effluent) compared to painted on nAg (nAg = 14% of total Ag in effluent). The findings of this study suggest that chlorinated influent water has minimal impact on silver elution from ceramic filters under simulated natural water conditions, and thus, the recommendation to avoid the use of chlorinated water with ceramic filters is not necessary under most conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fritzsch, Robert; Kennedy, Mark W.; Aune, Ragnhild E.
2018-02-01
Special induction coils used for electro magnetic priming of ceramic foam filters in liquid metal filtration have been designed using a combination of analytical and finite element modeling. Relatively simple empirical equations published by Wheeler in 1928 and 1982 have been used during the design process. The equations were found to accurately predict the z-component of the magnetic flux densities of both single- and multi-layer coils as verified both experimentally and by using COMSOL® 5.1 multiphysics simulations.
Huang, Jing; Huang, Guohe; An, Chunjiang; He, Yuan; Yao, Yao; Zhang, Peng; Shen, Jian
2018-07-01
Global water safety is facing great challenges due to increased population and demand. There is an urgent need to develop suitable water treatment strategy for small rural and remote communities in low-income developing countries. In order to find a low-cost solution, the reduction of E. coli using ceramic water disk coated with nano ZnO was investigated in this study. The performance of modified ceramic disk filters was influenced by several factors in the filter production process. Based on the factorial analysis, the pore size of the disk filters was the most significant factor for influencing E. coli removal efficiency and the clay content was the most significant one for influencing flow rate of modified disk filters. The coating of nano ZnO led to the change of disk filter surface and porosity. The reduction of E. coli could be attributed to both filter retention and photocatalytic antibacterial activity of nano ZnO. The effects of filter operation factors including initial E. coli concentration, illumination time and lamp power on E. coli removal effectiveness were also revealed. The results can help find a safe and cost-effective approach to solve drinking water problems in small rural and remote communities of developing regions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Rare-earth doped transparent ceramics for spectral filtering and quantum information processing
NASA Astrophysics Data System (ADS)
Kunkel, Nathalie; Ferrier, Alban; Thiel, Charles W.; Ramírez, Mariola O.; Bausá, Luisa E.; Cone, Rufus L.; Ikesue, Akio; Goldner, Philippe
2015-09-01
Homogeneous linewidths below 10 kHz are reported for the first time in high-quality Eu3+ doped Y 2O3 transparent ceramics. This result is obtained on the 7F0→5D0 transition in Eu3+ doped Y 2O3 ceramics and corresponds to an improvement of nearly one order of magnitude compared to previously reported values in transparent ceramics. Furthermore, we observed spectral hole lifetimes of ˜15 min that are long enough to enable efficient optical pumping of the nuclear hyperfine levels. Additionally, different Eu3+ concentrations (up to 1.0%) were studied, resulting in an increase of up to a factor of three in the peak absorption coefficient. These results suggest that transparent ceramics can be useful in applications where narrow and deep spectral holes can be burned into highly absorbing lines, such as quantum information processing and spectral filtering.
F3D Image Processing and Analysis for Many - and Multi-core Platforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
F3D is written in OpenCL, so it achieve[sic] platform-portable parallelism on modern mutli-core CPUs and many-core GPUs. The interface and mechanims to access F3D core are written in Java as a plugin for Fiji/ImageJ to deliver several key image-processing algorithms necessary to remove artifacts from micro-tomography data. The algorithms consist of data parallel aware filters that can efficiently utilizes[sic] resources and can work on out of core datasets and scale efficiently across multiple accelerators. Optimizing for data parallel filters, streaming out of core datasets, and efficient resource and memory and data managements over complex execution sequence of filters greatly expeditesmore » any scientific workflow with image processing requirements. F3D performs several different types of 3D image processing operations, such as non-linear filtering using bilateral filtering and/or median filtering and/or morphological operators (MM). F3D gray-level MM operators are one-pass constant time methods that can perform morphological transformations with a line-structuring element oriented in discrete directions. Additionally, MM operators can be applied to gray-scale images, and consist of two parts: (a) a reference shape or structuring element, which is translated over the image, and (b) a mechanism, or operation, that defines the comparisons to be performed between the image and the structuring element. This tool provides a critical component within many complex pipelines such as those for performing automated segmentation of image stacks. F3D is also called a "descendent" of Quant-CT, another software we developed in the past. These two modules are to be integrated in a next version. Further details were reported in: D.M. Ushizima, T. Perciano, H. Krishnan, B. Loring, H. Bale, D. Parkinson, and J. Sethian. Structure recognition from high-resolution images of ceramic composites. IEEE International Conference on Big Data, October 2014.« less
Performance Evaluation of Two Different Industrial Foam Filters with LiMCA II Data
NASA Astrophysics Data System (ADS)
Syvertsen, Martin; Bao, Sarina
2015-04-01
Plant-scale filtration experiments with molten aluminum have been carried out with two different types of 10 × 10 × 2 in, 30 ppi ceramic foam filters. The filters were produced in the same production line where the only difference was the composition of the ceramic slurry used for the filter production. The inclusion contents in the aluminum melt before and after the filters were measured with two constantly running liquid metal cleanliness analyzer (LiMCA) II units. Three methods for analyzing the recorded data are presented. A significant difference in the filtration performance as function of time was found when settling of inclusions in the melt was taken into account. Statistical treatment of the time dependent LiMCA II data was performed.
NASA Astrophysics Data System (ADS)
Sidorov, V. V.; Min, P. G.; Folomeikin, Yu. I.; Vadeev, V. E.
2015-06-01
The article discusses the possibility of additional refining of a complexly alloyed nickel melt from a sulfur impurity by decreasing the filtration rate during the passage of the melt through a foam-ceramic filter. The degree of sulfur removal from the melt is shown to depend on its content in the alloy and the melt filtration rate.
Miniaturized dielectric waveguide filters
NASA Astrophysics Data System (ADS)
Sandhu, Muhammad Y.; Hunter, Ian C.
2016-10-01
Design techniques for a new class of integrated monolithic high-permittivity ceramic waveguide filters are presented. These filters enable a size reduction of 50% compared to air-filled transverse electromagnetic filters with the same unloaded Q-factor. Designs for Chebyshev and asymmetric generalised Chebyshev filter and a diplexer are presented with experimental results for an 1800 MHz Chebyshev filter and a 1700 MHz generalised Chebyshev filter showing excellent agreement with theory.
Abebe, Lydia S; Su, Yi-Hsuan; Guerrant, Richard L; Swami, Nathan S; Smith, James A
2015-11-03
Ceramic water filters (CWFs) impregnated with silver nanoparticles are a means of household-level water treatment. CWFs remove/deactivate microbial pathogens by employing two mechanisms: metallic disinfection and physical filtration. Herein we report on the independent effects of silver salt and nanoparticles on Cryptosporidium parvum and the removal of C. parvum by physical filtration in porous ceramic filter media. Using a murine (mouse) model, we observed that treatment of oocysts with silver nitrate and proteinate-capped silver nanoparticles resulted in decreased infection relative to untreated oocysts. Microscopy and excystation experiments were conducted to support the disinfection investigation. Heat and proteinate-capped silver-nanoparticle treatment of oocysts resulted in morphological modifications and decreased excystation rates of sporozoites. Subsequently, disk-shaped ceramic filters were produced to investigate the transport of C. parvum. Two factors were varied: sawdust size and clay-to-sawdust ratio. Five disks were prepared with combinations of 10, 16, and 20 mesh sawdust and sawdust percentage that ranged from 9 to 11%. C. parvum removal efficiencies ranged from 1.5 log (96.4%) to 2.1 log (99.2%). The 16-mesh/10% sawdust had the greatest mean reduction of 2.1-log (99.2%), though there was no statistically significant difference in removal efficiency. Based on our findings, physical filtration and silver nanoparticle disinfection likely contribute to treatment of C. parvum for silver impregnated ceramic water filters, although the contribution of physical filtration is likely greater than silver disinfection.
Gas filtration and separation with nano-size ceramics
NASA Astrophysics Data System (ADS)
Lysenko, V. I.; Trufanov, D. Yu.; Bardakhanov, S. P.
2011-06-01
Filtration and separation properties were studied for filters made from open-porosity ceramics (sintered from authors-developed silicon dioxide nanopowder "tarkosil". Key parameters were measured for samples of ceramics produced at different sintering temperatures: porosity, gas permeability coefficient, relative time of standard volume fill-up, gas mixture separation coefficient. The possibility of using the described ceramics for helium enrichment was demonstrated with examples of helium-nitrogen and helium-methane mixtures.
Rare-earth doped transparent ceramics for spectral filtering and quantum information processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunkel, Nathalie, E-mail: nathalie.kunkel@chimie-paristech.fr; Goldner, Philippe, E-mail: philippe.goldner@chimie-paristech.fr; Ferrier, Alban
2015-09-01
Homogeneous linewidths below 10 kHz are reported for the first time in high-quality Eu{sup 3+} doped Y {sub 2}O{sub 3} transparent ceramics. This result is obtained on the {sup 7}F{sub 0}→{sup 5}D{sub 0} transition in Eu{sup 3+} doped Y {sub 2}O{sub 3} ceramics and corresponds to an improvement of nearly one order of magnitude compared to previously reported values in transparent ceramics. Furthermore, we observed spectral hole lifetimes of ∼15 min that are long enough to enable efficient optical pumping of the nuclear hyperfine levels. Additionally, different Eu{sup 3+} concentrations (up to 1.0%) were studied, resulting in an increase ofmore » up to a factor of three in the peak absorption coefficient. These results suggest that transparent ceramics can be useful in applications where narrow and deep spectral holes can be burned into highly absorbing lines, such as quantum information processing and spectral filtering.« less
Pulse cleaning flow models and numerical computation of candle ceramic filters.
Tian, Gui-shan; Ma, Zhen-ji; Zhang, Xin-yi; Xu, Ting-xiang
2002-04-01
Analytical and numerical computed models are developed for reverse pulse cleaning system of candle ceramic filters. A standard turbulent model is demonstrated suitably to the designing computation of reverse pulse cleaning system from the experimental and one-dimensional computational result. The computed results can be used to guide the designing of reverse pulse cleaning system, which is optimum Venturi geometry. From the computed results, the general conclusions and the designing methods are obtained.
CERAMIC FUEL ELEMENT MATERIAL FOR A NEUTRONIC REACTOR AND METHOD OF FABRICATING SAME
Duckworth, W.H.
1957-12-01
This patent relates to ceramic composition, and to neutronic reactor fuel elements formed therefrom. These ceramic elements have high density and excellent strength characteristics and are formed by conventional ceramic casting and sintering at a temperature of about 2700 deg F in a nitrogen atmosphere. The composition consists of silicon carbide, silicon, uranium oxide and a very small percentage of molybdenum. Compositions containing molybdenum are markedly stronger than those lacking this ingredient.
USDA-ARS?s Scientific Manuscript database
Clay and plant materials such as wood are the raw materials used in manufacture of ceramic water filtration devices around the world. A step by step manufacturing procedure which includes initial mixing, molding and sintering is used. The manufactured ceramic filters have numerous pores which help i...
Filter holder assembly having extended collar spacer ring
Alvin, Mary Anne; Bruck, Gerald J.
2002-01-01
A filter holder assembly is provided that utilizes a fail-safe regenerator unit with an annular spacer ring having an extended metal collar for containment and positioning of a compliant ceramic gasket used in the assembly. The filter holder assembly is disclosed for use with advanced composite, filament wound, and metal candle filters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, A.
HEPA filters are commonly used in air filtration systems ranging in application from simple home systems to the more advanced networks used in research and development. Currently, these filters are most often composed of glass fibers with diameter on the order of one micron with polymer binders. These fibers, as well as the polymers used, are known to be fragile and can degrade or become extremely brittle with heat, severely limiting their use in high temperature applications. Ceramics are one promising alternative and can enhance the filtration capabilities compared to the current technology. Because ceramic materials are more thermally resistantmore » and chemically stable, there is great interest in developing a repeatable protocol to uniformly coat fine featured polymer objects with ceramic material for use as a filter. The purpose of this experiment is to determine viscosity limits that are able to properly coat certain pore sizes in 3D printed objects, and additionally to characterize the coatings themselves. Latex paint was used as a surrogate because it is specifically designed to produce uniform coatings.« less
Clasen, T; Brown, J; Suntura, O; Collin, S
2004-01-01
A randomised controlled field trial was conducted to evaluate the effectiveness of ceramic drip filters to improve the microbiological quality of drinking water in a low-income community in rural Bolivia. In four rounds of water sampling over five months, 100% of the samples were free of thermotolerant (faecal) coliforms (TTC) compared to an arithmetic mean TTC count of 1517, 406, 167 and 245 among control households which continued to use their customary sources of drinking water. The filter systems produced water that consistently met WHO drinking-water standards despite levels of turbidity that presented a challenge to other low-cost POU treatment methods. The filter systems also demonstrated an ability to maintain the high quality of the treated water against subsequent re-contamination in the home.
Industrial Application of Open Pore Ceramic Foam for Molten Metal Filtration
NASA Astrophysics Data System (ADS)
Gauckler, L. J.; Waeber, M. M.; Conti, C.; Jacob-Dulière, M.
Ceramic foam filters were used for industrial filtration of aluminum. Results are compared with laboratory experiments which are in good agreement with trajectory analyses of deep bed filtration for the early stage of filtration.
Evaluation of Respirable Crystalline Silica in High School Ceramics Classrooms
Fechser, Matthew; Alaves, Victor; Larson, Rodney; Sleeth, Darrah
2014-01-01
Air concentrations of respirable crystalline silica were measured in eleven (11) high school ceramics classrooms located in Salt Lake County, UT, USA. Respirable dust was collected on PVC filters using precision flow pumps and cyclone samplers (n = 44). Filters were subsequently analyzed for respirable dust and percent crystalline silica content. The geometric mean of the silica concentrations was 0.009 mg/m3 near the teacher’s work station and 0.008 mg/m3 near the kilns. The number of students in the classroom was correlated to the silica concentration in the ceramics classroom, but no correlation was found between the silica concentrations and either the size of the classroom or the age of the building. Results from this study indicate that ceramics teachers may be at an increased risk of exposure to crystalline silica based on the ACGIH TLV of 0.025 mg/m3, with an exceedance of 21%. PMID:24464235
Evaluation of respirable crystalline silica in high school ceramics classrooms.
Fechser, Matthew; Alaves, Victor; Larson, Rodney; Sleeth, Darrah
2014-01-23
Air concentrations of respirable crystalline silica were measured in eleven (11) high school ceramics classrooms located in Salt Lake County, UT, USA. Respirable dust was collected on PVC filters using precision flow pumps and cyclone samplers (n = 44). Filters were subsequently analyzed for respirable dust and percent crystalline silica content. The geometric mean of the silica concentrations was 0.009 mg/m3 near the teacher's work station and 0.008 mg/m3 near the kilns. The number of students in the classroom was correlated to the silica concentration in the ceramics classroom, but no correlation was found between the silica concentrations and either the size of the classroom or the age of the building. Results from this study indicate that ceramics teachers may be at an increased risk of exposure to crystalline silica based on the ACGIH TLV of 0.025 mg/m3, with an excess of 21%.
NASA Astrophysics Data System (ADS)
Simonis, J. J.; Basson, A. K.
Africa is one of the most water-scarce continents in the world but it is the lack of potable water which results in diarrhoea being the leading cause of death amongst children under the age of five in Africa (696 million children under 5 years old in Africa contract diarrhoea resulting in 2000 deaths per day: WHO and UNICEF, 2009). Most potable water treatment methods use bulk water treatment not suitable or available to the majority of rural poor in Sub-Saharan Africa. One simple but effective way of making sure that water is of good quality is by purifying it by means of a household ceramic water filter. The making and supply of water filters suitable for the removal of suspended solids, pathogenic bacteria and other toxins from drinking water is therefore critical. A micro-porous ceramic water filter with micron-sized pores was developed using the traditional slip casting process. This locally produced filter has the advantage of making use of less raw materials, cost, labour, energy and expertise and being more effective and efficient than other low cost produced filters. The filter is fitted with a silicone tube inserted into a collapsible bag that acts as container and protection for the filter. Enhanced flow is obtained through this filter system. The product was tested using water inoculated with high concentrations of different bacterial cultures as well as with locally polluted stream water. The filter is highly effective (log10 > 4 with 99.99% reduction efficiency) in providing protection from bacteria and suspended solids found in natural water. With correct cleaning and basic maintenance this filter technology can effectively provide drinking water to rural families affected by polluted surface water sources. This is an African solution for the more than 340 million people in Africa without access to clean drinking water (WHO and UNICEF, 2008).
[Spectroscopic Research on Slag Nanocrystal Glass Ceramics Containing Rare Earth Elements].
Ouyang, Shun-li; Li, Bao-wei; Zhang, Xue-feng; Jia, Xiao-lin; Zhao, Ming; Deng, Lei-bo
2015-08-01
The research group prepared the high-performance slag nanocrystal glass ceramics by utilizing the valuable elements of the wastes in the Chinese Bayan Obo which are characterized by their symbiotic or associated existence. In this paper, inductively coupled plasma emission spectroscopy (ICP), X-ray diffraction (XRD), Raman spectroscopy (Raman) and scanning electron microscopy (SEM) are all used in the depth analysis for the composition and structure of the samples. The experiment results of ICP, XRD and SEM showed that the principal crystalline phase of the slag nanocrystal glass ceramics containing rare earth elements is diopside, its grain size ranges from 45 to 100 nm, the elements showed in the SEM scan are basically in consistent with the component analysis of ICP. Raman analysis indicated that its amorphous phase is a three-dimensional network structure composed by the structural unit of silicon-oxy tetrahedron with different non-bridging oxygen bonds. According to the further analysis, we found that the rare earth microelement has significant effect on the network structure. Compared the nanocrystal slag glass ceramic with the glass ceramics of similar ingredients, we found that generally, the Raman band wavenumber for the former is lower than the later. The composition difference between the glass ceramics and the slag nanocrystal with the similar ingredients mainly lies on the rare earth elements and other trace elements. Therefore, we think that the rare earth elements and other trace elements remains in the slag nanocrystal glass ceramics have a significant effect on the network structure of amorphous phase. The research method of this study provides an approach for the relationship among the composition, structure and performance of the glass ceramics.
Nonlinear fracture of concrete and ceramics
NASA Technical Reports Server (NTRS)
Kobayashi, Albert S.; Du, Jia-Ji; Hawkins, Niel M.; Bradt, Richard C.
1989-01-01
The nonlinear fracture process zones in an impacted unnotched concrete bend specimen, a prenotched ceramic bend specimen, and an unnotched ceramic/ceramic composite bend specimen were estimated through hybrid experimental numerical analysis. Aggregate bridging in concrete, particulate bridging in ceramics, and fiber bridging in ceramic/ceramic composite are modeled by Barenblatt-type cohesive zones which are incorporated into the finite-element models of the bend specimens. Both generation and propagation analyses are used to estimate the distribution of crack closure stresses in the nonlinear fracture process zones. The finite-element models are then used to simulate fracture tests consisting of rapid crack propagation in an impacted concrete bend specimen, and stable crack growth and strain softening in a ceramic and ceramic/ceramic composite bend specimens.
Tagmatarchis, Alexander; Tripodakis, Aris-Petros; Filippatos, Gerasimos; Zinelis, Spiros; Eliades, George
2014-01-01
The aim of the study was to characterize the elemental distribution at the interface between all-ceramic core and veneering porcelain materials. Three groups of all-ceramic cores were selected: A) Glass-ceramics (Cergo, IPS Empress, IPS Empress 2, e-max Press, Finesse); B) Glass-infiltrated ceramics (Celay Alumina, Celay Zirconia) and C) Densely sintered ceramics (Cercon, Procera Alumina, ZirCAD, Noritake Zirconia). The cores were combined with compatible veneering porcelains and three flat square test specimens were produced for each system. The core-veneer interfaces were examined by scanning electron microscopy and energy dispersive x-ray microanalysis. The glass-ceramic systems showed interfacial zones reach in Si and O, with the presence of K, Ca, Al in core and Ca, Ce, Na, Mg or Al in veneer material, depending on the system tested. IPS Empress and IPS Empress 2 demonstrated distinct transitional phases at the core-veneer interface. In the glassinfiltrated systems, intermixing of core (Ce, La) with veneer (Na, Si) elements occurred, whereas an abrupt drop of the core-veneer elemental concentration was documented at the interfaces of all densely sintered ceramics. The results of the study provided no evidence of elemental interdiffusion at the core-veneer interfaces in densely sintered ceramics, which implies lack of primary chemical bonding. For the glass-containing systems (glassceramics and glass-infiltrated ceramics) interdiffusion of the glass-phase seems to play a critical role in establishing a primary bonding condition between ceramic core and veneering porcelain.
Experimental and Numerical Study of Ceramic Foam Filtration
NASA Astrophysics Data System (ADS)
Laé, E.; Duval, H.; Rivière, C.; Le Brun, P.; Guillot, J.-B.
Ceramic foam filtration is widely used to enable removal of non metallic inclusions from liquid aluminium. Its performances have been largely studied in the literature and some discrepancies remain amongst the published results. Consequently, a research program was deployed to evaluate the performances of a range of ceramic foam filters used under various conditions and to understand the inclusions capture mechanisms.
Olivine, dolomite and ceramic filters in one vessel to produce clean gas from biomass.
Rapagnà, Sergio; Gallucci, Katia; Foscolo, Pier Ugo
2018-01-01
Heavy organic compounds produced during almond shells gasification in a steam and/or air atmosphere, usually called tar, are drastically reduced in the product gas by using simultaneously in one vessel a ceramic filter placed in the freeboard and a mixture of olivine and dolomite particles in the fluidized bed of the gasifier. The content of tar in the product gas during a reference gasification test with air, in presence of fresh olivine particles only, was 8600mg/Nm 3 of dry gas. By gasifying biomass with steam at the same temperature level of 820°C in a bed of olivine and dolomite (20% by weight), and in the presence of a catalytic ceramic filter inserted in the freeboard of the fluidized bed gasifier, the level of tar was brought down to 57mg/Nm 3 of dry producct gas, with a decrease of more than two orders of magnitude. Copyright © 2017 Elsevier Ltd. All rights reserved.
Advanced Ceramics for Use as Fuel Element Materials in Nuclear Thermal Propulsion Systems
NASA Technical Reports Server (NTRS)
Valentine, Peter G.; Allen, Lee R.; Shapiro, Alan P.
2012-01-01
With the recent start (October 2011) of the joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) Advanced Exploration Systems (AES) Nuclear Cryogenic Propulsion Stage (NCPS) Program, there is renewed interest in developing advanced ceramics for use as fuel element materials in nuclear thermal propulsion (NTP) systems. Three classes of fuel element materials are being considered under the NCPS Program: (a) graphite composites - consisting of coated graphite elements containing uranium carbide (or mixed carbide), (b) cermets (ceramic/metallic composites) - consisting of refractory metal elements containing uranium oxide, and (c) advanced carbides consisting of ceramic elements fabricated from uranium carbide and one or more refractory metal carbides [1]. The current development effort aims to advance the technology originally developed and demonstrated under Project Rover (1955-1973) for the NERVA (Nuclear Engine for Rocket Vehicle Application) [2].
Method of making a modified ceramic-ceramic composite
Weaver, Billy L.; McLaughlin, Jerry C.; Stinton, David P.
1995-01-01
The present invention provides a method of making a shaped ceramic-ceramic composite articles, such as gas-fired radiant heat burner tubes, heat exchangers, flame dispersers, and other furnace elements, having a formed-on ceramic-ceramic composite thereon.
Modeling the Sustainability of a Ceramic Water Filter Intervention
Mellor, Jonathan; Abebe, Lydia; Ehdaie, Beeta; Dillingham, Rebecca; Smith, James
2014-01-01
Ceramic water filters (CWFs) are a point-of-use water treatment technology that has shown promise in preventing early childhood diarrhea (ECD) in resource-limited settings. Despite this promise, some researchers have questioned their ability to reduce ECD incidences over the long term since most effectiveness trials conducted to date are less than one year in duration limiting their ability to assess long-term sustainability factors. Most trials also suffer from lack of blinding making them potentially biased. This study uses an agent-based model (ABM) to explore factors related to the long-term sustainability of CWFs in preventing ECD and was based on a three year longitudinal field study. Factors such as filter user compliance, microbial removal effectiveness, filter cleaning and compliance declines were explored. Modeled results indicate that broadly defined human behaviors like compliance and declining microbial effectiveness due to improper maintenance are primary drivers of the outcome metrics of household drinking water quality and ECD rates. The model predicts that a ceramic filter intervention can reduce ECD incidence amongst under two year old children by 41.3%. However, after three years, the average filter is almost entirely ineffective at reducing ECD incidence due to declining filter microbial removal effectiveness resulting from improper maintenance. The model predicts very low ECD rates are possible if compliance rates are 80-90%, filter log reduction efficiency is 3 or greater and there are minimal long-term compliance declines. Cleaning filters at least once every 4 months makes it more likely to achieve very low ECD rates as does the availability of replacement filters for purchase. These results help to understand the heterogeneity seen in previous intervention-control trials and reemphasize the need for researchers to accurately measure confounding variables and ensure that field trials are at least 2-3 years in duration. In summary, the CWF can be a highly effective tool in the fight against ECD, but every effort should be made by implementing agencies to ensure consistent use and maintenance. PMID:24355289
Simplified Method for Groundwater Treatment Using Dilution and Ceramic Filter
NASA Astrophysics Data System (ADS)
Musa, S.; Ariff, N. A.; Kadir, M. N. Abdul; Denan, F.
2016-07-01
Groundwater is one of the natural resources that is not susceptible to pollutants. However, increasing activities of municipal, industrial, agricultural or extreme land use activities have resulted in groundwater contamination as occured at the Research Centre for Soft Soil Malaysia (RECESS), Universiti Tun Hussein Onn Malaysia (UTHM). Thus, aims of this study is to treat groundwater by using rainwater and simple ceramic filter as a treatment agent. The treatment uses rain water dilution, ceramic filters and combined method of dilute and filtering as an alternate treatment which are simple and more practical compared to modern or chemical methods. The water went through dilution treatment processes able to get rid of 57% reduction compared to initial condition. Meanwhile, the water that passes through the filtering process successfully get rid of as much as 86% groundwater parameters where only chloride does not pass the standard. Favorable results for the combination methods of dilution and filtration methods that can succesfully eliminate 100% parameters that donot pass the standards of the Ministry of Health and the Interim National Drinking Water Quality Standard such as those found in groundwater in RECESS, UTHM especially sulfate and chloride. As a result, it allows the raw water that will use clean drinking water and safe. It also proves that the method used in this study is very effective in improving the quality of groundwater.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-14
...; filter paper; technical books and manuals; textile-covered foam shielding; ceramic hardware and fittings... cables (including fiber optic cable); insulators; filters; lenses; mirrors; prisms; other optical...
High-temperature ceramic heat exchanger element for a solar thermal receiver
NASA Technical Reports Server (NTRS)
Strumpf, H. J.; Kotchick, D. M.; Coombs, M. G.
1982-01-01
A study has been completed on the development of a high-temperature ceramic heat exchanger element to be integrated into a solar reciver producing heated air. A number of conceptual designs were developed for heat exchanger elements of differing configuration. These were evaluated with respect to thermal performance, pressure drop, structural integrity, and fabricability. The final design selection identified a finned ceramic shell as the most favorable concept. The ceramic shell is surrounded by a larger metallic shell. The flanges of the two shells are sealed to provide a leak-tight pressure vessel. The ceramic shell is fabricated by an innovative combination of slip casting the receiver walls and precision casting the heat transfer finned plates. The fins are bonded to the shell during firing. Fabrication of a one-half scale demonstrator ceramic receiver has been completed.
Microbiological effectiveness of mineral pot filters in Cambodia.
Brown, Joe; Chai, Ratana; Wang, Alice; Sobsey, Mark D
2012-11-06
Mineral pot filters (MPFs) are household water treatment (HWT) devices that are manufactured and distributed by the private sector, with millions of users in Southeast Asia. Their effectiveness in reducing waterborne microbes has not been previously investigated. We purchased three types of MPFs available on the Cambodian market for systematic evaluation of bacteria, virus, and protozoan surrogate microbial reduction in laboratory challenge experiments following WHO recommended performance testing protocols. Results over the total 1500 L testing period per filter indicate that the devices tested were highly effective in reducing Esherichia coli (99.99%+), moderately effective in reducing bacteriophage MS2 (99%+), and somewhat effective against Bacillus atrophaeus, a spore-forming bacterium we used as a surrogate for protozoa (88%+). Treatment mechanisms for all filters included porous ceramic and activated carbon filtration. Our results suggest that these commercially available filters may be at least as effective against waterborne pathogens as other, locally available treatment options such as ceramic pot filters or boiling. More research is needed on the role these devices may play as interim solutions to the problem of unsafe drinking water in Cambodia and globally.
Casanova, Lisa M; Walters, Adam; Naghawatte, Ajith; Sobsey, Mark D
2012-06-01
Sri Lanka was devastated by the 2004 Indian Ocean tsunami. During recovery, the Red Cross distributed approximately 12,000 free ceramic water filters. This cross-sectional study was an independent post-implementation assessment of 452 households that received filters, to determine the proportion still using filters, household characteristics associated with use, and quality of household drinking water. The proportion of continued users was high (76%). The most common household water sources were taps or shallow wells. The majority (82%) of users used filtered water for drinking only. Mean filter flow rate was 1.12 L/hr (0.80 L/hr for households with taps and 0.71 for those with wells). Water quality varied by source; households using tap water had source water of high microbial quality. Filters improved water quality, reducing Escherichia coli for households (largely well users) with high levels in their source water. Households were satisfied with filters and are potentially long-term users. To promote sustained use, recovery filter distribution efforts should try to identify households at greatest long-term risk, particularly those who have not moved to safer water sources during recovery. They should be joined with long-term commitment to building supply chains and local production capacity to ensure safe water access.
Design of a dielectric resonator receive array at 7 Tesla using detunable ceramic resonators
NASA Astrophysics Data System (ADS)
Ruytenberg, Thomas; Webb, Andrew G.
2017-11-01
Ceramic-based dielectric resonators can be used for high frequency magnetic resonance imaging and microscopy. When used as elements in a transmit array, the intrinsically low inter-element coupling allows flexibility in designing different geometric arrangements for different regions-of-interest. However, without being able to detune such resonators, they cannot be used as elements in a receive-only array. Here, we propose and implement a method, based on mode-disruption, for detuning ceramic-based dielectric resonators to enable them to be used as receive-only elements.
Method of securing filter elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Erik P.; Haslam, Jeffery L.; Mitchell, Mark A.
2016-10-04
A filter securing system including a filter unit body housing; at least one tubular filter element positioned in the filter unit body housing, the tubular filter element having a closed top and an open bottom; a dimple in either the filter unit body housing or the top of the tubular filter element; and a socket in either the filter unit body housing or the top of the tubular filter element that receives the dimple in either the filter unit body housing or the top of the tubular filter element to secure the tubular filter element to the filter unit bodymore » housing.« less
Thin film ceramic thermocouples
NASA Technical Reports Server (NTRS)
Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)
2011-01-01
A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.
Field investigation of arsenic in ceramic pot filter-treated drinking water.
Archer, A R; Elmore, A C; Bell, E; Rozycki, C
2011-01-01
Ceramic pot filters (CPFs) is one of several household water treatment technologies that is used to treat drinking water in developing areas. The filters have the advantage of being able to be manufactured using primarily locally available materials and local labor. However, naturally-occurring arsenic present in the clay used to make the filters has the potential to contaminate the water in excess of the World Health Organization drinking water standard of 0.01 mg/L. A manufacturing facility in Guatemala routinely rinses filters to reduce arsenic concentrations prior to distribution to consumers. A systemic study was performed to evaluate the change in arsenic concentrations with increasing volumes of rinse water. Arsenic field kit results were compared to standard method laboratory results, and dissolved versus suspended arsenic concentrations in CPF-treated water were evaluated. The results of the study suggest that rinsing is an effective means of mitigating arsenic leached from the filters, and that even in the absence of a formal rinsing program, routine consumer use may result in the rapid decline of arsenic concentrations. More importantly, the results indicate that filter manufacturers should give strong consideration to implementing an arsenic testing program.
Preventing diarrhoea with household ceramic water filters: assessment of a pilot project in Bolivia.
Clasen, Thomas F; Brown, Joseph; Collin, Simon M
2006-06-01
In an attempt to prevent diarrhoea in a rural community in central Bolivia, an international non-governmental organization implemented a pilot project to improve drinking water quality using gravity-fed, household-based, ceramic water filters. We assessed the performance of the filters by conducting a five-month randomized controlled trial among all 60 households in the pilot community. Water filters eliminated thermotolerant (faecal) coliforms from almost all intervention households and significantly reduced turbidity, thereby improving water aesthetics. Most importantly, the filters were associated with a 45.3% reduction in prevalence of diarrhoea among the study population (p = 0.02). After adjustment for household clustering and repeated episodes in individuals and controlling for age and baseline diarrhoea, prevalence of diarrhoea among the intervention group was 51% lower than controls, though the protective effect was only borderline significant (OR 0.49, 95% CI: 0.24, 1.01; p = 0.05). A follow-up survey conducted approximately 9 months after deployment of the filters found 67% being used regularly, 13% being used intermittently, and 21% not in use. Water samples from all regularly used filters were free of thermotolerant coliforms.
Separation membrane development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, M.W.
1998-08-01
A ceramic membrane has been developed to separate hydrogen from other gases. The method used is a sol-gel process. A thin layer of dense ceramic material is coated on a coarse ceramic filter substrate. The pore size distribution in the thin layer is controlled by a densification of the coating materials by heat treatment. The membrane has been tested by permeation measurement of the hydrogen and other gases. Selectivity of the membrane has been achieved to separate hydrogen from carbon monoxide. The permeation rate of hydrogen through the ceramic membrane was about 20 times larger than Pd-Ag membrane.
Ouyang, Shao-bo; Wang, Jun; Zhang, Hong-bin; Liao, Lan; Zhu, Hong-shui
2014-04-01
To investigate the stress distributions under load in 3 types of all-ceramic continuous crowns of the lower anterior teeth with differential shoulder thickness. Cone-beam CT (CBCT) was used to scan the in vitro mandibular central incisors, and achieve three-dimensional finite element model of all-ceramic continuous crowns with different shoulder width by using Mimics, Abaqus software. Different load conditions were simulated based on this model to study the effect of shoulder width variation on finite element analysis of 3 kinds of different all-ceramic materials of incisors fixed continuous crowns of the mandibular. Using CBCT, Mimics10.01 software and Abaqus 6.11 software, three-dimensional finite element model of all-ceramic continuous crowns of the mandibular incisor, abutment, periodontal ligament and alveolar bone was established. Different ceramic materials and various shoulder width had minor no impact on the equivalent stress peak of periodontal membrane, as well as alveolar bone. With the same shoulder width and large area of vertical loading of 120 N, the tensile stress was the largest in In-Ceram Alumina, followed by In-Ceram Zirconia and the minimum was IPS.Empress II. Under large area loading of 120 N 45° labially, when the material was IPS.Empress II, with the shoulder width increased, the porcelain plate edge of the maximum tensile stress value increased, while the other 2 materials had no obvious change. Finite element model has good geometric similarity. In the setting range of this study, when the elastic modulus of ceramic materials is bigger, the tensile stress of the continuous crown is larger. Supported by Research Project of Department of Education, Jiangxi Province (GJJ09130).
Zou, Wen; Ran, Xu; Liang, Jie; Chen, Hezhong; Luo, Jiaoming
2012-12-01
Strontium added into porous hydroxyaptite ceramics has the functions of improving its osseointegration, decreasing its dissolution rate and improving the bone density. Strontium-containing hydroxyaptite (Sr-HA) ceramics has been used as bone replacement and scaffold to treat the osteoporosis and bone default in clinic, but the mechanism of interfacial tissue response caused by the trace element Sr in Sr-HA ceramics still remains to be further studied. Four types of Sr-HA ceramic samples with different contents of Sr were prepared by microwave plasma sintering for testing the response of the soft tissue implanted in dog muscles in our laboratory. The contents of Sr element in the samples are 0 mol%, 1 mol%, 5 mol%, and 7 mol%, respectively. The samples were implanted in the muscle of the dogs for 4 weeks, 8 weeks and 12 weeks, respectively. The histological observations at the end of each period showed that the irritant ranking increased with the content of Sr in Sr-HA ceramics at the end of 12 weeks, and there were rich bone tissue in Sr-HA ceramic samples with 5 mol% Sr element. The overdose of element Sr is harmful to soft tissues. When the content of Sr in Sr-HA ceramic was below 5 mol%, the soft tissue response was very slight and the new bones were induced to grow well.
Ceramic Plutonium Target Development for the MASHA Separator for the Synthesis of Element 114
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaughnessy, D A; Wilk, P A; Moody, K J
2005-06-29
We are currently developing a Pu ceramic target for the MASHA mass separator. MASHA will use a Pu ceramic target capable of tolerating temperatures up to 2000 C. Reaction products will diffuse out of the target into an ion source, and transported through the separator to a position-sensitive focal-plane detector array for mass identification. Experiments on MASHA will allow us to make measurements that will cement our identification of element 114 and provide data for future experiments on chemical properties of the heaviest elements. In this study (Sm,Zr)O{sub 2-x} ceramics are produced and evaluated for studies on the production ofmore » Pb (homolog of element 114) by the reaction of Ca on Sm. This work will provide an initial analysis on the feasibility of using a ZrO{sub 2}-PuO{sub 2} as a target for the production of element 114.« less
Finite-element simulation of ceramic drying processes
NASA Astrophysics Data System (ADS)
Keum, Y. T.; Jeong, J. H.; Auh, K. H.
2000-07-01
A finite-element simulation for the drying process of ceramics is performed. The heat and moisture movements in green ceramics caused by the temperature gradient, moisture gradient, conduction, convection and evaporation are considered. The finite-element formulation for solving the temperature and moisture distributions, which not only change the volume but also induce the hygro-thermal stress, is carried out. Employing the internally discontinuous interface elements, the numerical divergence problem arising from sudden changes in heat capacity in the phase zone is solved. In order to verify the reliability of the formulation, the drying process of a coal and the wetting process of a graphite epoxy are simulated and the results are compared with the analytical solution and another investigator's result. Finally, the drying process of a ceramic electric insulator is simulated.
Ceramic Bearings For Gas-Turbine Engines
NASA Technical Reports Server (NTRS)
Zaretsky, Erwin V.
1989-01-01
Report reviews data from three decades of research on bearings containing rolling elements and possibly other components made of ceramics. Ceramic bearings attractive for use in gas-turbine engines because ceramics generally retain strengths and resistances to corrosion over range of temperatures greater than typical steels used in rolling-element bearings. Text begins with brief description of historical developments in field. Followed by discussion of effects of contact stress on fatigue life of rolling element. Supplemented by figures and tables giving data on fatigue lives of rolling elements made of various materials. Analyzes data on effects of temperature and speed on fatigue lives for several materials and operating conditions. Followed by discussion of related topic of generation of heat in bearings, with consideration of effects of bearing materials, lubrication, speeds, and loads.
Long-term evaluation of the performance of four point-of-use water filters.
Pérez-Vidal, Andrea; Diaz-Gómez, Jaime; Castellanos-Rozo, Jose; Usaquen-Perilla, Olga Lucía
2016-07-01
Despite technological advances water supply quality and poor access to safe water remain a major problem in developing countries, especially in rural areas. Point-of-use (POU) water treatment has been shown to be a viable option to produce safe drinking water quality. The aim of this study was to evaluate, under laboratory conditions over 14 months, the performance of four household filtration systems: membrane filter (MF), one-candle ceramic filter (1CCF), two-candle ceramic filter (2CCF) and pot ceramic filter (PCF). The evaluation was made using spiked water having the required concentrations of turbidity, Escherichia coli and Total Dissolved Solids (TDS). The results show that all systems have high removal efficiencies for turbidity (98-99%), and E. coli 4-5 Log Reduction Value (LRV). The poorest efficiency was for TDS (9-18%). The MF and the CCF displayed no significant difference in efficiencies for these parameters. The PCF had less significant differences for turbidity removal than the other systems. The average filtration rate for all systems decreased during the operation time. The CPF showed the major potential to be used in rural communities mainly for its low operational level and maintenance requirements as well as its local craftsmanship. It was observed that the efficiency of the systems is highly sensitive to cleaning and maintenance activities and therefore, the system sustainability will depend considerably on the training and education of the potential users. Copyright © 2016 Elsevier Ltd. All rights reserved.
Determination of elemental composition of substance lost following wear of all-ceramic materials.
Dündar, Mine; Artunç, Celal; Toksavul, Suna; Ozmen, Dilek; Turgan, Nevbahar
2003-01-01
The aim of this study was to test the possible elemental release of four different all-ceramic materials in a wear machine to predict results about their long-term behavior in the oral environment. Four different all-ceramic materials with different chemical compositions were selected for the wear testing. A total of 20 cylindric samples, five for each ceramic group, were prepared according to the manufacturers' instructions. These were subjected to two-body wear testing in an artificial saliva medium under a covered unit with a computer-operated wear machine. The artificial saliva solutions for each material were analyzed for the determination of amounts of sodium, potassium, calcium, magnesium, and lithium elements released from the glass-ceramic materials. The differences between and within groups were statistically analyzed with a one-way ANOVA, followed by Duncan tests. The statistical analyses revealed no significant differences among Na, K, Ca, or Mg levels (P > .05) released from the leucite-reinforced groups, while there was a significant (P < .05) increase in Li release from the lithium disilicate group. Considerable element release to the artifical saliva medium was demonstrated in short-term wear testing. The lithia-based ceramic was more prone to Li release when compared with other elements and materials.
Ceramic membrane development in NGK
NASA Astrophysics Data System (ADS)
Araki, Kiyoshi; Sakai, Hitoshi
2011-05-01
NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R&D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.
NASA Astrophysics Data System (ADS)
Chakrabarty, Rohan; Song, Jun
2017-10-01
During the cold spraying of particle-reinforced metal matrix composite coatings (ceramic and metal particles mixture) on metal substrates, ceramic particles may either get embedded in the substrate/deposited coating or may rebound from the substrate surface. In this study, the dependence of the ceramic rebounding phenomenon on the spray angle and its effect on substrate erosion have been analyzed using finite-element analysis. From the numerical simulations, it was found that the ceramic particle density and substrate material strength played the major roles in determining the embedding and ceramic retention behavior. Substrate material erosion also influenced the ceramic retention, and the material loss increased as the impact angles decreased from normal. In general, the results concluded that decreasing the impact angle promoted the retention possibility of ceramics in the substrate. This study provides new theoretical insights into the effect of spray angles on the ceramic retention and suggests a new route toward optimizing the spraying process to increase the ceramic retention in composite coatings cold spray.
Bacterial treatment effectiveness of point-of-use ceramic water filters.
Bielefeldt, Angela R; Kowalski, Kate; Summers, R Scott
2009-08-01
Laboratory experiments were conducted on six point-of-use (POU) ceramic water filters that were manufactured in Nicaragua; two filters were used by families for ca. 4 years and the other filters had limited prior use in our lab. Water spiked with ca. 10(6)CFU/mL of Escherichia coli was dosed to the filters. Initial disinfection efficiencies ranged from 3 - 4.5 log, but the treatment efficiency decreased with subsequent batches of spiked water. Silver concentrations in the effluent water ranged from 0.04 - 1.75 ppb. Subsequent experiments that utilized feed water without a bacterial spike yielded 10(3)-10(5)CFU/mL bacteria in the effluent. Immediately after recoating four of the filters with a colloidal silver solution, the effluent silver concentrations increased to 36 - 45 ppb and bacterial disinfection efficiencies were 3.8-4.5 log. The treatment effectiveness decreased to 0.2 - 2.5 log after loading multiple batches of highly contaminated water. In subsequent loading of clean water, the effluent water contained <20-41 CFU/mL in two of the filters. This indicates that the silver had some benefit to reducing bacterial contamination by the filter. In general these POU filters were found to be effective, but showed loss of effectiveness with time and indicated a release of microbes into subsequent volumes of water passed through the system.
Modeling the sustainability of a ceramic water filter intervention.
Mellor, Jonathan; Abebe, Lydia; Ehdaie, Beeta; Dillingham, Rebecca; Smith, James
2014-02-01
Ceramic water filters (CWFs) are a point-of-use water treatment technology that has shown promise in preventing early childhood diarrhea (ECD) in resource-limited settings. Despite this promise, some researchers have questioned their ability to reduce ECD incidences over the long term since most effectiveness trials conducted to date are less than one year in duration limiting their ability to assess long-term sustainability factors. Most trials also suffer from lack of blinding making them potentially biased. This study uses an agent-based model (ABM) to explore factors related to the long-term sustainability of CWFs in preventing ECD and was based on a three year longitudinal field study. Factors such as filter user compliance, microbial removal effectiveness, filter cleaning and compliance declines were explored. Modeled results indicate that broadly defined human behaviors like compliance and declining microbial effectiveness due to improper maintenance are primary drivers of the outcome metrics of household drinking water quality and ECD rates. The model predicts that a ceramic filter intervention can reduce ECD incidence amongst under two year old children by 41.3%. However, after three years, the average filter is almost entirely ineffective at reducing ECD incidence due to declining filter microbial removal effectiveness resulting from improper maintenance. The model predicts very low ECD rates are possible if compliance rates are 80-90%, filter log reduction efficiency is 3 or greater and there are minimal long-term compliance declines. Cleaning filters at least once every 4 months makes it more likely to achieve very low ECD rates as does the availability of replacement filters for purchase. These results help to understand the heterogeneity seen in previous intervention-control trials and reemphasize the need for researchers to accurately measure confounding variables and ensure that field trials are at least 2-3 years in duration. In summary, the CWF can be a highly effective tool in the fight against ECD, but every effort should be made by implementing agencies to ensure consistent use and maintenance. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mackay, Richard; Sammells, Anthony F.
2000-01-01
Ceramics of the composition: Ln.sub.x Sr.sub.2-x-y Ca.sub.y B.sub.z M.sub.2-z O.sub.5+.delta. where Ln is an element selected from the fblock lanthanide elements and yttrium or mixtures thereof; B is an element selected from Al, Ga, In or mixtures thereof; M is a d-block transition element of mixtures thereof; 0.01.ltoreq.x.ltoreq.1.0; 0.01.ltoreq.y.ltoreq.0.7; 0.01.ltoreq.z.ltoreq.1.0 and .delta. is a number that varies to maintain charge neutrality are provided. These ceramics are useful in ceramic membranes and exhibit high ionic conductivity, high chemical stability under catalytic membrane reactor conditions and low coefficients of expansion. The materials of the invention are particularly useful in producing synthesis gas.
Ceramic filtration has recently been identified as a promising technology for drinking water treatment in households and small communities. This paper summarizes the results of a pilot-scale study conducted at the U.S. Environmental Protection Agency’s (EPA’s) Test & Evaluation ...
Spatial filters for high average power lasers
Erlandson, Alvin C
2012-11-27
A spatial filter includes a first filter element and a second filter element overlapping with the first filter element. The first filter element includes a first pair of cylindrical lenses separated by a first distance. Each of the first pair of cylindrical lenses has a first focal length. The first filter element also includes a first slit filter positioned between the first pair of cylindrical lenses. The second filter element includes a second pair of cylindrical lenses separated by a second distance. Each of the second pair of cylindrical lenses has a second focal length. The second filter element also includes a second slit filter positioned between the second pair of cylindrical lenses.
Spatial filters for high power lasers
Erlandson, Alvin Charles; Bayramian, Andrew James
2014-12-02
A spatial filter includes a first filter element and a second filter element overlapping with the first filter element. The first filter element includes a first pair of cylindrical lenses separated by a first distance. Each of the first pair of cylindrical lenses has a first focal length. The first filter element also includes a first longitudinal slit filter positioned between the first pair of cylindrical lenses. The second filter element includes a second pair of cylindrical lenses separated by a second distance. Each of the second pair of cylindrical lenses has a second focal length. The second filter element also includes a second longitudinal slit filter positioned between the second pair of cylindrical lenses.
NASA Astrophysics Data System (ADS)
Shahini, Shayan
Hot gas filtration has received growing attention in a variety of applications over the past few years. Yttria-stabilized zirconia (YSZ) is a promising candidate for such an application. In this study, we fabricated disk-type porous YSZ filters using the pore forming procedure, in which poly methyl methacrylate (PMMA) was used as the pore-forming agent. After fabricating the pellets, we characterized them to determine their potential for application as gas filters. We investigated the effect of sintering temperature, polymer particle size, and polymer-to-ceramic ratio on the porosity, pore size, gas permeability, and Vickers hardness of the sintered pellets. Furthermore, we designed two sets of experiments to investigate the robustness of the fabricated pellets--i.e., cyclic heating/cooling and high temperature exposure. This study ushers in a robust technique to fabricate such porous ceramics, which have the potential to be utilized in hot gas filtration.
Magnetic-field sensing coil embedded in ceramic for measuring ambient magnetic field
Takahashi, Hironori
2004-02-10
A magnetic pick-up coil for measuring magnetic field with high specific sensitivity, optionally with an electrostatic shield (24), having coupling elements (22) with high winding packing ratio, oriented in multiple directions, and embedded in ceramic material for structural support and electrical insulation. Elements of the coil are constructed from green ceramic sheets (200) and metallic ink deposited on surfaces and in via holes of the ceramic sheets. The ceramic sheets and the metallic ink are co-fired to create a monolithic hard ceramic body (20) with metallized traces embedded in, and placed on exterior surfaces of, the hard ceramic body. The compact and rugged coil can be used in a variety of environments, including hostile conditions involving ultra-high vacuum, high temperatures, nuclear and optical radiation, chemical reactions, and physically demanding surroundings, occurring either individually or in combinations.
NASA Astrophysics Data System (ADS)
Maruo, Shoji; Sugiyama, Kenji; Daicho, Yuya; Monri, Kensaku
2014-03-01
A three-dimensional (3-D) molding process using a master polymer mold produced by microstereolithography has been developed for the production of piezoelectric ceramic elements. In this method, ceramic slurry is injected into a 3-D polymer mold via a centrifugal casting process. The polymer master mold is thermally decomposed so that complex 3-D piezoelectric ceramic elements can be produced. As an example of 3-D piezoelectric ceramic elements, we produced a spiral piezoelectric element that can convert multidirectional loads into a voltage. It was confirmed that a prototype of the spiral piezoelectric element could generate a voltage by applying a load in both parallel and lateral directions in relation to the helical axis. The power output of 123 pW was obtained by applying the maximum load of 2.8N at 2 Hz along the helical axis. In addition, to improve the performance of power generation, we utilized a two-step sintering process to obtain dense piezoelectric elements. As a result, we obtained a sintering body with relative density of 92.8%. Piezoelectric constant d31 of the sintered body attained to -40.0 pC/N. Furthermore we analyzed the open-circuit voltage of the spiral piezoelectric element using COMSOL multiphysics. As a result, it was found that use of patterned electrodes according to the surface potential distribution of the spiral piezoelectric element had a potential to provide high output voltage that was 20 times larger than that of uniform electrodes.
Compact planar microwave blocking filters
NASA Technical Reports Server (NTRS)
U-Yen, Kongpop (Inventor); Wollack, Edward J. (Inventor)
2012-01-01
A compact planar microwave blocking filter includes a dielectric substrate and a plurality of filter unit elements disposed on the substrate. The filter unit elements are interconnected in a symmetrical series cascade with filter unit elements being organized in the series based on physical size. In the filter, a first filter unit element of the plurality of filter unit elements includes a low impedance open-ended line configured to reduce the shunt capacitance of the filter.
Catalytic thermal barrier coatings
Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh
2009-06-02
A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.
Bean, R.W.
1963-11-19
A ceramic fuel element for a nuclear reactor that has improved structural stability as well as improved cooling and fission product retention characteristics is presented. The fuel element includes a plurality of stacked hollow ceramic moderator blocks arranged along a tubular raetallic shroud that encloses a series of axially apertured moderator cylinders spaced inwardly of the shroud. A plurality of ceramic nuclear fuel rods are arranged in the annular space between the shroud and cylinders of moderator and appropriate support means and means for directing gas coolant through the annular space are also provided. (AEC)
Computing Reliabilities Of Ceramic Components Subject To Fracture
NASA Technical Reports Server (NTRS)
Nemeth, N. N.; Gyekenyesi, J. P.; Manderscheid, J. M.
1992-01-01
CARES calculates fast-fracture reliability or failure probability of macroscopically isotropic ceramic components. Program uses results from commercial structural-analysis program (MSC/NASTRAN or ANSYS) to evaluate reliability of component in presence of inherent surface- and/or volume-type flaws. Computes measure of reliability by use of finite-element mathematical model applicable to multiple materials in sense model made function of statistical characterizations of many ceramic materials. Reliability analysis uses element stress, temperature, area, and volume outputs, obtained from two-dimensional shell and three-dimensional solid isoparametric or axisymmetric finite elements. Written in FORTRAN 77.
An optical method for characterizing carbon content in ceramic pot filters.
Goodwin, J Y; Elmore, A C; Salvinelli, C; Reidmeyer, Mary R
2017-08-01
Ceramic pot filter (CPF) technology is a relatively common means of household water treatment in developing areas, and performance characteristics of CPFs have been characterized using production CPFs, experimental CPFs fabricated in research laboratories, and ceramic disks intended to be CPF surrogates. There is evidence that CPF manufacturers do not always fire their products according to best practices and the result is incomplete combustion of the pore forming material and the creation of a carbon core in the final CPFs. Researchers seldom acknowledge the existence of potential existence of carbon cores, and at least one CPF producer has postulated that the carbon may be beneficial in terms of final water quality because of the presence of activated carbon in consumer filters marketed in the Western world. An initial step in characterizing the presence and impact of carbon cores is the characterization of those cores. An optical method which may be more viable to producers relative to off-site laboratory analysis of carbon content has been developed and verified. The use of the optical method is demonstrated via preliminary disinfection and flowrate studies, and the results of these studies indicate that the method may be of use in studying production kiln operation.
Ceramic component reliability with the restructured NASA/CARES computer program
NASA Technical Reports Server (NTRS)
Powers, Lynn M.; Starlinger, Alois; Gyekenyesi, John P.
1992-01-01
The Ceramics Analysis and Reliability Evaluation of Structures (CARES) integrated design program on statistical fast fracture reliability and monolithic ceramic components is enhanced to include the use of a neutral data base, two-dimensional modeling, and variable problem size. The data base allows for the efficient transfer of element stresses, temperatures, and volumes/areas from the finite element output to the reliability analysis program. Elements are divided to insure a direct correspondence between the subelements and the Gaussian integration points. Two-dimensional modeling is accomplished by assessing the volume flaw reliability with shell elements. To demonstrate the improvements in the algorithm, example problems are selected from a round-robin conducted by WELFEP (WEakest Link failure probability prediction by Finite Element Postprocessors).
Salvinelli, Carlo; Elmore, A Curt; Reidmeyer, Mary R; Drake, K David; Ahmad, Khaldoun I
2016-11-01
Ceramic pot filters represent a common and effective household water treatment technology in developing countries, but factors impacting water production rate are not well-known. Turbidity of source water may be principal indicator in characterizing the filter's lifetime in terms of water production capacity. A flow rate study was conducted by creating four controlled scenarios with different turbidities, and influent and effluent water samples were tested for total suspended solids and particle size distribution. A relationship between average flow rate and turbidity was identified with a negative linear trend of 50 mLh -1 /NTU. Also, a positive linear relationship was found between the initial flow rate of the filters and average flow rate calculated over the 23 day life of the experiment. Therefore, it was possible to establish a method to estimate the average flow rate given the initial flow rate and the turbidity in the influent water source, and to back calculate the maximum average turbidity that would need to be maintained in order to achieve a specific average flow rate. However, long-term investigations should be conducted to assess how these relationships change over the expected CPF lifetime. CPFs rejected fine suspended particles (below 75 μm), especially particles with diameters between 0.375 μm and 10 μm. The results confirmed that ceramic pot filters are able to effectively reduce turbidity, but pretreatment of influent water should be performed to avoid premature failure. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Stremtan, Ciprian; Ashkanani, Hasan; Tykot, Robert H.
2013-04-01
The study of bi-phase (i.e. matrix and clasts) geochemical composition of ceramic artifacts is a very powerful tool in fingerprinting the raw materials used by ancient manufacturers (clay sources, tempering materials, coloring agents, etc.), as well as in understanding the physical parameters of the manufacturing techniques. Reliable datasets often require the deployment of destructive techniques that will irremediably damage the artifact. Recent advances in portable X-ray fluorescence instrumentation (pXRF) allow for quick measurements of a range of chemical elements that not too long ago were available only through complicated and often destructive means of analytical chemistry (instrumental neutron activation analysis - INAA, inductively coupled plasma mass spectrometry - ICP-MS, direct coupled plasma-optical emission spectroscopy - DCP-OES etc.). In this contribution we present a comparison of datasets acquired by means of pXRF, DCP-OES, and ICP-MS on Bronze Age ceramics from Failaka Island (Kuwait) and Bahrain. The samples chosen for this study are fine grained, with very well sorted mineral components, and lack any visible organic material fragments. The sample preparation for ICP-MS and DCP-OES analyses was carried out on powdered samples, by using LiBO2 flux fusion and Ge (for the DCP-OES) and In (for ICP-MS) were used as internal standards. The measurements were calibrated against certified reference materials ranging from shales to rhyolites (SGR-1, SDo-1, JA-2, and JR-1) and performed at Univerity of South Florida's Center for Geochemical Analyses. The analytical errors for major elements was smaller than 5 %, while for selected trace elements the error was usually smaller than 3 %. The same set of elements was measured on the same samples at University of South Florida's Anthropology Department using a pXRF device equipped with obsidian filter. Each sample was measured three times and the values were averaged. Two certified reference materials (NIST-612 glass and MACS-3 pressed powder) were also measured to check for accuracy and precision. Our preliminary data shows that most of the major and trace elemental data acquired by both methods are consistent. Some transition metals (e.g. Y, Fe, and Mn) yielded overall lower values when measured with pXRF device (ranging from 27 to 60 % difference), while Ni and Ba showed systematically higher values (20 to 53 %). If samples are chosen properly for pXRF measurements (i.e. thoroughly cleaned, fine grained, well sorted) and the device is properly calibrated, the results are comparable with DCP-OES and ICP-MS data, thus being suitable to use for geochemical fingerprinting
Optimization of Adenovirus 40 and 41 Recovery from Tap Water
Currently, the U.S. Environmental Protection Agency’s Information Collection Rule (ICR) for the primary concentration of viruses from drinking and surface waters uses the 1MDS filter; however, a more cost effective option, the NanoCeram® filter, has been shown to recover comparab...
FOREWORD: Focus on Advanced Ceramics Focus on Advanced Ceramics
NASA Astrophysics Data System (ADS)
Ohashi, Naoki
2011-06-01
Much research has been devoted recently to developing technologies for renewable energy and improving the efficiency of the processes and devices used in industry and everyday life. Efficient solutions have been found using novel materials such as platinum and palladium-based catalysts for car exhaust systems, samarium-cobalt and neodymium-iron-boron permanent magnets for electrical motors, and so on. However, their realization has resulted in an increasing demand for rare elements and in their deficit, the development of new materials based on more abundant elements and new functionalities of traditional materials. Moreover, increasing environmental and health concerns demand substitution of toxic or hazardous substances with nature-friendly alternatives. In this context, this focus issue on advanced ceramics aims to review current trends in ceramics science and technology. It is related to the International Conference on Science and Technology of Advanced Ceramics (STAC) held annually to discuss the emerging issues in the field of ceramics. An important direction of ceramic science is the collaboration between experimental and theoretical sciences. Recent developments in density functional theory and computer technology have enabled the prediction of physical and chemical properties of ceramics, thereby assisting the design of new materials. Therefore, this focus issue includes articles devoted to theory and advanced characterization techniques. As mentioned above, the potential shortage of rare elements is becoming critical to the industry and has resulted in a Japanese government initiative called the 'Ubiquitous Element Strategy'. This focus issue also includes articles related to this strategy and to the associated topics of energy conversion, such as phosphors for high-efficiency lighting and photocatalysts for solar-energy harvesting. We hope that this focus issue will provide a timely overview of current trends and problems in ceramics science and technology and promote new research and development in this field.
Lu, Xiao-li; Gao, Mei-qin; Cheng, Yu-ye; Zhang, Fei-min
2015-04-01
In order to choose the best veneering porcelain for diatomite-based dental ceramic substrate, the bonding strength between diatomite-based dental ceramics and veneering porcelains was measured, and the microstructure and elements distribution of interface were analyzed. The coefficient of thermal expansion (CTE) of diatomite-based dental ceramics was detected by dilatometry. Three veneering porcelain materials were selected with the best CTE matching including alumina veneering porcelain (group A), titanium porcelain veneering porcelain (group B), and E-max veneering porcelain (group C). Shear bonding strength was detected. SEM and EDS were used to observe the interface microstructure and element distribution. Statistical analysis was performed using SPSS 17.0 software package. The CTE of diatomite-based dental ceramics at 25-500 degrees centigrade was 8.85×10-6K-1. The diatomite-based substrate ceramics combined best with group C. Shear bonding strength between group A and C and group B and C both showed significant differences(P<0.05). SEM and EDS showed that the interface of group C sintered tightly and elements permeated on both sides of the interface. The diatomite-based substrate ceramics combines better with E-max porcelain veneer.
Nanofiber Filters Eliminate Contaminants
NASA Technical Reports Server (NTRS)
2009-01-01
With support from Phase I and II SBIR funding from Johnson Space Center, Argonide Corporation of Sanford, Florida tested and developed its proprietary nanofiber water filter media. Capable of removing more than 99.99 percent of dangerous particles like bacteria, viruses, and parasites, the media was incorporated into the company's commercial NanoCeram water filter, an inductee into the Space Foundation's Space Technology Hall of Fame. In addition to its drinking water filters, Argonide now produces large-scale nanofiber filters used as part of the reverse osmosis process for industrial water purification.
Investigation of the High Mobility IGZO Thin Films by Using Co-Sputtering Method
Hsu, Chao-Ming; Tzou, Wen-Cheng; Yang, Cheng-Fu; Liou, Yu-Jhen
2015-01-01
High transmittance ratio in visible range, low resistivity, and high mobility of IGZO thin films were prepared at room temperature for 30 min by co-sputtering of Zn2Ga2O5 (Ga2O3 + 2 ZnO, GZO) ceramic and In2O3 ceramic at the same time. The deposition power of pure In2O3 ceramic target was fixed at 100 W and the deposition power of GZO ceramic target was changed from 80 W to 140 W. We chose to investigate the deposition power of GZO ceramic target on the properties of IGZO thin films. From the SEM observations, all of the deposited IGZO thin films showed a very smooth and featureless surface. From the measurements of XRD patterns, only the amorphous structure was observed. We aimed to show that the deposition power of GZO ceramic target had large effect on the Eg values, Hall mobility, carrier concentration, and resistivity of IGZO thin films. Secondary ion mass spectrometry (SIMS) analysis in the thicknesses’ profile of IGZO thin films found that In and Ga elements were uniform distribution and Zn element were non-uniform distribution. The SIMS analysis results also showed the concentrations of Ga and Zn elements increased and the concentrations of In element was almost unchanged with increasing deposition power.
Freeze Tape Casting of Functionally Graded Porous Ceramics
NASA Technical Reports Server (NTRS)
Sofie, Stephen W.
2007-01-01
Freeze tape casting is a means of making preforms of ceramic sheets that, upon subsequent completion of fabrication processing, can have anisotropic and/or functionally graded properties that notably include aligned and graded porosity. Freeze tape casting was developed to enable optimization of the microstructures of porous ceramic components for use as solid oxide electrodes in fuel cells: Through alignment and grading of pores, one can tailor surface areas and diffusion channels for flows of gas and liquid species involved in fuel-cell reactions. Freeze tape casting offers similar benefits for fabrication of optimally porous ceramics for use as catalysts, gas sensors, and filters.
Miniaturized LTCC elliptic-function lowpass filters with side stopbands
Hsieh, Lung -Hwa; Dai, Steve Xunhu
2015-05-28
A compact, high-selectivity, and wide stopband lowpass filter is highly demanded in wireless communication systems to suppress adjacent harmonics and unwanted signals. In this letter, a new miniaturized lowpass filter with elliptic-function frequency response is introduced. The filter is fabricated in multilayer low temperature cofired ceramics. The size of the miniaturized filter is 5.5 × 3.9 × 1.72 mm3. As a result, the measured insertion loss of the filter is better than 0.37 dB from DC to 1.28 GHz and the measured stopband of the filter is great than 22 dB from 2.3 to 7.5 GHz.
Assessment of a membrane drinking water filter in an emergency setting.
Ensink, Jeroen H J; Bastable, Andy; Cairncross, Sandy
2015-06-01
The performance and acceptability of the Nerox(TM) membrane drinking water filter were evaluated among an internally displaced population in Pakistan. The membrane filter and a control ceramic candle filter were distributed to over 3,000 households. Following a 6-month period, 230 households were visited and filter performance and use were assessed. Only 6% of the visited households still had a functioning filter, and the removal performance ranged from 80 to 93%. High turbidity in source water (irrigation canals), together with high temperatures and large family size were likely to have contributed to poor performance and uptake of the filters.
Oza, Goldie; Pandey, Sunil; Gupta, Arvind; Shinde, Sachin; Mewada, Ashmi; Jagadale, Pravin; Sharon, Maheshwar; Sharon, Madhuri
2013-10-01
A porous ceramic was coated with vertically aligned multi-walled carbon nanotubes (MWCNTs) by spray pyrolysis. Titanium dioxide (TiO2) nanoparticles were then coated onto this densely aligned MWCNT. The presence of TiO2/MWCNT interfacial arrays was confirmed by X-ray diffraction (XRD), scanning electron microscope-energy dispersive analysis of X-ray (SEM-EDAX) and transmission electron microscope (TEM). This is a novel report in which water loaded with a most dreadful enterohemorrhagic pathogenic strain of Escherichia coli O157:H7 was filtered through TiO2/MWCNT coated porous ceramic filter and then analysed. Bacterial removal performance was found to be significantly lower in control i.e. plain porous ceramic (P<0.05) as compared to TiO2/MWCNT coated ceramic. The photocatalytic killing rate constant for TiO2-ceramic and MWCNT/TiO2-ceramic under fluorescent light was found be 1.45×10(-2) min(-1) and 2.23×10(-2) min(-1) respectively. Further, when I-V characteristics were performed for TiO2/MWCNT composite, it was corroborated that the current under light irradiation is comparatively higher than that in dark, thus proving it to be photocatalytically efficient system. The enhanced photocatalysis may be a contribution of increased surface area and charge transfer rate as a consequence of aligned MWCNT network. © 2013 Elsevier B.V. All rights reserved.
Brown, Erik P.
2015-05-19
An anti-clogging filter system for filtering a fluid containing large particles and small particles includes an enclosure with at least one individual elongated tubular filter element in the enclosure. The individual elongated tubular filter element has an internal passage, a closed end, an open end, and a filtering material in or on the individual elongated tubular filter element. The fluid travels through the open end of the elongated tubular element and through the internal passage and through the filtering material. An anti-clogging element is positioned on or adjacent the individual elongated tubular filter element and provides a fluid curtain that preferentially directs the larger particulates to one area of the filter material allowing the remainder of the filter material to remain more efficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Erik P.
An anti-clogging filter system for filtering a fluid containing large particles and small particles includes an enclosure with at least one individual elongated tubular filter element in the enclosure. The individual elongated tubular filter element has an internal passage, a closed end, an open end, and a filtering material in or on the individual elongated tubular filter element. The fluid travels through the open end of the elongated tubular element and through the internal passage and through the filtering material. An anti-clogging element is positioned on or adjacent the individual elongated tubular filter element and provides a fluid curtain thatmore » preferentially directs the larger particulates to one area of the filter material allowing the remainder of the filter material to remain more efficient.« less
Richardson, G Mark; James, Kyle Jordan; Peters, Rachel Elizabeth; Clemow, Scott Richard; Siciliano, Steven Douglas
2016-01-01
Using data from the 2001 to 2004 US National Health and Nutrition Examination Survey (NHANES) on the number and placement of tooth restorations in adults, we quantified daily doses due to leaching of elements from gold (Au) alloy and ceramic restorative materials. The elements with the greatest leaching rates from these materials are often the elements of lowest proportional composition. As a result, exposure due to wear will predominate for those elements of relatively high proportional composition, while exposure due leaching may predominate for elements of relatively low proportional composition. The exposure due to leaching of silver (Ag) and palladium (Pd) from Au alloys exceeded published reference exposure levels (RELs) for these elements when multiple full surface crowns were present. Six or more molar crowns would result in exceeding the REL for Ag, whereas three or more crowns would be necessary to exceed the REL for Pd. For platinum (Pt), the majority of tooth surfaces, beyond just molar crowns, would be necessary to exceed the REL for Pd. Exposures due to leaching of elements from ceramic dental materials were less than published RELs for all components examined here, including having all restorations composed of ceramic.
NASA Astrophysics Data System (ADS)
Kim, Dae-Young; Hwang, Il-Soon; Lee, Jong-Hyeon
2016-09-01
Pyroprocessing has shown promise as an alternative to wet processing for the recycling of transuranics with a high proliferation resistance. However, a critical issue for pyroprocessing is the ceramic crucibles used in the electrowinning process. These ceramic crucibles are frequently damaged by thermal stress, which results in significant volumes of crucible waste that must be properly disposed. Transuranic waste (TRU) elements intrude throughout the pores of a damaged crucible. The volume of generated radioactive waste is a concern when dealing with nuclear power plants and decontamination issues. In this study, laser treatment and sintering were performed on the crucibles to minimize the TRU elements trapped within. Secondary ion mass spectroscopy was used to measure the intrusion depth of Li in the surface-treated ceramics.
Virus removal efficiency of Cambodian ceramic pot water purifiers.
Salsali, Hamidreza; McBean, Edward; Brunsting, Joseph
2011-06-01
Virus removal efficiency is described for three types of silver-impregnated, ceramic water filters (CWFs) produced in Cambodia. The tests were completed using freshly scrubbed filters and de-ionized (DI) water as an evaluation of the removal efficiency of the virus in isolation with no other interacting water quality variables. Removal efficiencies between 0.21 and 0.45 log are evidenced, which is significantly lower than results obtained in testing of similar filters by other investigators utilizing surface or rain water and a less frequent cleaning regime. Other experiments generally found virus removal efficiencies greater than 1.0 log. This difference may be because of the association of viruses with suspended solids, and subsequent removal of these solids during filtration. Variability in virus removal efficiencies between pots of the same manufacturer, and observed flow rates outside the manufacturer's specifications, suggest tighter quality control and consistency may be needed during production.
Yao, Yuan; Li, Gonghu; Gray, Kimberly A; Lueptow, Richard M
2008-07-15
We report that SWCNTs substantially improve the uniformity and coverage of TiO2 coatings on porous ZrO2 ceramic membrane filters. The ZrO2 filters were dip coated with 100 nm anatase TiO2, TiO2/SWCNT composites, a TiO2+SWCNT mixture, and a TiO2/MWCNT composite at pH 3, 5, and 8. Whereas the TiO2+SWCNT mixture and the TiO2/MWCNT composite promote better coverage and less clumping than TiO2 alone, the TiO2/SWCNT composite forms a complete uniform coating without cracking at pH 5 ( approximately 100% coverage). A combination of chemical and electrostatic effects between TiO2 and SWCNTs forming the composite as well as between the composite and the ZrO2 surface explains these observations.
Clasen, Thomas; Garcia Parra, Gloria; Boisson, Sophie; Collin, Simon
2005-10-01
Household water treatment is increasingly recognized as an effective means of reducing the burden of diarrheal disease among low-income populations without access to safe water. Oxfam GB undertook a pilot project to explore the use of household-based ceramic water filters in three remote communities in Colombia. In a randomized, controlled trial over a period of six months, the filters were associated with a 75.3% reduction in arithmetic mean thermotolerant coliforms (TTCs) (P < 0.0001). A total of 47.7% and 24.2% of the samples from the intervention group had no detectible TTCs/100 mL or conformed to World Health Organization limits for low risk (1-10 TTCs/100 mL), respectively, compared with 0.9% and 7.3% for control group samples. Overall, prevalence of diarrhea was 60% less among households using filters than among control households (odds ratio = 0.40, 95% confidence interval = 0.25, 0.63, P < 0.0001). However, the microbiologic performance and protective effect of the filters was not uniform throughout the study communities, suggesting the need to consider the circumstances of the particular setting before implementing this intervention.
Preliminary analysis on the water quality index (WQI) of irradiated basic filter elements
NASA Astrophysics Data System (ADS)
Arif Abu Bakar, Asyraf; Muhamad Pauzi, Anas; Aziz Mohamed, Abdul; Syima Sharifuddin, Syazrin; Mohamad Idris, Faridah
2018-01-01
Simple water filtration system is needed in times of extreme floods. Clean water for sanitation at evacuation centres is essential and its production is possible by using the famous simple filtration system consisting of empty bottle and filter elements (sands, gravels, cotton/coffee filter). This research intends to study the effects of irradiated filter elements on the filtration effectiveness through experiments. The filter elements will be irradiated with gamma and neutron radiation using the facilities available at Malaysia Nuclear Agency. The filtration effectiveness is measured using the water quality index (WQI) that is developed in this study to reflect the quality of filtered water. The WQI of the filtered water using the system with irradiated filter elements is then compared with that of the system with non-irradiated filter elements. This preliminary analysis only focus on filtration element of silica sand. Results shows very nominal variation in in WQI after filtered by non-irradiated, gamma and neutron filter element (silica sand), where the hypothesis could not be affirmed.
Thermal compatibility of dental ceramic systems using cylindrical and spherical geometries.
DeHoff, Paul H; Barrett, Allyson A; Lee, Robert B; Anusavice, Kenneth J
2008-06-01
To test the hypothesis that bilayer ceramic cylinders and spheres can provide valid confirmation of thermal incompatibility stresses predicted by finite element analyses. A commercial core ceramic and an experimental core ceramic were used to fabricate open-ended cylinders and core ceramic spheres. The core cylinders and spheres were veneered with one of four commercial dental ceramics representing four thermally compatible groups and four thermally incompatible groups. Axisymmetric thermal and viscoelastic elements in the ANSYS finite element program were used to calculate temperatures and stresses for each geometry and ceramic combination. This process required a transient heat transfer analysis for each combination to determine input temperatures for the structural model. After fabrication, each specimen was examined visually using fiberoptic transillumination for evidence of cracking. There were 100% failures of the thermally incompatible cylinders while none of the thermally compatible combinations failed. Among the spheres, 100% of the thermally incompatible systems failed, 16% of one of the thermally compatible systems failed, and none of the remaining compatible combinations failed. The calculated stress values were in general agreement with the experimental observations, i.e., low residual stresses for the specimens that did not fail and high residual stresses for the specimens that did fail. Simple screening geometries can be used to identify highly incompatible ceramic combinations, but they do not identify marginally incompatible systems.
Thermal compatibility of dental ceramic systems using cylindrical and spherical geometries
DeHoff, Paul H.; Barrett, Allyson A.; Lee, Robert B.; Anusavice, Kenneth J.
2009-01-01
Objective To test the hypothesis that bilayer ceramic cylinders and spheres can provide valid confirmation of thermal incompatibility stresses predicted by finite element analyses. Methods A commercial core ceramic and an experimental core ceramic were used to fabricate open-ended cylinders and core ceramic spheres. The core cylinders and spheres were veneered with one of four commercial dental ceramics representing four thermally compatible groups and four thermally incompatible groups. Axisymmetric thermal and viscoelastic elements in the ANSYS finite element program were used to calculate temperatures and stresses for each geometry and ceramic combination. This process required a transient heat transfer analysis for each combination to determine input temperatures for the structural model. Results After fabrication, each specimen was examined visually using fiberoptic transillumination for evidence of cracking. There were 100% failures of the thermally incompatible cylinders while none of the thermally compatible combinations failed. Among the spheres, 100% of the thermally incompatible systems failed, 16% of one of the thermally compatible systems failed, and none of the remaining compatible combinations failed. The calculated stress values were in general agreement with the experimental observations, i.e., low residual stresses for the specimens that did not fail and high residual stresses for the specimens that did fail. Significance Simple screening geometries can be used to identify highly incompatible ceramic combinations, but they do not identify marginally incompatible systems. PMID:17949805
NASA Astrophysics Data System (ADS)
Masturi; Widodo, R. D.; Edie, S. S.; Amri, U.; Sidiq, A. L.; Alighiri, D.; Wulandari, N. A.; Susilawati; Amanah, S. N.
2018-03-01
Problem of pollution in water continues in Indonesia, with its manufacturing sector as biggest contributor to economic growth. One out of many technological solutions is post-treating industrial wastewater by membrane filtering technology. We presented a result of our fabrication of ceramic membrane made from zeolite with simple mixing and he. At 5% of (poring agent):(total weight), its permeability stays around 2.8 mD (10‑14m2) with slight variance around it, attributed to the mixture being in far below percolating threshold. All our membranes achieve remarkable above 90% rejection rate of methylene blue as solute waste in water solvent.
Electrochemical ion separation in molten salts
Spoerke, Erik David; Ihlefeld, Jon; Waldrip, Karen; Wheeler, Jill S.; Brown-Shaklee, Harlan James; Small, Leo J.; Wheeler, David R.
2017-12-19
A purification method that uses ion-selective ceramics to electrochemically filter waste products from a molten salt. The electrochemical method uses ion-conducting ceramics that are selective for the molten salt cations desired in the final purified melt, and selective against any contaminant ions. The method can be integrated into a slightly modified version of the electrochemical framework currently used in pyroprocessing of nuclear wastes.
Development of BEM for ceramic composites
NASA Technical Reports Server (NTRS)
Henry, D. P.; Banerjee, P. K.; Dargush, G. F.
1990-01-01
Details on the progress made during the first three years of a five-year program towards the development of a boundary element code are presented. This code was designed for the micromechanical studies of advance ceramic composites. Additional effort was made in generalizing the implementation to allow the program to be applicable to real problems in the aerospace industry. The ceramic composite formulations developed were implemented in the three-dimensional boundary element computer code BEST3D. BEST3D was adopted as the base for the ceramic composite program, so that many of the enhanced features of this general purpose boundary element code could by utilized. Some of these facilities include sophisticated numerical integration, the capability of local definition of boundary conditions, and the use of quadratic shape functions for modeling geometry and field variables on the boundary. The multi-region implementation permits a body to be modeled in substructural parts; thus dramatically reducing the cost of the analysis. Furthermore, it allows a body consisting of regions of different ceramic matrices and inserts to be studied.
High temperature ceramic composition for hydrogen retention
Webb, R.W.
1974-01-01
A ceramic coating for H retention in fuel elements is described. The coating has relatively low thermal neutron cross section, is not readily reduced by H at 1500 deg F, is adherent to the fuel element base metal, and is stable at reactor operating temperatures. (JRD)
Ferroelectric ceramics in a pyroelectric accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shchagin, A. V., E-mail: shchagin@kipt.kharkov.ua; Belgorod State University, Belgorod 308015; Miroshnik, V. S.
2015-12-07
The applicability of polarized ferroelectric ceramics as a pyroelectric in a pyroelectric accelerator is shown by experiments. The spectra of X-ray radiation of energy up to tens of keV, generated by accelerated electrons, have been measured on heating and cooling of the ceramics in vacuum. It is suggested that curved layers of polarized ferroelectric ceramics be used as elements of ceramic pyroelectric accelerators. Besides, nanotubes and nanowires manufactured from ferroelectric ceramics are proposed for the use in nanometer-scale ceramic pyroelectric nanoaccelerators for future applications in nanotechnologies.
Removal of virus to protozoan sized particles in point-of-use ceramic water filters.
Bielefeldt, Angela R; Kowalski, Kate; Schilling, Cherylynn; Schreier, Simon; Kohler, Amanda; Scott Summers, R
2010-03-01
The particle removal performance of point-of-use ceramic water filters (CWFs) was characterized in the size range of 0.02-100 microm using carboxylate-coated polystyrene fluorescent microspheres, natural particles and clay. Particles were spiked into dechlorinated tap water, and three successive water batches treated in each of six different CWFs. Particle removal generally increased with increasing size. The removal of virus-sized 0.02 and 0.1 microm spheres were highly variable between the six filters, ranging from 63 to 99.6%. For the 0.5 microm spheres removal was less variable and in the range of 95.1-99.6%, while for the 1, 2, 4.5, and 10 microm spheres removal was >99.6%. Recoating four of the CWFs with colloidal silver solution improved removal of the 0.02 microm spheres, but had no significant effects on the other particle sizes. Log removals of 1.8-3.2 were found for natural turbidity and spiked kaolin clay particles; however, particles as large as 95 microm were detected in filtered water. Copyright 2009 Elsevier Ltd. All rights reserved.
Zhao, Yaqin; Yue, Qinyan; Li, Renbo; Yue, Min; Han, Shuxin; Gao, Baoyu; Li, Qian; Yu, Hui
2009-11-01
Sludge-fly ash ceramic particles (SFCP) and clay ceramic particles (CCP) were employed in two lab-scale up-flow biological aerated filters (BAF) for wastewater treatment to investigate the availability of SFCP used as biofilm support compared with CCP. For synthetic wastewater, under the selected hydraulic retention times (HRT) of 1.5, 0.75 and 0.37 h, respectively, the removal efficiencies of chemical oxygen demand (COD(Cr)) and ammonium nitrogen (NH(4)(+)-N) in SFCP reactor were all higher than those of CCP reactor all through the media height. Moreover, better capabilities responding to loading shock and faster recovery after short intermittence were observed in the SFCP reactor compared with the CCP reactor. For municipal wastewater treatment, which was carried out under HRT of 0.75 h, air-liquid ratio of 7.5 and backwashing period of 48 h, the SFCP reactor also performed better than the CCP reactor, especially for the removal of NH(4)(+)-N.
Qiu, Liping; Zhang, Shoubin; Wang, Guangwei; Du, Mao'an
2010-10-01
The performance and nitrification properties of three BAFs, with ceramic, zeolite and carbonate media, respectively, were investigated to evaluate the feasibility of employing these materials as biological aerated filter media. All three BAFs shown a promising COD and SS removal performance, while influent pH was 6.5-8.1, air-liquid ratio was 5:1 and HRT was 1.25-2.5 h, respectively. Ammonia removal in BAFs was inhibited when organic and ammonia nitrogen loading were increased, but promoted effectively with the increase pH value. Zeolite and carbonate were more suitable for nitrification than ceramic particle when influent pH below 6.5. It is feasible to employ these media in BAF and adequate bed volume has to be supplied to satisfy the requirement of removal COD, SS and ammonia nitrogen simultaneously in a biofilter. The carbonate with a strong buffer capacity is more suitable to treat the wastewater with variable or lower pH. Copyright 2010 Elsevier Ltd. All rights reserved.
New functionalities in abundant element oxides: ubiquitous element strategy
Hosono, Hideo; Hayashi, Katsuro; Kamiya, Toshio; Atou, Toshiyuki; Susaki, Tomofumi
2011-01-01
While most ceramics are composed of ubiquitous elements (the ten most abundant elements within the Earth's crust), many advanced materials are based on rare elements. A ‘rare-element crisis’ is approaching owing to the imbalance between the limited supply of rare elements and the increasing demand. Therefore, we propose a ‘ubiquitous element strategy’ for materials research, which aims to apply abundant elements in a variety of innovative applications. Creation of innovative oxide materials and devices based on conventional ceramics is one specific challenge. This review describes the concept of ubiquitous element strategy and gives some highlights of our recent research on the synthesis of electronic, thermionic and structural materials using ubiquitous elements. PMID:27877391
Grain-Size-Dependent Thermoelectric Properties of SrTiO3 3D Superlattice Ceramics
NASA Astrophysics Data System (ADS)
Zhang, Rui-zhi; Koumoto, Kunihito
2013-07-01
The thermoelectric (TE) performance of SrTiO3 (STO) 3D superlattice ceramics with 2D electron gas grain boundaries (GBs) was theoretically investigated. The grain size dependence of the power factor, lattice thermal conductivity, and ZT value were calculated by using Boltzmann transport equations. It was found that nanostructured STO ceramics with smaller grain size have larger ZT value. This is because the quantum confinement effect, energy filtering effect, and interfacial phonon scattering at GBs all become stronger with decreasing grain size, resulting in higher power factor and lower lattice thermal conductivity. These findings will aid the design of nanostructured oxide ceramics with high TE performance.
Monolithic prestressed ceramic devices and method for making same
NASA Technical Reports Server (NTRS)
Haertling, Gene H. (Inventor)
1996-01-01
Monolithic, internally asymmetrically stress biased electrically active ceramic devices and a method for making same is disclosed. The first step in the method of the present invention is to fabricate a ceramic element having first and second opposing surfaces. Next, only the first surface is chemically reduced by heat treatment in a reducing atmosphere. This produces a concave shaped, internally asymmetrically stress biased ceramic element and an electrically conducting, chemically reduced layer on the first surface which serves as one of the electrodes of the device. Another electrode can be deposited on the second surface to complete the device. In another embodiment of the present invention two dome shaped ceramic devices can be placed together to form a completed clamshell structure or an accordion type structure. In a further embodiment, the clamshell or accordion type structures can be placed on top of one another. In another embodiment, a pair of dome shaped ceramic devices having opposing temperature characteristics can be placed on top of each other to produce an athermalized ceramic device.
Brosnan, Kristen H; Messing, Gary L; Markley, Douglas C; Meyer, Richard J
2009-11-01
Tonpilz transducers are fabricated from 001 fiber-textured 0.72Pb(Mg(1/3)Nb(2/3))O(3)-0.28PbTiO(3) (PMN-28PT) ceramics, obtained by the templated grain growth process, and PMN-28PT ceramic and Bridgman grown single crystals of the same composition. In-water characterization of single element transducers shows higher source levels, higher in-water coupling, and more usable bandwidth for the 81 vol % textured PMN-28PT device than for the ceramic PMN-28PT element. The 81 vol % textured PMN-28PT tonpilz element measured under large signals shows linearity in sound pressure levels up to 0.23 MV/m drive field but undergoes a phase transition due to a lowered transition temperature from the SrTiO(3) template particles. Although the textured ceramic performs well in this application, it could be further improved with compositional tailoring to raise the transition temperature and better processing to improve the texture quality. With these improvements textured piezoelectric ceramics will be viable options for medical ultrasound, actuators, and sonar applications because of their ease of processing, compositional homogeneity, and potentially lower cost than single crystal.
Replacement of fluid-filter elements without interruption of flow
NASA Technical Reports Server (NTRS)
Kotler, R. A.; Ward, J. B.
1969-01-01
Gatling-type filter assembly, preloaded with several filter elements enables filter replacement without breaking into the operative fluid system. When the filter element becomes contaminated, a unit inner subassembly is rotated 60 degrees to position a clean filter in the line.
NASA Technical Reports Server (NTRS)
Jones, R. D.; Carpenter, Harry W.; Tellier, Jim; Rollins, Clark; Stormo, Jerry
1987-01-01
Abilities of ceramics to serve as turbine blades, stator vanes, and other elements in hot-gas flow of rocket engines discussed in report. Ceramics prime candidates, because of resistance to heat, low density, and tolerance of hostile environments. Ceramics considered in report are silicon nitride, silicon carbide, and new generation of such ceramic composites as transformation-toughened zirconia and alumina and particulate- or whisker-reinforced matrices. Report predicts properly designed ceramic components viable in advanced high-temperature rocket engines and recommends future work.
Remotely serviced filter and housing
Ross, M.J.; Zaladonis, L.A.
1987-07-22
A filter system for a hot cell comprises a housing adapted for input of air or other gas to be filtered, flow of the air through a filter element, and exit of filtered air. The housing is tapered at the top to make it easy to insert a filter cartridge holds the filter element while the air or other gas is passed through the filter element. Captive bolts in trunnion nuts are readily operated by electromechanical manipulators operating power wrenches to secure and release the filter cartridge. The filter cartridge is adapted to make it easy to change a filter element by using a master-slave manipulator at a shielded window station. 6 figs.
High-Temperature, Bellows Hybrid Seal
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Inventor); Sirocky, Paul J. (Inventor)
1994-01-01
A high-temperature hybrid seal is constructed of multiple elements to meet the many demands placed on the seal. The primary elements are: a central high-temperature bellows, a braided ceramic sheath covering the bellows, an outer abrasion resistant sheath covering the ceramic sheath, and a structurally-sound seal-end termination.
Remotely serviced filter and housing
Ross, Maurice J.; Zaladonis, Larry A.
1988-09-27
A filter system for a hot cell comprises a housing adapted for input of air or other gas to be filtered, flow of the air through a filter element, and exit of filtered air. The housing is tapered at the top to make it easy to insert a filter cartridge using an overhead crane. The filter cartridge holds the filter element while the air or other gas is passed through the filter element. Captive bolts in trunnion nuts are readily operated by electromechanical manipulators operating power wrenches to secure and release the filter cartridge. The filter cartridge is adapted to make it easy to change a filter element by using a master-slave manipulator at a shielded window station.
Innocentini, Murilo D M; Rodrigues, Vanessa P; Romano, Roberto C O; Pileggi, Rafael G; Silva, Gracinda M C; Coury, José R
2009-02-15
Porous ceramic samples were prepared from aqueous foam incorporated alumina suspension for application as hot aerosol filtering membrane. The procedure for establishment of membrane features required to maintain a desired flow condition was theoretically described and experimental work was designed to prepare ceramic membranes to meet the predicted criteria. Two best membranes, thus prepared, were selected for permeability tests up to 700 degrees C and their total and fractional collection efficiencies were experimentally evaluated. Reasonably good performance was achieved at room temperature, while at 700 degrees C, increased permeability was obtained with significant reduction in collection efficiency, which was explained by a combination of thermal expansion of the structure and changes in the gas properties.
Modified PZT ceramics as a material that can be used in micromechatronics
NASA Astrophysics Data System (ADS)
Zachariasz, Radosław; Bochenek, Dariusz
2015-11-01
Results on investigations of the PZT type ceramics with the following chemical composition: Pb0.94Sr0.06(Zr0.50 Ti0.50)0.99 Cr0.01O3 (PSZTC) which belongs to a group of multicomponent ceramic materials obtained on basis of the PZT type solid solution, are presented in this work. Ceramics PSZTC was obtained by a free sintering method under the following conditions: Tsint = 1250 °C and tsint = 2 h. Ceramic compacts of specimens for the sintering process were made from the ceramic mass consisting of a mixture of the synthesized PSZTC powder and 3% polyvinyl alcohol while wet. The PSZTC ceramic specimens were subjected to poling by two methods: low temperature and high temperature. On the basis of the examinations made it has been found that the ceramics obtained belongs to ferroelectric-hard materials and that is why it may be used to build resonators, filters and ultrasonic transducers. Contribution to the Topical Issue "Materials for Dielectric Applications" edited by Maciej Jaroszewski and Sabu Thomas.
EFFECTS OF OZONATION ON THE PERMEATE FLUX OF NANOCRYSTALLINE CERAMIC MEMBRANES. (R830908)
Titania membranes, with a molecular weight cut-off of 15 kD were used in an ozonation/membrane system that was fed with water from Lake Lansing, which had been pre-filtered through a 0.45 �m glass fiber filter. The application of ozone gas prior to filtration resulted in signi...
Yang, Lei; Ning, Xiaoshan; Xiao, Qunfang; Chen, Kexin; Zhou, Heping
2007-04-01
A novel filter material for separating and eliminating microorganisms in water and gas was fabricated by incorporating silver ions into porous hydroxyapatite (HA) ceramics prepared by a starch additive technique. The porous ceramics reveal a microstructure of both large and small pores. Microorganism separating and eliminating properties of the porous silver-incorporated HA ceramics (PHA-Ag) were investigated by bacterial and viral filtration tests. The PHA-Ag demonstrated excellent separating and antibacterial effects on Escherichia coli and the mechanisms were studied. Adsorption of bacterial cells to the HA and the barricading effect of small pores contribute to the separating property of PHA-Ag, while the Ag+ ions equip the ceramics with antibacterial property. Furthermore, the PHA-Ag exhibited an observable virus-eliminating property and its probable mechanism was also discussed. (c) 2006 Wiley Periodicals, Inc.
Fabrication and properties of radially <001>C textured PMN-PT cylinders for transducer applications
NASA Astrophysics Data System (ADS)
Poterala, Stephen F.; Meyer, Richard J.; Messing, Gary L.
2012-07-01
<001>C Textured PMN-PT ceramics have electromechanical properties (d33 = 850-1050 pm/V, k33 = 0.79-0.83) between those of conventional PZT ceramics and relaxor PMN-PT crystals. In this work, we tailor crystallographic orientation in textured PMN-PT ceramics for transducer designs with non-planar poling surfaces. Specifically, omni-directional cylindrical transducer elements were fabricated using monolithic, radially <001>C textured and poled PMN-PT ceramic. Texture was produced by templated grain growth using NBT-PT templates, which were oriented radially by wrapping green ceramic tapes around a cylindrical mandrel. Finished transducer elements measure ˜5 cm in diameter by ˜2.5 cm in height and demonstrate scalability of textured ceramic fabrication techniques. The fabricated cylinders are ˜50 vol. % textured and show high 31-mode electromechanical properties compared to PZT ceramics (d31 = -259 pm/V, k31 = 0.43, ɛT33 = 3000, and Qm = 350). Frequency bandwidth is related to the square of the hoop mode coupling coefficient kh2, which is ˜60% higher in textured PMN-PT cylinders compared to PZT 5H. Finite element simulations show that this parameter may be further increased by improving texture quality to ≥90 vol. %. Radially textured PMN-PT may thus improve performance in omni-directional cylindrical transducers while avoiding the need for segmented single crystal designs.
Stress and Reliability Analysis of a Metal-Ceramic Dental Crown
NASA Technical Reports Server (NTRS)
Anusavice, Kenneth J; Sokolowski, Todd M.; Hojjatie, Barry; Nemeth, Noel N.
1996-01-01
Interaction of mechanical and thermal stresses with the flaws and microcracks within the ceramic region of metal-ceramic dental crowns can result in catastrophic or delayed failure of these restorations. The objective of this study was to determine the combined influence of induced functional stresses and pre-existing flaws and microcracks on the time-dependent probability of failure of a metal-ceramic molar crown. A three-dimensional finite element model of a porcelain fused-to-metal (PFM) molar crown was developed using the ANSYS finite element program. The crown consisted of a body porcelain, opaque porcelain, and a metal substrate. The model had a 300 Newton load applied perpendicular to one cusp, a load of 30ON applied at 30 degrees from the perpendicular load case, directed toward the center, and a 600 Newton vertical load. Ceramic specimens were subjected to a biaxial flexure test and the load-to-failure of each specimen was measured. The results of the finite element stress analysis and the flexure tests were incorporated in the NASA developed CARES/LIFE program to determine the Weibull and fatigue parameters and time-dependent fracture reliability of the PFM crown. CARES/LIFE calculates the time-dependent reliability of monolithic ceramic components subjected to thermomechanical and/Or proof test loading. This program is an extension of the CARES (Ceramics Analysis and Reliability Evaluation of Structures) computer program.
Advanced hybrid particulate collector and method of operation
Miller, Stanley J.
1999-01-01
A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between each row of filter elements is a grounded plate. Between the grounded plates and the filter elements are electrode grids for creating electrostatic precipitation zones between each row of filter elements. In this way, when the filter elements are cleaned by pulsing air in a reverse direction, the dust removed from the bags will collect in the electrostatic precipitation zones rather than on adjacent filter elements.
Advanced hybrid particulate collector and method of operation
Miller, S.J.
1999-08-17
A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between each row of filter elements is a grounded plate. Between the grounded plates and the filter elements are electrode grids for creating electrostatic precipitation zones between each row of filter elements. In this way, when the filter elements are cleaned by pulsing air in a reverse direction, the dust removed from the bags will collect in the electrostatic precipitation zones rather than on adjacent filter elements. 12 figs.
Nuclear fuel elements made from nanophase materials
Heubeck, Norman B.
1998-01-01
A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000.degree. F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics.
Nuclear fuel elements made from nanophase materials
Heubeck, N.B.
1998-09-08
A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000 F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics. 5 figs.
A high temperature ceramic heat exchanger element for a solar thermal receiver
NASA Technical Reports Server (NTRS)
Strumpf, H. J.; Kotchick, D. M.; Coombs, M. G.
1982-01-01
The development of a high-temperature ceramic heat exchanger element to be integrated into a solar receiver producing heated air was studied. A number of conceptual designs were developed for heat exchanger elements of differing configuration. These were evaluated with respect to thermal performance, pressure drop, structural integrity, and fabricability. The final design selection identified a finned ceramic shell as the most favorable concept. The shell is surrounded by a larger metallic shell. The flanges of the two shells are sealed to provide a leak-tight pressure vessel. The ceramic shell is to be fabricated by a innovative combination of slip casting the receiver walls and precision casting the heat transfer finned plates. The fins are bonded to the shell during firing. The unit is sized to produce 2150 F air at 2.7 atm pressure, with a pressure drop of about 2 percent of the inlet pressure. This size is compatible with a solar collector providing a receiver input of 85 kw(th). Fabrication of a one-half scale demonstrator ceramic receiver was completed.
Performance Study of Ceramic Filter Module in Recirculated Aquaculture System (RAS)
NASA Astrophysics Data System (ADS)
Ng, L. Y.; Ng, C. Y.
2017-06-01
The growth of world population has led to significant increase in seafood demand over the world. Aquaculture has been widely accepted by many countries to increase the seafood production owing to the decline of natural seafood resources. The aquaculture productivity, however, is directly linked to the pond water quality. In this study, attempts were made to employ ceramic micro-filter to improve the pond water quality through filtration processes. There were two batches of filtration processes, short term (1 hour) and long term (48 hours). Significant improvements on real pond water quality were recorded through the short term microfiltration process, which reduced turbidity (96%), total suspended solids (TSS) (80%), biochemical oxygen demand (BOD) (72%), chemical oxygen demand (COD) (55%), ammonia (60%), nitrate (96%) and phosphorus (83%). The long term filtration process also showed high efficiency in the removal of solid particle and organic matters. The results showed that all of the parameters were successfully reduced to acceptable ranges (turbidity<80 NTU, TSS<400 mg/L, BOD<5 mg/L, COD<70 mg/L, phosphate<3 mg/L and ammonia<0.05 mg/L) for fish culturing activity. Based on current study, there was a drastic increase in nitrate content after 24 hours due to the nitrification process by regenerated bacteria in the filtered pond water. Current study showed that the microfiltration using ceramic micro-filter has high potential to be used in recirculating aquaculture system throughout the aquaculture activities in order to maintain the pond water quality, thus, increase the survival rate of cultured species.
77 FR 5418 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-03
... aft fuel system 40 micron fuel filter element with a 10 micron fuel filter element. This proposed AD... fuel filter element, part number (P/N) 52-0505-2 or 52-01064-1. This proposed AD would require replacing each forward and aft fuel system 40 micron fuel filter element with a 10 micron fuel filter...
Ceramic bearings for use in gas turbine engines
NASA Technical Reports Server (NTRS)
Zaretsky, Erwin V.
1988-01-01
Three decades of research by U.S. industry and government laboratories have produced a vast body of data related to the use of ceramic rolling element bearings and bearing components for aircraft gas turbine engines. Materials such as alumina, silicon carbide, titanium carbide, silicon nitride, and a crystallized glass ceramic have been investigated. Rolling-element endurance tests and analysis of full-complement bearings have been performed. Materials and bearing design methods have continuously improved over the years. This paper reviews a wide range of data and analyses with emphasis on how early NASA contributions as well as more recent data can enable the engineer or metallurgist to determine just where ceramic bearings are most applicable for gas turbines.
Virus removal in ceramic depth filters based on diatomaceous earth.
Michen, Benjamin; Meder, Fabian; Rust, Annette; Fritsch, Johannes; Aneziris, Christos; Graule, Thomas
2012-01-17
Ceramic filter candles, based on the natural material diatomaceous earth, are widely used to purify water at the point-of-use. Although such depth filters are known to improve drinking water quality by removing human pathogenic protozoa and bacteria, their removal regarding viruses has rarely been investigated. These filters have relatively large pore diameters compared to the physical dimension of viruses. However, viruses may be retained by adsorption mechanisms due to intermolecular and surface forces. Here, we use three types of bacteriophages to investigate their removal during filtration and batch experiments conducted at different pH values and ionic strengths. Theoretical models based on DLVO-theory are applied in order to verify experimental results and assess surface forces involved in the adsorptive process. This was done by calculation of interaction energies between the filter surface and the viruses. For two small spherically shaped viruses (MS2 and PhiX174), these filters showed no significant removal. In the case of phage PhiX174, where attractive interactions were expected, due to electrostatic attraction of oppositely charged surfaces, only little adsorption was reported in the presence of divalent ions. Thus, we postulate the existence of an additional repulsive force between PhiX174 and the filter surface. It is hypothesized that such an additional energy barrier originates from either the phage's specific knobs that protrude from the viral capsid, enabling steric interactions, or hydration forces between the two hydrophilic interfaces of virus and filter. However, a larger-sized, tailed bacteriophage of the family Siphoviridae was removed by log 2 to 3, which is explained by postulating hydrophobic interactions.
Casanova, Lisa M; Walters, Adam; Naghawatte, Ajith; Sobsey, Mark D
2012-11-01
There is little information about continued use of point-of-use technologies after disaster relief efforts. After the 2004 tsunami, the Red Cross distributed ceramic water filters in Sri Lanka. This study determined factors associated with filter disuse and evaluate the quality of household drinking water. A cross-sectional survey of water sources and treatment, filter use and household characteristics was administered by in-person oral interview, and household water quality was tested. Multivariable logistic regression was used to model probability of filter non-use. At the time of survey, 24% of households (107/452) did not use filters; the most common reason given was breakage (42%). The most common household water sources were taps and wells. Wells were used by 45% of filter users and 28% of non-users. Of households with taps, 75% had source water Escherichia coli in the lowest World Health Organisation risk category (<1/100 ml), vs. only 30% of households reporting wells did. Tap households were approximately four times more likely to discontinue filter use than well households. After 2 years, 24% of households were non-users. The main factors were breakage and household water source; households with taps were more likely to stop use than households with wells. Tap water users also had higher-quality source water, suggesting that disuse is not necessarily negative and monitoring of water quality can aid decision-making about continued use. To promote continued use, disaster recovery filter distribution efforts must be joined with capacity building for long-term water monitoring, supply chains and local production. © 2012 Blackwell Publishing Ltd.
Rare earth element abundances in presolar SiC
NASA Astrophysics Data System (ADS)
Ireland, T. R.; Ávila, J. N.; Lugaro, M.; Cristallo, S.; Holden, P.; Lanc, P.; Nittler, L.; Alexander, C. M. O'D.; Gyngard, F.; Amari, S.
2018-01-01
Individual isotope abundances of Ba, lanthanides of the rare earth element (REE) group, and Hf have been determined in bulk samples of fine-grained silicon carbide (SiC) from the Murchison CM2 chondrite. The analytical protocol involved secondary ion mass spectrometry with combined high mass resolution and energy filtering to exclude REE oxide isobars and Si-C-O clusters from the peaks of interest. Relative sensitivity factors were determined through analysis of NIST SRM reference glasses (610 and 612) as well as a trace-element enriched SiC ceramic. When normalised to chondrite abundances, the presolar SiC REE pattern shows significant deficits at Eu and Yb, which are the most volatile of the REE. The pattern is very similar to that observed for Group III refractory inclusions. The SiC abundances were also normalised to s-process model predictions for the envelope compositions of low-mass (1.5-3 M⊙) AGB stars with close-to-solar metallicities (Z = 0.014 and 0.02). The overall trace element abundances (excluding Eu and Yb) appear consistent with the predicted s-process patterns. The depletions of Eu and Yb suggest that these elements remained in the gas phase during the condensation of SiC. The lack of depletion in some other moderately refractory elements (like Ba), and the presence of volatile elements (e.g. Xe) indicates that these elements were incorporated into SiC by other mechanisms, most likely ion implantation.
Hyperspectral Microwave Atmospheric Sounder (HyMas) - New Capability in the CoSMIR-CoSSIR Scanhead
NASA Technical Reports Server (NTRS)
Hilliard, L. M.; Racette, P. E.; Blackwell, W.; Galbraith, C.; Thompson, E.
2015-01-01
Lincoln Laboratory and NASA's Goddard Space Flight Center have teamed to re-use an existing instrument platform, the CoSMIRCoSSIR system for atmospheric sounding, to develop a new capability in hyperspectral filtering, data collection, and display. The volume of the scanhead accomodated an intermediate frequency processor(IFP), that provides the filtering and digitization of the raw data and the interoperable remote component (IRC) adapted to CoSMIR, CoSSIR, and HyMAS that stores and archives the data with time tagged calibration and navigation data.The first element of the work is the demonstration of a hyperspectral microwave receiver subsystem that was recently shown using a comprehensive simulation study to yield performance that substantially exceeds current state-of-the-art. Hyperspectral microwave sounders with 100 channels offer temperature and humidity sounding improvements similar to those obtained when infrared sensors became hyperspectral, but with the relative insensitivity to clouds that characterizes microwave sensors. Hyperspectral microwave operation is achieved using independent RF antennareceiver arrays that sample the same areavolume of the Earths surfaceatmosphere at slightly different frequencies and therefore synthesize a set of dense, finely spaced vertical weighting functions. The second, enabling element of the proposal is the development of a compact 52-channel Intermediate Frequency processor module. A principal challenge in the development of a hyperspectral microwave system is the size of the IF filter bank required for channelization. Large bandwidths are simultaneously processed, thus complicating the use of digital back-ends with associated high complexities, costs, and power requirements. Our approach involves passive filters implemented using low-temperature co-fired ceramic (LTCC) technology to achieve an ultra-compact module that can be easily integrated with existing RF front-end technology. This IF processor is universally applicable to other microwave sensing missions requiring compact IF spectrometry.The data include 52 operational channels with low IF module volume (100cm3) and mass (300g) and linearity better than 0.3 over a 330K dynamic range.
NASA Astrophysics Data System (ADS)
Minguillon, M. C.; Querol, X.; Monfort, E.; Alastuey, A.; Escrig, A.; Celades, I.; Miro, J. V.
2009-04-01
The relationship between specific particulate emission control and ambient levels of some PM10 components (Zn, As, Pb, Cs, Tl) was evaluated. To this end, the industrial area of Castellón (Eastern Spain) was selected, where around 40% of the EU glazed ceramic tiles and a high proportion of EU ceramic frits (middle product for the manufacture of ceramic glaze) are produced. The PM10 emissions from the ceramic processes were calculated over the period 2000 to 2007 taking into account the degree of implementation of corrective measures throughout the study period. Abatement systems (mainly bag filters) were implemented in the majority of the fusion kilns for frit manufacture in the area as a result of the application of the Directive 1996/61/CE, leading to a marked decrease in PM10 emissions. On the other hand, ambient PM10 sampling was carried out from April 2002 to July 2008 at three urban sites and one suburban site of the area and a complete chemical analysis was made for about 35 % of the collected samples, by means of different techniques (ICP-AES, ICP-MS, Ion Chromatography, selective electrode and elemental analyser). The series of chemical composition of PM10 allowed us to apply a source contribution model (Principal Component Analysis), followed by a multilinear regression analysis, so that PM10 sources were identified and their contribution to bulk ambient PM10 was quantified on a daily basis, as well as the contribution to bulk ambient concentrations of the identified key components (Zn, As, Pb, Cs, Tl). The contribution of the sources identified as the manufacture and use of ceramic glaze components, including the manufacture of ceramic frits, accounted for more than 65, 75, 58, 53, and 53% of ambient Zn, As, Pb, Cs and Tl levels, respectively (with the exception of Tl contribution at one of the sites). The important emission reductions of these sources during the study period had an impact on ambient key components levels, such that there was a high correlation between PM10 emissions from these sources and ambient key components levels (R2= 0.61-0.98).
Method for producing a compressed body of mix-powder for ceramic
NASA Technical Reports Server (NTRS)
Okawa, K.
1983-01-01
Under the invented method, a compressed body of mix powder for ceramic is produced by mixing and stirring several raw powder materials with mixing liquid such as water, and, in the process of sending the resulted viscous material pressurized at 5 kg/cm to 7 kg/cm, using 1.5 to 2 times the pressure to filter and dehydrate, adjusting the water content to 10 to 20%.
Gas impermeable glaze for sealing a porous ceramic surface
Reed, Scott T.; Stone, Ronald G.; Nenoff, Tina M.; Trudell, Daniel E.; Thoma, Steven G.
2004-04-06
A process for fabricating a gas impermeable seal on a porous ceramic surface using a thin, glass-based, pinhole free glaze. The process can be used to fabricate gas impermeable end seals on porous alumina tubes used as filter media. The porous alumina tubes can have an inorganic microporous thin film separation membrane on the inner surface, which can be used for high temperature gas separation processes.
Han, Wei; Yue, Qinyan; Wu, Suqing; Zhao, Yaqin; Gao, Baoyu; Li, Qian; Wang, Yan
2013-06-01
Utilization of clay ceramic particles (CCPs) as the novel filter media employed in an up-flow anaerobic bio-filter (UAF) was investigated. After a series of tests and operations, CCPs have presented higher total porosity and roughness, meanwhile lower bulk and grain density. When CCPs were utilized as fillers, the reactor had a shorter start up period of 45 days comparing with conventional reactors, and removal rate of chemical oxygen demand (COD) still reached about 76% at a relatively lower temperature during the stable state. In addition, degradation of COD and ammonia nitrogen (NH4-N) at different media height along the reactor was evaluated, and the dates showed that the main reduction process happened within the first 30 cm media height from the bottom flange. Five phases were observed according to different organic loadings during the experiment period, and the results indicated that COD removal increased linearly when the organic loading was increased. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sol-gel applications for ceramic membrane preparation
NASA Astrophysics Data System (ADS)
Erdem, I.
2017-02-01
Ceramic membranes possessing superior properties compared to polymeric membranes are more durable under severe working conditions and therefore their service life is longer. The ceramic membranes are composed of some layers. The support is the layer composed of coarser ceramic structure and responsible for mechanical durability under filtration pressure and it is prepared by consolidation of ceramic powders. The top layer is composed of a finer ceramic micro-structure mainly responsible for the separation of components present in the fluid to be filtered and sol-gel method is a versatile tool to prepare such a tailor-made ceramic filtration structure with finer pores. Depending on the type of filtration (e.g. micro-filtration, ultra-filtration, nano-filtration) aiming separation of components with different sizes, sols with different particulate sizes should be prepared and consolidated with varying precursors and preparation conditions. The coating of sol on the support layer and heat treatment application to have a stable ceramic micro-structure are also important steps determining the final properties of the top layer. Sol-gel method with various controllable parameters (e.g. precursor type, sol formation kinetics, heat treatment conditions) is a practical tool for the preparation of top layers of ceramic composite membranes with desired physicochemical properties.
Tostes, Bhenya Ottoni; Guimarães, Renato Bastos; Noronha-Filho, Jaime Dutra; Botelho, Glauco Dos Santos; Guimarães, José Guilherme Antunes; Silva, Eduardo Moreira da
2017-01-01
This study evaluated the effect of air-abrasion on t®m phase transformation, roughness, topography and the elemental composition of three Y-TZP (Yttria-stabilized tetragonal zirconia polycrystal) dental ceramics: two conventional (Lava Frame and IPS ZirCad) and one with high-translucency (Lava Plus). Plates obtained from sintered blocks of each ceramic were divided into four groups: AS (as-sintered); 30 (air-abrasion with 30 mm Si-coated Al2O3 particles); 50 (air-abrasion with 50 mm Al2O3 particles) and 150 (air-abrasion with 150 mm Al2O3 particles). After the treatments, the plates were submitted to X-ray diffractometry; 3-D profilometry and SEM/EDS. The AS surfaces were composed of Zr and t phases. All treatments produced t®m phase transformation in the ceramics. The diameter of air-abrasion particles influenced the roughness (150>50>30>AS) and the topography. SEM analysis showed that the three treatments produced groove-shaped microretentions on the ceramic surfaces, which increased with the diameter of air-abrasion particles. EDS showed a decrease in Zr content along with the emergence of O and Al elements after air-abrasion. Presence of Si was also detected on the plates air-abraded with 30 mm Si-coated Al2O3 particles. It was concluded that irrespective of the type and diameter of the particles, air-abrasion produced t®m phase transformation, increased the roughness and changed the elemental composition of the three Y-TZP dental ceramics. Lava Plus also behaved similarly to the conventional Y-TZP ceramics, indicating that this high translucency ceramic could be more suitable to build monolithic ceramic restorations in the aesthetic restorative dentistry field.
Henager, Jr., Charles W [Kennewick, WA; Brimhall, John L [West Richland, WA
2001-08-21
According to the present invention, a joined product is at least two ceramic parts, specifically bi-element carbide parts with a bond joint therebetween, wherein the bond joint has a metal silicon phase. The bi-element carbide refers to compounds of MC, M.sub.2 C, M.sub.4 C and combinations thereof, where M is a first element and C is carbon. The metal silicon phase may be a metal silicon carbide ternary phase, or a metal silicide.
Optimization of an enhanced ceramic micro-filter for concentrating E.coli in water
NASA Astrophysics Data System (ADS)
Zhang, Yushan; Guo, Tianyi; Xu, Changqing; Hong, Lingcheng
2017-02-01
Recently lower limit of detection (LOD) is necessary for rapid bacteria detection and analysis applications in clinical practices and daily life. A critical pre-conditioning step for these applications is bacterial concentration, especially for low level of pathogens. Sample volume can be largely reduced with an efficient pre-concentration process. Some approaches such as hollow-fiber ultra-filtration and electrokinetic technique have been applied to bacterial concentration. Since none of these methods can provide a concentrating method with a stable recovery efficiency, bacterial concentration still remains challenging Ceramic micro- filter can be used to concentrate the bacteria but the cross flow system keeps the bacteria in suspension. Similar harvesting bacteria using ultra-filtration showed an average recovery efficiency of 43% [1] and other studies achieved recovery rates greater than 50% [2]. In this study, an enhanced ceramic micro-filter with 0.14 μm pore size was proposed and demonstrated to optimize the concentration of E.coli. A high recovery rate (mean value >90%) and a high volumetric concentration ratio (>100) were achieved. Known quantities (104 to 106 CFU/ml) of E.coli cells were spiked to different amounts of phosphate buffered saline (0.1 to 1 L), and then concentrated to a final retentate of 5 ml to 10 ml. An average recovery efficiency of 95.3% with a standard deviation of 5.6% was achieved when the volumetric con- centration ratio was 10. No significant recovery rate loss was indicated when the volumetric concentration ratio reached up to 100. The effects of multiple parameters on E.coli recovery rate were also studied. The obtained results indicated that the optimized ceramic micro- filtration system can successfully concentrate E.coli cells in water with an average recovery rate of 90.8%.
On the design and development of a miniature ceramic gimbal bearing
NASA Technical Reports Server (NTRS)
Hanson, Robert A.; Odwyer, Barry; Gordon, Keith M.; Jarvis, Edward W.
1990-01-01
A review is made of a program to develop ceramic gimbal bearings for a miniaturized missile guidance system requiring nonmagnetic properties and higher load capacity than possible with conventional AISI 440C stainless steel bearings. A new gimbal design concept is described which utilizes the compressive strength and nonmagnetic properties of silicon nitride (Si3N4) ceramics for the gimbal bearing. Considerable manufacturing development has occurred in the last 5 years making ceramic bearings a viable option in the gimbal design phase. A preliminary study into the feasibility of the proposed design is summarized. Finite element analysis of the brittle ceramic bearing components under thermal stress and high acceleration loading were conducted to ensure the components will not fail catastrophically in service. Finite element analysis was also used to optimize the adhesive joint design. Bearing torque tests run at various axial loads indicate that the average running torque of ceramic bearings varies with load similarly to that of conventional steel bearings.
Helal, Mohammed Abu; Wang, Zhigang
2017-10-25
To compare equivalent and contact stresses in a mandibular molar restored by all-ceramic crowns through two methods: ceramic endocrowns and ceramic crowns supported by fiber-reinforced composite (FRC) posts and core, by using 3D finite element analysis during normal masticatory load. Three 3D models of a mandibular first molar were made and labeled as such: intact molar with no restoration (A); ceramic endocrown-restored molar (B); ceramic crown supported by FRC posts and core restored molar (C). By using 3D FE analysis with contact components, normal masticatory load was simulated. The mvM stresses in all models were calculated. Maximal mvM stresses in the ceramic of restorations, dentin, and luting cement were contrasted among models and to values of materials' strength. Contact shear and tensile stresses in the restoration/tooth interface around restorations were also calculated. The highest mvM stress levels in the enamel and dentin for the tooth restored by ceramic endocrown were lower in the crown ceramic than in tooth restored with FRC posts and all-ceramic crowns; however, in the resin adhesive cement interface it was lower for ceramic crown supported by FRC posts than the in ceramic endocrown restoration. The maximum contact shear and tensile stress values along the restoration/tooth interface of ceramic endocrowns were lower than those with ceramic crowns supported by FRC posts. Ceramic endocrown restorations presented a lower mvM stress level in dentin than the conventional ceramic crowns supported by FRC posts and core. Ceramic endocrown restorations in molars are less susceptible to damage than those with conventional ceramic crowns retained by FRC posts. Ceramic endocrowns properly cemented in molars must not be fractured or loosen during normal masticatory load. Therefore, ceramic endocrowns are advised as practicable, minimally invasive, and esthetic restorations for root canal treated mandibular molars. © 2017 by the American College of Prosthodontists.
NASA Technical Reports Server (NTRS)
Kermode, A. W.; Boreham, J. F.
1974-01-01
This paper discusses the utilization of acoustic surface wave filters, beam lead components, and thin film metallized ceramic substrate technology as applied to the design of deep space, long-life, multimission transponder. The specific design to be presented is for a second mixer local oscillator module, operating at frequencies as high as 249 MHz.
The Thermal Flash Protection System, low pass filter JN175666A1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washington, L.A.
1987-06-01
This report discusses the development of the JN175666A1 Low Pass Filter used in the B1-B Thermal Flash Protection System. It also discusses problems encountered during development of the ceramic capacitors and how they were resolved. Included in this report is a description of the filter, the electrical and environmental tests, why they were performed and data accumulated during the development testing. After completing the evaluation of this device, it is concluded that the JN175666A1 filter is a usable component for the B1-B system.
NASA Astrophysics Data System (ADS)
Wu, Nan; Wan, Lynn Yuqin; Wang, Yingde; Ko, Frank
2017-12-01
Hydrophobic ceramic nanofibrous membranes have wide applications in the fields of high-temperature filters, oil/water separators, catalyst supports and membrane reactors, for their water repellency property, self-cleaning capability, good environmental stability and long life span. In this work, we fabricated an inherently hydrophobic ceramic nanofiber membrane without any surface modification through pyrolysis of electrospun polycarbosilane nanofibers. The hydrophobicity was introduced by the hierarchical microstructure formed on the surface of the nanofibers and the special surface composition by the addition of trace amounts of palladium. Furthermore, the flexible ceramic mats demonstrated robust chemical resistance properties with consistent hydrophobicity over the entire pH value range and effective water-in-oil emulsion separation performance. Interestingly, a highly cohesive force was found between water droplet and the ceramic membranes, suggesting their great potentials in micro-liquid transportation. This work provides a new route for adjusting the composition of ceramic surface and flexible, recyclable and multifunctional ceramic fibrous membranes for utilization in harsh environments.
Chen, Xuequan; Liang, Zhishu; An, Taicheng; Li, Guiying
2016-02-01
Unpleasant odor emissions have traditionally occupied an important role in environmental concern. In this paper, twin biotrickling filters (BTFs) packed with different packing materials, seeded with Bacillus cereus GIGAN2, were successfully constructed to purify gaseous dimethyl disulfide (DMDS). The maifanite-packed BTF showed superior biodegradation capability to the ceramic-packed counterpart in terms of removal efficiency and elimination capacity under similar conditions. At an empty bed residence time of 123 s, 100% of DMDS could be removed by maifanite-packed BTF when DMDS inlet concentration was below 0.41 g m(-3). To achieve same effect, the inlet concentration must be lower than 0.25 g m(-3) for ceramic-packed BTF. The bacterial communities analyses found higher relative abundance of GIGAN2 in the maifanite-packed BTF, suggesting that maifanite is more suitable for GIGAN2 immobilization and for subsequent DMDS removal. This work indicates maifanite is a promising packing material for real odorous gases purification. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ceramic High Efficiency Particulate Air (HEPA) Filter Final Report CRADA No. TC02102.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, M.; Morse, T.
This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermor e National Laboratory (LLNL) and Flanders-Precisionaire (Flanders), to develop ceramic HEP A filters under a Thrust II Initiative for Proliferation Prevention (IPP) project. The research was conducted via the IPP Program at Commonwe alth of Independent States (CIS) Institutes, which are handled under a separate agreement. The institutes (collectively referred to as "CIS Institutes") involved with this project were: Bochvar: Federal State Unitarian Enterprise All-Russia Scientific and Research Institute of Inorganic Materials (FSUE VNIINM); Radium Khlopin: Federal State Unitarian Enterprisemore » NPO Radium Institute named (FSUE NPO Radium Institute); and Bakor: Science and Technology Center Bakor (STC Bakor).« less
Fabrication of piezoelectric ceramic micro-actuator and its reliability for hard disk drives.
Jing, Yang; Luo, Jianbin; Yang, Wenyan; Ju, Guoxian
2004-11-01
A new U-type micro-actuator for precisely positioning a magnetic head in high-density hard disk drives was proposed and developed. The micro-actuator is composed of a U-type stainless steel substrate and two piezoelectric ceramic elements. Using a high-d31 piezoelectric coefficient PMN-PZT ceramic plate and adopting reactive ion etching process fabricate the piezoelectric elements. Reliability against temperature was investigated to ensure the practical application to the drive products. The U-type substrate attached to each side via piezoelectric elements also was simulated by the finite-element method and practically measured by a laser Doppler vibrometer in order to testify the driving mechanics of it. The micro-actuator coupled with two piezoelectric elements featured large displacement of 0.875 microm and high-resonance frequency over 22 kHz. The novel piezoelectric micro-actuators then possess a useful compromise performance to displacement, resonance frequency, and generative force. The results reveal that the new design concept provides a valuable alternative for multilayer piezoelectric micro-actuators.
Influence of different materials on the thermal behavior of a CDIP-8 ceramic package
NASA Astrophysics Data System (ADS)
Weide, Kirsten; Keck, Christian
1999-08-01
The temperature distribution inside a package is determined by the heat transfer from the package to the ambient, depending on the heat conductivities of the different used materials. With the help of finite element simulations the thermal behavior of the package can be characterized. In precise simulations convection and radiation effects have to be taken into account. In this paper the influence of different materials like the ceramic, the pin and die attach material and adhesive material between the chip and the die attach on the thermal resistance of the ceramic package will be investigated. A finite element model of the ceramic package including a voltage regulator on the chip was created. The simulations were carried out with the finite element program ANSYS. An easy way to take the radiation effect into account, which normally is difficult to handle in the simulation, will be shown. The results of the simulations are verified by infrared measurements. A comparison of the thermal resistance between the best case and worst case for different package materials was done. The thermal conductivity of the ceramic material shows the strongest influence on the thermal resistance.
High-temperature ceramic heat exchanger element for a solar thermal receiver
NASA Technical Reports Server (NTRS)
Strumpf, H. J.; Kotchick, D. M.; Coombs, M. G.
1982-01-01
A study was performed by AiResearch Manufacturing Company, a division of The Garrett Corporation, on the development a high-temperature ceramic heat exchanger element to be integrated into a solar receiver producing heated air. A number of conceptual designs were developed for heat exchanger elements of differing configuration. These were evaluated with respect to thermal performance, pressure drop, structural integrity, and fabricability. The final design selection identified a finned ceramic shell as the most favorable concept. The shell is surrounded by a larger metallic shell. The flanges of the two shells are sealed to provide a leak-tight pressure vessel. The ceramic shell is to be fabricated by an innovative combination of slip casting the receiver walls and precision casting the heat transfer finned plates. The fins are bonded to the shell during firing. The unit is sized to produce 2150 F ar at 2.7 atm pressure, with a pressure drop of about 2 percent of the inlet pressure. This size is compatible with a solar collector providing a receiver input of 85 kw(th). Fabrication of a one-half scale demonstrator ceramic receiver has been completed.
[Wear behavior of enamel and veneering ceramics].
Gao, Qing-ping; Chao, Yong-lie; Jian, Xin-chun; Guo, Feng; Meng, Yu-kun
2007-10-01
To compare the wear between the enamel and two types of dental decoration porcelains for all-ceramic restorations (Vita-alpha, Vintage AL). Friction coefficients, wear scar width, element concentrations and wear surface evolution were considered relatively to the tribology of that in vivo situation. The wear scars of the samples were characterized by means of dynamic atomic force microscopy (DFM). The different element concentrations of the surface before/after the wear test were determined with energy dispersion spectrometry (EDS). The friction coefficient varied from time in each kind of material. The statistical differences between materials were observed in wear scar width and properties of materials (P<0.05). DFM results showed wear surface of natural tooth full of abrasive particles and denaturation of dental texture. Wear surface of veneering ceramics consisted mainly of abrasive particles, plough and microcracking. EDS results showed that the element concentration of Fe was obviously found on the samples after wear. The main underlying mechanisms of natural teeth wear are abrasive, and denaturation of dental texture. Abrasive wear, adhesion and fatigue of veneering ceramics characterize the wear patterns which plays different role in Vita-alpha and Vintage AL. The wear patterns of veneering ceramics can be described as mild wear.
Silver Dissolution and Release from Ceramic Water Filters.
Mittelman, Anjuliee M; Lantagne, Daniele S; Rayner, Justine; Pennell, Kurt D
2015-07-21
Application of silver nanoparticles (nAg) or silver nitrate (AgNO3) has been shown to improve the microbiological efficacy of ceramic water filters used for household water treatment. Silver release, however, can lead to undesirable health effects and reduced filter effectiveness over time. The objectives of this study were to evaluate the contribution of nanoparticle detachment, dissolution, and cation exchange to silver elution, and to estimate silver retention under different influent water chemistries. Dissolved silver (Ag(+)) and nAg release from filter disks painted with 0.03 mg/g casein-coated nAg or AgNO3 were measured as a function of pH (5-9), ionic strength (1-50 mM), and cation species (Na(+), Ca(2+), Mg(2+)). Silver elution was controlled by dissolution as Ag(+) and subsequent cation exchange reactions regardless of the applied silver form. Effluent silver levels fell below the drinking water standard (0.1 mg/L) after flushing with 30-42 pore volumes of pH 7, 10 mM NaNO3 at pH 7. When the influent water was at pH 5, contained divalent cations or 50 mM NaNO3, silver concentrations were 5-10 times above the standard. Our findings support regular filter replacement and indicate that saline, hard, or acidic waters should be avoided to minimize effluent silver concentrations and preserve silver treatment integrity.
Organosilicon Polymers as Precursors for Silicon-Containing Ceramics.
1987-02-23
preceramic polymer , shrinkage on pyrolysis could be considerable. Ceramic fibers of diverse chemical compositions are sought for...In the design of preceramic polymers , achievement of the desired elemental composition in the ceramic obtained from them ( SiC and Si3N4 in the...approximately one, pyrolysis of the product polymer gave a black ceramic solid in 84% yield which analysis showed to have a composition (1 SiC + 0.22
Analytical liquid test sample filtration apparatus
Lohnes, B.C.; Turner, T.D.; Klingler, K.M.; Clark, M.L.
1996-01-09
A liquid sample filtration apparatus includes: (a) a module retaining filter elements; (b) a filter clamping and fluid injection apparatus positioned relative to the module to engage a filter element thereon, and includes a pair of first and second opposing engageable members to engage a filter element there between; (c) an inlet tube connected to an opposing engageable member; (d) an outlet tube connected to an opposing engageable member; (e) a motor to move the module relative to the filter clamping and injection apparatus to register filter elements on the module to the clamping and injection apparatus; and (f) a motor associated with the filter clamping and injection apparatus to move the opposing engageable members into substantial sealing fluid communication relative to a filter element on the module. An apparatus for engaging opposing ends of a filter element includes: (a) a member having a recess configured to engage one end of a filter element, including a first fluid passage communicating with the recess to pass fluid between the recess and externally of the member; and (b) a second member positioned in opposing juxtaposition relative to the other member, and having a projection sized and shaped to matingly fit within the other member recess, the second member projection including a second recess configured to engage the other end of the filter element, the second member including a second fluid passage communicating with the second recess to pass fluid between the second recess and externally of the second member. 8 figs.
Analytical liquid test sample filtration apparatus
Lohnes, Brent C.; Turner, Terry D.; Klingler, Kerry M.; Clark, Michael L.
1996-01-01
A liquid sample filtration apparatus includes: a) a module retaining filter elements; b) a filter clamping and fluid injection apparatus positioned relative to the module to engage a filter element thereon, and includes a pair of first and second opposing engageable members to sealing engage a filter element therebetween; c) an inlet tube connected to an opposing engageable member; d) an outlet tube connected to an opposing engageable member; e) a motor to move the module relative to the filter clamping and injection apparatus to register filter elements on the module to the clamping and injection apparatus; and f) a motor associated with the filter clamping and injection apparatus to move the opposing engageable members into substantial sealing fluid communication relative to a filter element on the module. An apparatus for engaging opposing ends of a filter element includes: a) a member having a recess configured to engage one end of a filter element, including a first fluid passage communicating with the recess to pass fluid between the recess and externally of the member; and b) a second member positioned in opposing juxtaposition relative to the other member, and having a projection sized and shaped to matingly fit within the other member recess, the second member projection including a second recess configured to engage the other end of the filter element, the second member including a second fluid passage communicating with the second recess to pass fluid between the second recess and externally of the second member.
Letter report on PCT/Monolith glass ceramic corrosion tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, Charles L.
2015-09-24
The Savannah River National Laboratory (SRNL) is collaborating with personnel from Pacific Northwest National Laboratory (PNNL) to study advanced waste form glass ceramics for immobilization of waste from Used Nuclear Fuel (UNF) separations processes. The glass ceramic waste forms take advantage of both crystalline and glassy phases where ‘troublesome’ elements (e.g., low solubility in glass or very long-lived) partition to highly durable ceramic phases with the remainder of elements residing in the glassy phase. The ceramic phases are tailored to create certain minerals or unique crystalline structures that can host the radionuclides by binding them in their specific crystalline networkmore » while not adversely impacting the residual glass network (Crum et al., 2011). Glass ceramics have been demonstrated using a scaled melter test performed in a pilot scale (1/4 scale) cold crucible induction melter (CCIM) (Crum et al., 2014; Maio et al., 2015). This report summarizes recent results from both Phase I and Phase II bench scale tests involving crucible fabrication and corrosion testing of glass ceramics using the Product Consistency Test (PCT). Preliminary results from both Phase I and Phase II bench scale tests involving statistically designed matrices have previously been reported (Crawford, 2013; Crawford, 2014).« less
Use of additives to improve microstructures and fracture resistance of silicon nitride ceramics
Becher, Paul F [Oak Ridge, TN; Lin, Hua-Tay [Oak Ridge, TN
2011-06-28
A high-strength, fracture-resistant silicon nitride ceramic material that includes about 5 to about 75 wt-% of elongated reinforcing grains of beta-silicon nitride, about 20 to about 95 wt-% of fine grains of beta-silicon nitride, wherein the fine grains have a major axis of less than about 1 micron; and about 1 to about 15 wt-% of an amorphous intergranular phase comprising Si, N, O, a rare earth element and a secondary densification element. The elongated reinforcing grains have an aspect ratio of 2:1 or greater and a major axis measuring about 1 micron or greater. The elongated reinforcing grains are essentially isotropically oriented within the ceramic microstructure. The silicon nitride ceramic exhibits a room temperature flexure strength of 1,000 MPa or greater and a fracture toughness of 9 MPa-m.sup.(1/2) or greater. The silicon nitride ceramic exhibits a peak strength of 800 MPa or greater at 1200 degrees C. Also included are methods of making silicon nitride ceramic materials which exhibit the described high flexure strength and fracture-resistant values.
Fine dust filtration using a metal fiber bed.
Lee, Kyung Mi; Lee, Young Sup; Jo, Young Min
2006-08-01
A bed-type filter composed of thin metal alloy fiber was closely examined with dust capturing in cold and hot runs. The investigation of an individual mechanism across the filter bed indicated that the aerated dust could be initially collected by depth filtration, and after a while, surface filtration dominated the overall dust collection. The present metal fiber bed was comparable to the conventional ceramic filters because of its good collection efficiency with low pressure drop. It also showed potential to be used as a prefilter in a diesel exhaust trapping system.
Fail Save Shut Off Valve for Filtering Systems Employing Candle Filters
VanOsdol, John
2006-01-03
The invention relates to an apparatus that acts as a fail save shut off valve. More specifically, the invention relates to a fail save shut off valve that allows fluid flow during normal operational conditions, but prevents the flow of fluids in the event of system failure upstream that causes over-pressurization. The present invention is particularly well suited for use in conjunction with hot gas filtering systems, which utilize ceramic candle filters. Used in such a hot gas system the present invention stops the flow of hot gas and prevents any particulate laden gas from entering the clean side of the system.
Fail save shut off valve for filtering systems employing candle filters
VanOsdol, John [Fairmont, WV
2006-01-03
The invention relates to an apparatus that acts as a fail save shut off valve. More specifically, the invention relates to a fail save shut off valve that allows fluid flow during normal operational conditions, but prevents the flow of fluids in the event of system failure upstream that causes over-pressurization. The present invention is particularly well suited for use in conjunction with hot gas filtering systems, which utilize ceramic candle filters. Used in such a hot gas system the present invention stops the flow of hot gas and prevents any particulate laden gas from entering the clean side of the system.
Dejak, Beata; Młotkowski, Andrzej
2013-12-01
The objective was to compare equivalent stresses in molars restored with endocrowns as well as posts and cores during masticatory simulation using finite element analysis. Four three-dimensional models of first mandibular molars were created: A - intact tooth; B - tooth restored by ceramic endocrown; C - tooth with FRC posts, composite core and ceramic crown; D - tooth with cast post and ceramic crown. The study was performed using finite element analysis, with contact elements. The computer simulations of mastication were conducted. The equivalent stresses of modified von Mises failure criterion (mvM) in models were calculated, Tsai-Wu index for FRC post was determinate. Maximal values of the stresses in the ceramic, cement and dentin were compared between models and to strength of the materials. Contact stresses in the cement-tissue adhesive interface around restorations were considered as well. During masticatory simulation, the lowest mvM stresses in dentin arisen in molar restored with endocrown (Model B). Maximal mvM stress values in structures of restored molar were 23% lower than in the intact tooth. The mvM stresses in the endocrown did not exceed the tensile strength of ceramic. In the molar with an FRC posts (Model C), equivalent stress values in dentin increased by 42% versus Model B. In ceramic crown of Model C the stresses were 31% higher and in the resin luting cement were 61% higher than in the tooth with endocrown. Tensile contact stresses in the adhesive cement-dentin interface around FRC posts achieved 4 times higher values than under endocrown and shear stresses increased twice. The contact stress values around the appliances were several time smaller than cement-dentin bond strength. Teeth restored by endocrowns are potentially more resistant to failure than those with FRC posts. Under physiological loads, ceramic endocrowns ideally cemented in molars should not be demaged or debonded. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
40 CFR 63.8630 - What notifications must I submit and when?
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Clay Ceramics Manufacturing...) For each APCD that includes a fabric filter, if a bag leak detection system is used, analysis and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, E.L.; Calvert, J.M.; Koloski, T.
1997-02-01
We report on the results of a project using surface characterization and novel surface-modification techniques to address the issues of developing a minimally fouling ceramic membrane filter. We have studied the physical characteristics of a synthetic bilge water mixture, examined the surfaces of the ceramic filters for evidence of fouling, and identified several surface modifications that, under laboratory conditions, work well in prevention of foulants. These surfaces include hydrophobic as well as polar coatings. For the bilge water, it was discovered that detergent, at certain concentrations, may be useful in separating and coalescing oil droplets from the bilge water. Basedmore » on the results of the studies, several strategies for optimizing the removal of oil from water are suggested.« less
NASA Astrophysics Data System (ADS)
Akbarnejad, Shahin; Jonsson, Lage Tord Ingemar; Kennedy, Mark William; Aune, Ragnhild Elizabeth; Jönsson, Pӓr Göran
2016-08-01
This paper presents experimental results of pressure drop measurements on 30, 50, and 80 pores per inch (PPI) commercial alumina ceramic foam filters (CFF) and compares the obtained pressure drop profiles to numerically modeled values. In addition, it is aimed at investigating the adequacy of the mathematical correlations used in the analytical and the computational fluid dynamics (CFD) simulations. It is shown that the widely used correlations for predicting pressure drop in porous media continuously under-predict the experimentally obtained pressure drop profiles. For analytical predictions, the negative deviations from the experimentally obtained pressure drop using the unmodified Ergun and Dietrich equations could be as high as 95 and 74 pct, respectively. For the CFD predictions, the deviation to experimental results is in the range of 84.3 to 88.5 pct depending on filter PPI. Better results can be achieved by applying the Forchheimer second-order drag term instead of the Brinkman-Forchheimer drag term. Thus, the final deviation of the CFD model estimates lie in the range of 0.3 to 5.5 pct compared to the measured values.
Recycling of spent adsorbents for oxyanions and heavy metal ions in the production of ceramics.
Verbinnen, Bram; Block, Chantal; Van Caneghem, Jo; Vandecasteele, Carlo
2015-11-01
Spent adsorbents for oxyanion forming elements and heavy metals are classified as hazardous materials and they are typically treated by stabilization/solidification before landfilling. The use of lime or cement for stabilization/solidification entails a high environmental impact and landfilling costs are high. This paper shows that mixing spent adsorbents in the raw material for the production of ceramic materials is a valuable alternative to stabilize oxyanion forming elements and heavy metals. The produced ceramics can be used as construction material, avoiding the high economic and environmental impact of stabilization/solidification followed by landfilling. To study the stabilization of oxyanion forming elements and heavy metals during the production process, two series of experiments were performed. In the first series of experiments, the main pollutant, Mo was adsorbed onto iron-based adsorbents, which were then mixed with industrial sludge (3 w/w%) and heated at 1100°C for 30 min. Mo was chosen, as this element is easily adsorbed onto iron-based adsorbents and it is the element that is the most difficult to stabilize (i.e. the highest temperatures need to be reached before the concentrations in the leachate are reduced). Leaching concentration from the 97/3 sludge/adsorbent mixture before heating ranged between 85 and 154 mg/kg; after the heating process they were reduced to 0.42-1.48 mg/kg. Mo was actually stabilized, as the total Mo concentration after addition was not affected by the heat treatment. In the second series of experiments, the sludge was spiked with other heavy metals and oxyanion forming elements (Cr, Ni, Cu, Zn, As, Cd and Pb) in concentrations 5 times higher than the initial concentrations; after heat treatment the leachate concentrations were below the regulatory limit values. The incorporation of spent adsorbents in ceramic materials is a valuable and sustainable alternative to the existing treatment methods, saving raw materials in the ceramics production process and avoiding the use of stabilizing agents. Besides, spent adsorbents added to the raw material for ceramic products, may improve their aesthetic and structural properties. Copyright © 2015 Elsevier Ltd. All rights reserved.
Vibrational Spectroscopy as a Promising Toolbox for Analyzing Functionalized Ceramic Membranes.
Kiefer, Johannes; Bartels, Julia; Kroll, Stephen; Rezwan, Kurosch
2018-01-01
Ceramic materials find use in many fields including the life sciences and environmental engineering. For example, ceramic membranes have shown to be promising filters for water treatment and virus retention. The analysis of such materials, however, remains challenging. In the present study, the potential of three vibrational spectroscopic methods for characterizing functionalized ceramic membranes for water treatment is evaluated. For this purpose, Raman scattering, infrared (IR) absorption, and solvent infrared spectroscopy (SIRS) were employed. The data were analyzed with respect to spectral changes as well as using principal component analysis (PCA). The Raman spectra allow an unambiguous discrimination of the sample types. The IR spectra do not change systematically with functionalization state of the material. Solvent infrared spectroscopy allows a systematic distinction and enables studying the molecular interactions between the membrane surface and the solvent.
Cheng, Xiuting; Li, Na; Zhu, Mengfu; Zhang, Lili; Deng, Yu; Deng, Cheng
2016-06-01
To develop a depth filter based on the electrostatic adsorption principle, positively charged microporous ceramic membrane was prepared from a diatomaceous earth ceramic membrane. The internal surface of the highly porous ceramic membrane was coated with uniformly distributed electropositive nano-Y2O3 coating. The dye removal performance was evaluated through pressurized filtration tests using Titan Yellow aqueous solution. It showed that positively charged microporous ceramic membrane exhibited a flow rate of 421L/(m(2)·hr) under the trans-membrane pressure of 0.03bar. Moreover it could effectively remove Titan Yellow with feed concentration of 10mg/L between pH3 to 8. The removal rate increased with the enhancement of the surface charge properties with a maximum rejection of 99.6%. This study provides a new and feasible method of removing organic dyes in wastewater. It is convinced that there will be a broad market for the application of charged ceramic membrane in the field of dye removal or recovery from industry wastewater. Copyright © 2016. Published by Elsevier B.V.
Influence of rare earth doping on thermoelectric properties of SrTiO3 ceramics
NASA Astrophysics Data System (ADS)
Liu, J.; Wang, C. L.; Li, Y.; Su, W. B.; Zhu, Y. H.; Li, J. C.; Mei, L. M.
2013-12-01
Thermoelectric properties of SrTiO3 ceramics, doped with different rare earth elements, were investigated in this work. It's found that the ionic radius of doping elements plays an important role on thermoelectric properties: SrTiO3 ceramics doped with large rare earth ions (such as La, Nd, and Sm) exhibit large power factors, and those doped with small ions (such as Gd, Dy, Er, and Y) exhibit low thermal conductivities. Therefore, a simple approach for enhancing the thermoelectric performance of SrTiO3 ceramics is proposed: mainly doped with large ions to obtain a large power factor and, simultaneously, slightly co-doped with small ions to obtain a low thermal conductivity. Based on this rule, Sr0.8La0.18Yb0.02TiO3 ceramics were prepared, whose ZT value at 1 023 K reaches 0.31, increasing by a factor of 19% compared with the single-doped counterpart Sr0.8La0.2TiO3 (ZT = 0.26).
a Plutonium Ceramic Target for Masha
NASA Astrophysics Data System (ADS)
Wilk, P. A.; Shaughnessy, D. A.; Moody, K. J.; Kenneally, J. M.; Wild, J. F.; Stoyer, M. A.; Patin, J. B.; Lougheed, R. W.; Ebbinghaus, B. B.; Landingham, R. L.; Oganessian, Yu. Ts.; Yeremin, A. V.; Dmitriev, S. N.
2005-09-01
We are currently developing a plutonium ceramic target for the MASHA mass separator. The MASHA separator will use a thick plutonium ceramic target capable of tolerating temperatures up to 2000 °C. Promising candidates for the target include oxides and carbides, although more research into their thermodynamic properties will be required. Reaction products will diffuse out of the target into an ion source, where they will then be transported through the separator to a position-sensitive focal-plane detector array. Experiments on MASHA will allow us to make measurements that will cement our identification of element 114 and provide for future experiments where the chemical properties of the heaviest elements are studied.
Lightweight high performance ceramic material
Nunn, Stephen D [Knoxville, TN
2008-09-02
A sintered ceramic composition includes at least 50 wt. % boron carbide and at least 0.01 wt. % of at least one element selected from the group consisting of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy Ho, Er, Tm, Yb, and Lu, the sintered ceramic composition being characterized by a density of at least 90% of theoretical density.
Wear in ceramic on ceramic type lumbar total disc replacement: effect of radial clearance.
Shankar, S; Kesavan, D
2015-01-01
The wear of the bearing surfaces of total disc replacement (TDR) is a key problem leads to reduction in the lifetime of the prosthesis and it mainly occurs due to the range of clearances of the articulating surface between the superior plate and core. The objective of this paper is to estimate the wear using finite element concepts considering the different radial clearances between the articulating surfaces of ceramic on ceramic type Lumbar Total Disc Replacement (LTDR). The finite element (FE) model was subjected to wear testing protocols according to loading profile of International Standards Organization (ISO) 18192 standards through 10 million cycles. The radial clearance value of 0.05 mm showed less volumetric wear when compared with other radial clearance values. Hence, low radial clearance values are suitable for LTDR to minimize the wear.
A constitutive law for finite element contact problems with unclassical friction
NASA Technical Reports Server (NTRS)
Plesha, M. E.; Steinetz, B. M.
1986-01-01
Techniques for modeling complex, unclassical contact-friction problems arising in solid and structural mechanics are discussed. A constitutive modeling concept is employed whereby analytic relations between increments of contact surface stress (i.e., traction) and contact surface deformation (i.e., relative displacement) are developed. Because of the incremental form of these relations, they are valid for arbitrary load-deformation histories. The motivation for the development of such a constitutive law is that more realistic friction idealizations can be implemented in finite element analysis software in a consistent, straightforward manner. Of particular interest is modeling of two-body (i.e., unlubricated) metal-metal, ceramic-ceramic, and metal-ceramic contact. Interfaces involving ceramics are of engineering importance and are being considered for advanced turbine engines in which higher temperature materials offer potential for higher engine fuel efficiency.
Yoon, Hyung-In; Yeo, In-Sung; Yi, Yang-Jin; Kim, Sung-Hun; Lee, Jai-Bong; Han, Jung-Suk
2015-01-01
The purposes of this study were to evaluate the effects of intermediate ceramics on the adhesion between the zirconia core and veneer ceramics. The polished surfaces of fully sintered Y-TZP blocks received three different treatments: (1) connector (C), (2) liner (L) or (3) wash layer (W). All the treated zirconia blocks were veneered with either (a) fluorapatite glass-ceramic (E) or (b) feldspathic porcelain (V) and divided into four groups (CE, CV, LE and WV). For the control group, the testing surfaces of metal blocks were veneered with feldspathic porcelain (VM). A half of the samples in each group (n = 21) were exposed to thermocycling, while the other half of the specimens were stored at room temperature under dry conditions. All specimens were subjected to the shear test and the failed surfaces were microscopically examined. The elemental distribution at the zirconia core/veneer interface was analyzed. The specimens in Groups CE and CV exhibited significantly greater mean bond strength values than those in Groups LE and WV, respectively (p < 0.05). However, the mean bond strengths significantly decreased in the connector groups (CE and CV) after thermal cycling (p < 0.05). The elemental analysis suggested diffusion of ceramic substances into the zirconia surface. A glass-ceramic based connector is significantly more favorable to core/veneer adhesion than the other intermediate ceramics evaluated in the study. However, thermal cycling affected the bond strength at the core/veneer interface differently according to the intermediate ceramics.
Porosity and mechanical properties of zirconium ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buyakova, S., E-mail: sbuyakova@ispms.tsc.ru; Kulkov, S.; Tomsk Polytechnic University
2015-11-17
Has been studied a porous ceramics obtained from ultra-fine powders. Porous ceramic ZrO{sub 2}(MgO), ZrO{sub 2}(Y{sub 2}O{sub 3}) powder was prepared by pressing and subsequent sintering of compacts homologous temperatures ranging from 0.63 to 0.56 during the isothermal holding duration of 1 to 5 hours. The porosity of ceramic samples was from 15 to 80%. The structure of the ceramic materials produced from plasma-sprayed ZrO{sub 2} powder was represented as a system of cell and rod structure elements. Cellular structure formed by stacking hollow powder particles can be easily seen at the images of fracture surfaces of obtained ceramics. Theremore » were three types of pores in ceramics: large cellular hollow spaces, small interparticle pores which are not filled with powder particles and the smallest pores in the shells of cells. The cells generally did not have regular shapes. The size of the interior of the cells many times exceeded the thickness of the walls which was a single-layer packing of ZrO{sub 2} grains. A distinctive feature of all deformation diagrams obtained in the experiment was their nonlinearity at low deformations which was described by the parabolic law. It was shown that the observed nonlinear elasticity for low deformation on deformation diagrams is due to mechanical instability of the cellular elements in the ceramic carcass.« less
Sakate, Daisuke; Iwazaki, Yoshiki; Kon, Yoshiaki; Yokoyama, Takaomi; Ohata, Masaki
2018-01-01
The mass transfer of additive elements during the sintering of barium titanate (BaTiO 3 ) ceramic was examined by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in the present study. An analytical sample consisting of two pellets of BaTiO 3 with different concentrations of additive elements of manganese (Mn) and holmium (Ho) as well as silicon (Si) as a sintering reagent was prepared and measured by LA-ICP-MS with small laser irradiated diameter of 10 μm to evaluate the distributions and concentrations of additive elements in order to examine their mass transfers. As results, enrichments of Mn and Si as an additive element and a sintering reagent, respectively, were observed on the adhesive surface between two BaTiO 3 pellets, even though Ho did not show a similar phenomenon. The mass transfers of additive elements of Mn and Ho were also examined, and Mn seemed to show a larger mass transfer than that of Ho during the sintering process for BaTiO 3 ceramics. The results obtained in this study shows the effectives of LA-ICP-MS for the future improvement of MLCCs.
2012-10-01
Fabrication of Thin Films and Conductive Elements Larry R. Holmes, Jr. Weapons and Materials Research Directorate, ARL...polymer composites, glass, metals, ceramics , and others. Development of the PRINT system and future work are discussed. 15. SUBJECT TERMS direct write...7 Figure 5. PRINT deposition on (left) polished aluminum sheet metal, and (right) aluminum oxide ceramic tile
Lumped element filters for electronic warfare systems
NASA Astrophysics Data System (ADS)
Morgan, D.; Ragland, R.
1986-02-01
Increasing demands which future generations of electronic warfare (EW) systems are to satisfy include a reduction in the size of the equipment. The present paper is concerned with lumped element filters which can make a significant contribution to the downsizing of advanced EW systems. Lumped element filter design makes it possible to obtain very small package sizes by utilizing classical low frequency inductive and capacitive components which are small compared to the size of a wavelength. Cost-effective, temperature-stable devices can be obtained on the basis of new design techniques. Attention is given to aspects of design flexibility, an interdigital filter equivalent circuit diagram, conditions for which the use of lumped element filters can be recommended, construction techniques, a design example, and questions regarding the application of lumped element filters to EW processing systems.
A robust spatial filtering technique for multisource localization and geoacoustic inversion.
Stotts, S A
2005-07-01
Geoacoustic inversion and source localization using beamformed data from a ship of opportunity has been demonstrated with a bottom-mounted array. An alternative approach, which lies within a class referred to as spatial filtering, transforms element level data into beam data, applies a bearing filter, and transforms back to element level data prior to performing inversions. Automation of this filtering approach is facilitated for broadband applications by restricting the inverse transform to the degrees of freedom of the array, i.e., the effective number of elements, for frequencies near or below the design frequency. A procedure is described for nonuniformly spaced elements that guarantees filter stability well above the design frequency. Monitoring energy conservation with respect to filter output confirms filter stability. Filter performance with both uniformly spaced and nonuniformly spaced array elements is discussed. Vertical (range and depth) and horizontal (range and bearing) ambiguity surfaces are constructed to examine filter performance. Examples that demonstrate this filtering technique with both synthetic data and real data are presented along with comparisons to inversion results using beamformed data. Examinations of cost functions calculated within a simulated annealing algorithm reveal the efficacy of the approach.
Ceramic Technology Project semiannual progress report, October 1992--March 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.R.
1993-09-01
This project was developed to meet the ceramic technology requirements of the OTS`s automotive technology programs. Although progress has been made in developing reliable structural ceramics, further work is needed to reduce cost. The work described in this report is organized according to the following work breakdown structure project elements: Materials and processing (monolithics [Si nitride, carbide], ceramic composites, thermal and wear coatings, joining, cost effective ceramic machining), materials design methodology (contact interfaces, new concepts), data base and life prediction (structural qualification, time-dependent behavior, environmental effects, fracture mechanics, nondestructive evaluation development), and technology transfer.
Yoon, Yeojoon; Jung, Youmi; Kwon, Minhwan; Cho, Eunha; Kang, Joon-Wun
2013-01-01
Abstract Effects of various electrodes and prefiltration to minimize disinfection byproducts (DBPs) in electrochemical water disinfection was evaluated. The target microorganism, Escherichia coli O157:H7, was effectively inactivated even applying a solar-charged storage battery for the electrolysis process. Extent of microbial inactivation decreased with lower water temperature and higher pH in the free chlorine disinfection system. The RuO2/Ti electrode was most efficient because it produced the lowest concentration of chlorate and the highest generation of free chlorine. Prefiltration using a ceramic filter inhibited formation of halogenated DBPs because it removed precursors of DBPs. For safe point-of-use water treatment, the use of a hybrid prefiltration stage with the electrolysis system is strongly recommended to reduce risks from DBPs. The system is particularly suited to use in developing regions. PMID:24381482
NASA Astrophysics Data System (ADS)
Jamil, N. H.; Ibrahim, W. M. A. W.; Abdullah, M. M. A. B.; Sandu, A. V.; Tahir, M. F. M.
2017-06-01
Porous ceramic nowadays has been investigated for a variety of its application such as filters, lightweight structural component and others due to their specific properties such as high surface area, stability and permeability. Besides, it has the properties of low thermal conductivity. Various formation techniques making these porous ceramic properties can be tailored or further fine-tuned to obtain the optimum characteristic. Porous materials also one of the good candidate for absorption properties. Conventional construction materials are not design to have good water absorption and retention that lead to the poor performance on these criteria. Temperature is a major driving force for moisture movement and influences sorption characteristics of many constructions materials. The effect of elevated temperatures on the water absorption coefficient and retention remain as critical issue that need to be investigated. Therefore, this paper will review the process parameters in fabricating porous ceramic for absorption properties.
Trace and surface analysis of ceramic layers of solid oxide fuel cells by mass spectrometry.
Becker, J S; Breuer, U; Westheide, J; Saprykin, A I; Holzbrecher, H; Nickel, H; Dietze, H J
1996-06-01
For the trace analysis of impurities in thick ceramic layers of a solid oxide fuel cell (SOFC) sensitive solid-state mass spectrometric methods, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and radiofrequency glow discharge mass spectrometry (rf-GDMS) have been developed and used. In order to quantify the analytical results of LA-ICP-MS, the relative sensitivity coefficients of elements in a La(0.6)Sr(0.35)MnO(3) matrix have been determined using synthetic standards. Secondary ion mass spectrometry (SIMS) - as a surface analytical method - has been used to characterize the element distribution and diffusion profiles of matrix elements on the interface of a perovskite/Y-stabilized ZrO(2) layer. The application of different mass spectrometric methods for process control in the preparation of ceramic layers for the SOFC is described.
NASA Astrophysics Data System (ADS)
Stefanovsky, S. V.; Stefanovsky, O. I.; Kadyko, M. I.; Nikonov, B. S.
2018-03-01
Sodium aluminum (iron) phosphate glass ceramics containing of up to 20 wt.% rare earth (RE) oxides simulating pyroprocessing waste were produced by melting at 1250 °C followed by either quenching or slow cooling to room temperature. The iron-free glass-ceramics were composed of major glass and minor phosphotridymite and monazite. The iron-bearing glass-ceramics were composed of major glass and minor monazite and Na-Al-Fe orthophosphate at low waste loadings (5-10 wt.%) and major orthophosphate and minor monazite as well as interstitial glass at high waste loadings (15-20 wt.%). Slowly cooled samples contained higher amount of crystalline phases than quenched ones. Monazite is major phase for REs. Leach rates from the materials of major elements (Na, Al, Fe, P) are 10-5-10-7 g cm-2 d-1, RE elements - lower than 10-5 g cm-2 d-1.
NASA Astrophysics Data System (ADS)
Li, Bao-Ping; Zhao, Jian-Xin; Greig, Alan; Collerson, Kenneth D.; Zhuo, Zhen-Xi; Feng, Yue-Xin
2005-11-01
We compare the trace element and Sr isotopic compositions of stoneware bodies made in Yaozhou and Jizhou to characterise these Chinese archaeological ceramics and examine the potential of Sr isotopes in provenance studies. Element concentrations determined by ICP-MS achieve distinct characterisation for Jizhou samples due to their restricted variation, yet had limited success with Yaozhou wares because of their large variability. In contrast, 87Sr/86Sr ratios in Yaozhou samples have a very small variation and are all significantly lower than those of Jizhou samples, which show a large variation and cannot be well characterised with Sr isotopes. Geochemical interpretation reveals that 87Sr/86Sr ratios will have greater potential to characterise ceramics made of low Rb/Sr materials such as kaolin clay, yet will show larger variations in ceramics made of high Rb/Sr materials such as porcelain stone.
A Plutonium Ceramic Target for MASHA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilk, P A; Shaughnessy, D A; Moody, K J
2004-07-06
We are currently developing a plutonium ceramic target for the MASHA mass separator. The MASHA separator will use a thick plutonium ceramic target capable of tolerating temperatures up to 2000 C. Promising candidates for the target include oxides and carbides, although more research into their thermodynamic properties will be required. Reaction products will diffuse out of the target into an ion source, where they will then be transported through the separator to a position-sensitive focal-plane detector array. Experiments on MASHA will allow us to make measurements that will cement our identification of element 114 and provide for future experiments wheremore » the chemical properties of the heaviest elements are studied.« less
Hyperspectral Microwave Atmospheric Sounder (HyMAS) - New Capability in the CoSMIR-CoSSIR Scanhead
NASA Technical Reports Server (NTRS)
Hilliard, Lawrence; Racette, Paul; Blackwell, William; Galbraith, Christopher; Thompson, Erik
2015-01-01
Lincoln Laboratory and NASA's Goddard Space Flight Center have teamed to re-use an existing instrument platform, the CoSMIR/CoSSIR system for atmospheric sounding, to develop a new capability in hyperspectral filtering, data collection, and display. The volume of the scanhead accomodated an intermediate frequency processor(IFP), that provides the filtering and digitization of the raw data and the interoperable remote component (IRC) adapted to CoSMIR, CoSSIR, and HyMAS that stores and archives the data with time tagged calibration and navigation data. The first element of the work is the demonstration of a hyperspectral microwave receiver subsystem that was recently shown using a comprehensive simulation study to yield performance that substantially exceeds current state-of-the-art. Hyperspectral microwave sounders with approximately 100 channels offer temperature and humidity sounding improvements similar to those obtained when infrared sensors became hyperspectral, but with the relative insensitivity to clouds that characterizes microwave sensors. Hyperspectral microwave operation is achieved using independent RF antenna/receiver arrays that sample the same area/volume of the Earth's surface/atmosphere at slightly different frequencies and therefore synthesize a set of dense, finely spaced vertical weighting functions. The second, enabling element of the proposal is the development of a compact 52-channel Intermediate Frequency processor module. A principal challenge in the development of a hyperspectral microwave system is the size of the IF filter bank required for channelization. Large bandwidths are simultaneously processed, thus complicating the use of digital back-ends with associated high complexities, costs, and power requirements. Our approach involves passive filters implemented using low-temperature co-fired ceramic (LTCC) technology to achieve an ultra-compact module that can be easily integrated with existing radio frequency front-end technology. This IF processor is universally applicable to other microwave sensing missions requiring compact IF spectrometry. The data include 52 operational channels with low IF module volume (less than 100 cubic centimeters) and mass (less than 300 grams) and linearity better than 0.3 percent over a 330,000 dynamic range.
Study of a micro chamber quadrupole mass spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Jinchan; Zhang Xiaobing; Mao Fuming
The design of a micro chamber quadrupole mass spectrometer (MCQMS) having a small total volume of only 20 cm{sup 3}, including Faraday cup ion detector and ion source, is described. This MCQMS can resist a vacuum baking temperature of 400-500 deg. C. The quadrupole elements with a hyperbolic surface are made of a ceramic material and coated with a thin metal layer. The quadrupole mass filter has a field radius of 3 mm and a length of 100 mm. Prototypes of this new MCQMS can detect a minimum partial pressure of 10{sup -8} Pa, have a peak width of {delta}M=1more » at 10% peak height from mass number 1 to 60, and show an excellent long-term stability. The new MCQMS is intended to be used in residual gas analyses of electron devices during a mutual pumping and baking process.« less
A miniature filter on a suspended substrate with a two-sided pattern of strip conductors
NASA Astrophysics Data System (ADS)
Belyaev, B. A.; Voloshin, A. S.; Bulavchuk, A. S.; Galeev, R. G.
2016-06-01
A miniature bandpass filter of new design with original stripline resonators on suspended substrate has been studied. The proposed filters of third to sixth order are distinguished for their high frequency-selective properties and mush smaller size in comparison to analogs. It is shown that a broad stopband extending above three-fold central bandpass frequency is determined by weak coupling of resonators at resonances of the second and third modes. A prototype sixth-order filter with a central frequency of 1 GHz, manufactured on a ceramic substrate with dielectric permittivity ɛ = 80, has contour dimensions of 36.6 × 4.8 × 0.5 mm3. Parametric synthesis of the filter, based on electrodynamic 3D model simulations, showed quite good agreement with the results of measurements.
Allabashi, Roza; Arkas, Michael; Hörmann, Gerold; Tsiourvas, Dimitris
2007-01-01
Triethoxysilylated derivatives of poly(propylene imine) dendrimer, polyethylene imine and polyglycerol hyperbranched polymers and beta-cyclodextrin have been synthesized and characterized. These compounds impregnated ceramic membranes made from Al(2)O(3), SiC and TiO(2) and subsequently sol-gel reaction led to their polymerization and chemical bond formation with the ceramic substrates. The resulting organic-inorganic filters were tested for the removal of a variety of organic pollutants from water. They were found to remove of polycyclic aromatic hydrocarbons (up to 99%), of monocyclic aromatic hydrocarbons (up to 93%), trihalogen methanes (up to 81%), pesticides (up to 43%) and methyl-tert-butyl ether (up to 46%).
Maghami, Ebrahim; Homaei, Ehsan; Farhangdoost, Khalil; Pow, Edmond Ho Nang; Matinlinna, Jukka Pekka; Tsoi, James Kit-Hon
2018-05-03
The aim of this study was to investigate and quantify the effect of preparation design parameters on a premolar restored with two different CAD/CAM ceramic crowns by three-dimensional finite element analysis (FEA). A restored human first premolar was digitized by a micro-CT scanner and a 3D model was created by a medical image processing software (Mimics). Following segmentation, dentine and ceramic were extracted by a surface meshing software (3-matic). Models with different preparation designs with three convergence angles (6°, 12° and 20°) and two preparation heights (3.1mm and 4.1mm) were produced. Mesh generation for models was performed in IA-FEMesh software with a lithium disilicate glass ceramic (LD, E=95.9GPa) and a polymer-infiltrated ceramic (PIC, E=30.1GPa) as the restorative materials. A 5-mm diameter stainless steel hemisphere was employed as an indenter. Twelve models were analyzed numerically in Abaqus™. The results indicated that preparation height was found to be a major factor affecting stress distribution in different components. In all models, the maximum principal stress of the ceramic crowns was found in contact area against the indenter. This stress was lesser in the longer abutment than the shorter one and it was greater for LD ceramic. Convergence angle had limited effect on stress distribution of ceramic crown in all models. The preparation height appeared to play a more important role in the stress distribution of ceramic crown than the convergence angle. Copyright © 2018 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Ceramic Adhesive for High Temperatures
NASA Technical Reports Server (NTRS)
Stevens, Everett G.
1987-01-01
Fused-silica/magnesium-phosphate adhesive resists high temperatures and vibrations. New adhesive unaffected by extreme temperatures and vibrations. Assuring direct bonding of gap filters to tile sidewalls, adhesive obviates expensive and time-consuming task of removal, treatment, and replacement of tiles.
Ion Exchange Strengthening of a Leucite-Reinforced Dental Ceramic
1997-07-11
internal surface, due to internal surface flaws (Kelly et, al., 1989; Kelly et al., 1990). Finite - element -stress analysis reveals that the occlusal...associated with the use of metal substructures exist. Numerous all-ceramic systems have been introduced, however strengths equivalent to metal-ceramic...yielded significantly higher flexural strength values than potassium exchange at similar treatment conditions (Student Newman-Keuls analysis , p < 0.05
History of fast reactor fuel development
NASA Astrophysics Data System (ADS)
Kittel, J. H.; Frost, B. R. T.; Mustelier, J. P.; Bagley, K. Q.; Crittenden, G. C.; Van Dievoet, J.
1993-09-01
The first fast breeder reactors, constructed in the 1945-1960 time period, used metallic fuels composed of uranium, plutonium, or their alloys. They were chosen because most existing reactor operating experience had been obtained on metallic fuels and because they provided the highest breeding ratios. Difficulties in obtaining adequate dimensional stability in metallic fuel elements under conditions of high fuel burnup led in the 1960s to the virtual worldwide choice of ceramic fuels. Although ceramic fuels provide lower breeding performance, this objective is no longer an important consideration in most national programs. Mixed uranium and plutonium dioxide became the ceramic fuel that has received the widest use. The more advanced ceramic fuels, mixed uranium and plutonium carbides and nitrides, continue under development. More recently, metal fuel elements of improved design have joined ceramic fuels in achieving goal burnups of 15 to 20 percent. Low-swelling fuel cladding alloys have also been continuously developed to deal with the unexpected problem of void formation in stainless steels subjected to fast neutron irradiation, a phenomenon first observed in the 1960s.
Anusavice, Kenneth J; Jadaan, Osama M; Esquivel-Upshaw, Josephine F
2013-11-01
Recent reports on bilayer ceramic crown prostheses suggest that fractures of the veneering ceramic represent the most common reason for prosthesis failure. The aims of this study were to test the hypotheses that: (1) an increase in core ceramic/veneer ceramic thickness ratio for a crown thickness of 1.6mm reduces the time-dependent fracture probability (Pf) of bilayer crowns with a lithium-disilicate-based glass-ceramic core, and (2) oblique loading, within the central fossa, increases Pf for 1.6-mm-thick crowns compared with vertical loading. Time-dependent fracture probabilities were calculated for 1.6-mm-thick, veneered lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation in the central fossa area. Time-dependent fracture probability analyses were computed by CARES/Life software and finite element analysis, using dynamic fatigue strength data for monolithic discs of a lithium-disilicate glass-ceramic core (Empress 2), and ceramic veneer (Empress 2 Veneer Ceramic). Predicted fracture probabilities (Pf) for centrally loaded 1.6-mm-thick bilayer crowns over periods of 1, 5, and 10 years are 1.2%, 2.7%, and 3.5%, respectively, for a core/veneer thickness ratio of 1.0 (0.8mm/0.8mm), and 2.5%, 5.1%, and 7.0%, respectively, for a core/veneer thickness ratio of 0.33 (0.4mm/1.2mm). CARES/Life results support the proposed crown design and load orientation hypotheses. The application of dynamic fatigue data, finite element stress analysis, and CARES/Life analysis represent an optimal approach to optimize fixed dental prosthesis designs produced from dental ceramics and to predict time-dependent fracture probabilities of ceramic-based fixed dental prostheses that can minimize the risk for clinical failures. Copyright © 2013 Academy of Dental Materials. All rights reserved.
Anusavice, Kenneth J.; Jadaan, Osama M.; Esquivel–Upshaw, Josephine
2013-01-01
Recent reports on bilayer ceramic crown prostheses suggest that fractures of the veneering ceramic represent the most common reason for prosthesis failure. Objective The aims of this study were to test the hypotheses that: (1) an increase in core ceramic/veneer ceramic thickness ratio for a crown thickness of 1.6 mm reduces the time-dependent fracture probability (Pf) of bilayer crowns with a lithium-disilicate-based glass-ceramic core, and (2) oblique loading, within the central fossa, increases Pf for 1.6-mm-thick crowns compared with vertical loading. Materials and methods Time-dependent fracture probabilities were calculated for 1.6-mm-thick, veneered lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation in the central fossa area. Time-dependent fracture probability analyses were computed by CARES/Life software and finite element analysis, using dynamic fatigue strength data for monolithic discs of a lithium-disilicate glass-ceramic core (Empress 2), and ceramic veneer (Empress 2 Veneer Ceramic). Results Predicted fracture probabilities (Pf) for centrally-loaded 1,6-mm-thick bilayer crowns over periods of 1, 5, and 10 years are 1.2%, 2.7%, and 3.5%, respectively, for a core/veneer thickness ratio of 1.0 (0.8 mm/0.8 mm), and 2.5%, 5.1%, and 7.0%, respectively, for a core/veneer thickness ratio of 0.33 (0.4 mm/1.2 mm). Conclusion CARES/Life results support the proposed crown design and load orientation hypotheses. Significance The application of dynamic fatigue data, finite element stress analysis, and CARES/Life analysis represent an optimal approach to optimize fixed dental prosthesis designs produced from dental ceramics and to predict time-dependent fracture probabilities of ceramic-based fixed dental prostheses that can minimize the risk for clinical failures. PMID:24060349
Ali, Asmaa; Ahmed, Abdelkader; Gad, Ali
2017-01-01
This study aims to investigate the ability of low cost ceramic membrane filtration in removing three common heavy metals namely; Pb 2+ , Cu 2+ , and Cd 2+ from water media. The work includes manufacturing ceramic membranes with dimensions of 15 by 15 cm and 2 cm thickness. The membranes were made from low cost materials of local clay mixed with different sawdust percentages of 0.5%, 2.0%, and 5.0%. The used clay was characterized by X-ray diffraction (XRD) and X-ray fluorescence analysis. Aqueous solutions of heavy metals were prepared in the laboratory and filtered through the ceramic membranes. The influence of the main parameters such as pH, initial driving pressure head, and concentration of heavy metals on their removal efficiency by ceramic membranes was investigated. Water samples were collected before and after the filtration process and their heavy metal concentrations were determined by chemical analysis. Moreover, a microstructural analysis using scanning electronic microscope (SEM) was performed on ceramic membranes before and after the filtration process. The chemical analysis results showed high removal efficiency up to 99% for the concerned heavy metals. SEM images approved these results by showing adsorbed metal ions on sides of the internal pores of the ceramic membranes.
Campos, Roberto Elias; Soares, Carlos José; Quagliatto, Paulo S; Soares, Paulo Vinícius; de Oliveira, Osmir Batista; Santos-Filho, Paulo Cesar Freitas; Salazar-Marocho, Susana M
2011-08-01
This in vitro study investigated the null hypothesis that metal-free crowns induce fracture loads and mechanical behavior similar to metal ceramic systems and to study the fracture pattern of ceramic crowns under compressive loads using finite element and fractography analyses. Six groups (n = 8) with crowns from different systems were compared: conventional metal ceramic (Noritake) (CMC); modified metal ceramic (Noritake) (MMC); lithium disilicate-reinforced ceramic (IPS Empress II) (EMP); leucite-reinforced ceramic (Cergogold) (CERG); leucite fluoride-apatite reinforced ceramic (IPS d.Sign) (SIGN); and polymer crowns (Targis) (TARG). Standardized crown preparations were performed on bovine roots containing NiCr metal dowels and resin cores. Crowns were fabricated using the ceramics listed, cemented with dual-cure resin cement, and submitted to compressive loads in a mechanical testing machine at a 0.5-mm/min crosshead speed. Data were submitted to one-way ANOVA and Tukey tests, and fractured specimens were visually inspected under a stereomicroscope (20×) to determine the type of fracture. Maximum principal stress (MPS) distributions were calculated using finite element analysis, and fracture origin and the correlation with the fracture type were determined using fractography. Mean values of fracture resistance (N) for all groups were: CMC: 1383 ± 298 (a); MMC: 1691 ± 236 (a); EMP: 657 ± 153 (b); CERG: 546 ± 149 (bc); SIGN: 443 ± 126 (c); TARG: 749 ± 113 (b). Statistical results showed significant differences among groups (p < 0.05) represented by different lowercase letters. Metal ceramic crowns presented fracture loads significantly higher than the others. Ceramic specimens presented high incidence of fractures involving either the core or the tooth, and all fractures of polymer crown specimens involved the tooth in a catastrophic way. Based on stress and fractographic analyses it was determined that fracture occurred from the occlusal to the cervical direction. Within the limitations of this study, the results indicated that the use of ceramic and polymer crowns without a core reinforcement should be carefully evaluated before clinical use due to the high incidence of failure with tooth involvement. This mainly occurred for the polymer crown group, although the fracture load was higher than normal occlusal forces. High tensile stress concentrations were found around and between the occlusal loading points. Fractographic analysis indicated fracture originating from the load point and propagating from the occlusal surface toward the cervical area, which is the opposite direction of that observed in clinical situations. © 2011 by The American College of Prosthodontists.
Morris, Jamae Fontain; Murphy, Jennifer; Fagerli, Kirsten; Schneeberger, Chandra; Jaron, Peter; Moke, Fenny; Juma, Jane; Ochieng, J Ben; Omore, Richard; Roellig, Dawn; Xiao, Lihua; Priest, Jeffrey W; Narayanan, Jothikumar; Montgomery, Joel; Hill, Vince; Mintz, Eric; Ayers, Tracy L; O'Reilly, Ciara E
2018-04-02
Cryptosporidium is a leading cause of diarrhea among Kenyan infants. Ceramic water filters (CWFs) are used for household water treatment. We assessed the impact of CWFs on diarrhea, cryptosporidiosis prevention, and water quality in rural western Kenya. A randomized, controlled intervention trial was conducted in 240 households with infants 4-10 months old. Twenty-six weekly household surveys assessed infant diarrhea and health facility visits. Stool specimens from infants with diarrhea were examined for Cryptosporidium . Source water, filtered water, and filter retentate were tested for Cryptosporidium and/or microbial indicators. To estimate the effect of CWFs on health outcomes, logistic regression models using generalized estimating equations were performed; odds ratios (ORs) and 95% confidence intervals (CIs) are reported. Households reported using surface water (36%), public taps (29%), or rainwater (17%) as their primary drinking water sources, with no differences in treatment groups. Intervention households reported less diarrhea (7.6% versus 8.9%; OR: 0.86 [0.64-1.16]) and significantly fewer health facility visits for diarrhea (1.0% versus 1.9%; OR: 0.50 [0.30-0.83]). In total, 15% of intervention and 12% of control stools yielded Cryptosporidium ( P = 0.26). Escherichia coli was detected in 93% of source water samples; 71% of filtered water samples met World Health Organization recommendations of < 1 E. coli /100 mL. Cryptosporidium was not detected in source water and was detected in just 2% of filter rinses following passage of large volumes of source water. Water quality was improved among CWF users; however, the short study duration and small sample size limited our ability to observe reductions in cryptosporidiosis.
Moving Bed Granular Bed Filter Development Program. Topical report, September 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haas, J.C.; Prudhomme, J.W.; Wilson, K.W.
1994-09-01
Five test arrangements have been designed to support the Granular Bed Filter Development Program as defined in the Test Plan. The first arrangement is a 3.6 ft. diameter half filter, with a glass covering along the cross section to allow visual examination of the granular alumina material passing through the filter. The second test arrangement is a 3.6 ft diameter full size filter having refractory lining to simulate actual surface roughness conditions. The third test arrangement will examine filter geometry scale up by testing a 6.0 ft. diameter full size filter. The fourth Test Arrangement consists of a small 12more » inch diameter fluidizer to measure the minimum fluidization velocity of the 7 m (approx. size) alumina material to be used in the filter assemblies. The last Test Unit is used to evaluation relative abrasion characteristics of potential refractory and ceramic materials to be installed in high abrasion areas in the pneumatic transport piping.« less
Meade, Rhiana D; Murray, Anna L; Mittelman, Anjuliee M; Rayner, Justine; Lantagne, Daniele S
2017-02-01
Locally manufactured ceramic water filters are one effective household drinking water treatment technology. During manufacturing, silver nanoparticles or silver nitrate are applied to prevent microbiological growth within the filter and increase bacterial removal efficacy. Currently, there is no recommendation for manufacturers to test silver concentrations of application solutions or filtered water. We identified six commercially available silver test strips, kits, and meters, and evaluated them by: (1) measuring in quintuplicate six samples from 100 to 1,000 mg/L (application range) and six samples from 0.0 to 1.0 mg/L (effluent range) of silver nanoparticles and silver nitrate to determine accuracy and precision; (2) conducting volunteer testing to assess ease-of-use; and (3) comparing costs. We found no method accurately detected silver nanoparticles, and accuracy ranged from 4 to 91% measurement error for silver nitrate samples. Most methods were precise, but only one method could test both application and effluent concentration ranges of silver nitrate. Volunteers considered test strip methods easiest. The cost for 100 tests ranged from 36 to 1,600 USD. We found no currently available method accurately and precisely measured both silver types at reasonable cost and ease-of-use, thus these methods are not recommended to manufacturers. We recommend development of field-appropriate methods that accurately and precisely measure silver nanoparticle and silver nitrate concentrations.
A new route to the stable capture and final immobilization of radioactive cesium.
Yang, Jae Hwan; Han, Ahreum; Yoon, Joo Young; Park, Hwan-Seo; Cho, Yung-Zun
2017-10-05
Radioactive Cs released from damaged fuel materials in the event of nuclear accidents must be controlled to prevent the spreading of hazardous Cs into the environment. This study describes a simple and novel process to safely manage Cs gas by capturing it within ceramic filters and converting it into monolithic waste forms. The results of Cs trapping tests showed that CsAlSiO 4 was a reaction product of gas-solid reactions between Cs gas and our ceramic filters. Monolithic waste forms were readily prepared from the Cs-trapping filters by the addition of a glass frit followed by thermal treatment at 1000°C for 3h. Major findings revealed that the Cs-trapping filters could be added up to 50wt% to form durable monoliths. In 30-50wt% of waste fraction, CsAlSiO 4 was completely converted to pollucite (CsAlSi 2 O 6 ), which is a potential phase for radioactive Cs due to its excellent thermal and chemical stability. A static leaching test for 28 d confirmed the excellent chemical resistance of the pollucite structure, with a Cs leaching rate as low as 7.21×10 -5 gm -2 /d. This simple scheme of waste processing promises a new route for radioactive Cs immobilization by synthesizing pollucite-based monoliths. Copyright © 2017 Elsevier B.V. All rights reserved.
77 FR 7523 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-13
... with 2 flow metering systems equipped with upgraded water absorbing filter elements. This AD was prompted by reports of partial blockage of a certain water absorbing filter element. We are issuing this AD to prevent partial blockage of a certain water absorbing filter element, which could lead to...
Murphy, Heather M; McBean, Edward A; Farahbakhsh, Khosrow
2010-12-01
Point-of-use (POU) technologies have been proposed as solutions for meeting the Millennium Development Goal (MDG) for safe water. They reduce the risk of contamination between the water source and the home, by providing treatment at the household level. This study examined two POU technologies commonly used around the world: BioSand and ceramic filters. While the health benefits in terms of diarrhoeal disease reduction have been fairly well documented for both technologies, little research has focused on the ability of these technologies to treat other contaminants that pose health concerns, including the potential for formation of contaminants as a result of POU treatment. These technologies have not been rigorously tested to see if they meet World Health Organization (WHO) drinking water guidelines. A study was developed to evaluate POU BioSand and ceramic filters in terms of microbiological and chemical quality of the treated water. The following parameters were monitored on filters in rural Cambodia over a six-month period: iron, manganese, fluoride, nitrate, nitrite and Escherichia coli. The results revealed that these technologies are not capable of consistently meeting all of the WHO drinking water guidelines for these parameters.
Abebe, Lydia Shawel; Smith, James A; Narkiewicz, Sophia; Oyanedel-Craver, Vinka; Conaway, Mark; Singo, Alukhethi; Amidou, Samie; Mojapelo, Paul; Brant, Julia; Dillingham, Rebecca
2014-06-01
Waterborne pathogens present a significant threat to people living with the human immunodeficiency virus (PLWH). This study presents a randomized, controlled trial that evaluates whether a household-level ceramic water filter (CWF) intervention can improve drinking water quality and decrease days of diarrhea in PLWH in rural South Africa. Seventy-four participants were randomized in an intervention group with CWFs and a control group without filters. Participants in the CWF arm received CWFs impregnated with silver nanoparticles and associated safe-storage containers. Water and stool samples were collected at baseline and 12 months. Diarrhea incidence was self-reported weekly for 12 months. The average diarrhea rate in the control group was 0.064 days/week compared to 0.015 days/week in the intervention group (p < 0.001, Mann-Whitney). Median reduction of total coliform bacteria was 100% at enrollment and final collection. CWFs are an acceptable technology that can significantly improve the quality of household water and decrease days of diarrhea for PLWH in rural South Africa.
Do low-cost ceramic water filters improve water security in rural South Africa?
NASA Astrophysics Data System (ADS)
Lange, Jens; Materne, Tineke; Grüner, Jörg
2016-10-01
This study examined the performance of a low-cost ceramic candle filter system (CCFS) for point of use (POU) drinking water treatment in the village of Hobeni, Eastern Cape Province, South Africa. CCFSs were distributed in Hobeni and a survey was carried out among their users. The performance of 51 CCFSs was evaluated by dip slides and related to human factors. Already after two-thirds of their specified lifetime, none of the distributed CCFSs produced water without distinct contamination, and more than one-third even deteriorated in hygienic water quality. Besides the water source (springs were preferable compared to river or rain water), a high water throughput was the dominant reason for poor CCFS performance. A stepwise laboratory test documented the negative effects of repeated loading and ambient field temperatures. These findings suggest that not every CCFS type per se guarantees improved drinking water security and that the efficiency of low-cost systems should continuously be monitored. For this purpose, dip slides were found to be a cost-efficient alternative to standard laboratory tests. They consistently underestimated microbial counts but can be used by laypersons and hence by the users themselves to assess critical contamination of their filter systems.
Demont, M; Boutakhrit, K; Fekete, V; Bolle, F; Van Loco, J
2012-03-01
The effect of pH, nature of acid and temperature on trace element migration from ceramic ware treated with 18 commercially available glazes was studied. Besides of the well-studied lead and cadmium, migration of other toxic and non toxic elements such as aluminum, boron, barium, cobalt, chrome, copper, iron, lithium, magnesium, manganese, nickel, antimony, tin, strontium, titanium, vanadium, zinc and zirconium was investigated in order to evaluate their potential health hazards. Trace element concentrations were determined with Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). This study suggests that there is indeed a health risk concerning the possible migration of other elements than lead and cadmium. At low pH (2
Applications of Polymer Nanocomposites
NASA Astrophysics Data System (ADS)
Meth, Jeffrey
Polymer nanocomposites have been developed for application in several areas. This talk will provide three vignettes of applications that have been explored. Nanoporous ceramics are free standing ceramic objects that can be used for filtration. The pore size distribution is in the proper target range for filtering viruses from medicines in solution. Filled polyimides are useful for improving the ultimate electrical properties of insulating films during corona exposure. The advantages and pitfalls of this approach will be detailed. Exfoliated laponite dispersed into ethylene copolymers reduces creep while maintaining transparency, which is applicable to packaging.
Jia, Xingyu; Liu, Zhigang; Tao, Long; Deng, Zhongwen
2017-10-16
Frequency scanning interferometry (FSI) with a single external cavity diode laser (ECDL) and time-invariant Kalman filtering is an effective technique for measuring the distance of a dynamic target. However, due to the hysteresis of the piezoelectric ceramic transducer (PZT) actuator in the ECDL, the optical frequency sweeps of the ECDL exhibit different behaviors, depending on whether the frequency is increasing or decreasing. Consequently, the model parameters of Kalman filter appear time varying in each iteration, which produces state estimation errors with time-invariant filtering. To address this, in this paper, a time-varying Kalman filter is proposed to model the instantaneous movement of a target relative to the different optical frequency tuning durations of the ECDL. The combination of the FSI method with the time-varying Kalman filter was theoretically analyzed, and the simulation and experimental results show the proposed method greatly improves the performance of dynamic FSI measurements.
Stephens, Jr., John J.; Hosking, F. Michael; Yost, Frederick G.
2003-12-16
A binary allow braze composition has been prepared and used in a bonded article of ceramic-ceramic and ceramic-metal materials. The braze composition comprises greater than approximately 95 wt % silver, greater than approximately 2 wt % hafnium and less than approximately 4.1 wt % hafnium, and less than approximately 0.2 wt % trace elements. The binary braze alloy is used to join a ceramic material to another ceramic material or a ceramic material, such as alumina, quartz, aluminum nitride, silicon nitride, silicon carbide, and mullite, to a metal material, such as iron-based metals, cobalt-based metals, nickel-based metals, molybdenum-based metals, tungsten-based metals, niobium-based metals, and tantalum-based metals. A hermetic bonded article is obtained with a strength greater than 10,000 psi.
Stelman, D.
1988-06-30
A contactor/filter arrangement for removing particulate contaminants from a gaseous stream is described. The filter includes a housing having a substantially vertically oriented granular material retention member with upstream and downstream faces, a substantially vertically oriented microporous gas filter element, wherein the retention member and the filter element are spaced apart to provide a zone for the passage of granular material therethrough. A gaseous stream containing particulate contaminants passes through the gas inlet means as well as through the upstream face of the granular material retention member, passing through the retention member, the body of granular material, the microporous gas filter element, exiting out of the gas outlet means. A cover screen isolates the filter element from contact with the moving granular bed. In one embodiment, the granular material is comprised of porous alumina impregnated with CuO, with the cover screen cleaned by the action of the moving granular material as well as by backflow pressure pulses. 6 figs.
Glass ceramic obtained by tailings and tin mine waste reprocessing from Llallagua, Bolivia
NASA Astrophysics Data System (ADS)
Arancibia, Jony Roger Hans; Villarino, Cecilia; Alfonso, Pura; Garcia-Valles, Maite; Martinez, Salvador; Parcerisa, David
2014-05-01
In Bolivia Sn mining activity produces large tailings of SiO2-rich residues. These tailings contain potentially toxic elements that can be removed into the surface water and produce a high environmental pollution. This study determines the thermal behaviour and the viability of the manufacture of glass-ceramics from glass. The glass has been obtained from raw materials representative of the Sn mining activities from Llallagua (Bolivia). Temperatures of maximum nucleation rate (Tn) and crystallization (Tcr) were calculated from the differential thermal analyses. The final mineral phases were determined by X-ray diffraction and textures were observed by scanning electron microscopy. Crystalline phases are nefeline occurring with wollastonite or plagioclase. Tn for nepheline is between 680 ºC and 700 ºC, for wollastonite, 730 ºC and for plagioclase, 740 ºC. Tcr for nefeline is between 837 and 965 ºC; for wollastonite, 807 ºC and for plagioclase, 977 ºC. In order to establish the mechanical characteristics and efficiency of the vitrification process in the fixation of potentially toxic elements the resistance to leaching and micro-hardness were determined. The obtained contents of the elements leached from the glass ceramic are well below the limits established by the European legislation. So, these analyses confirm that potentially toxic elements remain fixed in the structure of mineral phases formed in the glass-ceramic process. Regarding the values of micro-hardness results show that they are above those of a commercial glass. The manufacture of glass-ceramics from mining waste reduces the volume of tailings produced for the mining industry and, in turn enhances the waste, transforming it into a product with industrial application. Acknowledgements: This work was partly financed by the project AECID: A3/042750/11, and the SGR 2009SGR-00444.
Shielded regeneration heating element for a particulate filter
Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI
2011-01-04
An exhaust system includes a particulate filter (PF) that is disposed downstream from an engine. The PF filters particulates within an exhaust from the engine. A heating element heats particulate matter in the PF. A catalyst substrate or a flow converter is disposed upstream from said heating element. The catalyst substrate oxidizes the exhaust prior to reception by the heating element. The flow converter converts turbulent exhaust flow to laminar exhaust flow prior to reception by the heating element.
Pre-Hispanic ceramics analyzed using PIXE and radiographic techniques
NASA Astrophysics Data System (ADS)
Lima, S. C.; Rizzutto, M. A.; Added, N.; Barbosa, M. D. L.; Trindade, G. F.; Fleming, M. I. D. A.
2011-12-01
Ceramics objects are the most common artifacts found during excavation of archaeological sites and often depicts cultural habits and manufacturing technologies of the culture. The determination of macroscopic and microscopic characteristics of the ceramic objects such as the ceramic porosity, addition of tempers in the clay, main chemical components and the trace elements present in the ceramic can reveal many aspects about the manufacturing processes used by the culture, its degree of development, the provenance of the raw materials and the exchange networks. Also the radiography can help to investigate the manufactured processes, the size of the tempers used and the conservation status of the artifacts. In this present work two non-destructive techniques, radiography and PIXE (Particle Induced X-ray Emission) were used to characterize one set of thirty-six pre-Hispanic ceramic pieces from the Chimu Culture conserved in the Museu de Arqueologia e Etnologia (MAE/USP). The PIXE analyses performed in the external beam setup at LAMFI (Laboratório de Análise de Materiais por Feixes Iônicos) allowed measure the principal chemical elements such as Al, Si, K, Ti, Fe and Ca, present in this group of pieces. X-ray imagings allowed identify the manufacture processes, the granularity of the tempers used, as well as the similarity and the differences between the pieces studied.
Arkas, Michael; Allabashi, Roza; Tsiourvas, Dimitris; Mattausch, Eva-Maria; Perfler, Reinhard
2006-04-15
Long-alkyl chain functionalized poly(propylene imine) dendrimer, poly(ethylene imine) hyperbranched polymer, and beta-cyclodextrin derivatives, which are completely insoluble in water, have the property of encapsulating organic pollutants from water. Ceramic porous filters can be impregnated with these compounds resulting in hybrid organic/ inorganic filter modules. These hybrid filter modules were tested for the effective purification of water, by continuous filtration experiments, employing a variety of water pollutants. It has been established that polycyclic aromatic hydrocarbons (PAHs) can be removed very efficiently (more than 95%), and final concentrations of several ppb (microg/ L) are easily obtained. Representatives of the pollutant group of trihalogen methanes (THMs), monoaromatic hydrocarbons (BTX), and pesticides (simazine) can also be removed (>80%), although the filters are saturated considerably faster in these cases.
Development of BEM for ceramic composites
NASA Technical Reports Server (NTRS)
Banerjee, P. K.; Dargush, G. F.; Henry, D. P.
1988-01-01
Progress is summarized in the development of a boundary element code BEST3D, designed for the micromechanical studies of advanced ceramic composites. Additional effort was made in generalizing the implementation to allow the program to be applicable to real problems in the aerospace industry.
Mode-routed fiber-optic add-drop filter
NASA Technical Reports Server (NTRS)
Moslehi, Behzad (Inventor); Black, Richard James (Inventor); Shaw, Herbert John (Inventor)
2000-01-01
New elements mode-converting two-mode grating and mode-filtering two-mode coupler are disclosed and used as elements in a system for communications, add-drop filtering, and strain sensing. Methods of fabrication for these new two-mode gratings and mode-filtering two-mode couplers are also disclosed.
Dynamic fatigue of a lithia-alumina-silica glass-ceramic
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.
1990-01-01
A dynamic fatigue study was performed on a Li2O-Al2O3-SiO2 glass-ceramic in order to assess its susceptibility to delayed failure. Fracture mechanics techniques were used to analyze the results for the purpose of making lifetime predictions for optical elements made from this material. The material has reasonably good resistance (N = 20) to stress corrosion in ambient conditions. Analysis also indicated the elements should survive applied stresses incurred during grinding and polishing operations.
Modeling and Simulation of Ceramic Arrays to Improve Ballaistic Performance
2013-09-09
targets with .30cal AP M2 projectile using SPH elements. -Model validation runs were conducted based on the DoP experiments described in reference...effect of material properties on DoP 15. SUBJECT TERMS .30cal AP M2 Projectile, 762x39 PS Projectile, SPH , Aluminum 5083, SiC, DoP Expeminets...and ceramic-faced aluminum targets with „30cal AP M2 projectile using SPH elements. □ Model validation runs were conducted based on the DoP
Processes and applications of silicon carbide nanocomposite fibers
NASA Astrophysics Data System (ADS)
Shin, D. G.; Cho, K. Y.; Jin, E. J.; Riu, D. H.
2011-10-01
Various types of SiC such as nanowires, thin films, foam, and continuous fibers have been developed since the early 1980s, and their applications have been expanded into several new applications, such as for gas-fueled radiation heater, diesel particulate filter (DPF), ceramic fiber separators and catalyst/catalyst supports include for the military, aerospace, automobile and electronics industries. For these new applications, high specific surface area is demanded and it has been tried by reducing the diameter of SiC fiber. Furthermore, functional nanocomposites show potentials in various harsh environmental applications. In this study, silicon carbide fiber was prepared through electrospinning of the polycarbosilane (PCS) with optimum molecular weight distribution which was synthesized by new method adopting solid acid catalyst such as ZSM-5 and γ-Al2O3. Functional elements such as aluminum, titanium, tungsten and palladium easily doped in the precursor fiber and remained in the SiC fiber after pyrolysis. The uniform SiC fibers were produced at the condition of spinning voltage over 20 kV from the PCS solution as the concentration of 1.3 g/ml in DMF/Toluene (3:7) and pyrolysis at 1200°C. Pyrolyzed products were processed into several interesting applications such as thermal batteries, hydrogen sensors and gas filters.
Interfacial Studies of Whisker and Coated Fiber Reinforced Ceramic Matrix Composites
1990-05-31
well as BN coated small diameter (ɘ.7jtm) ARCO whiskers. Tha carbon coated TWS- 400C whiskers were received as-coated from Textron, Inc., Lowell, MA...under negative pressure by means of a Nilfisk filtering system equipped with a Hepa filter. With the health hazards of small whiskers being of utmost...Both of these platelet types were analyzed in the scanning Auger multiprobe (SAM) and found to be very close to stoichiometric SiC with a small amount
Passive thermo-optic feedback for robust athermal photonic systems
Rakich, Peter T.; Watts, Michael R.; Nielson, Gregory N.
2015-06-23
Thermal control devices, photonic systems and methods of stabilizing a temperature of a photonic system are provided. A thermal control device thermally coupled to a substrate includes a waveguide for receiving light, an absorption element optically coupled to the waveguide for converting the received light to heat and an optical filter. The optical filter is optically coupled to the waveguide and thermally coupled to the absorption element. An operating point of the optical filter is tuned responsive to the heat from the absorption element. When the operating point is less than a predetermined temperature, the received light is passed to the absorption element via the optical filter. When the operating point is greater than or equal to the predetermined temperature, the received light is transmitted out of the thermal control device via the optical filter, without being passed to the absorption element.
Filtration performance of microporous ceramic supports.
Belouatek, Aissa; Ouagued, Abdellah; Belhakem, Mustapha; Addou, Ahmed
2008-04-24
The use of inorganic membranes in pollution treatment is actually limited by the cost of such membranes. Advantages of inorganic membranes are their chemical, thermal and pH properties. The purpose of this work was the development of microporous ceramic materials based on clay for liquid waste processing. The supports or ceramic filters having various compositions were prepared and thermally treated at 1100 degrees C. The results show that, at the temperature studied, porosity varied according to the support composition from 12% for the double-layered (ceramic) support to 47% for the activated carbon- filled support with a mean pore diameter between 0.8 and 1.3 microm, respectively. Volumes of 5 l of distilled water were filtered tangentially for 3 h under an applied pressure of 3.5 and 5.5 bar. The retention of tubular supports prepared was tested with molecules of varying size (Evans blue, NaCl and Sacharose). The study of the liquid filtration and flow through these supports showed that the retention rate depends on support composition and pore diameter, and solute molecular weight. The S1 support (mixture of barbotine and 1% (w/w) activated carbon) gave a flux for distilled water of 68 L/m2 h while the double-layered support resulted in a flux of 8 L/m2 h for the same solution at the pressure of 3.5 bar. At a pressure of 5.5 bar an increase in the distilled water flux through the various supports was observed. It was significant for the S1 support (230 L/m h).
Method of preforming and assembling superconducting circuit elements
NASA Astrophysics Data System (ADS)
Haertling, Gene H.; Buckley, John D.
1991-03-01
The invention is a method of preforming and pretesting rigid and discrete superconductor circuit elements to optimize the superconductivity development of the preformed circuit element prior to its assembly, and encapsulation on a substrate and final environmental testing of the assembled ceramic superconductive elements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gubaidulina, Tatiana A., E-mail: goub2002@mail.ru; Sergeev, Viktor P., E-mail: vserg@mail.tomsknet.ru; Fedorischeva, Marina V., E-mail: fmw@ispms.tsc.ru
2015-10-27
The work describes the microplasma oxidation (MPO) of zirconium surface resulting in the formation of zirconium oxide Zr-Al-Nb-O. We have used novel power supply to deposit oxide ceramic coatings by MPO and studied the effect of current density on the phase structure of oxide ceramic coatings. The size of microcracks in the coatings was determined at different frequencies. We have also used EVO50c scanning election microscope with an attachment for elemental analysis to study the morphology and elemental composition of oxide ceramic coating. In addition, we have established the influence of the frequency on the phase composition of the coating:more » at the frequency of 2500 Hz, the fraction of monoclinic phase was 18%, while the fraction of tetragonal phase amounted to 72%. The oxide ceramic coating produced at 250 Hz contained 38% of monoclinic phase and 62% of tetragonal phase; in addition, it had no buildups and craters.« less
Advantageous new conic cannula for spine cement injection.
González, Sergio Gómez; Vlad, María Daniela; López, José López; Aguado, Enrique Fernández
2014-09-01
Experimental study to characterize the influence of the cannula geometry on both, the pressure drop and the cement flow velocity established along the cannula. To investigate how the new experimental geometry of cannulas can affect the extravertebral injection pressure and the velocity profiles established along the cannula during the injection process. Vertebroplasty procedure is being used to treat vertebral compression fractures. Vertebra infiltration is favored by the use of suitable: (1) syringes or injector devices; (2) polymer or ceramic bone cements; and (3) cannulas. However, the clinical use of ceramic bone cement has been limited due to press-filtering problems. Thus, new approaches concerning the cannula geometry are needed to minimize the press-filtering of calcium phosphate-based bone cements and thereby broaden its possible applications. Straight, conic, and combined conic-straight new cannulas with different proximal and distal both length and diameter ratios were drawn with computer-assisted design software. The new geometries were theoretically analyzed by: (1) Hagen-Poisseuille law; and (2) computational fluid dynamics. Some experimental models were manufactured and tested for extrusion in order to confirm and further advance the theoretical results. The results confirm that the totally conic cannula model, having proximal to distal diameter ratio equal 2, requires the lowest injection pressure. Furthermore, its velocity profile showed no discontinuity at all along the cannula length, compared with other known combined proximal and distal straight cannulas, where discontinuity was produced at the proximal-distal transition zone. The conclusion is that the conic cannulas: (a) further reduced the extravertebral pressure during the injection process; (b) showed optimum fluid flow velocity profiles to minimize filter-pressing problems, especially when ceramic cements are used; and (c) can be easily manufactured. In this sense, the new conic cannulas should favor the use of calcium phosphate bone cements in the spine. N/A.
Perovskite electrodes and method of making the same
Seabaugh, Matthew M [Columbus, OH; Swartz, Scott L [Columbus, OH
2009-09-22
The invention relates to perovskite oxide electrode materials in which one or more of the elements Mg, Ni, Cu, and Zn are present as minority components that enhance electrochemical performance, as well as electrode products with these compositions and methods of making the electrode materials. Such electrodes are useful in electrochemical system applications such as solid oxide fuel cells, ceramic oxygen generation systems, gas sensors, ceramic membrane reactors, and ceramic electrochemical gas separation systems.
Perovskite electrodes and method of making the same
Seabaugh, Matthew M.; Swartz, Scott L.
2005-09-20
The invention relates to perovskite oxide electrode materials in which one or more of the elements Mg, Ni, Cu, and Zn are present as minority components that enhance electrochemical performance, as well as electrode products with these compositions and methods of making the electrode materials. Such electrodes are useful in electrochemical system applications such as solid oxide fuel cells, ceramic oxygen generation systems, gas sensors, ceramic membrane reactors, and ceramic electrochemical gas separation systems.
Aray, Yosslen; Paredes, Ricardo; Álvarez, Luis Javier; Martiz, Alejandro
2017-06-14
The electron density localization in insulator and semiconductor elemental cubic materials with diamond structure, carbon, silicon, germanium, and tin, and good metallic conductors with face centered cubic structure such as α-Co, Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au, was studied using a localized electrons detector defined in the local moment representation. Our results clearly show an opposite pattern of the electron density localization for the cubic ceramic and transition metal materials. It was found that, for the elemental ceramic materials, the zone of low electron localization is very small and is mainly localized on the atomic basin edges. On the contrary, for the transition metals, there are low-valued localized electrons detector isocontours defining a zone of highly delocalized electrons that extends throughout the material. We have found that the best conductors are those in which the electron density at this low-value zone is the lowest.
In vitro evaluation of bioactivity of SiO2-CaO-P2O5-Na2O-CaF2-ZnO glass-ceramics
NASA Astrophysics Data System (ADS)
Riaz, Madeeha; Zia, Rehana; Saleemi, Farhat; Bashir, Farooq; Hossain, Tousif; Kayani, Zohra
2014-09-01
Zinc is an essential trace element that stimulates bone formation but it is also known as an inhibitor of apatite crystal growth. In this work addition of ZnO to SiO2-CaO-P2O5-Na2O-CaF2 glass-ceramic system was made by conventional melt-quenching technique. DSC curves showed that the addition of ZnO moved the endothermic and exothermic peaks to lower temperatures. X-ray diffraction analysis did not reveal any additional phase caused by ZnO addition and showed the presence of wollastonite and hydroxyapatite crystalline phases only in all the glass-ceramic samples. As bio-implant apatite forming ability is an essential condition, the surface reactivity of the prepared glass-ceramic specimens was studied in vitro in Kokubo's simulated body fluid (SBF) [1] with ion concentration nearly equal to human blood plasma for 30 days at 37 °C under static condition. Atomic absorption spectroscopy (AAS) was used to study the changes in element concentrations in soaking solutions and XRD, FT-IR and SEM were used to elucidate surface properties of prepared glass-ceramics, which confirmed the formation of HCAp on the surface of all glass-ceramics. It was found that the addition of ZnO had a positive effect on bioactivity of glass-ceramics and made it a potential candidate for restoration of damaged bones.
78 FR 40053 - Airworthiness Directives; Eurocopter Deutschland GmbH Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-03
... filter element for a chip. If the analysis indicates Stage III as defined by the ASB, this proposed AD would require removing and inspecting the oil filter element for a chip within 10 hours TIS. If there are no chips, we propose cleaning the oil filter element and chip detector, inspecting the drive stage...
78 FR 17591 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-22
... aft fuel system 40 micron fuel filter element with a 10 micron nominal (40 micron absolute) fuel filter element. This AD was prompted by a National Transportation Safety Board (NTSB) review of in... helicopters with a fuel system 40 micron fuel filter element, part number (P/N) 52-0505-2 or 52-01064-1. That...
NASA Astrophysics Data System (ADS)
Kumari, Preeti; Tripathi, Pankaj; Sahu, B.; Singh, S. P.; Kumar, Devendra
2018-05-01
A simulation and fabrication study of a coaxial probe-fed four-element composite triangular dielectric resonator antenna (TDRA) using low loss Li2O-1.94MgO-0.02Al2O3-P2O5 (LMAP) ceramic and Teflon. LMAP ceramic was carried out and the ceramic was synthesized using a solid-state sintering route. The phase, microstructure and microwave dielectric properties of LMAP were investigated using x-ray diffraction pattern, scanning electron microscopy and a network analyzer. A coaxial probe-fed four-element composite TDRA was designed and fabricated using LMAP as one section of each composite element of the proposed antenna. Each triangular element of the proposed dielectric resonator antenna (DRA) consists of two sections of different dielectric constant materials. The inner triangular section touching the coaxial probe at one of its corners is made of the LMAP ceramic (ɛ r = 6.2) while othe uter section is made of Teflon (ɛ r = 2.1). Four triangular DRA elements are excited bya centrally located 50-Ω coaxial probe. The parametric study of the proposed antenna was performed through simulation using Ansys High Frequency Structure Simulator software by varying the dimensions and dielectric constants of both sections of each triangular element of the TDRA to optimize the results for obtaining a wideband antenna. The simulated resonant frequency of 9.30 GHz with a percentage bandwidth of 61.65% for the proposed antenna is obtained within its operating frequency range of 7.82-14.8 GHz. Monopole-like radiation patterns with low cross-polarization levels and a peak gain of 5.63 dB are obtained for the proposed antenna through simulation. The antenna prototype having optimized dimensions has also been fabricated. The experimental resonant frequency of 9.10 GHz with a percentage bandwidth of 66.09% is obtained within its operating frequency range of 7.70-15.30 GHz. It is found that the simulation results for the proposed antenna are in close agreement with the measured data. The proposed antenna can potentially be used in broadcast base stations, radar and satellite communications.
Active pixel sensors with substantially planarized color filtering elements
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Kemeny, Sabrina E. (Inventor)
1999-01-01
A semiconductor imaging system preferably having an active pixel sensor array compatible with a CMOS fabrication process. Color-filtering elements such as polymer filters and wavelength-converting phosphors can be integrated with the image sensor.
Mikelonis, Anne M; Youn, Sungmin; Lawler, Desmond F
2016-02-23
This article examines the influence of three common stabilizing agents (citrate, poly(vinylpyrrolidone) (PVP), and branched poly(ethylenimine) (BPEI)) on the attachment affinity of silver nanoparticles to ceramic water filters. Citrate-stabilized silver nanoparticles were found to have the highest attachment affinity (under conditions in which the surface potential was of opposite sign to the filter). This work demonstrates that the interaction between the electrical double layers plays a critical role in the attachment of nanoparticles to flat surfaces and, in particular, that predictions of double-layer interactions are sensitive to boundary condition assumptions (constant charge vs constant potential). The experimental deposition results can be explained when using different boundary condition assumptions for different stabilizing molecules but not when the same assumption was assumed for all three types of particles. The integration of steric interactions can also explain the experimental deposition results. Particle size was demonstrated to have an effect on the predicted deposition for BPEI-stabilized particles but not for PVP.
Chemically bonded phosphate ceramics of trivalent oxides of iron and manganese
Wagh, Arun S.; Jeong, Seung-Young
2002-01-01
A new method for combining elemental iron and other metals to form an inexpensive ceramic to stabilize arsenic, alkaline red mud wastes, swarfs, and other iron or metal-based additives, to create products and waste forms which can be poured or dye cast.
Compositionally Graded Multilayer Ceramic Capacitors.
Song, Hyun-Cheol; Zhou, Jie E; Maurya, Deepam; Yan, Yongke; Wang, Yu U; Priya, Shashank
2017-09-27
Multilayer ceramic capacitors (MLCC) are widely used in consumer electronics. Here, we provide a transformative method for achieving high dielectric response and tunability over a wide temperature range through design of compositionally graded multilayer (CGML) architecture. Compositionally graded MLCCs were found to exhibit enhanced dielectric tunability (70%) along with small dielectric losses (<2.5%) over the required temperature ranges specified in the standard industrial classifications. The compositional grading resulted in generation of internal bias field which enhanced the tunability due to increased nonlinearity. The electric field tunability of MLCCs provides an important avenue for design of miniature filters and power converters.
Mikelonis, Anne M; Lawler, Desmond F; Passalacqua, Paola
2016-10-01
This research examined how variations in synthesis methods of silver nanoparticles affect both the release of silver from ceramic water filters (CWFs) and disinfection efficacy. The silver nanoparticles used were stabilized by four different molecules: citrate, polyvinylpyrrolidone, branched polyethylenimine, and casein. A multilevel statistical model was built to quantify if there was a significant difference in: a) extent of silver lost, b) initial amount of silver lost, c) silver lost for water of different quality, and d) total coliform removal. Experiments were performed on location at Pure Home Water, a CWF factory in Tamale, Ghana using stored rainwater and dugout water (a local surface water). The results indicated that using dugout vs. rainwater significantly affects the initial (p-value 0.0015) and sustained (p-value 0.0124) loss of silver, but that silver type does not have a significant effect. On average, dugout water removed 37.5μg/L more initial silver and had 1.1μg/L more silver in the filtrate than rainwater. Initially, filters achieved 1.9 log reduction values (LRVs) on average, but among different silver and water types this varied by as much as 2.5 LRV units. Overall, bacterial removal effectiveness was more challenging to evaluate, but some data suggest that the branched polyethylenimine silver nanoparticles provided improved initial bacterial removal over filters which were not painted with silver nanoparticles (p-value 0.038). Copyright © 2016 Elsevier B.V. All rights reserved.
Wavelength-tunable thulium-doped fiber laser by employing a self-made Fabry-Perot filter
NASA Astrophysics Data System (ADS)
Wang, Y. P.; Ju, Y. L.; Wu, C. T.; Liu, W.; Yang, C.
2017-06-01
In this demonstration, we proposed a novel wavelength-tunable thulium-doped fiber laser (TDFL) with a self-made Fabry-Perot (F-P) filter. When the F-P filter was not inserted, the maximum output power of 11.1 W was achieved when the pump power was 70.2 W. The corresponding optical-to-optical conversion efficiency was 15.8% and the slope efficiency was 22.1%. When the F-P filter was inserted, the output wavelength could be tuned from 1952.9 to 1934.9 nm with the change of cavity length of F-P filter which was fixed on a piezoelectric ceramic transducer (PZT) controlled by the voltage applied to it. The full width at half maximum (FWHM) was no more than 0.19 nm. Furthermore, the wavelength fluctuations of the tunable fiber laser were kept within ±0.2 nm.
Hall, G.E.M.; Bonham-Carter, G. F.; Horowitz, A.J.; Lum, K.; Lemieux, C.; Quemerais, B.; Garbarino, J.R.
1996-01-01
The effect of 4 different 0.45 ??m pore size filter membrane systems on the 'dissolved' concentration of 28 elements in 5 natural water samples of varying matrix is reported. In 3 of the 5 waters, consistently higher concentrations of most elements (minor and trace) are obtained using Nucleopore 47 mm filter and the cellulose acetate/nitrate 47 mm filter than those measured using the 142 mm cellulose nitrate MFS filter or the Gelman capsule 47 mm filter. These distinct and coherent patterns in elemental behaviour disappear for the other 2 samples, an organic-rich peat water of high suspended load and a mineralised sample high in Si and Ca. Thus the nature and degree of filtration artifacts is matrix-dependent. These trends are evident in both data sets produced by 2 independent laboratories using different instrumentation, techniques and calibrating procedures. The average relative standard deviation in elemental concentration across the 4 filter types is in the range 9-21%. The presence of such filtration artifacts must be considered in projects where, for example, seasonal variability of water composition is under examination, data from various sources are being merged or hydrogeochemical surveys are being conducted.
Integrated thick-film nanostructures based on spinel ceramics
2014-01-01
Integrated temperature-humidity-sensitive thick-film structures based on spinel-type semiconducting ceramics of different chemical compositions and magnesium aluminate ceramics were prepared and studied. It is shown that temperature-sensitive thick-film structures possess good electrophysical characteristics in the region from 298 to 358 K. The change of electrical resistance in integrated thick-film structures is 1 order, but these elements are stable in time and can be successfully used for sensor applications. PMID:24670141
Topological design of all-ceramic dental bridges for enhancing fracture resistance.
Zhang, Zhongpu; Chen, Junning; Li, Eric; Li, Wei; Swain, Michael; Li, Qing
2016-06-01
Layered all-ceramic systems have been increasingly adopted in major dental prostheses. However, ceramics are inherently brittle, and they often subject to premature failure under high occlusion forces especially in the posterior region. This study aimed to develop mechanically sound novel topological designs for all-ceramic dental bridges by minimizing the fracture incidence under given loading conditions. A bi-directional evolutionary structural optimization (BESO) technique is implemented within the extended finite element method (XFEM) framework. Extended finite element method allows modeling crack initiation and propagation inside all-ceramic restoration systems. Following this, BESO searches the optimum distribution of two different ceramic materials, namely porcelain and zirconia, for minimizing fracture incidence. A performance index, as per a ratio of peak tensile stress to material strength, is used as a design objective. In this study, the novel XFEM based BESO topology optimization significantly improved structural strength by minimizing performance index for suppressing fracture incidence in the structures. As expected, the fracture resistance and factor of safety of fixed partial dentures structure increased upon redistributing zirconia and porcelain in the optimal topological configuration. Dental CAD/CAM systems and the emerging 3D printing technology were commercially available to facilitate implementation of such a computational design, exhibiting considerable potential for clinical application in the future. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
A New High-Temperature Ultrasonic Transducer for Continuous Inspection.
Amini, Mohammad Hossein; Sinclair, Anthony N; Coyle, Thomas W
2016-03-01
A novel design of piezoelectric ultrasonic transducer is introduced, suitable for operation at temperatures of up to 700 °C-800 °C. Lithium niobate single crystal is chosen as the piezoelectric element primarily due to the high Curie temperature of 1200 °C. A backing element based on a porous ceramic is designed for which the pore volume fraction and average pore diameter in the ceramic matrix can be controlled in the manufacturing process; this enables the acoustic impedance and attenuation to be selected to match their optimal values as predicted by a one-dimensional transducer model of the entire transducer. Porous zirconia is selected as the ceramic matrix material of the backing element to obtain an ultrasonic signal with center frequency of 2.7-3 MHz, and 3-dB bandwidth of 90%-95% at the targeted operating temperature. Acoustic coupling of the piezocrystal to the backing element and matching layer is investigated using commercially available high-temperature adhesives and brazing alloys. The performance of the transducer as a function of temperature is studied. Stable bonding and clear signals were obtained using an aluminum brazing alloy as the bonding agent.
Use of Whatman-41 filters in air quality sampling networks (with applications to elemental analysis)
NASA Technical Reports Server (NTRS)
Neustadter, H. E.; Sidik, S. M.; King, R. B.; Fordyce, J. S.; Burr, J. C.
1974-01-01
The operation of a 16-site parallel high volume air sampling network with glass fiber filters on one unit and Whatman-41 filters on the other is reported. The network data and data from several other experiments indicate that (1) Sampler-to-sampler and filter-to-filter variabilities are small; (2) hygroscopic affinity of Whatman-41 filters need not introduce errors; and (3) suspended particulate samples from glass fiber filters averaged slightly, but not statistically significantly, higher than from Whatman-41-filters. The results obtained demonstrate the practicability of Whatman-41 filters for air quality monitoring and elemental analysis.
Experimentally validated finite element model of electrocaloric multilayer ceramic structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, N. A. S., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk; Correia, T. M., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk; Rokosz, M. K., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk
2014-07-28
A novel finite element model to simulate the electrocaloric response of a multilayer ceramic capacitor (MLCC) under real environment and operational conditions has been developed. The two-dimensional transient conductive heat transfer model presented includes the electrocaloric effect as a source term, as well as accounting for radiative and convective effects. The model has been validated with experimental data obtained from the direct imaging of MLCC transient temperature variation under application of an electric field. The good agreement between simulated and experimental data, suggests that the novel experimental direct measurement methodology and the finite element model could be used to supportmore » the design of optimised electrocaloric units and operating conditions.« less
Regenerative particulate filter development
NASA Technical Reports Server (NTRS)
Descamp, V. A.; Boex, M. W.; Hussey, M. W.; Larson, T. P.
1972-01-01
Development, design, and fabrication of a prototype filter regeneration unit for regenerating clean fluid particle filter elements by using a backflush/jet impingement technique are reported. Development tests were also conducted on a vortex particle separator designed for use in zero gravity environment. A maintainable filter was designed, fabricated and tested that allows filter element replacement without any leakage or spillage of system fluid. Also described are spacecraft fluid system design and filter maintenance techniques with respect to inflight maintenance for the space shuttle and space station.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-13
..., requiring repetitive inspections of the APU generator Scavenge filter element and filter housing and of the.... The new requirements include inspecting the APU generator scavenge oil filter element for contamination, the APU generator drain plug for contamination, and the APU generator scavenge filter housing for...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-05-01
An assessment of needs was completed, and a five-year project plan was developed with input from private industry. Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. Focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. The work described in this report is organized according to the following WBS project elements: management and coordination; materials and processing (monolithics, ceramic composites, thermal and wear coatings, joining); materials design methodology (contact interfaces, newmore » concepts); data base and life prediction (time-dependent behavior, environmental effects, fracture mechanics, NDE development); and technology transfer. This report includes contributions from all currently active project participants.« less
NASA Astrophysics Data System (ADS)
Fattah, K. A.; Lashin, A.
2016-05-01
Drilling fluid density/type is an important factor in drilling and production operations. Most of encountered problems during rotary drilling are related to drilling mud types and weights. This paper aims to investigate the effect of mud weight on filter cake properties and formation damage through two experimental approaches. In the first approach, seven water-based drilling fluid samples with same composition are prepared with different densities (9.0-12.0 lb/gal) and examined to select the optimum mud weight that has less damage. The second approach deals with investigating the possible effect of the different weighting materials (BaSO4 and CaCO3) on filter cake properties. High pressure/high temperature loss tests and Scanning Electron Microscopy (SEM) analyses were carried out on the filter cake (two selected samples). Data analysis has revealed that mud weigh of 9.5 lb/gal has the less reduction in permeability of ceramic disk, among the seven used mud densities. Above 10.5 ppg the effect of the mud weight density on formation damage is stabilized at constant value. Fluids of CaCO3-based weighting material, has less reduction in the porosity (9.14%) and permeability (25%) of the filter disk properties than the BaSO4-based fluid. The produced filter cake porosity increases (from 0.735 to 0.859) with decreasing of fluid density in case of drilling samples of different densities. The filtration loss tests indicated that CaCO3 filter cake porosity (0.52) is less than that of the BaSO4 weighted material (0.814). The thickness of the filter cake of the BaSO4-based fluid is large and can cause some problems. The SEM analysis shows that some major elements do occur on the tested samples (Ca, Al, Si, and Ba), with dominance of Ca on the expense of Ba for the CaCO3 fluid sample and vice versa. The less effect of 9.5 lb/gal mud sample is reflected in the well-produced inter-particle pore structure and relatively crystal size. A general recommendation is given to minimize the future utilization of Barium Sulfate as a drilling fluid.
Optimization of adenovirus 40 and 41 recovery from tap water using small disk filters.
McMinn, Brian R
2013-11-01
Currently, the U.S. Environmental Protection Agency's Information Collection Rule (ICR) for the primary concentration of viruses from drinking and surface waters uses the 1MDS filter, but a more cost effective option, the NanoCeram® filter, has been shown to recover comparable levels of enterovirus and norovirus from both matrices. In order to achieve the highest viral recoveries, filtration methods require the identification of optimal concentration conditions that are unique for each virus type. This study evaluated the effectiveness of 1MDS and NanoCeram filters in recovering adenovirus (AdV) 40 and 41 from tap water, and optimized two secondary concentration procedures the celite and organic flocculation method. Adjustments in pH were made to both virus elution solutions and sample matrices to determine which resulted in higher virus recovery. Samples were analyzed by quantitative PCR (qPCR) and Most Probable Number (MPN) techniques and AdV recoveries were determined by comparing levels of virus in sample concentrates to that in the initial input. The recovery of adenovirus was highest for samples in unconditioned tap water (pH 8) using the 1MDS filter and celite for secondary concentration. Elution buffer containing 0.1% sodium polyphosphate at pH 10.0 was determined to be most effective overall for both AdV types. Under these conditions, the average recovery for AdV40 and 41 was 49% and 60%, respectively. By optimizing secondary elution steps, AdV recovery from tap water could be improved at least two-fold compared to the currently used methodology. Identification of the optimal concentration conditions for human AdV (HAdV) is important for timely and sensitive detection of these viruses from both surface and drinking waters. Published by Elsevier B.V.
Tensiometer with removable wick
Gee, Glendon W.; Campbell, Melvin D.
1992-01-01
The present invention relates to improvements in tensiometers for measuring soil water tension comprising a rod shaped wick. the rod shaped wick is shoestring, rolled paper towel, rolled glass microfiber filter, or solid ceramic. The rod shaped wick is secured to the tensiometer by a cone washer and a threaded fitting.
New ceramics containing dispersants for improved fracture toughness
Nevitt, M.V.; Aldred, A.T.; Chan, Sai-Kit
1985-07-01
The invention is a ceramic composition containing a new class of dispersant for hindering crack propagation by means of one or more energy-dissipative mechanisms. The composition is composed of a ceramic matrix with dispersed particles of a transformation-prone rare-earth niobate, tantalate or mixtures of these with each other and/or with a rare-earth vanadate. The dispersants, having a generic composition tRBO/sub 4/, where R is a rare-earth element, B if Nb or Ta and O is oxygen, are mixed in powder form with a powder of the matrix ceramic and sintered to produce a ceramic form or body. The crack-hindering mechanisms operates to provide improved performance over a wide range of temperature and operating conditions.
Ceramics containing dispersants for improved fracture toughness
Nevitt, Michael V.; Aldred, Anthony T.; Chan, Sai-Kit
1987-07-07
The invention is a ceramic composition containing a new class of dispersant for hindering crack propagation by means of one or more energy-dissipative mechanisms. The composition is composed of a ceramic matrix with dispersed particles of a transformation-prone rare-earth niobate, tantalate or mixtures of these with each other and/or with a rare-earth vanadate. The dispersants, having a generic composition tRMO.sub.4, where R is a rare-earth element, B is Nb or Ta and O is oxygen, are mixed in powder form with a powder of the matrix ceramic and sintered to produce a ceramic form or body. The crack-hindering mechanisms operates to provide improved performance over a wide range of temperature and operating conditions.
Ceramics containing dispersants for improved fracture toughness
Nevitt, Michael V.; Aldred, Anthony T.; Chan, Sai-Kit
1987-01-01
The invention is a ceramic composition containing a new class of dispersant for hindering crack propagation by means of one or more energy-dissipative mechanisms. The composition is composed of a ceramic matrix with dispersed particles of a transformation-prone rare-earth niobate, tantalate or mixtures of these with each other and/or with a rare-earth vanadate. The dispersants, having a generic composition tRMO.sub.4, where R is a rare-earth element, B is Nb or Ta and O is oxygen, are mixed in powder form with a powder of the matrix ceramic and sintered to produce a ceramic form or body. The crack-hindering mechanisms operates to provide improved performance over a wide range of temperature and operating conditions.
Ceramic-like open-celled geopolymer foam as a porous substrate for water treatment catalyst
NASA Astrophysics Data System (ADS)
Kovářík, T.; Křenek, T.; Pola, M.; Rieger, D.; Kadlec, J.; Franče, P.
2017-02-01
This paper presents results from experimental study on microstructural and mechanical properties of geopolymer-based foam filters. The process for making porous ceramic-like geopolymer body was experimentally established, consists of (a) geopolymer paste synthesis, (b) ceramic filler incorporation, (c) coating of open-celled polyurethane foam with geopolymer mixture, (d) rapid setting procedure, (e) thermal treatment. Geopolymer paste was based on potassium silicate solution n(SiO2)/n(K2O)=1.6 and powder mixture of calcined kaolin and precipitated silica. Various types of ceramic granular filler (alumina, calcined schistous clay and cordierite) were tested in relation to aggregate gradation design and particle size distribution. The small amplitude oscillatory rheometry in strain controlled regime 0.01% with angular frequency 10 rad/s was applied for determination of rheology behavior of prepared mixtures. Thermal treatment conditions were applied in the temperature range 1100 - 1300 °C. The developed porous ceramic-like foam effectively served as a substrate for highly active nanoparticles of selected Fe+2 spinels. Such new-type of nanocomposite was tested as a heterogeneous catalyst for technological process of advanced oxidative degradation of resistive antibiotics occurring in waste waters.
Advanced hybrid particulate collector and method of operation
Miller, Stanley J [Grand Forks, ND
2003-04-08
A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between the rows of filter elements are rows of high voltage discharge electrodes. Between the rows of discharge electrodes and the rows of filter elements are grounded perforated plates for creating electrostatic precipitation zones.
Optical filter including a sub-wavelength periodic structure and method of making
Kaushik, Sumanth; Stallard, Brian R.
1998-01-01
An optical filter includes a dielectric layer formed within a resonant optical cavity, with the dielectric layer having formed therein a sub-wavelength periodic structure to define, at least in part, a wavelength for transmission of light through the resonant optical cavity. The sub-wavelength periodic structure can be formed either by removing material from the dielectric layer (e.g. by etching through an electron-beam defined mask), or by altering the composition of the layer (e.g. by ion implantation). Different portions of the dielectric layer can be patterned to form one or more optical interference filter elements having different light transmission wavelengths so that the optical filter can filter incident light according to wavelength and/or polarization. For some embodiments, the optical filter can include a detector element in optical alignment with each optical interference filter element to quantify or measure the filtered light for analysis thereof. The optical filter has applications to spectrometry, colorimetry, and chemical sensing.
Optical filter including a sub-wavelength periodic structure and method of making
Kaushik, S.; Stallard, B.R.
1998-03-10
An optical filter includes a dielectric layer formed within a resonant optical cavity, with the dielectric layer having formed therein a sub-wavelength periodic structure to define, at least in part, a wavelength for transmission of light through the resonant optical cavity. The sub-wavelength periodic structure can be formed either by removing material from the dielectric layer (e.g. by etching through an electron-beam defined mask), or by altering the composition of the layer (e.g. by ion implantation). Different portions of the dielectric layer can be patterned to form one or more optical interference filter elements having different light transmission wavelengths so that the optical filter can filter incident light according to wavelength and/or polarization. For some embodiments, the optical filter can include a detector element in optical alignment with each optical interference filter element to quantify or measure the filtered light for analysis thereof. The optical filter has applications to spectrometry, colorimetry, and chemical sensing. 17 figs.
Improvement of organics removal by bio-ceramic filtration of raw water with addition of phosphorus.
Sang, Junqiang; Zhang, Xihui; Li, Lingzhi; Wang, Zhansheng
2003-11-01
The purpose of this study was to investigate the effect of phosphorus addition on biological pretreatment of raw water. Experiments were conducted in pilot-scale bio-ceramic filters with raw water from a reservoir located in Beijing, China. The results demonstrated that phosphorus was the limiting nutrient for bacterial growth in the raw water investigated in this study. The measured values of bacterial regrowth potential (BRP) and biodegradable dissolved organic carbon (BDOC) of the raw water increased by 50-65% and 30-40% with addition of 50 microg of PO4(3-)-PL(-1), respectively. Addition of 25 microg of PO4(3-)-PL(-1) to the influent of bio-ceramic filter enhanced the percent removal of organics by 4.6, 5.7 and 15 percentage points in terms of COD(Mn), TOC and BDOC, respectively. Biomass in terms of phospholipid content increased by 13-22% and oxygen uptake rate (OUR) increased by 35-45%. The ratio of C:P for bacteria growth was 100:1.6 for the raw water used in this study. Since change of phosphorus concentrations can influence the performance of biological pretreatment and the biological stability of drinking water, this study is of substantial significance for waterworks in China. The role of phosphorus in biological processes of drinking water should deserve more attention.
A Dynamic Analysis of Piezoelectric Strained Elements.
1992-12-01
Type Quartz Crystal Plates ", IEEE SU- 29 (3), pp. 1 2 1 - 1 2 7 (1982). [107] L.K.Chau,High -frequency Long-wave Vibrations of Piezoelectric Ceramic ... Plate Excited with Voltage", Acta Acustica, 8 (5), pp. 300-310 (1983). [265] M.Ting-rong, "Forced Vibrations of Metal-Piezo- ceramic Thin Composite... ceramic and Metal Composite Thin Circular Plate with Different Diameter for Each Layer", Acta Acustica, 9 (5), pp. 298-310 (1984); Chinese J. Acoust., 2(3
Heat exchanger with ceramic elements
Corey, John A.
1986-01-01
An annular heat exchanger assembly includes a plurality of low thermal growth ceramic heat exchange members with inlet and exit flow ports on distinct faces. A mounting member locates each ceramic member in a near-annular array and seals the flow ports on the distinct faces into the separate flow paths of the heat exchanger. The mounting member adjusts for the temperature gradient in the assembly and the different coefficients of thermal expansion of the members of the assembly during all operating temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brinkman, Kyle; Bordia, Rajendra; Reifsnider, Kenneth
This project fabricated model multiphase ceramic waste forms with processing-controlled microstructures followed by advanced characterization with synchrotron and electron microscopy-based 3D tomography to provide elemental and chemical state-specific information resulting in compositional phase maps of ceramic composites. Details of 3D microstructural features were incorporated into computer-based simulations using durability data for individual constituent phases as inputs in order to predict the performance of multiphase waste forms with varying microstructure and phase connectivity.
Electron beam gun with kinematic coupling for high power RF vacuum devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borchard, Philipp
An electron beam gun for a high power RF vacuum device has components joined by a fixed kinematic coupling to provide both precise alignment and high voltage electrical insulation of the components. The kinematic coupling has high strength ceramic elements directly bonded to one or more non-ductile rigid metal components using a high temperature active metal brazing alloy. The ceramic elements have a convex surface that mates with concave grooves in another one of the components. The kinematic coupling, for example, may join a cathode assembly and/or a beam shaping focus electrode to a gun stem, which is preferably composedmore » of ceramic. The electron beam gun may be part of a high power RF vacuum device such as, for example, a gyrotron, klystron, or magnetron.« less
Design of an Autonomous Underwater Vehicle (AUV) Charging System for Underway, Underwater Recharging
2014-05-09
again increase the size of the system. A comparison between switching frequency and efficiency for a nominal DC/DC converter was done in an EE ...Choosing the Optimum Switching Frequency of your DC / DC Converter,” EE Times, pp. 1–7, 2006. [19] ON Semiconductors, “Effects of High Switching Frequency...3.1W OUTPUT FILTER CAPACITOR EEE -FC1H101P 100uF ELECTROLYTIC 50V OUTPUT FILTER CAPACITOR C5750X7S2A106M230KB 10uF CERAMIC 100V
Nonlinear optical THz generation and sensing applications
NASA Astrophysics Data System (ADS)
Kawase, Kodo
2012-03-01
We have suggested a wide range of real-life applications using novel terahertz imaging techniques. A high-resolution terahertz tomography was demonstrated by ultra short terahertz pulses using optical fiber and a nonlinear organic crystal. We also report on the thickness measurement of very thin films using high-sensitivity metal mesh filter. Further we have succeeded in a non-destructive inspection that can monitor the soot distribution in the ceramic filter using millimeter-to-terahertz wave computed tomography. These techniques are directly applicable to the non-destructive testing in industries.
Study on Coloration Mechanism of Chinese Ancient Ceramics by X-ray Absorption Near-edge Structure
NASA Astrophysics Data System (ADS)
Peng, Y. H.; Xie, Z.; He, J. F.; Liu, Q. H.; Pan, Z. Y.; Cheng, W. R.; Wei, S. Q.
2013-04-01
The Fe K-edge X-ray absorption near-edge structure (XANES) spectra of a series of ceramic shards were measured by fluorescence mode to reveal the color-generating techniques of Chinese porcelain. The analysis disclosed relationships among the chemical form of the iron, the firing conditions and the colors of the ceramics. The results indicate that the coloration for different ceramics depend on the valence states of iron as the main color element in glaze and the proportion of Fe2+ and Fe3+ was attributed to the baking technology. The findings provide important information for archaeologist on the coloration researches.
Fractography of glasses and ceramics II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frechette, V.D.; Varner, J.R.
1991-01-01
Topics addressed include finite element stress analysis and crack path prediction of imploding CRT; fractography and fracture mechanics of combustion growth diamond thin films; the fracture behavior of machineable hydroxyapatite; a fractal approach to crack branching (bifurcation) in glass; the fracture of glass-ionomer cements; the effect of quartz particle size on the strength and toughness of whitewares; and a proposed standard practice for fractographic analysis of monolithic advanced ceramics. Also treated are thermal exposure effects on ceramic matrix composites, fractography applied to rock core analysis, fractography of flexurally fractured glass rods, the fractographic determination of K(IC) and effects of microstructuralmore » effects in ceramics.« less
Ceramic applications in turbine engines. [for improved component performance and reduced fuel usage
NASA Technical Reports Server (NTRS)
Hudson, M. S.; Janovicz, M. A.; Rockwood, F. A.
1980-01-01
Ceramic material characterization and testing of ceramic nozzle vanes, turbine tip shrouds, and regenerators disks at 36 C above the baseline engine TIT and the design, analysis, fabrication and development activities are described. The design of ceramic components for the next generation engine to be operated at 2070 F was completed. Coupons simulating the critical 2070 F rotor blade was hot spin tested for failure with sufficient margin to quality sintered silicon nitride and sintered silicon carbide, validating both the attachment design and finite element strength. Progress made in increasing strength, minimizing variability, and developing nondestructive evaluation techniques is reported.
Chiang, Ta-Kuan; Straub, Douglas L.; Dennis, Richard A.
2000-01-01
The present invention involves a porous rigid filter including a plurality of concentric filtration elements having internal flow passages and forming external flow passages there between. The present invention also involves a pressure vessel containing the filter for the removal of particulates from high pressure particulate containing gases, and further involves a method for using the filter to remove such particulates. The present filter has the advantage of requiring fewer filter elements due to the high surface area-to-volume ratio provided by the filter, requires a reduced pressure vessel size, and exhibits enhanced mechanical design properties, improved cleaning properties, configuration options, modularity and ease of fabrication.
NUCLEAR RADIATION DOSIMETER USING COMPOSITE FILTER AND A SINGLE ELEMENT FILTER
Storm, E.; Shlaer, S.
1964-04-21
A nuclear radiation dosimeter is described that uses, in combination, a composite filter and a single element filter. The composite filter contains a plurality of comminuted metals having K-edges evenly distributed over the energy range of interest and the quantity of each of the metals is selected to result in filtering in an amount inversely proportional to the sensitivity of the film in the range over l00 kev. A copper filter is used that has a thickness to contribute the necessary additional correction in the interval between 40 and 100 kev. (AEC)
NASA Astrophysics Data System (ADS)
Pekor, Christopher Michael
Porous ceramics can be divided into three separate classes based on their pore size: microporous ceramics with pores less than 2 nm, mesoporous ceramics with pores in the range of 2--50 nm and macroporous ceramics with pores that are greater than 50 nm. In particular, macroporous ceramics are used in a variety of applications such as refractories, molten metal filtration, diesel particulate filters, heterogeneous catalyst supports and biomedical scaffolds. Freeze casting is a novel method used to create macroporous ceramics. In this method growing ice crystals act as a template for the pores and are solidified, often directionally, through a ceramic dispersion and removed from the green body through a freeze drying procedure. This method has attracted some attention over the past few years due to its relative simplicity, flexibility and environmental friendliness. On top of this freeze casting is capable of producing materials with high pore volume fractions, which is an advantage over processing by packing and necking of particles, where the pore volume fraction is typically less than 50%. Many of the basic processing variables that affect the freeze cast microstructure, such as the temperature gradient, interfacial velocity and solid loading of the dispersion have been well established in the literature. On the other hand, areas such as the effect of additives on the microstructure and mechanical properties have not been covered in great detail. In this study the concept of constitutional supercooling from basic solidification theory is used to explain the effects of two water-soluble polymers, polyethylene glycol and polyvinyl alcohol, on the microstructure of freeze cast alumina ceramics. In addition, changes in the observed microstructure will be related to experimentally determined values of permeability and compressive strength.
CERAL 3450 Chrome-Free Aluminum Ceramic Coating
2008-02-27
expected and provided good corrosion protection • No service difficulties or warranties related to the coating Rolls Royce T56 • Powers the Lockheed C-130...version of T56 • Inlet air filters typically reduce dust ingestion, but the operating environments can be very corrosive • Borescope photo at ~25,000
Tensiometer with removable wick
Gee, G.W.; Campbell, M.D.
1992-04-14
The present invention relates to improvements in tensiometers for measuring soil water tension comprising a rod shaped wick. The rod shaped wick is a shoestring, rolled paper towel, rolled glass microfiber filter, or solid ceramic. The rod shaped wick is secured to the tensiometer by a cone washer and a threaded fitting. 2 figs.
Physical correction filter for improving the optical quality of an image
NASA Technical Reports Server (NTRS)
Lee, S. Y. (Inventor)
1975-01-01
A family of physical correction filters is described. Each filter is designed to correct image content of a photographed scene of limited resolution and includes a first filter element with a pinhole through which light passes to a differential amplifier. A second filter element through which light passes through one or more openings, whose geometric configuration is a function of the cause of the resolution loss included. The light, passing through the second filter element, is also supplied to the differential amplifier whose output is used to activate an optical display or recorder to reproduce a photograph or display of the scene in the original photograph or display of the scene in the original photograph with resolution which is significantly greater than that characterizing the original photograph.
DPF heater attachment mechanisms
Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI
2011-04-26
An exhaust filter system includes a particulate filter (PF) that is disposed downstream from an engine. The PF filters particulates within an exhaust from the engine. A heating element heats particulate matter in the PF. A fastener limits expansion movement of the heating element relative to the PF.
Stelman, David
1989-01-01
A contactor/filter arrangement for removing particulate contaminants from a gaseous stream includes a housing having a substantially vertically oriented granular material retention member with upstream and downstream faces, a substantially vertically oriented microporous gas filter element, wherein the retention member and the filter element are spaced apart to provide a zone for the passage of granular material therethrough. The housing further includes a gas inlet means, a gas outlet means, and means for moving a body of granular material through the zone. A gaseous stream containing particulate contaminants passes through the gas inlet means as well as through the upstream face of the granular material retention member, passing through the retention member, the body of granular material, the microporous gas filter element, exiting out of the gas outlet means. Disposed on the upstream face of the filter element is a cover screen which isolates the filter element from contact with the moving granular bed and collects a portion of the particulates so as to form a dust cake having openings small enough to exclude the granular material, yet large enough to receive the dust particles. In one embodiment, the granular material is comprised of prous alumina impregnated with CuO, with the cover screen cleaned by the action of the moving granular material as well as by backflow pressure pulses.
Idrobo, Juan C; Walkosz, Weronika; Klie, Robert F; Oğüt, Serdar
2012-12-01
In silicon nitride structural ceramics, the overall mechanical and thermal properties are controlled by the atomic and electronic structures at the interface between the ceramic grains and the amorphous intergranular films (IGFs) formed by various sintering additives. In the last ten years the atomic arrangements of heavy elements (rare-earths) at the Si(3)N(4)/IGF interfaces have been resolved. However, the atomic position of light elements, without which it is not possible to obtain a complete description of the interfaces, has been lacking. This review article details the authors' efforts to identify the atomic arrangement of light elements such as nitrogen and oxygen at the Si(3)N(4)/SiO(2) interface and in bulk Si(3)N(4) using aberration-corrected scanning transmission electron microscopy. Published by Elsevier B.V.
ERIC Educational Resources Information Center
Wilbert, Nancy Corrigan
2009-01-01
In an attempt to incorporate sculptural elements into her ceramics program, the author decided to try direct plaster casting of the face to make a plaster mold for clay. In this article, the author shares an innovative ceramics lesson that teaches students in making plaster casts and casting the face in clay. This project gives students the…
[Follow-up examinations after removal of titanium plates coated with anodic titanium oxide ceramic].
Velich, Norbert; Németh, Zsolt; Barabás, József; Szabó, György
2002-04-01
Transformation of the titanium metal surface with titanium oxides produced in various ways belongs among the most up-to-date procedures. The authors as pioneers in this field (e.g. Nobel Biocare TiUnite surface), have been utilizing for more than 15 years dental root implants and fixing elements (for mandibular osteosynthesis) coated with titanium oxide ceramics, produced by anodic oxidation and thermal treatment. The aim of this work was to assess the extent to which a titanium oxide ceramic coating influences the fate of plates applied for osteosynthesis within the human body. During a 5-year period (1995-1999), 108 of 1396 titanium oxide ceramic plates had to be removed for various reasons: loosening of the plate [47], osteomyelitis [25], a palpable swelling and tenderness [21] at the request of the patient for psychological reasons (13) or breaking of the plate [2]. When these 108 plates were removed, it was not possible to detect metallosis in even a single case; nor was there any tissue damage that could be attributed to the surface of the plates, whereas the literature data indicate that such damage is relatively frequent in the environment of traditional titanium fixing elements. The present investigation confirms the favourable properties of the titanium oxide ceramic surface.
NASA Astrophysics Data System (ADS)
Karivaratharajan, Adhitya; Baskaran, Sidharth; Thillairajan, K.
2018-02-01
Ceramics are generally synthesized with various sources and methods. The most common method for synthesis of ceramics with reduced cost and energy is SOL-GEL method. Combustion synthesis is also a most widely used method for ceramic synthesis. In general, ceramics have enhanced hardness and dimensional stability even at elevated temperatures. For this reason, they are used in the production of refractories, thermal barrier coatings, chemical resistant coatings, wear resistant coatings, and also as reinforcement material to produce metal matrix composites and polymer matrix composites. This work concentrates on the comparison of morphological characterization of such reinforcement particles synthesized from different sources. The particles size range varying from 7 μm to 250 μm with flaky and spongy structures are observed in the ash of Vicia faba. However, the ash of Cocos nucífera resulted in fibrous structure with a diameter of 50 μm to length above 600 μm, particles size ranging from 10 μm to 70 μm micro tubes of diameter 3.6 μm to length of 150 μm. The EDX and XRD analysis of Vicia faba showed the presence of carbon as the major element with a few other elements.
Gas stream clean-up filter and method for forming same
Mei, Joseph S.; DeVault, James; Halow, John S.
1993-01-01
A gas cleaning filter is formed in-situ within a vessel containing a fluidizable bed of granular material of a relatively large size fraction. A filter membrane provided by a porous metal or ceramic body or such a body supported a perforated screen on one side thereof is coated in-situ with a layer of the granular material from the fluidized bed by serially passing a bed-fluidizing gas stream through the bed of granular material and the membrane. The layer of granular material provides the filtering medium for the combined membrane-granular layer filter. The filter is not blinded by the granular material and provides for the removal of virtually all of the particulates from a process gas stream. The granular material can be at least partially provided by a material capable of chemically reacting with and removing sulfur compounds from the process gas stream. Low level radioactive waste containing organic material may be incinerated in a fluidized bed in communication with the described filter for removing particulates from the gaseous combustion products.
Removal of titanium plates coated with anodic titanium oxide ceramic: retrospective study.
Velich, Norbert; Németh, Zsolt; Suba, Csongor; Szabó, György
2002-09-01
Transformation of the surface of metallic titanium with titanium oxides prepared in various ways is a modern procedure. For more than 15 years, the authors have been utilizing fixing elements coated with titanium oxide ceramics, prepared by anodic oxidation and thermal treatment, for purposes of jawbone osteosynthesis. The aim of the authors' work was to assess the extent to which the titanium oxide ceramic coating influences the fate of the plates used for osteosynthesis within the human organism, in regard to the possible need for their removal. During a 5-year period, 108 of 1,396 plates coated with anodic titanium oxide had to be removed for various reasons: plate exposure (47), osteomyelitis (25), palpable swelling and tenderness (21), patient request for psychological reasons (13), or fracture of the plate (2). In none of these 108 cases was metallosis observed, which otherwise is reported relatively frequently in the vicinity of traditional titanium fixing elements, nor was any tissue damage connected with the surface of the plates. The results indicate the favorable properties of the titanium oxide ceramic surface.
Biomechanical behavior of a cemented ceramic knee replacement under worst case scenarios
NASA Astrophysics Data System (ADS)
Kluess, D.; Mittelmeier, W.; Bader, R.
2009-12-01
In connection with technological advances in the manufacturing of medical ceramics, a newly developed ceramic femoral component was introduced in total knee arthroplasty (TKA). The motivation to consider ceramics in TKA is based on the allergological and tribological benefits as proven in total hip arthroplasty. Owing to the brittleness and reduced fracture toughness of ceramic materials, the biomechanical performance has to be examined intensely. Apart from standard testing, we calculated the implant performance under different worst case scenarios including malposition, bone defects and stumbling. A finite-element-model was developed to calculate the implant performance in situ. The worst case conditions revealed principal stresses 12.6 times higher during stumbling than during normal gait. Nevertheless, none of the calculated principal stress amounts were above the critical strength of the ceramic material used. The analysis of malposition showed the necessity of exact alignment of the implant components.
THE STUDY OF HIGH DIELECTRIC CONSTANT MECHANISM OF La-DOPED Ba0.67Sr0.33TiO3 CERAMICS
NASA Astrophysics Data System (ADS)
Xu, Jing; He, Bo; Liu, Han Xing
It is a common and effective method to enhance the dielectric properties of BST ceramics by adding rare-earth elements. In this paper, it is important to analyze the cause of the high dielectric constant behavior of La-doped BST ceramics. The results show that proper rare earth La dopant (0.2≤x≤0.7) may greatly increase the dielectric constant of BST ceramics, and also improve the temperature stability, evidently. According to the current-voltage (J-V) characteristics, the proper La-doped BST ceramics may reach the better semiconductivity, with the decrease and increase in La doping, the ceramics are insulators. By using the Schottky barrier model and electric microstructure model to find the surface or grain boundary potential barrier height, the width of the depletion layer and grain size do play an important role in impacting the dielectric constant.
Biomechanical behavior of a cemented ceramic knee replacement under worst case scenarios
NASA Astrophysics Data System (ADS)
Kluess, D.; Mittelmeier, W.; Bader, R.
2010-03-01
In connection with technological advances in the manufacturing of medical ceramics, a newly developed ceramic femoral component was introduced in total knee arthroplasty (TKA). The motivation to consider ceramics in TKA is based on the allergological and tribological benefits as proven in total hip arthroplasty. Owing to the brittleness and reduced fracture toughness of ceramic materials, the biomechanical performance has to be examined intensely. Apart from standard testing, we calculated the implant performance under different worst case scenarios including malposition, bone defects and stumbling. A finite-element-model was developed to calculate the implant performance in situ. The worst case conditions revealed principal stresses 12.6 times higher during stumbling than during normal gait. Nevertheless, none of the calculated principal stress amounts were above the critical strength of the ceramic material used. The analysis of malposition showed the necessity of exact alignment of the implant components.
Development of BEM for ceramic composites
NASA Technical Reports Server (NTRS)
Henry, D. P.; Banerjee, P. K.; Dargush, G. F.
1991-01-01
It is evident that for proper micromechanical analysis of ceramic composites, one needs to use a numerical method that is capable of idealizing the individual fibers or individual bundles of fibers embedded within a three-dimensional ceramic matrix. The analysis must be able to account for high stress or temperature gradients from diffusion of stress or temperature from the fiber to the ceramic matrix and allow for interaction between the fibers through the ceramic matrix. The analysis must be sophisticated enough to deal with the failure of fibers described by a series of increasingly sophisticated constitutive models. Finally, the analysis must deal with micromechanical modeling of the composite under nonlinear thermal and dynamic loading. This report details progress made towards the development of a boundary element code designed for the micromechanical studies of an advanced ceramic composite. Additional effort has been made in generalizing the implementation to allow the program to be applicable to real problems in the aerospace industry.
NASA Astrophysics Data System (ADS)
Zhao, Xiaofeng; Teng, Yuancheng; Wu, Lang; Huang, Yi; Ma, Jiyan; Wang, Guolong
2015-11-01
Ce0.5Eu0.5PO4 ceramics with high relative density were prepared by hot-press (HPS) and pressureless (PLS) sintering. The effects of temperature and pH values on the chemical durability of the ceramics were investigated. The results show that an increase of acidity significantly accelerated the corrosion of the samples. In alkaline leachates, further release elements were prevented by the newborn surface precipitation. The leach rate (Rn) of HPS sample was similar to that of PLS specimen in deionized water, but higher Rn for PLS sample was found in pH = 11 solution. Moreover, apparent activation energy of the dissolution of Eu (40 ± 4 kJ mol-1) is much higher than that of Ce (20 ± 1 kJ mol-1), leading to the higher normalized elemental leach rate of Eu. Both the Eu and Ce elements have low leach rates (10-12-10-9 m d-1) after 42 days in all the leachates studied in this work.
Finite-element analysis of vibrational modes in piezoelectric ceramic disks.
Kunkel, H A; Locke, S; Pikeroen, B
1990-01-01
The natural vibrational modes of axially symmetric piezoelectric ceramic disks have been calculated by the finite-element method. The disks are of the type used as active elements in compressional wave ultrasonic transducers, and are electrically polarized in thickness with full electrodes on the disk's major faces. To optimize disk geometry for ultrasonic transducer application, the dependence of the vibrational modes on the disk diameter-to-thickness ratio for ratios from 0.2 (a tall cylinder) to 10.0 (a thin disk) has been studied. Series and parallel resonance frequencies for each of the modes are determined through an eigenfrequency analysis, and effective electromechanical coupling coefficients are calculated. The modal displacement fields in the disk are calculated to determine the physical nature of each mode. An analysis of the complete spectrum of piezoelectrically active modes as a function of diameter-thickness ratio is presented for the ceramic PZT-5H, including and identification of radial, edge, length expander, thickness shear, and thickness extensional vibrations. From this analysis, optimal diameter-to-thickness ratios for good transducer performance are discussed.
2016-01-01
The problem of multi-scale modelling of damage development in a SiC ceramic fibre-reinforced SiC matrix ceramic composite tube is addressed, with the objective of demonstrating the ability of the finite-element microstructure meshfree (FEMME) model to introduce important aspects of the microstructure into a larger scale model of the component. These are particularly the location, orientation and geometry of significant porosity and the load-carrying capability and quasi-brittle failure behaviour of the fibre tows. The FEMME model uses finite-element and cellular automata layers, connected by a meshfree layer, to efficiently couple the damage in the microstructure with the strain field at the component level. Comparison is made with experimental observations of damage development in an axially loaded composite tube, studied by X-ray computed tomography and digital volume correlation. Recommendations are made for further development of the model to achieve greater fidelity to the microstructure. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242308
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-02-01
The overall objective of this program is to assess and develop nondestructive evaluation procedures for high-temperature ceramics. The program is currently evaluating ceramic heat-exchanger tubing. Ceramic heat exchangers would be useful, for example, in coal-fired Brayton conversion or waste heat-recovery systems. The use of ceramic heat exchangers will allow working fluids to reach temperatures up to 1230/sup 0/C, and, with further materials development, possibly 1650/sup 0/C. If superalloys were employed, working fluids would be limited to approximately 800/sup 0/C. The use of working fluids at higher temperatures would result in more efficient systems. Furthermore, ceramic components are lighter than metallicmore » ones and are made from less costly and more abundant elements. In addition, ceramic heat exchangers would be more resistant to corrosion. In the current NDE effort, several acoustic, optical, and radiographic techniques are being examined for their effectiveness in testing silicon carbide tubing. Some results employing dye-enhanced radiography are discussed.« less
Li, Wen-jing; Chen, Yue; Li, Nai-sheng; Li, Bin; Luo, Wu-gan
2015-03-01
ICP-AES was used to determine the elemental composition of solutions in different conservation steps for understanding the impact of cleaning agents on ceramics from Huaguangjiao I shipwreck. The results showed that high content in solution of Al, Fe, Mg ions, which can be indexes to reflect the damage in conservation of ceramics. According to these indexes, we discovered that agents of strong cleaning ability bring more damage to ceramic samples. Meanwhile, the state of preservation of the ceramics was closely related to the damage in conservation. Ceramics in an excellent state of preservation endure less damage than that in bad state. We also found that each cleaning agent cause certain degree of damage on porcelains, even neutral reagent, like deionized water. Moreover, moderate cleaning reagent, when using a long time, bring the same degree of damage as the strong acid. Therefore, in actual protection procedure, for conservation ceramics safe and effective, damage of each cleaning agents and cumulative damage should be considered.
Fluorometric determination of zirconium in minerals
Alford, W.C.; Shapiro, L.; White, C.E.
1951-01-01
The increasing use of zirconium in alloys and in the ceramics industry has created renewed interest in methods for its determination. It is a common constituent of many minerals, but is usually present in very small amounts. Published methods tend to be tedious, time-consuming, and uncertain as to accuracy. A new fluorometric procedure, which overcomes these objections to a large extent, is based on the blue fluorescence given by zirconium and flavonol in sulfuric acid solution. Hafnium is the only element that interferes. The sample is fused with borax glass and sodium carbonate and extracted with water. The residue is dissolved in sulfuric acid, made alkaline with sodium hydroxide to separate aluminum, and filtered. The precipitate is dissolved in sulfuric acid and electrolysed in a Melaven cell to remove iron. Flavonol is then added and the fluorescence intensity is measured with a photo-fluorometer. Analysis of seven standard mineral samples shows excellent results. The method is especially useful for minerals containing less than 0.25% zirconium oxide.
Ceramic fibers from Si-B-C polymer precursors
NASA Technical Reports Server (NTRS)
Riccitiello, S. R.; Hsu, M. S.; Chen, T. S.
1993-01-01
Non-oxide ceramics such as silicon carbide (SiC), silicon nitride (Si3N4), and silicon borides (SiB4, SiB6) have thermal stability, oxidation resistance, hardness, and varied electrical properties. All these materials can be prepared in a fiber form from a suitable polymer precursor. The above mentioned fibers, when tested over a temperature range from 25 to 1400 C, experience degradation at elevated temperatures. Past work in ceramic materials has shown that the strength of ceramics containing both carbides and borides is sustained at elevated temperatures, with minimum oxidation. The work presented here describes the formation of ceramic fibers containing both elements, boron and silicon, prepared via the polymer precursor route previously reported by the authors, and discusses the fiber mechanical properties that are retained over the temperature range studied.
Chen, Jack C.; Stawisuck, Valerie M.; Prasad, Ravi
2003-01-01
A cold isopressing method in which two or more layers of material are formed within an isopressing mold. One of the layers consists of a tape-cast film. The layers are isopressed within the isopressing mold, thereby to laminate the layers and to compact the tape-cast film. The isopressing mold can be of cylindrical configuration with the layers being coaxial cylindrical layers. The materials used in forming the layers can contain green ceramic materials and the resultant structure can be fired and sintered as necessary and in accordance with known methods to produce a finished composite, ceramic structure. Further, such green ceramic materials can be of the type that are capable of conducting hydrogen or oxygen ions at high temperature with the object of utilizing the finished composite ceramic structure as a ceramic membrane element.
Particulate matters collected from ceramic factories in Lampang Province affecting rat lungs.
Fongmoon, Duriya; Pongnikorn, Surathat; Chaisena, Aphiruk; Iamsaard, Sitthichai
2014-01-01
Lung cancer ranks as the fifth largest of all cancer cases in Thailand. However, it is the first leading cancer in the northern part of Thailand (data from 2003-2007). There are several predisposing causes that lead to lung cancer and one important inducement is particulate matters (PMs). Lampang Province in Thailand is famous for the ceramic industry, where there are over 200 ceramic industrial factories. PMs are produced during the ceramic manufacturing process and spread throughout all of the working areas. It is very possible that workers could directly inhale PM-contaminated air during working hours. This study focuses on the toxic effects of PMs collected from ceramic factories on genes and lungs of rats. PMs collected from six ceramic factories in Lampang Province were extracted using dimethyl sulfoxide (DMSO). The inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES) were used to analyze the chemical elements at lower and higher concentrations, respectively. Then, the toxicity of PMs on the genes was examined by the Ames test, and subsequently, the effect of PMs on DNA was examined by quantifying the amount of 8-hydroxy-2'-deoxyguanosine (8-OHdG). Finally, the toxicity of the PMs on rat's lungs was examined by histology. As chemical elements of lower concentrations, cadmium, chromium, nickel, copper, and lead were detected by ICP-MS. As chemical elements of higher concentrations, manganese, magnesium, zinc, iron, potassium, calcium, and sodium were detected by ICP-OES. No mutagenicity in Salmonella typhimurium was found in the PM extracts from all six factories by utilizing the Ames test. In the histological study, the reduction in spaces of alveolar ducts and sacs, and terminal bronchioles, the thickening of interstitial connective tissues were noted by PM extracts in high amounts (100 and 350 µg). Female rats were more sensitive to PM extracts than males in terms of their pulmonary damages. PMs were not mutagenic to S. typhimurium but can damage the lung tissue of rats.
Compositionally Graded Multilayer Ceramic Capacitors
Song, Hyun-Cheol; Zhou, Jie E.; Maurya, Deepam; ...
2017-09-27
Multilayer ceramic capacitors (MLCC) are widely used in consumer electronics. In this paper, we provide a transformative method for achieving high dielectric response and tunability over a wide temperature range through design of compositionally graded multilayer (CGML) architecture. Compositionally graded MLCCs were found to exhibit enhanced dielectric tunability (70%) along with small dielectric losses (<2.5%) over the required temperature ranges specified in the standard industrial classifications. The compositional grading resulted in generation of internal bias field which enhanced the tunability due to increased nonlinearity. The electric field tunability of MLCCs provides an important avenue for design of miniature filters andmore » power converters.« less
Synthesis and characterization of laminated Si/SiC composites.
Naga, Salma M; Kenawy, Sayed H; Awaad, Mohamed; Abd El-Wahab, Hamada S; Greil, Peter; Abadir, Magdi F
2013-01-01
Laminated Si/SiC ceramics were synthesized from porous preforms of biogenous carbon impregnated with Si slurry at a temperature of 1500 °C for 2 h. Due to the capillarity infiltration with Si, both intrinsic micro- and macrostructure in the carbon preform were retained within the final ceramics. The SEM micrographs indicate that the final material exhibits a distinguished laminar structure with successive Si/SiC layers. The produced composites show weight gain of ≈5% after heat treatment in air at 1300 °C for 50 h. The produced bodies could be used as high temperature gas filters as indicated from the permeability results.
NASA Astrophysics Data System (ADS)
Zou, C.; Marrow, T. J.; Reinhard, C.; Li, B.; Zhang, C.; Wang, S.
2016-03-01
The pore structure and porosity of a continuous fiber reinforced ceramic matrix composite has been characterized using high-resolution synchrotron X-ray computed tomography (XCT). Segmentation of the reconstructed tomograph images reveals different types of pores within the composite, the inter-fiber bundle open pores displaying a "node-bond" geometry, and the intra-fiber bundle isolated micropores showing a piping shape. The 3D morphology of the pores is resolved and each pore is labeled. The quantitative filtering of the pores measures a total porosity 8.9% for the composite, amid which there is about 7.1~ 9.3% closed micropores.
Custom ceramic microchannel-cooled array for high-power fiber-coupled application
NASA Astrophysics Data System (ADS)
Junghans, Jeremy; Feeler, Ryan; Stephens, Ed
2018-03-01
A low-SWaP (Size, Weight and Power) diode array has been developed for a high-power fiber-coupled application. High efficiency ( 65%) diodes enable high optical powers while minimizing thermal losses. A large amount of waste heat is still generated and must be extracted. Custom ceramic microchannel-coolers (MCCs) are used to dissipate the waste heat. The custom ceramic MCC was designed to accommodate long cavity length diodes and micro-lenses. The coolers provide similar thermal performance as copper MCCs however they are not susceptible to erosion and can be cooled with standard filtered water. The custom ceramic micro-channel cooled array was designed to be a form/fit replacement for an existing copperbased solution. Each array consisted of three-vertically stacked MCCs with 4 mm CL, 976 nm diodes and beamshaping micro-optics. The erosion and corrosion resistance of ceramic array is intended to mitigate the risk of copperbased MCC corrosion failures. Elimination of the water delivery requirements (pH, resistivity and dissolved oxygen control) further reduces the system SWaP while maintaining reliability. The arrays were fabricated and fully characterized. This work discusses the advantages of the ceramic MCC technology and describes the design parameters that were tailored for the fiber-coupled application. Additional configuration options (form/fit, micro-lensing, alternate coolants, etc.) and on-going design improvements are also discussed.
A radiative transfer scheme that considers absorption, scattering, and distribution of light-absorbing elemental carbon (EC) particles collected on a quartz-fiber filter was developed to explain simultaneous filter reflectance and transmittance observations prior to and during...
USDA-ARS?s Scientific Manuscript database
A laboratory investigation was conducted to evaluate four iron-based filter materials for trace element contaminant water treatment. The iron-based filter materials evaluated were zero valent iron (ZVI), porous iron composite (PIC), sulfur modified iron (SMI), and iron oxide/hydroxide (IOH). Only fi...
Ekberg, Peter; Su, Rong; Chang, Ernest W.; Yun, Seok Hyun; Mattsson, Lars
2014-01-01
Optical coherence tomography (OCT) is useful for materials defect analysis and inspection with the additional possibility of quantitative dimensional metrology. Here, we present an automated image-processing algorithm for OCT analysis of roll-to-roll multilayers in 3D manufacturing of advanced ceramics. It has the advantage of avoiding filtering and preset modeling, and will, thus, introduce a simplification. The algorithm is validated for its capability of measuring the thickness of ceramic layers, extracting the boundaries of embedded features with irregular shapes, and detecting the geometric deformations. The accuracy of the algorithm is very high, and the reliability is better than 1 µm when evaluating with the OCT images using the same gauge block step height reference. The method may be suitable for industrial applications to the rapid inspection of manufactured samples with high accuracy and robustness. PMID:24562018
Flight prototype regenerative particulate filter system development
NASA Technical Reports Server (NTRS)
Green, D. C.; Garber, P. J.
1974-01-01
The effort to design, fabricate, and test a flight prototype Filter Regeneration Unit used to regenerate (clean) fluid particulate filter elements is reported. The design of the filter regeneration unit and the results of tests performed in both one-gravity and zero-gravity are discussed. The filter regeneration unit uses a backflush/jet impingement method of regenerating fluid filter elements that is highly efficient. A vortex particle separator and particle trap were designed for zero-gravity use, and the zero-gravity test results are discussed. The filter regeneration unit was designed for both inflight maintenance and ground refurbishment use on space shuttle and future space missions.
Pollastro, R.M.
1982-01-01
Extremely well-oriented clay mineral mounts for X-ray diffraction analysis can be prepared quickly and without introducing segregation using the filter-membrane peel technique. Mounting problems encountered with smectite-rich samples can be resolved by using minimal sample and partial air-drying of the clay film before transfer to a glass slide. Samples containing small quantities of clay can produce useful oriented specimens if Teflon masks having more restrictive areas are inserted above the membrane filter during clay deposition. War]page and thermal shock of glass slides can be controlled by using a flat, porous, ceramic plate as a holding surface during heat treatments.
Summary of aluminum nitrate tests at the F/H-ETF
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCabe, D.J.; Wiggins, A.W.
1992-05-01
Biofouling of the Norton ceramic filters in the F/H Effluent Treatment Facility (ETF) has been minimized by bacterial control strategies on the influent streams. However, enough bacteria still exists in the routine influent to impact the filter performance. One method of remediating biofouling in routine influent, initially observed in laboratory tests on simulant solutions, involves addition of aluminum nitrate to the influent wastewater. Tests on actual feed at the ETF using aluminum nitrate showed significantly improved performance, with increases in filter permeability of up to four-fold compared to the baseline case. These improvements were only realized after modifications to themore » pH adjustment system were completed which minimized upsets in the pH of the feed solutions.« less
NASA Astrophysics Data System (ADS)
Luo, D. M.; Xie, Y.; Su, X. R.; Zhou, Y. L.
2018-01-01
Based on the four classical models of Mooney-Rivlin (M-R), Yeoh, Ogden and Neo-Hookean (N-H) model, a strain energy constitutive equation with large deformation for rubber composites reinforced with random ceramic particles is proposed from the angle of continuum mechanics theory in this paper. By decoupling the interaction between matrix and random particles, the strain energy of each phase is obtained to derive the explicit constitutive equation for rubber composites. The tests results of uni-axial tensile, pure shear and equal bi-axial tensile are simulated by the non-linear finite element method on the ANSYS platform. The results from finite element method are compared with those from experiment, and the material parameters are determined by fitting the results from different test conditions, and the influence of radius of random ceramic particles on the effective mechanical properties are analyzed.
Degradation of the Crystalline Structure of ZnS Ceramics under Abrasive Damage
NASA Astrophysics Data System (ADS)
Shcherbakov, I. P.; Dunaev, A. A.; Chmel, A. E.
2018-04-01
Stability of optical elements based on ZnS ceramics to dust and rain erosion is usually estimated from the loss of material mass in a directional flow of solid particles or atmospheric precipitates. In this case, the mechanism of degradation and fracture of the surface layer of an optical element is not considered. The photoluminescence (PL) method was used for investigating the crystal lattice response to the abrasive action and the formation of cleavage in ZnS ceramics, which differ in manufacturing technology and, accordingly, in the grain size by two orders of magnitude. It is shown that during abrasive treatment of samples, their spectra exhibit changes typical of degradation of the crystal lattice of material grains. The PL spectra of cleavage surfaces reveal almost complete degradation of the structure of crystallite grains with a size from 1-2 to 100-200 μm.
Compact wideband filter element-based on complementary split-ring resonators
NASA Astrophysics Data System (ADS)
Horestani, Ali K.; Shaterian, Zahra; Withayachumnankul, Withawat; Fumeaux, Christophe; Al-Sarawi, Said; Abbott, Derek
2011-12-01
A double resonance defected ground structure is proposed as a filter element. The structure involves a transmission line loaded with complementary split ring resonators embedded in a dumbbell shape defected ground structure. By using a parametric study, it is demonstrated that the two resonance frequencies can be independently tuned. Therefore the structure can be used for different applications such as dual bandstop filters and wide bandstop filters.
Modeling of submicrometer aerosol penetration through sintered granular membrane filters.
Marre, Sonia; Palmeri, John; Larbot, André; Bertrand, Marielle
2004-06-01
We present a deep-bed aerosol filtration model that can be used to estimate the efficiency of sintered granular membrane filters in the region of the most penetrating particle size. In this region the capture of submicrometer aerosols, much smaller than the filter pore size, takes place mainly via Brownian diffusion and direct interception acting in synergy. By modeling the disordered sintered grain packing of such filters as a simple cubic lattice, and mapping the corresponding 3D connected pore volume onto a discrete cylindrical pore network, the efficiency of a granular filter can be estimated, using new analytical results for the efficiency of cylindrical pores. This model for aerosol penetration in sintered granular filters includes flow slip and the kinetics of particle capture by the pore surface. With a unique choice for two parameters, namely the structural tortuosity and effective kinetic coefficient of particle adsorption, this semiempirical model can account for the experimental efficiency of a new class of "high-efficiency particulate air" ceramic membrane filters as a function of particle size over a wide range of filter thickness and texture (pore size and porosity) and operating conditions (face velocity).
Image search engine with selective filtering and feature-element-based classification
NASA Astrophysics Data System (ADS)
Li, Qing; Zhang, Yujin; Dai, Shengyang
2001-12-01
With the growth of Internet and storage capability in recent years, image has become a widespread information format in World Wide Web. However, it has become increasingly harder to search for images of interest, and effective image search engine for the WWW needs to be developed. We propose in this paper a selective filtering process and a novel approach for image classification based on feature element in the image search engine we developed for the WWW. First a selective filtering process is embedded in a general web crawler to filter out the meaningless images with GIF format. Two parameters that can be obtained easily are used in the filtering process. Our classification approach first extract feature elements from images instead of feature vectors. Compared with feature vectors, feature elements can better capture visual meanings of the image according to subjective perception of human beings. Different from traditional image classification method, our classification approach based on feature element doesn't calculate the distance between two vectors in the feature space, while trying to find associations between feature element and class attribute of the image. Experiments are presented to show the efficiency of the proposed approach.
Spectral and Wavefront Error Performance of WFIRST/AFTA Prototype Filters
NASA Technical Reports Server (NTRS)
Quijada, Manuel; Seide, Laurie; Marx, Cathy; Pasquale, Bert; McMann, Joseph; Hagopian, John; Dominguez, Margaret; Gong, Qian; Morey, Peter
2016-01-01
The Cycle 5 design baseline for the Wide-Field Infrared Survey Telescope Astrophysics Focused Telescope Assets (WFIRSTAFTA) instrument includes a single wide-field channel (WFC) instrument for both imaging and slit-less spectroscopy. The only routinely moving part during scientific observations for this wide-field channel is the element wheel (EW) assembly. This filter-wheel assembly will have 8 positions that will be populated with 6 bandpass filters, a blank position, and a Grism that will consist of a three-element assembly to disperse the full field with an undeviated central wavelength for galaxy redshift surveys. All filter elements in the EW assembly will be made out of fused silica substrates (110 mm diameter) that will have the appropriate bandpass coatings according to the filter designations (Z087, Y106, J129, H158, F184, W149 and Grism). This paper presents and discusses the performance (including spectral transmission and reflectedtransmitted wavefront error measurements) of a subset of bandpass filter coating prototypes that are based on the WFC instrument filter compliment. The bandpass coating prototypes that are tested in this effort correspond to the Z087, W149, and Grism filter elements. These filter coatings have been procured from three different vendors to assess the most challenging aspects in terms of the in-band throughput, out of band rejection (including the cut-on and cutoff slopes), and the impact the wavefront error distortions of these filter coatings will have on the imaging performance of the de-field channel in the WFIRSTAFTA observatory.
The effectiveness of a zirconium dioxide (ZrO2) membrane filter was evaluated for recycling a nonionic aqueous metal cleaning bath under real-world conditions. The pilot-scale study consisted of four 7- to 16-day filtration runs, each processed a portion of the cleaning bath duri...
Jing, Zhaoqian; Li, Yu-You; Cao, Shiwei; Liu, Yuyu
2012-09-01
To improve trickling filters' denitrification efficiency, a biofilter with a trickling upper layer and a submerged lower layer was developed and applied in treating highly polluted river water. It was packed with porous coal fly ash ceramic granules. Its start-up characteristics, influence of hydraulic loading rates (HLR), carbon/nitrogen (C/N) ratio and filter depth on pollutants removal were investigated. The results indicated this biofilter was started quickly in 16 days with river sediment as inoculum. Alternating nitrification and denitrification were achieved when water flowed downwards. COD and nitrogen were mainly removed in the upper layer and the lower layer, respectively. With HLR of 4.0-5.0m(3)/(m(2)d), chemical oxygen demand (COD), ammonium (NH(4)(+)-N) and total nitrogen (TN) in the effluent were below 50, 5 and 15 mg/L, respectively. This biofilter removed more than 80% of COD, 85% of NH(4)(+)-N and 60% of TN with C/N ratios ranging from 6 to 10. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pranoto; Sajidan; Suprapto, A.
2017-02-01
Chromium (Cr) concentration in water can be reduced by adsorption. This study aimed to determine the effect of Andisol soil composition/Bayat clay/husk ash, activation temperature and contact time of the adsorption capacity of Cr in the model solution; the optimum adsorption conditions and the effectiveness of ceramic filters and purifiers to reduce contaminant of Cr in the water. The mixture of Andisol soil, Bayat clay, and husk ash is used as adsorbent of metal ion of Cr(III) using batch method. The identification and characterisation of adsorbent was done with NaF test, infrared spectroscopy (FTIR), X-ray diffraction (XRD). Cr metal concentrations were analyzed by atomic absorption spectroscopy. Sorption isotherms determined by Freundlich equation and Langmuir. The optimum conditions of sorption were achieved at 150°C activation temperature, contact time of 30 minutes and a composition Andisol soil / Bayat clay / husk ash by comparison 80/10/10. The results show a ceramic filter effectively reduces total dissolved solids (TDS) and Chromium in the water with the percentage decrease respectively by 75.91% and 9.44%.
Glass-ceramics from municipal incinerator fly ash
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boccaccini, A.R.; Petitmermet, M.; Wintermantel, E.
1997-11-01
In countries where the population density is high and the availability of space for landfilling is limited, such as the west-European countries and Japan, the significance of municipal solid waste incineration, as part of the waste management strategy, is continuously increasing. In Germany and Switzerland, for example, more than {approximately}40% of unrecycled waste is being or will be incinerated. Also, in other countries, including the US, the importance of waste incineration will increase in the next few years. Although incineration reduces the volume of the waste by {approximately} 90%, it leaves considerable amounts of solid residues, such as bottom andmore » boiler ashes, and filter fly ashes. Consequently, new technological options for the decontamination and/or inertization of incinerator filter fly ash are being developed with the objective of rendering a product that can be reused or, at least, be deposited in standard landfill sites with no risk. The proposed alternatives include immobilization by cement-based techniques, wet chemical treatments and thermal treatments of vitrification. Of these, vitrification is the most promising solution, because, if residues are melted at temperatures > 1,300 C, a relatively inert glass is produced. In the present investigation, glass-ceramics were obtained by a controlled crystallization heat treatment of vitrified incinerator filter fly ashes. The mechanical and other technical properties of the products were measured with special emphasis on assessing their in vitro toxic potential.« less
NASA Astrophysics Data System (ADS)
Belyaev, B. A.; Serzhantov, A. M.; Bal'va, Ya. F.; Leksikov, An. A.; Galeev, R. G.
2015-05-01
A microstrip bandpass filter of new design based on original resonators with an interdigital structure of conductors has been studied. The proposed filters of third to sixth order are distinguished for their high frequency-selective properties and much smaller size than analogs. It is established that a broad stop band, extending up to a sixfold central bandpass frequency, is determined by low unloaded Q of higher resonance mode and weak coupling of resonators in the pass band. It is shown for the first time that, as the spacing of interdigital stripe conductors decreases, the Q of higher resonance mode monotonically drops, while the Q value for the first operating mode remains high. A prototype fourth-order filter with a central frequency of 0.9 GHz manufactured on a ceramic substrate with dielectric permittivity ɛ = 80 has microstrip topology dimensions of 9.5 × 4.6 × 1 mm3. The electrodynamic 3D model simulations of the filter characteristics agree well with the results of measurements.
Lattice Boltzmann simulations for wall-flow dynamics in porous ceramic diesel particulate filters
NASA Astrophysics Data System (ADS)
Lee, Da Young; Lee, Gi Wook; Yoon, Kyu; Chun, Byoungjin; Jung, Hyun Wook
2018-01-01
Flows through porous filter walls of wall-flow diesel particulate filter are investigated using the lattice Boltzmann method (LBM). The microscopic model of the realistic filter wall is represented by randomly overlapped arrays of solid spheres. The LB simulation results are first validated by comparison to those from previous hydrodynamic theories and constitutive models for flows in porous media with simple regular and random solid-wall configurations. We demonstrate that the newly designed randomly overlapped array structures of porous walls allow reliable and accurate simulations for the porous wall-flow dynamics in a wide range of solid volume fractions from 0.01 to about 0.8, which is beyond the maximum random packing limit of 0.625. The permeable performance of porous media is scrutinized by changing the solid volume fraction and particle Reynolds number using Darcy's law and Forchheimer's extension in the laminar flow region.
Mechanical comparison of a polymer nanocomposite to a ceramic thin-film anti-reflective filter.
Druffel, Thad; Geng, Kebin; Grulke, Eric
2006-07-28
Thin-film filters on optical components have been in use for decades and, for those industries utilizing a polymer substrate, the mismatch in mechanical behaviour has caused problems. Surface damage including scratches and cracks induces haze on the optical filter, reducing the transmission of the optical article. An in-mold anti-reflective (AR) filter incorporating 1/4-wavelength thin films based on a polymer nanocomposite is outlined here and compared with a traditional vacuum deposition AR coating. Nanoindentation and nanoscratch techniques are used to evaluate the mechanical properties of the thin films. Scanning electron microscopy (SEM) images of the resulting indentations and scratches are then compared to the force deflection curves to further explain the phenomena. The traditional coatings fractured by brittle mechanisms during testing, increasing the area of failure, whereas the polymer nanocomposite gave ductile failure with less surface damage.
FILTSoft: A computational tool for microstrip planar filter design
NASA Astrophysics Data System (ADS)
Elsayed, M. H.; Abidin, Z. Z.; Dahlan, S. H.; Cholan N., A.; Ngu, Xavier T. I.; Majid, H. A.
2017-09-01
Filters are key component of any communication system to control spectrum and suppress interferences. Designing a filter involves long process as well as good understanding of the basic hardware technology. Hence this paper introduces an automated design tool based on Matlab-GUI, called the FILTSoft (acronym for Filter Design Software) to ease the process. FILTSoft is a user friendly filter design tool to aid, guide and expedite calculations from lumped elements level to microstrip structure. Users just have to provide the required filter specifications as well as the material description. FILTSoft will calculate and display the lumped element details, the planar filter structure, and the expected filter's response. An example of a lowpass filter design was calculated using FILTSoft and the results were validated through prototype measurement for comparison purposes.
NASA Technical Reports Server (NTRS)
Parker, R. J.; Zaretsky, E. V.
1974-01-01
The five-ball fatigue tester was used to evaluate silicon nitride as a rolling-element bearing material. Results indicate that hot-pressed silicon nitride running against steel may be expected to yield fatigue lives comparable to or greater than those of bearing quality steel running against steel at stress levels typical rolling-element bearing application. The fatigue life of hot-pressed silicon nitride is considerably greater than that of any ceramic or cermet tested. Computer analysis indicates that there is no improvement in the lives of 120-mm-bore angular--contact ball bearings of the same geometry operating at DN values from 2 to 4 million where hot-pressed silicon nitride balls are used in place of steel balls.
Trace element doping in calcium phosphate ceramics to Understand osteogenesis and angiogenesis
Bose, Susmita; Fielding, Gary; Tarafder, Solaiman; Bandyopadhyay, Amit
2013-01-01
The general trends in synthetic bone grafting materials are shifting towards approaches that can illicit osteoinductive properties. Pharmacologics and biologics have been used in combination with calcium phosphate (CaP) ceramics, however, recently have become the target of scrutiny over the safety. The importance of trace elements in natural bone health is well documented. Ions, e.g. lithium, zinc, magnesium, manganese, silicon, strontium etc. have shown to increase osteogenesis and neovascularization. Incorporation of dopants into CaPs can provide a platform for safe and efficient delivery in clinical applications where increased bone healing is favorable. This review highlights use of trace elements in CaP biomaterials, and offers an insight into the mechanisms of how metal ions can enhance both osteogenesis and angiogenesis. PMID:24012308
Linear-phase delay filters for ultra-low-power signal processing in neural recording implants.
Gosselin, Benoit; Sawan, Mohamad; Kerherve, Eric
2010-06-01
We present the design and implementation of linear-phase delay filters for ultra-low-power signal processing in neural recording implants. We use these filters as low-distortion delay elements along with an automatic biopotential detector to perform integral waveform extraction and efficient power management. The presented delay elements are realized employing continuous-time OTA-C filters featuring 9th-order equiripple transfer functions with constant group delay. Such analog delay enables processing neural waveforms with reduced overhead compared to a digital delay since it does not requires sampling and digitization. It uses an allpass transfer function for achieving wider constant-delay bandwidth than all-pole does. Two filters realizations are compared for implementing the delay element: the Cascaded structure and the Inverse follow-the-leader feedback filter. Their respective strengths and drawbacks are assessed by modeling parasitics and non-idealities of OTAs, and by transistor-level simulations. A budget of 200 nA is used in both filters. Experimental measurements with the chosen filter topology are presented and discussed.
Abebe, Lydia S; Chen, Xinyu; Sobsey, Mark D
2016-02-27
The use of porous ceramic filters is promoted globally for household water treatment, but these filters are ineffective in removing viruses from water. In order to increase virus removal, we combine a promising natural coagulant, chitosan, as a pretreatment for ceramic water filters (CWFs) and evaluate the performance of this dual barrier water treatment system. Chitosan is a non-toxic and biodegradable organic polymer derived by simple chemical treatments from chitin, a major source of which is the leftover shells of crustacean seafoods, such as shrimp, prawns, crabs, and lobsters. To determine the effectiveness of chitosan, model test water was contaminated with Escherichia coli K011 and coliphage MS2 as a model enteric bacterium and virus, respectively. Kaolinite clay was used to model turbidity. Coagulation effectiveness of three types of modified chitosans was determine at various doses ranging from 5 to 30 mg/L, followed by flocculation and sedimentation. The pre-treated supernatant water was then decanted into the CWF for further treatment by filtration. There were appreciable microbial removals by chitosan HCl, acetate, and lactate pretreatment followed by CWF treatment, with mean reductions (95% CI) between 4.7 (± 1.56) and 7.5 (± 0.02) log10 for Escherichia coli, and between 2.8 (± 0.10) and 4.5 (± 1.04) log10 for MS2. Turbidity reduction with chitosan treatment and filtration consistently resulted in turbidities < 1 NTU, which meet turbidity standards of the US EPA and guidance by the World Health Organization (WHO). According to WHO health-based microbial removal targets for household water treatment technology, chitosan coagulation achieved health protective targets for both viruses and bacteria. Therefore, the results of this study support the use of chitosan to improve household drinking water filtration processes by increasing virus and bacteria reductions.
NASA Astrophysics Data System (ADS)
Pranoto; Inayati; Firmansyah, Fathoni
2018-04-01
Water is a natural resource that is essential for all living creatures. In addition, water also caused of disease affecting humans. The existence of one of heavy metal pollutants cadmium (Cd) in the body of water is an environmental problem having a negative impact on the quality of water resources. Adsorption is one of the ways or methods that are often used for the treatment of wastewater. Clay and allophanic soil were used as Cd adsorbent by batch method. Ceramic filter was used to reduce Cd concentration in the ground water. This study aims to determine the effect of the composition of clay and Allophane, activation temperature and contact time on the adsorption capacity of Cd in the model solution. The optimum adsorption condition and the effectiveness of drinking water treatment in accordance with Regulation of the Minister of Health using clay/Andisol adsorbents in ensnare heavy metals Cd and bacterial pathogens. Identification and characterization of adsorbent is done by using NaF, Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), specific surface area and total acidity specific. The Cd metal concentrations were analysed by atomic absorption spectroscopy. Adsorption isotherms determined by Freundlich and Langmuir equations. Modified water purification technology using ceramic filters are made with a mixture of clay and Andisol composition. The results showed samples of clay and Andisol containing minerals. The optimum condition of adsorption was achieved at 200 °C of activation temperature, 60 minutes of contact time and the 60:40 of clay:Andisol adsorbent composition. Freundlich isotherm represented Cd adsorption on the clay/Andisol adsorbent with a coefficient of determination (R2=0.99) and constant (k=1.59), higher than Langmuir (R2=0.89). The measurement results show the water purification technology using ceramic filters effectively reduce E. coli bacterial and Cd content in the water.
Abebe, Lydia S.; Chen, Xinyu; Sobsey, Mark D.
2016-01-01
The use of porous ceramic filters is promoted globally for household water treatment, but these filters are ineffective in removing viruses from water. In order to increase virus removal, we combine a promising natural coagulant, chitosan, as a pretreatment for ceramic water filters (CWFs) and evaluate the performance of this dual barrier water treatment system. Chitosan is a non-toxic and biodegradable organic polymer derived by simple chemical treatments from chitin, a major source of which is the leftover shells of crustacean seafoods, such as shrimp, prawns, crabs, and lobsters. To determine the effectiveness of chitosan, model test water was contaminated with Escherichia coli K011 and coliphage MS2 as a model enteric bacterium and virus, respectively. Kaolinite clay was used to model turbidity. Coagulation effectiveness of three types of modified chitosans was determine at various doses ranging from 5 to 30 mg/L, followed by flocculation and sedimentation. The pre-treated supernatant water was then decanted into the CWF for further treatment by filtration. There were appreciable microbial removals by chitosan HCl, acetate, and lactate pretreatment followed by CWF treatment, with mean reductions (95% CI) between 4.7 (±1.56) and 7.5 (±0.02) log10 for Escherichia coli, and between 2.8 (±0.10) and 4.5 (±1.04) log10 for MS2. Turbidity reduction with chitosan treatment and filtration consistently resulted in turbidities < 1 NTU, which meet turbidity standards of the US EPA and guidance by the World Health Organization (WHO). According to WHO health-based microbial removal targets for household water treatment technology, chitosan coagulation achieved health protective targets for both viruses and bacteria. Therefore, the results of this study support the use of chitosan to improve household drinking water filtration processes by increasing virus and bacteria reductions. PMID:26927152
Ye, Xiao-yan; Xiao, Wen-qing; Huang, Xia-ning; Zhang, Yong-lu; Cao, Yu-guang; Gu, Kang-ding
2012-07-01
This study aimed to construct an effective method to concentrate and detect virus in drinking water, and human adenovirus pollution status in actual water samples was monitored by constructed method. The concentration efficient of NanoCeram filter for the first concentration with source water and drinking water and the concentration efficient of the different concentrations of PEG 8000 for the second concentration were assessed by spiking f₂ bacteriophage into water samples. The standard of human adenovirus for real-time PCR was constructed by T-A clone. The plasmid obtained was identified through sequence analyzing and consistency check comparing to target gene fragment was conducted by using blast algorithm. Then, real-time PCR was constructed to quantify the concentration of human adenovirus using the plasmid as standard. Water samples were concentrated by using NanoCeram filter on the spot and then concentrated for the second time by PEG/NaCl in 2011. The DNA of concentrated samples were extracted for the quantification of human adenovirus in real-time PCR subsequently to monitor the pollution of human adenovirus in water. For the first concentration by NanoCeram filter, the recovery rates were (51.63 ± 26.60)% in source water and (50.27 ± 14.35)% in treated water, respectively. For the second concentration, the highest recovery rate was reached to (90.09 ± 10.50)% at the concentration of 0.13 kg/L of PEG 8000. The sequence identity score of standard of adenovirus for real time PCR and adenovirus gene was 99%, implying that it can be successfully used to quantification with human adenovirus. The levels of human adenovirus in the water samples sampled in 2011 ranged from 4.13×10³ to 2.20×10⁶ copies/L in source water, while range from 5.57×10² to 7.52×10⁵ copies/L in treated water and the removal efficiency range was (75.49 ± 11.71)%. NanoCeram filers combined with PEG/NaCl was an effective method to concentrate virus in aquatic environment. There was a large number of human adenovirus in source water, and it is not sufficient to remove them thoroughly through conventional water treatment processes.
Filtration Efficiency of Functionalized Ceramic Foam Filters for Aluminum Melt Filtration
NASA Astrophysics Data System (ADS)
Voigt, Claudia; Jäckel, Eva; Taina, Fabio; Zienert, Tilo; Salomon, Anton; Wolf, Gotthard; Aneziris, Christos G.; Le Brun, Pierre
2017-02-01
The influence of filter surface chemistry on the filtration efficiency of cast aluminum alloys was evaluated for four different filter coating compositions (Al2O3—alumina, MgAl2O4—spinel, 3Al2O3·2SiO2—mullite, and TiO2—rutile). The tests were conducted on a laboratory scale with a filtration pilot plant, which facilitates long-term filtration tests (40 to 76 minutes). This test set-up allows the simultaneous use of two LiMCAs (before and after the filter) for the determination of the efficiency of inclusion removal. The four tested filter surface chemistries exhibited good thermal stability and mechanical robustness after 750 kg of molten aluminum had been cast. All four filter types exhibited a mean filtration efficiency of at least 80 pct. However, differences were also observed. The highest filtration efficiencies were obtained with alumina- and spinel-coated filter surfaces (>90 pct), and the complete removal of the largest inclusions (>90 µm) was observed. The efficiency was slightly lower with mullite- and rutile-coated filter surfaces, in particular for large inclusions. These observations are discussed in relation to the properties of the filters, in particular in terms of, for example, the surface roughness.
NASA Technical Reports Server (NTRS)
Powers, L. M.; Jadaan, O. M.; Gyekenyesi, J. P.
1998-01-01
The desirable properties of ceramics at high temperatures have generated interest in their use for structural application such as in advanced turbine engine systems. Design lives for such systems can exceed 10,000 hours. The long life requirement necessitates subjecting the components to relatively low stresses. The combination of high temperatures and low stresses typically places failure for monolithic ceramics in the creep regime. The objective of this paper is to present a design methodology for predicting the lifetimes of structural components subjected to creep rupture conditions. This methodology utilizes commercially available finite element packages and takes into account the time-varying creep strain distributions (stress relaxation). The creep life, of a component is discretized into short time steps, during which the stress and strain distributions are assumed constant. The damage is calculated for each time step based on a modified Monkman-Grant creep rupture criterion. Failure is assumed to occur when the normalized accumulated damage at any point in the component is greater than or equal to unity. The corresponding time will be the creep rupture life for that component. Examples are chosen to demonstrate the Ceramics Analysis and Reliability Evaluation of Structures/CREEP (CARES/CREEP) integrated design program, which is written for the ANSYS finite element package. Depending on the component size and loading conditions, it was found that in real structures one of two competing failure modes (creep or slow crack growth) will dominate. Applications to benchmark problems and engine components are included.
NASA Technical Reports Server (NTRS)
Gyekenyesi, J. P.; Powers, L. M.; Jadaan, O. M.
1998-01-01
The desirable properties of ceramics at high temperatures have generated interest in their use for structural applications such as in advanced turbine systems. Design lives for such systems can exceed 10,000 hours. The long life requirement necessitates subjecting the components to relatively low stresses. The combination of high temperatures and low stresses typically places failure for monolithic ceramics in the creep regime. The objective of this paper is to present a design methodology for predicting the lifetimes of structural components subjected to creep rupture conditions. This methodology utilized commercially available finite element packages and takes into account the time-varying creep strain distributions (stress relaxation). The creep life of a component is discretized into short time steps, during which the stress and strain distributions are assumed constant. The damage is calculated for each time step based on a modified Monkman-Grant creep rupture criterion. Failure is assumed to occur when the normalized accumulated damage at any point in the component is greater than or equal to unity. The corresponding time will be the creep rupture life for that component. Examples are chosen to demonstrate the CARES/CREEP (Ceramics Analysis and Reliability Evaluation of Structures/CREEP) integrated design programs, which is written for the ANSYS finite element package. Depending on the component size and loading conditions, it was found that in real structures one of two competing failure modes (creep or slow crack growth) will dominate. Applications to benechmark problems and engine components are included.
Monolithic fiber optic sensor assembly
Sanders, Scott
2015-02-10
A remote sensor element for spectrographic measurements employs a monolithic assembly of one or two fiber optics to two optical elements separated by a supporting structure to allow the flow of gases or particulates therebetween. In a preferred embodiment, the sensor element components are fused ceramic to resist high temperatures and failure from large temperature changes.
Comparative assessment of ceramic media for drinking water biofiltration.
Sharma, Dikshant; Taylor-Edmonds, Liz; Andrews, Robert C
2018-01-01
Media type is a critical design consideration when implementing biofiltration for drinking water treatment. Granular activated carbon (GAC) has been shown to provide superior performance when compared to a wide range of media types, largely due to its higher surface area. Engineered ceramic media is an attractive alternative to GAC as it has a similar surface area but at a lower cost. This pilot-scale biofiltration study compared the performance of GAC, anthracite and two different effective sizes of ceramic (CER) media (1.0 mm and 1.2 mm), in terms of dissolved organic carbon (DOC), head loss, turbidity, and disinfection by-product formation potential (DBPFP). Biological acclimation was monitored using adenosine tri-phosphate (ATP) measurements; biomass was further examined using laccase and esterase enzyme activity assays. When compared to other media types examined, biological GAC had higher (p > 0.05) removals of DOC (9.8 ± 3.8%), trihalomethane formation potential (THMFP, 26.3 ± 10.2%), and haloacetic acid formation potential (HAAFP, 27.2 ± 14.0%). CER media required 6-7 months to biologically acclimate, while filters containing GAC and anthracite were biologically active (>100 ng of ATP/g media) following 30-45 days of operation. Once acclimated, ATP values of 243 and 208 ng/g attained for CER 1.0 and 1.2, respectively, were statistically comparable to GAC (244 ng/g) and higher than anthracite (110 ng/g), however this did not translate into greater organics removal. Esterase and laccase enzyme kinetics were highest for GAC, while CER was shown to have greater biodegradation potential than anthracite. The four media types attained similar turbidity reduction (p > 0.05), however ceramic media filters were observed to have run times which were 1.5-2.3 times longer when compared to anthracite, which could represent potential cost savings in terms of energy for pumping and backwash requirements. Overall, ceramic media was shown to be a potential alternative to anthracite when considering biofiltration, especially during cold water conditions (T < 10 °C). Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Fralick, Gustave C.; Hunter, Gary W.
2006-01-01
The need to consider ceramic sensing elements is brought about by the temperature limits of metal thin film sensors in propulsion system applications. In order to have a more passive method of negating changes of resistance due to temperature, an effort is underway at NASA Glenn to develop high temperature thin film ceramic static strain gauges for application in turbine engines, specifically in the fan and compressor modules on blades. Other applications can be on aircraft hot section structures and on thermal protection systems. The near-term interim goal of the research effort was to identify candidate thin film ceramic sensor materials to test for viability and provide a list of possible thin film ceramic sensor materials and corresponding properties to test for viability. This goal was achieved by a thorough literature search for ceramics that have the potential for application as high temperature thin film strain gauges, reviewing potential candidate materials for chemical and physical compatibility with our microfabrication procedures and substrates.
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Fralick, Gustave C.; Hunter, Gary W.
2006-01-01
The need to consider ceramic sensing elements is brought about by the temperature limits of metal thin film sensors in propulsion system applications. In order to have a more passive method of negating changes of resistance due to temperature, an effort is underway at NASA GRC to develop high temperature thin film ceramic static strain gauges for application in turbine engines, specifically in the fan and compressor modules on blades. Other applications include on aircraft hot section structures and on thermal protection systems. The near-term interim goal of this research effort was to identify candidate thin film ceramic sensor materials to test for viability and provide a list of possible thin film ceramic sensor materials and corresponding properties to test for viability. This goal was achieved by a thorough literature search for ceramics that have the potential for application as high temperature thin film strain gauges, reviewing potential candidate materials for chemical & physical compatibility with NASA GRC's microfabrication procedures and substrates.
Ceramic valve development for heavy-duty low heat rejection diesel engines
NASA Technical Reports Server (NTRS)
Weber, K. E.; Micu, C. J.
1989-01-01
Monolithic ceramic valves can be successfully operated in a heavy-duty diesel engine, even under extreme low heat rejection operating conditions. This paper describes the development of a silicon nitride valve from the initial design stage to actual engine testing. Supplier involvement, finite element analysis, and preliminary proof of concept demonstration testing played a significant role in this project's success.
Evidence-Based Evaluation of Inferior Vena Cava Filter Complications Based on Filter Type
Deso, Steven E.; Idakoji, Ibrahim A.; Kuo, William T.
2016-01-01
Many inferior vena cava (IVC) filter types, along with their specific risks and complications, are not recognized. The purpose of this study was to evaluate the various FDA-approved IVC filter types to determine device-specific risks, as a way to help identify patients who may benefit from ongoing follow-up versus prompt filter retrieval. An evidence-based electronic search (FDA Premarket Notification, MEDLINE, FDA MAUDE) was performed to identify all IVC filter types and device-specific complications from 1980 to 2014. Twenty-three IVC filter types (14 retrievable, 9 permanent) were identified. The devices were categorized as follows: conical (n = 14), conical with umbrella (n = 1), conical with cylindrical element (n = 2), biconical with cylindrical element (n = 2), helical (n = 1), spiral (n = 1), and complex (n = 1). Purely conical filters were associated with the highest reported risks of penetration (90–100%). Filters with cylindrical or umbrella elements were associated with the highest reported risk of IVC thrombosis (30–50%). Conical Bard filters were associated with the highest reported risks of fracture (40%). The various FDA-approved IVC filter types were evaluated for device-specific complications based on best current evidence. This information can be used to guide and optimize clinical management in patients with indwelling IVC filters. PMID:27247477
NASA Astrophysics Data System (ADS)
Xie, Yunsong; Chen, Ru
Low temperature co-fired ceramics (LTCC) is one of the most important techniques to produce circuits with high working frequency, multi-functionality and high integration. We have developed a methodology to enable a ternary hybrid material system being implemented into the LTCC manufacturing process. The co-firing sintering process can be divided into a densification and cooling process. In this method, a successful ternary hybrid material densification process is achieved by tuning the sintering profile of each material to match each other. The system integrity is maintained in the cooling process is obtained by develop a strong bonding at the interfaces of each materials. As a demonstration, we have construct a power inductor device made of the ternary material system including Ag, NiCuZn ferrite and non-magnetic ceramic. The power inductors well maintains its physical integrity after sintering. The microscopic images show no obvious sign of cracks or structural deformation. More importantly, despite the bonding between the ferrite and ceramic is enhanced by non-magnetic element diffusion, the undesired magnetic elements diffusion is effectively suppressed. The electric performance shows that the power handling capability is comparable to the current state of art device.
2-micron lasing in Tm:Lu2O3 ceramic: initial operation
NASA Astrophysics Data System (ADS)
Vetrovec, John; Filgas, David M.; Smith, Carey A.; Copeland, Drew A.; Litt, Amardeep S.; Briscoe, Eldridge; Schirmer, Ernestina
2018-03-01
We report on initial lasing of Tm:Lu2O3 ceramic laser with tunable output in the vicinity of 2 μm. Tm:Lu2O3 ceramic gain materials offer a much lower saturation fluence than the traditionally used Tm:YLF and Tm:YAG materials. The gain element is pumped by 796 nm diodes via a "2-for-1" crossrelaxation energy transfer mechanism, which enables high efficiency. The high thermal conductivity of the Lu2O3 host ( 18% higher than YAG) in combination with low quantum defect of 20% supports operation at high-average power. Konoshima's ceramic fabrication process overcomes the scalability limits of single crystal sesquioxides. Tm:Lu2O3 offers wide-bandwidth amplification of ultrashort pulses in a chirped-pulse amplification (CPA) system. A laser oscillator was continuously tuned over a 230 nm range from 1890 to 2120 nm while delivering up to 43W QCW output with up to 37% efficiency. This device is intended for initial testing and later seeding of a multi-pass edge-pumped disk amplifier now being developed by Aqwest which uses composite Tm:Lu2O3 disk gain elements.
The effect of heat treatment simulating porcelain firing processes on titanium corrosion resistance.
Sokołowski, Grzegorz; Rylska, Dorota; Sokołowski, Jerzy
2016-01-01
Corrosion resistance of titanium used in metal-ceramic restorations in manufacturing is based on the presence of oxide layer on the metal surface. The procedures used during combining metallic material with porcelain may affect the changes in oxide layers structure, and thus anticorrosive properties of metallic material. The aim of the study was an evaluation of potential changes in the structure and selected corrosion properties of titanium after sandblasting and thermal treatment applicable to the processes of ceramics fusion. Milled titanium elements were subjected to a few variants of the processes typical of ceramics fusion and studied in terms of resistance to electrochemical corrosion. The study included the OCP changes over time, measurements of Icorr, Ecorr and Rp as well as potentiodynamic examinations. Surface microstructure and chemical composition were analyzed using SEM and EDS methods. The results obtained allow us to conclude that the processes corresponding to ceramic oxidation and fusion on titanium in the variants used in the study do not cause deterioration of its anticorrosive properties, and partially enhance the resistance. This depends on the quality of oxide layers structure. Titanium elements treated by porcelain firing processes do not lose their corrosion resistance.
Multiscale morphological filtering for analysis of noisy and complex images
NASA Astrophysics Data System (ADS)
Kher, A.; Mitra, S.
Images acquired with passive sensing techniques suffer from illumination variations and poor local contrasts that create major difficulties in interpretation and identification tasks. On the other hand, images acquired with active sensing techniques based on monochromatic illumination are degraded with speckle noise. Mathematical morphology offers elegant techniques to handle a wide range of image degradation problems. Unlike linear filters, morphological filters do not blur the edges and hence maintain higher image resolution. Their rich mathematical framework facilitates the design and analysis of these filters as well as their hardware implementation. Morphological filters are easier to implement and are more cost effective and efficient than several conventional linear filters. Morphological filters to remove speckle noise while maintaining high resolution and preserving thin image regions that are particularly vulnerable to speckle noise were developed and applied to SAR imagery. These filters used combination of linear (one-dimensional) structuring elements in different (typically four) orientations. Although this approach preserves more details than the simple morphological filters using two-dimensional structuring elements, the limited orientations of one-dimensional elements approximate the fine details of the region boundaries. A more robust filter designed recently overcomes the limitation of the fixed orientations. This filter uses a combination of concave and convex structuring elements. Morphological operators are also useful in extracting features from visible and infrared imagery. A multiresolution image pyramid obtained with successive filtering and a subsampling process aids in the removal of the illumination variations and enhances local contrasts. A morphology-based interpolation scheme was also introduced to reduce intensity discontinuities created in any morphological filtering task. The generality of morphological filtering techniques in extracting information from a wide variety of images obtained with active and passive sensing techniques is discussed. Such techniques are particularly useful in obtaining more information from fusion of complex images by different sensors such as SAR, visible, and infrared.
Multiscale Morphological Filtering for Analysis of Noisy and Complex Images
NASA Technical Reports Server (NTRS)
Kher, A.; Mitra, S.
1993-01-01
Images acquired with passive sensing techniques suffer from illumination variations and poor local contrasts that create major difficulties in interpretation and identification tasks. On the other hand, images acquired with active sensing techniques based on monochromatic illumination are degraded with speckle noise. Mathematical morphology offers elegant techniques to handle a wide range of image degradation problems. Unlike linear filters, morphological filters do not blur the edges and hence maintain higher image resolution. Their rich mathematical framework facilitates the design and analysis of these filters as well as their hardware implementation. Morphological filters are easier to implement and are more cost effective and efficient than several conventional linear filters. Morphological filters to remove speckle noise while maintaining high resolution and preserving thin image regions that are particularly vulnerable to speckle noise were developed and applied to SAR imagery. These filters used combination of linear (one-dimensional) structuring elements in different (typically four) orientations. Although this approach preserves more details than the simple morphological filters using two-dimensional structuring elements, the limited orientations of one-dimensional elements approximate the fine details of the region boundaries. A more robust filter designed recently overcomes the limitation of the fixed orientations. This filter uses a combination of concave and convex structuring elements. Morphological operators are also useful in extracting features from visible and infrared imagery. A multiresolution image pyramid obtained with successive filtering and a subsampling process aids in the removal of the illumination variations and enhances local contrasts. A morphology-based interpolation scheme was also introduced to reduce intensity discontinuities created in any morphological filtering task. The generality of morphological filtering techniques in extracting information from a wide variety of images obtained with active and passive sensing techniques is discussed. Such techniques are particularly useful in obtaining more information from fusion of complex images by different sensors such as SAR, visible, and infrared.
NASA Technical Reports Server (NTRS)
Myers, David E.; Martin, Carl J.; Blosser, Max L.
2000-01-01
A parametric weight assessment of advanced metallic panel, ceramic blanket, and ceramic tile thermal protection systems (TPS) was conducted using an implicit, one-dimensional (I-D) finite element sizing code. This sizing code contained models to account for coatings fasteners, adhesives, and strain isolation pads. Atmospheric entry heating profiles for two vehicles, the Access to Space (ATS) vehicle and a proposed Reusable Launch Vehicle (RLV), were used to ensure that the trends were not unique to a certain trajectory. Ten TPS concepts were compared for a range of applied heat loads and substructural heat capacities to identify general trends. This study found the blanket TPS concepts have the lightest weights over the majority of their applicable ranges, and current technology ceramic tiles and metallic TPS concepts have similar weights. A proposed, state-of-the-art metallic system which uses a higher temperature alloy and efficient multilayer insulation was predicted to be significantly lighter than the ceramic tile stems and approaches blanket TPS weights for higher integrated heat loads.
The synthesis of ZrO2-Y2O3 ceramic fibers by the method of impregnation of viscous threads
NASA Astrophysics Data System (ADS)
Titova, S. M.; Obabkov, N. V.; Zakirova, A. F.; Zakirov, I. F.; Dokuchaev, V. S.; Shak, A. V.
2017-09-01
The possibility of synthesis of ZrO2-Y2O3 oxide fibers and their applicatiuon for reinforcing porous ceramics of the same composition was investigated. Ceramic fibers were obtained by impregnating viscose strings with solutions of zirconyl and yttrium nitrates. The method allows synthesis of the fibers with a diameter of 400 µm and length of 5 to 20 mm. The strength of the synthesized fibers was determined. The maximum tensile strength (132.45 MPa) was demonstrated by fibers obtained with a working solution concentration of 500 g oxides/L. Repeated impregnation of the viscose yarn led to an increase in the strength of the fibers to 205 MPa. Ceramic fibers can be used as reinforcing elements of oxide ceramics. The bending strength of the reinforced ceramics was 3 MPa. After 10 cycles of thermal cycling (heating to 1100 °C and cooling in water) the bending strength was reduced to 1 MPa.
Spectral and Wavefront Error Performance of WFIRST-AFTA Bandpass Filter Coating Prototypes
NASA Technical Reports Server (NTRS)
Quijada, Manuel A.; Seide, Laurie; Pasquale, Bert A.; McMann, Joseph C.; Hagopian, John G.; Dominguez, Margaret Z.; Gong, Quian; Marx, Catherine T.
2016-01-01
The Cycle 5 design baseline for the Wide-Field Infrared Survey Telescope Astrophysics Focused Telescope Assets (WFIRST/AFTA) instrument includes a single wide-field channel (WFC) instrument for both imaging and slit-less spectroscopy. The only routinely moving part during scientific observations for this wide-field channel is the element wheel (EW) assembly. This filter-wheel assembly will have 8 positions that will be populated with 6 bandpass filters, a blank position, and a Grism that will consist of a three-element assembly to disperse the full field with an undeviated central wavelength for galaxy redshift surveys. All filter elements in the EW assembly will be made out of fused silica substrates (110 mm diameter) that will have the appropriate bandpass coatings according to the filter designations (Z087, Y106, J129, H158, F184, W149 and Grism). This paper presents and discusses the performance (including spectral transmission and reflected/transmitted wavefront error measurements) of a subset of bandpass filter coating prototypes that are based on the WFC instrument filter compliment. The bandpass coating prototypes that are tested in this effort correspond to the Z087, W149, and Grism filter elements. These filter coatings have been procured from three different vendors to assess the most challenging aspects in terms of the in-band throughput, out of band rejection (including the cut-on and cutoff slopes), and the impact the wavefront error distortions of these filter coatings will have on the imaging performance of the wide-field channel in the WFIRST/AFTA observatory.
FEAMAC/CARES Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Nemeth, Noel; Bednarcyk, Brett; Pineda, Evan; Arnold, Steven; Mital, Subodh; Murthy, Pappu; Bhatt, Ramakrishna
2016-01-01
Reported here is a coupling of two NASA developed codes: CARES (Ceramics Analysis and Reliability Evaluation of Structures) with the MAC/GMC (Micromechanics Analysis Code/ Generalized Method of Cells) composite material analysis code. The resulting code is called FEAMAC/CARES and is constructed as an Abaqus finite element analysis UMAT (user defined material). Here we describe the FEAMAC/CARES code and an example problem (taken from the open literature) of a laminated CMC in off-axis loading is shown. FEAMAC/CARES performs stochastic-strength-based damage simulation response of a CMC under multiaxial loading using elastic stiffness reduction of the failed elements.
Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix Composite
NASA Technical Reports Server (NTRS)
Nemeth, Noel; Bednarcyk, Brett; Pineda, Evan; Arnold, Steven; Mital, Subodh; Murthy, Pappu
2015-01-01
Reported here is a coupling of two NASA developed codes: CARES (Ceramics Analysis and Reliability Evaluation of Structures) with the MAC/GMC (Micromechanics Analysis Code/ Generalized Method of Cells) composite material analysis code. The resulting code is called FEAMAC/CARES and is constructed as an Abaqus finite element analysis UMAT (user defined material). Here we describe the FEAMAC/CARES code and an example problem (taken from the open literature) of a laminated CMC in off-axis loading is shown. FEAMAC/CARES performs stochastic-strength-based damage simulation response of a CMC under multiaxial loading using elastic stiffness reduction of the failed elements.
Development of a low-cost biogas filtration system to achieve higher-power efficient AC generator
NASA Astrophysics Data System (ADS)
Mojica, Edison E.; Ardaniel, Ar-Ar S.; Leguid, Jeanlou G.; Loyola, Andrea T.
2018-02-01
The paper focuses on the development of a low-cost biogas filtration system for alternating current generator to achieve higher efficiency in terms of power production. A raw biogas energy comprises of 57% combustible element and 43% non-combustible elements containing carbon dioxide (36%), water vapor (5%), hydrogen sulfide (0.5%), nitrogen (1%), oxygen (0 - 2%), and ammonia (0 - 1%). The filtration system composes of six stages: stage 1 is the water scrubber filter intended to remove the carbon dioxide and traces of hydrogen sulfide; stage 2 is the silica gel filter intended to reduce the water vapor; stage 3 is the iron sponge filter intended to remove the remaining hydrogen sulfide; stage 4 is the sodium hydroxide solution filter intended to remove the elemental sulfur formed during the interaction of the hydrogen sulfide and the iron sponge and for further removal of carbon dioxide; stage 5 is the silica gel filter intended to further eliminate the water vapor gained in stage 4; and, stage 6 is the activated carbon filter intended to remove the carbon dioxide. The filtration system was able to lower the non-combustible elements by 72% and thus, increasing the combustible element by 54.38%. The unfiltered biogas is capable of generating 16.3 kW while the filtered biogas is capable of generating 18.6 kW. The increased in methane concentration resulted to 14.11% increase in the power output. The outcome resulted to better engine performance in the generation of electricity.
An efficient implementation of a high-order filter for a cubed-sphere spectral element model
NASA Astrophysics Data System (ADS)
Kang, Hyun-Gyu; Cheong, Hyeong-Bin
2017-03-01
A parallel-scalable, isotropic, scale-selective spatial filter was developed for the cubed-sphere spectral element model on the sphere. The filter equation is a high-order elliptic (Helmholtz) equation based on the spherical Laplacian operator, which is transformed into cubed-sphere local coordinates. The Laplacian operator is discretized on the computational domain, i.e., on each cell, by the spectral element method with Gauss-Lobatto Lagrange interpolating polynomials (GLLIPs) as the orthogonal basis functions. On the global domain, the discrete filter equation yielded a linear system represented by a highly sparse matrix. The density of this matrix increases quadratically (linearly) with the order of GLLIP (order of the filter), and the linear system is solved in only O (Ng) operations, where Ng is the total number of grid points. The solution, obtained by a row reduction method, demonstrated the typical accuracy and convergence rate of the cubed-sphere spectral element method. To achieve computational efficiency on parallel computers, the linear system was treated by an inverse matrix method (a sparse matrix-vector multiplication). The density of the inverse matrix was lowered to only a few times of the original sparse matrix without degrading the accuracy of the solution. For better computational efficiency, a local-domain high-order filter was introduced: The filter equation is applied to multiple cells, and then the central cell was only used to reconstruct the filtered field. The parallel efficiency of applying the inverse matrix method to the global- and local-domain filter was evaluated by the scalability on a distributed-memory parallel computer. The scale-selective performance of the filter was demonstrated on Earth topography. The usefulness of the filter as a hyper-viscosity for the vorticity equation was also demonstrated.
Computational Simulation of Continuous Fiber-Reinforced Ceramic Matrix Composites Behavior
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Chamis, Christos C.; Mital, Subodh K.
1996-01-01
This report describes a methodology which predicts the behavior of ceramic matrix composites and has been incorporated in the computational tool CEMCAN (CEramic Matrix Composite ANalyzer). The approach combines micromechanics with a unique fiber substructuring concept. In this new concept, the conventional unit cell (the smallest representative volume element of the composite) of the micromechanics approach is modified by substructuring it into several slices and developing the micromechanics-based equations at the slice level. The methodology also takes into account nonlinear ceramic matrix composite (CMC) behavior due to temperature and the fracture initiation and progression. Important features of the approach and its effectiveness are described by using selected examples. Comparisons of predictions and limited experimental data are also provided.
Method of forming a ceramic to ceramic joint
Cutler, Raymond Ashton; Hutchings, Kent Neal; Kleinlein, Brian Paul; Carolan, Michael Francis
2010-04-13
A method of joining at least two sintered bodies to form a composite structure, includes: providing a joint material between joining surfaces of first and second sintered bodies; applying pressure from 1 kP to less than 5 MPa to provide an assembly; heating the assembly to a conforming temperature sufficient to allow the joint material to conform to the joining surfaces; and further heating the assembly to a joining temperature below a minimum sintering temperature of the first and second sintered bodies. The joint material includes organic component(s) and ceramic particles. The ceramic particles constitute 40-75 vol. % of the joint material, and include at least one element of the first and/or second sintered bodies. Composite structures produced by the method are also disclosed.
Piezoelectric textured ceramics: Effective properties and application to ultrasonic transducers.
Levassort, Franck; Pham Thi, Mai; Hemery, Henry; Marechal, Pierre; Tran-Huu-Hue, Louis-Pascal; Lethiecq, Marc
2006-12-22
Piezoelectric textured ceramics obtained by homo-template grain growth (HTGG) were recently demonstrated. A simple model with several assumptions has been used to calculate effective parameters of these new materials. Different connectivities have been simulated to show that spatial arrangements between the considered phases have little influence on the effective parameters, even through the 3-0 connectivity delivers the highest electromechanical thickness factor. A transducer based on a textured ceramic sample has been fabricated and characterised to show the efficiency of these piezoelectric materials. Finally, in a single element transducer configuration, simulation shows an improvement of 2 dB sensitivity for a transducer made with textured ceramic in comparison with a similar transducer design based on standard soft PZT (at equivalent bandwidths).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amoroso, J.; Dandeneau, C.
FY16 efforts were focused on direct comparison of multi-phase ceramic waste forms produced via melt processing and HIP methods. Based on promising waste form compositions previously devised at SRNL, simulant material was prepared at SRNL and a portion was sent to the Australian Nuclear Science and Technology Organization (ANSTO) for HIP treatments, while the remainder of the material was melt processed at SRNL. The microstructure, phase formation, elemental speciation, and leach behavior, and radiation stability of the fabricated ceramics was performed. In addition, melt-processed ceramics designed with different fractions of hollandite, zirconolite, perovskite, and pyrochlore phases were investigated. for performancemore » and properties.« less
CAD/CAM glass ceramics for single-tooth implant crowns: a finite element analysis.
Akça, Kvanç; Cavusoglu, Yeliz; Sagirkaya, Elcin; Aybar, Buket; Cehreli, Murat Cavit
2013-12-01
To evaluate the load distribution of CAD/CAM mono-ceramic crowns supported with single-tooth implants in functional area. A 3-dimensional numerical model of a soft tissue-level implant was constructed with cement-retained abutment to support glass ceramic machinable crown. Implant-abutment complex and the retained crown were embedded in a Ø 1.5 × 1.5 cm geometric matrix for evaluation of mechanical behavior of mono-ceramic CAD/CAM aluminosilicate and leucite glass crown materials. Laterally positioned axial load of 300 N was applied on the crowns. Resulting principal stresses in the mono-ceramic crowns were evaluated in relation to different glass ceramic materials. The highest compressive stresses were observed at the cervical region of the buccal aspect of the crowns and were 89.98 and 89.99 MPa, for aluminosilicate and leucite glass ceramics, respectively. The highest tensile stresses were observed at the collar of the lingual part of the crowns and were 24.54 and 25.39 MPa, respectively. Stresses induced upon 300 N static loading of CAD/CAM aluminosalicate and leucite glass ceramics are below the compressive strength of the materials. Impact loads may actuate the progress to end failure of mono-ceramic crowns supported by metallic implant abutments.
Filter assembly for metallic and intermetallic tube filters
Alvin, Mary Anne; Lippert, Thomas E.; Bruck, Gerald J.; Smeltzer, Eugene E.
2001-01-01
A filter assembly (60) for holding a filter element (28) within a hot gas cleanup system pressure vessel is provided, containing: a filter housing (62), said filter housing having a certain axial length and having a peripheral sidewall, said sidewall defining an interior chamber (66); a one piece, all metal, fail-safe/regenerator device (68) within the interior chamber (66) of the filter housing (62) and/or extending beyond the axial length of the filter housing, said device containing an outward extending radial flange (71) within the filter housing for seating an essential seal (70), the device also having heat transfer media (72) disposed inside and screens (80) for particulate removal; one compliant gasket (70) positioned next to and above the outward extending radial flange of the fail-safe/regenerator device; and a porous metallic corrosion resistant superalloy type filter element body welded at the bottom of the metal fail-safe/regenerator device.
Wang, C C; Hsu, C S
1996-06-01
The use of base metal alloys for porcelain fused to a metal crown and bridges has increased recently because of lower price, high hardness, high tensile strength and high elastic modulus. The addition of beryllium to base metal alloys increased fluidity and improved casting fitness. Beryllium also controlled surface oxidation and bonding strength. The bonding agent and gold bonding agent also affected the bonding strength between porcelain and metal alloys. Four commercially available ceramic base alloys were studied (two alloys contained beryllium element, another two did not). The purpose of this investigation was to study the microstructure between porcelain matrix, bonding agent and alloy matrix interfaces. A scanning electron micro-probe analyzer and energy dispersive X-ray spectroscopy (EDXS) were used to study the distribution of elements (Ni, Cr, Mo, Cu, O, Si, Sn, Al) in four base alloys. The following results were obtained: 1. The thickness of the oxidized layer of Rexillium III alloy and Unitbond alloy (contained beryllium) was thinner than Unibond alloy and Wiron 88 alloy (no beryllium). 2. The thickness of the oxidized layer of alloys in air (10 minutes and 30 minutes) was thinner in Unitbond (2.45 microns and 3.80 microns) and thicker in Wiron 88 (4.39 microns and 5.96 microns). 3. The thickness of the oxidized layer occurring for a duration of ten minutes (in vaccum) showed that the Rexillium III alloy was the thinnest (1.93 microns), and Wiron 88 alloy was the thickest (2.30 microns). But in thirty minutes (vacuum), Unitbond alloy was the thinnest (3.37 microns), and Wiron 88 alloy was the thickest (5.51 microns). 4. The intensity of Cr elements was increased obviously near the interface between Unitbond alloy, Wiron 88 alloy (no beryllium) and oxidized layer, but the intensity of Ni and Mo elements was slightly increased. The intensity of Cr element was not increased markedly between Rexillium III alloy, Unitbond alloy (beryllium) and oxidized layer. 5. A white-grayish oxidized layer appeared at the metal-ceramic interfaces but the thickness of oxidized layer was not obviously different. 6. The use of bonding agent at metal-ceramic interface leads to the deposition of many Sn elements at about 40 microns range within the porcelain surface. 7. Second interaction phases at the porcelain layer appeared when gold bonding agent was used, and a 50-100 microns microleakage occurred at the metal-ceramic interface.
Synthesis and characterization of laminated Si/SiC composites
Naga, Salma M.; Kenawy, Sayed H.; Awaad, Mohamed; Abd El-Wahab, Hamada S.; Greil, Peter; Abadir, Magdi F.
2012-01-01
Laminated Si/SiC ceramics were synthesized from porous preforms of biogenous carbon impregnated with Si slurry at a temperature of 1500 °C for 2 h. Due to the capillarity infiltration with Si, both intrinsic micro- and macrostructure in the carbon preform were retained within the final ceramics. The SEM micrographs indicate that the final material exhibits a distinguished laminar structure with successive Si/SiC layers. The produced composites show weight gain of ≈5% after heat treatment in air at 1300 °C for 50 h. The produced bodies could be used as high temperature gas filters as indicated from the permeability results. PMID:25685404
Miniature lowpass filters in low loss 9k7 LTCC
Dai, Steve; Hsieh, Lung -Hwa
2015-07-01
DuPont 9k7 low temperature cofired ceramic (LTCC) is a low loss, or high quality factor Q, tape system targeting at radio frequency (RF) applications. This paper reports the effect of a critical process parameter, heating rate, on the densification and dielectric properties of the 9k7 LTCC. The role of competing densification and crystallization during the sintering of 9k7 is discussed. The high Q of DuPont 9K7 can be used to improve RF system performance, for example a better receiver noise figure, by designing embedded passive RF components such as inductors, capacitors and filters. As a result, miniaturized multilayer low passmore » filters (LPF) with a wide stopband were fabricated to showcase the technology.« less
Miniature lowpass filters in low loss 9k7 LTCC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Steve; Hsieh, Lung -Hwa
DuPont 9k7 low temperature cofired ceramic (LTCC) is a low loss, or high quality factor Q, tape system targeting at radio frequency (RF) applications. This paper reports the effect of a critical process parameter, heating rate, on the densification and dielectric properties of the 9k7 LTCC. The role of competing densification and crystallization during the sintering of 9k7 is discussed. The high Q of DuPont 9K7 can be used to improve RF system performance, for example a better receiver noise figure, by designing embedded passive RF components such as inductors, capacitors and filters. As a result, miniaturized multilayer low passmore » filters (LPF) with a wide stopband were fabricated to showcase the technology.« less
Miniature low-pass filter in low-loss 9k7 LTCC
Dai, Steve Xunhu; Hsieh, Lung -Hwa
2015-09-30
DuPont 9k7 low-temperature cofired ceramic (LTCC) is a low-loss, or high-quality-factor Q, tape system targeting at radio frequency (RF) applications. This paper reports on the effect of a critical process parameter, the heating rate, on the densification and dielectric properties of the 9k7 LTCC. The role of competing densification and crystallization during the sintering of 9k7 is discussed. The high Q of DuPont 9K7 can be used to improve RF system performance, for example a better receiver noise figure, by designing embedded passive RF components such as inductors, capacitors and filters. Furthermore, miniaturized multilayer low-pass filters (LPF) with a widemore » stopband were fabricated to showcase the technology.« less
Cantarella, Giuseppe; Klitis, Charalambos; Sorel, Marc; Strain, Michael J
2017-08-21
Wavelength selective filters represent one of the key elements for photonic integrated circuits (PIC) and many of their applications in linear and non-linear optics. In devices optimised for single polarisation operation, cross-polarisation scattering can significantly limit the achievable filter rejection. An on-chip filter consisting of elements to filter both TE and TM polarisations is demonstrated, based on a cascaded ring resonator geometry, which exhibits a high total optical rejection of over 60 dB. Monolithic integration of a cascaded ring filter with a four-wave mixing micro-ring device is also experimentally demonstrated with a FWM efficiency of -22dB and pump filter extinction of 62dB.
Enhanced CARES Software Enables Improved Ceramic Life Prediction
NASA Technical Reports Server (NTRS)
Janosik, Lesley A.
1997-01-01
The NASA Lewis Research Center has developed award-winning software that enables American industry to establish the reliability and life of brittle material (e.g., ceramic, intermetallic, graphite) structures in a wide variety of 21st century applications. The CARES (Ceramics Analysis and Reliability Evaluation of Structures) series of software is successfully used by numerous engineers in industrial, academic, and government organizations as an essential element of the structural design and material selection processes. The latest version of this software, CARES/Life, provides a general- purpose design tool that predicts the probability of failure of a ceramic component as a function of its time in service. CARES/Life was recently enhanced by adding new modules designed to improve functionality and user-friendliness. In addition, a beta version of the newly-developed CARES/Creep program (for determining the creep life of monolithic ceramic components) has just been released to selected organizations.
Sintering and microstructure of silicon carbide ceramic with Y3Al5O12 added by sol-gel method*
Guo, Xing-zhong; Yang, Hui
2005-01-01
Silicon carbide (SiC) ceramic with YAG (Y3Al5O12) additive added by sol-gel method was liquid-phase sintered at different sintering temperatures, and the sintering mechanism and microstructural characteristics of resulting silicon carbide ceramics were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and elemental distribution of surface (EDS). YAG (yttrium aluminum garnet) phase formed before the sintering and its uniform distribution in the SiC/YAG composite powder decreased the sintering temperature and improved the densification of SiC ceramic. The suitable sintering temperature was 1860 °C with the specimen sintered at this temperature having superior sintering and mechanical properties, smaller crystal size and fewer microstructure defects. Three characteristics of improved toughness of SiC ceramic with YAG added by sol-gel method were microstructural densification, main-crack deflection and crystal ‘bridging’. PMID:15682507
Influence of interface point defect on the dielectric properties of Y doped CaCu3Ti4O12 ceramics
NASA Astrophysics Data System (ADS)
Deng, Jianming; Sun, Xiaojun; Liu, Saisai; Liu, Laijun; Yan, Tianxiang; Fang, Liang; Elouadi, Brahim
2016-04-01
CaCu3Ti4-xYxO12 (0≤x≤0.12) ceramics were fabricated with conventional solid-state reaction method. Phase structure and microstructure of prepared ceramics were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The impedance and modulus tests both suggested the existence of two different relaxation behavior, which were attributed to bulk and grain boundary response. In addition, the conductivity and dielectric permittivity showed a step-like behavior under 405K. Meanwhile, frequency independence of dc conduction became dominant when above 405K. In CCTO ceramic, rare earth element Y3+ ions as an acceptor were used to substitute Ti sites, decreasing the concentration of oxygen vacancy around grain-electrode and grain boundary. The reason to the reduction of dielectric behavior in low frequencies range was associated with the Y doping in CCTO ceramic.
NASA Technical Reports Server (NTRS)
Gyekenyesi, John P.; Nemeth, Noel N.
1987-01-01
The SCARE (Structural Ceramics Analysis and Reliability Evaluation) computer program on statistical fast fracture reliability analysis with quadratic elements for volume distributed imperfections is enhanced to include the use of linear finite elements and the capability of designing against concurrent surface flaw induced ceramic component failure. The SCARE code is presently coupled as a postprocessor to the MSC/NASTRAN general purpose, finite element analysis program. The improved version now includes the Weibull and Batdorf statistical failure theories for both surface and volume flaw based reliability analysis. The program uses the two-parameter Weibull fracture strength cumulative failure probability distribution model with the principle of independent action for poly-axial stress states, and Batdorf's shear-sensitive as well as shear-insensitive statistical theories. The shear-sensitive surface crack configurations include the Griffith crack and Griffith notch geometries, using the total critical coplanar strain energy release rate criterion to predict mixed-mode fracture. Weibull material parameters based on both surface and volume flaw induced fracture can also be calculated from modulus of rupture bar tests, using the least squares method with known specimen geometry and grouped fracture data. The statistical fast fracture theories for surface flaw induced failure, along with selected input and output formats and options, are summarized. An example problem to demonstrate various features of the program is included.
NASA Astrophysics Data System (ADS)
Akbarnejad, Shahin; Saffari Pour, Mohsen; Jonsson, Lage Tord Ingemar; Jönsson, Pӓr Göran
2017-02-01
Ceramic foam filters (CFFs) are used to remove solid particles and inclusions from molten metal. In general, molten metal which is poured on the top of a CFF needs to reach a certain height to build the required pressure (metal head) to prime the filter. To estimate the required metal head, it is necessary to obtain permeability coefficients using permeametry experiments. It has been mentioned in the literature that to avoid fluid bypassing, during permeametry, samples need to be sealed. However, the effect of fluid bypassing on the experimentally obtained pressure gradients seems not to be explored. Therefore, in this research, the focus was on studying the effect of fluid bypassing on the experimentally obtained pressure gradients as well as the empirically obtained Darcy and non-Darcy permeability coefficients. Specifically, the aim of the research was to investigate the effect of fluid bypassing on the liquid permeability of 30, 50, and 80 pores per inch (PPI) commercial alumina CFFs. In addition, the experimental data were compared to the numerically modeled findings. Both studies showed that no sealing results in extremely poor estimates of the pressure gradients and Darcy and non-Darcy permeability coefficients for all studied filters. The average deviations between the pressure gradients of the sealed and unsealed 30, 50, and 80 PPI samples were calculated to be 57.2, 56.8, and 61.3 pct. The deviations between the Darcy coefficients of the sealed and unsealed 30, 50, and 80 PPI samples found to be 9, 20, and 31 pct. The deviations between the non-Darcy coefficients of the sealed and unsealed 30, 50, and 80 PPI samples were calculated to be 59, 58, and 63 pct.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Halbig, Michael; Jaskowiak, Martha; Hurst, Janet; Bhatt, Ram; Fox, Dennis S.
2014-01-01
This paper describes recent development of environmental barrier coatings on SiC/SiC ceramic matrix composites. The creep and fatigue behavior at aggressive long-term high temperature conditions have been evaluated and highlighted. Thermal conductivity and high thermal gradient cyclic durability of environmental barrier coatings have been evaluated. The damage accumulation and complex stress-strain behavior environmental barrier coatings on SiCSiC ceramic matrix composite turbine airfoil subelements during the thermal cyclic and fatigue testing of have been also reported.
Low exhaust temperature electrically heated particulate matter filter system
Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J.; Bhatia, Garima [Bangalore, IN
2012-02-14
A system includes a particulate matter (PM) filter, a sensor, a heating element, and a control module. The PM filter includes with an upstream end that receives exhaust gas, a downstream end and multiple zones. The sensor detects a temperature of the exhaust gas. The control module controls current to the heating element to convection heat one of the zones and initiate a regeneration process. The control module selectively increases current to the heating element relative to a reference regeneration current level when the temperature is less than a predetermined temperature.
Real time infrared aerosol analyzer
Johnson, Stanley A.; Reedy, Gerald T.; Kumar, Romesh
1990-01-01
Apparatus for analyzing aerosols in essentially real time includes a virtual impactor which separates coarse particles from fine and ultrafine particles in an aerosol sample. The coarse and ultrafine particles are captured in PTFE filters, and the fine particles impact onto an internal light reflection element. The composition and quantity of the particles on the PTFE filter and on the internal reflection element are measured by alternately passing infrared light through the filter and the internal light reflection element, and analyzing the light through infrared spectrophotometry to identify the particles in the sample.
Bessel smoothing filter for spectral-element mesh
NASA Astrophysics Data System (ADS)
Trinh, P. T.; Brossier, R.; Métivier, L.; Virieux, J.; Wellington, P.
2017-06-01
Smoothing filters are extremely important tools in seismic imaging and inversion, such as for traveltime tomography, migration and waveform inversion. For efficiency, and as they can be used a number of times during inversion, it is important that these filters can easily incorporate prior information on the geological structure of the investigated medium, through variable coherent lengths and orientation. In this study, we promote the use of the Bessel filter to achieve these purposes. Instead of considering the direct application of the filter, we demonstrate that we can rely on the equation associated with its inverse filter, which amounts to the solution of an elliptic partial differential equation. This enhances the efficiency of the filter application, and also its flexibility. We apply this strategy within a spectral-element-based elastic full waveform inversion framework. Taking advantage of this formulation, we apply the Bessel filter by solving the associated partial differential equation directly on the spectral-element mesh through the standard weak formulation. This avoids cumbersome projection operators between the spectral-element mesh and a regular Cartesian grid, or expensive explicit windowed convolution on the finite-element mesh, which is often used for applying smoothing operators. The associated linear system is solved efficiently through a parallel conjugate gradient algorithm, in which the matrix vector product is factorized and highly optimized with vectorized computation. Significant scaling behaviour is obtained when comparing this strategy with the explicit convolution method. The theoretical numerical complexity of this approach increases linearly with the coherent length, whereas a sublinear relationship is observed practically. Numerical illustrations are provided here for schematic examples, and for a more realistic elastic full waveform inversion gradient smoothing on the SEAM II benchmark model. These examples illustrate well the efficiency and flexibility of the approach proposed.
Filter holder and gasket assembly for candle or tube filters
Lippert, Thomas Edwin; Alvin, Mary Anne; Bruck, Gerald Joseph; Smeltzer, Eugene E.
1999-03-02
A filter holder and gasket assembly for holding a candle filter element within a hot gas cleanup system pressure vessel. The filter holder and gasket assembly includes a filter housing, an annular spacer ring securely attached within the filter housing, a gasket sock, a top gasket, a middle gasket and a cast nut.
NASA Astrophysics Data System (ADS)
Duijster, Arno; van Groenestijn, Gert-Jan; van Neer, Paul; Blacquière, Gerrit; Volker, Arno
2018-04-01
The use of phased arrays is growing in the non-destructive testing industry and the trend is towards large 2D arrays, but due to limitations, it is currently not possible to record the signals from all elements, resulting in aliased data. In the past, we have presented a data interpolation scheme `beyond spatial aliasing' to overcome this aliasing. In this paper, we present a different approach: blending and deblending of data. On the hardware side, groups of receivers are blended (grouped) in only a few transmit/recording channels. This allows for transmission and recording with all elements, in a shorter acquisition time and with less channels. On the data processing side, this blended data is deblended (separated) by transforming it to a different domain and applying an iterative filtering and thresholding. Two different filtering methods are compared: f-k filtering and wavefield extrapolation filtering. The deblending and filtering methods are demonstrated on simulated experimental data. The wavefield extrapolation filtering proves to outperform f-k filtering. The wavefield extrapolation method can deal with groups of up to 24 receivers, in a phased array of 48 × 48 elements.
ERIC Educational Resources Information Center
FRITZ, ROBERT C.
THE OBJECTIVES OF THIS STUDY WERE TO OBTAIN AND ESTABLISH CURRICULAR COMPONENTS FROM TECHNOLOGICAL RESEARCH AND TO PROJECT THE RESEARCH INTO AN OUTLINE OF ORGANIZED SUBJECT MATTER. THE STUDY IS LIMITED TO AN INVESTIGATION OF SELECTED SCIENTIFIC AND PRACTICAL ELEMENTS OF CERAMIC TECHNOLOGY THAT ARE RECORDED AS RESOURCE REFERENCES. THE DATA WERE…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-29
... are 22 shell beads, 24 pieces of a single Baytown Plain ceramic jar, and 13 ceramic sherds. The Boyd site is located in Madison County, MS, and consists of a village area and six mounds. On the basis of... faunal elements, 2 flakes, 1 piece of shatter, 4 points, 1 flake tool, 1 piece of charcoal, 1 discoidal...
An, Shaofeng; Gao, Yan; Huang, Xiangya; Ling, Junqi; Liu, Zhaohui; Xiao, Yin
2015-05-01
The repair of bone defects that result from periodontal diseases remains a clinical challenge for periodontal therapy. β-tricalcium phosphate (β-TCP) ceramics are biodegradable inorganic bone substitutes with inorganic components that are similar to those of bone. Demineralized bone matrix (DBM) is an acid-extracted organic matrix derived from bone sources that consists of the collagen and matrix proteins of bone. A few studies have documented the effects of DBM on the proliferation and osteogenic differentiation of human periodontal ligament cells (hPDLCs). The aim of the present study was to investigate the effects of inorganic and organic elements of bone on the proliferation and osteogenic differentiation of hPDLCs using three-dimensional porous β-TCP ceramics and DBM with or without osteogenic inducers. Primary hPDLCs were isolated from human periodontal ligaments. The proliferation of the hPDLCs on the scaffolds in the growth culture medium was examined using a Cell-Counting kit-8 (CCK-8) and scanning electron microscopy (SEM). Alkaline phosphatase (ALP) activity and the osteogenic differentiation of the hPDLCs cultured on the β-TCP ceramics and DBM were examined in both the growth culture medium and osteogenic culture medium. Specific osteogenic differentiation markers were examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). SEM images revealed that the cells on the β-TCP were spindle-shaped and much more spread out compared with the cells on the DBM surfaces. There were no significant differences observed in cell proliferation between the β-TCP ceramics and the DBM scaffolds. Compared with the cells that were cultured on β-TCP ceramics, the ALP activity, as well as the Runx2 and osteocalcin (OCN) mRNA levels in the hPDLCs cultured on DBM were significantly enhanced both in the growth culture medium and the osteogenic culture medium. The organic elements of bone may exhibit greater osteogenic differentiation effects on hPDLCs than the inorganic elements.
Particulate matters collected from ceramic factories in Lampang Province affecting rat lungs*
Fongmoon, Duriya; Pongnikorn, Surathat; Chaisena, Aphiruk; Iamsaard, Sitthichai
2014-01-01
Background: Lung cancer ranks as the fifth largest of all cancer cases in Thailand. However, it is the first leading cancer in the northern part of Thailand (data from 2003–2007). There are several predisposing causes that lead to lung cancer and one important inducement is particulate matters (PMs). Lampang Province in Thailand is famous for the ceramic industry, where there are over 200 ceramic industrial factories. PMs are produced during the ceramic manufacturing process and spread throughout all of the working areas. It is very possible that workers could directly inhale PM-contaminated air during working hours. Objective: This study focuses on the toxic effects of PMs collected from ceramic factories on genes and lungs of rats. Methods: PMs collected from six ceramic factories in Lampang Province were extracted using dimethyl sulfoxide (DMSO). The inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES) were used to analyze the chemical elements at lower and higher concentrations, respectively. Then, the toxicity of PMs on the genes was examined by the Ames test, and subsequently, the effect of PMs on DNA was examined by quantifying the amount of 8-hydroxy-2′-deoxyguanosine (8-OHdG). Finally, the toxicity of the PMs on rat’s lungs was examined by histology. Results: As chemical elements of lower concentrations, cadmium, chromium, nickel, copper, and lead were detected by ICP-MS. As chemical elements of higher concentrations, manganese, magnesium, zinc, iron, potassium, calcium, and sodium were detected by ICP-OES. No mutagenicity in Salmonella typhimurium was found in the PM extracts from all six factories by utilizing the Ames test. In the histological study, the reduction in spaces of alveolar ducts and sacs, and terminal bronchioles, the thickening of interstitial connective tissues were noted by PM extracts in high amounts (100 and 350 μg). Female rats were more sensitive to PM extracts than males in terms of their pulmonary damages. Conclusions: PMs were not mutagenic to S. typhimurium but can damage the lung tissue of rats. PMID:24390747
Development of chemically bonded phosphate ceramics for stabilizing low-level mixed wastes
NASA Astrophysics Data System (ADS)
Jeong, Seung-Young
1997-11-01
Novel chemically bonded phosphate ceramics have been developed by acid-base reactions between magnesium oxide and an acid phosphate at room temperature for stabilizing U.S. Department of Energy's low-level mixed waste streams that include hazardous chemicals and radioactive elements. Newberyite (MgHPOsb4.3Hsb2O)-rich magnesium phosphate ceramic was formed by an acid-base reaction between phosphoric acid and magnesium oxide. The reaction slurry, formed at room-temperature, sets rapidly and forms stable mineral phases of newberyite, lunebergite, and residual MgO. Rapid setting also generates heat due to exothermic acid-base reaction. The reaction was retarded by partially neutralizing the phosphoric acid solution by adding sodium or potassium hydroxide. This reduced the rate of reaction and heat generation and led to a practical way of producing novel magnesium potassium phosphate ceramic. This ceramic was formed by reacting stoichiometric amount of monopotassium dihydrogen phosphate crystals, MgO, and water, forming pure-phase of MgKPOsb4.6Hsb2O (MKP) with moderate exothermic reaction. Using this chemically bonded phosphate ceramic matrix, low-level mixed waste streams were stabilized, and superior waste forms in a monolithic structure were developed. The final waste forms showed low open porosity and permeability, and higher compression strength than the Land Disposal Requirements (LDRs). The novel MKP ceramic technology allowed us to develop operational size waste forms of 55 gal with good physical integrity. In this improved waste form, the hazardous contaminants such as RCRA heavy metals (Hg, Pb, Cd, Cr, Ni, etc) were chemically fixed by their conversion into insoluble phosphate forms and physically encapsulated by the phosphate ceramic. In addition, chemically bonded phosphate ceramics stabilized radioactive elements such U and Pu. This was demonstrated with a detailed stabilization study on cerium used as a surrogate (chemically equivalent but nonradioactive) of U and Pu as well as on actual U-contaminated waste water. In particular, the leaching level of mercury in the Toxicity Characteristic Leaching Procedure (TCLP) test was reduced from 5000 to 0.00085 ppm, and the leaching level of cerium in the long term leaching test (ANS 16.1 test) was below the detection limit. These results show that the chemically bonded phosphate ceramics process may be a simple, inexpensive, and efficient method for stabilizing low-level mixed waste streams.
Structure and Dielectric Properties of (Sr0.2Ca0.488Nd0.208) TiO3-Li3NbO4 Ceramic Composites
NASA Astrophysics Data System (ADS)
Xia, C. C.; Chen, G. H.
2017-12-01
The new ceramic composites of (1-x) Li3NbO4-x (Sr0.2Ca0.488Nd0.208)TiO3 were prepared by the conventional solid state reaction method. The sintering behavior, phase composition, microstructure and microwave dielectric properties of the ceramics were investigated specially. The SEM and XRD results show that (1-x) Li3NbO4-x (Sr0.2Ca0.488Nd0.208) TiO3 (0.35≤x≤0.5) composites were composed of two phase, i.e. perovskite and Li3NbO4. With the increase of x, the ɛr increases from 27.1 to 38.7, Q×f decreases from 55000 GHz to 16770 GHz, and the τ f increases from -49 ppm/°C to 226.7 ppm/°C. The optimized dielectric properties with ɛr∼31.4, Q×f~16770GHz and τf~-8.1ppm/°C could be obtained as x=0.4 sintered at 1100°C for 4h. The as-prepared ceramic is expected to be used in resonators, filters, and other microwave devices.
Process for making silicon carbide reinforced silicon carbide composite
NASA Technical Reports Server (NTRS)
Lau, Sai-Kwing (Inventor); Calandra, Salavatore J. (Inventor); Ohnsorg, Roger W. (Inventor)
1998-01-01
A process comprising the steps of: a) providing a fiber preform comprising a non-oxide ceramic fiber with at least one coating, the coating comprising a coating element selected from the group consisting of carbon, nitrogen, aluminum and titanium, and the fiber having a degradation temperature of between 1400.degree. C. and 1450.degree. C., b) impregnating the preform with a slurry comprising silicon carbide particles and between 0.1 wt % and 3 wt % added carbon c) providing a cover mix comprising: i) an alloy comprising a metallic infiltrant and the coating element, and ii) a resin, d) placing the cover mix on at least a portion of the surface of the porous silicon carbide body, e) heating the cover mix to a temperature between 1410.degree. C. and 1450.degree. C. to melt the alloy, and f) infiltrating the fiber preform with the melted alloy for a time period of between 15 minutes and 240 minutes, to produce a ceramic fiber reinforced ceramic composite.
Silicon carbide reinforced silicon carbide composite
NASA Technical Reports Server (NTRS)
Lau, Sai-Kwing (Inventor); Calandra, Salvatore J. (Inventor); Ohnsorg, Roger W. (Inventor)
2001-01-01
This invention relates to a process comprising the steps of: a) providing a fiber preform comprising a non-oxide ceramic fiber with at least one coating, the coating comprising a coating element selected from the group consisting of carbon, nitrogen, aluminum and titanium, and the fiber having a degradation temperature of between 1400.degree. C. and 1450.degree. C., b) impregnating the preform with a slurry comprising silicon carbide particles and between 0.1 wt % and 3 wt % added carbon c) providing a cover mix comprising: i) an alloy comprising a metallic infiltrant and the coating element, and ii) a resin, d) placing the cover mix on at least a portion of the surface of the porous silicon carbide body, e) heating the cover mix to a temperature between 1410.degree. C. and 1450.degree. C. to melt the alloy, and f) infiltrating the fiber preform with the melted alloy for a time period of between 15 minutes and 240 minutes, to produce a ceramic fiber reinforced ceramic composite.
Preparation and Characteristics of Ultrasonic Transducers for High Temperature Using PbNb2O6
NASA Astrophysics Data System (ADS)
Soejima, Junichiro; Sato, Kokichi; Nagata, Kunihiro
2000-05-01
The substance PZT(Pb(Zr, Ti)O3) is chiefly used for piezoceramic transducers in many ultrasonic flow meters. It is difficult to use PZT transducers for flow meters for automobile exhaust gas at high temperatures over 350°C. Lead niobate (PbNb2O6) has a high Curie temperature of 540°C and a low mechanical quality factor, and is the most suitable as the sensor element in flow meters for automobile exhaust gas. However, it is difficult to fabricate dense PbNb2O6 ceramics that have good piezoelectric properties. In this study, ceramics with high density and a high piezoelectric effect were fabricated by adding various elements such as Mn and Ca to PbNb2O6 and by examining the sintering process. A Langevin transducer with a resonance frequency of 80 kHz was made for measuring automobile exhaust gas flow using PbNb2O6 ceramics.
NASA Astrophysics Data System (ADS)
Xu, Guanshui
2000-12-01
A direct finite-element model is developed for the full-scale analysis of the electromechanical phenomena involved in surface acoustic wave (SAW) devices. The equations of wave propagation in piezoelectric materials are discretized using the Galerkin method, in which an implicit algorithm of the Newmark family with unconditional stability is implemented. The Rayleigh damping coefficients are included in the elements near the boundary to reduce the influence of the reflection of waves. The performance of the model is demonstrated by the analysis of the frequency response of a Y-Z lithium niobate filter with two uniform ports, with emphasis on the influence of the number of electrodes. The frequency response of the filter is obtained through the Fourier transform of the impulse response, which is solved directly from the finite-element simulation. It shows that the finite-element results are in good agreement with the characteristic frequency response of the filter predicted by the simple phase-matching argument. The ability of the method to evaluate the influence of the bulk waves at the high-frequency end of the filter passband and the influence of the number of electrodes on insertion loss is noteworthy. We conclude that the direct finite-element analysis of SAW devices can be used as an effective tool for the design of high-performance SAW devices. Some practical computational challenges of finite-element modeling of SAW devices are discussed.
Rakruam, Pharkphum; Wattanachira, Suraphong
2014-03-01
This research was aimed at investigating the reduction of DOM fractions and their trihalomethane formation potential (THMFP) by in-line coagulation with 0.1 μm ceramic membrane filtration. The combination of ceramic membrane filtration with a coagulation process is an alternative technology which can be applied to enhance conventional coagulation processes in the field of water treatment and drinking water production. The Ping River water (high turbidity water) was selected as the raw surface water because it is currently the main raw water source for water supply production in the urban and rural areas of Chiang Mai Province. From the investigation, the results showed that the highest percent reductions of DOC, UV-254, and THMFP (47.6%, 71.0%, and 67.4%, respectively) were achieved from in-line coagulation with ceramic membrane filtration at polyaluminum chloride dosage 40 mg/L. Resin adsorption techniques were employed to characterize the DOM in raw surface water and filtered water. The results showed that the use of a ceramic membrane with in-line coagulation was able to most efficiently reduce the hydrophobic fraction (HPOA) (68.5%), which was then followed by the hydrophilic fraction (HPIA) (49.3%). The greater mass DOC reduction of these two fractions provided the highest THMFP reductions (55.1% and 37.2%, respectively). Furthermore, the in-line coagulation with ceramic membrane filtration was able to reduce the hydrophobic (HPOB) fraction which is characterized by high reactivity toward THM formation. The percent reduction of mass DOC and THMFP of HPOB by in-line coagulation with ceramic membrane filtration was 45.9% and 48.0%, respectively. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Removal of residual particulate matter from filter media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almlie, Jay C.; Miller, Stanley J.
A method for removing residual filter cakes that remain adhered to a filter after typical particulate removal methodologies have been employed, such as pulse-jet filter element cleaning, for all cleanable filters used for air pollution control, dust control, or powder control.
Removal of residual particulate matter from filter media
Almlie, Jay C; Miller, Stanley J
2014-11-11
A method for removing residual filter cakes that remain adhered to a filter after typical particulate removal methodologies have been employed, such as pulse-jet filter element cleaning, for all cleanable filters used for air pollution control, dust control, or powder control.
Zhang, L; Tan, J; He, Z Y; Jiang, Y H
2018-09-01
β-type Ti-35Nb-7Zr alloy has attracted considerable attentions as a bone implant material. The alloy, however, has poor bioactivity, which difficult to form a strong osseointegration between the bone tissues. Combining Ti alloy with a bioactive and biodegradable ceramic has been of interest to researchers. But the large difference in physicochemical property of high-melting metal and ceramic elements would bring the manufacturing restriction. In this work, Ti-35Nb-7Zr-CPP composites were fabricated with mechanical alloy of Ti, Nb, Zr and Nano calcium pyrophosphate (CPP) powders mixture followed by spark plasma sintering (SPS) routes. The effect of CPP ceramic on microstructural evolution and in vitro biocompatibility were investigated. As the addition of CPP (10-30 wt%), ceramic elements spreading towards the matrix, the generated metal-ceramic bioactive phases CaTiO 3 are observed well consolidated with β-Ti matrix. With the CPP increasing, Ca and P atoms rapidly migrated to the β-Ti matrix to form granulated Ti 5 P 3 , which leads to the increasing porosity (10%-18%) in the composites. The results demonstrated that the favorable cell viability (the cell proliferation rates were higher than 100%) and growth inside the pores of the composites arise from the rough micro-porous surface and the release of bioactive metal-ceramic phase ions into the biological environment. The enhanced bioactivity and microstructural evolution behaviors of the Ti-35Nb-7Zr-CPP composites may provide a strategy for designing and fabricating multifunctional implants. Copyright © 2018 Elsevier B.V. All rights reserved.
Son, Dong-Jin; Yun, Chan-Young; Kim, Woo-Yeol; Zhang, Xing-Ya; Kim, Dae-Gun; Chang, Duk; Sunwoo, Young; Hong, Ki-Ho
2016-12-01
The pre-denitrification biofilm process for nitrogen removal was combined with ceramic membrane with pore sizes of 0.05-0.1 µm as a system for advanced post-treatment of municipal wastewater. The system was operated under an empty bed hydraulic retention time of 7.8 h, recirculation ratio of 3, and transmembrane pressure of 0.47 bar. The system showed average removals of organics, total nitrogen, and solids as high as 93%, 80%, and 100%, respectively. Rapid nitrification could be achieved and denitrification was performed in the anoxic filter without external carbon supplements. The residual particulate organics and nitrogen in effluent from biofilm process could be also removed successfully through membrane filtration and the removal of total coliform was noticeably improved after membrane filtration. Thus, a system composed of the pre-denitrification biofilm process with ceramic membrane would be a compact and flexible option for advanced post-treatment of municipal wastewater.
Morgan, Chester S.
1978-01-01
Cermets are produced by the process of forming a physical mixture of a ceramic powder material with an elemental metal precursor compound and by decomposing the elemental metal precursor compound within the mixture. The decomposition step may be carried out either prior to or during a forming and densification step.
Filter holder and gasket assembly for candle or tube filters
Lippert, T.E.; Alvin, M.A.; Bruck, G.J.; Smeltzer, E.E.
1999-03-02
A filter holder and gasket assembly are disclosed for holding a candle filter element within a hot gas cleanup system pressure vessel. The filter holder and gasket assembly includes a filter housing, an annular spacer ring securely attached within the filter housing, a gasket sock, a top gasket, a middle gasket and a cast nut. 9 figs.
Monteiro, Jaiane Bandoli; Riquieri, Hilton; Prochnow, Catina; Guilardi, Luís Felipe; Pereira, Gabriel Kalil Rocha; Borges, Alexandre Luiz Souto; de Melo, Renata Marques; Valandro, Luiz Felipe
2018-06-01
To evaluate the effect of ceramic thickness on the fatigue failure load of two zirconia-reinforced lithium silicate (ZLS) glass-ceramics, adhesively cemented to a dentin analogue material. Disc-shaped specimens were allocated into 8 groups (n=25) considering two study factors: ZLS ceramic type (Vita Suprinity - VS; and Celtra Duo - CD), and ceramic thickness (1.0; 1.5; 2.0; and 2.5mm). A trilayer assembly (ϕ=10mm; thickness=3.5mm) was designed to mimic a bonded monolithic restoration. The ceramic discs were etched, silanized and luted (Variolink N) into a dentin analogue material. Fatigue failure load was determined using the Staircase method (100,000 cycles at 20Hz; initial fatigue load ∼60% of the mean monotonic load-to-failure; step size ∼5% of the initial fatigue load). A stainless-steel piston (ϕ=40mm) applied the load into the center of the specimens submerged in water. Fractographic analysis and Finite Element Analysis (FEA) were also performed. The ceramic thickness influenced the fatigue failure load for both ZLS materials: Suprinity (716N up to 1119N); Celtra (404N up to 1126N). FEA showed that decreasing ceramic thickness led to higher stress concentration on the cementing interface. Different ZLS glass-ceramic thicknesses influenced the fatigue failure load of the bonded system (i.e. the thicker the glass ceramic is, the higher the fatigue failure load will be). Different microstructures of the ZLS glass-ceramics might affect the fatigue behavior. FEA showed that the thicker the glass ceramic is, the lower the stress concentration at the tensile surface will be. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.
Laboratory evaluations on thermal debonding of ceramic brackets.
Sernetz, F; Kraut, J
1991-01-01
The purpose of this laboratory study was to define the working parameters and physiological safety and efficacy of the Dentaurum Ceramic Debonding Unit. Extracted mandibular incisors were utilized because of their low thermal mass and low heat sensitivity. The teeth were embedded in plastic and placed on a turning force measuring apparatus. An electrothermal element was placed in the pulp chamber (filled with a conducting paste). The thermoelement temperature was registered on y-t recorder as was the turning momentum required to remove the ceramic brackets with the Dentaurum Ceramic Debonding Unit. Ceramic brackets from GAC (Allure III), Unitek (Transcend) and Dentaurum (Fascination) using one and two component adhesives (Monolok, Concise), were tested. Scanning electron microscopic views taken after debonding showed predictable (and favorable) adhesive failure at the bracket base/resin interface. No enamel damage was demonstrated. All brackets were removable under three seconds with a clinically reproducible turning force of 85-100 Nmm allowing for intrapulpal temperature increases under the 5 degrees C biocompatible threshold. The Dentaurum Ceramic Debonding Unit provided a safe, reliable, efficient modality of removing ceramic brackets while maintaining a physiologically acceptable rise in pulpal temperature without damage to tooth enamel or pulpal tissue.
NASA Astrophysics Data System (ADS)
FR, Wahid Muhamad; Yoon, Dang-Hyok; Raju, Kati; Kim, Seyoung; Song, Kwang-sup; Yu, Ji Haeng
2018-01-01
To fabricate a multi-layered structure for maximizing oxygen production, oxygen transport membrane (OTM) ceramics need to be joined or sealed hermetically metal supports for interfacing with the peripheral components of the system. Therefore, in this study, Ag-10 wt% CuO was evaluated as an effective filler material for the reactive air brazing of dense Ce0.9Gd0.1O2-δ-La0.7Sr0.3MnO3±δ (GDC-LSM) OTM ceramics. Thermal decomposition in air and wetting behavior of the braze filler was performed. Reactive air brazing was performed at 1050 °C for 30 min in air to join GDC-LSM with four different commercially available high temperature-resistant metal alloys, such as Crofer 22 APU, Inconel 600, Fecralloy, and AISI 310S. The microstructure and elemental distribution of the ceramic-ceramic and ceramic-metal interfaces were examined from polished cross-sections. The mechanical shear strength at room temperature for the as-brazed and isothermally aged (800 °C for 24 h) joints of all the samples was compared. The results showed that the strength of the ceramic-ceramic joints was decreased marginally by aging; however, in the case of metal-ceramic joints, different decreases in strengths were observed according to the metal alloy used, which was explained based on the formation of different oxide layers at the interfaces.
Pich, Olena; Franzen, René; Gutknecht, Norbert; Wolfart, Stefan
2015-02-01
In the present paper, we investigate the behaviour of different dental materials under laser irradiation. We have used e.max Ceram, e.max ZirCAD, and e.max Press dental ceramics and glass ionomer cement Ketac Cem in the present study. The dental ceramics were prepared in the form of samples with thickness of 0.5-2 mm. We used two lasers [solid-state laser (Er:YAG, Fidelis III+, Fotona) and an 810- nm diode laser (FOX, A.R.C)] for the transillumination of ceramic samples. It has been shown that the laser energy transmitted through the ceramic material decreases to 30-40% of the original values along with an increase in the thickness of the irradiated sample. Pigmented ceramic samples show more laser energy loss compared to the samples containing no pigment. We investigated the temperature evolution in composite sandwiched ceramic/cement samples under laser treatment. The increase in the irradiation time and laser power led to a temperature increase of up to 80 °C. The surfaces of irradiated ceramic samples were examined with X-ray photoelectron spectroscopy to evaluate changes in chemical composition, such as a decrease in the C signal, accompanied by a strong increase in the Zr peak for the Er:YAG laser, while the 810-nm diode laser showed no change in the ratio of elements on the surface.
NASA/CARES dual-use ceramic technology spinoff applications
NASA Technical Reports Server (NTRS)
Powers, Lynn M.; Janosik, Lesley A.; Gyekenyesi, John P.; Nemeth, Noel N.
1994-01-01
NASA has developed software that enables American industry to establish the reliability and life of ceramic structures in a wide variety of 21st Century applications. Designing ceramic components to survive at higher temperatures than the capability of most metals and in severe loading environments involves the disciplines of statistics and fracture mechanics. Successful application of advanced ceramics material properties and the use of a probabilistic brittle material design methodology. The NASA program, known as CARES (Ceramics Analysis and Reliability Evaluation of Structures), is a comprehensive general purpose design tool that predicts the probability of failure of a ceramic component as a function of its time in service. The latest version of this software, CARESALIFE, is coupled to several commercially available finite element analysis programs (ANSYS, MSC/NASTRAN, ABAQUS, COSMOS/N4, MARC), resulting in an advanced integrated design tool which is adapted to the computing environment of the user. The NASA-developed CARES software has been successfully used by industrial, government, and academic organizations to design and optimize ceramic components for many demanding applications. Industrial sectors impacted by this program include aerospace, automotive, electronic, medical, and energy applications. Dual-use applications include engine components, graphite and ceramic high temperature valves, TV picture tubes, ceramic bearings, electronic chips, glass building panels, infrared windows, radiant heater tubes, heat exchangers, and artificial hips, knee caps, and teeth.
Kluess, Daniel; Mittelmeier, Wolfram; Bader, Rainer
2010-12-01
In connection with technological advances in the manufacturing of medical ceramics, a newly developed ceramic femoral component was introduced in total knee arthroplasty. We generated an explicit finite-element-model to calculate the stresses developed under the highly dynamic intraoperative impaction with regard to cobalt-chromium and ceramic implant material as well as application of a silicone cover in order to reduce stress. The impaction was calculated with the hammer hitting the backside of the impactor at previously measured initial velocities. Subsequently the impactor, consisting of a steel handhold and a polyoxymethylene head, hit the femoral component. Instead of modelling femoral bone, the implant was mounted on four spring elements with spring constants previously determined in an experimental impaction model. The maximum principal stresses in the implants were evaluated at 8000 increments during the first 4 ms of impact. The ceramic implant showed principal stresses 10% to 48% higher than the cobalt chromium femoral component. The simulation of a 5mm thick silicone layer between the impactor and the femoral component showed a strong decrease of vibration resulting in a reduction of 54% to 68% of the maximum stress amounts. The calculated amounts of principal stress were beneath the ultimate bending strengths of each material. Based on the results, intraoperative fracture of femoral components in total knee replacement may not be caused solely by impaction, but also by contributing geometrical factors such as inadequate preparation of the distal femur. In order to minimize the influence of impaction related stress peaks we recommend limiting the velocity as well as the weight of the impaction hammer when inserting femoral components. The silicone cover seems to deliver a strong decrease of implant stress and should be considered in surgery technique in the future. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yu, Huili; Zhang, Jieting
2012-04-01
In this study, formaldehyde, one of the major volatile organic compounds, is chosen as the target pollutant. The polytetrafluoroethylene (PTFE) filter, a low cost and commonly used material in industry, is employed as the substrate for nano TiO2 photocatalyst coating at room temperature, which has been scarcely used compared to ceramics or glass beads. Furthermore, a specific experimental set-up that is similar to actual air purification system is developed for the testing. The degradation mechanisms of photolysis reaction, adsorption and photocatalytic oxidation reaction on volatile organic compounds are present respectively. The influences of three aspects mentioned above are compared by a serial of experimental data. The high efficiency of volatile organic compounds on the degradation of formaldehyde is assured. Furthermore, the purification characteristics of three kinds of activated carbon filters and PTFE filter with nano TiO2 are evaluated with the method of fuzzy mathematics. In the end, the result shows that the filter with nano TiO2 has the optimal comprehensive performances.
NASA Astrophysics Data System (ADS)
Yu, Huili; Zhang, Jieting
2011-11-01
In this study, formaldehyde, one of the major volatile organic compounds, is chosen as the target pollutant. The polytetrafluoroethylene (PTFE) filter, a low cost and commonly used material in industry, is employed as the substrate for nano TiO2 photocatalyst coating at room temperature, which has been scarcely used compared to ceramics or glass beads. Furthermore, a specific experimental set-up that is similar to actual air purification system is developed for the testing. The degradation mechanisms of photolysis reaction, adsorption and photocatalytic oxidation reaction on volatile organic compounds are present respectively. The influences of three aspects mentioned above are compared by a serial of experimental data. The high efficiency of volatile organic compounds on the degradation of formaldehyde is assured. Furthermore, the purification characteristics of three kinds of activated carbon filters and PTFE filter with nano TiO2 are evaluated with the method of fuzzy mathematics. In the end, the result shows that the filter with nano TiO2 has the optimal comprehensive performances.
Wavelength tunability of laser based on Yb-doped YGAG ceramics
NASA Astrophysics Data System (ADS)
Šulc, Jan; Jelínková, Helena; Jambunathan, Venkatesan; Miura, Taisuke; Endo, Akira; Lucianetti, Antonio; Mocek, TomáÅ.¡
2015-02-01
The wavelength tunability of diode pumped laser based on Yb-doped mixed garnet Y3Ga2Al3O12 (Yb:YGAG) ceramics was investigated. The tested Yb:YGAG sample (10% Yb/Y) was in the form of 2mm thick plane-parallel face-polished plate (without AR coatings). A fiber (core diameter 100 μm, NA= 0.22) coupled laser diode (LIMO, LIMO35-F100-DL980-FG-E) with emission at wavelength 969 nm, was used for longitudinal Yb:YGAG pumping. The laser diode was operating in the pulsed regime (2 ms pulse length, 10 Hz repetition rate). The duty-cycle 2% ensured a low thermal load even under the maximum diode pumping power amplitude 20W (ceramics sample was only air-cooled). The 145mm long semi-hemispherical laser resonator consisted of a flat pumping mirror (HR @ 1.01 - 1.09 μm, HT @ 0.97 μm) and curved (r = 150mm) output coupler with a reflectivity of ˜ 97% @ 1.01 - 1.09 μm. Wavelength tuning of the ytterbium laser was accomplished by using a birefringent filter (single 1.5mm thick quartz plate) placed inside the optical resonator at the Brewster angle between the output coupler and the laser active medium. The laser was continuously tunable over ˜ 58nm (from 1022nm to 1080 nm) and the tuning band was mostly limited by the free spectral range of used birefringent filter. The maximum output power amplitude 3W was obtained at wavelength 1046nm for absorbed pump power amplitude 10.6W. The laser slope efficiency was 34%.
Thermotropic Liquid Crystals with Nitrocinnamylidene Unit
1988-10-14
added through dropping funnel. Stir for 2 hrs before precipitated from distilled water . The crude yellow product was redissolved in chloroform and dried...rate 1O*C/hr) for overnight. Filter through celite and ceramic filtration funnel before precipitating with distilled water . The crude product was...Table 1. Cinnamylidene-P-octyloxyaniline was synthesized primarily by reacting cinnamaldehyde with p-octyloxyaniline and exhibits no mesomorphic property
Mohamed, Hussein; Clasen, Thomas; Njee, Robert Mussa; Malebo, Hamisi M; Mbuligwe, Stephen; Brown, Joe
2016-01-01
To assess the microbiological effectiveness of several household water treatment and safe storage (HWTS) options in situ in Tanzania, before consideration for national scale-up of HWTS. Participating households received supplies and instructions for practicing six HWTS methods on a rotating 5-week basis. We analysed 1202 paired samples (source and treated) of drinking water from 390 households, across all technologies. Samples were analysed for thermotolerant (TTC) coliforms, an indicator of faecal contamination, to measure effectiveness of treatment in situ. All HWTS methods improved microbial water quality, with reductions in TTC of 99.3% for boiling, 99.4% for Waterguard ™ brand sodium hypochlorite solution, 99.5% for a ceramic pot filter, 99.5% for Aquatab ® sodium dichloroisocyanurate (NaDCC) tablets, 99.6% for P&G Purifier of Water ™ flocculent/disinfectant sachets, and 99.7% for a ceramic siphon filter. Microbiological performance was relatively high compared with other field studies and differences in microbial reductions between technologies were not statistically significant. Given that microbiological performance across technologies was comparable, decisions regarding scale-up should be based on other factors, including uptake in the target population and correct, consistent, and sustained use over time. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Tuaprakone, T.; Wongphaet, N.; Wasanapiarnpong, T.
2011-04-01
Activated charcoal has been widely used as an odor absorbent in household and water purification industry. Filtration equipment for drinking water generally consists of four parts, which are microporous membrane (porous alumina ceramic or diatomite, or porous polymer), odor absorbent (activated carbon), hard water treatment (ion exchange resin), and UV irradiation. Ceramic filter aid is usually prepared by slip casting of alumina or diatomite. The membrane offers high flux, high porosity and maximum pore size does not exceed 0.3 μm. This study investigated the fabrication of hybrid activated charcoal tube for water filtration and odor absorption by slip casting. The suitable rice husk charcoal and water ratio was 48 to 52 wt% by weight with 1.5wt% (by dry basis) of CMC binder. The green rice husk charcoal bodies were dried and fired between 700-900 °C in reduction atmosphere. The resulting prepared slip in high speed porcelain pot for 60 min and sintered at 700 °C for 1 h showed the highest specific surface area as 174.95 m2/g. The characterizations of microstructure and pore size distribution as a function of particle size were investigated.
Ceramic pot filters lifetime study in coastal Guatemala.
Salvinelli, C; Elmore, A C; García Hernandez, B R; Drake, K D
2017-02-01
Ceramic pot filters (CPFs) are an effective means of household water treatment, but the characterization of CPF lifetimes is ongoing. This paper describes a lifetime field study in Guatemala which was made possible by a collaboration between researchers, CPF-using households, and local non-governmental organizations (NGOs). Disinfection data were collected periodically for two years using field coliform enumeration kits as were flow rate data with the assistance of NGO staff. Consumer acceptance was characterized by surveying householders in the four subject villages at the beginning and end of the study. Flow rate data showed that average CPF flow rates decreased below the recommended minimum of 1 L h -1 after 10 months of use; however, the survey results indicated that the consumers were tolerant of the lower flow rates, and it is reasonable to assume that the daily volume of treated water can be readily increased by refilling the CPFs more frequently. Of greater concern was the finding that disinfection efficacy decreased below the recommended bacterial reduction after 14 months of use because it would not be obvious to users that effectiveness had declined. Finally, the follow-up visits by the researchers and the NGO staff appeared to increase consumer acceptance of the CPFs.
Wavelength Scanning with a Tilting Interference Filter for Glow-Discharge Elemental Imaging.
Storey, Andrew P; Ray, Steven J; Hoffmann, Volker; Voronov, Maxim; Engelhard, Carsten; Buscher, Wolfgang; Hieftje, Gary M
2017-06-01
Glow discharges have long been used for depth profiling and bulk analysis of solid samples. In addition, over the past decade, several methods of obtaining lateral surface elemental distributions have been introduced, each with its own strengths and weaknesses. Challenges for each of these techniques are acceptable optical throughput and added instrumental complexity. Here, these problems are addressed with a tilting-filter instrument. A pulsed glow discharge is coupled to an optical system comprising an adjustable-angle tilting filter, collimating and imaging lenses, and a gated, intensified charge-coupled device (CCD) camera, which together provide surface elemental mapping of solid samples. The tilting-filter spectrometer is instrumentally simpler, produces less image distortion, and achieves higher optical throughput than a monochromator-based instrument, but has a much more limited tunable spectral range and poorer spectral resolution. As a result, the tilting-filter spectrometer is limited to single-element or two-element determinations, and only when the target spectral lines fall within an appropriate spectral range and can be spectrally discerned. Spectral interferences that result from heterogeneous impurities can be flagged and overcome by observing the spatially resolved signal response across the available tunable spectral range. The instrument has been characterized and evaluated for the spatially resolved analysis of glow-discharge emission from selected but representative samples.
A Ceramic Fracture Model for High Velocity Impact
1993-05-01
employ damage concepts appear more relevant than crack growth models for this application . This research adopts existing fracture model concepts and...extends them through applications in an existing finite element continuum mechanics code (hydrocode) to the prediction of the damage and fracture processes...to be accurate in the lower velocity range of this work. Mescall and Tracy 15] investigated the selection of ceramic material for application in armors
Low-Cost, Net-Shape Ceramic Radial Turbine Program
1985-05-01
PROGRAM ELEMENT. PROJECT. TASK Garrett Turbine Engine Company AE OKUI UBR 111 South 34th Street, P.O. Box 2517 Phoenix, Arizona 85010 %I. CONTROLLING...processing iterations. Program management and materials characterization were conducted at Garrett Turbine Engine Company (GTEC), test bar and rotor...automotive gas turbine engine rotor development efforts at ACC. xvii PREFACE This is the final technical report of the Low-Cost, Net- Shape Ceramic
[Compatibility between high-strength dental ceramic (type A) and vintage AL veneering porcelain].
Cui, Jun; Chao, Yong-lie; Meng, Yu-kun
2006-05-01
To investigate the interface bond strength and compatibility between High-Strength Dental Ceramic (type A) and Vintage AL veneering porcelain. Twenty bar-shape specimens (ten Vintage AL and ten Vitadur alpha) were fabricated, and shear test was conducted to determine the bond strength. A bilayered composite (1 mm core ceramic and 0.8 mm Vintage AL) was prepared and then fractured for scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis. Ten all-ceramic anterior crowns were fabricated and the temperatures of thermal shock resistance were tested. The mean values of the bond strength measured were (55.52 +/- 14.64) MPa and (59.37 +/- 13.93) MPa for Vintage AL and Vitadur alpha respectively (P>0.05). SEM showed tight connection between the High-Strength Dental Ceramic (type A) and the veneering porcelain. Element diffusion was also confirmed by energy dispersive spectroscopy (EDS) analysis. The temperature of thermal shock resistance of this system was (179 +/- 15) degrees C. Vintage AL veneering porcelain has good thermal and chemical compatibility with High-Strength Dental Ceramic (type A).
Wavelength dependence of Verdet constant of Tb{sup 3+}:Y{sub 2}O{sub 3} ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snetkov, I. L., E-mail: snetkov@appl.sci-nnov.ru; Palashov, O. V.; Permin, D. A.
2016-04-18
Samples of the magneto-active material—Tb{sup 3+}:Y{sub 2}O{sub 3} ceramics with Tb{sup 3+} ion concentrations of 10%, 20%, 30%, and 100% (Tb{sub 2}O{sub 3})—were prepared and studied. The wavelength dependence of Verdet constant in the 380 nm–1750 nm range was approximated for all investigated ceramic samples and was predicted for a pure Tb{sub 2}O{sub 3} material. Tb{sub 2}O{sub 3} ceramics demonstrates a more than three times higher Verdet constant in comparison with terbium gallium garnet crystal or ceramics. The linear dependence of the Verdet constant on Tb{sup 3+} ion concentration in the Tb{sup 3+}:Y{sub 2}O{sub 3} ceramics was demonstrated. The obtained data willmore » be useful for fabricating magneto-optical elements of Faraday devices based on Tb{sup 3+}:Y{sub 2}O{sub 3} with arbitrary Tb{sup 3+} ion concentration operating at room temperature in the wavelength range of 380 nm–1750 nm.« less
Filtration of Carbon Particulate Emissions from a Plasma Pyrolysis Assembly
NASA Technical Reports Server (NTRS)
Agui, Juan H.; Green, Robert; Vijayakumar, R.; Berger, Gordon; Greenwood, Zach; Abney, Morgan; Peterson, Elspeth
2016-01-01
NASA is investigating plasma pyrolysis as a candidate technology that will enable the recovery of hydrogen from the methane produced by the ISS Sabatier Reactor. The Plasma Pyrolysis Assembly (PPA) is the current prototype of this technology which converts the methane product from the Carbon Dioxide Reduction Assembly (CRA) to acetylene and hydrogen with 90% or greater conversion efficiency. A small amount of solid carbon particulates are generated as a side product and must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. We discuss developmental work on several options for filtering out the carbon particulate emissions from the PPA exit gas stream. The filtration technologies and concepts investigated range from fibrous media to monolithic ceramic and sintered metal media. This paper describes the different developed filter prototypes and characterizes their performance from integrated testing at the Environmental Chamber (E-Chamber) at MSFC. In addition, characterization data on the generated carbon particulates, that help to define filter requirements, are also presented.
Characteristics of the First Longitudinal-Fourth Bending Mode Linear Ultrasonic Motors
NASA Astrophysics Data System (ADS)
Park, Taegone; Kim, Beomjin; Kim, Myong-Ho; Uchino, Kenji
2002-11-01
Linear ultrasonic motors using a combination of the first longitudinal mode and the fourth bending mode were designed and fabricated. The driving characteristics of the motors, which were composed of a straight metal bar bonded with piezoelectric ceramic vibrators as a driving element, were measured. Unimorph and bimorph ceramic vibrators were attached on three kinds of metal bars for constructing the stators of the linear motors. As results, motors made with the bimorph ceramic vibrators had higher velocity than motors of the unimorph vibrators. As a metal bar for stator, magnesium alloy, which has lower elastic coefficient than aluminum alloy, was better for the motors.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Bhatt, Ramakrishna T.; Harder, Bryan
2016-01-01
This paper presents the developments of thermo-mechanical testing approaches and durability performance of environmental barrier coatings (EBCs) and EBC coated SiCSiC ceramic matrix composites (CMCs). Critical testing aspects of the CMCs will be described, including state of the art instrumentations such as temperature, thermal gradient, and full field strain measurements; materials thermal conductivity evolutions and thermal stress resistance; NDE methods; thermo-mechanical stress and environment interactions associated damage accumulations. Examples are also given for testing ceramic matrix composite sub-elements and small airfoils to help better understand the critical and complex CMC and EBC properties in engine relevant testing environments.
International Space Station Bacteria Filter Element Service Life Evaluation
NASA Technical Reports Server (NTRS)
Perry, J. L.
2005-01-01
The International Space Station (ISS) uses high-efficiency particulate air filters to remove particulate matter from the cabin atmosphere. Known as bacteria filter elements (BFEs), there are 13 elements deployed on board the ISS's U.S. segment in the flight 4R assembly level. The preflight service life prediction of 1 yr for the BFEs is based upon engineering analysis of data collected during developmental testing that used a synthetic dust challenge. While this challenge is considered reasonable and conservative from a design perspective, an understanding of the actual filter loading is required to best manage the critical ISS program resources. Testing was conducted on BFEs returned from the ISS to refine the service life prediction. Results from this testing and implications to ISS resource management are provided.
A Nonlinear Viscoelastic Model for Ceramics at High Temperatures
NASA Technical Reports Server (NTRS)
Powers, Lynn M.; Panoskaltsis, Vassilis P.; Gasparini, Dario A.; Choi, Sung R.
2002-01-01
High-temperature creep behavior of ceramics is characterized by nonlinear time-dependent responses, asymmetric behavior in tension and compression, and nucleation and coalescence of voids leading to creep rupture. Moreover, creep rupture experiments show considerable scatter or randomness in fatigue lives of nominally equal specimens. To capture the nonlinear, asymmetric time-dependent behavior, the standard linear viscoelastic solid model is modified. Nonlinearity and asymmetry are introduced in the volumetric components by using a nonlinear function similar to a hyperbolic sine function but modified to model asymmetry. The nonlinear viscoelastic model is implemented in an ABAQUS user material subroutine. To model the random formation and coalescence of voids, each element is assigned a failure strain sampled from a lognormal distribution. An element is deleted when its volumetric strain exceeds its failure strain. Element deletion has been implemented within ABAQUS. Temporal increases in strains produce a sequential loss of elements (a model for void nucleation and growth), which in turn leads to failure. Nonlinear viscoelastic model parameters are determined from uniaxial tensile and compressive creep experiments on silicon nitride. The model is then used to predict the deformation of four-point bending and ball-on-ring specimens. Simulation is used to predict statistical moments of creep rupture lives. Numerical simulation results compare well with results of experiments of four-point bending specimens. The analytical model is intended to be used to predict the creep rupture lives of ceramic parts in arbitrary stress conditions.
NASA Astrophysics Data System (ADS)
Biswas, Apratim
In the absence of atmosphere and hydrosphere, there are few collisions between dust particles in the lunar environment. Further, particles become charged in presence of cosmic rays and similarly charged particles repel each other. Hence particles retain sharp edges and often have high aspect ratios. When exposed to lunar dust, humans show symptoms similar to hay fever. Such particles are also damaging to equipment. Humans and robots, used in operations, can bring such dust particles inside the human habitat making them airborne. High efficiency particulate air (HEPA) filters provide an effective way to trap such particles. But due to environment conditions, polymer based filters are susceptible to mechanical erosion. The presence of high energy radiation, due to the absence of atmosphere and magnetic fields, is also damaging to polymers. Ceramic materials are resistant to abrasion and radiation and hence were chosen as the preferred class of materials for the filtration media. Among all the ceramics, TiO2 was selected for its photocatalytic activity which may play a key role in energy-efficient survival in space or lunar stations. Such fibers are multi-functional with the advantage of self-cleaning property in presence of radiation. However ceramic fibers, including TiO 2 fibers, have a significant disadvantage of their own. They are brittle and were considered too prone to failure to be successfully used as a filtration media when they reach nanometer dimensions. This dissertation describes the advances in fabrication and understanding of fundamentals in overcoming these challenges. In absence of crack initiation sites, amorphous ceramic fibers have near theoretical strength and strain to failure. Amorphous TiO2 -SiO2 fibermats, with lower flaw populations and exceptional surface quality, have been developed. They can be rolled to a radius of curvature of 3.4 mm -- exhibiting flexibility. The fibermats are also mechanically robust and can withstand the stress associated with general handling and fixture used for holding the filtration media. Electrospinning was selected as the fabrication method due to superior performance towards fiber diameter uniformity and the ability to decrease fiber diameters to the nm level. Filtration tests have been carried out on such fibermats concerning a number of key variables such as fiber diameter, particle size, pressure drop and more. Multifunctionality, as filter material and as photocatalyst, allows the filters to be regenerable. Furthermore, organic vapors (odors) and plant super hormones (ethylene gas) can be oxidized. This is key for a sustainable human base where food needs to be grown and the level of odors in habitat has to be minimized. Ceramic materials based on TiO2 and titania composites where selected. To enhance the catalytic properties doping with a pentavalent ion, viz. niobium, with varying concentrations was done. Materials were electrospun and characterized. An increase of niobium yields stabilization of the anatase phase at 600°C as evident from XRD patterns. Higher treatment temperatures allow a transformation to rutile. This is important since the semiconductor junction of anatase to rutile decreases electron-hole recombination rate, which enhances the photocatalytic activity. Furthermore, doping anatase with niobium increases the porosity and with it the catalytically active area. In fact the specific surface area of titania fibers increases by almost 6 times when doped with only 2.5 at% niobium. However, in this work reduced photocatalytic activity was observed. It is hypothesized that phase separation of the niobium rather than doping in a solid solution occurred which will change the properties of the semiconductor junction in an unfavorable way. The other possible explanation is the decrease in the anatase -- rutile semiconductor junction in niobium doped titania.
Hall, David R.; Pixton, David S.; Briscoe, Michael; McPherson, James
2007-12-04
A filter for a drill string comprises a perforated receptacle having an open end and a perforated end and first and second mounting surfaces are adjacent the open end. A transmission element is disposed within each of the first and second mounting surfaces. A capacitor may modify electrical characteristics of an LC circuit that comprises the transmission elements. The respective transmission elements are in communication with each other and with a transmission network integrated into the drill string. The transmission elements may be inductive couplers, direct electrical contacts, or optical couplers. In some embodiments of the present invention, the filter comprises an electronic component. The electronic component may be selected from the group consisting of a sensor, a router, a power source, a clock source, a repeater, and an amplifier.
Inductively heated particulate matter filter regeneration control system
Gonze, Eugene V; Paratore Jr., Michael J; Kirby, Kevin W; Phelps, Amanda; Gregoire, Daniel J
2012-10-23
A system includes a particulate matter (PM) filter with an upstream end for receiving exhaust gas, a downstream end and zones. The system also includes a heating element. A control module selectively activates the heating element to inductively heat one of the zones.
Ceramic strengthening by tuning the elastic moduli of resin-based luting agents.
Spazzin, Aloísio O; Bacchi, Ataís; Alessandretti, Rodrigo; Santos, Mateus B; Basso, Gabriela R; Griggs, Jason; Moraes, Rafael R
2017-03-01
Resin-based luting agents (RBLAs) with tuned elastic moduli (E) were prepared and their influence on the strengthening, reliability, and mode of failure of luted feldspar ceramic was investigated. RBLAs with low E (2.6GPa), intermediate E (6.6GPa), and high E (13.3GPa) were prepared and used to coat acid-etched ceramic disks. Positive (untreated ceramic) and negative (acid-etched ceramic) control groups were tested. The response variables (n=30) were biaxial flexural strength (σ bf , MPa), characteristic strength (σ 0 , MPa), and Weibull modulus at the ceramic surface (z=0) and luting agent surface (z=-t 2 ). A 3D finite element analysis simulated the biaxial flexural test. Fractographic analysis and morphology of the bonded interfaces were analyzed using scanning electron microscopy. The RBLAs improved σ bf and σ 0 at z=0, particularly those with intermediate and high E, whereas the mechanical reliability was only affected in the negative control. At z=-t 2 , differences between all RBLAs were observed but the structural reliability was independent of the RBLA tested. Increasing E of the RBLA was associated with increased stress concentration at the RBLA and reduced stresses reaching the ceramic. Failures originated on the ceramic surface at the ceramic-cement interface. In the high E group, failure sometimes originated from the RBLA free surface. All RBLAs completely filled the ceramic irregularities. Increased E of the RBLA reduced the variability of strength, the stress reaching the ceramic structure, and sometimes altered the origin of failure. The use of high E RBLAs seems beneficial for luting feldspar ceramics. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Marrero, Julieta; Rebagliati, Raúl Jiménez; Gómez, Darío; Smichowski, Patricia
2005-12-15
A study was conducted to evaluate the homogeneity of the distribution of metals and metalloids deposited on glass fiber filters collected using a high-volume sampler equipped with a PM-10 sampling head. The airborne particulate matter (APM)-loaded glass fiber filters (with an active surface of about 500cm(2)) were weighed and then each filter was cut in five small discs of 6.5cm of diameter. Each disk was mineralized by acid-assisted microwave (MW) digestion using a mixture of nitric, perchloric and hydrofluoric acids. Analysis was performed by axial view inductively coupled plasma optical emission spectrometry (ICP OES) and the elements considered were: Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Sb, Ti and V. The validation of the procedure was performed by the analysis of the standard reference material NIST 1648, urban particulate matter. As a way of comparing the possible variability in trace elements distribution in a particular filter, the mean concentration for each element over the five positions (discs) was calculated and each element concentration was normalized to this mean value. Scatter plots of the normalized concentrations were examined for all elements and all sub-samples. We considered that an element was homogeneously distributed if its normalized concentrations in the 45 sub-samples were within +/-15% of the mean value ranging between 0.85 and 1.15. The study demonstrated that the 12 elements tested showed different distribution pattern. Aluminium, Cu and V showed the most homogeneous pattern while Cd and Ni exhibited the largest departures from the mean value in 13 out of the 45 discs analyzed. No preferential deposition was noticed in any sub-sample.
Performance of breathing filters under wet conditions: a laboratory evaluation.
Turnbull, D; Fisher, P C; Mills, G H; Morgan-Hughes, N J
2005-05-01
Heat and moisture exchangers in combination with a bacterial and viral filter (HMEF) are widely used during general anaesthesia. Excess patient secretions occluding the HMEF have been responsible for previous case reports of airway obstruction. A previous study suggested that differences in HMEF design might contribute to filter obstruction under wet conditions. We tested 14 types of HMEF under wet conditions to establish which design features contributed to HMEF obstruction. Incremental amounts of saline were added to each filter. The pressure across the filter was measured with an air flow of 60 litre min(-1). We observed that saline added to the filter was often not easily visible to the casual observer. This concealment volume varied between filters. Ceramic hydrophobic pleated-membrane filters did not absorb saline and their resistance did not change. The composite filter where the moisture exchange component was either polyurethane foam or cellulose absorbed saline and contributed to a rise in resistance of 70-480% with the higher value more typical of the cellulose-paper-based HMEF. The ideal HMEF for use during general anaesthesia should prevent the passage of viral, bacterial and prion material, should provide this filtration performance even under wet conditions, should supplement humidification of the inspired air and anaesthetic gases and should not increase respiratory work. We have identified large variations in HMEF performance under wet conditions. Users should be aware of performance variation in HMEFs and use a filter suited to the intended application.
Potential sources of analytical bias and error in selected trace element data-quality analyses
Paul, Angela P.; Garbarino, John R.; Olsen, Lisa D.; Rosen, Michael R.; Mebane, Christopher A.; Struzeski, Tedmund M.
2016-09-28
Potential sources of analytical bias and error associated with laboratory analyses for selected trace elements where concentrations were greater in filtered samples than in paired unfiltered samples were evaluated by U.S. Geological Survey (USGS) Water Quality Specialists in collaboration with the USGS National Water Quality Laboratory (NWQL) and the Branch of Quality Systems (BQS).Causes for trace-element concentrations in filtered samples to exceed those in associated unfiltered samples have been attributed to variability in analytical measurements, analytical bias, sample contamination either in the field or laboratory, and (or) sample-matrix chemistry. These issues have not only been attributed to data generated by the USGS NWQL but have been observed in data generated by other laboratories. This study continues the evaluation of potential analytical bias and error resulting from matrix chemistry and instrument variability by evaluating the performance of seven selected trace elements in paired filtered and unfiltered surface-water and groundwater samples collected from 23 sampling sites of varying chemistries from six States, matrix spike recoveries, and standard reference materials.Filtered and unfiltered samples have been routinely analyzed on separate inductively coupled plasma-mass spectrometry instruments. Unfiltered samples are treated with hydrochloric acid (HCl) during an in-bottle digestion procedure; filtered samples are not routinely treated with HCl as part of the laboratory analytical procedure. To evaluate the influence of HCl on different sample matrices, an aliquot of the filtered samples was treated with HCl. The addition of HCl did little to differentiate the analytical results between filtered samples treated with HCl from those samples left untreated; however, there was a small, but noticeable, decrease in the number of instances where a particular trace-element concentration was greater in a filtered sample than in the associated unfiltered sample for all trace elements except selenium. Accounting for the small dilution effect (2 percent) from the addition of HCl, as required for the in-bottle digestion procedure for unfiltered samples, may be one step toward decreasing the number of instances where trace-element concentrations are greater in filtered samples than in paired unfiltered samples.The laboratory analyses of arsenic, cadmium, lead, and zinc did not appear to be influenced by instrument biases. These trace elements showed similar results on both instruments used to analyze filtered and unfiltered samples. The results for aluminum and molybdenum tended to be higher on the instrument designated to analyze unfiltered samples; the results for selenium tended to be lower. The matrices used to prepare calibration standards were different for the two instruments. The instrument designated for the analysis of unfiltered samples was calibrated using standards prepared in a nitric:hydrochloric acid (HNO3:HCl) matrix. The instrument designated for the analysis of filtered samples was calibrated using standards prepared in a matrix acidified only with HNO3. Matrix chemistry may have influenced the responses of aluminum, molybdenum, and selenium on the two instruments. The best analytical practice is to calibrate instruments using calibration standards prepared in matrices that reasonably match those of the samples being analyzed.Filtered and unfiltered samples were spiked over a range of trace-element concentrations from less than 1 to 58 times ambient concentrations. The greater the magnitude of the trace-element spike concentration relative to the ambient concentration, the greater the likelihood spike recoveries will be within data control guidelines (80–120 percent). Greater variability in spike recoveries occurred when trace elements were spiked at concentrations less than 10 times the ambient concentration. Spike recoveries that were considerably lower than 90 percent often were associated with spiked concentrations substantially lower than what was present in the ambient sample. Because the main purpose of spiking natural water samples with known quantities of a particular analyte is to assess possible matrix effects on analytical results, the results of this study stress the importance of spiking samples at concentrations that are reasonably close to what is expected but sufficiently high to exceed analytical variability. Generally, differences in spike recovery results between paired filtered and unfiltered samples were minimal when samples were analyzed on the same instrument.Analytical results for trace-element concentrations in ambient filtered and unfiltered samples greater than 10 and 40 μg/L, respectively, were within the data-quality objective for precision of ±25 percent. Ambient trace-element concentrations in filtered samples greater than the long-term method detection limits but less than 10 μg/L failed to meet the data-quality objective for precision for at least one trace element in about 54 percent of the samples. Similarly, trace-element concentrations in unfiltered samples greater than the long-term method detection limits but less than 40 μg/L failed to meet this data-quality objective for at least one trace-element analysis in about 58 percent of the samples. Although, aluminum and zinc were particularly problematic, limited re-analyses of filtered and unfiltered samples appeared to improve otherwise failed analytical precision.The evaluation of analytical bias using standard reference materials indicate a slight low bias for results for arsenic, cadmium, selenium, and zinc. Aluminum and molybdenum show signs of high bias. There was no observed bias, as determined using the standard reference materials, during the analysis of lead.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bateman, K. J.; Capson, D. D.
2004-03-29
Argonne National Laboratory (ANL) has developed a process to immobilize waste salt containing fission products, uranium, and transuranic elements as chlorides in a glass-bonded ceramic waste form. This salt was generated in the electrorefining operation used in the electrometallurgical treatment of spent Experimental Breeder Reactor-II (EBR-II) fuel. The ceramic waste process culminates with an elevated temperature operation. The processing conditions used by the furnace, for demonstration scale and production scale operations, are to be developed at Argonne National Laboratory-West (ANL-West). To assist in selecting the processing conditions of the furnace and to reduce the number of costly experiments, a finitemore » difference model was developed to predict the consolidation of the ceramic waste. The model accurately predicted the heating as well as the bulk density of the ceramic waste form. The methodology used to develop the computer model and a comparison of the analysis to experimental data is presented.« less
NASA Technical Reports Server (NTRS)
Bundick, W. T.
1985-01-01
The application of the failure detection filter to the detection and identification of aircraft control element failures was evaluated in a linear digital simulation of the longitudinal dynamics of a B-737 Aircraft. Simulation results show that with a simple correlator and threshold detector used to process the filter residuals, the failure detection performance is seriously degraded by the effects of turbulence.
Topping cycle for coal-fueled electric power plants using the ceramic helical expander
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, B.; Landingham, R.; Mohr, P.
Ceramic helical expanders are advocated as the work output element in a 2500/sup 0/F direct coal-fired Brayton topping cycle for central power station application. When combined with a standard steam electric power plant cycle, such a cycle could result in an overall thermal conversion efficiency in excess of 50 percent. The performance, coal tolerance, and system-development-time advantages of the ceramic helical expander approach are enumerated. A perspective on the choice of design and materials is provided. A preliminary consideration of physical properties, economic questions, and service experience has led us to a preference for the silicon nitride and silicon carbidemore » family of materials. A program to confirm the performance and coal tolerance aspects of a ceramic helical expander system is planned.« less
NASA Technical Reports Server (NTRS)
1997-01-01
Products made from advanced ceramics show great promise for revolutionizing aerospace and terrestrial propulsion and power generation. However, ceramic components are difficult to design because brittle materials in general have widely varying strength values. The CARES/Life software developed at the NASA Lewis Research Center eases this by providing a tool that uses probabilistic reliability analysis techniques to optimize the design and manufacture of brittle material components. CARES/Life is an integrated package that predicts the probability of a monolithic ceramic component's failure as a function of its time in service. It couples commercial finite element programs--which resolve a component's temperature and stress distribution - with reliability evaluation and fracture mechanics routines for modeling strength - limiting defects. These routines are based on calculations of the probabilistic nature of the brittle material's strength.
Modeling of Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Ferguson, B. L.; Petrus, G. J.; Krauss, T. M.
1992-01-01
The project examined the effectiveness of studying the creep behavior of thermal barrier coating system through the use of a general purpose, large strain finite element program, NIKE2D. Constitutive models implemented in this code were applied to simulate thermal-elastic and creep behavior. Four separate ceramic-bond coat interface geometries were examined in combination with a variety of constitutive models and material properties. The reason for focusing attention on the ceramic-bond coat interface is that prior studies have shown that cracking occurs in the ceramic near interface features which act as stress concentration points. The model conditions examined include: (1) two bond coat coefficient of thermal expansion curves; (2) the creep coefficient and creep exponent of the bond coat for steady state creep; (3) the interface geometry; and (4) the material model employed to represent the bond coat, ceramic, and superalloy base.
Stress Distribution and Damage Mode of Ceramic-Dentin Bilayer Systems
NASA Astrophysics Data System (ADS)
Kurtoglu, Cem; Demiroz, S. Suna; Mehmetov, Emirullah; Uysal, Hakan
The aim of this study was to evaluate the damage modes of ceramic systems bonded to dentin under Hertzian indentation. Single-cycle Hertzian contact test over 150-850 N load range was applied randomly to 210 ceramic-dentin bilayer disc specimens of zirconia or IPS Empress II -1 mm, -1.5 mm and of feldspathic porcelain -1 mm, -1.5 mm, -2 mm. Optical microscopy was employed for the identification of quasiplastic mode and radial cracks. Finite element analysis was used to analyze the stress distribution. Our results showed that the degree of damage in both modes evolved progressively and the origin changed with contact load. Stress location and value were consistent with the mechanical test results. It was concluded that microstructure and thickness of the material have a significant effect on the damage modes of ceramic layer systems.
NASA Astrophysics Data System (ADS)
Potanina, Ekaterina; Golovkina, Ludmila; Orlova, Albina; Nokhrin, Aleksey; Boldin, Maksim; Sakharov, Nikita
2016-05-01
Complex oxide Y2.5Nd0.5Al5O12 with garnet structure and phosphates NdPO4 and GdPO4 with monazite structure were obtained by using precipitation methods. Ceramics Y2.5Nd0.5Al5O12 and NdPO4 were processed by Spark Plasma Sintering (SPS). Relative density more 98%, sintering time did not exceed 8 min, sintering temperature 1330-1390 °C. Leaching rates of elements from ceramics were 10-6-10-7 g/(cm2 d). The process of ceramics sintering has two-stage character: the first step of sintering-compaction process is related to the plastic flow of the material, the second step-to the process of grain boundary diffusion and grain growth.
[Preparation of porous ceramics based on waste ceramics and its Ni2+ adsorption characteristics].
Zhang, Yong-Li; Wang, Cheng-Zhi; Shi, Ce; Shang, Ling-Ling; Ma, Rui; Dong, Wan-Li
2013-07-01
The preparation conditions of porous ceramics were determined by SEM, XRD and FT-IR characterizations as well as the nickel removal ability of porous ceramics to be: the mass fraction w of sesbania powder doped was 4%, and the calcination temperature was 800 degrees C. SEM and pore structure characterization illustrated that calcination caused changes in the structure and morphology of waste ceramics. With the increase of calcination temperature, the specific surface area and pore volume decreased, while the aperture increased. EDS analyses showed that the main elements of both the original waste porcelain powder and the porous ceramics were Si, Al and O. The SEM, XRD and FT-IR characterization of porous ceramics illustrated that the structure of porous ceramics was stable before and after adsorption. The series of experiments of Ni2+ adsorption using these porous ceramics showed that when the dosage of porous ceramics was 10 g x L(-1), the adsorption time was 60 min, the pH value was 6.32, and the concentration of nickel-containing wastewater was below 100 mg x L(-1), the Ni2+ removal of wastewater reached 89.7%. Besides, the porous ceramics showed higher removal efficiency on nickel in the wastewater. The Ni(2+)-containing wastewater was processed by the porous ceramics prepared, and the adsorption dynamics and adsorption isotherms of Ni2+ in wastewater by porous ceramics were investigated. The research results showed that the Ni2+ adsorption process of porous ceramics was in accordance with the quasi second-order kinetic model (R2 = 0.999 9), with Q(e) of 9.09 mg x g(-1). The adsorption process can be described by the Freundlich equation and Langmuir equation, and when the temperature increased from 20 degrees C to 40 degrees C, the maximum adsorption capacity Q(m) increased from 14.49 mg x g(-1) to 15.38 mg x g(-1).
Structural and Chemical Analysis of the Zirconia-Veneering Ceramic Interface.
Inokoshi, M; Yoshihara, K; Nagaoka, N; Nakanishi, M; De Munck, J; Minakuchi, S; Vanmeensel, K; Zhang, F; Yoshida, Y; Vleugels, J; Naert, I; Van Meerbeek, B
2016-01-01
The interfacial interaction of veneering ceramic with zirconia is still not fully understood. This study aimed to characterize morphologically and chemically the zirconia-veneering ceramic interface. Three zirconia-veneering conditions were investigated: 1) zirconia-veneering ceramic fired on sandblasted zirconia, 2) zirconia-veneering ceramic on as-sintered zirconia, and 3) alumina-veneering ceramic (lower coefficient of thermal expansion [CTE]) on as-sintered zirconia. Polished cross-sectioned ceramic-veneered zirconia specimens were examined using field emission gun scanning electron microscopy (Feg-SEM). In addition, argon-ion thinned zirconia-veneering ceramic interface cross sections were examined using scanning transmission electron microscopy (STEM)-energy dispersive X-ray spectrometry (EDS) at high resolution. Finally, the zirconia-veneering ceramic interface was quantitatively analyzed for tetragonal-to-monoclinic phase transformation and residual stress using micro-Raman spectroscopy (µRaman). Feg-SEM revealed tight interfaces for all 3 veneering conditions. High-resolution transmission electron microscopy (HRTEM) disclosed an approximately 1.0-µm transformed zone at sandblasted zirconia, in which distinct zirconia grains were no longer observable. Straight grain boundaries and angular grain corners were detected up to the interface of zirconia- and alumina-veneering ceramic with as-sintered zirconia. EDS mapping disclosed within the zirconia-veneering ceramic a few nanometers thick calcium/aluminum-rich layer, touching the as-sintered zirconia base, with an equally thick silicon-rich/aluminum-poor layer on top. µRaman revealed t-ZrO2-to-m-ZrO2 phase transformation and residual compressive stress at the sandblasted zirconia surface. The difference in CTE between zirconia- and the alumina-veneering ceramic resulted in residual tensile stress within the zirconia immediately adjacent to its interface with the veneering ceramic. The rather minor chemical elemental shifts recorded in the veneering ceramic did not suffice to draw definitive conclusions regarding potential chemical interaction of the veneering ceramic with zirconia. Sandblasting damaged the zirconia surface and induced phase transformation that also resulted in residual compressive stress. Difference in CTE of zirconia versus that of the veneering ceramic resulted in an unfavorable residual tensile stress at the zirconia-veneering ceramic interface. © International & American Associations for Dental Research 2015.
A tool for filtering information in complex systems
NASA Astrophysics Data System (ADS)
Tumminello, M.; Aste, T.; Di Matteo, T.; Mantegna, R. N.
2005-07-01
We introduce a technique to filter out complex data sets by extracting a subgraph of representative links. Such a filtering can be tuned up to any desired level by controlling the genus of the resulting graph. We show that this technique is especially suitable for correlation-based graphs, giving filtered graphs that preserve the hierarchical organization of the minimum spanning tree but containing a larger amount of information in their internal structure. In particular in the case of planar filtered graphs (genus equal to 0), triangular loops and four-element cliques are formed. The application of this filtering procedure to 100 stocks in the U.S. equity markets shows that such loops and cliques have important and significant relationships with the market structure and properties. This paper was submitted directly (Track II) to the PNAS office.Abbreviations: MST, minimum spanning tree; PMFG, Planar Maximally Filtered Graph; r-clique, clique of r elements.
NASA Astrophysics Data System (ADS)
Jeřábek, Jan; Šotner, Roman; Vrba, Kamil
2011-11-01
A universal filter with dual-output current follower (DO-CF), two transconductance amplifiers (OTAs) and two passive elements is presented in this paper. The filter is tunable, of the single-input multiple-output (SIMO) type, and operates in the current mode. Our solution utilizes a low-impedance input node and high-impedance outputs. All types of the active elements used can be realized using our UCC-N1B 0520 integrated circuit and therefore the paper contains not only simulation results that were obtained with the help of behavioral model of the UCC-N1B 0520 element, but also the characteristics that were gained by measurement with the mentioned circuit. The presented simulation and measurement results prove the quality of designed filter. Similar multi-loop structures are very-well known, but there are some drawbacks that are not discussed in similar papers. This paper also contains detailed study of parasitic influences on the filter performance.
NASA Astrophysics Data System (ADS)
Satonik, Alexander J.
Worn Hall effect thrusters (HET) show a variety of unique microstructures and elemental compositions in the boron nitride thruster channel walls. Worn thruster channels are typically created by running test thrusters in vacuum chambers for hundreds of hours. Studies were undertaken to manually modify samples of boron nitride without the use of a hall effect thruster. Samples were manually abraded with an abrasive blaster and sandpaper, in addition to a vacuum heater. Some of these samples were further exposed to a xenon plasma in a magnetron sputter device. Sandpaper and abrasive blaster tests were used to modify surface roughness values of the samples from 10,000 A to 150,000 A, matching worn thruster values. Vacuum heat treatments were performed on samples. These treatments showed the ability to modify chemical compositions of boron nitride samples, but not in a manner matching changes seen in worn thruster channels. Plasma erosion rate was shown to depend on the grade of the BN ceramic and the preparation of the surface prior to plasma exposure. Abraded samples were shown to erode 43% more than their pristine counterparts. Unique surface features and elemental compositions on the worn thruster channel samples were overwritten by new surface features on the ceramic grains. The microscope images of the ceramic surface show that the magnetron plasma source rounded the edges of the ceramic grains to closely match the worn HET surface. This effect was not as pronounced in studies of ion beam bombardment of the surface and appears to be a result of the quasi-neutral plasma environment.
NASA Astrophysics Data System (ADS)
Papadopoulou, D. N.; Zachariadis, G. A.; Anthemidis, A. N.; Tsirliganis, N. C.; Stratis, J. A.
2004-12-01
Two multielement instrumental methods of analysis, micro X-ray fluorescence spectrometry (micro-XRF) and inductively coupled plasma atomic emission spectrometry (ICP-AES) were applied for the analysis of 7th and 5th century B.C. ancient ceramic sherds in order to evaluate the above two methods and to assess the potential to use the current compact and portable micro-XRF instrument for the in situ analysis of ancient ceramics. The distinguishing factor of interest is that micro-XRF spectrometry offers the possibility of a nondestructive analysis, an aspect of primary importance in the compositional analysis of cultural objects. Micro-XRF measurements were performed firstly directly on the ceramic sherds with no special pretreatment apart from surface cleaning (micro-XRF on sherds) and secondly on pressed pellet disks which were prepared for each ceramic sherd (micro-XRF on pellet). For the ICP-AES determination of elements, test solutions were prepared by the application of a microwave-assisted decomposition procedure in closed high-pressure PFA vessels. Also, the standard reference material SARM 69 was used for the efficiency calibration of the micro-XRF instrument and was analysed by both methods. In order to verify the calibration, the standard reference materials NCS DC 73332 and SRM620 as well as the reference materials AWI-1 and PRI-1 were analysed by micro-XRF. Elemental concentrations determined by the three analytical procedures (ICP-AES, micro-XRF on sherds and micro-XRF on pellets) were statistically treated by correlation analysis and Student's t-test (at the 95% confidence level).
Piezoelectric ceramics with high dielectric constants for ultrasonic medical transducers.
Hosono, Yasuharu; Yamashita, Yohachi
2005-10-01
Complex system ceramics Pb(Sc(1/2)Nb(1/2))O3-Pb(Mg(1/3)Nb(2/3))O3-Pb(Ni(1/2)Nb(1/2))O3-(Pb0.965,Sr0.035) (Zr,Ti)O3 (PSN-PMN-PNN-PSZT abbreviated PSMNZT) have been synthesized by the conventional technique, and dielectric and piezoelectric properties of the ceramics have been investigated for ultrasonic medical transducers. High capacitances of the transducers are desired in order to match the electrical impedance between the transducers and the coaxial cable in array probes. Although piezoelectric ceramics that have high dielectric constants (epsilon33t/epsilon0 > 5000, k'33 < 70%) are produced in many foundries, the dielectric constants are insufficient. However, we have reported that low molecular mass B-site ions in the lead-perovskite structures are important in realizing better dielectric and piezoelectric properties. We focused on the complex system ceramics PSMNZT that consists of light B-site elements. The maximum dielectric constant, epsilon33T/epsilon0 = 7, 200, was confirmed in the ceramics, where k'33 = 69%, d33 = 940 pC/N, and T(c) = 135 degrees C were obtained. Moreover, pulse-echo characteristics were simulated using the Mason model. The PSMNZT ceramic probe showed echo amplitude about 5.5 dB higher than that of the conventional PZT ceramic probe (PZT-5H type). In this paper, the electrical properties of the PSMNZT ceramics and the simulation results for pulse-echo characteristics of the phased-array probes are introduced.
Reliability Estimation for Single-unit Ceramic Crown Restorations
Lekesiz, H.
2014-01-01
The objective of this study was to evaluate the potential of a survival prediction method for the assessment of ceramic dental restorations. For this purpose, fast-fracture and fatigue reliabilities for 2 bilayer (metal ceramic alloy core veneered with fluorapatite leucite glass-ceramic, d.Sign/d.Sign-67, by Ivoclar; glass-infiltrated alumina core veneered with feldspathic porcelain, VM7/In-Ceram Alumina, by Vita) and 3 monolithic (leucite-reinforced glass-ceramic, Empress, and ProCAD, by Ivoclar; lithium-disilicate glass-ceramic, Empress 2, by Ivoclar) single posterior crown restorations were predicted, and fatigue predictions were compared with the long-term clinical data presented in the literature. Both perfectly bonded and completely debonded cases were analyzed for evaluation of the influence of the adhesive/restoration bonding quality on estimations. Material constants and stress distributions required for predictions were calculated from biaxial tests and finite element analysis, respectively. Based on the predictions, In-Ceram Alumina presents the best fast-fracture resistance, and ProCAD presents a comparable resistance for perfect bonding; however, ProCAD shows a significant reduction of resistance in case of complete debonding. Nevertheless, it is still better than Empress and comparable with Empress 2. In-Ceram Alumina and d.Sign have the highest long-term reliability, with almost 100% survivability even after 10 years. When compared with clinical failure rates reported in the literature, predictions show a promising match with clinical data, and this indicates the soundness of the settings used in the proposed predictions. PMID:25048249
Continuous fiber ceramic matrix composites for heat engine components
NASA Technical Reports Server (NTRS)
Tripp, David E.
1988-01-01
High strength at elevated temperatures, low density, resistance to wear, and abundance of nonstrategic raw materials make structural ceramics attractive for advanced heat engine applications. Unfortunately, ceramics have a low fracture toughness and fail catastrophically because of overload, impact, and contact stresses. Ceramic matrix composites provide the means to achieve improved fracture toughness while retaining desirable characteristics, such as high strength and low density. Materials scientists and engineers are trying to develop the ideal fibers and matrices to achieve the optimum ceramic matrix composite properties. A need exists for the development of failure models for the design of ceramic matrix composite heat engine components. Phenomenological failure models are currently the most frequently used in industry, but they are deterministic and do not adequately describe ceramic matrix composite behavior. Semi-empirical models were proposed, which relate the failure of notched composite laminates to the stress a characteristic distance away from the notch. Shear lag models describe composite failure modes at the micromechanics level. The enhanced matrix cracking stress occurs at the same applied stress level predicted by the two models of steady state cracking. Finally, statistical models take into consideration the distribution in composite failure strength. The intent is to develop these models into computer algorithms for the failure analysis of ceramic matrix composites under monotonically increasing loads. The algorithms will be included in a postprocessor to general purpose finite element programs.
Fluidized Bed Sputtering for Particle and Powder Metallization
2013-04-01
Introduction Small particles are often added to material systems to modify mechanical, dielectric, optical, or other properties . However, the particle...the poor mechanical properties of the wax degrade the bulk mechanical properties of the composite material . Thin metal coatings on the catalyst...to create precisely tailored optical properties . Alternating layers of ceramic and metal thin films can be designed to create optical filters that
Durand, Letícia Brandão; Guimarães, Jackeline Coutinho; Monteiro Junior, Sylvio; Baratieri, Luiz Narciso
2015-01-01
The purpose of this study was to determine the effect of cavity depth, ceramic thickness, and resin bases with different elastic modulus on von Mises stress patterns of ceramic inlays. Tridimensional geometric models were developed with SolidWorks image software. The differences between the models were: depth of pulpal wall, ceramic thickness, and presence of composite bases with different thickness and elastic modulus. The geometric models were constrained at the proximal surfaces and base of maxillary bone. A load of 100 N was applied. The stress distribution pattern was analyzed with von Mises stress diagrams. The maximum von Mises stress values ranged from 176 MPa to 263 MPa and varied among the 3D-models. The highest von Mises stress value was found on models with 1-mm-thick composite resin base and 1-mm-thick ceramic inlay. Intermediate values (249-250 MPa) occurred on models with 2-mm-thick composite resin base and 1-mm-thick ceramic inlay and 1-mm-thick composite resin base and 2-mm-thick ceramic inlay. The lowest values were observed on models restored exclusively with ceramic inlay (176 MPa to 182 MPa). It was found that thicker inlays distribute stress more favorably and bases with low elastic modulus increase stress concentrations on the internal surface of the ceramic inlay. The increase of ceramic thickness tends to present more favorable stress distribution, especially when bonded directly onto the cavity without the use of supporting materials. When the use of a composite base is required, composite resin with high elastic modulus and reduced thickness should be preferred.
Preparation and characterization of ceramic sensors for use at elevated temperatures
NASA Astrophysics Data System (ADS)
You, Tao
Ceramic ITO strain sensors were prepared by reactive sputtering in various nitrogen/oxygen/argon partial pressures. The thickness of the active ITO strain elements played a significant role in the high temperature stability and piezoresistive properties, specifically, these results indicated that both gauge factor and drift rate were affected by the thickness of ITO films comprising the active strain elements. The influence of nitrogen in the reactive sputtered ITO films on the microstructure and the high temperature piezoresistive properties was also investigated. Scanning electron microscopy (SEM) revealed a partially sintered microstructure consisting of a contiguous network of sub-micron ITO particles with well-defined necks and isolated nanoporosity. Sintering and densification of the ITO particles containing these nitrogen rich grain boundaries was retarded and a contiguous network of nano-sized ITO particles was established. Aluminum doped indium tin oxide thin film exhibited an enhanced high temperature stability compared with undoped ITO thin film. The effect of aluminum doped ITO was investigated under various preparation and testing environments. Electron spectroscopy for chemical analysis (ESCA) studies indicated that interfacial reactions between ITO and aluminum increased the stability of ITO at elevated temperatures. These binding energies of indium-indium are significantly higher than those associated with stoichiometric indium oxide. A robust ceramic temperature sensor was fabricated by two different ITO elements, each with substantially different charge carrier concentrations. Thermal cycling of ITO thin films in a varied of partial oxygen pressures conditions showed that temperature coefficient of resistance (TCR) was nearly independent of oxygen partial pressure. A thermoelectric power of 6.0muV/°C and a linear voltage-temperature response were measured for an ITO thin film ceramic thermocouple over the temperature range 25--1250°C.
D'souza, Kathleen Manuela; Aras, Meena Ajay
2017-01-01
Badly broken or structurally compromised posterior teeth are frequently associated with crown/root fracture. Numerous restorative materials have been used to fabricate indirect full-coverage restorations for such teeth. This study aims to evaluate and compare the effect of restorative materials on the stress distribution pattern in a mandibular first molar tooth, under varying loading conditions and to compare the stress distribution pattern in five commonly used indirect restorative materials. Five three-dimensional finite element models representing a mandibular first molar tooth restored with crowns of gold, porcelain fused to metal, composite (Artglass), alumina-based zirconia (In-Ceram Zirconia [ICZ]), and double-layered zirconia-based materials (zirconia core veneered with porcelain, Lava) were constructed, using a Finite Element Analysis Software (ANSYS version 10; ANSYS Inc., Canonsburg, PA, USA). Two loading conditions were applied, simulating maximum bite force of 600 N axially and normal masticatory bite force of 225 N axially and nonaxially. Both all-ceramic crowns allowed the least amount of stress distribution to the surrounding tooth structure. In maximum bite force-simulation test, alumina-based all-ceramic crown displayed the highest von Mises stresses (123.745 MPa). In the masticatory bite force-simulation test, both all-ceramic crowns (122.503-133.13 MPa) displayed the highest von Mises stresses. ICZ crown displayed the highest peak von Mises stress values under maximum and masticatory bite forces. ICZ and Lava crowns also allowed the least amount of stress distribution to the surrounding tooth structure, which is indicative of a favorable response of the underlying tooth structure to the overlying full-coverage indirect restorative material. These results suggest that ICZ and Lava crowns can be recommended for clinical use in cases of badly damaged teeth.
NASA Astrophysics Data System (ADS)
Li, Yuanxun; Xie, Yunsong; Xie, Ru; Chen, Daming; Han, Likun; Su, Hua
2018-03-01
A glass-free ternary composite material system (CMS) manufactured employing the low temperature ( 890 ° C ) co-fired ceramic (LTCC) technique is reported. This ternary CMS consists of silver, NiCuZn ferrite, and Zn2SiO4 ceramic. The reported device fabricated from this ternary CMS is a power inductor with a nominal inductance of 1.0 μH. Three major highlights were achieved from the device and the material study. First, unlike most other LTCC methods, no glass is required to be added in either of the dielectric materials in order to co-fire the NiCuZn ferrite, Zn2SiO4 ceramic, and silver. Second, a successfully co-fired silver, NiCuZn, and Zn2SiO4 device can be achieved by optimizing the thermal shrinkage properties of both NiCuZn and Zn2SiO4, so that they have a very similar temperature shrinkage profile. We have also found that strong non-magnetic elemental diffusion occurs during the densification process, which further enhances the success rate of manufacturing co-fired devices. Last but not least, elemental mapping suggests that strong magnetic elemental diffusion between NiCuZn and Zn2SiO4 has been suppressed during the co-firing process. The investigation of electrical performance illustrates that while the ordinary binary CMS based power inductor can deal with 400 mA DC, the ternary CMS based power inductor is able to handle higher DC currents, 700 mA and 620 mA DC, according to both simulation and experiment demonstrations, respectively.
International Space Station Bacteria Filter Element Post-Flight Testing and Service Life Prediction
NASA Technical Reports Server (NTRS)
Perry, J. L.; von Jouanne, R. G.; Turner, E. H.
2003-01-01
The International Space Station uses high efficiency particulate air (HEPA) filters to remove particulate matter from the cabin atmosphere. Known as Bacteria Filter Elements (BFEs), there are 13 elements deployed on board the ISS's U.S. Segment. The pre-flight service life prediction of 1 year for the BFEs is based upon performance engineering analysis of data collected during developmental testing that used a synthetic dust challenge. While this challenge is considered reasonable and conservative from a design perspective, an understanding of the actual filter loading is required to best manage the critical ISS Program resources. Thus testing was conducted on BFEs returned from the ISS to refine the service life prediction. Results from this testing and implications to ISS resource management are discussed. Recommendations for realizing significant savings to the ISS Program are presented.
The precursors effects on biomimetic hydroxyapatite ceramic powders.
Yoruç, Afife Binnaz Hazar; Aydınoğlu, Aysu
2017-06-01
In this study, effects of the starting material on chemical, physical, and biological properties of biomimetic hydroxyapatite ceramic powders (BHA) were investigated. Characterization and chemical analysis of BHA powders were performed by using XRD, FT-IR, and ICP-AES. Microstructural features such as size and morphology of the resulting BHA powders were characterized by using BET, nano particle sizer, pycnometer, and SEM. Additionally, biological properties of the BHA ceramic powders were also investigated by using water-soluble tetrazolium salts test (WST-1). According to the chemical analysis of BHA ceramic powders, chemical structures of ceramics which are prepared under different conditions and by using different starting materials show differences. Ceramic powders which are produced at 80°C are mainly composed of hydroxyapatite, dental hydroxyapatite (contain Na and Mg elements in addition to Ca), and calcium phosphate sulfide. However, these structures are altered at high temperatures such as 900°C depending on the features of starting materials and form various calcium phosphate ceramics and/or their mixtures such as Na-Mg-hydroxyapatite, hydroxyapatite, Mg-Whitlockit, and chloroapatite. In vitro cytotoxicity studies showed that amorphous ceramics produced at 80°C and ceramics containing chloroapatite structure as main or secondary phases were found to be extremely cytotoxic. Furthermore, cell culture studies showed that highly crystalline pure hydroxyapatite structures were extremely cytotoxic due to their high crystallinity values. Consequently, the current study indicates that the selection of starting materials which can be used in the production of calcium phosphate ceramics is very important. It is possible to produce calcium phosphate ceramics which have sufficient biocompatibility at physiological pH values and by using appropriate starting materials. Copyright © 2017 Elsevier B.V. All rights reserved.
The uniformity and imaging properties of some new ceramic scintillators
NASA Astrophysics Data System (ADS)
Chac, George T. L.; Miller, Brian W.; Shah, Kanai; Baldoni, Gary; Domanik, Kenneth J.; Bora, Vaibhav; Cherepy, Nerine J.; Seeley, Zachary; Barber, H. Bradford
2012-10-01
Results are presented of investigations into the composition, uniformity and gamma-ray imaging performance of new ceramic scintillators with synthetic garnet structure. The ceramic scintillators were produced by a process that uses flame pyrolysis to make nanoparticles which are sintered into a ceramic and then compacted by hot isostatic compression into a transparent material. There is concern that the resulting ceramic scintillator might not have the uniformity of composition necessary for use in gamma-ray spectroscopy and gamma-ray imaging. The compositional uniformity of four samples of three ceramic scintillator types (GYGAG:Ce, GLuGAG:Ce and LuAG:Pr) was tested using an electron microprobe. It was found that all samples were uniform in elemental composition to the limit of sensitivity of the microprobe (few tenths of a percent atomic) over distance scales from ~ 1 cm to ~ 1 um. The light yield and energy resolution of all ceramic scintillator samples were mapped with a highly collimated 57Co source (122 keV) and performance was uniform at mapping scale of 0.25 mm. Good imaging performance with single gamma-ray photon detection was demonstrated for all samples using a BazookaSPECT system, and the imaging spatial resolution, measured as the FWHM of a LSF was 150 um.
Song, Lili; Zhu, Bo; Gray, Stephen; Duke, Mikel; Muthukumaran, Shobha
2016-03-01
This study explored the combined effects of photocatalysis with ceramic membrane filtration for the removal of humic acid in the presence of salt; to simulate saline wastewater conditions. The effects of operating parameters, such as salinity and TiO₂ concentration on permeate fluxes, total organic carbon (TOC), and UV absorbance removal, were investigated. The interaction between the humic acids and TiO₂ photocatalyst played an important role in the observed flux change during ceramic membrane filtration. The results for this hybrid system showed that the TOC removal was more than 70% for both without NaCl and with the 500 ppm NaCl concentration, and 62% and 66% for 1000 and 2000 ppm NaCl concentrations. The reduction in UV absorbance was more complete in the absence of NaCl compared to the presence of NaCl. The operation of the integrated photoreactor-ceramic membrane filter over five repeat cycles is described. It can be concluded that the overall removal performance of the hybrid system was influenced by the presence of salts, as salt leads to agglomeration of TiO₂ particles by suppressing the stabilising effects of electrostatic repulsion and thereby reduces the effective surface contact between the pollutant and the photocatalyst.