Stephens, Jr., John J.; Hosking, F. Michael; Yost, Frederick G.
2003-12-16
A binary allow braze composition has been prepared and used in a bonded article of ceramic-ceramic and ceramic-metal materials. The braze composition comprises greater than approximately 95 wt % silver, greater than approximately 2 wt % hafnium and less than approximately 4.1 wt % hafnium, and less than approximately 0.2 wt % trace elements. The binary braze alloy is used to join a ceramic material to another ceramic material or a ceramic material, such as alumina, quartz, aluminum nitride, silicon nitride, silicon carbide, and mullite, to a metal material, such as iron-based metals, cobalt-based metals, nickel-based metals, molybdenum-based metals, tungsten-based metals, niobium-based metals, and tantalum-based metals. A hermetic bonded article is obtained with a strength greater than 10,000 psi.
A new classification system for all-ceramic and ceramic-like restorative materials.
Gracis, Stefano; Thompson, Van P; Ferencz, Jonathan L; Silva, Nelson R F A; Bonfante, Estevam A
2015-01-01
Classification systems for all-ceramic materials are useful for communication and educational purposes and warrant continuous revisions and updates to incorporate new materials. This article proposes a classification system for ceramic and ceramic-like restorative materials in an attempt to systematize and include a new class of materials. This new classification system categorizes ceramic restorative materials into three families: (1) glass-matrix ceramics, (2) polycrystalline ceramics, and (3) resin-matrix ceramics. Subfamilies are described in each group along with their composition, allowing for newly developed materials to be placed into the already existing main families. The criteria used to differentiate ceramic materials are based on the phase or phases present in their chemical composition. Thus, an all-ceramic material is classified according to whether a glass-matrix phase is present (glass-matrix ceramics) or absent (polycrystalline ceramics) or whether the material contains an organic matrix highly filled with ceramic particles (resin-matrix ceramics). Also presented are the manufacturers' clinical indications for the different materials and an overview of the different fabrication methods and whether they are used as framework materials or monolithic solutions. Current developments in ceramic materials not yet available to the dental market are discussed.
Environment Conscious Ceramics (Ecoceramics): An Eco-Friendly Route to Advanced Ceramic Materials
NASA Technical Reports Server (NTRS)
Singh, M.
2001-01-01
Environment conscious ceramics (Ecoceramics) are a new class of materials, which can be produced with renewable natural resources (wood) or wood wastes (wood sawdust). This technology provides an eco-friendly route to advanced ceramic materials. Ecoceramics have tailorable properties and behave like ceramic materials manufactured by conventional approaches. Silicon carbide-based ecoceramics have been fabricated by reactive infiltration of carbonaceous preforms by molten silicon or silicon-refractory metal alloys. The fabrication approach, microstructure, and mechanical properties of SiC-based ecoceramics are presented.
Process for strengthening silicon based ceramics
Kim, Hyoun-Ee; Moorhead, A. J.
1993-01-01
A process for strengthening silicon based ceramic monolithic materials and omposite materials that contain silicon based ceramic reinforcing phases that requires that the ceramic be exposed to a wet hydrogen atmosphere at about 1400.degree. C. The process results in a dense, tightly adherent silicon containing oxide layer that heals, blunts , or otherwise negates the detrimental effect of strength limiting flaws on the surface of the ceramic body.
Process for strengthening silicon based ceramics
Kim, Hyoun-Ee; Moorhead, A. J.
1993-04-06
A process for strengthening silicon based ceramic monolithic materials and omposite materials that contain silicon based ceramic reinforcing phases that requires that the ceramic be exposed to a wet hydrogen atmosphere at about 1400.degree. C. The process results in a dense, tightly adherent silicon containing oxide layer that heals, blunts , or otherwise negates the detrimental effect of strength limiting flaws on the surface of the ceramic body.
Crystallization behaviors and seal application of basalt based glass-ceramics
NASA Astrophysics Data System (ADS)
Ateş, A.; Önen, U.; Ercenk, E.; Yılmaz, Ş.
2017-02-01
Basalt based glass-ceramics were prepared by conventional melt-quenching technique and subsequently converted to glass-ceramics by a controlled nucleation and crystallization process. Glass materials were obtained by melt at 1500°C and quenched in cold water. The powder materials were made by milling and spin coating. The powders were applied on the 430 stainless steel interconnector material, and heat treatment was carried out. The interface characteristics between the glass-ceramic layer and interconnector were investigated by using X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). The results showed that the basalt base glass-ceramic sealant material exhibited promising properties to use for SOFC.
NASA Technical Reports Server (NTRS)
Singh, M.; Levine, S. R. (Technical Monitor)
2001-01-01
Ceramic joining has been recognized as an enabling technology for successful utilization of advanced ceramics and composite materials. A number of joint design and testing issues have been discussed for ceramic joints in silicon carbide-based ceramics and fiber-reinforced composites. These joints have been fabricated using an affordable, robust ceramic joining technology (ARCJoinT). The microstructure and good high temperature mechanical capability (compressive and flexural strengths) of ceramic joints in silicon carbide-based ceramics and composite materials are reported.
Bioactive ceramic-based materials with designed reactivity for bone tissue regeneration
Ohtsuki, Chikara; Kamitakahara, Masanobu; Miyazaki, Toshiki
2009-01-01
Bioactive ceramics have been used clinically to repair bone defects owing to their biological affinity to living bone; i.e. the capability of direct bonding to living bone, their so-called bioactivity. However, currently available bioactive ceramics do not satisfy every clinical application. Therefore, the development of novel design of bioactive materials is necessary. Bioactive ceramics show osteoconduction by formation of biologically active bone-like apatite through chemical reaction of the ceramic surface with surrounding body fluid. Hence, the control of their chemical reactivity in body fluid is essential to developing novel bioactive materials as well as biodegradable materials. This paper reviews novel bioactive materials designed based on chemical reactivity in body fluid. PMID:19158015
Ebert, Thomas; Elsner, Laura; Hirschfelder, Ursula; Hanke, Sebastian
2016-03-01
The purpose of this work was to analyze surfaces consisting of different restorative materials for shear bond strength (SBS) and failure patterns of metal and ceramic brackets. Bonding involved the use of a universal primer (Monobond® Plus, Ivoclar Vivadent). Six restorative materials were tested, including one composite resin (Clearfil Majesty™ Posterior, Kuraray Noritake Dental), one glass-ceramic material (IPS Empress® Esthetic, Ivoclar Vivadent), one oxide-ceramic material (CORiTEC Zr transpa Disc, imes-icore), two base-metal alloys (remanium® star, Dentaurum; Colado® CC, Ivoclar Vivadent), and one palladium-based alloy (Callisto® 75 Pd, Ivoclar Vivadent). Bovine incisors served as controls. Both metal and ceramic brackets (discovery®/discovery® pearl; Dentaurum) were bonded to the restorative surfaces after sandblasting and pretreatment with Monobond® Plus. A setup modified from DIN 13990-2 was used for SBS testing and adhesive remnant index (ARI)-based analysis of failure patterns. The metal brackets showed the highest mean SBS values on the glass-ceramic material (68.61 N/mm(2)) and the composite resin (67.58 N/mm(2)) and the lowest mean SBS on one of the base-metal alloys (Colado® CC; 14.01 N/mm(2)). The ceramic brackets showed the highest mean SBS on the glass-ceramic material (63.36 N/mm(2)) and the lowest mean SBS on the palladium-based alloy (38.48 N/mm(2)). Significant differences between the metal and ceramic brackets were observed in terms of both SBS values and ARI scores (p < 0.05). Under both bracket types, fractures of the composite-resin and the glass-ceramic samples were observed upon debonding. Opaque restorative materials under metal brackets were found to involve undercuring of the adhesive. Monobond® Plus succeeded in generating high bond strengths of both bracket types on all restorative surfaces. Given our observations of cohesive fracture (including cases of surface avulsion) of the composite-resin and the glass-ceramic samples, we recommend against using these material combinations in clinical practice.
Ceramic Nanocomposites from Tailor-Made Preceramic Polymers
Mera, Gabriela; Gallei, Markus; Bernard, Samuel; Ionescu, Emanuel
2015-01-01
The present Review addresses current developments related to polymer-derived ceramic nanocomposites (PDC-NCs). Different classes of preceramic polymers are briefly introduced and their conversion into ceramic materials with adjustable phase compositions and microstructures is presented. Emphasis is set on discussing the intimate relationship between the chemistry and structural architecture of the precursor and the structural features and properties of the resulting ceramic nanocomposites. Various structural and functional properties of silicon-containing ceramic nanocomposites as well as different preparative strategies to achieve nano-scaled PDC-NC-based ordered structures are highlighted, based on selected ceramic nanocomposite systems. Furthermore, prospective applications of the PDC-NCs such as high-temperature stable materials for thermal protection systems, membranes for hot gas separation purposes, materials for heterogeneous catalysis, nano-confinement materials for hydrogen storage applications as well as anode materials for secondary ion batteries are introduced and discussed in detail. PMID:28347023
Laser Surface Treatment of Sintered Alumina
NASA Astrophysics Data System (ADS)
Hagemann, R.; Noelke, C.; Kaierle, S.; Wesling, V.
Sintered alumina ceramics are used as refractory materials for industrial aluminum furnaces. In this environment the ceramic surface is in permanent contact with molten aluminum resulting in deposition of oxidic material on its surface. Consequently, a lower volume capacity as well as thermal efficiency of the furnaces follows. To reduce oxidic adherence of the ceramic material, two laser-based surface treatment processes were investigated: a powder- based single-step laser cladding and a laser surface remelting. Main objective is to achieve an improved surface quality of the ceramic material considering the industrial requirements as a high process speed.
Mechanical fatigue degradation of ceramics versus resin composites for dental restorations.
Belli, Renan; Geinzer, Eva; Muschweck, Anna; Petschelt, Anselm; Lohbauer, Ulrich
2014-04-01
For posterior partial restorations an overlap of indication exists where either ceramic or resin-based composite materials can be successfully applied. The aim of this study was to compare the fatigue resistance of modern dental ceramic materials versus dental resin composites in order to address such conflicts. Bar specimens of five ceramic materials and resin composites were produced according to ISO 4049 and stored for 14 days in distilled water at 37°C. The following ceramic materials were selected for testing: a high-strength zirconium dioxide (e.max ZirCAD, Ivoclar), a machinable lithium disilicate (e.max CAD, Ivoclar), a pressable lithium disilicate ceramic (e-max Press, Ivoclar), a fluorapatite-based glass-ceramic (e.max Ceram, Ivoclar), and a machinable color-graded feldspathic porcelain (Trilux Forte, Vita). The composite materials selected were: an indirect machinable composite (Lava Ultimate, 3M ESPE) and four direct composites with varying filler nature (Clearfil Majesty Posterior, Kuraray; GrandioSO, Voco; Tetric EvoCeram, Ivoclar-Vivadent; and CeramX Duo, Dentsply). Fifteen specimens were tested in water for initial strength (σin) in 4-point bending. Using the same test set-up, the residual flexural fatigue strength (σff) was determined using the staircase approach after 10(4) cycles at 0.5 Hz (n=25). Weibull parameters σ0 and m were calculated for the σin specimens, whereas the σff and strength loss in percentage were obtained from the fatigue experiment. The zirconium oxide ceramic showed the highest σin and σff (768 and 440 MPa, respectively). Although both lithium disilicate ceramics were similar in the static test, the pressable version showed a significantly higher fatigue resistance after cyclic loading. Both the fluorapatite-based and the feldspathic porcelain showed equivalent initial and cyclic fatigue properties. From the composites, the highest filled direct material Clearfil Majesty Posterior showed superior fatigue performance. From all materials, e.max Press and Clearfil Majesty Posterior showed the lowest strength loss (29.6% and 32%, respectively), whereas the other materials lost between 41% and 62% of their flexural strength after cyclic loading. Dental ceramics and resin composite materials show equivalent fatigue strength degradation at loads around 0.5σin values. Apart from the zirconium oxide and the lithium disilicate ceramics, resin composites generally showed better σff after 10,000 cycles than the fluorapatite glass-ceramic and the feldspathic porcelain. Resin composite restorations may be used as an equivalent alternative to glass-rich-ceramic inlays regarding mechanical performance. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay; Salem, J. A.; Gray, Hugh R. (Technical Monitor)
2002-01-01
Silicon carbide based, environment friendly, biomorphic ceramics have been fabricated by the pyrolysis and infiltration of natural wood (maple and mahogany) precursors. This technology provides an eco-friendly route to advanced ceramic materials. These biomorphic silicon carbide ceramics have tailorable properties and behave like silicon carbide based materials manufactured by conventional approaches. The elastic moduli and fracture toughness of biomorphic ceramics strongly depend on the properties of starting wood preforms and the degree of molten silicon infiltration. Mechanical properties of silicon carbide ceramics fabricated from maple wood precursors indicate the flexural strengths of 3441+/-58 MPa at room temperature and 230136 MPa at 1350C. Room temperature fracture toughness of the maple based material is 2.6 +/- 0.2 MPa(square root of)m while the mahogany precursor derived ceramics show a fracture toughness of 2.0 +/- 0.2 Mpa(square root of)m. The fracture toughness and the strength increase as the density of final material increases. Fractographic characterization indicates the failure origins to be pores and chipped pockets of silicon.
NASA Technical Reports Server (NTRS)
Levine, Stanley R. (Editor)
1992-01-01
The present volume discusses ceramics and ceramic-matrix composites in prospective aerospace systems, monolithic ceramics, transformation-toughened and whisker-reinforced ceramic composites, glass-ceramic matrix composites, reaction-bonded Si3N4 and SiC composites, and chemical vapor-infiltrated composites. Also discussed are the sol-gel-processing of ceramic composites, the fabrication and properties of fiber-reinforced ceramic composites with directed metal oxidation, the fracture behavior of ceramic-matrix composites (CMCs), the fatigue of fiber-reinforced CMCs, creep and rupture of CMCs, structural design methodologies for ceramic-based materials systems, the joining of ceramics and CMCs, and carbon-carbon composites.
Method of making metal matrix composites reinforced with ceramic particulates
Cornie, James A.; Kattamis, Theodoulos; Chambers, Brent V.; Bond, Bruce E.; Varela, Raul H.
1989-01-01
Composite materials and methods for making such materials are disclosed in which dispersed ceramic particles are at chemical equilibrium with a base metal matrix, thereby permitting such materials to be remelted and subsequently cast or otherwise processed to form net weight parts and other finished (or semi-finished) articles while maintaining the microstructure and mechanical properties (e.g. wear resistance or hardness) of the original composite. The composite materials of the present invention are composed of ceramic particles in a base metal matrix. The ceramics are preferably carbides of titanium, zirconium, tungsten, molybdenum or other refractory metals. The base metal can be iron, nickel, cobalt, chromium or other high temperature metal and alloys thereof. For ferrous matrices, alloys suitable for use as the base metal include cast iron, carbon steels, stainless steels and iron-based superalloys.
Method of making metal matrix composites reinforced with ceramic particulates
Cornie, J.A.; Kattamis, T.; Chambers, B.V.; Bond, B.E.; Varela, R.H.
1989-08-01
Composite materials and methods for making such materials are disclosed in which dispersed ceramic particles are at chemical equilibrium with a base metal matrix, thereby permitting such materials to be remelted and subsequently cast or otherwise processed to form net weight parts and other finished (or semi-finished) articles while maintaining the microstructure and mechanical properties (e.g. wear resistance or hardness) of the original composite. The composite materials of the present invention are composed of ceramic particles in a base metal matrix. The ceramics are preferably carbides of titanium, zirconium, tungsten, molybdenum or other refractory metals. The base metal can be iron, nickel, cobalt, chromium or other high temperature metal and alloys thereof. For ferrous matrices, alloys suitable for use as the base metal include cast iron, carbon steels, stainless steels and iron-based superalloys. 2 figs.
Characterization of composite materials based on cement-ceramic powder blended binder
NASA Astrophysics Data System (ADS)
Kulovaná, Tereza; Pavlík, Zbyšek
2016-06-01
Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO2 emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzed by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.
Characterization of composite materials based on cement-ceramic powder blended binder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulovaná, Tereza; Pavlík, Zbyšek
Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO{sub 2} emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzedmore » by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.« less
Comparative characterization of a novel cad-cam polymer-infiltrated-ceramic-network
Pascual, Agustín; Camps, Isabel; Grau-Benitez, María
2015-01-01
Background The field of dental ceramics for CAD-CAM is enriched with a new innovative material composition having a porous three-dimensional structure of feldspathic ceramic infiltrated with acrylic resins.The aim of this study is to determine the mechanical properties of Polymer-Infiltrated-Ceramic-Network (PICN) and compare its performance with other ceramics and a nano-ceramic resin available for CAD-CAM systems. Material and Methods In this study a total of five different materials for CAD-CAM were investigated. A polymer-infiltrated ceramic (Vita Enamic), a nano-ceramic resin (Lava Ultimate), a feldspathic ceramic (Mark II), a lithium disilicate ceramic (IPS-e max CAD) and finally a Leucite based ceramic (Empress - CAD). From CAD-CAM blocks, 120 bars (30 for each material cited above) were cut to measure the flexural strength with a three-point-bending test. Strain at failure, fracture stress and Weibull modulus was calculated. Vickers hardness of each material was also measured. Results IPS-EMAX presents mechanical properties significantly better from the other materials studied. Its strain at failure, flexural strength and hardness exhibited significantly higher values in comparison with the others. VITA ENAMIC and LAVA ULTIMATE stand out as the next most resistant materials. Conclusions The flexural strength, elastic modulus similar to a tooth as well as having less hardness than ceramics make PICN materials an option to consider as a restorative material. Key words:Ceramic infiltrated with resin, CAD-CAM, Weibull modulus, flexural strength, micro hardness. PMID:26535096
A hybrid phenomenological model for ferroelectroelastic ceramics. Part II: Morphotropic PZT ceramics
NASA Astrophysics Data System (ADS)
Stark, S.; Neumeister, P.; Balke, H.
2016-10-01
In this part II of a two part series, the rate-independent hybrid phenomenological constitutive model introduced in part I is modified to account for the material behavior of morphotropic lead zirconate titanate ceramics (PZT ceramics). The modifications are based on a discussion of the available literature results regarding the micro-structure of these materials. In particular, a monoclinic phase and a highly simplified representation of the hierarchical structure of micro-domains and nano-domains observed experimentally are incorporated into the model. It is shown that experimental data for the commercially available morphotropic PZT material PIC151 (PI Ceramic GmbH, Lederhose, Germany) can be reproduced and predicted based on the modified hybrid model.
NASA Technical Reports Server (NTRS)
Singh, M.
2002-01-01
Environment-conscious, biomorphic ceramics (Ecoceramics) are a new class of materials that can be produced with renewable resources (wood) and wood wastes (wood sawdust). These materials have tailorable properties with numerous potential applications. Silicon carbide-based ecoceramics have been fabricated by the infiltration of wood-derived carbonaceous preforms with oxide and silicon based materials. The wood-derived carbonaceous preforms have been shown to be quite useful in producing porous or dense materials with different microstructures and compositions. The microstructure and mechanical properties (flexural strength, fracture toughness, elastic modulus, and compressive strength) of a wide variety of Sic-based ecoceramics have been measured. Ecoceramics have tailorable properties and behave like ceramic materials manufactured by conventional approaches. In this presentation the fabrication approach, microstructure, and thermomechanical properties of a wide variety of Sic-based Ecoceramics will be reported.
Ceramic Technology For Advanced Heat Engines Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-12-01
Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. The objective of the project is to develop the industrial technology base required for reliable ceramicsmore » for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. This advanced materials technology is being developed in parallel and close coordination with the ongoing DOE and industry proof of concept engine development programs. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. Abstracts prepared for appropriate papers.« less
Light Weight Biomorphous Cellular Ceramics from Cellulose Templates
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay; Yee, Bo-Moon; Gray, Hugh R. (Technical Monitor)
2003-01-01
Bimorphous ceramics are a new class of materials that can be fabricated from the cellulose templates derived from natural biopolymers. These biopolymers are abundantly available in nature and are produced by the photosynthesis process. The wood cellulose derived carbon templates have three- dimensional interconnectivity. A wide variety of non-oxide and oxide based ceramics have been fabricated by template conversion using infiltration and reaction-based processes. The cellular anatomy of the cellulose templates plays a key role in determining the processing parameters (pyrolysis, infiltration conditions, etc.) and resulting ceramic materials. The processing approach, microstructure, and mechanical properties of the biomorphous cellular ceramics (silicon carbide and oxide based) have been discussed.
Novel Attrition-Resistant Fischer Tropsch Catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weast, Logan, E.; Staats, William, R.
2009-05-01
There is a strong national interest in the Fischer-Tropsch synthesis process because it offers the possibility of making liquid hydrocarbon fuels from reformed natural gas or coal and biomass gasification products. This project explored a new approach that had been developed to produce active, attrition-resistant Fischer-Tropsch catalysts that are based on glass-ceramic materials and technology. This novel approach represented a promising solution to the problem of reducing or eliminating catalyst attrition and maximizing catalytic activity, thus reducing costs. The technical objective of the Phase I work was to demonstrate that glass-ceramic based catalytic materials for Fischer-Tropsch synthesis have resistance tomore » catalytic deactivation and reduction of particle size superior to traditional supported Fischer-Tropsch catalyst materials. Additionally, these novel glass-ceramic-based materials were expected to exhibit catalytic activity similar to the traditional materials. If successfully developed, the attrition-resistant Fischer-Tropsch catalyst materials would be expected to result in significant technical, economic, and social benefits for both producers and public consumers of Fischer-Tropsch products such as liquid fuels from coal or biomass gasification. This program demonstrated the anticipated high attrition resistance of the glass-ceramic materials. However, the observed catalytic activity of the materials was not sufficient to justify further development at this time. Additional testing documented that a lack of pore volume in the glass-ceramic materials limited the amount of surface area available for catalysis and consequently limited catalytic activity. However, previous work on glass-ceramic catalysts to promote other reactions demonstrated that commercial levels of activity can be achieved, at least for those reactions. Therefore, we recommend that glass-ceramic materials be considered again as potential Fischer-Tropsch catalysts if it can be demonstrated that materials with adequate pore volume can be produced. During the attrition resistance tests, it was learned that the glass-ceramic materials are very abrasive. Attention should be paid in any further developmental efforts to the potential for these hard, abrasive materials to damage reactors.« less
Catalytic thermal barrier coatings
Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh
2009-06-02
A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.
Scheithauer, Uwe; Weingarten, Steven; Johne, Robert; Schwarzer, Eric; Abel, Johannes; Richter, Hans-Jürgen; Moritz, Tassilo; Michaelis, Alexander
2017-11-28
In our study, we investigated the additive manufacturing (AM) of ceramic-based functionally graded materials (FGM) by the direct AM technology thermoplastic 3D printing (T3DP). Zirconia components with varying microstructures were additively manufactured by using thermoplastic suspensions with different contents of pore-forming agents (PFA), which were co-sintered defect-free. Different materials were investigated concerning their suitability as PFA for the T3DP process. Diverse zirconia-based suspensions were prepared and used for the AM of single- and multi-material test components. All of the samples were sintered defect-free, and in the end, we could realize a brick wall-like component consisting of dense (<1% porosity) and porous (approx. 5% porosity) zirconia areas to combine different properties in one component. T3DP opens the door to the AM of further ceramic-based 4D components, such as multi-color, multi-material, or especially, multi-functional components.
Weingarten, Steven; Johne, Robert; Schwarzer, Eric; Richter, Hans-Jürgen; Michaelis, Alexander
2017-01-01
In our study, we investigated the additive manufacturing (AM) of ceramic-based functionally graded materials (FGM) by the direct AM technology thermoplastic 3D printing (T3DP). Zirconia components with varying microstructures were additively manufactured by using thermoplastic suspensions with different contents of pore-forming agents (PFA), which were co-sintered defect-free. Different materials were investigated concerning their suitability as PFA for the T3DP process. Diverse zirconia-based suspensions were prepared and used for the AM of single- and multi-material test components. All of the samples were sintered defect-free, and in the end, we could realize a brick wall-like component consisting of dense (<1% porosity) and porous (approx. 5% porosity) zirconia areas to combine different properties in one component. T3DP opens the door to the AM of further ceramic-based 4D components, such as multi-color, multi-material, or especially, multi-functional components. PMID:29182541
NASA Astrophysics Data System (ADS)
Hameed, Amer; Appleby-Thomas, Gareth; Wood, David; Jaansalu, Kevin
2015-06-01
Recent studies have shown evidence that the ballistic-resistance of fragmented (comminuted) ceramics is independent of the original strength of the material. In particular, experimental investigations into the ballistic behaviour of such fragmented ceramics have indicated that this response is correlated to shattered ceramic morphology. This suggests that careful control of ceramic microstructure - and therefore failure paths - might provide a route to optimise post-impact ballistic performance, thereby enhancing multi-hit capability. In this study, building on previous in-house work, ballistic tests were conducted using pre-formed `fragmented-ceramic' analogues based around three morphologically differing (but chemically identical) alumina feedstock materials compacted into target `pucks. In an evolution of previous work, variation of target thickness provided additional insight into an apparent morphology-based contribution to ballistic response.
USDA-ARS?s Scientific Manuscript database
Clay and plant materials such as wood are the raw materials used in manufacture of ceramic water filtration devices around the world. A step by step manufacturing procedure which includes initial mixing, molding and sintering is used. The manufactured ceramic filters have numerous pores which help i...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-08-01
Significant accomplishments in fabricating cermaic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, additional research is needed in materials and processing development, design methodology, and data base and life prediction. An assessment of needs was completed, and a five-year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotivemore » heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.« less
Porous ceramic scaffolds with complex architectures
NASA Astrophysics Data System (ADS)
Munch, E.; Franco, J.; Deville, S.; Hunger, P.; Saiz, E.; Tomsia, A. P.
2008-06-01
This work compares two novel techniques for the fabrication of ceramic scaffolds for bone tissue engineering with complex porosity: robocasting and freeze casting. Both techniques are based on the preparation of concentrated ceramic suspensions with suitable properties for the process. In robocasting, the computer-guided deposition of the suspensions is used to build porous materials with designed three dimensional geometries and microstructures. Freeze casting uses ice crystals as a template to form porous lamellar ceramic materials. Preliminary results on the compressive strengths of the materials are also reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-09-01
A five-year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applicationsmore » in these engines.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-03-01
An assessment of needs was completed, and a five-year project plan was developed with extensive input from private industry. Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barriermore » and wear applications in these engines.« less
Process for strengthening aluminum based ceramics and material
Moorhead, Arthur J.; Kim, Hyoun-Ee
2000-01-01
A process for strengthening aluminum based ceramics is provided. A gaseous atmosphere consisting essentially of silicon monoxide gas is formed by exposing a source of silicon to an atmosphere consisting essentially of hydrogen and a sufficient amount of water vapor. The aluminum based ceramic is exposed to the gaseous silicon monoxide atmosphere for a period of time and at a temperature sufficient to produce a continuous, stable silicon-containing film on the surface of the aluminum based ceramic that increases the strength of the ceramic.
Tribology of ceramics: Report of the Committee on Tribology of Ceramics
NASA Technical Reports Server (NTRS)
1988-01-01
The current state of knowledge of ceramic surface structures, composition, and reactivity is reviewed. The tribological requirements of advanced mechanical systems now being deployed (in particular, heat engines) exceed the capabilities of traditional metallic-based materials because of the high temperatures encountered. Advanced ceramic materials for such applications are receiving intense scrutiny, but there is a lack of understanding of the properties and behavior of ceramic surfaces and the influence of processing on the properties of ceramics is described. The adequacy of models, ranging form atomic to macro, to describe and to predict ceramic friction and wear are discussed, as well as what is known about lubrication at elevated temperatures. From this analysis, recommendations are made for coordination, research, and development that will lead to better performance of ceramic materials in tribological systems.
Method for sealing an oxygen transport membrane assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, Javier E.; Grant, Arthur F.
An improved method of sealing a ceramic part to a solid part made of ceramic, metal, cermet or a ceramic coated metal is provided. The improved method includes placing a bond agent comprising an Al 2O 3 and SiO 2 based glass-ceramic material and organic binder material on adjoining surfaces of the ceramic part and the solid part. The assembly is heated to a first target temperature that removes or dissolves the organic binder material from the bond agent and the assembly is subjected to a second induction heating step at a temperature ramp rate of between about 100.degree. C.more » and 200.degree. C. per minute to temperatures where the glass-ceramic material flows and wets the interface between adjoining surfaces. The assembly is rapidly cooled at a cooling rate of about 140.degree. C. per minute or more to induce nucleation and re-crystallization of the glass-ceramic material to form a dense, durable and gas-tight seal.« less
Multiscale Modeling and Process Optimization for Engineered Microstructural Complexity
2007-10-26
R. C. Rogan, E. Üstündag, M. R. Daymond and V. Knoblauch Ferroelastic Behavior of PZT -Based Ferroelectric Ceramics , Materials Science Forum, 404...Bhattacharya, Materials Science Seminar, University of Southern California, 2003. 42. R.C. Rogan, Texture and Strain Analysis of PZT by In-Situ...Annual Meeting of the American Ceramic Society, St. Louis, MO; May 2002. 44. R. Rogan, Ferroelastic Behavior of PZT -Based Ferroelectric Ceramics , 6th
Goryainova, Kristina E; Morokov, Egor S; Retinskaja, Marina V; Rusanov, Fedor S; Apresyan, Samvel V; Lebedenko, Igor Yu
2018-01-01
The aim of the present work was to compare the elastic properties and internal structure of 4 different CAD/CAM chairside materials, by the method of Scanning Impulse Acoustic Microscopy (SIAM). Four chairside CAD/CAM materials with different structures from hybrid ceramic (VITA Enamic, VITA Zahnfabrik), feldspatic ceramic (VITABlocs Mark II, VITA Zahnfabrik), leucite glass-ceramic (IPS Empress CAD, Ivoclar Vivadent) and PMMA (Telio CAD, Ivoclar Vivadent) were examined by Scanning Impulse Acoustic Microscope (SIAM). The results of micromorphological research of CAD/CAM chairside materials using SIAM method showed differences between the internal structures of these materials. The internal structure of feldspatic and glass-ceramic samples revealed the presence of pores with different sizes, from 10 to 100 microns; the structure of polymer materials rendered some isolated defects, while in the structure of hybrid material, defects were not found. Based on the results obtained from the present study, in cases of chairside production of dental crowns, it would be advisable to give preference to the blocks of hybrid ceramics. Such ceramics devoid of quite large porosity, glazing for CAD/CAM crowns made from leucite glass-ceramic and feldspatic ceramic may be an option. For these purposes, commercially available special muffle furnace for clinical and laboratory individualization and glazing of ceramic prostheses were provided. Further studies are needed to confirm the evidence emerging from the present research.
Construction Material And Method
Wagh, Arun S.; Antink, Allison L.
2006-02-21
A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic. The ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.
Method of binding structural material
Wagh, Arun S.; Antink, Allison L.
2007-12-25
A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic. The ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.
NASA Astrophysics Data System (ADS)
Popa, Ioan-Dan; Dobriţa, Florin
2017-12-01
Tremendous amount of funds and other resorces were invested in studying the response of ceramic materials under ballistic impact, the main goal being to find a way to increase the protection of soldiers and the vehicles used in the modern battlespace. Using of ceramic materials especially carbon based (carbides), nitrogen based (nitrides) and oxygen based (oxides) ceramics in order to increase the protection level of ballistic equipment could be, sometimes, a big challenge when trying to use the proper test in order to evaluate and compare their performances. The role of the tests is to provide a better understanding of their response in different situations and, as a consequence, to make them more efficient as armour components through future improvements. The paper presents shortly the main tests which are used and eventually standardised for evaluating the ballistic behaviour of the ceramics and other armour components, with a special focus to DOP (Depth of Penetration) Tests.
NASA Astrophysics Data System (ADS)
Ivanov, A. A.; Tuev, V. I.; Nisan, A. V.; Potapov, G. N.
2016-11-01
A synthesis technique of low-temperature ceramic material based on aluminosilicates of dendrimer morphology capable to contain up to 80 wt % of nitrides and oxides of high-melting compounds as filler has been developed. The synthesis is based on a sol-gel method followed by mechanochemical treatment and ultrasonic dispersing. Dielectric ceramic layers with the layer thickness in the nanometer range and high thermal conductivity have been obtained for the first time by 3D aerosol printing of the synthesized material. The study of the obtained ceramic coating on the metal surface (Al) has proved its use prospects in microelectronics, light engineering, and devices for special purposes.
Manufacture of a ceramic paper for art applications
NASA Astrophysics Data System (ADS)
Dölle, K.; Honig, A.; Piatkowski, J.; Kuempel, C.
2018-01-01
Ceramic paper products are mostly used as high temperature ceramic insulation products. They offer an effective solution for most demanding heat management and insulation applications. The objective for this research project was to create a ceramic paper like product that combines the advantages of paper fibers, ceramic filler, and a clay product into one product, which can be produced on a continuous base with a paper machine. The produced ceramic paper product had a ceramic filler level between 59.68% and 78.8% with a basis weight between 322.9 g/m² and 693.7 g/m², and a final moisture content of 58.6% to 44.7% respectively. The wooden fiber served as a support medium for the ceramic filler material during production on the paper machine and during the conversion process into art pieces. During firing in a kiln, the fiber material combusted and the ceramic filler material mixture acts as common pottery clay, holding the desired shape of the art pieces produced.
NASA Technical Reports Server (NTRS)
Abhiraman, A.; Collard, D.; Cardelino, B.; Bhatia, S.; Desai, P.; Harruna, I.; Khan, I.; Mariam, Y.; Mensah, T.; Mitchell, M.
1992-01-01
The NASA funding allowed Clark Atlanta University (CAU) to establish a High Performance Polymers And Ceramics (HiPPAC) Research Center. The HiPPAC Center is consolidating and expanding the existing polymer and ceramic research capabilities at CAU through the development of interdepartmental and interinstitutional research in: (1) polymer synthesis; (2) polymer characterization and properties; (3) polymer processing; (4) polymer-based ceramic synthesis; and (5) ceramic characterization and properties. This Center has developed strong interactions between scientists and materials scientists of CAU and their counterparts from sister institutions in the Atlanta University Center (AUC) and the Georgia Institute of Technology. As a component of the center, we have started to develop strong collaborations with scientists from other universities and the HBCU's, national and federal agency laboratories, and the private sector during this first year. During this first year we have refined the focus of the research in the HiPPAC Center to three areas with seven working groups that will start programmatic activities on January 1, 1993, as follows: (1) nonlinear optical properties of chitosan derivatives; (2) polymeric electronic materials; (3) nondestructive characterization and prediction of polyimide performance; (4) solution processing of high-performance materials; (5) processable polyimides for composite applications; (6) sol-gel based ceramic materials processing; and (7) synthetic based processing of pre-ceramic polymers.
Visualization and Analysis of Impact Damage in Sapphire
2011-11-01
transparent armor materials like Starphire soda - lime and borosilicate glass [8], fused silica [9] and the transparent polycrystalline ceramic AlON...conventional glass -based armor when a transparent ceramic is used as strike face on a glass -polymer laminate [1, 2, 3]. Sapphire, i.e. single crystal aluminum...materials. Since part of transparent armor consists of brittle materials, the fragmentation of the ceramic and glass layers plays a key role in the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-05-01
An assessment of needs was completed, and a five-year project plan was developed with input from private industry. Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. Focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. The work described in this report is organized according to the following WBS project elements: management and coordination; materials and processing (monolithics, ceramic composites, thermal and wear coatings, joining); materials design methodology (contact interfaces, newmore » concepts); data base and life prediction (time-dependent behavior, environmental effects, fracture mechanics, NDE development); and technology transfer. This report includes contributions from all currently active project participants.« less
Ceramic Technology for Advanced Heat Engines Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-08-01
The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional researchmore » is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially.« less
Er,Cr:YSGG Laser as a Novel Method for Rebonding Failed Ceramic Brackets.
Sohrabi, Aydin; Jafari, Sanaz; Kimyai, Soodabeh; Rikhtehgaran, Sahand
2016-10-01
Since there is no standard method for rebonding loose ceramic brackets, the aim of this study was to evaluate the possibility of using Er,Cr:YSGG laser to eliminate the remaining composite materials from the base of ceramic brackets and to compare the bond strength of rebonded brackets with the new ones. Sixty-two extracted human premolars were mounted in acrylic cylinders. Thirty-one ceramic brackets were bonded, and shear bond strength was tested using Hounsfield testing machine. The remnants of the bonding material were removed from the bases of brackets using Er,Cr:YSGG laser. These brackets were rebonded to 31 fresh teeth and again shear bond strength was measured. Pattern of debonding was assessed in both cases under a stereomicroscope and graded according to ARI index. Data were analyzed with independent t-test and Fisher's exact test. Mean shear bond strength of the bond and rebond groups was 12.29 ± 5.46 and 10.58 ± 5.16 MPa, respectively. There were no significant differences between the two groups (p = 0.21). Pattern of bond failure was not statistically different between the two groups. Er,Cr:YSGG laser was effective in removing the remnants of bonding material from the base of ceramic brackets without any interference with the ceramic base itself, demonstrating that it might be a suitable method for rebonding ceramic brackets.
Emerging Ceramic-based Materials for Dentistry
Denry, I.; Kelly, J.R.
2014-01-01
Our goal is to give an overview of a selection of emerging ceramics and issues for dental or biomedical applications, with emphasis on specific challenges associated with full-contour zirconia ceramics, and a brief synopsis on new machinable glass-ceramics and ceramic-based interpenetrating phase composites. Selected fabrication techniques relevant to dental or biomedical applications such as microwave sintering, spark plasma sintering, and additive manufacturing are also reviewed. Where appropriate, the authors have added their opinions and guidance. PMID:25274751
Advanced Ceramics for NASA's Current and Future Needs
NASA Technical Reports Server (NTRS)
Jaskowiak, Martha H.
2006-01-01
Ceramic composites and monolithics are widely recognized by NASA as enabling materials for a variety of aerospace applications. Compared to traditional materials, ceramic materials offer higher specific strength which can enable lighter weight vehicle and engine concepts, increased payloads, and increased operational margins. Additionally, the higher temperature capabilities of these materials allows for increased operating temperatures within the engine and on the vehicle surfaces which can lead to improved engine efficiency and vehicle performance. To meet the requirements of the next generation of both rocket and air-breathing engines, NASA is actively pursuing the development and maturation of a variety of ceramic materials. Anticipated applications for carbide, nitride and oxide-based ceramics will be presented. The current status of these materials and needs for future goals will be outlined. NASA also understands the importance of teaming with other government agencies and industry to optimize these materials and advance them to the level of maturation needed for eventual vehicle and engine demonstrations. A number of successful partnering efforts with NASA and industry will be highlighted.
NASA Astrophysics Data System (ADS)
Clegg, Richard A.; Hayhurst, Colin J.
1999-06-01
Ceramic materials, including glass, are commonly used as ballistic protection materials. The response of a ceramic to impact, perforation and penetration is complex and difficult and/or expensive to instrument for obtaining detailed physical data. This paper demonstrates how a hydrocode, such as AUTODYN, can be used to aid in the understanding of the response of brittle materials to high pressure impact loading and thus promote an efficient and cost effective design process. Hydrocode simulations cannot be made without appropriate characterisation of the material. Because of the complexitiy of the response of ceramic materials this often requires a number of complex material tests. Here we present a methodology for using the results of flyer plate tests, in conjunction with numerical simulations, to derive input to the Johnson-Holmquist material model for ceramics. Most of the research effort in relation to the development of hydrocode material models for ceramics has concentrated on the material behaviour under compression and shear. While the penetration process is dominated by these aspects of the material response, the final damaged state of the material can be significantly influenced by the tensile behaviour. Modelling of the final damage state is important since this is often the only physical information which is available. In this paper we present a unique implementation, in a hydrocode, for improved modelling of brittle materials in the tensile regime. Tensile failure initiation is based on any combination of principal stress or strain while the post-failure tensile response of the material is controlled through a Rankine plasticity damaging failure surface. The tensile failure surface can be combined with any of the traditional plasticity and/or compressive damage models. Finally, the models and data are applied in both traditional grid based Lagrangian and Eulerian solution techniques and the relativley new SPH (Smooth Particle Hydrodynamics) meshless technique. Simulations of long rod impacts onto ceramic faced armour and hypervelocity impacts on glass solar array space structures are presented and compared with experiments.
Goryainova, Kristina E.; Morokov, Egor S.; Retinskaja, Marina V.; Rusanov, Fedor S.; Apresyan, Samvel V.; Lebedenko, Igor Yu.
2018-01-01
Aim: The aim of the present work was to compare the elastic properties and internal structure of 4 different CAD/CAM chairside materials, by the method of Scanning Impulse Acoustic Microscopy (SIAM). Methods: Four chairside CAD/CAM materials with different structures from hybrid ceramic (VITA Enamic, VITA Zahnfabrik), feldspatic ceramic (VITABlocs Mark II, VITA Zahnfabrik), leucite glass-ceramic (IPS Empress CAD, Ivoclar Vivadent) and PMMA (Telio CAD, Ivoclar Vivadent) were examined by Scanning Impulse Acoustic Microscope (SIAM). Results: The results of micromorphological research of CAD/CAM chairside materials using SIAM method showed differences between the internal structures of these materials. The internal structure of feldspatic and glass-ceramic samples revealed the presence of pores with different sizes, from 10 to 100 microns; the structure of polymer materials rendered some isolated defects, while in the structure of hybrid material, defects were not found. Conclusion: Based on the results obtained from the present study, in cases of chairside production of dental crowns, it would be advisable to give preference to the blocks of hybrid ceramics. Such ceramics devoid of quite large porosity, glazing for CAD/CAM crowns made from leucite glass-ceramic and feldspatic ceramic may be an option. For these purposes, commercially available special muffle furnace for clinical and laboratory individualization and glazing of ceramic prostheses were provided. Further studies are needed to confirm the evidence emerging from the present research. PMID:29492178
Cement-based piezoelectric ceramic composites for sensor applications in civil engineering
NASA Astrophysics Data System (ADS)
Dong, Biqin
The objectives of this thesis are to develop and apply a new smart composite for the sensing and actuation application of civil engineering. Piezoelectric ceramic powder is incorporated into cement-based composite to achieve the sensing and actuation capability. The research investigates microstructure, polarization and aging, material properties and performance of cement-based piezoelectric ceramic composites both theoretically and experimentally. A hydrogen bonding is found at the interface of piezoelectric ceramic powder and cement phase by IR (Infrared Ray), XPS (X-ray Photoelectron Spectroscopy) and SIMS (Secondary Ion Mass Spectroscopy). It largely affects the material properties of composites. A simple first order model is introduced to explain the poling mechanism of composites and the dependency of polarization is discussed using electromechanical coupling coefficient kt. The mechanisms acting on the aging effect is explored in detail. Dielectrical, piezoelectric and mechanical properties of the cement-based piezoelectric ceramic composites are studied by experiment and theoretical calculation based on modified cube model (n=1) with chemical bonding . A complex circuit model is proposed to explain the unique feature of impedance spectra and the instinct of high-loss of cement-based piezoelectric ceramic composite. The sensing ability of cement-based piezoelectric ceramic composite has been evaluated by using step wave, sine wave, and random wave. It shows that the output of the composite can reflects the nature and characteristics of mechanical input. The work in this thesis opens a new direction for the current actuation/sensing technology in civil engineering. The materials and techniques, developed in this work, have a great potential in application of health monitoring of buildings and infrastructures.
Subramanian, Ramesh
2001-01-01
A turbine component (10), such as a turbine blade, is provided which is made of a metal alloy (22) and a base columnar thermal barrier coating (20) on the alloy surface, where a heat resistant ceramic oxide sheath material (32' or 34') covers the columns (28), and the sheath material is the reaction product of a precursor ceramic oxide sheath material and the base thermal barrier coating material.
Tripathy, Ashis; Pramanik, Sumit; Manna, Ayan; Bhuyan, Satyanarayan; Azrin Shah, Nabila Farhana; Radzi, Zamri; Abu Osman, Noor Azuan
2016-01-01
Despite the many attractive potential uses of ceramic materials as humidity sensors, some unavoidable drawbacks, including toxicity, poor biocompatibility, long response and recovery times, low sensitivity and high hysteresis have stymied the use of these materials in advanced applications. Therefore, in present investigation, we developed a capacitive humidity sensor using lead-free Ca,Mg,Fe,Ti-Oxide (CMFTO)-based electro-ceramics with perovskite structures synthesized by solid-state step-sintering. This technique helps maintain the submicron size porous morphology of the developed lead-free CMFTO electro-ceramics while providing enhanced water physisorption behaviour. In comparison with conventional capacitive humidity sensors, the presented CMFTO-based humidity sensor shows a high sensitivity of up to 3000% compared to other materials, even at lower signal frequency. The best also shows a rapid response (14.5 s) and recovery (34.27 s), and very low hysteresis (3.2%) in a 33%–95% relative humidity range which are much lower values than those of existing conventional sensors. Therefore, CMFTO nano-electro-ceramics appear to be very promising materials for fabricating high-performance capacitive humidity sensors. PMID:27455263
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.
1998-01-01
The development of modeling approaches for the failure analysis of ceramic-based material systems used in high temperature environments was the primary objective of this research effort. These materials have the potential to support many key engineering technologies related to the design of aeropropulsion systems. Monolithic ceramics exhibit a number of useful properties such as retention of strength at high temperatures, chemical inertness, and low density. However, the use of monolithic ceramics has been limited by their inherent brittleness and a large variation in strength. This behavior has motivated material scientists to reinforce the monolithic material with a ceramic fiber. The addition of a second ceramic phase with an optimized interface increases toughness and marginally increases strength. The primary purpose of the fiber is to arrest crack growth, not to increase strength. The material systems of interest in this research effort were laminated ceramic matrix composites, as well as two- and three- dimensional fabric reinforced ceramic composites. These emerging composite systems can compete with metals in many demanding applications. However, the ongoing metamorphosis of ceramic composite material systems, and the lack of standardized design data has in the past tended to minimize research efforts related to structural analysis. Many structural components fabricated from ceramic matrix composites (CMC) have been designed by "trial and error." The justification for this approach lies in the fact that during the initial developmental phases for a material system fabrication issues are paramount. Emphasis is placed on demonstrating feasibility rather than fully understanding the processes controlling mechanical behavior. This is understandable during periods of rapid improvements in material properties for any composite system. But to avoid the ad hoc approach, the analytical methods developed under this effort can be used to develop rational structural design protocols.
Translucency of dental ceramics with different thicknesses.
Wang, Fu; Takahashi, Hidekazu; Iwasaki, Naohiko
2013-07-01
The increased use of esthetic restorations requires an improved understanding of the translucent characteristics of ceramic materials. Ceramic translucency has been considered to be dependent on composition and thickness, but less information is available about the translucent characteristics of these materials, especially at different thicknesses. The purpose of this study was to investigate the relationship between translucency and the thickness of different dental ceramics. Six disk-shaped specimens of 8 glass ceramics (IPS e.max Press HO, MO, LT, HT, IPS e.max CAD LT, MO, AvanteZ Dentin, and Trans) and 5 specimens of 5 zirconia ceramics (Cercon Base, Zenotec Zr Bridge, Lava Standard, Lava Standard FS3, and Lava Plus High Translucency) were prepared following the manufacturers' instructions and ground to a predetermined thickness with a grinding machine. A spectrophotometer was used to measure the translucency parameters (TP) of the glass ceramics, which ranged from 2.0 to 0.6 mm, and of the zirconia ceramics, which ranged from 1.0 to 0.4 mm. The relationship between the thickness and TP of each material was evaluated using a regression analysis (α=.05). The TP values of the glass ceramics ranged from 2.2 to 25.3 and the zirconia ceramics from 5.5 to 15.1. There was an increase in the TP with a decrease in thickness, but the amount of change was material dependent. An exponential relationship with statistical significance (P<.05) between the TP and thickness was found for both glass ceramics and zirconia ceramics. The translucency of dental ceramics was significantly influenced by both material and thickness. The translucency of all materials increased exponentially as the thickness decreased. All of the zirconia ceramics evaluated in the present study showed some degree of translucency, which was less sensitive to thickness compared to that of the glass ceramics. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Ceramic Technology Project semiannual progress report, October 1992--March 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.R.
1993-09-01
This project was developed to meet the ceramic technology requirements of the OTS`s automotive technology programs. Although progress has been made in developing reliable structural ceramics, further work is needed to reduce cost. The work described in this report is organized according to the following work breakdown structure project elements: Materials and processing (monolithics [Si nitride, carbide], ceramic composites, thermal and wear coatings, joining, cost effective ceramic machining), materials design methodology (contact interfaces, new concepts), data base and life prediction (structural qualification, time-dependent behavior, environmental effects, fracture mechanics, nondestructive evaluation development), and technology transfer.
High resolution ceramic gun for projection CRT
NASA Astrophysics Data System (ADS)
Muchi, T.; Tagami, S.; Saito, T.
1995-08-01
A ceramic resistor with high-resistivity and a low thermal coefficient has been developed. The use of this ceramic material as a cylindrical electrode realizes an electrostatic lens with low spherical aberration. A ceramic electron gun based on a new concept has been developed for high resolution projection CRTs.
Li, Weiyan; Sun, Jian
2018-05-10
BACKGROUND Polymer-infiltrated ceramic-network (PICN) dental material is a new and practical development in orthodontics. Sintering is the process of forming a stable solid mass from a powder by heating without melting. The aim of this study was to evaluate the effects of sintering temperature on the mechanical properties of a PICN zirconia dental material. MATERIAL AND METHODS A dense zirconia ceramic and four PICN zirconia dental materials, with varying porosities, were sintered at three different temperatures; 12 PICN zirconia dental materials based on these porous ceramics were prepared, as well as a pure polymer. After the specimen preparation, flexural strength and elastic modulus values were measured using the three-point bending test, and fracture toughness were determined by the single-edge notched beam (SENB) method. The Vickers hardness test method was used with an indentation strength (IS) test. Scanning electron microscopy (SEM) was used to examine the microstructure of the ceramic surface and the fracture surface. RESULTS Mechanical properties of the PICN dental materials, including flexural strength, elastic modulus, fracture toughness, and hardness, were more similar to the properties of natural teeth when compared with traditional dental ceramic materials, and were affected by the density and sintering temperature. SEM showed that the porous ceramic network became cohesive and that the length of cracks in the PICN dental material was reduced. CONCLUSIONS PICN zirconia dental materials were characterized by similar mechanical properties to natural dental tissues, but further studies are required continue to improve the similarities with natural human enamel and dentin.
Li, Weiyan
2018-01-01
Background Polymer-infiltrated ceramic-network (PICN) dental material is a new and practical development in orthodontics. Sintering is the process of forming a stable solid mass from a powder by heating without melting. The aim of this study was to evaluate the effects of sintering temperature on the mechanical properties of a PICN zirconia dental material. Material/Methods A dense zirconia ceramic and four PICN zirconia dental materials, with varying porosities, were sintered at three different temperatures; 12 PICN zirconia dental materials based on these porous ceramics were prepared, as well as a pure polymer. After the specimen preparation, flexural strength and elastic modulus values were measured using the three-point bending test, and fracture toughness were determined by the single-edge notched beam (SENB) method. The Vickers hardness test method was used with an indentation strength (IS) test. Scanning electron microscopy (SEM) was used to examine the microstructure of the ceramic surface and the fracture surface. Results Mechanical properties of the PICN dental materials, including flexural strength, elastic modulus, fracture toughness, and hardness, were more similar to the properties of natural teeth when compared with traditional dental ceramic materials, and were affected by the density and sintering temperature. SEM showed that the porous ceramic network became cohesive and that the length of cracks in the PICN dental material was reduced. Conclusions PICN zirconia dental materials were characterized by similar mechanical properties to natural dental tissues, but further studies are required continue to improve the similarities with natural human enamel and dentin. PMID:29746449
Mörmann, Werner H; Stawarczyk, Bogna; Ender, Andreas; Sener, Beatrice; Attin, Thomas; Mehl, Albert
2013-04-01
This study determined the two-body wear and toothbrushing wear parameters, including gloss and roughness measurements and additionally Martens hardness, of nine aesthetic CAD/CAM materials, one direct resin-based nanocomposite plus that of human enamel as a control group. Two-body wear was investigated in a computer-controlled chewing simulator (1.2 million loadings, 49N at 1.7Hz; 3000 thermocycles 5/50°C). Each of the 11 groups consisted of 12 specimens and 12 enamel antagonists. Quantitative analysis of wear was carried out with a 3D-surface analyser. Gloss and roughness measurements were evaluated using a glossmeter and an inductive surface profilometer before and after abrasive toothbrushing of machine-polished specimens. Additionally Martens hardness was measured. Statistically significant differences were calculated with one-way ANOVA (analysis of variance). Statistically significant differences were found for two-body wear, gloss, surface roughness and hardness. Zirconium dioxide ceramics showed no material wear and low wear of the enamel antagonist. Two-body wear of CAD/CAM-silicate and -lithium disilicate ceramics, -hybrid ceramics and -nanocomposite as well as direct nanocomposite did not differ significantly from that of human enamel. Temporary polymers showed significantly higher material wear than permanent materials. Abrasive toothbrushing significantly reduced gloss and increased roughness of all materials except zirconium dioxide ceramics. Gloss retention was highest with zirconium dioxide ceramics, silicate ceramics, hybrid ceramics and nanocomposites. Temporary polymers showed least gloss retention. Martens hardness differed significantly among ceramics, between ceramics and composites, and between resin composites and acrylic block materials as well. All permanent aesthetic CAD/CAM block materials tested behave similarly or better with respect to two-body wear and toothbrushing wear than human enamel, which is not true for temporary polymer CAD/CAM block materials. Ceramics show the best gloss retention compared to hybrid ceramics, composites and acrylic polymers. Copyright © 2013 Elsevier Ltd. All rights reserved.
Anyszka, Rafał; Bieliński, Dariusz M; Jędrzejczyk, Marcin
2013-12-01
Ceramizable (ceramifiable) silicone rubber-based composites are commonly used for cable insulation. These materials are able to create a protective ceramic layer during fire due to the ceramization process, which occurs at high temperature. When the temperature is increased, the polymer matrix is degraded and filler particles stick together by the fluxing agent, producing a solid, continuous ceramic phase that protects the copper wire from heat and mechanical stress. Despite increasing interest in these materials that has resulted in growing applications in the cable industry, their thermal behavior and ceramization process are still insufficiently described in the literature. In this paper, the thermal behavior of ceramizable silicone rubber-based composites is studied using microcalorimetry and Fourier transform infrared spectroscopy. The analysis of the experimental data made it possible to develop complete information on the mechanism of composite ceramization.
Bagheri, Hossein; Aghajani, Farzaneh
2015-01-01
Objectives: This study aimed to evaluate the effect of different ceramic surface treatments after machining grinding on the biaxial flexural strength (BFS) of machinable dental ceramics with different crystalline phases. Materials and Methods: Disk-shape specimens (10mm in diameter and 1.3mm in thickness) of machinable ceramic cores (two silica-based and one zirconia-based ceramics) were prepared. Each type of the ceramic surfaces was then randomly treated (n=15) with different treatments as follows: 1) machined finish as control, 2) machined finish and sandblasting with alumina, and 3) machined finish and hydrofluoric acid etching for the leucite and lithium disilicate-based ceramics, and for the zirconia; 1) machined finish and post-sintered as control, 2) machined finish, post-sintered, and sandblasting, and 3) machined finish, post-sintered, and Nd;YAG laser irradiation. The BFS were measured in a universal testing machine. Data based were analyzed by ANOVA and Tukey’s multiple comparisons post-hoc test (α=0.05). Results: The mean BFS of machined finish only surfaces for leucite ceramic was significantly higher than that of sandblasted (P=0.001) and acid etched surfaces (P=0.005). A significantly lower BFS was found after sandblasting for lithium disilicate compared with that of other groups (P<0.05). Sandblasting significantly increased the BFS for the zirconia (P<0.05), but the BFS was significantly decreased after laser irradiation (P<0.05). Conclusions: The BFS of the machinable ceramics was affected by the type of ceramic material and surface treatment method. Sandblasting with alumina was detrimental to the strength of only silica-based ceramics. Nd:YAG laser irradiation may lead to substantial strength degradation of zirconia. PMID:27148372
In vivo biofilm formation on different dental ceramics.
Bremer, Felicia; Grade, Sebastian; Kohorst, Philipp; Stiesch, Meike
2011-01-01
To investigate the formation of oral biofilm on various dental ceramics in vivo. Five different ceramic materials were included: a veneering glass- ceramic, a lithium disilicate glass-ceramic, a yttrium-stabilized zirconia (Y-TZP), a hot isostatically pressed (HIP) Y-TZP ceramic, and an HIP Y-TZP ceramic with 25% alumina. Test specimens were attached to individually designed acrylic appliances; five volunteers wore these appliances for 24 hours in the maxillary arch. After intraoral exposure, the samples were removed from the appliances and the adhering biofilms vitally stained. Then, the two-dimensional surface coating and thickness of the adhering biofilm were determined by confocal laser scanning microscopy. Statistical analysis was performed using one-way ANOVA with the level of significance set at .05. Significant differences (P < .001) in the bacterial surface coating and in the thickness of the biofilm were found between the various ceramic materials. The lowest surface coating (19.0%) and biofilm thickness (1.9 Μm) were determined on the HIP Y-TZP ceramic; the highest mean values were identified with the lithium disilicate glass-ceramic (46.8%, 12.6 Μm). Biofilm formation on various types of dental ceramics differed significantly; in particular, zirconia exhibited low plaque accumulation. In addition to its high strength, low plaque accumulation makes zirconia a promising material for various indications (including implant abutments and telescopic crowns) that previously were met only with metal-based materials.
SiC-Based Composite Materials Obtained by Siliconizing Carbon Matrices
NASA Astrophysics Data System (ADS)
Shikunov, S. L.; Kurlov, V. N.
2017-12-01
We have developed a method for fabrication of parts of complicated configuration from composite materials based on SiC ceramics, which employs the interaction of silicon melt with the carbon matrix having a certain composition and porosity. For elevating the operating temperatures of ceramic components, we have developed a method for depositing protective silicon-carbide coatings that is based on the interaction of the silicon melt and vapor with carbon obtained during thermal splitting of hydrocarbon molecules. The new structural ceramics are characterized by higher operating temperatures; chemical stability; mechanical strength; thermal shock, wear and radiation resistance; and parameters stability.
Della Bona, Alvaro
2005-03-01
The appeal of ceramics as structural dental materials is based on their light weight, high hardness values, chemical inertness, and anticipated unique tribological characteristics. A major goal of current ceramic research and development is to produce tough, strong ceramics that can provide reliable performance in dental applications. Quantifying microstructural parameters is important to develop structure/property relationships. Quantitative microstructural analysis provides an association among the constitution, physical properties, and structural characteristics of materials. Structural reliability of dental ceramics is a major factor in the clinical success of ceramic restorations. Complex stress distributions are present in most practical conditions and strength data alone cannot be directly extrapolated to predict structural performance.
Measuring Fracture Times Of Ceramics
NASA Technical Reports Server (NTRS)
Shlichta, Paul J.; Bister, Leo; Bickler, Donald G.
1989-01-01
Electrical measurements complement or replace fast cinematography. Electronic system measures microsecond time intervals between impacts of projectiles on ceramic tiles and fracture tiles. Used in research on ceramics and ceramic-based composite materials such as armor. Hardness and low density of ceramics enable them to disintegrate projectiles more efficiently than metals. Projectile approaches ceramic tile specimen. Penetrating foil squares of triggering device activate display and recording instruments. As ceramic and resistive film break oscilloscope plots increase in electrical resistance of film.
Advanced ceramic matrix composites for TPS
NASA Technical Reports Server (NTRS)
Rasky, Daniel J.
1992-01-01
Recent advances in ceramic matrix composite (CMC) technology provide considerable opportunity for application to future aircraft thermal protection system (TPS), providing materials with higher temperature capability, lower weight, and higher strength and stiffness than traditional materials. The Thermal Protection Material Branch at NASA Ames Research Center has been making significant progress in the development, characterization, and entry simulation (arc-jet) testing of new CMC's. This protection gives a general overview of the Ames Thermal Protection Materials Branch research activities, followed by more detailed descriptions of recent advances in very-high temperature Zr and Hf based ceramics, high temperature, high strength SiC matrix composites, and some activities in polymer precursors and ceramic coating processing. The presentation closes with a brief comparison of maximum heat flux capabilities of advanced TPS materials.
In-situ formation of multiphase deposited thermal barrier coatings
Subramanian, Ramesh
2004-01-13
A multiphase ceramic thermal barrier coating is provided. The coating is adapted for use in high temperature applications in excess of about 1200.degree. C., for coating superalloy components of a combustion turbine engine. The coating comprises a ceramic single or two oxide base layer disposed on the substrate surface; and a ceramic oxide reaction product material disposed on the base layer, the reaction product comprising the reaction product of the base layer with a ceramic single or two oxide overlay layer.
NASA Astrophysics Data System (ADS)
Aleshin, V. I.; Raevskiĭ, I. P.; Sitalo, E. I.
2008-11-01
A complete set of dielectric, piezoelectric, and elastic parameters for the textured ceramic material 0.67PMN-0.33PT is calculated by the self-consistency method with due regard for the anisotropy and piezoelectric activity of the medium. It is shown that the best piezoelectric properties corresponding to those of a single crystal are observed for the ceramic material with a texture in which all crystallites are oriented parallel to the [001] direction of the parent perovskite cubic cell. The simplest models of the polarization of an untextured ceramic material with a random initial orientation of crystallites are considered. The results obtained are compared with experimental data.
Grinding damage assessment for CAD-CAM restorative materials.
Curran, Philippe; Cattani-Lorente, Maria; Anselm Wiskott, H W; Durual, Stéphane; Scherrer, Susanne S
2017-03-01
To assess surface/subsurface damage after grinding with diamond discs on five CAD-CAM restorative materials and to estimate potential losses in strength based on crack size measurements of the generated damage. The materials tested were: Lithium disilicate (LIT) glass-ceramic (e.max CAD), leucite glass-ceramic (LEU) (Empress CAD), feldspar ceramic (VM2) (Vita Mark II), feldspar ceramic-resin infiltrated (EN) (Enamic) and a composite reinforced with nano ceramics (LU) (Lava Ultimate). Specimens were cut from CAD-CAM blocs and pair-wise mirror polished for the bonded interface technique. Top surfaces were ground with diamond discs of respectively 75, 54 and 18μm. Chip damage was measured on the bonded interface using SEM. Fracture mechanics relationships were used to estimate fracture stresses based on average and maximum chip depths assuming these to represent strength limiting flaws subjected to tension and to calculate potential losses in strength compared to manufacturer's data. Grinding with a 75μm diamond disc induced on a bonded interface critical chips averaging 100μm with a potential strength loss estimated between 33% and 54% for all three glass-ceramics (LIT, LEU, VM2). The softer materials EN and LU were little damage susceptible with chips averaging respectively 26μm and 17μm with no loss in strength. Grinding with 18μm diamond discs was still quite detrimental for LIT with average chip sizes of 43μm and a potential strength loss of 42%. It is essential to understand that when grinding glass-ceramics or feldspar ceramics with diamond discs surface and subsurface damage are induced which have the potential of lowering the strength of the ceramic. Careful polishing steps should be carried out after grinding especially when dealing with glass-ceramics. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Challenges and Opportunities in Reactive Processing and Applications of Advanced Ceramic Materials
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay
2003-01-01
Recently, there has been a great deal of interest in the research, development, and commercialization of innovative synthesis and processing technologies for advanced ceramics and composite materials. Reactive processing approaches have been actively considered due to their robustness, flexibility, and affordability. A wide variety of silicon carbide-based advanced ceramics and composites are currently being fabricated using the processing approaches involving reactive infiltration of liquid and gaseous species into engineered fibrous or microporous carbon performs. The microporous carbon performs have been fabricated using the temperature induced phase separation and pyrolysis of two phase organic (resin-pore former) mixtures and fiber reinforcement of carbon and ceramic particulate bodies. In addition, pyrolyzed native plant cellulose tissues also provide unique carbon templates for manufacturing of non-oxide and oxide ceramics. In spite of great interest in this technology due to their affordability and robustness, there is a lack of scientific basis for process understanding and many technical challenges still remain. The influence of perform properties and other parameters on the resulting microstructure and properties of final material is not well understood. In this presentation, mechanism of silicon-carbon reaction in various systems and the effect of perform microstructure on the mechanical properties of advanced silicon carbide based materials will be discussed. Various examples of applications of reactively processed advanced silicon carbide ceramics and composite materials will be presented.
NASA Technical Reports Server (NTRS)
Singh, M.
2011-01-01
During the last decades, a number of fiber reinforced ceramic composites have been developed and tested for various aerospace and ground based applications. However, a number of challenges still remain slowing the wide scale implementation of these materials. In addition to continuous fiber reinforced composites, other innovative materials have been developed including the fibrous monoliths and sintered fiber bonded ceramics. The sintered silicon carbide fiber bonded ceramics have been fabricated by the hot pressing and sintering of silicon carbide fibers. However, in this system reliable property database as well as various issues related to thermomechanical performance, integration, and fabrication of large and complex shape components has yet to be addressed. In this presentation, thermomechanical properties of sintered silicon carbide fiber bonded ceramics (as fabricated and joined) will be presented. In addition, critical need for manufacturing and integration technologies in successful implementation of these materials will be discussed.
Strong, tough and stiff bioinspired ceramics from brittle constituents
NASA Astrophysics Data System (ADS)
Bouville, Florian; Maire, Eric; Meille, Sylvain; van de Moortèle, Bertrand; Stevenson, Adam J.; Deville, Sylvain
2014-05-01
High strength and high toughness are usually mutually exclusive in engineering materials. In ceramics, improving toughness usually relies on the introduction of a metallic or polymeric ductile phase, but this decreases the material’s strength and stiffness as well as its high-temperature stability. Although natural materials that are both strong and tough rely on a combination of mechanisms operating at different length scales, the relevant structures have been extremely difficult to replicate. Here, we report a bioinspired approach based on widespread ceramic processing techniques for the fabrication of bulk ceramics without a ductile phase and with a unique combination of high strength (470 MPa), high toughness (22 MPa m1/2), and high stiffness (290 GPa). Because only mineral constituents are needed, these ceramics retain their mechanical properties at high temperatures (600 °C). Our bioinspired, material-independent approach should find uses in the design and processing of materials for structural, transportation and energy-related applications.
NASA Astrophysics Data System (ADS)
Jamaludin, L.; Abdullah, M. M. A. B.; Hussin, K.; Kadir, A. Abdul
2018-06-01
The study focus on effect of pre-heated ceramic surface on the adhesion bond strength between geopolymer coating coating and ceramic substrates. Ceramic substrates was pre-heated at different temperature (400 °C, 600 °C, 800 °C and 1000 °C). Fly ash geopolymer coating material potential used to protect surface used in exposure conditions after sintering at high temperature. Fly ash and alkali activator (Al2O3/Na2SiO3) were mixed with 2.0 solids-to-liquid ratios to prepare geopolymer coating material at constant NaOH concentration of 12M. Adhesion test was conducted to determine the adhesion bond between ceramic substrates and fly ash coating material. The results showed the pre-heated ceramic substrates effect the adhesion bond of coating compared with untreated substrates with increasing of strength up to 20 % for temperature 600 °C.
In-situ formation of multiphase air plasma sprayed barrier coatings for turbine components
Subramanian, Ramesh
2001-01-01
A turbine component (10), such as a turbine blade, is provided which is made of a metal alloy (22) and a base, planar-grained thermal barrier layer (28) applied by air plasma spraying on the alloy surface, where a heat resistant ceramic oxide overlay material (32') covers the bottom thermal barrier coating (28), and the overlay material is the reaction product of the precursor ceramic oxide overlay material (32) and the base thermal barrier coating material (28).
NASA Astrophysics Data System (ADS)
Kasashima, Yuji; Tsutsumi, Kota; Mitomi, Shinzo; Uesugi, Fumihiko
2017-06-01
In mass-production plasma etching equipment, the corrosion of ceramic chamber parts reduces the production yield of LSI and overall equipment effectiveness (OEE) owing to contamination, short useful life, and particle generation. Novel ceramics that can improve the production yield and OEE are highly required. We develop magnesium oxide (MgO)-based ceramics and evaluate them under mass-production plasma etching conditions. The results of this study indicate that the developed MgO-based ceramics with high mechanical properties and low electric resistivity have a higher resistance to corrosion in plasma etching using CF4 gas than Si and conventional ceramic materials such as aluminum oxide and yttrium oxide.
Characterization of glass-infiltrated alumina-based ceramics
Bona, Alvaro Della; Mecholsky, John J; Barrett, Allyson A; Griggs, Jason A
2010-01-01
Objective characterize the microstructure, composition, and important properties of glass-infiltrated alumina-based ceramics similar to the In-Ceram system. Methods Materials used were: IA- In-Ceram Alumina (Vita); IAE- IA electrophoretically deposited (Vita); AEM- IA using a vacuum driven method (Vita); VC- Vitro-Ceram (Angelus); TC- Turkom-Cera (Turkom-Ceramic); CC- Ceramcap (Foto-Ceram); and AG- Alglass (EDG). Ceramic specimens were fabricated following manufacturers’ instructions and ISO6872 standard and polished successively through 1μm alumina abrasive. Semi-quantitative and qualitative analyses were performed using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and stereology (Vv). The elastic modulus (E) and Poisson’s ratio (ν) were determined using time-of-flight data measured in an ultrasonic pulser/receiver and the density (ρ) was determined using a helium pycnometer. Vicker’s indentation was used to calculate hardness (H). Bar specimens (25×4×1.2mm3) were loaded in three-point bending to fracture using a universal testing machine with cross-head speed of 1mm/min. Flexural strength (σ3P) was calculated and statistically analyzed using ANOVA, Tukey (α=0.05) and Weibull (m= modulus, σ0= characteristic strength). Results SEM and EDS analyses revealed similar microstructure for all ceramics, except for a lead-based matrix in CC and a zirconia phase in VC. TC, AG and CC showed significantly lower mean σ3P values than the other ceramics (p 0.05). AEM showed the greatest m (16). Conclusion Despite few differences in microstructure and composition, the IA, IAE, AEM and VC ceramics have similar properties. Significance The glass-infiltrated alumina-based ceramics from different manufacturers presented distinct characteristics. It is necessary to characterize new commercially available materials to understand their properties. PMID:18692231
Ceramic Technology Project semiannual progress report, April 1992--September 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.R.
1993-07-01
This project was developed to meet the ceramic technology requirements of the DOE Office of Transportation Systems` automotive technology programs. Significant progress in fabricating ceramic components for DOE, NASA, and DOE advanced heat engine programs show that operation of ceramic parts in high-temperature engines is feasible; however, addition research is needed in materials and processing, design, and data base and life prediction before industry will have a sufficient technology base for producing reliable cost-effective ceramic engine components commercially. A 5-yr project plan was developed, with focus on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments,more » and ceramic coatings for thermal barrier and wear applications in these engines.« less
Corrosion Resistance of a Cast-Iron Material Coated With a Ceramic Layer Using Thermal Spray Method
NASA Astrophysics Data System (ADS)
Florea, C. D.; Bejinariu, C.; Munteanu, C.; Istrate, B.; Toma, S. L.; Alexandru, A.; Cimpoesu, R.
2018-06-01
Cast-iron 250 used for breake systems present many corrosion signs after a mean usage time based on the environment conditions they work. In order to improve them corrosion resistance we propose to cover the active part of the material using a ceramic material. The deposition process is an industrial deposition system based on thermal spraying that can cover high surfaces in low time. In this articol we analyze the influence of a ceramic layer (40-50 µm) on the corrosion resistance of FC250 cast iron. The results were analyzed using scanning electron microscopy (SEM), X-ray energy dispersive (EDS) and linear and cyclic potentiometry.
Proton conducting ceramic membranes for hydrogen separation
Elangovan, S [South Jordan, UT; Nair, Balakrishnan G [Sandy, UT; Small, Troy [Midvale, UT; Heck, Brian [Salt Lake City, UT
2011-09-06
A multi-phase proton conducting material comprising a proton-conducting ceramic phase and a stabilizing ceramic phase. Under the presence of a partial pressure gradient of hydrogen across the membrane or under the influence of an electrical potential, a membrane fabricated with this material selectively transports hydrogen ions through the proton conducting phase, which results in ultrahigh purity hydrogen permeation through the membrane. The stabilizing ceramic phase may be substantially structurally and chemically identical to at least one product of a reaction between the proton conducting phase and at least one expected gas under operating conditions of a membrane fabricated using the material. In a barium cerate-based proton conducting membrane, one stabilizing phase is ceria.
FOREWORD: Focus on Advanced Ceramics Focus on Advanced Ceramics
NASA Astrophysics Data System (ADS)
Ohashi, Naoki
2011-06-01
Much research has been devoted recently to developing technologies for renewable energy and improving the efficiency of the processes and devices used in industry and everyday life. Efficient solutions have been found using novel materials such as platinum and palladium-based catalysts for car exhaust systems, samarium-cobalt and neodymium-iron-boron permanent magnets for electrical motors, and so on. However, their realization has resulted in an increasing demand for rare elements and in their deficit, the development of new materials based on more abundant elements and new functionalities of traditional materials. Moreover, increasing environmental and health concerns demand substitution of toxic or hazardous substances with nature-friendly alternatives. In this context, this focus issue on advanced ceramics aims to review current trends in ceramics science and technology. It is related to the International Conference on Science and Technology of Advanced Ceramics (STAC) held annually to discuss the emerging issues in the field of ceramics. An important direction of ceramic science is the collaboration between experimental and theoretical sciences. Recent developments in density functional theory and computer technology have enabled the prediction of physical and chemical properties of ceramics, thereby assisting the design of new materials. Therefore, this focus issue includes articles devoted to theory and advanced characterization techniques. As mentioned above, the potential shortage of rare elements is becoming critical to the industry and has resulted in a Japanese government initiative called the 'Ubiquitous Element Strategy'. This focus issue also includes articles related to this strategy and to the associated topics of energy conversion, such as phosphors for high-efficiency lighting and photocatalysts for solar-energy harvesting. We hope that this focus issue will provide a timely overview of current trends and problems in ceramics science and technology and promote new research and development in this field.
An Introduction to the Mechanical Properties of Ceramics
NASA Astrophysics Data System (ADS)
Green, David J.
1998-09-01
Over the past twenty-five years ceramics have become key materials in the development of many new technologies as scientists have been able to design these materials with new structures and properties. An understanding of the factors that influence their mechanical behavior and reliability is essential. This book will introduce the reader to current concepts in the field. It contains problems and exercises to help readers develop their skills. This is a comprehensive introduction to the mechanical properties of ceramics, and is designed primarily as a textbook for advanced undergraduates in materials science and engineering. It will also be of value as a supplementary text for more general courses and to industrial scientists and engineers involved in the development of ceramic-based products, materials selection and mechanical design.
Piezoelectric textured ceramics: Effective properties and application to ultrasonic transducers.
Levassort, Franck; Pham Thi, Mai; Hemery, Henry; Marechal, Pierre; Tran-Huu-Hue, Louis-Pascal; Lethiecq, Marc
2006-12-22
Piezoelectric textured ceramics obtained by homo-template grain growth (HTGG) were recently demonstrated. A simple model with several assumptions has been used to calculate effective parameters of these new materials. Different connectivities have been simulated to show that spatial arrangements between the considered phases have little influence on the effective parameters, even through the 3-0 connectivity delivers the highest electromechanical thickness factor. A transducer based on a textured ceramic sample has been fabricated and characterised to show the efficiency of these piezoelectric materials. Finally, in a single element transducer configuration, simulation shows an improvement of 2 dB sensitivity for a transducer made with textured ceramic in comparison with a similar transducer design based on standard soft PZT (at equivalent bandwidths).
Development of ASTM Standard for SiC-SiC Joint Testing Final Scientific/Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobsen, George; Back, Christina
2015-10-30
As the nuclear industry moves to advanced ceramic based materials for cladding and core structural materials for a variety of advanced reactors, new standards and test methods are required for material development and licensing purposes. For example, General Atomics (GA) is actively developing silicon carbide (SiC) based composite cladding (SiC-SiC) for its Energy Multiplier Module (EM2), a high efficiency gas cooled fast reactor. Through DOE funding via the advanced reactor concept program, GA developed a new test method for the nominal joint strength of an endplug sealed to advanced ceramic tubes, Fig. 1-1, at ambient and elevated temperatures called themore » endplug pushout (EPPO) test. This test utilizes widely available universal mechanical testers coupled with clam shell heaters, and specimen size is relatively small, making it a viable post irradiation test method. The culmination of this effort was a draft of an ASTM test standard that will be submitted for approval to the ASTM C28 ceramic committee. Once the standard has been vetted by the ceramics test community, an industry wide standard methodology to test joined tubular ceramic components will be available for the entire nuclear materials community.« less
Unipolar memristive Switching in Bulk Negative Temperature Coefficient Thermosensitive Ceramics
Wu, Hongya; Cai, Kunpeng; Zhou, Ji; Li, Bo; Li, Longtu
2013-01-01
A memristive phenomenon was observed in macroscopic bulk negative temperature coefficient nickel monoxide (NiO) ceramic material. Current-voltage characteristics of memristors, pinched hysteretic loops were systematically observed in the Ag/NiO/Ag cell. A thermistor-based model for materials with negative temperature coefficient was proposed to explain the mechanism of the experimental phenomena. Most importantly, the results demonstrate the potential for a realization of memristive systems based on macroscopic bulk materials. PMID:24255717
NASA Astrophysics Data System (ADS)
Filippov, A. A.; Fomin, V. M.; Buzyurkin, A. E.; Kosarev, V. F.; Malikov, A. G.; Orishich, A. M.; Ryashin, N. S.
2018-01-01
The work is dedicated to the creation of new ceramic-composite materials based on boron carbide, nickel and using a laser welding in order to obtain three dimensional objects henceforth. The perspective way of obtaining which has been suggested by the authors combined two methods: cold spray technology and subsequent laser post-treatment. At this stage, the authors focused on the interaction of the laser with the substance, regardless of the multi-layer object development. The investigated material of this work was the metal-ceramic mixture based on boron carbide, which has high physical and mechanical characteristics, such as hardness, elastic modulus, and chemical resistance. The nickel powder as a binder and different types of boron carbide were used. The ceramic content varied from 30 to 70% by mass. Thin ceramic layers were obtained by the combined method and cross-sections of different seams were studied. It was shown that the most perspective layers for additive manufacturing could be obtained from cold spray coatings with ceramic concentrations more than 50% by weight treated when laser beam was defocused (thermal-conductive laser mode).
Richardson, G Mark; Clemow, Scott R; Peters, Rachel E; James, Kyle J; Siciliano, Steven D
2016-01-01
Little has been published on the chemical exposures and risks of dental restorative materials other than from dental amalgam and composite resins. Here we provide the first exposure and risk assessment for gold (Au) alloy and ceramic restorative materials. Based on the 2001-2004 US National Health and Nutrition Examination Survey (NHANES), we assessed the exposure of US adults to the components of Au alloy and ceramic dental restorations owing to dental material wear. Silver (Ag) is the most problematic component of Au alloy restorations, owing to a combination of toxicity and proportional composition. It was estimated that adults could possess an average of four tooth surfaces restored with Au alloy before exceeding, on average, the reference exposure level (REL) for Ag. Lithium (Li) is the most problematic component of dental ceramics. It was estimated that adults could possess an average of 15 tooth surfaces restored with ceramics before exceeding the REL for Li. Relative risks of chemical exposures from dental materials decrease in the following order: Amalgam>Au alloys>ceramics>composite resins.
Integration Science and Technology of Advanced Ceramics for Energy and Environmental Applications
NASA Technical Reports Server (NTRS)
Singh, M.
2012-01-01
The discovery of new and innovative materials has been known to culminate in major turning points in human history. The transformative impact and functional manifestation of new materials have been demonstrated in every historical era by their integration into new products, systems, assemblies, and devices. In modern times, the integration of new materials into usable products has a special relevance for the technological development and economic competitiveness of industrial societies. Advanced ceramic technologies dramatically impact the energy and environmental landscape due to potential wide scale applications in all aspects of energy production, storage, distribution, conservation, and efficiency. Examples include gas turbine propulsion systems, fuel cells, thermoelectrics, photovoltaics, distribution and transmission systems based on superconductors, nuclear power generation, and waste disposal. Robust ceramic integration technologies enable hierarchical design and manufacturing of intricate ceramic components starting with geometrically simpler units that are subsequently joined to themselves and/or to metals to create components with progressively higher levels of complexity and functionality. However, for the development of robust and reliable integrated systems with optimum performance under different operating conditions, the detailed understanding of various thermochemical and thermomechanical factors is critical. Different approaches are required for the integration of ceramic-metal and ceramic-ceramic systems across length scales (macro to nano). In this presentation, a few examples of integration of ceramic to metals and ceramic to ceramic systems will be presented. Various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Potential opportunities and need for the development of innovative design philosophies, approaches, and integrated system testing under simulated application conditions will also be presented.
A Viscoplastic Constitutive Theory for Monolithic Ceramic Materials. Series 1
NASA Technical Reports Server (NTRS)
Janosik, Lesley A.; Duffy, Stephen F.
1997-01-01
With increasing use of ceramic materials in high temperature structural applications such as advanced heat engine components, the need arises to accurately predict thermomechanical behavior. This paper, which is the first of two in a series, will focus on inelastic deformation behavior associated with these service conditions by providing an overview of a viscoplastic constitutive model that accounts for time-dependent hereditary material deformation (e.g., creep, stress relaxation, etc.) in monolithic structural ceramics. Early work in the field of metal plasticity indicated that inelastic deformations are essentially unaffected by hydrostatic stress. This is not the case, however, for ceramic-based material systems, unless the ceramic is fully dense. The theory presented here allows for fully dense material behavior as a limiting case. In addition, ceramic materials exhibit different time-dependent behavior in tension and compression. Thus, inelastic deformation models for ceramics must be constructed in a fashion that admits both sensitivity to hydrostatic stress and differing behavior in tension and compression. A number of constitutive theories for materials that exhibit sensitivity to the hydrostatic component of stress have been proposed that characterize deformation using time-independent classical plasticity as a foundation. However, none of these theories allow different behavior in tension and compression. In addition, these theories are somewhat lacking in that they are unable to capture creep, relaxation, and rate-sensitive phenomena exhibited by ceramic materials at high temperature. When subjected to elevated service temperatures, ceramic materials exhibit complex thermomechanical behavior that is inherently time-dependent, and hereditary in the sense that current behavior depends not only on current conditions, but also on thermo-mechanical history. The objective of this work is to present the formulation of a macroscopic continuum theory that captures these time-dependent phenomena. Specifically, the overview contained in this paper focuses on the multiaxial derivation of the constitutive model, and examines the scalar threshold function and its attending geometrical implications.
A historical perspective of synthetic ceramic and traditional feldspathic porcelain.
Chu, Stephen; Ahmad, Irfan
2005-10-01
Ceramics were invented by the Chinese during the T'ang Dynasty, where they quickly became a precious commodity. By the early 18th Century, ceramics found its way into dentistry due to its high strength, biocompatibility, and malleability. Today, ceramic materials are a staple in dentistry, available in both naturally based and partially synthetic formulas. Most recently they have become available as quartz-glass synthetic materials manufactured under controlled conditions to eliminate the inconsistencies and impurities inherent in the naturally based counterpart. This article details the discovery of porcelain and its role as a precious substance throughout the world and time, from its initial use as ornamental earthenware to its practical application in modern dentistry. Upon reading this article, the reader should: Understand the historical significance of porcelain. Recognize the fundamental constituents and physical properties of both natural feldspathic porcelains and fully synthetic ceramics used in dentistry.
Xu, Long; Zhao, Hua; Xu, Caixia; Zhang, Siqi; Zou, Yingyin K; Zhang, Jingwen
2014-02-01
A broadband optical amplification was observed and investigated in Er3+-doped electrostrictive ceramics of lanthanum-modified lead zirconate titanate under a corona atmosphere. The ceramic structure change caused by UV light, electric field, and random walks originated from the diffusive process in intrinsically disordered materials may all contribute to the optical amplification and the associated energy storage. Discussion based on optical energy storage and diffusive equations was given to explain the findings. Those experiments performed made it possible to study random walks and optical amplification in transparent ceramics materials.
NASA Astrophysics Data System (ADS)
Jamil, N. H.; Ibrahim, W. M. A. W.; Abdullah, M. M. A. B.; Sandu, A. V.; Tahir, M. F. M.
2017-06-01
Porous ceramic nowadays has been investigated for a variety of its application such as filters, lightweight structural component and others due to their specific properties such as high surface area, stability and permeability. Besides, it has the properties of low thermal conductivity. Various formation techniques making these porous ceramic properties can be tailored or further fine-tuned to obtain the optimum characteristic. Porous materials also one of the good candidate for absorption properties. Conventional construction materials are not design to have good water absorption and retention that lead to the poor performance on these criteria. Temperature is a major driving force for moisture movement and influences sorption characteristics of many constructions materials. The effect of elevated temperatures on the water absorption coefficient and retention remain as critical issue that need to be investigated. Therefore, this paper will review the process parameters in fabricating porous ceramic for absorption properties.
Chen, Jianguo; Liu, Guoxi; Cheng, Jinrong; Dong, Shuxiang
2016-08-01
The actuation performance, strain hysteresis, and heat generation of the shear-bending mode actuators based on soft and hard BiScO3-PbTiO3 (BS-PT) ceramics were investigated under different thermal (from room temperature to 300 °C) and electrical loadings (from 2 to 10 kV/cm and from 1 to 1000 Hz). The actuator based on both soft and hard BS-PT ceramics worked stably at the temperature as high as 300 °C. The maximum working temperature of this shear-bending actuators is 150 °C higher than those of the traditional piezoelectric actuators based on commercial Pb(Zr, Ti)O3 materials. Furthermore, although the piezoelectric properties of soft-type ceramics based on BS-PT ceramics were superior to those of hard ceramics, the maximum displacement of the actuator based on hard ceramics was larger than that fabricated by soft ceramics at high temperature. The maximum displacement of the actuator based on hard ceramics was [Formula: see text] under an applied electric field of 10 kV/cm at 300 °C. The strain hysteresis and heat generation of the actuator based on hard ceramics was smaller than those of the actuator based on soft ceramics in the wide temperature range. These results indicated that the shear-bending actuator based on hard piezoelectric ceramics was more suitable for high-temperature piezoelectric applications.
Determination of elemental composition of substance lost following wear of all-ceramic materials.
Dündar, Mine; Artunç, Celal; Toksavul, Suna; Ozmen, Dilek; Turgan, Nevbahar
2003-01-01
The aim of this study was to test the possible elemental release of four different all-ceramic materials in a wear machine to predict results about their long-term behavior in the oral environment. Four different all-ceramic materials with different chemical compositions were selected for the wear testing. A total of 20 cylindric samples, five for each ceramic group, were prepared according to the manufacturers' instructions. These were subjected to two-body wear testing in an artificial saliva medium under a covered unit with a computer-operated wear machine. The artificial saliva solutions for each material were analyzed for the determination of amounts of sodium, potassium, calcium, magnesium, and lithium elements released from the glass-ceramic materials. The differences between and within groups were statistically analyzed with a one-way ANOVA, followed by Duncan tests. The statistical analyses revealed no significant differences among Na, K, Ca, or Mg levels (P > .05) released from the leucite-reinforced groups, while there was a significant (P < .05) increase in Li release from the lithium disilicate group. Considerable element release to the artifical saliva medium was demonstrated in short-term wear testing. The lithia-based ceramic was more prone to Li release when compared with other elements and materials.
NASA Technical Reports Server (NTRS)
1999-01-01
Javelin, a Lone Peak Engineering Inc. Company has introduced the SteamRoller(TM) System as a commercial product. The system was designed by Javelin during a Phase II NASA funded small commercial product. The purpose of the invention was to allow automated-feed of flexible ceramic tapes to the Laminated Object Manufacturing rapid prototyping equipment. The ceramic material that Javelin was working with during the Phase II project is silicon nitride. This engineered ceramic material is of interest for space-based component.
The effect of milling and postmilling procedures on the surface roughness of CAD/CAM materials.
Mota, Eduardo Gonçalves; Smidt, Laura Nunes; Fracasso, Lisiane Martins; Burnett, Luiz Henrique; Spohr, Ana Maria
2017-11-12
The aim of this study was to evaluate the surface roughness and analyze the surface topography of five different CAD/CAM ceramics and one CAD/CAM composite resin for CEREC after milling and postmilling procedures. Blocks of the ceramics Mark II, IPS Empress CAD, IPS e.max CAD, Suprinity and Enamic, and blocks of the composite resin Lava Ultimate were milled at CEREC MCXL. Ten flat samples of each material were obtained. The surface roughness (Ra) test was performed before and after milling, crystallization, polishing, and glaze when indicated, followed by SEM and AFM analysis. Data were submitted to one-way ANOVA with repeated measures and the Tukey HSD test (α = 0.05). The milling step significantly increased the roughness of all the tested materials (P < .05). Lithium-based ceramics (IPS e.max CAD and Suprinity) were more suitable to roughness than the other tested materials (P < .05). The polishing methods were able to reduce roughness to baseline values, except for lithium-based ceramics. Glaze reduced significantly the roughness of lithium-based ceramics without a difference from the baseline. SEM and AFM images revealed that glazed surfaces are smoother than polished surfaces. All hard-milling CAD/CAM materials, that is, fully sintered, should be only hand polished. The glaze step can be suppressed resulting in time saving. However, the glaze step in soft-milling lithium disilicate is imperative. © 2017 Wiley Periodicals, Inc.
Randomized, Controlled Clinical Trial of Bilayer Ceramic and Metal-Ceramic Crown Performance
Esquivel-Upshaw, Josephine; Rose, William; Oliveira, Erica; Yang, Mark; Clark, Arthur E.; Anusavice, Kenneth
2013-01-01
Purpose Analyzing the clinical performance of restorative materials is important, as there is an expectation that these materials and procedures will restore teeth and do no harm. The objective of this research study was to characterize the clinical performance of metal-ceramic crowns, core ceramic crowns, and core ceramic/veneer ceramic crowns based on 11 clinical criteria. Materials and Methods An IRB-approved, randomized, controlled clinical trial was conducted as a single-blind pilot study. The following three types of full crowns were fabricated: (1) metal-ceramic crown (MC) made from a Pd-Au-Ag-Sn-In alloy (Argedent 62) and a glass-ceramic veneer (IPS d.SIGN veneer); (2) non-veneered (glazed) lithium disilicate glass-ceramic crown (LDC) (IPS e.max Press core and e.max Ceram Glaze); and (3) veneered lithia disilicate glass-ceramic crown (LDC/V) with glass-ceramic veneer (IPS Empress 2 core and IPS Eris). Single-unit crowns were randomly assigned. Patients were recalled for each of 3 years and were evaluated by two calibrated clinicians. Thirty-six crowns were placed in 31 patients. A total of 12 crowns of each of the three crown types were studied. Eleven criteria were evaluated: tissue health, marginal integrity, secondary caries, proximal contact, anatomic contour, occlusion, surface texture, cracks/chips (fractures), color match, tooth sensitivity, and wear (of crowns and opposing enamel). Numerical rankings ranged from 1 to 4, with 4 being excellent, and 1 indicating a need for immediate replacement. Statistical analysis of the numerical rankings was performed using a Fisher’s exact test. Results There was no statistically significant difference between performance of the core ceramic crowns and the two veneered crowns at year 1 and year 2 (p > 0.05). All crowns were rated either as excellent or good for each of the clinical criteria; however, between years 2 and 3, gradual roughening of the occlusal surface occurred in some of the ceramic-ceramic crowns, possibly caused by dissolution and wear of the glaze. Statistically significant differences in surface texture (p = 0.0013) and crown wear (p = 0.0078) were found at year 3 between the metal-ceramic crowns and the lithium-disilicate-based crowns. Conclusion Based on the 11 criteria, the clinical performance of ceramic-ceramic crowns was comparable to that of the metal-ceramic crowns after 2 years; however, gradual roughening occurred between years 2 and 3, which resulted in differences in surface texture and wear. PMID:22978697
Paper-Thin Coating Offers Maximum Protection
NASA Technical Reports Server (NTRS)
2001-01-01
Wessex Incorporated has recently taken a technology that was originally developed for NASA as a protective coating for ceramic materials used in heatshields for space vehicles, and modified it for use in applications such as building materials, machinery, and transportation. The technology, developed at NASA Ames Research Center as a protective coating for flexible ceramic composites (PCC), is environmentally safe, water-based, and contains no solvents. Many other flame-retardant materials contain petroleum-based components, which can produce toxic smoke under flame. Wessex versions of PCC can be used to shield ceramics, wood, plasterboard, steel, plastics, fiberglass, and other materials from catastrophic fires. They are extraordinarily tough and exhibit excellent resistance to thermal shock, vibration, abrasion, and mechanical damage. One thin layer of coating provides necessary protection and allows for flexibility while avoiding excessive weight disadvantages. The coating essentially reduces the likelihood of the underlying material becoming so hot that it combusts and thus inhibits the "flashover" phenomenon from occurring.
Development of biocomposed material based on zirconium oxide for regeneration of bone tissue
NASA Astrophysics Data System (ADS)
Lytkin, Ivan; Buyakov, Ales; Kurzina, Irina
2017-11-01
Porous ceramic materials based on magnesium oxide stabilized zirconia were studied. The pore structure and thin crystalline structure were studied. The porosity of some of the materials studied was obtained by conducting a pore-forming additive, UHMWPE. It is shown that after impregnation with polylactide, the residual porosity varies from 22.5 to 5.9%. The average pore size was 2 µm. X-Ray diffraction analysis showed that the fine crystal structure of the ceramic is mainly represented by baddeleyite.
Mechanical properties of a new mica-based machinable glass ceramic for CAD/CAM restorations.
Thompson, J Y; Bayne, S C; Heymann, H O
1996-12-01
Machinable ceramics (Vita Mark II and Dicor MGC) exhibit good short-term clinical performance, but long-term in vivo fracture resistance is still being monitored. The relatively low fracture toughness of currently available machinable ceramics restricts their use to conservative inlays and onlays. A new machinable glass ceramic (MGC-F) has been developed (Corning Inc.) with enhanced fluorescence and machinability. The purpose of this study was to characterize and compare key mechanical properties of MGC-F to Dicor MGC-Light, Dicor MGC-Dark, and Vita Mark II glass ceramics. The mean fracture toughness and indented biaxial flexure strength of MGC-F were each significantly greater (p < or = 0.01) than that of Dicor MGC-Light, Dicor MGC-Dark, and Vita Mark II ceramic materials. The results of this study indicate the potential for better in vivo fracture resistance of MGC-F compared with existing machinable ceramic materials for CAD/CAM restorations.
NASA Technical Reports Server (NTRS)
Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Curran, Jerome P.; Kolody, Mark; Perusich, Stephen; Whitten, Mary C.; Trejo, David; Zidek, Jason; Sampson, Jeffrey W.;
2009-01-01
Ceramics can be defmed as a material consisting of hard brittle properties produced from inorganic and nonmetallic minerals made by firing at high temperatures. These materials are compounds between metallic and nonmetallic elements and are either totally ionic, or predominately ionic but having some covalent character. This definition allows for a large range of materials, not all applicable to refractory applications. As this report is focused on potential ceramic materials for high temperature, aggressive exposure applications, the ceramics reviewed as part of this report will focus on refractory ceramics specifically designed and used for these applications. Ceramic materials consist of a wide variety of products. Callister (2000) 1 characterized ceramic materials into six classifications: glasses, clay products, refractories, cements, abrasives, and advanced ceramics. Figure 1 shows this classification system. This review will focus mainly on refractory ceramics and cements as in general, the other classifications are neither applicable nor economical for use in large structures such as the flame trench. Although much work has been done in advanced ceramics over the past decade or so, these materials are likely cost prohibitive and would have to be fabricated off-site, transported to the NASA facilities, and installed, which make these even less feasible. Although the authors reviewed the literature on advanced ceramic refractories 2 center dot 3 center dot 4 center dot 5 center dot 6 center dot 7 center dot 8 center dot 9 center dot 10 center dot 11 center dot 12 after the review it was concluded that these materials should not be ' the focus of this report. A review is in progress on materials and systems for prefabricated refractory ceramic panels, but this review is focusing more on typical refractory materials for prefabricated systems, which could make the system more economically feasible. Refractory ceramics are used for a wide variety of applications. Figure 2 shows many ofthese applications, their life expectancy or requirement, and the exposure temperature for the refractory ceramic. Note that the exposure temperatures for refractory ceramics are very similar to the exposure conditions for specialty ceramics (rocket nozzles, space vehicle re-entry fields, etc.) and yet the life expectancy or requirement is relatively low. Currently NASA is repairing the refractory lining in the flame trench after every launch - although this is not a direct indication of low life expectancy, it does indicate that the current system may not be sufficiently durable to maximize economy. Better performing refractory ceramics are needed to improve the performance, economy, and safety during and after launches at the flame trenches at Kennedy Space Center (KSC). To achieve this goal a current study is underway to assess different refractory systems for possible use in the flame trenches at KSC. This report will target the potential applicability of refractory ceramics for use in the flame trenches. An overview of the different refractory ceramics will be provided (see Figure I). This will be followed with a brief description of the structure of refractory products, the properties and characteristics of different systems, the methodology for selecting refractories, and then a general design methodology. Based on these sections, future challenges and opportunities will be identified with the objective of improving the durability, performance, economy, and safety of the launch complex. Refractory ceramics are used for a wide variety of applications. Figure 2 shows many ofthese applications, their life expectancy or requirement, and the exposure temperature for the refractory ceramic. Note that the exposure temperatures for refractory ceramics are very similar to the exposure conditions for specialty ceramics (rocket nozzles, space vehicle re-entry fields, etc.) and yet the life expectancy or requirement is relatively low. Currently NASA is repairing the refractory lining in the flame trench after every launch - although this is not a direct indication of low life expectancy, it does indicate that the current system may not be sufficiently durable to maximize economy. Better performing refractory ceramics are needed to improve the performance, economy, and safety during and after launches at the flame trenches at Kennedy Space Center (KSC). To achieve this goal a current study is underway to assess different refractory systems for possible use in the flame trenches at KSC. This report will target the potential applicability of refractory ceramics for use in the flame trenches. An overview of the different refractory ceramics will be provided (see Figure I). This will be followed with a brief description of the structure of refractory products, the properties and characteristics of different systems, the methodology for selecting refractories, and then a general design methodology. Based on these sections, future challenges and opportunities will be identified with the objective of improving the durability, performance, economy, and safety of the launch complex.
Zirconia in fixed prosthesis. A literature review
Román-Rodríguez, Juan L.; Ferreiroa, Alberto; Solá-Ruíz, María F.; Fons-Font, Antonio
2014-01-01
Statement of problem: Evidence is limited on the efficacy of zirconia-based fixed dental prostheses. Objective: To carry out a literature review of the behavior of zirconium oxide dental restorations. Material and Methods: This literature review searched the Pubmed, Scopus, Medline and Cochrane Library databases using key search words “zirconium oxide,” “zirconia,” “non-metal restorations,” “ceramic oxides,” “veneering ceramic,” “zirconia-based fixed dental prostheses”. Both in vivo and in vitro studies into zirconia-based prosthodontic restoration behavior were included. Results: Clinical studies have revealed a high rate of fracture for porcelain-veneered zirconia-based restorations that varies between 6% and 15% over a 3- to 5-year period, while for ceramo-metallic restorations the fracture rate ranges between 4 and 10% over ten years. These results provoke uncertainty as to the long-term prognosis for this material in the oral medium. The cause of veneering porcelain fractures is unknown but hypothetically they could be associated with bond failure between the veneer material and the zirconia sub-structure. Key words:Veneering ceramic, zirconia-based ceramic restoration, crown, zirconia, tooth-supported fixed prosthesis. PMID:24596638
Cervical and Incisal Marginal Discrepancy in Ceramic Laminate Veneering Materials: A SEM Analysis
Ranganathan, Hemalatha; Ganapathy, Dhanraj M.; Jain, Ashish R.
2017-01-01
Context: Marginal discrepancy influenced by the choice of processing material used for the ceramic laminate veneers needs to be explored further for better clinical application. Aims: This study aimed to evaluate the amount of cervical and incisal marginal discrepancy associated with different ceramic laminate veneering materials. Settings and Design: This was an experimental, single-blinded, in vitro trial. Subjects and Methods: Ten central incisors were prepared for laminate veneers with 2 mm uniform reduction and heavy chamfer finish line. Ceramic laminate veneers fabricated over the prepared teeth using four different processing materials were categorized into four groups as Group I - aluminous porcelain veneers, Group II - lithium disilicate ceramic veneers, Group III - lithium disilicate-leucite-based veneers, Group IV - zirconia-based ceramic veneers. The cervical and incisal marginal discrepancy was measured using a scanning electron microscope. Statistical Analysis Used: ANOVA and post hoc Tukey honest significant difference (HSD) tests were used for statistical analysis. Results: The cervical and incisal marginal discrepancy for four groups was Group I - 114.6 ± 4.3 μm, 132.5 ± 6.5 μm, Group II - 86.1 ± 6.3 μm, 105.4 ± 5.3 μm, Group III - 71.4 ± 4.4 μm, 91.3 ± 4.7 μm, and Group IV - 123.1 ± 4.1 μm, 142.0 ± 5.4 μm. ANOVA and post hoc Tukey HSD tests observed a statistically significant difference between the four test specimens with regard to cervical marginal discrepancy. The cervical and incisal marginal discrepancy scored F = 243.408, P < 0.001 and F = 180.844, P < 0.001, respectively. Conclusion: This study concluded veneers fabricated using leucite reinforced lithium disilicate exhibited the least marginal discrepancy followed by lithium disilicate ceramic, aluminous porcelain, and zirconia-based ceramics. The marginal discrepancy was more in the incisal region than in the cervical region in all the groups. PMID:28839415
Cervical and Incisal Marginal Discrepancy in Ceramic Laminate Veneering Materials: A SEM Analysis.
Ranganathan, Hemalatha; Ganapathy, Dhanraj M; Jain, Ashish R
2017-01-01
Marginal discrepancy influenced by the choice of processing material used for the ceramic laminate veneers needs to be explored further for better clinical application. This study aimed to evaluate the amount of cervical and incisal marginal discrepancy associated with different ceramic laminate veneering materials. This was an experimental, single-blinded, in vitro trial. Ten central incisors were prepared for laminate veneers with 2 mm uniform reduction and heavy chamfer finish line. Ceramic laminate veneers fabricated over the prepared teeth using four different processing materials were categorized into four groups as Group I - aluminous porcelain veneers, Group II - lithium disilicate ceramic veneers, Group III - lithium disilicate-leucite-based veneers, Group IV - zirconia-based ceramic veneers. The cervical and incisal marginal discrepancy was measured using a scanning electron microscope. ANOVA and post hoc Tukey honest significant difference (HSD) tests were used for statistical analysis. The cervical and incisal marginal discrepancy for four groups was Group I - 114.6 ± 4.3 μm, 132.5 ± 6.5 μm, Group II - 86.1 ± 6.3 μm, 105.4 ± 5.3 μm, Group III - 71.4 ± 4.4 μm, 91.3 ± 4.7 μm, and Group IV - 123.1 ± 4.1 μm, 142.0 ± 5.4 μm. ANOVA and post hoc Tukey HSD tests observed a statistically significant difference between the four test specimens with regard to cervical marginal discrepancy. The cervical and incisal marginal discrepancy scored F = 243.408, P < 0.001 and F = 180.844, P < 0.001, respectively. This study concluded veneers fabricated using leucite reinforced lithium disilicate exhibited the least marginal discrepancy followed by lithium disilicate ceramic, aluminous porcelain, and zirconia-based ceramics. The marginal discrepancy was more in the incisal region than in the cervical region in all the groups.
Melt-Infiltration Process For SiC Ceramics And Composites
NASA Technical Reports Server (NTRS)
Behrendt, Donald R.; Singh, Mrityunjay
1994-01-01
Reactive melt infiltration produces silicon carbide-based ceramics and composites faster and more economically than do such processes as chemical vapor infiltration (CVI), reaction sintering, pressureless sintering, hot pressing, and hot isostatic pressing. Process yields dense, strong materials at relatively low cost. Silicon carbide ceramics and composites made by reactive melt infiltration used in combustor liners of jet engines and in nose cones and leading edges of high-speed aircraft and returning spacecraft. In energy industry, materials used in radiant-heater tubes, heat exchangers, heat recuperators, and turbine parts. Materials also well suited to demands of advanced automobile engines.
The effect of casting conditions on the biaxial flexural strength of glass-ceramic materials.
Johnson, A; Shareef, M Y; Walsh, J M; Hatton, P V; van Noort, R; Hill, R G
1998-11-01
To assess the effect of mould and glass casting temperatures on the biaxial flexural strength (BFS) of two different types of castable glass-ceramic, using existing laboratory equipment and techniques. Two castable glass-ceramic materials were evaluated. One glass (LG3) is based on SiO2-Al2O3-P2O5-CaO-CaF2, and is similar in composition to glasses used in the manufacture of glass-ionomer cements. The other glass (SG3) is based on SiO2-K2O-Na2O-CaO-CaF2, and is a canasite-based material. Both materials were used to produce discs of 12 mm diameter and 2 mm thickness using the same lost-wax casting process as used for metal castings. Mould temperatures of between 500 degrees C and 1000 degrees C and glass casting temperatures of between 1100 degrees C and 1450 degrees C were evaluated. The cast discs were cerammed and the biaxial flexural strength determined with a Lloyd 2000 R tester. A significant difference was found for the BFS in the range of mould temperatures evaluated, with the optimum investment mould temperature being 590 degrees C for LG3 and 610 degrees C for SG3 (p = 0.0002 and p = 0.019, respectively). No significant differences were seen between any of the glass casting temperatures evaluated. The mould temperature for castable glass-ceramic materials produced using the lost-wax casting process can have a significant effect on BFS. The optimum mould temperature may differ slightly depending on the type of material being used. The glass casting temperature of these materials does not appear to have a significant effect on BFS.
Engineering of III-Nitride Semiconductors on Low Temperature Co-fired Ceramics.
Mánuel, J M; Jiménez, J J; Morales, F M; Lacroix, B; Santos, A J; García, R; Blanco, E; Domínguez, M; Ramírez, M; Beltrán, A M; Alexandrov, D; Tot, J; Dubreuil, R; Videkov, V; Andreev, S; Tzaneva, B; Bartsch, H; Breiling, J; Pezoldt, J; Fischer, M; Müller, J
2018-05-02
This work presents results in the field of advanced substrate solutions in order to achieve high crystalline quality group-III nitrides based heterostructures for high frequency and power devices or for sensor applications. With that objective, Low Temperature Co-fired Ceramics has been used, as a non-crystalline substrate. Structures like these have never been developed before, and for economic reasons will represent a groundbreaking material in these fields of Electronic. In this sense, the report presents the characterization through various techniques of three series of specimens where GaN was deposited on this ceramic composite, using different buffer layers, and a singular metal-organic chemical vapor deposition related technique for low temperature deposition. Other single crystalline ceramic-based templates were also utilized as substrate materials, for comparison purposes.
Corrosion Issues for Ceramics in Gas Turbines
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.; Fox, Dennis S.; Smialek, James L.; Opila, Elizabeth J.; Tortorelli, Peter F.; More, Karren L.; Nickel, Klaus G.; Hirata, Takehiko; Yoshida, Makoto; Yuri, Isao
2000-01-01
The requirements for hot-gas-path materials in gas turbine engines are demanding. These materials must maintain high strength and creep resistance in a particularly aggressive environment. A typical gas turbine environment involves high temperatures, rapid gas flow rates, high pressures, and a complex mixture of aggressive gases. Figure 26.1 illustrates the requirements for components of an aircraft engine and critical issues [1]. Currently, heat engines are constructed of metal alloys, which meet these requirements within strict temperature limits. In order to extend these temperature limits, ceramic materials have been considered as potential engine materials, due to their high melting points and stability at high temperatures. These materials include oxides, carbides, borides, and nitrides. Interest in using these materials in engines appears to have begun in the 1940s with BeO-based porcelains [2]. During the 1950s, the efforts shifted to cermets. These were carbide-based materials intended to exploit the best properties of metals and ceramics. During the 1960s and 1970s, the silicon-based ceramics silicon carbide (SiC) and silicon nitride (Si3N4) were extensively developed. Although the desirable high-temperature properties of SiC and Si3N4 had long been known, consolidation of powders into component-sized bodies required the development of a series of specialized processing routes [3]. For SiC, the major consolidation routes are reaction bonding, hot-pressing, and sintering. The use of boron and carbon as additives which enable sintering was a particularly noteworthy advance [4]. For Si3N4 the major consolidation routes are reaction bonding and hot pressing [5]. Reaction-bonding involves nitridation of silicon powder. Hot pressing involves addition of various refractory oxides, such as magnesia (MgO), alumina (Al2O3), and yttria (y2O3). Variations on these processes include a number of routes including Hot Isostatic Pressing (HIP), gas-pressure sintering, sinter-HIPing, and Encapsulation-HIPing. It is important to note that each process involves the addition of secondary elements, which later were shown to dramatically influence oxidation and corrosion behavior. As dense bodies of silicon-based ceramics became more readily available, their desirable high temperature properties were confirmed. These materials retained strength to very high temperatures (i.e. 1300-1400 C). Further, they were lightweight and made from abundant materials. SiC and Si3N4 therefore emerged as leading ceramic candidates for components in heat engines, designed to operate at higher temperatures for better performance and fuel efficiency. The first US programs for ceramics in heat engines have been reviewed [6]. Selected programs on ceramic engine parts are summarized here in regard to their contributions to understanding the corrosion behavior of a heat engine environment.
Surface treatment of alumina-based ceramics using combined laser sources
NASA Astrophysics Data System (ADS)
Triantafyllidis, D.; Li, L.; Stott, F. H.
2002-01-01
Alumina-based refractory materials are extensively used as linings in incinerators and furnaces. These materials are subject to molten salt corrosion and chemical degradation because of the existence of porosity and material inhomogeneity. Efforts to improve the performance of these materials have so far concentrated mainly on the optimisation of the manufacturing processes (e.g. producing denser refractory bricks) and in-service monitoring. Laser surface treatment has also been used to improve performance. The main problem identified with laser surface treatment is solidification cracking due to the generation of very large temperature gradients. The aim of this paper is to investigate the surface modification of alumina-based ceramics by using two combined laser sources in order to control the thermal gradients and cooling rates during processing so that crack formation can be eliminated. The material under investigation is 85% alumina refractory ceramic, used as lining material in incineration plants. The surface morphology and cross-section of the treated samples are analysed using optical and scanning electron microscopy (SEM) and compared with single laser beam treated samples.
NASA Astrophysics Data System (ADS)
Chang, Ch; Patzer, A. B. C.; Sedlmayr, E.; Steinke, T.; Sülzle, D.
2001-12-01
Theoretical electronic structure techniques have become an indispensible and powerful means for predicting molecular properties and designing new materials. Based on a density functional approach and guided by geometric considerations we provide evidence for some specific inorganic fullerene-like cage molecules of ceramic and semiconductor materials which exhibit high energetic stability and point group symmetry as well as nearly perfect spherical shape.
Plasma-Sprayed Refractory Oxide Coatings on Silicon-Base Ceramics
NASA Technical Reports Server (NTRS)
Tewari, Surendra
1997-01-01
Silicon-base ceramics are promising candidate materials for high temperature structural applications such as heat exchangers, gas turbines and advanced internal combustion engines. Composites based on these materials are leading candidates for combustor materials for HSCT gas turbine engines. These materials possess a combination of excellent physical and mechanical properties at high temperatures, for example, high strength, high toughness, high thermal shock resistance, high thermal conductivity, light weight and excellent oxidation resistance. However, environmental durability can be significantly reduced in certain conditions such as when molten salts, H2 or water vapor are present. The oxidation resistance of silicon-base materials is provided by SiO2 protective layer. Molten salt reacts with SiO2 and forms a mixture of SiO2 and liquid silicate at temperatures above 800C. Oxygen diffuses more easily through the chemically altered layer, resulting in a catastrophic degradation of the substrate. SiC and Si3N4 are not stable in pure H2 and decompose to silicon and gaseous species such as CH4, SiH, SiH4, N2, and NH3. Water vapor is known to slightly increase the oxidation rate of SiC and Si3N4. Refractory oxides such as alumina, yttria-stabilized zirconia, yttria and mullite (3Al2O3.2SiO2) possess excellent environmental durability in harsh conditions mentioned above. Therefore, refractory oxide coatings on silicon-base ceramics can substantially improve the environmental durability of these materials by acting as a chemical reaction barrier. These oxide coatings can also serve as a thermal barrier. The purpose of this research program has been to develop refractory oxide chemical/thermal barrier coatings on silicon-base ceramics to provide extended temperature range and lifetime to these materials in harsh environments.
Oxidation and Corrosion of Ceramics and Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.; Opila, Elizabeth J.; Lee, Kang N.
2000-01-01
Ceramics and ceramic matrix composites are candidates for numerous applications in high temperature environments with aggressive gases and possible corrosive deposits. There is a growing realization that high temperature oxidation and corrosion issues must be considered. There are many facets to these studies, which have been extensively covered in some recent reviews. The focus of this paper is on current research, over the past two years. In the authors' view, the most important oxidation and corrosion studies have focused on four major areas during this time frame. These are; (I) Oxidation of precursor-based ceramics; (II) Studies of the interphase material in ceramic matrix composites; (III) Water vapor interactions with ceramics, particularly in combustion environments; and (IV) Development of refractory oxide coatings for silicon-based ceramics. In this paper, we shall explore the most current work in each of these areas.
Bilandžić, Marin Dean; Wollgarten, Susanne; Stollenwerk, Jochen; Poprawe, Reinhart; Esteves-Oliveira, Marcella; Fischer, Horst
2017-09-01
The established method of fissure-sealing using polymeric coating materials exhibits limitations on the long-term. Here, we present a novel technique with the potential to protect susceptible teeth against caries and erosion. We hypothesized that a tailored glass-ceramic material could be sprayed onto enamel-like substrates to create superior adhesion properties after sintering by a CO 2 laser beam. A powdered dental glass-ceramic material from the system SiO 2 -Na 2 O-K 2 O-CaO-Al 2 O 3 -MgO was adjusted with individual properties suitable for a spray coating process. The material was characterized using X-ray fluorescence analysis (XRF), heating microscopy, dilatometry, scanning electron microscopy (SEM), grain size analysis, biaxial flexural strength measurements, fourier transform infrared spectroscopy (FTIR), and gas pycnometry. Three different groups of samples (each n=10) where prepared: Group A, powder pressed glass-ceramic coating material; Group B, sintered hydroxyapatite specimens; and Group C, enamel specimens (prepared from bovine teeth). Group B and C where spray coated with glass-ceramic powder. All specimens were heat treated using a CO 2 laser beam process. Cross-sections of the laser-sintered specimens were analyzed using laser scanning microscopy (LSM), energy dispersive X-ray analysis (EDX), and SEM. The developed glass-ceramic material (grain size d50=13.1mm, coefficient of thermal expansion (CTE)=13.310 -6 /K) could be spray coated on all tested substrates (mean thickness=160μm). FTIR analysis confirmed an absorption of the laser energy up to 95%. The powdered glass-ceramic material was successfully densely sintered in all sample groups. The coating interface investigation by SEM and EDX proved atomic diffusion and adhesion of the glass-ceramic material to hydroxyapatite and to dental enamel. A glass-ceramic material with suitable absorption properties was successfully sprayed and laser-sintered in thin films on hydroxyapatite as well as on bovine enamel. The presented novel technique of tooth coating with a dental glass-ceramic using a CO 2 -laser holds a great potential as a possible method to protect susceptible teeth against caries and erosion. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Wagh, Arun S [Orland Park, IL; Antink, Allison L [Bolingbrook, IL
2008-07-22
A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.
NASA Astrophysics Data System (ADS)
Loehman, Ronald E.
Methods for joining ceramics are outlined with attention given to their fundamental properties, and some examples of ceramic bonding in engineering ceramic systems are presented. Ceramic-ceramic bonds using no filler material include diffusion and electric-field bonding and ceramic welding, and bonds with filler materials can be provided by Mo-Mn brazing, microwave joining, and reactive nonmetallic liquid bonding. Ceramic-metal joints can be effected with filler material by means of the same ceramic-ceramic processes and without filler material by means of use of molten glass or diffusion bonding. Key properties of the bonding processes include: bonds with discontinuous material properties, energies that are positive relative to the bulk material, and unique chemical and mechanical properties. The processes and properties are outlined for ceramic-metal joints and for joining silicon nitride, and the factors that control wetting, adhesion, and reaction on the atomic scale are critical for establishing successful joints.
Magnetorheological materials, method for making, and applications thereof
Shen, Rui; Yang, Hong; Shafrir, Shai N.; Miao, Chunlin; Wang, Mimi; Mici, Joni; Lambropoulos, John C.; Jacobs, Stephen D.
2014-08-19
A magnetorheological material comprises a magnetic particle and a ceramic material, wherein the magnetorheological material is in a dried form and further wherein a portion of the ceramic material is in the form of a nanocrystalline coating over the entire exterior surface of the magnetic particle and another portion of the ceramic material is in the form of a free nanocrystal. A magnetorheological material comprises a magnetic particle having a ceramic material coating over an external surface thereof as a result of a coating process, and a free nanocrystal of the ceramic material in the form of a residual by-product of the coating process. A sol-gel process for making a magnetorheological product comprises providing a sol of a desired ceramic coating material; combining a desired quantity of carbonyl iron (CI) particles with the sol to coat the CI particles with the ceramic coating material; creating a resulting quantity of nanocrystalline ceramic material-coated CI particles and a quantity of free nanocrystals of the ceramic material; and, drying the resulting quantity of coated CI particles and free nanocrystals to a moisture content equal to or less than 2 wt %.
Environmental durability of ceramics and ceramic composites
NASA Technical Reports Server (NTRS)
Fox, Dennis S.
1992-01-01
An account is given of the current understanding of the environmental durability of both monolithic ceramics and ceramic-matrix composites, with a view to the prospective development of methods for the characterization, prediction, and improvement of ceramics' environmental durability. Attention is given to the environmental degradation behaviors of SiC, Si3N4, Al2O3, and glass-ceramic matrix compositions. The focus of corrosion prevention in Si-based ceramics such as SiC and Si3N4 is on the high and low sulfur fuel combustion-product effects encountered in heat engine applications of these ceramics; sintering additives and raw material impurities are noted to play a decisive role in ceramics' high temperature environmental response.
3D-WOVEN FIBER-REINFORCED COMPOSITE FOR CAD/CAM DENTAL APPLICATION
Petersen, Richard; Liu, Perng-Ru
2016-01-01
Three-dimensional (3D)-woven noncrimp fiber-reinforced composite (FRC) was tested for mechanical properties in the two principal directions of the main XY plane and compared to different Computer-Aided-Design/Computer-Aided-Machining (CAD/CAM) Dental Materials. The Dental Materials included ceramic with Vitablock Mark II®, ProCAD®, InCeram® Spinel, InCeram® Alumina and InCeram® Zirconia in addition to a resin-based 3M Corp. Paradigm® particulate-filled composite. Alternate material controls included Coors 300 Alumina Ceramic and a tungsten carbide 22% cobalt cermet. The 3D-woven FRC was vacuum assisted resin transfer molding processed as a one-depth-thickness ~19-mm preform with a vinyl-ester resin and cut into blocks similar to the commercial CAD/CAM Dental Materials. Mechanical test samples prepared for a flexural three-point span length of 10.0 mm were sectioned for minimum-depth cuts to compare machinability and fracture resistance between groups. 3D-woven FRC improved mechanical properties with significant statistical differences over all CAD/CAM Dental Materials and Coors Alumina Ceramic for flexural strength (p<0.001), resilience (p<0.05), work of fracture (p<0.001), strain energy release (p<0.05), critical stress intensity factor (p<0.001) and strain (p<0.001). PMID:27642198
3D-WOVEN FIBER-REINFORCED COMPOSITE FOR CAD/CAM DENTAL APPLICATION.
Petersen, Richard; Liu, Perng-Ru
2016-05-01
Three-dimensional (3D)-woven noncrimp fiber-reinforced composite (FRC) was tested for mechanical properties in the two principal directions of the main XY plane and compared to different Computer-Aided-Design/Computer-Aided-Machining (CAD/CAM) Dental Materials. The Dental Materials included ceramic with Vitablock Mark II®, ProCAD®, InCeram® Spinel, InCeram® Alumina and InCeram® Zirconia in addition to a resin-based 3M Corp. Paradigm® particulate-filled composite. Alternate material controls included Coors 300 Alumina Ceramic and a tungsten carbide 22% cobalt cermet. The 3D-woven FRC was vacuum assisted resin transfer molding processed as a one-depth-thickness ~19-mm preform with a vinyl-ester resin and cut into blocks similar to the commercial CAD/CAM Dental Materials. Mechanical test samples prepared for a flexural three-point span length of 10.0 mm were sectioned for minimum-depth cuts to compare machinability and fracture resistance between groups. 3D-woven FRC improved mechanical properties with significant statistical differences over all CAD/CAM Dental Materials and Coors Alumina Ceramic for flexural strength (p<0.001), resilience (p<0.05), work of fracture (p<0.001), strain energy release (p<0.05), critical stress intensity factor (p<0.001) and strain (p<0.001).
Affordable, Robust Ceramic Joining Technology (ARCJoinT) for High Temperature Applications
NASA Technical Reports Server (NTRS)
Singh, M.
1998-01-01
Ceramic joining is recognized as one of the enabling technologies for the successful utilization of silicon carbide-based monolithic ceramic and fiber reinforced composite components in a number of demanding and high temperature applications in aerospace and ground-based systems. An affordable, robust ceramic joining technology (ARCJoinT) for joining of silicon carbide-based ceramics and fiber reinforced composites has been developed. This technique is capable of producing joints with tailorable thickness and composition. A wide variety of silicon carbide-based ceramics and composites, in different shapes and sizes, have been joined using this technique. The room and high temperature mechanical properties and fractography of ceramic joints have been reported. In monolithic silicon carbide ceramics, these joints maintain their mechanical strength up to 1350 C in air. There is no change in the mechanical strength of joints in silicon carbide matrix composites up to 1200 C in air. In composites, simple butt joints yield only about 20% of the ultimate strength of the parent materials. This technology is suitable for the joining of large and complex shaped ceramic and composite components, and with certain modifications, can be applied to repair of ceramic components damaged in service.
Development of highly porous scaffolds based on bioactive silicates for dental tissue engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goudouri, O.M., E-mail: menti.goudouri@ww.uni-erlangen.de; Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki; Theodosoglou, E.
Graphical abstract: - Highlights: • Synthesis of an Mg-based glass-ceramic via the sol–gel technique. • The heat treatment of the glass-ceramic promoted the crystallization of akermanite. • Akermanite scaffolds coated with gelatin were successfully fabricated. • An HCAp layer was developed on the surface of all scaffolds after 9 days in SBF. - Abstract: Various scaffolding materials, ceramics and especially Mg-based ceramic materials, including akermanite (Ca{sub 2}MgSi{sub 2}O{sub 7}) and diopside (CaMgSi{sub 2}O{sub 6}), have attracted interest for dental tissue regeneration because of their improved mechanical properties and controllable biodegradation. The aim of the present work was the synthesis ofmore » an Mg-based glass-ceramic, which would be used for the construction of workable akermanite scaffolds. The characterization of the synthesized material was performed by Fourier Transform Infrared Spectroscopy (FTIR) X-Ray Diffractometry (XRD) and Scanning Electron Microscopy (SEM). Finally, the apatite forming ability of the scaffolds was assessed by immersion in simulated body fluid. The scaffolds were fabricated by the foam replica technique and were subsequently coated with gelatin to provide a functional surface for increased cell attachment. Finally, SEM microphotographs and FTIR spectra of the scaffolds after immersion in SBF solution indicated the inorganic bioactive character of the scaffolds suitable for the intended applications in dental tissue engineering.« less
Choi, Won-Young; Kim, Hyoun-Ee; Moon, Young-Wook; Shin, Kwan-Ha; Koh, Young-Hag
2015-01-01
Calcium phosphate (CaP) ceramics are one of the most valuable biomaterials for uses as the bone scaffold owing to their outstanding biocompatability, bioactivity, and biodegradation nature. In particular, these materials with an open porous structure can stimulate bone ingrowth into their 3-dimensionally interconnected pores. However, the creation of pores in bulk materials would inevitably cause a severe reduction in mechanical properties. Thus, it is a challenge to explore new ways of improving the mechanical properties of porous CaP scaffolds without scarifying their high porosity. Porous CaP ceramic scaffolds with aligned pores were successfully produced using ceramic/camphene-based co-extrusion. This aligned porous structure allowed for the achievement of high compressive strength when tested parallel to the direction of aligned pores. In addition, the overall porosity and mechanical properties of the aligned porous CaP ceramic scaffolds could be tailored simply by adjusting the initial CaP content in the CaP/camphene slurry. The porous CaP scaffolds showed excellent in vitro biocompatibility, suggesting their potential as the bone scaffold. Aligned porous CaP ceramic scaffolds with considerably enhanced mechanical properties and tailorable porosity would find very useful applications as the bone scaffold.
Esquivel-Upshaw, Josephine F.; Clark, Arthur E.; Shuster, Jonathan J.; Anusavice, Kenneth J.
2013-01-01
Purpose The aim of this study was to determine the survival rates over time of implant-supported ceramic-ceramic and metal-ceramic prostheses as a function of core-veneer thickness ratio, gingival connector embrasure design, and connector height. Materials and Methods An IRB-approved, randomized, controlled clinical trial was conducted as a single-blind pilot study involving 55 patients missing three teeth in either one or two posterior areas. These patients (34 women; 21 men; age range 52–75 years) were recruited for the study to receive a 3-unit implant-supported fixed dental prosthesis (FDP). Two implants were placed for each of the 72 FDPs in the study. The implants (Osseospeed, Astra Tech), which were made of titanium, were grit blasted. A gold-shaded, custom-milled titanium abutment (Atlantis, Astra Tech), was secured to each implant body. Each of the 72 FDPs in 55 patients were randomly assigned based on one of the following options: (1) A. Material: ceramic-ceramic (Yttria-stabilized zirconia core, pressable fluorapatite glass-ceramic, IPS e.max ZirCAD and ZirPress, Ivoclar Vivadent) B. metal-ceramic (palladium-based noble alloy, Capricorn, Ivoclar Vivadent, with press-on leucite-reinforced glass-ceramic veneer, IPS InLine POM, Ivoclar Vivadent); (2) occlusal veneer thickness (0.5, 1.0, and 1.5 mm); (3) curvature of gingival embrasure (0.25, 0.5, and 0.75 mm diameter); and (4) connector height (3, 4, and 5 mm). FDPs were fabricated and cemented with dual-cure resin cement (RelyX, Universal Cement, 3M ESPE). Patients were recalled at 6 months, 1 year, and 2 years. FDPs were examined for cracks, fracture, and general surface quality. Results Recall exams of 72 prostheses revealed 10 chipping fractures. No fractures occurred within the connector or embrasure areas. Two-sided Fisher’s exact tests showed no significant correlation between fractures and type of material system (p = 0.51), veneer thickness (p = 0.75), radius of curvature of gingival embrasure (p = 0.68), and connector height (p = 0.91). Conclusions Although there were no significant associations between connector height, curvature of gingival embrasure, core/veneer thickness ratio, and material system and the survival probability of implant-supported FDPs with zirconia as a core material, the small number of fractures precludes a definitive conclusion on the dominant controlling factor. PMID:23758092
Structure and conductivity of nanostructured YBCO ceramics
NASA Astrophysics Data System (ADS)
Palchayev, D. K.; Gadzhimagomedov, S. Kh; Murlieva, Zh Kh; Rabadanov, M. Kh; Emirov, R. M.
2017-12-01
Superconducting nanostructured ceramics based on YBa2Cu3O7-δ were made of nanopowder obtained by burning nitrate-organic precursors. The structure, morphology, electrical resistivity, and density of ceramics were studied. Various porosity values of the ceramics were achieved by preliminary heat treatment of the nanopowder. The features of conductivity and the reason for increase of the of the superconducting transition temperature in these materials are discussed.
In vitro cytotoxicity of traditional versus contemporary dental ceramics.
Messer, Regina L W; Lockwood, Petra E; Wataha, John C; Lewis, Jill B; Norris, Samuel; Bouillaguet, Serge
2003-11-01
The biocompatibility of new dental ceramics has not been assessed with the same scrutiny as has been applied to alloys and composites. Yet, the biocompatibility of ceramics is critical to the long-term success of dental prostheses because ceramics are in close contact with oral tissues for extended periods. Five dental ceramics (2 traditional feldspathic veneer porcelains [Vita Omega and Duceragold], 2 lithium disilicate pressable materials [Stylepress and Empress-2], and a pressable leucite-based material [Empress-1]) were tested for their ability to alter cellular mitochondrial dehydrogenase activity after fabrication using a tetrazolium assay, after aging for 2 weeks in a biologic solution and after post-aging polishing with either a fine diamond or diamond polishing paste. Cellular responses were compared with polytetrafluoroethylene controls (analysis of variance, Tukey pairwise post-hoc comparison, alpha=.05). The feldspathic porcelains caused only mild (<25% of controls) mitochondrial suppression regardless of aging or polishing. The pressable leucite-based material initially caused a 5% stimulation (not significant) of mitochondrial activity, which decreased significantly (P<.05) by 30% with aging to levels comparable to the feldspathic porcelains, and did not change with polishing. Both lithium disilicate materials caused an initial suppression of mitochondrial activity that decreased significantly with aging, but Empress-2 was severely cytotoxic initially (<20% of controls, P<.01), and became more cytotoxic again after polishing. Stylepress was less cytotoxic initially (85% of controls, not significant) and did not become cytotoxic again after polishing. Dental ceramics are not equivalent in their in vitro biologic effects, even within the same class of material, and biologic safety should not be assumed. Most ceramics caused only mild in vitro suppression of cell function to levels that would be acceptable on the basis of standards used to evaluate alloys and composites. However, 1 Li-disilicate material (Empress-2) exhibited cytotoxicity that would not be deemed biologically acceptable on the basis of prevailing empirical standards for dental alloys and composites.
Ceramic applications in turbine engines
NASA Technical Reports Server (NTRS)
Helms, H. E.; Heitman, P. W.; Lindgren, L. C.; Thrasher, S. R.
1984-01-01
The application of ceramic components to demonstrate improved cycle efficiency by raising the operating temperature of the existing Allison IGI 404 vehicular gas turbine engine is discussed. This effort was called the Ceramic Applications in Turbine Engines (CATE) program and has successfully demonstrated ceramic components. Among these components are two design configurations featuring stationary and rotating caramic components in the IGT 404 engine. A complete discussion of all phases of the program, design, materials development, fabrication of ceramic components, and testing-including rig, engine, and vehicle demonstation test are presented. During the CATE program, a ceramic technology base was established that is now being applied to automotive and other gas turbine engine programs. This technology base is outlined and also provides a description of the CATE program accomplishments.
Ouyang, Shao-bo; Wang, Jun; Zhang, Hong-bin; Liao, Lan; Zhu, Hong-shui
2014-04-01
To investigate the stress distributions under load in 3 types of all-ceramic continuous crowns of the lower anterior teeth with differential shoulder thickness. Cone-beam CT (CBCT) was used to scan the in vitro mandibular central incisors, and achieve three-dimensional finite element model of all-ceramic continuous crowns with different shoulder width by using Mimics, Abaqus software. Different load conditions were simulated based on this model to study the effect of shoulder width variation on finite element analysis of 3 kinds of different all-ceramic materials of incisors fixed continuous crowns of the mandibular. Using CBCT, Mimics10.01 software and Abaqus 6.11 software, three-dimensional finite element model of all-ceramic continuous crowns of the mandibular incisor, abutment, periodontal ligament and alveolar bone was established. Different ceramic materials and various shoulder width had minor no impact on the equivalent stress peak of periodontal membrane, as well as alveolar bone. With the same shoulder width and large area of vertical loading of 120 N, the tensile stress was the largest in In-Ceram Alumina, followed by In-Ceram Zirconia and the minimum was IPS.Empress II. Under large area loading of 120 N 45° labially, when the material was IPS.Empress II, with the shoulder width increased, the porcelain plate edge of the maximum tensile stress value increased, while the other 2 materials had no obvious change. Finite element model has good geometric similarity. In the setting range of this study, when the elastic modulus of ceramic materials is bigger, the tensile stress of the continuous crown is larger. Supported by Research Project of Department of Education, Jiangxi Province (GJJ09130).
Ceramic electrolyte coating and methods
Seabaugh, Matthew M [Columbus, OH; Swartz, Scott L [Columbus, OH; Dawson, William J [Dublin, OH; McCormick, Buddy E [Dublin, OH
2007-08-28
Aqueous coating slurries useful in depositing a dense coating of a ceramic electrolyte material (e.g., yttrium-stabilized zirconia) onto a porous substrate of a ceramic electrode material (e.g., lanthanum strontium manganite or nickel/zirconia) and processes for preparing an aqueous suspension of a ceramic electrolyte material and an aqueous spray coating slurry including a ceramic electrolyte material. The invention also includes processes for depositing an aqueous spray coating slurry including a ceramic electrolyte material onto pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.
Ceramic TBS/porous metal compliant layer
NASA Technical Reports Server (NTRS)
Tolokan, Robert P.; Jarrabet, G. P.
1992-01-01
Technetics Corporation manufactures metal fiber materials and components used in aerospace applications. Our technology base is fiber metal porous sheet material made from sinter bonded metal fibers. Fiber metals have percent densities (metal content by volume) from 10 to 65 percent. Various topics are covered and include the following: fiber metal materials, compliant layer thermal bayer coatings (TBC's), pad properties, ceramic/pad TBC design, thermal shock rig, fabrication, and applications.
Isgrò, Giuseppe; Kleverlaan, Cornelis J; Wang, Hang; Feilzer, Albert J
2005-06-01
During the production of layered all-ceramic restorations transient and/or residual thermal stresses may be formed which may affect a restoration's longevity. The aim of this study was to evaluate the influence of multiple firings on the thermal behavior of veneering porcelains and a ceramic core. The materials tested were: Empress 2 Core, Empress 2 Veneer and Eris glass-ceramics, Carrara Vincent and an experimental leucite-based veneering porcelain, Vitadur-Alpha aluminous porcelain, and two porcelains designed for titanium (i.e. Duceratin Dentine and Enamel). The thermal contraction coefficient of the materials was measured by means of dilatometery. The thermal contraction coefficient was measured during cooling and calculated over the temperature range of 450-20 degrees C by linear regression. One and two-way analysis of variance together with Tukey post-hoc tests were used as statistical analysis. Repeated firing affects the thermal contraction coefficients of Empress 2 Veneer, Carrara Vincent porcelain and the experimental porcelain. The thermal contraction coefficients of Empress 2 Core were significantly different from Vitadur-Alpha, Carrara Vincent, experimental porcelain, and Duceratin porcelains. The contraction coefficients of Empress 2 Veneer and Eris were closest to that of Empress 2 Core. The Empress 2 Core and Eris glass-ceramics, the aluminous porcelain and Duceratin porcelains showed better thermal stability after repeated firing than leucite porcelains. It can be concluded that due to the thermal stability of glass-ceramic materials, layered all-ceramic restorations of these materials may perform better.
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay
2010-01-01
Advanced ceramic integration technologies dramatically impact the energy landscape due to wide scale application of ceramics in all aspects of alternative energy production, storage, distribution, conservation, and efficiency. Examples include fuel cells, thermoelectrics, photovoltaics, gas turbine propulsion systems, distribution and transmission systems based on superconductors, nuclear power generation and waste disposal. Ceramic integration technologies play a key role in fabrication and manufacturing of large and complex shaped parts with multifunctional properties. However, the development of robust and reliable integrated systems with optimum performance requires the understanding of many thermochemical and thermomechanical factors, particularly for high temperature applications. In this presentation, various needs, challenges, and opportunities in design, fabrication, and testing of integrated similar (ceramic ceramic) and dissimilar (ceramic metal) material www.nasa.gov 45 ceramic-ceramic-systems have been discussed. Experimental results for bonding and integration of SiC based Micro-Electro-Mechanical-Systems (MEMS) LDI fuel injector and advanced ceramics and composites for gas turbine applications are presented.
Method for improving the toughness of silicon carbide-based ceramics
Tein, Tseng-Ying; Hilmas, Gregory E.
1996-01-01
Method of improving the toughness of SiC-based ceramics. SiC, , AlN, Al.sub.2 O.sub.3 and optionally .alpha.-Si.sub.3 N.sub.4 are hot pressed to form a material which includes AlN polytypoids within its structure.
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher; Steinetz, Bruce M.
1992-01-01
A test program to determine the friction and wear properties of two complex carbide oxide ceramic fibers for high temperature sliding seal applications is described. The fibers are based on Si, C, O, and Ti or Si, C, N, and O ceramic systems. Pin on disk tests using ceramic fiber covered pins and Inconel 718 disks, were conducted in air from 25 to 900 C to evaluate potential seal materials. This testing procedure was used in a previous study of oxide ceramic fibers which were found to exhibit wear behavior based predominantly on their mechanical properties. Like the oxide fibers tested previously, these carbide oxide ceramic fibers, show an increase in friction and wear with increased test temperature. At room temperature, the wear behavior seems to be based upon mechanical properties, namely tensile strength. At 500 and especially 900 C, the fibers wear by both mechanical fracture and by oxidative type wear. Based upon post test microscopic and x ray analyses, interaction between the fiber constituents and elements transferred from the counterface, namely Ni and Cr, may have occurred enhancing the tribochemical wear process. These results are interpreted.
NASA Technical Reports Server (NTRS)
Baaklini, George Y.; Kautz, Harold E.; Gyekenyesi, Andrew L.; Abdul-Aziz, Ali; Martin, Richard E.
2001-01-01
At the NASA Glenn Research Center, nondestructive evaluation (NDE) approaches were developed or tailored for characterizing advanced material systems. The emphasis was on high-temperature aerospace propulsion applications. The material systems included monolithic ceramics, superalloys, and high-temperature composites. In the aeronautics area, the major applications were cooled ceramic plate structures for turbine applications, gamma-TiAl blade materials for low-pressure turbines, thermoelastic stress analysis for residual stress measurements in titanium-based and nickel-based engine materials, and acousto-ultrasonics for creep damage assessment in nickel-based alloys. In the space area, applications consisted of cooled carbon-carbon composites for gas generator combustors and flywheel rotors composed of carbon-fiber-reinforced polymer matrix composites for energy storage on the International Space Station.
Biomechanical behavior of a cemented ceramic knee replacement under worst case scenarios
NASA Astrophysics Data System (ADS)
Kluess, D.; Mittelmeier, W.; Bader, R.
2009-12-01
In connection with technological advances in the manufacturing of medical ceramics, a newly developed ceramic femoral component was introduced in total knee arthroplasty (TKA). The motivation to consider ceramics in TKA is based on the allergological and tribological benefits as proven in total hip arthroplasty. Owing to the brittleness and reduced fracture toughness of ceramic materials, the biomechanical performance has to be examined intensely. Apart from standard testing, we calculated the implant performance under different worst case scenarios including malposition, bone defects and stumbling. A finite-element-model was developed to calculate the implant performance in situ. The worst case conditions revealed principal stresses 12.6 times higher during stumbling than during normal gait. Nevertheless, none of the calculated principal stress amounts were above the critical strength of the ceramic material used. The analysis of malposition showed the necessity of exact alignment of the implant components.
Biomechanical behavior of a cemented ceramic knee replacement under worst case scenarios
NASA Astrophysics Data System (ADS)
Kluess, D.; Mittelmeier, W.; Bader, R.
2010-03-01
In connection with technological advances in the manufacturing of medical ceramics, a newly developed ceramic femoral component was introduced in total knee arthroplasty (TKA). The motivation to consider ceramics in TKA is based on the allergological and tribological benefits as proven in total hip arthroplasty. Owing to the brittleness and reduced fracture toughness of ceramic materials, the biomechanical performance has to be examined intensely. Apart from standard testing, we calculated the implant performance under different worst case scenarios including malposition, bone defects and stumbling. A finite-element-model was developed to calculate the implant performance in situ. The worst case conditions revealed principal stresses 12.6 times higher during stumbling than during normal gait. Nevertheless, none of the calculated principal stress amounts were above the critical strength of the ceramic material used. The analysis of malposition showed the necessity of exact alignment of the implant components.
Advanced materials for thermal protection system
NASA Astrophysics Data System (ADS)
Heng, Sangvavann; Sherman, Andrew J.
1996-03-01
Reticulated open-cell ceramic foams (both vitreous carbon and silicon carbide) and ceramic composites (SiC-based, both monolithic and fiber-reinforced) were evaluated as candidate materials for use in a heat shield sandwich panel design as an advanced thermal protection system (TPS) for unmanned single-use hypersonic reentry vehicles. These materials were fabricated by chemical vapor deposition/infiltration (CVD/CVI) and evaluated extensively for their mechanical, thermal, and erosion/ablation performance. In the TPS, the ceramic foams were used as a structural core providing thermal insulation and mechanical load distribution, while the ceramic composites were used as facesheets providing resistance to aerodynamic, shear, and erosive forces. Tensile, compressive, and shear strength, elastic and shear modulus, fracture toughness, Poisson's ratio, and thermal conductivity were measured for the ceramic foams, while arcjet testing was conducted on the ceramic composites at heat flux levels up to 5.90 MW/m2 (520 Btu/ft2ṡsec). Two prototype test articles were fabricated and subjected to arcjet testing at heat flux levels of 1.70-3.40 MW/m2 (150-300 Btu/ft2ṡsec) under simulated reentry trajectories.
Industrial waste utilization in the panels production for high buildings facade and socle facing
NASA Astrophysics Data System (ADS)
Vitkalova, Irina; Torlova, Anastasiya; Pikalov, Evgeniy; Selivanov, Oleg
2018-03-01
The research presents comprehensive utilization of such industrial waste as galvanic sludge, broken window glass as functional additives for producing ceramics for facade and socle paneling in high-rise construction. The basic charge component is low-plasticity clay, which does not allow producing high-quality products if used without any functional additives. The application of the mentioned above components broadens the resource base, reduces production cost and the mass of the products in comparison with the currently used facing ceramics. The decrease of product mass helps to reduce the load on the basement and to use ceramic material in high-rise construction more effectively. Additional advantage of the developed composition is the reducing of production energy intensity due to comparatively low pressing pressure and firing temperature thus reducing the overall production cost. The research demonstrates the experimental results of determining density, compressive strength, water absorption, porosity and frost resistance of the produced ceramic material. These characteristics prove that the material can be applied for high buildings outdoor paneling. Additional research results prove ecologic safety of the produced ceramic material.
Deubener, J; Höland, M; Höland, W; Janakiraman, N; Rheinberger, V M
2011-10-01
The critical stress intensity factor, also known as the crack tip toughness K(tip), was determined for three base glasses, which are used in the manufacture of glass-ceramics. The glasses included the base glass for a lithium disilicate glass-ceramic, the base glass for a fluoroapatite glass-ceramic and the base glass for a leucite glass-ceramic. These glass-ceramic are extensively used in the form of biomaterials in restorative dental medicine. The crack tip toughness was established by using crack opening displacement profiles under experimental conditions. The crack was produced by Vickers indentation. The crack tip toughness parameters determined for the three glass-ceramics differed quite significantly. The crack tip parameters of the lithium disilicate base glass and the leucite base glass were higher than that of the fluoroapatite base glass. This last material showed glass-in-glass phase separation. The discussion of the results clearly shows that the droplet glass phase is softer than the glass matrix. Therefore, the authors conclude that a direct relationship exists between the chemical nature of the glasses and the crack tip parameter. Copyright © 2011 Elsevier Ltd. All rights reserved.
Guanidine Soaps As Vehicles For Coating Ceramic Fibers
NASA Technical Reports Server (NTRS)
Philipp, Warren H.; Veitch, Lisa C.; Jaskowiak, Martha H.
1994-01-01
Soaps made from strong organic base guanidine and organic fatty acids serve as vehicles and binders for coating ceramic fibers, various smooth substrates, and other problematic surfaces with thin precious-metal or metal-oxide films. Films needed to serve as barriers to diffusion in fiber/matrix ceramic composite materials. Guanidine soaps entirely organic and burn off, leaving no residues.
Properties of PZT-Based Piezoelectric Ceramics Between -150 and 250 C
NASA Technical Reports Server (NTRS)
Hooker, Matthew W.
1998-01-01
The properties of three PZT-based piezoelectric ceramics and one PLZT electrostrictive ceramic were measured as a function of temperature. In this work, the dielectric, ferroelectric polarization versus electric field, and piezoelectric properties of PZT-4, PZT-5A, PZT-5H, and PLZT-9/65/35 were measured over a temperature range of -150 to 250 C. In addition to these measurements, the relative thermal expansion of each composition was measured from 25 to 600 C and the modulus of rupture of each material was measured at room temperature. This report describes the experimental results and compares and contrasts the properties of these materials with respect to their applicability to intelligent aerospace systems.
Method for improving the toughness of silicon carbide-based ceramics
Tein, T.Y.; Hilmas, G.E.
1996-12-03
Method of improving the toughness of SiC-based ceramics is disclosed. SiC, , AlN, Al{sub 2}O{sub 3} and optionally {alpha}-Si{sub 3}N{sub 4} are hot pressed to form a material which includes AlN polytypoids within its structure. 1 fig.
Nassif, Ali; Berbar, Tsouria; Le Goff, Stéphane; Berdal, Ariane; Sadoun, Michael; Fournier, Benjamin P. J.
2016-01-01
Objectives The development of CAD—CAM techniques called for new materials suited to this technique and offering a safe and sustainable clinical implementation. The infiltration of resin in a ceramic network under high pressure and high temperature defines a new class of hybrid materials, namely polymer infiltrated ceramics network (PICN), for this purpose which requires to be evaluated biologically. We used oral stem cells (gingival and pulpal) as an in vitro experimental model. Methods Four biomaterials were grinded, immersed in a culture medium and deposed on stem cells from dental pulp (DPSC) and gingiva (GSC): Enamic (VITA®), Experimental Hybrid Material (EHM), EHM with initiator (EHMi) and polymerized Z100™ composite material (3M®). After 7 days of incubation; viability, apoptosis, proliferation, cytoskeleton, inflammatory response and morphology were evaluated in vitro. Results Proliferation was insignificantly delayed by all the tested materials. Significant cytotoxicity was observed in presence of resin based composites (MTT assay), however no detectable apoptosis and some dead cells were detected like in PICN materials. Cell morphology, major cytoskeleton and extracellular matrix components were not altered. An intimate contact appeared between the materials and cells. Clinical Significance The three new tested biomaterials did not exhibit adverse effects on oral stem cells in our experimental conditions and may be an interesting alternative to ceramics or composite based CAD—CAM blocks. PMID:27196425
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.
This chapter first describes tests to investigate the temporal evolution of the volume fraction of ceramic phases, the evolution of micro-damage, and the self-healing behavior of the glass ceramic sealant used in SOFCs, then a phenomenological model based on mechanical analogs is developed to describe the temperature dependent Young’s modulus of glass ceramic seal materials. It was found that after the initial sintering process, further crystallization of the glass ceramic sealant does not stop, but slows down and reduces the residual glass content while boosting the ceramic crystalline content. Under the long-term operating environment, distinct fibrous and needle-like crystals inmore » the amorphous phase disappeared, and smeared/diffused phase boundaries between the glass phase and ceramic phase were observed. Meanwhile, the micro-damage was induced by the cooling-down process from the operating temperature to the room temperature, which can potentially degrade the mechanical properties of the glass/ceramic sealant. The glass/ceramic sealant self-healed upon reheating to the SOFC operating temperature, which can restore the mechanical performance of the glass/ceramic sealant. The phenomenological model developed here includes the effects of continuing aging and devitrification on the ceramic phase volume fraction and the resulted mechanical properties of glass ceramic seal material are considered. The effects of micro-voids and self-healing are also considered using a continuum damage mechanics (CDM) model. The formulation is for glass/ceramic seal in general, and it can be further developed to account for effects of various processing parameters. This model was applied to G18, and the temperature-dependent experimental measurements were used to calibrate the modeling parameters and to validate the model prediction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gualtieri, Alessandro F., E-mail: alessandro.gualtieri@unimore.it; Giacobbe, Carlotta; Sardisco, Lorenza
Recycling of secondary raw materials is a priority of waste handling in the countries of the European community. A potentially important secondary raw material is the product of the thermal transformation of cement-asbestos, produced by prolonged annealing at 1200-1300 {sup o}C. The product is chemically comparable to a Mg-rich clinker. Previous work has assured the reliability of the transformation process. The current challenge is to find potential applications as secondary raw material. Recycling of thermally treated asbestos-containing material (named KRY.AS) in traditional ceramics has already been studied with successful results. The results presented here are the outcome of a longmore » termed project started in 2005 and devoted to the recycling of this secondary raw materials in various industrial applications. KRY.AS can be added in medium-high percentages (10-40 wt%) to commercial mixtures for the production of clay bricks, rock-wool glasses for insulation as well as Ca-based frits and glass-ceramics for the production of ceramic tiles. The secondary raw material was also used for the synthesis of two ceramic pigments; a green uvarovite-based pigment [Ca{sub 3}Cr{sub 2}(SiO{sub 4}){sub 3}] and a pink malayaite-based pigment [Ca(Sn,Cr)SiO{sub 5}]. The latter is especially interesting as a substitute for cadmium-based pigments. This work also shows that KRY.AS can replace standard fillers in polypropylene plastics without altering the properties of the final product. For each application, a description and relevant results are presented and discussed.« less
NASA Technical Reports Server (NTRS)
1997-01-01
Products made from advanced ceramics show great promise for revolutionizing aerospace and terrestrial propulsion and power generation. However, ceramic components are difficult to design because brittle materials in general have widely varying strength values. The CARES/Life software developed at the NASA Lewis Research Center eases this by providing a tool that uses probabilistic reliability analysis techniques to optimize the design and manufacture of brittle material components. CARES/Life is an integrated package that predicts the probability of a monolithic ceramic component's failure as a function of its time in service. It couples commercial finite element programs--which resolve a component's temperature and stress distribution - with reliability evaluation and fracture mechanics routines for modeling strength - limiting defects. These routines are based on calculations of the probabilistic nature of the brittle material's strength.
Looney, Mark; Shea, Helen O'; Gunn, Lynda; Crowley, Dolores; Boyd, Daniel
2013-05-01
The use of artificial bone grafts has increased in order to satisfy a growing demand for bone replacement materials. Initial mechanical stability of synthetic bone grafts is very advantageous for certain clinical applications. Coupled with the advantage of mechanical strength, a material with inherent antibacterial properties would be very beneficial. A series of strontium-doped zinc silicate (Ca-Sr-Na-Zn-Si) glass ceramics have been characterized in terms of their crystalline structure, biaxial flexural strength and antibacterial efficacy based on the identification of optimum sintering conditions. All three glass ceramics, namely, BT110, BT111, and BT112 were found to be fully crystalline, with BT111 and BT112 comprising of biocompatible crystalline phases. The biaxial flexural strengths of the three glass ceramics ranged from 70 to 149 MPa and were shown to be superior to those of clinically established ceramics in dry conditions and following incubation in simulated physiological conditions. The bacteriostatic effect for each glass ceramic was also established, where BT112 showed an inhibitory effect against three of the most common bacteria found at implantation sites, namely, Enterococcus faecalis, methicillin-resistant Staphylococcus aureus (MRSA), and Pseudomonas aeruginosa. The results of the evaluation suggest that the materials studied offer advantages over current clinical materials and indicate the potential suitability of the glass ceramics as therapeutic bone grafts.
NASA Astrophysics Data System (ADS)
Casalegno, Valentina; Kondo, Sosuke; Hinoki, Tatsuya; Salvo, Milena; Czyrska-Filemonowicz, Aleksandra; Moskalewicz, Tomasz; Katoh, Yutai; Ferraris, Monica
2018-04-01
The aim of this work was to investigate and discuss the microstructure and interface reaction of a calcia-alumina based glass-ceramic (CA) with SiC. CA has been used for several years as a glass-ceramic for pressure-less joining of SiC based components. In the present work, the crystalline phases in the CA glass-ceramic and at the CA/SiC interface were investigated and the absence of any detectable amorphous phase was assessed. In order to provide a better understanding of the effect of irradiation on the joining material and on the joints, Si ion irradiation was performed both on bulk CA and CA joined SiC. CA glass-ceramic and CA joined SiC were both irradiated with 5.1 MeV Si2+ ions to 3.3 × 1020 ions/m2 at temperatures of 400 and 800 °C at DuET facility, Kyoto University. This corresponds to a damage level of 5 dpa for SiC averaged over the damage range. This paper presents the results of a microstructural analysis of the irradiated samples as well as an evaluation of the dimensional stability of the CA glass-ceramic and its irradiation temperature and/or damage dependence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.R.; McClung, R.W.; Janney, M.A.
1987-08-01
A needs assessment was performed for nondestructive testing and materials characterization to achieve improved reliability in ceramic materials for heat engine applications. Raw materials, green state bodies, and sintered ceramics were considered. The overall approach taken to improve reliability of structural ceramics requires key inspections throughout the fabrication flowsheet, including raw materials, greed state, and dense parts. The applications of nondestructive inspection and characterization techniques to ceramic powders and other raw materials, green ceramics, and sintered ceramics are discussed. The current state of inspection technology is reviewed for all identified attributes and stages of a generalized flowsheet for advanced structuralmore » ceramics, and research and development requirements are identified and listed in priority order. 164 refs., 3 figs.« less
Lu, Xiao-li; Gao, Mei-qin; Cheng, Yu-ye; Zhang, Fei-min
2015-04-01
In order to choose the best veneering porcelain for diatomite-based dental ceramic substrate, the bonding strength between diatomite-based dental ceramics and veneering porcelains was measured, and the microstructure and elements distribution of interface were analyzed. The coefficient of thermal expansion (CTE) of diatomite-based dental ceramics was detected by dilatometry. Three veneering porcelain materials were selected with the best CTE matching including alumina veneering porcelain (group A), titanium porcelain veneering porcelain (group B), and E-max veneering porcelain (group C). Shear bonding strength was detected. SEM and EDS were used to observe the interface microstructure and element distribution. Statistical analysis was performed using SPSS 17.0 software package. The CTE of diatomite-based dental ceramics at 25-500 degrees centigrade was 8.85×10-6K-1. The diatomite-based substrate ceramics combined best with group C. Shear bonding strength between group A and C and group B and C both showed significant differences(P<0.05). SEM and EDS showed that the interface of group C sintered tightly and elements permeated on both sides of the interface. The diatomite-based substrate ceramics combines better with E-max porcelain veneer.
Draenert, K; Draenert, M; Erler, M; Draenert, A; Draenert, Y
2011-09-01
The behaviour of physiological biomaterials, β-tricalciumphosphate and hydroxyapatite, is analysed based on current literature and our own experimental work. The properties of graft substitutes based on ceramic materials are clearly defined according to their scientific efficiency. The strength of the materials and their biodegradability are still not fully evaluated. Strength and degradability have a direct proportional relationship and are considered the most efficient way to be adapted by their properties to the needs for the treatment of bone defects. New technologies for the manufacturing process are presented that increase those properties and thus open up new indications and easier application of the ceramic materials. The implantation process as well is carefully validated by animal experiments to avoid failures. Based on the experiments, a completely new approach is defined as to how primary bone formation with osteoconductive ceramics can be achieved. The milestones in that approach comprise a synthetically manufactured replica of the bone marrow spaces as osteoconductive ladder, whereas the bead is defined as bone-forming element. As a result, materials are available with high strength if the ceramic is solid or highly porous and possesses a micro-structure. The injection moulding process allows for the combination of high strength of the material with high porosity. Based on the strong capillary forces, micro-chambered beads fulfil most expectations for primary bone formation in cancellous bone defects, including drug delivery, mechanical strengthening if necessary, and stable implantation in situ by coagulation of the blood and bone marrow suctioned in. Copyright © 2011 Elsevier Ltd. All rights reserved.
Improved performance of diatomite-based dental nanocomposite ceramics using layer-by-layer assembly
Lu, Xiaoli; Xia, Yang; Liu, Mei; Qian, Yunzhu; Zhou, Xuefeng; Gu, Ning; Zhang, Feimin
2012-01-01
To fabricate high-strength diatomite-based ceramics for dental applications, the layer-by-layer technique was used to coat diatomite particles with cationic [poly(allylamine hydrochloride)] and anionic [poly(sodium 4-styrenesulfonate)] polymers to improve the dispersion and adsorption of positively charged nano-ZrO2 (zirconia) as a reinforcing agent. The modified diatomite particles had reduced particle size, narrower size distribution, and were well dispersed, with good adsorption of nano-ZrO2. To determine the optimum addition levels for nano-ZrO2, ceramics containing 0, 20, 25, 30, and 35 wt% nano-ZrO2 were sintered and characterized by the three-point bending test and microhardness test. In addition to scanning electron microscopy, propagation phase-contrast synchrotron X-ray microtomography was used to examine the internal structure of the ceramics. The addition of 30 wt% nano-ZrO2 resulted in the highest flexural strength and fracture toughness with reduced porosity. Shear bond strength between the core and veneer of our diatomite ceramics and the most widely used dental ceramics were compared; the shear bond strength value for the diatomite-based ceramics was found to be significantly higher than for other groups (P < 0.05). Our results show that diatomite-based nanocomposite ceramics are good potential candidates for ceramic-based dental materials. PMID:22619551
Improved performance of diatomite-based dental nanocomposite ceramics using layer-by-layer assembly.
Lu, Xiaoli; Xia, Yang; Liu, Mei; Qian, Yunzhu; Zhou, Xuefeng; Gu, Ning; Zhang, Feimin
2012-01-01
To fabricate high-strength diatomite-based ceramics for dental applications, the layer-by-layer technique was used to coat diatomite particles with cationic [poly(allylamine hydrochloride)] and anionic [poly(sodium 4-styrenesulfonate)] polymers to improve the dispersion and adsorption of positively charged nano-ZrO(2) (zirconia) as a reinforcing agent. The modified diatomite particles had reduced particle size, narrower size distribution, and were well dispersed, with good adsorption of nano-ZrO(2). To determine the optimum addition levels for nano-ZrO(2), ceramics containing 0, 20, 25, 30, and 35 wt% nano-ZrO(2) were sintered and characterized by the three-point bending test and microhardness test. In addition to scanning electron microscopy, propagation phase-contrast synchrotron X-ray microtomography was used to examine the internal structure of the ceramics. The addition of 30 wt% nano-ZrO(2) resulted in the highest flexural strength and fracture toughness with reduced porosity. Shear bond strength between the core and veneer of our diatomite ceramics and the most widely used dental ceramics were compared; the shear bond strength value for the diatomite-based ceramics was found to be significantly higher than for other groups (P < 0.05). Our results show that diatomite-based nanocomposite ceramics are good potential candidates for ceramic-based dental materials.
Reactive Processing of Environmentally Conscious, Biomorphic Ceramics from Natural Wood Precursors
NASA Technical Reports Server (NTRS)
Singh, M.; Yee, Bo-Moon
2003-01-01
Environmentally conscious, biomorphic ceramics (Ecoceramics) are a new class of materials that are manufactured from renewable resources and wastes. In this study, silicon carbide and oxide-based biomorphic ceramics have been fabricated from pine and jelutong wood precursors. A carbonaceous preform is produced through wood pyrolysis and subsequent infiltration with oxides (ZrO2 sols) and liquid silicon to form ceramics. These biomorphic ceramics show a wide variety of microstructures, densities, and hardness behavior that are determined by the type of wood and infiltrants selected.
Quinn, G. D.
2014-01-01
Objective The edge chipping test is used to measure the fracture resistance of dental restoration ceramics and resin composites. This paper focuses on the progress of evaluating chipping resistance of these materials and also on the progress of standardization of this test method. This paper also makes observations about the state of the art of mechanical testing of ceramic and composite restorative materials in general. Interlaboratory comparative studies (“round robins”) are recommended. Methods An edge chipping machine was used to evaluate dozens of materials including porcelains, glass ceramics, aluminas, zirconias, filled resin-composites, new hybrid ceramic-resin composites, laminated composite ceramics, and even polymethyl methacrylate based denture materials. Force versus distance data were collected over a broad range with different indenters. Several chipping resistance parameters were quantified. Results Older restorative materials such as feldspathic porcelains and veneering materials had limited chipping resistance, but more modern ceramics and filled composites show significant improvements. A yttria-partially stabilized zirconia had the greatest resistance to chipping. Much of the early work on edge chipping resistance of brittle materials emphasized linear force versus distance trends obtained with relatively blunt Rockwell C indenters. More recently, trends for dental restorative materials with alternative sharper indenters have been nonlinear. A new phenomenological model with a simple quadratic function fits all data exceptionally well. It is loosely based on an energy balance between indenter work and fracture and deformation energies in the chipped material. Significance Although a direct comparison of our laboratory scale tests on idealized simple geometries to clinical outcomes has not yet been done, anecdotal evidence suggests the procedure does produce clinically relevant rankings and outcomes. Despite the variations in the trends and indenters, comparisons between materials can easily be made by chipping convenient block-shaped specimens with sharp conical 120°, Vickers, or Rockwell C indenters at a defined edge distance of 0.5 mm. Broad distance ranges are recommended for trend evaluation. This work has provided important information for standardization. PMID:25244927
Materials Testing on the DC-X and DC-XA
NASA Technical Reports Server (NTRS)
Smith, Dane; Carroll, Carol; Marschall, Jochen; Pallix, Joan
1997-01-01
Flight testing of thermal protection materials has been carried out over a two year period on the base heat shield of the Delta Clipper (DC-X and DC-XA), as well on a body flap. The purpose was to use the vehicle as a test bed for materials and more efficient repair or maintenance processes which would be potentially useful for application on new entry vehicles (i.e., X-33, RLV, planetary probes), as well as on the existing space shuttle orbiters. Panels containing Thermal Protection Systems (TPS) and/or structural materials were constructed either at NASA Ames Research Center or at McDonnell Douglas Aerospace (MDA) and attached between two of the four thrusters in the base heat shield of the DC-X or DC-XA. Three different panels were flown on DC-X flights 6, 7, and 8. A total of 7 panels were flown on DC-XA flights 1, 2, and 3. The panels constructed at Ames contained a variety of ceramic TPS including flexible blankets, tiles with high emissivity coatings, lightweight ceramic ablators and other ceramic composites. The MDS test panels consisted primarily of a variety of metallic composites. This report focuses on the ceramic TPS test results.
[Study on high strength mica-based machinable glass-ceramic].
Li, Hong; Ran, Junguo; Gou, Li; Wang, Fanghu
2004-02-01
The phase constitution, microstructure and properties of a new type of machinable glass-ceramics containing fluorophlogopite-type (FPT) Ca-mica for used in restorative dentistry were investigated. According to the results of X-ray diffraction (XRD) and energy-dispersive spectrometry(EDS), its main crystalline phases were FPT Ca-mica and t-ZrO2, together with few KxCa(1-x)/2Mg2Si4O10F2, m-ZrO2. The flexible strength was 235 MPa, which was nearly two times larger than that of the present mica-based dental materials, and the highest fracture toughness was 2.17 MPa.m1/2. The microstructure had a great effect on properties, the glass-ceramics contained a large volume, and the fine crystals showed higher strength. The material possessed typical microstructure of machinable glass-ceramics and displayed excellent machinability during drilling test and CAD/CAM.
Patil, Abhijit; Singh, Kishan; Sahoo, Sukant; Suvarna, Suraj; Kumar, Prince; Singh, Anupam
2013-01-01
Objective: The aims of the study are to assess the marginal accuracy of base metal and titanium alloy casting and to evaluate the effect of repeated ceramic firing on the marginal accuracy of base metal and titanium alloy castings. Materials and Methods: Twenty metal copings were fabricated with each casting material. Specimens were divided into 4 groups of 10 each representing base metal alloys castings without (Group A) and with metal shoulder margin (Group B), titanium castings without (Group C) and with metal shoulder margin (Group D). The measurement of fit of the metal copings was carried out before the ceramic firing at four different points and the same was followed after porcelain build-up. Results: Significant difference was found when Ni–Cr alloy samples were compared with Grade II titanium samples both before and after ceramic firings. The titanium castings with metal shoulder margin showed highest microgap among all the materials tested. Conclusions: Based on the results that were found and within the limitations of the study design, it can be concluded that there is marginal discrepancy in the copings made from Ni–Cr and Grade II titanium. This marginal discrepancy increased after ceramic firing cycles for both Ni–Cr and Grade II titanium. The comparative statistical analysis for copings with metal-collar showed maximum discrepancy for Group D. The comparative statistical analysis for copings without metal-collar showed maximum discrepancy for Group C. PMID:24926205
Evaluation of a novel multiple phase veneering ceramic.
Sinthuprasirt, Pannapa; van Noort, Richard; Moorehead, Robert; Pollington, Sarah
2015-04-01
To produce a new veneering ceramic based on the production of a multiple phase glass-ceramic with improved performance in terms of strength and toughness. A composition of 60% leucite, 20% diopside and 20% feldspathic glass was prepared, blended and a heat treatment schedule of 930°C for 5 min was derived from differential thermal analysis (DTA) of the glasses. X-ray diffraction (XRD) and SEM analysis determined the crystalline phases and microstructure. Chemical solubility, biaxial flexural strength (BFS), fracture toughness, hardness, total transmittance and coefficient of thermal expansion (CTE) were all measured in comparison to a commercial veneering ceramic (VITA VM9). Thermal shock resistance of the leucite-diopside and VITA VM9 veneered onto a commercial high strength zirconia (Vita In-Ceram YZ) was also assessed. Statistical analysis was undertaken using Independent Samples t-test. Weibull analysis was employed to examine the reliability of the strength data. The mean chemical solubility was 6 μg/cm(2) for both ceramics (P=1.00). The mean BFS was 109 ± 8 MPa for leucite-diopside ceramic and 79 ± 11 MPa for VITA VM9 ceramic (P=0.01). Similarly, the leucite-diopside ceramic demonstrated a significantly higher fracture toughness and hardness. The average total transmittance was 46.3% for leucite-diopside ceramic and 39.8% for VITA VM9 (P=0.01). The leucite-diopside outperformed the VITA VM9 in terms of thermal shock resistance. Significance This novel veneering ceramic exhibits significant improvements in terms of mechanical properties, yet retains a high translucency and is the most appropriate choice as a veneering ceramic for a zirconia base core material. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Testing of felt-ceramic materials for combustor applications
NASA Technical Reports Server (NTRS)
Venkat, R. S.; Roffe, G.
1983-01-01
The feasibility of using composite felt ceramic materials as combustor liners was experimentally studied. The material consists of a porous felt pad sandwiched between a layer of ceramic and one of solid metal. Flat, rectangular test panels, which encompassed several design variations of the basic composite material, were tested, two at a time, in a premixed gas turbine combustor as sections of the combustor wall. Tests were conducted at combustor inlet conditions of 0.5 MPa and 533 K with a reference velocity of 25 m/s. The panels were subjected to a hot gas temperature of 2170 K with 1% of the total airflow used to film cool the ceramic surface of the test panel. In general, thin ceramic layers yield low ceramic stress levels with high felt ceramic interface temperatures. On the other hand, thick ceramic layers result in low felt ceramic interface temperatures but high ceramic stress levels. Extensive thermal cycling appears to cause material degradation, but for a limited number of cycles, the survivability of felt ceramic materials, even under extremely severe combustor operating conditions, was conclusively demonstrated.
Holcomb, Matthew J.
1999-01-01
A composite superconducting material made of coated particles of ceramic superconducting material and a metal matrix material. The metal matrix material fills the regions between the coated particles. The coating material is a material that is chemically nonreactive with the ceramic. Preferably, it is silver. The coating serves to chemically insulate the ceramic from the metal matrix material. The metal matrix material is a metal that is susceptible to the superconducting proximity effect. Preferably, it is a NbTi alloy. The metal matrix material is induced to become superconducting by the superconducting proximity effect when the temperature of the material goes below the critical temperature of the ceramic. The material has the improved mechanical properties of the metal matrix material. Preferably, the material consists of approximately 10% NbTi, 90% coated ceramic particles (by volume). Certain aspects of the material and method will depend upon the particular ceramic superconductor employed. An alternative embodiment of the invention utilizes A15 compound superconducting particles in a metal matrix material which is preferably a NbTi alloy.
NASA Technical Reports Server (NTRS)
Zhu, Dongming
2018-01-01
Ceramic materials play increasingly important roles in aerospace applications because ceramics have unique properties, including high temperature capability, high stiffness and strengths, excellent oxidation and corrosion resistance. Ceramic materials also generally have lower densities as compared to metallic materials, making them excellent candidates for light-weight hot-section components of aircraft turbine engines, rocket exhaust nozzles, and thermal protection systems for space vehicles when they are being used for high-temperature and ultra-high temperature ceramics applications. Ceramic matrix composites (CMCs), including non-oxide and oxide CMCs, are also recently being incorporated in gas turbine engines for high pressure and high temperature section components and exhaust nozzles. However, the complexity and variability of aerospace ceramic processing methods, compositions and microstructures, the relatively low fracture toughness of the ceramic materials, still remain the challenging factors for ceramic component design, validation, life prediction, and thus broader applications. This ceramic material section paper presents an overview of aerospace ceramic materials and their characteristics. A particular emphasis has been placed on high technology level (TRL) enabling ceramic systems, that is, turbine engine thermal and environmental barrier coating systems and non-oxide type SiC/SiC CMCs. The current status and future trend of thermal and environmental barrier coatings and SiC/SiC CMC development and applications are described.
Assessment of the State of the Art of Ultra High Temperature Ceramics
NASA Technical Reports Server (NTRS)
Johnson, Sylvia; Gasch, Matt; Stackpoole, Mairead
2009-01-01
Ultra High Temperature Ceramics (UHTCs) are a family of materials that includes the borides, carbides and nitrides of hafnium-, zirconium- and titanium-based systems. UHTCs are famous for possessing some of the highest melting points of known materials. In addition, they are very hard, have good wear resistance, mechanical strength, and relatively high thermal conductivities (compared to other ceramic materials). Because of these attributes, UHTCs are ideal for thermal protection systems, especially those that require chemical and structural stability at extremely high operating temperatures. UHTCs have the potential to revolutionize the aerospace industry by enabling the development of sharp hypersonic vehicles or atmospheric entry probes capable of the most extreme entry conditions.
NASA Astrophysics Data System (ADS)
Oglezneva, S. A.; Kachenyuk, M. N.; Kulmeteva, V. B.; Ogleznev, N. B.
2017-07-01
The article describes the results of spark plasma sintering of ceramic materials based on titanium carbide, titanium carbosilicide, ceramic composite materials based on zirconium oxide, strengthened by carbon nanostructures and composite materials of electrotechnical purpose based on copper with addition of carbon structures and titanium carbosilicide. The research shows that the spark plasma sintering can achieve relative density of the material up to 98%. The effect of sintering temperature on the phase composition, density and porosity of the final product has been studied. It was found that with addition of carbon nanostructures the relative density and hardness decrease, but the fracture strength of ZrO2 increases up to times 2. The relative erosion resistance of the electrodes made of composite copper-based powder materials, obtained by spark plasma sintering during electroerosion treatment of tool steel exceeds that parameter of pure copper up to times 15.
Ceramic processing: Experimental design and optimization
NASA Technical Reports Server (NTRS)
Weiser, Martin W.; Lauben, David N.; Madrid, Philip
1992-01-01
The objectives of this paper are to: (1) gain insight into the processing of ceramics and how green processing can affect the properties of ceramics; (2) investigate the technique of slip casting; (3) learn how heat treatment and temperature contribute to density, strength, and effects of under and over firing to ceramic properties; (4) experience some of the problems inherent in testing brittle materials and learn about the statistical nature of the strength of ceramics; (5) investigate orthogonal arrays as tools to examine the effect of many experimental parameters using a minimum number of experiments; (6) recognize appropriate uses for clay based ceramics; and (7) measure several different properties important to ceramic use and optimize them for a given application.
Advanced Ceramic Armor Materials
1990-05-11
materials, toughened alumina, fiber -reinforced glass matrix composites, and multilayer-gradient materials for ballistic testing. Fabrication and...material systems: Multilayer advanced armor materials consisting of a hard ceramic faceplate bonded to a graphite fiber -reinforced glass matrix...toughened alumina, and fiber - applied studies of advanced reinforced ceramic matrix glass and glass -ceramic composites for ballistic testing. technologies
NASA Astrophysics Data System (ADS)
Semenyuk, V.
2014-06-01
The influence of the thermal properties of the substrate on the performance of cascade thermoelectric coolers (TECs) is studied with an emphasis on a justified choice of substrate material. An analytical model is developed for predicting the thermal resistance of the substrate associated with three-dimensional heat transfer from a smaller cascade area into a larger cooling cascade. The model is used to define the maximum temperature difference for a line of standard multistage TECs based on various substrate materials with different thermal conductivities, including white 96% Al2O3 "Rubalit" ceramic, grey 99.8% Al2O3 "Policor" ceramic, and AlN and BeO ceramics. Two types of multistage TECs are considered, namely with series and series-parallel connection of TE pellets, having from two to five cascades with TE pellet length in the range from 0.3 mm to 2 mm. A comparative analysis of the obtained results is made, and recommendations are formulated concerning the selection of an appropriate substrate material providing the highest performance-to-cost ratio.
Durand, Letícia Brandão; Guimarães, Jackeline Coutinho; Monteiro Junior, Sylvio; Baratieri, Luiz Narciso
2015-01-01
The purpose of this study was to determine the effect of cavity depth, ceramic thickness, and resin bases with different elastic modulus on von Mises stress patterns of ceramic inlays. Tridimensional geometric models were developed with SolidWorks image software. The differences between the models were: depth of pulpal wall, ceramic thickness, and presence of composite bases with different thickness and elastic modulus. The geometric models were constrained at the proximal surfaces and base of maxillary bone. A load of 100 N was applied. The stress distribution pattern was analyzed with von Mises stress diagrams. The maximum von Mises stress values ranged from 176 MPa to 263 MPa and varied among the 3D-models. The highest von Mises stress value was found on models with 1-mm-thick composite resin base and 1-mm-thick ceramic inlay. Intermediate values (249-250 MPa) occurred on models with 2-mm-thick composite resin base and 1-mm-thick ceramic inlay and 1-mm-thick composite resin base and 2-mm-thick ceramic inlay. The lowest values were observed on models restored exclusively with ceramic inlay (176 MPa to 182 MPa). It was found that thicker inlays distribute stress more favorably and bases with low elastic modulus increase stress concentrations on the internal surface of the ceramic inlay. The increase of ceramic thickness tends to present more favorable stress distribution, especially when bonded directly onto the cavity without the use of supporting materials. When the use of a composite base is required, composite resin with high elastic modulus and reduced thickness should be preferred.
Effect of material constants on power output in piezoelectric vibration-based generators.
Takeda, Hiroaki; Mihara, Kensuke; Yoshimura, Tomohiro; Hoshina, Takuya; Tsurumi, Takaaki
2011-09-01
A possible power output estimation based on material constants in piezoelectric vibration-based generators is proposed. A modified equivalent circuit model of the generator was built and was validated by the measurement results in the generator fabricated using potassium sodium niobate-based and lead zirconate titanate (PZT) ceramics. Subsequently, generators with the same structure using other PZT-based and bismuth-layered structure ferroelectrics ceramics were fabricated and tested. The power outputs of these generators were expressed as a linear functions of the term composed of electromechanical coupling coefficients k(sys)(2) and mechanical quality factors Q*(m) of the generator. The relationship between device constants (k(sys)(2) and Q*(m)) and material constants (k(31)(2) and Q(m)) was clarified. Estimation of the power output using material constants is demonstrated and the appropriate piezoelectric material for the generator is suggested.
NASA Astrophysics Data System (ADS)
Szilágyi, V.; Gyarmati, J.; Tóth, M.; Taubald, H.; Balla, M.; Kasztovszky, Zs.; Szakmány, Gy.
2012-07-01
This paper summarized the results of comprehensive petro-mineralogical and geochemical (archeometrical) investigation of Inka Period ceramics excavated from Inka (A.D. 1438-1535) and Late Intermediate Period (A.D. 1000/1200-1438) sites of the Paria Basin (Dept. Oruro, Bolivia). Applying geological analytical techniques we observed a complex and important archaeological subject of the region and the era, the cultural-economic influence of the conquering Inkas in the provincial region of Paria appearing in the ceramic material. According to our results, continuity and changes of raw material utilization and pottery manufacturing techniques from the Late Intermediate to the Inka Period are characterized by analytical methods. The geological field survey provided efficient basis for the identification of utilized raw material sources. On the one hand, ceramic supply of both eras proved to be based almost entirely on local and near raw material sources. So, imperial handicraft applied local materials but with sophisticated imperial techniques in Paria. On the other hand, Inka Imperial and local-style vessels also show clear differences in their material which suggests that sources and techniques functioned already in the Late Intermediate Period subsisted even after the Inka conquest of the Paria Basin. Based on our geological investigations, pottery supply system of the Paria region proved to be rather complex during the Inka Period.
Performance analysis of advanced spacecraft TPS
NASA Technical Reports Server (NTRS)
Pitts, William C.
1991-01-01
Spacecraft entering a planetary atmosphere require a very sophisticated thermal protection system. The materials used must be tailored to each specific vehicle based on its planned mission profiles. Starting with the Space Shuttle, many types of ceramic insulation with various combinations of thermal properties have been developed by others. The development of two new materials is described: A Composite Flexible Blanket Insulation which has a significantly lower effective thermal conductivity than other ceramic blankets; and a Silicon Matrix Composite which has applications at high temperature locations such as wing leading edges. Also, a systematic study is described that considers the application of these materials for a proposed Personnel Launch System. The study shows how most of these available ceramic materials would perform during atmospheric entry of this vehicle. Other specific applications of these thermal protection materials are discussed.
Pumpable/injectable phosphate-bonded ceramics
Singh, Dileep; Wagh, Arun S.; Perry, Lamar; Jeong, Seung-Young
2001-01-01
A pumpable ceramic composition is provided comprising an inorganic oxide, potassium phosphate, and an oxide coating material. Also provided is a method for preparing pumpable ceramic-based waste forms comprising selecting inorganic oxides based on solubility, surface area and morphology criteria; mixing the selected oxides with phosphate solution and waste to form a first mixture; combining an additive to the first mixture to create a second mixture; adding water to the second mixture to create a reactive mixture; homogenizing the reactive mixture; and allowing the reactive mixture to cure.
NASA Astrophysics Data System (ADS)
Moreira, Bernardino; Miller, Ana Z.; Santos, Ricardo; Monteiro, Sílvia; Dias, Diamantino; Neves, Orquídia; Dionísio, Amélia; Saiz-Jimenez, Cesareo
2014-05-01
Several bacterial and fungal species naturally occurring in ceramic raw materials used in construction, such as Aspergillus, Penicillium and Aureobasidium, are known to produce exopolysaccharides (EPS). These polymers excreted by the cells are of widespread occurrence and may confer unique and potentially interesting properties with potential industrial uses, such as viscosity control, gelation, and flocculation, during ceramic manufacturing. In this study, the microbial communities present in clay raw materials were identified by both cultural methods and DNA-based molecular techniques in order to appraise their potential contribution to enhance the performance of technical ceramics through the use of EPS. Mineralogical identification by X- Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy of the clay raw materials, as well as characterization of rheological properties of ceramic slips were also performed. Microbial EPS production and its introduction into ceramic slips will be then carried out in order to evaluate their effects on the rheological properties of the ceramic slips, powders and conformed bodies. Some positive aspects related to the use of EPS are: reduction of the environmental impact caused by synthetic organic additives, reduction of production costs, as well as the costs related with operator protection systems, gaseous effluent treatments, complex landfill, among others.
Improved piston ring materials for 650 deg C service
NASA Technical Reports Server (NTRS)
Bjorndahl, W. D.
1986-01-01
A program to develop piston ring material systems which will operate at 650C was performed. In this program, two candidate high temperature piston ring substrate materials, Carpenter 709-2 and 440B, were hot formed into the piston ring shape and subsequently evaluated. In a parallel development effort ceramic and metallic piston ring coating materials were applied to cast iron rings by various processing techniques and then subjected to thermal shock and wear evaluation. Finally, promising candidate coatings were applied to the most thermally stable hot formed substrate. The results of evaluation tests of the hot formed substrate show that Carpenter 709-2 has greater thermal stability than 440B. Of the candidate coatings, plasma transferred arc (PTA) applied tungsten carbide and molybdenum based systems exhibit the greatest resistance to thermal shock. For the ceramic based systems, thermal shock resistance was improved by bond coat grading. Wear testing was conducted to 650C (1202F). For ceramic systems, the alumina/titania/zirconia/yttria composition showed highest wear resistance. For the PTA applied systems, the tungsten carbide based system showed highest wear resistance.
MacLennan, Donald A.; Turner, Brian P.; Gitsevich, Aleksandr; Bass, Gary K.; Dolan, James T.; Kipling, Kent; Kirkpatrick, Douglas A.; Leng, Yongzhang; Levin, Izrail; Roy, Robert J.; Shanks, Bruce; Smith, Malcolm; Trimble, William C.; Tsai, Peter
2001-01-01
A jacketed lamp bulb envelope includes a ceramic cup having an open end and a partially closed end, the partially closed end defining an aperture, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material at least partially covering a portion of the bulb not abutting the aperture. The reflective ceramic material may substantially fill an interior volume of the ceramic cup not occupied by the bulb. The ceramic cup may include a structural feature for aiding in alignment of the jacketed lamp bulb envelope in a lamp. The ceramic cup may include an external flange about a periphery thereof. One example of a jacketed lamp bulb envelope includes a ceramic cup having an open end and a closed end, a ceramic washer covering the open end of the ceramic cup, the washer defining an aperture therethrough, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material filling an interior volume of the ceramic cup not occupied by the bulb. A method of packing a jacketed lamp bulb envelope of the type comprising a ceramic cup with a lamp bulb disposed therein includes the steps of filling the ceramic cup with a flowable slurry of reflective material, and applying centrifugal force to the cup to pack the reflective material therein.
Novel fabrication of silicon carbide based ceramics for nuclear applications
NASA Astrophysics Data System (ADS)
Singh, Abhishek Kumar
Advances in nuclear reactor technology and the use of gas-cooled fast reactors require the development of new materials that can operate at the higher temperatures expected in these systems. These materials include refractory alloys based on Nb, Zr, Ta, Mo, W, and Re; ceramics and composites such as SiC--SiCf; carbon--carbon composites; and advanced coatings. Besides the ability to handle higher expected temperatures, effective heat transfer between reactor components is necessary for improved efficiency. Improving thermal conductivity of the fuel can lower the center-line temperature and, thereby, enhance power production capabilities and reduce the risk of premature fuel pellet failure. Crystalline silicon carbide has superior characteristics as a structural material from the viewpoint of its thermal and mechanical properties, thermal shock resistance, chemical stability, and low radioactivation. Therefore, there have been many efforts to develop SiC based composites in various forms for use in advanced energy systems. In recent years, with the development of high yield preceramic precursors, the polymer infiltration and pyrolysis (PIP) method has aroused interest for the fabrication of ceramic based materials, for various applications ranging from disc brakes to nuclear reactor fuels. The pyrolysis of preceramic polymers allow new types of ceramic materials to be processed at relatively low temperatures. The raw materials are element-organic polymers whose composition and architecture can be tailored and varied. The primary focus of this study is to use a pyrolysis based process to fabricate a host of novel silicon carbide-metal carbide or oxide composites, and to synthesize new materials based on mixed-metal silicocarbides that cannot be processed using conventional techniques. Allylhydridopolycarbosilane (AHPCS), which is an organometal polymer, was used as the precursor for silicon carbide. Inert gas pyrolysis of AHPCS produces near-stoichiometric amorphous silicon carbide (a-SiC) at 900--1150 °C. Results indicated that this processing technique can be effectively used to fabricate various silicon carbide composites with UC or UO2 as the nuclear component.
Okada, Hajime; Tanaka, Momoko; Kiriyama, Hiromitsu; Nakai, Yoshiki; Ochi, Yoshihiro; Sugiyama, Akira; Daido, Hiroyuki; Kimura, Toyoaki; Yanagitani, Takagimi; Yagi, Hideki; Meichin, Noriyuki
2010-09-15
We have successfully developed and demonstrated broadband emission Nd-doped mixed scandium garnets based on laser ceramic technology. The inhomogeneous broadening of Nd(3+) fluorescence lines results in a bandwidth above 5 nm that is significantly broader than that for Nd:YAG and enables subpicosecond mode-locked pulse durations. We have also found the emission cross section of 7.8 × 10(-20) cm(2) to be adequate for efficient energy extraction and thermal conductivity of 4.7 W/mK from these new Nd-doped laser ceramics. The new laser ceramics are good candidates for laser host material in a diode-pumped subpicosecond laser system with high efficiency and high repetition rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amoroso, J.; Dandeneau, C.
FY16 efforts were focused on direct comparison of multi-phase ceramic waste forms produced via melt processing and HIP methods. Based on promising waste form compositions previously devised at SRNL, simulant material was prepared at SRNL and a portion was sent to the Australian Nuclear Science and Technology Organization (ANSTO) for HIP treatments, while the remainder of the material was melt processed at SRNL. The microstructure, phase formation, elemental speciation, and leach behavior, and radiation stability of the fabricated ceramics was performed. In addition, melt-processed ceramics designed with different fractions of hollandite, zirconolite, perovskite, and pyrochlore phases were investigated. for performancemore » and properties.« less
Very High Output Thermoelectric Devices Based on ITO Nanocomposites
NASA Technical Reports Server (NTRS)
Fralick, Gustave; Gregory, Otto J.
2009-01-01
A material having useful thermoelectric properties was synthesized by combining indium-tin-oxide (ITO) with a NiCoCrAlY alloy/alumina cermet. This material had a very large Seebeck coefficient with electromotive-force-versustemperature behavior that is considered to be excellent with respect to utility in thermocouples and other thermoelectric devices. When deposited in thin-film form, ceramic thermocouples offer advantages over precious-metal (based, variously, on platinum or rhodium) thermocouples that are typically used in gas turbines. Ceramic thermocouples exhibit high melting temperatures, chemical stability at high temperatures, and little or no electromigration. Oxide ceramics also resist oxidation better than metal thermocouples, cost substantially less than precious-metal thermocouples, and, unlike precious-metal thermocouples, do not exert catalytic effects.
Development of Al2O3 fiber-reinforced Al2O3-based ceramics.
Tanimoto, Yasuhiro; Nemoto, Kimiya
2004-09-01
The purpose of this study was to use a tape casting technique to develop an Al2O3 fiber-reinforced Al2O3-based ceramic material (Al2O3-fiber/Al2O3 composite) into a new type of dental ceramic. The Al2O3-based ceramic used a matrix consisting of 60 wt% Al2O3 powder and 40 wt% SiO2-B2O3 powder. The prepreg sheets of Al2O3-fiber/Al2O3 composite (in which uniaxially aligned Al2O3 fibers were infiltrated with the Al2O3-based matrix) were fabricated continuously using tape casting technique with a doctor blade system. Multilayer preforms of Al2O3-fiber/Al2O3 composite sheets were then sintered at a maximum temperature of 1000 degrees C under an atmospheric pressure in a furnace. The results showed that the shrinkage and bending properties of Al2O3-fiber/Al2O3 composite exceeded those of unreinforced Al2O3--hence demonstrating the positive effects of fiber reinforcement. In conclusion, the tape casting technique has been utilized to successfully develop a new type of dental ceramic material.
Development ceramic composites based on Al2O3, SiO2 and IG-017 additive
NASA Astrophysics Data System (ADS)
Kurovics, E.; Shmakova, A.; Kanev, B.; Gömze, L. A.
2017-02-01
Based on high purity alumina and quartz powders and IG-017 bio-original additives the authors have developed new ceramic composite materials for different industrial purposes. The main goal was to fine a material and morphological structures of high performance ceramic composites as frames for development complex materials for extreme consumptions in the future. For this the mixed powders of Al2O3 , SiO2 and IG-017 bio-original additive were uniaxially pressed at different compaction pressures into disc shapes and were sintered in electric kiln under air (1) and nitrogrn (2) atmosphere. The grain size distributions of the raw materials were determined by laser granulometry. There thermo-physical properties were also determined by derivatography. The prepared and sintered specimens were tested on geometrical sizes, microstructure and morphology by scanning electron microscopy, porosity and water absorption. In this work the authors present the results of their research and investigation.
NASA Technical Reports Server (NTRS)
Ho, T. L.; Peterson, M. B.
1974-01-01
The requirements of brake materials were outlined and a survey made to select materials to meet the needs of high temperature brakes. A number of metals and ceramic materials were selected and evaluated in sliding tests which simulated aircraft braking. Nickel, molybdenum tungsten, Zr02, high temperature cements and carbons were tested. Additives were then incorporated into these materials to optimize their wear or strength behavior with particular emphasis on nickel and molybdenum base materials and a high temperature potassium silicate cement. Optimum materials were developed which improved wear behavior over conventional brake materials in the simulated test. The best materials are a nickel, aluminum oxide, lead tungstate composition containing graphite or molybdenum disulphite; a molybdenum base material containing LPA100 (an intermetallic compound of cobalt, molybdenum, and silicon); and a carbon material (P5).
Si, Yang; Wang, Xueqin; Dou, Lvye; Yu, Jianyong; Ding, Bin
2018-04-01
Ultralight aerogels that are both highly resilient and compressible have been fabricated from various materials including polymer, carbon, and metal. However, it has remained a great challenge to realize high elasticity in aerogels solely based on ceramic components. We report a scalable strategy to create superelastic lamellar-structured ceramic nanofibrous aerogels (CNFAs) by combining SiO 2 nanofibers with aluminoborosilicate matrices. This approach causes the random-deposited SiO 2 nanofibers to assemble into elastic ceramic aerogels with tunable densities and desired shapes on a large scale. The resulting CNFAs exhibit the integrated properties of flyweight densities of >0.15 mg cm -3 , rapid recovery from 80% strain, zero Poisson's ratio, and temperature-invariant superelasticity to 1100°C. The integral ceramic nature also provided the CNFAs with robust fire resistance and thermal insulation performance. The successful synthesis of these fascinating materials may provide new insights into the development of ceramics in a lightweight, resilient, and structurally adaptive form.
Wang, Xueqin; Dou, Lvye; Yu, Jianyong
2018-01-01
Ultralight aerogels that are both highly resilient and compressible have been fabricated from various materials including polymer, carbon, and metal. However, it has remained a great challenge to realize high elasticity in aerogels solely based on ceramic components. We report a scalable strategy to create superelastic lamellar-structured ceramic nanofibrous aerogels (CNFAs) by combining SiO2 nanofibers with aluminoborosilicate matrices. This approach causes the random-deposited SiO2 nanofibers to assemble into elastic ceramic aerogels with tunable densities and desired shapes on a large scale. The resulting CNFAs exhibit the integrated properties of flyweight densities of >0.15 mg cm−3, rapid recovery from 80% strain, zero Poisson’s ratio, and temperature-invariant superelasticity to 1100°C. The integral ceramic nature also provided the CNFAs with robust fire resistance and thermal insulation performance. The successful synthesis of these fascinating materials may provide new insights into the development of ceramics in a lightweight, resilient, and structurally adaptive form. PMID:29719867
Development of CVD mullite coatings for Si-based ceramics
NASA Astrophysics Data System (ADS)
Auger, Michael Lawrence
1999-09-01
To raise fuel efficiencies, the next generation of engines and fuel systems must be lighter and operate at higher temperatures. Ceramic-based materials, which are considerably lighter than metals and can withstand working temperatures of up to 1400sp°C, have been targeted to replace traditional metal-based components. The materials used in combustion environments must also be capable of withstanding erosion and corrosion caused by combustion gases, particulates, and deposit-forming corrodants. With these demanding criteria, silicon-based ceramics are the leading candidate materials for high temperature engine and heat exchanger structural components. However, these materials are limited in gaseous environments and in the presence of molten salts since they form liquid silicates on exposed surfaces at temperatures as low as 800sp°C. Protective coatings that can withstand higher operating temperatures and corrosive atmospheres must be developed for silicon-based ceramics. Mullite (3Alsb2Osb3{*}2SiOsb2) was targeted as a potential coating material due to its unique ability to resist corrosion, retain its strength, resist creep, and avoid thermal shock failure at elevated temperatures. Several attempts to deposit mullite coatings by various processing methods have met with limited success and usually resulted in coatings that have had pores, cracks, poor adherence, and required thermal post-treatments. To overcome these deficiencies, the direct formation of chemically vapor deposited (CVD) mullite coatings has been developed. CVD is a high temperature atomistic deposition technique that results in dense, adherent crystalline coatings. The object of this dissertation was to further the understanding of the CVD mullite deposition process and resultant coating. The kinetics of CVD mullite deposition were investigated as a function of the following process parameters: temperature, pressure, and the deposition reactor system. An empirical kinetic model was developed indicating that an intermediate gaseous reaction is significant to the growth rate of mullite. CVD mullite coatings were deposited on SiC and Sisb3Nsb4 substrates and subjected to both simulated coal gasification and simulated jet fuel combustion conditions. Corrosion resistance of CVD mullite coated ceramics was superior to traditional refractory materials including alumina, solid mullite, Sisb3Nsb4, and silicon carbide.
Evaluation of surface roughness and polishing techniques for new ceramic materials.
Campbell, S D
1989-05-01
The surface roughness of crown and bridge materials should be minimized to obtain optimal biocompatability. This study used scanning electron microscopy to evaluate the effect of polishing procedures on two all-ceramic crown materials (Dicor and Cerestore). The "as formed," unpolished specimens of both Dicor and Cerestore materials presented a rough surface. It was found that any attempt to polish the Cerestore coping material resulted in an extremely rough surface. Finishing of the Dicor ceramic resulted in a smoother but pitted surface. Polishing of both ceramic materials resulted in a surface that was rougher than the glazed metal ceramic controls. The smoothest finish was obtained when the glazed veneer (Cerestore) and shading porcelain (Dicor) were applied to the all-ceramic materials.
Mechanochemically synthesized kalsilite based bioactive glass-ceramic composite for dental vaneering
NASA Astrophysics Data System (ADS)
Kumar, Pattem Hemanth; Singh, Vinay Kumar; Kumar, Pradeep
2017-08-01
Kalsilite glass-ceramic composites have been prepared by a mechanochemical synthesis process for dental veneering application. The aim of the present study is to prepare bioactive kalsilite composite material for application in tissue attachment and sealing of the marginal gap between fixed prosthesis and tooth. Mechanochemical synthesis is used for the preparation of microfine kalsilite glass-ceramic. Low temperature frit and bioglass have been prepared using the traditional quench method. Thermal, microstructural and bioactive properties of the composite material have been examined. The feasibility of the kalsilite to be coated on the base commercial opaque as well as the bioactive behavior of the coated specimen has been confirmed. This study indicates that the prepared kalsilite-based composites show similar structural, morphological and bioactive behavior to that of commercial VITA VMK95 Dentin 1M2.
Processing of polysiloxane-derived porous ceramics: a review
Manoj Kumar, B V; Kim, Young-Wook
2010-01-01
Because of the unique combination of their attractive properties, porous ceramics are considered as candidate materials for several engineering applications. The production of porous ceramics from polysiloxane precursors offers advantages in terms of simple processing methodology, low processing cost, and easy control over porosity and other properties of the resultant ceramics. Therefore, considerable research has been conducted to produce various Si(O)C-based ceramics from polysiloxane precursors by employing different processing strategies. The complete potential of these materials can only be achieved when properties are tailored for a specific application, whereas the control over these properties is highly dependent on the processing route. This review deals with processing strategies of polysiloxane-derived porous ceramics. The essential features of processing strategies—replica, sacrificial template, direct foaming and reaction techniques—are explained and the available literature reports are thoroughly reviewed with particular regard to the critical issues that affect pore characteristics. A short note on the cross-linking methods of polysiloxanes is also provided. The potential of each processing strategy on porosity and strength of the resultant SiC or SiOC ceramics is outlined. PMID:27877344
New functionalities in abundant element oxides: ubiquitous element strategy
Hosono, Hideo; Hayashi, Katsuro; Kamiya, Toshio; Atou, Toshiyuki; Susaki, Tomofumi
2011-01-01
While most ceramics are composed of ubiquitous elements (the ten most abundant elements within the Earth's crust), many advanced materials are based on rare elements. A ‘rare-element crisis’ is approaching owing to the imbalance between the limited supply of rare elements and the increasing demand. Therefore, we propose a ‘ubiquitous element strategy’ for materials research, which aims to apply abundant elements in a variety of innovative applications. Creation of innovative oxide materials and devices based on conventional ceramics is one specific challenge. This review describes the concept of ubiquitous element strategy and gives some highlights of our recent research on the synthesis of electronic, thermionic and structural materials using ubiquitous elements. PMID:27877391
Güler, Umut; de Queiroz, José Renato Cavalcanti; de Oliveira, Luiz Fernando Cappa; Canay, Senay; Ozcan, Mutlu
2015-09-01
This study evaluated the effect of binder choice in mixing ceramic powder on the chemical and morphological features between the margin ceramic-framework interfaces. Titanium and zirconia frameworks (15 x 5 x 0.5 mm3) were veneered with margin ceramics prepared with two different binders, namely a) water/conventional or b) wax-based. For each zirconia framework material, four different margin ceramics were used: a- Creation Zi (Creation Willi Geller International); b- GC Initial Zr (GC America); Triceram (Dentaurum); and d- IPS emax (voclar Vivadent). For the titanium framework, three different margin ceramics were used: a- Creation Ti (Creation Willi Geller International); b- Triceram (Dentaurum); and c- VITA Titaniumkeramik (Vita Zahnfabrik). The chemical composition of the framework-margin ceramic interface was analyzed using Energy Dispersive X-ray Spectroscopy (EDS) and porosity level was quantified within the margin ceramic using an image program (ImageJ) from four random areas (100 x 100 pixels) on each SEM image. EDS analysis showed the presence of Carbon at the margin ceramic-framework interface in the groups where wax-based binder technique was used with the concentration being the highest for the IPS emax ZirCAD group. While IPS system (IPS ZirCAD and IPS Emax) presented higher porosity concentration using wax binder, in the other groups wax-based binder reduced the porosity of margin ceramic, except for Titanium - Triceram combination.
Juntavee, Niwut; Juntavee, Apa; Saensutthawijit, Phuwiwat
2018-02-01
This study evaluated the effect of light-emitting diode (LED) illumination bleaching technique on the surface nanohardness of various computer-aided design and computer-aided manufacturing (CAD/CAM) ceramic materials. Twenty disk-shaped samples (width, length, and thickness = 10, 15, and 2 mm) were prepared from each of the ceramic materials for CAD/CAM, including Lava™ Ultimate (L V ), Vita Enamic® (E n ) IPS e.max® CAD (M e ), inCoris® TZI (I C ), and Prettau® zirconia (P r ). The samples from each type of ceramic were randomly divided into two groups based on the different bleaching techniques to be used on them, using 35% hydrogen peroxide with and without LED illumination. The ceramic disk samples were bleached according to the manufacturer's instruction. Surface hardness test was performed before and after bleaching using nanohardness tester with a Berkovich diamond indenter. The respective Vickers hardness number upon no bleaching and bleaching without or with LED illumination [mean ± standard deviation (SD)] for each type of ceramic were as follows: 102.52 ± 2.09, 101.04 ± 1.18, and 98.17 ± 1.15 for L V groups; 274.96 ± 5.41, 271.29 ± 5.94, and 268.20 ± 7.02 for E n groups; 640.74 ± 31.02, 631.70 ± 22.38, and 582.32 ± 33.88 for M e groups; 1,442.09 ± 35.07, 1,431.32 ± 28.80, and 1,336.51 ± 34.03 for I C groups; and 1,383.82 ± 33.87, 1,343.51 ± 38.75, and 1,295.96 ± 31.29 for P r groups. The results indicated surface hardness reduction following the bleaching procedure of varying degrees for different ceramic materials. Analysis of variance (ANOVA) revealed a significant reduction in surface hardness due to the effect of bleaching technique, ceramic material, and the interaction between bleaching technique and ceramic material (p < 0.05). Bleaching resulted in a diminution of the surface hardness of dental ceramic for CAD/CAM. Using 35% hydrogen peroxide bleaching agent with LED illumination exhibited more reduction in surface hardness of dental ceramic than what was observed without LED illumination. Clinicians should consider protection of the existing restoration while bleaching.
Characterization of a polymer-infiltrated ceramic-network material.
Della Bona, Alvaro; Corazza, Pedro H; Zhang, Yu
2014-05-01
To characterize the microstructure and determine some mechanical properties of a polymer-infiltrated ceramic-network (PICN) material (Vita Enamic, Vita Zahnfabrik) available for CAD-CAM systems. Specimens were fabricated to perform quantitative and qualitative analyses of the material's microstructure and to determine the fracture toughness (KIc), density (ρ), Poisson's ratio (ν) and Young's modulus (E). KIc was determined using V-notched specimens and the short beam toughness method, where bar-shaped specimens were notched and 3-point loaded to fracture. ρ was calculated using Archimedes principle, and ν and E were measured using an ultrasonic thickness gauge with a combination of a pulse generator and an oscilloscope. Microstructural analyses showed a ceramic- and a polymer-based interpenetrating network. Mean and standard deviation values for the properties evaluated were: KIc=1.09±0.05MPam(1/2), ρ=2.09±0.01g/cm(3), ν=0.23±0.002 and E=37.95±0.34GPa. The PICN material showed mechanical properties between porcelains and resin-based composites, reflecting its microstructural components. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Tan, Yongqiang; Luo, Heng; Zhou, Xiaosong; Peng, Shuming; Zhang, Haibin
2018-05-21
The microstructure dependent electromagnetic interference (EMI) shielding properties of nano-layered Ti 3 AlC 2 ceramics were presented in this study by comparing the shielding properties of various Ti 3 AlC 2 ceramics with distinct microstructures. Results indicate that Ti 3 AlC 2 ceramics with dense microstructure and coarse grains are more favourable for superior EMI shielding efficiency. High EMI shielding effectiveness over 40 dB at the whole Ku-band frequency range was achieved in Ti 3 AlC 2 ceramics by microstructure optimization, and the high shielding effectiveness were well maintained up to 600 °C. A further investigation reveals that only the absorption loss displays variations upon modifying microstructure by allowing more extensive multiple reflections in coarse layered grains. Moreover, the absorption loss of Ti 3 AlC 2 was found to be much higher than those of highly conductive TiC ceramics without layered structure. These results demonstrate that nano-layered MAX phase ceramics are promising candidates of high-temperature structural EMI shielding materials and provide insightful suggestions for achieving high EMI shielding efficiency in other ceramic-based shielding materials.
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay
2007-01-01
Ceramic integration technology has been recognized as an enabling technology for the implementation of advanced ceramic systems in a number of high-temperature applications in aerospace, power generation, nuclear, chemical, and electronic industries. Various ceramic integration technologies (joining, brazing, attachments, repair, etc.) play a role in fabrication and manufacturing of large and complex shaped parts of various functionalities. However, the development of robust and reliable integrated systems with optimum performance requires the understanding of many thermochemical and thermomechanical factors, particularly for high temperature applications. In this presentation, various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Experimental results for bonding and integration of SiC based LDI fuel injector, high conductivity C/C composite based heat rejection system, solid oxide fuel cells system, ultra high temperature ceramics for leading edges, and ceramic composites for thermostructural applications will be presented. Potential opportunities and need for the development of innovative design philosophies, approaches, and integrated system testing under simulated application conditions will also be discussed.
NASA Astrophysics Data System (ADS)
Xie, Yunsong; Chen, Ru
Low temperature co-fired ceramics (LTCC) is one of the most important techniques to produce circuits with high working frequency, multi-functionality and high integration. We have developed a methodology to enable a ternary hybrid material system being implemented into the LTCC manufacturing process. The co-firing sintering process can be divided into a densification and cooling process. In this method, a successful ternary hybrid material densification process is achieved by tuning the sintering profile of each material to match each other. The system integrity is maintained in the cooling process is obtained by develop a strong bonding at the interfaces of each materials. As a demonstration, we have construct a power inductor device made of the ternary material system including Ag, NiCuZn ferrite and non-magnetic ceramic. The power inductors well maintains its physical integrity after sintering. The microscopic images show no obvious sign of cracks or structural deformation. More importantly, despite the bonding between the ferrite and ceramic is enhanced by non-magnetic element diffusion, the undesired magnetic elements diffusion is effectively suppressed. The electric performance shows that the power handling capability is comparable to the current state of art device.
Corrosion Issues for Ceramics in Gas Turbines
NASA Technical Reports Server (NTRS)
Jacobson, Nathan; Opila, Elizabeth; Nickel, Klaus G.
2004-01-01
The requirements for hot-gas-path materials in gas turbine engines are demanding. These materials must maintain high strength and creep resistance in a particularly aggressive environment. A typical gas turbine environment involves high temperatures, rapid gas flow rates, high pressures, and a complex mixture of aggressive gases. Over the past forty years, a wealth of information on the behavior of ceramic materials in heat engine environments has been obtained. In the first part of the talk we summarize the behavior of monolithic SiC and Si3N4. These materials show excellent baseline behavior in clean, oxygen environments. However the aggressive components in a heat engine environment such as water vapor and salt deposits can be quite degrading. In the second part of the talk we discuss SiC-based composites. The critical issue with these materials is oxidation of the fiber coating. We conclude with a brief discussion of future directions in ceramic corrosion research.
Ammar, Ameen Uddin; Shahid, Muhammad; Ahmed, Muhammad Khitab; Khan, Munawar; Khalid, Amir
2018-01-01
Coating is one of the most effective measures to protect metallic materials from corrosion. Various types of coatings such as metallic, ceramic and polymer coatings have been investigated in a quest to find durable coatings to resist electrochemical decay of metals in industrial applications. Many polymeric composite coatings have proved to be resistant against aggressive environments. Two major applications of ferrous materials are in marine environments and in the oil and gas industry. Knowing the corroding behavior of ferrous-based materials during exposure to these aggressive applications, an effort has been made to protect the material by using polymeric and ceramic-based coatings reinforced with nano materials. Uncoated and coated cast iron pipeline material was investigated during corrosion resistance by employing EIS (electrochemical impedance spectroscopy) and electrochemical DC corrosion testing using the “three electrode system”. Cast iron pipeline samples were coated with Polyvinyl Alcohol/Polyaniline/FLG (Few Layers Graphene) and TiO2/GO (graphene oxide) nanocomposite by dip-coating. The EIS data indicated better capacitance and higher impedance values for coated samples compared with the bare metal, depicting enhanced corrosion resistance against seawater and “produce water” of a crude oil sample from a local oil rig; Tafel scans confirmed a significant decrease in corrosion rate of coated samples. PMID:29495339
Ammar, Ameen Uddin; Shahid, Muhammad; Ahmed, Muhammad Khitab; Khan, Munawar; Khalid, Amir; Khan, Zulfiqar Ahmad
2018-02-25
Coating is one of the most effective measures to protect metallic materials from corrosion. Various types of coatings such as metallic, ceramic and polymer coatings have been investigated in a quest to find durable coatings to resist electrochemical decay of metals in industrial applications. Many polymeric composite coatings have proved to be resistant against aggressive environments. Two major applications of ferrous materials are in marine environments and in the oil and gas industry. Knowing the corroding behavior of ferrous-based materials during exposure to these aggressive applications, an effort has been made to protect the material by using polymeric and ceramic-based coatings reinforced with nano materials. Uncoated and coated cast iron pipeline material was investigated during corrosion resistance by employing EIS (electrochemical impedance spectroscopy) and electrochemical DC corrosion testing using the "three electrode system". Cast iron pipeline samples were coated with Polyvinyl Alcohol/Polyaniline/FLG (Few Layers Graphene) and TiO₂/GO (graphene oxide) nanocomposite by dip-coating. The EIS data indicated better capacitance and higher impedance values for coated samples compared with the bare metal, depicting enhanced corrosion resistance against seawater and "produce water" of a crude oil sample from a local oil rig; Tafel scans confirmed a significant decrease in corrosion rate of coated samples.
Chemical precursors to non-oxide ceramics: Macro to nanoscale materials
NASA Astrophysics Data System (ADS)
Forsthoefel, Kersten M.
Non-oxide ceramics exhibit a number of important properties that make them ideal for technologically important applications (thermal and chemical stability, high strength and hardness, wear-resistance, light weight, and a range of electronic and optical properties). Unfortunately, traditional methodologies to these types of materials are limited to fairly simple shapes and complex processed forms cannot be attained through these methods. The establishment of the polymeric precursor approach has allowed for the generation of advanced materials, such as refractory non-oxide ceramics, with controlled compositions, under moderate conditions, and in processed forms. The goal of the work described in this dissertation was both to develop new processible precursors to technologically important ceramics and to achieve the formation of advanced materials in processed forms. One aspect of this research exploited previously developed preceramic precursors to boron carbide, boron nitride and silicon carbide for the generation of a wide variety of advanced materials: (1) ultra-high temperature ceramic (UHTC) structural materials composed of hafnium boride and related composite materials, (2) the quaternary borocarbide superconductors, and (3) on the nanoscale, non-oxide ceramic nanotubules. The generation of the UHTC and the quaternary borocarbide materials was achieved through a method that employs a processible polymer/metal(s) dispersion followed by subsequent pyrolyses. In the case of the UHTC, hafnium oxide, hafnium, or hafnium boride powders were dispersed in a suitable precursor to afford hafnium borides or related composite materials (HfB2/HfC, HfB2/HfN, HfB2/SiC) in high yields and purities. The quaternary borocarbide superconducting materials were produced from pyrolyses of dispersions containing appropriate stoichiometric amounts of transition metal, lanthanide metal, and the polyhexenyldecaborane polymer. Both chemical vapor deposition (CVD) based routes employing a molecular precursor and porous alumina templating routes paired with solution-based methodologies are shown to generate non-oxide ceramic nanotubules of boron carbide, boron nitride and silicon carbide compositions. In the final phase of this work, a new metal-catalyzed route to poly(1-alkenyl- o-carborane) homopolymers and related copolymers was developed. Both homopolymers of 1-alkenyl-o-carboranes (1-vinyl-, 1-butenyl-, 1-hexenyl-) and copolymers of 1-hexenyl-o-carborane and allyltrimethylsilane or 1-hexenyl-o-carborane and 6-hexenyldecaborane were synthesized via the Cp2ZrMe2/B(C6F5) 3 catalyst system. A copolymer containing 1-hexenyl-o-carborane and the cross-linking agent, 6-hexenyldecaborane, was synthetically designed which exhibits initial cross-linking at ˜250°C and then converts in 75% yields to boron carbide at 1250°C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niihara, Koichi; Ishizaki, Kozo; Isotani, Mitsuo
This volume contains selected papers presented at a workshop by the Japan Fine Ceramics Center, `Materials Processing and Design Through Better Control of Grain Boundaries: Emphasizing Fine Ceramics II,` which was held March 17-19, 1994, in Koda-cho, Aichi, Japan. The focus of the workshop was the application of grain boundary phenomena to materials processing and design. The topics covered included electronic materials, evaluation methods, structural materials, and interfaces. Also included is an illuminating overview of the current status of work on grain boundary assisted materials processing and design, particularly for fine ceramics. The volume`s chapter titles are: Electron Microscopy, Evaluation,more » Grain Boundary Control and Design, Functional Ceramics, Composite Materials, Synthesis and Sintering, and Mechanical Properties.« less
Ceramic electrolyte coating methods
Seabaugh, Matthew M.; Swartz, Scott L.; Dawson, William J.; McCormick, Buddy E.
2004-10-12
Processes for preparing aqueous suspensions of a nanoscale ceramic electrolyte material such as yttrium-stabilized zirconia. The invention also includes a process for preparing an aqueous coating slurry of a nanoscale ceramic electrolyte material. The invention further includes a process for depositing an aqueous spray coating slurry including a ceramic electrolyte material on pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.
Joining of Silicon Carbide-Based Ceramics by Reaction Forming Method
NASA Technical Reports Server (NTRS)
Singh, M.; Kiser, J. D.
1997-01-01
Recently, there has been a surge of interest in the development and testing of silicon-based ceramics and composite components for a number of aerospace and ground based systems. The designs often require fabrication of complex shaped parts which can be quite expensive. One attractive way of achieving this goal is to build up complex shapes by joining together geometrically simple shapes. However, the joints should have good mechanical strength and environmental stability comparable to the bulk materials. These joints should also be able to maintain their structural integrity at high temperatures. In addition, the joining technique should be practical, reliable, and affordable. Thus, joining has been recognized as one of the enabling technologies for the successful utilization of silicon carbide based ceramic components in high temperature applications. Overviews of various joining techniques, i.e., mechanical fastening, adhesive bonding, welding, brazing, and soldering have been provided in recent publications. The majority of the techniques used today are based on the joining of monolithic ceramics with metals either by diffusion bonding, metal brazing, brazing with oxides and oxynitrides, or diffusion welding. These techniques need either very high temperatures for processing or hot pressing (high pressures). The joints produced by these techniques have different thermal expansion coefficients than the ceramic materials, which creates a stress concentration in the joint area. The use temperatures for these joints are around 700 C. Ceramic joint interlayers have been developed as a means of obtaining high temperature joints. These joint interlayers have been produced via pre-ceramic polymers, in-situ displacement reactions, and reaction bonding techniques. Joints produced by the pre-ceramic polymer approach exhibit a large amounts of porosity and poor mechanical properties. On the other hand, hot pressing or high pressures are needed for in-situ displacement reactions and reaction bonding techniques. Due to the equipment required, these techniques are impractical for joining large or complex shaped components.
Novel Translucent and Strong Submicron Alumina Ceramics for Dental Restorations.
Zhao, M; Sun, Y; Zhang, J; Zhang, Y
2018-03-01
An ideal ceramic restorative material should possess excellent aesthetic and mechanical properties. We hypothesize that the high translucency and strength of polycrystalline ceramics can be achieved through microstructural tailoring. The aim of this study is to demonstrate the superior optical and mechanical properties of a new class of submicron grain-sized alumina ceramics relative to the current state-of-the-art dental ceramic materials. The translucency, the in-line transmission ( T IT ) in particular, of these submicron alumina ceramics has been examined with the Rayleigh-Gans-Debye light-scattering model. The theoretical predictions related very well with the measured T IT values. The translucency parameter ( TP) and contrast ratio ( CR) of the newly developed aluminas were measured with a reflectance spectrophotometer on a black-and-white background. For comparison, the T IT , TP, and CR values for a variety of dental ceramics, mostly measured in-house but also cited from the literature, were included. The flexural strength of the aluminas was determined with the 4-point bending test. Our findings have shown that for polycrystalline alumina ceramics, an average grain size <1 µm coupled with a porosity level <0.7% could yield translucency values ( T IT , TP, CR) similar to those of the commercial high-translucency porcelains. These values are far superior to the high-translucency lithium disilicate glass-ceramic and zirconias, including the most translucent cubic-containing zirconias. The strength of these submicron grain-sized aluminas was significantly higher than that of the cubic-containing zirconia (e.g., Zpex Smile) and lithia-based glass-ceramics (e.g., IPS e.max CAD HT). A coarse-grained alumina could also reach a translucency level comparable to that of dental porcelain. However, the relatively low strength of this material has limited its clinical indications to structurally less demanding applications, such as orthodontic brackets. With a combined high strength and translucency, the newly developed submicron grain-sized alumina may be considered a suitable material for dental restorations.
Survival Predictions of Ceramic Crowns Using Statistical Fracture Mechanics
Nasrin, S.; Katsube, N.; Seghi, R.R.; Rokhlin, S.I.
2017-01-01
This work establishes a survival probability methodology for interface-initiated fatigue failures of monolithic ceramic crowns under simulated masticatory loading. A complete 3-dimensional (3D) finite element analysis model of a minimally reduced molar crown was developed using commercially available hardware and software. Estimates of material surface flaw distributions and fatigue parameters for 3 reinforced glass-ceramics (fluormica [FM], leucite [LR], and lithium disilicate [LD]) and a dense sintered yttrium-stabilized zirconia (YZ) were obtained from the literature and incorporated into the model. Utilizing the proposed fracture mechanics–based model, crown survival probability as a function of loading cycles was obtained from simulations performed on the 4 ceramic materials utilizing identical crown geometries and loading conditions. The weaker ceramic materials (FM and LR) resulted in lower survival rates than the more recently developed higher-strength ceramic materials (LD and YZ). The simulated 10-y survival rate of crowns fabricated from YZ was only slightly better than those fabricated from LD. In addition, 2 of the model crown systems (FM and LD) were expanded to determine regional-dependent failure probabilities. This analysis predicted that the LD-based crowns were more likely to fail from fractures initiating from margin areas, whereas the FM-based crowns showed a slightly higher probability of failure from fractures initiating from the occlusal table below the contact areas. These 2 predicted fracture initiation locations have some agreement with reported fractographic analyses of failed crowns. In this model, we considered the maximum tensile stress tangential to the interfacial surface, as opposed to the more universally reported maximum principal stress, because it more directly impacts crack propagation. While the accuracy of these predictions needs to be experimentally verified, the model can provide a fundamental understanding of the importance that pre-existing flaws at the intaglio surface have on fatigue failures. PMID:28107637
Clinical application of bio ceramics
NASA Astrophysics Data System (ADS)
Anu, Sharma; Gayatri, Sharma
2016-05-01
Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.
Clinical application of bio ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anu, Sharma, E-mail: issaranu@gmail.com; Gayatri, Sharma, E-mail: sharmagayatri@gmail.com
Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.
[Research on the aging of all-ceramics restoration materials].
Zhang, Dongjiao; Chen, Xinmin
2011-10-01
All-ceramic crowns and bridges have been widely used for dental restorations owing to their excellent functionality, aesthetics and biocompatibility. However, the premature clinical failure of all-ceramic crowns and bridges may easily occur when they are subjected to the complex environment of oral cavity. In the oral environment, all-ceramic materials are prone to aging. Aging can lead all-ceramic materials to change color, to lower bending strength, and to reduce anti-fracture toughness. There are many factors affecting the aging of the all-ceramic materials, for example, the grain size, the type of stabilizer, the residual stress and the water environment. In order to analyze the aging behavior, to optimize the design of all-ceramic crowns and bridges, and to evaluate the reliability and durability, we review in this paper recent research progress of aging behavior for all-ceramics restoration materials.
Hunt, T.K.; Novak, R.F.
1991-05-07
An improved active metal braze filler material is provided in which the coefficient of thermal expansion of the braze filler is more closely matched with that of the ceramic and metal, or two ceramics, to provide ceramic to metal, or ceramic to ceramic, sealed joints and articles which can withstand both high temperatures and repeated thermal cycling without failing. The braze filler material comprises a mixture of a material, preferably in the form of a powder, selected from the group consisting of molybdenum, tungsten, silicon carbide and mixtures thereof, and an active metal filler material selected from the group consisting of alloys or mixtures of nickel and titanium, alloys or mixtures of nickel and zirconium, alloys or mixtures of nickel, titanium, and copper, alloys or mixtures of nickel, titanium, and zirconium, alloys or mixtures of niobium and nickel, alloys or mixtures of niobium and zirconium, alloys or mixtures of niobium and titanium, alloys or mixtures of niobium, titanium, and nickel, alloys or mixtures of niobium, zirconium, and nickel, and alloys or mixtures of niobium, titanium, zirconium, and nickel. The powder component is selected such that its coefficient of thermal expansion will effect the overall coefficient of thermal expansion of the braze material so that it more closely matches the coefficients of thermal expansion of the ceramic and metal parts to be joined. 3 figures.
Hunt, Thomas K.; Novak, Robert F.
1991-01-01
An improved active metal braze filler material is provided in which the coefficient of thermal expansion of the braze filler is more closely matched with that of the ceramic and metal, or two ceramics, to provide ceramic to metal, or ceramic to ceramic, sealed joints and articles which can withstand both high temperatures and repeated thermal cycling without failing. The braze filler material comprises a mixture of a material, preferably in the form of a powder, selected from the group consisting of molybdenum, tungsten, silicon carbide and mixtures thereof, and an active metal filler material selected from the group consisting of alloys or mixtures of nickel and titanium, alloys or mixtures of nickel and zirconium, alloys or mixtures of nickel, titanium, and copper, alloys or mixtures of nickel, titanium, and zirconium, alloys or mixtures of niobium and nickel, alloys or mixtures of niobium and zirconium, alloys or mixtures of niobium and titanium, alloys or mixtures of niobium, titanium, and nickel, alloys or mixtures of niobium, zirconium, and nickel, and alloys or mixtures of niobium, titanium, zirconium, and nickel. The powder component is selected such that its coefficient of thermal expansion will effect the overall coefficient of thermal expansion of the braze material so that it more closely matches the coefficients of thermal expansion of the ceramic and metal parts to be joined.
Magnetic Glass Ceramics by Sintering of Borosilicate Glass and Inorganic Waste.
Ponsot, Inès M M M; Pontikes, Yiannis; Baldi, Giovanni; Chinnam, Rama K; Detsch, Rainer; Boccaccini, Aldo R; Bernardo, Enrico
2014-07-31
Ceramics and glass ceramics based on industrial waste have been widely recognized as competitive products for building applications; however, there is a great potential for such materials with novel functionalities. In this paper, we discuss the development of magnetic sintered glass ceramics based on two iron-rich slags, coming from non-ferrous metallurgy and recycled borosilicate glass. The substantial viscous flow of the glass led to dense products for rapid treatments at relatively low temperatures (900-1000 °C), whereas glass/slag interactions resulted in the formation of magnetite crystals, providing ferrimagnetism. Such behavior could be exploited for applying the obtained glass ceramics as induction heating plates, according to preliminary tests (showing the rapid heating of selected samples, even above 200 °C). The chemical durability and safety of the obtained glass ceramics were assessed by both leaching tests and cytotoxicity tests.
Magnetic Glass Ceramics by Sintering of Borosilicate Glass and Inorganic Waste
Ponsot, Inès M. M. M.; Pontikes, Yiannis; Baldi, Giovanni; Chinnam, Rama K.; Detsch, Rainer; Boccaccini, Aldo R.; Bernardo, Enrico
2014-01-01
Ceramics and glass ceramics based on industrial waste have been widely recognized as competitive products for building applications; however, there is a great potential for such materials with novel functionalities. In this paper, we discuss the development of magnetic sintered glass ceramics based on two iron-rich slags, coming from non-ferrous metallurgy and recycled borosilicate glass. The substantial viscous flow of the glass led to dense products for rapid treatments at relatively low temperatures (900–1000 °C), whereas glass/slag interactions resulted in the formation of magnetite crystals, providing ferrimagnetism. Such behavior could be exploited for applying the obtained glass ceramics as induction heating plates, according to preliminary tests (showing the rapid heating of selected samples, even above 200 °C). The chemical durability and safety of the obtained glass ceramics were assessed by both leaching tests and cytotoxicity tests. PMID:28788146
Modified Ion-Conducting Ceramics Based on Lanthanum Gallate: Synthesis, Structure, and Properties
NASA Astrophysics Data System (ADS)
Kaleva, G. M.; Politova, E. D.; Mosunov, A. V.; Sadovskaya, N. V.
2018-06-01
A review is presented of the synthesis and complex investigation of modified ion-conducting ceramics based on heterosubstituted lanthanum gallate as a promising electrolyte material for solid oxide fuel cells. The effect the composition of multicomponent complex oxides has on the structure, microstructure, and electrophysical properties of ceramics is examined. Samples of ceramics with new compositions are produced via solid-state synthesis and modified with lithium fluoride. A drop is observed in the sintering temperature of the ceramics, caused by the liquid phase mechanism of sintering as a result of the low-melting superstoichiometric quantities of the additive. The effect lithium fluoride has on the process of phase formation, microstructure, and conductivity of the ceramics is investigated. It is found that samples modified with lithium fluoride display high density, dense grain packing, and high values of electrical conductivity at high temperatures.
Manchón, Angel; Hamdan Alkhraisat, Mohammad; Rueda-Rodriguez, Carmen; Prados-Frutos, Juan Carlos; Torres, Jesús; Lucas-Aparicio, Julia; Ewald, Andrea; Gbureck, Uwe; López-Cabarcos, Enrique
2015-10-20
β-tricalcium phosphate (β-TCP) is an osteoconductive and biodegradable material used in bone regeneration procedures, while iron has been suggested as a tool to improve the biological performance of calcium phosphate-based materials. However, the mechanisms of interaction between these materials and human cells are not fully understood. In order to clarify this relationship, we have studied the iron role in β-TCP ceramics. Iron-containing β-TCPs were prepared by replacing CaCO3 with C6H5FeO7 at different molar ratios. X-ray diffraction analysis indicated the occurrence of β-TCP as the sole phase in the pure β-TCP and iron-containing ceramics. The incorporation of iron ions in the β-TCP lattice decreased the specific surface area as the pore size was shifted toward meso- and/or macropores. Furthermore, the human osteoblastlike cell line MG-63 was cultured onto the ceramics to determine cell proliferation and viability, and it was observed that the iron-β-TCP ceramics have better cytocompatibility than pure β-TCP. Finally, in vivo assays were performed using rabbit calvaria as a bone model. The scaffolds were implanted for 8 and 12 weeks in the defects created in the skullcap with pure β-TCP as the control. The in vivo behavior, in terms of new bone formed, degradation, and residual graft material were investigated using sequential histological evaluations and histomorphometric analysis. The in vivo implantation of the ceramics showed enhanced bone tissue formation and scaffold degradation for iron-β-TCPs. Thus, iron appears to be a useful tool to enhance the osteoconductive properties of calcium phosphate ceramics.
Alumina additions may improve the damage tolerance of soft machined zirconia-based ceramics.
Oilo, Marit; Tvinnereim, Helene M; Gjerdet, Nils Roar
2011-01-01
The aim of this study was to evaluate the damage tolerance of different zirconia-based materials. Bars of one hard machined and one soft machined dental zirconia and an experimental 95% zirconia 5% alumina ceramic were subjected to 100,000 stress cycles (n = 10), indented to provoke cracks on the tensile stress side (n = 10), and left untreated as controls (n = 10). The experimental material demonstrated a higher relative damage tolerance, with a 40% reduction compared to 68% for the hard machined zirconia and 84% for the soft machined zirconia.
Monolithic LTCC seal frame and lid
Krueger, Daniel S.; Peterson, Kenneth A.; Stockdale, Dave; Duncan, James Brent; Riggs, Bristen
2016-06-21
A method for forming a monolithic seal frame and lid for use with a substrate and electronic circuitry comprises the steps of forming a mandrel from a ceramic and glass based material, forming a seal frame and lid block from a ceramic and glass based material, creating a seal frame and lid by forming a compartment and a plurality of sidewalls in the seal frame and lid block, placing the seal frame and lid on the mandrel such that the mandrel fits within the compartment, and cofiring the seal frame and lid block.
Current Issues with Environmental Barrier Coatings for Ceramics and Ceramic Composites
NASA Technical Reports Server (NTRS)
Lee, Kang N.
2004-01-01
The environmental barrier coating (EBC) for SiC/SiC ceramic matrix composites and Si3N4 ceramics is an emerging field as the application of silicon-based ceramics in the gas turbine engine hot section is on the horizon, both for aero and industrial gas turbines. EBC is an enabling technology for silicon-based ceramics because these materials without an EBC cannot be used in combustion environments due to rapid surface recession. Significant progress in EBC development has been made during the last decade through various government-sponsored programs. Current EBCs are based on silicon, mullite (3Al2O3-2SiO2) and BSAS (barium strontium aluminum silicate with celsian structure). Volatility of BSAS, BSAS-silica chemical reaction, and low melting point of silicon limit temperature capability of current EBCs to about 1350 C for long-term applications. There is a need for higher temperature EBCs as the temperature capability of silicon-based ceramics continue to increase. Therefore, research is underway to develop EBCs with improved temperature capability compared to current EBCs. The current status and issues with the advanced EBC development efforts will be discussed.
Structure and bioactivity studies of new polysiloxane-derived materials for orthopedic applications
NASA Astrophysics Data System (ADS)
Paluszkiewicz, Czesława; Gumuła, Teresa; Podporska, Joanna; Błażewicz, Marta
2006-07-01
The aim of this work was to examine the structure of new calcium silicate bioactive ceramic implant material for bone surgery applications. The bioceramic material was obtained by thermal treatment of active fillers-containing organosilicon polymer precursor. Different ceramic active fillers, namely Ca(OH) 2, CaCO 3, Na 2HPO 4 and SiO 2 powders were used. The phase composition of ceramic samples obtained by thermal transformation of active fillers containing polysiloxane was investigated. Morphology and structure of ceramic phases were characterized by means of scanning electron microscopy (SEM) with EDS point analysis, FTIR spectroscopy and XRD analysis. It was found that thermal treatment of active fillers-containing organosilicon precursor lead to the formation of wollastonite-containing ceramic material. This ceramic material showed bioactivity in 'in vitro' conditions studied by immersing the samples in simulated body fluid (SBF). The surface of wollastonite-containing ceramic before and after immersion in SBF was analysed. It can be concluded that this kind of ceramic material may be useful as bone substitute. FTIR spectroscopy is an adequate device for the determination of such derived materials structure.
Mohtor, Nur Hamizah; Othman, Mohd Hafiz Dzarfan; Ismail, Ahmad Fauzi; Rahman, Mukhlis A; Jaafar, Juhana; Hashim, Nur Awanis
2017-07-01
Despite its extraordinary price, ceramic membrane can still be able to surpass polymeric membrane in the applications that require high temperature and pressure conditions, as well as harsh chemical environment. In order to alleviate the high cost of ceramic material that still becomes one of the major factors that contributes to the high production cost of ceramic membrane, various attempts have been made to use low cost ceramic materials as alternatives to well-known expensive ceramic materials such as alumina, silica, and zirconia in the fabrication of ceramic membrane. Thus, local Malaysian kaolin has been chosen as the ceramic material in this study for the preparation of kaolin hollow fibre membrane since it is inexpensive and naturally abundant in Malaysia. Due to the fact that the sintering process plays a prominent role in obtaining the desired morphology, properties, and performances of prepared ceramic membrane, the aim of this work was to study the effect of different sintering temperatures applied (ranging from 1200 to 1500 °C) in the preparation of kaolin hollow fibre membrane via dry/wet phase inversion-based spinning technique and sintering process. The morphology and properties of membrane were then characterised by SEM, AFM, FTIR, XRD, and three-point bending test, while the performances of membrane were investigated by conducting water permeation and Reactive Black 5 (RB5) dye rejection tests. From the experimental results obtained, the sintering temperature of 1400 °C could be selected as the optimum sintering temperature in preparing the kaolin hollow fibre membrane with the dense sponge-like structure of separation layer that resulted in the good mechanical strength of 70 MPa with the appreciable water permeation of 75 L/h m 2 bar and RB5 rejection of 68%.
Aurélio, Iana L; Dorneles, Lucio S; May, Liliana G
2017-02-01
To evaluate the effect of extended and conventional (manufacturer-recommended) glaze firings on crack healing, residual stresses, optical characteristics and crystalline structure of four ceramics for hard machining. Rectangular specimens were obtained by sectioning densely sintered feldspathic (FEL), leucite- (LEU), lithium disilicate- (DIS), and zirconia-reinforced lithium silicate-based (ZLS) prefabricated ceramic blocks and divided into groups according to the applied glaze firing (n=5): conventional glaze/manufacturer-recommended (G), extended glaze (EG) and control/no heat treatment (C). Defects generated by indentation were analyzed by scanning electron microscopy before and after firing (n=1) to evaluate crack healing. Residual stresses were determined by the indentation technique. Color differences (ΔE) after firing were measured by CIEDE2000 formula, and translucency variations were quantified by contrast ratio. Stability of crystalline microstructure was analyzed by X-ray diffraction. Regardless of the material, EG had greater ability than G to heal defects, and produced compressive residual stresses, while G generated tensile stresses. Color differences produced by EG were: imperceptible for FEL and LEU ceramics; perceptible, but still clinically acceptable for DIS; clinically unacceptable for ZLS. G produced no perceptible color change. The DIS and ZLS ceramics became ≈1% more opaque after G, ≈4% and ≈15%, respectively, after EG. The crystalline phase of all the ceramics remained stable after G and EG. Extended glaze firing could be an alternative to finish feldspathic, leucite-, and lithium disilicate-based ceramic restorations, since it provides greater crack healing than the conventional glaze firing. It develops tolerable residual stresses, and produces clinically acceptable color alterations, without altering the microstructure of these materials. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
A-Site (MCe) Substitution Effects on the Structures and Properties of CaBi4Ti4O15 Ceramics
NASA Astrophysics Data System (ADS)
Yan, Haixue; Li, Chengen; Zhou, Jiaguang; Zhu, Weimin; He, Lianxin; Song, Yuxin
2000-11-01
We investigated the effect of A-site compound substitution on the structures and properties of Ca0.8(MCe)0.1Bi4Ti4O15 (M denotes Li, Na and K) ceramics. The samples were prepared by the conventional ceramic technique. Sintering characteristics of Ca0.8(MCe)0.1Bi4Ti4O15 and CaBi4Ti4O15 ceramics were discussed. X-ray powder diffraction patterns of the three modified CBT-based compounds show a single phase of bismuth oxide layer type structure with m=4. The hysteresis loops of polarization versus electric field of the four compounds were also measured. A-site compound substitution improves the piezoelectric properties and the high-temperature resistivity of these materials. A-site (LiCe) and (KCe) substitution not only improves the Curie temperature but also decreases the temperature coefficient of dielectric constant (TK\\varepsilon). Among the three modified ceramics, only the Curie temperature of Ca0.8(NaCe)0.1Bi4Ti4O15 is lower than that of CaBi4Ti4O15; however, its TK\\varepsilon is the lowest. As a result, all the three modified CBT-based ceramics were found to be excellent high-temperature piezoelectric materials.
Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications.
Gautam, Chandkiram; Joyner, Jarin; Gautam, Amarendra; Rao, Jitendra; Vajtai, Robert
2016-12-06
Zirconia (ZrO 2 ) based dental ceramics have been considered to be advantageous materials with adequate mechanical properties for the manufacturing of medical devices. Due to its very high compression strength of 2000 MPa, ZrO 2 can resist differing mechanical environments. During the crack propagation on the application of stress on the surface of ZrO 2 , a crystalline modification diminishes the propagation of cracks. In addition, zirconia's biocompatibility has been studied in vivo, leading to the observation of no adverse response upon the insertion of ZrO 2 samples into the bone or muscle. In vitro experimentation has exhibited the absence of mutations and good viability of cells cultured on this material leading to the use of ZrO 2 in the manufacturing of hip head prostheses. The mechanical properties of zirconia fixed partial dentures (FPDs) have proven to be superior to other ceramic/composite restorations and hence leading to their significant applications in implant supported rehabilitations. Recent developments were focused on the synthesis of zirconia based dental materials. More recently, zirconia has been introduced in prosthetic dentistry for the fabrication of crowns and fixed partial dentures in combination with computer aided design/computer aided manufacturing (CAD/CAM) techniques. This systematic review covers the results of past as well as recent scientific studies on the properties of zirconia based ceramics such as their specific compositions, microstructures, mechanical strength, biocompatibility and other applications in dentistry.
Structural design methodologies for ceramic-based material systems
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.; Chulya, Abhisak; Gyekenyesi, John P.
1991-01-01
One of the primary pacing items for realizing the full potential of ceramic-based structural components is the development of new design methods and protocols. The focus here is on low temperature, fast-fracture analysis of monolithic, whisker-toughened, laminated, and woven ceramic composites. A number of design models and criteria are highlighted. Public domain computer algorithms, which aid engineers in predicting the fast-fracture reliability of structural components, are mentioned. Emphasis is not placed on evaluating the models, but instead is focused on the issues relevant to the current state of the art.
NASA Astrophysics Data System (ADS)
Kamyshnaya, K. S.; Khabas, T. A.
2016-11-01
In this paper porous ceramics on the base of ZrO2 nanopowders and micropowders has been developed by freeze-casting method. A zirconia/carbamide slurry was frozen in mold and dehydrated in CaCl2 at room temperature. This simple process enabled the formation of porous ceramics with highly aligned pores as a replica of the carbamide crystals. The samples showed higher porosity of 47.9%. In addition, these materials could be used as membrane for air cleaning.
Bagheri, Hossein; Hooshmand, Tabassom; Aghajani, Farzaneh
2015-09-01
This study aimed to evaluate the effect of different ceramic surface treatments after machining grinding on the biaxial flexural strength (BFS) of machinable dental ceramics with different crystalline phases. Disk-shape specimens (10mm in diameter and 1.3mm in thickness) of machinable ceramic cores (two silica-based and one zirconia-based ceramics) were prepared. Each type of the ceramic surfaces was then randomly treated (n=15) with different treatments as follows: 1) machined finish as control, 2) machined finish and sandblasting with alumina, and 3) machined finish and hydrofluoric acid etching for the leucite and lithium disilicate-based ceramics, and for the zirconia; 1) machined finish and post-sintered as control, 2) machined finish, post-sintered, and sandblasting, and 3) machined finish, post-sintered, and Nd;YAG laser irradiation. The BFS were measured in a universal testing machine. Data based were analyzed by ANOVA and Tukey's multiple comparisons post-hoc test (α=0.05). The mean BFS of machined finish only surfaces for leucite ceramic was significantly higher than that of sandblasted (P=0.001) and acid etched surfaces (P=0.005). A significantly lower BFS was found after sandblasting for lithium disilicate compared with that of other groups (P<0.05). Sandblasting significantly increased the BFS for the zirconia (P<0.05), but the BFS was significantly decreased after laser irradiation (P<0.05). The BFS of the machinable ceramics was affected by the type of ceramic material and surface treatment method. Sandblasting with alumina was detrimental to the strength of only silica-based ceramics. Nd:YAG laser irradiation may lead to substantial strength degradation of zirconia.
Wang, Lijuan; Liang, Jinsheng; Di, Xingfu; Tang, Qingguo
2014-05-01
The cleanability of easy-to-clean ceramic glazes doped with nanometer far-infrared materials was compared with that of some high-quality household ceramic glazes from the market. The cleanability was evaluated by the contact angle measurement using a sessile drop method with a Dataphysics OCA-30 contact angle analyzer. The results showed that the difference of contact angles of water on the glazes before soiling and after cleaning could be used as a parameter for evaluating the cleanability of the glazes. The relationship between cleanability and surface properties, such as surface free energy and surface topography, was investigated. The surface free energy of the samples and their components were calculated using van Oss acid-base approach. By measuring advancing and receding contact angles, the contact angle hysteresis of the ceramic glazes due to the surface topography was investigated. It was shown that the cleanability of ceramic glazes containing nanometer far-infrared materials (NFIM) is better than that of household ceramic glazes from market, due to a higher ratio of electron-acceptor parameter to electron-donor parameter, which led to the effect of water hydration as well as better hydrophilic property and increased smoothness. The contact angle measurement not only accurately evaluates the cleanability of the ceramic glazes, but also has a contribution to the study of cleanability theory. Moreover, this method is simple, convenient and less sample-consumption.
Thin Film Ceramic Strain Sensor Development for High Temperature Environments
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Fralick, Gustave C.; Gonzalez, Jose M.; Laster, Kimala L.
2008-01-01
The need for sensors to operate in harsh environments is illustrated by the need for measurements in the turbine engine hot section. The degradation and damage that develops over time in hot section components can lead to catastrophic failure. At present, the degradation processes that occur in the harsh hot section environment are poorly characterized, which hinders development of more durable components, and since it is so difficult to model turbine blade temperatures, strains, etc, actual measurements are needed. The need to consider ceramic sensing elements is brought about by the temperature limits of metal thin film sensors in harsh environments. The effort at the NASA Glenn Research Center (GRC) to develop high temperature thin film ceramic static strain gauges for application in turbine engines is described, first in the fan and compressor modules, and then in the hot section. The near-term goal of this research effort was to identify candidate thin film ceramic sensor materials and provide a list of possible thin film ceramic sensor materials and corresponding properties to test for viability. A thorough literature search was conducted for ceramics that have the potential for application as high temperature thin film strain gauges chemically and physically compatible with the NASA GRCs microfabrication procedures and substrate materials. Test results are given for tantalum, titanium and zirconium-based nitride and oxynitride ceramic films.
Updating Classifications of Ceramic Dental Materials: A Guide to Material Selection.
McLaren, Edward A; Figueira, Johan
2015-06-01
The indications for and composition of today's dental ceramic materials serve as the basis for determining the appropriate class of ceramics to use for a given case. By understanding the classifications, composition, and characteristics of the latest all-ceramic materials, which are presented in this article in order of most to least conservative, dentists and laboratory technicians can best determine the ideal material for a particular treatment.
Hydridosiloxanes as precursors to ceramic products
Blum, Yigal D.; Johnson, Sylvia M.; Gusman, Michael I.
1997-01-01
A method is provided for preparing ceramic precursors from hydridosiloxane starting materials and then pyrolyzing these precursors to give rise to silicious ceramic materials. Si--H bonds present in the hydridosiloxane starting materials are catalytically activated, and the activated hydrogen atoms may then be replaced with nonhydrogen substituents. These preceramic materials are pyrolyzed in a selected atmosphere to give the desired ceramic product. Ceramic products which may be prepared by this technique include silica, silicon oxynitride, silicon carbide, metal silicates, and mullite.
Hydridosiloxanes as precursors to ceramic products
Blum, Y.D.; Johnson, S.M.; Gusman, M.I.
1997-06-03
A method is provided for preparing ceramic precursors from hydridosiloxane starting materials and then pyrolyzing these precursors to give rise to silicious ceramic materials. Si-H bonds present in the hydridosiloxane starting materials are catalytically activated, and the activated hydrogen atoms may then be replaced with nonhydrogen substituents. These preceramic materials are pyrolyzed in a selected atmosphere to give the desired ceramic product. Ceramic products which may be prepared by this technique include silica, silicon oxynitride, silicon carbide, metal silicates, and mullite.
Recycling of spent adsorbents for oxyanions and heavy metal ions in the production of ceramics.
Verbinnen, Bram; Block, Chantal; Van Caneghem, Jo; Vandecasteele, Carlo
2015-11-01
Spent adsorbents for oxyanion forming elements and heavy metals are classified as hazardous materials and they are typically treated by stabilization/solidification before landfilling. The use of lime or cement for stabilization/solidification entails a high environmental impact and landfilling costs are high. This paper shows that mixing spent adsorbents in the raw material for the production of ceramic materials is a valuable alternative to stabilize oxyanion forming elements and heavy metals. The produced ceramics can be used as construction material, avoiding the high economic and environmental impact of stabilization/solidification followed by landfilling. To study the stabilization of oxyanion forming elements and heavy metals during the production process, two series of experiments were performed. In the first series of experiments, the main pollutant, Mo was adsorbed onto iron-based adsorbents, which were then mixed with industrial sludge (3 w/w%) and heated at 1100°C for 30 min. Mo was chosen, as this element is easily adsorbed onto iron-based adsorbents and it is the element that is the most difficult to stabilize (i.e. the highest temperatures need to be reached before the concentrations in the leachate are reduced). Leaching concentration from the 97/3 sludge/adsorbent mixture before heating ranged between 85 and 154 mg/kg; after the heating process they were reduced to 0.42-1.48 mg/kg. Mo was actually stabilized, as the total Mo concentration after addition was not affected by the heat treatment. In the second series of experiments, the sludge was spiked with other heavy metals and oxyanion forming elements (Cr, Ni, Cu, Zn, As, Cd and Pb) in concentrations 5 times higher than the initial concentrations; after heat treatment the leachate concentrations were below the regulatory limit values. The incorporation of spent adsorbents in ceramic materials is a valuable and sustainable alternative to the existing treatment methods, saving raw materials in the ceramics production process and avoiding the use of stabilizing agents. Besides, spent adsorbents added to the raw material for ceramic products, may improve their aesthetic and structural properties. Copyright © 2015 Elsevier Ltd. All rights reserved.
Thermomechanical Property Data Base Developed for Ceramic Fibers
NASA Technical Reports Server (NTRS)
1996-01-01
A key to the successful application of metal and ceramic composite materials in advanced propulsion and power systems is the judicious selection of continuous-length fiber reinforcement. Appropriate fibers can provide these composites with the required thermomechanical performance. To aid in this selection, researchers at the NASA Lewis Research Center, using in-house state-of-the-art test facilities, developed an extensive data base of the deformation and fracture properties of commercial and developmental ceramic fibers at elevated temperatures. Lewis' experimental focus was primarily on fiber compositions based on silicon carbide or alumina because of their oxidation resistance, low density, and high modulus. Test approaches typically included tensile and flexural measurements on single fibers or on multifilament tow fibers in controlled environments of air or argon at temperatures from 800 to 1400 C. Some fiber specimens were pretreated at composite fabrication temperatures to simulate in situ composite conditions, whereas others were precoated with potential interphase and matrix materials.
Methods of improving mechanical and biomedical properties of Ca-Si-based ceramics and scaffolds.
Wu, Chengtie
2009-05-01
CaSiO3 ceramics and porous scaffolds are regarded as potential materials for bone tissue regeneration owing to their excellent bioactivity. However, their low mechanical strength and high dissolution limit their further biomedical application. In this report, we introduce three methods to improve the mechanical and biomedical properties of CaSiO3 ceramics and scaffolds. Positive ions and polymer modification are two promising ways to improve the mechanical and biomedical properties of CaSiO3 ceramics and scaffolds for bone tissue regeneration.
Bakeman, E M; Rego, N; Chaiyabutr, Y; Kois, J C
2015-01-01
This study evaluated the influence of ceramic thickness and ceramic materials on fracture resistance of posterior partial coverage ceramic restorations. Forty extracted molars were allocated into four groups (n=10) to test for two variables: 1) the thickness of ceramic (1 mm or 2 mm) and 2) the ceramic materials (a lithium disilicate glass-ceramic [IPS e.max] or leucite-reinforced glass ceramic [IPS Empress]). All ceramic restorations were luted with resin cement (Variolink II) on the prepared teeth. These luted specimens were loaded to failure in a universal testing machine, in the compression mode, with a crosshead speed of 1.0 mm/min. The data were analyzed using two-way analysis of variance and the Tukey Honestly Significantly Different multiple comparison test (α =0.05). The fracture resistance revealed a significant effect for materials (p<0.001); however, the thickness of ceramic was not significant (p=0.074), and the interaction between the thickness of ceramic and the materials was not significant (p=0.406). Mean (standard deviation) fracture resistance values were as follows: a 2-mm thickness of a lithium disilicate bonded to tooth structure (2505 [401] N) revealed a significantly higher fracture resistance than did a 1-mm thickness of leucite-reinforced (1569 [452] N) and a 2-mm thickness of leucite-reinforced ceramic bonded to tooth structure (1716 [436] N) (p<0.05). There was no significant difference in fracture resistance values between a lithium disilicate ceramic at 1-mm thickness (2105 [567] N) and at 2-mm thickness. Using a lithium disilicate glass ceramic for partial coverage restoration significantly improved fracture resistance compared to using a leucite-reinforced glass ceramic. The thickness of ceramic had no significant effect on fracture resistance when the ceramics were bonded to the underlying tooth structure.
The materials processing research base of the Materials Processing Center
NASA Technical Reports Server (NTRS)
Flemings, M. C.; Bowen, H. K.; Kenney, G. B.
1980-01-01
The goals and activities of the center are discussed. The center activities encompass all engineering materials including metals, ceramics, polymers, electronic materials, composites, superconductors, and thin films. Processes include crystallization, solidification, nucleation, and polymer synthesis.
Free-standing oxide superconducting articles
Wu, X.D.; Muenchausen, R.E.
1993-12-14
A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template layer.
Current progress in bioactive ceramic scaffolds for bone repair and regeneration.
Gao, Chengde; Deng, Youwen; Feng, Pei; Mao, Zhongzheng; Li, Pengjian; Yang, Bo; Deng, Junjie; Cao, Yiyuan; Shuai, Cijun; Peng, Shuping
2014-03-18
Bioactive ceramics have received great attention in the past decades owing to their success in stimulating cell proliferation, differentiation and bone tissue regeneration. They can react and form chemical bonds with cells and tissues in human body. This paper provides a comprehensive review of the application of bioactive ceramics for bone repair and regeneration. The review systematically summarizes the types and characters of bioactive ceramics, the fabrication methods for nanostructure and hierarchically porous structure, typical toughness methods for ceramic scaffold and corresponding mechanisms such as fiber toughness, whisker toughness and particle toughness. Moreover, greater insights into the mechanisms of interaction between ceramics and cells are provided, as well as the development of ceramic-based composite materials. The development and challenges of bioactive ceramics are also discussed from the perspective of bone repair and regeneration.
Current Progress in Bioactive Ceramic Scaffolds for Bone Repair and Regeneration
Gao, Chengde; Deng, Youwen; Feng, Pei; Mao, Zhongzheng; Li, Pengjian; Yang, Bo; Deng, Junjie; Cao, Yiyuan; Shuai, Cijun; Peng, Shuping
2014-01-01
Bioactive ceramics have received great attention in the past decades owing to their success in stimulating cell proliferation, differentiation and bone tissue regeneration. They can react and form chemical bonds with cells and tissues in human body. This paper provides a comprehensive review of the application of bioactive ceramics for bone repair and regeneration. The review systematically summarizes the types and characters of bioactive ceramics, the fabrication methods for nanostructure and hierarchically porous structure, typical toughness methods for ceramic scaffold and corresponding mechanisms such as fiber toughness, whisker toughness and particle toughness. Moreover, greater insights into the mechanisms of interaction between ceramics and cells are provided, as well as the development of ceramic-based composite materials. The development and challenges of bioactive ceramics are also discussed from the perspective of bone repair and regeneration. PMID:24646912
NASA Technical Reports Server (NTRS)
Fusaro, Robert L. (Editor); Achenbach, J. D. (Editor)
1993-01-01
The present volume on tribological materials and NDE discusses liquid lubricants for advanced aircraft engines, a liquid lubricant for space applications, solid lubricants for aeronautics, and thin solid-lubricant films in space. Attention is given to the science and technology of NDE, tools for an NDE engineering base, experimental techniques in ultrasonics for NDE and material characterization, and laser ultrasonics. Topics addressed include thermal methods of NDE and quality control, digital radiography in the aerospace industry, materials characterization by ultrasonic methods, and NDE of ceramics and ceramic composites. Also discussed are smart materials and structures, intelligent processing of materials, implementation of NDE technology on flight structures, and solid-state weld evaluation.
Dupraz, A; Nguyen, T P; Richard, M; Daculsi, G; Passuti, N
1999-04-01
An injectable composite material based on biphasic calcium phosphate (BCP) and a nonionic cellulose ether has been elaborated for use in percutaneous surgery for spine fusion. This paper reports the characterization results of this material by spectroscopic techniques including X-ray diffraction (XRD), infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) fitted with an energy dispersive X-Ray analysis system and high-resolution transmission electron microscopy (HR-TEM). From FTIR and XPS results, it was observed that the adhesion between the polymer and the ceramic might be insured by oxygen bridging developed through an ionic bonding between calcium ions and (C-O) groups of the polymer. Moreover, XPS showed attraction of Ca2+ ions in the polymer matrix, while the ceramic surface was modified in a HPO4(2-) -rich layer. These results suggest a possible dissolution/precipitation process at the interface ceramic/polymer. HR-TEM observations supported this hypothesis, showing a light contrasted fringe at the surface of the ceramic grains in the composite paste. As well, changes in the XRD spectra could indicate a small decrease in the crystal size of the BCP powder through the contact to polymer solution. In addition, SEM observation showed a decrease of the initial BCP granulometry. Aggregates of 80-200 microm seemed to be mostly dissociated in micrograins. The ceramic grains were coated with and bonded between each other by the polymer matrix, which acted as spacer in between the ceramic grains, creating a macroporous-like material structure.
Saito, Yasuyoshi; Takao, Hisaaki; Tani, Toshihiko; Nonoyama, Tatsuhiko; Takatori, Kazumasa; Homma, Takahiko; Nagaya, Toshiatsu; Nakamura, Masaya
2004-11-04
Lead has recently been expelled from many commercial applications and materials (for example, from solder, glass and pottery glaze) owing to concerns regarding its toxicity. Lead zirconium titanate (PZT) ceramics are high-performance piezoelectric materials, which are widely used in sensors, actuators and other electronic devices; they contain more than 60 weight per cent lead. Although there has been a concerted effort to develop lead-free piezoelectric ceramics, no effective alternative to PZT has yet been found. Here we report a lead-free piezoelectric ceramic with an electric-field-induced strain comparable to typical actuator-grade PZT. We achieved this through the combination of the discovery of a morphotropic phase boundary in an alkaline niobate-based perovskite solid solution, and the development of a processing route leading to highly <001> textured polycrystals. The ceramic exhibits a piezoelectric constant d33 (the induced charge per unit force applied in the same direction) of above 300 picocoulombs per newton (pC N(-1)), and texturing the material leads to a peak d33 of 416 pC N(-1). The textured material also exhibits temperature-independent field-induced strain characteristics.
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Racz, Zsolt; Bhatt, Ramakrishna T.; Brewer, David N.
2006-01-01
Assessments of foreign object damage (FOD) of a commercial, gas-turbine grade, in situ toughened silicon nitride ceramic (AS800, Honeywell Ceramics Components) were made using four different projectile materials at ambient temperature. AS800 flexure target specimens rigidly supported were impacted at their centers in a velocity range from 50 to 450 m/s by spherical projectiles with a diameter of 1.59 mm. Four different projectile materials were used including hardened steel, annealed steel, silicon nitride ceramic, and brass. Post-impact strength of each target specimen impacted was determined as a function of impact velocity to appraise the severity of local impact damage. For a given impact velocity, the degree of strength degradation was greatest for ceramic balls, least for brass balls, and intermediate for annealed and hardened steel balls. For steel balls, hardened projectiles yielded more significant impact damage than annealed counterparts. The most important material parameter affecting FOD was identified as hardness of projectiles. Impact load as a function of impact velocity was quasi-statically estimated based on both impact and static indentation associated data.
Development of a clinically validated bulk failure test for ceramic crowns.
Kelly, J Robert; Rungruanganunt, Patchnee; Hunter, Ben; Vailati, Francesca
2010-10-01
Traditional testing of ceramic crowns creates a stress state and damage modes that differ greatly from those seen clinically. There is a need to develop and communicate an in vitro testing protocol that is clinically valid. The purpose of this study was to develop an in vitro failure test for ceramic single-unit prostheses that duplicates the failure mechanism and stress state observed in clinically failed prostheses. This article first compares characteristics of traditional load-to-failure tests of ceramic crowns with the growing body of evidence regarding failure origins and stress states at failure from the examination of clinically failed crowns, finite element analysis (FEA), and data from clinical studies. Based on this analysis, an experimental technique was systematically developed and test materials were identified to recreate key aspects of clinical failure in vitro. One potential dentin analog material (an epoxy filled with woven glass fibers; NEMA grade G10) was evaluated for elastic modulus in blunt contact and for bond strength to resin cement as compared to hydrated dentin. Two bases with different elastic moduli (nickel chrome and resin-based composite) were tested for influence on failure loads. The influence of water during storage and loading (both monotonic and cyclic) was examined. Loading piston materials (G10, aluminum, stainless steel) and piston designs were varied to eliminate Hertzian cracking and to improve performance. Testing was extended from a monolayer ceramic (leucite-filled glass) to a bilayer ceramic system (glass-infiltrated alumina). The influence of cyclic rate on mean failure loads was examined (2 Hz, 10 Hz, 20 Hz) with the extremes compared statistically (t test; α=.05). Failure loads were highly influenced by base elastic modulus (t test; P<.001). Cyclic loading while in water significantly decreased mean failure loads (1-way ANOVA; P=.003) versus wet storage/dry cycling (350 N vs. 1270 N). G10 was not significantly different from hydrated dentin in terms of blunt contact elastic behavior or resin cement bond strength. Testing was successful with the bilayered ceramic, and the cycling rate altered mean failure loads only slightly (approximately 5%). Test methods and materials were developed to validly simulate many aspects of clinical failure. Copyright © 2010 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Synthesis of functional ceramic supports by ice templating and atomic layer deposition
NASA Astrophysics Data System (ADS)
Klotz, Michaela; Weber, Matthieu; Deville, Sylvain; Oison, Didier; Iatsunskyi, Igor; Coy, Emerson; Bechelany, Mikhael
2018-05-01
In this work, we report an innovative route for the manufacturing of functional ceramic supports, by combining ice templating of yttria stabilized zirconia (YSZ) and atomic layer deposition (ALD) of Al2O3 processes. Ceramic YSZ monoliths are prepared using the ice-templating process, which is based on the controlled crystallization of water following a thermal gradient. Sublimation of the ice and the sintering of the material reveal the straight micrometer sized pores shaped by the ice crystal growth. The high temperature sintering allows for the ceramic materials to present excellent mechanical strength and porosities of 67%. Next, the conformality benefit of ALD is used to deposit an alumina coating at the surface of the YSZ pores, in order to obtain a functional material. The Al2O3 thin films obtained by ALD are 100 nm thick and conformally deposited within the macroporous ceramic supports, as shown by SEM and EDS analysis. Mercury intrusion experiments revealed a reduction of the entrance pore diameter, in line with the growth per cycle of 2 Å of the ALD process. In addition to the manufacture of the innovative ceramic nanomaterials, this article also describes the fine characterization of the coatings obtained using mercury intrusion, SEM and XRD analysis.
Reference-based optical characterization of glass-ceramic converter for high-power white LEDs
NASA Astrophysics Data System (ADS)
Engel, A.; Letz, M.; Zachau, T.; Pawlowski, E.; Seneschal-Merz, K.; Korb, T.; Enseling, D.; Hoppe, B.; Peuchert, U.; Hayden, J. S.
2007-02-01
Fluorescence techniques are known for their high sensitivity and are widely used as analytical tools and detection methods for product and process control, material sciences, environmental and bio-technical analysis, molecular genetics, cell biology, medical diagnostics and drug screening. According to DIN/ISO 17025 certified standards are used for fluorescence diagnostics having the drawback of giving relative values for fluorescence intensities only. Therefore reference materials for a quantitative characterization have to be related directly to the materials under investigation. In order to evaluate these figures it is necessary to calculate absolute numbers like absorption/excitation cross section and quantum yield. This can be done for different types of dopants in different materials like glass, glass ceramics, crystals or nano crystalline material embedded in polymer matrices. Here we consider a special type of glass ceramic with Ce doped YAG as the main crystalline phase. This material has been developed for the generation of white light realized by a blue 460 nm semiconductor transition using a yellow phosphor or converter material respectively. Our glass ceramic is a pure solid state solution for a yellow phosphor. For the production of such a kind of material a well controlled thermal treatment is employed to transfer the original glass into a glass ceramic with a specific crystalline phase. In our material Ce doped YAG crystallites of a size of several µm are embedded in a matrix of a residual glass. We present chemical, structural and spectroscopic properties of our material. Based on this we will discuss design options for white LED's with respect to heat management, scattering regime, reflection losses, chemical durability and stability against blue and UV radiation, which evolve from our recently developed material. In this paper we present first results on our approaches to evaluate quantum yield and light output. Used diagnostics are fluorescence (steady state, decay time) and absorption (remission, absorption) spectroscopy working in different temperature regimes (10 - 350 K) of the measured samples in order to get a microscopic view of the relevant physical processes and to prove the correctness of the obtained data.
Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar
2012-01-01
Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044
NASA Astrophysics Data System (ADS)
Wang, Qian
Development of automotive engines with high power output demands the application of high strength materials with good tribological properties. Metal matrix composites (MMC's) and some nitrogen ceramics are of interest to replace some conventional materials in the piston/pin/connecting rod design. A simulation study has been developed to explore the possibility to employ MMC's as bearing materials and ceramics as journal materials, and to investigate the related wear mechanisms and the possible journal bearing failure mechanisms. Conventional tin coated Al-Si alloy (Al-Si/Sn) have been studied for the base line information. A mixed lubrication model for journal bearing with a soft coating has been developed and applied to the contact and temperature analysis of the Al-Si/Sn bearing. Experimental studies were performed to reveal the bearing friction and wear behavior. Tin coating exhibited great a advantage in friction reduction, however, it suffered significant wear through pitting and debonding. When the tin wore out, the Al-Si/steel contact experienced higher friction. A cast and P/M MMC's in the lubricated contact with case hardened steel and ceramic journals were studied experimentally. Without sufficient material removal in the conformal contact situation, MMC bearings in the MMC/steel pairs gained weight due to iron transfer and surface tribochemical reactions with the lubricant additives and contact failure occurred. However, the MMC/ceramic contacts demonstrated promising tribological behavior with low friction and high wear resistance, and should be considered for new journal bearing design. Ceramics are wear resistant. Ceramic surface roughness is very crucial when the journals are in contact with the tin coated bearings. In contact with MMC bearings, ceramic surface quality and fracture toughness seem to play some important roles in affecting the friction coefficient. The wear of silicon nitride and beta sialon (A) journals is pitting due to grain boundary fracture and grain pull-out.
Improvement in Mechanical Properties through Structural Hierarchies in Bio-Inspired Materials
2011-02-01
alloys , ceramics and their composites which show improvement in one mechanical property (e.g. stiffness) at the cost of another disparate one (e.g... properties of their base constituents. This is in contrast to many engineering materials, such as metals, alloys , ceramics and their composites which show...mnechanical properties seen in many synthetic nanoma- Collagen (a) Ccellous bone Collagen Collagen Lamella fibr ibi Cortical nBone Osteon C Crystak H I nm
D'souza, Kathleen Manuela; Aras, Meena Ajay
2017-01-01
Badly broken or structurally compromised posterior teeth are frequently associated with crown/root fracture. Numerous restorative materials have been used to fabricate indirect full-coverage restorations for such teeth. This study aims to evaluate and compare the effect of restorative materials on the stress distribution pattern in a mandibular first molar tooth, under varying loading conditions and to compare the stress distribution pattern in five commonly used indirect restorative materials. Five three-dimensional finite element models representing a mandibular first molar tooth restored with crowns of gold, porcelain fused to metal, composite (Artglass), alumina-based zirconia (In-Ceram Zirconia [ICZ]), and double-layered zirconia-based materials (zirconia core veneered with porcelain, Lava) were constructed, using a Finite Element Analysis Software (ANSYS version 10; ANSYS Inc., Canonsburg, PA, USA). Two loading conditions were applied, simulating maximum bite force of 600 N axially and normal masticatory bite force of 225 N axially and nonaxially. Both all-ceramic crowns allowed the least amount of stress distribution to the surrounding tooth structure. In maximum bite force-simulation test, alumina-based all-ceramic crown displayed the highest von Mises stresses (123.745 MPa). In the masticatory bite force-simulation test, both all-ceramic crowns (122.503-133.13 MPa) displayed the highest von Mises stresses. ICZ crown displayed the highest peak von Mises stress values under maximum and masticatory bite forces. ICZ and Lava crowns also allowed the least amount of stress distribution to the surrounding tooth structure, which is indicative of a favorable response of the underlying tooth structure to the overlying full-coverage indirect restorative material. These results suggest that ICZ and Lava crowns can be recommended for clinical use in cases of badly damaged teeth.
Ioannidis, Alexis; Cathomen, Elena; Jung, Ronald E; Fehmer, Vincent; Hüsler, Jürg; Thoma, Daniel S
2017-09-01
To evaluate the discoloration of the mucosa caused by different ceramic and metal-based materials. On six pig maxillae, trap-door flaps were prepared bilaterally. Different ceramic and metal-based specimens were placed underneath the flap. To simulate increasing mucosal thicknesses (MC), connective tissue grafts (CTGs) were harvested. Spectrophotometric measurements were performed prior to flap elevation (T BL ) and for each material under the flap alone (1 mm MC) (T MC1 ), with a 1-mm CTG (2-mm MC) (T MC2 ) and with a 2-mm CTG (3-mm MC) (T MC3 ). Tested materials were as follows: Zr1 (zirconia), Zr2 (zirconia + pink ceramic), Zr3 (zirconia), Zr4 (fluorescent zirconia), Zr5 (zirconia), Zr6 (high translucent zirconia), Zr7 (low translucent zirconia) and Zr8 (low translucent zirconia), Gol (gold alloy), Ti1 (titanium alloy), Ti2 (anodized gold-shaded titanium alloy) and Ti3 (anodized pink-shaded titanium alloy). Color differences (ΔE) were calculated comparing the measurement of the native tissue (T BL ) and the measurements with varying mucosal thicknesses (T MC1-3 ). For ceramic materials, the median ΔE values for the different time-point comparison ranged as follows: 3.80 (Zr4) - 7.47 (Zr2) (pooled); 3.15 (Zr4) - 8.13 (Zr2) (T BL -T MC1 ); 3.39 (Zr4) - 7.24 (Zr2) (T BL -T MC2 ); 4.31 (Zr8) - 6.99 (Zr2) (T BL -T MC3 ). For metal-based materials, the median ΔE values were as follows: 4.20 (Gol) - 5.82 (Ti3) (pooled); 3.21 (Gol) - 13.56 (Ti1) (T BL -T CM1 ); 4.0 (Ti1) - 5.27 (Gol) (T BL -T CM2 ); 3.11 (Ti1) - 5.11 (Gol) (T BL -T CM2 ). The comparison of the materials and the time points showed in the nonparametric linear mixed model a significant interaction effect between material and time point (P < 0.001). The side was not a significant main effect, nor as term in an interaction with the other two effects. Reconstructive materials result in an evident discoloration of the mucosal tissue, tending to decrease with increasing mucosal thickness. The use of fluorescent zirconia (ceramic materials) or gold alloy (metal-based materials) lead to the least discoloration. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A Combustion Research Facility for Testing Advanced Materials for Space Applications
NASA Technical Reports Server (NTRS)
Bur, Michael J.
2003-01-01
The test facility presented herein uses a groundbased rocket combustor to test the durability of new ceramic composite and metallic materials in a rocket engine thermal environment. A gaseous H2/02 rocket combustor (essentially a ground-based rocket engine) is used to generate a high temperature/high heat flux environment to which advanced ceramic and/or metallic materials are exposed. These materials can either be an integral part of the combustor (nozzle, thrust chamber etc) or can be mounted downstream of the combustor in the combustor exhaust plume. The test materials can be uncooled, water cooled or cooled with gaseous hydrogen.
Characterization of Hard Piezoelectric Lead-Free Ceramics
Zhang, Shujun; Lim, Jong Bong; Lee, Hyeong Jae; Shrout, Thomas R.
2010-01-01
K4CuNb8O23 doped K0.45Na0.55NbO3 (KNN-KCN) ferroelectric ceramics were found to exhibit asymmetrical polarization hysteresis loops, related to the development of an internal bias field. The internal bias field is believed to be the result of defect dipoles of acceptor ions and oxygen vacancies, which lead to piezoelectric “hardening” effect, by stabilizing and pinning of the domain wall motion. The dielectric loss for the hard lead-free piezoelectric ceramic was found to be 0.6%, with mechanical quality factors Q on the order of >1500. Furthermore, the piezoelectric properties were found to decrease and the coercive field increased, when compared with the undoped material, exhibiting a typical characteristic of “hard” behavior. The temperature usage range was limited by the polymorphic phase transition temperature, being 188°C. The full set of material constants was determined for the KNN-KCN materials. Compared with conventional hard PZT ceramics, the lead-free possessed lower dielectric and piezoelectric properties; however, comparable values of mechanical Q, dielectric loss, and coercive fields were obtained, making acceptor modified KNN based lead-free piezoelectric material promising for high-power applications, where lead-free materials are desirable. PMID:19686966
Asai, Tetsuya; Kazama, Ryunosuke; Fukushima, Masayoshi; Okiji, Takashi
2010-11-01
Controversy prevails over the effect of overglazing on the fracture strength of ceramic materials. Therefore, the effects of different surface finishes on the compressive fracture strength of machinable ceramic materials were investigated in this study. Plates prepared from four commercial brands of ceramic materials were either surface-polished or overglazed (n=10 per ceramic material for each surface finish), and bonded to flat surfaces of human dentin using a resin cement. Loads at failure were determined and statistically analyzed using two-way ANOVA and Bonferroni test. Although no statistical differences in load value were detected between polished and overglazed groups (p>0.05), the fracture load of Vita Mark II was significantly lower than those of ProCAD and IPS Empress CAD, whereas that of IPS e.max CAD was significantly higher than the latter two ceramic materials (p<0.05). It was concluded that overglazed and polished surfaces produced similar compressive fracture strengths irrespective of the machinable ceramic material tested, and that fracture strength was material-dependent.
XRD investigation of the Effect of MgO Additives on ZTA-TiO2 Ceramic Composites
NASA Astrophysics Data System (ADS)
Azhar, Ahmad Zahirani Ahmad; Manshor, Hanisah; Ali, Afifah Mohd
2018-01-01
Alumina (Al2O3) based ceramics possess good mechanical properties and suitable for the application of cutting inserts. However, this monolithic ceramics suffer from lack of toughness. Hence, there are some modification were made such as the addition of yttria stabilized zirconia (YSZ) to the Al2O3 helps in increasing the toughness of the Al2O3 ceramics. Some additives such as MgO and TiO2 were used to further improve the mechanical properties of ZTA. In this study, high purity raw materials which consist of ZTA-TiO2 were mixed with different amount of MgO (0.0 - 1.0 wt %). The mixture of materials was going through wet mixing, compaction and pressureless sintering at 1600°C for one hour. The samples were characterized for phase analysis, microstructure, shrinkage rate, bulk density, Vickers hardness and fracture toughness. Based on the XRD analysis results, the secondary phase (MgAl2O4) was detected in the sample with 0.5 wt% of MgO onwards which leads to grains refinement, thus improve the density and hardness of ZTA-TiO2-MgO ceramics composites.
Evaluation Of Shielding Efficacy Of A Ferrite Containing Ceramic Material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verst, C.
2015-10-12
The shielding evaluation of the ferrite based Mitsuishi ceramic material has produced for several radiation sources and possible shielding sizes comparative dose attenuation measurements and simulated projections. High resolution gamma spectroscopy provided uncollided and scattered photon spectra at three energies, confirming theoretical estimates of the ceramic’s mass attenuation coefficient, μ/ρ. High level irradiation experiments were performed using Co-60, Cs-137, and Cf-252 sources to measure penetrating dose rates through steel, lead, concrete, and the provided ceramic slabs. The results were used to validate the radiation transport code MCNP6 which was then used to generate dose rate attenuation curves as a functionmore » of shielding material, thickness, and mass for photons and neutrons ranging in energy from 200 keV to 2 MeV.« less
Heintze, S D; Zellweger, G; Cavalleri, A; Ferracane, J
2006-02-01
The aim of the study was to evaluate two ceramic materials as possible substitutes for enamel using two wear simulation methods, and to compare both methods with regard to the wear results for different materials. Flat specimens (OHSU n=6, Ivoclar n=8) of one compomer and three composite materials (Dyract AP, Tetric Ceram, Z250, experimental composite) were fabricated and subjected to wear using two different wear testing methods and two pressable ceramic materials as stylus (Empress, experimental ceramic). For the OHSU method, enamel styli of the same dimensions as the ceramic stylus were fabricated additionally. Both wear testing methods differ with regard to loading force, lateral movement of stylus, stylus dimension, number of cycles, thermocycling and abrasive medium. In the OHSU method, the wear facets (mean vertical loss) were measured using a contact profilometer, while in the Ivoclar method (maximal vertical loss) a laser scanner was used for this purpose. Additionally, the vertical loss of the ceramic stylus was quantified for the Ivoclar method. The results obtained from each method were compared by ANOVA and Tukey's test (p<0.05). To compare both wear methods, the log-transformed data were used to establish relative ranks between material/stylus combinations and assessed by applying the Pearson correlation coefficient. The experimental ceramic material generated significantly less wear in Tetric Ceram and Z250 specimens compared to the Empress stylus in the Ivoclar method, whereas with the OHSU method, no difference between the two ceramic antagonists was found with regard to abrasion or attrition. The wear generated by the enamel stylus was not statistically different from that generated by the other two ceramic materials in the OHSU method. With the Ivoclar method, wear of the ceramic stylus was only statistically different when in contact with Tetric Ceram. There was a close correlation between the attrition wear of the OHSU and the wear of the Ivoclar method (Pearson coefficient 0.83, p=0.01). Pressable ceramic materials can be used as a substitute for enamel in wear testing machines. However, material ranking may be affected by the type of ceramic material chosen. The attrition wear of the OHSU method was comparable with the wear generated with the Ivoclar method.
Ceramic matrix composite article and process of fabricating a ceramic matrix composite article
Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert
2016-01-12
A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.
Selective laser sintering of cermet mixtures Ti and B4C
NASA Astrophysics Data System (ADS)
Filippov, A. A.; Fomin, V. M.; Malikov, A. G.; Orishich, A. M.
2016-10-01
The work is dedicated to the creation of a new heterogeneous ceramic-composite materials based on boron carbide and titanium, using a laser, in order to further layer-growing 3D products from these materials. The paper discussed two methods for obtaining ceramic-composite material: laser sintering of boron carbide powder and a metal-melting the powder mixture. We study the microstructure of the samples at various energy process modes. An attempt was made to justify the applicability of the regime used for the cultivation of layered products.
Low cost silicon-on-ceramic photovoltaic solar cells
NASA Technical Reports Server (NTRS)
Koepke, B. G.; Heaps, J. D.; Grung, B. L.; Zook, J. D.; Sibold, J. D.; Leipold, M. H.
1980-01-01
A technique has been developed for coating low-cost mullite-based refractory substrates with thin layers of solar cell quality silicon. The technique involves first carbonizing one surface of the ceramic and then contacting it with molten silicon. The silicon wets the carbonized surface and, under the proper thermal conditions, solidifies as a large-grained sheet. Solar cells produced from this composite silicon-on-ceramic material have exhibited total area conversion efficiencies of ten percent.
Noda, Yukari; Nakajima, Masatoshi; Takahashi, Masahiro; Mamanee, Teerapong; Hosaka, Keiichi; Takagaki, Tomohiro; Ikeda, Masaomi; Foxton, Richard M; Tagami, Junji
2017-11-29
This study evaluated the effects of ceramic surface treatment agents on shear bond strengths to ceramic materials with and without thermocycling. Ceramic plates were prepared from feldspathic ceramic; AAA, lithium disilicate ceramic material; IPS e.max Press, zirconia ceramic; Lava. Ceramic surfaces were pretreated with one of five surface treatment agents (Clearfil PhotoBond mixed with Porcelainbond activator (PB), Clearfil SE One mixed with Porcelainbond activator (SO), Ceramic Primer (CP), Universal Primer (UP), Scotchbond Universal (SU)), and then a resin cement (Clapearl DC) was filled. After 0, 5,000, and 10,000 thermocycles, micro-shear bond strengths between ceramic-cement interfaces were determined. SU exhibited significantly lower initial bond strength to AAA and e.max than PB, SO, CP, and UP. For Lava, PB, SO, CP and SU exhibited higher initial bond strengths than UP. Thermocycles reduced bond strengths to all the ceramic materials with any surface treatment.
NASA Astrophysics Data System (ADS)
Yuan, Chen; Jones, Sam; Blackburn, Stuart
2012-12-01
Investment casting is a time-consuming, labour intensive process, which produces complex, high value-added components for a variety of specialised industries. Current environmental and economic pressures have resulted in a need for the industry to improve current casting quality, reduce manufacturing costs and explore new markets for the process. Alumino-silicate based refractories are commonly used as both filler and stucco materials for ceramic shell production. A new ceramic material, norite, is now being produced based on ferrous aluminosilicate chemistry, having many potential advantages when used for the production of shell molds for casting aluminum alloy. This paper details the results of a direct comparison made between the properties of a ceramic shell system produced with norite refractories and a typical standard refractory shell system commonly used in casting industry. A range of mechanical and physical properties of the systems was measured, and a full-scale industrial casting trial was also carried out. The unique properties of the norite shell system make it a promising alternative for casting aluminum based alloys in the investment foundry.
Alvin, Mary Anne [Pittsburg, PA
2010-06-22
This disclosure addresses the issue of providing a metallic-ceramic overlay coating that potentially serves as an interface or bond coat layer to provide enhanced oxidation resistance to the underlying superalloy substrate via the formation of a diffusion barrier regime within the supporting base material. Furthermore, the metallic-ceramic coating is expected to limit the growth of a continuous thermally grown oxide (TGO) layer that has been primarily considered to be the principal cause for failure of existing TBC systems. Compositional compatibility of the metallic-ceramic with traditional yttria-stabilized zirconia (YSZ) top coats is provided to further limit debond or spallation of the coating during operational use. A metallic-ceramic architecture is disclosed wherein enhanced oxidation resistance is imparted to the surface of nickel-based superalloy or single crystal metal substrate, with simultaneous integration of the yttria stabilized zirconia (YSZ) within the metallic-ceramic overlayer.
NASA Astrophysics Data System (ADS)
Terauds, Kalvis
Demands for hypersonic aircraft are driving the development of ultra-high temperature structural materials. These aircraft, envisioned to sustain Mach 5+, are expected to experience continuous temperatures of 1200--1800°C on the aircraft surface and temperatures as high as 2800°C in combustion zones. Breakthroughs in the development of fiber based ceramic matrix composites (CMCs) are opening the door to a new class of high-tech UHT structures for aerospace applications. One limitation with current carbon fiber or silicon carbide fiber based CMC technology is the inherent problem of material oxidation, requiring new approaches for protective environmental barrier coatings (EBC) in extreme environments. This thesis focuses on the development and characterization of SiCN-HfO2 based ceramic composite EBC systems to be used as a protective layer for silicon carbide fiber based CMCs. The presented work covers three main architectures for protection (i) multilayer films, (ii) polymer-derived HfSiCNO, and (iii) composite SiCN-HfO 2 infiltration. The scope of this thesis covers processing development, material characterization, and high temperature oxidation behavior of these three SiCN-HfO2 based systems. This work shows that the SiCN-HfO 2 composite materials react upon oxidation to form HfSiO4, offering a stable EBC in streaming air and water vapor at 1600°C.
Ritzberger, Christian; Apel, Elke; Höland, Wolfram; Peschke, Arnd; Rheinberger, Volker M.
2010-01-01
The main properties (mechanical, thermal and chemical) and clinical application for dental restoration are demonstrated for three types of glass-ceramics and sintered polycrystalline ceramic produced by Ivoclar Vivadent AG. Two types of glass-ceramics are derived from the leucite-type and the lithium disilicate-type. The third type of dental materials represents a ZrO2 ceramic. CAD/CAM technology is a procedure to manufacture dental ceramic restoration. Leucite-type glass-ceramics demonstrate high translucency, preferable optical/mechanical properties and an application as dental inlays, onlays and crowns. Based on an improvement of the mechanical parameters, specially the strength and toughness, the lithium disilicate glass-ceramics are used as crowns; applying a procedure to machine an intermediate product and producing the final glass-ceramic by an additional heat treatment. Small dental bridges of lithium disilicate glass-ceramic were fabricated using a molding technology. ZrO2 ceramics show high toughness and strength and were veneered with fluoroapatite glass-ceramic. Machining is possible with a porous intermediate product.
Method for adhesion of metal films to ceramics
Lowndes, Douglas H.; Pedraza, Anthony J.; DeSilva, Melvin J.; Kumar, Rajagopalan A.
1997-01-01
Methods for making strongly bonded metal-ceramic materials. The methods include irradiating a portion of the surface of the ceramic material with a pulsed ultraviolet laser having an energy density sufficient to effect activation of the irradiated surface of the ceramic material so that adhesion of metals subsequently deposited onto the irradiated surface is substantially increased. Advantages of the invention include (i) the need for only a small number of laser pulses at relatively low focused energy density, (ii) a smoother substrate surface, (iii) activation of the laser-treated surface which provides a chemical bond between the surface and a metal deposited thereon, (iv) only low temperature annealing is required to produce the strong metal-ceramic bond; (v) the ability to obtain strong adhesion between ceramic materials and oxidation resistant metals; (vi) ability to store the laser treated ceramic materials for later deposition of metals thereon.
Method for adhesion of metal films to ceramics
Lowndes, D.H.; Pedraza, A.J.; DeSilva, M.J.; Kumar, R.A.
1997-12-30
Methods for making strongly bonded metal-ceramic materials are disclosed. The methods include irradiating a portion of the surface of the ceramic material with a pulsed ultraviolet laser having an energy density sufficient to effect activation of the irradiated surface of the ceramic material so that adhesion of metals subsequently deposited onto the irradiated surface is substantially increased. Advantages of the invention include (i) the need for only a small number of laser pulses at relatively low focused energy density, (ii) a smoother substrate surface, (iii) activation of the laser-treated surface which provides a chemical bond between the surface and a metal deposited thereon, (iv) only low temperature annealing is required to produce the strong metal-ceramic bond; (v) the ability to obtain strong adhesion between ceramic materials and oxidation resistant metals; (vi) ability to store the laser treated ceramic materials for later deposition of metals thereon. 7 figs.
Ceramic Foams for TPS Applications
NASA Technical Reports Server (NTRS)
Stockpoole, Mairead
2003-01-01
Ceramic foams have potential in many areas of Thermal Protection Systems (TPS) including acreage and tile leading edges as well as being suitable as a repair approach for re-entry vehicles. NASA Ames is conducting ongoing research in developing lower-density foams from pre-ceramic polymer routes. One of the key factors to investigate, when developing new materials for re-entry applications, is their oxidation behavior in the appropriate re-entry environment which can be simulated using ground based arc jet (plasma jet) testing. Arc jet testing is required to provide the appropriate conditions (stagnation pressures, heat fluxes, enthalpies, heat loads and atmospheres) encountered during flight. This work looks at the response of ceramic foams (Si systems) exposed to simulated reentry environments and investigates the influence of microstructure and composition on the material? response. Other foam properties (mechanical and thermal) will also be presented.
Modeling of Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Ferguson, B. L.; Petrus, G. J.; Krauss, T. M.
1992-01-01
The project examined the effectiveness of studying the creep behavior of thermal barrier coating system through the use of a general purpose, large strain finite element program, NIKE2D. Constitutive models implemented in this code were applied to simulate thermal-elastic and creep behavior. Four separate ceramic-bond coat interface geometries were examined in combination with a variety of constitutive models and material properties. The reason for focusing attention on the ceramic-bond coat interface is that prior studies have shown that cracking occurs in the ceramic near interface features which act as stress concentration points. The model conditions examined include: (1) two bond coat coefficient of thermal expansion curves; (2) the creep coefficient and creep exponent of the bond coat for steady state creep; (3) the interface geometry; and (4) the material model employed to represent the bond coat, ceramic, and superalloy base.
Polymer-Ceramic Composite Scaffolds: The Effect of Hydroxyapatite and β-tri-Calcium Phosphate
Caetano, Guilherme; Vyas, Cian; Diver, Carl; Bártolo, Paulo
2018-01-01
The design of bioactive scaffolds with improved mechanical and biological properties is an important topic of research. This paper investigates the use of polymer-ceramic composite scaffolds for bone tissue engineering. Different ceramic materials (hydroxyapatite (HA) and β-tri-calcium phosphate (TCP)) were mixed with poly-ε-caprolactone (PCL). Scaffolds with different material compositions were produced using an extrusion-based additive manufacturing system. The produced scaffolds were physically and chemically assessed, considering mechanical, wettability, scanning electron microscopy and thermal gravimetric tests. Cell viability, attachment and proliferation tests were performed using human adipose derived stem cells (hADSCs). Results show that scaffolds containing HA present better biological properties and TCP scaffolds present improved mechanical properties. It was also possible to observe that the addition of ceramic particles had no effect on the wettability of the scaffolds. PMID:29342890
NASA Technical Reports Server (NTRS)
Ehrlich, Michael J.
1998-01-01
The goal of this program is to assess the feasibility of using laser based ultrasonic techniques for inspecting and characterizing materials of interest to NASA, specifically those used in propulsion and turbomachinery applications, such as ceramic composites, metal matrix composites, and intermetallics.
Marchant, David D.; Killpatrick, Don H.
1978-01-01
An electrode capable of withstanding high temperatures and suitable for use as a current collector in the channel of a magnetohydrodynamic (MHD) generator consists of a sintered powdered metal base portion, the upper surface of the base being coated with a first layer of nickel aluminide, an intermediate layer of a mixture of nickel aluminide - refractory ceramic on the first layer and a third or outer layer of a refractory ceramic material on the intermediate layer. The sintered powdered metal base resists spalling by the ceramic coatings and permits greater electrode compliance to thermal shock. The density of the powdered metal base can be varied to allow optimization of the thermal conductivity of the electrode and prevent excess heat loss from the channel.
Bosch Ojeda, Catalina; Sánchez Rojas, Fuensanta; Cano Pavón, José Manuel
2007-09-01
Ceramic and glass are some of the more recent engineering materials and those that are most resistant to environmental conditions. They belong to advanced materials in that they are being developed for the aerospace and electronics industries. In the last decade, a new class of ceramic materials has been the focus of particular attention. The materials were produced with natural, renewable resources (wood or wood-based products). In this work, we have synthesised a new biomorphic ceramic material from oak wood and Si infiltration. After the material characterization, we have optimized the dissolution of the sample by acid attack in an oven under microwave irradiation. Experimental designs were used as a multivariate strategy for the evaluation of the effects of varying several variables at the same time. The optimization was performed in two steps using factorial design for preliminary evaluation and a Draper-Lin design for determination of the critical experimental conditions. Five variables (time, power, volume of HNO3, volume H2SO4 and volume of HF) were considered as factors and as a response the concentration of different metal ions in the optimization process. Interactions between analytical factors and their optimal levels were investigated using a Draper-Lin design.
NASA Astrophysics Data System (ADS)
He, Li; Song, Xuan
2018-03-01
In recent years, ceramic fabrication using stereolithography (SLA) has gained in popularity because of its high accuracy and density that can be achieved in the final part of production. One of the key challenges in ceramic SLA is that support structures are required for building overhanging features, whereas removing these support structures without damaging the components is difficult. In this research, a suspension-enclosing projection-stereolithography process is developed to overcome this challenge. This process uses a high-yield-stress ceramic slurry as the feedstock material and exploits the elastic force of the material to support overhanging features without the need for building additional support structures. Ceramic slurries with different solid loadings are studied to identify the rheological properties most suitable for supporting overhanging features. An analytical model of a double doctor-blade module is established to obtain uniform and thin recoating layers from a high-yield-stress slurry. Several test cases highlight the feasibility of using a high-yield-stress slurry to support overhanging features in SLA.
Richter, Berna I; Ostermeier, Sven; Turger, Anke; Denkena, Berend; Hurschler, Christof
2010-06-15
Material wear testing is an important technique in the development and evaluation of materials for use in implant for total knee arthroplasty. Since a knee joint induces a complex rolling-gliding movement, standardised material wear testing devices such as Pin-on-Disc or Ring-on-Disc testers are suitable to only a limited extent because they generate pure gliding motion only. A rolling-gliding wear simulator was thus designed, constructed and implemented, which simulates and reproduces the rolling-gliding movement and loading of the knee joint on specimens of simplified geometry. The technical concept was to run a base-plate, representing the tibia plateau, against a pivoted cylindrical counter-body, representing one femur condyle under an axial load. A rolling movement occurs as a result of the friction and pure gliding is induced by limiting the rotation of the cylindrical counter-body. The set up also enables simplified specimens handling and removal for gravimetrical wear measurements. Long-term wear tests and gravimetrical wear measurements were carried out on the well known material pairings: cobalt chrome-polyethylene, ceramic-polyethylene and ceramic-ceramic, over three million motion cycles to allow material comparisons to be made. The observed differences in wear rates between cobalt-chrome on polyethylene and ceramic on polyethylene pairings were similar to the differences of published data for existing material-pairings. Test results on ceramic-ceramic pairings of different frontal-plane geometry and surface roughness displayed low wear rates and no fracture failures. The presented set up is able to simulate the rolling-gliding movement of the knee joint, is easy to use, and requires a minimum of user intervention or monitoring. It is suitable for long-term testing, and therefore a useful tool for the investigation of new and promising materials which are of interest for application in knee joint replacement implants.
2010-01-01
Background Material wear testing is an important technique in the development and evaluation of materials for use in implant for total knee arthroplasty. Since a knee joint induces a complex rolling-gliding movement, standardised material wear testing devices such as Pin-on-Disc or Ring-on-Disc testers are suitable to only a limited extent because they generate pure gliding motion only. Methods A rolling-gliding wear simulator was thus designed, constructed and implemented, which simulates and reproduces the rolling-gliding movement and loading of the knee joint on specimens of simplified geometry. The technical concept was to run a base-plate, representing the tibia plateau, against a pivoted cylindrical counter-body, representing one femur condyle under an axial load. A rolling movement occurs as a result of the friction and pure gliding is induced by limiting the rotation of the cylindrical counter-body. The set up also enables simplified specimens handling and removal for gravimetrical wear measurements. Long-term wear tests and gravimetrical wear measurements were carried out on the well known material pairings: cobalt chrome-polyethylene, ceramic-polyethylene and ceramic-ceramic, over three million motion cycles to allow material comparisons to be made. Results The observed differences in wear rates between cobalt-chrome on polyethylene and ceramic on polyethylene pairings were similar to the differences of published data for existing material-pairings. Test results on ceramic-ceramic pairings of different frontal-plane geometry and surface roughness displayed low wear rates and no fracture failures. Conclusions The presented set up is able to simulate the rolling-gliding movement of the knee joint, is easy to use, and requires a minimum of user intervention or monitoring. It is suitable for long-term testing, and therefore a useful tool for the investigation of new and promising materials which are of interest for application in knee joint replacement implants. PMID:20550669
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Bednarcyk, Brett A.; Pineda, Evan J.; Walton, Owen J.; Arnold, Steven M.
2016-01-01
Stochastic-based, discrete-event progressive damage simulations of ceramic-matrix composite and polymer matrix composite material structures have been enabled through the development of a unique multiscale modeling tool. This effort involves coupling three independently developed software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/ Life), and (3) the Abaqus finite element analysis (FEA) program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating unit cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC. Abaqus is used at the global scale to model the overall composite structure. An Abaqus user-defined material (UMAT) interface, referred to here as "FEAMAC/CARES," was developed that enables MAC/GMC and CARES/Life to operate seamlessly with the Abaqus FEA code. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events, which incrementally progress and lead to ultimate structural failure. This report describes the FEAMAC/CARES methodology and discusses examples that illustrate the performance of the tool. A comprehensive example problem, simulating the progressive damage of laminated ceramic matrix composites under various off-axis loading conditions and including a double notched tensile specimen geometry, is described in a separate report.
Superconductive articles including cerium oxide layer
Wu, X.D.; Muenchausen, R.E.
1993-11-16
A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure. 7 figures.
Superconductive articles including cerium oxide layer
Wu, Xin D.; Muenchausen, Ross E.
1993-01-01
A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure.
Esquivel-Upshaw, Josephine F; Clark, Arthur E; Shuster, Jonathan J; Anusavice, Kenneth J
2014-02-01
The aim of this study was to determine the survival rates over time of implant-supported ceramic-ceramic and metal-ceramic prostheses as a function of core-veneer thickness ratio, gingival connector embrasure design, and connector height. An IRB-approved, randomized, controlled clinical trial was conducted as a single-blind pilot study involving 55 patients missing three teeth in either one or two posterior areas. These patients (34 women; 21 men; age range 52-75 years) were recruited for the study to receive a three-unit implant-supported fixed dental prosthesis (FDP). Two implants were placed for each of the 72 FDPs in the study. The implants (Osseospeed, Astra Tech), which were made of titanium, were grit blasted. A gold-shaded, custom-milled titanium abutment (Atlantis, Astra Tech), was secured to each implant body. Each of the 72 FDPs in 55 patients were randomly assigned based on one of the following options: (1) A. ceramic-ceramic (Yttria-stabilized zirconia core, pressable fluorapatite glass-ceramic, IPS e.max ZirCAD, and ZirPress, Ivoclar Vivadent) B. metal-ceramic (palladium-based noble alloy, Capricorn, Ivoclar Vivadent, with press-on leucite-reinforced glass-ceramic veneer, IPS InLine POM, Ivoclar Vivadent); (2) occlusal veneer thickness (0.5, 1.0, and 1.5 mm); (3) curvature of gingival embrasure (0.25, 0.5, and 0.75 mm diameter); and (4) connector height (3, 4, and 5 mm). FDPs were fabricated and cemented with dual-cure resin cement (RelyX, Universal Cement, 3M ESPE). Patients were recalled at 6 months, 1 year, and 2 years. FDPs were examined for cracks, fracture, and general surface quality. Recall exams of 72 prostheses revealed 10 chipping fractures. No fractures occurred within the connector or embrasure areas. Two-sided Fisher's exact tests showed no significant correlation between fractures and type of material system (p = 0.51), veneer thickness (p = 0.75), radius of curvature of gingival embrasure (p = 0.68), and connector height (p = 0.91). Although there were no significant associations between connector height, curvature of gingival embrasure, core/veneer thickness ratio, and material system and the survival probability of implant-supported FDPs with zirconia as a core material, the small number of fractures precludes a definitive conclusion on the dominant controlling factor. © 2013 by the American College of Prosthodontists.
Flight- and Ground-Based Materials Science Programs at NASA
NASA Technical Reports Server (NTRS)
Gillies, Donald C.
1999-01-01
The Microgravity Research Division of NASA funds research programs in all branches of materials science including ceramics and glasses. A NASA Research Announcement (NRA)is currently planned with proposals due in March 1999. Proposals are accepted for both flight- definition and ground- based research projects with a main criterion being a strong justification for microgravity. A review of the program in its entirety will be given, with special emphasis on microgravity related ceramics research. The topics of current interest in the NRA will be discussed in terms of International Space Station research and NASA's Human Exploration and Development of Space (HEDS) initiative.
Development of Ceramic Solid-State Laser Host Material
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Trivedi, Sudhir; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra
2009-01-01
Polycrystalline ceramic laser materials are gaining importance in the development of novel diode-pumped solid-state lasers. Compared to single-crystals, ceramic laser materials offer advantages in terms of ease of fabrication, shape, size, and control of dopant concentrations. Recently, we have developed Neodymium doped Yttria (Nd:Y2O3) as a solid-state ceramic laser material. A scalable production method was utilized to make spherical non agglomerated and monodisperse metastable ceramic powders of compositions that were used to fabricate polycrystalline ceramic material components. This processing technique allowed for higher doping concentrations without the segregation problems that are normally encountered in single crystalline growth. We have successfully fabricated undoped and Neodymium doped Yttria material up to 2" in diameter, Ytterbium doped Yttria, and erbium doped Yttria. We are also in the process of developing other sesquioxides such as scandium Oxide (Sc2O3) and Lutesium Oxide (Lu2O3) doped with Ytterbium, erbium and thulium dopants. In this paper, we present our initial results on the material, optical, and spectroscopic properties of the doped and undoped sesquioxide materials. Polycrystalline ceramic lasers have enormous potential applications including remote sensing, chem.-bio detection, and space exploration research. It is also potentially much less expensive to produce ceramic laser materials compared to their single crystalline counterparts because of the shorter fabrication time and the potential for mass production in large sizes.
Tungsten - Yttrium Based Nuclear Structural Materials
NASA Astrophysics Data System (ADS)
Ramana, Chintalapalle; Chessa, Jack; Martinenz, Gustavo
2013-04-01
The challenging problem currently facing the nuclear science community in this 21st century is design and development of novel structural materials, which will have an impact on the next-generation nuclear reactors. The materials available at present include reduced activation ferritic/martensitic steels, dispersion strengthened reduced activation ferritic steels, and vanadium- or tungsten-based alloys. These materials exhibit one or more specific problems, which are either intrinsic or caused by reactors. This work is focussed towards tungsten-yttrium (W-Y) based alloys and oxide ceramics, which can be utilized in nuclear applications. The goal is to derive a fundamental scientific understanding of W-Y-based materials. In collaboration with University of Califonia -- Davis, the project is designated to demonstrate the W-Y based alloys, ceramics and composites with enhanced physical, mechanical, thermo-chemical properties and higher radiation resistance. Efforts are focussed on understanding the microstructure, manipulating materials behavior under charged-particle and neutron irradiation, and create a knowledge database of defects, elemental diffusion/segregation, and defect trapping along grain boundaries and interfaces. Preliminary results will be discussed.
Failure modes and materials design for biomechanical layer structures
NASA Astrophysics Data System (ADS)
Deng, Yan
Ceramic materials are finding increasing usage in the area of biomechanical replacements---dental crowns, hip and bone implants, etc.---where strength, wear resistance, biocompatibility, chemical durability and even aesthetics are critical issues. Aesthetic ceramic crowns have been widely used in dentistry to replace damaged or missing teeth. However, the failure rates of ceramic crowns, especially all-ceramic crowns, can be 1%˜6% per year, which is not satisfactory to patients. The materials limitations and underlying fracture mechanisms of these prostheses are not well understood. In this thesis, fundamental fracture and damage mechanisms in model dental bilayer and trilayer structures are studied. Principle failure modes are identified from in situ experimentation and confirmed by fracture mechanics analysis. In bilayer structures of ceramic/polycarbonate (representative of ceramic crown/dentin structure), three major damage sources are identified: (i) top-surface cone cracks or (ii) quasiplasticity, dominating in thick ceramic bilayers; (iii) bottom-surface radial cracks, dominating in thin ceramic bilayers. Critical load P for each damage mode are measured in six dental ceramics: Y-TZP zirconia, glass-infiltrated zirconia and alumina (InCeram), glass-ceramic (Empress II), Porcelain (Mark II and Empress) bonded to polymer substrates, as a function of ceramic thickness d in the range of 100 mum to 10 mm. P is found independent of d for mode (i) and (ii), but has a d 2 relations for mode (iii)---bottom surface radial cracking. In trilayer structures of glass/core-ceramic/polycarbonate (representing veneer porcelain/core/dentin structures), three inner fracture origins are identified: radial cracks from the bottom surface in the (i) first and (ii) second layers; and (iii) quasiplasticity in core-ceramic layer. The role of relative veneer/core thickness, d1/d 2 and materials properties is investigated for three core materials with different modulus (114--270GPa) and strength (400--1400MPa): Y-TZP zirconia, InCeram alumina and Empress II glass-ceramic. Explicit relations for the critical loads P to produce these different damage modes in bilayer and trilayer structures are developed in terms of basic material properties (modulus E, strength, hardness H and toughness T) and geometrical variables (thickness d and contact sphere radius r). These experimentally validated relations are used to design of optimal material combinations for improved fracture resistance and to predict mechanical performance of current dental materials.
Design, Fabrication and Characterization of High Temperature Joints in Ceramic Composites
NASA Technical Reports Server (NTRS)
Singh, M.
1999-01-01
Ceramic joining has been recognized as one of the enabling technologies for the successful utilization of ceramic components in a number of demanding, high temperature applications. Various joint design philosophies and design issues have been discussed along with an affordable, robust ceramic joining technology (ARCJoinT). A wide variety of silicon carbide-based composite materials, in different shapes and sizes, have been joined using this technology. This technique is capable of producing joints with tailorable thickness and composition. The room and high temperature mechanical properties and fractography of ceramic joints have been reported. These joints maintain their mechanical strength up to 1200 C in air. This technology is suitable for the joining of large and complex shaped ceramic composite components and with certain modifications, can be applied to repair of ceramic components damaged in service.
Design, Fabrication, and Characterization of High Temperature Joints in Ceramic Composites
NASA Technical Reports Server (NTRS)
Singh, M.
1999-01-01
Ceramic joining has been recognized as one of the enabling technologies for the successful utilization of ceramic components in a number of demanding, high temperature applications. Various joint design philosophies and design issues have been discussed along with an affordable, robust ceramic joining technology (ARCJoinT). A wide variety of silicon carbide-based composite materials, in different shapes and sizes, have been joined using this technology. This technique is capable of producing joints with tailorable thickness and composition. The room and high temperature mechanical properties and fractography of ceramic joints have been reported. These joints maintain their mechanical strength up to 1200C in air. This technology is suitable for the joining of large and complex shaped ceramic composite components and with certain modifications, can be applied to repair of ceramic components damaged in service.
Wang, Kui; Yiming, Wubulikasimu; Saththasivam, Jayaprakash; Liu, Zhaoyang
2017-07-06
Polymeric and ceramic asymmetric membranes have dominated commercial membranes for water treatment. However, polymeric membranes are prone to becoming fouled, while ceramic membranes are mechanically fragile. Here, we report a novel concept to develop asymmetric membranes based on ultra-long ceramic/polymeric fibers, with the combined merits of good mechanical stability, excellent fouling resistance and high oil/water selectivity, in order to meet the stringent requirements for practical oil/water separation. The ultra-long dimensions of ceramic nanofibers/polymeric microfibers endow this novel membrane with mechanical flexibility and robustness, due to the integrated and intertwined structure. This membrane is capable of separating oil/water emulsions with high oil-separation efficiency (99.9%), thanks to its nanoporous selective layer made of ceramic nanofibers. Further, this membrane also displays superior antifouling properties due to its underwater superoleophobicity and ultra-low oil adhesion of the ceramic-based selective layer. This membrane exhibits high water permeation flux (6.8 × 10 4 L m -2 h -1 bar -1 ) at low operation pressures, which is attributed to its 3-dimensional (3D) interconnected fiber-based structure throughout the membrane. In addition, the facile fabrication process and inexpensive materials required for this membrane suggest its significant potential for industrial applications.
High temperature (NaBi)0.48□0.04Bi2Nb2O9-based piezoelectric ceramics
NASA Astrophysics Data System (ADS)
Gai, Zhi-Gang; Wang, Jin-Feng; Zhao, Ming-Lei; Wang, Chun-Ming; Zang, Guo-Zhong; Ming, Bao-Quan; Qi, Peng; Zhang, Shujun; Shrout, Thomas R.
2006-07-01
The effect of (LiCe) substitution for A site on the properties of (NaBi)0.48◻0.04Bi2Nb2O9 (NB◻N)-based ceramics was investigated. The coercive fields (EC) of NB◻N)-based ceramics were significantly decreased from 61.0to32.5kV/cm and the Curie temperature (TC) gradually decreases from 820to803°C with increasing the (LiCe) modification. The piezoelectric coefficient d33, planar coupling factor kp, and mechanical quality factor Q of (NaBi)0.38(LiCe)0.05◻0.14Bi2Nb2O9 ceramic were found to be 27pC/N, 11.2%, and 2600, respectively, together with the high TC (˜809°C) and stable piezoelectric properties, demonstrating that the (LiCe) modified NB◻N-based material a promising candidate for high temperature applications.
RADIOLOGICAL IMPACTS ASSESSMENT FOR WORKERS IN CERAMIC INDUSTRY IN SERBIA.
Todorovic, Nataša; Mrda, Dušan; Hansman, Jan; Todorovic, Slavko; Nikolov, Jovana; Krmar, Miodrag
2017-11-01
Studies have been carried out to determine the natural radioactivity in some materials used in ceramic industry (zircon, zirkosil, Zircobit MO/S, zircon silicate, zirklonil frit, hematite, bentonite, wollastonite, raw kaolin, kaolinized granite, sileks ball, feldspar, pigment, white base serigraphic, engobe) and their associated radiation hazard. The external hazard index, Hex, values, radium equivalent activity, Raeq, total absorbed dose rates, D and annual effective dose, De were derived for all measured materials and compared with the recommended values to assess the external radiation hazards to workers who worked in ceramic industries in Serbia. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Method of sintering ceramic materials
Holcombe, Cressie E.; Dykes, Norman L.
1992-01-01
A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density.
Miragaya, Luciana; Maia, Luciane Cople; Sabrosa, Carlos Eduardo; de Goes, Mário Fernando; da Silva, Eduardo Moreira
2011-10-01
To evaluate the influence of four surface treatments on the bond strength of a self-adhesive resin cement to an yttria-stabilized zirconia (Y-TZP) ceramic material (Lava Frame zirconia). Forty plates (8 x 6 x 1 mm) of a Y-TZP ceramic restorative material were randomly assigned to four groups (n = 10) according to the surface treatments: control, no treatment; airborne-particle abrasion with 50-μm Al2O3; coating with an MDP-based primer; conditioning with Rocatec System. The ceramic plates treated with each of the four methods were further divided into 2 subgroups according to the resin cement tested: RelyXTM ARC (ARC, conventional) and RelyXTM Unicem (Ucem, self-adhesive). The resin cements were put into PVC tubes (diameter 0.75 mm, 0.5 mm height) placed on the ceramic plate surfaces. After water storage at 37°C for 24 h, the specimens were submitted to a microshear bond strength (μSBS) test at a crosshead speed of 1.0 mm/min. The surface treatments significantly influenced the μSBS (p < 0.05). For the four surface treatments, UCem presented significantly higher μSBS than ARC (p < 0.05). For both resin cements, the best result was produced by the MDP-based primer: ARC 15.9 ± 5.0 MPa and UCem 36.2 ± 2.1 MPa. The highest μSBS values were presented by UCem on ceramic plates treated with the MDP-based primer (36.2 ± 2.1 MPa) and Rocatec system (37.4 ± 2.3 MPa). Irrespective of the surface treatment, the self-adhesive resin cement performed better in terms of bond strength to yttria-stabilized zirconia ceramic than did conventional resin cement.
1993-02-01
sintered in hydrogen furnace at very high temperatures . Multiple furnace firing occurs until the binders are removed and part density is achieved "* Process...and base Low temperature co-fired ceramic - Metallized for shielding and grounding - Low resistance thick-film metallization - High thermal resistance...ESPECIALLY LOW TEMPERATURE COFIRED CERAMIC CERAMICS HIGH THERMAL CONDUCTIVITY,MATCHED GaAS AND SILICON SUBSTRATE MATERIALS I I,1Z#A,17Mr1 J, TI
Battery utilizing ceramic membranes
Yahnke, Mark S.; Shlomo, Golan; Anderson, Marc A.
1994-01-01
A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range.
Verification of Ceramic Structures
NASA Astrophysics Data System (ADS)
Behar-Lafenetre, Stephanie; Cornillon, Laurence; Rancurel, Michael; De Graaf, Dennis; Hartmann, Peter; Coe, Graham; Laine, Benoit
2012-07-01
In the framework of the “Mechanical Design and Verification Methodologies for Ceramic Structures” contract [1] awarded by ESA, Thales Alenia Space has investigated literature and practices in affiliated industries to propose a methodological guideline for verification of ceramic spacecraft and instrument structures. It has been written in order to be applicable to most types of ceramic or glass-ceramic materials - typically Cesic®, HBCesic®, Silicon Nitride, Silicon Carbide and ZERODUR®. The proposed guideline describes the activities to be performed at material level in order to cover all the specific aspects of ceramics (Weibull distribution, brittle behaviour, sub-critical crack growth). Elementary tests and their post-processing methods are described, and recommendations for optimization of the test plan are given in order to have a consistent database. The application of this method is shown on an example in a dedicated article [7]. Then the verification activities to be performed at system level are described. This includes classical verification activities based on relevant standard (ECSS Verification [4]), plus specific analytical, testing and inspection features. The analysis methodology takes into account the specific behaviour of ceramic materials, especially the statistical distribution of failures (Weibull) and the method to transfer it from elementary data to a full-scale structure. The demonstration of the efficiency of this method is described in a dedicated article [8]. The verification is completed by classical full-scale testing activities. Indications about proof testing, case of use and implementation are given and specific inspection and protection measures are described. These additional activities are necessary to ensure the required reliability. The aim of the guideline is to describe how to reach the same reliability level as for structures made of more classical materials (metals, composites).
High Temperature Tolerant Ceramic Composites Having Porous Interphases
Kriven, Waltraud M.; Lee, Sang-Jin
2005-05-03
In general, this invention relates to a ceramic composite exhibiting enhanced toughness and decreased brittleness, and to a process of preparing the ceramic composite. The ceramic composite comprises a first matrix that includes a first ceramic material, preferably selected from the group including alumina (Al2O3), mullite (3Al2O3.2SiO2), yttrium aluminate garnet (YAG), yttria stabilized zirconia (YSZ), celsian (BaAl2Si2O8) and nickel aluminate (NiAl2O4). The ceramic composite also includes a porous interphase region that includes a substantially non-sinterable material. The non-sinterable material can be selected to include, for example, alumina platelets. The platelets lie in random 3-D orientation and provide a debonding mechanism, which is independent of temperature in chemically compatible matrices. The non-sinterable material induces constrained sintering of a ceramic powder resulting in permanent porosity in the interphase region. For high temperature properties, addition of a sinterable ceramic powder to the non-sinterable material provides sufficiently weak debonding interphases. The ceramic composite can be provided in a variety of forms including a laminate, a fibrous monolith, and a fiber-reinforced ceramic matrix. In the laminated systems, intimate mixing of strong versus tough microstructures were tailored by alternating various matrix-to-interphase thickness ratios to provide the bimodal laminate.
Free-standing oxide superconducting articles
Wu, Xin D.; Muenchausen, Ross E.
1993-01-01
A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template lay This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).
Acoustic emission as a screening tool for ceramic matrix composites
NASA Astrophysics Data System (ADS)
Ojard, Greg; Goberman, Dan; Holowczak, John
2017-02-01
Ceramic matrix composites are composite materials with ceramic fibers in a high temperature matrix of ceramic or glass-ceramic. This emerging class of materials is viewed as enabling for efficiency improvements in many energy conversion systems. The key controlling property of ceramic matrix composites is a relatively weak interface between the matrix and the fiber that aids crack deflection and fiber pullout resulting in greatly increased toughness over monolithic ceramics. United Technologies Research Center has been investigating glass-ceramic composite systems as a tool to understand processing effects on material performance related to the performance of the weak interface. Changes in the interface have been shown to affect the mechanical performance observed in flexural testing and subsequent microstructural investigations have confirmed the performance (or lack thereof) of the interface coating. Recently, the addition of acoustic emission testing during flexural testing has aided the understanding of the characteristics of the interface and its performance. The acoustic emission onset stress changes with strength and toughness and this could be a quality tool in screening the material before further development and use. The results of testing and analysis will be shown and additional material from other ceramic matrix composite systems may be included to show trends.
High Temperature Integrated Thermoelectric Ststem and Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mike S. H. Chu
2011-06-06
The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunitiesmore » recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits. Two composition systems, specifically 1.0 SrO - 0.8 x 1.03 TiO2 - 0.2 x 1.03 NbO2.5 and 0.97 TiO2 - 0.03 NbO2.5, have been identified as good base line compositions for n-type thermoelectric compositions in future module design. Tests of these materials at an outside company were promising using that company's processing and material expertise. There was no unique p-type thermoelectric compositions identified in phase I work other than several current cobaltite materials. Ca3Co4O9 will be the primary p-type material for the future module design until alternative materials are developed. BaTiO3 and rare earth titanate based dielectric compositions show both p-type and n-type behavior even though their electrical conductivities were very low. Further research and development of these materials for thermoelectric applications is planned in the future. A preliminary modeling and optimization of a thermoelectric generator (TEG) that uses the n-type 1.0 SrO - 1.03 x 0.8 TiO2 - 1.03 x 0.2 NbO2.5 was performed. Future work will combine development of ceramic powders and manufacturing expertise at TAM, development of SPS at TAM or a partner organization, and thermoelectric material/module testing, modeling, optimization, production at several partner organizations.« less
NASA Astrophysics Data System (ADS)
Czán, Andrej; Kubala, Ondrej; Danis, Igor; Czánová, Tatiana; Holubják, Jozef; Mikloš, Matej
2017-12-01
The ever-increasing production and the usage of hard-to-machine progressive materials are the main cause of continual finding of new ways and methods of machining. One of these ways is the ceramic milling tool, which combines the pros of conventional ceramic cutting materials and pros of conventional coating steel-based insert. These properties allow to improve cutting conditions and so increase the productivity with preserved quality known from conventional tools usage. In this paper, there is made the identification of properties and possibilities of this tool when machining of hard-to-machine materials such as nickel alloys using in airplanes engines. This article is focused on the analysis and evaluation ordinary technological parameters and surface quality, mainly roughness of surface and quality of machined surface and tool wearing.
Method of sintering ceramic materials
Holcombe, C.E.; Dykes, N.L.
1992-11-17
A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density. 2 figs.
Non-destructive thermo-mechanical behavior assessment of glass-ceramics for dental applications
NASA Astrophysics Data System (ADS)
Kordatos, E. Z.; Abdulkadhim, Z.; Feteira, A. M.
2017-05-01
Every year millions of people seek dental treatment to either repair damaged, unaesthetic and dysfunctional teeth or replace missing natural teeth. Several dental materials have been developed to meet the stringent requirements in terms of mechanical properties, aesthetics and chemical durability in the oral environment. Glass-ceramics exhibit a suitable combination of these properties for dental restorations. This research is focused on the assessment of the thermomechanical behavior of bio-ceramics and particularly lithium aluminosilicate glass-ceramics (LAS glass-ceramics). Specifically, methodologies based on Infrared Thermography (IRT) have been applied in order the structure - property relationship to be evaluated. Non-crystallized, partially crystallized and fully crystallized glass-ceramic samples have been non-destructively assessed in order their thermo-mechanical behavior to be associated with their micro-structural features.
Advanced ceramic materials for next-generation nuclear applications
NASA Astrophysics Data System (ADS)
Marra, John
2011-10-01
The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high-temperature plasma systems. Fusion reactors will likely depend on lithium-based ceramics to produce tritium that fuels the fusion plasma, while high-temperature alloys or ceramics will contain and control the hot plasma. All the while, alloys, ceramics, and ceramic-related processes continue to find applications in the management of wastes and byproducts produced by these processes.
Additive Manufacturing of SiC Based Ceramics and Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Halbig, Michael Charles; Singh, Mrityunjay
2015-01-01
Silicon carbide (SiC) ceramics and SiC fiber reinforcedSiC ceramic matrix composites (SiCSiC CMCs) offer high payoff as replacements for metals in turbine engine applications due to their lighter weight, higher temperature capability, and lower cooling requirements. Additive manufacturing approaches can offer game changing technologies for the quick and low cost fabrication of parts with much greater design freedom and geometric complexity. Four approaches for developing these materials are presented. The first two utilize low cost 3D printers. The first uses pre-ceramic pastes developed as feed materials which are converted to SiC after firing. The second uses wood containing filament to print a carbonaceous preform which is infiltrated with a pre-ceramic polymer and converted to SiC. The other two approaches pursue the AM of CMCs. The first is binder jet SiC powder processing in collaboration with rp+m (Rapid Prototyping+Manufacturing). Processing optimization was pursued through SiC powder blending, infiltration with and without SiC nano powder loading, and integration of nanofibers into the powder bed. The second approach was laminated object manufacturing (LOM) in which fiber prepregs and laminates are cut to shape by a laser and stacked to form the desired part. Scanning electron microscopy was conducted on materials from all approaches with select approaches also characterized with XRD, TGA, and bend testing.
Assessing the Validity of the Simplified Potential Energy Clock Model for Modeling Glass-Ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jamison, Ryan Dale; Grillet, Anne M.; Stavig, Mark E.
Glass-ceramic seals may be the future of hermetic connectors at Sandia National Laboratories. They have been shown capable of surviving higher temperatures and pressures than amorphous glass seals. More advanced finite-element material models are required to enable model-based design and provide evidence that the hermetic connectors can meet design requirements. Glass-ceramics are composite materials with both crystalline and amorphous phases. The latter gives rise to (non-linearly) viscoelastic behavior. Given their complex microstructures, glass-ceramics may be thermorheologically complex, a behavior outside the scope of currently implemented constitutive models at Sandia. However, it was desired to assess if the Simplified Potential Energymore » Clock (SPEC) model is capable of capturing the material response. Available data for SL 16.8 glass-ceramic was used to calibrate the SPEC model. Model accuracy was assessed by comparing model predictions with shear moduli temperature dependence and high temperature 3-point bend creep data. It is shown that the model can predict the temperature dependence of the shear moduli and 3- point bend creep data. Analysis of the results is presented. Suggestions for future experiments and model development are presented. Though further calibration is likely necessary, SPEC has been shown capable of modeling glass-ceramic behavior in the glass transition region but requires further analysis below the transition region.« less
Yang, Lina; Wen, Mao; Dai, Xuan; Cheng, Gang; Zhang, Kan
2018-05-09
As structural materials, crystalline or metallic glass materials have attracted scientific and practical interests. However, some mechanisms involving critical size and shear bands have adverse effects on their mechanical properties. Here, we counter these two effects by introducing a special structure with ultrafine ceramic grains (with a diameter of ∼2.0 nm) embedded into a metallic glass matrix, wherein the grains are mainly composed of a Ta-W-N solid solution structure in nature, surrounded by a W-based amorphous matrix that contains Ta and N atoms. Such a structure is in situ formed during preparation, which combines the merits of both phases to achieve simultaneous increase in hardness and toughness relative to references (pure TaN and W) and thus superior wear resistance. Even more remarkable, a favorable variation of increased hardness but reduced elasticity modulus can be induced by this structure. Intrinsically, ultrafine ceramic grains (free of dislocations), embedded in the metallic glass matrix, could prevent shear band propagation within the glass matrix and further improve the hardness of the matrix material. In return, such glass matrix allows for stiffness neutralization and structural relaxation to reduce the elasticity modulus of ceramic grains. This study will offer a new guidance to fabricate ultrahigh-performance metal-based composites.
Electromechanical properties of engineered lead free potassium sodium niobate based materials =
NASA Astrophysics Data System (ADS)
Rafiq, Muhammad Asif
K0.5Na0.5NbO3 (KNN), is the most promising lead free material for substituting lead zirconate titanate (PZT) which is still the market leader used for sensors and actuators. To make KNN a real competitor, it is necessary to understand and to improve its properties. This goal is pursued in the present work via different approaches aiming to study KNN intrinsic properties and then to identify appropriate strategies like doping and texturing for designing better KNN materials for an intended application. Hence, polycrystalline KNN ceramics (undoped, non-stoichiometric; NST and doped), high-quality KNN single crystals and textured KNN based ceramics were successfully synthesized and characterized in this work. Polycrystalline undoped, non-stoichiometric (NST) and Mn doped KNN ceramics were prepared by conventional ceramic processing. Structure, microstructure and electrical properties were measured. It was observed that the window for mono-phasic compositions was very narrow for both NST ceramics and Mn doped ceramics. For NST ceramics the variation of A/B ratio influenced the polarization (P-E) hysteresis loop and better piezoelectric and dielectric responses could be found for small stoichiometry deviations (A/B = 0.97). Regarding Mn doping, as compared to undoped KNN which showed leaky polarization (P-E) hysteresis loops, B-site Mn doped ceramics showed a well saturated, less-leaky hysteresis loop and a significant properties improvement. Impedance spectroscopy was used to assess the role of Mn and a relation between charge transport - defects and ferroelectric response in K0.5Na0.5NbO3 (KNN) and Mn doped KNN ceramics could be established. At room temperature the conduction in KNN which is associated with holes transport is suppressed by Mn doping. Hence Mn addition increases the resistivity of the ceramic, which proved to be very helpful for improving the saturation of the P-E loop. At high temperatures the conduction is dominated by the motion of ionized oxygen vacancies whose concentration increases with Mn doping. Single crystals of potassium sodium niobate (KNN) were grown by a modified high temperature flux method. A boron-modified flux was used to obtain the crystals at a relatively low temperature. XRD, EDS and ICP analysis proved the chemical and crystallographic quality of the crystals. The grown KNN crystals exhibit higher dielectric permittivity (29,100) at the tetragonal-to-cubic phase transition temperature, higher remnant polarization (19.4 ?C/cm2) and piezoelectric coefficient (160 pC/N) when compared with the standard KNN ceramics. KNN single crystals domain structure was characterized for the first time by piezoforce response microscopy. It could be observed that - oriented potassium sodium niobate (KNN) single crystals reveal a long range ordered domain pattern of parallel 180° domains with zig-zag 90° domains. From the comparison of KNN Single crystals to ceramics, It is argued that the presence in KNN single crystal (and absence in KNN ceramics) of such a long range order specific domain pattern that is its fingerprint accounts for the improved properties of single crystals. These results have broad implications for the expanded use of KNN materials, by establishing a relation between the domain patterns and the dielectric and ferroelectric response of single crystals and ceramics and by indicating ways of achieving maximised properties in KNN materials. (Abstract shortened by ProQuest.).
Development of the technology of manufacturing a ceramic tip of a resectoscope
NASA Astrophysics Data System (ADS)
Akhmetov, I. D.; Kashapov, R. N.; Kashapov, L. N.
2017-09-01
The development of medical technology is strongly correlated with the development of new materials and the technology of their processing. At the moment, the most common type of surgery is resection of the prostate gland, for its use a resectoscope is used. In this work, the problem of increasing the mechanical characteristics of ceramic tips of resectoscopes is solved. The material of yttrium stabilized zirconia has been tested and manufacturing technology based on CAD / CAM and heat treatment has been proposed
NASA Astrophysics Data System (ADS)
Kumar, G. C. Mohan
2018-04-01
Research progress in materials science for bio-based materials for cartilage repair or supportive to host tissue has become a fashionable, worldwide. Few efforts in biomedical engineering has attempted in the development of newer biomaterials successfully. Bio ceramics, a class of materials been used in particulate form as a reinforcement with polymers those ensure its biocompatibility. Every artificial biomedical system has to meet the minimum in Vitro requirements for successful application. Equally the biological behavior of normal and diseased tissues is also essential to understand the artificial systems to human body.
Electrostatic micromotor based on ferroelectric ceramics
NASA Astrophysics Data System (ADS)
Baginsky, I. L.; Kostsov, E. G.
2004-11-01
A new electrostatic micromotor is described that utilizes the electromechanical energy conversion principle earlier described by the authors. The electromechanical energy conversion is based on reversible electrostatic rolling of thin metallic films (petals) on a ferroelectric surface. The motor's active media are layers of ferroelectric ceramics (about 100 µm in thickness). The characteristics of the electrostatic rolling of the petals on different ceramic surfaces are studied, as well as the dynamic characteristics of the micromotors. It is shown that the use of antiferroelectric material allows one to reach a specific energy capacitance comparable to that of the micromotors based on ferroelectric films and to achieve a specific power of 30-300 µW mm-2.
Ceramic substrate including thin film multilayer surface conductor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Joseph Ambrose; Peterson, Kenneth A.
2017-05-09
A ceramic substrate comprises a plurality of ceramic sheets, a plurality of inner conductive layers, a plurality of vias, and an upper conductive layer. The ceramic sheets are stacked one on top of another and include a top ceramic sheet. The inner conductive layers include electrically conductive material that forms electrically conductive features on an upper surface of each ceramic sheet excluding the top ceramic sheet. The vias are formed in each of the ceramic sheets with each via being filled with electrically conductive material. The upper conductive layer includes electrically conductive material that forms electrically conductive features on anmore » upper surface of the top ceramic sheet. The upper conductive layer is constructed from a stack of four sublayers. A first sublayer is formed from titanium. A second sublayer is formed from copper. A third sublayer is formed from platinum. A fourth sublayer is formed from gold.« less
Cladding material, tube including such cladding material and methods of forming the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garnier, John E.; Griffith, George W.
A multi-layered cladding material including a ceramic matrix composite and a metallic material, and a tube formed from the cladding material. The metallic material forms an inner liner of the tube and enables hermetic sealing of thereof. The metallic material at ends of the tube may be exposed and have an increased thickness enabling end cap welding. The metallic material may, optionally, be formed to infiltrate voids in the ceramic matrix composite, the ceramic matrix composite encapsulated by the metallic material. The ceramic matrix composite includes a fiber reinforcement and provides increased mechanical strength, stiffness, thermal shock resistance and highmore » temperature load capacity to the metallic material of the inner liner. The tube may be used as a containment vessel for nuclear fuel used in a nuclear power plant or other reactor. Methods for forming the tube comprising the ceramic matrix composite and the metallic material are also disclosed.« less
Collagen/hydroxyapatite composite materials with desired ceramic properties.
Andronescu, Ecaterina; Voicu, Georgeta; Ficai, Maria; Mohora, Ioana Anita; Trusca, Roxana; Ficai, Anton
2011-01-01
Our purpose was to obtain and characterize some collagen/hydroxyapatite (COLL/HA) hybrid composite materials with desired ceramic properties. The ceramic properties of these materials were achieved by combining two drying methods: controlled air drying at 30°C followed by freeze-drying. Through the function of the air drying times, the materials morphology varies from porous materials (when the materials are freeze-dried) up to dense materials (when the materials are air-dried), while the combined drying allows us to obtain an intermediary morphology. The composite materials intended to be used as bone grafts and in a drug delivery system were characterized by XRD, FTIR, SEM, and also by determining the ceramic properties by using the Arthur method. The ceramic properties of these COLL/HA composite materials vary in large range, for instance the density of the materials varies from 0.06 up to 1.5 g/cm(3) while the porosity varies from 96.5% down to 27.5%.
Modeling the Mechanical Behavior of Ceramic Matrix Composite Materials
NASA Technical Reports Server (NTRS)
Jordan, William
1998-01-01
Ceramic matrix composites are ceramic materials, such as SiC, that have been reinforced by high strength fibers, such as carbon. Designers are interested in using ceramic matrix composites because they have the capability of withstanding significant loads while at relatively high temperatures (in excess of 1,000 C). Ceramic matrix composites retain the ceramic materials ability to withstand high temperatures, but also possess a much greater ductility and toughness. Their high strength and medium toughness is what makes them of so much interest to the aerospace community. This work concentrated on two different tasks. The first task was to do an extensive literature search into the mechanical behavior of ceramic matrix composite materials. This report contains the results of this task. The second task was to use this understanding to help interpret the ceramic matrix composite mechanical test results that had already been obtained by NASA. Since the specific details of these test results are subject to the International Traffic in Arms Regulations (ITAR), they are reported in a separate document (Jordan, 1997).
Alharbi, Amal; Ardu, Stefano; Bortolotto, Tissiana; Krejci, Ivo
2017-04-01
To evaluate the stain susceptibility of CAD/CAM blocks and direct composite after long term exposure to various staining agents. 40 disk-shaped samples were fabricated from each of nine materials; six CAD/CAM (Vitablocs Mark II, Paradigm MZ100, Experimental Vita Hybrid Ceramic, Vita Enamic, Experimental Kerr and Lava Ultimate) and three direct composites (Filtek Supreme, Venus Diamond and Filtek Silorane). Samples were randomly divided into five groups (n = 8) according to different staining solutions (distilled water, tea, red wine, coffee and artificial saliva). Initial L*a*b* values were assessed using a calibrated digital spectrophotometer. Specimens were immersed in staining solutions and stored in an incubator at 37 °C for 120 days. L*a*b* values were assessed again and color change (∆E) was calculated as difference between recorded L*a*b* values. ANOVA, and Duncan test were used to identify differences between groups (α = 0.05). Significant differences in ∆E values were detected between materials (p = 0.000). Among all staining solutions, the highest ∆E value was observed with red wine. The new CAD/CAM blocks (Vita Enamic, Vita Hybrid Ceramic and Lava Ultimate) showed the highest resistance to staining compared to the MZ100 composite resin blocks. Filtek Silorane, a direct composite, showed high stain resistance values compared to CAD/CAM materials and other direct composites. Ceramic and composite CAD/CAM blocks had lower staining susceptibility than methacrylate based direct composite. Staining susceptibility of the new resin based CAD/CAM materials Vita Enamic and Lava Ultimate was comparable to feldspathic ceramic blocks (Vitablocs Mark II). Filtek Silorane showed promising results that were comparable to some CAD/CAM blocks.
The interaction of reaction-bonded silicon carbide and inconel 600 with a nickel-based brazing alloy
NASA Astrophysics Data System (ADS)
McDermid, J. R.; Pugh, M. D.; Drew, R. A. L.
1989-09-01
The objective of the present research was to join reaction-bonded silicon carbide (RBSC) to INCONEL 600 (a nickel-based superalloy) for use in advanced heat engine applications using either direct brazing or composite interlayer joining. Direct brazing experiments employed American Welding Society (AWS) BNi-5, a commercial nickel-based brazing alloy, as a filler material; composite interlayers consisted of intimate mixtures of α-SiC and BNi-5 powders. Both methods resulted in the liquid filler metal forming a Ni-Si liquid with the free Si in the RBSC, which, in turn, reacted vigorously with the SiC component of the RBSC to form low melting point constituents in both starting materials and Cr carbides at the metal-ceramic interface. Using solution thermodynamics, it was shown that a Ni-Si liquid of greater than 60 at. pct Ni will decompose a-SiC at the experimental brazing temperature of 1200 ‡C; these calculations are consistent with the experimentally observed composition profiles and reaction morphology within the ceramic. It was concluded that the joining of RBSC to INCONEL 600 using a nickel-based brazing alloy is not feasible due to the inevitability of the filler metal reacting with the ceramic, degrading the high-temperature properties of the base materials.
NDE for Material Characterization in Aeronautic and Space Applications
NASA Technical Reports Server (NTRS)
Baaklini, George Y.; Kautz, Harold E.; Gyekenyesi, Andrew L.; Abdul-Aziz, Ali; Martin, Richard E.
2000-01-01
This paper describes selected nondestructive evaluation (NDE) approaches that were developed or tailored at the NASA Glenn Research Center for characterizing advanced material systems. The emphasis is on high-temperature aerospace propulsion applications. The material systems include monolithic ceramics, superalloys, and high temperature composites. In the aeronautic area, the highlights are cooled ceramic plate structures for turbine applications, F-TiAl blade materials for low-pressure turbines, thermoelastic stress analysis (TSA) for residual stress measurements in titanium based and nickel based engine materials, and acousto ultrasonics (AU) for creep damage assessment in nickel-based alloys. In the space area, examples consist of cooled carbon-carbon composites for gas generator combustors and flywheel rotors composed of carbon fiber reinforced polymer matrix composites for energy storage on the international space station (ISS). The role of NDE in solving manufacturing problems, the effect of defects on structural behavior, and the use of NDE-based finite element modeling are discussed. NDE technology needs for improved microelectronic and mechanical systems as well as health monitoring of micro-materials and components are briefly discussed.
Performance of Ceramics in Severe Environments
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.; Fox, Dennis S.; Smialek, James L.; Deliacorte, Christopher; Lee, Kang N.
2005-01-01
Ceramics are generally stable to higher temperatures than most metals and alloys. Thus the development of high temperature structural ceramics has been an area of active research for many years. While the dream of a ceramic heat engine still faces many challenges, niche markets are developing for these materials at high temperatures. In these applications, ceramics are exposed not only to high temperatures but also aggressive gases and deposits. In this chapter we review the response of ceramic materials to these environments. We discuss corrosion mechanisms, the relative importance of a particular corrodent, and, where available, corrosion rates. Most of the available corrosion information is on silicon carbide (SIC) and silicon nitride (Si3N4) monolithic ceramics. These materials form a stable film of silica (SO2) in an oxidizing environment. We begin with a discussion of oxidation of these materials and proceed to the effects of other corrodents such as water vapor and salt deposits. We also discuss oxidation and corrosion of other ceramics: precurser derived ceramics, ceramic matrix composites (CMCs), ceramics which form oxide scales other than silica, and oxide ceramics. Many of the corrosion issues discussed can be mitigated with refractory oxide coatings and we discuss the current status of this active area of research. Ultimately, the concern of corrosion is loss of load bearing capability. We discuss the effects of corrosive environments on the strength of ceramics, both monolithic and composite. We conclude with a discussion of high temperature wear of ceramics, another important form of degradation at high temperatures.
Battery utilizing ceramic membranes
Yahnke, M.S.; Shlomo, G.; Anderson, M.A.
1994-08-30
A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range. 2 figs.
NASA Astrophysics Data System (ADS)
Sinescu, Cosmin; Negrutiu, Meda; Hughes, Michael; Bradu, Adrian; Todea, Carmen; Rominu, Mihai; Laissue, Philippe L.; Podoleanu, Adrian Gh.
2008-04-01
Metal ceramic and integral ceramic fixed partial prostheses are mainly used in the frontal part of the dental arch because for esthetics reasons. The masticatory stress may induce fractures of the bridges. There are several factors that are associated with the stress state created in ceramic restorations, including: thickness of ceramic layers, mechanical properties of the materials, elastic modulus of the supporting substrate material, direction, magnitude and frequency of applied load, size and location of occlusal contact areas, residual stresses induced by processing or pores, restoration-cement interfacial defects and environmental defects. The fractures of these bridges lead to functional, esthetic and phonetic disturbances which finally render the prosthetic treatment inefficient. The purpose of this study is to evaluate the capability of optical coherence tomography (OCT) in detection and analysis of possible material defects in metal-ceramic and integral ceramic fixed partial dentures.
NASA Astrophysics Data System (ADS)
Aykut, Yakup
The use of fossil fuels adversely effects the environment and hence increases global warming. On the other hand the lack of fuel reservoirs triggers people to find environmentally friendly new energy sources. Solar cell technology is one of the developing energy production technologies in green productions. Currently, many solar cells are made of highly purified silicon crystals. However silicon based solar cells have high energy conversion efficiency, they are highly brittle, expensive, and time consuming during the fabrication process. Organic and metal oxide based photovoltaic materials are a more cost-effective alternative to silicon based solar cells. In ceramic materials, Titanium dioxide (TiO2), zinc oxide (ZnO) and magnesium zinc oxide (MgxZn 1-xO) have intensive research interest owing to their optoelectronic and photocatalytic properties, and they have been used in dye sensitized solar cells as electron acceptor layer due to their high band gap properties and having low conduction band levels than electron donor dye molecules or quantum dots. On the other hand, energy band levels of the ceramic materials are considerable affected by their crystal microstructures, shapes and doping materials. Because of their high surface to volume ratio, nanofibers are suitable as active energy conversions layers in organic and dye sensitized solar cells. Using nanofibrous ceramic structure instead of film provides higher energy conversion efficiency since the high surface areas of the electrospun mats may accommodate a greater concentration of dye molecules or quantum dots, which could result in greater efficiency of electron transfer within the material, as compared to traditional film-based technologies. Also, the continuous structure of nanofibers may allow for effective electron transfer as a result of the direct conduction pathway of the photoelectrons along the fibers. Moreover, 3D structures of nanofibrous mat allow scattering and absorbing the photons multiple times. Sol-Gel electrospinning procedure has been widely used to obtain ceramic nanofibers. Briefly, at sol-gel electrospinning procedure, a carrier polymer and ceramic precursor is dissolved in an appropriate solvent, and polymer/ceramic precursor composite nanofibers are produced with a following electrospinning process. Then, as spun nanofibers are calcined at high temperatures to remove polymer and other organic residues from the fibers and convert ceramic precursor into ceramic nanofibers. We investigate temperature dependent crystal phase transformations of electrospun TiO2 nanofibers regardless of other parameters and observed their microstructures and optical properties due to different calcination temperatures. Quantum dots are semi conductive metallic nanocrystals with very wide light absorption range in UV, visible and even in near-infrared regions depending on the size of the quantum dots. On the other hand, TiO2 is a high band gap semiconductor material and absorbs the light in UV range that limits its photovoltaic applications. In order to extend its light absorption through visible region, we sensitized and incorporated low band gap CdSe quantum dot on electrospun TiO2 nanofibers. Zinc oxide (ZnO) is another high band gap ceramic materials with promising optical properties have been used for photonic applications. Intrinsic lattice defects in ZnO are one of the main limitation factors that affect the device performance tremendously and could be controlled due to fabrication process. We investigated the effect of different type of surfactants with different charge groups on fiber morphology, microstructure and optical properties of sol-gel electrospun ZnO nanofibers. Finally, in order to tune band gap energy level of ZnO nanofibers to higher values, we doped Mg2+ into ZnO nanofibers. Because Zn2+ and Mg2+ have similar atomic radii, some of Zn2+ ions are replaced with Mg 2+ ions in the structure to produce different "x" value of MgxZn1-xO due to amount of Mg content. We produced tuned band gap MgxZn1-xO nanofibers via sol-gel electrospinning.
Gloss and Stain Resistance of Ceramic-Polymer CAD/CAM Restorative Blocks.
Lawson, Nathaniel C; Burgess, John O
2016-03-01
To evaluate the gloss and stain resistance of several new ceramic-polymer CAD/CAM blocks Specimens (4 mm) were sectioned from: Enamic (polymer-infused ceramic), LAVA Ultimate (nano-ceramic reinforced polymer), e.max (lithium disilicate), Paradigm C (porcelain), and Paradigm MZ100 (composite). Specimens were wet polished on a polishing wheel to either 320 grit silicon paper (un-polished, N = 8) or 2000 grit silicon carbide papers followed by a 0.05 μm alumina slurry (polished, N = 8). Initial gloss and color (L*a*b*) values were measured. Specimens were stored in a staining solution at 37°C in darkness for 12 days (simulating 1 year). After storage, L*a*b* values re-measured. Change in color was reported as ΔE00 based on the CIEDE2000 formula. Gloss and ΔE00 were analyzed by two-way analysis of variance (ANOVA) (alpha = .05). Separate one-way ANOVA and Tukey post-hoc analyses were performed for both polish conditions and all materials. Two-way ANOVA showed that factors material, polish and their interaction were significant for both gloss and ΔE00 (p < .01). Post-hoc analysis reveals that polished specimens had significantly less color change than un-polished specimens for Paradigm C and LAVA Ultimate. E.max had significantly higher gloss and less color change than all other materials. The composition and polish of CAD/CAM materials affects gloss and stain resistance. Ceramic-polymer hybrid materials can achieve the high gloss required for esthetic restorations. These materials should be polished in order to minimize staining. If polished, all of the tested materials exhibited clinically acceptable color changes at 1 year of simulated staining. (J Esthet Restor Dent 28:S40-S45, 2016). © 2015 Wiley Periodicals, Inc.
Transparent Glass-Ceramics Produced by Sol-Gel: A Suitable Alternative for Photonic Materials.
Gorni, Giulio; Velázquez, Jose J; Mosa, Jadra; Balda, Rolindes; Fernández, Joaquin; Durán, Alicia; Castro, Yolanda
2018-01-30
Transparent glass-ceramics have shown interesting optical properties for several photonic applications. In particular, compositions based on oxide glass matrices with fluoride crystals embedded inside, known as oxyfluoride glass-ceramics, have gained increasing interest in the last few decades. Melt-quenching is still the most used method to prepare these materials but sol-gel has been indicated as a suitable alternative. Many papers have been published since the end of the 1990s, when these materials were prepared by sol-gel for the first time, thus a review of the achievements obtained so far is necessary. In the first part of this paper, a review of transparent sol-gel glass-ceramics is made focusing mainly on oxyfluoride compositions. Many interesting optical results have been obtained but very little innovation of synthesis and processing is found with respect to pioneering papers published 20 years ago. In the second part we describe the improvements in synthesis and processing obtained by the authors during the last five years. The main achievements are the preparation of oxyfluoride glass-ceramics with a much higher fluoride crystal fraction, at least double that reported up to now, and the first synthesis of NaGdF₄ glass-ceramics. Moreover, a new SiO₂ precursor was introduced in the synthesis, allowing for a reduction in the treatment temperature and favoring hydroxyl group removal. Interesting optical properties demonstrated the incorporation of dopant ions in the fluoride crystals, thus obtaining crystal-like spectra along with higher efficiencies with respect to xerogels, and hence demonstrating that these materials are a suitable alternative for photonic applications.
Alikin, Denis; Turygin, Anton; Kholkin, Andrei; Shur, Vladimir
2017-01-01
Recent advances in the development of novel methods for the local characterization of ferroelectric domains open up new opportunities not only to image, but also to control and to create desired domain configurations (domain engineering). The morphotropic and polymorphic phase boundaries that are frequently used to increase the electromechanical and dielectric performance of ferroelectric ceramics have a tremendous effect on the domain structure, which can serve as a signature of complex polarization states and link local and macroscopic piezoelectric and dielectric responses. This is especially important for the study of lead-free ferroelectric ceramics, which is currently replacing traditional lead-containing materials, and great efforts are devoted to increasing their performance to match that of lead zirconate titanate (PZT). In this work, we provide a short overview of the recent progress in the imaging of domain structure in two major families of ceramic lead-free systems based on BiFeO3 (BFO) and (Ka0.5Na0.5)NbO3 (KNN). This can be used as a guideline for the understanding of domain processes in lead-free piezoelectric ceramics and provide further insight into the mechanisms of structure–property relationship in these technologically important material families. PMID:28772408
Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating
Meek, T.T.; Blake, R.D.
1985-04-03
A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate.
Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating
Meek, Thomas T.; Blake, Rodger D.
1987-01-01
A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate.
Rampf, Markus; Dittmer, Marc; Ritzberger, Christian; Schweiger, Marcel; Höland, Wolfram
2015-01-01
The combination of specific mechanical, esthetic, and chemical properties is decisive for the application of materials in prosthodontics. Controlled twofold crystallization provides a powerful tool to produce special property combinations for glass–ceramic materials. The present study outlines the potential of precipitating Ca5(PO4)3F as well as Sr5(PO4)3F as minor crystal phases in Li2Si2O5 glass–ceramics. Base glasses with different contents of CaO/SrO, P2O5, and F− were prepared within the glasses of the SiO2–Li2O–K2O–CaO/SrO–Al2O3–P2O5–F system. Preliminary studies of nucleation by means of XRD and scanning electron microscopy (SEM) of the nucleated base glasses revealed X-ray amorphous phase separation phenomena. Qualitative and quantitative crystal phase analyses after crystallization were conducted using XRD in combination with Rietveld refinement. As a main result, a direct proportional relationship between the content of apatite-forming components in the base glasses and the content of apatite in the glass–ceramics was established. The microstructures of the glass–ceramics were investigated using SEM. Microstructural and mechanical properties were found to be dominated by Li2Si2O5 crystals and quite independent of the content of the apatite present in the glass–ceramics. Biaxial strengths of up to 540 MPa were detected. Ca5(PO4)3F and Sr5(PO4)3F influence the translucency of the glass–ceramics and, hence, help to precisely tailor the properties of Li2Si2O5 glass–ceramics. The authors conclude that the twofold crystallization of Li2Si2O5–Ca5(PO4)3F or Li2Si2O5–Sr5(PO4)3F glass–ceramics involves independent solid-state reactions, which can be controlled via the chemical composition of the base glasses. The influence of the minor apatite phase on the optical properties helps to achieve new combinations of features of the glass–ceramics and, hence, displays new potential for dental applications. PMID:26389112
Rampf, Markus; Dittmer, Marc; Ritzberger, Christian; Schweiger, Marcel; Höland, Wolfram
2015-01-01
The combination of specific mechanical, esthetic, and chemical properties is decisive for the application of materials in prosthodontics. Controlled twofold crystallization provides a powerful tool to produce special property combinations for glass-ceramic materials. The present study outlines the potential of precipitating Ca5(PO4)3F as well as Sr5(PO4)3F as minor crystal phases in Li2Si2O5 glass-ceramics. Base glasses with different contents of CaO/SrO, P2O5, and F(-) were prepared within the glasses of the SiO2-Li2O-K2O-CaO/SrO-Al2O3-P2O5-F system. Preliminary studies of nucleation by means of XRD and scanning electron microscopy (SEM) of the nucleated base glasses revealed X-ray amorphous phase separation phenomena. Qualitative and quantitative crystal phase analyses after crystallization were conducted using XRD in combination with Rietveld refinement. As a main result, a direct proportional relationship between the content of apatite-forming components in the base glasses and the content of apatite in the glass-ceramics was established. The microstructures of the glass-ceramics were investigated using SEM. Microstructural and mechanical properties were found to be dominated by Li2Si2O5 crystals and quite independent of the content of the apatite present in the glass-ceramics. Biaxial strengths of up to 540 MPa were detected. Ca5(PO4)3F and Sr5(PO4)3F influence the translucency of the glass-ceramics and, hence, help to precisely tailor the properties of Li2Si2O5 glass-ceramics. The authors conclude that the twofold crystallization of Li2Si2O5-Ca5(PO4)3F or Li2Si2O5-Sr5(PO4)3F glass-ceramics involves independent solid-state reactions, which can be controlled via the chemical composition of the base glasses. The influence of the minor apatite phase on the optical properties helps to achieve new combinations of features of the glass-ceramics and, hence, displays new potential for dental applications.
National Institute of Standards and Technology Data Gateway
SRD 30 NIST Structural Ceramics Database (Web, free access) The NIST Structural Ceramics Database (WebSCD) provides evaluated materials property data for a wide range of advanced ceramics known variously as structural ceramics, engineering ceramics, and fine ceramics.
Biaxial flexural strength of bilayered zirconia using various veneering ceramics
Chantranikul, Natravee
2015-01-01
PURPOSE The aim of this study was to evaluate the biaxial flexural strength (BFS) of one zirconia-based ceramic used with various veneering ceramics. MATERIALS AND METHODS Zirconia core material (Katana) and five veneering ceramics (Cerabien ZR; CZR, Lava Ceram; LV, Cercon Ceram Kiss; CC, IPS e.max Ceram; EM and VITA VM9; VT) were selected. Using the powder/liquid layering technique, bilayered disk specimens (diameter: 12.50 mm, thickness: 1.50 mm) were prepared to follow ISO standard 6872:2008 into five groups according to veneering ceramics as follows; Katana zirconia veneering with CZR (K/CZR), Katana zirconia veneering with LV (K/LV), Katana zirconia veneering with CC (K/CC), Katana zirconia veneering with EM (K/EM) and Katana zirconia veneering with VT (K/VT). After 20,000 thermocycling, load tests were conducted using a universal testing machine (Instron). The BFS were calculated and analyzed with one-way ANOVA and Tukey HSD (α=0.05). The Weibull analysis was performed for reliability of strength. The mode of fracture and fractured surface were observed by SEM. RESULTS It showed that K/CC had significantly the highest BFS, followed by K/LV. BFS of K/CZR, K/EM and K/VT were not significantly different from each other, but were significantly lower than the other two groups. Weibull distribution reported the same trend of reliability as the BFS results. CONCLUSION From the result of this study, the BFS of the bilayered zirconia/veneer composite did not only depend on the Young's modulus value of the materials. Further studies regarding interfacial strength and sintering factors are necessary to achieve the optimal strength. PMID:26576251
NASA Astrophysics Data System (ADS)
Chakrabarty, Rohan; Song, Jun
2017-10-01
During the cold spraying of particle-reinforced metal matrix composite coatings (ceramic and metal particles mixture) on metal substrates, ceramic particles may either get embedded in the substrate/deposited coating or may rebound from the substrate surface. In this study, the dependence of the ceramic rebounding phenomenon on the spray angle and its effect on substrate erosion have been analyzed using finite-element analysis. From the numerical simulations, it was found that the ceramic particle density and substrate material strength played the major roles in determining the embedding and ceramic retention behavior. Substrate material erosion also influenced the ceramic retention, and the material loss increased as the impact angles decreased from normal. In general, the results concluded that decreasing the impact angle promoted the retention possibility of ceramics in the substrate. This study provides new theoretical insights into the effect of spray angles on the ceramic retention and suggests a new route toward optimizing the spraying process to increase the ceramic retention in composite coatings cold spray.
Phase modification and dielectric properties of a cullet-paper ash-kaolin clay-based ceramic
NASA Astrophysics Data System (ADS)
Samah, K. A.; Sahar, M. R.; Yusop, M.; Omar, M. F.
2018-03-01
Novel ceramics from waste material made of ( x) paper ash-(80 - x) cullet-20 kaolin clay (10wt% ≤ x ≤ 30wt%) were successfully synthesized using a conventional solid-state reaction technique. Energy-dispersive X-ray analysis confirmed the presence of Si, Ca, Al, and Fe in the waste material for preparing these ceramics. The influence of the cullet content on the phase structures and the dielectric properties of these ceramics were systematically investigated. The impedance spectra were verified in the range from 1 Hz to 10 MHz at room temperature. The phase of the ceramics was found to primarily consist of wollastonite (CaSiO3), along with minor phases of γ-dicalcium silicate (Ca2SiO4) and quartz (SiO2). The sample with a cullet content of 55wt% possessed the optimum wollastonite structure and exhibited good dielectric properties. An increase of the cullet content beyond 55wt% resulted in a structural change from wollastonite to dicalcium silicate, a decrease in dielectric constant, and an increase in dielectric loss. All experimental results suggested that these novel ceramics from waste are applicable for electronic devices.
Mainjot, Amélie K; Schajer, Gary S; Vanheusden, Alain J; Sadoun, Michaël J
2011-09-01
The manufacture of dental crowns and bridges generates residual stresses within the veneering ceramic and framework during the cooling process. Residual stress is an important factor that control the mechanical behavior of restorations. Knowing the stress distribution within the veneering ceramic as a function of depth can help the understanding of failures, particularly chipping, a well-known problem with Yttria-tetragonal-zirconia-polycrystal based fixed partial dentures. The objective of this study is to investigate the cooling rate dependence of the stress profile in veneering ceramic layered on metal and zirconia frameworks. The hole-drilling method, often used for engineering measurements, was adapted for use with veneering ceramic. The stress profile was measured in bilayered disc samples 20 mm in diameter, with a 0.7 mm thick metal or Yttria-tetragonal-zirconia-polycrystal framework and a 1.5mm thick veneering ceramic. Three different cooling procedures were investigated. The magnitude of the stresses in the surface of the veneering ceramic was found to increase with cooling rate, while the interior stresses decreased. At the surface, compressive stresses were observed in all samples. In the interior, compressive stresses were observed in metal samples and tensile in zirconia samples. Cooling rate influences the magnitude of residual stresses. These can significantly influence the mechanical behavior of metal-and zirconia-based bilayered systems. The framework material influenced the nature of the interior stresses, with zirconia samples showing a less favorable stress profile than metal. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Rincón, Acacio; Marangoni, Mauro; Cetin, Suna
2016-01-01
Abstract The stabilization of inorganic waste of various nature and origin, in glasses, has been a key strategy for environmental protection for the last decades. When properly formulated, glasses may retain many inorganic contaminants permanently, but it must be acknowledged that some criticism remains, mainly concerning costs and energy use. As a consequence, the sustainability of vitrification largely relies on the conversion of waste glasses into new, usable and marketable glass‐based materials, in the form of monolithic and cellular glass‐ceramics. The effective conversion in turn depends on the simultaneous control of both starting materials and manufacturing processes. While silica‐rich waste favours the obtainment of glass, iron‐rich wastes affect the functionalities, influencing the porosity in cellular glass‐based materials as well as catalytic, magnetic, optical and electrical properties. Engineered formulations may lead to important reductions of processing times and temperatures, in the transformation of waste‐derived glasses into glass‐ceramics, or even bring interesting shortcuts. Direct sintering of wastes, combined with recycled glasses, as an example, has been proven as a valid low‐cost alternative for glass‐ceramic manufacturing, for wastes with limited hazardousness. The present paper is aimed at providing an up‐to‐date overview of the correlation between formulations, manufacturing technologies and properties of most recent waste‐derived, glass‐based materials. © 2016 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:27818564
Rincón, Acacio; Marangoni, Mauro; Cetin, Suna; Bernardo, Enrico
2016-07-01
The stabilization of inorganic waste of various nature and origin, in glasses, has been a key strategy for environmental protection for the last decades. When properly formulated, glasses may retain many inorganic contaminants permanently, but it must be acknowledged that some criticism remains, mainly concerning costs and energy use. As a consequence, the sustainability of vitrification largely relies on the conversion of waste glasses into new, usable and marketable glass-based materials, in the form of monolithic and cellular glass-ceramics. The effective conversion in turn depends on the simultaneous control of both starting materials and manufacturing processes. While silica-rich waste favours the obtainment of glass, iron-rich wastes affect the functionalities, influencing the porosity in cellular glass-based materials as well as catalytic, magnetic, optical and electrical properties. Engineered formulations may lead to important reductions of processing times and temperatures, in the transformation of waste-derived glasses into glass-ceramics, or even bring interesting shortcuts. Direct sintering of wastes, combined with recycled glasses, as an example, has been proven as a valid low-cost alternative for glass-ceramic manufacturing, for wastes with limited hazardousness. The present paper is aimed at providing an up-to-date overview of the correlation between formulations, manufacturing technologies and properties of most recent waste-derived, glass-based materials. © 2016 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
He, Fupo; Ren, Weiwei; Tian, Xiumei; Liu, Wei; Wu, Shanghua; Chen, Xiaoming
2016-07-01
In a previous study, robust calcium carbonate composite ceramics (CC/PG) were prepared by using phosphate-based glass (PG) as an additive, which showed good cell response. In the present study the in vivo response of porous CC/PG was compared to that of porous biphasic calcium phosphate ceramics (BCP), using a rabbit femoral critical-size grafting model. The materials degradation and bone formation processes were evaluated by general observation, X-ray radiography, micro-computed tomography, and histological examination. The results demonstrated excellent biocompatibility and osteoconductivity, and progressive degradation of CC/PG and BCP. Although the in vitro degradation rate of CC/PG was distinctly faster than that of BCP, at 4week post-implantation, the bone generation and material degradation of CC/PG were less than those of BCP. Nevertheless, at postoperative week 8, the increment of bone formation and material degradation of CC/PG was pronouncedly larger than that of BCP. These results show that CC/PG is a potential resorbable bone graft aside from the traditional synthetic ones. Copyright © 2016 Elsevier B.V. All rights reserved.
Novel sintered ceramic materials incorporated with EAF carbon steel slag
NASA Astrophysics Data System (ADS)
Karayannis, V.; Ntampegliotis, K.; Lamprakopoulos, S.; Papapolymerou, G.; Spiliotis, X.
2017-01-01
In the present research, novel sintered clay-based ceramic materials containing electric arc furnace carbon steel slag (EAFC) as a useful admixture were developed and characterized. The environmentally safe management of steel industry waste by-products and their valorization as secondary resources into value-added materials towards circular economy have attracted much attention in the last years. EAF Carbon steel slag in particular, is generated during the manufacture of carbon steel. It is a solid residue mainly composed of rich-in- Fe, Ca and Si compounds. The experimental results show that the beneficial incorporation of lower percentages of EAFC up to 6%wt. into ceramics sintered at 950 °C is attained without significant variations in sintering behavior and physico-mechanical properties. Further heating up to 1100 °C strongly enhances the densification of the ceramic microstructures, thus reducing the porosity and strengthening their mechanical performance. On the other side, in terms of thermal insulation behavior as well as energy consumption savings and production cost alleviation, the optimum sintering temperature appears to be 950 °C.
Corrosion of Ceramic Materials
NASA Technical Reports Server (NTRS)
Opila, Elizabeth J.; Jacobson, Nathan S.
1999-01-01
Non-oxide ceramics are promising materials for a range of high temperature applications. Selected current and future applications are listed. In all such applications, the ceramics are exposed to high temperature gases. Therefore it is critical to understand the response of these materials to their environment. The variables to be considered here include both the type of ceramic and the environment to which it is exposed. Non-oxide ceramics include borides, nitrides, and carbides. Most high temperature corrosion environments contain oxygen and hence the emphasis of this chapter will be on oxidation processes.
Interphase for ceramic matrix composites reinforced by non-oxide ceramic fibers
NASA Technical Reports Server (NTRS)
DiCarlo, James A. (Inventor); Bhatt, Ramakrishna (Inventor); Morscher, Gregory N. (Inventor); Yun, Hee-Mann (Inventor)
2008-01-01
A ceramic matrix composite material is disclosed having non-oxide ceramic fibers, which are formed in a complex fiber architecture by conventional textile processes; a thin mechanically weak interphase material, which is coated on the fibers; and a non-oxide or oxide ceramic matrix, which is formed within the interstices of the interphase-coated fiber architecture. During composite fabrication or post treatment, the interphase is allowed to debond from the matrix while still adhering to the fibers, thereby providing enhanced oxidative durability and damage tolerance to the fibers and the composite material.
Segmented ceramic liner for induction furnaces
Gorin, Andrew H.; Holcombe, Cressie E.
1994-01-01
A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace.
Segmented ceramic liner for induction furnaces
Gorin, A.H.; Holcombe, C.E.
1994-07-26
A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace. 5 figs.
Cements and adhesives for all-ceramic restorations.
Manso, Adriana P; Silva, Nelson R F A; Bonfante, Estevam A; Pegoraro, Thiago A; Dias, Renata A; Carvalho, Ricardo M
2011-04-01
Dental cements are designed to retain restorations, prefabricated or cast posts and cores, and appliances in a stable, and long-lasting position in the oral environment. Resin-based cements were developed to overcome drawbacks of nonresinous materials, including low strength, high solubility, and opacity. Successful cementation of esthetic restorations depends on appropriate treatment to the tooth substrate and intaglio surface of the restoration, which in turn, depends on the ceramic characteristics. A reliable resin cementation procedure can only be achieved if the operator is aware of the mechanisms involved to perform the cementation and material properties. This article addresses current knowledge of resin cementation concepts, exploring the bonding mechanisms that influence long-term clinical success of all-ceramic systems. Copyright © 2011 Elsevier Inc. All rights reserved.
Dielectric Properties of Tungsten Copper Barium Ceramic as Promising Colossal-Permittivity Material
NASA Astrophysics Data System (ADS)
Wang, Juanjuan; Chao, Xiaolian; Li, Guangzhao; Feng, Lajun; Zhao, Kang; Ning, Tiantian
2017-08-01
Ba(Cu0.5W0.5)O3 (BCW) ceramic has been fabricated and its dielectric properties investigated for use in energy-storage applications, revealing a very large dielectric constant (˜104) at 1 kHz. Moreover, the colossal-permittivity BCW ceramic exhibited fine microstructure and optimal temperature stability over a wide temperature range from room temperature to 500°C. The internal barrier layer capacitor mechanism was considered to be responsible for its high dielectric properties. Based on activation values, it is concluded that doubly ionized oxygen vacancies make a substantial contribution to the conduction and relaxation behaviors at grain boundaries. This study suggests that this kind of material has potential for use in high-density energy storage applications.
NASA Astrophysics Data System (ADS)
Sugawara, Jun; Maloney, Chris
2016-07-01
NEXCERATM cordierite ceramics, which have ultra-low thermal expansion properties, are perfect candidate materials to be used for light-weight satellite mirrors that are used for geostationary earth observation and for mirrors used in ground-based astronomical metrology. To manufacture the high precision aspheric shapes required, the deterministic aspherization and figure correction capabilities of Magnetorheological Finishing (MRF) are tested. First, a material compatibility test is performed to determine the best method for achieving the lowest surface roughness of RMS 0.8nm on plano surfaces made of NEXCERATM ceramics. Secondly, we will use MRF to perform high precision figure correction and to induce a hyperbolic shape into a conventionally polished 100mm diameter sphere.
Influence of implant abutment material on the color of different ceramic crown systems.
Dede, Doğu Ömür; Armağanci, Arzu; Ceylan, Gözlem; Celik, Ersan; Cankaya, Soner; Yilmaz, Burak
2016-11-01
Ceramics are widely used for anterior restorations; however, clinical color reproduction still constitutes a challenge particularly when the ceramic crowns are used on titanium implant abutments. The purpose of this in vitro study was to investigate the effect of implant abutment material on the color of different ceramic material systems. Forty disks (11×1.5 mm, shade A2) were fabricated from medium-opacity (mo) and high-translucency (ht) lithium disilicate (IPS e.max) blocks, an aluminous ceramic (VITA In-Ceram Alumina), and a zirconia (Zirkonzahn) ceramic system. Disks were fabricated to represent 3 different implant abutments (zirconia, gold-palladium, and titanium) and dentin (composite resin, A2 shade) as background (11×2 mm). Disk-shaped composite resin specimens in A2 shade were fabricated to represent the cement layer. The color measurements of ceramic specimens were made on composite resin abutment materials using a spectrophotometer. CIELab color coordinates were recorded, and the color coordinates measured on composite resin background served as the control group. Color differences (ΔE 00 ) between the control and test groups were calculated. The data were analyzed with 2-way analysis of variance (ANOVA) and compared with the Tukey HSD test (α=.05). The ceramics system, abutment material, and their interaction were significant for ΔE 00 values (P<.001). Clinically unacceptable results (ΔE 00 >2.25) were observed for lithium disilicate ceramics on titanium abutments (2.46-2.50). The ΔE 00 values of lithium disilicate ceramics for gold-palladium and titanium abutments were significantly higher than for other groups (P<.05). The color results (ΔE 00 >2.25) of an implant-supported lithium disilicate ceramic restoration may be clinically unacceptable if it is fabricated over a titanium abutment. Zirconia may be a more suitable abutment material for implant-supported ceramic restorations. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Fuzzy control of burnout of multilayer ceramic actuators
NASA Astrophysics Data System (ADS)
Ling, Alice V.; Voss, David; Christodoulou, Leo
1996-08-01
To improve the yield and repeatability of the burnout process of multilayer ceramic actuators (MCAs), an intelligent processing of materials (IPM-based) control system has been developed for the manufacture of MCAs. IPM involves the active (ultimately adaptive) control of a material process using empirical or analytical models and in situ sensing of critical process states (part features and process parameters) to modify the processing conditions in real time to achieve predefined product goals. Thus, the three enabling technologies for the IPM burnout control system are process modeling, in situ sensing and intelligent control. This paper presents the design of an IPM-based control strategy for the burnout process of MCAs.
FEAMAC/CARES Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Nemeth, Noel; Bednarcyk, Brett; Pineda, Evan; Arnold, Steven; Mital, Subodh; Murthy, Pappu; Bhatt, Ramakrishna
2016-01-01
Reported here is a coupling of two NASA developed codes: CARES (Ceramics Analysis and Reliability Evaluation of Structures) with the MAC/GMC (Micromechanics Analysis Code/ Generalized Method of Cells) composite material analysis code. The resulting code is called FEAMAC/CARES and is constructed as an Abaqus finite element analysis UMAT (user defined material). Here we describe the FEAMAC/CARES code and an example problem (taken from the open literature) of a laminated CMC in off-axis loading is shown. FEAMAC/CARES performs stochastic-strength-based damage simulation response of a CMC under multiaxial loading using elastic stiffness reduction of the failed elements.
Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix Composite
NASA Technical Reports Server (NTRS)
Nemeth, Noel; Bednarcyk, Brett; Pineda, Evan; Arnold, Steven; Mital, Subodh; Murthy, Pappu
2015-01-01
Reported here is a coupling of two NASA developed codes: CARES (Ceramics Analysis and Reliability Evaluation of Structures) with the MAC/GMC (Micromechanics Analysis Code/ Generalized Method of Cells) composite material analysis code. The resulting code is called FEAMAC/CARES and is constructed as an Abaqus finite element analysis UMAT (user defined material). Here we describe the FEAMAC/CARES code and an example problem (taken from the open literature) of a laminated CMC in off-axis loading is shown. FEAMAC/CARES performs stochastic-strength-based damage simulation response of a CMC under multiaxial loading using elastic stiffness reduction of the failed elements.
Saiki, Osamu; Koizumi, Hiroyasu; Akazawa, Nobutaka; Kodaira, Akihisa; Okamura, Kentaro; Matsumura, Hideo
2016-01-01
This study compared the wear characteristics of a heat-pressed lithium disilicate ceramic material opposed to feldspathic porcelain, a lithium disilicate glass ceramic, and zirconia materials. Ceramic plate specimens were prepared from feldspathic porcelain (EX-3 nA1B), lithium disilicate glass ceramics (e.max CAD MO1/C14), and zirconia (Katana KT 10) and then ground or polished. Rounded rod specimens were fabricated from heat-pressed lithium disilicate glass ceramic (e.max press LT A3) and then glazed or polished. A sliding wear testing apparatus was used for wear testing. Wear of glazed rods was greater than that of polished rods when they were abraded with ground zirconia, ground porcelain, polished porcelain, or polished lithium disilicate ceramics. For both glazed and polished rods, wear was greater when the rods were abraded with ground plates. The findings indicate that application of a polished surface rather than a glazed surface is recommended for single restorations made of heat-pressed lithium disilicate material. In addition, care must be taken when polishing opposing materials, especially those used in occlusal contact areas. (J Oral Sci 58, 117-123, 2016).
Recent Progress in the Development of Neodymium Doped Ceramic Yttria
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Edwards, Chris; Trivedi, Sudhir B.; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra; Kear, Bernard
2007-01-01
Solid-state lasers play a significant role in providing the technology necessary for active remote sensing of the atmosphere. Neodymium doped yttria (Nd:Y2O3) is considered to be an attractive material due to its possible lasing wavelengths of aprrox.914 nm and approx.946 nm for ozone profiling. These wavelengths when frequency tripled can generate UV light at approx.305 nm and approx.315 nm, which is particularly useful for ozone sensing using differential absorption lidar technique. For practical realization of space based UV transmitter technology, ceramic Nd:Y2O3 material is considered to possess great potential. A plasma melting and quenching method has been developed to produce Nd3+ doped powders for consolidation into Nd:Y2O3 ceramic laser materials. This far-from-equilibrium processing methodology allows higher levels of rare earth doping than can be achieved by equilibrium methods. The method comprises of two main steps: (a) plasma melting and quenching to generate dense, and homogeneous doped metastable powders, (b) pressure assisted consolidation of these powders by hot isostatic pressing to make dense nanocomposite ceramics. Using this process, several 1" x 1" ceramic cylinders have been produced. The infrared transmission of undoped Y2O3 ceramics was as high as approx.75% without anti-reflection coating. In the case of Nd:Y2O3 ceramics infrared transmission values of approx.50% were achieved. Furthermore, Nd:Y2O3 samples with dopant concentrations of up to approx.2 at. % were prepared without significant emission quenching.
Mick, Enrico; Tinschert, Joachim; Mitrovic, Aurica; Bader, Rainer
2015-01-01
Both titanium and ceramic materials provide specific advantages in dental implant technology. However, some problems, like hypersensitivity reactions, corrosion and mechanical failure, have been reported. Therefore, the combining of both materials to take advantage of their pros, while eliminating their respective cons, would be desirable. Hence, we introduced a new technique to bond titanium and ceramic materials by means of a silica-based glass ceramic solder. Cylindrical compound samples (Ø10 mm × 56 mm) made of alumina toughened zirconia (ATZ), as well as titanium grade 5, were bonded by glass solder on their end faces. As a control, a two-component adhesive glue was utilized. The samples were investigated without further treatment, after 30 and 90 days of storage in distilled water at room temperature, and after aging. All samples were subjected to quasi-static four-point-bending tests. We found that the glass solder bonding provided significantly higher bending strength than adhesive glue bonding. In contrast to the glued samples, the bending strength of the soldered samples remained unaltered by the storage and aging treatments. Scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analyses confirmed the presence of a stable solder-ceramic interface. Therefore, the glass solder technique represents a promising method for optimizing dental and orthopedic implant bondings. PMID:28793440
Process for making ceramic insulation
Akash, Akash [Salt Lake City, UT; Balakrishnan, G Nair [Sandy, UT
2009-12-08
A method is provided for producing insulation materials and insulation for high temperature applications using novel castable and powder-based ceramics. The ceramic components produced using the proposed process offers (i) a fine porosity (from nano-to micro scale); (ii) a superior strength-to-weight ratio; and (iii) flexibility in designing multilayered features offering multifunctionality which will increase the service lifetime of insulation and refractory components used in the solid oxide fuel cell, direct carbon fuel cell, furnace, metal melting, glass, chemical, paper/pulp, automobile, industrial heating, coal, and power generation industries. Further, the ceramic components made using this method may have net-shape and/or net-size advantages with minimum post machining requirements.
Attachment of Free Filament Thermocouples for Temperature Measurements on CMC
NASA Technical Reports Server (NTRS)
Lei, Jih-Fen; Cuy, Michael D.; Wnuk, Stephen P.
1997-01-01
Ceramic Matrix Composites (CMC) are being developed for use as enabling materials for advanced aeropropulsion engine and high speed civil transport applications. The characterization and testing of these advanced materials in hostile, high-temperature environments require accurate measurement of the material temperatures. Commonly used wire Thermo-Couples (TC) can not be attached to this ceramic based material via conventional spot-welding techniques. Attachment of wire TC's with commercially available ceramic cements fail to provide sufficient adhesion at high temperatures. While advanced thin film TC technology provides minimally intrusive surface temperature measurement and has good adhesion on the CMC, its fabrication requires sophisticated and expensive facilities and is very time consuming. In addition, the durability of lead wire attachments to both thin film TC's and the substrate materials requires further improvement. This paper presents a newly developed attachment technique for installation of free filament wire TC's with a unique convoluted design on ceramic based materials such as CMC's. Three CMC's (SiC/SiC CMC and alumina/alumina CMC) instrumented with type IC, R or S wire TC's were tested in a Mach 0.3 burner rig. The CMC temperatures measured from these wire TC's were compared to that from the facility pyrometer and thin film TC's. There was no sign of TC delamination even after several hours exposure to 1200 C. The test results proved that this new technique can successfully attach wire TC's on CMC's and provide temperature data in hostile environments. The sensor fabrication process is less expensive and requires very little time compared to that of the thin film TC's. The same installation technique/process can also be applied to attach lead wires for thin film sensor systems.
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay; Petko, Jeannie F.
2004-01-01
Affordable fiber-reinforced ceramic matrix composites with multifunctional properties are critically needed for high-temperature aerospace and space transportation applications. These materials have various applications in advanced high-efficiency and high-performance engines, airframe and propulsion components for next-generation launch vehicles, and components for land-based systems. A number of these applications require materials with specific functional characteristics: for example, thick component, hybrid layups for environmental durability and stress management, and self-healing and smart composite matrices. At present, with limited success and very high cost, traditional composite fabrication technologies have been utilized to manufacture some large, complex-shape components of these materials. However, many challenges still remain in developing affordable, robust, and flexible manufacturing technologies for large, complex-shape components with multifunctional properties. The prepreg and melt infiltration (PREMI) technology provides an affordable and robust manufacturing route for low-cost, large-scale production of multifunctional ceramic composite components.
Phosphate-bonded ceramic–wood composites : R&D project overview and invitation to participate
Theodore L. Laufenberg; Matt Aro
2004-01-01
We are developing chemically bonded ceramic phosphate binders for the production of biofiber-based composite materials. These binders promise to have better processing and properties than some current cement and polymer resin binder systems. The ceramic phosphate binders (termed Ceramicrete), if used in place of cement and polymers, will significantly reduce the...
Lanagan, Michael T.; Picciolo, John J.; Dorris, Stephen E.
1997-01-01
The present invention is directed to a process for producing high temperature superconducting ceramic materials. More particularly, the present invention is directed to a process that enhances the densification of Bi.sub.1.8 Pb.sub.0.4 Sr.sub.2 Ca.sub.2 Cu.sub.3 O.sub.10 "BSCCO" ceramics.
Ceramic Integration Technologies for Energy and Aerospace Applications
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay; Asthana, Ralph N.
2007-01-01
Robust and affordable integration technologies for advanced ceramics are required to improve the performance, reliability, efficiency, and durability of components, devices, and systems based on them in a wide variety of energy, aerospace, and environmental applications. Many thermochemical and thermomechanical factors including joint design, analysis, and optimization must be considered in integration of similar and dissimilar material systems.
Molten salt corrosion of SiC and Si3N4
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.; Smialek, James L.; Fox, Dennis S.
1988-01-01
Industrial systems such as heat engines and heat exchangers involve harsh environments. The structural materials are subjected to high temperatures as well as corrosive gases and condensed phases. Past experience with metal alloys has shown that these condensed phases can be particularly corrosive and are often the limiting factor in the operation of these systems. In a heat engine the most common condensed corrodent is Na2SO4 whereas in a heat exchanger an oxide slag may be present. The primary emphasis is on Na2SO4 induced corrosion, however, similarities and differences to oxide slag are also discussed. The extensive research on corrosion of metal alloys has led to understanding and controlling corrosion for these materials. Currently silicon based ceramics are prime candidates for the applications discussed. Therefore it is important to understand the effects of condensed phase deposits on this emerging class of high temperature materials. Both the thermodynamic and strength of the ceramic is also examined. Finally some control strategies for corrosion of silicon based ceramics are explored.
Characterization of a polymer-infiltrated ceramic-network material
Corazza, Pedro H.; Zhang, Yu
2015-01-01
Objectives To characterize the microstructure and determine some mechanical properties of a polymer-ingfiltrated ceramic-network (PICN) material (Vita Enamic, Vita Zahnfabrik) available for CAD–CAM systems. Methods Specimens were fabricated to perform quantitative and qualitative analyses of the material’s microstructure and to determine the fracture toughness (KIc), density (ρ), Poisson’s ratio (v) and Young’s modulus (E). KIc was determined using V-notched specimens and the short beam toughness method, where bar-shaped specimens were notched and 3-point loaded to fracture. ρ was calculated using Archimedes principle, and v and E were measured using an ultrasonic thickness gauge with a combination of a pulse generator and an oscilloscope. Results Microstructural analyses showed a ceramic- and a polymer-based interpenetrating network. Mean and standard deviation values for the properties evaluated were: KIc = 1.09 ± 0.05 MPa m1/2, ρ = 2.09 ± 0.01 g/cm3, v = 0.23 ± 0.002 and E = 37.95 ± 0.34 GPa. Significance The PICN material showed mechanical properties between porcelains and resin-based composites, reflecting its microstructural components. PMID:24656471
Lal, S; Hall, R M; Tipper, J L
2016-09-15
Ceramics have been used to deliver significant improvements in the wear properties of orthopaedic bearing materials, which has made it challenging to isolate wear debris from simulator lubricants. Ceramics such as silicon nitride, as well as ceramic-like surface coatings on metal substrates have been explored as potential alternatives to conventional implant materials. Current isolation methods were designed for isolating conventional metal, UHMWPE and ceramic wear debris. In this paper, we describe a methodology for isolation and recovery of ceramic or ceramic-like coating particles and metal wear particles from serum lubricants under ultra-low and low wear performance. Enzymatic digestion was used to digest the serum proteins and sodium polytungstate was used as a novel density gradient medium to isolate particles from proteins and other contaminants by ultracentrifugation. This method demonstrated over 80% recovery of particles and did not alter the size or morphology of ceramic and metal particles during the isolation process. Improvements in resistance to wear and mechanical damage of the articulating surfaces have a large influence on longevity and reliability of joint replacement devices. Modern ceramics have demonstrated ultra-low wear rates for hard-on-hard total hip replacements. Generation of very low concentrations of wear debris in simulator lubricants has made it challenging to isolate the particles for characterisation and further analysis. We have introduced a novel method to isolate ceramic and metal particles from serum-based lubricants using enzymatic digestion and novel sodium polytungstate gradients. This is the first study to demonstrate the recovery of ceramic and metal particles from serum lubricants at lowest detectable in vitro wear rates reported in literature. Copyright © 2016. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Geantă, V.; Cherecheș, T.; Lixandru, P.; Voiculescu, I.; Ștefănoiu, R.; Dragnea, D.; Zecheru, T.; Matache, L.
2017-06-01
Due to excellent mechanical properties, high entropy alloys from the system AlxCrFeCoNi can be used successfully to create composite structures containing both metallic and ceramic plates, which resists at dynamic load during high speeds impact (like projectiles, explosion). The paper presents four different composite structures made from a combination of metallic materials and ceramics plates: duralumin-ceramics, duralumin-ceramics-HEA, HEA-ceramics-HEA, HEA-ceramics-duralumin. Numerical simulation of impact behavior of the composite structures was performed by virtual methods, taking into account the mechanical properties of both materials. The best results were obtained using composite structures HEA-ceramics-HEA, HEA-ceramics-duralumin.
High-Temperature, Lightweight, Self-Healing Ceramic Composites for Aircraft Engine Applications
NASA Technical Reports Server (NTRS)
Raj, Sai V.; Bhatt, Ramkrishna
2013-01-01
The use of reliable, high-temperature, lightweight materials in the manufacture of aircraft engines is expected to result in lower fossil and biofuel consumption, thereby leading to cost savings and lower carbon emissions due to air travel. Although nickel-based superalloy blades and vanes have been successfully used in aircraft engines for several decades, there has been an increased effort to develop high-temperature, lightweight, creep-resistant substitute materials under various NASA programs over the last two decades. As a result, there has been a great deal of interest in developing SiC/SiC ceramic matrix composites (CMCs) due to their higher damage tolerance compared to monolithic ceramics. Current-generation SiC/SiC ceramic matrix composites rely almost entirely on the SiC fibers to carry the load, owing to the premature cracking of the matrix during loading. Thus, the high-temperature usefulness of these CMCs falls well below their theoretical capabilities. The objective of this work is to develop a new class of high-temperature, lightweight, self-healing, SiC fiber-reinforced, engineered matrix ceramic composites.
Tripathy, Ashis; Pramanik, Sumit; Manna, Ayan; Shasmin, Hanie Nadia; Radzi, Zamri; Abu Osman, Noor Azuan
2016-01-01
Since humidity sensors have been widely used in many sectors, a suitable humidity sensing material with improved sensitivity, faster response and recovery times, better stability and low hysteresis is necessary to be developed. Here, we fabricate a uniformly porous humidity sensor using Ca, Ti substituted Mg ferrites with chemical formula of CaMgFe1.33Ti3O12 as humidity sensing materials by solid-sate step-sintering technique. This synthesis technique is useful to control the grain size with increased porosity to enhance the hydrophilic characteristics of the CaMgFe1.33Ti3O12 nanoceramic based sintered electro-ceramic nanocomposites. The highest porosity, lowest density and excellent surface-hydrophilicity properties were obtained at 1050 °C sintered ceramic. The performance of this impedance type humidity sensor was evaluated by electrical characterizations using alternating current (AC) in the 33%–95% relative humidity (RH) range at 25 °C. Compared with existing conventional resistive humidity sensors, the present sintered electro-ceramic nanocomposite based humidity sensor showed faster response time (20 s) and recovery time (40 s). This newly developed sensor showed extremely high sensitivity (%S) and small hysteresis of <3.4%. Long-term stability of the sensor had been determined by testing for 30 consecutive days. Therefore, the high performance sensing behavior of the present electro-ceramic nanocomposites would be suitable for a potential use in advanced humidity sensors. PMID:27916913
NASA Technical Reports Server (NTRS)
Chen, Liang-Yu; Neudeck, Philip G.; Behelm, Glenn M.; Spry, David J.; Meredith, Roger D.; Hunter, Gary W.
2015-01-01
This paper presents ceramic substrates and thick-film metallization based packaging technologies in development for 500C silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chip-level packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550C. The 96 alumina packaging system composed of chip-level packages and PCBs has been successfully tested with high temperature SiC discrete transistor devices at 500C for over 10,000 hours. In addition to tests in a laboratory environment, a SiC junction field-effect-transistor (JFET) with a packaging system composed of a 96 alumina chip-level package and an alumina printed circuit board was tested on low earth orbit for eighteen months via a NASA International Space Station experiment. In addition to packaging systems for electronics, a spark-plug type sensor package based on this high temperature interconnection system for high temperature SiC capacitive pressure sensors was also developed and tested. In order to further significantly improve the performance of packaging system for higher packaging density, higher operation frequency, power rating, and even higher temperatures, some fundamental material challenges must be addressed. This presentation will discuss previous development and some of the challenges in material science (technology) to improve high temperature dielectrics for packaging applications.
Pressurized heat treatment of glass ceramic
Kramer, D.P.
1984-04-19
A method of producing a glass-ceramic having a specified thermal expansion value is disclosed. The method includes the step of pressurizing the parent glass material to a predetermined pressure during heat treatment so that the glass-ceramic produced has a specified thermal expansion value. Preferably, the glass-ceramic material is isostatically pressed. A method for forming a strong glass-ceramic to metal seal is also disclosed in which the glass-ceramic is fabricated to have a thermal expansion value equal to that of the metal. The determination of the thermal expansion value of a parent glass material placed in a high-temperature environment is also used to determine the pressure in the environment.
Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating
Meek, T.T.; Blake, R.D.
1987-09-22
A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate. 2 figs.
Pressurized heat treatment of glass-ceramic to control thermal expansion
Kramer, Daniel P.
1985-01-01
A method of producing a glass-ceramic having a specified thermal expansion value is disclosed. The method includes the step of pressurizing the parent glass material to a predetermined pressure during heat treatment so that the glass-ceramic produced has a specified thermal expansion value. Preferably, the glass-ceramic material is isostatically pressed. A method for forming a strong glass-ceramic to metal seal is also disclosed in which the glass-ceramic is fabricated to have a thermal expansion value equal to that of the metal. The determination of the thermal expansion value of a parent glass material placed in a high-temperature environment is also used to determine the pressure in the environment.
NASA Astrophysics Data System (ADS)
Caneira, Inês; Machado-Moreira, Bernardino; Dionísio, Amélia; Godinho, Vasco; Neves, Orquídia; Dias, Diamantino; Saiz-Jimenez, Cesareo; Miller, Ana Z.
2015-04-01
Ceramic industry represents an important sector of economic activity in the European countries and involves complex and numerous manufacturing processes. The unidirectional dry pressing process includes milling and stirring of raw materials (mainly clay and talc minerals) in aqueous suspensions, followed by spray drying to remove excess water obtaining spray-dried powders further subjected to dry pressing process (conformation). However, spray-dried ceramic powders exhibit an important variability in their performance when subjected to the dry pressing process, particularly in the adhesion to the mold and mechanical strength, affecting the quality of the final conformed ceramic products. Therefore, several synthetic additives (deflocculants, antifoams, binders, lubricants and plasticizers) are introduced in the ceramic slips to achieve uniform and homogeneous pastes, conditioning their rheological properties. However, an important variability associated with the performance of the conformed products is still reported. Exopolysaccharides or Extracellular Polymeric Substances (EPS) are polymers excreted by living organisms, such as bacteria, fungi and algae, which may confer unique and potentially interesting properties with potential industrial uses, such as viscosity control, gelation, and flocculation. Polysaccharides, such as pullulan, gellan, carrageenan and xanthan have found a wide range of applications in food, pharmaceutical, petroleum, and in other industries. The aim of this study was the assessment of exopolysaccharides as natural additives to optimize the performance of spray-dried ceramic powders during the unidirectional dry pressing process, replacing the synthetic additives used in the ceramic production process. Six exopolysaccharides, namely pullulan, gellan, xanthan gum, κappa- and iota-carrageenan, and guar gum were tested in steatite-based spray-dried ceramic powders at different concentrations. Subsequently, these ceramic powders were submitted to unidirectional dry pressing process (conformation) and the green conformed bodies were tested on the following properties: mechanical flexural strength and adhesion/disaggregation of the conformed material. The binding state of polysaccharides and mineral grains was evaluated by field emission scanning electron microscopy (FESEM). Our data showed that xanthan gum and pullulan were the most effective polysaccharides in improving the performance of spray-dried ceramic powders during unidirectional dry pressing process, in comparison to the control steatite-based ceramic bodies containing synthetic additives. In addition, these polysaccharides yielded the best cost-benefit relationship, representing an eco-friendly and cost-effective alternative to synthetic additives used in technical ceramics industry. Hence, this study has contributed to define a new and sustainable strategy to improve the performance of ceramic materials during unidirectional dry pressing process, reduce production costs and minimize environmental impact. Acknowledgments: This study was financed by Portuguese funds through FCT- Fundação para a Ciência e a Tecnologia (project EXPL/CTM-CER/0637/2012) and supported by Rauschert Portuguesa, SA.
NASA Astrophysics Data System (ADS)
Goodman, William A.
2017-09-01
This paper provides a review of advances in 3D printing and additive manufacturing of ceramic and ceramic matrix composites for optical applications. Dr. Goodman has been pioneering additive manufacturing of ceramic matrix composites since 2008. He is the inventor of HoneySiC material, a zero-CTE additively manufactured carbon fiber reinforced silicon carbide ceramic matrix composite, briefly mentioned here. More recently Dr. Goodman has turned his attention to the direct printing of ceramics for optical applications via various techniques including slurry and laser sintering of silicon carbide and other ceramic materials.
Anusavice, Kenneth J; Jadaan, Osama M; Esquivel-Upshaw, Josephine F
2013-11-01
Recent reports on bilayer ceramic crown prostheses suggest that fractures of the veneering ceramic represent the most common reason for prosthesis failure. The aims of this study were to test the hypotheses that: (1) an increase in core ceramic/veneer ceramic thickness ratio for a crown thickness of 1.6mm reduces the time-dependent fracture probability (Pf) of bilayer crowns with a lithium-disilicate-based glass-ceramic core, and (2) oblique loading, within the central fossa, increases Pf for 1.6-mm-thick crowns compared with vertical loading. Time-dependent fracture probabilities were calculated for 1.6-mm-thick, veneered lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation in the central fossa area. Time-dependent fracture probability analyses were computed by CARES/Life software and finite element analysis, using dynamic fatigue strength data for monolithic discs of a lithium-disilicate glass-ceramic core (Empress 2), and ceramic veneer (Empress 2 Veneer Ceramic). Predicted fracture probabilities (Pf) for centrally loaded 1.6-mm-thick bilayer crowns over periods of 1, 5, and 10 years are 1.2%, 2.7%, and 3.5%, respectively, for a core/veneer thickness ratio of 1.0 (0.8mm/0.8mm), and 2.5%, 5.1%, and 7.0%, respectively, for a core/veneer thickness ratio of 0.33 (0.4mm/1.2mm). CARES/Life results support the proposed crown design and load orientation hypotheses. The application of dynamic fatigue data, finite element stress analysis, and CARES/Life analysis represent an optimal approach to optimize fixed dental prosthesis designs produced from dental ceramics and to predict time-dependent fracture probabilities of ceramic-based fixed dental prostheses that can minimize the risk for clinical failures. Copyright © 2013 Academy of Dental Materials. All rights reserved.
Anusavice, Kenneth J.; Jadaan, Osama M.; Esquivel–Upshaw, Josephine
2013-01-01
Recent reports on bilayer ceramic crown prostheses suggest that fractures of the veneering ceramic represent the most common reason for prosthesis failure. Objective The aims of this study were to test the hypotheses that: (1) an increase in core ceramic/veneer ceramic thickness ratio for a crown thickness of 1.6 mm reduces the time-dependent fracture probability (Pf) of bilayer crowns with a lithium-disilicate-based glass-ceramic core, and (2) oblique loading, within the central fossa, increases Pf for 1.6-mm-thick crowns compared with vertical loading. Materials and methods Time-dependent fracture probabilities were calculated for 1.6-mm-thick, veneered lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation in the central fossa area. Time-dependent fracture probability analyses were computed by CARES/Life software and finite element analysis, using dynamic fatigue strength data for monolithic discs of a lithium-disilicate glass-ceramic core (Empress 2), and ceramic veneer (Empress 2 Veneer Ceramic). Results Predicted fracture probabilities (Pf) for centrally-loaded 1,6-mm-thick bilayer crowns over periods of 1, 5, and 10 years are 1.2%, 2.7%, and 3.5%, respectively, for a core/veneer thickness ratio of 1.0 (0.8 mm/0.8 mm), and 2.5%, 5.1%, and 7.0%, respectively, for a core/veneer thickness ratio of 0.33 (0.4 mm/1.2 mm). Conclusion CARES/Life results support the proposed crown design and load orientation hypotheses. Significance The application of dynamic fatigue data, finite element stress analysis, and CARES/Life analysis represent an optimal approach to optimize fixed dental prosthesis designs produced from dental ceramics and to predict time-dependent fracture probabilities of ceramic-based fixed dental prostheses that can minimize the risk for clinical failures. PMID:24060349
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, W.Y.; Cooley, K.M.; Joslin, D.L.
The potential application of Ca{sub 0.5}Sr{sub 0.5}Zr{sub 4}P{sub 6}O{sub 24} (CS50) as a corrosion-resistant coating material for Si-based ceramics and as a thermal barrier coating material for Ni-based superalloys was explored. A {approximately}200 {micro}m thick CS50 coating was prepared by air plasma spray with commercially available powder. A Nicalon/SiC ceramic matrix composite and a Ni-based superalloy coated with a {approximately}200 {micro}m thick metallic bond coat layer were used as substrate materials. Both the powder and coating contained ZrP{sub 2}O{sub 7} as an impurity phase, and the coating was highly porous as-deposited. The coating deposited on the Nicalon/SiC substrate was chemicallymore » stable upon exposure to air and Na{sub 2}SO{sub 4}/O{sub 2} atmospheres at 1,000 C for 100 h. In contrast, the coating sprayed onto the superalloy substrate significantly reacted with the bond coat surface after similar oxidation in air.« less
In-office bleaching efficacy on stain removal from CAD/CAM and direct resin composite materials.
Alharbi, Amal; Ardu, Stefano; Bortolotto, Tissiana; Krejci, Ivo
2018-01-01
To evaluate the efficacy of in-office bleaching on stain removal from stained resin composite and ceramic computer-assisted design/computer-assisted manufacturing (CAD/CAM) blocks and direct resin composites. Forty disk-shaped samples were fabricated from each of nine materials: six CAD/CAM (VITABLOCS Mark II, Paradigm MZ100, Exp Vita Hybrid Ceramic, VITA ENAMIC, Exp Kerr, and LAVA Ultimate) and three direct resin composites (Filtek Supreme, Venus Diamond, and Filtek Silorane). Samples were randomly divided into five groups (n = 8), each stained with a particular staining solution. Using a calibrated spectrophotometer and a black background, L*a*b* values were assessed before and after 120 days of staining. Samples were subjected to in-office bleaching using 40% hydrogen peroxide gel for one hour. At subsequent assessment, color change (ΔE) was calculated as the difference between L*a*b* values. Both ANOVA and the Duncan test were used to identify differences between groups (α = 0.05). Bleaching resulted in significant differences in ΔE values for all materials (P < .001). Bleaching efficacy was highly influenced by material composition and staining solution. Residual color values after bleaching for ceramic and hybrid ceramics ranged from -0.49 to 2.35, within the clinically acceptable maximum of 3.3. Values after bleaching for resin-based CAD/CAM ranged from -0.7 to 7.08 while direct resin composites values ranged from -1.47 to 25.13. Coffee left the greatest residual color on all materials. Based on material nature, 40% hydrogen peroxide bleaching can remove staining. The new resin-based CAD/CAM blocks showed promising results in terms of color stability. Bleaching using 40% hydrogen peroxide can be an effective method to remove stains from dental restorations. In this way, restoration replacement as a result of discoloration may no longer be necessary. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Rampf, Markus; Dittmer, Marc; Ritzberger, Christian; Höland, Wolfram
2016-10-01
In the mid-19th century, Dr. Donald Stookey identified the importance and usability of nucleating agents and mechanisms for the development of glass-ceramic materials. Today, a number of various internal and surface mechanisms as well as combinations thereof have been established in the production of glass-ceramic materials. In order to create new innovative material properties the present study focuses on the precipitation of CaMgSiO6 as a minor phase in Li2Si2O5 based glass-ceramics. In the base glass of the SiO2-Li2O-P2O5-Al2O3-K2O-MgO-CaO system P2O5 serves as nucleating agent for the internal precipitation of Li2Si2O5 crystals while a mechanical activation of the glass surface by means of ball milling is necessary to nucleate the minor CaMgSi2O6 crystal phase. For a successful precipitation of CaMgSi2O6 a minimum ratio of MgO and CaO in the range between 1.4 mol% and 2.9 mol% in the base glasses was determined. The nucleation and crystallization of both crystal phases takes place during sintering a powder compact. Dependent on the quality of the sintering process the dense Li2Si2O5-CaMgSi2O6 glass-ceramics show a mean biaxial strength of up to 392 ± 98 MPa. The microstructure of the glass-ceramics is formed by large (5-10 µm) bar like CaMgSi2O6 crystals randomly embedded in a matrix of small (≤ 0.5 µm) plate like Li2Si2O5 crystals arranged in an interlocking manner. While there is no significant influence of the minor CaMgSi2O6 phase on the strength of the material, the translucency of the material decreases upon precipitation of the minor phase.
Ceramic fiber-reinforced monoclinic celsian phase glass-ceramic matrix composite material
NASA Technical Reports Server (NTRS)
Bansal, Narottam P. (Inventor); Dicarlo, James A. (Inventor)
1994-01-01
A hyridopolysilazane-derived ceramic fiber reinforced monoclinic celsian phase barium aluminum silicate glass-ceramic matrix composite material is prepared by ball-milling an aqueous slurry of BAS glass powder and fine monoclinic celsian seeds. The fibers improve the mechanical strength and fracture toughness and with the matrix provide superior dielectric properties.
Controlled removal of ceramic surfaces with combination of ions implantation and ultrasonic energy
Boatner, Lynn A.; Rankin, Janet; Thevenard, Paul; Romana, Laurence J.
1995-01-01
A method for tailoring or patterning the surface of ceramic articles is provided by implanting ions to predetermined depth into the ceramic material at a selected surface location with the ions being implanted at a fluence and energy adequate to damage the lattice structure of the ceramic material for bi-axially straining near-surface regions of the ceramic material to the predetermined depth. The resulting metastable near-surface regions of the ceramic material are then contacted with energy pulses from collapsing, ultrasonically-generated cavitation bubbles in a liquid medium for removing to a selected depth the ion-damaged near-surface regions containing the bi-axially strained lattice structure from the ceramic body. Additional patterning of the selected surface location on the ceramic body is provided by implanting a high fluence of high-energy, relatively-light ions at selected surface sites for relaxing the bi-axial strain in the near-surface regions defined by these sites and thereby preventing the removal of such ion-implanted sites by the energy pulses from the collapsing ultrasonic cavitation bubbles.
Modified PZT ceramics as a material that can be used in micromechatronics
NASA Astrophysics Data System (ADS)
Zachariasz, Radosław; Bochenek, Dariusz
2015-11-01
Results on investigations of the PZT type ceramics with the following chemical composition: Pb0.94Sr0.06(Zr0.50 Ti0.50)0.99 Cr0.01O3 (PSZTC) which belongs to a group of multicomponent ceramic materials obtained on basis of the PZT type solid solution, are presented in this work. Ceramics PSZTC was obtained by a free sintering method under the following conditions: Tsint = 1250 °C and tsint = 2 h. Ceramic compacts of specimens for the sintering process were made from the ceramic mass consisting of a mixture of the synthesized PSZTC powder and 3% polyvinyl alcohol while wet. The PSZTC ceramic specimens were subjected to poling by two methods: low temperature and high temperature. On the basis of the examinations made it has been found that the ceramics obtained belongs to ferroelectric-hard materials and that is why it may be used to build resonators, filters and ultrasonic transducers. Contribution to the Topical Issue "Materials for Dielectric Applications" edited by Maciej Jaroszewski and Sabu Thomas.
ADM guidance-Ceramics: Fracture toughness testing and method selection.
Cesar, Paulo Francisco; Della Bona, Alvaro; Scherrer, Susanne S; Tholey, Michael; van Noort, Richard; Vichi, Alessandro; Kelly, Robert; Lohbauer, Ulrich
2017-06-01
The objective is within the scope of the Academy of Dental Materials Guidance Project, which is to provide dental materials researchers with a critical analysis of fracture toughness (FT) tests such that the assessment of the FT of dental ceramics is conducted in a reliable, repeatable and reproducible way. Fracture mechanics theory and FT methodologies were critically reviewed to introduce basic fracture principles and determine the main advantages and disadvantages of existing FT methods from the standpoint of the dental researcher. The recommended methods for FT determination of dental ceramics were the Single Edge "V" Notch Beam (SEVNB), Single Edge Precracked Beam (SEPB), Chevron Notch Beam (CNB), and Surface Crack in Flexure (SCF). SEVNB's main advantage is the ease of producing the notch via a cutting disk, SEPB allows for production of an atomically sharp crack generated by a specific precracking device, CNB is technically difficult, but based on solid fracture mechanics solutions, and SCF involves fracture from a clinically sized precrack. The IF test should be avoided due to heavy criticism that has arisen in the engineering field regarding the empirical nature of the calculations used for FT determination. Dental researchers interested in FT measurement of dental ceramics should start with a broad review of fracture mechanics theory to understand the underlying principles involved in fast fracture of ceramics. The choice of FT methodology should be based on the pros and cons of each test, as described in this literature review. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Cost-effective method for determining the grindability of ceramics. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, C.; Chand, R.H.
1997-02-01
The objective of this program was to develop a cost-effective method to determine the grindability of ceramics leading to cost-effective methods for machining such ceramics. In this first phase of activity, Chand Kare Technical Ceramics directed its efforts towards development of a definition for ceramic grindability, design of grindability-test experiments, and development of a ceramics-grindability test system (CGTS). The grindability study also included the establishment of the correlation between the grindability and conventional grinding practices. The above goals were achieved. A definition based on material removal rate under controlled force grinding was developed. Three prototypes CGTSs were developed and tested;more » suitable design was identified. Based on this, a fully automatic CGTS was developed and is ready for delivery to Oak Ridge National Laboratory. Comprehensive grindability tests for various commercially available engineering ceramics were conducted. Experimental results indicated that ceramics have significantly different grindabilities even though their mechanical properties were not significantly different. This implies that grindability of ceramics can be greatly improved. Further study is needed to establish correlations between microstructure and grindability. Therefore, grindability should be evaluated during the development of new ceramics or improvement of existing ones. In this report, the development of the ceramic-grindability definition, the development of CGTS, extensive grindability results, and the preliminary correlation between grindability and mechanical properties (such as flexural strength, hardness, elastic modulus, and fracture toughness) were summarized.« less
Nanoelectric Materials Laboratory Development
NASA Technical Reports Server (NTRS)
Allen, Lee; Hill, Curtis
2015-01-01
The Ultracapacitor Research and Development project is a collaborative effort between the NASA Marshall Space Flight Center's (MSFC's) ES43 Parts, Packaging, and Fabrication Branch and the EM41 Nonmetallic Materials Branch. NASA's Ultracapacitor Research is an effort to develop solid-state energy storage devices through processing of ceramic materials into printable dielectric inks, which can be formed and treated to produce solid state ultracapacitor cells capable of exceeding lithium-ion battery energy density at a fraction of the weight. Research and development efforts into solid state ultracapacitors have highlighted a series of technical challenges such as understanding as-received nature of ceramic powders, treatment and optimization of ceramic powders, dielectric and conductor ink formulation, and firing of printed (green) ultracapacitor cells. Two facilities have been continually developed since project inception: the Additive Electronics Lab in Bldg. 4487 and the Nanoelectric Materials Lab in Bldg. 4602. The Nanoelectric Materials Lab has become a unique facility at MSFC, capable of custom processing a wide range of media for additive electronics. As research has progressed, it was discovered that additional in-house processing was necessary to achieve smaller, more uniform particle diameters. A vibratory mill was obtained that can agitate powder and media in three directions, which has shown to be much more effective than ball milling. However, in order to understand the effects of milling, a particle size analysis system has been installed to characterize as-received and milled materials Continued research into the ultracapacitor technology included advanced milling and optimization of ceramic nanoparticles, fluidized bed treatment of atomic-layer deposition- (ALD-) coated ceramic particles, custom development of dielectric and conductor inks, as well as custom ink precursors such as polyvinylidene diflouride- (PVDF-) loaded vehicles. Experiments with graphene-based inks were also conducted.
Microwave sintering of ceramic materials
NASA Astrophysics Data System (ADS)
Karayannis, V. G.
2016-11-01
In the present study, the potential of microwave irradiation as an innovative energy- efficient alternative to conventional heating technologies in ceramic manufacturing is reviewed, addressing the advantages/disadvantages, while also commenting on future applications of possible commercial interest. Ceramic materials have been extensively studied and used due to several advantages they exhibit. Sintering ceramics using microwave radiation, a novel technology widely employed in various fields, can be an efficient, economic and environmentally-friendlier approach, to improve the consolidation efficiency and reduce the processing cycle-time, in order to attain substantial energy and cost savings. Microwave sintering provides efficient internal heating, as energy is supplied directly and penetrates the material. Since energy transfer occurs at a molecular level, heat is generated throughout the material, thus avoiding significant temperature gradients between the surface and the interior, which are frequently encountered at high heating rates upon conventional sintering. Thus, rapid, volumetric and uniform heating of various raw materials and secondary resources for ceramic production is possible, with limited grain coarsening, leading to accelerated densification, and uniform and fine-grained microstructures, with enhanced mechanical performance. This is particularly important for manufacturing large-size ceramic products of quality, and also for specialty ceramic materials such as bioceramics and electroceramics. Critical parameters for the process optimization, including the electromagnetic field distribution, microwave-material interaction, heat transfer mechanisms and material transformations, should be taken into consideration.
Ultrahigh Piezoelectric Properties in Textured (K,Na)NbO3 -Based Lead-Free Ceramics.
Li, Peng; Zhai, Jiwei; Shen, Bo; Zhang, Shujun; Li, Xiaolong; Zhu, Fangyuan; Zhang, Xingmin
2018-02-01
High-performance lead-free piezoelectric materials are in great demand for next-generation electronic devices to meet the requirement of environmentally sustainable society. Here, ultrahigh piezoelectric properties with piezoelectric coefficients (d 33 ≈700 pC N -1 , d 33 * ≈980 pm V -1 ) and planar electromechanical coupling factor (k p ≈76%) are achieved in highly textured (K,Na)NbO 3 (KNN)-based ceramics. The excellent piezoelectric properties can be explained by the strong anisotropic feature, optimized engineered domain configuration in the textured ceramics, and facilitated polarization rotation induced by the intermediate phase. In addition, the nanodomain structures with decreased domain wall energy and increased domain wall mobility also contribute to the ultrahigh piezoelectric properties. This work not only demonstrates the tremendous potential of KNN-based ceramics to replace lead-based piezoelectrics but also provides a good strategy to design high-performance piezoelectrics by controlling appropriate phase and crystallographic orientation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Guazzato, Massimiliano; Albakry, Mohammad; Ringer, Simon P; Swain, Michael V
2004-06-01
The present study, divided into two parts, aimed to compare the strength, fracture toughness and microstructure of a range of all-ceramic materials. In part I, three hot-pressed glass-ceramics (IPS-Empress, Empress 2 and a new experimental ceramic) and alumina glass-infiltrated ceramics (In-Ceram Alumina), processed by both slip casting and dry pressing, were compared. Tensile strength was appraised on 10 bar-shaped specimens (20 x 4 x 1.2 mm3) for each material with the three-point bending method; the fracture toughness was measured from 20 specimens (20 x 4 x 2 mm3), by using the indentation strength technique. Data were compared with ANOVA and the Sheffé post hoc test (p = 0.05). The volume fraction of each phase, the dimensions and shapes of the grains, porosity and the crack patterns were investigated using SEM. The average and standard deviation in strength (MPa) and fracture toughness (MPa m(1/2)) were: IPS-Empress 106(17)1, 1.2(0.14)1; Empress 2 306(29)2, 2.9(0.51)2, new experimental ceramic 303(49)2, 3.0(0.65)2, In-Ceram Alumina dry-pressed 440(50)2, 3.6(0.26)2, In-Ceram Alumina slip 594(52)3, 4.4(0.48)3. Values with the same superscript number showed no significant statistical difference. Microscopy revealed the relationship between the glass matrix and the crystalline phase and the characteristics of the latter were correlated to the strengthening and toughening mechanisms of these glass-ceramics. The mechanical properties and microstructure of core materials have been advocated as crucial to the clinical long-term performance of all-ceramic dental restorations. This investigation provides the clinician with data regarding strength, fracture toughness and microstructure of a broad range of current materials. Copyright 2003 Academy of Dental Materials
Zhang, Qianqian; Wang, Xiaoke; Hou, Peiqiang; Wan, Wuxing; Li, Ruida; Ren, Yufen; Ouyang, Zhiyun
2014-01-01
There is an urgent requirement to examine the quality of harvested rainwater for potable and non-potable purposes, based on the type of roofing material. In this study, we examined the effect on the quality of harvested rainwater of conventional roofing materials (concrete, asphalt and ceramic tile roofs) compared with alternative roofing materials (green roof). The results showed that the ceramic tile roof was the most suitable for rainwater-harvesting applications because of the lower concentrations of leachable pollutants. However, in this study, the green roof was not suitable for rainwater harvesting applications. In addition, seasonal trends in water quality parameters showed that pollutants in roof runoff in summer and autumn were lower than those in winter and spring. This study revealed that the quality of harvested rainwater was significantly affected by the roofing material; therefore, local government and urban planners should develop stricter testing programs and produce more weathering resistant roofing materials to allow the harvesting of rainwater for domestic and public uses. Copyright © 2013 Elsevier Ltd. All rights reserved.
Interdisciplinary research concerning the nature and properties of ceramic materials
NASA Technical Reports Server (NTRS)
1975-01-01
The nature and properties of ceramic materials as they relate to solid state physics and metallurgy are studied. Special attention was given to the applications of ceramics to NASA programs and national needs.
Fabrication of porous silicon nitride ceramics using binder jetting technology
NASA Astrophysics Data System (ADS)
Rabinskiy, L.; Ripetsky, A.; Sitnikov, S.; Solyaev, Y.; Kahramanov, R.
2016-07-01
This paper presents the results of the binder jetting technology application for the processing of the Si3N4-based ceramics. The difference of the developed technology from analogues used for additive manufacturing of silicon nitride ceramics is a method of the separate deposition of the mineral powder and binder without direct injection of suspensions/slurries. It is assumed that such approach allows reducing the technology complexity and simplifying the process of the feedstock preparation, including the simplification of the composite materials production. The binders based on methyl ester of acrylic acid with polyurethane and modified starch were studied. At this stage of the investigations, the technology of green body's fabrication is implemented using a standard HP cartridge mounted on the robotic arm. For the coordinated operation of the cartridge and robot the specially developed software was used. Obtained green bodies of silicon powder were used to produce the ceramic samples via reaction sintering. The results of study of ceramics samples microstructure and composition are presented. Sintered ceramics are characterized by fibrous α-Si3N4 structure and porosity up to 70%.
Composite metal foil and ceramic fabric materials
Webb, B.J.; Antoniak, Z.I.; Prater, J.T.; DeSteese, J.G.
1992-03-24
The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed. 11 figs.
NASA Technical Reports Server (NTRS)
1978-01-01
An educational development and supportive research program on ceramic materials established to advance design methodology, improve materials, and develop engineers knowledgable in design with and use of high performance ceramic materials is described. Emphasis is on the structures and related materials problems in a ceramic turbine engine, but applications in coal gasification, solar conversion, and magnetohydrodynamic technologies are considered. Progress of various research projects in the areas of new materials, processing, characterization, and nondestructive testing is reported. Fracture toughness determination, extended X-ray absorption fine structure measurements, and grain boundary effects in beta-alumina are among the topics covered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
EWSUK,KEVIN G.
1999-11-24
Ceramics represent a unique class of materials that are distinguished from common metals and plastics by their: (1) high hardness, stiffness, and good wear properties (i.e., abrasion resistance); (2) ability to withstand high temperatures (i.e., refractoriness); (3) chemical durability; and (4) electrical properties that allow them to be electrical insulators, semiconductors, or ionic conductors. Ceramics can be broken down into two general categories, traditional and advanced ceramics. Traditional ceramics include common household products such as clay pots, tiles, pipe, and bricks, porcelain china, sinks, and electrical insulators, and thermally insulating refractory bricks for ovens and fireplaces. Advanced ceramics, also referredmore » to as ''high-tech'' ceramics, include products such as spark plug bodies, piston rings, catalyst supports, and water pump seals for automobiles, thermally insulating tiles for the space shuttle, sodium vapor lamp tubes in streetlights, and the capacitors, resistors, transducers, and varistors in the solid-state electronics we use daily. The major differences between traditional and advanced ceramics are in the processing tolerances and cost. Traditional ceramics are manufactured with inexpensive raw materials, are relatively tolerant of minor process deviations, and are relatively inexpensive. Advanced ceramics are typically made with more refined raw materials and processing to optimize a given property or combination of properties (e.g., mechanical, electrical, dielectric, optical, thermal, physical, and/or magnetic) for a given application. Advanced ceramics generally have improved performance and reliability over traditional ceramics, but are typically more expensive. Additionally, advanced ceramics are typically more sensitive to the chemical and physical defects present in the starting raw materials, or those that are introduced during manufacturing.« less
Structures and properties of alumina-based ceramic for reconstructive oncology
NASA Astrophysics Data System (ADS)
Grigoriev, M. V.; Kulkov, S. N.
2016-08-01
The microstructure of alumina ceramics based on powders with a varying grain size has been investigated. Both commercial alumina powders and those fabricated by denitration of aluminum salts in high-frequency discharge plasma were used. It is shown that the variation of the sintering temperature and morphology of the initial powders of the particles leads to a change of the pore structure of ceramics from pore isolated clusters to a structure consisting of a ceramic skeleton and a large pore space. Changing the type of pore structure occurs at about 50% of porosity. The ceramic pore size distribution is bimodal. Dependencies final density vs initial density are linear; at the same time with increasing temperature, inclination of changes from positive to negative, indicating the change of sealing mechanisms. Extrapolation of these curves showed that they intersect with the values of density of about 2 g/cm3, which indicates the possibility of producing non-shrink ceramics. It is shown that the strength increases with increasing nanocrystalline alumina content in powder mixture. A change in the character the pore structure is accompanied by a sharp decrease in strength, which corresponds to the percolation transition in ceramics. These results showed that it is possible to obtain ceramic materials with the structure and properties similar to natural bone.
Environment-Conscious Ceramics (Ecoceramics) Technology Received 2001 R&D 100 Award
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay
2002-01-01
Since the dawn of human civilization, there has been a delicate balance between the use of resources as human frontiers expanded and the need to have a minimum influence on the ecosystem. The first 200 years of the industrial revolution essentially solved the problem of production. However, the massive production of goods also generated tremendous amounts of byproducts and wastes. In the new millennium, to sustain a healthy life in harmony with nature, it will be extremely important for us to develop various materials, products, and processes that minimize any harmful influence on the environment. Environment-conscious ceramics (ecoceramics) are a new class of materials that can be fabricated with renewable resources (wood) and wood waste material (wood sawdust). Wood is a "lignocellulosic" material formed by the photosynthetic reaction within the needles or leaves of trees. The photosynthesis process uses sunlight to take carbon dioxide from air and convert it into oxygen and organic materials. Wood has been known to be one of the best and most intricate engineering materials created by nature and known to mankind. In addition, natural woods of various types are available throughout the world. On the other hand, wood sawdusts are generated in abundant quantities by sawmills. Environment-conscious ceramic materials, fabricated via the pyrolysis and infiltration of natural wood-derived preforms, have tailorable properties with numerous potential applications. The experimental studies conducted to date on the development of materials based on biologically derived structures indicate that these materials behave like ceramic materials manufactured by conventional approaches. These structures have been shown to be quite useful in producing porous or dense materials having various microstructures and compositions.
Corundum ceramic materials modified with silica nanopowders: structure and mechanical properties
NASA Astrophysics Data System (ADS)
Kostytsyn, M. A.; Muratov, D. S.; Lysov, D. V.; Chuprunov, K. O.; Yudin, A. G.; Leybo, D. V.
2016-01-01
Filtering elements are often used in the metallurgy of rare earth metals. Corundum ceramic is one of the most suitable materials for this purpose. The process of formation and the properties of nanomodified ceramic materials, which are proposed as filtering materials with tunable effective porosity, are described. A silica nanopowder is used as a porosity-increasing agent. Vortex layer apparatus is used for mixing of precursor materials. The obtained results show that nanomodification with the vortex layer apparatus using 0.04 wt. % silica nanopowder as a modifying agent leads to an increase in the compression strength of corundum ceramic by the factor of 1.5.
Orrù, Roberto; Cao, Giacomo
2013-01-01
A wider utilization of ultra high temperature ceramics (UHTC) materials strongly depends on the availability of efficient techniques for their fabrication as dense bodies. Based on recent results reported in the literature, it is possible to state that Spark Plasma Sintering (SPS) technology offers a useful contribution in this direction. Along these lines, the use of two different SPS-based processing routes for the preparation of massive UHTCs is examined in this work. One method, the so-called reactive SPS (R-SPS), consists of the synthesis and densification of the material in a single step. Alternatively, the ceramic powders are first synthesized by Self-propagating High-temperature Synthesis (SHS) and then sintered by SPS. The obtained results evidenced that R-SPS method is preferable for the preparation of dense monolithic products, while the sintering of SHS powders requires relatively milder conditions when considering binary composites. The different kinetic mechanisms involved during R-SPS of the monolithic and composite systems, i.e., combustion-like or gradual solid-diffusion, respectively, provides a possible explanation. An important role is also played by the SHS process, particularly for the preparation of composite powders, since stronger interfaces are established between the ceramic constituents formed in situ, thus favoring diffusion processes during the subsequent SPS step. PMID:28809229
Transparent Glass-Ceramics Produced by Sol-Gel: A Suitable Alternative for Photonic Materials
Gorni, Giulio; Mosa, Jadra; Balda, Rolindes; Fernández, Joaquin; Durán, Alicia; Castro, Yolanda
2018-01-01
Transparent glass-ceramics have shown interesting optical properties for several photonic applications. In particular, compositions based on oxide glass matrices with fluoride crystals embedded inside, known as oxyfluoride glass-ceramics, have gained increasing interest in the last few decades. Melt-quenching is still the most used method to prepare these materials but sol-gel has been indicated as a suitable alternative. Many papers have been published since the end of the 1990s, when these materials were prepared by sol-gel for the first time, thus a review of the achievements obtained so far is necessary. In the first part of this paper, a review of transparent sol-gel glass-ceramics is made focusing mainly on oxyfluoride compositions. Many interesting optical results have been obtained but very little innovation of synthesis and processing is found with respect to pioneering papers published 20 years ago. In the second part we describe the improvements in synthesis and processing obtained by the authors during the last five years. The main achievements are the preparation of oxyfluoride glass-ceramics with a much higher fluoride crystal fraction, at least double that reported up to now, and the first synthesis of NaGdF4 glass-ceramics. Moreover, a new SiO2 precursor was introduced in the synthesis, allowing for a reduction in the treatment temperature and favoring hydroxyl group removal. Interesting optical properties demonstrated the incorporation of dopant ions in the fluoride crystals, thus obtaining crystal-like spectra along with higher efficiencies with respect to xerogels, and hence demonstrating that these materials are a suitable alternative for photonic applications. PMID:29385706
Duan, Yuanyuan; Griggs, Jason A
2015-06-01
Further investigations are required to evaluate the mechanical behaviour of newly developed polymer-matrix composite (PMC) blocks for computer-aided design/computer-aided manufacturing (CAD/CAM) applications. The purpose of this study was to investigate the effect of elasticity on the stress distribution in dental crowns made of glass-ceramic and PMC materials using finite element (FE) analysis. Elastic constants of two materials were determined by ultrasonic pulse velocity using an acoustic thickness gauge. Three-dimensional solid models of a full-coverage dental crown on a first mandibular molar were generated based on X-ray micro-CT scanning images. A variety of load case-material property combinations were simulated and conducted using FE analysis. The first principal stress distribution in the crown and luting agent was plotted and analyzed. The glass-ceramic crown had stress concentrations on the occlusal surface surrounding the area of loading and the cemented surface underneath the area of loading, while the PMC crown had only stress concentration on the occlusal surface. The PMC crown had lower maximum stress than the glass-ceramic crown in all load cases, but this difference was not substantial when the loading had a lateral component. Eccentric loading did not substantially increase the maximum stress in the prosthesis. Both materials are resistant to fracture with physiological occlusal load. The PMC crown had lower maximum stress than the glass-ceramic crown, but the effect of a lateral loading component was more pronounced for a PMC crown than for a glass-ceramic crown. Knowledge of the stress distribution in dental crowns with low modulus of elasticity will aid clinicians in planning treatments that include such restorations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hybrid aerogel rigid ceramic fiber insulation and method of producing same
NASA Technical Reports Server (NTRS)
Barney, Andrea O. (Inventor); Heng, Vann (Inventor); Oka, Kris Shigeko (Inventor); Santos, Maryann (Inventor); Zinn, Alfred A. (Inventor); Droege, Michael (Inventor)
2004-01-01
A hybrid insulation material comprises of porous ceramic substrate material impregnated with nanoporous material and method of making the same is the topic of this invention. The porous substrate material has bulk density ranging from 6 to 20 lb/ft.sup.3 and is composed of about 60 to 80 wt % silica (SiO.sub.2) 20 to 40 wt % alumina (Al.sub.2 O.sub.3) fibers, and with about 0.1 to 1.0 wt % boron-containing constituent as the sintering agent. The nanoporous material has density ranging from 1.0 to 10 lb/ft.sup.3 and is either fully or partially impregnated into the substrate to block the pores, resulting in substantial reduction in conduction via radiation and convention. The nanoporous material used to impregnate the fiber substrate is preferably formed from a precursor of alkoxysilane, alcohol, water, and an acid or base catalyst for silica aerogels, and from a precursor of aluminum alkoxide, alcohol, water, and an acid or base catalyst for alumina aerogels.
NASA Technical Reports Server (NTRS)
Lawson, John W.; Bauschlicher, Charles W.; Daw, Murray
2011-01-01
Refractory materials such as metallic borides, often considered as ultra high temperature ceramics (UHTC), are characterized by high melting point, high hardness, and good chemical inertness. These materials have many applications which require high temperature materials that can operate with no or limited oxidation. Ab initio, first principles methods are the most accurate modeling approaches available and represent a parameter free description of the material based on the quantum mechanical equations. Using these methods, many of the intrinsic properties of these material can be obtained. We performed ab initio calculations based on density functional theory for the UHTC materials ZrB2 and HfB2. Computational results are presented for structural information (lattice constants, bond lengths, etc), electronic structure (bonding motifs, densities of states, band structure, etc), thermal quantities (phonon spectra, phonon densities of states, specific heat), as well as information about point defects such as vacancy and antisite formation energies.
Effect of (Li,Ce) doping in Aurivillius phase material Na0.25K0.25Bi2.5Nb2O9
NASA Astrophysics Data System (ADS)
Gai, Zhi-Gang; Wang, Jin-Feng; Wang, Chun-Ming
2007-01-01
The effect of (Li,Ce) substitution for A site on the properties of Na0.25K0.25Bi2.5Nb2O9-based ceramics was investigated. The piezoelectric activity of Na0.25K0.25Bi2.5Nb2O9-based ceramics is significantly improved by the modification of lithium and cerium. The Curie temperature (TC) gradually increases from 668to684°C with increasing the (Li,Ce) modification. The piezoelectric coefficient d33 of the [(Na0.5K0.5)Bi]0.44(LiCe)0.03[]0.03Bi2Nb2O9 ceramic was found to be 28pC/N, the highest value among the Na0.25K0.25Bi2.5Nb2O9-based ceramics and also almost 50% higher than the reported d33 values of other bismuth layer-structured ferroelectric systems (˜5-19pC/N). The planar coupling factors kp and kt were found to be 8.0% and 23.0%, together with the high TC (˜670°C) and stable piezoelectric properties, demonstrating that the (Li,Ce) modified Na0.25K0.25Bi2.5Nb2O9-based material a promising candidate for high temperature applications.
NASA Glenn Research Center UEET (Ultra-Efficient Engine Technology) Program: Agenda and Abstracts
NASA Technical Reports Server (NTRS)
Manthey, Lri
2001-01-01
Topics discussed include: UEET Overview; Technology Benefits; Emissions Overview; P&W Low Emissions Combustor Development; GE Low Emissions Combustor Development; Rolls-Royce Low Emissions Combustor Development; Honeywell Low Emissions Combustor Development; NASA Multipoint LDI Development; Stanford Activities In Concepts for Advanced Gas Turbine Combustors; Large Eddy Simulation (LES) of Gas Turbine Combustion; NASA National Combustion Code Simulations; Materials Overview; Thermal Barrier Coatings for Airfoil Applications; Disk Alloy Development; Turbine Blade Alloy; Ceramic Matrix Composite (CMC) Materials Development; Ceramic Matrix Composite (CMC) Materials Characterization; Environmental Barrier Coatings (EBC) for Ceramic Matrix Composite (CMC) Materials; Ceramic Matrix Composite Vane Rig Testing and Design; Ultra-High Temperature Ceramic (UHTC) Development; Lightweight Structures; NPARC Alliance; Technology Transfer and Commercialization; and Turbomachinery Overview; etc.
Analysis of Shear Bond Strength and Morphology of Er:YAG Laser-Recycled Ceramic Orthodontic Brackets
Han, Ruo-qiao; Ji, Ling-fei; Ling, Chen
2016-01-01
Objective. The aim of this study was to compare the recycling of deboned ceramic brackets via an Er:YAG laser or via the traditional chairside processing methods of flaming and sandblasting; shear bond strength and morphological changes were evaluated in recycled brackets versus new brackets. Materials and Methods. 3M Clarity Self-Ligating Ceramic Brackets with a microcrystalline base were divided into groups subjected to flaming, sandblasting, or exposure to an Er:YAG laser. New ceramic brackets served as a control group. Shear bond strengths were determined with an Electroforce test machine and tested for statistical significance through analysis of variance. Morphological examinations of the recycled ceramic bracket bases were conducted with scanning electron microscopy and confocal laser scanning microscopy. Residue on the bracket base was analyzed with Raman spectroscopy. Results. Faded, dark adhesive was left on recycled bracket bases processed via flaming. Adhesive was thoroughly removed by both sandblasting and exposure to an Er:YAG laser. Compared with new brackets, shear bond strength was lower after sandblasting (p < 0.05), but not after exposure to an Er:YAG laser. The Er:YAG laser caused no damage to the bracket. Conclusion. Er:YAG lasers effectively remove adhesive from the bases of ceramic brackets without damaging them; thus, this method may be preferred over other recycling methods. PMID:27047964
Crack Branching and Fracture Mirror Data of Glasses and Advanced Ceramics
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Gyekenyesi, John P.
1998-01-01
The fracture mirror and crack branching constants were determined from three glasses and nine advanced ceramics tested under various loading and specimen configurations in an attempt to use the constants as a data base for fractography. The ratios of fracture mirror or crack branching constant to fracture toughness were found to be approximately two for most ceramic materials tested. A demonstration of how to use the two constants as a tool for verifying stress measurements was presented for silicon nitride disk specimens subjected to high-temperature, constant stress-rate biaxial flexure testing.
Process for making a ceramic composition for immobilization of actinides
Ebbinghaus, Bartley B.; Van Konynenburg, Richard A.; Vance, Eric R.; Stewart, Martin W.; Walls, Philip A.; Brummond, William Allen; Armantrout, Guy A.; Herman, Connie Cicero; Hobson, Beverly F.; Herman, David Thomas; Curtis, Paul G.; Farmer, Joseph
2001-01-01
Disclosed is a process for making a ceramic composition for the immobilization of actinides, particularly uranium and plutonium. The ceramic is a titanate material comprising pyrochlore, brannerite and rutile. The process comprises oxidizing the actinides, milling the oxides to a powder, blending them with ceramic precursors, cold pressing the blend and sintering the pressed material.
Engineering New Catalysts for In-Process Elimination of Tars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felix, Larry G.
2012-09-30
The key objective of this project was to develop a new and more efficient methodology for engineering and economically producing optimized robust catalysts for the reduction or elimination of tars in biomass gasification. Whereas current catalyst technology typically disposes thin layers of catalytically-active material onto rigid supports via wet chemistry-based methods, this project investigated novel thermal methods for directly incorporating catalytically active materials onto robust supports as well as novel approaches for incorporating catalytically active materials on and/or within an otherwise inert refractory support material which is then subsequently formed and processed to create a catalytically-active material on all exposedmore » surfaces. Specifically, the focus of this engineered catalyst development was on materials which were derived from, or otherwise related to, olivine-like minerals, due to the inherent attrition resistance and moderate catalytic properties exhibited by natural olivine when used in a fluidized bed biomass gasifier. Task 1 of this project successfully demonstrated the direct thermal impregnation of catalytically-active materials onto an olivine substrate, with the production of a Ni-olivine catalyst. Nickel and nickel oxide were thermally impregnated onto an olivine substrate and when reduced were shown to demonstrate improved catalytic activity over the baseline olivine material and equal the tar-decomposing performance of Ni-olivine catalysts prepared by conventional wet impregnation. Task 2 involved coordination with our subcontracted project partners to further develop and characterize catalyst formulations and to optimize activity and production methods. Within this task, several significant new materials were developed. NexTech Materials developed a sintered ceramic nickel-magnesium-silicate catalyst that demonstrated superb catalytic activity and high resistance to deactivation by H2S. Alfred University developed both supported and integrated (bulk) catalysts via a glass-ceramic processing route which were shown to exhibit excellent catalytic activity and superior resistance to attrition deactivation. With the discovery of these active, robust, glass-based catalysts, and with the permission of the project officer, the investigation of waste-based materials as originally proposed for Task 3 and pilot-scale testing proposed in Task 5 were deferred indefinitely in favor of further investigation of the glass-ceramic based catalyst materials. This choice was justified in part because during FY 2006 and through FY 2007, funding restrictions imposed by congressional budget choices significantly reduced funding for DOE biomass-related projects. Funding for this project was limited to what had been authorized which slowed the pace of project work at GTI so that our project partners could continue in their work. Thereafter, project work was allowed to resume and with restored funding, the project continued and concentrated on the development and testing of glass-ceramic catalysts in bulk or supported formats. Work concluded with a final development devoted to increasing the surface area of glass-ceramic catalysts in the form of microspheres. Following that development, project reporting was completed and the project was concluded.« less
LaHaye, Paul G.; Rahman, Faress H.; Lebeau, Thomas P. E.; Severin, Barbara K.
1998-01-01
A tube containment system. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture.
LaHaye, P.G.; Rahman, F.H.; Lebeau, T.P.; Severin, B.K.
1998-06-16
A tube containment system is disclosed. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture. 6 figs.
Protective coating for ceramic materials
NASA Technical Reports Server (NTRS)
Kourtides, Demetrius A. (Inventor); Churchward, Rex A. (Inventor); Lowe, David M. (Inventor)
1994-01-01
A protective coating for ceramic materials such as those made of silicon carbide, aluminum oxide, zirconium oxide, aluminoborosilicate and silicon dioxide, and a thermal control structure comprising a ceramic material having coated thereon the protective coating. The protective coating contains, in admixture, silicon dioxide powder, colloidal silicon dioxide, water, and one or more emittance agents selected from silicon tetraboride, silicon hexaboride, silicon carbide, molybdenum disilicide, tungsten disilicide and zirconium diboride. In another aspect, the protective coating is coated on a flexible ceramic fabric which is the outer cover of a composite insulation. In yet another aspect, a metallic foil is bonded to the outer surface of a ceramic fabric outer cover of a composite insulation via the protective coating. A primary application of this invention is as a protective coating for ceramic materials used in a heat shield for space vehicles subjected to very high aero-convective heating environments.
Gurram, Ravi; Krishna, C H Vamsi; Reddy, K Mahendranadh; Reddy, G V K Mohan; Shastry, Y Mahadev
2014-12-01
The study was undertaken to evaluate the biaxial flexural strength, biaxial flexural strength after etching with 9 % HF acid and fracture toughness of three commonly used pressable all ceramic core materials. Ninety glass ceramic specimens were fabricated from three commercially available leucite based core ceramic material (1) Esthetic Empress, (2) Cergo, and (3) Performance Plus. Thirty discs of each material were divided into three groups of 10 discs each. Biaxial flexural strength (30 discs,) Biaxial flexural strength for samples treated with 9 % HF acid (30 discs) and fracture toughness (30 discs) were evaluated. Core material Performance Plus had the lowest biaxial strength of 124.89 MPa, Cergo had strength of 152.22 MPa and the highest value of 163.95 was reported for Esthetic Empress. For samples treated 9 % HF, Performance Plus had the lowest biaxial strength of 98.37 MPa, Cergo had strength of 117.42 MPa and the highest value of 143.74 was reported for Esthetic Empress. Core material Performance Plus had the lowest fracture toughness of 1.063 MPa, Cergo had strength of 1.112 MPa and the highest value of 1.225 was reported for Esthetic Empress. The results shows that Esthetic Empress had better mechanical properties compared to Cergo had Performance Plus in relation to the parameters tested.
2011-11-01
within these cusps where electrons collide with the ceramic insulator lining the channel. In the MIT design, the overall magnetic field strength...allow compression of the anode spring (Sp), which holds the anode insulator (AI) flush with the base core (1). The anode stem and anode (A) are...case Aluminum bulk material 3 Insulator Cone HP-BN St. Gobain/ Ferro- Ceramic Grinding Inc. M1-M3 Permanent
Mou, Xiaoning; Wang, Shu; Guo, Weibo; Ji, Shaozheng; Qiu, Jichuan; Li, Deshuai; Zhang, Xiaodi; Zhou, Jin; Tang, Wei; Wang, Changyong; Liu, Hong
2016-07-21
In this study, a porous-flat TiO2 micropattern was fabricated with flat and nanoporous TiO2 ceramics for investigating the effect of topography on neural stem cell (NSC) differentiation. This finding demonstrates that localized committed differentiation could be achieved in one system by integrating materials with different topographies.
1993-11-10
realized. Metal carboxylates are often used as precursors for ceramic oxides since they tend to be air-stable, soluble in organic solvents, and decompose...metalorganic precursors [9] . These include routes based solely on metal alkoxides [9, 101 or metal carboxylates (e.g. the Pechini (or citrate) process
Coronado, M; Segadães, A M; Andrés, A
2015-12-15
This work describes the leaching behavior of potentially hazardous metals from three different clay-based industrial ceramic products (wall bricks, roof tiles, and face bricks) containing foundry sand dust and Waelz slag as alternative raw materials. For each product, ten mixtures were defined by mixture design of experiments and the leaching of As, Ba, Cd, Cr, Cu, Mo, Ni, Pb, and Zn was evaluated in pressed specimens fired simulating the three industrial ceramic processes. The results showed that, despite the chemical, mineralogical and processing differences, only chrome and molybdenum were not fully immobilized during ceramic processing. Their leaching was modeled as polynomial equations, functions of the raw materials contents, and plotted as response surfaces. This brought to evidence that Cr and Mo leaching from the fired products is not only dependent on the corresponding contents and the basicity of the initial mixtures, but is also clearly related with the mineralogical composition of the fired products, namely the amount of the glassy phase, which depends on both the major oxides contents and the firing temperature. Copyright © 2015 Elsevier B.V. All rights reserved.
Additive Manufacturing of Reactive In Situ Zr Based Ultra-High Temperature Ceramic Composites
NASA Astrophysics Data System (ADS)
Sahasrabudhe, Himanshu; Bandyopadhyay, Amit
2016-03-01
Reactive in situ multi-material additive manufacturing of ZrB2-based ultra-high-temperature ceramics in a Zr metal matrix was demonstrated using LENS™. Sound metallurgical bonding was achieved between the Zr metal and Zr-BN composites with Ti6Al4V substrate. Though the feedstock Zr power had α phase, LENS™ processing of the Zr powder and Zr-BN premix powder mixture led to the formation of some β phase of Zr. Microstructure of the Zr-BN composite showed primary grains of zirconium diboride phase in zirconium metal matrix. The presence of ZrB2 ceramic phase was confirmed by X-ray diffraction (XRD) analysis. Hardness of pure Zr was measured as 280 ± 12 HV and, by increasing the BN content in the feedstock, the hardness was found to increase. In Zr-5%BN composite, the hardness was 421 ± 10 HV and the same for Zr-10%BN composite was 562 ± 10 HV. It is envisioned that such multi-materials additive manufacturing will enable products in the future that cannot be manufactured using traditional approaches particularly in the areas of high-temperature metal-ceramic composites with compositional and functional gradation.
NASA Technical Reports Server (NTRS)
Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)
2009-01-01
A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium diboride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.
Shear Bond Strength of Orthodontic Brackets Bonded to Zirconium Crowns
Mehmeti, Blerim; Azizi, Bleron; Kelmendi, Jeta; Iljazi-Shahiqi, Donika; Alar, Željko
2017-01-01
Background An increasing demand for esthetic restorations has resulted in an increased use of all-ceramic restorations, such as zirconium. However, one of the challenges the orthodontist must be willing to face is how to increase bond strength between the brackets and various ceramic restorations.Bond strength can beaffected bybracket type, by the material that bracketsaremade of, and their base surface design or retention mode. Aim: of this study was to perform a comparative analysis of the shear bond strength (SBS) of metallic and ceramic orthodontic brackets bonded to all-zirconium ceramic surfaces used for prosthetic restorations, and also to evaluate the fracture mode of these two types of orthodontic brackets. Material and methods Twenty samples/semi-crowns of all-zirconium ceramic, on which orthodontic brackets were bonded, 10 metallic and 10 ceramic polycrystalline brackets, were prepared for this research. SBS has been testedby Universal Testing Machine, with a load applied using a knife edged rod moving at a fixed rate of 1 mm/min, until failure occurred. The force required to debond the brackets was recorded in Newton, then SBS was calculated to MPa. In addition, the samples were analyzed using a digital camera magnifier to determine Adhesive Remnant Index (ARI). Statistical data were processed using t-test, and the level of significance was set at α = 0.05. Results Higher shear bond strength values were observed in metallic brackets bonded to zirconium crowns compared tothoseof ceramic brackets, with a significant difference. During the test, two of the ceramic brackets were partially or totally damaged. Conclusion Metallic brackets, compared to ceramic polycrystalline brackets, seemed tocreate stronger adhesion with all-zirconium surfaces due to their better retention mode. Also, ceramic brackets showed higher fragility during debonding. PMID:28827846
Ceramic coating system or water oxidation environments
Hong, Glenn T.
1996-01-01
A process for water oxidation of combustible materials in which during at least a part of the oxidation corrosive material is present and makes contact with at least a portion of the apparatus over a contact area on the apparatus. At least a portion of the contact surface area comprises titanium dioxide coated onto a titanium metal substrate. Such ceramic composites have been found to be highly resistant to environments encountered in the process of supercritical water oxidation. Such environments typically contain greater than 50 mole percent water, together with oxygen, carbon dioxide, and a wide range of acids, bases, and salts. Pressures are typically about 27.5 to about 1000 bar while temperatures range as high as 700.degree. C. The ceramic composites are also resistant to degradation mechanisms caused by thermal stresses.
Rajamannan, B; Viruthagiri, G; Suresh Jawahar, K
2013-10-01
The activity concentrations of radium, thorium and potassium can vary from material to material and they should be measured as the radiation is hazardous for human health. Thus, studies have been planned to obtain the radioactivity of ceramic building materials used in Cuddalore District, Tamilnadu, India. The radioactivity of some ceramic materials used in this region has been measured using a gamma-ray spectrometry, which contains an NaI(Tl) detector connected to multichannel analyzer. The specific activities of (226)Ra, (232)Th and (40)K, from the selected ceramic building materials, were in the range of 9.89-30.75, 24.68-70.4, 117.19-415.83 Bq kg(-1), respectively. The radium equivalent activity, absorbed gamma dose rate (D) and annual effective dose rate associated with the natural radionuclides are calculated to assess the radiation hazards of the natural radioactivity in the ceramic building materials. It was found that none of the results exceeds the recommended limit value.
Trends of microwave dielectric materials for antenna application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sulong, T. A. T., E-mail: tuanamirahtuansulong@gmail.com; Osman, R. A. M., E-mail: rozana@unimap.edu.my; Idris, M. S., E-mail: sobri@unimap.edu.my
Rapid development of a modern microwave communication system requires a high quality microwave dielectric ceramic material to be used as mobile and satellite communication. High permittivity of dielectric ceramics leads to fabrication of compact device for electronic components. Dielectric ceramics which used for microwave applications required three important parameters such as high or appropriate permittivity (ε{sub r}), high quality factor (Q {sub f} ≥ 5000 GH z) and good temperature coefficient of resonant frequency (τ{sub f}). This paper review of various dielectric ceramic materials used as microwave dielectric materials and related parameters for antenna applications.
Taha, N A; Maghaireh, G A; Ghannam, A S; Palamara, J E
2017-08-01
To evaluate the effect of using a bulk-fill flowable base material on fracture strength and fracture patterns of root-filled maxillary premolars with MOD preparations restored with laminate restorations. Fifty extracted maxillary premolars were selected for the study. Standardized MOD cavities with endodontic treatment were prepared for all teeth, except for intact control. The teeth were divided randomly into five groups (n=10); (Group 1) sound teeth, (Group 2) unrestored teeth; (Group 3) MOD cavities with Vitrebond base and resin-based composite (Ceram. X One Universal); (Group 4) MOD cavities with 2mm GIC base (Fuji IX GP) and resin-based composite (Ceram. X One Universal) open laminate, (Group 5) MOD cavities were restored with 4mm of bulk-fill flowable base material (SDR) and resin-based composite (Ceram. X One Universal). All teeth were thermocycled and subjected to a 45° ramped oblique load in a universal testing machine. Fracture load and fracture patterns were recorded. Data were analyzed using one-way ANOVA and Dunnett's T3 test. Restoration in general increased the fracture strength compared to unrestored teeth. The fracture strength of group 5 (bulk-fill) was significantly higher than the fracture strength of the GIC laminate groups and not significantly different from the intact teeth (355±112N, P=0.118). The type of failure was unfavorable for most of the groups, with the majority being mixed failures. The use of a bulk-fill flowable base material significantly increased the fracture strength of extracted root-filled teeth with MOD cavities; however it did not improve fracture patterns to more favorable ones. Investigating restorative techniques that may improve the longevity of root-filled premolar teeth restored with direct resin restorations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Molecular-Level Processing of Si-(B)-C Materials with Tailored Nano/Microstructures.
Schmidt, Marion; Durif, Charlotte; Acosta, Emanoelle Diz; Salameh, Chrystelle; Plaisantin, Hervé; Miele, Philippe; Backov, Rénal; Machado, Ricardo; Gervais, Christel; Alauzun, Johan G; Chollon, Georges; Bernard, Samuel
2017-12-01
The design of Si-(B)-C materials is investigated, with detailed insight into the precursor chemistry and processing, the precursor-to-ceramic transformation, and the ceramic microstructural evolution at high temperatures. In the early stage of the process, the reaction between allylhydridopolycarbosilane (AHPCS) and borane dimethyl sulfide is achieved. This is investigated in detail through solid-state NMR and FTIR spectroscopy and elemental analyses for Si/B ratios ranging from 200 to 30. Boron-based bridges linking AHPCS monomeric fragments act as crosslinking units, extending the processability range of AHPCS and suppressing the distillation of oligomeric fragments during the low-temperature pyrolysis regime. Polymers with low boron contents display appropriate requirements for facile processing in solution, leading to the design of monoliths with hierarchical porosity, significant pore volume, and high specific surface area after pyrolysis. Polymers with high boron contents are more appropriate for the preparation of dense ceramics through direct solid shaping and pyrolysis. We provide a comprehensive study of the thermal decomposition mechanisms, and a subsequent detailed study of the high-temperature behavior of the ceramics produced at 1000 °C. The nanostructure and microstructure of the final SiC-based ceramics are intimately linked to the boron content of the polymers. B 4 C/C/SiC nanocomposites can be obtained from the polymer with the highest boron content. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wen, Qingbo; Xu, Yeping; Xu, Binbin; Fasel, Claudia; Guillon, Olivier; Buntkowsky, Gerd; Yu, Zhaoju; Riedel, Ralf; Ionescu, Emanuel
2014-10-01
A novel single-source precursor was synthesized by the reaction of an allyl hydrido polycarbosilane (SMP10) and tetrakis(dimethylamido)hafnium(iv) (TDMAH) for the purpose of preparing dense monolithic SiC/HfCxN1-x-based ultrahigh temperature ceramic nanocomposites. The materials obtained at different stages of the synthesis process were characterized via Fourier transform infrared (FT-IR) as well as nuclear magnetic resonance (NMR) spectroscopy. The polymer-to-ceramic transformation was investigated by means of MAS NMR and FT-IR spectroscopy as well as thermogravimetric analysis (TGA) coupled with in situ mass spectrometry. Moreover, the microstructural evolution of the synthesized SiHfCN-based ceramics annealed at different temperatures ranging from 1300 °C to 1800 °C was characterized by elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). Based on its high temperature behavior, the amorphous SiHfCN-based ceramic powder was used to prepare monolithic SiC/HfCxN1-x-based nanocomposites using the spark plasma sintering (SPS) technique. The results showed that dense monolithic SiC/HfCxN1-x-based nanocomposites with low open porosity (0.74 vol%) can be prepared successfully from single-source precursors. The average grain size of both HfC0.83N0.17 and SiC phases was found to be less than 100 nm after SPS processing owing to a unique microstructure: HfC0.83N0.17 grains were embedded homogeneously in a β-SiC matrix and encapsulated by in situ formed carbon layers which acted as a diffusion barrier to suppress grain growth. The segregated Hf-carbonitride grains significantly influenced the electrical conductivity of the SPS processed monolithic samples. While Hf-free polymer-derived SiC showed an electrical conductivity of ca. 1.8 S cm-1, the electrical conductivity of the Hf-containing material was analyzed to be ca. 136.2 S cm-1.A novel single-source precursor was synthesized by the reaction of an allyl hydrido polycarbosilane (SMP10) and tetrakis(dimethylamido)hafnium(iv) (TDMAH) for the purpose of preparing dense monolithic SiC/HfCxN1-x-based ultrahigh temperature ceramic nanocomposites. The materials obtained at different stages of the synthesis process were characterized via Fourier transform infrared (FT-IR) as well as nuclear magnetic resonance (NMR) spectroscopy. The polymer-to-ceramic transformation was investigated by means of MAS NMR and FT-IR spectroscopy as well as thermogravimetric analysis (TGA) coupled with in situ mass spectrometry. Moreover, the microstructural evolution of the synthesized SiHfCN-based ceramics annealed at different temperatures ranging from 1300 °C to 1800 °C was characterized by elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). Based on its high temperature behavior, the amorphous SiHfCN-based ceramic powder was used to prepare monolithic SiC/HfCxN1-x-based nanocomposites using the spark plasma sintering (SPS) technique. The results showed that dense monolithic SiC/HfCxN1-x-based nanocomposites with low open porosity (0.74 vol%) can be prepared successfully from single-source precursors. The average grain size of both HfC0.83N0.17 and SiC phases was found to be less than 100 nm after SPS processing owing to a unique microstructure: HfC0.83N0.17 grains were embedded homogeneously in a β-SiC matrix and encapsulated by in situ formed carbon layers which acted as a diffusion barrier to suppress grain growth. The segregated Hf-carbonitride grains significantly influenced the electrical conductivity of the SPS processed monolithic samples. While Hf-free polymer-derived SiC showed an electrical conductivity of ca. 1.8 S cm-1, the electrical conductivity of the Hf-containing material was analyzed to be ca. 136.2 S cm-1. Electronic supplementary information (ESI) available: Raman spectroscopy characterization of the SiHfCN-based ceramics. See DOI: 10.1039/c4nr03376k
Synthesis and characterization of black ceramic pigments by recycling of two hazardous wastes
NASA Astrophysics Data System (ADS)
Du, Minxing; Du, Yi; Chen, Zhongtao; Li, Zhongfu; Yang, Kai; Lv, Xingjie; Feng, Yibing
2017-09-01
In this study, two different industrial wastes, namely vanadium tailing and leather sludge, were used as less expensive alternative raw materials for the synthesis of black ceramic pigments to be used in commercial glazes. The pigments were based on hematite structure (FexCr1-x)2O3 and prepared by the common solid-state reaction method, under optimal formulation and processing conditions. The synthesized pigments were characterized in typical ceramic glazes and ceramic tile bodies. Optimal color development was achieved when the Fe/Cr mole ratios were 2.0 with 40 wt% content of vanadium tailing at 1200 °C. The coloring properties were similar to those imparted by a commercial black pigment.
The precursors effects on biomimetic hydroxyapatite ceramic powders.
Yoruç, Afife Binnaz Hazar; Aydınoğlu, Aysu
2017-06-01
In this study, effects of the starting material on chemical, physical, and biological properties of biomimetic hydroxyapatite ceramic powders (BHA) were investigated. Characterization and chemical analysis of BHA powders were performed by using XRD, FT-IR, and ICP-AES. Microstructural features such as size and morphology of the resulting BHA powders were characterized by using BET, nano particle sizer, pycnometer, and SEM. Additionally, biological properties of the BHA ceramic powders were also investigated by using water-soluble tetrazolium salts test (WST-1). According to the chemical analysis of BHA ceramic powders, chemical structures of ceramics which are prepared under different conditions and by using different starting materials show differences. Ceramic powders which are produced at 80°C are mainly composed of hydroxyapatite, dental hydroxyapatite (contain Na and Mg elements in addition to Ca), and calcium phosphate sulfide. However, these structures are altered at high temperatures such as 900°C depending on the features of starting materials and form various calcium phosphate ceramics and/or their mixtures such as Na-Mg-hydroxyapatite, hydroxyapatite, Mg-Whitlockit, and chloroapatite. In vitro cytotoxicity studies showed that amorphous ceramics produced at 80°C and ceramics containing chloroapatite structure as main or secondary phases were found to be extremely cytotoxic. Furthermore, cell culture studies showed that highly crystalline pure hydroxyapatite structures were extremely cytotoxic due to their high crystallinity values. Consequently, the current study indicates that the selection of starting materials which can be used in the production of calcium phosphate ceramics is very important. It is possible to produce calcium phosphate ceramics which have sufficient biocompatibility at physiological pH values and by using appropriate starting materials. Copyright © 2017 Elsevier B.V. All rights reserved.
Biaxial flexural strength of Turkom-Cera core compared to two other all-ceramic systems.
Al-Makramani, Bandar Mohammed Abdullah; Razak, Abdul Aziz Abdul; Abu-Hassan, Mohamed Ibrahim
2010-12-01
Advances in all-ceramic systems have established predictable means of providing metal-free aesthetic and biocompatible materials. These materials must have sufficient strength to be a practical treatment alternative for the fabrication of crowns and fixed partial dentures. The aim of this study was to compare the biaxial flexural strength of three core ceramic materials. Three groups of 10 disc-shaped specimens (16 mm diameter x 1.2 mm thickness - in accordance with ISO-6872, 1995) were made from the following ceramic materials: Turkom-Cera Fused Alumina [(Turkom-Ceramic (M) Sdn Bhd, Puchong, Selangor, Malaysia)], In-Ceram (Vita Zahnfabrik, Bad Säckingen, Baden-Württemberg, Germany) and Vitadur-N (Vita Zahnfabrik, Bad Säckingen, Baden-Württemberg, Germany), which were sintered according to the manufacturer's recommendations. The specimens were subjected to biaxial flexural strength test in an universal testing machine at a crosshead speed of 0.5 mm/min. The definitive fracture load was recorded for each specimen and the biaxial flexural strength was calculated from an equation in accordance with ISO-6872. The mean biaxial flexural strength values were: Turkom-Cera: 506.8 ± 87.01 MPa, In-Ceram: 347.4 ± 28.83 MPa and Vitadur-N: 128.7 ± 12.72 MPa. The results were analyzed by the Levene's test and Dunnett's T3 post-hoc test (SPSS software V11.5.0 for Windows, SPSS, Chicago, IL, USA ) at a preset significance level of 5% because of unequal group variances (P<0.001). There was statistically significant difference between the three core ceramics (P<0.05). Turkom-Cera showed the highest biaxial flexural strength, followed by In-Ceram and Vitadur-N. Turkom-Cera core had significantly higher flexural strength than In-Ceram and Vitadur-N ceramic core materials.
Design of biocomposite materials for bone tissue regeneration.
Yunus Basha, Rubaiya; Sampath Kumar, T S; Doble, Mukesh
2015-12-01
Several synthetic scaffolds are being developed using polymers, ceramics and their composites to overcome the limitations of auto- and allografts. Polymer-ceramic composites appear to be the most promising bone graft substitute since the natural bone itself is a composite of collagen and hydroxyapatite. Ceramics provide strength and osteoconductivity to the scaffold while polymers impart flexibility and resorbability. Natural polymers have an edge over synthetic polymers because of their biocompatibility and biological recognition property. But, very few natural polymer-ceramic composites are available as commercial products, and those few are predominantly based on type I collagen. Disadvantages of using collagen include allergic reactions and pathogen transmission. The commercial products also lack sufficient mechanical properties. This review summarizes the recent developments of biocomposite materials as bone scaffolds to overcome these drawbacks. Their characteristics, in vitro and in vivo performance are discussed with emphasis on their mechanical properties and ways to improve their performance. Copyright © 2015 Elsevier B.V. All rights reserved.
Effect of sintering process and additives on the properties of cordierite based ceramics
NASA Astrophysics Data System (ADS)
Rundans, M.; Sperberga, I.; Sedmale, G.; Stinkulis, G.
2013-12-01
It is possible to obtain cordierite ceramics with high temperature synthesis using both synthetic and raw natural materials. This paper discusses the possibilities to obtain cordierite ceramics, replacing part of required oxides with raw materials from various Latvian deposits of dolomite and clay. The obtained raw cordierite powders were ground in two modes (3 and 12 hours) and fired at 1200 °C. Ceramic samples were characterized by hydrostatic weighting method; crystalline phase composition was studied by XRD. Obtained samples were evaluated by their mechanical (compressive) strength and linear coefficient of thermal expansion (CTE). Thermal shock resistance was tested using water quenching method and afterwards evaluated by using ultrasonic method to test changes in Young's modulus of elasticity. Results show that increase in grinding time causes samples to densify and promote formation of cordierite crystalline phase which corresponds to increase in total compressive strength and decrease of CTE values. CTE values of samples ground for 12 hours conform to that of obtained in other researches.
NASA Technical Reports Server (NTRS)
Lee, Kang N.; Fox, Dennis S.; Robinson, R. Craig
2001-01-01
Silicon-based ceramics, such as SiC/SiC composites and Si3N4, are the prime candidates for hot section structural components of next-generation gas turbines. A key barrier to such an application is the rapid recession of silicon-based ceramics in combustion environments because of the volatilization of silica scale by water vapor (refs. 1 and 2). Environmental barrier coatings (EBC's) were developed to prevent recession in the High Speed Research--Enabling Propulsion Materials (HSR-EPM) Program (refs. 3 and 4). An investigation under the Ultra-Efficient Engine Technology Program was undertaken at the NASA Glenn Research Center to establish the upper temperature limit of the EPM EBC.
Method of manufacturing ceramic shaped articles
NASA Technical Reports Server (NTRS)
Inoue, K.
1983-01-01
A method of manufacturing ceramic shaped articles, wherein tapes of ceramic powder material in mixture with a binder material and special additives are shaped and then articles are stamped out from said tapes and sintered in a sintering furnace is described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terakado, Nobuaki, E-mail: terakado@laser.apph.tohoku.ac.jp; Watanabe, Kouki; Kawamata, Takayuki
2015-04-06
High thermal conductivity materials are in great demand for heat-flow control and heat dissipation in electronic devices. In this study, we have produced a glass-ceramics that contains spin-chain compound SrCuO{sub 2} and have found that the glass-ceramics yields high thermal conductivity of ∼5 W K{sup −1} m{sup −1} even at room temperature. The glass-ceramics is fabricated through crystallization of inhomogeneous melt-quenched oxides made from SrCO{sub 3}, CuO, Li{sub 2}CO{sub 3}, Ga{sub 2}O{sub 3}, and Al{sub 2}O{sub 3}. Transmission electron microscopy and X-ray and electron diffraction reveal that SrCuO{sub 2} crystallites with a size of 100–200 nm are precipitated in the glass-ceramics. Themore » highness of the thermal conductivity is attributable to two sources: one is elongation of phonon mean free path due to the crystallization of the inhomogeneous structure or structural ordering. The other is emergence of the heat carriers, spinons, in the SrCuO{sub 2}. This highly thermal conductive glass-ceramics is expected to be utilized as base materials for heat-flow control devices.« less
Sagsoz, O; Yildiz, M; Hojjat Ghahramanzadeh, A S L; Alsaran, A
2018-03-01
The purpose of this study was to examine the fracture strength and surface microhardness of computer-aided design/computer-aided manufacturing (CAD/CAM) materials in vitro. Mesial-occlusal-distal inlays were made from five different CAD/CAM materials (feldspathic ceramic, CEREC blocs; leucite-reinforced ceramic, IPS Empress CAD; resin nano ceramic, 3M ESPE Lava Ultimate; hybrid ceramic, VITA Enamic; and lithium disilicate ceramic, IPS e.max CAD) using CEREC 4 CAD/CAM system. Samples were adhesively cemented to metal analogs with a resin cement (3M ESPE, U200). The fracture tests were carried out with a universal testing machine. Furthermore, five samples were prepared from each CAD/CAM material for micro-Vickers hardness test. Data were analyzed with statistics software SPSS 20 (IBM Corp., New York, USA). Fracture strength of lithium disilicate inlays (3949 N) was found to be higher than other ceramic inlays (P < 0.05). There was no difference between other inlays statistically (P > 0.05). The highest micro-Vickers hardness was measured in lithium disilicate samples, and the lowest was in resin nano ceramic samples. Fracture strength results demonstrate that inlays can withstand the forces in the mouth. Statistical results showed that fracture strength and micro-Vickers hardness of feldspathic ceramic, leucite-reinforced ceramic, and lithium disilicate ceramic materials had a positive correlation.
Dental ceramics: a review of new materials and processing methods.
Silva, Lucas Hian da; Lima, Erick de; Miranda, Ranulfo Benedito de Paula; Favero, Stéphanie Soares; Lohbauer, Ulrich; Cesar, Paulo Francisco
2017-08-28
The evolution of computerized systems for the production of dental restorations associated to the development of novel microstructures for ceramic materials has caused an important change in the clinical workflow for dentists and technicians, as well as in the treatment options offered to patients. New microstructures have also been developed by the industry in order to offer ceramic and composite materials with optimized properties, i.e., good mechanical properties, appropriate wear behavior and acceptable aesthetic characteristics. The objective of this literature review is to discuss the main advantages and disadvantages of the new ceramic systems and processing methods. The manuscript is divided in five parts: I) monolithic zirconia restorations; II) multilayered dental prostheses; III) new glass-ceramics; IV) polymer infiltrated ceramics; and V) novel processing technologies. Dental ceramics and processing technologies have evolved significantly in the past ten years, with most of the evolution being related to new microstructures and CAD-CAM methods. In addition, a trend towards the use of monolithic restorations has changed the way clinicians produce all-ceramic dental prostheses, since the more aesthetic multilayered restorations unfortunately are more prone to chipping or delamination. Composite materials processed via CAD-CAM have become an interesting option, as they have intermediate properties between ceramics and polymers and are more easily milled and polished.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1992-01-01
ATTAP activities during the past year included test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Significant technical challenges remain, but all areas exhibited progress. Test-bed engine design and development included engine mechanical design, combustion system design, alternate aerodynamic designs of gasifier scrolls, and engine system integration aimed at upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1372 C (2500 F) structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities completed include the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, ceramic combustors, the ceramic regenerator disk, the ceramic power turbine rotors, and the ceramic/metal power turbine static structure. The material and component characterization efforts included the testing and evaluation of seven candidate materials and three development components. Ceramic component process development and fabrication proceeded for the gasifier turbine rotor, gasifier turbine scroll, gasifier turbine vanes and vane platform, extruded regenerator disks, and thermal insulation. Component rig activities included the development of both rigs and the necessary test procedures, and conduct of rig testing of the ceramic components and assemblies. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology that permit the achievement of both program performance and durability goals. Total test time in 1991 amounted to 847 hours, of which 128 hours were engine testing, and 719 were hot rig testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sibley, L.B.; Mace, A.E.; Grieser, D.R.
Various ceramic and cermet materials were evaluated for unlubricated wear resistance at high sliding speed (100 to 200 fps) and low unit load (5to 50 psi) in 1000 to 1800 deg F air. A statistical correlation was obtained between the measured wear rates under these conditions and the coefficient of friction, the thermal-stress resistance, and the thermal dlffusivity of the mated materials on which wear predominated. A mechanism of wear was evolved based on the above correlation and on the experimental study of friction and wear surface- temperature fluctuations using special transducers and color-motion-picture photography. During high-speed sliding, wear appearsmore » to be induced by the inability of ceramic and cermet materials to resist thermal stresses produced by temperature gradients within each rubbing surface between small asperities or hot spots. in frictional contact and the body of the respective materials. In this situation the wear rate is influenced both by the configuration of the rubbing pants and by the thermalstress-resistance properties of the materials. Promising materials for high-temperature high-speed sliding bearings and seals include Al/ sub 2/O/sub 3/-Cr-Mo cermets, SiC ceramics, and TiC-Ni-Mo cermets. (auth)« less
Ceramics in Restorative and Prosthetic DENTISTRY1
NASA Astrophysics Data System (ADS)
Kelly, J. Robert
1997-08-01
This review is intended to provide the ceramic engineer with information about the history and current use of ceramics in dentistry, contemporary research topics, and potential research agenda. Background material includes intra-oral design considerations, descriptions of ceramic dental components, and the origin, composition, and microstructure of current dental ceramics. Attention is paid to efforts involving net-shape processing, machining as a forming method, and the analysis of clinical failure. A rationale is presented for the further development of all-ceramic restorative systems. Current research topics receiving attention include microstructure/processing/property relationships, clinical failure mechanisms and in vitro testing, wear damage and wear testing, surface treatments, and microstructural modifications. The status of the field is critically reviewed with an eye toward future work. Significant improvements seem possible in the clinical use of ceramics based on engineering solutions derived from the study of clinically failed restorations, on the incorporation of higher levels of "biomimicry" in new systems, and on the synergistic developments in dental cements and adhesive dentin bonding.
Process of producing a ceramic matrix composite article and article formed thereby
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corman, Gregory Scot; McGuigan, Henry Charles; Brun, Milivoj Konstantin
A CMC article and process for producing the article to have a layer on its surface that protects a reinforcement material within the article from damage. The method entails providing a body containing a ceramic reinforcement material in a matrix material that contains a precursor of a ceramic matrix material. A fraction of the reinforcement material is present and possibly exposed at a surface of the body. The body surface is then provided with a surface layer formed of a slurry containing a particulate material but lacking the reinforcement material of the body. The body and surface layer are heatedmore » to form the article by converting the precursor within the body to form the ceramic matrix material in which the reinforcement material is contained, and by converting the surface layer to form the protective layer that covers any fraction of the reinforcement material exposed at the body surface.« less
Process of producing a ceramic matrix composite article and article formed thereby
Corman, Gregory Scot [Ballston Lake, NY; McGuigan, Henry Charles [Duanesburg, NY; Brun, Milivoj Konstantin [Ballston Lake, NY
2011-10-25
A CMC article and process for producing the article to have a layer on its surface that protects a reinforcement material within the article from damage. The method entails providing a body containing a ceramic reinforcement material in a matrix material that contains a precursor of a ceramic matrix material. A fraction of the reinforcement material is present and possibly exposed at a surface of the body. The body surface is then provided with a surface layer formed of a slurry containing a particulate material but lacking the reinforcement material of the body. The body and surface layer are heated to form the article by converting the precursor within the body to form the ceramic matrix material in which the reinforcement material is contained, and by converting the surface layer to form the protective layer that covers any fraction of the reinforcement material exposed at the body surface.
Turbine repair process, repaired coating, and repaired turbine component
Das, Rupak; Delvaux, John McConnell; Garcia-Crespo, Andres Jose
2015-11-03
A turbine repair process, a repaired coating, and a repaired turbine component are disclosed. The turbine repair process includes providing a turbine component having a higher-pressure region and a lower-pressure region, introducing particles into the higher-pressure region, and at least partially repairing an opening between the higher-pressure region and the lower-pressure region with at least one of the particles to form a repaired turbine component. The repaired coating includes a silicon material, a ceramic matrix composite material, and a repaired region having the silicon material deposited on and surrounded by the ceramic matrix composite material. The repaired turbine component a ceramic matrix composite layer and a repaired region having silicon material deposited on and surrounded by the ceramic matrix composite material.
Thermal insulating conformal blanket
NASA Technical Reports Server (NTRS)
Barney, Andrea (Inventor); Whittington, Charles A (Inventor); Eilertson, Bryan (Inventor); Siminski, Zenon (Inventor)
2003-01-01
The conformal thermal insulating blanket may have generally rigid batting material covered by an outer insulating layer formed of a high temperature resistant woven ceramic material and an inner insulating layer formed of a woven ceramic fiber material. The batting and insulating layers may be fastened together by sewing or stitching using an outer mold layer thread fabricated of a high temperature resistant material and an inner mold layer thread of a ceramic fiber material. The batting may be formed to a composite structure that may have a firmness factor sufficient to inhibit a pillowing effect after the stitching to not more than 0.03 inch. The outer insulating layer and an upper portion of the batting adjacent the outer insulating layer may be impregnated with a ceramic coating material.
Machinability of CAD-CAM materials.
Chavali, Ramakiran; Nejat, Amir H; Lawson, Nathaniel C
2017-08-01
Although new materials are available for computer-aided design and computer-aided manufacturing (CAD-CAM) fabrication, limited information is available regarding their machinability. The depth of penetration of a milling tool into a material during a timed milling cycle may indicate its machinability. The purpose of this in vitro study was to compare the tool penetration rate for 2 polymer-containing CAD-CAM materials (Lava Ultimate and Enamic) and 2 ceramic-based CAD-CAM materials (e.max CAD and Celtra Duo). The materials were sectioned into 4-mm-thick specimens (n=5/material) and polished with 320-grit SiC paper. Each specimen was loaded into a custom milling apparatus. The apparatus pushed the specimens against a milling tool (E4D Tapered 2016000) rotating at 40 000 RPM with a constant force of 0.98 N. After a 6-minute timed milling cycle, the length of each milling cut was measured with image analysis software under a digital light microscope. Representative specimens and milling tools were examined with scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy. The penetration rate of Lava Ultimate (3.21 ±0.46 mm/min) and Enamic (2.53 ±0.57 mm/min) was significantly greater than that of e.max CAD (1.12 ±0.32 mm/min) or Celtra Duo (0.80 ±0.21 mm/min) materials. SEM observations showed little tool damage, regardless of material type. Residual material was found on the tools used with polymer-containing materials, and wear of the embedding medium was seen on the tools used with the ceramic-based materials. Edge chipping was noted on cuts made in the ceramic-based materials. Lava Ultimate and Enamic have greater machinability and less edge chipping than e.max CAD and Celtra Duo. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Composite Materials for Thermal Energy Storage: Enhancing Performance through Microstructures
Ge, Zhiwei; Ye, Feng; Ding, Yulong
2014-01-01
Chemical incompatibility and low thermal conductivity issues of molten-salt-based thermal energy storage materials can be addressed by using microstructured composites. Using a eutectic mixture of lithium and sodium carbonates as molten salt, magnesium oxide as supporting material, and graphite as thermal conductivity enhancer, the microstructural development, chemical compatibility, thermal stability, thermal conductivity, and thermal energy storage performance of composite materials are investigated. The ceramic supporting material is essential for preventing salt leakage and hence provides a solution to the chemical incompatibility issue. The use of graphite gives a significant enhancement on the thermal conductivity of the composite. Analyses suggest that the experimentally observed microstructural development of the composite is associated with the wettability of the salt on the ceramic substrate and that on the thermal conduction enhancer. PMID:24591286
Silva, R V; de Brito, J; Lynn, C J; Dhir, R K
2017-10-01
This paper presents a literature review on the incorporation of municipal solid waste incinerated bottom ash as raw material in several markets, other than those where it is conventionally used, such as geotechnical applications and road pavement construction. The main findings of an ample selection of experimental investigations on the use of the bottom ash as precursor of alkali-activated materials, as an adsorbent material for the removal of hazardous elements from wastewater and landfill gases, as soil replacement in agricultural activities, as partial or complete substitute of raw materials for the manufacture of ceramic-based products, as landfill cover and as biogas production enhancer, were gathered, collated and analysed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ballistic Performance of Porous-Ceramic, Thermal-Protection-Systems
NASA Technical Reports Server (NTRS)
Christiansen, E. L.; Davis, B. A.; Miller, J. E.; Bohl, W. E.; Foreman, C. D.
2009-01-01
Porous-ceramic, thermal protection systems are used heavily in current reentry vehicles like the Space Shuttle and are currently being proposed for the next generation of manned spacecraft, Orion. These materials insulate the structural components of a spacecraft against the intense thermal environments of atmospheric reentry. Furthermore, these materials are also highly exposed to space environmental hazards like meteoroid and orbital debris impacts. This paper discusses recent impact testing up to 9 km/s, and the findings of the influence of material equation-of-state on the simulation of the impact event to characterize the ballistic performance of these materials. These results will be compared with heritage models1 for these materials developed from testing at lower velocities. Assessments of predicted spacecraft risk based upon these tests and simulations will also be discussed.
Biaxial flexural strength of Turkom-Cera core compared to two other all-ceramic systems
AL-MAKRAMANI, Bandar Mohammed Abdullah; RAZAK, Abdul Aziz Abdul; ABU-HASSAN, Mohamed Ibrahim
2010-01-01
Advances in all-ceramic systems have established predictable means of providing metal-free aesthetic and biocompatible materials. These materials must have sufficient strength to be a practical treatment alternative for the fabrication of crowns and fixed partial dentures. Objectives The aim of this study was to compare the biaxial flexural strength of three core ceramic materials. Material and methods Three groups of 10 disc-shaped specimens (16 mm diameter x 1.2 mm thickness - in accordance with ISO-6872, 1995) were made from the following ceramic materials: Turkom-Cera Fused Alumina [(Turkom-Ceramic (M) Sdn Bhd, Puchong, Selangor, Malaysia)], In-Ceram (Vita Zahnfabrik, Bad Säckingen, Baden-Württemberg, Germany) and Vitadur-N (Vita Zahnfabrik, Bad Säckingen, Baden-Württemberg, Germany), which were sintered according to the manufacturer's recommendations. The specimens were subjected to biaxial flexural strength test in a universal testing machine at a crosshead speed of 0.5 mm/min. The definitive fracture load was recorded for each specimen and the biaxial flexural strength was calculated from an equation in accordance with ISO-6872. Results The mean biaxial flexural strength values were: Turkom-Cera: 506.8±87.01 MPa, In-Ceram: 347.4±28.83 MPa and Vitadur-N: 128.7±12.72 MPa. The results were analyzed by the Levene's test and Dunnett's T3 post-hoc test (SPSS software V11.5.0 for Windows, SPSS, Chicago, IL, USA ) at a preset significance level of 5% because of unequal group variances (P<0.001). There was statistically significant difference between the three core ceramics (P<0.05). Turkom-Cera showed the highest biaxial flexural strength, followed by In-Ceram and Vitadur-N. Conclusions Turkom-Cera core had significantly higher flexural strength than In-Ceram and Vitadur-N ceramic core materials. PMID:21308292
NASA Technical Reports Server (NTRS)
Derochemont, L. Pierre; Oakes, Carlton E.; Squillante, Michael R.; Duan, Hong-Min; Hermann, Allen M.; Andrews, Robert J.; Poeppel, Roger B.; Maroni, Victor A.; Carlberg, Ingrid A.; Kelliher, Warren C.
1992-01-01
This paper reviews superconducting magnets and high T(sub c) superconducting oxide ceramic materials technology to identify areas of fundamental impasse to the fabrication of components and devices that tap what are believed to be the true potential of these new materials. High T(sub c) ceramics pose problems in fundamentally different areas which need to be solved unlike low T(sub c) materials. The authors map out an experimental plan designed to research process technologies which, if suitably implemented, should allow these deficiencies to be solved. Finally, assessments are made of where and on what regimes magnetic system designers should focus their attention to advance the practical development of systems based on these new materials.
Process for making ceramic hot gas filter
Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam
2001-01-01
A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.
Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam
1999-01-01
A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.
Low temperature joining of ceramic composites
Barton, Thomas J.; Anderson, Iver E.; Ijadi-Maghsoodi, Sina; Nosrati, Mohammad; Unal, Ozer
1999-07-13
A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix.
Low temperature joining of ceramic composites
Barton, T.J.; Anderson, I.E.; Ijadi-Maghsoodi, S.; Nosrati, M.; Unal, O.
1999-07-13
A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 C to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix. 3 figs.
Low temperature joining of ceramic composites
Barton, T.J.; Anderson, I.E.; Ijadi-Maghsoodi, S.; Nosrati, M.; Unal, O.
1999-01-12
A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix. 3 figs.
Connolly, E.S.; Forsythe, G.D.; Domanski, D.M.; Chambers, J.A.; Rajendran, G.P.
1999-05-11
A ceramic hot-gas candle filter is described having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during back pulse cleaning and is resistant to chemical degradation at high temperatures.
Polishing of silicon based advanced ceramics
NASA Astrophysics Data System (ADS)
Klocke, Fritz; Dambon, Olaf; Zunke, Richard; Waechter, D.
2009-05-01
Silicon based advanced ceramics show advantages in comparison to other materials due to their extreme hardness, wear and creep resistance, low density and low coefficient of thermal expansion. As a matter of course, machining requires high efforts. In order to reach demanded low roughness for optical or tribological applications a defect free surface is indispensable. In this paper, polishing of silicon nitride and silicon carbide is investigated. The objective is to elaborate scientific understanding of the process interactions. Based on this knowledge, the optimization of removal rate, surface quality and form accuracy can be realized. For this purpose, fundamental investigations of polishing silicon based ceramics are undertaken and evaluated. Former scientific publications discuss removal mechanisms and wear behavior, but the scientific insight is mainly based on investigations in grinding and lapping. The removal mechanisms in polishing are not fully understood due to complexity of interactions. The role of, e.g., process parameters, slurry and abrasives, and their influence on the output parameters is still uncertain. Extensive technological investigations demonstrate the influence of the polishing system and the machining parameters on the stability and the reproducibility. It is shown that the interactions between the advanced ceramics and the polishing systems is of great relevance. Depending on the kind of slurry and polishing agent the material removal mechanisms differ. The observed effects can be explained by dominating mechanical or chemo-mechanical removal mechanisms. Therefore, hypotheses to state adequate explanations are presented and validated by advanced metrology devices, such as SEM, AFM and TEM.
Method for smoothing the surface of a protective coating
Sangeeta, D.; Johnson, Curtis Alan; Nelson, Warren Arthur
2001-01-01
A method for smoothing the surface of a ceramic-based protective coating which exhibits roughness is disclosed. The method includes the steps of applying a ceramic-based slurry or gel coating to the protective coating surface; heating the slurry/gel coating to remove volatile material; and then further heating the slurry/gel coating to cure the coating and bond it to the underlying protective coating. The slurry/gel coating is often based on yttria-stabilized zirconia, and precursors of an oxide matrix. Related articles of manufacture are also described.
Monteiro, Jaiane Bandoli; Riquieri, Hilton; Prochnow, Catina; Guilardi, Luís Felipe; Pereira, Gabriel Kalil Rocha; Borges, Alexandre Luiz Souto; de Melo, Renata Marques; Valandro, Luiz Felipe
2018-06-01
To evaluate the effect of ceramic thickness on the fatigue failure load of two zirconia-reinforced lithium silicate (ZLS) glass-ceramics, adhesively cemented to a dentin analogue material. Disc-shaped specimens were allocated into 8 groups (n=25) considering two study factors: ZLS ceramic type (Vita Suprinity - VS; and Celtra Duo - CD), and ceramic thickness (1.0; 1.5; 2.0; and 2.5mm). A trilayer assembly (ϕ=10mm; thickness=3.5mm) was designed to mimic a bonded monolithic restoration. The ceramic discs were etched, silanized and luted (Variolink N) into a dentin analogue material. Fatigue failure load was determined using the Staircase method (100,000 cycles at 20Hz; initial fatigue load ∼60% of the mean monotonic load-to-failure; step size ∼5% of the initial fatigue load). A stainless-steel piston (ϕ=40mm) applied the load into the center of the specimens submerged in water. Fractographic analysis and Finite Element Analysis (FEA) were also performed. The ceramic thickness influenced the fatigue failure load for both ZLS materials: Suprinity (716N up to 1119N); Celtra (404N up to 1126N). FEA showed that decreasing ceramic thickness led to higher stress concentration on the cementing interface. Different ZLS glass-ceramic thicknesses influenced the fatigue failure load of the bonded system (i.e. the thicker the glass ceramic is, the higher the fatigue failure load will be). Different microstructures of the ZLS glass-ceramics might affect the fatigue behavior. FEA showed that the thicker the glass ceramic is, the lower the stress concentration at the tensile surface will be. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.
The effect of TiO2 concentration on properties of apatite-mullite glass-ceramics for dental use.
Fathi, Hawa M; Johnson, Anthony
2016-02-01
The aim of this study was to evaluate the effect of TiO2 concentration on the properties of apatite-mullite glass-ceramics namely strength and the chemical solubility to comply with the ISO standard recommendations for dental ceramics (BS EN ISO 6872-2008). Ten novel glass-ceramic materials were produced based on the general formula (4.5SiO2-3Al2O3-1.5P2O5-3CaO-CaF2-xTiO2) where x varied from 0.5 to 5 wt%. Glass with no TiO2 added (HG1T0.0) was used as a reference. Discs of 12 mm diameter and 1.6 mm (±0.2 mm) thickness were prepared for both biaxial flexural strength (BFS) and chemical solubility testing, in accordance with the BS EN ISO 6872-2008 for dental ceramics. All produced materials were investigated using differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Energy dispersive X-ray analysis (EDS) was also carried out on some samples to identify the element composition of samples. Increasing the concentration of TiO2 from 0.5 wt% to 2 wt% significantly (P<0.05) increased the chemical solubility of the material. With the material containing 2.5 wt% of TiO2, the solubility significantly reduced (P<0.05) and resulted in a solubility value of 228.3 μm/cm(2) and BFS value of 197.9 MPa. Increasing the TiO2 concentration more than 2.5 wt%, led to a significant (P<0.05) increase in solubility and a reduction in BFS. TiO2 is an effective agent for improving the durability and the mechanical properties of an apatite-mullite glass-ceramic only up to 2.5 wt% concentration. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Interdisciplinary research on the nature and properties of ceramic materials
NASA Technical Reports Server (NTRS)
1980-01-01
The advancement of material performance and design methodology as related to brittle materials was investigated. The processing and properties of ceramic materials as related to design requirements was also studied.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1993-01-01
The Advanced Turbine Technologies Application Project (ATTAP) is in the fifth year of a multiyear development program to bring the automotive gas turbine engine to a state at which industry can make commercialization decisions. Activities during the past year included reference powertrain design updates, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Engine design and development included mechanical design, combustion system development, alternate aerodynamic flow testing, and controls development. Design activities included development of the ceramic gasifier turbine static structure, the ceramic gasifier rotor, and the ceramic power turbine rotor. Material characterization efforts included the testing and evaluation of five candidate high temperature ceramic materials. Ceramic component process development and fabrication, with the objective of approaching automotive volumes and costs, continued for the gasifier turbine rotor, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Engine and rig fabrication, testing, and development supported improvements in ceramic component technology. Total test time in 1992 amounted to 599 hours, of which 147 hours were engine testing and 452 were hot rig testing.
Stochastic-Strength-Based Damage Simulation of Ceramic Matrix Composite Laminates
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Mital, Subodh K.; Murthy, Pappu L. N.; Bednarcyk, Brett A.; Pineda, Evan J.; Bhatt, Ramakrishna T.; Arnold, Steven M.
2016-01-01
The Finite Element Analysis-Micromechanics Analysis Code/Ceramics Analysis and Reliability Evaluation of Structures (FEAMAC/CARES) program was used to characterize and predict the progressive damage response of silicon-carbide-fiber-reinforced reaction-bonded silicon nitride matrix (SiC/RBSN) composite laminate tensile specimens. Studied were unidirectional laminates [0] (sub 8), [10] (sub 8), [45] (sub 8), and [90] (sub 8); cross-ply laminates [0 (sub 2) divided by 90 (sub 2),]s; angled-ply laminates [plus 45 (sub 2) divided by -45 (sub 2), ]s; doubled-edge-notched [0] (sub 8), laminates; and central-hole laminates. Results correlated well with the experimental data. This work was performed as a validation and benchmarking exercise of the FEAMAC/CARES program. FEAMAC/CARES simulates stochastic-based discrete-event progressive damage of ceramic matrix composite and polymer matrix composite material structures. It couples three software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/Life), and (3) the Abaqus finite element analysis program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating-unit-cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC, and Abaqus is used to model the overall composite structure. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events that incrementally progress until ultimate structural failure.
Ceramics for Molten Materials Containment, Transfer and Handling on the Lunar Surface
NASA Technical Reports Server (NTRS)
Standish, Evan; Stefanescu, Doru M.; Curreri, Peter A.
2009-01-01
As part of a project on Molten Materials Transfer and Handling on the Lunar Surface, molten materials containment samples of various ceramics were tested to determine their performance in contact with a melt of lunar regolith simulant. The test temperature was 1600 C with contact times ranging from 0 to 12 hours. Regolith simulant was pressed into cylinders with the approximate dimensions of 1.25 dia x 1.25cm height and then melted on ceramic substrates. The regolith-ceramic interface was examined after processing to determine the melt/ceramic interaction. It was found that the molten regolith wetted all oxide ceramics tested extremely well which resulted in chemical reaction between the materials in each case. Alumina substrates were identified which withstood contact at the operating temperature of a molten regolith electrolysis cell (1600 C) for eight hours with little interaction or deformation. This represents an improvement over alumina grades currently in use and will provide a lifetime adequate for electrolysis experiments lasting 24 hours or more. Two types of non-oxide ceramics were also tested. It was found that they interacted to a limited degree with the melt resulting in little corrosion. These ceramics, Sic and BN, were not wetted as well as the oxides by the melt, and so remain possible materials for molten regolith handling. Tests wing longer holding periods and larger volumes of regolith are necessary to determine the ultimate performance of the tested ceramics.
Sailer, Irena; Makarov, Nikolay Alexandrovich; Thoma, Daniel Stefan; Zwahlen, Marcel; Pjetursson, Bjarni Elvar
2015-06-01
To assess the 5-year survival of metal-ceramic and all-ceramic tooth-supported single crowns (SCs) and to describe the incidence of biological, technical and esthetic complications. Medline (PubMed), Embase, Cochrane Central Register of Controlled Trials (CENTRAL) searches (2006-2013) were performed for clinical studies focusing on tooth-supported fixed dental prostheses (FDPs) with a mean follow-up of at least 3 years. This was complimented by an additional hand search and the inclusion of 34 studies from a previous systematic review [1,2]. Survival and complication rates were analyzed using robust Poisson's regression models to obtain summary estimates of 5-year proportions. Sixty-seven studies reporting on 4663 metal-ceramic and 9434 all-ceramic SCs fulfilled the inclusion criteria. Seventeen studies reported on metal-ceramic crowns, and 54 studies reported on all-ceramic crowns. Meta-analysis of the included studies indicated an estimated survival rate of metal-ceramic SCs of 94.7% (95% CI: 94.1-96.9%) after 5 years. This was similar to the estimated 5-year survival rate of leucit or lithium-disilicate reinforced glass ceramic SCs (96.6%; 95% CI: 94.9-96.7%), of glass infiltrated alumina SCs (94.6%; 95% CI: 92.7-96%) and densely sintered alumina and zirconia SCs (96%; 95% CI: 93.8-97.5%; 92.1%; 95% CI: 82.8-95.6%). In contrast, the 5-year survival rates of feldspathic/silica-based ceramic crowns were lower (p<0.001). When the outcomes in anterior and posterior regions were compared feldspathic/silica-based ceramic and zirconia crowns exhibited significantly lower survival rates in the posterior region (p<0.0001), the other crown types performed similarly. Densely sintered zirconia SCs were more frequently lost due to veneering ceramic fractures than metal-ceramic SCs (p<0.001), and had significantly more loss of retention (p<0.001). In total higher 5 year rates of framework fracture were reported for the all-ceramic SCs than for metal-ceramic SCs. Survival rates of most types of all-ceramic SCs were similar to those reported for metal-ceramic SCs, both in anterior and posterior regions. Weaker feldspathic/silica-based ceramics should be limited to applications in the anterior region. Zirconia-based SCs should not be considered as primary option due to their high incidence of technical problems. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Philippart, Anahí; Boccaccini, Aldo R; Fleck, Claudia; Schubert, Dirk W; Roether, Judith A
2015-01-01
Inorganic scaffolds with high interconnected porosity based on bioactive glasses and ceramics are prime candidates for applications in bone tissue engineering. These materials however exhibit relatively low fracture strength and high brittleness. A simple and effective approach to improve the toughness is to combine the basic scaffold structure with polymer coatings or through the formation of interpenetrating polymer-bioactive ceramic microstructures. The polymeric phase can additionally serve as a carrier for growth factors and therapeutic drugs, thus adding biological functionalities. The present paper reviews the state-of-the art in the field of polymer coated and infiltrated bioactive inorganic scaffolds. Based on the notable combination of bioactivity, improved mechanical properties and drug or growth factor delivery capability, this scaffold type is a candidate for bone and osteochondral regeneration strategies. Remaining challenges for the improvement of the materials are discussed and opportunities to broaden the application potential of this scaffold type are also highlighted.
Planar ceramic membrane assembly and oxidation reactor system
Carolan, Michael Francis; Dyer, legal representative, Kathryn Beverly; Wilson, Merrill Anderson; Ohm, Ted R.; Kneidel, Kurt E.; Peterson, David; Chen, Christopher M.; Rackers, Keith Gerard; Dyer, deceased, Paul Nigel
2007-10-09
Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.
Planar ceramic membrane assembly and oxidation reactor system
Carolan, Michael Francis; Dyer, legal representative, Kathryn Beverly; Wilson, Merrill Anderson; Ohrn, Ted R.; Kneidel, Kurt E.; Peterson, David; Chen, Christopher M.; Rackers, Keith Gerard; Dyer, Paul Nigel
2009-04-07
Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.
Chen, Jack C.; Stawisuck, Valerie M.; Prasad, Ravi
2003-01-01
A cold isopressing method in which two or more layers of material are formed within an isopressing mold. One of the layers consists of a tape-cast film. The layers are isopressed within the isopressing mold, thereby to laminate the layers and to compact the tape-cast film. The isopressing mold can be of cylindrical configuration with the layers being coaxial cylindrical layers. The materials used in forming the layers can contain green ceramic materials and the resultant structure can be fired and sintered as necessary and in accordance with known methods to produce a finished composite, ceramic structure. Further, such green ceramic materials can be of the type that are capable of conducting hydrogen or oxygen ions at high temperature with the object of utilizing the finished composite ceramic structure as a ceramic membrane element.
Ceramic regenerator systems development program
NASA Technical Reports Server (NTRS)
Fucinari, C. A.; Rahnke, C. J.; Rao, V. D. N.; Vallance, J. K.
1980-01-01
The DOE/NASA Ceramic Regenerator Design and Reliability Program aims to develop ceramic regenerator cores that can be used in passenger car and industrial/truck gas turbine engines. The major cause of failure of early gas turbine regenerators was found to be chemical attack of the ceramic material. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability test in Ford 707 industrial gas turbine engines late in 1974. Results of 53,065 hours of turbine engine durability testing are described. Two materials, aluminum silicate and magnesium aluminum silicate, show promise. Five aluminum silicate cores attained the durability objective of 10,000 hours at 800 C (1472 F). Another aluminum silicate core shows minimal evidence of chemical attack after 8071 hours at 982 C (1800 F). Results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are included.
Eiras, José A; Gerbasi, Rosimeire B Z; Rosso, Jaciele M; Silva, Daniel M; Cótica, Luiz F; Santos, Ivair A; Souza, Camila A; Lente, Manuel H
2016-03-08
Lead free piezoelectric materials are being intensively investigated in order to substitute lead based ones, commonly used in many different applications. Among the most promising lead-free materials are those with modified NaNbO₃, such as (K, Na)NbO₃ (KNN) and (Ba, Na)(Ti, Nb)O₃ (BTNN) families. From a ceramic processing point of view, high density single phase KNN and BTNN ceramics are very difficult to sinter due to the volatility of the alkaline elements, the narrow sintering temperature range and the anomalous grain growth. In this work, Spark Plasma Sintering (SPS) and high-energy ball milling (HEBM), following heat treatments (calcining and sintering), in oxidative (O₂) atmosphere have been used to prepare single phase highly densified KNN ("pure" and Cu 2+ or Li 1+ doped), with theoretical densities ρ th > 97% and BTNN ceramics (ρ th - 90%), respectively. Using BTTN ceramics with a P 4 mm perovskite-like structure, we showed that by increasing the NaNbO₃ content, the ferroelectric properties change from having a relaxor effect to an almost "normal" ferroelectric character, while the tetragonality and grain size increase and the shear piezoelectric coefficients ( k 15 , g 15 and d 15 ) improve. For KNN ceramics, the results reveal that the values for remanent polarization as well as for most of the coercive field are quite similar among all compositions. These facts evidenced that Cu 2+ may be incorporated into the A and/or B sites of the perovskite structure, having both hardening and softening effects.
An, Jing; Song, Jinpeng; Liang, Guoxing; Gao, Jiaojiao; Xie, Juncai; Cao, Lei; Wang, Shiying; Lv, Ming
2017-01-01
The effects of HfB2 and HfN additions on the microstructures and mechanical properties of TiB2-based ceramic tool materials were investigated. The results showed that the HfB2 additive not only can inhibit the TiB2 grain growth but can also change the morphology of some TiB2 grains from bigger polygons to smaller polygons or longer ovals that are advantageous for forming a relatively fine microstructure, and that the HfN additive had a tendency toward agglomeration. The improvement of flexural strength and Vickers hardness of the TiB2-HfB2 ceramics was due to the relatively fine microstructure; the decrease of fracture toughness was ascribed to the formation of a weaker grain boundary strength due to the brittle rim phase and the poor wettability between HfB2 and Ni. The decrease of the flexural strength and Vickers hardness of the TiB2-HfN ceramics was due to the increase of defects such as TiB2 coarse grains and HfN agglomeration; the enhancement of fracture toughness was mainly attributed to the decrease of the pore number and the increase of the rim phase and TiB2 coarse grains. The toughening mechanisms of TiB2-HfB2 ceramics mainly included crack bridging and transgranular fracture, while the toughening mechanisms of TiB2-HfN ceramics mainly included crack deflection, crack bridging, transgranular fracture, and the core-rim structure. PMID:28772821
Titanium diboride ceramic fiber composites for Hall-Heroult cells
Besmann, Theodore M.; Lowden, Richard A.
1990-01-01
An improved cathode structure for Hall-Heroult cells for the electrolytic production of aluminum metal. This cathode structure is a preform fiber base material that is infiltrated with electrically conductive titanium diboride using chemical vapor infiltration techniques. The structure exhibits good fracture toughness, and is sufficiently resistant to attack by molten aluminum. Typically, the base can be made from a mat of high purity silicon carbide fibers. Other ceramic or carbon fibers that do not degrade at temperatures below about 1000 deg. C can be used.
The behavior of SiC and Si3N4 ceramics in mixed oxidation/chlorination environments
NASA Technical Reports Server (NTRS)
Marra, John E.; Kreidler, Eric R.; Jacobson, Nathan S.; Fox, Dennis S.
1989-01-01
The behavior of silicon-based ceramics in mixed oxidation/chlorination environments was studied. High pressure mass spectrometry was used to quantitatively identify the reaction products. The quantitative identification of the corrosion products was coupled with thermogravimetric analysis and thermodynamic equilibrium calculations run under similar conditions in order to deduce the mechanism of corrosion. Variations in the behavior of the different silicon-based materials are discussed. Direct evidence of the existence of silicon oxychloride compounds is presented.
Modeling and Simulation of Ceramic Arrays to Improve Ballaistic Performance
2013-09-09
targets with .30cal AP M2 projectile using SPH elements. -Model validation runs were conducted based on the DoP experiments described in reference...effect of material properties on DoP 15. SUBJECT TERMS .30cal AP M2 Projectile, 762x39 PS Projectile, SPH , Aluminum 5083, SiC, DoP Expeminets...and ceramic-faced aluminum targets with „30cal AP M2 projectile using SPH elements. □ Model validation runs were conducted based on the DoP
New Oxide Ceramic Developed for Superior High-Temperature Wear Resistance
NASA Technical Reports Server (NTRS)
Sayir, Ali; Miyoshi, Kazuhisa; Farmer, Serene C.
2003-01-01
Ceramics, for the most part, do not have inherently good tribological properties. For example friction coefficients in excess of 0.7 have been reported for silicon nitride sliding on silicon nitride or on bearing steel (ref. 1). High friction is always accompanied by considerable wear. Despite their inherently poor tribological properties, the high strength and high toughness of silicon nitride (Si3N4) ceramics has led to their successful use in tribological applications (refs. 1 to 4). The upper temperature limit for the application of Si3N4 as wear-resistant material is limited by reaction with the tribological environment (ref. 3). Silicon nitride is known to produce a thin silicon dioxide film with easy shear capability that results in low friction and low wear in a moist environment (ref. 5). At elevated temperatures, the removal of the reaction product that acts as lubricant causes the friction coefficient to increase and, consequently, the wear performance to become poor. New materials are sought that will have wear resistance superior to that of Si3N4 at elevated temperatures and in harsh environments. A new class of oxide ceramic materials has been developed with potential for excellent high-temperature wear resistance. The new material consists of a multicomponent oxide with a two-phase microstructure, in which the wear resistance of the mixed oxide is significantly higher than that of the individual constituents. This is attributed to the strong constraining effects provided by the interlocking microstructures at different length scales, to the large aspect ratio of the phases, to the strong interphase bonding, and to the residual stresses. Fretting wear tests were conducted by rubbing the new ceramic material against boron carbide (B4C). The new ceramic material produced a wear track groove on B4C, suggesting significantly higher wear resistance for the oxide ceramic. The new material did not suffer from any microstructural degradation after the wear test. The wear rate of the new ceramic material at 600 C was determined to be on the order of 10-10 mm3/N-m, which is 3 to 5 orders of magnitude lower than that for the current state-of-theart wear-resistant materials (Si3N4and B4C). The friction coefficient of the new ceramic materials is on the order of 0.4, which is significantly lower than that of silicon nitride. This new class of oxide materials has shown considerable potential for applications requiring high wear resistance at high temperatures and in harsh environments. New understanding of the wear behavior of ceramic materials is emerging as a result of the surprisingly high wear resistance of two-phase oxide ceramics. There is excellent potential for further improvements in the wear resistance of oxide ceramics through optimizing the microstructure and altering the crystallographic properties of specific oxide materials as a second phase to reduce the coefficient of friction at elevated temperatures.
Isfeld, Darren M; Aparicio, Conrado; Jones, Robert S
2014-04-01
Secondary decay (caries) under ceramic orthodontic brackets remains a significant dental problem and near infrared cross-polarization optical coherence tomography (CP-OCT) has the potential to detect underlying demineralization. The purpose of this study was to determine the effect of crystalline structure and chemical composition of ceramic brackets on CP-OCT imaging. Four ceramic brackets types, which were divided into monocrystalline and polycrystalline, were examined using CP-OCT. The results of this study demonstrated that the crystallinity of the ceramic brackets affected the 1310 nm CP-OCT imaging with the greatest attenuation seen in polycrystalline alumina brackets. The alumina polycrystalline bracket materials had significantly higher attenuation and scattering than alumina monocrystalline brackets (p < 0.05, ANOVA, Bonferroni). Additionally, bracket base morphology and composition affected NIR light attenuation. There was considerable attenuation in bracket bases that contained additive zirconium spheres (∼30 µm) and this alteration was significantly greater than the jagged alumina crystallographic alterations found in the other bracket systems (p < 0.05, ANOVA, Bonferroni). Noninvasive, near infrared (NIR) cross-polarization optical coherence tomography (CP-OCT) has potential to effectively image through portions of ceramic brackets; however, further investigation into the optical effects of resin integration in the base portion of the brackets is warranted. © 2013 Wiley Periodicals, Inc.
Oilo, Marit; Hardang, Anne D; Ulsund, Amanda H; Gjerdet, Nils R
2014-06-01
Fractures during clinical function have been reported as the major concern associated with all-ceramic dental restorations. The aim of this study was to analyze the fracture features of glass-ceramic and zirconia-based restorations fractured during clinical use. Twenty-seven crowns and onlays were supplied by dentists and dental technicians with information about type of cement and time in function, if available. Fourteen lithium disilicate glass-ceramic restorations and 13 zirconia-based restorations were retrieved and analyzed. Fractographic features were examined using optical microscopy to determine crack initiation and crack propagation of the restorations. The material comprised fractured restorations from one canine, 10 incisors, four premolars, and 11 molars. One crown was not categorized because of difficulty in orientation of the fragments. The results revealed that all core and veneer fractures initiated in the cervical margin and usually from the approximal area close to the most coronally placed curvature of the margin. Three cases of occlusal chipping were found. The margin of dental all-ceramic single-tooth restorations was the area of fracture origin. The fracture features were similar for zirconia, glass-ceramic, and alumina single-tooth restorations. Design features seem to be of great importance for fracture initiation. © 2014 Eur J Oral Sci.
PREFACE: Symposium 1: Advanced Structure Analysis and Characterization of Ceramic Materials
NASA Astrophysics Data System (ADS)
Yashima, Masatomo
2011-05-01
Preface to Symposium 1 (Advanced Structure Analysis and Characterization of Ceramic Materials) of the International Congress of Ceramics III, held 14-18 November 2010 in Osaka, Japan Remarkable developments have been made recently in the structural analysis and characterization of inorganic crystalline and amorphous materials, such as x-ray, neutron, synchrotron and electron diffraction, x-ray/neutron scattering, IR/Raman scattering, NMR, XAFS, first-principle calculations, computer simulations, Rietveld analysis, the maximum-entropy method, in situ measurements at high temperatures/pressures and electron/nuclear density analysis. These techniques enable scientists to study not only static and long-range periodic structures but also dynamic and short-/intermediate-range structures. Multi-scale characterization from the electron to micrometer levels is becoming increasingly important as a means of understanding phenomena at the interfaces, grain boundaries and surfaces of ceramic materials. This symposium has discussed the structures and structure/property relationships of various ceramic materials (electro, magnetic and optical ceramics; energy and environment related ceramics; bio-ceramics; ceramics for reliability secure society; traditional ceramics) through 38 oral presentations including 8 invited lectures and 49 posters. Best poster awards were given to six excellent poster presentations (Y-C Chen, Tokyo Institute of Technology; C-Y Chung, Tohoku University; T Stawski, University of Twente; Y Hirano, Nagoya Institute of Technology; B Bittova, Charles University Prague; Y Onodera, Kyoto University). I have enjoyed working with my friends in the ICC3 conference. I would like to express special thanks to other organizers: Professor Scott T Misture, Alfred University, USA, Professor Xiaolong Chen, Institute of Physics, CAS, China, Professor Takashi Ida, Nagoya Institute of Technology, Japan, Professor Isao Tanaka, Kyoto University, Japan. I also acknowledge the invited speakers, all the participants and organizing committee of the ICC3. I am pleased to publish the Proceedings of the Symposium 1 of ICC3. I hope that the papers contained in these Proceedings will prove helpful to Professors, researchers and students in improving the fields of Structure Analysis and Characterization of Ceramic Materials. Masatomo Yashima April 2011 Department of Chemistry and Materials Science, Graduate School of Science and Engineering, Tokyo Institute of Technology, Japan
Dispersed metal-toughened ceramics and ceramic brazing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moorhead, A.J.; Tiegs, T.N.; Lauf, R.J.
1983-01-01
An alumina (Al/sub 2/O/sub 3/) based material that contains approximately 1 vol % finely dispersed platinum or chromium was developed for use in high temperature thermal-shock resistant electrical insulators. The work at ORNL is divided into two areas: (1) development of DMT ceramics; and (2) development of brazing filler metals suitable for making ceramic-to-ceramic and ceramic-to-metal brazements. The DMT ceramics and brazements are intended for service at elevated temperatures and at high stress levels in the dirty environments of advanced heat engines. The development and characterization of DMT ceramics includes processing (powder preparation, densification and heat treatment) and detailed measurementmore » of mechanical and physical properties (strength, fracture toughness, and thermal conductivity). The brazing work includes: (1) the formulation and melting of small quantities of experimental brazing filler metals; (2) evaluation of the wetting and bonding behavior of these filler metals on Al/sub 2/O/sub 3/, partially stabilized zirconia and ..cap alpha..-SiC in a sessile drop apparatus; and (3) determine the short-term strength and fracture toughness of brazements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teixeira, Silvio R., E-mail: rainho@fct.unesp.br; Souza, Agda E.; Carvalho, Claudio L.
Glass-ceramic material prepared with sugar cane bagasse ash as one of the raw materials was characterized to determine some important properties for its application as a coating material. X-ray diffraction patterns showed that wollastonite-2M (CaSiO{sub 3}) was the major glass-ceramic phase. The Rietveld method was used to quantify the crystalline (60 wt.%) and vitreous (40 wt.%) phases in the glass-ceramic. The microstructure (determined by scanning electron microscopy) of this material had a marble appearance, showing a microporous network of elongated crystals with some areas with dendritic, feather-like ordering. Microhardness data gave a mean hardness value of 564.4 HV (Vickers-hardness), andmore » light microscopy disclosed a greenish brown colored material with a vitreous luster. - Highlights: • We studied the properties of a glass-ceramic material obtained from sugarcane ash. • This material has the appearance and hardness of natural stones. • A refining method gave information about its amorphous and crystalline phases. • This material has potential to be used as coating plates for buildings.« less
Advanced applications of numerical modelling techniques for clay extruder design
NASA Astrophysics Data System (ADS)
Kandasamy, Saravanakumar
Ceramic materials play a vital role in our day to day life. Recent advances in research, manufacture and processing techniques and production methodologies have broadened the scope of ceramic products such as bricks, pipes and tiles, especially in the construction industry. These are mainly manufactured using an extrusion process in auger extruders. During their long history of application in the ceramic industry, most of the design developments of extruder systems have resulted from expensive laboratory-based experimental work and field-based trial and error runs. In spite of these design developments, the auger extruders continue to be energy intensive devices with high operating costs. Limited understanding of the physical process involved in the process and the cost and time requirements of lab-based experiments were found to be the major obstacles in the further development of auger extruders.An attempt has been made herein to use Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) based numerical modelling techniques to reduce the costs and time associated with research into design improvement by experimental trials. These two techniques, although used widely in other engineering applications, have rarely been applied for auger extruder development. This had been due to a number of reasons including technical limitations of CFD tools previously available. Modern CFD and FEA software packages have much enhanced capabilities and allow the modelling of the flow of complex fluids such as clay.This research work presents a methodology in using Herschel-Bulkley's fluid flow based CFD model to simulate and assess the flow of clay-water mixture through the extruder and the die of a vacuum de-airing type clay extrusion unit used in ceramic extrusion. The extruder design and the operating parameters were varied to study their influence on the power consumption and the extrusion pressure. The model results were then validated using results from experimental trials on a scaled extruder which seemed to be in reasonable agreement with the former. The modelling methodology was then extended to full-scale industrial extruders. The technical and commercialsuitability of using light weight materials to manufacture extruder components was also investigated. The stress and deformation induced on the components, due to extrusion pressure, was analysed using FEA and suitable alternative materials were identified. A cost comparison was then made for different extruder materials. The results show potential of significant technical and commercial benefits to the ceramic industry.
NASA Astrophysics Data System (ADS)
Ritt, Patrick J.
The use of Ni-based superalloys in turbine engines has all but been exhausted, with operating temperatures nearing the melting point of these materials. The use of ceramics in turbine engines, particularly ceramic matrix composites such as SiC/C and SiC/SiC, is of interest due to their low density and attractive mechanical properties at elevated temperatures. The same materials are also in consideration for leading edges on hypersonic vehicles. However, SiC-based composites degrade in high temperature environments with low partial pressures of oxygen due to active oxidation, as well as high temperature environments containing water or sand. The need for a protective external coating for SiC-based composites in service is obvious. To date, no coating investigated for SiC/C or SiC/SiC has been proven to be resistant to oxidation and corrosion at intermediate and high temperatures, as well as in environments deficient in oxygen. The Mo-Si-B coating shows great promise in this area, having been proven resistant to attack from oxidation at extreme temperatures, from water vapor and from calcia-magnesia-aluminosilicate (CMAS). The adaptation of the Mo-Si-B coating for ceramic materials is presented in detail here. Evaluation of the coating under a range of oxidation conditions as well as simulated re-entry conditions confirms the efficacy of the Mo-Si-B based coating as protection from catastrophic failure. The key to the oxidation and corrosion resistance is a robust external aluminoborosilica glass layer that forms and flows quickly to cover the substrate, even under the extreme simulated re-entry conditions. Suppression of active oxidation of SiC, which may occur during atmospheric re-entry and hypersonic flight trajectories, has also been examined. In order to adapt the Mo-Si-B based coating to low partial pressures of oxygen and elevated temperatures, controlled amounts of Al were added to the Mo-Si-B based coating. The resulting coating decreased the inward diffusion of oxygen with an external Al2O3 layer and effectively reduced the activity of Si in the underlying glass. Thus, the Mo-Si-B based coating is established as a viable protective coating for oxidation and corrosion protection for next-generation aerospace and aeronautical materials.
Bismuth Sodium Titanate Based Materials for Piezoelectric Actuators
Reichmann, Klaus; Feteira, Antonio; Li, Ming
2015-01-01
The ban of lead in many electronic products and the expectation that, sooner or later, this ban will include the currently exempt piezoelectric ceramics based on Lead-Zirconate-Titanate has motivated many research groups to look for lead-free substitutes. After a short overview on different classes of lead-free piezoelectric ceramics with large strain, this review will focus on Bismuth-Sodium-Titanate and its solid solutions. These compounds exhibit extraordinarily high strain, due to a field induced phase transition, which makes them attractive for actuator applications. The structural features of these materials and the origin of the field-induced strain will be revised. Technologies for texturing, which increases the useable strain, will be introduced. Finally, the features that are relevant for the application of these materials in a multilayer design will be summarized. PMID:28793724
Preliminary results on complex ceramic layers deposition by atmospheric plasma spraying
NASA Astrophysics Data System (ADS)
Florea, Costel; Bejinariu, Costicǎ; Munteanu, Corneliu; Cimpoeşu, Nicanor
2017-04-01
In this article we obtain thin layers from complex ceramic powders using industrial equipment based on atmospheric plasma spraying. We analyze the influence of the substrate material roughness on the quality of the thin layers using scanning electron microscopy (SEM) and X-ray dispersive energy analyze (EDAX). Preliminary results present an important dependence between the surface state and the structural and chemical homogeneity.
Influence of abutment materials on the resultant color of heat-pressed lithium disilicate ceramics.
Shimada, Kazuki; Nakazawa, Motoko; Kakehashi, Yoshiyuki; Matsumura, Hideo
2006-03-01
The purpose of this study was to evaluate the influence of abutment materials on the color of IPS Empress 2 ceramic coping with different thicknesses. Ceramic coping specimens (12.0x12.0x0.8-2.0 mm) were fabricated from IPS Empress 2 material (Ingot-100, n=5/group). Abutment specimens were fabricated from a build-up composite, a gold alloy, or a silver-palladium alloy. Color was evaluated using a colorimeter according to the CIE L*a*b* system. The L*a*b* values of the ceramic coping specimens of different thicknesses on each abutment specimen were measured. Following which, the color difference (deltaE*ab) values between the ceramic coping specimens on various abutment specimens were calculated. Significant differences in deltaE*ab value were observed among different abutment specimens at certain ceramic coping thicknesses (P<0.05). Thus, it was concluded that the color of IPS Empress 2 coping material was influenced significantly by both the thickness of the coping and the color of the abutment material.
NASA Technical Reports Server (NTRS)
Jadaan, Osama M.; Powers, Lynn M.; Gyekenyesi, John P.
1998-01-01
High temperature and long duration applications of monolithic ceramics can place their failure mode in the creep rupture regime. A previous model advanced by the authors described a methodology by which the creep rupture life of a loaded component can be predicted. That model was based on the life fraction damage accumulation rule in association with the modified Monkman-Grant creep ripture criterion However, that model did not take into account the deteriorating state of the material due to creep damage (e.g., cavitation) as time elapsed. In addition, the material creep parameters used in that life prediction methodology, were based on uniaxial creep curves displaying primary and secondary creep behavior, with no tertiary regime. The objective of this paper is to present a creep life prediction methodology based on a modified form of the Kachanov-Rabotnov continuum damage mechanics (CDM) theory. In this theory, the uniaxial creep rate is described in terms of stress, temperature, time, and the current state of material damage. This scalar damage state parameter is basically an abstract measure of the current state of material damage due to creep deformation. The damage rate is assumed to vary with stress, temperature, time, and the current state of damage itself. Multiaxial creep and creep rupture formulations of the CDM approach are presented in this paper. Parameter estimation methodologies based on nonlinear regression analysis are also described for both, isothermal constant stress states and anisothermal variable stress conditions This creep life prediction methodology was preliminarily added to the integrated design code CARES/Creep (Ceramics Analysis and Reliability Evaluation of Structures/Creep), which is a postprocessor program to commercially available finite element analysis (FEA) packages. Two examples, showing comparisons between experimental and predicted creep lives of ceramic specimens, are used to demonstrate the viability of this methodology and the CARES/Creep program.
Boron-containing organosilane polymers and ceramic materials thereof
NASA Technical Reports Server (NTRS)
Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)
1988-01-01
The present invention relates to organic silicon-boron polymers which upon pyrolysis produce high-temperature ceramic materials. More particularly, it relates to the polyorganoborosilanes containing -Si-B- bonds which generate high-temperature ceramic materials (e.g., SiC, SiB4, B4C) upon thermal degradation. The process for preparing these organic silicon-boron polymer precursors are also part of the invention.
Transparent garnet ceramic scintillators for gamma-ray detection
NASA Astrophysics Data System (ADS)
Wang, Yimin; Baldoni, Gary; Rhodes, William H.; Brecher, Charles; Shah, Ananya; Shirwadkar, Urmila; Glodo, Jarek; Cherepy, Nerine; Payne, Stephen
2012-10-01
Lanthanide gallium/aluminum-based garnets have a great potential as host structures for scintillation materials for medical imaging. Particularly attractive features are their high density, chemical radiation stability and more importantly, their cubic structure and isotropic optical properties, which allow them to be fabricated into fully transparent, highperformance polycrystalline optical ceramics. Lutetium/gadolinium aluminum/gallium garnets (described by formulas ((Gd,Lu)3(Al,Ga)5O12:Ce, Gd3(Al,Ga)5O12:Ce and Lu3Al5O12:Pr)) feature high effective atomic number and good scintillation properties, which make them particularly attractive for Positron Emission Tomography (PET) and other γ- ray detection applications. The ceramic processing route offers an attractive alternative to single crystal growth for obtaining scintillator materials at relatively low temperatures and at a reasonable cost, with flexibility in dimension control as well as activator concentration adjustment. In this study, optically transparent polycrystalline ceramics mentioned above were prepared by the sintering-HIP approach, employing nano-sized starting powders. The properties and microstructures of the ceramics were controlled by varying the processing parameters during consolidation. Single-phase, high-density, transparent specimens were obtained after sintering followed by a pressure-assisted densification process, i.e. hot-isostatic-pressing. The transparent ceramics displayed high contact and distance transparency as well as high light yield as high as 60,000-65,000 ph/MeV under gamma-ray excitation, which is about 2 times that of a LSO:Ce single crystal. The excellent scintillation and optical properties make these materials promising candidates for medical imaging and γ-ray detection applications.
Optical properties of base dentin ceramics for all-ceramic restorations.
Shiraishi, Takanobu; Wood, Duncan J; Shinozaki, Nobuya; van Noort, Richard
2011-02-01
The study was conducted to compare the optical parameters of VM7(®) M-shade base dentin ceramics (VITA, Germany) for all ceramic restorations to the chemical composition across the 3D-MASTER(®) shade system. Three disc samples, 13 mm diameter and 1.4 mm thickness, were produced for each M-shade following the manufacturer's instructions. Each disc was ground and polished to a thickness of 1.0 mm. Spectral light transmittance and reflectance data were recorded in the visible spectrum under the standard illuminant D65 and 2° observer at 10 nm intervals by using a computer-controlled spectrophotometer. Opacity, translucency and opalescence parameters were determined for each sample. (1) Spectral transmittance and reflectance in the short-wavelength range systematically decreased with increasing chroma number (M1, M2, M3) when compared within the same value (lightness) group. (2) Spectral transmittance and reflectance decreased systematically across the whole visible spectrum with increasing value group number when compared within the same chroma group. (3) Analysis of relationship between chemical composition and various optical parameters for all the samples showed the significant contribution of ZrO₂ and Y₂O₃ substances to optical properties of the present material. Systematic variations in optical properties of VM7(®) M-shade base dentin ceramics were observed throughout the 3D-MASTER(®) shade system and were suggested to be caused by the fine structure of the sample which can interfere with shorter wavelengths in the visible spectrum. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Quantitative analysis of enamel on debonded orthodontic brackets.
Cochrane, Nathan J; Lo, Thomas W G; Adams, Geoffrey G; Schneider, Paul M
2017-09-01
Iatrogenic damage to the tooth surface in the form of enamel tearouts can occur during removal of fixed orthodontic appliances. The aim of this study was to assess debonded metal and ceramic brackets attached with a variety of bonding materials to determine how frequently this type of damage occurs. Eighty-one patients close to finishing fixed orthodontic treatment were recruited. They had metal brackets bonded with composite resin and a 2-step etch-and-bond technique or ceramic brackets bonded with composite resin and a 2-step etch-and- bond technique, and composite resin with a self-etching primer or resin-modified glass ionomer cement. Debonded brackets were examined by backscattered scanning electron microscopy with energy dispersive x-ray spectroscopy to determine the presence and area of enamel on the base pad. Of the 486 brackets collected, 26.1% exhibited enamel on the bonding material on the bracket base pad. The incidences of enamel tearouts for each group were metal brackets, 13.3%; ceramic brackets, 30.2%; composite resin with self-etching primer, 38.2%; and resin-modified glass ionomer cement, 21.2%. The percentage of the bracket base pad covered in enamel was highly variable, ranging from 0% to 46.1%. Enamel damage regularly occurred during the debonding process with the degree of damage being highly variable. Damage occurred more frequently when ceramic brackets were used (31.9%) compared with metal brackets (13.3%). Removal of ceramic brackets bonded with resin-modified glass ionomer cement resulted in less damage compared with the resin bonding systems. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Process of making porous ceramic materials with controlled porosity
Anderson, Marc A.; Ku, Qunyin
1993-01-01
A method of making metal oxide ceramic material is disclosed by which the porosity of the resulting material can be selectively controlled by manipulating the sol used to make the material. The method can be used to make a variety of metal oxide ceramic bodies, including membranes, but also pellets, plugs or other bodies. It has also been found that viscous sol materials can readily be shaped by extrusion into shapes typical of catalytic or adsorbent bodies used in industry, to facilitate the application of such materials for catalytic and adsorbent applications.
The Role of Ceramics in a Resurgent Nuclear Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marra, J
2006-02-28
With fuel oil and natural gas prices near record highs and worldwide energy demands increasing at an alarming rate, there is growing interest in revitalization of the nuclear power industry within the United States and across the globe. Ceramic materials have long played a very important part in the commercial nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced fuel cycles that minimize waste and increase proliferation resistance, ceramic materials will play an even larger role. Many of the advanced reactor concepts being evaluated operatemore » at high-temperature requiring the use of durable, heat-resistant materials. Ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, ceramic processes are also being applied to fuel reprocessing operations. Ceramic materials continue to provide a vital contribution in ''closing the fuel cycle'' by stabilization of associated low-level and high-level wastes in highly durable grout, ceramics, and glass. In the next five years, programs that are currently in the conceptual phase will begin laboratory- and engineering-scale demonstrations. This will require production-scale demonstrations of several ceramic technologies from fuel form development to advanced stabilization methods. Within the next five to ten years, these demonstrations will move to even larger scales and will also include radioactive demonstrations of these advanced technologies. These radioactive demonstrations are critical to program success and will require advances in ceramic materials associated with nuclear energy applications.« less
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1989-01-01
ATTAP activities during the past year were highlighted by an extensive materials assessment, execution of a reference powertrain design, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, component rig design and fabrication, test-bed engine fabrication, and hot gasifier rig and engine testing. Materials assessment activities entailed engine environment evaluation of domestically supplied radial gasifier turbine rotors that were available at the conclusion of the Advanced Gas Turbine (AGT) Technology Development Project as well as an extensive survey of both domestic and foreign ceramic suppliers and Government laboratories performing ceramic materials research applicable to advanced heat engines. A reference powertrain design was executed to reflect the selection of the AGT-5 as the ceramic component test-bed engine for the ATTAP. Test-bed engine development activity focused on upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1371 C (2500 F) structural ceramic component test-bed engine. Ceramic component design activities included the combustor, gasifier turbine static structure, and gasifier turbine rotor. The materials and component characterization efforts have included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities were initiated for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig development activities included combustor, hot gasifier, and regenerator rigs. Test-bed engine fabrication activities consisted of the fabrication of an all-new AGT-5 durability test-bed engine and support of all engine test activities through instrumentation/build/repair. Hot gasifier rig and test-bed engine testing activities were performed.
Addition of a pontic to all-ceramic Turkom-Cera fixed partial denture restorations.
Uludag, Bulent; Tokar, Emre; Polat, Serdar
2013-04-01
High-strength all-ceramic materials are commonly used in dentistry. When complications occur in an all-ceramic restoration, the restoration is usually replaced. This article describes the time-saving ability and cost-effectiveness of this novel technique for the addition of a pontic in two complicated clinical cases. Turkom-Cera(™) [Turkom-Ceramic (M) Sdn. Bhd.] with aluminum oxide (99.98%) is an all-ceramic system that offers the option of addition of a new pontic to the sintered framework. The new pontic was cut off from an alumina blank [Turkom-Ceramic (M) Sdn. Bhd.], moistened, and attached to the framework using alumina gel [Turkom-Ceramic (M) Sdn. Bhd.]. The framework was veneered with veneering porcelain (Vita VM 7; VITA Zahnfabrik). The two cases presented here involving the addition of a pontic to sintered framework were followed up for at least 1 year. No complication was detected or reported by the patients. Alumina- and zirconia-based ceramics are particularly suitable for for all-ceramic restorations in high-stress bearing areas. However, replacement of a failed all-ceramic restoration is not the most practical solution, considering both cost and tooth-related factors. This attractive feature of the Turkom-Cera allows the repair of a fractured ceramic coping or the addition of a new pontic to restorations.
Addition of a pontic to all-ceramic Turkom-Cera fixed partial denture restorations
Uludag, Bulent; Tokar, Emre; Polat, Serdar
2013-01-01
High-strength all-ceramic materials are commonly used in dentistry. When complications occur in an all-ceramic restoration, the restoration is usually replaced. This article describes the time-saving ability and cost-effectiveness of this novel technique for the addition of a pontic in two complicated clinical cases. Turkom-Cera™ [Turkom-Ceramic (M) Sdn. Bhd.] with aluminum oxide (99.98%) is an all-ceramic system that offers the option of addition of a new pontic to the sintered framework. The new pontic was cut off from an alumina blank [Turkom-Ceramic (M) Sdn. Bhd.], moistened, and attached to the framework using alumina gel [Turkom-Ceramic (M) Sdn. Bhd.]. The framework was veneered with veneering porcelain (Vita VM 7; VITA Zahnfabrik). The two cases presented here involving the addition of a pontic to sintered framework were followed up for at least 1 year. No complication was detected or reported by the patients. Alumina- and zirconia-based ceramics are particularly suitable for for all-ceramic restorations in high-stress bearing areas. However, replacement of a failed all-ceramic restoration is not the most practical solution, considering both cost and tooth-related factors. This attractive feature of the Turkom-Cera allows the repair of a fractured ceramic coping or the addition of a new pontic to restorations. PMID:24883033
Bioactive calcium pyrophosphate glasses and glass-ceramics.
Kasuga, Toshihiro
2005-01-01
Calcium phosphate glass-based materials in the pyrophosphate region are briefly reviewed. Calcium pyrophosphate glasses can be prepared by including a small amount of TiO(2) (
Compaction Behavior of Granular Materials
NASA Astrophysics Data System (ADS)
Endicott, Mark R.; Kenkre, V. M.; Glass, S. Jill; Hurd, Alan J.
1996-03-01
We report the results of our recent study of compaction of granular materials. A theoretical model is developed for the description of the compaction of granular materials exemplified by granulated ceramic powders. Its predictions are compared to observations of uniaxial compaction tests of ceramic granules of PMN-PT, spray dried alumina and rutile. The theoretical model employs a volume-based statistical mechanics treatment and an activation analogy. Results of a computer simulation of random packing of discs in two dimensions are also reported. The effect of type of particle size distribution and other parameters of that distribution on the calculated quantities are discussed. We examine the implications of the results of the simulation for the theoretical model.
Optical parametric oscillation in a random poly-crystalline medium: ZnSe ceramic
NASA Astrophysics Data System (ADS)
Ru, Qitian; Kawamori, Taiki; Lee, Nathaniel; Chen, Xuan; Zhong, Kai; Mirov, Mike; Vasilyev, Sergey; Mirov, Sergey B.; Vodopyanov, Konstantin L.
2018-02-01
We demonstrate an optical parametric oscillator (OPO) based on random phase matching in a polycrystalline χ(2) material, ZnSe. The subharmonic OPO utilized a 1.5-mm-long polished ZnSe ceramic sample placed at the Brewster's angle and was synchronously pumped by a Kerr-lens mode-locked Cr:ZnS laser with a central wavelength of 2.35 μm, a pulse duration of 62 fs, and a repetition frequency of 79 MHz. The OPO had a 90-mW pump threshold, and produced an ultrabroadband spectrum spanning 3-7.5 μm. The observed pump depletion was as high as 79%. The key to success in achieving the OPO action was choosing the average grain size of the ZnSe ceramic to be close to the coherence length ( 100 μm) for our 3-wave interaction. This is the first OPO that uses random polycrystalline material with quadratic nonlinearity and the first OPO based on ZnSe. Very likely, random phase matching in ZnSe and similar random polycrystalline materials (ZnS, CdS, CdSe, GaP) represents a viable route for generating few-cycle pulses and multi-octave frequency combs, thanks to a very broadband nonlinear response.
Abradable dual-density ceramic turbine seal system
NASA Technical Reports Server (NTRS)
Clingman, D. L.; Schechter, B.; Cross, K. R.; Cavanagh, J. R.
1981-01-01
A plasma sprayed dual density ceramic abradable seal system for direct application to the HPT seal shroud of small gas turbine engines. The system concept is based on the thermal barrier coating and depends upon an additional layer of modified density ceramic material adjacent to the gas flow path to provide the desired abradability. This is achieved by codeposition of inert fillers with yttria stabilized zirconia (YSZ) to interrupt the continuity of the zirconia struture. The investigation of a variety of candidate fillers, with hardness values as low as 2 on Moh's scale, led to the conclusion that solid filler materials in combination with a YSZ matrix, regardless of their hardness values, have a propensity for compacting rather than shearing as originally expected. The observed compaction is accompanied by high energy dissipation in the rub interaction, usually resulting in the adhesive transfer of blade material to the stationary seal member. Two YSZ based coating systems which incorported hollow alumino silicate spheres as density reducing agents were surveyed over the entire range of compositions from 100 percent filler to 100 percent YSZ. Abradability and erosion characteristics were determined, hardness and permeability characterized, and engine experience acquired with several system configurations.
Ceramic strengthening by tuning the elastic moduli of resin-based luting agents.
Spazzin, Aloísio O; Bacchi, Ataís; Alessandretti, Rodrigo; Santos, Mateus B; Basso, Gabriela R; Griggs, Jason; Moraes, Rafael R
2017-03-01
Resin-based luting agents (RBLAs) with tuned elastic moduli (E) were prepared and their influence on the strengthening, reliability, and mode of failure of luted feldspar ceramic was investigated. RBLAs with low E (2.6GPa), intermediate E (6.6GPa), and high E (13.3GPa) were prepared and used to coat acid-etched ceramic disks. Positive (untreated ceramic) and negative (acid-etched ceramic) control groups were tested. The response variables (n=30) were biaxial flexural strength (σ bf , MPa), characteristic strength (σ 0 , MPa), and Weibull modulus at the ceramic surface (z=0) and luting agent surface (z=-t 2 ). A 3D finite element analysis simulated the biaxial flexural test. Fractographic analysis and morphology of the bonded interfaces were analyzed using scanning electron microscopy. The RBLAs improved σ bf and σ 0 at z=0, particularly those with intermediate and high E, whereas the mechanical reliability was only affected in the negative control. At z=-t 2 , differences between all RBLAs were observed but the structural reliability was independent of the RBLA tested. Increasing E of the RBLA was associated with increased stress concentration at the RBLA and reduced stresses reaching the ceramic. Failures originated on the ceramic surface at the ceramic-cement interface. In the high E group, failure sometimes originated from the RBLA free surface. All RBLAs completely filled the ceramic irregularities. Increased E of the RBLA reduced the variability of strength, the stress reaching the ceramic structure, and sometimes altered the origin of failure. The use of high E RBLAs seems beneficial for luting feldspar ceramics. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resin-composite blocks for dental CAD/CAM applications.
Ruse, N D; Sadoun, M J
2014-12-01
Advances in digital impression technology and manufacturing processes have led to a dramatic paradigm shift in dentistry and to the widespread use of computer-aided design/computer-aided manufacturing (CAD/CAM) in the fabrication of indirect dental restorations. Research and development in materials suitable for CAD/CAM applications are currently the most active field in dental materials. Two classes of materials are used in the production of CAD/CAM restorations: glass-ceramics/ceramics and resin composites. While glass-ceramics/ceramics have overall superior mechanical and esthetic properties, resin-composite materials may offer significant advantages related to their machinability and intra-oral reparability. This review summarizes recent developments in resin-composite materials for CAD/CAM applications, focusing on both commercial and experimental materials. © International & American Associations for Dental Research.
Wen, Qingbo; Xu, Yeping; Xu, Binbin; Fasel, Claudia; Guillon, Olivier; Buntkowsky, Gerd; Yu, Zhaoju; Riedel, Ralf; Ionescu, Emanuel
2014-11-21
A novel single-source precursor was synthesized by the reaction of an allyl hydrido polycarbosilane (SMP10) and tetrakis(dimethylamido)hafnium(iv) (TDMAH) for the purpose of preparing dense monolithic SiC/HfC(x)N(1-x)-based ultrahigh temperature ceramic nanocomposites. The materials obtained at different stages of the synthesis process were characterized via Fourier transform infrared (FT-IR) as well as nuclear magnetic resonance (NMR) spectroscopy. The polymer-to-ceramic transformation was investigated by means of MAS NMR and FT-IR spectroscopy as well as thermogravimetric analysis (TGA) coupled with in situ mass spectrometry. Moreover, the microstructural evolution of the synthesized SiHfCN-based ceramics annealed at different temperatures ranging from 1300 °C to 1800 °C was characterized by elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). Based on its high temperature behavior, the amorphous SiHfCN-based ceramic powder was used to prepare monolithic SiC/HfC(x)N(1-x)-based nanocomposites using the spark plasma sintering (SPS) technique. The results showed that dense monolithic SiC/HfC(x)N(1-x)-based nanocomposites with low open porosity (0.74 vol%) can be prepared successfully from single-source precursors. The average grain size of both HfC0.83N0.17 and SiC phases was found to be less than 100 nm after SPS processing owing to a unique microstructure: HfC0.83N0.17 grains were embedded homogeneously in a β-SiC matrix and encapsulated by in situ formed carbon layers which acted as a diffusion barrier to suppress grain growth. The segregated Hf-carbonitride grains significantly influenced the electrical conductivity of the SPS processed monolithic samples. While Hf-free polymer-derived SiC showed an electrical conductivity of ca. 1.8 S cm(-1), the electrical conductivity of the Hf-containing material was analyzed to be ca. 136.2 S cm(-1).
A portable high-power diode laser-based single-stage ceramic tile grout sealing system
NASA Astrophysics Data System (ADS)
Lawrence, J.; Schmidt, M. J. J.; Li, L.; Edwards, R. E.; Gale, A. W.
2002-02-01
By means of a 60 W high-power diode laser (HPDL) and a specially developed grout material the void between adjoining ceramic tiles has been successfully sealed. A single-stage process has been developed which uses a crushed ceramic tile mix to act as a tough, inexpensive bulk substrate and a glazed enamel surface to provide an impervious surface glaze. The single-stage ceramic tile grout sealing process yielded seals produced in normal atmospheric conditions that displayed no discernible cracks and porosities. The single-stage grout is simple to formulate and easy to apply. Tiles were successfully sealed with power densities as low as 200 kW/ mm2 and at rates of up to 600 mm/ min. Bonding of the enamel to the crushed ceramic tile mix was identified as being primarily due to van der Waals forces and, on a very small scale, some of the crushed ceramic tile mix material dissolving into the glaze. In terms of mechanical, physical and chemical characteristics, the single-stage ceramic tile grout was found to be far superior to the conventional epoxy tile grout and, in many instances, matched and occasionally surpassed that of the ceramic tiles themselves. What is more, the development of a hand-held HPDL beam delivery unit and the related procedures necessary to lead to the commercialisation of the single-stage ceramic tile grout sealing process are presented. Further, an appraisal of the potential hazards associated with the use of the HPDL in an industrial environment and the solutions implemented to ensure that the system complies with the relevant safety standards are given.
Properties and Applications of High Emissivity Composite Films Based on Far-Infrared Ceramic Powder
Xiong, Yabo; Huang, Shaoyun; Wang, Wenqi; Liu, Xinghai; Li, Houbin
2017-01-01
Polymer matrix composite materials that can emit radiation in the far-infrared region of the spectrum are receiving increasing attention due to their ability to significantly influence biological processes. This study reports on the far-infrared emissivity property of composite films based on far-infrared ceramic powder. X-ray fluorescence spectrometry, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray powder diffractometry were used to evaluate the physical properties of the ceramic powder. The ceramic powder was found to be rich in aluminum oxide, titanium oxide, and silicon oxide, which demonstrate high far-infrared emissivity. In addition, the micromorphology, mechanical performance, dynamic mechanical properties, and far-infrared emissivity of the composite were analyzed to evaluate their suitability for strawberry storage. The mechanical properties of the far-infrared radiation ceramic (cFIR) composite films were not significantly influenced (p ≥ 0.05) by the addition of the ceramic powder. However, the dynamic mechanical analysis (DMA) properties of the cFIR composite films, including a reduction in damping and shock absorption performance, were significant influenced by the addition of the ceramic powder. Moreover, the cFIR composite films showed high far-infrared emissivity, which has the capability of prolonging the storage life of strawberries. This research demonstrates that cFIR composite films are promising for future applications. PMID:29186047
Properties and Applications of High Emissivity Composite Films Based on Far-Infrared Ceramic Powder.
Xiong, Yabo; Huang, Shaoyun; Wang, Wenqi; Liu, Xinghai; Li, Houbin
2017-11-29
Polymer matrix composite materials that can emit radiation in the far-infrared region of the spectrum are receiving increasing attention due to their ability to significantly influence biological processes. This study reports on the far-infrared emissivity property of composite films based on far-infrared ceramic powder. X-ray fluorescence spectrometry, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray powder diffractometry were used to evaluate the physical properties of the ceramic powder. The ceramic powder was found to be rich in aluminum oxide, titanium oxide, and silicon oxide, which demonstrate high far-infrared emissivity. In addition, the micromorphology, mechanical performance, dynamic mechanical properties, and far-infrared emissivity of the composite were analyzed to evaluate their suitability for strawberry storage. The mechanical properties of the far-infrared radiation ceramic (cFIR) composite films were not significantly influenced ( p ≥ 0.05) by the addition of the ceramic powder. However, the dynamic mechanical analysis (DMA) properties of the cFIR composite films, including a reduction in damping and shock absorption performance, were significant influenced by the addition of the ceramic powder. Moreover, the cFIR composite films showed high far-infrared emissivity, which has the capability of prolonging the storage life of strawberries. This research demonstrates that cFIR composite films are promising for future applications.
Encapsulation of thermal energy storage media
Goswami, Dharendra Yogi; Stefanakos, Elias K.; Jotshi, Chand K.; Dhau, Jaspreet
2018-01-30
In one embodiment, a method for fabricating a ceramic phase change material capsule includes forming a hollow ceramic capsule body having a filling hole, filling the ceramic capsule body with one or more phase change materials via the filling hole, and closing and sealing the filling hole.
Pietrzyńska, Monika; Zembrzuska, Joanna; Tomczak, Rafał; Mikołajczyk, Jakub; Rusińska-Roszak, Danuta; Voelkel, Adam; Buchwald, Tomasz; Jampílek, Josef; Lukáč, Miloš; Devínsky, Ferdinand
2016-10-10
A method based on experimental and in silico evaluations for investigating interactions of organic phosphates and phosphonates with hydroxyapatite was developed. This quick and easy method is used for determination of differences among organophosphorus compounds of various structures in their mineral binding affinities. Empirical sorption evaluation was carried out using liquid chromatography with tandem mass spectrometry or UV-VIS spectroscopy. Raman spectroscopy was used to confirm sorption of organic phosphates and phosphonates on hydroxyapatite. Polymer-ceramic monolithic material and bulk hydroxyapatite were applied as sorbent materials. Furthermore, a Polymer-ceramic Monolithic In-Needle Extraction device was used to investigate both sorption and desorption steps. Binding energies were computed from the fully optimised structures utilising Density Functional Theory (DFT) at B3LYP/6-31+G(d,p) level. Potential pharmacologic and toxic effects of the tested compounds were estimated by the Prediction of the Activity Spectra of Substances using GeneXplain software. Copyright © 2016 Elsevier B.V. All rights reserved.