Baeza, Mireia; López, Carmen; Alonso, Julián; López-Santín, Josep; Alvaro, Gregorio
2010-02-01
Low-temperature cofired ceramics (LTCC) technology is a versatile fabrication technique used to construct microflow systems. It permits the integration of several unitary operations (pretreatment, separation, (bio)chemical reaction, and detection stage) of an analytical process in a modular or monolithic way. Moreover, because of its compatibility with biological material, LTCC is adequate for analytical applications based on enzymatic reactions. Here we present the design, construction, and evaluation of a LTCC microfluidic system that integrates a microreactor (internal volume, 24.28 microL) with an immobilized beta-galactosidase from Escherichia coli (0.479 activity units) and an optical flow cell to measure the product of the enzymatic reaction. The enzyme was immobilized on a glyoxal-agarose support, maintaining its activity along the time of the study. As a proof of concept, the LTCC-beta-galactosidase system was tested by measuring the conversion of ortho-nitrophenyl beta-D-galactopyranoside, the substrate usually employed for activity determinations. Once packed in a monolithically integrated microcolumn, the miniaturized flow system was characterized, the operational conditions optimized (flow rate and injection volume), and its performance successfully evaluated by determining the beta-galactosidase substrate concentration at the millimolar level.
Terahertz MMICs and Antenna-in-Package Technology at 300 GHz for KIOSK Download System
NASA Astrophysics Data System (ADS)
Tajima, Takuro; Kosugi, Toshihiko; Song, Ho-Jin; Hamada, Hiroshi; El Moutaouakil, Amine; Sugiyama, Hiroki; Matsuzaki, Hideaki; Yaita, Makoto; Kagami, Osamu
2016-12-01
Toward the realization of ultra-fast wireless communications systems, the inherent broad bandwidth of the terahertz (THz) band is attracting attention, especially for short-range instant download applications. In this paper, we present our recent progress on InP-based THz MMICs and packaging techniques based on low-temperature co-fibered ceramic (LTCC) technology. The transmitter MMICs are based on 80-nm InP-based high electron mobility transistors (HEMTs). Using the transmitter packaged in an E-plane split-block waveguide and compact lens receiver packaged in LTCC multilayered substrates, we tested wireless data transmission up to 27 Gbps with the simple amplitude key shifting (ASK) modulation scheme. We also present several THz antenna-in-packaging solutions based on substrate integrated waveguide (SIW) technology. A vertical hollow (VH) SIW was applied to a compact medium-gain SIW antenna and low-loss interconnection integrated in LTCC multi-layer substrates. The size of the LTCC antennas with 15-dBi gain is less than 0.1 cm3. For feeding the antenna, we investigated an LTCC-integrated transition and polyimide transition to LTCC VH SIWs. These transitions exhibit around 1-dB estimated loss at 300 GHz and more than 35 GHz bandwidth with 10-dB return loss. The proposed package solutions make antennas and interconnections easy to integrate in a compact LTCC package with an MMIC chip for practical applications.
Peterson, Kenneth A [Albuquerque, NM; Rohde, Steven B [Corrales, NM; Pfeifer, Kent B [Los Lunas, NM; Turner, Timothy S [Rio Rancho, NM
2007-01-02
A method is described for producing tubular substrates having parallel spaced concentric rings of electrical conductors that can be used as the drift tube of an Ion Mobility Spectrometer (IMS). The invention comprises providing electrodes on the inside of a tube that are electrically connected to the outside of the tube through conductors that extend between adjacent plies of substrate that are combined to form the tube. Tubular substrates are formed from flexible polymeric printed wiring board materials, ceramic materials and material compositions of glass and ceramic, commonly known as Low Temperature Co-Fired Ceramic (LTCC). The adjacent plies are sealed together around the electrode.
NASA Technical Reports Server (NTRS)
Decrossas, Emmanuel; Glover, Michael D.; Porter, Kaoru; Cannon, Tom; Mantooth, H. Alan; Hamilton, M. C.
2013-01-01
Various stripline structures and flip chip interconnect designs for high-speed digital communication systems implemented in low temperature co-fired ceramic (LTCC) substrates are studied in this paper. Specifically, two different transition designs from edge launch 2.4 millimeter connectors to stripline transmission lines embedded in LTCC are discussed. After characterizing the DuPont (sup trademark) 9K7 green tape, different designs are proposed to improve signal integrity for high-speed digital data. The full-wave simulations and experimental data validate the presented designs over a broad frequency band from Direct Current to 50 gigahertz and beyond.
Peterson, Kenneth A [Albuquerque, NM
2009-02-24
A method of using sacrificial materials for fabricating internal cavities and channels in laminated dielectric structures, which can be used as dielectric substrates and package mounts for microelectronic and microfluidic devices. A sacrificial mandrel is placed in-between two or more sheets of a deformable dielectric material (e.g., unfired LTCC glass/ceramic dielectric), wherein the sacrificial mandrel is not inserted into a cutout made in any of the sheets. The stack of sheets is laminated together, which deforms the sheet or sheets around the sacrificial mandrel. After lamination, the mandrel is removed, (e.g., during LTCC burnout), thereby creating a hollow internal cavity in the monolithic ceramic structure.
Optical pH detector based on LTCC and sol-gel technologies
NASA Astrophysics Data System (ADS)
Tadaszak, R. J.; Łukowiak, A.; Golonka, L. J.
2013-01-01
This paper presents an investigation on using sol-gel thin film as a material for sensors application in LTCC (Low Temperature Co-fired Ceramics) technology. This material gives the opportunity to make new, low-cost highly integrated optoelectronic devices. Sensors with optical detection are a significant part of these applications. They can be used for quick and safe diagnostics of some parameters. Authors present a pH detector with the optical detection system made of the LTCC material. The main part of the device is a flow channel with the chamber and sol-gel active material. The silica sol-gel with bromocresol green indicator was used. As the absorbance of sol-gel layer changes with the pH value of a measured medium, the transmitted light power was measured. The pH detector was integrated with the electronic components on the LTCC substrate.
NASA Astrophysics Data System (ADS)
Kumari, Preeti; Tripathi, Pankaj; Sahu, Bhagirath; Singh, S. P.; Parkash, Om; Kumar, Devendra
2018-02-01
Li2O-(2-3x)MgO-(x)Al2O3-P2O5 (LMAP) (x = 0.00-0.08) ceramic system was prepared through solid state synthesis route at different sintering temperatures (800-925 °C). A small addition of Al2O3 (x = 0.02) in LMAP ceramics lowers the sintering temperature by more than 100 °C with good relative density of 94.13%. The sintered samples were characterized in terms of density, apparent porosity, water absorption, crystal structure, micro-structure and microwave dielectric properties. Silver compatibility test is also performed for its use as electrode material in low temperature co-fired ceramic (LTCC) application. To check the performance of the prepared LTCC as substrate, a microstrip-fed aperture-coupled dual segment cylindrical dielectric resonator antenna (DS-CDRA) is designed using LMAP (x = 0.02) ceramic as substrate material and Barium Strontium Titanate with 10 wt% of PbO-BaO-B2O3-SiO2 glass (BSTG) and Teflon as the components of resonating material. The simulation study of the DS-CDRA is performed using the Ansys High Frequency Structure Simulator (HFSS) software. A conductive coating of silver is used on the substrate. The simulated and measured -10 dB reflection coefficient bandwidths of 910 MHz (9.07-9.98 GHz at resonant frequency of 9.49 GHz) and 1080 MHz (8.68-9.76 GHz at resonant frequency of 9.36 GHz), respectively are achieved. The measured results of the fabricated antenna are found in good agreement with the simulation results. The prepared material can find potential applications in radar and radio navigation as well as radio astronomy and military satellite communication.
The Use of Metal Filled Via Holes for Improving Isolation in LTCC RF and Wireless Multichip Packages
NASA Technical Reports Server (NTRS)
Ponchak, George E.; Chun, Donghoon; Yook, Jong-Gwan; Katehi, Linda P. B.
1999-01-01
LTCC MCMs (Low Temperature Cofired Ceramic MultiChip Module) for RF and wireless systems often use metal filled via holes to improve isolation between the stripline and microstrip interconnects. In this paper, results from a 3D-FEM electromagnetic characterization of microstrip and stripline interconnects with metal filled via fences for isolation are presented. It is shown that placement of a via hole fence closer than three times the substrate height to the transmission lines increases radiation and coupling. Radiation loss and reflections are increased when a short via fence is used in areas suspected of having high radiation. Also, via posts should not be separated by more than three times the substrate height for low radiation loss, coupling, and suppression of higher order modes in a package.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uribe, Fernando R.; Kilgo, Alice C.; Grazier, John Mark
2008-09-01
The assembly of the BDYE detector requires the attachment of sixteen silicon (Si) processor dice (eight on the top side; eight on the bottom side) onto a low-temperature, co-fired ceramic (LTCC) substrate using 63Sn-37Pb (wt.%, Sn-Pb) in a double-reflow soldering process (nitrogen). There are 132 solder joints per die. The bond pads were gold-platinum-palladium (71Au-26Pt-3Pd, wt.%) thick film layers fired onto the LTCC in a post-process sequence. The pull strength and failure modes provided the quality metrics for the Sn-Pb solder joints. Pull strengths were measured in both the as-fabricated condition and after exposure to thermal cycling (-55/125 C; 15more » min hold times; 20 cycles). Extremely low pull strengths--referred to as the low pull strength phenomenon--were observed intermittently throughout the product build, resulting in added program costs, schedule delays, and a long-term reliability concern for the detector. There was no statistically significant correlation between the low pull strength phenomenon and (1) the LTCC 'sub-floor' lot; (2) grit blasting the LTCC surfaces prior to the post-process steps; (3) the post-process parameters; (4) the conductor pad height (thickness); (5) the dice soldering assembly sequence; or (5) the dice pull test sequence. Formation of an intermetallic compound (IMC)/LTCC interface caused by thick film consumption during either the soldering process or by solid-state IMC formation was not directly responsible for the low-strength phenomenon. Metallographic cross sections of solder joints from dice that exhibited the low pull strength behavior, revealed the presence of a reaction layer resulting from an interaction between Sn from the molten Sn-Pb and the glassy phase at the TKN/LTCC interface. The thick film porosity did not contribute, explicitly, to the occurrence of reaction layer. Rather, the process of printing the very thin conductor pads was too sensitive to minor thixotropic changes to ink, which resulted in inconsistent proportions of metal and glassy phase particles present during the subsequent firing process. The consequences were subtle, intermittent changes to the thick film microstructure that gave rise to the reaction layer and, thus, the low pull strength phenomenon. A mitigation strategy would be the use of physical vapor deposition (PVD) techniques to create thin film bond pads; this is multi-chip module, deposited (MCM-D) technology.« less
Embedded Resistors and Capacitors in Organic and Inorganic Substrates
NASA Technical Reports Server (NTRS)
Gerke, Robert David; Ator, Danielle
2006-01-01
Embedded resistors and capacitors were purchased from two technology; organic PWB and inorganic low temperature co-fire ceramic (LTCC). Small groups of each substrate were exposed to four environmental tests and several characterization tests to evaluate their performance and reliability. Even though all passive components maintained electrical performance throughout environmental testing, differences between the two technologies were observed. Environmental testing was taken beyond manufacturers' reported testing, but general not taken to failure. When possible, data was quantitatively compared to manufacturer's data.
Monolithic LTCC seal frame and lid
Krueger, Daniel S.; Peterson, Kenneth A.; Stockdale, Dave; Duncan, James Brent; Riggs, Bristen
2016-06-21
A method for forming a monolithic seal frame and lid for use with a substrate and electronic circuitry comprises the steps of forming a mandrel from a ceramic and glass based material, forming a seal frame and lid block from a ceramic and glass based material, creating a seal frame and lid by forming a compartment and a plurality of sidewalls in the seal frame and lid block, placing the seal frame and lid on the mandrel such that the mandrel fits within the compartment, and cofiring the seal frame and lid block.
Localized temperature stability of low temperature cofired ceramics
Dai, Steven Xunhu
2013-11-26
The present invention is directed to low temperature cofired ceramic modules having localized temperature stability by incorporating temperature coefficient of resonant frequency compensating materials locally into a multilayer LTCC module. Chemical interactions can be minimized and physical compatibility between the compensating materials and the host LTCC dielectrics can be achieved. The invention enables embedded resonators with nearly temperature-independent resonance frequency.
LTCC-based differential photo acoustic cell for ppm gas sensing
NASA Astrophysics Data System (ADS)
Karioja, P.; Keränen, K.; Kautio, K.; Ollila, J.; Heikkinen, M.; Kauppinen, I.; Kuusela, T.; Matveev, B.; McNie, M. E.; Jenkins, R. M.; Palve, J.
2010-04-01
Silicon MEMS cantilever-based photoacoustic technology allows for the sensing of ultra low gas concentrations with very wide dynamic range. The sensitivity enhancement is achieved with a cantilever microphone system in which the cantilever displacement is probed with an optical interferometer providing a pico-meter resolution. In the gas sensor, the silicon cantilever microphone is placed in a two-chamber differential gas cell. By monitoring differential pressure changes between the two chambers, the differential cell operates as a differential infra-red detector for optical absorption signals through a measurement and reference path. The differential pressure signal is proportional to gas concentration in the optical measurement path. We have designed, implemented and tested a differential photo acoustic gas cell based on Low Temperature Co-fired Ceramic (LTCC) multilayer substrate technology. Standard LTCC technology enables implementation of 2.5D structures including holes, cavities and channels into the electronic substrate. The implemented differential photoacoustic gas cell structure includes two 10 mm long cylindrical cells, diameter of 2.4 mm. Reflectance measurements of the cell showed that reflectivity of the substrate material can be improved by a factor 15 - 90 in the 3 - 8 μm spectral region using gold or silver paste coatings. A transparent window is required in the differential gas cell structure in order to probe the displacement of the silicon cantilever. The transparent sapphire window was sealed to the LTCC substrate using two methods: screen printed Au80/Sn20 solder paste and pre-attached glass solder paste (Diemat DM2700P/H848). Both methods were shown to provide hermetic sealing of sapphire windows to LTCC substrate. The measured He-leak rate for the 10 sealed test samples implemented using glass paste were less than 2.0 ×10-9 atm×cm3/s, which meets the requirement for the leak rate according to MIL-STD 883. The achieved hermetic level suggests that the proof-of-principle packaging demonstrator paves the way for implementing a novel differential photoacoustic gas cell for a future miniature gas sensor module. The future module consisting of a sample gas cell and immersion lens IR-LEDs together with interferometric probing of the cantilever microphone is expected to be capable of measuring ultra low concentrations of a wide range of gases with their fundamental absorption bands at 3 - 7 μm wavelength, such as CO, CO2 and CH4.
Fine structuration of low-temperature co-fired ceramic (LTCC) microreactors.
Jiang, Bo; Haber, Julien; Renken, Albert; Muralt, Paul; Kiwi-Minsker, Lioubov; Maeder, Thomas
2015-01-21
The development of microreactors that operate under harsh conditions is always of great interest for many applications. Here we present a microfabrication process based on low-temperature co-fired ceramic (LTCC) technology for producing microreactors which are able to perform chemical processes at elevated temperature (>400 °C) and against concentrated harsh chemicals such as sodium hydroxide, sulfuric acid and hydrochloric acid. Various micro-scale cavities and/or fluidic channels were successfully fabricated in these microreactors using a set of combined and optimized LTCC manufacturing processes. Among them, it has been found that laser micromachining and multi-step low-pressure lamination are particularly critical to the fabrication and quality of these microreactors. Demonstration of LTCC microreactors with various embedded fluidic structures is illustrated with a number of examples, including micro-mixers for studies of exothermic reactions, multiple-injection microreactors for ionone production, and high-temperature microreactors for portable hydrogen generation.
Investigation on micromachining technologies for the realization of LTCC devices and systems
NASA Astrophysics Data System (ADS)
Haas, T.; Zeilmann, C.; Bittner, A.; Schmid, U.
2011-06-01
Low temperature co-fired ceramics (LTCC) has established as a widespread platform for advanced functional ceramic devices in different applications, such as in the space and aviation sector, for micro machined sensors as well as in micro fluidics. This is due to high reliability, excellent physical properties, especially in the high frequency range, and the possibility to integrate passive components in the monolithic LTCC body, offering the potential for a high degree of miniaturisation. However, for further improvement of this technology and for an ongoing increase of the integration level, the realization of miniaturized structures is of utmost importance. Therefore, novel techniques for micro-machining are required providing channel structures and cavities inside the glass-ceramic body, enabling for further application scenarios. Those techniques are punching, laser cutting and embossing. One of the most limitations of LTCC is the poor thermal conductivity. Hence, the possibility to integrate channels enables innovative active cooling approaches using fluidic media for heat critical devices. Doing so, a by far better cooling effect can be achieved than by passive devices as heat spreaders or heat sinks. Furthermore, the realization of mechanic devices as integrated pressure sensors for operation under harsh environmental conditions can be realized by integrating the membrane directly into the ceramic body. Finally, for high power devices substantial improvement can be provided by filling those channel structures with electrical conductive material, so that the resistivity can be decreased drastically without affecting the topography of the ceramics.
Differential photo-acoustic gas cell based on LTCC for ppm gas sensing
NASA Astrophysics Data System (ADS)
Keränen, K.; Kautio, K.; Ollila, J.; Heikkinen, M.; Kauppinen, I.; Kuusela, T.; Matveev, B.; McNie, M. E.; Jenkins, R. M.; Karioja, P.
2010-02-01
Silicon MEMS cantilever-based photoacoustic technology allows for the sensing of ultra low gas concentrations with very wide dynamic range. The sensitivity enhancement is achieved with a cantilever microphone system in which the cantilever displacement is probed with an optical interferometer providing a pico-meter resolution. In the gas sensor, the silicon cantilever microphone is placed in a two-chamber differential gas cell. By monitoring differential pressure changes between the two chambers, the differential cell operates as a differential infra-red detector for optical absorption signals through a measurement and reference path. The differential pressure signal is proportional to gas concentration in the optical measurement path. We have designed, implemented and tested a differential photo-acoustic gas cell based on Low Temperature Co-fired Ceramic (LTCC) multilayer substrate technology. Standard LTCC technology enables implementation of 2.5D structures including holes, cavities and channels into the electronic substrate. The implemented differential photoacoustic gas cell structure includes two 10 mm long cylindrical cells, diameter of 2.4 mm. Reflectance measurements of the cell showed that reflectivity of the substrate material can be improved by a factor 15 - 90 in the 3 - 8 μm spectral region using gold or silver paste coatings. A transparent window is required in the differential gas cell structure in order to probe the displacement of the silicon cantilever. The transparent sapphire window was sealed to the LTCC substrate using two methods: screen printed Au80/Sn20 solder paste and pre-attached glass solder paste (Diemat DM2700P/H848). Both methods were shown to provide hermetic sealing of sapphire windows to LTCC substrate. The measured He-leak rate for the 10 sealed test samples implemented using glass paste were under 2.0 ×10-9 atm×cm3/s, which meets the requirement for the leak rate according to MIL-STD 883. The achieved hermeticity level suggests that the proof-of-principle packaging demonstrator paves the way for implementing a novel differential photoacoustic gas cell for a future miniature gas sensor module. The future module consisting of a sample gas cell and immersion lens IR LEDs together with interferometric probing of the cantilever microphone is expected to be capable of measuring ultra low concentrations of a wide range of gases with their fundamental absorption bands at 3 - 7 μm wavelength, such as CO, CO2 and CH4.
LTCC interconnects in microsystems
NASA Astrophysics Data System (ADS)
Rusu, Cristina; Persson, Katrin; Ottosson, Britta; Billger, Dag
2006-06-01
Different microelectromechanical system (MEMS) packaging strategies towards high packaging density of MEMS devices and lower expenditure exist both in the market and in research. For example, electrical interconnections and low stress wafer level packaging are essential for improving device performance. Hybrid integration of low temperature co-fired ceramics (LTCC) with Si can be a way for an easier packaging system with integrated electrical interconnection, and as well towards lower costs. Our research on LTCC-Si integration is reported in this paper.
NASA Technical Reports Server (NTRS)
Chen, Liangyu
2014-01-01
A very high purity (99.99+%) high temperature co-fired ceramic (HTCC) alumina has recently become commercially available. The raw material of this HTCC alumina is very different from conventional HTCC alumina, and more importantly there is no glass additive in this alumina material for co-firing processing. Previously, selected HTCC and LTCC (low temperature co-fired ceramic) alumina materials were evaluated at high temperatures as dielectric and compared to a regularly sintered 96% polycrystalline alumina (96% Al2O3), where 96% alumina was used as the benchmark. A prototype packaging system based on regular 96% alumina with Au thickfilm metallization successfully facilitated long term testing of high temperature silicon carbide (SiC) electronic devices for over 10,000 hours at 500 C. In order to evaluate this new high purity HTCC alumina for possible high temperature packaging applications, the dielectric properties of this HTCC alumina substrate were measured and compared with those of 96% alumina and a previously tested LTCC alumina from room temperature to 550 C at frequencies of 120 Hz, 1 KHz, 10 KHz, 100 KHz, and 1 MHz. A parallel-plate capacitive device with dielectric of the HTCC alumina and precious metal electrodes were used for measurements of the dielectric constant and dielectric loss of the co-fired alumina material in the temperature and frequency ranges. The capacitance and AC parallel conductance of the capacitive device were directly measured by an AC impedance meter, and the dielectric constant and parallel AC conductivity of the dielectric were calculated from the capacitance and conductance measurement results. The temperature and frequency dependent dielectric constant, AC conductivity, and dissipation factor of the HTCC alumina substrate are presented and compared to those of 96% alumina and a selected LTCC alumina. Other technical advantages of this new co-fired material for possible high packaging applications are also discussed.
3-Axis Fully-Integrated Capacitive Tactile Sensor with Flip-Bonded CMOS on LTCC Interposer.
Asano, Sho; Muroyama, Masanori; Nakayama, Takahiro; Hata, Yoshiyuki; Nonomura, Yutaka; Tanaka, Shuji
2017-10-25
This paper reports a 3-axis fully integrated differential capacitive tactile sensor surface-mountable on a bus line. The sensor integrates a flip-bonded complementary metal-oxide semiconductor (CMOS) with capacitive sensing circuits on a low temperature cofired ceramic (LTCC) interposer with Au through vias by Au-Au thermo-compression bonding. The CMOS circuit and bonding pads on the sensor backside were electrically connected through Au bumps and the LTCC interposer, and the differential capacitive gap was formed by an Au sealing frame. A diaphragm for sensing 3-axis force was formed in the CMOS substrate. The dimensions of the completed sensor are 2.5 mm in width, 2.5 mm in length, and 0.66 mm in thickness. The fabricated sensor output coded 3-axis capacitive sensing data according to applied 3-axis force by three-dimensional (3D)-printed pins. The measured sensitivity was as high as over 34 Count/mN for normal force and 14 to 15 Count/mN for shear force with small noise, which corresponds to less than 1 mN. The hysteresis and the average cross-sensitivity were also found to be less than 2% full scale and 11%, respectively.
3-Axis Fully-Integrated Capacitive Tactile Sensor with Flip-Bonded CMOS on LTCC Interposer †
Asano, Sho; Nakayama, Takahiro; Hata, Yoshiyuki; Tanaka, Shuji
2017-01-01
This paper reports a 3-axis fully integrated differential capacitive tactile sensor surface-mountable on a bus line. The sensor integrates a flip-bonded complementary metal-oxide semiconductor (CMOS) with capacitive sensing circuits on a low temperature cofired ceramic (LTCC) interposer with Au through vias by Au-Au thermo-compression bonding. The CMOS circuit and bonding pads on the sensor backside were electrically connected through Au bumps and the LTCC interposer, and the differential capacitive gap was formed by an Au sealing frame. A diaphragm for sensing 3-axis force was formed in the CMOS substrate. The dimensions of the completed sensor are 2.5 mm in width, 2.5 mm in length, and 0.66 mm in thickness. The fabricated sensor output coded 3-axis capacitive sensing data according to applied 3-axis force by three-dimensional (3D)-printed pins. The measured sensitivity was as high as over 34 Count/mN for normal force and 14 to 15 Count/mN for shear force with small noise, which corresponds to less than 1 mN. The hysteresis and the average cross-sensitivity were also found to be less than 2% full scale and 11%, respectively. PMID:29068429
Simulation of cooling efficiency via miniaturised channels in multilayer LTCC for power electronics
NASA Astrophysics Data System (ADS)
Pietrikova, Alena; Girasek, Tomas; Lukacs, Peter; Welker, Tilo; Müller, Jens
2017-03-01
The aim of this paper is detailed investigation of thermal resistance, flow analysis and distribution of coolant as well as thermal distribution inside multilayer LTCC substrates with embedded channels for power electronic devices by simulation software. For this reason four various structures of internal channels in the multilayer LTCC substrates were designed and simulated. The impact of the volume flow, structures of channels, and power loss of chip was simulated, calculated and analyzed by using the simulation software Mentor Graphics FloEFDTM. The structure, size and location of channels have the significant impact on thermal resistance, pressure of coolant as well as the effectivity of cooling power components (chips) that can be placed on the top of LTCC substrate. The main contribution of this paper is thermal analyze, optimization and impact of 4 various cooling channels embedded in LTCC multilayer structure. Paper investigate, the effect of volume flow in cooling channels for achieving the least thermal resistance of LTCC substrate that is loaded by power thermal chips. Paper shows on the impact of the first chips thermal load on the second chip as well as. This possible new technology could ensure in the case of practical realization effective cooling and increasing reliability of high power modules.
LTCC Thick Film Process Characterization
Girardi, M. A.; Peterson, K. A.; Vianco, P. T.
2016-05-01
Low temperature cofired ceramic (LTCC) technology has proven itself in military/space electronics, wireless communication, microsystems, medical and automotive electronics, and sensors. The use of LTCC for high frequency applications is appealing due to its low losses, design flexibility and packaging and integration capability. Moreover, we summarize the LTCC thick film process including some unconventional process steps such as feature machining in the unfired state and thin film definition of outer layer conductors. The LTCC thick film process was characterized to optimize process yields by focusing on these factors: 1) Print location, 2) Print thickness, 3) Drying of tapes and panels,more » 4) Shrinkage upon firing, and 5) Via topography. Statistical methods were used to analyze critical process and product characteristics in the determination towards that optimization goal.« less
Planar LTCC transformers for high voltage flyback converters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schofield, Daryl; Schare, Joshua M.; Glass, Sarah Jill
This paper discusses the design and use of low-temperature (850 C to 950 C) co-fired ceramic (LTCC) planar magnetic flyback transformers for applications that require conversion of a low voltage to high voltage (> 100V) with significant volumetric constraints. Measured performance and modeling results for multiple designs showed that the LTCC flyback transformer design and construction imposes serious limitations on the achievable coupling and significantly impacts the transformer performance and output voltage. This paper discusses the impact of various design factors that can provide improved performance by increasing transformer coupling and output voltage. The experiments performed on prototype units demonstratedmore » LTCC transformer designs capable of greater than 2 kV output. Finally, the work investigated the effect of the LTCC microstructure on transformer insulation. Although this paper focuses on generating voltages in the kV range, the experimental characterization and discussion presented in this work applies to designs requiring lower voltage.« less
NASA Astrophysics Data System (ADS)
Oshima, Shinpei; Wada, Kouji; Murata, Ryuji; Shimakata, Yukihiro
Recently, compact wideband BPFs for UWB system are studied actively. In this paper we propose a compact diplexer in LTCC substrate for UWB system and 2.4GHz wireless systems. Firstly, a wideband BPF for UWB system and an LPF with multiple attenuation poles for 2.4GHz wireless systems are described. Secondly, we design matching circuits of a common port to keep basic performance of both the BPF and the LPF. Thirdly, in accordance with the result of the study, we design a compact diplexer in LTCC substrate. Finally, we verify the effectiveness of proposed method by experiments.
Ceramic MEMS Designed for Wireless Pressure Monitoring in the Industrial Environment
Pavlin, Marko; Belavic, Darko; Novak, Franc
2012-01-01
This paper presents the design of a wireless pressure-monitoring system for harsh-environment applications. Two types of ceramic pressure sensors made with a low-temperature cofired ceramic (LTCC) were considered. The first type is a piezoresistive strain gauge pressure sensor. The second type is a capacitive pressure sensor, which is based on changes of the capacitance values between two electrodes: one electrode is fixed and the other is movable under an applied pressure. The design was primarily focused on low power consumption. Reliable operation in the presence of disturbances, like electromagnetic interference, parasitic capacitances, etc., proved to be contradictory constraints. A piezoresistive ceramic pressure sensor with a high bridge impedance was chosen for use in a wireless pressure-monitoring system and an acceptable solution using energy-harvesting techniques has been achieved. The described solution allows for the integration of a sensor element with an energy harvester that has a printed thick-film battery and complete electronics in a single substrate packaged inside a compact housing. PMID:22368471
NASA Astrophysics Data System (ADS)
Tork, Hossam S.
This dissertation describes electrically tunable microwave devices utilizing low temperature co-fired ceramics (LTCC) and thick film via filled with the ferroelectric materials barium strontium titanate (BST) and barium zirconate titanate (BZT). Tunable ferroelectric capacitors, zero meta-material phase shifters, and tunable meta-material phase shifters are presented. Microwave phase shifters have many applications in microwave devices. They are essential components for active and passive phased array antennas and their most common use is in scanning phased array antennas. They are used in synthetic aperture radars (SAR), low earth orbit (LEO) communication satellites, collision warning radars, and intelligent vehicle highway systems (IVHS), in addition to various other applications. Tunable ferroelectric materials have been investigated, since they offer the possibility of lowering the total cost of phased arrays. Two of the most promising ferroelectric materials in microwave applications are BST and BZT. The proposed design and implementation in this research introduce new types of tunable meta-material phase shifters embedded inside LTCC, which use BST and BZT as capacitive tunable dielectric material controlled by changing the applied voltage. This phase shifter has the advantages of meta-material structures, which produce little phase error and compensation while having the simultaneous advantage of using LTCC technology for embedding passive components that improve signal integrity (several signal lines, power planes, and ground planes) by using different processes like via filling, screen printing, laminating and firing that can be produced in compact sizes at a low cost. The via filling technique was used to build tunable BST, BZT ferroelectric material capacitors to control phase shift. Finally, The use of the proposed ferroelectric meta-material phase shifter improves phase shifter performance by reducing insertion loss in both transmitting and receiving directions for phased array antennas, reducing phase error, improving figure of merit (FOM) and phase shifter tunability around center frequency, and also enables the integration of the phase shifters with the microwave circuits on one substrate, thus substantially reducing the size, mass, and cost of the antennas.
NASA Astrophysics Data System (ADS)
Jedrychowska, Agnieszka; Malecha, Karol; Cabaj, Joanna; Sołoducho, Jadwiga
2014-08-01
The aim of the research was to develop an enzymatic, optical biosensor which provides quick and convenient determination of phenolic compounds in aqueous solutions. The biosensing strategy concerns design, fabrication and testing of a miniature ceramic-based biosensor which is destined for in-situ substrate monitoring. The base of the measuring system was fabricated using low temperature co-fired ceramics (LTCC) technology. The biocatalyst - laccase- was immobilized on the thin film of poly[N-nonyl-3,6-bis(ethylenedioxythiophene)carbazole] which provided good binding of the enzyme to the substrate and positively affected on the catalytic activity of the protein. In order to evaluate properties of the designed biosensor, its response for various concentrations of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diamonnium sal (ABTS) was measured. The optical biosensor produced by presented method could find applications in many fields, i.e. for detection of phenolic compounds in food products and beverages, in industry for control of technological processes or for environmental monitoring
Halonen, Niina; Kilpijärvi, Joni; Sobocinski, Maciej; Datta-Chaudhuri, Timir; Hassinen, Antti; Prakash, Someshekar B; Möller, Peter; Abshire, Pamela; Kellokumpu, Sakari; Lloyd Spetz, Anita
2016-01-01
Cell viability monitoring is an important part of biosafety evaluation for the detection of toxic effects on cells caused by nanomaterials, preferably by label-free, noninvasive, fast, and cost effective methods. These requirements can be met by monitoring cell viability with a capacitance-sensing integrated circuit (IC) microchip. The capacitance provides a measurement of the surface attachment of adherent cells as an indication of their health status. However, the moist, warm, and corrosive biological environment requires reliable packaging of the sensor chip. In this work, a second generation of low temperature co-fired ceramic (LTCC) technology was combined with flip-chip bonding to provide a durable package compatible with cell culture. The LTCC-packaged sensor chip was integrated with a printed circuit board, data acquisition device, and measurement-controlling software. The packaged sensor chip functioned well in the presence of cell medium and cells, with output voltages depending on the medium above the capacitors. Moreover, the manufacturing of microfluidic channels in the LTCC package was demonstrated.
Design, fabrication and characterization of LTCC-based electromagnetic microgenerators
NASA Astrophysics Data System (ADS)
Gierczak, M.; Markowski, P.; Dziedzic, A.
2016-02-01
Design, manufacturing process and properties of electromagnetic microgenerators fabricated in LTCC (Low Temperature Co-fired Ceramics) technology are presented in this paper. Electromagnetic microgenerators consist of planar coils spatially arranged on several layers of LTCC and of a multipole permanent magnet. Two different patterns of coils with 2-, 8-,10- and 12-layers and outer diameter of 50 mm were designed and fabricated. Silver-based pastes ESL 903-A or DuPont 6145 were used. In order to estimate the inductance of a single spatial coil the Greenhouse (self-inductance) and Hoer (mutual inductance) calculation methods were used. To verify the calculation results a single-layer coil was fabricated for each pattern and its inductance was measured using the precision RLC Meter. Fabricated LTCC microgenerators with embedded coils allow to generate voltage higher than ten volts and the electrical output power of approximately 600 mW at the rotor rotation speed of 12 thousands rpm. The self-made system was used for characterization of LTCC-based electromagnetic microgenerators.
Localized temperature stability in Low Temperature Cofired Ceramics (LTCC).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Steven Xunhu; Hsieh, Lung-Hwa.
2012-04-01
The base dielectrics of commercial low temperature cofired ceramics (LTCC) systems have a temperature coefficient of resonant frequency ({tau}{sub f}) in the range -50 {approx} -80 ppm/C. In this research we explored a method to realize zero or near zero {tau}{sub f} resonators by incorporating {tau}{sub f} compensating materials locally into a multilayer LTCC structure. To select composition for {tau}{sub f} adjustment, {tau}{sub f} compensating materials with different amount of titanates were formulated, synthesized, and characterized. Chemical interactions and physical compatibility between the {tau}{sub f} modifiers and the host LTCC dielectrics were investigated. Studies on stripline (SL) resonator panels withmore » multiple compensating dielectrics revealed that: 1) compositions using SrTiO{sub 3} provide the largest {tau}{sub f} adjustment among titanates, 2) the {tau}{sub f} compensation is proportional to the amount of SrTiO{sub 3} in compensating materials, as well as the thickness of the compensating layer, and 3) the most effective {tau}{sub f} compensation is achieved when the compensating dielectric is integrated next to the SL. Using the effective dielectric constant of a heterogeneous layered dielectric structure, results from Method of Momentum (MoM) electromagnetic simulations are consistent with the experimental observations.« less
NASA Astrophysics Data System (ADS)
Wang, F. L.; Zhang, Y. W.; Chen, X. Y.; Mao, H. J.; Zhang, W. J.
2018-01-01
La2O3-B2O3-CaO glasses with different B2O3 content were synthesized by melting method to produce glass/ceramic composites in this work. XRD and DSC results revealed that the diminution of B2O3 content was beneficial to increase the crystallization tendency of glass and improve the quality of crystalline phase, while decreasing the effect of glass during sintering process as sintering aids. The choice of glass/ceramic mass ratio was also influenced by the B2O3 content of glass. Dense samples sintered at 875 ºC showed good dielectric properties which meet the requirement of LTCC applications: moderate dielectric constant (7.8-9.4) and low dielectric loss (2.0×10-3).
Sealed symmetric multilayered microelectronic device package with integral windows
Peterson, Kenneth A.; Watson, Robert D.
2002-01-01
A sealed symmetric multilayered package with integral windows for housing one or more microelectronic devices. The devices can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The multilayered package can be formed of a low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the windows being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. The microelectronic devices can be flip-chip bonded and oriented so that the light-sensitive sides are optically accessible through the windows. The result is a compact, low-profile, sealed symmetric package, having integral windows that can be hermetically-sealed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uribe, Fernando; Vianco, Paul Thomas; Zender, Gary L.
A study was performed that examined the microstructure and mechanical properties of 63Sn-37Pb (wt.%, Sn-Pb) solder joints made to thick film layers on low-temperature co-fired (LTCC) substrates. The thick film layers were combinations of the Dupont{trademark} 4596 (Au-Pt-Pd) conductor and Dupont{trademark} 5742 (Au) conductor, the latter having been deposited between the 4596 layer and LTCC substrate. Single (1x) and triple (3x) thicknesses of the 4596 layer were evaluated. Three footprint sizes were evaluated of the 5742 thick film. The solder joints exhibited excellent solderability of both the copper (Cu) lead and thick film surface. In all test sample configurations, themore » 5742 thick film prevented side wall cracking of the vias. The pull strengths were in the range of 3.4-4.0 lbs, which were only slightly lower than historical values for alumina (Al{sub 2}O{sub 3}) substrates. General (qualitative) observations: (a) The pull strength was maximized when the total number of thick film layers was between two and three. Fewer that two layers did not develop as strong of a bond at the thick film/LTCC interface; more than three layers and of increased footprint area, developed higher residual stresses at the thick film/LTCC interface and in the underlying LTCC material that weakened the joint. (b) Minimizing the area of the weaker 4596/LTCC interface (e.g., larger 5742 area) improved pull strength. Specific observations: (a) In the presence of vias and the need for the 3x 4596 thick film, the preferred 4596:5742 ratio was 1.0:0.5. (b) For those LTCC components that require the 3x 4596 layer, but do not have vias, it is preferred to refrain from using the 5742 layer. (c) In the absence of vias, the highest strength was realized with a 1x thick 5742 layer, a 1x thick 4596 layer, and a footprint ratio of 1.0:1.0.« less
Multilayered Microelectronic Device Package With An Integral Window
Peterson, Kenneth A.; Watson, Robert D.
2004-10-26
A microelectronic package with an integral window mounted in a recessed lip for housing a microelectronic device. The device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can be formed of a low temperature co-fired ceramic (LTCC) or high temperature cofired ceramic (HTCC) multilayered material, with the integral window being simultaneously joined (e.g. co-fired) to the package body during LTCC or HTCC processing. The microelectronic device can be flip-chip bonded and oriented so that a light-sensitive side is optically accessible through the window. The result is a compact, low profile package, having an integral window mounted in a recessed lip, that can be hermetically sealed.
Miniature lowpass filters in low loss 9k7 LTCC
Dai, Steve; Hsieh, Lung -Hwa
2015-07-01
DuPont 9k7 low temperature cofired ceramic (LTCC) is a low loss, or high quality factor Q, tape system targeting at radio frequency (RF) applications. This paper reports the effect of a critical process parameter, heating rate, on the densification and dielectric properties of the 9k7 LTCC. The role of competing densification and crystallization during the sintering of 9k7 is discussed. The high Q of DuPont 9K7 can be used to improve RF system performance, for example a better receiver noise figure, by designing embedded passive RF components such as inductors, capacitors and filters. As a result, miniaturized multilayer low passmore » filters (LPF) with a wide stopband were fabricated to showcase the technology.« less
Miniature lowpass filters in low loss 9k7 LTCC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Steve; Hsieh, Lung -Hwa
DuPont 9k7 low temperature cofired ceramic (LTCC) is a low loss, or high quality factor Q, tape system targeting at radio frequency (RF) applications. This paper reports the effect of a critical process parameter, heating rate, on the densification and dielectric properties of the 9k7 LTCC. The role of competing densification and crystallization during the sintering of 9k7 is discussed. The high Q of DuPont 9K7 can be used to improve RF system performance, for example a better receiver noise figure, by designing embedded passive RF components such as inductors, capacitors and filters. As a result, miniaturized multilayer low passmore » filters (LPF) with a wide stopband were fabricated to showcase the technology.« less
Miniature low-pass filter in low-loss 9k7 LTCC
Dai, Steve Xunhu; Hsieh, Lung -Hwa
2015-09-30
DuPont 9k7 low-temperature cofired ceramic (LTCC) is a low-loss, or high-quality-factor Q, tape system targeting at radio frequency (RF) applications. This paper reports on the effect of a critical process parameter, the heating rate, on the densification and dielectric properties of the 9k7 LTCC. The role of competing densification and crystallization during the sintering of 9k7 is discussed. The high Q of DuPont 9K7 can be used to improve RF system performance, for example a better receiver noise figure, by designing embedded passive RF components such as inductors, capacitors and filters. Furthermore, miniaturized multilayer low-pass filters (LPF) with a widemore » stopband were fabricated to showcase the technology.« less
Electronic packaging: new results in singulation by Laser Microjet
NASA Astrophysics Data System (ADS)
Wagner, Frank; Sibailly, Ochelio; Richerzhagen, Bernold
2004-07-01
Cutting electronic packages that are produced in a matrix array fashion is an important process and deals with the ready-to-use devices. Thus an increase in the singulation yield is directly correlated to an increase in benefit. Due to the usage of different substrate materials, the saws encounter big problems in terms of lifetime and constancy of cut quality in these applications. Today"s equipment manufacturers are not yet in the position to propose an adequate solution for all types of packages. Compared to classical laser cutting, the water-jet guided laser technology minimizes the heat damages in any kind of sample. This new material processing method consists in guiding a laser beam inside a hair thin, lowpressure water-jet by total internal reflection, and is applied to package singulation since two years approximately. Using a frequency doubled Nd:YAG laser guided by a water jet, an LTCC-ceramics based package is singulated according to a scribe and break process. Speeds of 2-10 mm/s are reached in the LTTC and 40 mm/s in the mold compound. The process is wear-free and provides very good edge quality of the LTCC and the mold compound as well as reliable separation of the packages.
NASA Astrophysics Data System (ADS)
Xie, Yunsong; Chen, Ru
Low temperature co-fired ceramics (LTCC) is one of the most important techniques to produce circuits with high working frequency, multi-functionality and high integration. We have developed a methodology to enable a ternary hybrid material system being implemented into the LTCC manufacturing process. The co-firing sintering process can be divided into a densification and cooling process. In this method, a successful ternary hybrid material densification process is achieved by tuning the sintering profile of each material to match each other. The system integrity is maintained in the cooling process is obtained by develop a strong bonding at the interfaces of each materials. As a demonstration, we have construct a power inductor device made of the ternary material system including Ag, NiCuZn ferrite and non-magnetic ceramic. The power inductors well maintains its physical integrity after sintering. The microscopic images show no obvious sign of cracks or structural deformation. More importantly, despite the bonding between the ferrite and ceramic is enhanced by non-magnetic element diffusion, the undesired magnetic elements diffusion is effectively suppressed. The electric performance shows that the power handling capability is comparable to the current state of art device.
Ceramic capillary electrophoresis chip for the measurement of inorganic ions in water samples.
Fercher, Georg; Haller, Anna; Smetana, Walter; Vellekoop, Michael J
2010-05-01
We present a microchip capillary electrophoresis (CE) device build-up in low temperature co-fired ceramics (LTCC) multilayer technology for the analysis of major inorganic ions in water samples in less than 80 s. Contactless conductivity measurement is employed as a robust alternative to direct-contact conductivity detection schemes. The measurement electrodes are placed in a planar way at the top side of the CE chip and are realized by screen printing. Laser-cutting of channel and double-T injector structures is used to minimize irregularities and wall defects, elevating plate numbers per meter up to values of 110,000. Lowest limit of detection is 6 microM. The cost efficient LTCC module is attractive particularly for portable instruments in environmental applications because of its chemical inertness, hermeticity and easy three-dimensional integration capabilities of fluidic, electrical and mechanical components.
Bi-level multilayered microelectronic device package with an integral window
Peterson, Kenneth A.; Watson, Robert D.
2002-01-01
A bi-level, multilayered package with an integral window for housing a microelectronic device. The device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The multilayered package can be formed of a low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the window being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. The microelectronic device can be flip-chip bonded and oriented so that the light-sensitive side is optically accessible through the window. A second chip can be bonded to the backside of the first chip, with the second chip being wirebonded to the second level of the bi-level package. The result is a compact, low-profile package, having an integral window that can be hermetically-sealed.
Manufacturing of prestressed piezoelectric unimorphs using a postfired biasing layer.
Juuti, Jari A; Jantunen, Heli; Moilanen, Veli-Pekka; Leppävuori, Seppo
2006-05-01
A novel manufacturing method for prestressed piezoelectric unimorphs is introduced and the actuator properties are examined. Prestressed PZT 5A and PZT 5H unimorphs with piezo material thickness of 250 microm and 375 microm were manufactured by using sintering and thermal shrinkage of the prestressing material. The process was carried out by screen printing a layer of AgPd paste on one side of the sintered bulk ceramic. As an alternative method, dielectric low temperature co-fired ceramic (LTCC) tape was used as the prestressing material. Different configurations were tested to obtain high displacements and to make a comparison between materials. After firing, the samples were poled, and the displacement versus load characteristics of the resulting actuators were investigated. A maximum displacement of 118 microm was obtained from a 250 microm thick, prestressed PZT 5H actuator with a diameter of 25 mm, in which LTCC tape was used as the prestressing layer. Similarly, the PZT 5H material provided a maximum displacement of 63 microm with a screen-printed AgPd prestressing layer. The manufacturing method described offers a novel approach for the production of a wide range of integrated active structures on, for instance, an LTCC circuit board. This is especially important because piezoelectric bulk materials with high piezoelectric coefficients can be used to produce high displacements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Kai-tuo; He, Yan; Liang, Zhong-yuan
2015-05-15
Graphical abstract: The dielectric constant (ϵ) of the sintered BaO–B{sub 2}O{sub 3}–SiO{sub 2}/BaTiO{sub 3} glass/ceramics (the sintered samples with line shrinkage of 10%) changed from 5 to 30 and the dielectric losses (tanδ) was lower than 0.05 at 100 MHz with the amount of BaTiO{sub 3} additive increment from 60 wt% to 90 wt% fraction. - Highlights: • The ϵ of BaO–B{sub 2}O{sub 3}–SiO{sub 2} glass can be adjusted from 5 to 30 by adding BaTiO{sub 3}. • The influence factors on dielectric are the secondary phase and microstructure. • BaO–B{sub 2}O{sub 3}–SiO{sub 2}/BaTiO{sub 3} system can fabricate LTCC whenmore » BaTiO{sub 3} located in 60–80 wt%. - Abstract: This paper studied the preparation and characterization of LTCC (low temperature co-fired ceramics) materials based on BaO–B{sub 2}O{sub 3}–SiO{sub 2}/BaTiO{sub 3} glass–ceramics, where the sintering temperature was about 900 °C and dielectric constant was effectively adjustable from 5 to 30 by changing the BaTiO{sub 3} fraction from 60 wt% to 90 wt%. X-ray diffractometer (XRD), scanning electron microscopy (SEM) were used to examine the effect of different amounts additive on the dielectric properties of this LTCC system and the crystal structure change. The results indicated that BaTiO{sub 3} can be used as a dielectric additive aim to adjust the permittivity of BaO–B{sub 2}O{sub 3}–SiO{sub 2} glass, which the main influence factors on dielectric are the contents of the secondary phase, the BaTiO{sub 3} phase fraction and the porous structure of the sintered body. Therefore, the microstructure and dielectric property of BaO–B{sub 2}O{sub 3}–SiO{sub 2}/BaTiO{sub 3} glass–ceramics composites could be controlled by adjusting the content of BaTiO{sub 3} additive.« less
Fabrications and Performance of Wireless LC Pressure Sensors through LTCC Technology.
Lin, Lin; Ma, Mingsheng; Zhang, Faqiang; Liu, Feng; Liu, Zhifu; Li, Yongxiang
2018-01-25
This paper presents a kind of passive wireless pressure sensor comprised of a planar spiral inductor and a cavity parallel plate capacitor fabricated through low-temperature co-fired ceramic (LTCC) technology. The LTCC material with a low Young's modulus of ~65 GPa prepared by our laboratory was used to obtain high sensitivity. A three-step lamination process was applied to construct a high quality cavity structure without using any sacrificial materials. The effects of the thickness of the sensing membranes on the sensitivity and detection range of the pressure sensors were investigated. The sensor with a 148 μm sensing membrane showed the highest sensitivity of 3.76 kHz/kPa, and the sensor with a 432 μm sensing membrane presented a high detection limit of 2660 kPa. The tunable sensitivity and detection limit of the wireless pressure sensors can meet the requirements of different scenes.
Sol-gel layers for ceramic microsystems application
NASA Astrophysics Data System (ADS)
Czok, Mateusz; Golonka, Leszek
2016-11-01
This paper describes research on sol-gel solutions preparation process. Utilize of a sol-gel layers in the LTCC technology for reduction of surface roughness and influence on the ceramics properties is examined and described. The influence of sol-gel layer on possible sedimentation of dyes or biological substances in channels, mixers or chambers of ceramic microfluidic structures was investigated. Moreover, properties of sol-gel coated surfaces have been precisely examined and described. Finally, positive results of conducted experiments made it possible to design and manufacture a simple microfluidic ceramic structure, with embedded protective layer of sol-gel, for fluorescence measurements.
Macro-meso-microsystems integration in LTCC : LDRD report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Smet, Dennis J.; Nordquist, Christopher Daniel; Turner, Timothy Shawn
2007-03-01
Low Temperature Cofired Ceramic (LTCC) has proven to be an enabling medium for microsystem technologies, because of its desirable electrical, physical, and chemical properties coupled with its capability for rapid prototyping and scalable manufacturing of components. LTCC is viewed as an extension of hybrid microcircuits, and in that function it enables development, testing, and deployment of silicon microsystems. However, its versatility has allowed it to succeed as a microsystem medium in its own right, with applications in non-microelectronic meso-scale devices and in a range of sensor devices. Applications include silicon microfluidic ''chip-and-wire'' systems and fluid grid array (FGA)/microfluidic multichip modulesmore » using embedded channels in LTCC, and cofired electro-mechanical systems with moving parts. Both the microfluidic and mechanical system applications are enabled by sacrificial volume materials (SVM), which serve to create and maintain cavities and separation gaps during the lamination and cofiring process. SVMs consisting of thermally fugitive or partially inert materials are easily incorporated. Recognizing the premium on devices that are cofired rather than assembled, we report on functional-as-released and functional-as-fired moving parts. Additional applications for cofired transparent windows, some as small as an optical fiber, are also described. The applications described help pave the way for widespread application of LTCC to biomedical, control, analysis, characterization, and radio frequency (RF) functions for macro-meso-microsystems.« less
Integrated LTCC pressure/flow/temperature multisensor for compressed air diagnostics.
Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter
2010-01-01
We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues.
Integrated LTCC Pressure/Flow/Temperature Multisensor for Compressed Air Diagnostics†
Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter
2010-01-01
We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues. PMID:22163518
NASA Astrophysics Data System (ADS)
Nousiainen, O.; Putaala, J.; Kangasvieri, T.; Rautioaho, R.; Vähäkangas, J.
2007-03-01
The thermal fatigue endurance of completely lead-free 95.5Sn4Ag0.7Cu/plastic core solder ball (PCSB) composite joint structures in low-temperature Co-fired ceramic/printed wiring board (LTCC/PWB) assemblies was investigated using thermal cycling tests over the temperature ranges of -40°C 125°C and 0°C 100°C. Two separate creep/fatigue failures initiated and propagated in the joints during the tests: (1) a crack along the intermetallic compound (IMC)/solder interface on the LTCC side of the joint, which formed at the high-temperature extremes; and (2) a crack in the solder near the LTCC solder land, which formed at the low-temperature extremes. Moreover, localized recrystallization was detected at the outer edge of the joints that were tested in the harsh (-40°C 125°C) test conditions. The failure mechanism was creep/fatigue-induced mixed intergranular and transgranular cracking in the recrystallized zone, but it was dominated by transgranular thermal fatigue failure beyond the recrystallized zone. The change in the failure mechanism increased the rate of crack growth. When the lower temperature extreme was raised from -40°C to 0°C, no recrystallized zone was detected and the failure was due to intergranular cracks.
Tunable metamaterial dual-band terahertz absorber
NASA Astrophysics Data System (ADS)
Luo, C. Y.; Li, Z. Z.; Guo, Z. H.; Yue, J.; Luo, Q.; Yao, G.; Ji, J.; Rao, Y. K.; Li, R. K.; Li, D.; Wang, H. X.; Yao, J. Q.; Ling, F. R.
2015-11-01
We report a design of a temperature controlled tunable dual band terahertz absorber. The compact single unit cell consists of two nested closed square ring resonators and a layer metallic separated by a substrate strontium titanate (STO) dielectric layer. It is found that the absorber has two distinctive absorption peaks at frequencies 0.096 THz and 0.137 THz, whose peaks are attained 97% and 75%. Cooling the absorber from 400 K to 250 K causes about 25% and 27% shift compared to the resonance frequency of room temperature, when we cooling the temperature to 150 K, we could attained both the two tunabilities exceeding 53%. The frequency tunability is owing to the variation of the dielectric constant of the low-temperature co-fired ceramic (LTCC) substrate. The mechanism of the dual band absorber is attributed to the overlapping of dual resonance frequencies, and could be demonstrated by the distributions of the electric field. The method opens up avenues for designing tunable terahertz devices in detection, imaging, and stealth technology.
Microelectronic device package with an integral window
Peterson, Kenneth A.; Watson, Robert D.
2002-01-01
An apparatus for packaging of microelectronic devices, including an integral window. The microelectronic device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can include a cofired ceramic frame or body. The package can have an internal stepped structure made of one or more plates, with apertures, which are patterned with metallized conductive circuit traces. The microelectronic device can be flip-chip bonded on the plate to these traces, and oriented so that the light-sensitive side is optically accessible through the window. A cover lid can be attached to the opposite side of the package. The result is a compact, low-profile package, having an integral window that can be hermetically-sealed. The package body can be formed by low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the window being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. Multiple chips can be located within a single package. The cover lid can include a window. The apparatus is particularly suited for packaging of MEMS devices, since the number of handling steps is greatly reduced, thereby reducing the potential for contamination.
NASA Technical Reports Server (NTRS)
Ponchak, George E.; Chun, Donghoon; Yook, Jong-Gwan; Katehi, Linda P. B.
2001-01-01
Coupling between microstrip lines in dense RF packages is a common problem that degrades circuit performance. Prior three-dimensional-finite element method (3-D-FEM) electromagnetic simulations have shown that metal filled via hole fences between two adjacent microstrip lines actually Increases coupling between the lines: however, if the top of the via posts are connected by a metal strip, coupling is reduced. In this paper, experimental verification of the 3-D-FEM simulations is demonstrated for commercially fabricated low temperature cofired ceramic (LTCC) packages. In addition, measured attenuation of microstrip lines surrounded by the shielding structures is presented and shows that shielding structures do not change the attenuation characteristics of the line.
Swain, Basudev; Shin, Dongyoon; Joo, So Yeong; Ahn, Nak Kyoon; Lee, Chan Gi; Yoon, Jin-Ho
2017-11-01
Considering the value of silver metal and silver nanoparticles, the waste generated during manufacturing of low temperature co-fired ceramic (LTCC) were recycled through the simple yet cost effective process by chemical-metallurgy. Followed by leaching optimization, silver was selectively recovered through precipitation. The precipitated silver chloride was valorized though silver nanoparticle synthesis by a simple one-pot greener synthesis route. Through leaching-precipitation optimization, quantitative selective recovery of silver chloride was achieved, followed by homogeneous pure silver nanoparticle about 100nm size were synthesized. The reported recycling process is a simple process, versatile, easy to implement, requires minimum facilities and no specialty chemicals, through which semiconductor manufacturing industry can treat the waste generated during manufacturing of LTCC and reutilize the valorized silver nanoparticles in manufacturing in a close loop process. Our reported process can address issues like; (i) waste disposal, as well as value-added silver recovery, (ii) brings back the material to production stream and address the circular economy, and (iii) can be part of lower the futuristic carbon economy and cradle-to-cradle technology management, simultaneously. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Marraccini, Philip J.; Jezzini, Moises A.; Peters, Frank H.
2016-05-01
Designing photonic integrated circuits (PICs) with packaging in mind is important since this impacts the performance of the final product. In coherent optical communication applications there are a large number of DC and RF lines that need routed to connect the PIC to the outer packaging. These RF lines should be impedance matched to the devices, isolated from each other, low loss and protected against electromagnetic interference (EMI) over the frequency range of interest to achieve the performance required for the application. Multilevel low temperature co-fired ceramic (LTCC) boards can be used as a carrier board connecting the PIC to the packaging due to its good RF performance, machinability, compatibility with hermetic sealing, and ability to integrate drivers into the board. Flexibility with layer numbers enables additional layers for shielding against electromagnetic interference or increased space for routing electrical connections. In this paper the design, simulations, and measured results for a set of 4 phase matched transmission lines in LTCC that would be used with an IQ MZM are presented. The measured 3dB bandwidth for a set of four phase matched transmission lines for an IQ MZM was measured to be 19.8 GHz.
Method of fabricating a microelectronic device package with an integral window
Peterson, Kenneth A.; Watson, Robert D.
2003-01-01
A method of fabricating a microelectronic device package with an integral window for providing optical access through an aperture in the package. The package is made of a multilayered insulating material, e.g., a low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC). The window is inserted in-between personalized layers of ceramic green tape during stackup and registration. Then, during baking and firing, the integral window is simultaneously bonded to the sintered ceramic layers of the densified package. Next, the microelectronic device is flip-chip bonded to cofired thick-film metallized traces on the package, where the light-sensitive side is optically accessible through the window. Finally, a cover lid is attached to the opposite side of the package. The result is a compact, low-profile package, flip-chip bonded, hermetically-sealed package having an integral window.
NASA Astrophysics Data System (ADS)
Li, Yuanxun; Xie, Yunsong; Xie, Ru; Chen, Daming; Han, Likun; Su, Hua
2018-03-01
A glass-free ternary composite material system (CMS) manufactured employing the low temperature ( 890 ° C ) co-fired ceramic (LTCC) technique is reported. This ternary CMS consists of silver, NiCuZn ferrite, and Zn2SiO4 ceramic. The reported device fabricated from this ternary CMS is a power inductor with a nominal inductance of 1.0 μH. Three major highlights were achieved from the device and the material study. First, unlike most other LTCC methods, no glass is required to be added in either of the dielectric materials in order to co-fire the NiCuZn ferrite, Zn2SiO4 ceramic, and silver. Second, a successfully co-fired silver, NiCuZn, and Zn2SiO4 device can be achieved by optimizing the thermal shrinkage properties of both NiCuZn and Zn2SiO4, so that they have a very similar temperature shrinkage profile. We have also found that strong non-magnetic elemental diffusion occurs during the densification process, which further enhances the success rate of manufacturing co-fired devices. Last but not least, elemental mapping suggests that strong magnetic elemental diffusion between NiCuZn and Zn2SiO4 has been suppressed during the co-firing process. The investigation of electrical performance illustrates that while the ordinary binary CMS based power inductor can deal with 400 mA DC, the ternary CMS based power inductor is able to handle higher DC currents, 700 mA and 620 mA DC, according to both simulation and experiment demonstrations, respectively.
Swain, Basudev; Shin, Dongyoon; Joo, So Yeong; Ahn, Nak Kyoon; Lee, Chan Gi; Yoon, Jin-Ho
2018-03-01
The current study focuses on the understanding of leaching kinetics of metal in the LTCC in general and silver leaching in particular along with wet chemical reduction involving silver nanoparticle synthesis. Followed by metal leaching, the silver was selectively precipitated using HCl as AgCl. The precipitated AgCl was dissolved in ammonium hydroxide and reduced to pure silver metal nanopowder (NPs) using hydrazine as a reductant. Polyvinylpyrrolidone (PVP) used as a stabilizer and Polyethylene glycol (PEG) used as reducing reagent as well as stabilizing reagent to control size and shape of the Ag NPs. An in-depth investigation indicated a first-order kinetics model fits well with high accuracy among all possible models. Activation energy required for the first order reaction was 21.242 kJ mol -1 for Silver. PVP and PEG 1% each together provide better size control over silver nanoparticle synthesis using 0.4 M hydrazine as reductant, which provides relatively regular morphology in comparison to their individual application. The investigation revealed that the waste LTCC (an industrial e-waste) can be recycled through the reported process even in industrial scale. The novelty of reported recycling process is simplicity, versatile and eco-efficiency through which waste LTCC recycling can address various issues like; (i) industrial waste disposal (ii) synthesis of silver nanoparticles from waste LTCC (iii) circulate metal economy within a closed loop cycle in the industrial economies where resources are scarce, altogether. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bi-level microelectronic device package with an integral window
Peterson, Kenneth A.; Watson, Robert D.
2004-01-06
A package with an integral window for housing a microelectronic device. The integral window is bonded directly to the package without having a separate layer of adhesive material disposed in-between the window and the package. The device can be a semiconductor chip, CCD chip, CMOS chip, VCSEL chip, laser diode, MEMS device, or IMEMS device. The multilayered package can be formed of a LTCC or HTCC cofired ceramic material, with the integral window being simultaneously joined to the package during LTCC or HTCC processing. The microelectronic device can be flip-chip bonded so that the light-sensitive side is optically accessible through the window. The package has at least two levels of circuits for making electrical interconnections to a pair of microelectronic devices. The result is a compact, low-profile package having an integral window that is hermetically sealed to the package prior to mounting and interconnecting the microelectronic device(s).
Calvo-López, Antonio; Arasa-Puig, Eva; Puyol, Mar; Casalta, Joan Manel; Alonso-Chamarro, Julián
2013-12-04
The construction and evaluation of a Low Temperature Co-fired Ceramics (LTCC)-based continuous flow potentiometric microanalyzer prototype to simultaneously monitor the presence of two ions (potassium and nitrate) in samples from the water recycling process for future manned space missions is presented. The microsystem integrates microfluidics and the detection system in a single substrate and it is smaller than a credit card. The detection system is based on two ion-selective electrodes (ISEs), which are built using all-solid state nitrate and potassium polymeric membranes, and a screen-printed Ag/AgCl reference electrode. The obtained analytical features after the optimization of the microfluidic design and hydrodynamics are a linear range from 10 to 1000 mg L(-1) and from 1.9 to 155 mg L(-1) and a detection limit of 9.56 mg L(-1) and 0.81 mg L(-1) for nitrate and potassium ions respectively. Copyright © 2013 Elsevier B.V. All rights reserved.
Santo Zarnik, Marina; Belavic, Darko; Novak, Franc
2015-01-01
An exploratory study of the impact of housing on the characteristics of a low-temperature co-fired ceramic (LTCC) pressure sensor is presented. The ceramic sensor structure is sealed in a plastic housing. This may have non-negligible effect on the final characteristics and should be considered in the early design phase. The manufacturability issue mainly concerning the selection of available housing and the most appropriate materials was considered with respect to different requirements for low and high pressure ranges of operation. Numerical predictions showed the trends and helped reveal the critical design parameters. Proper selection of the adhesive material remains an essential issue. Curing of the epoxy adhesive may introduce non-negligible residual stresses, which considerably influence the sensor’s characteristics. PMID:26694386
Almeida, S A A; Arasa, E; Puyol, M; Martinez-Cisneros, C S; Alonso-Chamarro, J; Montenegro, M C B S M; Sales, M G F
2011-12-15
Monitoring organic environmental contaminants is of crucial importance to ensure public health. This requires simple, portable and robust devices to carry out on-site analysis. For this purpose, a low-temperature co-fired ceramics (LTCC) microfluidic potentiometric device (LTCC/μPOT) was developed for the first time for an organic compound: sulfamethoxazole (SMX). Sensory materials relied on newly designed plastic antibodies. Sol-gel, self-assembling monolayer and molecular-imprinting techniques were merged for this purpose. Silica beads were amine-modified and linked to SMX via glutaraldehyde modification. Condensation polymerization was conducted around SMX to fill the vacant spaces. SMX was removed after, leaving behind imprinted sites of complementary shape. The obtained particles were used as ionophores in plasticized PVC membranes. The most suitable membrane composition was selected in steady-state assays. Its suitability to flow analysis was verified in flow-injection studies with regular tubular electrodes. The LTCC/μPOT device integrated a bidimensional mixer, an embedded reference electrode based on Ag/AgCl and an Ag-based contact screen-printed under a micromachined cavity of 600 μm depth. The sensing membranes were deposited over this contact and acted as indicating electrodes. Under optimum conditions, the SMX sensor displayed slopes of about -58.7 mV/decade in a range from 12.7 to 250 μg/mL, providing a detection limit of 3.85 μg/mL and a sampling throughput of 36 samples/h with a reagent consumption of 3.3 mL per sample. The system was adjusted later to multiple analyte detection by including a second potentiometric cell on the LTCC/μPOT device. No additional reference electrode was required. This concept was applied to Trimethoprim (TMP), always administered concomitantly with sulphonamide drugs, and tested in fish-farming waters. The biparametric microanalyzer displayed Nernstian behaviour, with average slopes -54.7 (SMX) and +57.8 (TMP) mV/decade. To demonstrate the microanalyzer capabilities for real applications, it was successfully applied to single and simultaneous determination of SMX and TMP in aquaculture waters. Copyright © 2011 Elsevier B.V. All rights reserved.
Low-Temperature Sintering Li3Mg1.8Ca0.2NbO6 Microwave Dielectric Ceramics with LMZBS Glass
NASA Astrophysics Data System (ADS)
Wang, Gang; Zhang, Huaiwu; Liu, Cheng; Su, Hua; Jia, Lijun; Li, Jie; Huang, Xin; Gan, Gongwen
2018-05-01
Li3Mg1.8Ca0.2NbO6 ceramics doped with Li2O-MgO-ZnO-B2O3-SiO2 glass (LMZBS) were prepared via a solid-state route. The LMZBS glass effectively reduced the sintering temperature of Li3Mg1.8Ca0.2NbO6 ceramics to 950°C. The effects of the LMZBS glass on the sintering behavior, microstructures and microwave dielectric properties of Li3Mg1.8Ca0.2NbO6 ceramics are discussed in detail. Among all the LMZBS doped Li3Mg1.8Ca0.2NbO6 ceramics, the sample with 1 wt.% of LMZBS glass sintered at 950°C for 4 h exhibited good dielectric properties: ɛ r = 16.7, Q × f = 31,000 GHz (9.92 GHz), τ f = - 1.3 ppm/°C. The Li3Mg1.8Ca0.2NbO6 ceramics possessed excellent chemical compatibility with Ag electrodes, and could be applied in low temperature co-fired ceramics (LTCC) applications.
Multilayered microelectronic device package with an integral window
Peterson, Kenneth A.; Watson, Robert D.
2003-01-01
An apparatus for packaging of microelectronic devices is disclosed, wherein the package includes an integral window. The microelectronic device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can comprise, for example, a cofired ceramic frame or body. The package has an internal stepped structure made of a plurality of plates, with apertures, which are patterned with metallized conductive circuit traces. The microelectronic device can be flip-chip bonded on the plate to these traces, and oriented so that the light-sensitive side is optically accessible through the window. A cover lid can be attached to the opposite side of the package. The result is a compact, low-profile package, having an integral window that can be hermetically-sealed. The package body can be formed by low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the window being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. Multiple chips can be located within a single package, according to some embodiments. The cover lid can include a window. The apparatus is particularly suited for packaging of MEMS devices, since the number of handling steps is greatly reduced, thereby reducing the potential for contamination. The integral window can further include a lens for optically transforming light passing through the window. The package can include an array of binary optic lenslets made integral with the window. The package can include an electrically-switched optical modulator, such as a lithium niobate window attached to the package, for providing a very fast electrically-operated shutter.
Dual-band LTCC antenna based on 0.95Zn2SiO4-0.05CaTiO3 ceramics for GPS/UMTS applications
NASA Astrophysics Data System (ADS)
Dou, Gang; Li, Yu-Xia; Guo, Mei
2015-10-01
In this paper, we present a compact low-temperature co-fired ceramic (LTCC) dual-band antenna by using the electromagnetic coupling effect concept for global positioning system (GPS) and universal mobile telecommunication system (UMTS) applications. The overall dimension of the antenna is 8.6 mm × 13.0 mm × 1.1 mm. It consists of double meander lines and a via hole line. The top meander line operates at the upper band, and the bottom radiating patch is designed for the lower band. The via-hole line is employed to connect the double meander lines. Because of the effect of the coupled line, total dimension of the proposed antenna is greatly reduced. With the 2.5: voltage standing wave ratio (VSWR) impedance bandwidth definition, the lower and upper bands have the bandwidths of 110 MHz and 150 MHz, respectively. The proposed antenna is successfully designed, simulated, and analyzed by a high frequency structure simulator (HFSS). And the antenna is manufactured by using the 0.95Zn2SiO4-0.05CaTiO3 ceramics (εr = 7.1, tanδ = 0.00038) that is prepared by ourselves. The results show that the antenna is compact, efficient, and of near omnidirectional radiation pattern. Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20133718120009), the Natural Science Foundation of Shandong Provence, China (Grant Nos. ZR2013FQ002 and ZR2014FQ006), the China Postdoctoral Science Foundation (Grant No. 2014M551935), the Qingdao Municipality Postdoctoral Science Foundation, China, and the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents, China (Grant Nos. 2013RCJJ042 and 2014RCJJ052).
NASA Astrophysics Data System (ADS)
Vidya, S.; Solomon, Sam; Thomas, J. K.
2013-01-01
Nanocrystalline scheelite CaWO4, a promising material for low-temperature co-fired ceramic (LTCC) applications, has been successfully synthesized through a single-step autoignition combustion route. Structural analysis of the sample was performed by powder x-ray diffraction (XRD), Fourier-transform infrared spectroscopy, and Raman spectroscopy. The XRD analysis revealed that the as-prepared sample was single phase with scheelite tetragonal structure. The basic optical properties and optical constants of the CaWO4 nanopowder were studied using ultraviolet (UV)-visible absorption spectroscopy, which showed that the material was a wide-bandgap semiconductor with bandgap of 4.7 eV at room temperature. The sample showed poor transmittance in the ultraviolet region but maximum transmission in the visible/near-infrared regions. The photoluminescence spectra recorded at different temperatures showed intense emission in the green region. The particle size estimated from transmission electron microscopy was 23 nm. The feasibility of CaWO4 for LTCC applications was studied from its sintering behavior. The sample was sintered at a relatively low temperature of 810°C to high density, without using any sintering aid. The surface morphology of the sintered sample was analyzed by scanning electron microscopy. The dielectric constant and loss factor of the sample measured at 5 MHz were found to be 10.50 and 1.56 × 10-3 at room temperature. The temperature coefficient of the dielectric constant was -88.71 ppm/°C. The experimental results obtained in this work demonstrate the potential of nano-CaWO4 as a low-temperature co-fired ceramic as well as an excellent luminescent material.
Low-temperature sintered Li2(MnxTi1-x)O3 microwave dielectric ceramics with adjustable τf
NASA Astrophysics Data System (ADS)
Liu, Cheng; Zhang, Huaiwu; Su, Hua; Li, Jie; Liao, Yulong; Jia, Lijun; Li, Yuanxun
2017-12-01
B2O3-Bi2O3-SiO2-ZnO (BBSZ) glass-modified Li2(MnxTi1-x)O3 ceramics were fabricated via a solid-state reaction route. Pure phase and dense crystal morphology were obtained at 900∘C. Suitable amount of Mn4+-ion substitution could adjust the τf value of the Li2(MnxTi1-x)O3 system to near zero. Among all of the Li2(MnxTi1-x)O3 samples, the sample with x = 0.9 (marked as BL9 in this paper) possessed good microwave dielectric properties: 𝜀r = 18, Q × f = 14,056 GHz (9.58 GHz) and τf = (+)2.43 ppm/∘C. It is suggested that the Li2(MnxTi1-x)O3 ceramic with BBSZ glass is a suitable low-temperature co-fired ceramic (LTCC) candidate for microwave applications.
Control of Silver Diffusion in Low-Temperature Co-Fired Diopside Glass-Ceramic Microwave Dielectrics
Chou, Chen-Chia; Chang, Chun-Yao; Chen, Guang-Yu; Feng, Kuei-Chih; Tsao, Chung-Ya
2017-01-01
Electrode material for low-temperature co-fired diopside glass-ceramic used for microwave dielectrics was investigated in the present work. Diffusion of silver from the electrode to diopside glass-ceramics degrades the performance of the microwave dielectrics. Two approaches were adopted to resolve the problem of silver diffusion. Firstly, silicon-oxide (SiO2) powder was employed and secondly crystalline phases were chosen to modify the sintering behavior and inhibit silver ions diffusion. Nanoscale amorphous SiO2 powder turns to the quartz phase uniformly in dielectric material during the sintering process, and prevents the silver from diffusion. The chosen crystalline phase mixing into the glass-ceramics enhances crystallinity of the material and inhibits silver diffusion as well. The result provides a method to decrease the diffusivity of silver ions by adding the appropriate amount of SiO2 and appropriate crystalline ceramics in diopside glass-ceramic dielectric materials. Finally, we used IEEE 802.11a 5.8 GHz as target specification to manufacture LTCC antenna and the results show that a good broadband antenna was made using CaMgSi2O6 with 4 wt % silicon oxide. PMID:29286330
NASA Astrophysics Data System (ADS)
Kim, Duk-jae; Shim, Yeun-keun; Park, Jeongwon; Kim, Hyung-jun; Han, Jeon-geon
2016-04-01
Nonthermal atmospheric-pressure plasma discharge is designed with low-temperature cofired ceramic (LTCC) electrodes to achieve dielectric barrier surface discharge (DBSD). The environmental requirement (below 0.05 ppm) of the amount of byproducts (ozone and NO x ) produced during the process was met by optimizing the electrode design to produce a high dielectric barrier discharge for low-voltage (∼700 V) operation and minimizing the distance between electrodes to improve the plasma discharging efficiency. The concentrations of volatile organic compounds (VOCs) within interior cabins of commercial vehicles were significantly reduced after 1-h treatment to improve air quality cost-effectively. This atmospheric-pressure plasma process was demonstrated for the sterilization of Escherichia coli to prevent food poisoning during the preservation of food in refrigerators.
NASA Astrophysics Data System (ADS)
Xie, Fei; Jia, Lijun; Shen, Qihang; Qiu, Hua; Zhang, Huaiwu
2018-03-01
Low firing temperature and excellent gyromagnetic properties such as high remanence square ratio and narrow ferromagnetic resonance line width are required for the application in nonreciprocal microwave ferrite devices based on low temperature cofired ceramics (LTCC) technology. In this research, Bi2O3-Li2CO3 mixture was introduced as the sintering agent to lower the sintering temperature of Li0.42Zn0.27Ti0.11Mn0.1Fe2.1O4 ferrite. The influence of Bi2O3-Li2CO3 mixture upon the phase composition, composite microstructures and gyromagnetic properties of LiZnTiMn ferrite sintered at low temperature has been investigated for LTCC integration applications. With a proper amount of Bi2O3-Li2CO3 mixture, the sintering temperature of LiZnTiMn ferrite successfully reduced to below 900°C from 1100°C without degradation of magnetic properties, meanwhile, both of saturation flux density and remanence square ratio were increased.
LTCC magnetic components for high density power converter
NASA Astrophysics Data System (ADS)
Lebourgeois, Richard; Labouré, Eric; Lembeye, Yves; Ferrieux, Jean-Paul
2018-04-01
This paper deals with multilayer magnetic components for power electronics application and specifically for high frequency switching. New formulations based on nickel-zinc-copper spinel ferrites were developed for high power and high frequency applications. These ferrites can be sintered at low temperature (around 900°C) which makes them compatible with the LTCC (Low Temperature Co-fired Ceramics) technology. Metallic parts of silver or gold can be fully integrated inside the ferrite while guaranteeing the integrity of both the ferrite and the metal. To make inductors or transformers with the required properties, it is mandatory to have nonmagnetic parts between the turns of the winding. Then it is essential to find a dielectric material, which can be co-sintered both with the ferrite and the metal. We will present the solution we found to this problem and we will describe the results we obtained for a multilayer co-sintered transformer. We will see that these new components have good performance compared with the state of the art and are very promising for developing high density switching mode power supplies.
A sub-millimeter resolution detector module for small-animal PET applications
NASA Astrophysics Data System (ADS)
Sacco, I.; Dohle, R.; Fischer, P.; Gola, A.; Piemonte, C.; Ritzert, M.
2017-01-01
We present a gamma detection module optimized for very high resolution PET applications, able to resolve arrays of scintillating crystals with sub-millimeter pitch. The detector is composed of a single ceramic substrate (LTCC): it hosts four flip-chip mounted PETA5 ASICs on the bottom side and an array of SiPM sensors on the top surface, fabricated in HD-RGB technology by FBK. Each chip has 36 channels, for a maximum of 144 readout channels on a sensitive area of about 32 mm × 32 mm. The module is MR-compatible. The thermal decoupling of the readout electronics from the photon sensors is obtained with an efficient internal liquid channel, integrated within the ceramic substrate. Two modules have been designed, based on different SiPM topologies: • Light spreader-based: an array of 12 × 12 SiPMs, with an overall pitch of 2.5 mm, is coupled with a scintillators array using a 1 mm thick glass plate. The light from one crystal is spread over a group of SiPMs, which are read out in parallel using PETA5 internal neighbor logic. • Interpolating SiPM-based: ISiPMs are intrinsic position-sensitive sensors. The photon diodes in the array are connected to one of the four available outputs so that the center of gravity of any bunch of detected photons can be reconstructed using a proper weight function of the read out amplitudes. An array of ISiPMs, each 7.5 mm× 5 mm sized, is directly coupled with the scintillating crystals. Both modules can clearly resolve LYSO arrays with a pitch of only 0.833 mm. The detector can be adjusted for clinical PET, where it has already shown ToF resolution of about 230 ps CRT at FWHM. The module designs, their features and results are described.
Research of paste transition to substrate in LTCC-technology
NASA Astrophysics Data System (ADS)
Litunov, S. N.; Yurkov, V. Y.
2018-01-01
The electronics development demands for accuracy of printed technologies, in particular, to screen printing. Under a flat blade operation the print form is deformed and the image is distorted relative to the original. A squeegee in a form of a smooth cylinder reduces distortion, but it allows obtaining satisfactory print quality only when using high density grids. The paper shows findings of using roller squeegee with dosed ink supply. The roller squeegee is provided with an elastic layer. Dosage is carried out due to the cells on the elastic layer surface. There were used meshes 100-31 and 120-34 for the stencil. The experiments were carried out with layers of photopolymers and rubber. The carried out calculations made possible to choose the optimum printing pressure. Under the selected conditions, the printed image had minimal distortion. The findings allow drawing a conclusion about the possibility of roller squeegee using in chips manufacture according to LTCC-technology.
DEVELOPMENT OF A CERAMIC TAMPER INDICATING SEAL: SRNL CONTRIBUTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krementz, D.; Brinkman, K.; Martinez-Rodriguez, M.
2013-06-03
Savannah River National Laboratory (SRNL) and Sandia National Laboratories (SNL) are collaborating on development of a Ceramic Seal, also sometimes designated the Intrinsically Tamper Indicating Ceramic Seal (ITICS), which is a tamper indicating seal for international safeguards applications. The Ceramic Seal is designed to be a replacement for metal loop seals that are currently used by the IAEA and other safeguards organizations. The Ceramic Seal has numerous features that enhance the security of the seal, including a frangible ceramic body, protective and tamper indicating coatings, an intrinsic unique identifier using Laser Surface Authentication, electronics incorporated into the seal that providemore » cryptographic seal authentication, and user-friendly seal wire capture. A second generation prototype of the seal is currently under development whose seal body is of Low Temperature Co-fired Ceramic (LTCC) construction. SRNL has developed the mechanical design of the seal in an iterative process incorporating comments from the SNL vulnerability review team. SRNL is developing fluorescent tamper indicating coatings, with recent development focusing on optimizing the durability of the coatings and working with a vendor to develop a method to apply coatings on a 3-D surface. SRNL performed a study on the effects of radiation on the electronics of the seal and possible radiation shielding techniques to minimize the effects. SRNL is also investigating implementation of Laser Surface Authentication (LSA) as a means of unique identification of each seal and the effects of the surface coatings on the LSA signature.« less
Jo, Sinae; Kang, Seunggu
2013-05-01
The effect of TiO2 on the degree of crystallization, thermal properties and microstructure for MgO-Al2O3-SiO2 glass-ceramics system containing 0-13 wt% TiO2 and 0-1.5 wt% B2O3 in which the cordierite is the main phase was studied. Using Kissinger and Augis-Bennett equations, the activation energy, 510 kJ/mol and Avrami constant, 1.8 were calculated showing the surface-oriented crystallization would be preferred. The alpha-cordierite phase was generated in the glass-ceramics of containing TiO2 of 0-5.6 wt%. However, for the glass-ceramics of TiO2 content above 7 wt%, an alpha-cordierite disappeared and micro-cordierite phase was formed. The glass-ceramics of no TiO2 added had spherical crystals of few tens nanometer size spread in the matrix. As TiO2 content increased up to 5.6 wt%, a lump of dendrite was formed. In the glass-ceramics containing TiO2 7-13 wt%, in which the main phase is micro-cordierite, the dendrite crystal disappeared and a few hundred nanometer sized crystal particles hold tightly each other were generated. The thermal conductivity of glass-ceramics of both a-cordierite and micro-cordierite base decreased with TiO2 contend added. The thermal conductivity of glass-ceramics of 1.5 wt% TiO2 added was 3.4 W/mK which is 36% higher than that of glass-ceramics of no TiO2 added. The sintering temperature for 1.5 wt% TiO2 glass-ceramics was 965 degrees C which could be concluded as to apply to LTCC process for LED packaging.
Miniaturized LTCC elliptic-function lowpass filters with side stopbands
Hsieh, Lung -Hwa; Dai, Steve Xunhu
2015-05-28
A compact, high-selectivity, and wide stopband lowpass filter is highly demanded in wireless communication systems to suppress adjacent harmonics and unwanted signals. In this letter, a new miniaturized lowpass filter with elliptic-function frequency response is introduced. The filter is fabricated in multilayer low temperature cofired ceramics. The size of the miniaturized filter is 5.5 × 3.9 × 1.72 mm3. As a result, the measured insertion loss of the filter is better than 0.37 dB from DC to 1.28 GHz and the measured stopband of the filter is great than 22 dB from 2.3 to 7.5 GHz.
NASA Astrophysics Data System (ADS)
Chakrabarty, Rohan; Song, Jun
2017-10-01
During the cold spraying of particle-reinforced metal matrix composite coatings (ceramic and metal particles mixture) on metal substrates, ceramic particles may either get embedded in the substrate/deposited coating or may rebound from the substrate surface. In this study, the dependence of the ceramic rebounding phenomenon on the spray angle and its effect on substrate erosion have been analyzed using finite-element analysis. From the numerical simulations, it was found that the ceramic particle density and substrate material strength played the major roles in determining the embedding and ceramic retention behavior. Substrate material erosion also influenced the ceramic retention, and the material loss increased as the impact angles decreased from normal. In general, the results concluded that decreasing the impact angle promoted the retention possibility of ceramics in the substrate. This study provides new theoretical insights into the effect of spray angles on the ceramic retention and suggests a new route toward optimizing the spraying process to increase the ceramic retention in composite coatings cold spray.
RF to millimeter wave integration and module technologies
NASA Astrophysics Data System (ADS)
Vähä-Heikkilä, T.
2015-04-01
Radio Frequency (RF) consumer applications have boosted silicon integrated circuits (IC) and corresponding technologies. More and more functions are integrated to ICs and their performance is also increasing. However, RF front-end modules with filters and switches as well as antennas still need other way of integration. This paper focuses to RF front-end module and antenna developments as well as to the integration of millimeter wave radios. VTT Technical Research Centre of Finland has developed both Low Temperature Co-fired Ceramics (LTCC) and Integrated Passive Devices (IPD) integration platforms for RF and millimeter wave integrated modules. In addition to in-house technologies, VTT is using module and component technologies from other commercial sources.
Method for preparing thin-walled ceramic articles of configuration
Holcombe, C.E.; Powell, G.L.
1975-11-01
A method for preparing a hollow thin-walled ceramic product is described. Ceramic powder is plasma-sprayed onto a concave surface of a substrate having a coefficient of thermal expansion less than that of the ceramic. The coated substrate is heated to sinter the ceramic and then cooled to effect a separation of the ceramic product from the substrate. (auth)
Pires, Laís A; Novais, Pollyanna M R; Araújo, Vinícius D; Pegoraro, Luiz F
2017-01-01
Reproducing the characteristics of natural teeth in ceramic crowns remains a complex and difficult process. The purpose of this in vitro study was to evaluate the effect of the substrate, cement, type, and thickness of the ceramic on the resulting color of a lithium disilicate ceramic. Forty ceramic disks were prepared from IPS e.max Press LT (low translucency) and HO (high opacity) in 2 different thicknesses (1.5 and 2 mm). The LT groups were composed of monolithic ceramic disks, and the HO groups were composed of disks fabricated with a 0.5-mm thickness combined with a 1- or 1.5-mm veneering ceramic thickness. Disks made of composite resin (R) and alloy (A) were used as substrate structures. The resin cement used was Variolink II. Color was measured with a spectrophotometer and expressed in CIELAB coordinates. Color differences (ΔE) were calculated. The data were analyzed with ANOVA and the Tukey HSD test (α=.05). When the ΔE of ceramic disks with both substrates, with and without cement, were compared, the lowest value (3) was obtained for ceramic HO with a 2-mm thickness/alloy substrate/without cement; the highest value (10) was obtained for ceramic LT with a1.5-mm thickness/alloy substrate/with cement. This difference was statistically significant. When the effect of cement on the ΔE of ceramics in both substrates was compared, the lowest value (1.1) occurred with ceramic HO with a 1.5-mm thickness/resin substrate, and the highest was observed for ceramic LT with a 1.5-mm thickness/alloy substrate (6.4). This difference was statistically significant. The substrate color, type and thickness of ceramic, and presence of the cement significantly influenced the resulting optical color. The ΔE values of cemented HO ceramics were lower than that of the LT ceramic. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Next Generation Ceramic Substrate Fabricated at Room Temperature.
Kim, Yuna; Ahn, Cheol-Woo; Choi, Jong-Jin; Ryu, Jungho; Kim, Jong-Woo; Yoon, Woon-Ha; Park, Dong-Soo; Yoon, Seog-Young; Ma, Byungjin; Hahn, Byung-Dong
2017-07-26
A ceramic substrate must not only have an excellent thermal performance but also be thin, since the electronic devices have to become thin and small in the electronics industry of the next generation. In this manuscript, a thin ceramic substrate (thickness: 30-70 µm) is reported for the next generation ceramic substrate. It is fabricated by a new process [granule spray in vacuum (GSV)] which is a room temperature process. For the thin ceramic substrates, AlN GSV films are deposited on Al substrates and their electric/thermal properties are compared to those of the commercial ceramic substrates. The thermal resistance is significantly reduced by using AlN GSV films instead of AlN bulk-ceramics in thermal management systems. It is due to the removal of a thermal interface material which has low thermal conductivity. In particular, the dielectric strengths of AlN GSV films are much higher than those of AlN bulk-ceramics which are commercialized, approximately 5 times. Therefore, it can be expected that this GSV film is a next generation substrate in thermal management systems for the high power application.
Degoulet, Mickael; Stelly, Claire E.; Ahn, Kee-Chan; Morikawa, Hitoshi
2015-01-01
Drug addiction is driven, in part, by powerful and enduring memories of sensory cues associated with drug intake. As such, relapse to drug use during abstinence is frequently triggered by an encounter with drug-associated cues, including the drug itself. L-type Ca2+ channels (LTCCs) are known to regulate different forms of synaptic plasticity, the major neural substrate for learning and memory, in various brain areas. Long-term potentiation (LTP) of NMDA receptor (NMDAR)-mediated glutamatergic transmission in the ventral tegmental area (VTA) may contribute to the increased motivational valence of drug-associated cues triggering relapse. In this study, using rat brain slices, we found that isradipine, a general LTCC antagonist used as antihypertensive medication, not only blocks the induction of NMDAR LTP but also promotes the reversal of previously induced LTP in the VTA. In behaving rats, isradipine injected into the VTA suppressed the acquisition of cocaine-paired contextual cue memory assessed using a conditioned place preference (CPP) paradigm. Furthermore, administration of isradipine or a CaV1.3 subtype-selective LTCC antagonist (systemic or intra-VTA) before a single extinction or reinstatement session, while having no immediate effect at the time of administration, abolished previously acquired cocaine and alcohol (ethanol) CPP on subsequent days. Notably, CPP thus extinguished cannot be reinstated by drug re-exposure, even after 2 weeks of withdrawal. These results suggest that LTCC blockade during exposure to drug-associated cues may cause unlearning of the increased valence of those cues, presumably via reversal of glutamatergic synaptic plasticity in the VTA. PMID:26100537
Degoulet, M; Stelly, C E; Ahn, K-C; Morikawa, H
2016-03-01
Drug addiction is driven, in part, by powerful and enduring memories of sensory cues associated with drug intake. As such, relapse to drug use during abstinence is frequently triggered by an encounter with drug-associated cues, including the drug itself. L-type Ca(2+) channels (LTCCs) are known to regulate different forms of synaptic plasticity, the major neural substrate for learning and memory, in various brain areas. Long-term potentiation (LTP) of NMDA receptor (NMDAR)-mediated glutamatergic transmission in the ventral tegmental area (VTA) may contribute to the increased motivational valence of drug-associated cues triggering relapse. In this study, using rat brain slices, we found that isradipine, a general LTCC antagonist used as antihypertensive medication, not only blocks the induction of NMDAR LTP but also promotes the reversal of previously induced LTP in the VTA. In behaving rats, isradipine injected into the VTA suppressed the acquisition of cocaine-paired contextual cue memory assessed using a conditioned place preference (CPP) paradigm. Furthermore, administration of isradipine or a CaV1.3 subtype-selective LTCC antagonist (systemic or intra-VTA) before a single extinction or reinstatement session, while having no immediate effect at the time of administration, abolished previously acquired cocaine and alcohol (ethanol) CPP on subsequent days. Notably, CPP thus extinguished cannot be reinstated by drug re-exposure, even after 2 weeks of withdrawal. These results suggest that LTCC blockade during exposure to drug-associated cues may cause unlearning of the increased valence of those cues, presumably via reversal of glutamatergic synaptic plasticity in the VTA.
Correlation of compressive stress with spalling of plasma sprayed ceramic materials
NASA Technical Reports Server (NTRS)
Mullen, R. L.; Mcdonald, G.; Hendricks, R. C.; Hofle, M. M.
1983-01-01
Ceramics on metal substrates for potential use as high temperature seals or other applications are exposed to forces originating from differences in thermal expansion between the ceramic and the metal substrate. This report develops a relationship between the difference in expansion of the ceramic and the substrate, defines conditions under which shear between the ceramic and the substrate occurs, and those under which bending forces are produced in the ceramic. The off-axis effect of compression forces resulting from high temperature plastic flow of the ceramic producing buckling of the ceramic is developed. Shear is associated with the edge or boundary stresses on the component while bending is associated with the distortion of an interior region. Both modes are significant in predicting life of the ceramic.
Method for improving the performance of oxidizable ceramic materials in oxidizing environments
NASA Technical Reports Server (NTRS)
Nagaraj, Bangalore A. (Inventor)
2002-01-01
Improved adhesion of thermal barrier coatings to nonmetallic substrates using a dense layer of ceramic on an underlying nonmetallic substrate that includes at least one oxidizable component. The improved adhesion occurs because the application of the dense ceramic layer forms a diffusion barrier for oxygen. This diffusion barrier prevents the oxidizable component of the substrate from decomposing. The present invention applies ceramic by a process that deposits a relatively thick and dense ceramic layer on the underlying substrate. The formation of the dense layer of ceramic avoids the problem of void formation associated with ceramic formation by most prior art thermal decomposition processes. The formation of voids has been associated with premature spalling of thermal barrier layers and other protective layers applied to substrates.
Correlation of compressive and shear stress with spalling of plasma-sprayed ceramic materials
NASA Technical Reports Server (NTRS)
Mullen, R. L.; Mcdonald, G.; Hendricks, R. C.; Hofle, M. M.
1983-01-01
Ceramics on metal substrates for potential use as high temperature seals or other applications are exposed to forces originating from differences in thermal expansion between the ceramic and the metal substrate. This report develops a relationship between the difference in expansion of the ceramic and the substrate, defines conditions under which shear between the ceramic and the substrate occurs, and those under which bending forces are produced in the ceramic. The off-axis effect of compression forces resulting from high temperature plastic flow of the ceramic producing buckling of the ceramic is developed. Shear is associated with the edge or boundary stresses on the component while bending is associated with the distortion of an interior region. Both modes are significant in predicting life of the ceramic. Previously announced in STAR as N83-27016
Bryant, Simon; Kimura, Tomomi E; Kong, Cherrie H T; Watson, Judy J; Chase, Anabelle; Suleiman, M Saadeh; James, Andrew F; Orchard, Clive H
2014-03-01
L-type Ca channels (LTCC), which play a key role in cardiac excitation-contraction coupling, are located predominantly at the transverse (t-) tubules in ventricular myocytes. Caveolae and the protein caveolin-3 (Cav-3) are also present at the t-tubules and have been implicated in localizing a number of signaling molecules, including protein kinase A (PKA) and β2-adrenoceptors. The present study investigated whether disruption of Cav-3 binding to its endogenous binding partners influenced LTCC activity. Ventricular myocytes were isolated from male Wistar rats and LTCC current (ICa) recorded using the whole-cell patch-clamp technique. Incubation of myocytes with a membrane-permeable peptide representing the scaffolding domain of Cav-3 (C3SD) reduced basal ICa amplitude in intact, but not detubulated, myocytes, and attenuated the stimulatory effects of the β2-adrenergic agonist zinterol on ICa. The PKA inhibitor H-89 also reduced basal ICa; however, the inhibitory effects of C3SD and H-89 on basal ICa amplitude were not summative. Under control conditions, myocytes stained with antibody against phosphorylated LTCC (pLTCC) displayed a striated pattern, presumably reflecting localization at the t-tubules. Both C3SD and H-89 reduced pLTCC staining at the z-lines but did not affect staining of total LTCC or Cav-3. These data are consistent with the idea that the effects of C3SD and H-89 share a common pathway, which involves PKA and is maximally inhibited by H-89, and suggest that Cav-3 plays an important role in mediating stimulation of ICa at the t-tubules via PKA-induced phosphorylation under basal conditions, and in response to β2-adrenoceptor stimulation. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Superconductive articles including cerium oxide layer
Wu, X.D.; Muenchausen, R.E.
1993-11-16
A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure. 7 figures.
Superconductive articles including cerium oxide layer
Wu, Xin D.; Muenchausen, Ross E.
1993-01-01
A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure.
2004-06-01
element can be applied to achieve this goal. Résumé Ce document décrit l’étude d’une antenne imprimée à polarisation circulaire réalisée sur un...matériau LTCC (low temperature co-fired ceramic). Cette antenne est utilisée comme élément rayonnant d’un réseau à déphasage ayant une architecture de...l’analyse d’une antenne élémentaire pouvant être utilisée dans réseau à déphasage ayant une architecture de type “tuile” fonctionnant en bande EHF. La
Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating
Meek, T.T.; Blake, R.D.
1985-04-03
A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate.
Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating
Meek, Thomas T.; Blake, Rodger D.
1987-01-01
A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate.
Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating
Meek, T.T.; Blake, R.D.
1987-09-22
A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate. 2 figs.
Method for non-destructive evaluation of ceramic coatings
Peterson, Kristen A.; Rosen, Elias P.; Jordan, Eric H.; Shahbazmohamadi, Sina; Vakhtin, Andrei B.
2016-11-08
A method for evaluating the condition of a ceramic coating deposited on a substrate comprising illuminating the ceramic coating with light, measuring the intensity of light returned from the ceramic coating as function of depth in the coating and transverse position on the coating, and analyzing the measured light intensities to obtain one or more of intensity of the light returned from the exposed coating surface relative to the intensity of light returned from the coating/substrate interface, intensity of the light returned from the coating/substrate interface relative to the intensity of light returned from the bulk of the ceramic coating, determination of roughness at the exposed surface of the ceramic coating, and determination of roughness of the interface between the ceramic coating and underlying bond coat or substrate.
NASA Astrophysics Data System (ADS)
Jamaludin, L.; Abdullah, M. M. A. B.; Hussin, K.; Kadir, A. Abdul
2018-06-01
The study focus on effect of pre-heated ceramic surface on the adhesion bond strength between geopolymer coating coating and ceramic substrates. Ceramic substrates was pre-heated at different temperature (400 °C, 600 °C, 800 °C and 1000 °C). Fly ash geopolymer coating material potential used to protect surface used in exposure conditions after sintering at high temperature. Fly ash and alkali activator (Al2O3/Na2SiO3) were mixed with 2.0 solids-to-liquid ratios to prepare geopolymer coating material at constant NaOH concentration of 12M. Adhesion test was conducted to determine the adhesion bond between ceramic substrates and fly ash coating material. The results showed the pre-heated ceramic substrates effect the adhesion bond of coating compared with untreated substrates with increasing of strength up to 20 % for temperature 600 °C.
NASA Astrophysics Data System (ADS)
Pedro, Sara Gómez-De; Puyol, Mar; Izquierdo, David; Salinas, Iñigo; de La Fuente, J. M.; Alonso-Chamarro, Julián
2012-02-01
In this paper, a computer controlled microreactor to synthesize water soluble CdS and CdS/ZnS nanocrystals with in situ monitoring of the reaction progress is developed. It is based on ceramic tapes and the Low-Temperature Co-fired Ceramics technology (LTCC). As well the microsystem set-up, the microreactor fluidic design has also been thoroughly optimized. The final device is based on a hydrodynamic focusing of the reagents followed by a three-dimensional micromixer. This generates monodispersed and stable CdS and core-shell CdS/ZnS nanocrystals of 4.5 and 4.2 nm, respectively, with reproducible optical properties in terms of fluorescence emission wavelengths, bandwidth, and quantum yields, which is a key requirement for their future analytical applications. The synthetic process is also controlled in real time with the integration of an optical detection system for absorbance and fluorescence measurements based on commercial miniaturized optical components. This makes possible the efficient managing of the hydrodynamic variables to obtain the desired colloidal suspension. As a result, a simple, economic, robust and portable microsystem for the well controlled synthesis of CdS and CdS/ZnS nanocrystals is presented. Moreover, the reaction takes place in aqueous medium, thus allowing the direct modular integration of this microreactor in specific analytical microsystems, which require the use of such quantum dots as labels.
Refractory Oxidative-Resistant Ceramic Carbon Insulation
NASA Technical Reports Server (NTRS)
Leiser, Daniel B. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)
2001-01-01
High-temperature, lightweight, ceramic carbon insulation is prepared by coating or impregnating a porous carbon substrate with a siloxane gel derived from the reaction of an organodialkoxy silane and an organotrialkoxy silane in an acid or base medium in the presence of the carbon substrate. The siloxane gel is subsequently dried on the carbon substrate to form a ceramic carbon precursor. The carbon precursor is pyrolyzed, in an inert atmosphere, to form the ceramic insulation containing carbon, silicon, and oxygen. The carbon insulation is characterized as a porous, fibrous, carbon ceramic tile which is particularly useful as lightweight tiles for spacecraft.
NASA Astrophysics Data System (ADS)
Drehmann, R.; Grund, T.; Lampke, T.; Wielage, B.; Wüstefeld, C.; Motylenko, M.; Rafaja, D.
2018-02-01
The present work summarizes the most important results of a research project dealing with the comprehensive investigation of the bonding mechanisms between cold-sprayed Al coatings and various poly- and monocrystalline ceramic substrates (Al2O3, AlN, Si3N4, SiC, MgF2). Due to their exceptional combination of properties, metallized ceramics are gaining more and more importance for a wide variety of applications, especially in electronic engineering. Cold spray provides a quick, flexible, and cost-effective one-step process to apply metallic coatings on ceramic surfaces. However, since most of the existing cold-spray-related publications focus on metallic substrates, only very little is known about the bonding mechanisms acting between cold-sprayed metals and ceramic substrates. In this paper, the essential factors influencing the bonding strength in such composites are identified. Besides mechanical tensile strength testing, a thorough analysis of the coatings and especially the metal/ceramic interfaces was conducted by means of HRTEM, FFT, STEM, EDX, EELS, GAXRD, and EBSD. The influence of substrate material, substrate temperature, and particle size is evaluated. The results suggest that, apart from mechanical interlocking, the adhesion of cold-sprayed metallic coatings on ceramics is based on a complex interplay of different mechanisms such as quasiadiabatic shearing, static recrystallization, and heteroepitaxial growth.
Experimental Evaluation of Hot Films on Ceramic Substrates for Skin-Friction Measurement
NASA Technical Reports Server (NTRS)
Noffz, Gregory K.; Lavine, Adrienne S.; Hamory, Philip J.
2003-01-01
An investigation has been performed on the use of low-thermal conductivity, ceramic substrates for hot films intended to measure skin friction. Hot films were deposited on two types of ceramic substrates. Four hot films used composite-ceramic substrates with subsurface thermocouples (TCs), and two hot films were deposited on thin Macor(R) substrates. All six sensors were tested side by side in the wall of the NASA Glenn Research Center 8-ft by 6-ft Supersonic Wind Tunnel (SWT). Data were obtained from zero flow to Mach 1.98 in air. Control measurements were made with three Preston tubes and two boundary-layer rakes. The tests were repeated at two different hot film power levels. All hot films and subsurface TCs functioned throughout the three days of testing. At zero flow, the films on the high-thermal conductivity Macor(R) substrates required approximately twice the power as those on the composite-ceramic substrates. Skin-friction results were consistent with the control measurements. Estimates of the conduction heat losses were made using the embedded TCs but were hampered by variability in coating thicknesses and TC locations.
Ceramic electrolyte coating and methods
Seabaugh, Matthew M [Columbus, OH; Swartz, Scott L [Columbus, OH; Dawson, William J [Dublin, OH; McCormick, Buddy E [Dublin, OH
2007-08-28
Aqueous coating slurries useful in depositing a dense coating of a ceramic electrolyte material (e.g., yttrium-stabilized zirconia) onto a porous substrate of a ceramic electrode material (e.g., lanthanum strontium manganite or nickel/zirconia) and processes for preparing an aqueous suspension of a ceramic electrolyte material and an aqueous spray coating slurry including a ceramic electrolyte material. The invention also includes processes for depositing an aqueous spray coating slurry including a ceramic electrolyte material onto pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.
Optical influence of the type of illuminant, substrates and thickness of ceramic materials.
Volpato, Cláudia Angela Maziero; Monteiro, Sylvio; de Andrada, Mauro Caldeira; Fredel, Márcio Celso; Petter, Carlos Otávio
2009-01-01
The present study is an instrumental evaluation of the optical influence of the type of illuminant, substrate and different thickness on the color of dental ceramics. Thirty ceramic disks were prepared from IPS-Empress and IPS-Empress2 in three different thicknesses (1.5, 2.0 and 2.5mm). Disks made of composite resin; silver-palladium alloy and gold were used as substrates. The disks with a 1.5mm thickness were placed on a neutral gray photographic paper and measured with a spectrophotometer under three illuminants: daylight (D65), incandescent light (A) and fluorescent light (F6). All ceramic disks were combined with the substrate disks and a spectrophotometer was used to measure the coordinates of lightness (L*) and chromaticity (a* and b*). Two-way ANOVA (p<0.05) was used to analyze the combinations of ceramics, substrates and illuminants tested considering the coordinates of lightness (L*) and chromaticity (a* and b*), and also differences of color (DeltaE), lightness (DeltaL*), chromaticity values (Deltaa* and Deltab*). For the illuminants tested, the results present significant differences for coordinates of chromaticity a* and b*, suggesting a metamerism effect. In combination with the substrates, the results present statistical differences in all the tested conditions, especially where there is no ceramic substructure. The presence of discolored tooth remnants or metallic posts and cores can interfere with the desired aesthetic result, based on the selection of color aided by a single luminous source. Thus, the substrate color effect, thickness of the ceramic materials and type of illuminant are important factors to be considered during the clinical application of the ceramic systems.
Surface-enhanced Raman spectroscopy using silver-coated porous glass-ceramic substrates.
Pan, Z; Zavalin, A; Ueda, A; Guo, M; Groza, M; Burger, A; Mu, R; Morgan, S H
2005-06-01
Surface-enhanced Raman scattering (SERS) has been studied using a silver-coated porous glass-ceramic material as a new type of substrate. The porous glass-ceramic is in the CaO-TiO2-P2O5 system prepared by controlled crystallization and subsequent chemical leaching of the dense glass-ceramic, leaving a solid skeleton with pores ranging in size from 50 nm to submicrometer. Silver was coated on the surface of the porous glass-ceramic by radio frequency (RF) sputtering or e-beam evaporation in vacuum. SERS spectra of excellent quality were obtained from several dyes and carboxylic acid molecules, including rhodamine 6G, crystal violet, isonicotinic acid, and benzoic acid, using this new substrate. This new substrate showed a good compatibility with these molecules. The porous glass ceramic with a nanometer-structured surface accommodated both test molecules and silver film. The absorbed molecules were therefore better interfaced with silver for surface-enhanced Raman scattering.
Implantable devices having ceramic coating applied via an atomic layer deposition method
Liang, Xinhua; Weimer, Alan W.; Bryant, Stephanie J.
2016-03-08
Substrates coated with films of a ceramic material such as aluminum oxides and titanium oxides are biocompatible, and can be used in a variety of applications in which they are implanted in a living body. The substrate is preferably a porous polymer, and may be biodegradable. An important application for the ceramic-coated substrates is as a tissue engineering scaffold for forming artificial tissue.
LTCC based bioreactors for cell cultivation
NASA Astrophysics Data System (ADS)
Bartsch, H.; Welker, T.; Welker, K.; Witte, H.; Müller, J.
2016-01-01
LTCC multilayers offer a wide range of structural options and flexibility of connections not available in standard thin film technology. Therefore they are considered as material base for cell culture reactors. The integration of microfluidic handling systems and features for optical and electrical capturing of indicators for cell culture growth offers the platform for an open system concept. The present paper assesses different approaches for the creation of microfluidic channels in LTCC multilayers. Basic functions required for the fluid management in bioreactors include temperature and flow control. Both features can be realized with integrated heaters and temperature sensors in LTCC multilayers. Technological conditions for the integration of such elements into bioreactors are analysed. The temperature regulation for the system makes use of NTC thermistor sensors which serve as real value input for the control of the heater. It allows the adjustment of the fluid temperature with an accuracy of 0.2 K. The tempered fluid flows through the cell culture chamber. Inside of this chamber a thick film electrode array monitors the impedance as an indicator for the growth process of 3-dimensional cell cultures. At the system output a flow sensor is arranged to monitor the continual flow. For this purpose a calorimetric sensor is implemented, and its crucial design parameters are discussed. Thus, the work presented gives an overview on the current status of LTCC based fluid management for cell culture reactors, which provides a promising base for the automation of cell culture processes.
Kaufman, David Y [Chicago, IL; Saha, Sanjib [Santa Clara, CA
2006-08-29
A short-resistant capacitor comprises an electrically conductive planar support substrate having a first thickness, a ceramic film deposited over the support substrate, thereby defining a ceramic surface; and a metallic film deposited over the ceramic surface, said film having a second thickness which is less than the first thickness and which is between 0.01 and 0.1 microns.
Iron Overload and Apoptosis of HL-1 Cardiomyocytes: Effects of Calcium Channel Blockade
Chen, Mei-pian; Cabantchik, Z. Ioav; Chan, Shing; Chan, Godfrey Chi-fung; Cheung, Yiu-fai
2014-01-01
Background Iron overload cardiomyopathy that prevails in some forms of hemosiderosis is caused by excessive deposition of iron into the heart tissue and ensuing damage caused by a raise in labile cell iron. The underlying mechanisms of iron uptake into cardiomyocytes in iron overload condition are still under investigation. Both L-type calcium channels (LTCC) and T-type calcium channels (TTCC) have been proposed to be the main portals of non-transferrinic iron into heart cells, but controversies remain. Here, we investigated the roles of LTCC and TTCC as mediators of cardiac iron overload and cellular damage by using specific Calcium channel blockers as potential suppressors of labile Fe(II) and Fe(III) ingress in cultured cardiomyocytes and ensuing apoptosis. Methods Fe(II) and Fe(III) uptake was assessed by exposing HL-1 cardiomyocytes to iron sources and quantitative real-time fluorescence imaging of cytosolic labile iron with the fluorescent iron sensor calcein while iron-induced apoptosis was quantitatively measured by flow cytometry analysis with Annexin V. The role of calcium channels as routes of iron uptake was assessed by cell pretreatment with specific blockers of LTCC and TTCC. Results Iron entered HL-1 cardiomyocytes in a time- and dose-dependent manner and induced cardiac apoptosis via mitochondria-mediated caspase-3 dependent pathways. Blockade of LTCC but not of TTCC demonstrably inhibited the uptake of ferric but not of ferrous iron. However, neither channel blocker conferred cardiomyocytes with protection from iron-induced apoptosis. Conclusion Our study implicates LTCC as major mediators of Fe(III) uptake into cardiomyocytes exposed to ferric salts but not necessarily as contributors to ensuing apoptosis. Thus, to the extent that apoptosis can be considered a biological indicator of damage, the etiopathology of cardiosiderotic damage that accompanies some forms of hemosiderosis would seem to be unrelated to LTCC or TTCC, but rather to other routes of iron ingress present in heart cells. PMID:25390893
Screen-Cage Ion Plating Of Silver On Polycrystalline Alumina
NASA Technical Reports Server (NTRS)
Spalvins, Talivaldis; Sliney, Harold E.; Deadmore, Daniel L.
1995-01-01
Screen-cage ion plating (SCIP) cost-effective technique offering high throwing power for deposition of adherent metal films on ceramic substrates. Applies silver films to complexly shaped substrates of polycrystalline alumina. Silver adheres tenaciously and reduces friction. SCIP holds promise for applying lubricating soft metallic films to high-temperature ceramic components of advanced combustion engines. Other potential uses include coating substrates with metal for protection against corrosion, depositing electrical conductors on dielectric substrates, making optically reflective or electrically or thermally conductive surface layers, and applying decorative metal coats to ceramic trophies or sculptures.
Study on effect of plasma surface treatments for diamond deposition by DC arc plasmatron.
Kang, In-Je; Joa, Sang-Beom; Lee, Heon-Ju
2013-11-01
To improve the thermal conductivity and wear resistance of ceramic materials in the field of renewable energy technologies, diamond coating by plasma processing has been carried out in recent years. This study's goal is to improve diamond deposition on Al2O3 ceramic substrates by plasma surface treatments. Before diamond deposition was carried out in a vacuum, plasma surface treatments using Ar gas were conducted to improve conditions for deposition. We also conducted plasma processing for diamond deposition on Al2O3 ceramic substrates using a DC arc Plasmatron. The Al2O3 ceramic substrates with diamond film (5 x 15 mm2), were investigated by SEM (Scanning Electron Microscopy), AFM (Atomic Force Microscopy) and XRD (X-ray Diffractometer). Then, the C-H stretching of synthetic diamond films by FTIR (Fourier Transform Infrared Spectroscopy) was studied. We identified nanocrystalline diamond films on the Al2O3 ceramic substrates. The results showed us that the deposition rate of diamond films was 2.3 microm/h after plasma surface treatments. Comparing the above result with untreated ceramic substrates, the deposition rate improved with the surface roughness of the deposited diamond films.
Gómez-de Pedro, Sara; Puyol, Mar; Izquierdo, David; Salinas, Iñigo; de la Fuente, J M; Alonso-Chamarro, Julián
2012-02-21
In this paper, a computer controlled microreactor to synthesize water soluble CdS and CdS/ZnS nanocrystals with in situ monitoring of the reaction progress is developed. It is based on ceramic tapes and the Low-Temperature Co-fired Ceramics technology (LTCC). As well the microsystem set-up, the microreactor fluidic design has also been thoroughly optimized. The final device is based on a hydrodynamic focusing of the reagents followed by a three-dimensional micromixer. This generates monodispersed and stable CdS and core-shell CdS/ZnS nanocrystals of 4.5 and 4.2 nm, respectively, with reproducible optical properties in terms of fluorescence emission wavelengths, bandwidth, and quantum yields, which is a key requirement for their future analytical applications. The synthetic process is also controlled in real time with the integration of an optical detection system for absorbance and fluorescence measurements based on commercial miniaturized optical components. This makes possible the efficient managing of the hydrodynamic variables to obtain the desired colloidal suspension. As a result, a simple, economic, robust and portable microsystem for the well controlled synthesis of CdS and CdS/ZnS nanocrystals is presented. Moreover, the reaction takes place in aqueous medium, thus allowing the direct modular integration of this microreactor in specific analytical microsystems, which require the use of such quantum dots as labels. This journal is © The Royal Society of Chemistry 2012
Methods of repairing a substrate
NASA Technical Reports Server (NTRS)
Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)
2011-01-01
A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium boride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.
Role of L-Type Ca[superscript 2+] Channel Isoforms in the Extinction of Conditioned Fear
ERIC Educational Resources Information Center
Busquet, Perrine; Hetzenauer, Alfred; Sinnegger-Brauns, Martina J.; Striessnig, Jorg; Singewald, Nicolas
2008-01-01
Dihydropyridine (DHP) L-type Ca[superscript 2+] channel (LTCC) antagonists, such as nifedipine, have been reported to impair the extinction of conditioned fear without interfering with its acquisition. Identification of the LTCC isoforms mediating this DHP effect is an essential basis to reveal their role as potential drug targets for the…
Compliant sleeve for ceramic turbine blades
Cai, Hongda; Narasimhan, Dave; Strangman, Thomas E.; Easley, Michael L.; Schenk, Bjoern
2000-01-01
A compliant sleeve for attaching a ceramic member to a metal member is comprised of a superalloy substrate having a metal contacting side and a ceramic contacting side. The ceramic contacting side is plated with a layer of nickel followed by a layer of platinum. The substrate is then oxidized to form nickel oxide scale on the ceramic contacting side and a cobalt oxide scale on the metal contacting side. A lubricious coating of boron nitride is then applied over the metal contacting side, and a shear-stress limiting gold coating is applied over the ceramic contacting side.
Thick-film nickel-metal-hydride battery based on porous ceramic substrates
NASA Astrophysics Data System (ADS)
Do, Jing-Shan; Yu, Sen-Hao; Cheng, Suh-Fen
Nickel-metal-hydride (Ni-MH) batteries are prepared with thick-film and thin-film technologies based on porous ceramic substrates. The porosity and the mean pore diameter of BP ceramic substrates prepared from the argils increases from 19.81% and 0.0432 μm to 29.81% and 0.224 μm, respectively, upon increasing the ethyl cellulose content in the BP argil from 0 to 0.79%. The pore diameter of Al 2O 3 substrates prepared from Al 2O 3 powder is mainly distributed in the range 0.01-0.5 μm. The distribution of the pore diameters of BP ceramic substrates lies in two ranges, namely: 0.04-2 μm and 10-300 μm. Using BP ceramic plates and Al 2O 3 plates as substrates to fabricate thick-film Ni-MH batteries, the optimal electroactive material utilization in the batteries is 77.0 and 71.1%, respectively. On increasing the screen-printing number for preparing the cathode (Ni(OH) 2) from 1 to 3, the discharge capacity of the thick-film battery increases from 0.2917 to 0.7875 mAh, and the utilization in the battery decreases from 71.0 to 53.0%.
Multilayer Article Characterized by Low Coefficient of Thermal Expansion Outer Layer
NASA Technical Reports Server (NTRS)
Lee, Kang N. (Inventor)
2004-01-01
A multilayer article comprises a substrate comprising a ceramic or a silicon-containing metal alloy. The ceramic is a Si-containing ceramic or an oxide ceramic with or without silicon. An outer layer overlies the substrate and at least one intermediate layer is located between the outer layer and thc substrate. An optional bond layer is disposed between thc 1 least one intermediate layer and thc substrate. The at least one intermediate layer may comprise an optional chemical barrier layer adjacent the outer layer, a mullite-containing layer and an optional chemical barrier layer adjacent to the bond layer or substrate. The outer layer comprises a compound having a low coefficient of thermal expansion selected from one of the following systems: rare earth (RE) silicates; at least one of hafnia and hafnia-containing composite oxides; zirconia-containing composite oxides and combinations thereof.
Single level microelectronic device package with an integral window
Peterson, Kenneth A.; Watson, Robert D.
2003-12-09
A package with an integral window for housing a microelectronic device. The integral window is bonded directly to the package without having a separate layer of adhesive material disposed in-between the window and the package. The device can be a semiconductor chip, CCD chip, CMOS chip, VCSEL chip, laser diode, MEMS device, or IMEMS device. The package can be formed of a multilayered LTCC or HTCC cofired ceramic material, with the integral window being simultaneously joined to the package during cofiring. The microelectronic device can be flip-chip interconnected so that the light-sensitive side is optically accessible through the window. A glob-top encapsulant or protective cover can be used to protect the microelectronic device and electrical interconnections. The result is a compact, low profile package having an integral window that is hermetically sealed to the package prior to mounting and interconnecting the microelectronic device.
Array of Laminated Waveguides for Implementation in LTCC Technology
2006-11-01
Novembre 2004, pp 581-589. [ 13 ] Clénet, M., “Study of a Ka-Band Yagi-like antenna array buried in LTCC material”, JINA, 12-14 November 2002, Nice...public release, distribution unlimited 13 . SUPPLEMENTARY NOTES The original document contains color images. 14. ABSTRACT 15. SUBJECT TERMS 16...2.3.1 Excitation coefficients ....................................................................... 13 2.3.2 Boresight radiation patterns
NASA Astrophysics Data System (ADS)
Stein, Stefan; Wedler, Jonathan; Rhein, Sebastian; Schmidt, Michael; Körner, Carolin; Michaelis, Alexander; Gebhardt, Sylvia
The application of piezoelectric transducers to structural body parts of machines or vehicles enables the combination of passive mechanical components with sensor and actuator functions in one single structure. According to Herold et al. [1] and Staeves [2] this approach indicates significant potential regarding smart lightweight construction. To obtain the highest yield, the piezoelectric transducers need to be integrated into the flux of forces (load path) of load bearing structures. Application in a downstream process reduces yield and process efficiency during manufacturing and operation, due to the necessity of a subsequent process step of sensor/actuator application. The die casting process offers the possibility for integration of piezoelectric transducers into metal structures. Aluminum castings are particularly favorable due to their high quality and feasibility for high unit production at low cost (Brunhuber [3], Nogowizin [4]). Such molded aluminum parts with integrated piezoelectric transducers enable functions like active vibration damping, structural health monitoring or energy harvesting resulting in significant possibilities of weight reduction, which is an increasingly important driving force of automotive and aerospace industry (Klein [5], Siebenpfeiffer [6]) due to increasingly stringent environmental protection laws. In the scope of those developments, this paper focuses on the entire process chain enabling the generation of lightweight metal structures with sensor and actuator function, starting from the manufacturing of piezoelectric modules over electrical and mechanical bonding to the integration of such modules into aluminum (Al) matrices by die casting. To achieve this challenging goal, piezoceramic sensors/actuator modules, so-called LTCC/PZT modules (LPM) were developed, since ceramic based piezoelectric modules are more likely to withstand the thermal stress of about 700 °C introduced by the casting process (Flössel et al., [7]). The modules are made of low temperature cofired ceramic (LTCC) tapes with an embedded lead zirconate titanate (PZT) plate and are manufactured in multilayer technique. For joining conducting copper (Cu) wires with the electrode structure of the LPM, a novel laser drop on demand wire bonding method (LDB) is applied, which is based on the melting of a spherical CuSn12 braze preform with a liquidus temperature Tliquid of 989.9 °C (Deutsches Kupfer-Institut Düsseldorf, [8]) providing sufficient thermal stability for a subsequent casting process.
Direct cooled power electronics substrate
Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Lowe, Kirk T [Knoxville, TN
2010-09-14
The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.
NASA Astrophysics Data System (ADS)
Semenyuk, V.
2014-06-01
The influence of the thermal properties of the substrate on the performance of cascade thermoelectric coolers (TECs) is studied with an emphasis on a justified choice of substrate material. An analytical model is developed for predicting the thermal resistance of the substrate associated with three-dimensional heat transfer from a smaller cascade area into a larger cooling cascade. The model is used to define the maximum temperature difference for a line of standard multistage TECs based on various substrate materials with different thermal conductivities, including white 96% Al2O3 "Rubalit" ceramic, grey 99.8% Al2O3 "Policor" ceramic, and AlN and BeO ceramics. Two types of multistage TECs are considered, namely with series and series-parallel connection of TE pellets, having from two to five cascades with TE pellet length in the range from 0.3 mm to 2 mm. A comparative analysis of the obtained results is made, and recommendations are formulated concerning the selection of an appropriate substrate material providing the highest performance-to-cost ratio.
Impact of background on color, transmittance, and fluorescence of leucite based ceramics.
Rafael, Caroline Freitas; Güth, Jan-Frederik; Kauling, Ana Elisa Colle; Cesar, Paulo Francisco; Volpato, Claudia Angelo Mazieiro; Liebermann, Anja
2017-07-26
This study evaluated the impact of tooth shade on differences in color (∆E), lightness (∆L), chromaticity coordinates a*/b* (∆a and ∆b), transmittance and the degree of fluorescence of CAD/CAM leucite based ceramic (LBC). Ten disks were fabricated of LBC; Empress CAD, A2, thickness of 1.5 mm and eight disks of resin-nano-ceramic (RNC; Lava Ultimate) in different colors to simulate variations in substrate shade. The associations of LBC disks with different color substrates were analyzed with a spectrophotometer; ∆E, ∆L*, ∆a*, ∆b*, and transmittance were measured and calculated. Fluorescence was evaluated with a fluorescence system (Fluorescence System, Biopdi). All substrate shades influenced the optical properties of LBC, with regard to color, luminosity, coordinate a* and b*, transmittance, and fluorescence (p<0.001). Substrate colors with high saturation (A3.5 and C2) presented highest impact, whereas colors with lowest saturations (BL, B1) showed less impact. Substrate color influenced the optical properties of ceramic restorations.
NASA Astrophysics Data System (ADS)
Kromer, R.; Danlos, Y.; Costil, S.
2018-04-01
Cold spraying enables a variety of metals dense coatings onto metal surfaces. Supersonic gas jet accelerates particles which undergo with the substrate plastic deformation. Different bonding mechanisms can be created depending on the materials. The particle-substrate contact time, contact temperature and contact area upon impact are the parameters influencing physicochemical and mechanical bonds. The resultant bonding arose from plastic deformation of the particle and substrate and temperature increasing at the interface. The objective was to create specific topography to enable metallic particle adhesion onto ceramic substrates. Ceramic did not demonstrate deformation during the impact which minimized the intimate bonds. Laser surface texturing was hence used as prior surface treatment to create specific topography and to enable mechanical anchoring. Particle compressive states were necessary to build up coating. The coating deposition efficiency and adhesion strength were evaluated. Textured surface is required to obtain strong adhesion of metallic coatings onto ceramic substrates. Consequently, cold spray coating parameters depend on the target material and a methodology was established with particle parameters (diameters, velocities, temperatures) and particle/substrate properties to adapt the surface topography. Laser surface texturing is a promising tool to increase the cold spraying applications.
Role of L-type Ca2+ channel isoforms in the extinction of conditioned fear.
Busquet, Perrine; Hetzenauer, Alfred; Sinnegger-Brauns, Martina J; Striessnig, Jörg; Singewald, Nicolas
2008-05-01
Dihydropyridine (DHP) L-type Ca(2+) channel (LTCC) antagonists, such as nifedipine, have been reported to impair the extinction of conditioned fear without interfering with its acquisition. Identification of the LTCC isoforms mediating this DHP effect is an essential basis to reveal their role as potential drug targets for the treatment of specific anxiety disorders. Ca(V)1.2 and Ca(V)1.3 are the predominant LTCCs in the mammalian brain. However, since no isoform-selective DHP blockers are available, their individual contribution to fear memory extinction is unknown. We used a novel mouse model expressing DHP-insensitive Ca(V)1.2 LTCCs (Ca(V)1.2DHP(-/-) mice) to address this question. In line with previous studies, wild-type (WT) mice treated with systemic nifedipine displayed markedly impaired fear extinction. This DHP effect was completely abolished in Ca(V)1.2DHP(-/-) mice, indicating that it is mediated by Ca(V)1.2, but not by Ca(V)1.3 LTCCs. Supporting this conclusion, Ca(V)1.3-deficient mice (Ca(V)1.3(-/-)) showed extinction identical to the respective WT mice. The inhibition of fear extinction was not observed after intracerebroventricular (i.c.v.) application of different doses of nifedipine, suggesting that this effect is secondary to inhibition of peripheral Ca(V)1.2 channels. The LTCC activator BayK, which lacks neurotoxic effects in Ca(V)1.2DHP(-/-) mice, did not influence the extinction time course. In summary, we demonstrate that LTCC signaling through the Ca(V)1.2 isoform of LTCCs interferes with fear memory extinction, presumably via a peripherally mediated mechanism. Activation of other LTCC isoforms (predominantly Ca(V)1.3) is not sufficient to accelerate extinction of conditioned fear in mice.
Role of L-type Ca2+ channel isoforms in the extinction of conditioned fear
Busquet, Perrine; Hetzenauer, Alfred; Sinnegger-Brauns, Martina J.; Striessnig, Jörg; Singewald, Nicolas
2008-01-01
Dihydropyridine (DHP) L-type Ca2+ channel (LTCC) antagonists, such as nifedipine, have been reported to impair the extinction of conditioned fear without interfering with its acquisition. Identification of the LTCC isoforms mediating this DHP effect is an essential basis to reveal their role as potential drug targets for the treatment of specific anxiety disorders. CaV1.2 and CaV1.3 are the predominant LTCCs in the mammalian brain. However, since no isoform-selective DHP blockers are available, their individual contribution to fear memory extinction is unknown. We used a novel mouse model expressing DHP-insensitive CaV1.2 LTCCs (CaV1.2DHP−/− mice) to address this question. In line with previous studies, wild-type (WT) mice treated with systemic nifedipine displayed markedly impaired fear extinction. This DHP effect was completely abolished in CaV1.2DHP−/− mice, indicating that it is mediated by CaV1.2, but not by CaV1.3 LTCCs. Supporting this conclusion, CaV1.3-deficient mice (CaV1.3−/−) showed extinction identical to the respective WT mice. The inhibition of fear extinction was not observed after intracerebroventricular (i.c.v.) application of different doses of nifedipine, suggesting that this effect is secondary to inhibition of peripheral CaV1.2 channels. The LTCC activator BayK, which lacks neurotoxic effects in CaV1.2DHP−/− mice, did not influence the extinction time course. In summary, we demonstrate that LTCC signaling through the CaV1.2 isoform of LTCCs interferes with fear memory extinction, presumably via a peripherally mediated mechanism. Activation of other LTCC isoforms (predominantly CaV1.3) is not sufficient to accelerate extinction of conditioned fear in mice. PMID:18441296
Ceramic substrate including thin film multilayer surface conductor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Joseph Ambrose; Peterson, Kenneth A.
2017-05-09
A ceramic substrate comprises a plurality of ceramic sheets, a plurality of inner conductive layers, a plurality of vias, and an upper conductive layer. The ceramic sheets are stacked one on top of another and include a top ceramic sheet. The inner conductive layers include electrically conductive material that forms electrically conductive features on an upper surface of each ceramic sheet excluding the top ceramic sheet. The vias are formed in each of the ceramic sheets with each via being filled with electrically conductive material. The upper conductive layer includes electrically conductive material that forms electrically conductive features on anmore » upper surface of the top ceramic sheet. The upper conductive layer is constructed from a stack of four sublayers. A first sublayer is formed from titanium. A second sublayer is formed from copper. A third sublayer is formed from platinum. A fourth sublayer is formed from gold.« less
Supersonic laser spray of aluminium alloy on a ceramic substrate
NASA Astrophysics Data System (ADS)
Riveiro, A.; Lusquiños, F.; Comesaña, R.; Quintero, F.; Pou, J.
2007-12-01
Applying a ceramic coating onto a metallic substrate to improve its wear resistance or corrosion resistance has attracted the interest of many researchers during decades. However, only few works explore the possibility to apply a metallic layer onto a ceramic material. This work presents a novel technique to coat ceramic materials with metals: the supersonic laser spraying. In this technique a laser beam is focused on the surface of the precursor metal in such a way that the metal is transformed to the liquid state in the beam-metal interaction zone. A supersonic jet expels the molten material and propels it to the surface of the ceramic substrate. In this study, we present the preliminary results obtained using the supersonic laser spray to coat a commercial cordierite ceramic plate with an Al-Cu alloy using a 3.5 kW CO 2 laser and a supersonic jet of Argon. Coatings were characterized by scanning electron microscopy (SEM) and interferometric profilometry.
Ceramic porous material and method of making same
Liu, Jun; Kim, Anthony Y.; Virden, Jud W.
1997-01-01
The invention is a mesoporous ceramic membrane having substantially uniform pore size. Additionally, the invention includes aqueous and non-aqueous processing routes to making the mesoporous ceramic membranes. According to one aspect of the present invention, inserting a substrate into a reaction chamber at pressure results in reaction products collecting on the substrate and forming a membrane thereon. According to another aspect of the present invention, a second aqueous solution that is sufficiently immiscible in the aqueous solution provides an interface between the two solutions whereon the mesoporous membrane is formed. According to a further aspect of the present invention, a porous substrate is placed at the interface between the two solutions permitting formation of a membrane on the surface or within the pores of the porous substrate. According to yet another aspect of the present invention, mesoporous ceramic materials are formed using a non-aqueous solvent and water-sensitive precursors.
Ceramic porous material and method of making same
Liu, J.; Kim, A.Y.; Virden, J.W.
1997-07-08
The invention is a mesoporous ceramic membrane having substantially uniform pore size. Additionally, the invention includes aqueous and non-aqueous processing routes to making the mesoporous ceramic membranes. According to one aspect of the present invention, inserting a substrate into a reaction chamber at pressure results in reaction products collecting on the substrate and forming a membrane thereon. According to another aspect of the present invention, a second aqueous solution that is sufficiently immiscible in the aqueous solution provides an interface between the two solutions whereon the mesoporous membrane is formed. According to a further aspect of the present invention, a porous substrate is placed at the interface between the two solutions permitting formation of a membrane on the surface or within the pores of the porous substrate. According to yet another aspect of the present invention, mesoporous ceramic materials are formed using a non-aqueous solvent and water-sensitive precursors. 21 figs.
Method and apparatus for depositing a coating on a tape carrier
Storer, Jonathan; Matias, Vladimir
2010-06-15
A system and method for depositing ceramic materials, such as nitrides and oxides, including high temperature superconducting oxides on a tape substrate. The system includes a tape support assembly that comprises a rotatable drum. The rotatable drum supports at least one tape substrate axially disposed on the surface of the drum during the deposition of metals on the tape and subsequent oxidation to form the ceramic materials. The drum is located within a stator having a slot that is axially aligned with the drum. A space exists between the drum and stator. The space is filled with a predetermined partial pressure of a reactive gas. The drum, stator, and space are heated to a predetermined temperature. To form the ceramic material on the tape substrate, the drum is first rotated to align the tape substrate with the slot, and at least one metal is deposited on the substrate. The drum then continues to rotate, bringing the tape substrate into the space, where the metal deposited on the tape substrate reacts with the reactive gas to form the ceramic material. In one embodiment, the tape support system also includes a pay-out/take-up system that co-rotates with the drum and provides a continuous length of tape substrate.
Fabbri, M; Celotti, G C; Ravaglioli, A
1995-02-01
At the request of medical teams from the maxillofacial sector, a highly porous ceramic support based on hydroxyapatite of around 70-80% porosity was produced with a pore size distribution similar to bone texture (< 10 microns, approximately 3 vol%; 10-150 microns, approximately 110 vol%; > 150 microns, approximately 86 vol%). The ceramic substrates were conceived not only as a fillers for bone cavities, but also for use as drug dispensers and as supports to host cells to produce particular therapeutic agents. A method is suggested to obtain a substrate of high porosity, exploiting the impregnation of spongy substrate with hydroxyapatite ceramic particles. X-ray and scanning electron microscopy analyses were carried out to evaluate the nature of the new ceramic support in comparison with the most common commercial product; pore size distribution and porosity were controlled to known hydroxyapatite ceramic architecture for the different possible uses.
NASA Technical Reports Server (NTRS)
Chapman, P. W.; Zook, J. D.; Heaps, J. D.; Pickering, C.; Grung, B. L.; Koepke, B.; Schuldt, S. B.
1979-01-01
The technical and economic feasibility of producing solar cell quality sheet silicon was investigated. It was hoped this could be done by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. Work was directed towards the solution of unique cell processing/design problems encountered with the silicon-ceramic (SOC) material due to its intimate contact with the ceramic substrate. Significant progress was demonstrated in the following areas; (1) the continuous coater succeeded in producing small-area coatings exhibiting unidirectional solidification and substatial grain size; (2) dip coater succeeded in producing thick (more than 500 micron) dendritic layers at coating speeds of 0.2-0.3 cm/sec; and (3) a standard for producing total area SOC solar cells using slotted ceramic substrates was developed.
Catalytic thermal barrier coatings
Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh
2009-06-02
A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.
Method for bonding thin film thermocouples to ceramics
Kreider, Kenneth G.
1993-01-01
A method is provided for adhering a thin film metal thermocouple to a ceramic substrate used in an environment up to 700 degrees Centigrade, such as at a cylinder of an internal combustion engine. The method includes the steps of: depositing a thin layer of a reactive metal on a clean ceramic substrate; and depositing thin layers of platinum and a platinum-10% rhodium alloy forming the respective legs of the thermocouple on the reactive metal layer. The reactive metal layer serves as a bond coat between the thin noble metal thermocouple layers and the ceramic substrate. The thin layers of noble metal are in the range of 1-4 micrometers thick. Preferably, the ceramic substrate is selected from the group consisting of alumina and partially stabilized zirconia. Preferably, the thin layer of reactive metal is in the range of 0.015-0.030 micrometers (15-30 nanometers) thick. The preferred reactive metal is chromium. Other reactive metals may be titanium or zirconium. The thin layer of reactive metal may be deposited by sputtering in ultra high purity argon in a vacuum of approximately 2 milliTorr (0.3 Pascals).
Free-standing oxide superconducting articles
Wu, X.D.; Muenchausen, R.E.
1993-12-14
A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template layer.
NASA Astrophysics Data System (ADS)
Mosier-Boss, P. A.; Sorensen, K. C.; George, R. D.; Sims, P. C.; O'braztsova, A.
2017-06-01
It was found that spectra obtained for bacteria on SERS substrates fabricated by filtering citrate-generated Ag nanoparticles (NPs) onto rigid, ceramic filters exhibited peaks due to citrate as well as the bacteria. In many cases the citrate spectrum overwhelmed that of the bacteria. Given the simplicity of the method to prepare these substrates, means of eliminating this citrate interference were explored. It was found that allowing a mixture of bacteria suspension and citrate-generated Ag NPs to incubate prior to filtering onto the ceramic filter eliminated this interference.
Planar LTCC transformers for high voltage flyback converters: Part II.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schofield, Daryl; Schare, Joshua M., Ph.D.; Slama, George
This paper is a continuation of the work presented in SAND2007-2591 'Planar LTCC Transformers for High Voltage Flyback Converters'. The designs in that SAND report were all based on a ferrite tape/dielectric paste system originally developed by NASCENTechnoloy, Inc, who collaborated in the design and manufacturing of the planar LTCC flyback converters. The output/volume requirements were targeted to DoD application for hard target/mini fuzing at around 1500 V for reasonable primary peak currents. High voltages could be obtained but with considerable higher current. Work had begun on higher voltage systems and is where this report begins. Limits in material propertiesmore » and processing capabilities show that the state-of-the-art has limited our practical output voltage from such a small part volume. In other words, the technology is currently limited within the allowable funding and interest.« less
Engineering of III-Nitride Semiconductors on Low Temperature Co-fired Ceramics.
Mánuel, J M; Jiménez, J J; Morales, F M; Lacroix, B; Santos, A J; García, R; Blanco, E; Domínguez, M; Ramírez, M; Beltrán, A M; Alexandrov, D; Tot, J; Dubreuil, R; Videkov, V; Andreev, S; Tzaneva, B; Bartsch, H; Breiling, J; Pezoldt, J; Fischer, M; Müller, J
2018-05-02
This work presents results in the field of advanced substrate solutions in order to achieve high crystalline quality group-III nitrides based heterostructures for high frequency and power devices or for sensor applications. With that objective, Low Temperature Co-fired Ceramics has been used, as a non-crystalline substrate. Structures like these have never been developed before, and for economic reasons will represent a groundbreaking material in these fields of Electronic. In this sense, the report presents the characterization through various techniques of three series of specimens where GaN was deposited on this ceramic composite, using different buffer layers, and a singular metal-organic chemical vapor deposition related technique for low temperature deposition. Other single crystalline ceramic-based templates were also utilized as substrate materials, for comparison purposes.
Lu, Xiao-li; Gao, Mei-qin; Cheng, Yu-ye; Zhang, Fei-min
2015-04-01
In order to choose the best veneering porcelain for diatomite-based dental ceramic substrate, the bonding strength between diatomite-based dental ceramics and veneering porcelains was measured, and the microstructure and elements distribution of interface were analyzed. The coefficient of thermal expansion (CTE) of diatomite-based dental ceramics was detected by dilatometry. Three veneering porcelain materials were selected with the best CTE matching including alumina veneering porcelain (group A), titanium porcelain veneering porcelain (group B), and E-max veneering porcelain (group C). Shear bonding strength was detected. SEM and EDS were used to observe the interface microstructure and element distribution. Statistical analysis was performed using SPSS 17.0 software package. The CTE of diatomite-based dental ceramics at 25-500 degrees centigrade was 8.85×10-6K-1. The diatomite-based substrate ceramics combined best with group C. Shear bonding strength between group A and C and group B and C both showed significant differences(P<0.05). SEM and EDS showed that the interface of group C sintered tightly and elements permeated on both sides of the interface. The diatomite-based substrate ceramics combines better with E-max porcelain veneer.
Chen, Qiang; Baino, Francesco; Pugno, Nicola M; Vitale-Brovarone, Chiara
2013-04-01
A new approach based on the concepts of quantized fracture mechanics (QFM) is presented and discussed in this paper to estimate the bonding strength of trabecular-like coatings, i.e. glass-ceramic scaffolds mimicking the architecture of cancellous bone, to ceramic substrates. The innovative application of glass-derived scaffolds as trabecular-like coatings is proposed in order to enhance the osteointegration of prosthetic ceramic devices. The scaffolds, prepared by polymeric sponge replication, are joined to alumina substrates by a dense glass-ceramic coating (interlayer) and the so-obtained 3-layer constructs are investigated from micro-structural, morphological and mechanical viewpoints. In particular, the fracture strengths of three different crack propagation modes, i.e. glass-derived scaffold fracture, interface delamination or mixed fracture, are predicted in agreement with those of experimental mechanical tests. The approach proposed in this work could have interesting applications towards an ever more rational design of bone tissue engineering biomaterials and coatings, in view of the optimization of their mechanical properties for making them actually suitable for clinical applications. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Vermeeren, Ludo; Leysen, Willem; Brichard, Benoit
2018-01-01
Mineral-insulated (MI) cables and Low-Temperature Co-fired Ceramic (LTCC) magnetic pick-up coils are intended to be installed in various position in ITER. The severe ITER nuclear radiation field is expected to lead to induced currents that could perturb diagnostic measurements. In order to assess this problem and to find mitigation strategies models were developed for the calculation of neutron-and gamma-induced currents in MI cables and in LTCC coils. The models are based on calculations with the MCNPX code, combined with a dedicated model for the drift of electrons stopped in the insulator. The gamma induced currents can be easily calculated with a single coupled photon-electron MCNPX calculation. The prompt neutron induced currents requires only a single coupled neutron-photon-electron MCNPX run. The various delayed neutron contributions require a careful analysis of all possibly relevant neutron-induced reaction paths and a combination of different types of MCNPX calculations. The models were applied for a specific twin-core copper MI cable, for one quad-core copper cable and for silver conductor LTCC coils (one with silver ground plates in order to reduce the currents and one without such silver ground plates). Calculations were performed for irradiation conditions (neutron and gamma spectra and fluxes) in relevant positions in ITER and in the Y3 irradiation channel of the BR1 reactor at SCK•CEN, in which an irradiation test of these four test devices was carried out afterwards. We will present the basic elements of the models and show the results of all relevant partial currents (gamma and neutron induced, prompt and various delayed currents) in BR1-Y3 conditions. Experimental data will be shown and analysed in terms of the respective contributions. The tests were performed at reactor powers of 350 kW and 1 MW, leading to thermal neutron fluxes of 1E11 n/cm2s and 3E11 n/cm2s, respectively. The corresponding total radiation induced currents are ranging from 1 to 7 nA only, putting a challenge on the acquisition system and on the data analysis. The detailed experimental results will be compared with the corresponding values predicted by the model. The overall agreement between the experimental data and the model predictions is fairly good, with very consistent data for the main delayed current components, while the lower amplitude delayed currents and some of the prompt contributions show some minor discrepancies.
Stiglbauer, Victoria; Hotka, Matej; Ruiß, Manuel; Hilber, Karlheinz; Boehm, Stefan; Kubista, Helmut
2017-05-01
An increase of neuronal Ca v 1.3 L-type calcium channels (LTCCs) has been observed in various animal models of epilepsy. However, LTCC inhibitors failed in clinical trials of epileptic treatment. There is compelling evidence that paroxysmal depolarization shifts (PDSs) involve Ca 2+ influx through LTCCs. PDSs represent a hallmark of epileptiform activity. In recent years, a probable epileptogenic role for PDSs has been proposed. However, the implication of the two neuronal LTCC isoforms, Ca v 1.2 and Ca v 1.3, in PDSs remained unknown. Moreover, Ca 2+ -dependent nonspecific cation (CAN) channels have also been suspected to contribute to PDSs. Nevertheless, direct experimental support of an important role of CAN channel activation in PDS formation is still lacking. Primary neuronal networks derived from dissociated hippocampal neurons were generated from mice expressing a dihydropyridine-insensitive Ca v 1.2 mutant (Ca v 1.2DHP -/- mice) or from Ca v 1.3 -/- knockout mice. To investigate the role of Ca v 1.2 and Ca v 1.3, perforated patch-clamp recordings were made of epileptiform activity, which was elicited using either bicuculline or caffeine. LTCC activity was modulated using the dihydropyridines Bay K 8644 (agonist) and isradipine (antagonist). Distinct PDS could be elicited upon LTCC potentiation in Ca v 1.2DHP -/- neurons but not in Ca v 1.3 -/- neurons. In contrast, when bicuculline led to long-lasting, seizure-like discharge events rather than PDS, these were prolonged in Ca v 1.3 -/- neurons but not in Ca v 1.2DHP -/- neurons. Because only the Ca v 1.2 isoform is functionally coupled to CAN channels in primary hippocampal networks, PDS formation does not require CAN channel activity. Our data suggest that the LTCC requirement of PDS relates primarily to Ca v 1.3 channels rather than to Ca v 1.2 channels and CAN channels in hippocampal neurons. Hence, Ca v 1.3 may represent a new therapeutic target for suppression of PDS development. The proposed epileptogenic role of PDSs may allow for a prophylactic rather than the unsuccessful seizure suppressing application of LTCC inhibitors. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
Valentine, Paul; Edwards, Doreen D.; Walker, Jr., William John; Slack, Lyle H.; Brown, Wayne Douglas; Osborne, Cathy; Norton, Michael; Begley, Richard
2010-05-18
A light-emitting ceramic based panel, hereafter termed "electroceramescent" panel, is herein claimed. The electroceramescent panel is formed on a substrate providing mechanical support as well as serving as the base electrode for the device. One or more semiconductive ceramic layers directly overlay the substrate, and electrical conductivity and ionic diffusion are controlled. Light emitting regions overlay the semiconductive ceramic layers, and said regions consist sequentially of a layer of a ceramic insulation layer and an electroluminescent layer, comprised of doped phosphors or the equivalent. One or more conductive top electrode layers having optically transmissive areas overlay the light emitting regions, and a multi-layered top barrier cover comprising one or more optically transmissive non-combustible insulation layers overlay said top electrode regions.
Fluorinated precursors of superconducting ceramics, and methods of making the same
Wiesmann, Harold; Solovyov, Vyacheslav
2014-02-18
This invention provides a method of making a fluorinated precursor of a superconducting ceramic. The method comprises providing a solution comprising a rare earth salt, an alkaline earth metal salt and a copper salt; spraying the solution onto a substrate to provide a film-covered substrate; and heating the film-covered substrate in an atmosphere containing fluorinated gas to provide the fluorinated precursor.
Fluorinated precursors of superconducting ceramics, and methods of making the same
Wiesmann, Harold [Stony Brook, NY; Solovyov, Vyacheslav [Rocky Point, NY
2008-04-22
This invention provides a method of making a fluorinated precursor of a superconducting ceramic. The method comprises providing a solution comprising a rare earth salt, an alkaline earth metal salt and a copper salt; spraying the solution onto a substrate to provide a film-covered substrate; and heating the film-covered substrate in an atmosphere containing fluorinated gas to provide the fluorinated precursor.
Fluorinated precursors of superconducting ceramics, and methods of making the same
Wiesmann, Harold [Stony Brook, NY; Solovyov, Vyacheslav [Rocky Point, NY
2012-07-10
This invention provides a method of making a fluorinated precursor of a superconducting ceramic. The method comprises providing a solution comprising a rare earth salt, an alkaline earth metal salt and a copper salt; spraying the solution onto a substrate to provide a film-covered substrate; and heating the film-covered substrate in an atmosphere containing fluorinated gas to provide the fluorinated precursor.
High efficiency tantalum-based ceramic composite structures
NASA Technical Reports Server (NTRS)
Stewart, David A. (Inventor); Leiser, Daniel B. (Inventor); DiFiore, Robert R. (Inventor); Katvala, Victor W. (Inventor)
2010-01-01
Tantalum-based ceramics are suitable for use in thermal protection systems. These composite structures have high efficiency surfaces (low catalytic efficiency and high emittance), thereby reducing heat flux to a spacecraft during planetary re-entry. These ceramics contain tantalum disilicide, molybdenum disilicide and borosilicate glass. The components are milled, along with a processing aid, then applied to a surface of a porous substrate, such as a fibrous silica or carbon substrate. Following application, the coating is then sintered on the substrate. The composite structure is substantially impervious to hot gas penetration and capable of surviving high heat fluxes at temperatures approaching 3000.degree. F. and above.
Mosier-Boss, P A; Sorensen, K C; George, R D; Sims, P C; O'braztsova, A
2017-06-05
It was found that spectra obtained for bacteria on SERS substrates fabricated by filtering citrate-generated Ag nanoparticles (NPs) onto rigid, ceramic filters exhibited peaks due to citrate as well as the bacteria. In many cases the citrate spectrum overwhelmed that of the bacteria. Given the simplicity of the method to prepare these substrates, means of eliminating this citrate interference were explored. It was found that allowing a mixture of bacteria suspension and citrate-generated Ag NPs to incubate prior to filtering onto the ceramic filter eliminated this interference. Copyright © 2017 Elsevier B.V. All rights reserved.
Ion Beam Sputtered Coatings of Bioglass
NASA Technical Reports Server (NTRS)
Hench, Larry L.; Wilson, J.; Ruzakowski, Patricia Henrietta Anne
1982-01-01
The ion beam sputtering technique available at the NASA-Lewis was used to apply coatings of bioglass to ceramic, metallic, and polymeric substrates. Experiments in vivo and in vitro described investigate these coatings. Some degree of substrate masking was obtained in all samples although stability and reactivity equivalent to bulk bioglass was not observed in all coated samples. Some degree of stability was seen in all coated samples that were reacted in vitro. Both metallic and ceramic substrates coated in this manner failed to show significantly improved coatings over those obtained with existing techniques. Implantation of the coated ceramic substrate samples in bone gave no definite bonding as seen with bulk glass; however, partial and patchy bonding was seen. Polymeric substrates in these studies showed promise of success. The coatings applied were sufficient to mask the underlying reactive test surface and tissue adhesion of collagen to bioglass was seen. Hydrophilic, hydrophobic, charged, and uncharged polymeric surfaces were successfully coated.
Modeling of methanol decomposition on Pt/CeO2/ZrO2 catalyst in a packed bed microreactor
NASA Astrophysics Data System (ADS)
Pohar, Andrej; Belavič, Darko; Dolanc, Gregor; Hočevar, Stanko
2014-06-01
Methanol decomposition on Pt/CeO2/ZrO2 catalyst is studied inside a packed bed microreactor in the temperature range of 300-380 °C. The microreactor is fabricated using low-temperature co-fired ceramic (LTCC) technology, which is well suited for the production of relatively complex three-dimensional structures. It is packed with 2 wt% Pt-CeO2 catalyst, which is deposited onto ZrO2 spherical particles. A 1D mathematical model, which incorporates diffusion, convection and mass transfer through the boundary layer to the catalyst particles, as well as a 3D computational fluid dynamics model, are developed to describe the methanol decomposition process inside the packed bed. The microreactor exhibits reliable operation and no catalyst deactivation was observed during three months of experimentation. A comparison between the 1D mathematical model and the 3D model, considering the full 3D geometry of the microreactor is made and the differences between the models are identified and evaluated.
A novel approach for the fine tuning of resonance frequency of patch antenna
NASA Astrophysics Data System (ADS)
Mathur, Monika; Singh, Ghanshyam; Bhatnagar, S. K.
2013-01-01
When a patch antenna is fabricated, dimensions of the patch may be slightly different from the designed values due to tolerances in the fabrication process. This alters the resonance frequency of the antenna. To overcome this problem this paper presents a new design approach for fine tuning the resonance frequency by dielectric constant engineering. This approach is especially suited to low temperature co-fired ceramic (LTCC) and similar processes where the antenna dielectric is composed of several layers. Composite dielectric constant of this multilayer structure is altered in such a way that the resonant frequency is set back to the designed value. It has been verified that for proposed micro strip antenna (MSA) design, the frequency-area curve follows a quadratic relation with a variable R (Ratio of cavity area to the patch area). This mathematical model is true up to R 1.27. After this saturation effects set in and the curve follows a straight line behavior.≡
NASA Astrophysics Data System (ADS)
Moreau, David; Borit, François; Corté, Laurent; Guipont, Vincent
2017-06-01
We report an approach using cold spray technology to coat poly(vinyl alcohol) (PVA) in polymer and hydrogel states with hydroxyapatite (HA). Using porous aggregated HA powder, we hypothesized that fragmentation of the powder upon cold spray could lead to formation of a ceramic coating on the surface of the PVA substrate. However, direct spraying of this powder led to complete destruction of the swollen PVA hydrogel substrate. As an alternative, HA coatings were successfully produced by spraying onto dry PVA substrates prior to swelling in water. Dense homogeneous HA coatings composed of submicron particles were obtained using rather low-energy spraying parameters (temperature 200-250 °C, pressure 1-3 MPa). Coated PVA substrates could swell in water without removal of the ceramic layer to form HA-coated hydrogels. Microscopic observations and in situ measurements were used to explain how local heating and impact of sprayed aggregates induced surface roughening and strong binding of HA particles to the molten PVA substrate. Such an approach could lead to design of ceramic coatings whose roughness and crystallinity can be finely adjusted to improve interfacing with biological tissues.
Free-standing oxide superconducting articles
Wu, Xin D.; Muenchausen, Ross E.
1993-01-01
A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template lay This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).
2008-09-30
that composed the proteinaceous polymers found at the interface between calcite crystals deposited by oyster cells and the various n1etal substrates...proteinaceous polymers found at the interface between calcite crystals deposited by oyster cells and the various metal substrates. A recently...required for the mechanism of biomineralization and site-specific deposition of ceramic crystals on aluminum alloy substrates. These calcite crystals
Role of voltage-gated L-type Ca2+ channel isoforms for brain function.
Striessnig, J; Koschak, A; Sinnegger-Brauns, M J; Hetzenauer, A; Nguyen, N K; Busquet, P; Pelster, G; Singewald, N
2006-11-01
Voltage-gated LTCCs (L-type Ca2+ channels) are established drug targets for the treatment of cardiovascular diseases. LTCCs are also expressed outside the cardiovascular system. In the brain, LTCCs control synaptic plasticity in neurons, and DHP (dihydropyridine) LTCC blockers such as nifedipine modulate brain function (such as fear memory extinction and depression-like behaviour). Voltage-sensitive Ca2+ channels Cav1 .2 and Cav1.3 are the predominant brain LTCCs. As DHPs and other classes of organic LTCC blockers inhibit both isoforms, their pharmacological distinction is impossible and their individual contributions to defined brain functions remain largely unknown. Here, we summarize our recent experiments with two genetically modified mouse strains, which we generated to explore the individual biophysical features of Cav1.2 and Cav1.3 LTCCs and to determine their relative contributions to various physiological peripheral and neuronal functions. The results described here also allow predictions about the pharmacotherapeutic potential of isoform-selective LTCC modulators.
Rad-deletion Phenocopies Tonic Sympathetic Stimulation of the Heart.
Levitan, Bryana M; Manning, Janet R; Withers, Catherine N; Smith, Jeffrey D; Shaw, Robin M; Andres, Douglas A; Sorrell, Vincent L; Satin, Jonathan
2016-12-01
Sympathetic stimulation modulates L-type calcium channel (LTCC) gating to contribute to increased systolic heart function. Rad is a monomeric G-protein that interacts with LTCC. Genetic deletion of Rad (Rad -/- ) renders LTCC in a sympathomimetic state. The study goal was to use a clinically inspired pharmacological stress echocardiography test, including analysis of global strain, to determine whether Rad -/- confers tonic positive inotropic heart function. Sarcomere dynamics and strain showed partial parallel isoproterenol (ISO) responsiveness for wild-type (WT) and for Rad -/- . Rad -/- basal inotropy was elevated compared to WT but was less responsiveness to ISO. Rad protein levels were lower in human patients with end-stage non-ischemic heart failure. These results show that Rad reduction provides a stable inotropic response rooted in sarcomere level function. Thus, reduced Rad levels in heart failure patients may be a compensatory response to need for increased output in the setting of HF. Rad deletion suggests a future therapeutic direction for inotropic support.
Rad-deletion Phenocopies Tonic Sympathetic Stimulation of the Heart
Levitan, Bryana M.; Manning, Janet R.; Withers, Catherine N.; Smith, Jeffrey D.; Shaw, Robin M.; Andres, Douglas A.; Sorrell, Vincent L.
2016-01-01
Sympathetic stimulation modulates L-type calcium channel (LTCC) gating to contribute to increased systolic heart function. Rad is a monomeric G-protein that interacts with LTCC. Genetic deletion of Rad (Rad−/−) renders LTCC in a sympathomimetic state. The study goal was to use a clinically inspired pharmacological stress echocardiography test, including analysis of global strain, to determine whether Rad−/− confers tonic positive inotropic heart function. Sarcomere dynamics and strain showed partial parallel isoproterenol (ISO) responsiveness for wild-type (WT) and for Rad−/−. Rad−/− basal inotropy was elevated compared to WT but was less responsiveness to ISO. Rad protein levels were lower in human patients with end-stage non-ischemic heart failure. These results show that Rad reduction provides a stable inotropic response rooted in sarcomere level function. Thus, reduced Rad levels in heart failure patients may be a compensatory response to need for increased output in the setting of HF. Rad deletion suggests a future therapeutic direction for inotropic support. PMID:27798760
Room temperature impact deposition of ceramic by laser shock wave
NASA Astrophysics Data System (ADS)
Jinno, Kengo; Tsumori, Fujio
2018-06-01
In this paper, a direct fine patterning of ceramics at room temperature combining 2 kinds of laser microfabrication methods is proposed. The first method is called laser-induced forward transfer and the other is called laser shock imprinting. In the proposed method, a powder material is deposited by a laser shock wave; therefore, the process is applicable to a low-melting-point material, such as a polymer substrate. In the process, a carbon layer plays an important role in the ablation by laser irradiation to generate a shock wave. This shock wave gives high shock energy to the ceramic particles, and the particles would be deposited and solidified by high-speed collision with the substrate. In this study, we performed deposition experiments by changing the thickness of the carbon layer, laser energy, thickness of the alumina layer, and gap substrates. We compared the ceramic deposits after each experiment.
NASA Astrophysics Data System (ADS)
Tamura, Hideki; Itaya, Masanobu
2000-09-01
Tungsten carbide and tantalum carbide were sprayed onto substrates of mild steel by the electrothermally exploded powder spray (ELTEPS) process. High-speed x-ray radiography revealed that tungsten-carbide jets of molten particles guided inside a nozzle exhibited denser flow than unguided jets at the substrate. The velocity of the jet was approximately 800 m/s at the early stage of jetting. The ceramic coatings obtained from the guided spray consisted of carbides of a few to tens of micrometers in size, which were saturated by the base metal up to the top of the coating. The coatings exhibited diffusion of the sprayed ceramics and base metal at the interface of the deposit and substrate. The enhancement of the jet flow formed a microstructure of the ceramic coating, which was saturated by the base metal even without post heat treatment.
Ceramic coatings on smooth surfaces
NASA Technical Reports Server (NTRS)
Miller, R. A. (Inventor); Brindley, W. J. (Inventor); Rouge, C. J. (Inventor)
1991-01-01
A metallic coating is plasma sprayed onto a smooth surface of a metal alloy substitute or on a bond coating. An initial thin ceramic layer is low pressure sprayed onto the smooth surface of the substrate or bond coating. Another ceramic layer is atmospheric plasma sprayed onto the initial ceramic layer.
Laser surface treatment of porous ceramic substrate for application in solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Mahmod, D. S. A.; Khan, A. A.; Munot, M. A.; Glandut, N.; Labbe, J. C.
2016-08-01
Laser has offered a large number of benefits for surface treatment of ceramics due to possibility of localized heating, very high heating/cooling rates and possibility of growth of structural configurations only produced under non-equilibrium high temperature conditions. The present work investigates oxidation of porous ZrB2-SiC sintered ceramic substrates through treatment by a 1072 ± 10 nm ytterbium fiber laser. A multi-layer structure is hence produced showing successively oxygen rich distinct layers. The porous bulk beneath these layers remained unaffected as this laser-formed oxide scale and protected the substrate from oxidation. A glassy SiO2 structure thus obtained on the surface of the substrate becomes subject of interest for further research, specifically for its utilization as solid protonic conductor in Solid Oxide Fuel Cells (SOFCs).
Mo-Si-B-Based Coatings for Ceramic Base Substrates
NASA Technical Reports Server (NTRS)
Perepezko, John Harry (Inventor); Sakidja, Ridwan (Inventor); Ritt, Patrick (Inventor)
2015-01-01
Alumina-containing coatings based on molybdenum (Mo), silicon (Si), and boron (B) ("MoSiB coatings") that form protective, oxidation-resistant scales on ceramic substrate at high temperatures are provided. The protective scales comprise an aluminoborosilicate glass, and may additionally contain molybdenum. Two-stage deposition methods for forming the coatings are also provided.
Test Structures for Rapid Prototyping of Gas and Pressure Sensors
NASA Technical Reports Server (NTRS)
Buehler, M.; Cheng, L. J.; Martin, D.
1996-01-01
A multi-project ceramic substrate was used in developing a gas sensor and pressure sensor. The ceramic substrate cantained 36 chips with six variants including sensors, process control monitors, and an interconnect ship. Tha gas sensor is being developed as an air quality monitor and the pressure gauge as a barometer.
Liu, Yudan; Harding, Meghan; Dore, Jules; Chen, Xihua
2017-04-03
Nicotine use is one of the most common forms of drug addiction. Although L-type calcium channels (LTCCs) are involved in nicotine addiction, the contribution of the two primary LTCC subtypes (Ca v 1.2 and 1.3) is unknown. This study aims to determine the contribution of these two LTCC subtypes to nicotine-induced conditioned place preference (CPP) responses by using transgenic mouse models that do not express Ca v 1.3 (Ca v 1.3 -/- ) or contain a mutation in the dihydropyridine (DHP) site of the Ca v 1.2 (Ca v 1.2DHP -/- ). We found a hyperbolic dose dependent nicotine (0.1-1mg/kg; 0.5mg/kg optimum) effect on place preference in wild type (WT) mice, that could be prevented by the DHP LTCC blocker nifedipine pretreatment. Similarly, Ca v 1.3 -/- mice showed nicotine-induced place preference which was antagonized by nifedipine. In contrast, nifedipine pretreatment of Ca v 1.2DHP -/- mice had no effect on nicotine-induced CPP responses, suggesting an involvement of Ca v 1.2 subtype in the nicotine-induced CPP response. Nifedipine alone failed to produce either conditioned place aversion or CPP in WT mice. These results collectively indicate Ca v 1.2, but not Ca v 1.3 LTCC subtype regulates, at least in part, the reinforcing effects of nicotine use. Copyright © 2017 Elsevier Inc. All rights reserved.
Ceramic electrolyte coating methods
Seabaugh, Matthew M.; Swartz, Scott L.; Dawson, William J.; McCormick, Buddy E.
2004-10-12
Processes for preparing aqueous suspensions of a nanoscale ceramic electrolyte material such as yttrium-stabilized zirconia. The invention also includes a process for preparing an aqueous coating slurry of a nanoscale ceramic electrolyte material. The invention further includes a process for depositing an aqueous spray coating slurry including a ceramic electrolyte material on pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.
Characterization of damage modes in dental ceramic bilayer structures.
Deng, Yan; Lawn, Brian R; Lloyd, Isabel K
2002-01-01
Results of contact tests using spherical indenters on flat ceramic coating layers bonded to compliant substrates are reported for selected dental ceramics. Critical loads to produce various damage modes, cone cracking, and quasiplasticity at the top surfaces and radial cracking at the lower (inner) surfaces are measured as a function of ceramic-layer thickness. It is proposed that these damage modes, especially radial cracking, are directly relevant to the failure of all-ceramic dental crowns. The critical load data are analyzed with the use of explicit fracture-mechanics relations, expressible in terms of routinely measurable material parameters (elastic modulus, strength, toughness, hardness) and essential geometrical variables (layer thickness, contact radius). The utility of such analyses in the design of ceramic/substrate bilayer systems for optimal resistance to lifetime-threatening damage is discussed. Copyright 2002 Wiley Periodicals, Inc. J Biomed Mater Res (Appl Biomater) 63: 137--145, 2002; DOI 10.1002/jbm.10091
Strain isolated ceramic coatings
NASA Technical Reports Server (NTRS)
Tolokan, R. P.; Brady, J. B.; Jarrabet, G. P.
1985-01-01
Plasma sprayed ceramic coatings are used in gas turbine engines to improve component temperature capability and cooling air efficiency. A compliant metal fiber strain isolator between a plasma sprayed ceramic coating and a metal substrate improves ceramic durability while allowing thicker coatings for better insulation. Development of strain isolated coatings has concentrated on design and fabrication of coatings and coating evaluation via thermal shock testing. In thermal shock testing, five types of failure are possible: buckling failure im compression on heat up, bimetal type failure, isothermal expansion mismatch failure, mudflat cracking during cool down, and long term fatigue. A primary failure mode for thermally cycled coatings is designated bimetal type failure. Bimetal failure is tensile failure in the ceramic near the ceramic-metal interface. One of the significant benefits of the strain isolator is an insulating layer protecting the metal substrate from heat deformation and thereby preventing bimetal type failure.
NASA Technical Reports Server (NTRS)
Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)
2009-01-01
A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium diboride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.
Sola, Daniel; Conde, Ana; García, Iñaki; Gracia-Escosa, Elena; de Damborenea, Juan J.; Peña, Jose I.
2013-01-01
In this work, wear behavior and microstructural characterization of porous layers produced in glass-ceramic substrates by pulsed laser irradiation in the nanosecond range are studied under unidirectional sliding conditions against AISI316 and corundum counterbodies. Depending on the optical configuration of the laser beam and on the working parameters, the local temperature and pressure applied over the interaction zone can generate a porous glass-ceramic layer. Material transference from the ball to the porous glass-ceramic layer was observed in the wear tests carried out against the AISI316 ball counterface whereas, in the case of the corundum ball, the wear volume loss was concentrated in the porous layer. Wear rate and friction coefficient presented higher values than expected for dense glass-ceramics. PMID:28788311
Light emitting ceramic device and method for fabricating the same
Valentine, Paul; Edwards, Doreen D.; Walker Jr., William John; Slack, Lyle H.; Brown, Wayne Douglas; Osborne, Cathy; Norton, Michael; Begley, Richard
2004-11-30
A light-emitting ceramic based panel, hereafter termed "electroceramescent" panel, and alternative methods of fabrication for the same are claimed. The electroceramescent panel is formed on a substrate providing mechanical support as well as serving as the base electrode for the device. One or more semiconductive ceramic layers directly overlay the substrate, and electrical conductivity and ionic diffusion are controlled. Light emitting regions overlay the semiconductive ceramic layers, and said regions consist sequentially of a layer of a ceramic insulation layer and an electroluminescent layer, comprised of doped phosphors or the equivalent. One or more conductive top electrode layers having optically transmissive areas overlay the light emitting regions, and a multi-layered top barrier cover comprising one or more optically transmissive non-combustible insulation layers overlay said top electrode regions.
An evaluation of wear when enamel is opposed by various ceramic materials and gold.
Elmaria, Asmaa; Goldstein, Gary; Vijayaraghavan, Therizhandur; Legeros, Raquel Z; Hittelman, Eugene L
2006-11-01
Ceramic restorations have been known to cause wear of opposing enamel. The purpose of this study was to evaluate enamel wear caused by 3 ceramic substrates in the glazed and polished conditions. Sixty ceramic discs (10 x 2 mm)-20 each of Finesse, All-Ceram, and IPS-Empress-were prepared and glazed. Each group of 20 was divided into 2 groups of 10. The surfaces of one group were ground and polished using a porcelain polishing kit (Dialite). The remaining 10 were left as glazed. Ten specimens of a type III gold alloy were cast into rectangular shapes of 10 x 12 x 2 mm and polished. Seventy human cusps were prepared from sound, caries-free, extracted teeth and abraded against the substrates in a wear machine for a total of 10,000 cycles. The cusp height loss was traced before and after the wear test using a profile projector. Mean surface roughness (R(a)) values for the substrates were also recorded with a profilometer before testing. Differences in R(a) were evaluated using 1- and 2-way ANOVA and the Scheffe post hoc test (alpha = .05). One-way ANOVA indicated that enamel height loss was significantly different by material (P < .001) and surface condition (glazed and polished or glazed; P < .05). Gold, polished Finesse, and polished All-Ceram were the least abrasive, whereas glazed IPS-Empress was the most abrasive. There was no significant interaction effect between substrate type and surface condition. Significant differences were found when R(a) of the substrate condition was compared with enamel wear (P < .01). Gold, polished Finesse, and polished All-Ceram caused the least enamel wear, whereas IPS-Empress caused the most wear. Cast gold was significantly different than glazed IPS-Empress (P < .05), whereas other groups overlapped. There was significant correlation between R(a) and enamel wear (P < .01).
Method for producing textured substrates for thin-film photovoltaic cells
Lauf, R.J.
1996-04-02
The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the, solar energy conversion efficiency of thin-film photovoltaic cells. 4 figs.
Method for producing textured substrates for thin-film photovoltaic cells
Lauf, R.J.
1994-04-26
The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the solar energy conversion efficiency of thin-film photovoltaic cells. 4 figures.
Method for producing textured substrates for thin-film photovoltaic cells
Lauf, Robert J.
1994-01-01
The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the solar energy conversion efficiency of thin-film photovoltaic cells.
Method for producing textured substrates for thin-film photovoltaic cells
Lauf, Robert J.
1996-01-01
The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the, solar energy conversion efficiency of thin-film photovoltaic cells.
Flip Chip on Organic Substrates: A Feasibility Study for Space Applications
2017-03-01
scheme, a 1752 I/O land grid array (LGA) package with decoupling capacitors, heat sink and optional column attach [1] as shown in Figure 1...investigated the effect of moisture and current loading on the Class Y flip chip on ceramic reliability [ 2 ]. The UT1752FC Class Y technology has...chip assembly to ceramic test substrates, the FA10 die are assembled to build-up organic test substrates as shown in Figure 2 . These assemblies
Kaisarly, Dalia; El Gezawi, Moataz; Xu, Xiaohui; Rösch, Peter; Kunzelmann, Karl-Heinz
2018-01-01
Polymerization shrinkage of dental resin composites leads to stress build-up at the tooth-restoration interface that predisposes the restoration to debonding. In contrast to the heterogeneity of enamel and dentin, this study investigated the effect of boundary conditions in artificial cavity models such as ceramic and Teflon. Ceramic serves as a homogenous substrate that provides optimal bonding conditions, which we presented in the form of etched and silanized ceramic in addition to an etched, silanized and bonded ceramic cavity. In contrast, the Teflon cavity presented a non-adhesive boundary condition that provided an exaggerated condition of poor bonding as in the case of contamination during the application procedure or a poor bonding substrate such as sclerotic or deep dentin. The greatest 3D shrinkage vectors and movement in the axial direction were observed in the ceramic cavity with the bonding agent followed by the silanized ceramic cavity, and smallest shrinkage vectors and axial movements were observed in the Teflon cavity. The shrinkage vectors in the ceramic cavities exhibited downward movement toward the cavity bottom with great downward shrinkage of the free surface. The shrinkage vectors in the Teflon cavity pointed towards the center of the restoration with lateral movement greater at one side denoting the site of first detachment from the cavity walls. These results proved that the boundary conditions, in terms of bonding substrates, significantly influenced the shrinkage direction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Characterization of ion beam modified ceramic wear surfaces using Auger electron spectroscopy
NASA Technical Reports Server (NTRS)
Wei, W.; Lankford, J.
1987-01-01
An investigation of the surface chemistry and morphology of the wear surfaces of ceramic material surfaces modified by ion beam mixing has been conducted using Auger electron spectroscopy and secondary electron microscopy. Studies have been conducted on ceramic/ceramic friction and wear couples made up of TiC and NiMo-bonded TiC cermet pins run against Si3N4 and partially stabilized zirconia disc surfaces modified by the ion beam mixing of titanium and nickel, as well as ummodified ceramic/ceramic couples in order to determine the types of surface changes leading to the improved friction and wear behavior of the surface modified ceramics in simulated diesel environments. The results of the surface analyses indicate that the formation of a lubricating oxide layer of titanium and nickel, is responsible for the improvement in ceramic friction and wear behavior. The beneficial effect of this oxide layer depends on several factors, including the adherence of the surface modified layer or subsequently formed oxide layer to the disc substrate, the substrate materials, the conditions of ion beam mixing, and the environmental conditions.
Rydosz, Artur
2014-01-01
Breath analysis has long been recognized as a potentially attractive method for the diagnosis of several diseases. The main advantage over other diagnostic methods such as blood or urine analysis is that breath analysis is fully non-invasive, comfortable for patients and breath samples can be easily obtained. One possible future application of breath analysis may be the diagnosing and monitoring of diabetes. It is, therefore, essential, to firstly determine a relationship between exhaled biomarker concentration and glucose in blood as well as to compare the results with the results obtained from non-diabetic subjects. Concentrations of molecules which are biomarkers of diseases’ states, or early indicators of disease should be well documented, i.e., the variations of abnormal concentrations of breath biomarkers with age, gender and ethnic issues need to be verified. Furthermore, based on performed measurements it is rather obvious that analysis of exhaled acetone as a single biomarker of diabetes is unrealistic. In this paper, the author presents results of his research conducted on samples of breath gas from eleven healthy volunteers (HV) and fourteen type-1 diabetic patients (T1DM) which were collected in 1-l SKC breath bags. The exhaled acetone concentration was measured using mass spectrometry (HPR-20 QIC, Hiden Analytical, Warrington, UK) coupled with a micropreconcentrator in LTCC (Low Temperature Cofired Ceramic). However, as according to recent studies the level of acetone varies to a significant extent for each blood glucose concentration of single individuals, a direct and absolute relationship between blood glucose and acetone has not been proved. Nevertheless, basing on the research results acetone in diabetic breath was found to be higher than 1.11 ppmv, while its average concentration in normal breath was lower than 0.83 ppmv. PMID:25310087
Surface treatment of ceramic articles
Komvopoulos, Kyriakos; Brown, Ian G.; Wei, Bo; Anders, Simone; Anders, Andre; Bhatia, C. Singh
1998-01-01
A process for producing an article with improved ceramic surface properties including providing an article having a ceramic surface, and placing the article onto a conductive substrate holder in a hermetic enclosure. Thereafter a low pressure ambient is provided in the hermetic enclosure. A plasma including ions of solid materials is produced the ceramic surface of the article being at least partially immersed in a macroparticle free region of the plasma. While the article is immersed in the macroparticle free region, a bias of the substrate holder is biased between a low voltage at which material from the plasma condenses on the surface of the article and a high negative voltage at which ions from the plasma are implanted into the article.
NASA Technical Reports Server (NTRS)
Ponchak, George E.; Chun, Donghoon; Katehi, Linda P. B.; Yook, Jong-Gwan
1999-01-01
Coupling between microstrip lines in dense RF packages is a common problem that degrades circuit performance. Prior 3D-FEM electromagnetic simulations have shown that metal filled via hole fences between two adjacent microstrip lines actually increases coupling between the lines; however, if the top of the via posts are connected by a metal Strip, coupling is reduced. In this paper, experimental verification of the 3D-FEM simulations Is demonstrated for commercially fabricated LTCC packages.
Surface Control of Actuated Hybrid Space Mirrors
2010-10-01
precision Nanolaminate foil facesheet and Silicon Carbide ( SiC ) substrate embedded with electroactive ceramic actuators. Wavefront sensors are used to...integrate precision Nanolaminate foil facesheet with Silicon Carbide ( SiC ) substrate equipped with embedded electroactive ceramic actuators...IAC-10.C2.5.8 SURFACE CONTROL OF ACTUATED HYBRID SPACE MIRRORS Brij. N. Agrawal Naval Postgraduate School, Monterey, CA, 93943, agrawal
Development of lightweight ceramic ablators and arc-jet test results
NASA Technical Reports Server (NTRS)
Tran, Huy K.
1994-01-01
Lightweight ceramic ablators (LCA's) were recently developed at Ames to investigate the use of low density fibrous substrates and organic resins as high temperature, high strength ablative heat shields. Unlike the traditional ablators, LCA's use porous ceramic/carbon fiber matrices as substrates for structural support, and polymeric resins as fillers. Several substrates and resins were selected for the initial studies, and the best performing candidates were further characterized. Three arcjet tests were conducted to determine the LCA's thermal performance and ablation characteristics in a high enthalpy, hypersonic flow environment. Mass loss and recession measurements were obtained for each sample at post test, and the recession rates were determined from high speed motion films. Surface temperatures were also obtained from optical pyrometers.
Articles for high temperature service and methods for their manufacture
Sarrafi-Nour, Reza; Meschter, Peter Joel; Johnson, Curtis Alan; Luthra, Krishan Lal; Rosenzweig, Larry Steven
2016-06-14
An article for use in aggressive environments is presented. In one embodiment, the article comprises a substrate and a self-sealing and substantially hermetic sealing layer comprising an alkaline-earth aluminosilicate disposed over the bondcoat. The substrate may be any high-temperature material, including, for instance, silicon-bearing ceramics and ceramic matrix composites. A method for making such articles is also presented. The method comprises providing a substrate; disposing a self-sealing alkaline-earth aluminosilicate layer over the substrate; and heating the sealing layer to a sealing temperature at which at least a portion of the sealing layer will flow.
Method of making a hydrogen transport membrane, and article
Schwartz, Joseph M.; Corpus, Joseph M.; Lim, Hankwon
2015-07-21
The present invention relates to a method of manufacturing a hydrogen transport membrane and the composite article itself. More specifically, the invention relates to producing a membrane substrate, wherein the ceramic substrate is coated with a metal oxide slurry, thereby eliminating the need for an activation step prior to plating the ceramic membrane through an electroless plating process. The invention also relates to modifying the pore size and porosity of the substrate by oxidation or reduction of the particles deposited by the metal oxide slurry.
Alvin, Mary Anne [Pittsburg, PA
2010-06-22
This disclosure addresses the issue of providing a metallic-ceramic overlay coating that potentially serves as an interface or bond coat layer to provide enhanced oxidation resistance to the underlying superalloy substrate via the formation of a diffusion barrier regime within the supporting base material. Furthermore, the metallic-ceramic coating is expected to limit the growth of a continuous thermally grown oxide (TGO) layer that has been primarily considered to be the principal cause for failure of existing TBC systems. Compositional compatibility of the metallic-ceramic with traditional yttria-stabilized zirconia (YSZ) top coats is provided to further limit debond or spallation of the coating during operational use. A metallic-ceramic architecture is disclosed wherein enhanced oxidation resistance is imparted to the surface of nickel-based superalloy or single crystal metal substrate, with simultaneous integration of the yttria stabilized zirconia (YSZ) within the metallic-ceramic overlayer.
NASA Astrophysics Data System (ADS)
Radauscher, Erich Justin
Carbon nanotubes (CNTs) have recently emerged as promising candidates for electron field emission (FE) cathodes in integrated FE devices. These nanostructured carbon materials possess exceptional properties and their synthesis can be thoroughly controlled. Their integration into advanced electronic devices, including not only FE cathodes, but sensors, energy storage devices, and circuit components, has seen rapid growth in recent years. The results of the studies presented here demonstrate that the CNT field emitter is an excellent candidate for next generation vacuum microelectronics and related electron emission devices in several advanced applications. The work presented in this study addresses determining factors that currently confine the performance and application of CNT-FE devices. Characterization studies and improvements to the FE properties of CNTs, along with Micro-Electro-Mechanical Systems (MEMS) design and fabrication, were utilized in achieving these goals. Important performance limiting parameters, including emitter lifetime and failure from poor substrate adhesion, are examined. The compatibility and integration of CNT emitters with the governing MEMS substrate (i.e., polycrystalline silicon), and its impact on these performance limiting parameters, are reported. CNT growth mechanisms and kinetics were investigated and compared to silicon (100) to improve the design of CNT emitter integrated MEMS based electronic devices, specifically in vacuum microelectronic device (VMD) applications. Improved growth allowed for design and development of novel cold-cathode FE devices utilizing CNT field emitters. A chemical ionization (CI) source based on a CNT-FE electron source was developed and evaluated in a commercial desktop mass spectrometer for explosives trace detection. This work demonstrated the first reported use of a CNT-based ion source capable of collecting CI mass spectra. The CNT-FE source demonstrated low power requirements, pulsing capabilities, and average lifetimes of over 320 hours when operated in constant emission mode under elevated pressures, without sacrificing performance. Additionally, a novel packaged ion source for miniature mass spectrometer applications using CNT emitters, a MEMS based Nier-type geometry, and a Low Temperature Cofired Ceramic (LTCC) 3D scaffold with integrated ion optics were developed and characterized. While previous research has shown other devices capable of collecting ion currents on chip, this LTCC packaged MEMS micro-ion source demonstrated improvements in energy and angular dispersion as well as the ability to direct the ions out of the packaged source and towards a mass analyzer. Simulations and experimental design, fabrication, and characterization were used to make these improvements. Finally, novel CNT-FE devices were developed to investigate their potential to perform as active circuit elements in VMD circuits. Difficulty integrating devices at micron-scales has hindered the use of vacuum electronic devices in integrated circuits, despite the unique advantages they offer in select applications. Using a combination of particle trajectory simulation and experimental characterization, device performance in an integrated platform was investigated. Solutions to the difficulties in operating multiple devices in close proximity and enhancing electron transmission (i.e., reducing grid loss) are explored in detail. A systematic and iterative process was used to develop isolation structures that reduced crosstalk between neighboring devices from 15% on average, to nearly zero. Innovative geometries and a new operational mode reduced grid loss by nearly threefold, thereby improving transmission of the emitted cathode current to the anode from 25% in initial designs to 70% on average. These performance enhancements are important enablers for larger scale integration and for the realization of complex vacuum microelectronic circuits.
Apo calmodulin binding to the L-type voltage-gated calcium channel Ca{sub v}1.2 IQ peptide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lian Luyun; Myatt, Daniel; Kitmitto, Ashraf
2007-02-16
The influx of calcium through the L-type voltage-gated calcium channels (LTCCs) is the trigger for the process of calcium-induced calcium release (CICR) from the sarcoplasmic recticulum, an essential step for cardiac contraction. There are two feedback mechanisms that regulate LTCC activity: calcium-dependent inactivation (CDI) and calcium-dependent facilitation (CDF), both of which are mediated by calmodulin (CaM) binding. The IQ domain (aa 1645-1668) housed within the cytoplasmic domain of the LTCC Ca{sub v}1.2 subunit has been shown to bind both calcium-loaded (Ca{sup 2+}CaM ) and calcium-free CaM (apoCaM). Here, we provide new data for the structural basis for the interaction ofmore » apoCaM with the IQ peptide using NMR, revealing that the apoCaM C-lobe residues are most significantly perturbed upon complex formation. In addition, we have employed transmission electron microscopy of purified LTCC complexes which shows that both apoCaM and Ca{sup 2+}CaM can bind to the intact channel.« less
Surface treatment of ceramic articles
Komvopoulos, K.; Brown, I.G.; Wei, B.; Anders, S.; Anders, A.; Bhatia, C.S.
1998-12-22
A process is disclosed for producing an article with improved ceramic surface properties including providing an article having a ceramic surface, and placing the article onto a conductive substrate holder in a hermetic enclosure. Thereafter a low pressure ambient is provided in the hermetic enclosure. A plasma including ions of solid materials is produced the ceramic surface of the article being at least partially immersed in a macroparticle free region of the plasma. While the article is immersed in the macroparticle free region, a bias of the substrate holder is biased between a low voltage at which material from the plasma condenses on the surface of the article and a high negative voltage at which ions from the plasma are implanted into the article. 15 figs.
Ceramic nanostructures and methods of fabrication
Ripley, Edward B [Knoxville, TN; Seals, Roland D [Oak Ridge, TN; Morrell, Jonathan S [Knoxville, TN
2009-11-24
Structures and methods for the fabrication of ceramic nanostructures. Structures include metal particles, preferably comprising copper, disposed on a ceramic substrate. The structures are heated, preferably in the presence of microwaves, to a temperature that softens the metal particles and preferably forms a pool of molten ceramic under the softened metal particle. A nano-generator is created wherein ceramic material diffuses through the molten particle and forms ceramic nanostructures on a polar site of the metal particle. The nanostructures may comprise silica, alumina, titania, or compounds or mixtures thereof.
Aniket; Reid, Robert; Hall, Benika; Marriott, Ian; El-Ghannam, Ahmed
2015-06-01
Pro-osteogenic stimulation of bone cells by bioactive ceramic-coated orthopedic implants is influenced by both surface roughness and material chemistry; however, their concomitant impact on osteoblast behavior is not well understood. The aim of this study is to investigate the effects of nano-scale roughness and chemistry of bioactive silica-calcium phosphate nanocomposite (SCPC50) coated Ti-6Al-4V on modulating early bone cell responses. Cell attachment was higher on SCPC50-coated substrates compared to the uncoated controls; however, cells on the uncoated substrate exhibited greater spreading and superior quality of F-actin filaments than cells on the SCPC50-coated substrates. The poor F-actin filament organization on SCPC50-coated substrates is thought to be due to the enhanced calcium uptake by the ceramic surface. Dissolution analyses showed that an increase in surface roughness was accompanied by increased calcium uptake, and increased phosphorous and silicon release, all of which appear to interfere with F-actin assembly and osteoblast morphology. Moreover, cell attachment onto the SCPC50-coated substrates correlated with the known adsorption of fibronectin, and was independent of surface roughness. High-throughput genome sequencing showed enhanced expression of extracellular matrix and cell differentiation related genes. These results demonstrate a synergistic relationship between bioactive ceramic coating roughness and material chemistry resulting in a phenotype that leads to early osteoblast differentiation. © 2014 Wiley Periodicals, Inc.
Comparative study of plasma-deposited fluorocarbon coatings on different substrates
NASA Astrophysics Data System (ADS)
Farsari, E.; Kostopoulou, M.; Amanatides, E.; Mataras, D.; Rapakoulias, D. E.
2011-05-01
The deposition of hydrophobic fluorocarbon coatings from C2F6 and C2F6-H2 rf discharges on different substrates was examined. Polyester textile, glass and two different ceramic compounds were used as substrates. The effect of the total gas pressure, the rf power dissipation and the deposition time on the hydrophobic character of the samples was investigated. Films deposited on polyester textiles at low pressure (0.03 mbar) and power consumption (16 mW cm-2) using pure C2F6 presented the highest water contact angles (~150°). On the other hand, the addition of hydrogen was necessary in order to deposit stable hydrophobic coatings on glass and ceramic substrates. Coatings deposited on glass at intermediate deposition rates (~100 Å min-1) and pressures presented the highest angles (~105°). Concerning the heavy clay ceramics, samples treated in low-pressure (0.05 mbar) and low-power (16 mW cm-2) discharges showed the highest contact angles. The deposition time was found to play an important role in the hydrophobicity and long-term behaviour of porous and rough substrates.
NASA Astrophysics Data System (ADS)
Kahlib, N. A. Z.; Daud, F. D. M.; Mel, M.; Hairin, A. L. N.; Azhar, A. Z. A.; Hassan, N. A.
2018-01-01
Fabrication of silica ceramics via the sol-gel method has offered more advantages over other methods in the fabrication of ceramic membrane, such as simple operation, high purity homogeneous, well defined-structure and complex shapes of end products. This work presents the fabrication of silica ceramic membrane via sol-gel dip-coating methods by varying nitric acid amount. The nitric acid plays an important role as catalyst in fabrication reaction which involved hydrolysis and condensation process. The tubular ceramic support, used as the substrate, was dipped into the sol of Tetrethylorthosilicate (TEOS), distilled water and ethanol with the addition of nitric acid. The fabricated silica membrane was then characterized by (Field Emission Scanning Electron Microscope) FESEM and (Fourier transform infrared spectroscopy) FTIR to determine structural and chemical properties at different amount of acids. From the XRD analysis, the fabricated silica ceramic membrane showed the existence of silicate hydrate in the final product. FESEM images indicated that the silica ceramic membrane has been deposited on the tubular ceramic support as a substrate and penetrate into the pore walls. The intensity peak of FTIR decreased with increasing of amount of acids. Hence, the 8 ml of acid has demonstrated the appropriate amount of catalyst in fabricating good physical and chemical characteristic of silica ceramic membrane.
Forming YBa2Cu3O7-x Superconductors On Copper Substrates
NASA Technical Reports Server (NTRS)
Mackenzie, J. Devin; Young, Stanley G.
1991-01-01
Experimental process forms layer of high-critical-temperature ceramic superconductor YBa2Cu3O7-x on surface of copper substrate. Offers possible solution to problem of finishing ceramic superconductors to required final sizes and shapes (difficult problem because these materials brittle and cannot be machined or bent). Further research necessary to evaluate superconducting qualities of surface layers and optimize process.
SERS substrates fabricated using ceramic filters for the detection of bacteria
NASA Astrophysics Data System (ADS)
Mosier-Boss, P. A.; Sorensen, K. C.; George, R. D.; Obraztsova, A.
2016-01-01
SERS substrates were fabricated by filtering either Ag or Au colloidal particles onto rigid, ceramic filters - onto which suspensions of bacteria were then filtered. SERS spectra of the bacteria were obtained using a Raman spectrometer that has an 'orbital raster scan' capability. It was shown that bacteria samples prepared in this manner were uniformly distributed onto the surface of the SERS substrate. The effect of common buffer systems on the SERS spectra was investigated and the utility of using the SERS technique for speciation of bacteria was explored.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haslam, J J; Farmer, J C
2004-03-31
Ceramic materials have been considered as corrosion resistant coatings for nuclear waste containers. Their suitability can be derived from the fully oxidized state for selected metal oxides. Several types of ceramic coatings applied to plain carbon steel substrates by thermal spray techniques have been exposed to 90 C simulated ground water for nearly 6 years. In some cases no apparent macroscopic damage such as coating spallation was observed in coatings. Thermal spray processes examined in this work included plasma spray, High Velocity Oxy Fuel (HVOF), and Detonation Gun. Some thermal spray coatings have demonstrated superior corrosion protection for the plainmore » carbon steel substrate. In particular the HVOF and Detonation Gun thermal spray processes produced coatings with low connected porosity, which limited the growth rate of corrosion products. It was also demonstrated that these coatings resisted spallation of the coating even when an intentional flaw (which allowed for corrosion of the carbon steel substrate underneath the ceramic coating) was placed in the coating. A model for prediction of the corrosion protection provided by ceramic coatings is presented. The model includes the effect of the morphology and amount of the porosity within the thermal spray coating and provides a prediction of the exposure time needed to produce a crack in the ceramic coating.« less
Silicon carbide ceramic membranes
NASA Astrophysics Data System (ADS)
Suwanmethanond, Varaporn
This dissertation focuses on the preparation of silicon carbide (SiC) ceramic membranes on SiC substrates. An original technique of SiC porous substrate preparation using sintering methods was developed during the work for the completion of the dissertation. The resulting SiC substrates have demonstrated high porosity, high internal surface area, well interconnected surface pore network and, at the same time, good thermal, chemical and mechanical stability. In a further development, sol-gel techniques were used to deposit micro-porous SiC membranes on these SiC porous substrates. The SiC membranes were characterized by a variety of techniques: ideal gas selectivity (He and N2), XRD, BET, SEM, XPS, and AFM. The characterization results confirmed that the asymmetric sol-gel SiC membranes were of high quality, with no cracks or pinholes, and exhibiting high resistance to corrosion and high hydro-thermal stability. In conclusion, the SiC ceramic membrane work was successfully completed. Two publications in international peer reviewed journals resulted out of this work.
Key Durability Issues with Mullite-Based Environmental Barrier Coatings for Si-Based Ceramics
NASA Technical Reports Server (NTRS)
Lee, Kang N.
1999-01-01
Plasma-sprayed mullite (3Al2O3 central dot 2SiO2) and mullite/yttria-stabilized-zirconia (YSZ) dual layer coatings have been developed to protect silicon-based ceramics from environmental attack. Mullite-based coating systems show excellent durability in air. However, in combustion environments, corrosive species such as molten salt or water vapor penetrate through cracks in the coating and attack the Si-based ceramics along the interface, Thus modification of the coating system for enhanced crack-resistance is necessary for long-term durability in combustion environments. Other key durability issues include interfacial contamination and coating/substrate bonding. Interfacial contamination leads to enhanced oxidation and interfacial pore formation, while weak coating/substrate bonding leads to rapid attack of the interface by corrosive species, both of which can cause premature failure of the coating. Interfacial contamination can be minimized by limiting impurities in coating and substrate materials. The interface may be modified to improve the coating/substrate bond.
Key Durability Issues with Mullite-Based Environmental Barrier Coatings for Si-Based Ceramics
NASA Technical Reports Server (NTRS)
Lee, Kang N.
2000-01-01
Plasma-sprayed mullite (3Al2O3.2SiO2) and mullite/yttria-stabilized-zirconia (YSZ) dual layer coatings have been developed to protect silicon -based ceramics from environmental attack. Mullite-based coating systems show excellent durability in air. However, in combustion environments, corrosive species such as molten salt or water vapor penetrate through cracks in the coating and attack the Si-based ceramics along the interface. Thus the modification of the coating system for enhanced crack-resistance is necessary for long-term durability in combustion environments. Other key durability issues include interfacial contamination and coating/substrate bonding. Interfacial contamination leads to enhanced oxidation and interfacial pore formation, while a weak coating/substrate bonding leads to rapid attack of the interface by corrosive species, both of which can cause a premature failure of the coating. Interfacial contamination can be minimized by limiting impurities in coating and substrate materials. The interface may be modified to improve the coating/substrate bond.
NASA Technical Reports Server (NTRS)
Roth, Don J.; Cosgriff, Laura M.; Harder, Bryan; Zhu, Dongming; Martin, Richard E.
2013-01-01
This study investigates the applicability of a novel noncontact single-sided terahertz electromagnetic measurement method for measuring thickness in dielectric coating systems having either dielectric or conductive substrate materials. The method does not require knowledge of the velocity of terahertz waves in the coating material. The dielectric coatings ranged from approximately 300 to 1400 m in thickness. First, the terahertz method was validated on a bulk dielectric sample to determine its ability to precisely measure thickness and density variation. Then, the method was studied on simulated coating systems. One simulated coating consisted of layered thin paper samples of varying thicknesses on a ceramic substrate. Another simulated coating system consisted of adhesive-backed Teflon adhered to conducting and dielectric substrates. Alumina samples that were coated with a ceramic adhesive layer were also investigated. Finally, the method was studied for thickness measurement of actual thermal barrier coatings (TBC) on ceramic substrates. The unique aspects and limitations of this method for thickness measurements are discussed.
Gold/silver coated nanoporous ceramic membranes: a new substrate for SERS studies
NASA Astrophysics Data System (ADS)
Kassu, A.; Robinson, P.; Sharma, A.; Ruffin, P. B.; Brantley, C.; Edwards, E.
2010-08-01
Surface Enhanced Raman Scattering (SERS) is a recently discovered powerful technique which has demonstrated sensitivity and selectivity for detecting single molecules of certain chemical species. This is due to an enhancement of Raman scattered light by factors as large as 1015. Gold and Silver-coated substrates fabricated by electron-beam lithography on Silicon are widely used in SERS technique. In this paper, we report the use of nanoporous ceramic membranes for SERS studies. Nanoporous membranes are widely used as a separation membrane in medical devices, fuel cells and other studies. Three different pore diameter sizes of commercially available nanoporous ceramic membranes: 35 nm, 55nm and 80nm are used in the study. To make the membranes SERS active, they are coated with gold/silver using sputtering techniques. We have seen that the membranes coated with gold layer remain unaffected even when immersed in water for several days. The results show that gold coated nanoporous membranes have sensitivity comparable to substrates fabricated by electron-beam lithography on Silicon substrates.
Light Weight Ceramic Ablators for Mars Follow-on Mission Vehicle Thermal Protection System
NASA Technical Reports Server (NTRS)
Tran, Huy K.; Rasky, Daniel J.; Hsu, Ming-Ta; Turan, Ryan
1994-01-01
New Light Weight Ceramic Ablators (LCA) were produced by using ceramic and carbon fibrous substrates, impregnated with silicone and phenolic resins. The special infiltration techniques (patent pending) were developed to control the amount of organic resins in the highly porous fiber matrices so that the final densities of LCA's range from 0.22 to 0.24 g/cc. This paper presents the thermal and ablative performance of the Silicone Impregnated Reusable Ceramic Ablators (SIRCA) in simulated entry conditions for Mars-Pathfinder in the Ames 60 MW Interaction Heating Facility (I HF). Arc jet test results yielded no evidence of char erosion and mass loss at high stagnation pressures to 0.25 atm. Minimal silica melt was detected on surface char at a stagnation pressure of 0.31 atm. Four ceramic substrates were used in the production of SIRCA's to obtain the effective of boron oxide present in substrate so the thermal performance of SIRCA's. A sample of SIRCA was also exposed to the same heating condition for five cycles and no significant mass loss or recession was observed. Tensile testing established that the SIRCA tensile strength is about a factor of two higher than that of the virgin substrates. Thermogravimetric Analysis (TGA) of the char in nitrogen and air showed no evidence of free carbon in the char. Scanning Electron Microscopy of the post test sample showed that the char surface consists of a fibrous structure that was sealed with a thin layer of silicon oxide melt.
Ujihara, Yoshihiro; Mohri, Satoshi; Katanosaka, Yuki
2016-11-25
The Na + /Ca 2+ exchanger 1 (NCX1) is an essential Ca 2+ efflux system in cardiomyocytes. Although NCX1 is distributed throughout the sarcolemma, a subpopulation of NCX1 is localized to transverse (T)-tubules. There is growing evidence that T-tubule disorganization is a causal event that shifts the transition from hypertrophy to heart failure (HF). However, the detailed molecular mechanisms have not been clarified. Previously, we showed that induced NCX1 expression in pressure-overloaded hearts attenuates defective excitation-contraction coupling and HF progression. Here, we examined the effects of induced NCX1 overexpression on the spatial distribution of L-type Ca 2+ channels (LTCCs) and junctophilin-2 (JP2), a structural protein that connects the T-tubule and sarcoplasmic reticulum membrane, in pressure-overloaded hearts. Quantitative analysis showed that the regularity of NCX1 localization was significantly decreased at 8 weeks after transverse aortic constriction (TAC)-surgery; however, T-tubule organization and the regularities of LTCC and JP2 immunofluorescent signals were maintained at this time point. These observations demonstrated that release of NCX1 from the T-tubule area occurred before the onset of T-tubule disorganization and LTCC and JP2 mislocalization. Moreover, induced NCX1 overexpression at 8 weeks post-TAC not only recovered NCX1 regularity but also prevented the decrease in LTCC and JP2 regularities at 16 weeks post-TAC. These results suggested that NCX1 may play an important role in the proper spatial distribution of LTCC and JP2 in T-tubules in the context of pressure-overloading. Copyright © 2016 Elsevier Inc. All rights reserved.
Polycystin-1 is a Cardiomyocyte Mechanosensor That Governs L-type Ca2+ Channel Protein Stability
Pedrozo, Zully; Criollo, Alfredo; Battiprolu, Pavan K.; Morales, Cyndi R.; Contreras, Ariel; Fernández, Carolina; Jiang, Nan; Luo, Xiang; Caplan, Michael J.; Somlo, Stefan; Rothermel, Beverly A.; Gillette, Thomas G.; Lavandero, Sergio; Hill, Joseph A.
2015-01-01
Background L-type calcium channel (LTCC) activity is critical to afterload-induced hypertrophic growth of the heart. However, mechanisms governing mechanical stress-induced activation of LTCC activity are obscure. Polycystin-1 (PC-1) is a G-protein-coupled receptor-like protein that functions as a mechanosensor in a variety of cell types and is present in cardiomyocytes. Methods and Results We subjected neonatal rat ventricular myocytes (NRVMs) to mechanical stretch by exposing them to hypo-osmotic (HS) medium or cyclic mechanical stretch, triggering cell growth in a manner dependent on LTCC activity. RNAi-dependent knockdown of PC-1 blocked this hypertrophy. Over-expression of a C-terminal fragment of PC-1 was sufficient to trigger NRVM hypertrophy. Exposing NRVMs to HS medium resulted in an increase in α1C protein levels, a response that was prevented by PC-1 knockdown. MG132, a proteasomal inhibitor, rescued PC-1 knockdown-dependent declines in α1C protein. To test this in vivo, we engineered mice harboring conditional silencing of PC-1 selectively in cardiomyocytes (PC-1 KO) and subjected them to mechanical stress in vivo (transverse aortic constriction, TAC). At baseline, PC-1 KO mice manifested decreased cardiac function relative to littermate controls, and α1C LTCC protein levels were significantly lower in PC-1 KO hearts. Whereas control mice manifested robust TAC-induced increases in cardiac mass, PC-1 KO mice showed no significant growth. Likewise, TAC-elicited increases in hypertrophic markers and interstitial fibrosis were blunted in the knockout animals Conclusions PC-1 is a cardiomyocyte mechanosensor and is required for cardiac hypertrophy through a mechanism that involves stabilization of α1C protein. PMID:25888683
Metal oxide nanorod arrays on monolithic substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Pu-Xian; Guo, Yanbing; Ren, Zheng
A metal oxide nanorod array structure according to embodiments disclosed herein includes a monolithic substrate having a surface and multiple channels, an interface layer bonded to the surface of the substrate, and a metal oxide nanorod array coupled to the substrate surface via the interface layer. The metal oxide can include ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide. The substrate can include a glass substrate, a plastic substrate, a silicon substrate, a ceramic monolith, and a stainless steel monolith. The ceramic can include cordierite, alumina, tin oxide, and titania. The nanorod array structure can includemore » a perovskite shell, such as a lanthanum-based transition metal oxide, or a metal oxide shell, such as ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide, or a coating of metal particles, such as platinum, gold, palladium, rhodium, and ruthenium, over each metal oxide nanorod. Structures can be bonded to the surface of a substrate and resist erosion if exposed to high velocity flow rates.« less
Lost Mold Rapid Infiltration Forming of Mesoscale Ceramics: Part 1, Fabrication
Antolino, Nicholas E.; Hayes, Gregory; Kirkpatrick, Rebecca; Muhlstein, Christopher L.; Frecker, Mary I.; Mockensturm, Eric M.; Adair, James H.
2009-01-01
Free-standing mesoscale (340 μm × 30 μm × 20 μm) bend bars with an aspect ratio over 15:1 and an edge resolution as fine as a single grain diameter (∼400 nm) have been fabricated in large numbers on refractory ceramic substrates by combining a novel powder processing approach with photoresist molds and an innovative lost-mold thermal process. The colloid and interfacial chemistry of the nanoscale zirconia particulates has been modeled and used to prepare highly concentrated suspensions. Engineering solutions to challenges in mold fabrication and casting have yielded free-standing, crack-free parts. Molds are fabricated using high-aspect-ratio photoresist on ceramic substrates. Green parts are formed using a rapid infiltration method that exploits the shear thinning behavior of the highly concentrated ceramic suspension in combination with gelcasting. The mold is thermally decomposed and the parts are sintered in place on the ceramic substrate. Chemically aided attrition milling disperses and concentrates the as-received 3Y-TZP powder to produce a dense, fine-grained sintered microstructure. Initial three-point bend strength data are comparable to that of conventional zirconia; however, geometric irregularities (e.g., trapezoidal cross sections) are present in this first generation and are discussed with respect to the distribution of bend strength. PMID:19809595
Aluminum alloy/alumina-based ceramic interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lebeau, T.; Strom-Olsen, J.O.; Gruzleski, J.E.
1995-07-01
Wetting experiments were performed on eutectic ZrO{sub 2}/Al{sub 2}O{sub 3} (ZA), ZrO{sub 2}/Al{sub 2}O{sub 3}/TiO{sub 2} (ZAT), and ZrO{sub 2}/Al{sub 2}O{sub 3}/SiO{sub 2} (ZAS) ceramic substrates with different Al alloys. Four major variables were tested to study the wetting behavior of the different ceramic-metal systems. Variable include holding time, melt temperature, ally, and ceramic compositions. An experimental setup was designed to measure in situ contact angles using the sessile drop method. For any ceramic substrate, a temperature over 950 C was necessary to observe an equilibrium wetting angle of less than 90{degree} with pure Al; by alloying the aluminum, wettingmore » could be observed at lower temperatures ({theta} = 76--86{degree} at 900 C for Al-10 wt. % Si, {theta} {approximately}72{degree} at 850 C for Al-2.4 wt. % Mg) forming clean interfaces. Finally, ZAS specimens reacted with molten Al alloys over 900 C to produce Zr-Al based intermetallics at the metal-ceramic interface.« less
Colloidal spray method for low cost thin coating deposition
Pham, Ai-Quoc; Glass, Robert S.; Lee, Tae H.
2005-01-25
A dense or porous coating of material is deposited onto a substrate by forcing a colloidal suspension through an ultrasonic nebulizer and spraying a fine mist of particles in a carrier medium onto a sufficiently heated substrate. The spraying rate is essentially matched to the evaporation rate of the carrier liquid from the substrate to produce a coating that is uniformly distributed over the surface of the substrate. Following deposition to a sufficient coating thickness, a single sintering step may be used to produce a dense ceramic coating. Using this method, coatings ranging in thickness from about one to several hundred microns can be obtained. By using a plurality of compounds in the colloidal suspension, coatings of mixed composition can be obtained. By using a plurality of solutions and separate pumps and a single or multiple ultrasonic nebulizer(s), and varying the individual pumping rates and/or the concentrations of the solutions, a coating of mixed and discontinuously graded (e.g., stepped) or continuously graded layers may be obtained. This method is particularly useful for depositing ceramic coatings. Dense ceramic coating materials on porous substrates are useful in providing improved electrode performance in devices such as high power density solid oxide fuel cells. Dense ceramic coatings obtained by the invention are also useful for gas turbine blade coatings, sensors, steam electrolyzers, etc. The invention has general use in preparation of systems requiring durable and chemically resistant coatings, or coatings having other specific chemical or physical properties.
Colloidal spray method for low cost thin coating deposition
Pham, Ai-Quoc; Glass, Robert S.; Lee, Tae H.
2002-01-01
A dense or porous coating of material is deposited onto a substrate by forcing a colloidal suspension through an ultrasonic nebulizer and spraying a fine mist of particles in a carrier medium onto a sufficiently heated substrate. The spraying rate is essentially matched to the evaporation rate of the carrier liquid from the substrate to produce a coating that is uniformly distributed over the surface of the substrate. Following deposition to a sufficient coating thickness, a single sintering step may be used to produce a dense ceramic coating. Using this method, coatings ranging in thickness from about one to several hundred microns can be obtained. By using a plurality of compounds in the colloidal suspension, coatings of mixed composition can be obtained. By using a plurality of solutions and separate pumps and a single or multiple ultrasonic nebulizer(s), and varying the individual pumping rates and/or the concentrations of the solutions, a coating of mixed and discontinuously graded (e.g., stepped) or continuously graded layers may be obtained. This method is particularly useful for depositing ceramic coatings. Dense ceramic coating materials on porous substrates are useful in providing improved electrode performance in devices such as high power density solid oxide fuel cells. Dense ceramic coatings obtained by the invention are also useful for gas turbine blade coatings, sensors, steam electrolyzers, etc. The invention has general use in preparation of systems requiring durable and chemically resistant coatings, or coatings having other specific chemical or physical properties.
Isenberg, A.O.
1992-04-21
An electrochemical device, containing a solid oxide electrolyte material and an electrically conductive composite layer, has the composite layer attached by: (A) applying a layer of LaCrO[sub 3], YCrO[sub 3] or LaMnO[sub 3] particles, on a portion of a porous ceramic substrate, (B) heating to sinter bond the particles to the substrate, (C) depositing a dense filler structure between the doped particles, (D) shaving off the top of the particles, and (E) applying an electronically conductive layer over the particles as a contact. 7 figs.
SERS substrates fabricated using ceramic filters for the detection of bacteria.
Mosier-Boss, P A; Sorensen, K C; George, R D; Obraztsova, A
2016-01-15
SERS substrates were fabricated by filtering either Ag or Au colloidal particles onto rigid, ceramic filters - onto which suspensions of bacteria were then filtered. SERS spectra of the bacteria were obtained using a Raman spectrometer that has an 'orbital raster scan' capability. It was shown that bacteria samples prepared in this manner were uniformly distributed onto the surface of the SERS substrate. The effect of common buffer systems on the SERS spectra was investigated and the utility of using the SERS technique for speciation of bacteria was explored. Published by Elsevier B.V.
An anti-PDGFRβ aptamer for selective delivery of small therapeutic peptide to cardiac cells.
Romanelli, Alessandra; Affinito, Alessandra; Avitabile, Concetta; Catuogno, Silvia; Ceriotti, Paola; Iaboni, Margherita; Modica, Jessica; Condorelli, Geroloma; Catalucci, Daniele
2018-01-01
Small therapeutic peptides represent a promising field for the treatment of pathologies such as cardiac diseases. However, the lack of proper target-selective carriers hampers their translation towards a potential clinical application. Aptamers are cell-specific carriers that bind with high affinity to their specific target. However, some limitations on their conjugation to small peptides and the functionality of the resulting aptamer-peptide chimera exist. Here, we generated a novel aptamer-peptide chimera through conjugation of the PDGFRβ-targeting Gint4.T aptamer to MP, a small mimetic peptide that via targeting of the Cavβ2 subunit of the L-type calcium channel (LTCC) can recover myocardial function in pathological heart conditions associated with defective LTCC function. The conjugation reaction was performed by click chemistry in the presence of N,N,N',N',N"-pentamethyldiethylenetriamine as a Cu (I) stabilizing agent in a DMSO-free aqueous buffer. When administered to cardiac cells, the Gint4.T-MP aptamer-peptide chimera was successfully internalized in cells, allowing the functional targeting of MP to LTCC. This approach represents the first example of the use of an internalizing aptamer for selective delivery of a small therapeutic peptide to cardiac cells.
Fabrication of ceramic substrate-reinforced and free forms
NASA Technical Reports Server (NTRS)
Quentmeyer, R. J.; Mcdonald, G.; Hendricks, R. C.
1985-01-01
Components fabricated of, or coated with, ceramics have lower parasitic cooling requirements. Techniques are discussed for fabricating thin-shell ceramic components and ceramic coatings for applications in rocket or jet engine environments. Thin ceramic shells with complex geometric forms involving convolutions and reentrant surfaces were fabricated by mandrel removal. Mandrel removal was combined with electroplating or plasma spraying and isostatic pressing to form a metal support for the ceramic. Rocket engine thrust chambers coated with 0.08 mm (3 mil) of ZrO2-8Y2O3 had no failures and a tenfold increase in engine life. Some measured mechanical properties of the plasma-sprayed ceramic are presented.
NASA Technical Reports Server (NTRS)
Quentmeyer, R. J.; Mcdonald, G.; Hendricks, R. C.
1985-01-01
Components fabricated of, or coated with, ceramics have lower parasitic cooling requirements. Techniques are discussed for fabricating thin-shell ceramic components and ceramic coatings for applications in rocket or jet engine environments. Thin ceramic shells with complex geometric forms involving convolutions and reentrant surfaces were fabricated by mandrel removal. Mandrel removal was combined with electroplating or plasma spraying and isostatic pressing to form a metal support for the ceramic. Rocket engine thrust chambers coated with 0.08 mm (3 mil) of ZrO2-8Y2O3 had no failures and a tenfold increase in engine life. Some measured mechanical properties of the plasma-sprayed ceramic are presented.
Guanidine Soaps As Vehicles For Coating Ceramic Fibers
NASA Technical Reports Server (NTRS)
Philipp, Warren H.; Veitch, Lisa C.; Jaskowiak, Martha H.
1994-01-01
Soaps made from strong organic base guanidine and organic fatty acids serve as vehicles and binders for coating ceramic fibers, various smooth substrates, and other problematic surfaces with thin precious-metal or metal-oxide films. Films needed to serve as barriers to diffusion in fiber/matrix ceramic composite materials. Guanidine soaps entirely organic and burn off, leaving no residues.
Calkins, Noel C.
1991-01-01
An armor system which utilizes glass. A plurality of constraint cells are mounted on a surface of a substrate, which is metal armor plate or a similar tough material, such that the cells almost completely cover the surface of the substrate. Each constraint cell has a projectile-receiving wall parallel to the substrate surface and has sides which are perpendicular to and surround the perimeter of the receiving wall. The cells are mounted such that, in one embodiment, the substrate surface serves as a sixth side or closure for each cell. Each cell has inside of it a plate, termed the front plate, which is parallel to and in contact with substantially all of the inside surface of the receiving wall. The balance of each cell is completely filled with a projectile-abrading material consisting of glass and a ceramic material and, in certain embodiments, a polymeric material. The glass may be in monolithic form or particles of ceramic may be dispersed in a glass matrix. The ceramic material may be in monolithic form or may be in the form of particles dispersed in glass or dispersed in said polymer.
Qin, Guoxuan; Zhang, Yibo; Lan, Kuibo; Li, Lingxia; Ma, Jianguo; Yu, Shihui
2018-04-18
A novel method of fabricating flexible thin-film transistor based on single-crystalline Si nanomembrane (SiNM) with high- k Nb 2 O 5 -Bi 2 O 3 -MgO (BMN) ceramic gate dielectric on a plastic substrate is demonstrated in this paper. SiNMs are successfully transferred to a flexible polyethylene terephthalate substrate, which has been plated with indium-tin-oxide (ITO) conductive layer and high- k BMN ceramic gate dielectric layer by room-temperature magnetron sputtering. The BMN ceramic gate dielectric layer demonstrates as high as ∼109 dielectric constant, with only dozens of pA current leakage. The Si-BMN-ITO heterostructure has only ∼nA leakage current at the applied voltage of 3 V. The transistor is shown to work at a high current on/off ratio of above 10 4 , and the threshold voltage is ∼1.3 V, with over 200 cm 2 /(V s) effective channel electron mobility. Bending tests have been conducted and show that the flexible transistors have good tolerance on mechanical bending strains. These characteristics indicate that the flexible single-crystalline SiNM transistors with BMN ceramics as gate dielectric have great potential for applications in high-performance integrated flexible circuit.
Isenberg, Arnold O.
1992-01-01
An electrochemical device, containing a solid oxide electrolyte material and an electrically conductive composite layer, has the composite layer attached by: (A) applying a layer of LaCrO.sub.3, YCrO.sub.3 or LaMnO.sub.3 particles (32), on a portion of a porous ceramic substrate (30), (B) heating to sinter bond the particles to the substrate, (C) depositing a dense filler structure (34) between the doped particles (32), (D) shaving off the top of the particles, and (E) applying an electronically conductive layer over the particles (32) as a contact.
Ceramics for Molten Materials Containment, Transfer and Handling on the Lunar Surface
NASA Technical Reports Server (NTRS)
Standish, Evan; Stefanescu, Doru M.; Curreri, Peter A.
2009-01-01
As part of a project on Molten Materials Transfer and Handling on the Lunar Surface, molten materials containment samples of various ceramics were tested to determine their performance in contact with a melt of lunar regolith simulant. The test temperature was 1600 C with contact times ranging from 0 to 12 hours. Regolith simulant was pressed into cylinders with the approximate dimensions of 1.25 dia x 1.25cm height and then melted on ceramic substrates. The regolith-ceramic interface was examined after processing to determine the melt/ceramic interaction. It was found that the molten regolith wetted all oxide ceramics tested extremely well which resulted in chemical reaction between the materials in each case. Alumina substrates were identified which withstood contact at the operating temperature of a molten regolith electrolysis cell (1600 C) for eight hours with little interaction or deformation. This represents an improvement over alumina grades currently in use and will provide a lifetime adequate for electrolysis experiments lasting 24 hours or more. Two types of non-oxide ceramics were also tested. It was found that they interacted to a limited degree with the melt resulting in little corrosion. These ceramics, Sic and BN, were not wetted as well as the oxides by the melt, and so remain possible materials for molten regolith handling. Tests wing longer holding periods and larger volumes of regolith are necessary to determine the ultimate performance of the tested ceramics.
Mechanics of hard films on soft substrates
NASA Astrophysics Data System (ADS)
Lu, Nanshu
2009-12-01
Flexible electronics have been developed for various applications, including paper-like electronic readers, rollable solar cells, electronic skins etc., with the merits of light weight, low cost, large area, and ruggedness. The systems may be subject to one-time or repeated large deformation during manufacturing and application. Although organic materials can be highly deformable, currently they are not able to fulfill every electronic function. Therefore flexible electronic devices are usually made as organic/inorganic hybrids, with diverse materials, complex architecture, and micro features. While the polymer substrates can recover from large deformations, thin films of electronic materials such as metals, silicon, oxides, and nitrides fracture at small strains, usually less than a few percent. Mechanics of hard films on soft substrates hence holds the key to build high-performance and highly reliable flex circuits. This thesis investigates the deformability and failure mechanisms of thin films of metallic and ceramic materials supported by soft polymeric substrates through combined experimental, theoretical, and numerical methods. When subject to tension, micron-thick metal films with stable microstructure and strong interfacial adhesion to the substrate can be stretched beyond 50% without forming cracks. They eventually rupture by a ductile transgranular fracture which involves simultaneous necking and debonding. When metal films become nanometer-thick, intergranular fracture dominates the failure mode at elongations of only a few percent. Unannealed films show unstable microstructure at room temperature when subject to mechanical loading. In this case, films also rupture at small strains but by three concurrent mechanisms: deformation-induced grain growth, strain localization at large grains, and simultaneous debonding. In contrast to metal films, ceramic films rupture by brittle mechanisms. The only way to prevent rupture of ceramic films is to reduce the strain they are subject to. Instead of using blanket films that fail at strains less than i%, we have patterned ceramic films into a lattice of periodic, isolated islands. Failure modes such as channel cracking, debonding, and wrinkling have been identified. Island behaviors are controlled by factors such as island size, thickness, and elastic mismatch with the substrate. A very soft interlayer between the islands and the underlying polyimide substrate reduces strains in the islands by orders of magnitude. Using this approach, substrates with arrays of 200 x 200 mum2 large SiNx islands were stretched beyond 20% without cracking or debonding the islands. In summary, highly stretchable thin metal films and ceramic island arrays supported by polymer substrates have been achieved, along with mechanistic understandings of their deformation and failure mechanisms.
Simulation and performance study of ceramic THGEM
NASA Astrophysics Data System (ADS)
Yan, Jia-Qing; Xie, Yu-Guang; Hu, Tao; Lu, Jun-Guang; Zhou, Li; Qu, Guo-Pu; Cai, Xiao; Niu, Shun-Li; Chen, Hai-Tao
2015-06-01
THGEMs based on a ceramic substrate have been successfully developed for neutron and single photon detection. The influences on thermal neutron scattering and internal radioactivity of both ceramic and FR-4 substrates were studied and compared. The ceramic THGEMs are homemade, of 200 μm hole diameter, 600 μm pitch, 200 μm thickness, 80 μm rim, and 50 mm×50 mm sensitive area. FR-4 THGEMs with the same geometry were used as a reference. The gas gain, energy resolution and gain stability were measured in different gas mixtures using 5.9 keV X-rays. The maximum gain of a single layer ceramic THGEM reaches 6×104 and 1.5×104 at Ne+CH4=95:5 and Ar + i-C4H10 = 97:3, respectively. The energy resolution is better than 24%. Good gain stability was obtained during a more than 100 hour continuous test in Ar+CO2 = 80:20. By using a 239Pu source, the alpha deposited energy spectrum and gain curve of the ceramic THGEM were measured. Supported by National Natural Science Foundation of China (11205173) and State Key Laboratory of Particle Detection and Electronics (H9294206TD)
In-situ formation of multiphase deposited thermal barrier coatings
Subramanian, Ramesh
2004-01-13
A multiphase ceramic thermal barrier coating is provided. The coating is adapted for use in high temperature applications in excess of about 1200.degree. C., for coating superalloy components of a combustion turbine engine. The coating comprises a ceramic single or two oxide base layer disposed on the substrate surface; and a ceramic oxide reaction product material disposed on the base layer, the reaction product comprising the reaction product of the base layer with a ceramic single or two oxide overlay layer.
Epitaxial Growth and Cracking Mechanisms of Thermally Sprayed Ceramic Splats
NASA Astrophysics Data System (ADS)
Chen, Lin; Yang, Guan-jun
2018-02-01
In the present study, the epitaxial growth and cracking mechanisms of thermally sprayed ceramic splats were explored. We report, for the first time, the epitaxial growth of various splat/substrate combinations at low substrate temperatures (100 °C) and large lattice mismatch (- 11.26%). Our results suggest that thermal spray deposition was essentially a liquid-phase epitaxy, readily forming chemical bonding. The interface temperature was also estimated. The results convincingly demonstrated that atoms only need to diffuse and rearrange over a sufficiently short range during extremely rapid solidification. Concurrently, severe cracking occurred in the epitaxial splat/substrate systems, which indicated high tensile stress was produced during splat deposition. The origin of the tensile stress was attributed to the strong constraint of the locally heated substrate by its cold surroundings.
Highly reflective polymeric substrates functionalized utilizing atomic layer deposition
NASA Astrophysics Data System (ADS)
Zuzuarregui, Ana; Coto, Borja; Rodríguez, Jorge; Gregorczyk, Keith E.; Ruiz de Gopegui, Unai; Barriga, Javier; Knez, Mato
2015-08-01
Reflective surfaces are one of the key elements of solar plants to concentrate energy in the receivers of solar thermal electricity plants. Polymeric substrates are being considered as an alternative to the widely used glass mirrors due to their intrinsic and processing advantages, but optimizing both the reflectance and the physical stability of polymeric mirrors still poses technological difficulties. In this work, polymeric surfaces have been functionalized with ceramic thin-films by atomic layer deposition. The characterization and optimization of the parameters involved in the process resulted in surfaces with a reflection index of 97%, turning polymers into a real alternative to glass substrates. The solution we present here can be easily applied in further technological areas where seemingly incompatible combinations of polymeric substrates and ceramic coatings occur.
Dimensional stability. [of glass and glass-ceramic materials in diffraction telescopes
NASA Technical Reports Server (NTRS)
Hochen, R.; Justie, B.
1976-01-01
The temporal stability of glass and glass-ceramic materials is important to the success of a large diffraction-limited telescope. The results are presented of an experimental study of the dimensional stability of glasses and glass ceramics being considered for substrates of massive diffraction-limited mirrors designed for several years of service in earth orbit. The purpose of the study was to measure the relative change in length of the candidate substrate materials, to the order of 5 parts in 10 to the 8th power, as a function of several years time. The development of monolithic test etalons, the development and improvement of two types of ultra-high precision interferometers, and certain aspects of tests data presently achieved are discussed.
Daschil, Nina; Kniewallner, Kathrin M; Obermair, Gerald J; Hutter-Paier, Birgit; Windisch, Manfred; Marksteiner, Josef; Humpel, Christian
2015-03-01
It is well established that L-type calcium channels (LTCCs) are expressed in astroglia. However, their functional role is still speculative, especially under pathologic conditions. We recently showed that the α1 subunit-like immunoreactivity of the CaV1.2 channel is strongly expressed in reactive astrocytes around beta-amyloid plaques in 11-month-old Alzheimer transgenic (tg) mice with the amyloid precursor protein London and Swedish mutations. The aim of the present study was to examine the cellular expression of all LTCC subunits around beta-amyloid plaques by in situ hybridization using (35)S-labeled oligonucleotides. Our data show that messenger RNAs (mRNAs) of the LTCC CaV1.2 α1 subunit as well as all auxiliary β and α2δ subunits, except α2δ-4, were expressed in the hippocampus of age-matched wild-type mice. It was unexpected to see, that cells directly located in the plaque core in the cortex expressed mRNAs for CaV1.2 α1, β2, β4, and α2δ-1, whereas no expression was detected in the halo. Furthermore, cells in the plaque core also expressed preprotachykinin-A mRNA, the precursor for substance P. By means of confocal microscopy, we demonstrated that collagen-IV-stained brain vessels in the cortex were associated with the plaque core and were immunoreactive for substance P. In cortical organotypic brain slices of adult Alzheimer mice, we could demonstrate that LTCC blockers increased angiogenesis, which was further potentiated by substance P. In conclusion, our data show that brain vessels associated with beta-amyloid plaques express substance P and an LTCC and may play a role in angiogenesis. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Park, Jay Hoon; Joo, Yong Lak
2017-09-01
We report silver (Ag)/ceramic nanofibers with highly robust and sensitive optical sensory capabilities that can withstand harsh conditions. These nanofibers are fabricated by first electrospinning solutions of poly vinyl alcohol (PVA) and metal precursor polymers, followed by subsequent series of heat treatment. The reported fabrication method demonstrate the effects of (i) the location of Ag crystals, (ii) crystal size and shape, and (iii) constituents of the ceramic matrix as surface-enhanced Raman spectroscopy (SERS) templates with 10-6 M 4-mercaptobenzoic acid (4-MBA). Notably, these silver/ceramic nanofibers preserved most of their highly sensitive localized surface plasmon resonance (LSPR) even under high temperature of 400 °C, in contrast to preformed Ag nanoparticles (NPs) in PVA nanofibers which lost most of its optical property presumably due to (i) Ag oxidation and (ii) loss of the matrix material. Among the ceramic substrates of ZrO2, Al2O3, and ZnO with silver crystals, we discovered that the ZnO substrate showed the most consistent and the strongest signal strength owing to the synergistic chemical and optical properties of the ZnO substrate. Moreover, the pure Ag nanofiber proved to be the best heat-resistant SERS template, owing to its (i) anisotropic morphology and (ii) thicker diameter when compared with other conventional Ag nanomaterials. These results demonstrated simple yet highly controllable fabrication of robust SERS templates, with potential applications in a catalytic sensory which is often exposed to harsh conditions.
Multilayer modal actuator-based piezoelectric transformers.
Huang, Yao-Tien; Wu, Wen-Jong; Wang, Yen-Chieh; Lee, Chih-Kung
2007-02-01
An innovative, multilayer piezoelectric transformer equipped with a full modal filtering input electrode is reported herein. This modal-shaped electrode, based on the orthogonal property of structural vibration modes, is characterized by full modal filtering to ensure that only the desired vibration mode is excited during operation. The newly developed piezoelectric transformer is comprised of three layers: a multilayered input layer, an insulation layer, and a single output layer. The electrode shape of the input layer is derived from its structural vibration modal shape, which takes advantage of the orthogonal property of the vibration modes to achieve a full modal filtering effect. The insulation layer possesses two functions: first, to couple the mechanical vibration energy between the input and output, and second, to provide electrical insulation between the two layers. To meet the two functions, a low temperature, co-fired ceramic (LTCC) was used to provide the high mechanical rigidity and high electrical insulation. It can be shown that this newly developed piezoelectric transformer has the advantage of possessing a more efficient energy transfer and a wider optimal working frequency range when compared to traditional piezoelectric transformers. A multilayer piezoelectric, transformer-based inverter applicable for use in LCD monitors or portable displays is presented as well.
Magnetic Diagnosis Upgrade and Analysis for MHD Instabilities on the J-TEXT
NASA Astrophysics Data System (ADS)
Guo, Daojing; Hu, Qiming; Zhuang, Ge; Wang, Nengchao; Ding, Yonghua; Tang, Yuejin; Yu, Qingquan; Huazhong University of Science; Technology Team; Max-Planck-Institut für Plasmaphysik Collaboration
2017-10-01
The magnetic diagnostic system on the J-TEXT tokamak has been upgraded to measure the magnetohydrodynamic (MHD) instabilities with diverse bands of frequencies. 12 saddle loop probes and 73 Mirnov probes are newly developed. The fabrication and installment of the new probes are elaborately designed, in consideration of higher spatial resolution and better amplitude-frequency characteristic. In this case, the probes utilize two kinds of novel fabrication craft, one of which is low temperature co-fired ceramics (LTCC), the other is flexible printed circuit (FPC). A great deal of experiments on the J-TEXT have validated the stability of the new system. Some typical discharges observed by the new diagnostic system are reviewed. In order to extract useful information from raw signals, several efficient signal processing methods are reviewed. An analytical model based on lumped eddy current circuits is used to compensate equilibrium flux and the corresponding eddy current fluxes, a visualization processing based on singular value decomposition (SVD) and cross-power spectrum are applied to detect the mode number. Fusion Science Program of China (Contract Nos. 2015GB111001 and 2014GB108000) and the National Natural Science Foundation of China (Contract Nos. 11505069 and 11405068).
Functionalized Thick Film Impedance Sensors for Use in In Vitro Cell Culture.
Bartsch, Heike; Baca, Martin; Fernekorn, Uta; Müller, Jens; Schober, Andreas; Witte, Hartmut
2018-04-05
Multi-electrode arrays find application in electrophysiological recordings. The quality of the captured signals depends on the interfacial contact between electrogenic cells and the electronic system. Therefore, it requires reliable low-impedance electrodes. Low-temperature cofired ceramic technology offers a suitable platform for rapid prototyping of biological reactors and can provide both stable fluid supply and integrated bio-hardware interfaces for recordings in electrogenic cell cultures. The 3D assembly of thick film gold electrodes in in vitro bio-reactors has been demonstrated for neuronal recordings. However, especially when dimensions become small, their performance varies strongly. This work investigates the influence of different coatings on thick film gold electrodes with regard to their influence on impedance behavior. PSS layer, titanium oxynitride and laminin coatings are deposited on LTCC gold electrodes using different 2D and 3D MEA chip designs. Their impedance characteristics are compared and discussed. Titanium oxynitride layers emerged as suitable functionalization. Small 86-µm-electrodes have a serial resistance R s of 32 kOhm and serial capacitance C s of 4.1 pF at 1 kHz. Thick film gold electrodes with such coatings are thus qualified for signal recording in 3-dimensional in vitro cell cultures.
Dimitriadis, Konstantinos; Spyropoulos, Konstantinos; Papadopoulos, Triantafillos
2018-02-01
The aim of the present study was to record the metal-ceramic bond strength of a feldspathic dental porcelain and a Co-Cr alloy, using the Direct Metal Laser Sintering technique (DMLS) for the fabrication of metal substrates. Ten metal substrates were fabricated with powder of a dental Co-Cr alloy using DMLS technique (test group) in dimensions according to ISO 9693. Another ten substrates were fabricated with a casing dental Co-Cr alloy using classic casting technique (control group) for comparison. Another three substrates were fabricated using each technique to record the Modulus of Elasticity ( E ) of the used alloys. All substrates were examined to record external and internal porosity. Feldspathic porcelain was applied on the substrates. Specimens were tested using the three-point bending test. The failure mode was determined using optical and scanning electron microscopy. The statistical analysis was performed using t-test. Substrates prepared using DMLS technique did not show internal porosity as compared to those produced using the casting technique. The E of control and test group was 222 ± 5.13 GPa and 227 ± 3 GPa, respectively. The bond strength was 51.87 ± 7.50 MPa for test group and 54.60 ± 6.20 MPa for control group. No statistically significant differences between the two groups were recorded. The mode of failure was mainly cohesive for all specimens. Specimens produced by the DMLS technique cover the lowest acceptable metal-ceramic bond strength of 25 MPa specified in ISO 9693 and present satisfactory bond strength for clinical use.
NASA Technical Reports Server (NTRS)
Whitehead, A. B.; Zook, J. D.; Grung, B. L.; Heaps, J. D.; Schmit, F.; Schuldt, S. B.; Chapman, P. W.
1981-01-01
The technical feasibility of producing solar cell quality sheet silicon to meet the DOE 1986 cost goal of 70 cents/watt was investigated. The silicon on ceramic approach is to coat a low cost ceramic substrate with large grain polycrystalline silicon by unidirectional solidification of molten silicon. Results and accomplishments are summarized.
Constrained ceramic-filled polymer armor
Sandstrom, Donald J.; Calkins, Noel C.; Gac, Frank D.
1990-01-01
An armor system in which a plurality of constraint cells are mounted on a surface of a substrate, which is metal armor plate or a similar tough material, such that the cells almost completely cover the surface of the substrate. Each constraint cell has a projectile-receiving wall parallel to the substrate surface and has sides which are perpendicular to and surround the perimeter of the receiving wall. The cells are mounted such that, in one embodiment, the substrate surface serves as a sixth side or closure for each cell. Each cell has inside of it a plate, termed the front plate, which is parallel to and in contact with substantially all of the inside surface of the receiving wall. The balance of each cell is completely filled with a projectile-abrading material, which is a ceramic material in particulate form dispersed in a polymeric matrix.
Masking ability of a zirconia ceramic on composite resin substrate shades.
Tabatabaian, Farhad; Shabani, Sima; Namdari, Mahshid; Sadeghpour, Koroush
2017-01-01
Masking ability of a restorative material plays an important role to cover discolored tooth structure; however, this ability has not yet been well understood in zirconia-based restorations. This study assessed the masking ability of a zirconia ceramic on composite resin substrates with different shades. Ten zirconia disc specimens, with 0.5 mm thickness and 10 mm diameter, were fabricated by a computer-aided design/computer-aided manufacturing system. A white substrate (control) and six composite resin substrates with different shades including A1, A2, A3, B2, C2, and D3 were prepared. The substrates had a cylindrical shape with 10 mm diameter and height. The specimens were placed onto the substrates for spectrophotometric evaluation. A spectrophotometer measured the L*, a*, and b* values for the specimens. ΔE values were calculated to determine the color differences between the groups and the control and then were compared with a perceptional threshold (ΔE = 2.6). Repeated measures ANOVA and Bonferroni tests were used for data analysis ( P < 0.05). The mean and standard deviation of ΔE values for A1, A2, A3, B2, C2, and D3 groups were 6.78 ± 1.59, 8.13 ± 1.66, 9.81 ± 2.64, 9.61 ± 1.38, 9.59 ± 2.63, and 8.13 ± 1.89, respectively. A significant difference was found among the groups in the ΔE values ( P = 0.006). The ΔE values were more than the perceptional threshold in all the groups ( P < 0.0001). Within the limitations of this study, it can be concluded that the tested zirconia ceramic could not thoroughly mask different shades of the composite resin substrates. Moreover, color masking of zirconia depends on the shade of substrate.
Method of manufacturing a shapeable short-resistant capacitor
Taylor, Ralph S.; Myers, John D.; Baney, William J.
2013-04-02
A method that employs a novel combination of conventional fabrication techniques provides a ceramic short-resistant capacitor that is bendable and/or shapeable to provide a multiple layer capacitor that is extremely compact and amenable to desirable geometries. The method allows thinner and more flexible ceramic capacitors to be made. The method includes forming a first thin metal layer on a substrate; depositing a thin, ceramic dielectric layer over the metal layer; depositing a second thin metal layer over the dielectric layer to form a capacitor exhibiting a benign failure mode; and separating the capacitor from the substrate. The method may also include bending the resulting capacitor into a serpentine arrangement with gaps between the layers that allow venting of evaporated electrode material in the event of a benign failure.
Corrosion behavior of mesoporous bioglass-ceramic coated magnesium alloy under applied forces.
Zhang, Feiyang; Cai, Shu; Xu, Guohua; Shen, Sibo; Li, Yan; Zhang, Min; Wu, Xiaodong
2016-03-01
In order to research the corrosion behavior of bioglass-ceramic coated magnesium alloys under applied forces, mesoporous 45S5 bioactive glass-ceramic (45S5 MBGC) coatings were successfully prepared on AZ31 substrates using a sol-gel dip-coating technique followed by a heat treatment at the temperature of 400°C. In this work, corrosion behavior of the coated samples under applied forces was characterized by electrochemical tests and immersion tests in simulated body fluid. Results showed that the glass-ceramic coatings lost the protective effects to the magnesium substrate in a short time when the applied compressive stress was greater than 25MPa, and no crystallized apatite was formed on the surface due to the high Mg(2+) releasing and the peeling off of the coatings. Whereas, under low applied forces, apatite deposition and crystallization on the coating surface repaired cracks to some extent, thus improving the corrosion resistance of the coated magnesium during the long-term immersion period. Copyright © 2015 Elsevier Ltd. All rights reserved.
Preparation of thin ceramic films via an aqueous solution route
Pederson, Larry R.; Chick, Lawrence A.; Exarhos, Gregory J.
1989-01-01
A new chemical method of forming thin ceramic films has been developed. An aqueous solution of metal nitrates or other soluble metal salts and a low molecular weight amino acid is coated onto a substrate and pyrolyzed. The amino acid serves to prevent precipitation of individual solution components, forming a very viscous, glass-like material as excess water is evaporated. Using metal nitrates and glycine, the method has been demonstrated for zirconia with various levels of yttria stabilization, for lanthanum-strontium chromites, and for yttrium-barium-copper oxide superconductors on various substrates.
Separation membrane development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, M.W.
1998-08-01
A ceramic membrane has been developed to separate hydrogen from other gases. The method used is a sol-gel process. A thin layer of dense ceramic material is coated on a coarse ceramic filter substrate. The pore size distribution in the thin layer is controlled by a densification of the coating materials by heat treatment. The membrane has been tested by permeation measurement of the hydrogen and other gases. Selectivity of the membrane has been achieved to separate hydrogen from carbon monoxide. The permeation rate of hydrogen through the ceramic membrane was about 20 times larger than Pd-Ag membrane.
Della-Bona, Alvaro
2005-06-01
The clinical success of resin bonding procedures for indirect ceramic restorations and ceramic repairs depends on the quality and durability of the bond between the ceramic and the resin. The quality of this bond will depend upon the bonding mechanisms that are controlled in part by the surface treatment that promote micromechanical and/or chemical bonding to the substrate. The objective of this review is to correlate interfacial toughness (K A) with fracture surface morphological parameters of the dental ceramic-resin systems as a function of ceramic surface treatment. This analysis is designed to identify mechanisms that promote adhesion of these ceramic-resin systems and an appropriate bond test method to yield relevant adhesion performance data.
Cheng, Yang-Tse; Poli, Andrea A.; Meltser, Mark Alexander
1999-01-01
A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.
Composition Comprising Silicon Carbide
NASA Technical Reports Server (NTRS)
Mehregany, Mehran (Inventor); Zorman, Christian A. (Inventor); Fu, Xiao-An (Inventor); Dunning, Jeremy L. (Inventor)
2012-01-01
A method of depositing a ceramic film, particularly a silicon carbide film, on a substrate is disclosed in which the residual stress, residual stress gradient, and resistivity are controlled. Also disclosed are substrates having a deposited film with these controlled properties and devices, particularly MEMS and NEMS devices, having substrates with films having these properties.
NASA Technical Reports Server (NTRS)
Wang, Hongyu (Inventor)
2003-01-01
An article comprises a silicon-containing substrate and a zircon coating. The article can comprise a silicon carbide/silicon (SiC/Si) substrate, a zircon (ZrSiO.sub.4) intermediate coating and an external environmental/thermal barrier coating.
Saker, Samah; Ibrahim, Fatma; Ozcan, Mutlu
2013-08-01
Resin bonding of In-Ceram Zirconia (ICZ) ceramics is still a challenge, especially for minimally invasive applications. This study evaluated the adhesion of ICZ to enamel and dentin after different surface treatments of the ceramic. ICZ ceramic specimens (diameter: 6 mm; thickness: 2 mm) (N = 100) were fabricated following the manufacturer's instructions and randomly assigned to 5 groups (n = 20), according to the surface treatment methods applied. The groups were as follows: group C: no treatment; group SB: sandblasting; group SCS-S: CoJet+silane; group SCS-P: CoJet+Alloy Primer; group GE-S: glaze+ hydrofluoric acid etching (9.6%) for 60 s+silane. Each group was randomly divided into two subgroups to be bonded to either enamel or dentin (n = 10 per group) using MDP-based resin cement (Panavia F2.0). All the specimens were subjected to thermocycling (5000x, 5°C-55°C). The specimens were mounted in a universal testing machine and tensile force was applied to the ceramic/cement interface until failure occurred (1 mm/min). After evaluating all the debonded specimens under SEM, the failure types were defined as either "adhesive" with no cement left on the ceramic surface (score 0) or "mixed" with less than 1/2 of the cement left adhered to the surface with no cohesive failure of the substrate (score 1). The data were statistically evaluated using 2-way ANOVA and Tukey's tests (α = 0.05). The highest tensile bond strength for the enamel surfaces was obtained in group GE-S (18.1 ± 2 MPa) and the lowest in group SB (7.1 ± 1.4 MPa). Regarding dentin, group CSC-P showed the highest (12 ± 1.3 MPa) and SB the lowest tensile bond strength (5.7 ± 0.4 MPa). Groups SB, CSC-S, CSC-P, and GE-S did not show significant differences between the different surface treatments on either enamel or dentin surfaces (p < 0.05, p < 0.001, respectively). Groups CSC-P and GE-S presented similar bond strength for both the enamel and dentin substrates (p < 0.8 and p < 0.9), respectively. While on enamel substrates, exclusively adhesive failures from ICZ (score 0) were found, on dentin exclusively mixed failures were observed (score 1). Adhesion of ICZ to both enamel and dentin can be improved when ceramics are glazed, etched, and silanized, or sandblasted, primed, and cemented with an MDP-based cement.
Mukherjee, Bandhan; Yuan, Qi
2016-10-14
The interactions of L-type calcium channels (LTCCs) and NMDA receptors (NMDARs) in memories are poorly understood. Here we investigated the specific roles of anterior piriform cortex (aPC) LTCCs and NMDARs in early odor preference memory in mice. Using calcium imaging in aPC slices, LTCC activation was shown to be dependent on NMDAR activation. Either D-APV (NMDAR antagonist) or nifedipine (LTCC antagonist) reduced somatic calcium transients in pyramidal cells evoked by lateral olfactory tract stimulation. However, nifedipine did not further reduce calcium in the presence of D-APV. In mice that underwent early odor preference training, blocking NMDARs in the aPC prevented short-term (3 hr) and long-term (24 hr) odor preference memory, and both memories were rescued when BayK-8644 (LTCC agonist) was co-infused. However, activating LTCCs in the absence of NMDARs resulted in loss of discrimination between the conditioned odor and a similar odor mixture at 3 hr. Elevated synaptic AMPAR expression at 3 hr was prevented by D-APV infusion but restored when LTCCs were directly activated, mirroring the behavioral outcomes. Blocking LTCCs prevented 24 hr memory and spared 3 hr memory. These results suggest that NMDARs mediate stimulus-specific encoding of odor memory while LTCCs mediate intracellular signaling leading to long-term memory.
Ceramic-like open-celled geopolymer foam as a porous substrate for water treatment catalyst
NASA Astrophysics Data System (ADS)
Kovářík, T.; Křenek, T.; Pola, M.; Rieger, D.; Kadlec, J.; Franče, P.
2017-02-01
This paper presents results from experimental study on microstructural and mechanical properties of geopolymer-based foam filters. The process for making porous ceramic-like geopolymer body was experimentally established, consists of (a) geopolymer paste synthesis, (b) ceramic filler incorporation, (c) coating of open-celled polyurethane foam with geopolymer mixture, (d) rapid setting procedure, (e) thermal treatment. Geopolymer paste was based on potassium silicate solution n(SiO2)/n(K2O)=1.6 and powder mixture of calcined kaolin and precipitated silica. Various types of ceramic granular filler (alumina, calcined schistous clay and cordierite) were tested in relation to aggregate gradation design and particle size distribution. The small amplitude oscillatory rheometry in strain controlled regime 0.01% with angular frequency 10 rad/s was applied for determination of rheology behavior of prepared mixtures. Thermal treatment conditions were applied in the temperature range 1100 - 1300 °C. The developed porous ceramic-like foam effectively served as a substrate for highly active nanoparticles of selected Fe+2 spinels. Such new-type of nanocomposite was tested as a heterogeneous catalyst for technological process of advanced oxidative degradation of resistive antibiotics occurring in waste waters.
Sensors for ceramic components in advanced propulsion systems
NASA Technical Reports Server (NTRS)
Koller, A. C.; Bennethum, W. H.; Burkholder, S. D.; Brackett, R. R.; Harris, J. P.
1995-01-01
This report includes: (1) a survey of the current methods for the measurement of surface temperature of ceramic materials suitable for use as hot section flowpath components in aircraft gas turbine engines; (2) analysis and selection of three sensing techniques with potential to extend surface temperature measurement capability beyond current limits; and (3) design, manufacture, and evaluation of the three selected techniques which include the following: platinum rhodium thin film thermocouple on alumina and mullite substrates; doped silicon carbide thin film thermocouple on silicon carbide, silicon nitride, and aluminum nitride substrates; and long and short wavelength radiation pyrometry on the substrates listed above plus yttria stabilized zirconia. Measurement of surface emittance of these materials at elevated temperature was included as part of this effort.
Low cost silicon-on-ceramic photovoltaic solar cells
NASA Technical Reports Server (NTRS)
Koepke, B. G.; Heaps, J. D.; Grung, B. L.; Zook, J. D.; Sibold, J. D.; Leipold, M. H.
1980-01-01
A technique has been developed for coating low-cost mullite-based refractory substrates with thin layers of solar cell quality silicon. The technique involves first carbonizing one surface of the ceramic and then contacting it with molten silicon. The silicon wets the carbonized surface and, under the proper thermal conditions, solidifies as a large-grained sheet. Solar cells produced from this composite silicon-on-ceramic material have exhibited total area conversion efficiencies of ten percent.
Panitz, Janda K.; Reed, Scott T.; Ashley, Carol S.; Neiser, Richard A.; Moffatt, William C.
1999-01-01
Electrophoretically active sol-gel processes to fill, seal, and/or density porous, flawed, and/or cracked coatings on electrically conductive substrates. Such coatings may be dielectrics, ceramics, or semiconductors and, by the present invention, may have deposited onto and into them sol-gel ceramic precursor compounds which are subsequently converted to sol-gel ceramics to yield composite materials with various tailored properties.
Emittance and absorptance of NASA ceramic thermal barrier coating system. [for turbine cooling
NASA Technical Reports Server (NTRS)
Liebert, C. H.
1978-01-01
Spectral emittance measurements were made on a two-layer ceramic thermal barrier coating system consisting of a metal substrate, a NiCrAly bond coating and a yttria-stabilized zirconia ceramic coating. Spectral emittance data were obtained for the coating system at temperatures of 300 to 1590 K, ceramic thickness of zero to 0.076 centimeter, and wavelengths of 0.4 to 14.6 micrometers. The data were transformed into total hemispherical emittance values and correlated with respect to ceramic coating thickness and temperature using multiple regression curve fitting techniques. The results show that the ceramic thermal barrier coating system is highly reflective and significantly reduces radiation heat loads on cooled gas turbine engine components. Calculation of the radiant heat transfer within the nonisothermal, translucent ceramic coating material shows that the gas-side ceramic coating surface temperature can be used in heat transfer analysis of radiation heat loads on the coating system.
Stabilized chromium oxide film
Nyaiesh, A.R.; Garwin, E.L.
1986-08-04
Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150A are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.
Stabilized chromium oxide film
Garwin, Edward L.; Nyaiesh, Ali R.
1988-01-01
Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150.ANG. are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.
Sarin, V.K.
1990-08-21
An oxidation resistant, high temperature thermal cycling resistant coated ceramic article for ceramic heat engine applications is disclosed. The substrate is a silicon-based material, i.e. a silicon nitride- or silicon carbide-based monolithic or composite material. The coating is a graded coating of at least two layers: an intermediate AlN or Al[sub x]N[sub y]O[sub z] layer and an aluminum oxide or zirconium oxide outer layer. The composition of the coating changes gradually from that of the substrate to that of the AlN or Al[sub x]N[sub y]O[sub z] layer and further to the composition of the aluminum oxide or zirconium oxide outer layer. Other layers may be deposited over the aluminum oxide layer. A CVD process for depositing the graded coating on the substrate is also disclosed.
Sarin, Vinod K.
1990-01-01
An oxidation resistant, high temperature thermal cycling resistant coated ceramic article for ceramic heat engine applications. The substrate is a silicon-based material, i.e. a silicon nitride- or silicon carbide-based monolithic or composite material. The coating is a graded coating of at least two layers: an intermediate AlN or Al.sub.x N.sub.y O.sub.z layer and an aluminum oxide or zirconium oxide outer layer. The composition of the coating changes gradually from that of the substrate to that of the AlN or Al.sub.x N.sub.y O.sub.z layer and further to the composition of the aluminum oxide or zirconium oxide outer layer. Other layers may be deposited over the aluminum oxide layer. A CVD process for depositing the graded coating on the substrate is also disclosed.
Constrained ceramic-filled polymer armor
Sandstrom, D.J.; Calkins, N.C.; Gac, F.D.
1990-11-13
An armor system is disclosed in which a plurality of constraint cells are mounted on a surface of a substrate, which is metal armor plate or a similar tough material, such that the cells almost completely cover the surface of the substrate. Each constraint cell has a projectile-receiving wall parallel to the substrate surface and has sides which are perpendicular to and surround the perimeter of the receiving wall. The cells are mounted such that, in one embodiment, the substrate surface serves as a sixth side or closure for each cell. Each cell has inside of it a plate, termed the front plate, which is parallel to and in contact with substantially all of the inside surface of the receiving wall. The balance of each cell is completely filled with a projectile-abrading material, which is a ceramic material in particulate form dispersed in a polymeric matrix. 5 figs.
Improved piston ring materials for 650 deg C service
NASA Technical Reports Server (NTRS)
Bjorndahl, W. D.
1986-01-01
A program to develop piston ring material systems which will operate at 650C was performed. In this program, two candidate high temperature piston ring substrate materials, Carpenter 709-2 and 440B, were hot formed into the piston ring shape and subsequently evaluated. In a parallel development effort ceramic and metallic piston ring coating materials were applied to cast iron rings by various processing techniques and then subjected to thermal shock and wear evaluation. Finally, promising candidate coatings were applied to the most thermally stable hot formed substrate. The results of evaluation tests of the hot formed substrate show that Carpenter 709-2 has greater thermal stability than 440B. Of the candidate coatings, plasma transferred arc (PTA) applied tungsten carbide and molybdenum based systems exhibit the greatest resistance to thermal shock. For the ceramic based systems, thermal shock resistance was improved by bond coat grading. Wear testing was conducted to 650C (1202F). For ceramic systems, the alumina/titania/zirconia/yttria composition showed highest wear resistance. For the PTA applied systems, the tungsten carbide based system showed highest wear resistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, W.Y.; Cooley, K.M.; Joslin, D.L.
The potential application of Ca{sub 0.5}Sr{sub 0.5}Zr{sub 4}P{sub 6}O{sub 24} (CS50) as a corrosion-resistant coating material for Si-based ceramics and as a thermal barrier coating material for Ni-based superalloys was explored. A {approximately}200 {micro}m thick CS50 coating was prepared by air plasma spray with commercially available powder. A Nicalon/SiC ceramic matrix composite and a Ni-based superalloy coated with a {approximately}200 {micro}m thick metallic bond coat layer were used as substrate materials. Both the powder and coating contained ZrP{sub 2}O{sub 7} as an impurity phase, and the coating was highly porous as-deposited. The coating deposited on the Nicalon/SiC substrate was chemicallymore » stable upon exposure to air and Na{sub 2}SO{sub 4}/O{sub 2} atmospheres at 1,000 C for 100 h. In contrast, the coating sprayed onto the superalloy substrate significantly reacted with the bond coat surface after similar oxidation in air.« less
NASA Technical Reports Server (NTRS)
Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor); Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor)
2013-01-01
A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.
NASA Astrophysics Data System (ADS)
Cao, Ye; Xu, Haixian; Zhan, Jun; Zhang, Hao; Wei, Xin; Wang, Jianmin; Cui, Song; Tang, Wenming
2018-05-01
Oxidation of aluminum nitride (AlN) ceramic substrates doped with 2 wt.% Y2O3 was performed in air at temperatures ranging from 1000 to 1300 °C for various lengths of time. Microstructure, bending strength, and thermal conductivity of the oxidized AlN substrates were studied experimentally and also via mathematical models. The results show that the oxide layer formed on the AlN substrates is composed of α-Al2O3 nanocrystallines and interconnected micropores. Longitudinal and transverse cracks are induced in the oxide layer under tensile and shear stresses, respectively. Intergranular oxidation of the AlN grains close to the oxide layer/AlN interface also occurs, leading to widening and cracking of the AlN grain boundaries. These processes result in the monotonous degradation of bending strength and thermal conductivity of the oxidized AlN substrates. Two mathematic models concerning these properties of the oxidized AlN substrates versus the oxide layer thickness were put forward. They fit well with the experimental results.
Hot Films on Ceramic Substrates for Measuring Skin Friction
NASA Technical Reports Server (NTRS)
Noffz, Greg; Leiser, Daniel; Bartlett, Jim; Lavine, Adrienne
2003-01-01
Hot-film sensors, consisting of a metallic film on an electrically nonconductive substrate, have been used to measure skin friction as far back as 1931. A hot film is maintained at an elevated temperature relative to the local flow by passing an electrical current through it. The power required to maintain the specified temperature depends on the rate at which heat is transferred to the flow. The heat transfer rate correlates to the velocity gradient at the surface, and hence, with skin friction. The hot-film skin friction measurement method is most thoroughly developed for steady-state conditions, but additional issues arise under transient conditions. Fabricating hot-film substrates using low-thermal-conductivity ceramics can offer advantages over traditional quartz or polyester-film substrates. First, a low conductivity substrate increases the fraction of heat convected away by the fluid, thus increasing sensitivity to changes in flow conditions. Furthermore, the two-part, composite nature of the substrate allows the installation of thermocouple junctions just below the hot film, which can provide an estimate of the conduction heat loss.
Spyropoulos, Konstantinos
2018-01-01
PURPOSE The aim of the present study was to record the metal-ceramic bond strength of a feldspathic dental porcelain and a Co-Cr alloy, using the Direct Metal Laser Sintering technique (DMLS) for the fabrication of metal substrates. MATERIALS AND METHODS Ten metal substrates were fabricated with powder of a dental Co-Cr alloy using DMLS technique (test group) in dimensions according to ISO 9693. Another ten substrates were fabricated with a casing dental Co-Cr alloy using classic casting technique (control group) for comparison. Another three substrates were fabricated using each technique to record the Modulus of Elasticity (E) of the used alloys. All substrates were examined to record external and internal porosity. Feldspathic porcelain was applied on the substrates. Specimens were tested using the three-point bending test. The failure mode was determined using optical and scanning electron microscopy. The statistical analysis was performed using t-test. RESULTS Substrates prepared using DMLS technique did not show internal porosity as compared to those produced using the casting technique. The E of control and test group was 222 ± 5.13 GPa and 227 ± 3 GPa, respectively. The bond strength was 51.87 ± 7.50 MPa for test group and 54.60 ± 6.20 MPa for control group. No statistically significant differences between the two groups were recorded. The mode of failure was mainly cohesive for all specimens. CONCLUSION Specimens produced by the DMLS technique cover the lowest acceptable metal-ceramic bond strength of 25 MPa specified in ISO 9693 and present satisfactory bond strength for clinical use. PMID:29503711
1993-02-01
sintered in hydrogen furnace at very high temperatures . Multiple furnace firing occurs until the binders are removed and part density is achieved "* Process...and base Low temperature co-fired ceramic - Metallized for shielding and grounding - Low resistance thick-film metallization - High thermal resistance...ESPECIALLY LOW TEMPERATURE COFIRED CERAMIC CERAMICS HIGH THERMAL CONDUCTIVITY,MATCHED GaAS AND SILICON SUBSTRATE MATERIALS I I,1Z#A,17Mr1 J, TI
Panitz, J.K.; Reed, S.T.; Ashley, C.S.; Neiser, R.A.; Moffatt, W.C.
1999-07-20
Electrophoretically active sol-gel processes to fill, seal, and/or density porous, flawed, and/or cracked coatings on electrically conductive substrates. Such coatings may be dielectrics, ceramics, or semiconductors and, by the present invention, may have deposited onto and into them sol-gel ceramic precursor compounds which are subsequently converted to sol-gel ceramics to yield composite materials with various tailored properties. 6 figs.
NASA Astrophysics Data System (ADS)
Mubarak Ali, M.; Raj, V.
2010-04-01
Alumina-silica-zirconia nanocomposite (ASZNC) ceramic fibres were synthesized by conventional anodization route. Scanning Electron Microscopy (SEM), Atomic Force microscopy (AFM), X-Ray Diffraction (XRD) and Energy Dispersive X-Ray spectroscopy (EDAX) were used to characterize the morphology and crystalloid structure of ASZNC fibres. Current density (DC) is one of the important parameters to get the alumina-silica-zirconia nanocomposite (ASZNC) ceramic fibres by this route. Annealing of the films exhibited a drastic change in the properties due to improved crystallinity. The root mean square roughness of the sample observed from atomic force microscopic analysis is about 71.5 nm which is comparable to the average grain size of the coatings which is about 72 nm obtained from X-Ray diffraction. The results indicate that, the ASZNC fibres are arranged well in the nanostructure. The thickness of the coating increased with the anodizing time, but the coatings turned rougher and more porous. At the initial stage the growth of ceramic coating increases inwards to the metal substrate and outwards to the coating surface simultaneously. Subsequently, it mainly grows towards the metal substrate and the density of the ceramic coating increases gradually, which results in the decrease of the total thickness as anodizing time increases. This new approach of preparing ASZNC ceramic fibres may be important in applications ranging from gas sensors to various engineering materials.
Dip-Coating Fabrication of Solar Cells
NASA Technical Reports Server (NTRS)
Koepke, B.; Suave, D.
1982-01-01
Inexpensive silicon solar cells made by simple dip technique. Cooling shoes direct flow of helium on graphite-coated ceramic substrate to solidify film of liquid silicon on graphite surface as substrate is withdrawn from molten silicon. After heaters control cooling of film and substrate to prevent cracking. Gas jets exit at points about 10 mm from substrate surfaces and 6 to 10 mm above melt surface.
High density harp or wire scanner for particle beam diagnostics
Fritsche, C.T.; Krogh, M.L.
1996-05-21
Disclosed is a diagnostic detector head harp used to detect and characterize high energy particle beams using an array of closely spaced detector wires, typically carbon wires, spaced less than 0.1 cm (0.040 inch) connected to a hybrid microcircuit formed on a ceramic substrate. A method to fabricate harps to obtain carbon wire spacing and density not previously available utilizing hybrid microcircuit technology. The hybrid microcircuit disposed on the ceramic substrate connects electrically between the detector wires and diagnostic equipment which analyzes pulses generated in the detector wires by the high energy particle beams. 6 figs.
Glass-(nAg, nCu) biocide coatings on ceramic oxide substrates.
Esteban-Tejeda, Leticia; Malpartida, Francisco; Díaz, Luis Antonio; Torrecillas, Ramón; Rojo, Fernando; Moya, José Serafín
2012-01-01
The present work was focused on obtaining biocide coatings constituted by a glassy soda-lime matrix containing silver or copper nanoparticles on ceramic (alumina and zirconia based) substrates. Both glassy coatings showed a high biocide activity against Gram-, Gram+ bacteria and yeast, reducing cell numbers more than three logarithms. Silver nanoparticles had a significantly higher biocide activity than copper nanoparticles, since the lixiviation levels required to reduce cell numbers more than 3 logarithms was of almost 1-2 µg/cm(2) in the case of silver nanoparticles, and 10-15 µg/cm(2) for the copper nanoparticles.
Cheng, Y.T.; Poli, A.A.; Meltser, M.A.
1999-03-23
A thin film hydrogen sensor includes a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end. 5 figs.
Bonding quality of contemporary dental cements to sandblasted esthetic crown copings.
Abdelaziz, Khalid M; Al-Qahtani, Nasser M; Al-Shehri, Abdulrahman S; Abdelmoneam, Adel M
2012-05-01
To evaluate the shear bond strength of current luting cements to sandblasted crown-coping substrates. Specimens of nickel-chromium, pressable glass ceramic, and zirconia crown-coping substrates were sandblasted in three groups (n = 30 each) with 50 (group 1), 110 (group 2), and 250 μm (group 3) alumina particles at a pressure of 250 kPa. Cylinders of glass ionomer, universal resin, and self-adhesive resin cements were then built up on the sandblasted substrate surfaces of each group (n = 10). All bonded specimens were stressed to evaluate the cement-substrate shear bond strength. Both the mode and incidence of bond failure were also considered. No difference was noticed between all test groups in terms of cement-substrate bond strength. In comparison to self-adhesive type, the universal resin cement provided lower bond strengths to both metal and glass-ceramic substrates in group 1. The self-adhesive resin cement provided the highest bond strengths to the zirconia substrates in groups 2 and 3. The adhesive type of bond failure was common in the metal and zirconia substrates in all groups. Cement-substrate bonding quality is not affected by the size of sandblasting particles. Resin cements bond better to different coping substrates. Self-adhesive resin cement is the best choice to bond zirconia-based substrates. © 2011 Blackwell Publishing Asia Pty Ltd.
Method for fabrication of ceramic dielectric films on copper foils
Ma, Beihai; Narayanan, Manoj; Dorris, Stephen E.; Balachandran, Uthamalingam
2017-06-14
The present invention provides copper substrate coated with a lead-lanthanum-zirconium-titanium (PLZT) ceramic film, which is prepared by a method comprising applying a layer of a sol-gel composition onto a copper foil. The sol-gel composition comprises a precursor of a ceramic material suspended in 2-methoxyethanol. The layer of sol-gel is then dried at a temperature up to about 250.degree. C. The dried layer is then pyrolyzed at a temperature in the range of about 300 to about 450.degree. C. to form a ceramic film from the ceramic precursor. The ceramic film is then crystallized at a temperature in the range of about 600 to about 750.degree. C. The drying, pyrolyzing and crystallizing are performed under a flowing stream of an inert gas.
O'Reagain, P J; Scanlan, J C
2013-03-01
Inter-annual rainfall variability is a major challenge to sustainable and productive grazing management on rangelands. In Australia, rainfall variability is particularly pronounced and failure to manage appropriately leads to major economic loss and environmental degradation. Recommended strategies to manage sustainably include stocking at long-term carrying capacity (LTCC) or varying stock numbers with forage availability. These strategies are conceptually simple but difficult to implement, given the scale and spatial heterogeneity of grazing properties and the uncertainty of the climate. This paper presents learnings and insights from northern Australia gained from research and modelling on managing for rainfall variability. A method to objectively estimate LTCC in large, heterogeneous paddocks is discussed, and guidelines and tools to tactically adjust stocking rates are presented. The possible use of seasonal climate forecasts (SCF) in management is also considered. Results from a 13-year grazing trial in Queensland show that constant stocking at LTCC was far more profitable and largely maintained land condition compared with heavy stocking (HSR). Variable stocking (VAR) with or without the use of SCF was marginally more profitable, but income variability was greater and land condition poorer than constant stocking at LTCC. Two commercial scale trials in the Northern Territory with breeder cows highlighted the practical difficulties of variable stocking and provided evidence that heavier pasture utilisation rates depress reproductive performance. Simulation modelling across a range of regions in northern Australia also showed a decline in resource condition and profitability under heavy stocking rates. Modelling further suggested that the relative value of variable v. constant stocking depends on stocking rate and land condition. Importantly, variable stocking may possibly allow slightly higher stocking rates without pasture degradation. Enterprise-level simulations run for breeder herds nevertheless show that poor economic performance can occur under constant stocking and even under variable stocking in some circumstances. Modelling and research results both suggest that a form of constrained flexible stocking should be applied to manage for climate variability. Active adaptive management and research will be required as future climate changes make managing for rainfall variability increasingly challenging.
Effect of Powder Characteristics on Microstructure and Properties in Alkoxide Prepared PZT Ceramics.
1984-12-01
Effect of pH of precipitating solution on the pressed and fired densities (9500 C/ h) of PZT (+ 0.25 wt% V2o5 ). * Figure 12. Plot of dielectric...Lectures: a) Electronic Cermics/Dielectrics Properties, b) Glasses and Substrates in Electronics, c) Thick Film Hybrid Circuits; d) Nagnetic Ceramics
Method of concurrently filtering particles and collecting gases
Mitchell, Mark A; Meike, Annemarie; Anderson, Brian L
2015-04-28
A system for concurrently filtering particles and collecting gases. Materials are be added (e.g., via coating the ceramic substrate, use of loose powder(s), or other means) to a HEPA filter (ceramic, metal, or otherwise) to collect gases (e.g., radioactive gases such as iodine). The gases could be radioactive, hazardous, or valuable gases.
Liu, Hui; Li, Chengyin; Ren, Xiaoyong; Liu, Kaiqi; Yang, Jun
2017-11-29
It would be desirable to remove volatile organic compounds (VOCs) while we eliminate the dusts using silicon carbide (SiC)-based porous ceramics from the hot gases. Aiming at functionalizing SiC-based porous ceramics with catalytic capability, we herein report a facile strategy to integrate high efficient catalysts into the porous SiC substrates for the VOC removal. We demonstrate an aqueous salt method for uniformly distributing fine platinum (Pt) particles on the alumina (Al 2 O 3 ) layers, which are pre-coated on the SiC substrates as supports for VOC catalysts. We confirm that at a Pt mass loading as low as 0.176% and a weight hourly space velocity of 6000 mL g -1 h -1 , the as-prepared Pt/SiC@Al 2 O 3 catalysts can convert 90% benzene at a temperature of ca. 215 °C. The results suggest a promising way to design ceramics-based bi-functional materials for simultaneously eliminating dusts and harmful VOCs from various hot gases.
Surface Passivation of ZrO2 Artificial Dentures by Magnetized Coaxial Plasma deposition
NASA Astrophysics Data System (ADS)
Arai, Soya; Kurumi, Satoshi; Matsuda, Ken-Ichi; Suzuki, Kaoru; Hara, Katsuya; Kato, Tatsuya; Asai, Tomohiko; Hirose, Hideharu; Masutani, Shigeyuki; Nihon University Team
2015-09-01
Recent growth and fabrication technologies for functional materials have been greatly contributed to drastic development of oral surgery field. Zirconia based ceramics is expected to utilize artificial dentures because these ceramics have good biocompatibility, high hardness and aesthetic attractively. However, to apply these ceramics to artificial dentures, this denture is removed from a dental plate because of weakly bond. For improving this problem, synthesis an Al passivation-layer on the ceramics for bonding with these dental items is suitable. In order to deposit the passivation layer, we focused on a magnetized coaxial plasma deposition (MCPD). The greatest characteristic of MCPD is that high-melting point metal can be deposited on various substrates. Additionally, adhesion force between substrate and films deposited by the MCPD is superior to it of general deposition methods. In this study, we have reported on the growth techniques of Al films on ZrO2 for contributing to oral surgery by the MCPD. Surface of deposited films shows there were some droplets and thickness of it is about 200 nm. Thickness is increased to 500 nm with increasing applied voltage.
Method for adhesion of metal films to ceramics
Lowndes, Douglas H.; Pedraza, Anthony J.; DeSilva, Melvin J.; Kumar, Rajagopalan A.
1997-01-01
Methods for making strongly bonded metal-ceramic materials. The methods include irradiating a portion of the surface of the ceramic material with a pulsed ultraviolet laser having an energy density sufficient to effect activation of the irradiated surface of the ceramic material so that adhesion of metals subsequently deposited onto the irradiated surface is substantially increased. Advantages of the invention include (i) the need for only a small number of laser pulses at relatively low focused energy density, (ii) a smoother substrate surface, (iii) activation of the laser-treated surface which provides a chemical bond between the surface and a metal deposited thereon, (iv) only low temperature annealing is required to produce the strong metal-ceramic bond; (v) the ability to obtain strong adhesion between ceramic materials and oxidation resistant metals; (vi) ability to store the laser treated ceramic materials for later deposition of metals thereon.
NASA Astrophysics Data System (ADS)
Sinescu, Cosmin; Negrutiu, Meda; Hughes, Michael; Bradu, Adrian; Todea, Carmen; Rominu, Mihai; Laissue, Philippe L.; Podoleanu, Adrian Gh.
2008-04-01
Metal ceramic and integral ceramic fixed partial prostheses are mainly used in the frontal part of the dental arch because for esthetics reasons. The masticatory stress may induce fractures of the bridges. There are several factors that are associated with the stress state created in ceramic restorations, including: thickness of ceramic layers, mechanical properties of the materials, elastic modulus of the supporting substrate material, direction, magnitude and frequency of applied load, size and location of occlusal contact areas, residual stresses induced by processing or pores, restoration-cement interfacial defects and environmental defects. The fractures of these bridges lead to functional, esthetic and phonetic disturbances which finally render the prosthetic treatment inefficient. The purpose of this study is to evaluate the capability of optical coherence tomography (OCT) in detection and analysis of possible material defects in metal-ceramic and integral ceramic fixed partial dentures.
Method for adhesion of metal films to ceramics
Lowndes, D.H.; Pedraza, A.J.; DeSilva, M.J.; Kumar, R.A.
1997-12-30
Methods for making strongly bonded metal-ceramic materials are disclosed. The methods include irradiating a portion of the surface of the ceramic material with a pulsed ultraviolet laser having an energy density sufficient to effect activation of the irradiated surface of the ceramic material so that adhesion of metals subsequently deposited onto the irradiated surface is substantially increased. Advantages of the invention include (i) the need for only a small number of laser pulses at relatively low focused energy density, (ii) a smoother substrate surface, (iii) activation of the laser-treated surface which provides a chemical bond between the surface and a metal deposited thereon, (iv) only low temperature annealing is required to produce the strong metal-ceramic bond; (v) the ability to obtain strong adhesion between ceramic materials and oxidation resistant metals; (vi) ability to store the laser treated ceramic materials for later deposition of metals thereon. 7 figs.
Silicon carbide and other films and method of deposition
NASA Technical Reports Server (NTRS)
Mehregany, Mehran (Inventor); Zorman, Christian A. (Inventor); Fu, Xiao-An (Inventor); Dunning, Jeremy L. (Inventor)
2007-01-01
A method of depositing a ceramic film, particularly a silicon carbide film, on a substrate is disclosed in which the residual stress, residual stress gradient, and resistivity are controlled. Also disclosed are substrates having a deposited film with these controlled properties and devices, particularly MEMS and NEMS devices, having substrates with films having these properties.
Silicon carbide and other films and method of deposition
NASA Technical Reports Server (NTRS)
Mehregany, Mehran (Inventor); Zorman, Christian A. (Inventor); Fu, Xiao-An (Inventor); Dunning, Jeremy (Inventor)
2011-01-01
A method of depositing a ceramic film, particularly a silicon carbide film, on a substrate is disclosed in which the residual stress, residual stress gradient, and resistivity are controlled. Also disclosed are substrates having a deposited film with these controlled properties and devices, particularly MEMS and NEMS devices, having substrates with films having these properties.
A new active solder for joining electronic components
DOE Office of Scientific and Technical Information (OSTI.GOV)
SMITH,RONALD W.; VIANCO,PAUL T.; HERNANDEZ,CYNTHIA L.
Electronic components and micro-sensors utilize ceramic substrates, copper and aluminum interconnect and silicon. The joining of these combinations require pre-metallization such that solders with fluxes can wet such combinations of metals and ceramics. The paper will present a new solder alloy that can bond metals, ceramics and composites. The alloy directly wets and bonds in air without the use flux or premetallized layers. The paper will present typical processing steps and joint microstructures in copper, aluminum, aluminum oxide, aluminum nitride, and silicon joints.
The color masking ability of a zirconia ceramic on the substrates with different values.
Tabatabaian, Farhad; Javadi Sharif, Mahdiye; Massoumi, Farhood; Namdari, Mahshid
2017-01-01
Background. The color masking ability of a restoration plays a significant role in coveringa discolored substructure; however, this optical property of zirconia ceramics has not been clearly determined yet. The aim of this in vitro study was to evaluate the color masking ability of a zirconia ceramic on substrates with different values. Methods. Ten zirconia disk specimens,0.5 mm in thickness and 10 mm in diameter, were fabricated by a CAD/CAM system. Four substrates with different values were prepared, including: white (control), light grey, dark grey, and black. The disk specimens were placed over the substratesfor spectrophotometric measurements. A spectrophotometer measured the L * , a * , and b * color attributes of the specimens. Additionally, ΔE values were calculated to determine the color differences between each group and the control,and were then compared with the perceptional threshold of ΔE=2.6. Repeated-measures ANOVA, Bonferroni, and one-sample t-test were used to analyze data. All the tests were carried out at 0.05 level of significance. Results. The means and standard deviations of ΔE values for the three groups of light grey, dark grey and black were 9.94±2.11, 10.40±2.09, and 13.34±1.77 units, respectively.Significant differences were detected between the groups in the ΔE values (P<0.0001).The ΔE values in all the groups were more than the predetermined perceptional threshold(ΔE>2.6) (P<0.0001). Conclusion. Within the limitations of this study, it was concluded that the tested zirconia ceramic did not exhibit sufficient color masking ability to hide the grey and black substrates.
Sol-gel derived ceramic electrolyte films on porous substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kueper, T.W.
1992-05-01
A process for the deposition of sol-gel derived thin films on porous substrates has been developed; such films should be useful for solid oxide fuel cells and related applications. Yttria-stabilized zirconia films have been formed from metal alkoxide starting solutions. Dense films have been deposited on metal substrates and ceramic substrates, both dense and porous, through dip-coating and spin-coating techniques, followed by a heat treatment in air. X-ray diffraction has been used to determine the crystalline phases formed and the extent of reactions with various substrates which may be encountered in gas/gas devices. Surface coatings have been successfully applied tomore » porous substrates through the control of substrate pore size and deposition parameters. Wetting of the substrate pores by the coating solution is discussed, and conditions are defined for which films can be deposited over the pores without filling the interiors of the pores. Shrinkage cracking was encountered in films thicker than a critical value, which depended on the sol-gel process parameters and on the substrate characteristics. Local discontinuities were also observed in films which were thinner than a critical value which depended on the substrate pore size. A theoretical discussion of cracking mechanisms is presented for both types of cracking, and the conditions necessary for successful thin formation are defined. The applicability of these film gas/gas devices is discussed.« less
Decapsulation Method for Flip Chips with Ceramics in Microelectronic Packaging
NASA Astrophysics Data System (ADS)
Shih, T. I.; Duh, J. G.
2008-06-01
The decapsulation of flip chips bonded to ceramic substrates is a challenging task in the packaging industry owing to the vulnerability of the chip surface during the process. In conventional methods, such as manual grinding and polishing, the solder bumps are easily damaged during the removal of underfill, and the thin chip may even be crushed due to mechanical stress. An efficient and reliable decapsulation method consisting of thermal and chemical processes was developed in this study. The surface quality of chips after solder removal is satisfactory for the existing solder rework procedure as well as for die-level failure analysis. The innovative processes included heat-sink and ceramic substrate removal, solder bump separation, and solder residue cleaning from the chip surface. In the last stage, particular temperatures were selected for the removal of eutectic Pb-Sn, high-lead, and lead-free solders considering their respective melting points.
Modification of the surface properties of glass-ceramic materials at low-pressure RF plasma stream
NASA Astrophysics Data System (ADS)
Tovstopyat, Alexander; Gafarov, Ildar; Galeev, Vadim; Azarova, Valentina; Golyaeva, Anastasia
2018-05-01
The surface roughness has a huge effect on the mechanical, optical, and electronic properties of materials. In modern optical systems, the specifications for the surface accuracy and smoothness of substrates are becoming even more stringent. Commercially available pre-polished glass-ceramic substrates were treated with the radio frequency (RF) inductively coupled (13.56 MHz) low-pressure plasma to clean the surface of the samples and decrease the roughness. Optical emission spectroscopy was used to investigate the plasma stream parameters and phase-shifted interferometry to investigate the surface of the specimen. In this work, the dependence of RF inductively coupled plasma on macroscopic parameters was investigated with the focus on improving the surfaces. The ion energy, sputtering rate, and homogeneity were investigated. The improvements of the glass-ceramic surfaces from 2.6 to 2.2 Å root mean square by removing the "waste" after the previous operations had been achieved.
Lee, Eun Je; Kim, Jae Joon; Cho, Sung Oh
2010-03-02
Polymer/ceramic composite films with micro- and nanocombined hierarchical structures are fabricated by electron irradiation of poly(methyl methacrylate) (PMMA) microspheres/silicone grease. Electron irradiation induces volume contraction of PMMA microspheres and simultaneously transforms silicone grease into a ceramic material of silicon oxycarbide with many nanobumps. As a result, highly porous structures that consist of micrometer-sized pores and microparticles decorated with nanobumps are created. The fabricated films with the porous hierarchical structure exhibit good superhydrophobicity with excellent self-cleaning and antiadhesion properties after surface treatment with fluorosilane. In addition, the porous hierarchical structures are covered with silicon oxycarbide, and thus the superhydrophobic coatings have high hardness and strong adhesion to the substrate. The presented technique provides a straightforward route to producing large-area, mechanically robust superhydrophobic films on various substrate materials.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
2000-01-01
A steady-state laser heat flux technique has been developed at the NASA Glenn Research Center at Lewis Field to obtain critical thermal conductivity data of ceramic thermal barrier coatings under the temperature and thermal gradients that are realistically expected to be encountered in advanced engine systems. In this study, thermal conductivity change kinetics of a plasma-sprayed, 254-mm-thick ZrO2-8 wt % Y2O3 ceramic coating were obtained at high temperatures. During the testing, the temperature gradients across the coating system were carefully measured by the surface and back pyrometers and an embedded miniature thermocouple in the substrate. The actual heat flux passing through the coating system was determined from the metal substrate temperature drop (measured by the embedded miniature thermocouple and the back pyrometer) combined with one-dimensional heat transfer models.
Ioan, P; Carosati, E; Micucci, M; Cruciani, G; Broccatelli, F; Zhorov, B S; Chiarini, A; Budriesi, R
2011-01-01
Since the pioneering studies of Fleckenstein and co-workers, L-Type Calcium Channel (LTCC) blockers have attracted large interest due to their effectiveness in treating several cardiovascular diseases. Medicinal chemists achieved high potency and tissue selectivity by decorating the 1-4-DHP nucleus, the most studied scaffold among LTCC blockers. Nowadays it is clear that the 1,4-DHP nucleus is a privileged scaffold since, when appropriately substituted, it can selectively modulate diverse receptors, channels and enzymes. Therefore, the 1,4-DHP scaffold could be used to treat various diseases by a single-ligand multi-target approach. In this review, we describe the structure-activity relationships of 1,4-DHPs at ion channels, G-protein coupled receptors, and outline the potential for future therapeutic applications.
Liao, Qiuxia; Zhang, Rui; Wang, Xiaoyu; Nian, Weiwei; Ke, Lulu; Ouyang, Wei; Zhang, Zigui
2017-09-01
This study investigated the effects of fluoride exposure on the mRNA expression of Cav1.2 calcium signaling pathway and apoptosis regulatory molecules in PC12 cells. The viability of PC12 cell receiving high fluoride (5.0mM) and low fluoride (0.5mM) alone or fluoride combined with L-type calcium channel (LTCC) agonist/inhibitor (5umol/L FPL6417/2umol/L nifedipine) was detected using cell counting kit-8 at different time points (2, 4, 6, 8, 12, 10, and 24h). Changes in the cell configuration were observed after exposing the cells to fluoride for 24h. The expression levels of molecules related to the LTCC were examined, particularly, Cav1.2, c-fos, CAMK II, Bax, and Bcl-2. Fluoride poisoning induced severe cell injuries, such as decreased PC12 cell activity, enhanced cell apoptosis, high c-fos, CAMKII, and Bax mRNA expression levels. Bcl-2 expression level was also reduced. Meanwhile, high fluoride, high fluoride with FPL64176, and low fluoride with FPL64176 enhanced the Cav1.2 expression level. In contrast, low fluoride, high fluoride with nifedipine, and low fluoride with nifedipine reduced the Cav1.2 expression level. Thus, Cav1.2 may be an important molecular target for the fluorosis treatment, and the LTCC inhibitor nifedipine may be an effective drug for fluorosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Adhesion, friction and micromechanical properties of ceramics
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1988-01-01
The adhesion, friction, and micromechanical properties of ceramics, both in monolithic and coating form, are reviewed. Ceramics are examined in contact with themselves, other harder materials, and metals. For the simplicity of discussion, the tribological properties of concern in the processes are separated into two parts. The first part discusses the pull-off force (adhesion) and the shear force required to break the interfacial junctions between contacting surfaces. The role of chemical bonding in adhesion and friction, and the effects of surface contaminant films and temperature on tribological response with respect to adhesion and friction are discussed. The second part deals with abrasion of ceramics. Elastic, plastic, and fracture behavior of ceramics in solid state contact is discussed. The scratch technique of determining the critical load needed to fracture interfacial adhesive bonds of ceramic deposited on substrates is also addressed.
Etching process for improving the strength of a laser-machined silicon-based ceramic article
Copley, Stephen M.; Tao, Hongyi; Todd-Copley, Judith A.
1991-01-01
A process for improving the strength of laser-machined articles formed of a silicon-based ceramic material such as silicon nitride, in which the laser-machined surface is immersed in an etching solution of hydrofluoric acid and nitric acid for a duration sufficient to remove substantially all of a silicon film residue on the surface but insufficient to allow the solution to unduly attack the grain boundaries of the underlying silicon nitride substrate. This effectively removes the silicon film as a source of cracks that otherwise could propagate downwardly into the silicon nitride substrate and significantly reduce its strength.
Etching process for improving the strength of a laser-machined silicon-based ceramic article
Copley, S.M.; Tao, H.; Todd-Copley, J.A.
1991-06-11
A process is disclosed for improving the strength of laser-machined articles formed of a silicon-based ceramic material such as silicon nitride, in which the laser-machined surface is immersed in an etching solution of hydrofluoric acid and nitric acid for a duration sufficient to remove substantially all of a silicon film residue on the surface but insufficient to allow the solution to unduly attack the grain boundaries of the underlying silicon nitride substrate. This effectively removes the silicon film as a source of cracks that otherwise could propagate downwardly into the silicon nitride substrate and significantly reduce its strength. 1 figure.
High density harp or wire scanner for particle beam diagnostics
Fritsche, Craig T.; Krogh, Michael L.
1996-05-21
A diagnostic detector head harp (23) used to detect and characterize high energy particle beams using an array of closely spaced detector wires (21), typically carbon wires, spaced less than 0.1 cm (0.040 inch) connected to a hybrid microcircuit (25) formed on a ceramic substrate (26). A method to fabricate harps (23) to obtain carbon wire spacing and density not previously available utilizing hybrid microcircuit technology. The hybrid microcircuit (25) disposed on the ceramic substrate (26) connects electrically between the detector wires (21) and diagnostic equipment (37) which analyzes pulses generated in the detector wires (21) by the high energy particle beams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sherman, Andrew J
A heterogeneous body having ceramic rich cermet regions in a more ductile metal matrix. The heterogeneous bodies are formed by thermal spray operations on metal substrates. The thermal spray operations apply heat to a cermet powder and project it onto a solid substrate. The cermet powder is composed of complex composite particles in which a complex ceramic-metallic core particle is coated with a matrix precursor. The cermet regions are generally comprised of complex ceramic-metallic composites that correspond approximately to the core particles. The cermet regions are approximately lenticular shaped with an average width that is at least approximately twice themore » average thickness. The cermet regions are imbedded within the matrix phase and generally isolated from one another. They have obverse and reverse surfaces. The matrix phase is formed from the matrix precursor coating on the core particles. The amount of heat applied during the formation of the heterogeneous body is controlled so that the core particles soften but do not become so fluid that they disperse throughout the matrix phase. The force of the impact on the surface of the substrate tends to flatten them. The flattened cermet regions tend to be approximately aligned with one another in the body.« less
Friction- and wear-reducing coating
Zhu, Dong [Farmington Hills, MI; Milner, Robert [Warren, MI; Elmoursi, Alaa AbdelAzim [Troy, MI
2011-10-18
A coating includes a first layer of a ceramic alloy and a second layer disposed on the first layer and including carbon. The coating has a hardness of from 10 to 20 GPa and a coefficient of friction of less than or equal to 0.12. A method of coating a substrate includes cleaning the substrate, forming the first layer on the substrate, and depositing the second layer onto the first layer to thereby coat the substrate.
Study on the neotype zirconia's implant coated nanometer hydroxyapatite ceramics
NASA Astrophysics Data System (ADS)
Zhu, J. W.; Yang, D. W.
2007-07-01
In recent years, biologic ceramics is a popular material of implants and bioactive surface modification of dental implant became a research emphasis, which aims to improve bioactivity of implants materials and acquire firmer implants-bone interface. The zirconia ceramic has excellent mechanical properties and nanometer HA ceramics is a bioceramic well known for its bioactivity, therefore, nanometer HA ceramics coating on zirconia, allows combining the excellent mechanical properties of zirconia substrates with its bioactivity. This paper shows a new method for implant shape design and bioactive modification of dental implants surface. Zirconia's implant substrate was prepared by sintered method, central and lateral tunnels were drilled in the zirconia hollow porous cylindrical implants by laser processing. The HA powders and needle-like HA crystals were made by a wet precipitation and calcining method. Its surface was coated with nanometer HA ceramics which was used brush HA slurry and vacuum sintering. Mechanical testing results revealed that the attachment strength of nanometer HA ceramics coated zirconia samples is high. SEM and interface observation after inserted experiment indicated that calcium and phosphor content increased and symmetrically around coated implant-bone tissue interface. A significantly higher affinity index was demonstrated in vivo by histomorphometric evaluation in coated versus uncoated implants. SEM analysis demonstrated better bone adhesion to the material in coated implant at any situation. In addition, the hollow porous cylindrical implant coated with nanometer HA ceramics increase the interaction of bone and implant, the new bone induced into the surface of hollow porous cylindrical implant and through the most tunnels filled into central hole. The branch-like structure makes the implant and bone a body, which increased the contact area and decreased elastic ratio. Therefore, the macroscopical and microcosmic nested structure of implant coated nanometer HA ceramics had increased biocompatibility and improved the osteointegration. It endows the implants with new vital activity.
Ceramic ball grid array package stress analysis
NASA Astrophysics Data System (ADS)
Badri, S. H. B. S.; Aziz, M. H. A.; Ong, N. R.; Sauli, Z.; Alcain, J. B.; Retnasamy, V.
2017-09-01
The ball grid array (BGA), a form of chip scale package (CSP), was developed as one of the most advanced surface mount devices, which may be assembled by an ordinary surface ball bumps are used instead of plated nickel and gold (Ni/Au) bumps. Assembly and reliability of the BGA's printed circuit board (PCB), which is soldered by conventional surface mount technology is considered in this study. The Ceramic Ball Grid Array (CBGA) is a rectangular ceramic package or square-shaped that will use the solder ball for external electrical connections instead of leads or wire for connections. The solder balls will be arranged in an array or grid at the bottom of the ceramic package body. In this study, ANSYS software is used to investigate the stress on the package for 2 balls and 4 balls of the CBGA package with the various force range of 1-3 Newton applied to the top of the die, top of the substrate and side of the substrate. The highest maximum stress was analyzed and the maximum equivalent stress was observed on the solder ball and the die. From the simulation result, the CBGA package with less solder balls experience higher stress compared to the package with many solder balls. Therefore, less number of solder ball on the CBGA package results higher stress and critically affect the reliability of the solder balls itself, substrate and die which can lead to the solder crack and also die crack.
Hybrid aerogel rigid ceramic fiber insulation and method of producing same
NASA Technical Reports Server (NTRS)
Barney, Andrea O. (Inventor); Heng, Vann (Inventor); Oka, Kris Shigeko (Inventor); Santos, Maryann (Inventor); Zinn, Alfred A. (Inventor); Droege, Michael (Inventor)
2004-01-01
A hybrid insulation material comprises of porous ceramic substrate material impregnated with nanoporous material and method of making the same is the topic of this invention. The porous substrate material has bulk density ranging from 6 to 20 lb/ft.sup.3 and is composed of about 60 to 80 wt % silica (SiO.sub.2) 20 to 40 wt % alumina (Al.sub.2 O.sub.3) fibers, and with about 0.1 to 1.0 wt % boron-containing constituent as the sintering agent. The nanoporous material has density ranging from 1.0 to 10 lb/ft.sup.3 and is either fully or partially impregnated into the substrate to block the pores, resulting in substantial reduction in conduction via radiation and convention. The nanoporous material used to impregnate the fiber substrate is preferably formed from a precursor of alkoxysilane, alcohol, water, and an acid or base catalyst for silica aerogels, and from a precursor of aluminum alkoxide, alcohol, water, and an acid or base catalyst for alumina aerogels.
Oxide perovskite crystals for HTSC film substrates microwave applications
NASA Technical Reports Server (NTRS)
Bhalla, A. S.; Guo, Ruyan
1995-01-01
The research focused upon generating new substrate materials for the deposition of superconducting yttrium barium cuprate (YBCO) has yielded several new hosts in complex perovskites, modified perovskites, and other structure families. New substrate candidates such as Sr(Al(1/2)Ta(1/2))O3 and Sr(Al(1/2)Nb(1/2))O3, Ba(Mg(1/3)Ta(2/3))O3 in complex oxide perovskite structure family and their solid solutions with ternary perovskite LaAlO3 and NdGaO3 are reported. Conventional ceramic processing techniques were used to fabricate dense ceramic samples. A laser heated molten zone growth system was utilized for the test-growth of these candidate materials in single crystal fiber form to determine crystallographic structure, melting point, thermal, and dielectric properties as well as to make positive identification of twin free systems. Some of those candidate materials present an excellent combination of properties suitable for microwave HTSC substrate applications.
High-field magnets using high-critical-temperature superconducting thin films
Mitlitsky, F.; Hoard, R.W.
1994-05-10
High-field magnets fabricated from high-critical-temperature superconducting ceramic (HTSC) thin films which can generate fields greater than 4 Tesla are disclosed. The high-field magnets are made of stackable disk-shaped substrates coated with HTSC thin films, and involves maximizing the critical current density, superconducting film thickness, number of superconducting layers per substrate, substrate diameter, and number of substrates while minimizing substrate thickness. The HTSC thin films are deposited on one or both sides of the substrates in a spiral configuration with variable line widths to increase the field. 4 figures.
High-field magnets using high-critical-temperature superconducting thin films
Mitlitsky, Fred; Hoard, Ronald W.
1994-01-01
High-field magnets fabricated from high-critical-temperature superconducting ceramic (HTSC) thin films which can generate fields greater than 4 Tesla. The high-field magnets are made of stackable disk-shaped substrates coated with HTSC thin films, and involves maximizing the critical current density, superconducting film thickness, number of superconducting layers per substrate, substrate diameter, and number of substrates while minimizing substrate thickness. The HTSC thin films are deposited on one or both sides of the substrates in a spiral configuration with variable line widths to increase the field.
Bioactive ceramic coating on orthopedic implants for enhanced bone tissue integration
NASA Astrophysics Data System (ADS)
Aniket
Tissue integration between bone and orthopedic implant is essential for implant fixation and longevity. An immunological response leads to fibrous encapsulation of metallic implants leading to implant instability and failure. Bioactive ceramics have the ability to directly bond to bone; however, they have limited mechanical strength for load bearing applications. Coating bioactive ceramics on metallic implant offers the exciting opportunity to enhance bone formation without compromising the mechanical strength of the implant. In the present study, we have developed a novel bioactive silica-calcium phosphate nanocomposite (SCPC) coating on medical grade Ti-6Al-4V orthopedic implant using electrophoretic deposition (EPD) and evaluated bone tissue response to the coated implant at the cellular level. The effect of SCPC composition and suspending medium pH on the zeta potential of three different SCPC formulations; SCPC25, SCPC50 and SCPC75 were analyzed. The average zeta potential of SCPC50 in pure ethanol was more negative than that of SCPC25 or SCPC75; however the difference was not statistically significant. Ti-6Al-4V discs were passivated, coated with SCPC50 (200 nm - 10 mum) and thermally treated at 600 - 800 ºC to produce a coating thickness in the range of 43.1 +/- 5.7 to 30.1 +/- 4.6 μm. After treatment at 600, 700 and 800 ºC, the adhesion strength at the SCPC50/Ti-6Al-4V interface was 42.6 +/- 3.6, 44.7 +/- 8.7 and 47.2 +/- 4.3 MPa, respectively. XRD analyses of SCPC50 before and after EPD coating indicated no change in the crystallinity of the material. Fracture surface analyses showed that failure occurred within the ceramic layer or at the ceramic/polymer interface; however, the ceramic/metal interface was intact in all samples. The adhesion strength of SCPC50-coated substrates after immersion in PBS for 2 days (11.7 +/- 3.9 MPa) was higher than that measured on commercially available hydroxyapatite (HA) coated substrates (5.5 +/- 2.7 MPa), although the difference was not statistically significant. SEM - EDX analyses of SCPC50-coated Ti-6Al-4V pre-immersed in PBS for 7 days showed the formation of a Ca-deficient HA surface layer. Bone cells attached to the SCPC50-coated implants expressed significantly higher (p < 0.05) alkaline phosphatase activity (82.4 +/- 25.6 nmoles p-NP/mg protein/min) than that expressed by cells attached to HA-coated or uncoated implants. Protein adsorption analyses showed that SCPC50-coated substrates adsorbed significantly more (p < 0.05) serum protein (14.9 +/- 1.2 mug) than control uncoated substrates (8.9 +/- 0.7 mug). Moreover, Western blot analysis showed that the SCPC50 coating has a high affinity for serum fibronectin. Protein conformation analyses by FTIR showed that the ratio of the area under the peak for amide I/amide II bands was significantly higher (p < 0.05) on the surface of SCPC50-coated substrate (5.0 +/- 0.6) than that on the surface of the control uncoated substrates (2.2 +/- 0.3). Moreover, ICP-OES analyses indicated that SCPC50-coated substrates withdrew Ca ions from, and released P and Si ions into, the tissue culture medium, respectively. In conjunction with the favorable protein adsorption and modifications in medium composition, MC3T3-E1 osteoblast-like cells attached to SCPC50-coated substrates expressed 10-fold higher level of mRNA encoding osteocalcin and had significantly higher production of osteopontin and osteocalcin proteins than cells attached to the uncoated Ti-6Al-4V substrate. In addition, osteoblast-like cells attached to the SCPC50-coated substrates produced significantly lower levels of the inflammatory and osteoclastogenic cytokines, IL-6, IL-12p40 and RANKL than those attached to uncoated Ti-6Al-4V. Surface topography analyses using AFM suggested that the SCPC50 particles deposit onto the metal surface in a manner that preferentially fills the grooves on the substrate created during substrate preparation. An increase in the surface roughness of the SCPC50-coated substrate from 217.8 +/- 54.6 nm to 284.3 +/- 37.3 nm was accompanied by enhanced material dissolution, reduced cell proliferation and poor actin cytoskeleton organization, which are characteristics typical of differentiating bone cells on bioactive ceramic surfaces. Results of the study demonstrate that bioactive SCPC50 can efficiently be coated on Ti-6Al-4V using EPD. Moreover, the in vitro bone cell response suggests that SCPC50-coating has the potential to enhance bone integration with orthopedic and maxillofacial implants while minimizing the induction of inflammatory bone cell responses.
NASA Astrophysics Data System (ADS)
Jasiński, Piotr; Górecki, Krzysztof; Bogdanowicz, Robert
2016-01-01
These proceedings are a collection of the selected articles presented at the 39th International Microelectronics and Packaging IMAPS Poland Conference, held in Gdansk, Poland on September 20-23, 2015 (IMAPS Poland 2015). The conference has been held under the scientific patronage of the International Microelectronics and Packaging Society Poland Chapter and the Committee of Electronics and Telecommunication, Polish Academy of Science and jointly hosted by the Gdansk University of Technology, Faculty of Electronics, Telecommunication and Informatics (GUT) and the Gdynia Maritime University, Faculty of Electrical Engineering (GMU). The IMAPS Poland conference series aims to advance interdisciplinary scientific information exchange and the discussion of the science and technology of advanced electronics. The IMAPS Poland 2015 conference took place in the heart of Gdansk, two minutes walking distance from the beach. The surroundings and location of the venue guaranteed excellent working and leisure conditions. The three-day conference highlighted invited talks by outstanding scientists working in important areas of electronics and electronic material science. The eight sessions covered areas in the fields of electronics packaging, interconnects on PCB, Low Temperature Co-fired Ceramic (LTCC), MEMS devices, transducers, sensors and modelling of electronic devices. The conference was attended by 99 participants from 11 countries. The conference schedule included 18 invited presentations and 78 poster presentations.
Development of nanostructured biocompatible materials for chemical and biological sensors
NASA Astrophysics Data System (ADS)
Curley, Michael; Chilvery, Ashwith K.; Kukhatreva, Tatiana; Sharma, Anup; Corda, John; Farley, Carlton
2012-10-01
This research is focused on the fabrication of thin films followed by Surface Enhanced Raman Spectroscopy (SERS) testing of these films for various applications. One technique involves the mixture of nanoparticles with twophoton material to be used as an indicator dye. Another method involved embedding silver nanoparticles in a ceramic nano-membrane. The substrates were characterized by both Atom Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). We applied the nanostructured substrate to measure the SERS spectra of 10-6 Mol/L Rhodomine 6G(Rh6G), e-coli bacteria and RDX explosive. Our results showed that silver coated ceramic membranes can serve as appropriate substrates to enhance Raman signals. In addition, we demonstrated that the in-house-made colloidal silver can work for enhancement of the Raman spectra for bacteria. We measured the Raman spectra of Rh6G molecules on a substrate absorbed by a nanofluid of silver. We observed several strong Raman bands - 613cm-1,768 cm-1,1308cm-1 1356 cm-1,1510cm-1, which correspond to Rh6G vibrational modes υ53,υ65,υ115,υ117,υ146 respectively, using a ceramic membrane coated by silver. The Raman spectra of Rh6G absorbed by silver nanofluid showed strong enhancement of Raman bands 1175cm-1 and 1529cm-1, 1590 cm-1. Those correspond to vibrational frequency modes - υ103,υ151,152. We also measured the Raman spectra of e-coli bacteria, both absorbed by silver nanofluid, and on nanostructured substrate. In addition, the Fourier Transfer Infrared Spectra (FTIR) of the bacteria was measured.
Reactive multilayer synthesis of hard ceramic foils and films
Makowiecki, Daniel M.; Holt, Joseph B.
1996-01-01
A method for synthesizing hard ceramic materials such as carbides, borides nd aluminides, particularly in the form of coatings provided on another material so as to improve the wear and abrasion performance of machine tools, for example. The method involves the sputter deposition of alternating layers of reactive metals with layers of carbon, boron, or aluminum and the subsequent reaction of the multilayered structure to produce a dense crystalline ceramic. The material can be coated on a substrate or formed as a foil which can be coild as a tape for later use.
Stress distribution characteristics in the vicinity of coal seam floor
NASA Astrophysics Data System (ADS)
Cui, Zimo; Chanda, Emmanuel; Zhao, Jingli; Wang, Zhihe
2018-01-01
Although longwall top-coal caving (LTCC) has been a popular, more productive and cost-effective method in recent years, roadway floor heave and rock bursts frequently appear when exploiting such coal seams with large dip angle. This paper proposes addressing this problem by adopting three-dimensional roadway layout of stagger arrangement (3-D RLSA). In this study, the first step was to analyse the stress distribution characteristics in the vicinity of coal seam floor based on the stress slip line field theory. In the second step, numerical calculation using FLAC3D was conducted. Finally, an evaluation of the 3-D RLSA for solving this particular issue was given. Results indicate that for this particular mine the proposed 3-D RLSA results in 24% increase in the coal recovery ratio and a modest reduction in excavation and maintenance costs compared to the conventional LTCC method.
NASA Technical Reports Server (NTRS)
Zook, J. D.; Heaps, J. D.; Maciolek, R. B.; Koepke, B. G.; Butter, C. D.; Schuldt, S. B.
1977-01-01
The technical and economic feasibility of producing solar-cell-quality sheet silicon was investigated. The sheets were made by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. Significant progress was made in all areas of the program.
Multilayer thermal barrier coating systems
Vance, Steven J.; Goedjen, John G.; Sabol, Stephen M.; Sloan, Kelly M.
2000-01-01
The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.
Robust Hydrophobic Surfaces from Suspension HVOF Thermal Sprayed Rare-Earth Oxide Ceramics Coatings.
Bai, M; Kazi, H; Zhang, X; Liu, J; Hussain, T
2018-05-03
This study has presented an efficient coating method, namely suspension high velocity oxy-fuel (SHVOF) thermal spraying, to produce large super-hydrophobic ceramic surfaces with a unique micro- and nano-scale hierarchical structures to mimic natural super-hydrophobic surfaces. CeO 2 was selected as coatings material, one of a group of rare-earth oxide (REO) ceramics that have recently been found to exhibit intrinsic hydrophobicity, even after exposure to high temperatures and abrasive wear. Robust hydrophobic REO ceramic surfaces were obtained from the deposition of thin CeO 2 coatings (3-5 μm) using an aqueous suspension with a solid concentration of 30 wt.% sub-micron CeO 2 particles (50-200 nm) on a selection of metallic substrates. It was found that the coatings' hydrophobicity, microstructure, surface morphology, and deposition efficiency were all determined by the metallic substrates underneath. More importantly, it was demonstrated that the near super-hydrophobicity of SHVOF sprayed CeO 2 coatings was achieved not only by the intrinsic hydrophobicity of REO but also their unique hierarchically structure. In addition, the coatings' surface hydrophobicity was sensitive to the O/Ce ratio, which could explain the 'delayed' hydrophobicity of REO coatings.
NASA Astrophysics Data System (ADS)
Fernandez, Ruben; Jodoin, Bertrand
2017-08-01
Nickel chromium-chromium carbide coatings provide good corrosion and wear resistance at high temperatures, making them ideal for applications where a harsh environment and high temperatures are expected. Thermal spray processes are preferred as deposition technique of cermets, but the high process temperatures can lead to decarburization and reduction of the coatings properties. Cold spray uses lower temperatures preventing decarburization. Since the metallic phase remains solid, the feedstock powder morphology becomes crucial on the deposition behavior. Six commercially available powders were studied, varying in morphology and metal/ceramic ratios. The powders were categorized into 4 groups depending on their morphology. Spherical powders lead to substrate erosion due to their limited overall ductility. Porous agglomerated and sintered powders lead to severely cracked coatings. For dense agglomerated and sintered powders, the outcome depended on the initial metal/ceramic ratio: powders with 25 wt.% NiCr led to substrate erosion while 35 wt.% NiCr powders led to dense coatings. Finally, blended ceramic-metal mixtures also lead to dense coatings. All coatings obtained had lower ceramic content than the initial feedstock powders. Interrupted spray tests, combined with FEA, helped drawing conclusions on the deposition behavior to explain the obtained results.
The effects of nanophase ceramic materials on select functions of human mesenchymal stem cells
NASA Astrophysics Data System (ADS)
Dulgar-Tulloch, Aaron Joseph
2005-11-01
Modification of the chemistry and surface topography of nanophase ceramics can provide biomaterial formulations capable of directing the functions of adherent cells. This effect relies on the type, amount, and conformation of adsorbed proteins that mediate the adhesion of mesenchymally-descended lineages. The mechanisms driving this response are not yet well-understood and have not been investigated for human mesenchymal stem cells (HMSCs), a progenitor-lineage critical to orthopaedic biomaterials. The present study addressed these needs by examining the in vitro adhesion, proliferation, and osteogenic differentiation of HMSCs as a function of substrate chemistry and grain size, with particular attention to the protein-mediated mechanisms of cell adhesion. Alumina, titania, and hydroxyapatite substrates were prepared with 1500, 200, 50, and 24 (alumina only) nm grain sizes, and characterized with respect to surface properties, porosity, composition, and phase. Adhesion of HMSCs was dependent upon both chemistry and grain size. Specifically, adhesion on alumina and hydroxyapatite was reduced on 50 and 24 (alumina only) nm surfaces, as compared to 1500 and 200 nm surfaces, while adhesion on titania substrates was independent of grain size. Investigation into the protein-mediated mechanisms of this response identified vitronectin as the dominant adhesive protein, demonstrated random protein distribution across the substrate surface without aggregation or segregation, and confirmed the importance of the type, amount, and conformation of adsorbed proteins in cell adhesion. Minimal cell proliferation was observed on 50 and 24 (alumina only) nm substrates of any chemistry. Furthermore, cell proliferation was up-regulated on 200 nm substrates after 7 days of culture. Osteogenic differentiation was not detected on 50 nm substrates throughout the 28 day culture period. In contrast, osteogenic differentiation was strongly enhanced on 200 nm substrates, occurring approximately 7 days earlier and in greater magnitude than that observed on 1500 nm substrates. In summary, the current study elucidated the chemical and topographical cues necessary to optimize the vitronectin-mediated adhesion, proliferation, and differentiation of human mesenchymal stem cells on ceramic surfaces. These results expand the understanding of surface-mediated cell functions and provide information pertinent to the design of next-generation orthopaedic and tissue engineering biomaterials.
Intergranular metal phase increases thermal shock resistance of ceramic coating
NASA Technical Reports Server (NTRS)
Carpenter, H. W.
1966-01-01
Dispersed copper phase increases the thermal shock resistance of a plasma-arc-sprayed coating of zirconia used as a heat barrier on a metal substrate. A small amount of copper is deposited on the granules of the zirconia powder before arc-spraying the resultant powder composite onto the substrate.
Ronkainen, Jarkko J; Hänninen, Sandra L; Korhonen, Topi; Koivumäki, Jussi T; Skoumal, Reka; Rautio, Sini; Ronkainen, Veli-Pekka; Tavi, Pasi
2011-01-01
Abstract Recent studies have demonstrated that changes in the activity of calcium–calmodulin-dependent protein kinase II (CaMKII) induce a unique cardiomyocyte phenotype through the regulation of specific genes involved in excitation–contraction (E–C)-coupling. To explain the transcriptional effects of CaMKII we identified a novel CaMKII-dependent pathway for controlling the expression of the pore-forming α-subunit (Cav1.2) of the L-type calcium channel (LTCC) in cardiac myocytes. We show that overexpression of either cytosolic (δC) or nuclear (δB) CaMKII isoforms selectively downregulate the expression of the Cav1.2. Pharmacological inhibition of CaMKII activity induced measurable changes in LTCC current density and subsequent changes in cardiomyocyte calcium signalling in less than 24 h. The effect of CaMKII on the α1C-subunit gene (Cacna1c) promoter was abolished by deletion of the downstream regulatory element (DRE), which binds transcriptional repressor DREAM/calsenilin/KChIP3. Imaging DREAM–GFP (green fluorescent protein)-expressing cardiomyocytes showed that CaMKII potentiates the calcium-induced nuclear translocation of DREAM. Thereby CaMKII increases DREAM binding to the DRE consensus sequence of the endogenous Cacna1c gene. By mathematical modelling we demonstrate that the LTCC downregulation through the Ca2+–CaMKII–DREAM cascade constitutes a physiological feedback mechanism enabling cardiomyocytes to adjust the calcium intrusion through LTCCs to the amount of intracellular calcium detected by CaMKII. PMID:21486818
Chemical vapor deposition growth
NASA Technical Reports Server (NTRS)
Ruth, R. P.; Manasevit, H. M.; Kenty, J. L.; Moudy, L. A.; Simpson, W. I.; Yang, J. J.
1976-01-01
A chemical vapor deposition (CVD) reactor system with a vertical deposition chamber was used for the growth of Si films on glass, glass-ceramic, and polycrystalline ceramic substrates. Silicon vapor was produced by pyrolysis of SiH4 in a H2 or He carrier gas. Preliminary deposition experiments with two of the available glasses were not encouraging. Moderately encouraging results, however, were obtained with fired polycrystalline alumina substrates, which were used for Si deposition at temperatures above 1,000 C. The surfaces of both the substrates and the films were characterized by X-ray diffraction, reflection electron diffraction, scanning electron microscopy optical microscopy, and surface profilometric techniques. Several experiments were conducted to establish baseline performance data for the reactor system, including temperature distributions on the sample pedestal, effects of carrier gas flow rate on temperature and film thickness, and Si film growth rate as a function of temperature.
Recent advancements in anti-reflective surface structures (ARSS) for near- to mid-infrared optics
NASA Astrophysics Data System (ADS)
Florea, Catalin M.; Busse, Lynda E.; Bayya, Shyam S.; Shaw, Brandon; Aggarwal, Ish D.; Sanghera, Jas S.
2013-06-01
Fused silica, YAG crystals, and spinel ceramics substrates have been successfully patterned through reactive ion etching (RIE). Reflection losses as low as 0.1% have been demonstrated for fused silica at 1.06 microns. Laser damage thresholds have been measured for substrates with ARSS and compared with uncoated and/or thin-film anti-reflection (AR) coated substrates. Thresholds as high as 100 J/cm2 have been demonstrated in fused silica with ARSS at 1.06 microns, with ARSS substrates showing improved thresholds when compared with uncoated substrates.
Yamamoto, Takatsugu; Ferracane, Jack L; Sakaguchi, Ronald L; Swain, Michael V
2009-04-01
Polymerization contraction of dental composite produces a stress field in the bonded surrounding substrate that may be capable of propagating cracks from pre-existing flaws. The objectives of this study were to assess the extent of crack propagation from flaws in the surrounding ceramic substrate caused by composite contraction stresses, and to propose a method to calculate the contraction stress in the ceramic using indentation fracture. Initial cracks were introduced with a Vickers indenter near a cylindrical hole drilled into a glass-ceramic simulating enamel. Lengths of the radial indentation cracks were measured. Three composites having different contraction stresses were cured within the hole using one- or two-step light-activation methods and the crack lengths were measured. The contraction stress in the ceramic was calculated from the crack length and the fracture toughness of the glass-ceramic. Interfacial gaps between the composite and the ceramic were expressed as the ratio of the gap length to the hole perimeter, as well as the maximum gap width. All groups revealed crack propagation and the formation of contraction gaps. The calculated contraction stresses ranged from 4.2 MPa to 7.0 MPa. There was no correlation between the stress values and the contraction gaps. This method for calculating the stresses produced by composites is a relatively simple technique requiring a conventional hardness tester. The method can investigate two clinical phenomena that may occur during the placement of composite restorations, i.e. simulated enamel cracking near the margins and the formation of contraction gaps.
NASA Astrophysics Data System (ADS)
Ye, Xinyu; Cai, Shu; Dou, Ying; Xu, Guohua; Huang, Kai; Ren, Mengguo; Wang, Xuexin
2012-10-01
In this work, a bioactive 45S5 glass-ceramic coating was synthesized on magnesium (Mg) alloy substrate by using a sol-gel dip-coating method, to improve the initial corrosion resistance of AZ31 Mg alloy. The surface morphology and phase composition of the glass-ceramic coating were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The coating composed of amorphous phase and crystalline phase Na2Ca2Si3O9, with the thickness of ∼1.0 μm, exhibited a uniform and crack-free surface morphology. The corrosion behavior of the uncoated and coated Mg alloy substrates was investigated by the electrochemical measurements and immersion tests in simulated body fluid (SBF). Potentiodynamic polarization tests recorded an increase of potential (Ecorr) form -1.60 V to -1.48 V, and a reduction of corrosion current density (icorr) from 4.48 μA cm-2 to 0.16 μA cm-2, due to the protection provided by the glass-ceramic coating. Immersion tests also showed the markedly improved corrosion resistance of the coated sample over the immersion period of 7 days. Moreover, after 14 days of immersion in SBF, the corrosion resistance of the coated sample declined due to the cracking of the glass-ceramic coating, which was confirmed by electrochemical impedance spectroscopy (EIS) analysis. The results suggested that the 45S5 glass-ceramic coated Mg alloy could provide a suitable corrosion behavior for use as degradable implants.
Silicone Disclosing Material used after Ceramic Surface Treatment Reduces Bond Strength.
Fraga, Sara; Oliveira, Sara Cioccari; Pereira, Gabriel Kalil Rocha; Beekman, Pieter; Rippe, Marília Pivetta; Kleverlaan, Cornelis J
To evaluate the effect of a silicone disclosing procedure performed at different timepoints on the shear bond strength (SBS) of cements (self-adhesive composite cement, self-etch composite cement, resin-reinforced glass-ionomer cement) to different substrates (zirconia, lithium disilicate, bovine dentin). The substrate/cement combinations were assigned to two groups (n = 15) according to the timepoint, at which the vinyl polyether silicone disclosing agent was applied: after (experimental groups, EXP) or before (control groups, CTRL) specific micromechanical treatments of the substrate surface. To increase standardization, the cements were applied into rubber rings (2.2 mm diameter x 1.0 mm thickness) positioned on the substrate surface. After luting procedures, all specimens were stored in 37°C distilled water for 24 h, then subjected to SBS testing using a wire loop of 0.2 mm diameter at a crosshead speed of 1 mm/min until failure. Failure analysis was performed for all tested specimens. SBS data were submitted to Weibull analysis. The silicone disclosing procedure performed after micromechanical surface treatment reduced the characteristic shear bond strength to zirconia and lithium disilicate when compared to CTRL. However, for dentin specimens, there was no significant difference between CTRL and EXP for any of the cements investigated. Failure analysis showed a predominance of interfacial failures. The silicone disclosing procedure performed after the micromechanical treatment of ceramic surfaces negatively affected the cement bond strength. Therefore, after using it to check the fit of a prosthesis, clinicians should carefully clean the ceramic surface.
Fabrication of piezoelectric ceramic micro-actuator and its reliability for hard disk drives.
Jing, Yang; Luo, Jianbin; Yang, Wenyan; Ju, Guoxian
2004-11-01
A new U-type micro-actuator for precisely positioning a magnetic head in high-density hard disk drives was proposed and developed. The micro-actuator is composed of a U-type stainless steel substrate and two piezoelectric ceramic elements. Using a high-d31 piezoelectric coefficient PMN-PZT ceramic plate and adopting reactive ion etching process fabricate the piezoelectric elements. Reliability against temperature was investigated to ensure the practical application to the drive products. The U-type substrate attached to each side via piezoelectric elements also was simulated by the finite-element method and practically measured by a laser Doppler vibrometer in order to testify the driving mechanics of it. The micro-actuator coupled with two piezoelectric elements featured large displacement of 0.875 microm and high-resonance frequency over 22 kHz. The novel piezoelectric micro-actuators then possess a useful compromise performance to displacement, resonance frequency, and generative force. The results reveal that the new design concept provides a valuable alternative for multilayer piezoelectric micro-actuators.
NASA Astrophysics Data System (ADS)
Gao, Fangyuan; Hao, Li; Li, Guang; Xia, Yuan
2018-02-01
This study focuses on the individual discharge channel of ceramic coating prepared by plasma electrolytic oxidation (PEO), and attempts to reveal the mechanism of breakdown discharge at low voltage. Titanium (Ti) was employed as a substrate with the layer of aluminum deposited on it (aluminized Ti). The shape and microstructure of the discharge channels in PEO coatings were investigated using transmission electron microscope (TEM) and scanning electron microscopy (SEM). A schematic model of the individual discharge channel was proposed based on Ti tracer method. The shape of the discharge channel was mainly cylinder-shaped in the compact coating, with a groove-like oxidation region existed at the coating/substrate interface. In the groove-like oxidation region, the phase composition mainly composed of amorphous and mixed polycrystalline (aluminum titanate and mullite). β-Al2O3 was found in the ceramic coating. TEM morphology showed that nanometer sized micro channels existed in the ceramic coatings.
Chakraborty, Jui; Sarkar, Soumi Dey; Chatterjee, Saradiya; Sinha, Mithlesh Kumar; Basu, Debabrata
2008-10-15
The tribological properties of alumina ceramic are excellent due in part to a high wettability because of the hydrophilic surface and fluid film lubrication that minimizes the adhesive wear. Such surfaces are further modified with bioactive glass/ceramic coating to promote direct bone apposition in orthopedic applications. The present communication reports the biomimetic coating of calcium hydroxyapatite (HAp) on dense (2-3% porosity) alumina (alpha-Al(2)O(3)) substrate (1cm x 1cm x 0.5 cm), at 37 degrees C. After a total period of 6 days immersion in simulated body fluid (SBF), at 37 degrees C, linear self-assembled porous (pore size: approximately 0.2 microm) structures (length: approximately 375.39 microm and width: 5-6 microm) of HAp were obtained. The phenomenon has been demonstrated by self-assembly and diffusion-limited aggregation (DLA) principles. Structural and compositional characterization of the coating was carried out using SEM with EDX facility, XRD and FT-IR data.
Continuous coating of silicon-on-ceramic
NASA Technical Reports Server (NTRS)
Heaps, J. D.; Schuldt, S. B.; Grung, B. L.; Zook, J. D.; Butter, C. D.
1980-01-01
Growth of sheet silicon on low-cost substrates has been demonstrated by the silicon coating with inverted meniscus (SCIM) technique. A mullite-based ceramic substrate is coated with carbon and then passed over a trough of molten silicon with a raised meniscus. Solidification occurs at the trailing edge of the downstream meniscus, producing a silicon-on-ceramic (SOC) layer. Meniscus shape and stability are controlled by varying the level of molten silicon in a reservoir connected to the trough. The thermal conditions for growth and the crystallographic texture of the SOC layers are similar to those produced by dip-coating, the original technique of meniscus-controlled growth. The thermal conditions for growth have been analyzed in some detail. The analysis correctly predicts the velocity-thickness relationship and the liquid-solid interface shape for dip-coating, and appears to be equally applicable to SCIM-coating. Solar cells made from dip-coated SOC material have demonstrated efficiencies of 10% on 4-sq cm cells and 9.9% on 10-sq cm cells.
NASA Technical Reports Server (NTRS)
Chen, Liang-Yu; Neudeck, Philip G.; Behelm, Glenn M.; Spry, David J.; Meredith, Roger D.; Hunter, Gary W.
2015-01-01
This paper presents ceramic substrates and thick-film metallization based packaging technologies in development for 500C silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chip-level packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550C. The 96 alumina packaging system composed of chip-level packages and PCBs has been successfully tested with high temperature SiC discrete transistor devices at 500C for over 10,000 hours. In addition to tests in a laboratory environment, a SiC junction field-effect-transistor (JFET) with a packaging system composed of a 96 alumina chip-level package and an alumina printed circuit board was tested on low earth orbit for eighteen months via a NASA International Space Station experiment. In addition to packaging systems for electronics, a spark-plug type sensor package based on this high temperature interconnection system for high temperature SiC capacitive pressure sensors was also developed and tested. In order to further significantly improve the performance of packaging system for higher packaging density, higher operation frequency, power rating, and even higher temperatures, some fundamental material challenges must be addressed. This presentation will discuss previous development and some of the challenges in material science (technology) to improve high temperature dielectrics for packaging applications.
Method of making a ceramic with preferential oxygen reactive layer
NASA Technical Reports Server (NTRS)
Wang, Hongyu (Inventor); Luthra, Krishan Lal (Inventor)
2003-01-01
A method of forming an article. The method comprises forming a silicon-based substrate that is oxidizable by reaction with an oxidant to form at least one gaseous product and applying an intermediate layer/coating onto the substrate, wherein the intermediate layer/coating is oxidizable to a nongaseous product by reaction with the oxidant in preference to reaction of the silicon-containing substrate with the oxidant.
Preliminary results on complex ceramic layers deposition by atmospheric plasma spraying
NASA Astrophysics Data System (ADS)
Florea, Costel; Bejinariu, Costicǎ; Munteanu, Corneliu; Cimpoeşu, Nicanor
2017-04-01
In this article we obtain thin layers from complex ceramic powders using industrial equipment based on atmospheric plasma spraying. We analyze the influence of the substrate material roughness on the quality of the thin layers using scanning electron microscopy (SEM) and X-ray dispersive energy analyze (EDAX). Preliminary results present an important dependence between the surface state and the structural and chemical homogeneity.
de MENDONÇA, Luana Menezes; PEGORARO, Luiz Fernando; LANZA, Marcos Daniel Septímio; PEGORARO, Thiago Amadei; de CARVALHO, Ricardo Marins
2014-01-01
Composite resin and metallic posts are the materials most employed for reconstruction of teeth presenting partial or total destruction of crowns. Resin-based cements have been widely used for cementation of ceramic crowns. The success of cementation depends on the achievement of adequate cement curing. Objectives To evaluate the microhardness of Variolink® II (Ivoclar Vivadent, Schaan, Liechtenstein), used for cementing ceramic crowns onto three different coronal substrate preparations (dentin, metal, and composite resin), after 7 days and 3 months of water storage. The evaluation was performed along the cement line in the cervical, medium and occlusal thirds on the buccal and lingual aspects, and on the occlusal surface. Material and Methods Thirty molars were distributed in three groups (N=10) according to the type of coronal substrate: Group D- the prepared surfaces were kept in dentin; Groups M (metal) and R (resin)- the crowns were sectioned at the level of the cementoenamel junction and restored with metallic cast posts or resin build-up cores, respectively. The crowns were fabricated in ceramic IPS e.max® Press (Ivoclar Vivadent, Schaan, Liechtenstein) and luted with Variolink II. After 7 days of water storage, 5 specimens of each group were sectioned in buccolingual direction for microhardness measurements. The other specimens (N=5) were kept stored in deionized water at 37ºC for three months, followed by sectioning and microhardness measurements. Results Data were first analyzed by three-way ANOVA that did not reveal significant differences between thirds and occlusal surface (p=0.231). Two-way ANOVA showed significant effect of substrates (p<0.001) and the Tukey test revealed that microhardness was significantly lower when crowns were cemented on resin cores and tested after 7 days of water storage (p=0.007). Conclusion The type of material employed for coronal reconstruction of preparations for prosthetic purposes may influence the cement properties. PMID:25141200
Reactive multilayer synthesis of hard ceramic foils and films
Makowiecki, D.M.; Holt, J.B.
1996-02-13
A method is disclosed for synthesizing hard ceramic materials such as carbides, borides and aluminides, particularly in the form of coatings provided on another material so as to improve the wear and abrasion performance of machine tools, for example. The method involves the sputter deposition of alternating layers of reactive metals with layers of carbon, boron, or aluminum and the subsequent reaction of the multilayered structure to produce a dense crystalline ceramic. The material can be coated on a substrate or formed as a foil which can be coiled as a tape for later use.
AIN-Coated Al(2)O(3) Substrates For Electronic Circuits
NASA Technical Reports Server (NTRS)
Kolawa, Elzbieta; Lowry, Lynn; Herman, Martin; Lee, Karen
1996-01-01
Type of improved ceramic substrate for high-frequency, high-power electronic circuits combines relatively high thermal conductivity of aluminum nitride with surface smoothness of alumina. Consists of 15-micrometer layer of AIN deposited on highly polished alumina. Used for packaging millimeter-wave gallium arsenide transmitter chips, power silicon chips, and like.
Athermal fading of luminescence in Al2 O3 ceramic substrates
NASA Astrophysics Data System (ADS)
Terry, Ian; Kouroukla, Eftychia; Bailiff, Ian K.
2015-03-01
Retrospective dosimetry aims to reconstruct ionising radiation dose to populations following a radiological incident using materials not designed for that purpose. Sintered alumina ceramic can function as a dosimeter with its luminescence properties and related trapped charge storage mechanism. Its widespread use as a substrate in surface mount devices and incorporation in devices such as mobile phones make it a ubiquitous potential dosimeter. We investigated the optically (OSL) and thermally (TL) stimulated luminescence properties of sintered alumina substrates. In contrast to their single crystal analogue developed for personal dosimetry, Al2O3:C, the substrates exhibit a significant loss of trapped charge (fading) within hours following irradiation at RT that seriously limits their utility for dosimetry over an extended timescale. The fading rates of OSL and TL signals of 0402 resistors were analysed under various storage conditions (time and temperature), complemented by a study of their microstructure. The results support a model of athermal loss of trapped charge due to electron tunnelling from trapping states; this contrasting behaviour is attributed to a physical modification of the trap environment arising from the manufacturing process.
Tribological synthesis method for producing low-friction surface film coating
Ajayi, Oyelayo O.; Lorenzo-Martin, Maria De La; Fenske, George R.
2016-10-25
An article of method of manufacture of a low friction tribological film on a substrate. The article includes a substrate of a steel or ceramic which has been tribologically processed with a lubricant containing selected additives and the additives, temperature, load and time of processing can be selectively controlled to bias formation of a film on the substrate where the film is an amorphous structure exhibiting highly advantageous low friction properties.
Chen, Wei; Yu, Zunxiong; Pang, Jinshan; Yu, Peng; Tan, Guoxin; Ning, Chengyun
2017-01-01
The discovery of piezoelectricity in natural bone has attracted extensive research in emulating biological electricity for various tissue regeneration. Here, we carried out experiments to build biocompatible potassium sodium niobate (KNN) ceramics. Then, influence substrate surface charges on bovine serum albumin (BSA) protein adsorption and cell proliferation on KNN ceramics surfaces was investigated. KNN ceramics with piezoelectric constant of ~93 pC/N and relative density of ~93% were fabricated. The adsorption of protein on the positive surfaces (Ps) and negative surfaces (Ns) of KNN ceramics with piezoelectric constant of ~93 pC/N showed greater protein adsorption capacity than that on non-polarized surfaces (NPs). Biocompatibility of KNN ceramics was verified through cell culturing and live/dead cell staining of MC3T3. The cells experiment showed enhanced cell growth on the positive surfaces (Ps) and negative surfaces (Ns) compared to non-polarized surfaces (NPs). These results revealed that KNN ceramics had great potential to be used to understand the effect of surface potential on cells processes and would benefit future research in designing piezoelectric materials for tissue regeneration. PMID:28772704
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Fralick, Gustave C.; Hunter, Gary W.
2006-01-01
The need to consider ceramic sensing elements is brought about by the temperature limits of metal thin film sensors in propulsion system applications. In order to have a more passive method of negating changes of resistance due to temperature, an effort is underway at NASA Glenn to develop high temperature thin film ceramic static strain gauges for application in turbine engines, specifically in the fan and compressor modules on blades. Other applications can be on aircraft hot section structures and on thermal protection systems. The near-term interim goal of the research effort was to identify candidate thin film ceramic sensor materials to test for viability and provide a list of possible thin film ceramic sensor materials and corresponding properties to test for viability. This goal was achieved by a thorough literature search for ceramics that have the potential for application as high temperature thin film strain gauges, reviewing potential candidate materials for chemical and physical compatibility with our microfabrication procedures and substrates.
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Fralick, Gustave C.; Hunter, Gary W.
2006-01-01
The need to consider ceramic sensing elements is brought about by the temperature limits of metal thin film sensors in propulsion system applications. In order to have a more passive method of negating changes of resistance due to temperature, an effort is underway at NASA GRC to develop high temperature thin film ceramic static strain gauges for application in turbine engines, specifically in the fan and compressor modules on blades. Other applications include on aircraft hot section structures and on thermal protection systems. The near-term interim goal of this research effort was to identify candidate thin film ceramic sensor materials to test for viability and provide a list of possible thin film ceramic sensor materials and corresponding properties to test for viability. This goal was achieved by a thorough literature search for ceramics that have the potential for application as high temperature thin film strain gauges, reviewing potential candidate materials for chemical & physical compatibility with NASA GRC's microfabrication procedures and substrates.
Chen, Wei; Yu, Zunxiong; Pang, Jinshan; Yu, Peng; Tan, Guoxin; Ning, Chengyun
2017-03-26
The discovery of piezoelectricity in natural bone has attracted extensive research in emulating biological electricity for various tissue regeneration. Here, we carried out experiments to build biocompatible potassium sodium niobate (KNN) ceramics. Then, influence substrate surface charges on bovine serum albumin (BSA) protein adsorption and cell proliferation on KNN ceramics surfaces was investigated. KNN ceramics with piezoelectric constant of ~93 pC/N and relative density of ~93% were fabricated. The adsorption of protein on the positive surfaces (Ps) and negative surfaces (Ns) of KNN ceramics with piezoelectric constant of ~93 pC/N showed greater protein adsorption capacity than that on non-polarized surfaces (NPs). Biocompatibility of KNN ceramics was verified through cell culturing and live/dead cell staining of MC3T3. The cells experiment showed enhanced cell growth on the positive surfaces (Ps) and negative surfaces (Ns) compared to non-polarized surfaces (NPs). These results revealed that KNN ceramics had great potential to be used to understand the effect of surface potential on cells processes and would benefit future research in designing piezoelectric materials for tissue regeneration.
Ceramic membrane microfilter as an immobilized enzyme reactor.
Harrington, T J; Gainer, J L; Kirwan, D J
1992-10-01
This study investigated the use of a ceramic microfilter as an immobilized enzyme reactor. In this type of reactor, the substrate solution permeates the ceramic membrane and reacts with an enzyme that has been immobilized within its porous interior. The objective of this study was to examine the effect of permeation rate on the observed kinetic parameters for the immobilized enzyme in order to assess possible mass transfer influences or shear effects. Kinetic parameters were found to be independent of flow rate for immobilized penicillinase and lactate dehydrogenase. Therefore, neither mass transfer nor shear effects were observed for enzymes immobilized within the ceramic membrane. Both the residence time and the conversion in the microfilter reactor could be controlled simply by regulating the transmembrane pressure drop. This study suggests that a ceramic microfilter reactor can be a desirable alternative to a packed bed of porous particles, especially when an immobilized enzyme has high activity and a low Michaelis constant.
Effects of fendiline on cocaine-seeking behavior in the rat.
Cunningham, Jonathan J; Orr, Erin; Lothian, Barbara C; Morgen, Jennifer; Brebner, Karen
2015-12-01
L-type Ca(2+) channels (LTCC) and GABAB receptors are both possible targets in the development of new pharmacological compounds for cocaine addiction. Drugs that target either receptor attenuate a wide range of cocaine-seeking behaviors in the rat. However, there is no current human-approved pharmacotherapeutic intervention for psychostimulant addiction. This study examined the effects of a human-approved LTCC blocker, fendiline, on cocaine-taking and cocaine-seeking behavior in rats. The effects of combining fendiline with the GABAB receptor agonist baclofen on cocaine self-administration were also tested. Male Wistar rats were trained to self-administer cocaine, and the effects of fendiline pretreatment (vehicle, 1.78, 3.16, 5.62 mg/kg, intraperitoneal (IP)) were tested on progressive ratio responding and cue- and drug-induced reinstatement. The effects of baclofen (vehicle, 0.56, 1.78, 3.16, 5.62 mg/kg, IP) combined with fendiline (5.62 mg/kg, IP) were tested on progressive ratio responding. Control experiments measured locomotor activity and lever pressing for food in rats that received both baclofen and fendiline prior to the test session. Acute injections of fendiline prior to cue- or drug-induced reinstatement significantly attenuated lever-pressing behavior (p < 0.05). Fendiline and baclofen, but not fendiline alone, not only significantly attenuated breakpoints, but also impaired general motor behavior and naturalistic reinforcement (p < 0.05). These data suggest that the LTCC blocker fendiline may represent a novel pharmacotherapeutic intervention to prevent reinstatement to cocaine seeking. Also, co-administration of fendiline and baclofen not only can attenuate the motivation to take cocaine, but also impairs general motor behavior and naturalistic reinforcement.
Poetschke, Christina; Dragicevic, Elena; Duda, Johanna; Benkert, Julia; Dougalis, Antonios; DeZio, Roberta; Snutch, Terrance P; Striessnig, Joerg; Liss, Birgit
2015-09-18
The preferential degeneration of Substantia nigra dopamine midbrain neurons (SN DA) causes the motor-symptoms of Parkinson's disease (PD). Voltage-gated L-type calcium channels (LTCCs), especially the Cav1.3-subtype, generate an activity-related oscillatory Ca(2+) burden in SN DA neurons, contributing to their degeneration and PD. While LTCC-blockers are already in clinical trials as PD-therapy, age-dependent functional roles of Cav1.3 LTCCs in SN DA neurons remain unclear. Thus, we analysed juvenile and adult Cav1.3-deficient mice with electrophysiological and molecular techniques. To unmask compensatory effects, we compared Cav1.3 KO mice with pharmacological LTCC-inhibition. LTCC-function was not necessary for SN DA pacemaker-activity at either age, but rather contributed to their pacemaker-precision. Moreover, juvenile Cav1.3 KO but not WT mice displayed adult wildtype-like, sensitised inhibitory dopamine-D2-autoreceptor (D2-AR) responses that depended upon both, interaction of the neuronal calcium sensor NCS-1 with D2-ARs, and on voltage-gated T-type calcium channel (TTCC) activity. This functional KO-phenotype was accompanied by cell-specific up-regulation of NCS-1 and Cav3.1-TTCC mRNA. Furthermore, in wildtype we identified an age-dependent switch of TTCC-function from contributing to SN DA pacemaker-precision in juveniles to pacemaker-frequency in adults. This novel interplay of Cav1.3 L-type and Cav3.1 T-type channels, and their modulation of SN DA activity-pattern and D2-AR-sensitisation, provide new insights into flexible age- and calcium-dependent activity-control of SN DA neurons and its pharmacological modulation.
Sanchez-Alonso, Jose L.; Bhargava, Anamika; O’Hara, Thomas; Glukhov, Alexey V.; Schobesberger, Sophie; Bhogal, Navneet; Sikkel, Markus B.; Mansfield, Catherine; Korchev, Yuri E.; Lyon, Alexander R.; Punjabi, Prakash P.; Nikolaev, Viacheslav O.; Trayanova, Natalia A.
2016-01-01
Rationale: Disruption in subcellular targeting of Ca2+ signaling complexes secondary to changes in cardiac myocyte structure may contribute to the pathophysiology of a variety of cardiac diseases, including heart failure (HF) and certain arrhythmias. Objective: To explore microdomain-targeted remodeling of ventricular L-type Ca2+ channels (LTCCs) in HF. Methods and Results: Super-resolution scanning patch-clamp, confocal and fluorescence microscopy were used to explore the distribution of single LTCCs in different membrane microdomains of nonfailing and failing human and rat ventricular myocytes. Disruption of membrane structure in both species led to the redistribution of functional LTCCs from their canonical location in transversal tubules (T-tubules) to the non-native crest of the sarcolemma, where their open probability was dramatically increased (0.034±0.011 versus 0.154±0.027, P<0.001). High open probability was linked to enhance calcium–calmodulin kinase II–mediated phosphorylation in non-native microdomains and resulted in an elevated ICa,L window current, which contributed to the development of early afterdepolarizations. A novel model of LTCC function in HF was developed; after its validation with experimental data, the model was used to ascertain how HF-induced T-tubule loss led to altered LTCC function and early afterdepolarizations. The HF myocyte model was then implemented in a 3-dimensional left ventricle model, demonstrating that such early afterdepolarizations can propagate and initiate reentrant arrhythmias. Conclusions: Microdomain-targeted remodeling of LTCC properties is an important event in pathways that may contribute to ventricular arrhythmogenesis in the settings of HF-associated remodeling. This extends beyond the classical concept of electric remodeling in HF and adds a new dimension to cardiovascular disease. PMID:27572487
Decreased cardiac L-type Ca2+ channel activity induces hypertrophy and heart failure in mice
Goonasekera, Sanjeewa A.; Hammer, Karin; Auger-Messier, Mannix; Bodi, Ilona; Chen, Xiongwen; Zhang, Hongyu; Reiken, Steven; Elrod, John W.; Correll, Robert N.; York, Allen J.; Sargent, Michelle A.; Hofmann, Franz; Moosmang, Sven; Marks, Andrew R.; Houser, Steven R.; Bers, Donald M.; Molkentin, Jeffery D.
2011-01-01
Antagonists of L-type Ca2+ channels (LTCCs) have been used to treat human cardiovascular diseases for decades. However, these inhibitors can have untoward effects in patients with heart failure, and their overall therapeutic profile remains nebulous given differential effects in the vasculature when compared with those in cardiomyocytes. To investigate this issue, we examined mice heterozygous for the gene encoding the pore-forming subunit of LTCC (calcium channel, voltage-dependent, L type, α1C subunit [Cacna1c mice; referred to herein as α1C–/+ mice]) and mice in which this gene was loxP targeted to achieve graded heart-specific gene deletion (termed herein α1C-loxP mice). Adult cardiomyocytes from the hearts of α1C–/+ mice at 10 weeks of age showed a decrease in LTCC current and a modest decrease in cardiac function, which we initially hypothesized would be cardioprotective. However, α1C–/+ mice subjected to pressure overload stimulation, isoproterenol infusion, and swimming showed greater cardiac hypertrophy, greater reductions in ventricular performance, and greater ventricular dilation than α1C+/+ controls. The same detrimental effects were observed in α1C-loxP animals with a cardiomyocyte-specific deletion of one allele. More severe reductions in α1C protein levels with combinatorial deleted alleles produced spontaneous cardiac hypertrophy before 3 months of age, with early adulthood lethality. Mechanistically, our data suggest that a reduction in LTCC current leads to neuroendocrine stress, with sensitized and leaky sarcoplasmic reticulum Ca2+ release as a compensatory mechanism to preserve contractility. This state results in calcineurin/nuclear factor of activated T cells signaling that promotes hypertrophy and disease. PMID:22133878
NASA Astrophysics Data System (ADS)
Pan, Jisheng; Yu, Peng; Yan, Qiusheng; Li, Weihua
2017-05-01
Strontium titanate (SrTiO3, STO) ceramic substrate is an incipient ferroelectric material with a perovskite structure and which has a wide range of applications in the fields of microwave, millimetre wave, and optic fibre. This paper reports on a system of experiments carried out on STO substrates using a new magnetorheological (MR) finishing process where dynamic magnetic fields are formed by magnetic poles rotate. The results show that a circular ring shaped polishing belt with a stability evaluation zone appears on the surface after being polished by MR finishing with a single-point dynamic magnetic field. The dynamic magnetic fields are stronger when the revolutions of magnetic pole increase and eccentricity of pole enlarge, with the surface finish is smoother and more material is removed. The optimum machining times, machining gap, oscillation distance, eccentricity of pole, revolutions of the workpiece and magnetic pole are 60 min, 0.8 mm, 0 mm, 7 mm, and 350 r min-1 and 90 r min-1, respectively, and the best MR fluid consists of 6 wt% of diamond abrasives in W1 particle size and 18 wt% of carbonyl iron powder in W3.5 particle size. A surface roughness of Ra and a material removal rate of 8 nm and 0.154 μm min-1 can be obtained in these optimum process conditions. Finally, the polishing mechanism for dynamic magnetic fields and the mechanism for removing material from STO ceramic substrates are discussed in detail.
Study of Mechano-Chemical Machining of Ceramics and the Effect on Thin Film Behavior.
1983-01-01
with Fe2O3 Under Various Pressures 9 7 Nomarski Micrographs of an Si N Substrate (a) Before *. and (b) After Mechanochemical Polishing 11 8 -Surface...the entire polished surface did not reveal any scratches. Figure 7 com- pares the Nomarski micrographs of an Si3 N4 substrate before (in the as...mechanochemically polished Si3N4 substrates, using an interferometric technique. The surface figure of a 2.5 x 2.5 cm Si 3N4 substrate is shown in Figure 9. This fig
High-Tc thermal bridges for space-borne cryogenic infrared detectors
NASA Technical Reports Server (NTRS)
Wise, S. A.; Buckley, J. D.; Nolt, I.; Hooker, M. W.; Haertling, G. H.; Selim, R.; Caton, R.; Buoncristiani, A. M.
1993-01-01
The potential for using high-temperature superconductive elements, screen-printed onto ceramic substrates, as thermal bridges to replace the currently employed manganin wires is studied at NASA-LaRC. Substrate selection is considered to be the most critical parameter in device production. Due to the glass-like thermal behavior of yttria-stabilized-zirconia (YSZ) and fused silica substrates, these materials are found to reduce the heat load significantly. The estimated thermal savings for superconductive leads printed onto YSZ or fused silica substrates range from 6 to 14 percent.
Combinatorial synthesis of ceramic materials
Lauf, Robert J [Oak Ridge, TN; Walls, Claudia A [Oak Ridge, TN; Boatner, Lynn A [Oak Ridge, TN
2010-02-23
A combinatorial library includes a gelcast substrate defining a plurality of cavities in at least one surface thereof; and a plurality of gelcast test materials in the cavities, at least two of the test materials differing from the substrate in at least one compositional characteristic, the two test materials differing from each other in at least one compositional characteristic.
Combinatorial synthesis of ceramic materials
Lauf, Robert J.; Walls, Claudia A.; Boatner, Lynn A.
2006-11-14
A combinatorial library includes a gelcast substrate defining a plurality of cavities in at least one surface thereof; and a plurality of gelcast test materials in the cavities, at least two of the test materials differing from the substrate in at least one compositional characteristic, the two test materials differing from each other in at least one compositional characteristic.
Packaging Technologies for High Temperature Electronics and Sensors
NASA Technical Reports Server (NTRS)
Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Beheim, Glenn M.; Spry, David J.; Meredith, Roger D.
2013-01-01
This paper reviews ceramic substrates and thick-film metallization based packaging technologies in development for 500 C silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chip-level packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550 C. A 96% alumina based edge connector for a PCB level subsystem interconnection has also been demonstrated recently. The 96% alumina packaging system composed of chip-level packages and PCBs has been tested with high temperature SiC devices at 500 C for over 10,000 hours. In addition to tests in a laboratory environment, a SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE-7 suite to the International Space Station via a Shuttle mission. This packaged SiC transistor was successfully tested in orbit for eighteen months. A spark-plug type sensor package designed for high temperature SiC capacitive pressure sensors was developed. This sensor package combines the high temperature interconnection system with a commercial high temperature high pressure stainless steel seal gland (electrical feed-through). Test results of a packaged high temperature capacitive pressure sensor at 500 C are also discussed. In addition to the pressure sensor package, efforts for packaging high temperature SiC diode-based gas chemical sensors are in process.
Packaging Technologies for High Temperature Electronics and Sensors
NASA Technical Reports Server (NTRS)
Chen, Liangyu; Hunter, Gary W.; Neudeck, Philip G.; Beheim, Glenn M.; Spry, David J.; Meredith, Roger D.
2013-01-01
This paper reviews ceramic substrates and thick-film metallization based packaging technologies in development for 500degC silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chiplevel packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550degC. A 96% alumina based edge connector for a PCB level subsystem interconnection has also been demonstrated recently. The 96% alumina packaging system composed of chip-level packages and PCBs has been tested with high temperature SiC devices at 500degC for over 10,000 hours. In addition to tests in a laboratory environment, a SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE-7 suite to the International Space Station via a Shuttle mission. This packaged SiC transistor was successfully tested in orbit for eighteen months. A spark-plug type sensor package designed for high temperature SiC capacitive pressure sensors was developed. This sensor package combines the high temperature interconnection system with a commercial high temperature high pressure stainless steel seal gland (electrical feed-through). Test results of a packaged high temperature capacitive pressure sensor at 500degC are also discussed. In addition to the pressure sensor package, efforts for packaging high temperature SiC diode-based gas chemical sensors are in process.
Yang, C Y; Chen, C R; Chang, E; Lee, T M
2007-08-01
A porous metal coating applied to solid substrate implants has been shown, in vivo, to anchor implants by bone ingrowth. Calcium phosphate ceramics, in particular hydroxyapatite [Ca(10)(PO(4))(6)(OH)(2), HA], are bioactive ceramics, which are known to be biocompatible and osteoconductive, and these ceramics deposited on to porous-coated devices may enhance bone ingrowth and implant fixation. In this study, bi-feedstock of the titanium powder and composite (Na(2)CO(3)/HA) powder were simultaneously deposited on a Ti-6Al-4V substrate by a plasma sprayed method. At high temperature of plasma torch, the solid state of Na(2)CO(3) would decompose to release CO(2) gas and then eject the molten Ti powder to induce the interconnected pores in the coatings. After cleaning and soaking in deionized water, the residual Na(2)CO(3) in the coating would dissolve to form the open pores, and the HA would exist at the surface of pores in the inner coatings. By varying the particle size of the composite powder, the porosity of porous coating could be varied from 25.0 to 34.0%, and the average pore size of the porous coating could be varied to range between 158.5 and 202.0 microm. Using a standard adhesive test (ASTM C-633), the bonding strength of the coating is between 27.3 and 38.2 MPa. By SEM, the HA was observed at the surface of inner pore in the porous coating. These results suggest that the method exhibits the potential to manufacture the bioactive ceramics on to porous-coated specimen to achieve bone ingrowth fixation for biomedical applications.
Bilandžić, Marin Dean; Wollgarten, Susanne; Stollenwerk, Jochen; Poprawe, Reinhart; Esteves-Oliveira, Marcella; Fischer, Horst
2017-09-01
The established method of fissure-sealing using polymeric coating materials exhibits limitations on the long-term. Here, we present a novel technique with the potential to protect susceptible teeth against caries and erosion. We hypothesized that a tailored glass-ceramic material could be sprayed onto enamel-like substrates to create superior adhesion properties after sintering by a CO 2 laser beam. A powdered dental glass-ceramic material from the system SiO 2 -Na 2 O-K 2 O-CaO-Al 2 O 3 -MgO was adjusted with individual properties suitable for a spray coating process. The material was characterized using X-ray fluorescence analysis (XRF), heating microscopy, dilatometry, scanning electron microscopy (SEM), grain size analysis, biaxial flexural strength measurements, fourier transform infrared spectroscopy (FTIR), and gas pycnometry. Three different groups of samples (each n=10) where prepared: Group A, powder pressed glass-ceramic coating material; Group B, sintered hydroxyapatite specimens; and Group C, enamel specimens (prepared from bovine teeth). Group B and C where spray coated with glass-ceramic powder. All specimens were heat treated using a CO 2 laser beam process. Cross-sections of the laser-sintered specimens were analyzed using laser scanning microscopy (LSM), energy dispersive X-ray analysis (EDX), and SEM. The developed glass-ceramic material (grain size d50=13.1mm, coefficient of thermal expansion (CTE)=13.310 -6 /K) could be spray coated on all tested substrates (mean thickness=160μm). FTIR analysis confirmed an absorption of the laser energy up to 95%. The powdered glass-ceramic material was successfully densely sintered in all sample groups. The coating interface investigation by SEM and EDX proved atomic diffusion and adhesion of the glass-ceramic material to hydroxyapatite and to dental enamel. A glass-ceramic material with suitable absorption properties was successfully sprayed and laser-sintered in thin films on hydroxyapatite as well as on bovine enamel. The presented novel technique of tooth coating with a dental glass-ceramic using a CO 2 -laser holds a great potential as a possible method to protect susceptible teeth against caries and erosion. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
High temperature insulation for ceramic matrix composites
Merrill, Gary B.; Morrison, Jay Alan
2001-01-01
A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.
High temperature insulation for ceramic matrix composites
Merrill, Gary B.; Morrison, Jay Alan
2004-01-13
A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.
Adhesion/cementation to zirconia and other non-silicate ceramics: Where are we now?
Thompson, Jeffrey Y; Stoner, Brian R.; Piascik, Jeffrey R.; Smith, Robert
2010-01-01
Non-silicate ceramics, especially zirconia, have become a topic of great interest in the field of prosthetic and implant dentistry. A clinical problem with use of zirconia-based components is the difficulty in achieving suitable adhesion with intended synthetic substrates or natural tissues. Traditional adhesive techniques used with silica-based ceramics do not work effectively with zirconia. Currently, several technologies are being utilized clinically to address this problem, and other approaches are under investigation. Most focus on surface modification of the inert surfaces of high strength ceramics. The ability to chemically functionalize the surface of zirconia appears to be critical in achieving adhesive bonding. This review will focus on currently available approaches as well as new advanced technologies to address this problem. PMID:21094526
Atomic-Level Properties of Thermal Barrier Coatings: Characterization of Metal-Ceramic Interfaces
2001-01-01
these cases metal - metal bonds were stronger than metal - substrate bonds, thus predicting a 3D (cluster) growth mode as opposed to layer-by-layer...coat layer must be deposited. The top coat serves as the insulator and the bond coat mediates contact between the top coat and metal alloy substrate ...in thermomechanical properties between a YSZ top coat and a metal -alloy substrate is enough to require the introduction of an intermediate layer. This
Finite Element Simulation of Residual Stress Development in Thermally Sprayed Coatings
NASA Astrophysics Data System (ADS)
Elhoriny, Mohamed; Wenzelburger, Martin; Killinger, Andreas; Gadow, Rainer
2017-04-01
The coating buildup process of Al2O3/TiO2 ceramic powder deposited on stainless-steel substrate by atmospheric plasma spraying has been simulated by creating thermomechanical finite element models that utilize element death and birth techniques in ANSYS commercial software and self-developed codes. The simulation process starts with side-by-side deposition of coarse subparts of the ceramic layer until the entire coating is created. Simultaneously, the heat flow into the material, thermal deformation, and initial quenching stress are computed. The aim is to be able to predict—for the considered spray powder and substrate material—the development of residual stresses and to assess the risk of coating failure. The model allows the prediction of the heat flow, temperature profile, and residual stress development over time and position in the coating and substrate. The proposed models were successfully run and the results compared with actual residual stresses measured by the hole drilling method.
NASA Astrophysics Data System (ADS)
Chen, Xiaolong; Honda, Hiroshi; Kuroda, Seiji; Araki, Hiroshi; Murakami, Hideyuki; Watanabe, Makoto; Sakka, Yoshio
2016-12-01
Effects of the ceramic powder size used for suspension as well as several processing parameters in suspension plasma spraying of YSZ were investigated experimentally, aiming to fabricate highly segmented microstructures for thermal barrier coating (TBC) applications. Particle image velocimetry (PIV) was used to observe the atomization process and the velocity distribution of atomized droplets and ceramic particles travelling toward the substrates. The tested parameters included the secondary plasma gas (He versus H2), suspension injection flow rate, and substrate surface roughness. Results indicated that a plasma jet with a relatively higher content of He or H2 as the secondary plasma gas was critical to produce highly segmented YSZ TBCs with a crack density up to 12 cracks/mm. The optimized suspension flow rate played an important role to realize coatings with a reduced porosity level and improved adhesion. An increased powder size and higher operation power level were beneficial for the formation of highly segmented coatings onto substrates with a wider range of surface roughness.
Dispersion toughened ceramic composites and method for making same
Stinton, David P.; Lackey, Walter J.; Lauf, Robert J.
1986-01-01
Ceramic composites exhibiting increased fracture toughness are produced by the simultaneous codeposition of silicon carbide and titanium disilicide by chemical vapor deposition. A mixture of hydrogen, methyltrichlorosilane and titanium tetrachloride is introduced into a furnace containing a substrate such as graphite or silicon carbide. The thermal decomposition of the methyltrichlorosilane provides a silicon carbide matrix phase and the decomposition of the titanium tetrachloride provides a uniformly dispersed second phase of the intermetallic titanium disilicide within the matrix phase. The fracture toughness of the ceramic composite is in the range of about 6.5 to 7.0 MPa.sqroot.m which represents a significant increase over that of silicon carbide.
Dispersion toughened ceramic composites and method for making same
Stinton, D.P.; Lackey, W.J.; Lauf, R.J.
1984-09-28
Ceramic composites exhibiting increased fracture toughness are produced by the simultaneous codeposition of silicon carbide and titanium disilicide by chemical vapor deposition. A mixture of hydrogen, methyltrichlorosilane and titanium tetrachloride is introduced into a furnace containing a substrate such as graphite or silicon carbide. The thermal decomposition of the methyltrichlorosilane provides a silicon carbide matrix phase and the decomposition of the titanium tetrachloride provides a uniformly dispersed second phase of the intermetallic titanium disilicide within the matrix phase. The fracture toughness of the ceramic composite is in the range of about 6.5 to 7.0 MPa..sqrt..m which represents a significant increase over that of silicon carbide.
NASA Astrophysics Data System (ADS)
Tanaka, Teruya; Muroga, Takeo
2014-12-01
An Er2O3 ceramic coating fabricated using the metal-organic decomposition (MOD) method on a Cr2O3-covered low-activation ferritic steel JLF-1 substrate was examined to improve hydrogen permeation barrier performance of the coating. The Cr2O3 layer was obtained before coating by heat treating the substrate at 700 °C under reduced pressures of <5 × 10-3 Pa and 5 Pa. The Cr2O3 layer was significantly stable even with heat treatment at 700 °C in air. This layer prevented further production of Fe2O3, which has been considered to degrade coating performance. An MOD Er2O3 coating with a smooth surface was successfully obtained on a Cr2O3-covered JLF-1 substrate by dip coating followed by drying and baking. Preprocessing to obtain a Cr2O3 layer would provide flexibility in the coating process for blanket components and ducts. Moreover, the Cr2O3 layer suppressed hydrogen permeation through the JLF-1 substrate. While further optimization of the coating fabrication process is required, it would be possible to suppress hydrogen permeation significantly by multilayers of Cr2O3 and MOD oxide ceramic.
Literature Review of Polymer Derived Ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Reuben James
2016-05-25
Polymer Derived Ceramics (PDCs), also known as preceramic polymers, are valuable coating agents that are used to produce surface barriers on substrates such as stainless steel. These barriers protect against a multitude of environmental threats, and have been used since their research and development in 19772. This paper seeks to review and demonstrate the remarkable properties and versatility that PDCs have to offer, while also giving a brief overview of the processing techniques used today.
Lightweight armor system and process for producing the same
Chu, Henry S.; Bruck, H. Alan; Strempek, Gary C.; Varacalle, Jr., Dominic J.
2004-01-20
A lightweight armor system may comprise a substrate having a graded metal matrix composite layer formed thereon by thermal spray deposition. The graded metal matrix composite layer comprises an increasing volume fraction of ceramic particles imbedded in a decreasing volume fraction of a metal matrix as a function of a thickness of the graded metal matrix composite layer. A ceramic impact layer is affixed to the graded metal matrix composite layer.
Method of waste stabilization via chemically bonded phosphate ceramics
Wagh, Arun S.; Singh, Dileep; Jeong, Seung-Young
1998-01-01
A method for regulating the reaction temperature of a ceramic formulation process is provided comprising supplying a solution containing a monovalent alkali metal; mixing said solution with an oxide powder to create a binder; contacting said binder with bulk material to form a slurry; and allowing the slurry to cure. A highly crystalline waste form is also provided consisting of a binder containing potassium and waste substrate encapsulated by the binder.
Method of waste stabilization via chemically bonded phosphate ceramics
Wagh, A.S.; Singh, D.; Jeong, S.Y.
1998-11-03
A method for regulating the reaction temperature of a ceramic formulation process is provided comprising supplying a solution containing a monovalent alkali metal; mixing said solution with an oxide powder to create a binder; contacting said binder with bulk material to form a slurry; and allowing the slurry to cure. A highly crystalline waste form is also provided consisting of a binder containing potassium and waste substrate encapsulated by the binder. 3 figs.
Cellular compatibility of highly degradable bioactive ceramics for coating of metal implants.
Radetzki, F; Wohlrab, D; Zeh, A; Delank, K S; Mendel, T; Berger, G; Syrowatka, F; Mayr, O; Bernstein, A
2011-01-01
Resorbable ceramics can promote the bony integration of implants. Their rate of degradation should ideally be synchronized with bone regeneration. This study examined the effect of rapidly resorbable calcium phosphate ceramics 602020, GB14, 305020 on adherence, proliferation and morphology of human bone-derived cells (HBDC) in comparison to β-TCP. The in vitro cytotoxicity was determined by the microculture tetrazolium (MTT) assay. HBDC were grown on the materials for 3, 7, 11, 15 and 19 days and counted. Cell morphology, cell attachment, cell spreading and the cytoskeletal organization of HBDC cultivated on the substrates were investigated using laser scanning microscopy and environmental scanning electron microscopy. All substrates supported sufficient cellular growth for 19 days and showed no cytotoxicity. On each material an identical cell colonisation of well communicating, polygonal, vital cells with strong focal contacts was verified. HBDC showed numerous well defined stress fibres which give proof of well spread and strongly anchored cells. Porous surfaces encouraged the attachment and spreading of HBDC. Further investigations regarding long term biomaterial/cell interactions in vitro and in vivo are required to confirm the utility of the new biomaterials.
Microstructures and Dry Sliding Wear Resistance of the Laser Ceramics Composite Coating on Pure Ti
NASA Astrophysics Data System (ADS)
Liu, Peng; Zhang, Yuanbin; Luo, Hui; Huo, Yushuang
2012-06-01
In this study, Al-Ti-Co was used to improve the surface performance of pure Ti. Laser cladding is an important surface modification technique, which can be used to improve the surface performance of pure Ti. Laser cladding of the Al-Ti-Co + TiB2 pre-placed powders on pure Ti can form ceramics reinforced the composite coating, which improved the wear resistance of the substrate. Characteristics of the composite coating were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), microhardness and wear tests. And the laser-cladded coating can also have major dilution from the substrate. Due to the action of the fine grain strengthening and the phase constituent, the wear resistance and microhardness of pure Ti surface were greatly improved.
Cho, Hyun Min; Kim, Min-Sun
2014-08-01
In this study, we developed AlN thick film on metal substrate for hybrid type LED package such as chip on board (COB) using metal printed circuit board (PCB). Conventional metal PCB uses ceramic-polymer composite as electrical insulating layer. Thermal conductivities of such type dielectric film are typically in the range of 1~4 W/m · K depending on the ceramic filler. Also, Al or Cu alloy are mainly used for metal base for high thermal conduction to dissipate heat from thermal source mounted on metal PCB. Here we used Cu-W alloy with low thermal expansion coefficient as metal substrate to reduce thermal stress between insulating layer and base metal. AlN with polyimide (PI) powder were used as starting materials for deposition. We could obtain very high thermal conductivity of 28.3 W/m · K from deposited AlN-PI thin film by AlN-3 wt% PI powder. We made hybrid type high power LED package using AlN-PI thin film. We tested thermal performance of this film by thermal transient measurement and compared with conventional metal PCB substrate.
NASA Astrophysics Data System (ADS)
Panin, Alexey; Panin, Victor; Kazachenok, Marina; Shugurov, Artur; Sinyakova, Elena; Martynov, Sergey; Rusyaev, Andrey; Kasterov, Artur
2017-12-01
The yttria-stabilized zirconia coatings sprayed on titanium substrates by the electron beam physical vapor deposition were subjected to thermal annealing in air at 1000°C for 1, 30 and 60 min. The delamination and fracture of the coatings are studied by the scanning electron microscopy and X-ray diffraction. It is shown that a magnetron sputtered Al interlayer between the coating and the substrate considerably improves the thermal resistance of ceramic coatings.
Heat flux measurements on ceramics with thin film thermocouples
NASA Technical Reports Server (NTRS)
Holanda, Raymond; Anderson, Robert C.; Liebert, Curt H.
1993-01-01
Two methods were devised to measure heat flux through a thick ceramic using thin film thermocouples. The thermocouples were deposited on the front and back face of a flat ceramic substrate. The heat flux was applied to the front surface of the ceramic using an arc lamp Heat Flux Calibration Facility. Silicon nitride and mullite ceramics were used; two thicknesses of each material was tested, with ceramic temperatures to 1500 C. Heat flux ranged from 0.05-2.5 MW/m2(sup 2). One method for heat flux determination used an approximation technique to calculate instantaneous values of heat flux vs time; the other method used an extrapolation technique to determine the steady state heat flux from a record of transient data. Neither method measures heat flux in real time but the techniques may easily be adapted for quasi-real time measurement. In cases where a significant portion of the transient heat flux data is available, the calculated transient heat flux is seen to approach the extrapolated steady state heat flux value as expected.
NASA Technical Reports Server (NTRS)
Atkinson, W. H.; Cyr, M. A.; Strange, R. R.
1988-01-01
The report presents the final results of Tasks 1 and 2, Development of Sensors for Ceramic Components in Advanced Propulsion Systems (NASA program NAS3-25141). During Task 1, an extensive survey was conducted of sensor concepts which have the potential for measuring surface temperature, strain and heat flux on ceramic components for advanced propulsion systems. Each sensor concept was analyzed and evaluated under Task 2; sensor concepts were then recommended for further development. For temperature measurement, both pyrometry and thermographic phosphors are recommended for measurements up to and beyond the melting point of ceramic materials. For lower temperature test programs, the thin-film techniques offer advantages in the installation of temperature sensors. Optical strain measurement techniques are recommended because they offer the possibility of being useful at very high temperature levels. Techniques for the measurement of heat flux are recommended for development based on both a surface mounted sensor and the measurement of the temperature differential across a portion of a ceramic component or metallic substrate.
Coating and Impregnation of Carbon-Carbon Composites with Ceramics by Electrophoretic Deposition
1989-04-01
electroosmotic effect 33 4.1.4 Electrophoretic impregnation of a porous substrate with ceramic particles 53 4.1.5 Morphology of induced Si02 60 4.1.6...particles acquire the charge spontaneously when mixed with the solvent. Further, this charge may be reversed upon addition of ionic compounds. According...spontaneously when mixed with the solvent. Further this charge may be reversed upon addition of ions. 2.2 ELECTHOPHORESIS IN POROUS STRUCTURES i In
Fabrication of photonic band gap materials
Constant, Kristen; Subramania, Ganapathi S.; Biswas, Rana; Ho, Kai-Ming
2002-01-15
A method for forming a periodic dielectric structure exhibiting photonic band gap effects includes forming a slurry of a nano-crystalline ceramic dielectric or semiconductor material and monodisperse polymer microspheres, depositing a film of the slurry on a substrate, drying the film, and calcining the film to remove the polymer microspheres therefrom. The film may be cold-pressed after drying and prior to calcining. The ceramic dielectric or semiconductor material may be titania, and the polymer microspheres may be polystyrene microspheres.
NASA Technical Reports Server (NTRS)
Halbig,Michael C.; Singh, Mrityunjay
2008-01-01
Advanced ceramic bonding and integration technologies play a critical role in the fabrication and application of silicon carbide based components for a number of aerospace and ground based applications. One such application is a lean direct injector for a turbine engine to achieve low NOx emissions. Ceramic to ceramic diffusion bonding and ceramic to metal brazing technologies are being developed for this injector application. For the diffusion bonding technology, titanium interlayers (coatings and foils) were used to aid in the joining of silicon carbide (SiC) substrates. The influence of such variables as surface finish, interlayer thickness, and processing time were investigated. Electron microprobe analysis was used to identify the reaction formed phases. In the diffusion bonds, an intermediate phase, Ti5Si3Cx, formed that is thermally incompatible in its thermal expansion and caused thermal stresses and cracking during the processing cool-down. Thinner interlayers of pure titanium and/or longer processing times resulted in an optimized microstructure. Tensile tests on the joined materials resulted in strengths of 13-28 MPa depending on the SiC substrate material. Nondestructive evaluation using ultrasonic immersion showed well formed bonds. For the joining technology of brazing Kovar fuel tubes to silicon carbide, preliminary development of the joining approach has begun. Various technical issues and requirements for the injector application are addressed.
Ceramic surfaces, interfaces and solid-state reactions
NASA Astrophysics Data System (ADS)
Heffelfinger, Jason Roy
Faceting, the decomposition of a surface into two or more surfaces of different orientation, is studied as a function of annealing time for ceramic surfaces. Single-crystals of Alsb2Osb3\\ (alpha-Alsb2Osb3 or corundum structure) are carefully prepared and characterized by atomic force microscopy, scanning electron microscopy and transmission electron microscopy. The mechanisms by which the originally smooth vicinal surface transforms into either a hill-and-valley or a terrace-and-step structure have been characterized. The progression of faceting is found to have a series of stages: surface smoothing, nucleation and growth of individual facets, formation of facet domains, coalescence of individual and facet domains and facet coarsening. These stages provide a model for the mechanisms of how other ceramic surfaces may facet into hill-and-valley and terrace-and-step surface microstructures. The well characterized Alsb2Osb3 surfaces provide excellent substrates by which to study the effect of surface structure on thin-film growth. Pulsed-laser deposition was used to grow thin films of yttria stabilized zirconia (YSZ) and Ysb2Osb3 onto annealed Alsb2Osb3 substrates. The substrate surface structure, such as surface steps and terraces, was found to have several effects on thin-film growth. Thin-films grown onto single-crystal substrates serve as a model geometry for studying thin-film solid-state reactions. Here, the reaction sequence and orientation relationship between thin films of Ysb2Osb3 and an Alsb2Osb3 substrate were characterized for different reaction temperatures. In a system were multiple reaction phases can form, the yttria aluminum monoclinic phase (YAM) was found to form prior to formation of other phases in this system. In a second system, a titanium alloy was reacted with single crystal Alsb2Osb3 in order to study phase formation in an intermetallic system. Both Tisb3Al and TiAl were found to form as reaction products and their orientation relationships with the Alsb2Osb3 are discussed.
Through-the-thickness selective laser ablation of ceramic coatings on soda-lime glass
NASA Astrophysics Data System (ADS)
Romoli, L.; Khan, M. M. A.; Valentini, M.
2017-05-01
This paper investigates through-thickness laser ablation characteristics of ceramic coating deposited on the bottom surface of the soda-lime glass substrate. Experimental studies were focused on determining the effects of energy density, hatch distance and coating color on the ablation completion index. Effect of glass thickness was also tested to verify the robustness of the designed process. Up to a certain threshold limit, the ablation completion index is energy-limited and has an inverse U-shape relationship with the energy density input. Since greater hatch distance means faster ablation and lesser ablation completion index, there must be a tradeoff between ablation completion index and hatch distance. During through-thickness laser ablation of ceramic coating, energy density input should be in the range of 0.049 J/mm2 - 0.251 J/mm2 for black ceramic coating and 0.112 J/mm2 - 0.251 J/mm2 for other coatings. Finally, the designed process is capable of ablating the ceramic coating effectively through varied thickness.
NASA Technical Reports Server (NTRS)
Liebert, C. H.
1978-01-01
The spectral emittance of a NASA developed zirconia ceramic thermal barrier coating system, consisting of a metal substrate, a layer of Ni-Cr-Al-Y bond material and a layer of yttria-stabilized zirconia ceramic material, is analyzed. The emittance, needed for evaluation of radiant heat loads on cooled coated gas turbine components, was measured over a range of temperatures that would be typical of its use on such components. Emittance data were obtained with a spectrometer, a reflectometer and a radiation pyrometer at a single bond coating thickness of 0.010 cm and at a ceramic coating thickness of 0-0.076 cm. The data were transformed into the hemispherical total emittance and were correlated to the ceramic coating thickness and temperature using multiple-regression curve-fitting techniques. The system was found to be highly reflective, and, consequently, capable of significantly reducing radiation heat loads on cooled gas turbine engine components.
RAINBOWS and CERAMBOWS: The Technologies of Pre-Stressed Piezo Actuators
NASA Technical Reports Server (NTRS)
Haertling, Gene H.
1996-01-01
Amplified mechanical displacement effects, similar to those observed in the recently reported Rainbow actuators, have also been found to exist in prestressed ceramic/metal composite structures coined as CERAMBOW's - an acronym for CERamic And Metal Biased Oxide Wafer. Mimicking the Rainbows in many ways, the intentionally created internal compressive and tensile stresses within the Cerambows are used to amplify their displacement properties via the combined effects of piezoelectric d31 strain and domain reorientation. They are fabricated from ferroelectric, piezoelectric or electrostrictive materials and metal substrates of significantly different thermal expansions which are largely responsible for the creation of the stress. Typical ceramics used in Cerambows are PZT, PLZT, PBZT, PSZT and PMN and some typical metal substrates are Al, Ag, Ni, brass, steel and Be/Cu foil. Shapes can vary from round disks to square plates and rectangular bars. Formed at an elevated temperature of approximately 250 C, the stresses on cooling to room temperature are generally sufficient to produce displacements as large as 0.125mm (5 mils) when activated unipolar and 0.25mm (10 mils) when operated bipolar at 450 volts in a dome mode. Comparing equal structures of a Cerambow with a Rainbow, the Cerambow was found to achieve approximately 70% of the displacement that would normally be obtained with a Rainbow. Although this difference in displacement is sufficient to prefer a Rainbow for many applications, there are some advantages for the Cerambow. Among these are (1) the processing temperatures are lower, (2) high lead-containing ceramics are not required and (3) in some instances the metal substrate is more convenient to interface with other elements of a device. However, the disadvantages include (1) lower displacement in the dome mode of operation, (2) the higher displacement saddle mode has not yet been demonstrated with a Cerambow and (3) the ceramic/metal bond interface is a possible failure area when operated for extended periods of time. The applications for Cerambows are considered to be similar to Rainbows, i.e., actuators, pumps, deflectors, vibrators, speakers, hydrophones, hydroprojectors, switches, etc.
Wicks, George G.
1997-01-01
A thin, room-temperature-curing, ceramic composite for coating and patching etal substrates comprises a sol gel silica glass matrix filled with finely ground particles or fibers, preferably alumina. The sol gel glass is made by adding ethanol to water to form a first mixture, then separately adding ethanol to tetraethyl orthosilicate to form a second mixture, then slowly adding the first to the second mixture to make a third mixture, and making a slurry by adding the finely ground particles or fibers to the third mixture. The composite can be applied by spraying, brushing or trowelling. If applied to patch fine cracks, densification of the ceramic composite may be obtained to enhance sealing by applying heat during curing.
Wicks, G.G.
1997-01-21
A thin, room-temperature-curing, ceramic composite for coating and patching metal substrates comprises a sol gel silica glass matrix filled with finely ground particles or fibers, preferably alumina. The sol gel glass is made by adding ethanol to water to form a first mixture, then separately adding ethanol to tetraethyl orthosilicate to form a second mixture, then slowly adding the first to the second mixture to make a third mixture, and making a slurry by adding the finely ground particles or fibers to the third mixture. The composite can be applied by spraying, brushing or trowelling. If applied to patch fine cracks, densification of the ceramic composite may be obtained to enhance sealing by applying heat during curing.
A continuous silicon-coating facility
NASA Technical Reports Server (NTRS)
Butter, C.; Heaps, J. D.
1979-01-01
Automatic continuous silicon-coating facility is used to process 100 by 10 cm graphite-coated ceramic substrates for silicon solar cells. Process reduces contamination associated with conventional dip-coating processes, improving material service life.
Using sputter coated glass to stabilize microstrip gas chambers
Gong, Wen G.
1997-01-01
By sputter coating a thin-layer of low-resistive, electronically-conductive glass on various substrates (including quartz and ceramics, thin-film Pestov glass), microstrip gas chambers (MSGC) of high gain stability, low leakage current, and a high rate capability can be fabricated. This design can make the choice of substrate less important, save the cost of ion-implantation, and use less glass material.
NASA Astrophysics Data System (ADS)
Tai, Cheuk Wai
Complex perovskite-structured relaxor ferroelectric ceramics of (x)Pb(In 1/2Nb1/2)O3:(1-x)Pb(Mg 1/3Nb2/3)O3 with x = 0.1 to 0.9 were studied extensively during the project. The ceramics were fabricated by conventional mixed oxide route of the two-step method. Measurements of their dielectric properties and ferroelectric hysteresis were performed to explore their potential for capacitor applications. The results show many features common to the relaxor behavior, including slim ferroelectric hysteresis loop and frequency dispersions in plots of relative permittivity. In addition, the ceramics with x = 0.3 to 0.7 show relative permittivity that is highly stable over the temperature range -30°C to 125°C. In order to explore structural alterations and their subsequent influence on dielectric properties, a variety of dopants were added to (0.3)Pb(In 1/2Nb1/2)O3:(0.7)Pb(Mg1/3Nb2/3 )O3 ceramics. The additives were Ba2+, Sr 2+, La3+, Na+, Ti4+ and Yb4+ obtained from different raw materials of oxides or carbonates. The modified ceramics were also fabricated by the two-step method. Fourteen ceramics samples doped with 2 or 5 mole % of the above elements, 5 mole % Na + 2 mole % Ti and 5 mole % Na + 5 mole % Ti doped were characterized in total. The measured dielectric properties of these ceramics were different to those of the parent ceramics and some of these meet the EIA-standard for industrial ceramic capacitor applications. An exploratory fabrication and study of thin films of the (0.4)Pb(In 1/2Nb1/2)O3:(0.6)Pb(Mg1/3Nb2/3 )O3 and two doped (0.3)Pb(In1/2Nb1/2)O 3: (0.7)Pb(Mg1/3Nb2/3)O3 compositions were carried out to demonstrate their potential for MEMS or other micro- or nano-scale systems. The epitaxial films were grown successfully by pulsed laser deposition (PLD). Prior to deposition of the films, La0.7Sr 0.3MnO3 (LSMO) bottom electrode was first grown on LaAlO 3 substrate. The orientation relationship between film, electrode and substrate was characterized by x-ray diffraction. The dielectric properties and the ferroelectric hysteresis loops of the films were measured. (Abstract shortened by UMI.)
JPRS Report, Science and Technology Japan, 3rd Microelectronics Symposium
1990-04-20
Electric Power Insulating Substrate; Degree of Sintering, Thermal Conductivity of Aluminum Nitride Ultrafine Particles ; Effect of Baking Pressure on AlN Sintering; Thick Film Resistor for Use in AlN Ceramics.
NASA Technical Reports Server (NTRS)
Pohlchuck, Bobby; Zeller, Mary V.
1992-01-01
The adhesive bond between ceramic cement and a titanium matrix composite substrate to be used in the National Aerospace Plane program is evaluated. Two commercially available adhesion testers, the Sebastian Adherence Tester and the CSEM REVETEST Scratch Tester, are evaluated to determine their suitability for quantitatively measuring adhesion strength. Various thicknesses of cements are applied to several substrates, and bond strengths are determined with both testers. The Sabastian Adherence Tester has provided limited data due to an interference from the sample mounting procedure, and has been shown to be incapable of distinguishing adhesion strength from tensile and shear properties of the cement itself. The data from the scratch tester has been found to be difficult to interpret due to the porosity and hardness of the cement. Recommendations are proposed for a more reliable adhesion test method.
NASA Astrophysics Data System (ADS)
Meenan, B. J.; Brown, N. M. D.; Wilson, J. W.
1994-03-01
A PdCl 2/SnCl 2 metallisation catalyst system, of the type used to activate non-conducting surfaces for electroless metal deposition, has been characterised by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The substrate is a barium titanate (BaTiO 3)-based electroactive ceramic of the type used in the fabrication of multilayer ceramic capacitors (MLCC). The treatment of the substrate surface with the PdCl 2/SnCl 2 "sensitiser" solution leads to the adsorption of catalytically inactive compounds of palladium and tin. Subsequent treatment of this surface with an "accelerator" solution removes excess oxides, hydroxides and salts of tin thereby leaving the active catalyst species, Pd xSn y, on the surface. Such sites, on exposure to the appropriete electroless plating bath, are then responsible for the metal deposition. In this study, the chemical state and relative quantities of the various surface species present after each of the processing stages have been determined by XPS. The surface roughness of the substrate results in less of the tin compounds present thereon being removed on washing the catalysed surface in the accelerator solution than normally reported for such systems, thereby affecting the measured Pd: Sn ratio. SEM studies show that the accelerator solution treatment generates crystalline areas, which may be a result of coagulation of the Pd xSn y particles present, in the otherwise amorphous catalyst coating.
2011-04-01
sputtered PZT films on both sapphire and Si substrates were textured along the [110] direction. The degree of preference for the [110] direction was... PZT . Since these films are approximately 0.5 μm thick and breakdown occurs at relatively high fields, surface-related ( ceramic metal contact band... ceramics created donor sites, which are n-type. From the crystallographic data, it is seen that the degree of crystallinity and PZT crystal quality
Ni, Siyu; Chang, Jiang; Chou, Lee; Zhai, Wanyin
2007-01-01
Calcium silicate ceramics have been proposed as new bone repair biomaterials, since they have proved to be bioactive, degradable, and biocompatible. Beta-tricalcium phosphate ceramic is a well-known degradable material for bone repair. This study compared the effects of CaSiO3 (alpha-, and beta-CaSiO3) and beta-Ca3(PO4)2 (beta-TCP) ceramics on the early stages of rat osteoblast-like cell attachment, proliferation, and differentiation. Osteoblast-like cells were cultured directly on CaSiO3 (alpha-, and beta-CaSiO3) and beta-TCP ceramics. Attachment of a greater number of cells was observed on CaSiO3 (alpha-, and beta-CaSiO3) ceramics compared with beta-TCP ceramics after incubation for 6 h. SEM observations showed an intimate contact between cells and the substrates, significant cells adhesion, and that the cells spread and grew on the surfaces of all the materials. In addition, the proliferation rate and alkaline phosphatase (ALP) activity of the cells on the CaSiO3 (alpha-, and beta-CaSiO3) ceramics were improved when compared with the beta-TCP ceramics. In the presence of CaSiO3, elevated levels of calcium and silicon in the culture medium were observed throughout the 7-day culture period. In conclusion, the results of the present study revealed that CaSiO3 ceramics showed greater ability to support cell attachment, proliferation, and differentiation than beta-TCP ceramic. 2006 Wiley Periodicals, Inc.
Aktas, Guliz; Sahin, Erdal; Vallittu, Pekka; Özcan, Mutlu; Lassila, Lippo
2013-01-01
This study evaluated the adhesion of zirconia core ceramics with their corresponding veneering ceramics, having different thermal expansion coefficients (TECs), when zirconia ceramics were coloured at green stage. Zirconia blocks (N=240; 6 mm×7 mm×7 mm) were manufactured from two materials namely, ICE Zirconia (Group 1) and Prettau Zirconia (Group 2). In their green stage, they were randomly divided into two groups. Half of the specimens were coloured with colouring liquid (shade A2). Three different veneering ceramics with different TEC (ICE Ceramic, GC Initial Zr and IPS e.max Ceram) were fired on both coloured and non-coloured zirconia cores. Specimens of high noble alloys (Esteticor Plus) veneered with ceramic (VM 13) (n=16) acted as the control group. Core–veneer interface of the specimens were subjected to shear force in the Universal Testing Machine (0.5 mm⋅min−1). Neither the zirconia core material (P=0.318) nor colouring (P=0.188) significantly affected the results (three-way analysis of variance, Tukey's test). But the results were significantly affected by the veneering ceramic (P=0.000). Control group exhibited significantly higher mean bond strength values (45.7±8) MPa than all other tested groups ((27.1±4.1)−(39.7±4.7) and (27.4±5.6)−(35.9±4.7) MPa with and without colouring, respectively) (P<0.001). While in zirconia–veneer test groups, predominantly mixed type of failures were observed with the veneering ceramic covering <1/3 of the substrate surface, in the metal–ceramic group, veneering ceramic was left adhered >1/3 of the metal surface. Colouring zirconia did not impair adhesion of veneering ceramic, but veneering ceramic had a significant influence on the core–veneer adhesion. Metal–ceramic adhesion was more reliable than all zirconia–veneer ceramics tested. PMID:24158142
Aktas, Guliz; Sahin, Erdal; Vallittu, Pekka; Ozcan, Mutlu; Lassila, Lippo
2013-12-01
This study evaluated the adhesion of zirconia core ceramics with their corresponding veneering ceramics, having different thermal expansion coefficients (TECs), when zirconia ceramics were coloured at green stage. Zirconia blocks (N=240; 6 mm×7 mm×7 mm) were manufactured from two materials namely, ICE Zirconia (Group 1) and Prettau Zirconia (Group 2). In their green stage, they were randomly divided into two groups. Half of the specimens were coloured with colouring liquid (shade A2). Three different veneering ceramics with different TEC (ICE Ceramic, GC Initial Zr and IPS e.max Ceram) were fired on both coloured and non-coloured zirconia cores. Specimens of high noble alloys (Esteticor Plus) veneered with ceramic (VM 13) (n=16) acted as the control group. Core-veneer interface of the specimens were subjected to shear force in the Universal Testing Machine (0.5 mm⋅min(-1)). Neither the zirconia core material (P=0.318) nor colouring (P=0.188) significantly affected the results (three-way analysis of variance, Tukey's test). But the results were significantly affected by the veneering ceramic (P=0.000). Control group exhibited significantly higher mean bond strength values (45.7±8) MPa than all other tested groups ((27.1±4.1)-(39.7±4.7) and (27.4±5.6)-(35.9±4.7) MPa with and without colouring, respectively) (P<0.001). While in zirconia-veneer test groups, predominantly mixed type of failures were observed with the veneering ceramic covering <1/3 of the substrate surface, in the metal-ceramic group, veneering ceramic was left adhered >1/3 of the metal surface. Colouring zirconia did not impair adhesion of veneering ceramic, but veneering ceramic had a significant influence on the core-veneer adhesion. Metal-ceramic adhesion was more reliable than all zirconia-veneer ceramics tested.
Sola, Daniel; Peña, Jose I.
2013-01-01
In this work, geometrical dimensions and ablation yields as a function of the machining method and reference position were studied when advanced ceramics and glass-ceramic materials were machined with pulsed lasers in the nanosecond range. Two laser systems, emitting at 1064 and 532 nm, were used. It was shown that the features obtained depend on whether the substrate is processed by means of pulse bursts or by grooves. In particular, when the samples were processed by grooves, machined depth, removed volume and ablation yields reached their maximum, placing the sample out of focus. It was shown that these characteristics do not depend on the processing conditions, the wavelength or the optical configuration, and that this is intrinsic behavior of the processing method. Furthermore, the existence of a close relation between material hardness and ablation yields was demonstrated. PMID:28788391
NASA Astrophysics Data System (ADS)
Wang, Hsin; Muralidharan, Govindarajan; Leonard, Donovan N.; Haynes, J. Allen; Porter, Wallace D.; England, Roger D.; Hays, Michael; Dwivedi, Gopal; Sampath, Sanjay
2018-02-01
Multilayer, graded ceramic/metal coatings were prepared by an air plasma spray method on Ti-6Al-4V, 4140 steel and graphite substrates. The coatings were designed to provide thermal barriers for diesel engine pistons to operate at higher temperatures with improved thermal efficiency and cleaner emissions. A systematic, progressive variation in the mixture of yttria-stabilized zirconia and bondcoat alloys (NiCoCrAlYHfSi) was designed to provide better thermal expansion match with the substrate and to improve thermal shock resistance and cycle life. Heat transfer through the layers was evaluated by a flash diffusivity technique based on a model of one-dimensional heat flow. The aging effect of the as-sprayed coatings was captured during diffusivity measurements, which included one heating and cooling cycle. The hysteresis of thermal diffusivity due to aging was not observed after 100-h annealing at 800 °C. The measurements of coatings on substrate and freestanding coatings allowed the influence of interface resistance to be evaluated. The microstructure of the multilayer coating was examined using scanning electron microscope and electron probe microanalysis.
Laser profilometer module based on a low-temperature cofired ceramic substrate
NASA Astrophysics Data System (ADS)
Heikkinen, Veli; Heikkinen, Mikko; Keranen, Kimmo; Mitikka, Risto S.; Putila, Veli-Pekka; Tukkiniemi, Kari
2005-09-01
We realized a laser profilometer module using low temperature cofired ceramics technology. The device consists of a vertical-cavity surface-emitting laser as the light source and a complementary metal oxide semiconductor image sensor as the detector. The laser transmitter produces a thin light stripe on the measurable object, and the receiver calculates the distance profile using triangulation. Because the design of optoelectronic modules, such as the laser profilometer, is usually carried out using specialized software, its electronic compatibility is very important. We developed a data transmission network using commercial optical, electrical, and mechanical design software, which enabled us to electronically transfer data between the designers. The module electronics were realized with multilayer ceramics technology that eases component assembly by providing precision alignment features in the substrate. The housing was manufactured from aluminum using electronic data transfer from the mechanical design software to the five-axis milling workstation. Target distance profiles were obtained from 100 points with an accuracy varying from 0.1 mm at a 5-cm distance to 2 cm at 1.5 m. The module has potential for distance measurement in portable devices where small size, light weight, and low power consumption are important.
Structure and in vitro bioactivity of ceramic coatings on magnesium alloys by microarc oxidation
NASA Astrophysics Data System (ADS)
Yu, Huijun; Dong, Qing; Dou, Jinhe; Pan, Yaokun; Chen, Chuanzhong
2016-12-01
Magnesium and its alloys have the potential to serve as lightweight, degradable, biocompatible and bioactive orthopedic implants for load-bearing applications. However, severe local corrosion attack and high corrosion rate have prevented their further clinical use. Micro-arc oxidation (MAO) is proved to be a simple, controllable and efficient electrochemistry technique that can prepare protective ceramic coatings on magnesium alloys. In this paper, electrolyte containing silicate salts was used for microarc oxidation to form ceramic bioactive coatings on the ZK61 alloy substrate. The structure characteristics and element distributions of the coating were investigated by XRD, TEM, SEM and EPMA. The MAO samples were immersed in simulated body fluid (SBF) for 7 and 14 days, respectively. The surface characteristic of the immersed coatings was investigated by Fourier-transform infrared (FTIR) spectroscopy. The results show that these MAO coatings have low crystallinity and are mainly composed of MgO, Mg2SiO4 and Mg2Si2O6. The coating surface is porous. During the SBF immersion period, the nucleation and precipitation of bone-like apatites occur on the MAO coating surface. The corrosion resistance of the substrate is improved by the MAO coatings.
Calcium handling precedes cardiac differentiation to initiate the first heartbeat
Tyser, Richard CV; Miranda, Antonio MA; Chen, Chiann-mun; Davidson, Sean M
2016-01-01
The mammalian heartbeat is thought to begin just prior to the linear heart tube stage of development. How the initial contractions are established and the downstream consequences of the earliest contractile function on cardiac differentiation and morphogenesis have not been described. Using high-resolution live imaging of mouse embryos, we observed randomly distributed spontaneous asynchronous Ca2+-oscillations (SACOs) in the forming cardiac crescent (stage E7.75) prior to overt beating. Nascent contraction initiated at around E8.0 and was associated with sarcomeric assembly and rapid Ca2+ transients, underpinned by sequential expression of the Na+-Ca2+ exchanger (NCX1) and L-type Ca2+ channel (LTCC). Pharmacological inhibition of NCX1 and LTCC revealed rapid development of Ca2+ handling in the early heart and an essential early role for NCX1 in establishing SACOs through to the initiation of beating. NCX1 blockade impacted on CaMKII signalling to down-regulate cardiac gene expression, leading to impaired differentiation and failed crescent maturation. DOI: http://dx.doi.org/10.7554/eLife.17113.001 PMID:27725084
Composite used for thermal spray instrumentation and method for making the same
NASA Technical Reports Server (NTRS)
Gregory, Otto J. (Inventor); Downey, Markus A. (Inventor)
2011-01-01
A superalloy article which comprises a substrate comprised of a superalloy, a bond coat comprised of MCrAlY wherein M is a metal selected from the group consisting of cobalt, nickel and mixtures thereof applied onto at least a portion of the substrate and a ceramic top coat applied over at least a portion of the bond coat. The bond coat is exposed to a temperature of within the range of between about 1600-1800.degree. F. subsequent to its application onto the substrate.
Influence of ceramic dental crown coating substrate thickness ratio on strain energy release rate
NASA Astrophysics Data System (ADS)
Khasnulhadi, K.; Daud, R.; Mat, F.; Noor, S. N. F. M.; Basaruddin, K. S.; Sulaiman, M. H.
2017-10-01
This paper presents the analysis of coating substrate thickness ratio effect on the crown coating fracture behaviour. The bi-layer material is examined under four point bending with pre-crack at the bottom of the core material by using finite element. Three different coating thickness of core/substrate was tested which is 1:1, 1:2 and 2:1. The fracture parameters are analysed based on bilayer and homogenous elastic interaction. The result shows that the ratio thickness of core/veneer provided a significant effect on energy release rate.
FIB/SEM and SEM/EDS microstructural analysis of metal-ceramic and zirconia-ceramic interfaces.
Massimi, F; Merlati, G; Sebastiani, M; Battaini, P; Menghini, P; Bemporad, E
2012-01-10
Recently introduced FIB/SEM analysis in microscopy seems to provide a high-resolution characterization of the samples by 3D (FIB) cross-sectioning and (SEM) high resolution imaging. The aim of this study was to apply the FIB/SEM and SEM/EDS analysis to the interfaces of a metal-ceramic vs. two zirconia-ceramic systems. Plate samples of three different prosthetic systems were prepared in the dental lab following the manufacturers' instructions, where metal-ceramic was the result of a ceramic veneering (porcelain-fused-to-metal) and the two zirconia-ceramic systems were produced by the dedicated CAD-CAM procedures of the zirconia cores (both with final sintering) and then veneered by layered or heat pressed ceramics. In a FIB/SEM equipment (also called DualBeam), a thin layer of platinum (1 μm) was deposited on samples surface crossing the interfaces, in order to protect them during milling. Then, increasingly deeper trenches were milled by a focused ion beam, first using a relatively higher and later using a lower ion current (from 9 nA to 0.28 nA, 30KV). Finally, FEG-SEM (5KV) micrographs (1000-50,000X) were acquired. In a SEM the analysis of the morphology and internal microstructure was performed by 13KV secondary and backscattered electrons signals (in all the samples). The compositional maps were then performed by EDS probe only in the metal-ceramic system (20kV). Despite the presence of many voids in all the ceramic layers, it was possible to identify: (1) the grain structures of the metallic and zirconia substrates, (2) the thin oxide layer at the metal-ceramic interface and its interactions with the first ceramic layer (wash technique), (3) the roughness of the two different zirconia cores and their interactions with the ceramic interface, where the presence of zirconia grains in the ceramic layer was reported in two system possibly due to sandblasting before ceramic firing.
Thermal barrier coating for alloy systems
Seals, Roland D.; White, Rickey L.; Dinwiddie, Ralph B.
2000-01-01
An alloy substrate is protected by a thermal barrier coating formed from a layer of metallic bond coat and a top coat formed from generally hollow ceramic particles dispersed in a matrix bonded to the bond coat.
Li, Jinpeng; Zhang, Huarui; Gao, Ming; Li, Qingling; Bian, Weidong; Tao, Tongxiang; Zhang, Hu
2018-05-07
To obtain appropriate crucible materials for vacuum induction melting of MCrAlY alloys, four different oxide ceramics, including MgO, Y₂O₃, Al₂O₃, and ZrO₂, with various microstructures were designed and characterized. The high-temperature wettability and interactions between Ni-20Co-20Cr-10Al-1.5Y alloys and oxide ceramics were studied by sessile drop experiments under vacuum. The results showed that all the systems exhibited non-wetting behavior. The contact angles were stable during the melting process of alloys and the equilibrium contact angles were 140° (MgO), 148° (Y₂O₃), 154° (Al₂O₃), and 157° (ZrO₂), respectively. The interfacial reaction between the ceramic substrates and alloys occurred at high temperature. Though the ceramics had different microstructures, similar continuous Y₂O₃ reaction layer with thicknesses of about 25 μm at the alloy-ceramic interface in MgO, Al₂O₃, and ZrO₂ systems formed. The average area percentage of oxides in the alloy matrices were 0.59% (MgO), 0.11% (Al₂O₃), 0.09% (ZrO₂), and 0.02% (Y₂O₃), respectively. The alloys, after reacting with MgO ceramic, had the highest inclusion content, while those with the lowest content were in the Y₂O₃ system. Y₂O₃ ceramic was the most beneficial for vacuum induction melting of high-purity Y-containing Ni-based alloys.
Low CTE glass, SiC & Beryllium for lightweight mirror substrates
NASA Astrophysics Data System (ADS)
Geyl, Roland; Cayrel, Marc
2005-10-01
This paper is intended to analyze the relative merits of low CTE glass, SiC and Beryllium as candidates for lightweight mirror substrates in connection with real practical experience and example or three major projects using these three materials and running presently at SAGEM-REOSC. Beryllium and SiC have nice thermal and mechanical properties but machined glass ceramic can still well compete technically or economically in some cases.
Marchiori, G; Lopomo, N; Boi, M; Berni, M; Bianchi, M; Gambardella, A; Visani, A; Russo, A; Marcacci, M
2016-01-01
Realizing hard ceramic coatings on the plastic component of a joint prosthesis can be strategic for the mechanical preservation of the whole implant and to extend its lifetime. Recently, thanks to the Plasma Pulsed Deposition (PPD) method, zirconia coatings on ultra-high molecular weight polyethylene (UHMWPE) substrates resulted in a feasible outcome. Focusing on both the highly specific requirements defined by the biomedical application and the effective possibilities given by the deposition method in the perspectives of technological transfer, it is mandatory to optimize the coating in terms of load bearing capacity. The main goal of this study was to identify through Finite Element Analysis (FEA) the optimal coating thickness that would be able to minimize UHMWPE strain, possible insurgence of cracks within the coating and stresses at coating-substrate interface. Simulations of nanoindentation and microindentation tests were specifically carried out. FEA findings demonstrated that, in general, thickening the zirconia coating strongly reduced the strains in the UHMWPE substrate, although the 1 μm thickness value was identified as critical for the presence of high stresses within the coating and at the interface with the substrate. Therefore, the optimal thickness resulted to be highly dependent on the specific loading condition and final applications. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bao, Lei; Liu, Jingxiao; Shi, Fei; Jiang, Yanyan; Liu, Guishan
2014-01-01
In order to prevent the low temperature degradation and improve the bioactivity of zirconia ceramic implants, TiO2 and Si-doped octacalcium phosphate composite coating was prepared on zirconia substrate. The preventive effect on low temperature degradation and surface morphology of the TiO2 layer were studied. Meanwhile, the structure and property changes of the bioactive coating after doping Si were discussed. The results indicate that the dense TiO2 layer, in spite of some microcracks, inhibited the direct contact of the water vapor with the sample's surface and thus prevented the low temperature degradation of zirconia substrates. The acceleration aging test shows that the ratio of the monoclinic phase transition decreased from 10% for the original zirconia substrate to 4% for the TiO2-coated substrate. As to the Si-doped octacalcium phosphate coating prepared by biomimetic method, the main phase composition of the coating was octacalcium phosphate. The morphology of the coating was lamellar-like, and the surface was uniform and continuous with no cracks being observed. It is suggested that Si was added into the coating both through substituting for PO43- and doping as NaSiO3.
Bonding and Integration Technologies for Silicon Carbide Based Injector Components
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Singh, Mrityunjay
2008-01-01
Advanced ceramic bonding and integration technologies play a critical role in the fabrication and application of silicon carbide based components for a number of aerospace and ground based applications. One such application is a lean direct injector for a turbine engine to achieve low NOx emissions. Ceramic to ceramic diffusion bonding and ceramic to metal brazing technologies are being developed for this injector application. For the diffusion bonding, titanium interlayers (PVD and foils) were used to aid in the joining of silicon carbide (SiC) substrates. The influence of such variables as surface finish, interlayer thickness (10, 20, and 50 microns), processing time and temperature, and cooling rates were investigated. Microprobe analysis was used to identify the phases in the bonded region. For bonds that were not fully reacted an intermediate phase, Ti5Si3Cx, formed that is thermally incompatible in its thermal expansion and caused thermal stresses and cracking during the processing cool-down. Thinner titanium interlayers and/or longer processing times resulted in stable and compatible phases that did not contribute to microcracking and resulted in an optimized microstructure. Tensile tests on the joined materials resulted in strengths of 13-28 MPa depending on the SiC substrate material. Non-destructive evaluation using ultrasonic immersion showed well formed bonds. For the joining technology of brazing Kovar fuel tubes to silicon carbide, preliminary development of the joining approach has begun. Various technical issues and requirements for the injector application are addressed.
Xinyu, Luo; Xiangfeng, Meng
2017-02-01
This research estimated shear bond durability of zirconia and different substrates cemented by two self-adhesive resin cements (Clearfil SA Luting and RelyX U100) before and after aging conditioning. Machined zirconia ceramic discs were cemented with four kinds of core material (cobalt-chromium alloy, flowable composite resin core material, packable composite resin, and dentin) with two self-adhesive resin cements (Clearfil SA Luting and RelyX U100). All specimens were divided into eight test groups, and each test group was divided into two subgroups. Each subgroup was subjected to shear test before and after 10 000 thermal cycles. All factors (core materials, cements, and thermal cycle) significantly influenced bond durability of zirconia ceramic (P<0.00 1). After 10 000 thermal cycles, significant decrease was not observed in shear bond strength of cobalt-chromium alloy luted with Clearfil SA Luting (P>0.05); observed shear bond strength was significantly higher than those of other substrates (P<0.05). Significantly higher shear bond strength was noted in Clearfil SA Luting luted with cobalt-chromium alloy, flowable composite resin core material, and packable composite resin than that of RelyX U100 (P<0.05). However, significant difference was not observed in shear bond strength of dentin luted with Clearfil SA Luting and RelyX U100 (P>0.05). Different core materials and self-adhesive resin cements can significantly affect bond durability of zirconia ceramic. .
Cements and adhesives for all-ceramic restorations.
Manso, Adriana P; Silva, Nelson R F A; Bonfante, Estevam A; Pegoraro, Thiago A; Dias, Renata A; Carvalho, Ricardo M
2011-04-01
Dental cements are designed to retain restorations, prefabricated or cast posts and cores, and appliances in a stable, and long-lasting position in the oral environment. Resin-based cements were developed to overcome drawbacks of nonresinous materials, including low strength, high solubility, and opacity. Successful cementation of esthetic restorations depends on appropriate treatment to the tooth substrate and intaglio surface of the restoration, which in turn, depends on the ceramic characteristics. A reliable resin cementation procedure can only be achieved if the operator is aware of the mechanisms involved to perform the cementation and material properties. This article addresses current knowledge of resin cementation concepts, exploring the bonding mechanisms that influence long-term clinical success of all-ceramic systems. Copyright © 2011 Elsevier Inc. All rights reserved.
Allabashi, Roza; Arkas, Michael; Hörmann, Gerold; Tsiourvas, Dimitris
2007-01-01
Triethoxysilylated derivatives of poly(propylene imine) dendrimer, polyethylene imine and polyglycerol hyperbranched polymers and beta-cyclodextrin have been synthesized and characterized. These compounds impregnated ceramic membranes made from Al(2)O(3), SiC and TiO(2) and subsequently sol-gel reaction led to their polymerization and chemical bond formation with the ceramic substrates. The resulting organic-inorganic filters were tested for the removal of a variety of organic pollutants from water. They were found to remove of polycyclic aromatic hydrocarbons (up to 99%), of monocyclic aromatic hydrocarbons (up to 93%), trihalogen methanes (up to 81%), pesticides (up to 43%) and methyl-tert-butyl ether (up to 46%).
Lal, S; Hall, R M; Tipper, J L
2016-09-15
Ceramics have been used to deliver significant improvements in the wear properties of orthopaedic bearing materials, which has made it challenging to isolate wear debris from simulator lubricants. Ceramics such as silicon nitride, as well as ceramic-like surface coatings on metal substrates have been explored as potential alternatives to conventional implant materials. Current isolation methods were designed for isolating conventional metal, UHMWPE and ceramic wear debris. In this paper, we describe a methodology for isolation and recovery of ceramic or ceramic-like coating particles and metal wear particles from serum lubricants under ultra-low and low wear performance. Enzymatic digestion was used to digest the serum proteins and sodium polytungstate was used as a novel density gradient medium to isolate particles from proteins and other contaminants by ultracentrifugation. This method demonstrated over 80% recovery of particles and did not alter the size or morphology of ceramic and metal particles during the isolation process. Improvements in resistance to wear and mechanical damage of the articulating surfaces have a large influence on longevity and reliability of joint replacement devices. Modern ceramics have demonstrated ultra-low wear rates for hard-on-hard total hip replacements. Generation of very low concentrations of wear debris in simulator lubricants has made it challenging to isolate the particles for characterisation and further analysis. We have introduced a novel method to isolate ceramic and metal particles from serum-based lubricants using enzymatic digestion and novel sodium polytungstate gradients. This is the first study to demonstrate the recovery of ceramic and metal particles from serum lubricants at lowest detectable in vitro wear rates reported in literature. Copyright © 2016. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Pertsev, N. A.; Zembilgotov, A. G.; Waser, R.
1998-08-01
The effective dielectric, piezoelectric, and elastic constants of polycrystalline ferroelectric materials are calculated from single-crystal data by an advanced method of effective medium, which takes into account the piezoelectric interactions between grains in full measure. For bulk BaTiO3 and PbTiO3 polarized ceramics, the dependences of material constants on the remanent polarization are reported. Dielectric and elastic constants are computed also for unpolarized c- and a-textured ferroelectric thin films deposited on cubic or amorphous substrates. It is found that the dielectric properties of BaTiO3 and PbTiO3 polycrystalline thin films strongly depend on the type of crystal texture. The influence of two-dimensional clamping by the substrate on the dielectric and piezoelectric responses of polarized films is described quantitatively and shown to be especially important for the piezoelectric charge coefficient of BaTiO3 films.
Environmental/Thermal Barrier Coatings for Ceramic Matrix Composites: Thermal Tradeoff Studies
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. M.; Brewer, David; Shah, Ashwin R.
2007-01-01
Recent interest in environmental/thermal barrier coatings (EBC/TBCs) has prompted research to develop life-prediction methodologies for the coating systems of advanced high-temperature ceramic matrix composites (CMCs). Heat-transfer analysis of EBC/TBCs for CMCs is an essential part of the effort. It helps establish the resulting thermal profile through the thickness of the CMC that is protected by the EBC/TBC system. This report documents the results of a one-dimensional analysis of an advanced high-temperature CMC system protected with an EBC/TBC system. The one-dimensional analysis was used for tradeoff studies involving parametric variation of the conductivity; the thickness of the EBC/TBCs, bond coat, and CMC substrate; and the cooling requirements. The insight gained from the results will be used to configure a viable EBC/TBC system for CMC liners that meet the desired hot surface, cold surface, and substrate temperature requirements.
NASA Astrophysics Data System (ADS)
Walkowicz, J.; Zavaleyev, V.; Dobruchowska, E.; Murzynski, D.; Donkov, N.; Zykova, A.; Safonov, V.; Yakovin, S.
2016-03-01
Ceramic oxide ZrO2 and oxynitride ZrON coatings are widely used as protective coatings against diffusion and corrosion. The enhancement of the coatings' mechanical properties, as well as their wear and corrosion resistance, is very important for their tribological performance. In this work, ZrO2 and ZrON coatings were deposited by magnetron sputtering on stainless steel (AISI 316) substrates. The adhesion, hardness and elastic properties were evaluated by standard methods. The surface structure of the deposited coatings was observed by electron scanning microscopy (SEM) and atomic force microscopy (AFM). The composition of the coatings was analyzed by X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDS). The corrosion resistance properties were evaluated using the potentiodynamic method. The results show that the corrosion parameters are significantly increased in the cases of both oxynitride and oxide coatings in comparison with the stainless steel (AISI 316) substrates.
Thermal stress analysis of ceramic gas-path seal components for aircraft turbines
NASA Technical Reports Server (NTRS)
Kennedy, F. E.; Bill, R. C.
1979-01-01
Stress and temperature distributions were evaluated numerically for a blade-tip seal system proposed for gas turbine applications. The seal consists of an abradable ceramic layer on metallic backing with intermediate layers between the ceramic layer and metal substrate. The most severe stresses in the seal, as far as failure is concerned, are tensile stresses at the top of the ceramic layer and shear and normal stresses at the layer interfaces. All these stresses reach their maximum values during the deceleration phase of a test engine cycle. A parametric study was carried out to evaluate the influence of various design parameters on these critical stress values. The influences of material properties and geometric parameters of the ceramic, intermediate, and backing layers were investigated. After the parametric study was completed, a seal system was designed which incorporated materials with beneficial elastic and thermal properties in each layer of the seal. An analysis of the proposed seal design shows an appreciable decrease in the magnitude of the maximum critical stresses over those obtained with earlier configurations.
Aluminium surface treatment with ceramic phases using diode laser
NASA Astrophysics Data System (ADS)
Labisz, K.; Tański, T.; Brytan, Z.; Pakieła, W.; Wiśniowski, M.
2016-07-01
Ceramic particles powder feeding into surface layer of engineering metal alloy is a well-known and widely used technique. New approach into the topic is to obtain finely distributed nano-sized particles involved in the aluminium matrix using the traditional laser technology. In this paper are presented results of microstructure investigation of cast aluminium-silicon-copper alloys surface layer after heat treatment and alloying with ceramic carbides of WC and ZrO2 using high-power diode laser. The surface layer was specially prepared for the reason of reducing the reflectivity, which is the main problem in the up-to-date metal matrix composites production. With scanning electron microscopy, it was possible to determine the deformation process and distribution of WC and ZrO2 ceramic powder phase. Structure of the surface after laser treatment changes, revealing three zones—remelting zone, heat-affected zone and transition zone placed over the Al substrate. The structural changes of ceramic powder, its distribution and morphology as well as microstructure of the matrix material influence on functional properties, especially wear resistance and hardness of the achieved layer, were investigated.
Method of producing catalytic material for fabricating nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seals, Roland D.; Menchhofer, Paul A.; Howe, Jane Y.
Methods of fabricating nano-catalysts are described. In some embodiments the nano-catalyst is formed from a powder-based substrate material and is some embodiments the nano-catalyst is formed from a solid-based substrate material. In some embodiments the substrate material may include metal, ceramic, or silicon or another metalloid. The nano-catalysts typically have metal nanoparticles disposed adjacent the surface of the substrate material. The methods typically include functionalizing the surface of the substrate material with a chelating agent, such as a chemical having dissociated carboxyl functional groups (--COO), that provides an enhanced affinity for metal ions. The functionalized substrate surface may then bemore » exposed to a chemical solution that contains metal ions. The metal ions are then bound to the substrate material and may then be reduced, such as by a stream of gas that includes hydrogen, to form metal nanoparticles adjacent the surface of the substrate.« less
Method of producing catalytic materials for fabricating nanostructures
Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei
2013-02-19
Methods of fabricating nano-catalysts are described. In some embodiments the nano-catalyst is formed from a powder-based substrate material and is some embodiments the nano-catalyst is formed from a solid-based substrate material. In some embodiments the substrate material may include metal, ceramic, or silicon or another metalloid. The nano-catalysts typically have metal nanoparticles disposed adjacent the surface of the substrate material. The methods typically include functionalizing the surface of the substrate material with a chelating agent, such as a chemical having dissociated carboxyl functional groups (--COO), that provides an enhanced affinity for metal ions. The functionalized substrate surface may then be exposed to a chemical solution that contains metal ions. The metal ions are then bound to the substrate material and may then be reduced, such as by a stream of gas that includes hydrogen, to form metal nanoparticles adjacent the surface of the substrate.
Smart skin spiral antenna with chiral absorber
NASA Astrophysics Data System (ADS)
Varadan, Vijay K.; Varadan, Vasundara V.
1995-05-01
Recently there has been considerable interest toward designing 'smart skins' for aircraft. The smart skin is a composite layer which may contain conformal radars, conformal microstrip antennas or spiral antennas for electromagnetic applications. These embedded antennas will give rise to very low radar cross section (RCS) or can be completely 'hidden' to tracking radar. In addition, they can be used to detect, monitor or even jam other unwanted electromagnetic field signatures. This paper is designed to address some technical advances made to reduce the size of spiral antennas using tunable dielectric materials and chiral absorbers. The purpose is to design, develop and fabricate a thin, wideband, conformal spiral antenna architecture that is structurally integrable and which uses advanced Penn State dielectric and absorber materials to achieve wideband ground planes, and together with low RCS. Traditional practice has been to design radome and antenna as separate entities and then resolve any interface problems during an integration phase. A structurally integrable conformal antenna, however, demands that the functional components be highly integrated both conceptually and in practice. Our concept is to use the lower skin of the radome as a substrate on which the radiator can be made using standard photolithography, thick film or LTCC techniques.
Laser modification of thermally sprayed coatings
NASA Astrophysics Data System (ADS)
Uglov, A. A.; Fomin, A. D.; Naumkin, A. O.; Pekshev, P. Iu.; Smurov, I. Iu.
1987-08-01
Experimental results are reported on the modification of thermally sprayed coatings on steels and aluminum alloys using pulsed YAG and CW CO2 lasers. In particular, results obtained for self-fluxing Ni9CrBSi powders, ZRO2 ceramic, and titanium are examined. It is shown that the laser treatment of thermally sprayed coatings significantly improves their physicomechanical properties; it also makes it possible to obtain refractory coatings on low-melting substrates with good coating-substrate adhesion.
Tailoring of Nano- and Microstructure in Biomimetically Synthesized Ceramic Films
2006-11-01
Eq. 5 where the Hamaker constant (A) for a flat and infinitely large substrate (subscript 1) and a spherical particle...is determined as (Israelachvili 1985): 232 12a A RV x = − Eq. 7 where the Hamaker constant for two like spherical particle (2) in a medium...close enough to be attracted to the equilibrium separation (0.3 nm). The Hamaker constants and the minimal interaction energies for substrate-solution
Interfacial adhesion of dental ceramic-resin systems
NASA Astrophysics Data System (ADS)
Della Bona, Alvaro
The clinical success of resin bonding procedures for indirect ceramic restorations and ceramic repairs depends on the quality and durability of the bond between the ceramic and the resin. The quality of this bond will depend upon the bonding mechanisms that are controlled in part by the surface treatment that promotes micromechanical and/or chemical bonding to the substrate. The objective of this study is to correlate interfacial toughness (K A) with fracture surface morphological parameters of the dental ceramic-resin systems as a function of ceramic surface treatment. The analytical procedures focused on characterizing the microstructure and fracture properties of EmpressRTM ceramics (a leucite-based core ceramic, two lithia disilicate-based core ceramics, and a glass veneer) and determining the ceramic-resin adhesion zone bond strength characteristics. Microstructure and composition are controlling factors in the development of micromechanical retention produced by etching. Silane treated ceramics negated the effect of surface roughening produced by etching, inducing lower surface energy of the ceramic and, reduced bonding effectiveness. There was a positive correlation between WA, tensile bond strength (a), and KA, i.e., higher mean WA value, and higher mean sigma and KA values. This study suggests that (1) the sigma and KA values for ceramic bonded to resin are affected by the ceramic microstructure and the ceramic surface treatments; (2) the definition of the adhesion zone is essential to classify the modes of failure, which should be an integral component of all failure analyses; (3) the microtensile test may be preferable to conventional shear or flexural tests as an indicator of composite-ceramic bond quality; and (4) careful microscopic analysis of fracture surfaces and an x-ray dot map can produce a more consistent and complete description of the fracture process and interpretation of the modes of failure. The mode of failure and fractographic analyses provide important a more comprehensive assessment of mechanisms that control the survival times of dental adhesive systems. Thus, the quality of the bond should not be assessed based on bond strength data alone.
NASA Astrophysics Data System (ADS)
Chahal, Premjeet
In this work, new approaches to achieving integral resistors and capacitors on large area substrates at low temperatures in a high density wiring (HDW) environment using non-vacuum deposition techniques are introduced. This includes the use of polymer-ceramic nanocomposites for integral capacitors and electroless plating for integral resistors. From the literature review it is believed that resistors in the range of 5--50 ohm/square and capacitors in the range of 1--20 nF/cm2 can satisfy most of the mixed-signal application needs. The proposed materials can satisfy this need as demonstrated in this work. Several test vehicles were fabricated and measured to characterize the material properties, and demonstrate conventional and novel circuits for mixed-signal applications. To begin with, several polymer-ceramic combinations were analyzed under varying conditions to gain a fundamental understanding of the material system. Experimental advances have been made to achieve high dielectric constant values for both epoxy-ceramic and polyimide-ceramic systems. These material systems in general can satisfy specific capacitances in the range of 1--22 nF/cm2. These materials were found to be stable into the GHz range and have low loss-tangent. For electroless resistors, several plating baths were studied and a combination of Ni-P/Ni-W-P was found to produce the best results. Uniform plating was achieved through better nucleation of PdCl2 catalyst through the use of organosilane surface treatment. The Ni-P/Ni-W-P films produced sheet resistance in the range of 5--50 ohm/square and TCR below 50 ppm/°C. The material is stable into the GHz range. Upon optimizing the electrical properties and processing of capacitors and resistors, several test vehicles were fabricated to demonstrate some conventional and novel passive structures for RF and mixed-signal applications (e.g., filters, delay lines, etc.). Some of the structures were modeled using MDS and PSPICE and a good correlation between measured and modeled results were obtained. Capacitors on large area PWB substrates using meniscus coating are also demonstrated with a typical capacitance of 10 nF/cm2. The yield of the capacitor structures is found to be affected by the surface roughness of the bottom copper electrode. Resistors have been demonstrated on 6″ x 6″ substrates using a simple set-up.
Coating system to permit direct brazing of ceramics
Cadden, Charles H.; Hosking, F. Michael
2003-01-01
This invention relates to a method for preparing the surface of a ceramic component that enables direct brazing using a non-active braze alloy. The present invention also relates to a method for directly brazing a ceramic component to a ceramic or metal member using this method of surface preparation, and to articles produced by using this brazing method. The ceramic can be high purity alumina. The method comprises applying a first coating of a silicon-bearing oxide material (e.g. silicon dioxide or mullite (3Al.sub.2 O.sub.3.2SiO.sub.2) to the ceramic. Next, a thin coating of active metal (e.g. Ti or V) is applied. Finally, a thicker coating of a non-active metal (e.g. Au or Cu) is applied. The coatings can be applied by physical vapor deposition (PVD). Alternatively, the active and non-active metals can be co-deposited (e.g. by sputtering a target made of mullite). After all of the coatings have been applied, the ceramic can be fired at a high temperature in a non-oxidizing environment to promote diffusion, and to enhance bonding of the coatings to the substrate. After firing, the metallized ceramic component can be brazed to other components using a conventional non-active braze alloy. Alternatively, the firing and brazing steps can be combined into a single step. This process can replace the need to perform a "moly-manganese" metallization step.
Thin Film Ceramic Strain Sensor Development for High Temperature Environments
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Fralick, Gustave C.; Gonzalez, Jose M.; Laster, Kimala L.
2008-01-01
The need for sensors to operate in harsh environments is illustrated by the need for measurements in the turbine engine hot section. The degradation and damage that develops over time in hot section components can lead to catastrophic failure. At present, the degradation processes that occur in the harsh hot section environment are poorly characterized, which hinders development of more durable components, and since it is so difficult to model turbine blade temperatures, strains, etc, actual measurements are needed. The need to consider ceramic sensing elements is brought about by the temperature limits of metal thin film sensors in harsh environments. The effort at the NASA Glenn Research Center (GRC) to develop high temperature thin film ceramic static strain gauges for application in turbine engines is described, first in the fan and compressor modules, and then in the hot section. The near-term goal of this research effort was to identify candidate thin film ceramic sensor materials and provide a list of possible thin film ceramic sensor materials and corresponding properties to test for viability. A thorough literature search was conducted for ceramics that have the potential for application as high temperature thin film strain gauges chemically and physically compatible with the NASA GRCs microfabrication procedures and substrate materials. Test results are given for tantalum, titanium and zirconium-based nitride and oxynitride ceramic films.
Stress and Reliability Analysis of a Metal-Ceramic Dental Crown
NASA Technical Reports Server (NTRS)
Anusavice, Kenneth J; Sokolowski, Todd M.; Hojjatie, Barry; Nemeth, Noel N.
1996-01-01
Interaction of mechanical and thermal stresses with the flaws and microcracks within the ceramic region of metal-ceramic dental crowns can result in catastrophic or delayed failure of these restorations. The objective of this study was to determine the combined influence of induced functional stresses and pre-existing flaws and microcracks on the time-dependent probability of failure of a metal-ceramic molar crown. A three-dimensional finite element model of a porcelain fused-to-metal (PFM) molar crown was developed using the ANSYS finite element program. The crown consisted of a body porcelain, opaque porcelain, and a metal substrate. The model had a 300 Newton load applied perpendicular to one cusp, a load of 30ON applied at 30 degrees from the perpendicular load case, directed toward the center, and a 600 Newton vertical load. Ceramic specimens were subjected to a biaxial flexure test and the load-to-failure of each specimen was measured. The results of the finite element stress analysis and the flexure tests were incorporated in the NASA developed CARES/LIFE program to determine the Weibull and fatigue parameters and time-dependent fracture reliability of the PFM crown. CARES/LIFE calculates the time-dependent reliability of monolithic ceramic components subjected to thermomechanical and/Or proof test loading. This program is an extension of the CARES (Ceramics Analysis and Reliability Evaluation of Structures) computer program.
Hoch, Allison I; Duhr, Ralph; Di Maggio, Nunzia; Mehrkens, Arne; Jakob, Marcel; Wendt, David
2017-12-01
Bone marrow-derived mesenchymal stromal cells (BMSC), when expanded directly within 3D ceramic scaffolds in perfusion bioreactors, more reproducibly form bone when implanted in vivo as compared to conventional expansion on 2D polystyrene dishes/flasks. Since the bioreactor-based expansion on 3D ceramic scaffolds encompasses multiple aspects that are inherently different from expansion on 2D polystyrene, we aimed to decouple the effects of specific parameters among these two model systems. We assessed the effects of the: 1) 3D scaffold vs. 2D surface; 2) ceramic vs. polystyrene materials; and 3) BMSC niche established within the ceramic pores during in vitro culture, on subsequent in vivo bone formation. While BMSC expanded on 3D polystyrene scaffolds in the bioreactor could maintain their in vivo osteogenic potential, results were similar as BMSC expanded in monolayer on 2D polystyrene, suggesting little influence of the scaffold 3D environment. Bone formation was most reproducible when BMSC are expanded on 3D ceramic, highlighting the influence of the ceramic substrate. The presence of a pre-formed niche within the scaffold pores had negligible effects on the in vivo bone formation. The results of this study allow a greater understanding of the parameters required for perfusion bioreactor-based manufacturing of osteogenic grafts for clinical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of etching and airborne particle abrasion on the microstructure of different dental ceramics.
Borges, Gilberto Antonio; Sophr, Ana Maria; de Goes, Mario Fernando; Sobrinho, Lourenço Correr; Chan, Daniel C N
2003-05-01
The ceramic composition and microstructure surface of all-ceramic restorations are important components of an effective bonding substrate. Both hydrofluoric acid etching and airborne aluminum oxide particle abrasion produce irregular surfaces necessary for micromechanical bonding. Although surface treatments of feldspathic and leucite porcelains have been studied previously, the high alumina-containing and lithium disilicate ceramics have not been fully investigated. The purpose of this study was to assess the surface topography of 6 different ceramics after treatment with either hydrofluoric acid etching or airborne aluminum oxide particle abrasion. Five copings each of IPS Empress, IPS Empress 2 (0.8 mm thick), Cergogold (0.7 mm thick), In-Ceram Alumina, In-Ceram Zirconia, and Procera (0.8 mm thick) were fabricated following the manufacturer's instructions. Each coping was longitudinally sectioned into 4 equal parts by a diamond disk. The resulting sections were then randomly divided into 3 groups depending on subsequent surface treatments: Group 1, specimens without additional surface treatments, as received from the laboratory (control); Group 2, specimens treated by use of airborne particle abrasion with 50-microm aluminum oxide; and Group 3, specimens treated with 10% hydrofluoric acid etching (20 seconds for IPS Empress 2; 60 seconds for IPS Empress and Cergogold; and 2 minutes for In-Ceram Alumina, In-Ceram Zirconia, and Procera). Airborne particle abrasion changed the morphologic surface of IPS Empress, IPS Empress 2, and Cergogold ceramics. The surface topography of these ceramics exhibited shallow irregularities not evident in the control group. For Procera, the 50-microm aluminum oxide airborne particle abrasion produced a flattened surface. Airborne particle abrasion of In-Ceram Alumina and In-Ceram Zirconia did not change the morphologic characteristics and the same shallows pits found in the control group remained. For IPS Empress 2, 10% hydrofluoric acid etching produced elongated crystals scattered with shallow irregularities. For IPS Empress and Cergogold, the morphologic characteristic was honeycomb-like on the ceramic surface. The surface treatment of In-Ceram Alumina, In-Ceram Zirconia, and Procera did not change their superficial structure. Hydrofluoric acid etching and airborne particle abrasion with 50-microm aluminum oxide increased the irregularities on the surface of IPS Empress, IPS Empress 2, and Cergogold ceramics. Similar treatment of In-Ceram Alumina, In-Ceram Zirconia, and Procera did not change their morphologic microstructure.
Ceramic coating system or water oxidation environments
Hong, Glenn T.
1996-01-01
A process for water oxidation of combustible materials in which during at least a part of the oxidation corrosive material is present and makes contact with at least a portion of the apparatus over a contact area on the apparatus. At least a portion of the contact surface area comprises titanium dioxide coated onto a titanium metal substrate. Such ceramic composites have been found to be highly resistant to environments encountered in the process of supercritical water oxidation. Such environments typically contain greater than 50 mole percent water, together with oxygen, carbon dioxide, and a wide range of acids, bases, and salts. Pressures are typically about 27.5 to about 1000 bar while temperatures range as high as 700.degree. C. The ceramic composites are also resistant to degradation mechanisms caused by thermal stresses.
Development of improved-durability plasma sprayed ceramic coatings for gas turbine engines
NASA Technical Reports Server (NTRS)
Sumner, I. E.; Ruckle, D. L.
1980-01-01
As part of a NASA program to reduce fuel consumption of current commercial aircraft engines, methods were investigated for improving the durability of plasma sprayed ceramic coatings for use on vane platforms in the JT9D turbofan engine. Increased durability concepts under evaluation include use of improved strain tolerant microstructures and control of the substrate temperature during coating application. Initial burner rig tests conducted at temperatures of 1010 C (1850 F) indicate that improvements in cyclic life greater than 20:1 over previous ceramic coating systems were achieved. Three plasma sprayed coating systems applied to first stage vane platforms in the high pressure turbine were subjected to a 100-cycle JT9D engine endurance test with only minor damage occurring to the coatings.
Ceramic with preferential oxygen reactive layer
NASA Technical Reports Server (NTRS)
Wang, Hongyu (Inventor); Luthra, Krishan Lal (Inventor)
2001-01-01
An article comprises a silicon-containing substrate and an external environmental/thermal barrier coating. The external environmental/thermal barrier coating is permeable to diffusion of an environmental oxidant and the silicon-containing substrate is oxidizable by reaction with oxidant to form at least one gaseous product. The article comprises an intermediate layer/coating between the silicon-containing substrate and the environmental/thermal barrier coating that is oxidizable to a nongaseous product by reaction with the oxidant in preference to reaction of the silicon-containing substrate with the oxidant. A method of forming an article, comprises forming a silicon-based substrate that is oxidizable by reaction with oxidant to at least one gaseous product and applying an intermediate layer/coating onto the substrate, wherein the intermediate layer/coating is oxidizable to a nongaseous product by reaction with the oxidant in preference to reaction of the silicon-containing substrate with the oxidant.
Application of a mixed metal oxide catalyst to a metallic substrate
NASA Technical Reports Server (NTRS)
Sevener, Kathleen M. (Inventor); Lohner, Kevin A. (Inventor); Mays, Jeffrey A. (Inventor); Wisner, Daniel L. (Inventor)
2009-01-01
A method for applying a mixed metal oxide catalyst to a metallic substrate for the creation of a robust, high temperature catalyst system for use in decomposing propellants, particularly hydrogen peroxide propellants, for use in propulsion systems. The method begins by forming a prepared substrate material consisting of a metallic inner substrate and a bound layer of a noble metal intermediate. Alternatively, a bound ceramic coating, or frit, may be introduced between the metallic inner substrate and noble metal intermediate when the metallic substrate is oxidation resistant. A high-activity catalyst slurry is applied to the surface of the prepared substrate and dried to remove the organic solvent. The catalyst layer is then heat treated to bind the catalyst layer to the surface. The bound catalyst layer is then activated using an activation treatment and calcinations to form the high-activity catalyst system.
Electrophoretic Deposition on Porous Non-Conductors
NASA Technical Reports Server (NTRS)
Compson, Charles; Besra, Laxmidhar; Liu, Meilin
2007-01-01
A method of electrophoretic deposition (EPD) on substrates that are porous and electrically non-conductive has been invented. Heretofore, in order to perform an EPD, it has been necessary to either (1) use a substrate material that is inherently electrically conductive or (2) subject a non-conductive substrate to a thermal and/or chemical treatment to render it conductive. In the present method, instead of relying on the electrical conductivity of the substrate, one ensures that the substrate is porous enough that when it is immersed in an EPD bath, the solvent penetrates throughout the thickness, thereby forming quasi-conductive paths through the substrate. By making it unnecessary to use a conductive substrate, this method simplifies the overall EPD process and makes new applications possible. The method is expected to be especially beneficial in enabling deposition of layers of ceramic and/or metal for chemical and electrochemical devices, notably including solid oxide fuel cells.
Wang, Hsin; Muralidharan, Govindarajan; Leonard, Donovan N.; ...
2018-01-04
In this paper, multilayer, graded ceramic/metal coatings were prepared by an air plasma spray method on Ti-6Al-4V, 4140 steel and graphite substrates. The coatings were designed to provide thermal barriers for diesel engine pistons to operate at higher temperatures with improved thermal efficiency and cleaner emissions. A systematic, progressive variation in the mixture of yttria-stabilized zirconia and bondcoat alloys (NiCoCrAlYHfSi) was designed to provide better thermal expansion match with the substrate and to improve thermal shock resistance and cycle life. Heat transfer through the layers was evaluated by a flash diffusivity technique based on a model of one-dimensional heat flow.more » The aging effect of the as-sprayed coatings was captured during diffusivity measurements, which included one heating and cooling cycle. The hysteresis of thermal diffusivity due to aging was not observed after 100-h annealing at 800 °C. The measurements of coatings on substrate and freestanding coatings allowed the influence of interface resistance to be evaluated. Finally, the microstructure of the multilayer coating was examined using scanning electron microscope and electron probe microanalysis.« less
Substrate Integrated Waveguide (SIW)-Based Wireless Temperature Sensor for Harsh Environments.
Tan, Qiulin; Guo, Yanjie; Zhang, Lei; Lu, Fei; Dong, Helei; Xiong, Jijun
2018-05-03
This paper presents a new wireless sensor structure based on a substrate integrated circular waveguide (SICW) for the temperature test in harsh environments. The sensor substrate material is 99% alumina ceramic, and the SICW structure is composed of upper and lower metal plates and a series of metal cylindrical sidewall vias. A rectangular aperture antenna integrated on the surface of the SICW resonator is used for electromagnetic wave transmission between the sensor and the external antenna. The resonant frequency of the temperature sensor decreases when the temperature increases, because the relative permittivity of the alumina ceramic increases with temperature. The temperature sensor presented in this paper was tested four times at a range of 30⁻1200 °C, and a broad band coplanar waveguide (CPW)-fed antenna was used as an interrogation antenna during the test process. The resonant frequency changed from 2.371 to 2.141 GHz as the temperature varied from 30 to 1200 °C, leading to a sensitivity of 0.197 MHz/°C. The quality factor of the sensor changed from 3444.6 to 35.028 when the temperature varied from 30 to 1000 °C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hsin; Muralidharan, Govindarajan; Leonard, Donovan N.
In this paper, multilayer, graded ceramic/metal coatings were prepared by an air plasma spray method on Ti-6Al-4V, 4140 steel and graphite substrates. The coatings were designed to provide thermal barriers for diesel engine pistons to operate at higher temperatures with improved thermal efficiency and cleaner emissions. A systematic, progressive variation in the mixture of yttria-stabilized zirconia and bondcoat alloys (NiCoCrAlYHfSi) was designed to provide better thermal expansion match with the substrate and to improve thermal shock resistance and cycle life. Heat transfer through the layers was evaluated by a flash diffusivity technique based on a model of one-dimensional heat flow.more » The aging effect of the as-sprayed coatings was captured during diffusivity measurements, which included one heating and cooling cycle. The hysteresis of thermal diffusivity due to aging was not observed after 100-h annealing at 800 °C. The measurements of coatings on substrate and freestanding coatings allowed the influence of interface resistance to be evaluated. Finally, the microstructure of the multilayer coating was examined using scanning electron microscope and electron probe microanalysis.« less
Characterization of TiN coating layers using ultrasonic backward radiation.
Song, Sung-Jin; Yang, Dong-Joo; Kim, Hak-Joon; Kwon, Sung D; Lee, Young-Ze; Kim, Ji-Yoon; Choi, Song-Chun
2006-12-22
Since ceramic layers coated on machinery components inevitably experience the changes in their properties it is necessary to evaluate the characteristics of ceramic coating layers nondestructively for the reliable use of coated components and the remaining life prediction. To address such a need, in the present study, the ultrasonic backward radiation technique is applied to examine the very thin TiN ceramic layers coated on AISI 1045 steel or austenitic 304 steel substrate. Specifically, the ultrasonic backward radiation profiles have been measured with variations in specimen preparation conditions such as coating layer thickness and sliding loading. In the experiments performed in the current study, the peak angle and the peak amplitude of ultrasonic backward radiation profile varied sensitively according to two specimen preparation conditions. In fact, this result demonstrates a high possibility of the ultrasonic backward radiation as an effective tool for the nondestructive characterization of the TiN ceramic coating layers even in such a thin regime.
NASA Astrophysics Data System (ADS)
Li, Pengyang; Wang, Shubin; Liu, Jianggao; Feng, Mengjie; Yang, Xinwang
2015-11-01
Borosilicate glass-ceramics precursors with varying compositional ratios in the CaO-SiO2-B2O3 (CBS) system were synthesized by sol-gel method. The precursors were calcined at 1200 °C for 2 h to form glass powders. The glass-ceramics were prepared by overlaying glass slurries on the substrates before sintering at different temperatures. The as-prepared glasses and glass-ceramics were characterized by differential scanning calorimetry and X-ray diffraction. The crystallization activation energies (Ec) were calculated using the Kissinger method from DSC results. The morphology and crystallization behavior of the glass-ceramics were monitored by scanning electron microscopy. Both glass transition and crystallization temperatures decreased, however, the metastable zone increased. The Ec values of CBS glasses and glass-ceramics were 254.1, 173.2 and 164.4 kJ/mol with increasing B2O3 content, whereas that of the calcined G3 glass was 104.9 kJ/mol. Finally, the coatings were prepared at a low temperature (700 °C). The crystals that grew on the surface of multilayer coatings demonstrated heterogeneous surface nucleation and crystallization after heat-treatment from 700 °C to 850 °C for 4 h.
Sensitivity analysis of bi-layered ceramic dental restorations.
Zhang, Zhongpu; Zhou, Shiwei; Li, Qing; Li, Wei; Swain, Michael V
2012-02-01
The reliability and longevity of ceramic prostheses have become a major concern. The existing studies have focused on some critical issues from clinical perspectives, but more researches are needed to address fundamental sciences and fabrication issues to ensure the longevity and durability of ceramic prostheses. The aim of this paper was to explore how "sensitive" the thermal and mechanical responses, in terms of changes in temperature and thermal residual stress of the bi-layered ceramic systems and crown models will be with respect to the perturbation of the design variables chosen (e.g. layer thickness and heat transfer coefficient) in a quantitative way. In this study, three bi-layered ceramic models with different geometries are considered: (i) a simple bi-layered plate, (ii) a simple bi-layer triangle, and (iii) an axisymmetric bi-layered crown. The layer thickness and convective heat transfer coefficient (or cooling rate) seem to be more sensitive for the porcelain fused on zirconia substrate models. The resultant sensitivities indicate a critical importance of the heat transfer coefficient and thickness ratio of core to veneer on the temperature distributions and residual stresses in each model. The findings provide a quantitative basis for assessing the effects of fabrication uncertainties and optimizing the design of ceramic prostheses. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Holanda, R.
1992-01-01
Thin film thermocouples have been developed for use on metal parts in jet engines to 1000 c. However, advanced propulsion systems are being developed that will use ceramic materials and reach higher temperatures. The purpose of this work is to develop thin film thermocouples for use on ceramic materials. The new thin film thermocouples are Pt13Rh/Pt fabricated by the sputtering process. Lead wires are attached using the parallel-gap welding process. The ceramic materials tested are silicon nitride, silicon carbide, aluminum oxide, and mullite. Both steady state and thermal cycling furnace tests were performed in the temperature range to 1500 C. High-heating-rate tests were performed in an arc lamp heat-flux-calibration facility. The fabrication of the thin film thermocouples is described. The thin film thermocouple output was compared to a reference wire thermocouple. Drift of the thin film thermocouples was determined, and causes of drift are discussed. The results of high heating rate tests up to 2500 C/sec are presented. The stability of the ceramic materials is examined. It is concluded that Pt13Rh/Pt thin film thermocouples are capable of meeting lifetime goals of 50 hours or more up to temperature of 1500 C depending on the stability of the particular ceramic substrate.
Thin film thermocouples for high temperature measurement on ceramic materials
NASA Technical Reports Server (NTRS)
Holanda, Raymond
1992-01-01
Thin film thermocouples have been developed for use on metal parts in jet engines to 1000 C. However, advanced propulsion systems are being developed that will use ceramic materials and reach higher temperatures. The purpose of this work is to develop thin film thermocouples for use on ceramic materials. The thin film thermocouples are Pt13Rh/Pt fabricated by the sputtering process. Lead wires are attached using the parallel-gap welding process. The ceramic materials are silicon nitride, silicon carbide, aluminum oxide, and mullite. Both steady state and thermal cycling furnace tests were performed in the temperature range to 1500 C. High-heating-rate tests were performed in an arc lamp heat-flux-calibration facility. The fabrication of the thin film thermocouples is described. The thin film thermocouple output was compared to a reference wire thermocouple. Drift of the thin film thermocouples was determined, and causes of drift are discussed. The results of high-heating-rate tests up to 2500 C/sec are presented. The stability of the ceramic materials is examined. It is concluded that Pt13Rh/Pt thin film thermocouples are capable of meeting lifetime goals of 50 hours or more up to temperatures of 1500 C depending on the stability of the particular ceramic substrate.
NASA Technical Reports Server (NTRS)
Holanda, Raymond
1993-01-01
Thin film thermocouples were developed for use on metal parts in jet engines to 1000 C. However, advanced propulsion systems are being developed that will use ceramic materials and reach higher temperatures. The purpose is to develop thin film thermocouples for use on ceramic materials. The new thin film thermocouples are Pt13Rh/Pt fabricated by the sputtering process. Lead wires are attached using the parallel-gap welding process. The ceramic materials tested are silicon nitride, silicon carbide, aluminum oxide, and mullite. Both steady state and thermal cycling furnace tests were performed in the temperature range to 1500 C. High-heating-rate tests were performed in an arc lamp heat-flux-calibration facility. The fabrication of the thin film thermocouples is described. The thin film thermocouple output was compared to a reference wire thermocouple. Drift of the thin film thermocouples was determined, and causes of drift are discussed. The results of high heating rate tests up to 2500 C/sec are presented. The stability of the ceramic materials is examined. It is concluded that Pt13Rh/Pt thin film thermocouples are capable of meeting lifetime goals of 50 hr or more up to temperatures of 1500 C depending on the stability of the particular ceramic substrate.
NASA Astrophysics Data System (ADS)
Donkov, N.; Mateev, E.; Safonov, V.; Zykova, A.; Yakovin, S.; Kolesnikov, D.; Sudzhanskaya, I.; Goncharov, I.; Georgieva, V.
2014-12-01
Ta2O5 ceramic coatings have been deposited on glass substrates by e-beam evaporation and magnetron sputtering methods. For the magnetron sputtering process Ta target was used. X-ray diffraction measurements show that these coatings are amorphous. XPS survey spectra of the ceramic Ta2O5 coatings were obtained. All spectra consist of well-defined XPS lines of Ta 4f, 4d, 4p and 4s; O 1s; C 1s. Ta 4f doublets are typical for Ta2O5 coatings with two main peaks. Scanning electron microscopy and atomic force microscopy images of the e-beam evaporated and magnetron sputtered Ta2O5 ceramic coatings have revealed a relatively flat surface with no cracks. The dielectric properties of the tantalum pentoxide coatings have been investigated in the frequency range of 100 Hz to 1 MHz. The electrical behaviour of e-beam evaporated and magnetron sputtered Ta2O5 ceramic coatings have also been compared. The deposition process conditions principally effect the structure parameters and electrical properties of Ta2O5 ceramic coatings. The coatings deposited by different methods demonstrate the range of dielectric parameters due to the structural and stoichiometric composition changes
Ceramic-based microelectrode arrays: recording surface characteristics and topographical analysis
Talauliker, Pooja M.; Price, David A.; Burmeister, Jason J.; Nagari, Silpa; Quintero, Jorge E.; Pomerleau, Francois; Huettl, Peter; Hastings, J. Todd; Gerhardt, Greg A.
2011-01-01
Amperometric measurements using microelectrode arrays (MEAs) provide spatially and temporally resolved measures of neuromolecules in the central nervous system of rats, mice and non-human primates. Multi-site MEAs can be mass fabricated on ceramic (Al2O3) substrate using photolithographic methods, imparting a high level of precision and reproducibility in a rigid but durable recording device. Although the functional capabilities of MEAs have been previously documented for both anesthetized and freely-moving paradigms, the performance enabling intrinsic physical properties of the MEA device have not heretofore been presented. In these studies, spectral analysis confirmed that the MEA recording sites were primarily composed of elemental platinum (Pt°). In keeping with the precision of the photolithographic process, scanning electron microscopy revealed that the Pt recording sites have unique microwell geometries post-fabrication. Atomic force microscopy demonstrated that the recording surfaces have nanoscale irregularities in the form of elevations and depressions, which contribute to increased current per unit area that exceeds previously reported microelectrode designs. The ceramic substrate on the back face of the MEA was characterized by low nanoscale texture and the ceramic sides consisted of an extended network of ridges and cavities. Thus, individual recording sites have a unique Pt° composition and surface profile that has not been previously observed for Pt-based microelectrodes. These features likely impact the physical chemistry of the device, which may influence adhesion of biological molecules and tissue as well as electrochemical recording performance post-implantation. This study is a necessary step towards understanding and extending the performance abilities of MEAs in vivo. PMID:21513736
Atom Chips on Direct Bonded Copper Substrates (Postprint)
2012-01-19
joining of a thin sheet of pure copper to a ceramic substrate14 and is commonly used in power electronics due to its high current handling and heat...Squires et al. Rev. Sci. Instrum. 82, 023101 (2011) FIG. 1. A scanning electron micrograph of the top view of test chip A. the photolithographically...the etching pro- cesses and masking methods were quantified using a scanning electron microscope. Two test chips (A and B) are presented below and are
Phase and Texture Evolution in Chemically Derived PZT Thin Films on Pt Substrates
2014-09-01
function of heating rate. The FWHM of the Ill PZT texture components is sim 2978 Journal of the American Ceramic Society Mhin et al. Vol. 97, No. 9...Z39.18 ABSTRACT Phase and Texture Evolution in Chemically Derived PZT Thin Films on Pt Substrates Report Title The crystallization of lead zirconate...phase influencing texture evolution. The results suggest that PZT nucleates directly on Pt, which explains the observation of a more highly oriented
Fast femtosecond laser ablation for efficient cutting of sintered alumina substrates
NASA Astrophysics Data System (ADS)
Oosterbeek, Reece N.; Ward, Thomas; Ashforth, Simon; Bodley, Owen; Rodda, Andrew E.; Simpson, M. Cather
2016-09-01
Fast, accurate cutting of technical ceramics is a significant technological challenge because of these materials' typical high mechanical strength and thermal resistance. Femtosecond pulsed lasers offer significant promise for meeting this challenge. Femtosecond pulses can machine nearly any material with small kerf and little to no collateral damage to the surrounding material. The main drawback to femtosecond laser machining of ceramics is slow processing speed. In this work we report on the improvement of femtosecond laser cutting of sintered alumina substrates through optimisation of laser processing parameters. The femtosecond laser ablation thresholds for sintered alumina were measured using the diagonal scan method. Incubation effects were found to fit a defect accumulation model, with Fth,1=6.0 J/cm2 (±0.3) and Fth,∞=2.5 J/cm2 (±0.2). The focal length and depth, laser power, number of passes, and material translation speed were optimised for ablation speed and high quality. Optimal conditions of 500 mW power, 100 mm focal length, 2000 μm/s material translation speed, with 14 passes, produced complete cutting of the alumina substrate at an overall processing speed of 143 μm/s - more than 4 times faster than the maximum reported overall processing speed previously achieved by Wang et al. [1]. This process significantly increases processing speeds of alumina substrates, thereby reducing costs, making femtosecond laser machining a more viable option for industrial users.
Non-hermetic encapsulation for implantable electronic devices based on epoxy.
Boeser, Fabian; Ordonez, Juan S; Schuettler, Martin; Stieglitz, Thomas; Plachta, Dennis T T
2015-08-01
Hermetic and non-hermetic implant packaging are the two strategies to protect electronic systems from the humid conditions inside the human body. Within the scope of this work twelve different material combinations for a non-hermetic, high-reliable epoxy based encapsulation technique were characterized. Three EPO-TEK (ET) epoxies and one low budget epoxy were chosen for studies with respect to their processability, water vapor transmission rate (WVTR) and adhesion to two different ceramic-based substrates as well as to one standard FR4-substrate. Setups were built to analyze the mentioned properties for at least 30 days using an aging test in a moist environment. As secondary test subjects, commercially available USB flash drives (UFD) were successfully encapsulated inside the epoxies, soaked in phosphate buffered saline (PBS, pH=7.4), stored in an incubator (37°C) and tested for 256 days without failure. By means of epoxy WVTR (0.0278 g/day/m(2)) and degrease of adhesion (24.59 %) during 30 days in PBS, the combination of the standard FR4-substrate and the epoxy ET 301-2 was found to feature the best encapsulation properties. If a ceramic-based electronic system has to be used, the most promising combination consists of the alumina substrate and the epoxy ET 302-3M (WVTR: 0.0588 g/day/m(2); adhesion drop: 49.58 %).
Okada, Kiyoshi; Hasegawa, Fumikazu; Kameshima, Yoshikazu; Nakajima, Akira
2007-05-01
Mixing bioactive ceramic powders with polymers is an effective method for generating bioactivity to the polymer-matrix composites but it is necessary to incorporate up to 40 vol% of bioactive ceramic powder. However, such a high mixing ratio offsets the advantages of the flexibility and formability of polymer matrix and it would be highly advantageous to lower the mixing ratio. Since surface loading of ceramic powders in the polymer is thought to be an effective way of reducing the mixing ratio of the ceramic powder while maintaining bioactive activity, CaSiO(3)/poly-lactic acid (PLA) composites were prepared by three methods; (1) casting, (2) spin coating and (3) hot pressing. In methods (1) and (2), a suspension was prepared by dissolving PLA in chloroform and dispersing CaSiO(3) powder in it. The suspension was cast and dried to form a film in the case of method (1) while it was spin-coated on a PLA substrate in method (2). In method (3), CaSiO(3) powder was surface loaded on to a PLA substrate by hot pressing. The bioactivity of these samples was investigated in vitro using simulated body fluid (SBF). Apatite formation was not observed in the samples prepared by method (1) but some apatite formation was achieved by mixing polyethylene glycol (PEG) with the PLA, producing a porous polymer matrix. In method (2), apatite was clearly observed after soaking for 7 days. Enhanced apatite formation was observed in method (3), the thickness of the resulting apatite layers becoming about 20 microm after soaking for 14 days. Since the amount of CaSiO(3) powder used in these samples was only
Okada, Kiyoshi; Hasegawa, Fumikazu; Kameshima, Yoshikazu; Nakajima, Akira
2007-08-01
Mixing bioactive ceramic powders with polymers is an effective method for generating bioactivity to the polymer-matrix composites but it is necessary to incorporate up to 40 vol% of bioactive ceramic powder. However, such a high mixing ratio offsets the advantages of the flexibility and formability of polymer matrix and it would be highly advantageous to lower the mixing ratio. Since surface loading of ceramic powders in the polymer is thought to be an effective way of reducing the mixing ratio of the ceramic powder while maintaining bioactive activity, CaSiO(3)/poly-lactic acid (PLA) composites were prepared by three methods; (1) casting, (2) spin coating and (3) hot pressing. In methods (1) and (2), a suspension was prepared by dissolving PLA in chloroform and dispersing CaSiO(3) powder in it. The suspension was cast and dried to form a film in the case of method (1) while it was spin-coated on a PLA substrate in method (2). In method (3), CaSiO(3) powder was surface loaded on to a PLA substrate by hot-pressing. The bioactivity of these samples was investigated in vitro using simulated body fluid (SBF). Apatite formation was not observed in the samples prepared by method (1) but some apatite formation was achieved by mixing polyethylene glycol (PEG) with the PLA, producing a porous polymer matrix. In method (2), apatite was clearly observed after soaking for 7 days. Enhanced apatite formation was observed in method (3), the thickness of the resulting apatite layers becoming about 20 microm after soaking for 14 days. Since the amount of CaSiO(3) powder used in these samples was only < or =0.4 vol%, it is concluded that this preparation method is very effective in generating bioactivity in polymer-matrix composites by loading with only very small amounts of ceramic powder.
Yang, Song-Ling; Tsai, Cheng-Che; Liou, Yi-Cheng; Hong, Cheng-Shong; Li, Bing-Jing; Chu, Sheng-Yuan
2011-12-01
In this paper, the effects of the electrical proper- ties of CuO-doped (Na(0.5)K(0.5))NbO(3) (NKN) ceramics prepared separately using the B-site oxide precursor method (BO method) and conventional mixed-oxide method (MO method) on high-power piezoelectric transformers (PTs) were investigated. The performances of PTs made with these two substrates were compared. Experimental results showed that the output power and temperature stability of PTs could be enhanced because of the lower resonant impedance of the ceramics prepared using the BO method. In addition, the output power of PTs was more affected by the resonant impedance than by the mechanical quality factor (Q(m)) of the ceramics. The PTs fabricated with ceramics prepared using the BO method showed a high efficiency of more than 94% and a maximum output power of 8.98 W (power density: 18.3 W/cm(3)) with temperature increase of 3°C under the optimum load resistance (5 kΩ) and an input voltage of 150 V(pp). This output power of the lead-free disk-type PTs is the best reported so far.
Liu, Jun; Zhang, Wei; Shi, Haigang; Yang, Kun; Wang, Gexia; Wang, Pingli; Ji, Junhui; Chu, Paul K
2016-05-01
Polymeric materials are commonly found in orthopedic implants due to their unique mechanical properties and biocompatibility but the poor surface hardness and bacterial infection hamper many biomedical applications. In this study, a ceramic-like surface structure doped with silver is produced by successive plasma implantation of silicon (Si) and silver (Ag) into the polyamine 66 (PA66) substrate. Not only the surface hardness and elastic modulus are greatly enhanced due to the partial surface carbonization and the ceramic-like structure produced by the reaction between energetic Si and the carbon chain of PA66, but also the antibacterial activity is improved because of the combined effects rendered by Ag and SiC structure. Furthermore, the modified materials which exhibit good cytocompatibility upregulate bone-related genes and proteins expressions of the contacted bone mesenchymal stem cells (BMSCs). For the first time, it explores out that BMSCs osteogenesis on the antibacterial ceramic-like structure is mediated via the iNOS and nNOS signal pathways. The results reveal that in situ plasma fabrication of an antibacterial ceramic-like structure can endow PA66 with excellent surface hardness, cytocompatibility, as well as antibacterial capability. © 2016 Wiley Periodicals, Inc.
Effects of TiO2 addition on microwave dielectric properties of Li2MgSiO4 ceramics
NASA Astrophysics Data System (ADS)
Rose, Aleena; Masin, B.; Sreemoolanadhan, H.; Ashok, K.; Vijayakumar, T.
2018-03-01
Silicates have been widely studied for substrate applications in microwave integrated circuits owing to their low dielectric constant and low tangent loss values. Li2MgSiO4 (LMS) ceramics are synthesized through solid-state reaction route using TiO2 as an additive to the pure ceramics. Variations in dielectric properties of LMS upon TiO2 addition in different weight percentages (0.5, 1.5, 2) are studied by keeping the sintering parameters constant. Crystalline structure, phase composition, and microstructure of LMS and LMS-TiO2 ceramics were studied using x-ray diffraction spectrometer and High Resolution Scanning electron microscope. Density was measured through Archimedes method and the microwave dielectric properties were examined by Cavity perturbation technique. LMS achieved relative permittivity (ε r) of 5.73 and dielectric loss (tan δ) of 5.897 × 10‑4 at 8 GHz. In LMS-TiO2 ceramics, 0.5 wt% TiO2 added LMS showed comparatively better dielectric properties than other weight percentages where ε r = 5.67, tan δ = 7.737 × 10‑4 at 8 GHz.
A portable high-power diode laser-based single-stage ceramic tile grout sealing system
NASA Astrophysics Data System (ADS)
Lawrence, J.; Schmidt, M. J. J.; Li, L.; Edwards, R. E.; Gale, A. W.
2002-02-01
By means of a 60 W high-power diode laser (HPDL) and a specially developed grout material the void between adjoining ceramic tiles has been successfully sealed. A single-stage process has been developed which uses a crushed ceramic tile mix to act as a tough, inexpensive bulk substrate and a glazed enamel surface to provide an impervious surface glaze. The single-stage ceramic tile grout sealing process yielded seals produced in normal atmospheric conditions that displayed no discernible cracks and porosities. The single-stage grout is simple to formulate and easy to apply. Tiles were successfully sealed with power densities as low as 200 kW/ mm2 and at rates of up to 600 mm/ min. Bonding of the enamel to the crushed ceramic tile mix was identified as being primarily due to van der Waals forces and, on a very small scale, some of the crushed ceramic tile mix material dissolving into the glaze. In terms of mechanical, physical and chemical characteristics, the single-stage ceramic tile grout was found to be far superior to the conventional epoxy tile grout and, in many instances, matched and occasionally surpassed that of the ceramic tiles themselves. What is more, the development of a hand-held HPDL beam delivery unit and the related procedures necessary to lead to the commercialisation of the single-stage ceramic tile grout sealing process are presented. Further, an appraisal of the potential hazards associated with the use of the HPDL in an industrial environment and the solutions implemented to ensure that the system complies with the relevant safety standards are given.
NASA Technical Reports Server (NTRS)
Honecy, Frank S.
1992-01-01
The adhesion of Ag films deposited on oxide ceramics can be increased by first depositing intermediate films of active metals such as Ti. Such duplex coatings can be fabricated in a widely used three target sputter deposition system. It is shown here that the beneficial effect of the intermediate Ti film can be defeated by commonly used in situ target and substrate sputter cleaning procedures which result in Ag under the Ti. Auger electron spectroscopy and wear testing of the coatings are used to develop a cleaning strategy resulting in an adherent film system.
NASA Technical Reports Server (NTRS)
Babcock, Jason R.; Ramachandran, Gautham; Williams, Brian E.; Effinger, Michael R.
2004-01-01
Ultraviolet-enhanced chemical vapor deposition (UVCVD) has been developed to lower the required substrate temperature thereby allowing for the application of metal oxide-based coatings to carbon and ceramic fibers without causing significant fiber damage. An effort to expand this capability to other ceramic phases chosen to maximize oxidation protection in the likely event of matrix cracking and minimize possible reaction between the coating and fiber during long-term high temperature use will be presented along with studies aimed at the demonstration of these and other benefits for the next-generation interface coating systems being developed herein.
NASA Astrophysics Data System (ADS)
Asmawi, R.; Ibrahim, M. H. I.; Amin, A. M.; Mustafa, N.; Noranai, Z.
2017-08-01
Bioactive apatite, such as hydroxyapatite ceramic (HA), [Ca10(PO4)6(OH)2] has been extensively investigated for biomedical applications due to its excellent biocompatibility and tissue bioactivity properties. Its bioactivity provides direct bonding to the bone tissue. Because of its similarity in chemical composition to the inorganic matrix of bone, HA is widely used as implant materials for bone. Unfortunately, because of its poor mechanical properties,. this bioactive material is not suitable for load bearing applications. In this study, by the assistance of dip-coating technique, HA coatings were deposited on titanium alloy substrates by employing hydrothermal derived HA powder. The produced coatings then were oven-dried at 130°C for 1 hour and calcined at various temperature over the range of 200-800°C for 1 hour. XRD measurement showed that HA was the only phase present in the coatings. However coatings calcined at 800°C comprised a mixture of HA and tri-calcium phosphate (TCP). FTIR measurement showed the existence of hydroxyl, phosphate, and carbonate bands. PO4 - band became sharper and narrower with the increased of calcination temperature. FESEM observation showed that the coating is polycrystalline with individual particles of nano to submicron size and has an average particle size of 35 nm. The thickness of the coating are direcly propotional with the viscosity of coating slurry. It was shown that the more viscous coating slurry would produce a thicker ceramic coating. Mechanical properties of the coating were measured in term of adhesion strength using a Micro Materials Nano Test microscratch testing machine. The result revealed that the coating had a good adhesion to the titanium alloy substrate.
Ceramic Strain Gages for Use at Temperatures up to 1500 Celsius
NASA Technical Reports Server (NTRS)
Gregory, Otto; Fralick, Gustave (Technical Monitor)
2003-01-01
Indium-tin-oxide (ITO) thin film strain gages were successfully demonstrated at temperatures beyond 1500 C. High temperature static strain tests revealed that the piezoresistive response and electrical stability of the ceramic sensors depended on the thickness of the ITO films comprising the active strain elements. When 2.5 microns-thick ITO films were employed as the active strain elements, the piezoresistive response became unstable at temperatures above 1225 C. In contrast to this, ceramic sensors prepared with 5 microns-thick ITO were stable beyond 1430 C and sensors prepared with 8 microns-thick ITO survived more than 20 hr of operation at 1481 C. Very thick (10 microns) ITo strain gages were extremely stable and responsive at 1528 C. ESCA depth profiles confirmed that an interfacial reaction between the ITO strain gage and alumina substrate was responsible for the high temperature electrical stability observed. Similar improvements in high temperature stability were achieved by doping the active ITO strain elements with aluminum. Several Sic-Sic CMC constant strain beams were instrumented with ITO strain gages and delivered to NASA for testing. Due to the extreme surface roughness of the CMC substrates, new lithography techniques and surface preparation methods were developed. These techniques relied heavily on a combination of Sic and A12O3 cement layers to provide the necessary surface finish for efficient pattern transfer. Micro-contact printing using soft lithography and PDMS stamps was also used to successfully transfer the thin film strain gage patterns to the resist coated CMC substrates. This latter approach has considerable potential for transferring the thin film strain gage patterns to the extremely rough surfaces associated with the CMC's.
Li, Jinpeng; Gao, Ming; Li, Qingling; Bian, Weidong; Tao, Tongxiang; Zhang, Hu
2018-01-01
To obtain appropriate crucible materials for vacuum induction melting of MCrAlY alloys, four different oxide ceramics, including MgO, Y2O3, Al2O3, and ZrO2, with various microstructures were designed and characterized. The high-temperature wettability and interactions between Ni-20Co-20Cr-10Al-1.5Y alloys and oxide ceramics were studied by sessile drop experiments under vacuum. The results showed that all the systems exhibited non-wetting behavior. The contact angles were stable during the melting process of alloys and the equilibrium contact angles were 140° (MgO), 148° (Y2O3), 154° (Al2O3), and 157° (ZrO2), respectively. The interfacial reaction between the ceramic substrates and alloys occurred at high temperature. Though the ceramics had different microstructures, similar continuous Y2O3 reaction layer with thicknesses of about 25 μm at the alloy-ceramic interface in MgO, Al2O3, and ZrO2 systems formed. The average area percentage of oxides in the alloy matrices were 0.59% (MgO), 0.11% (Al2O3), 0.09% (ZrO2), and 0.02% (Y2O3), respectively. The alloys, after reacting with MgO ceramic, had the highest inclusion content, while those with the lowest content were in the Y2O3 system. Y2O3 ceramic was the most beneficial for vacuum induction melting of high-purity Y-containing Ni-based alloys. PMID:29735958
Thermoinduced laser-assisted deposition of molybdenum from aqueous solutions
NASA Astrophysics Data System (ADS)
Kochemirovsky, Vladimir V.; Logunov, Lev S.; Zhigley, Elvira S.; Baranauskaite, Valeriia
2015-05-01
Local molybdenum deposit obtainment is promising for micro thermocouples creation on dielectric surfaces. This paper is dedicated to development of method of laser-induced molybdenum deposition from water-based solution of inorganic salt on Sitall st-50 and glass dielectric substrates, as well as research of solution composition, pH and substrate optical properties influence on result of laser-induced molybdenum deposition from solution. It was shown that depending on dielectric substrate type, as a result of laser-induced deposition metallic molybdenum or molybdenum dioxide deposit forms: molybdenum dioxide deposits in case of optically clear substrate and metallic molybdenum deposits in case of opaque glass-ceramics. While modelling interim case via using clouded glass, mixture of molybdenum and its oxide was successfully obtained.
Ceramic plasma-sprayed coating of melting crucibles for casting metal fuel slugs
DOE Office of Scientific and Technical Information (OSTI.GOV)
K.H. Kim; C.T. Lee; C.B. Lee
2013-10-01
Thermal cycling and melt reaction studies of ceramic coatings plasma-sprayed on Nb substrates were carried out to evaluate the performance of barrier coatings for metallic fuel casting applications. Thermal cycling tests of the ceramic plasma-sprayed coatings to 1450 degrees C showed that HfN, TiC, ZrC, and Y2O3 coating had good cycling characteristics with few interconnected cracks even after 20 cycles. Interaction studies by 1550 degrees C melt dipping tests of the plasma-sprayed coatings also indicated that HfN and Y2O3 do not form significant reaction layer between U–20 wt.% Zr melt and the coating layer. Plasma-sprayed Y2O3 coating exhibited the mostmore » promising characteristics among HfN, TiC, ZrC, and Y2O3 coating.« less
Improved toughness of silicon carbide
NASA Technical Reports Server (NTRS)
Palm, J. A.
1975-01-01
Several techniques were employed to apply or otherwise form porous layers of various materials on the surface of hot-pressed silicon carbide ceramic. From mechanical properties measurements and studies, it was concluded that although porous layers could be applied to the silicon carbide ceramic, sufficient damage was done to the silicon carbide surface by the processing required so as to drastically reduce its mechanical strength. It was further concluded that there was little promise of success in forming an effective energy absorbing layer on the surface of already densified silicon carbide ceramic that would have the mechanical strength of the untreated or unsurfaced material. Using a process for the pressureless sintering of silicon carbide powders it was discovered that porous layers of silicon carbide could be formed on a dense, strong silicon carbide substrate in a single consolidation process.
Diffusion Bonding of Silicon Carbide Ceramics using Titanium Interlayers
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Singh, Mrityunjay; Shpargel, Tarah P.; Kiser, James D.
2006-01-01
Robust joining approaches for silicon carbide ceramics are critically needed to fabricate leak free joints with high temperature mechanical capability. In this study, titanium foils and physical vapor deposited (PVD) titanium coatings were used to form diffusion bonds between SiC ceramics using hot pressing. Silicon carbide substrate materials used for bonding include sintered SiC and two types of CVD SiC. Microscopy results show the formation of well adhered diffusion bonds. The bond strengths as determined from pull tests are on the order of several ksi, which is much higher than required for a proposed application. Microprobe results show the distribution of silicon, carbon, titanium, and other minor elements across the diffusion bond. Compositions of several phases formed in the joint region were identified. Potential issues of material compatibility and optimal bond formation will also be discussed.
New ZnO-Based Glass Ceramic Sensor for H2 and NO2 Detection
Afify, Ahmed S.; Ataalla, Mohamed
2017-01-01
In this study, a glass ceramic with a nominal composition 58ZnO:4Bi2O3:4WO3:33.3B2O3 was synthesized by melt quenching technique. A gas sensor was then manufactured using a ZnO sol-gel phase as a permanent binder of the glass–ceramic to an alumina substrate having interdigitated electrodes. The film sensitivity towards humidity, NH3, H2 and NO2 was studied at different temperatures. X-ray diffraction technique (XRD), field emission- scanning electron microscopy (FE-SEM) and differential thermal analysis (DTA) were used to characterize the prepared material. Though the response in the sub-ppm NO2 concentration range was not explored, the observed results are comparable with the latest found in the literature. PMID:29099781
TEM Analysis of Diffusion-Bonded Silicon Carbide Ceramics Joined Using Metallic Interlayers
NASA Technical Reports Server (NTRS)
Ozaki, T.; Hasegawa, Y.; Tsuda, H.; Mori, S.; Halbig, M. C.; Asthana, R.; Singh, M.
2017-01-01
SiC fiber-bonded ceramics (SA-Tyrannohex: SA-THX) diffusion-bonded with TiCu metallic interlayers were investigated. Thin samples of the ceramics were prepared with a focused ion beam (FIB) and the interfacial microstructure of the prepared samples was studied by transmission electron microscopy (TEM) and scanning TEM (STEM). In addition to conventional microstructure observation, for detailed analysis of reaction compounds in diffusion-bonded area, we performed STEM-EDS measurements and selected area electron diffraction (SAD) experiments. The TEM and STEM experiments revealed the diffusion-bonded area was composed of only one reaction layer, which was characterized by TiC precipitates in Cu-Si compound matrix. This reaction layer was in good contact with the SA-THX substrates, and it is concluded that the joint structure led to the excellent bonding strength.
The Effect of Marginal Seal of Veneering DiCor (trade name) Substrates with DiCor Plus Porcelain
1991-05-01
the Faculty of The University of Texas Graduate School of Biomedical Sciences at San Antonio in Partial Fulfillment of the Requirements LT’ for the...EFFECT ON MARGINAL SEAL OF VENEERING Dicor® SUBSTRATES WITH Dicor® PLUS PORCELAIN Regan Salamander, M.S. The University of Texas Graduate School of...Conversely, fatigue in ceramics is the subcritical growth of cracks aided by a combined influence of water and stress . It has been estimated that fatigue
Thermal Modelling of Various Thermal Barrier Coatings in a High Flux Rocket Engine
NASA Technical Reports Server (NTRS)
Nesbitt, James A.
1998-01-01
A thermal model was developed to predict the thermal response of coated and uncoated tubes tested in a H2/O2 rocket engine. Temperatures were predicted for traditional APS ZrO2-Y2O3 thermal barrier coatings, as well as APS and LPPS ZrO2-Y2O3/NiCrAlY cermet coatings. Good agreement was observed between predicted and measured metal temperatures at locations near the tube surface or at the inner tube wall. The thermal model was also used to quantitatively examine the effect of various coating system parameters on the temperatures in the substrate and coating. Accordingly, the effect of the presence a metallic bond coat and the effect of radiation from the surface of the ceramic layer were examined. In addition, the effect of a variation in the values of the thermal conductivity of the ceramic layer was also investigated. It was shown that a variation in the thermal conductivity of the ceramic layer, on the order of that reported in the literature for plasma sprayed ZrO2-Y2O3 coatings, can result in temperature differences in the substrate greater than 100 C, a much greater effect than that due to the presence of a bond coat or radiation from the ceramic layer. The thermal model was also used to predict the thermal response of a coated rod in order to quantify the difference in the metal temperatures between the two substrate geometries in order to explain the previously-observed increased life of coatings on rods over that on tubes. It was shown that for the short duration testing in the rocket engine, the temperature in a tube could exceed that in a rod by more than 100 C. Lastly, a two-dimensional model was developed to evaluate the effect of tangential heat transfer around the tube and its impact on reducing the stagnation point temperature. It was also shown that tangential heat transfer does not significantly reduce the stagnation point temperature, thus allowing application of a simpler, one-dimensional model for comparing measured and predicted stagnation point temperatures.
NASA Astrophysics Data System (ADS)
Nag, Jadupati; Ray, Nirat
2018-05-01
Yttrium Iron Garnet (Y3Fe5O12) was synthesized by solid state/ceramic process. Thin films of YIG were deposited on SiO2 substrate at room temperature(RT) and at substrate temperature (Ts) 700 °C using pulsed laser deposition (PLD) technique. RT deposited thin films are amorphous in nature and non-magnetic. After annealing at temperature 800 ° RT deposited thin films showed X-ray peaks as well as the magnetic order. Magnetic ordering is enhanced by annealing temperature(Ta ≥ 750 °C) and resulted good quality of films with high magnetization value.
Failure modes and materials design for biomechanical layer structures
NASA Astrophysics Data System (ADS)
Deng, Yan
Ceramic materials are finding increasing usage in the area of biomechanical replacements---dental crowns, hip and bone implants, etc.---where strength, wear resistance, biocompatibility, chemical durability and even aesthetics are critical issues. Aesthetic ceramic crowns have been widely used in dentistry to replace damaged or missing teeth. However, the failure rates of ceramic crowns, especially all-ceramic crowns, can be 1%˜6% per year, which is not satisfactory to patients. The materials limitations and underlying fracture mechanisms of these prostheses are not well understood. In this thesis, fundamental fracture and damage mechanisms in model dental bilayer and trilayer structures are studied. Principle failure modes are identified from in situ experimentation and confirmed by fracture mechanics analysis. In bilayer structures of ceramic/polycarbonate (representative of ceramic crown/dentin structure), three major damage sources are identified: (i) top-surface cone cracks or (ii) quasiplasticity, dominating in thick ceramic bilayers; (iii) bottom-surface radial cracks, dominating in thin ceramic bilayers. Critical load P for each damage mode are measured in six dental ceramics: Y-TZP zirconia, glass-infiltrated zirconia and alumina (InCeram), glass-ceramic (Empress II), Porcelain (Mark II and Empress) bonded to polymer substrates, as a function of ceramic thickness d in the range of 100 mum to 10 mm. P is found independent of d for mode (i) and (ii), but has a d 2 relations for mode (iii)---bottom surface radial cracking. In trilayer structures of glass/core-ceramic/polycarbonate (representing veneer porcelain/core/dentin structures), three inner fracture origins are identified: radial cracks from the bottom surface in the (i) first and (ii) second layers; and (iii) quasiplasticity in core-ceramic layer. The role of relative veneer/core thickness, d1/d 2 and materials properties is investigated for three core materials with different modulus (114--270GPa) and strength (400--1400MPa): Y-TZP zirconia, InCeram alumina and Empress II glass-ceramic. Explicit relations for the critical loads P to produce these different damage modes in bilayer and trilayer structures are developed in terms of basic material properties (modulus E, strength, hardness H and toughness T) and geometrical variables (thickness d and contact sphere radius r). These experimentally validated relations are used to design of optimal material combinations for improved fracture resistance and to predict mechanical performance of current dental materials.
Method of preforming and assembling superconducting circuit elements
NASA Astrophysics Data System (ADS)
Haertling, Gene H.; Buckley, John D.
1991-03-01
The invention is a method of preforming and pretesting rigid and discrete superconductor circuit elements to optimize the superconductivity development of the preformed circuit element prior to its assembly, and encapsulation on a substrate and final environmental testing of the assembled ceramic superconductive elements.
NASA Astrophysics Data System (ADS)
Shan, Yanguang; Coyle, Thomas W.; Mostaghimi, Javad
2007-12-01
Solution precursor plasma spraying has been used to produce finely structured ceramic coatings with nano- and sub-micrometric features. This process involves the injection of a solution spray of ceramic salts into a DC plasma jet under atmospheric condition. During the process, the solvent vaporizes as the droplet travel downstream. Solid particles are finally formed due to the precipitation of the solute, and the particle are heated up and accelerated to the substrate to generate the coating. This article describes a 3D model to simulate the transport phenomena and the trajectory and heating of the solution spray in the process. The jet-spray two-way interactions are considered. A simplified model is employed to simulate the evolution process and the formation of the solid particle from the solution droplet in the plasma jet. The temperature and velocity fields of the jet are obtained and validated. The particle size, velocity, temperature, and position distribution on the substrate are predicted.
Effects of Ti and TiC ceramic powder on laser-cladded Ti-6Al-4V in situ intermetallic composite
NASA Astrophysics Data System (ADS)
Ochonogor, O. F.; Meacock, C.; Abdulwahab, M.; Pityana, S.; Popoola, A. P. I.
2012-12-01
Titanium metal matrix composite (MMCs) was developed on titanium alloy (Ti-6Al-4V) substrate with the aim of improving the hardness and wear properties by laser cladding technique using a Rofin Sinar 4 kW Nd: YAG laser. Wear investigations were carried out with the aid of three body abrasion tester. The resultant microstructure show homogeneous distribution of TiC particles free from cracks and pores. Multiple track deposited systems with 50% overlap revealed micro-hardness increase from 357.3 HV0.1for the substrate reaching a peak as high as 922.2 HV0.1 for 60%Ti + 40%TiC and the least 665.3 HV0.1 for 80%Ti + 20%TiC MMCs. The wear resistance of the materials improved significantly, indicating a fifteen-fold wear rate reduction due to the proper distribution of ceramic particles thereby forming interstitial carbides as revealed by the X-ray diffraction spectrum.
NASA Astrophysics Data System (ADS)
Zhang, Qingmao; He, Jingjiang; Liu, Wenjin; Zhong, Minlin
2005-01-01
Different weight ratio of titanium, zirconium, WC and Fe-based alloy powders were mixed, and cladded onto a medium carbon steel substrate using a 3kW continuous wave CO2 laser, aiming at producing Ceramic particles- reinforced metal matrix composites (MMCs) layers. The microstructures of the layers are typical hypoeutectic, and the major phases are Ni3Si2, TiSi2, Fe3C, FeNi, MC, Fe7Mo3, Fe3B, γ(residual austenite) and M(martensite). The microstructure morphologies of MMCs layers are dendrites/cells. The MC-type reinforcements are in situ synthesis Carbides which main compositions consist of transition elements Zr, Ti, W. The MC-type particles distributed within dendrite and interdendritic regions with different volume fractions for single and overlapping clad layers. The MMCs layers are dense and free of cracks with a good metallurgical bonding between the layer and substrate. The addition ratio of WC in the mixtures has the remarkable effect on the microhardness of clad layers.
Development of Ceramic Coating on Metal Substrate using Industrial Waste and Ore Minerals
NASA Astrophysics Data System (ADS)
Bhuyan, S. K.; Thiyagarajan, T. K.; Mishra, S. C.
2017-02-01
The technological advancement in modern era has a boon for enlightening human life; but also is a bane to produce a huge amount of (industrial) wastes, which is of great concern for utilization and not to create environmental threats viz. polution etc. In the present piece of research work, attempts have been made to utilize fly ash (wastes of thermal power plants) and along with alumina bearing ore i.e. bauxite, for developing plasma spray ceramic coatings on metals. Fly ash and with 10 and 20% bauxite addition is used to deposit plasma spray coatings on a metal substrate. The surface morphology of the coatings deposited at different power levels of plasma spraying investigated through SEM and EDS analysis. The coating thickness is measured. The porosity levels of the coatings are evaluated. The coating hardness isalso measured. This piece of research work will be beneficial for future development and use of industrial waste and ore minerals for high-valued applications.
Flip-chip replacement within the constraints imposed by multilayer ceramic (MLC) modules
NASA Astrophysics Data System (ADS)
Puttlitz, Karl J.
1984-01-01
Economics often dictates that suitable module rework procedures be established to replace solder bump devices (flip chips) reflowed to multichip carriers. These operations are complicated, owing to various constraints such as the substrate's physical and mechanical properties, close proximity of surface features, etc. This paper describes the constraints and the methods to circumvent them. An order of preference based upon the degree of constraint is recommended to achieve device removal and subsequent site dress of the residual solder left on the substrate. It has been determined that rework (device replacement) can be successfully achieved in even highly constricted situations. This is illustrated by the example of utilizing a localized heating technique, hot gas, to remove solder from microsockets from which chips were previously removed. Microsockets are areas to which chips are reflowed to the top surface of IBM's densely populated multilayer ceramic (MLC) modules, thus forming the so-called controlled collapse chip connection or C-4. The microsocket patterns are thus identical to the chip footprint.
Method of making nanopatterns and nanostructures and nanopatterned functional oxide materials
Dravid, Vinayak P; Donthu, Suresh K; Pan, Zixiao
2014-02-11
Method for nanopatterning of inorganic materials, such as ceramic (e.g. metal oxide) materials, and organic materials, such as polymer materials, on a variety of substrates to form nanopatterns and/or nanostructures with control of dimensions and location, all without the need for etching the materials and without the need for re-alignment between multiple patterning steps in forming nanostructures, such as heterostructures comprising multiple materials. The method involves patterning a resist-coated substrate using electron beam lithography, removing a portion of the resist to provide a patterned resist-coated substrate, and spin coating the patterned resist-coated substrate with a liquid precursor, such as a sol precursor, of the inorganic or organic material. The remaining resist is removed and the spin coated substrate is heated at an elevated temperature to crystallize the deposited precursor material.
MEMS for Practical Applications
NASA Astrophysics Data System (ADS)
Esashi, Masayoshi
Silicon MEMS as electrostatically levitated rotational gyroscopes and 2D optical scanners, and wafer level packaged devices as integrated capacitive pressure sensors and MEMS switches are described. MEMS which use non-silicon materials as LTCC with electrical feedthrough, SiC and LiNbO3 for probe cards for wafer-level burn-in test, molds for glass press molding and SAW wireless passive sensors respectively are also described.
Vielma, Alejandra Z.; León, Luisa; Fernández, Ignacio C.; González, Daniel R.
2016-01-01
S-nitrosylation of several Ca2+ regulating proteins in response to β-adrenergic stimulation was recently described in the heart; however the specific nitric oxide synthase (NOS) isoform and signaling pathways responsible for this modification have not been elucidated. NOS-1 activity increases inotropism, therefore, we tested whether β-adrenergic stimulation induces NOS-1-dependent S-nitrosylation of total proteins, the ryanodine receptor (RyR2), SERCA2 and the L-Type Ca2+ channel (LTCC). In the isolated rat heart, isoproterenol (10 nM, 3-min) increased S-nitrosylation of total cardiac proteins (+46±14%) and RyR2 (+146±77%), without affecting S-nitrosylation of SERCA2 and LTCC. Selective NOS-1 blockade with S-methyl-L-thiocitrulline (SMTC) and Nω-propyl-l-arginine decreased basal contractility and relaxation (−25–30%) and basal S-nitrosylation of total proteins (−25–60%), RyR2, SERCA2 and LTCC (−60–75%). NOS-1 inhibition reduced (−25–40%) the inotropic response and protein S-nitrosylation induced by isoproterenol, particularly that of RyR2 (−85±7%). Tempol, a superoxide scavenger, mimicked the effects of NOS-1 inhibition on inotropism and protein S-nitrosylation; whereas selective NOS-3 inhibitor L-N5-(1-Iminoethyl)ornithine had no effect. Inhibition of NOS-1 did not affect phospholamban phosphorylation, but reduced its oligomerization. Attenuation of contractility was abolished by PKA blockade and unaffected by guanylate cyclase inhibition. Additionally, in isolated mouse cardiomyocytes, NOS-1 inhibition or removal reduced the Ca2+-transient amplitude and sarcomere shortening induced by isoproterenol or by direct PKA activation. We conclude that 1) normal cardiac performance requires basal NOS-1 activity and S-nitrosylation of the calcium-cycling machinery; 2) β-adrenergic stimulation induces rapid and reversible NOS-1 dependent, PKA and ROS-dependent, S-nitrosylation of RyR2 and other proteins, accounting for about one third of its inotropic effect. PMID:27529477
Azari, Abbas; Nikzad Jamnani, Sakineh; Yazdani, Arash; Atri, Faezeh; Rasaie, Vania; Fazel Anvari Yazdi, Abbas
2017-03-01
Many advantages have been attributed to dental zirconia ceramics in terms of mechanical and physical properties; however, the bonding ability of this material to dental structure and/or veneering ceramics has always been a matter of concern. On the other hand, hydroxyapatite (HA) shows excellent biocompatibility and good bonding ability to tooth structure, with mechanically unstable and brittle characteristics, that make it clinically unacceptable for use in high stress bearing areas. The main purpose of this study was to introduce two simple yet practical methods to deposit the crystalline HA nanoparticles on zirconia ceramics. zirconia blocks were treated with HA via two different deposition methods namely thermal coating and air abrasion. Specimens were analyzed by scanning electron microscopy, energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). In both groups, the deposition techniques used were successfully accomplished, while the substrate showed no structural change. However, thermal coating group showed a uniform deposition of crystalline HA but in air abrasion method, there were dispersed thin islands of HA. Thermal coating method has the potential to significantly alter the surface characteristics of zirconia. The simple yet practical nature of the proposed method may be able to shift the bonding paradigm of dental zirconia ceramics. This latter subject needs to be addressed in future investigations.
Chan, Ryan N; Stoner, Brian R; Thompson, Jeffrey Y; Scattergood, Ronald O; Piascik, Jeffrey R
2013-08-01
The aim of this study was to evaluate strengthening mechanisms of yttria-stabilized zirconia (YSZ) thin film coatings as a viable method for improving fracture toughness of all-ceramic dental restorations. Bars (2mm×2mm×15mm, n=12) were cut from porcelain (ProCAD, Ivoclar-Vivadent) blocks and wet-polished through 1200-grit using SiC abrasive. A Vickers indenter was used to induce flaws with controlled size and geometry. Depositions were performed via radio frequency magnetron sputtering (5mT, 25°C, 30:1 Ar/O2 gas ratio) with varying powers of substrate bias. Film and flaw properties were characterized by optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Flexural strength was determined by three-point bending. Fracture toughness values were calculated from flaw size and fracture strength. Data show improvements in fracture strength of up to 57% over unmodified specimens. XRD analysis shows that films deposited with higher substrate bias displayed a high %monoclinic volume fraction (19%) compared to non-biased deposited films (87%), and resulted in increased film stresses and modified YSZ microstructures. SEM analysis shows critical flaw sizes of 67±1μm leading to fracture toughness improvements of 55% over unmodified specimens. Data support surface modification of dental ceramics with YSZ thin film coatings to improve fracture toughness. Increase in construct strength was attributed to increase in compressive film stresses and modified YSZ thin film microstructures. It is believed that this surface modification may lead to significant improvements and overall reliability of all-ceramic dental restorations. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Development of large-area monolithically integrated silicon-film photovoltaic modules
NASA Astrophysics Data System (ADS)
Rand, J. A.; Cotter, J. E.; Ingram, A. E.; Ruffins, T. R.; Shreve, K. P.; Hall, R. B.; Barnett, A. M.
1993-06-01
This report describes work to develop Silicon-Film (trademark) Product 3 into a low-cost, stable solar cell for large-scale terrestrial power applications. The Product 3 structure is a thin (less than 100 micron) polycrystalline layer of silicon on a durable, insulating, ceramic substrate. The insulating substrate allows the silicon layer to be isolated and metallized to form a monolithically interconnected array of solar cells. High efficiency is achievable with the use of light trapping and a passivated back surface. The long-term goal for the product is a 1200 sq cm, 18%-efficient, monolithic array. The short-term objectives are to improve material quality and to fabricate 100 sq cm monolithically interconnected solar cell arrays. Low minority-carrier diffusion length in the silicon film and series resistance in the interconnected device structure are presently limiting device performance. Material quality is continually improving through reduced impurity contamination. Metallization schemes, such as a solder-dipped interconnection process, have been developed that will allow low-cost production processing and minimize R(sub s) effects. Test data for a nine-cell device (16 sq cm) indicated a V(sub oc) of 3.72 V. These first-reported monolithically interconnected multicrystalline silicon-on-ceramic devices show low shunt conductance (less than 0.1 mA/sq cm) due to limited conduction through the ceramic and no process-related metallization shunts.
High temperature oxidation resistant cermet compositions
NASA Technical Reports Server (NTRS)
Phillips, W. M. (Inventor)
1976-01-01
Cermet compositions are designed to provide high temperature resistant refractory coatings on stainless steel or molybdenum substrates. A ceramic mixture of chromium oxide and aluminum oxide form a coating of chromium oxide as an oxidation barrier around the metal particles, to provide oxidation resistance for the metal particles.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) For purposes of this part: (1) Paint and other similar surface-coating materials means a fluid, semi... bonded to the substrate, such as by electroplating or ceramic glazing. (2) Lead-containing paint means paint or other similar surface coating materials containing lead or lead compounds and in which the lead...
Code of Federal Regulations, 2012 CFR
2012-01-01
...) For purposes of this part: (1) Paint and other similar surface-coating materials means a fluid, semi... bonded to the substrate, such as by electroplating or ceramic glazing. (2) Lead-containing paint means paint or other similar surface coating materials containing lead or lead compounds and in which the lead...
Wang, Kaishi; Zhang, Fangzhou; Bordia, Rajendra K
2018-03-27
The ceramic-metal interface is present in various material structures and devices that are vulnerable to failures, like cracking, which are typically due to their incompatible properties, e.g., thermal expansion mismatch. In failure of these multilayer systems, interfacial shear strength is a good measure of the robustness of interfaces, especially for planar films. There is a widely-used shear lag model and method by Agrawal and Raj to analyse and measure the interfacial shear strength of thin brittle film on ductile substrates. The use of this classical model for a type of polymer derived ceramic coatings (thickness ~18 μm) on steel substrate leads to high values of interfacial shear strength. Here, we present finite element simulations for such a coating system when it is subjected to in-plane tension. Results show that the in-plane stresses in the coating are non-uniform, i.e., varying across the thickness of the film. Therefore, they do not meet one of the basic assumptions of the classical model: uniform in-plane stress. Furthermore, effects of three significant parameters, film thickness, crack spacing, and Young's modulus, on the in-plane stress distribution have also been investigated. 'Thickness-averaged In-plane Stress' (TIS), a new failure criterion, is proposed for estimating the interfacial shear strength, which leads to a more realistic estimation of the tensile strength and interfacial shear strength of thick brittle films/coatings on ductile substrates.
Zhang, Fangzhou; Bordia, Rajendra K.
2018-01-01
The ceramic-metal interface is present in various material structures and devices that are vulnerable to failures, like cracking, which are typically due to their incompatible properties, e.g., thermal expansion mismatch. In failure of these multilayer systems, interfacial shear strength is a good measure of the robustness of interfaces, especially for planar films. There is a widely-used shear lag model and method by Agrawal and Raj to analyse and measure the interfacial shear strength of thin brittle film on ductile substrates. The use of this classical model for a type of polymer derived ceramic coatings (thickness ~18 μm) on steel substrate leads to high values of interfacial shear strength. Here, we present finite element simulations for such a coating system when it is subjected to in-plane tension. Results show that the in-plane stresses in the coating are non-uniform, i.e., varying across the thickness of the film. Therefore, they do not meet one of the basic assumptions of the classical model: uniform in-plane stress. Furthermore, effects of three significant parameters, film thickness, crack spacing, and Young’s modulus, on the in-plane stress distribution have also been investigated. ‘Thickness-averaged In-plane Stress’ (TIS), a new failure criterion, is proposed for estimating the interfacial shear strength, which leads to a more realistic estimation of the tensile strength and interfacial shear strength of thick brittle films/coatings on ductile substrates. PMID:29584647
Evaluation of Oxidation Damage in Thermal Barrier Coating Systems
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
1996-01-01
A method based on the technique of dilatometry has been established to quantitatively evaluate the interfacial damage due to the oxidation in a thermal barrier coating system. Strain isolation and adhesion coefficients have been proposed to characterize the thermal barrier coating (TBC) performance based on its thermal expansion behavior. It has been found that, for a thermal barrier coating system consisting of ZrO2-8%Y2O3/FeCrAlY/4140 steel substrate, the oxidation of the bond coat and substrate significantly reduced the ceramic coating adherence, as inferred from the dilatometry measurements. The in-situ thermal expansion measurements under 30 deg C to 700 deg C thermal cycling in air showed that the adhesion coefficient, A(sub i) decreased by 25% during the first 35 oxidation cycles. Metallography showed that delamination occurred at both the ceramic/bond coat and bond coat/substrate interfaces. In addition, the strain isolation effect has been improved by increasing the FeCrAlY bond coat thickness. The strain isolation coefficient, Si, increased from about 0.04 to 0.25, as the bond coat thickness changed from 0.1 mm to 1.0 mm. It may be possible to design optimum values of strain isolation and interface adhesion coefficients to achieve the best TBC performance.
Optimisation of the enamelling of an apatite-mullite glass-ceramic coating on Ti6Al4V.
O'Flynn, Kevin P; Stanton, Kenneth T
2011-09-01
Apatite-mullite glass-ceramics (AMGCs) are under investigation as a potential alternative to hydroxyapatite (HA) as a coating for cementless fixation of orthopaedic implants. These materials have tailorable mechanical and chemical properties that make them attractive for use as bioactive coatings. Here, AMGC coatings on Ti(6)Al(4)V were investigated to determine an improved heat treatment regime using a systematic examination of the different inputs: composition of glass, nucleation hold and crystallisation hold. An upper limit to the heat treatment temperature was determined by the α + β --> β of Ti(6)Al(4)V at 970°C. The glass composition was modified to produce different crystallisation temperatures and sintering characteristics. A glass was found that is fully crystalline below 970°C and has good sinterability. The effects of different heat treatment time and temperature combinations on the coating and substrate morphologies were examined and the most suitable combination determined. This sample was further investigated and was found to have qualitatively good adhesion and evidence of an interfacial reaction region between the coating and substrate indicating that a chemical reaction had occurred. Oxygen infiltration into the substrate was quantified and the new route was shown to result in a 63% reduction in penetration depth.
The thermal management of high power light emitting diodes
NASA Astrophysics Data System (ADS)
Hsu, Ming-Seng; Huang, Jen-Wei; Shyu, Feng-Lin
2012-10-01
Thermal management had an important influence not only in the life time but also in the efficiency of high power light emitting diodes (HPLEDs). 30 watts in a single package have become standard to the industrial fabricating of HPLEDs. In this study, we fabricated both of the AlN porous films, by vacuum sputtering, soldered onto the HPLEDs lamp to enhance both of the heat transfer and heat dissipation. In our model, the ceramic enables transfer the heat from electric device to the aluminum plate quickly and the porous increase the quality of the thermal dissipation between the PCB and aluminum plate, as compared to the industrial processing. The ceramic films were characterized by several subsequent analyses, especially the measurement of real work temperature. The X-Ray diffraction (XRD) diagram analysis reveals those ceramic phases were successfully grown onto the individual substrates. The morphology of ceramic films was investigated by the atomic force microscopy (AFM). The results show those porous films have high thermal conduction to the purpose. At the same time, they had transferred heat and limited work temperature, about 70°, of HPLEDs successfully.
Lan, Chuwen; Zhu, Di; Gao, Jiannan; Li, Bo; Gao, Zehua
2018-04-30
Terahertz (THz) all-dielectric metasurfaces made of high-index and low-loss resonators have attracted more and more attention due to their versatile properties. However, the all-dielectric metasurfaces in THz suffer from limited bandwidth and low tunability. Meanwhile, they are usually fabricated on flat and rigid substrates, and consequently their applications are restricted. Here, a simple approach is proposed and experimentally demonstrated to obtain a flexible and tunable THz all-dielectric metasurface. In this metasurface, micro ceramic spheres (ZrO 2 ) are embedded in a ferroelectric (strontium titanate) / elastomer (polydimethylsiloxane) composite. It is shown that the Mie resonances in micro ceramic spheres can be thermally and reversibly tuned resulting from the temperature dependent permittivity of the ferroelectric / PDMS composite. This metasurface characterized by flexibility and tunability is expected to have a more extensive application in active THz devices.
Synthesis and microstructural TEM investigation of CaCu 3Ru 4O 12 ceramic and thin film
NASA Astrophysics Data System (ADS)
Brizé, Virginie; Autret-Lambert, Cécile; Wolfman, Jérôme; Gervais, Monique; Gervais, François
2011-10-01
CaCu 3Ru 4O 12 (CCRO) is a conductive oxide having the same structure as CaCu 3Ti 4O 12 (CCTO) and close lattice parameters. The later compound is strongly considered for high density parallel plates capacitors application due to its so-called colossal dielectric constant. The need for an electrode inducing CCTO epitaxial growth with a clean and sharp interface is therefore necessary, and CCRO is a good potential candidate. In this paper, the synthesis of monophasic CCRO ceramic is reported, as well as pulsed laser deposition of CCRO thin film onto (001) NdCaAlO 4 substrate. Structural and physical properties of bulk CCRO were studied by transmission electron microscopy and electron spin resonance. CCRO films and ceramic exhibited a metallic behavior down to low temperature. CCRO films were (001) oriented and promoted a CCTO film growth with the same orientation.
Adhesive bonding to polymer infiltrated ceramic.
Schwenter, Judith; Schmidli, Fredy; Weiger, Roland; Fischer, Jens
2016-01-01
Aim of this study was to investigate the mechanism of adhesive bonding to the polymer-infiltrated ceramic VITA Enamic [VE]. Shear bond strength was measured with three resin composite cements: RelyX Unicem 2 Automix, Clearfil SA and Variolink II on polished surfaces of VE and its components silicate ceramic [SC] and polymer [PM] (n=12). Further, the effect of etching VE with 5% HF for 15-240 s and the application of silane coupling agents was analyzed in a screening test (n=6). Shear bond strength measurements were performed after 24 h of water storage at 37°C. Significant bonding to polished substrates could only be achieved on VE and SC when silane coupling agents were used. Etching of VE with 5% HF increased shear bond strength. Following silanization of etched VE, a further increase in shear bond strength could be established. Etching for more than 30 s did not improve shear bond strength.
Tsai, Wei-Yu; Huang, Guan-Rong; Wang, Kuang-Kuo; Chen, Chin-Fu; Huang, J. C.
2017-01-01
Aluminum alloys, which serve as heat sink in light-emitting diode (LED) lighting, are often inherent with a high thermal conductivity, but poor thermal total emissivity. Thus, high emissive coatings on the Al substrate can enhance the thermal dissipation efficiency of radiation. In this study, the ultrasonic mechanical coating and armoring (UMCA) technique was used to insert various ceramic combinations, such as Al2O3, SiO2, or graphite, to enhance thermal dissipation. Analytic models have been established to couple the thermal radiation and convection on the sample surface through heat flow equations. A promising match has been reached between the theoretical predictions and experimental measurements. With the adequate insertion of ceramic powders, the temperature of the Al heat sinks can be lowered by 5–11 °C, which is highly favorable for applications requiring cooling components. PMID:28772814
Tsai, Wei-Yu; Huang, Guan-Rong; Wang, Kuang-Kuo; Chen, Chin-Fu; Huang, J C
2017-04-26
Aluminum alloys, which serve as heat sink in light-emitting diode (LED) lighting, are often inherent with a high thermal conductivity, but poor thermal total emissivity. Thus, high emissive coatings on the Al substrate can enhance the thermal dissipation efficiency of radiation. In this study, the ultrasonic mechanical coating and armoring (UMCA) technique was used to insert various ceramic combinations, such as Al₂O₃, SiO₂, or graphite, to enhance thermal dissipation. Analytic models have been established to couple the thermal radiation and convection on the sample surface through heat flow equations. A promising match has been reached between the theoretical predictions and experimental measurements. With the adequate insertion of ceramic powders, the temperature of the Al heat sinks can be lowered by 5-11 °C, which is highly favorable for applications requiring cooling components.
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher; Pepper, Stephen V.; Honecy, Frank S.
1993-01-01
Outer layer of silver lubricates, while intermediate layer of titanium ensures adhesion. Lubricating outer films of silver deposited on thin intermediate films of titanium on alumina substrates found to reduce sliding friction and wear. Films provide effective lubrication for ceramic seals, bearings, and other hot sliding components in advanced high-temperature engines.
16 CFR § 1303.2 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) For purposes of this part: (1) Paint and other similar surface-coating materials means a fluid, semi... bonded to the substrate, such as by electroplating or ceramic glazing. (2) Lead-containing paint means paint or other similar surface coating materials containing lead or lead compounds and in which the lead...
Guanidine based vehicle/binders for use with oxides, metals and ceramics
NASA Technical Reports Server (NTRS)
Philipp, Warren H. (Inventor); Weitch, Lisa C. (Inventor); Jaskowiak, Martha H. (Inventor)
1995-01-01
The use of guanidine salts of organic fatty acids (guanidine soaps) as vehicles and binders for coating substrate surfaces is disclosed. Being completely organic, the guanidine soaps can be burned off leaving no undesirable residue. Of special interest is the use of guanidine 2-ethyl hexanoate as the vehicle and binder for coating problematic surfaces such as in coating alumina fibers with platinum or zirconia. For this application the guanidine soap is used as a melt. For other applications the guanidine soap may be used in a solution with a variety of solvents, the solution containing chlorometalates or powdered metals, refractories or ceramics.
NASA Technical Reports Server (NTRS)
Chapman, P. W.; Zook, J. D.; Heaps, J. D.; Grung, B. L.; Koepke, B.; Schuldt, S. B.
1979-01-01
The technical and economic feasibility of producing solar cell-quality silicon was investigated. This was done by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. Significant progress in the following areas was demonstrated: (1) fabricating a 10 sq cm cell having 9.9 percent conversion efficiency; (2) producing a 225 sq cm layer of sheet silicon; and (3) obtaining 100 microns thick coatings at pull speed of 0.15 cm/sec, although approximately 50 percent of the layer exhibited dendritic growth.
Generation of functional structures by laser pyrolysis of polysilazane
NASA Astrophysics Data System (ADS)
Krauss, Hans-Joachim; Otto, Andreas
2002-06-01
The pyrolysis of polysilazanes by laser power represents an innovative technique for the generation of ceramic-like coatings and structures. The dissolved polysilazanes can be easily applied by painting techniques such as dipping or spraying. In the following pyrolysis the polysilazane layer transforms into an amorphous ceramic-like coating. The laser power is absorbed in the precursor layer, which leads to the latter's ceramization without damaging the substrate by thermal load. While plane laser pyrolysis creates a protective coating, selective pyrolysis creates a raised and adherent ceramic-like structure that remains after the unexposed polymer layer has been removed. The flexibility of a writing laser system in conjunction with a suitable handling system makes it possible to inscribe any kind of 2D structure on nearly any complexly shaped part. Some of the chemical, magnetic, and electrical structure properties can be adjusted by the pyrolysis parameters and special types of filler particles. Especially the possibility to control electric conductivity should make it possible to create structure dielectric films or planar resistors, inductors or capacitors, which are basically written on the surface of the part. Because of their ceramic nature of the structures are resistant against high temperatures and corrosive media. Thus, this new additive structuring technique could finally strike a new path in creating corrosion resistant high- temperature sensors and control systems.
Surface preparation for high purity alumina ceramics enabling direct brazing in hydrogen atmospheres
Cadden, Charles H.; Yang, Nancy Yuan Chi; Hosking, Floyd M.
2001-01-01
The present invention relates to a method for preparing the surface of a high purity alumina ceramic or sapphire specimen that enables direct brazing in a hydrogen atmosphere using an active braze alloy. The present invention also relates to a method for directly brazing a high purity alumina ceramic or sapphire specimen to a ceramic or metal member using this method of surface preparation, and to articles produced by this brazing method. The presence of silicon, in the form of a SiO.sub.2 -containing surface layer, can more than double the tensile bond strength in alumina ceramic joints brazed in a hydrogen atmosphere using an active Au-16Ni-0.75 Mo-1.75V filler metal. A thin silicon coating applied by PVD processing can, after air firing, produce a semi-continuous coverage of the alumina surface with a SiO.sub.2 film. Room temperature tensile strength was found to be proportional to the fraction of air fired surface covered by silicon-containing films. Similarly, the ratio of substrate fracture versus interface separation was also related to the amount of surface silicon present prior to brazing. This process can replace the need to perform a "moly-manganese" metallization step.
Liquid-Phase Processing of Barium Titanate Thin Films
NASA Astrophysics Data System (ADS)
Harris, David Thomas
Processing of thin films introduces strict limits on the thermal budget due to substrate stability and thermal expansion mismatch stresses. Barium titanate serves as a model system for the difficulty in producing high quality thin films because of sensitivity to stress, scale, and crystal quality. Thermal budget restriction leads to reduced crystal quality, density, and grain growth, depressing ferroelectric and nonlinear dielectric properties. Processing of barium titanate is typically performed at temperatures hundreds of degrees above compatibility with metalized substrates. In particular integration with silicon and other low thermal expansion substrates is desirable for reductions in costs and wider availability of technologies. In bulk metal and ceramic systems, sintering behavior has been encouraged by the addition of a liquid forming second phase, improving kinetics and promoting densification and grain growth at lower temperatures. This approach is also widespread in the multilayer ceramic capacitor industry. However only limited exploration of flux processing with refractory thin films has been performed despite offering improved dielectric properties for barium titanate films at lower temperatures. This dissertation explores physical vapor deposition of barium titanate thin films with addition of liquid forming fluxes. Flux systems studied include BaO-B2O3, Bi2O3-BaB2O 4, BaO-V2O5, CuO-BaO-B2O3, and BaO-B2O3 modified by Al, Si, V, and Li. Additions of BaO-B2O3 leads to densification and an increase in average grain size from 50 nm to over 300 nm after annealing at 900 °C. The ability to tune permittivity of the material improved from 20% to 70%. Development of high quality films enables engineering of ferroelectric phase stability using residual thermal expansion mismatch in polycrystalline films. The observed shifts to TC match thermodynamic calculations, expected strain from the thermal expansion coefficients, as well as x-ray diffract measurements . Our system exhibits flux-film-substrate interactions that can lead to dramatic changes to the microstructure. This effect is especially pronounced onc -sapphire, with Al diffusion from the substrate leading to formation of an epitaxial BaAl2O4 second phase at the substrate-film interface. The formation of this second phase in the presence of a liquid phase seeds {111} twins that drive abnormal grain growth. The orientation of the sapphire substrate determines the BaAl2O 4 morphology, enabling control the abnormal grain growth behavior. CuO additions leads to significant grain growth at 900 °C, with average grain size approaching 500 nm. The orthorhombic-tetragonal phase transition is clearly observable in temperature dependent measurements and both linear and nonlinear dielectric properties are improved. All films containing CuO are susceptible to aging. A number of other systems were investigated for efficacy at temperatures below 900 °C. Pulsed laser deposition was used to study flux + BaTiO 3 targets, layered flux films, and in situ liquids. RF-magnetron sputtering using a dual-gun approach was used to explore integration on flexible foils with Ba1-xSrxTiO3. Many of these systems were based on the BaO-B2O3 system, which has proven effective in thin films, multilayer ceramic capacitors, and bulk ceramics. Modifiers allow tailoring of the microstructure at 900 °C, however no compositions were found, and no reports exist in the open literature, that provide significant grain growth or densification below 900 °C. Liquid phase fluxes offer a promising path forward for low temperature processing of barium titanate, with the ultimate goal of integration with metalized silicon substrates. This work demonstrates significant improvements to dielectric properties and the necessity of understanding interactions in the film-flux-substrate system.
NASA Astrophysics Data System (ADS)
Klishin, V.; Nikitenko, S.; Opruk, G.
2018-05-01
The paper discusses advanced top coal caving technologies for thick coal seams and addresses some issues of incomplete coal extraction, which can result in the environmental damage, landscape change, air and water pollution and endogenous fires. The authors put forward a fundamentally new, having no equivalent and ecology-friendly method to difficult-to-cave roof coal – directional hydraulic fracturing and nonexplosive disintegration.
Method of making sulfur-resistant composite metal membranes
Way, J Douglas [Boulder, CO; Lusk, Mark [Golden, CO; Thoen, Paul [Littleton, CO
2012-01-24
The invention provides thin, hydrogen-permeable, sulfur-resistant membranes formed from palladium or palladium-alloy coatings on porous, ceramic or metal supports. Also disclosed are methods of making these membranes via sequential electroless plating techniques, wherein the method of making the membrane includes decomposing any organic ligands present on the substrate, reducing the palladium crystallites on the substrate to reduced palladium crystallites, depositing a film of palladium metal on the substrate and then depositing a second, gold film on the palladium film. These two metal films are then annealed at a temperature between about 200.degree. C. and about 1200.degree. C. to form a sulfur-resistant, composite PdAu alloy membrane.
Formation of high-Tc YBa2Cu3O(7-delta) films on Y2BaCuO5 substrate
NASA Astrophysics Data System (ADS)
Wang, W. N.; Lu, H. B.; Lin, W. J.; Yao, P. C.; Hsu, H. E.
1988-07-01
High-Tc superconducting YBa2Cu3O(7-delta) films have been successfully prepared on green Y2BaCuO5 (2115) ceramic substrate. The films have been formed by RF sputtering and screen printing with post annealing at 925 C. Regarding superconducting features, the sharp resistivity drop with Tc onset around 95 K (midpoint 84 K) and 99 K (midpoint 89 K) has been observed for RF sputtered and printed films respectively. Both films show the excellent adhesion towards the 2115 substrate. Powder X-ray diffraction profiles indicate a majority of 1237 phase with preferred orientation for RF sputtered thin film.
ZnO buffer layer for metal films on silicon substrates
Ihlefeld, Jon
2014-09-16
Dramatic improvements in metallization integrity and electroceramic thin film performance can be achieved by the use of the ZnO buffer layer to minimize interfacial energy between metallization and adhesion layers. In particular, the invention provides a substrate metallization method utilizing a ZnO adhesion layer that has a high work of adhesion, which in turn enables processing under thermal budgets typically reserved for more exotic ceramic, single-crystal, or metal foil substrates. Embodiments of the present invention can be used in a broad range of applications beyond ferroelectric capacitors, including microelectromechanical systems, micro-printed heaters and sensors, and electrochemical energy storage, where integrity of metallized silicon to high temperatures is necessary.
Ultra-hard AlMgB14 coatings fabricated by RF magnetron sputtering from a stoichiometric target
NASA Astrophysics Data System (ADS)
Grishin, A. M.; Khartsev, S. I.; Böhlmark, J.; Ahlgren, M.
2015-01-01
For the first time hard aluminum magnesium boride films were fabricated by RF magnetron sputtering from a single stoichiometric ceramic AlMgB14 target. Optimized processing conditions (substrate temperature, target sputtering power and target-to-substrate distance) enable fabrication of stoichiometric in-depth compositionally homogeneous films with the peak values of nanohardness 88 GPa and Young's modulus 517 GPa at the penetration depth of 26 nm and, respectively, 35 and 275 GPa at 200 nm depth in 2 μm thick film.
Zhang, Xiangling; Guo, Lu; Huang, Hualing; Jiang, Yinghe; Li, Meng; Leng, Yujie
2016-06-01
Constructed rapid infiltration systems (CRIS) are a reasonable option for treating wastewater, owing to their simplicity, low cost and low energy consumption. Layered double hydroxides (LDHs), novel materials with high surface area and anion exchange capacity, faced the problem of the application in CRIS due to the powdered form. To overcome this shortcoming, Zn-LDHs (FeZn-LDHs, CoZn-LDHs, AlZn-LDHs) were prepared by co-precipitation method and in-situ coated on the surface of the natural bio-ceramic to synthesize the core-shell bio-ceramic/Zn-LDHs composites. Characterization by Scanning Electron Microscope (SEM) and X-ray Fluorescence Spectrometer (XRFS) indicated that the Zn-LDHs were successful loaded on the natural bio-ceramic. Column tests experiments indicated that the bio-ceramic/Zn-LDHs efficiently enhanced the removal performance of phosphorus. The efficiently removal rates of bio-ceramic/FeZn-LDHs were 71.58% for total phosphorous (TP), 74.91% for total dissolved phosphorous (TDP), 82.31% for soluble reactive phosphorous (SRP) and 67.58% for particulate phosphorus (PP). Compared with the natural bio-ceramic, the average removal rates were enhanced by 32.20% (TP), 41.33% (TDP), 49.06% (SRP) and 10.50% (PP), respectively. Adsorption data of phosphate were better described by the Freundlich model for the bio-ceramic/Zn-LDHs and natural bio-ceramic, except for the bio-ceramic/CoZn-LDHs. The maximum adsorption capacity of bio-ceramic/AlZn-LDHs (769.23 mg/kg) was 1.77 times of the natural bio-ceramic (434.78 mg/kg). The effective desorption of phosphate could achieve by using a mixed solution of 5 M NaCl + 0.1 M NaOH, it outperformed the natural bio-ceramic of 18.95% for FeZn-LDHs, 7.59% for CoZn-LDHs and 12.66% for AlZn-LDHs. The kinetic data of the bio-ceramic/Zn-LDHs were better described by the pseudo-second-order equation. Compared the removal amount of phosphate by the natural bio-ceramic, the physical effects were improved little, but the chemical effects were enhanced for 112.49% for FeZn-LDHs, 111.89% for CoZn-LDHs and 122.67% for AlZn-LDHs. Therefore, the way of coating Zn-LDHs on the bio-ceramic efficiently improved the chemical effects in phosphate removal, supporting that it can use as potential substrates for the removal of phosphorus in CRIS. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ceramic Adhesive and Methods for On-Orbit Repair of Re-Entry Vehicles
NASA Technical Reports Server (NTRS)
Riedell, James A.; Easler, Timothy E.
2013-01-01
This adhesive is capable of repairing damaged leading edge components of reentry vehicles while in space, and is novel with regard to its ability to be applied in the vacuum of space, and in a microgravity environment. Once applied, the adhesive provides thermal and oxidation protection to the substrate (in this case, reinforced carbon/carbon composites, RCCs) during re-entry of a space vehicle. Although there may be many formulations for repair adhesives, at the time of this reporting, this is the first known adhesive capable of an on-orbit repair. The adhesive is an engineered ceramic material composed of a pre-ceramic polymer and refractory powders in the form of a paste or putty that can be applied to a scratched, cracked, or fractured composite surface, covering and protecting the damaged area. The adhesive is then "cured" with a heat cycle, thereby cross-linking the polymer into a hardened material and bonding it to the substrate. During the heat of reentry, the material is converted to a ceramic coating that provides thermal and oxidative stability to the repaired area, thus allowing the vehicle to pass safely from space into the upper atmosphere. Ceramic powders such as SiC, ZrB2 and Y2O3 are combined with allylhydridopolycarbosilane (AHPCS) resin, and are mixed to form a paste adhesive. The material is then applied to the damaged area by brush, spatula, trowel, or other means to fill cracks, gaps, and holes, or used to bond patches onto the damaged area. The material is then cured, in a vacuum, preferably at 250F (approximately equal to 121C) for two hours. The re-entry heating of the vehicle at temperatures in excess of 3,000F (approximately equal to 1,650C) then converts this material into a ceramic coating. This invention has demonstrated advantages in resistance to high temperatures, as was demonstrated in more than 100 arc-jet tests in representative environments at NASA. Extensive testing verified oxidation protection for the repaired substrate (RCC), and confirmed that the microstructure of the resulting repair leads to durability and resistance to melting or flow. Its processability and working life in a vacuum was demonstrated by NASA astronauts in glovebox processing studies, as well as on-orbit in the open space shuttle bay. All of these advantages increase the working life of NASA vehicles, as well as improve safety for any crew on a manned vehicle. The adhesive, trademarked NOAX(TM). or Non-Oxide Adhesive Experimental, flew on all space shuttle missions from Return To Flight (STS-114) until the final flight (STS- 135) as a crack repair material for the leading edges and nose cap of the vehicle. NOAX(TM) was patented under U.S. Patents 7,628,878 and 7,888,277.
Al-Thagafi, Rana; Al-Zordk, Walid; Saker, Samah
2016-01-01
To test the effect of surface conditioning protocols on the reparability of CAD/CAM zirconia-reinforced lithium silicate ceramic compared to lithium-disilicate glass ceramic. Zirconia-reinforced lithium silicate ceramic (Vita Suprinity) and lithium disilicate glass-ceramic blocks (IPS e.max CAD) were categorized into four groups based on the surface conditioning protocol used. Group C: no treatment (control); group HF: 5% hydrofluoric acid etching for 60 s, silane (Monobond-S) application for 60 s, air drying; group HF-H: 5% HF acid etching for 60 s, application of silane for 60 s, air drying, application of Heliobond, light curing for 20 s; group CO: sandblasting with CoJet sand followed by silanization. Composite resin (Tetric EvoCeram) was built up into 4 x 6 x 3 mm blocks using teflon molds. All specimens were subjected to thermocycling (5000x, 5°C to 55°C). The microtensile bond strength test was employed at a crosshead speed of 1 mm/min. SEM was employed for evaluation of all the debonded microbars, the failure type was categorized as either adhesive (failure at adhesive layer), cohesive (failure at ceramic or composite resin), or mixed (failure between adhesive layer and substrate). Two-way ANOVA and the Tukey's HSD post-hoc test were applied to test for significant differences in bond strength values in relation to different materials and surface pretreatment (p < 0.05). The highest microtensile repair bond strength for Vita Suprinity was reported in group CO (33.1 ± 2.4 MPa) and the lowest in group HF (27.4 ± 4.4 MPa). Regarding IPS e.max CAD, group CO showed the highest (30.5 ± 4.9 MPa) and HF the lowest microtensile bond strength (22.4 ± 5.7 MPa). Groups HF, HF-H, and CO showed statistically significant differences in terms of all ceramic types used (p < 0.05). The control group showed exclusively adhesive failures, while in HF, HF-H, and CO groups, mixed failures were predominant. Repair bond strength to zirconia-reinforced lithium silicate ceramics and lithium-disilicate glass ceramic could be improved when ceramic surfaces are sandblasted with CoJet sand followed by silanization.
Can zinc aluminate-titania composite be an alternative for alumina as microelectronic substrate?
Roshni, Satheesh Babu; Sebastian, Mailadil Thomas; Surendran, Kuzhichalil Peethambharan
2017-01-01
Alumina, thanks to its superior thermal and dielectric properties, has been the leading substrate over several decades, for power and microelectronics circuits. However, alumina lacks thermal stability since its temperature coefficient of resonant frequency (τf) is far from zero (−60 ppmK−1). The present paper explores the potentiality of a ceramic composite 0.83ZnAl2O4-0.17TiO2 (in moles, abbreviated as ZAT) substrates for electronic applications over other commercially-used alumina-based substrates and synthesized using a non-aqueous tape casting method. The present substrate has τf of + 3.9 ppmK−1 and is a valuable addition to the group of thermo-stable substrates. The ZAT substrate shows a high thermal conductivity of 31.3 Wm−1K−1 (thermal conductivity of alumina is about 24.5 Wm−1K−1), along with promising mechanical, electrical and microwave dielectric properties comparable to that of alumina-based commercial substrates. Furthermore, the newly-developed substrate material shows exceptionally good thermal stability of dielectric constant, which cannot be met with any of the alumina-based HTCC substrates. PMID:28084459
NASA Astrophysics Data System (ADS)
Turpin, M. M.; Blake, J.; Crossey, L. J.; Ali, A.; Hansson, L.
2015-12-01
Exposure to trace metals (As, U, Cr, Cu, Pb, Zn) has potential negative health effects on human populations and wildlife. Geothermal waters often have elevated concentrations of trace elements and understanding the geochemical cycling of these elements can be challenging. Previous studies have utilized in situ stream pebbles and glass or ceramic substrates with iron-manganese oxide coatings to understand contamination and or chemical cycling. This project's main focus is to develop an ideal tracing method using adsorption onto substrate surfaces and to define key parameters that are necessary for the phenomenon of adsorption between trace metals and these surface coatings to occur. Sampling locations include the Jemez River and Rio San Antonio in the Jemez mountains, northern New Mexico. Both streams have significant geothermal inputs. Pebbles and cobbles were gathered from the active stream channel and 6mm glass beads and 2 X1 in. ceramic plates were placed in streams for three weeks to allow for coating accumulation. Factors such as leachate type, water pH, substrate type, coating accumulation period and leach time were all considered in this experiment. It was found that of the three leachates (aqua regia, 10% aqua regia and hydroxylamine), hydroxylamine was the most effective at leaching coatings without dissolving substrates. Samples leached with aqua regia and 10% aqua regia were found to lose weight and mass over the following 5, 7, and 10 day measurements. Glass beads were determined to be more effective than in stream pebbles as an accumulation substrate: coatings were more easily controlled and monitored. Samples leached with hydroxylamine for 5 hours and 72 hours showed little difference in their leachate concentrations, suggesting that leach time has little impact on the concentration of leachate samples. This research aims to find the best method for trace metal accumulation in streams to aid in understanding geochemical cycling.