Hydridosiloxanes as precursors to ceramic products
Blum, Yigal D.; Johnson, Sylvia M.; Gusman, Michael I.
1997-01-01
A method is provided for preparing ceramic precursors from hydridosiloxane starting materials and then pyrolyzing these precursors to give rise to silicious ceramic materials. Si--H bonds present in the hydridosiloxane starting materials are catalytically activated, and the activated hydrogen atoms may then be replaced with nonhydrogen substituents. These preceramic materials are pyrolyzed in a selected atmosphere to give the desired ceramic product. Ceramic products which may be prepared by this technique include silica, silicon oxynitride, silicon carbide, metal silicates, and mullite.
Hydridosiloxanes as precursors to ceramic products
Blum, Y.D.; Johnson, S.M.; Gusman, M.I.
1997-06-03
A method is provided for preparing ceramic precursors from hydridosiloxane starting materials and then pyrolyzing these precursors to give rise to silicious ceramic materials. Si-H bonds present in the hydridosiloxane starting materials are catalytically activated, and the activated hydrogen atoms may then be replaced with nonhydrogen substituents. These preceramic materials are pyrolyzed in a selected atmosphere to give the desired ceramic product. Ceramic products which may be prepared by this technique include silica, silicon oxynitride, silicon carbide, metal silicates, and mullite.
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay; Salem, J. A.; Gray, Hugh R. (Technical Monitor)
2002-01-01
Silicon carbide based, environment friendly, biomorphic ceramics have been fabricated by the pyrolysis and infiltration of natural wood (maple and mahogany) precursors. This technology provides an eco-friendly route to advanced ceramic materials. These biomorphic silicon carbide ceramics have tailorable properties and behave like silicon carbide based materials manufactured by conventional approaches. The elastic moduli and fracture toughness of biomorphic ceramics strongly depend on the properties of starting wood preforms and the degree of molten silicon infiltration. Mechanical properties of silicon carbide ceramics fabricated from maple wood precursors indicate the flexural strengths of 3441+/-58 MPa at room temperature and 230136 MPa at 1350C. Room temperature fracture toughness of the maple based material is 2.6 +/- 0.2 MPa(square root of)m while the mahogany precursor derived ceramics show a fracture toughness of 2.0 +/- 0.2 Mpa(square root of)m. The fracture toughness and the strength increase as the density of final material increases. Fractographic characterization indicates the failure origins to be pores and chipped pockets of silicon.
Method for Waterproofing Ceramic Materials
NASA Technical Reports Server (NTRS)
Cagliostro, Domenick E. (Inventor); Hsu, Ming-Ta S. (Inventor)
1998-01-01
Hygroscopic ceramic materials which are difficult to waterproof with a silane, substituted silane or silazane waterproofing agent, such as an alumina containing fibrous, flexible and porous, fibrous ceramic insulation used on a reentry space vehicle, are rendered easy to waterproof if the interior porous surface of the ceramic is first coated with a thin coating of silica. The silica coating is achieved by coating the interior surface of the ceramic with a silica precursor converting the precursor to silica either in-situ or by oxidative pyrolysis and then applying the waterproofing agent to the silica coated ceramic. The silica precursor comprises almost any suitable silicon containing material such as a silane, silicone, siloxane, silazane and the like applied by solution, vapor deposition and the like. If the waterproofing is removed by e.g., burning, the silica remains and the ceramic is easily rewaterproofed. An alumina containing TABI insulation which absorbs more that five times its weight of water, absorbs less than 10 wt. % water after being waterproofed according to the method of the invention.
NASA Astrophysics Data System (ADS)
Cortez, E.; Remsen, E.; Chlanda, V.; Wideman, T.; Zank, G.; Carrol, P.; Sneddon, L.
1998-06-01
Boron Nitride, BN, and composite SiNCB ceramic fibers are important structural materials because of their excellent thermal and oxidative stabilities. Consequently, polymeric materials as precursors to ceramic composites are receiving increasing attention. Characterization of these materials requires the ability to evaluate simultaneous molecular weight and compositional heterogeneity within the polymer. Size exclusion chromatography equipped with viscometric and refractive index detection as well as coupled to a LC-transform device for infrared absorption analysis has been employed to examine these heterogeneities. Using these combined approaches, the solution properties and the relative amounts of individual functional groups distributed through the molecular weight distribution of SiNCB and BN polymeric precursors were characterized.
Ceramic fibers from Si-B-C polymer precursors
NASA Technical Reports Server (NTRS)
Riccitiello, S. R.; Hsu, M. S.; Chen, T. S.
1993-01-01
Non-oxide ceramics such as silicon carbide (SiC), silicon nitride (Si3N4), and silicon borides (SiB4, SiB6) have thermal stability, oxidation resistance, hardness, and varied electrical properties. All these materials can be prepared in a fiber form from a suitable polymer precursor. The above mentioned fibers, when tested over a temperature range from 25 to 1400 C, experience degradation at elevated temperatures. Past work in ceramic materials has shown that the strength of ceramics containing both carbides and borides is sustained at elevated temperatures, with minimum oxidation. The work presented here describes the formation of ceramic fibers containing both elements, boron and silicon, prepared via the polymer precursor route previously reported by the authors, and discusses the fiber mechanical properties that are retained over the temperature range studied.
Structure and bioactivity studies of new polysiloxane-derived materials for orthopedic applications
NASA Astrophysics Data System (ADS)
Paluszkiewicz, Czesława; Gumuła, Teresa; Podporska, Joanna; Błażewicz, Marta
2006-07-01
The aim of this work was to examine the structure of new calcium silicate bioactive ceramic implant material for bone surgery applications. The bioceramic material was obtained by thermal treatment of active fillers-containing organosilicon polymer precursor. Different ceramic active fillers, namely Ca(OH) 2, CaCO 3, Na 2HPO 4 and SiO 2 powders were used. The phase composition of ceramic samples obtained by thermal transformation of active fillers containing polysiloxane was investigated. Morphology and structure of ceramic phases were characterized by means of scanning electron microscopy (SEM) with EDS point analysis, FTIR spectroscopy and XRD analysis. It was found that thermal treatment of active fillers-containing organosilicon precursor lead to the formation of wollastonite-containing ceramic material. This ceramic material showed bioactivity in 'in vitro' conditions studied by immersing the samples in simulated body fluid (SBF). The surface of wollastonite-containing ceramic before and after immersion in SBF was analysed. It can be concluded that this kind of ceramic material may be useful as bone substitute. FTIR spectroscopy is an adequate device for the determination of such derived materials structure.
Method for the preparation of thallium-containing superconducting materials by precipitation
Bunker, Bruce C.; Lamppa, Diana L.; Voigt, James A.
1991-01-01
This invention provides improved methods for the preparation of precursor powders that are used in the preparation of superconducting ceramic materials that contain thallium. A first solution that contains the hydrogen peroxide and metal cations, other than thallium, that will be part of the ceramic is quickly mixed with a second solution that contains precipitating anions and thallium (I) to form a precipitate which is dried to yield precursor powders. The precursor powders are calcined an sintered to produce superconducting materials that contain thallium.
Boron/Carbon/Silicon/Nitrogen Ceramics And Precursors
NASA Technical Reports Server (NTRS)
Riccitiello, Salvatore; Hsu, Ming TA; Chen, Timothy S.
1996-01-01
Ceramics containing various amounts of boron, carbon, silicon, and nitrogen made from variety of polymeric precursors. Synthesized in high yield from readily available and relatively inexpensive starting materials. Stable at room temperature; when polymerized, converted to ceramics in high yield. Ceramics resist oxidation and other forms of degradation at high temperatures; used in bulk to form objects or to infiltrate other ceramics to obtain composites having greater resistance to oxidation and high temperatures.
Silicone Resin Applications for Ceramic Precursors and Composites
Narisawa, Masaki
2010-01-01
This article reviews the applications of silicone resins as ceramic precursors. The historical background of silicone synthesis chemistry is introduced to explain the production costs and supply availability of various silicones. Thermal degradation processes of silicones are classified in terms of the main chain structure and cyclic oligomer expulsion process, which determine the resulting ceramic yield and the chemical composition. The high temperature decomposition of Si-O-C beyond 1,400 °C in an inert atmosphere and formation of a protective silica layer on material surfaces beyond 1,200 °C in an oxidative atmosphere are discussed from the viewpoints of the wide chemical composition of the Si-O-C materials. Applications of the resins for binding agents, as starting materials for porous ceramics, matrix sources with impregnation, fiber spinning and ceramic adhesions are introduced. The recent development of the process of filler or cross-linking agent additions to resin compounds is also introduced. Such resin compounds are useful for obtaining thick coatings, MEMS parts and bulk ceramics, which are difficult to obtain by pyrolysis of simple organometallic precursors without additives.
Process of producing a ceramic matrix composite article and article formed thereby
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corman, Gregory Scot; McGuigan, Henry Charles; Brun, Milivoj Konstantin
A CMC article and process for producing the article to have a layer on its surface that protects a reinforcement material within the article from damage. The method entails providing a body containing a ceramic reinforcement material in a matrix material that contains a precursor of a ceramic matrix material. A fraction of the reinforcement material is present and possibly exposed at a surface of the body. The body surface is then provided with a surface layer formed of a slurry containing a particulate material but lacking the reinforcement material of the body. The body and surface layer are heatedmore » to form the article by converting the precursor within the body to form the ceramic matrix material in which the reinforcement material is contained, and by converting the surface layer to form the protective layer that covers any fraction of the reinforcement material exposed at the body surface.« less
Process of producing a ceramic matrix composite article and article formed thereby
Corman, Gregory Scot [Ballston Lake, NY; McGuigan, Henry Charles [Duanesburg, NY; Brun, Milivoj Konstantin [Ballston Lake, NY
2011-10-25
A CMC article and process for producing the article to have a layer on its surface that protects a reinforcement material within the article from damage. The method entails providing a body containing a ceramic reinforcement material in a matrix material that contains a precursor of a ceramic matrix material. A fraction of the reinforcement material is present and possibly exposed at a surface of the body. The body surface is then provided with a surface layer formed of a slurry containing a particulate material but lacking the reinforcement material of the body. The body and surface layer are heated to form the article by converting the precursor within the body to form the ceramic matrix material in which the reinforcement material is contained, and by converting the surface layer to form the protective layer that covers any fraction of the reinforcement material exposed at the body surface.
Chemical precursors to non-oxide ceramics: Macro to nanoscale materials
NASA Astrophysics Data System (ADS)
Forsthoefel, Kersten M.
Non-oxide ceramics exhibit a number of important properties that make them ideal for technologically important applications (thermal and chemical stability, high strength and hardness, wear-resistance, light weight, and a range of electronic and optical properties). Unfortunately, traditional methodologies to these types of materials are limited to fairly simple shapes and complex processed forms cannot be attained through these methods. The establishment of the polymeric precursor approach has allowed for the generation of advanced materials, such as refractory non-oxide ceramics, with controlled compositions, under moderate conditions, and in processed forms. The goal of the work described in this dissertation was both to develop new processible precursors to technologically important ceramics and to achieve the formation of advanced materials in processed forms. One aspect of this research exploited previously developed preceramic precursors to boron carbide, boron nitride and silicon carbide for the generation of a wide variety of advanced materials: (1) ultra-high temperature ceramic (UHTC) structural materials composed of hafnium boride and related composite materials, (2) the quaternary borocarbide superconductors, and (3) on the nanoscale, non-oxide ceramic nanotubules. The generation of the UHTC and the quaternary borocarbide materials was achieved through a method that employs a processible polymer/metal(s) dispersion followed by subsequent pyrolyses. In the case of the UHTC, hafnium oxide, hafnium, or hafnium boride powders were dispersed in a suitable precursor to afford hafnium borides or related composite materials (HfB2/HfC, HfB2/HfN, HfB2/SiC) in high yields and purities. The quaternary borocarbide superconducting materials were produced from pyrolyses of dispersions containing appropriate stoichiometric amounts of transition metal, lanthanide metal, and the polyhexenyldecaborane polymer. Both chemical vapor deposition (CVD) based routes employing a molecular precursor and porous alumina templating routes paired with solution-based methodologies are shown to generate non-oxide ceramic nanotubules of boron carbide, boron nitride and silicon carbide compositions. In the final phase of this work, a new metal-catalyzed route to poly(1-alkenyl- o-carborane) homopolymers and related copolymers was developed. Both homopolymers of 1-alkenyl-o-carboranes (1-vinyl-, 1-butenyl-, 1-hexenyl-) and copolymers of 1-hexenyl-o-carborane and allyltrimethylsilane or 1-hexenyl-o-carborane and 6-hexenyldecaborane were synthesized via the Cp2ZrMe2/B(C6F5) 3 catalyst system. A copolymer containing 1-hexenyl-o-carborane and the cross-linking agent, 6-hexenyldecaborane, was synthetically designed which exhibits initial cross-linking at ˜250°C and then converts in 75% yields to boron carbide at 1250°C.
Process for making a ceramic composition for immobilization of actinides
Ebbinghaus, Bartley B.; Van Konynenburg, Richard A.; Vance, Eric R.; Stewart, Martin W.; Walls, Philip A.; Brummond, William Allen; Armantrout, Guy A.; Herman, Connie Cicero; Hobson, Beverly F.; Herman, David Thomas; Curtis, Paul G.; Farmer, Joseph
2001-01-01
Disclosed is a process for making a ceramic composition for the immobilization of actinides, particularly uranium and plutonium. The ceramic is a titanate material comprising pyrochlore, brannerite and rutile. The process comprises oxidizing the actinides, milling the oxides to a powder, blending them with ceramic precursors, cold pressing the blend and sintering the pressed material.
McGrath, Kathryn M.; Dabbs, Daniel M.; Aksay, Ilhan A.; Gruner, Sol M.
2003-10-28
A mesoporous ceramic material is provided having a pore size diameter in the range of about 10-100 nanometers produced by templating with a ceramic precursor a lyotropic liquid crystalline L.sub.3 phase consisting of a three-dimensional, random, nonperiodic network packing of a multiple connected continuous membrane. A preferred process for producing the inesoporous ceramic material includes producing a template of a lyotropic liquid crystalline L.sub.3 phase by mixing a surfactant, a co-surfactant and hydrochloric acid, coating the template with an inorganic ceramic precursor by adding to the L.sub.3 phase tetramethoxysilane (TMOS) or tetraethoxysilane (TEOS) and then converting the coated template to a ceramic by removing any remaining liquids.
Reactive Processing of Environmentally Conscious, Biomorphic Ceramics from Natural Wood Precursors
NASA Technical Reports Server (NTRS)
Singh, M.; Yee, Bo-Moon
2003-01-01
Environmentally conscious, biomorphic ceramics (Ecoceramics) are a new class of materials that are manufactured from renewable resources and wastes. In this study, silicon carbide and oxide-based biomorphic ceramics have been fabricated from pine and jelutong wood precursors. A carbonaceous preform is produced through wood pyrolysis and subsequent infiltration with oxides (ZrO2 sols) and liquid silicon to form ceramics. These biomorphic ceramics show a wide variety of microstructures, densities, and hardness behavior that are determined by the type of wood and infiltrants selected.
Synthesis and characterization of a novel polyborosilazane for SiBNC ceramic
NASA Astrophysics Data System (ADS)
Zhang, C. Y.; Liu, Y.; Han, K. Q.; Chang, X. F.; Yu, M. H.
2018-05-01
A novel polyborosilazane (PBSZ) for preparing SiBNC ceramics was successfully synthesized via co-condensation approach using tetrachlorosilan (SiCl4), trichloride (BCl3) and propylamine (C3H7NH2) as starting materials. After pyrolysis of these precursors, amorphous SiBNC ceramics were obtained. The chemical composition, structure and thermal stability of the synthesized PBSZ precursor and SiBNC ceramics were analyzed by using FT-IR, NMR, TGA and XRD methods. The results indicated that the PBSZ contained the major framework of –Si-N-B- and six-membered boron-nitrogen rings. The PBSZ precursor had an approximately ceramic yield of 63 wt% prolyzed at 900°C in nitrogen atmosphere. The SiBNC ceramics shows excellent oxidation resistance and maintained amorphous up to 1600°C.
Boron-containing organosilane polymers and ceramic materials thereof
NASA Technical Reports Server (NTRS)
Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)
1988-01-01
The present invention relates to organic silicon-boron polymers which upon pyrolysis produce high-temperature ceramic materials. More particularly, it relates to the polyorganoborosilanes containing -Si-B- bonds which generate high-temperature ceramic materials (e.g., SiC, SiB4, B4C) upon thermal degradation. The process for preparing these organic silicon-boron polymer precursors are also part of the invention.
Apparatus for producing nanoscale ceramic powders
Helble, Joseph J.; Moniz, Gary A.; Morse, Theodore F.
1997-02-04
An apparatus provides high temperature and short residence time conditions for the production of nanoscale ceramic powders. The apparatus includes a confinement structure having a multiple inclined surfaces for confining flame located between the surfaces so as to define a flame zone. A burner system employs one or more burners to provide flame to the flame zone. Each burner is located in the flame zone in close proximity to at least one of the inclined surfaces. A delivery system disposed adjacent the flame zone delivers an aerosol, comprising an organic or carbonaceous carrier material and a ceramic precursor, to the flame zone to expose the aerosol to a temperature sufficient to induce combustion of the carrier material and vaporization and nucleation, or diffusion and oxidation, of the ceramic precursor to form pure, crystalline, narrow size distribution, nanophase ceramic particles.
Apparatus for producing nanoscale ceramic powders
Helble, Joseph J.; Moniz, Gary A.; Morse, Theodore F.
1995-09-05
An apparatus provides high temperature and short residence time conditions for the production of nanoscale ceramic powders. The apparatus includes a confinement structure having a multiple inclined surfaces for confining flame located between the surfaces so as to define a flame zone. A burner system employs one or more burners to provide flame to the flame zone. Each burner is located in the flame zone in close proximity to at least one of the inclined surfaces. A delivery system disposed adjacent the flame zone delivers an aerosol, comprising an organic or carbonaceous carrier material and a ceramic precursor, to the flame zone to expose the aerosol to a temperature sufficient to induce combustion of the carrier material and vaporization and nucleation, or diffusion and oxidation, of the ceramic precursor to form pure, crystalline, narrow size distribution, nanophase ceramic particles.
Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating
Meek, T.T.; Blake, R.D.
1985-04-03
A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate.
Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating
Meek, Thomas T.; Blake, Rodger D.
1987-01-01
A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate.
NASA Astrophysics Data System (ADS)
Ward, Brian
Solid oxide fuel cells (SOFCs) are energy conversion devices that use ceramic powders as a precursor material for their electrodes. Presently, powder manufacturers are encountering complications producing consistent precursor powders. Through various thermal, chemical and physical tests, such as DSC and XRD, a preliminary production standard will be developed.
1993-11-10
realized. Metal carboxylates are often used as precursors for ceramic oxides since they tend to be air-stable, soluble in organic solvents, and decompose...metalorganic precursors [9] . These include routes based solely on metal alkoxides [9, 101 or metal carboxylates (e.g. the Pechini (or citrate) process
Fabrication of low density ceramic material
Meek, T.T.; Blake, R.D.; Sheinberg, H.
1985-01-01
A precursor mixture and a method of making a low-density ceramic structural material are disclosed. The precursor mixture includes hollow microballoons, typically made of glass, together with a cementing agent capable of being cured by microwave irradiation. A preferred cementing agent is liquid hydrated potassium silicate, which is mixed with the glass microballoons to form a slurry. Upon irradiation the potassium silicate is dehydrated to form a solid porous matrix in which the microballoons are evenly distributed. Ground glass or other filling agents may be included in the slurry to enhance the properties of the final product. Low-density structural ceramics having densities on the order of 0.1 to 0.3 are obtained.
Automated Rapid Prototyping of 3D Ceramic Parts
NASA Technical Reports Server (NTRS)
McMillin, Scott G.; Griffin, Eugene A.; Griffin, Curtis W.; Coles, Peter W. H.; Engle, James D.
2005-01-01
An automated system of manufacturing equipment produces three-dimensional (3D) ceramic parts specified by computational models of the parts. The system implements an advanced, automated version of a generic rapid-prototyping process in which the fabrication of an object having a possibly complex 3D shape includes stacking of thin sheets, the outlines of which closely approximate the horizontal cross sections of the object at their respective heights. In this process, the thin sheets are made of a ceramic precursor material, and the stack is subsequently heated to transform it into a unitary ceramic object. In addition to the computer used to generate the computational model of the part to be fabricated, the equipment used in this process includes: 1) A commercially available laminated-object-manufacturing machine that was originally designed for building woodlike 3D objects from paper and was modified to accept sheets of ceramic precursor material, and 2) A machine designed specifically to feed single sheets of ceramic precursor material to the laminated-object-manufacturing machine. Like other rapid-prototyping processes that utilize stacking of thin sheets, this process begins with generation of the computational model of the part to be fabricated, followed by computational sectioning of the part into layers of predetermined thickness that collectively define the shape of the part. Information about each layer is transmitted to rapid-prototyping equipment, where the part is built layer by layer. What distinguishes this process from other rapid-prototyping processes that utilize stacking of thin sheets are the details of the machines and the actions that they perform. In this process, flexible sheets of ceramic precursor material (called "green" ceramic sheets) suitable for lamination are produced by tape casting. The binder used in the tape casting is specially formulated to enable lamination of layers with little or no applied heat or pressure. The tape is cut into individual sheets, which are stacked in the sheet-feeding machine until used. The sheet-feeding machine can hold enough sheets for about 8 hours of continuous operation.
Corundum ceramic materials modified with silica nanopowders: structure and mechanical properties
NASA Astrophysics Data System (ADS)
Kostytsyn, M. A.; Muratov, D. S.; Lysov, D. V.; Chuprunov, K. O.; Yudin, A. G.; Leybo, D. V.
2016-01-01
Filtering elements are often used in the metallurgy of rare earth metals. Corundum ceramic is one of the most suitable materials for this purpose. The process of formation and the properties of nanomodified ceramic materials, which are proposed as filtering materials with tunable effective porosity, are described. A silica nanopowder is used as a porosity-increasing agent. Vortex layer apparatus is used for mixing of precursor materials. The obtained results show that nanomodification with the vortex layer apparatus using 0.04 wt. % silica nanopowder as a modifying agent leads to an increase in the compression strength of corundum ceramic by the factor of 1.5.
Tang, Yuanyuan; Chui, Stephen Sin-Yin; Shih, Kaimin; Zhang, Lingru
2011-04-15
The feasibility of incorporating copper-laden sludge into low-cost ceramic products, such as construction ceramics, was investigated by sintering simulated copper-laden sludge with four aluminum-rich ceramic precursors. The results indicated that all of these precursors (γ-Al(2)O(3), corundum, kaolinite, mullite) could crystallochemically stabilize the hazardous copper in the more durable copper aluminate spinel (CuAl(2)O(4)) structure. To simulate the process of copper transformation into a spinel structure, CuO was mixed with the four aluminum-rich precursors, and fired at 650-1150 °C for 3 h. The products were examined using powder X-ray diffraction (XRD) and scanning electron microscopic techniques. The efficiency of copper transformation among crystalline phases was quantitatively determined through Rietveld refinement analysis of the XRD data. The sintering experiment revealed that the optimal sintering temperature for CuAl(2)O(4) formation was around 1000 °C and that the efficiency of copper incorporation into the crystalline CuAl(2)O(4) structure after 3 h of sintering ranged from 40 to 95%, depending on the type of aluminum precursor used. Prolonged leaching tests were carried out by using acetic acid with an initial pH value of 2.9 to leach CuO and CuAl(2)O(4) samples for 22 d. The sample leachability analysis revealed that the CuAl(2)O(4) spinel structure was more superior to stabilize copper, and suggested a promising and reliable technique for incorporating copper-laden sludge or its incineration ash into usable ceramic products. Such results also demonstrated the potential of a waste-to-resource strategy by using waste materials as part of the raw materials with the attainable temperature range used in the production of ceramics.
Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating
Meek, T.T.; Blake, R.D.
1987-09-22
A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate. 2 figs.
Processing of polysiloxane-derived porous ceramics: a review
Manoj Kumar, B V; Kim, Young-Wook
2010-01-01
Because of the unique combination of their attractive properties, porous ceramics are considered as candidate materials for several engineering applications. The production of porous ceramics from polysiloxane precursors offers advantages in terms of simple processing methodology, low processing cost, and easy control over porosity and other properties of the resultant ceramics. Therefore, considerable research has been conducted to produce various Si(O)C-based ceramics from polysiloxane precursors by employing different processing strategies. The complete potential of these materials can only be achieved when properties are tailored for a specific application, whereas the control over these properties is highly dependent on the processing route. This review deals with processing strategies of polysiloxane-derived porous ceramics. The essential features of processing strategies—replica, sacrificial template, direct foaming and reaction techniques—are explained and the available literature reports are thoroughly reviewed with particular regard to the critical issues that affect pore characteristics. A short note on the cross-linking methods of polysiloxanes is also provided. The potential of each processing strategy on porosity and strength of the resultant SiC or SiOC ceramics is outlined. PMID:27877344
Biomorphous SiC ceramics prepared from cork oak as precursor
NASA Astrophysics Data System (ADS)
Yukhymchuk, V. O.; Kiselov, V. S.; Valakh, M. Ya.; Tryus, M. P.; Skoryk, M. A.; Rozhin, A. G.; Kulinich, S. A.; Belyaev, A. E.
2016-04-01
Porous ceramic materials of SiC were synthesized from carbon matrices obtained via pyrolysis of natural cork as precursor. We propose a method for the fabrication of complex-shaped porous ceramic hardware consisting of separate parts prepared from natural cork. It is demonstrated that the thickness of the carbon-matrix walls can be increased through their impregnation with Bakelite phenolic glue solution followed by pyrolysis. This decreases the material's porosity and can be used as a way to modify its mechanical and thermal characteristics. Both the carbon matrices (resulted from the pyrolysis step) and the resultant SiC ceramics are shown to be pseudomorphous to the structure of initial cork. Depending on the synthesis temperature, 3C-SiC, 6H-SiC, or a mixture of these polytypes, could be obtained. By varying the mass ratio of initial carbon and silicon components, stoichiometric SiC or SiC:C:Si, SiC:C, and SiC:Si ceramics could be produced. The structure, as well as chemical and phase composition of the prepared materials were studied by means of Raman spectroscopy and scanning electron microscopy.
Method for fabrication of ceramic dielectric films on copper foils
Ma, Beihai; Narayanan, Manoj; Dorris, Stephen E.; Balachandran, Uthamalingam
2017-06-14
The present invention provides copper substrate coated with a lead-lanthanum-zirconium-titanium (PLZT) ceramic film, which is prepared by a method comprising applying a layer of a sol-gel composition onto a copper foil. The sol-gel composition comprises a precursor of a ceramic material suspended in 2-methoxyethanol. The layer of sol-gel is then dried at a temperature up to about 250.degree. C. The dried layer is then pyrolyzed at a temperature in the range of about 300 to about 450.degree. C. to form a ceramic film from the ceramic precursor. The ceramic film is then crystallized at a temperature in the range of about 600 to about 750.degree. C. The drying, pyrolyzing and crystallizing are performed under a flowing stream of an inert gas.
Polymeric routes to silicon carbide and silicon oxycarbide CMC
NASA Technical Reports Server (NTRS)
Hurwitz, Frances I.; Heimann, Paul J.; Gyekenyesi, John Z.; Masnovi, John; Bu, Xin YA
1991-01-01
An overview of two approaches to the formation of ceramic composite matrices from polymeric precursors is presented. Copolymerization of alkyl- and alkenylsilanes (RSiH3) represents a new precursor system for the production of Beta-SiC on pyrolysis, with copolymer composition controlling polymer structure, char yield, and ceramic stoichiometry and morphology. Polysilsesquioxanes which are synthesized readily and can be handled in air serve as precursors to Si-C-O ceramics. Copolymers of phenyl and methyl silsesquioxanes display rheological properties favorable for composite fabrication; these can be tailored by control of pH, water/methoxy ratio and copolymer composition. Composites obtained from these utilize a carbon coated, eight harness satin weave Nicalon cloth reinforcement. The material exhibits nonlinear stress-strain behavior in tension.
Panitz, Janda K.; Reed, Scott T.; Ashley, Carol S.; Neiser, Richard A.; Moffatt, William C.
1999-01-01
Electrophoretically active sol-gel processes to fill, seal, and/or density porous, flawed, and/or cracked coatings on electrically conductive substrates. Such coatings may be dielectrics, ceramics, or semiconductors and, by the present invention, may have deposited onto and into them sol-gel ceramic precursor compounds which are subsequently converted to sol-gel ceramics to yield composite materials with various tailored properties.
Ivanov, Borislav L; Wellons, Matthew S; Lukehart, Charles M
2009-08-26
A one-step process for preparing microcrystalline coatings of known superhard, very hard, or ultraincompressible ceramic compositions on either inorganic or organic supports is reported. Midinfrared pulsed-laser irradiation of preceramic chemical precursors layered between IR-transmissive hard/soft supports under temporal and spatial confinement at a laser wavelength resonant with a precursor vibrational band gives one-step deposition of crystalline ceramic coatings without incurring noticeable collateral thermal damage to the support material. Reaction plume formation at the precursor/laser beam interface initiates confined-plume, chemical deposition (CPCD) of crystalline ceramic product. Continuous ceramic coatings are produced by rastering the laser beam over a sample specimen. CPCD processing of the Re-B single-source precursor, (B(3)H(8))Re(CO)(4), the dual-source mixtures, Ru(3)(CO)(12)/B(10)H(14) or W(CO)(6)/B(10)H(14), and the boron/carbon single-source precursor, o-B(10)C(2)H(12), confined between Si wafer or NaCl plates gives microcrystalline deposits of ReB(2), RuB(2), WB(4), or B(4)C, respectively. CPCD processing of Kevlar fabric wetted by (B(3)H(8))Re(CO)(4) produces an oriented, microcrystalline coating of ReB(2) on the Kevlar fabric without incurring noticeable thermal damage of the polymer support. Similarly, microcrystalline coatings of ReB(2) can be formed on IR-transmissive IR2, Teflon, or Ultralene polymer films.
Ceramic impregnated superabrasives
Radtke, Robert P.; Sherman, Andrew
2009-02-10
A superabrasive fracture resistant compact is formed by depositing successive layers of ceramic throughout the network of open pores in a thermally stable self-bonded polycrystalline diamond or cubic boron nitride preform. The void volume in the preform is from approximately 2 to 10 percent of the volume of the preform, and the average pore size is below approximately 3000 nanometers. The preform is evacuated and infiltrated under at least about 1500 pounds per square inch pressure with a liquid pre-ceramic polymerizable precursor. The precursor is infiltrated into the preform at or below the boiling point of the precursor. The precursor is polymerized into a solid phase material. The excess is removed from the outside of the preform, and the polymer is pyrolized to form a ceramic. The process is repeated at least once more so as to achieve upwards of 90 percent filling of the original void volume. When the remaining void volume drops below about 1 percent the physical properties of the compact, such as fracture resistance, improve substantially. Multiple infiltration cycles result in the deposition of sufficient ceramic to reduce the void volume to below 0.5 percent. The fracture resistance of the compacts in which the pores are lined with formed in situ ceramic is generally at least one and one-half times that of the starting preforms.
Ceramic Nanocomposites from Tailor-Made Preceramic Polymers
Mera, Gabriela; Gallei, Markus; Bernard, Samuel; Ionescu, Emanuel
2015-01-01
The present Review addresses current developments related to polymer-derived ceramic nanocomposites (PDC-NCs). Different classes of preceramic polymers are briefly introduced and their conversion into ceramic materials with adjustable phase compositions and microstructures is presented. Emphasis is set on discussing the intimate relationship between the chemistry and structural architecture of the precursor and the structural features and properties of the resulting ceramic nanocomposites. Various structural and functional properties of silicon-containing ceramic nanocomposites as well as different preparative strategies to achieve nano-scaled PDC-NC-based ordered structures are highlighted, based on selected ceramic nanocomposite systems. Furthermore, prospective applications of the PDC-NCs such as high-temperature stable materials for thermal protection systems, membranes for hot gas separation purposes, materials for heterogeneous catalysis, nano-confinement materials for hydrogen storage applications as well as anode materials for secondary ion batteries are introduced and discussed in detail. PMID:28347023
Panitz, J.K.; Reed, S.T.; Ashley, C.S.; Neiser, R.A.; Moffatt, W.C.
1999-07-20
Electrophoretically active sol-gel processes to fill, seal, and/or density porous, flawed, and/or cracked coatings on electrically conductive substrates. Such coatings may be dielectrics, ceramics, or semiconductors and, by the present invention, may have deposited onto and into them sol-gel ceramic precursor compounds which are subsequently converted to sol-gel ceramics to yield composite materials with various tailored properties. 6 figs.
Subramanian, Ramesh
2001-01-01
A turbine component (10), such as a turbine blade, is provided which is made of a metal alloy (22) and a base columnar thermal barrier coating (20) on the alloy surface, where a heat resistant ceramic oxide sheath material (32' or 34') covers the columns (28), and the sheath material is the reaction product of a precursor ceramic oxide sheath material and the base thermal barrier coating material.
Structure and conductivity of nanostructured YBCO ceramics
NASA Astrophysics Data System (ADS)
Palchayev, D. K.; Gadzhimagomedov, S. Kh; Murlieva, Zh Kh; Rabadanov, M. Kh; Emirov, R. M.
2017-12-01
Superconducting nanostructured ceramics based on YBa2Cu3O7-δ were made of nanopowder obtained by burning nitrate-organic precursors. The structure, morphology, electrical resistivity, and density of ceramics were studied. Various porosity values of the ceramics were achieved by preliminary heat treatment of the nanopowder. The features of conductivity and the reason for increase of the of the superconducting transition temperature in these materials are discussed.
NASA Technical Reports Server (NTRS)
Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)
2009-01-01
A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium diboride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.
Method for producing melt-infiltrated ceramic composites using formed supports
Corman, Gregory Scot; Brun, Milivoj Konstantin; McGuigan, Henry Charles
2003-01-01
A method for producing shaped articles of ceramic composites provides a high degree of dimensional tolerance to these articles. A fiber preform is disposed on a surface of a stable formed support, a surface of which is formed with a plurality of indentations, such as grooves, slots, or channels. Precursors of ceramic matrix materials are provided to the fiber preform to infiltrate from both sides of the fiber preform. The infiltration is conducted under vacuum at a temperature not much greater than a melting point of the precursors. The melt-infiltrated composite article substantially retains its dimension and shape throughout the fabrication process.
Cheng, Shunfan; Wang, Yanjie; Zhuang, Libin; Xue, Jian; Wei, Yanying; Feldhoff, Armin; Caro, Jürgen; Wang, Haihui
2016-08-26
A novel concept for the preparation of multiphase composite ceramics based on demixing of a single ceramic precursor has been developed and used for the synthesis of a dual-phase H2 -permeable ceramic membrane. The precursor BaCe0.5 Fe0.5 O3-δ decomposes on calcination at 1370 °C for 10 h into two thermodynamically stable oxides with perovskite structures: the cerium-rich oxide BaCe0.85 Fe0.15 O3-δ (BCF8515) and the iron-rich oxide BaCe0.15 Fe0.85 O3-δ (BCF1585), 50 mol % each. In the resulting dual-phase material, the orthorhombic perovskite BCF8515 acts as the main proton conductor and the cubic perovskite BCF1585 as the main electron conductor. The dual-phase membrane shows an extremely high H2 permeation flux of 0.76 mL min(-1) cm(-2) at 950 °C with 1.0 mm thickness. This auto-demixing concept should be applicable to the synthesis of other ionic-electronic conducting ceramics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Low temperature joining of ceramic composites
Barton, Thomas J.; Anderson, Iver E.; Ijadi-Maghsoodi, Sina; Nosrati, Mohammad; Unal, Ozer
1999-07-13
A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix.
Low temperature joining of ceramic composites
Barton, T.J.; Anderson, I.E.; Ijadi-Maghsoodi, S.; Nosrati, M.; Unal, O.
1999-07-13
A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 C to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix. 3 figs.
Low temperature joining of ceramic composites
Barton, T.J.; Anderson, I.E.; Ijadi-Maghsoodi, S.; Nosrati, M.; Unal, O.
1999-01-12
A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix. 3 figs.
Advanced ceramic matrix composites for TPS
NASA Technical Reports Server (NTRS)
Rasky, Daniel J.
1992-01-01
Recent advances in ceramic matrix composite (CMC) technology provide considerable opportunity for application to future aircraft thermal protection system (TPS), providing materials with higher temperature capability, lower weight, and higher strength and stiffness than traditional materials. The Thermal Protection Material Branch at NASA Ames Research Center has been making significant progress in the development, characterization, and entry simulation (arc-jet) testing of new CMC's. This protection gives a general overview of the Ames Thermal Protection Materials Branch research activities, followed by more detailed descriptions of recent advances in very-high temperature Zr and Hf based ceramics, high temperature, high strength SiC matrix composites, and some activities in polymer precursors and ceramic coating processing. The presentation closes with a brief comparison of maximum heat flux capabilities of advanced TPS materials.
Balachandran, Uthamalingam; Poeppel, Roger B.; Emerson, James E.; Johnson, Stanley A.
1992-01-01
An improved method for the preparation of single phase, fine grained ceramic materials from precursor powder mixtures where at least one of the components of the mixture is an alkali earth carbonate. The process consists of heating the precursor powders in a partial vacuum under flowing oxygen and under conditions where the partial pressure of CO.sub.2 evolved during the calcination is kept to a very low level relative to the oxygen. The process has been found particularly suitable for the preparation of high temperature copper oxide superconducting materials such as YBa.sub.2 Cu.sub.3 O.sub.x "123" and YBa.sub.2 Cu.sub.4 O.sub.8 "124".
Research on up- and down-conversion emissions of Er3+/Yb3+ co-doped phosphate glass ceramic
NASA Astrophysics Data System (ADS)
Ming, Chengguo; Song, Feng; An, Liqun; Ren, Xiaobin; Yuan, Yize; Cao, Yang; Wang, Gangzhi
2012-12-01
By high-temperature melting method and thermal treatment technology, Er3+/Yb3+ co-doped phosphate glass and glass ceramic samples were prepared. The luminescence spectra of the glass and glass ceramic samples were studied under 975 nm excitation. In visible and near-infrared bands, the emission intensity of the glass ceramic is stronger than that of the glass. The glass ceramic can comprehensively improve the luminous characters of the precursor glass. The phosphate glass ceramic will be valuable luminescence materials.
NASA Technical Reports Server (NTRS)
Downs, R. L.; Miller, W. J.
1983-01-01
The development of techniques for the preparation of glass and ceramic starting materials that will result in homogeneous glasses or ceramic products when melted and cooled in a containerless environment is described. Metal-organic starting materials were used to make compounds or mixtures which were then decomposed by hydrolysis reactions to the corresponding oxides. The sodium tungstate system was chosen as a model for a glass with a relatively low melting temperature. The alkoxide tungstates also have interesting optical properties. For all the compositions studied, comparison samples were prepared from inorganic starting materials and submitted to the same analyses.
Organosilicon Polymers as Precursors for Silicon Containing Ceramics: Recent Developments.
1987-08-14
the polymer to a ceramic material, hopefully of the desired composition . In the latter alternative, shrinkage during pyrolysis should not be great...carbon-carbon composite materials. In order to have a useful preceramic polymer . considerations of structure and reactivitv are of paramount importance...process so that on pyrolysis non-volatile, three-dimensional networks (which lead to maximum weight retention) are formed. Thus. preceramic polymer
In-situ formation of multiphase air plasma sprayed barrier coatings for turbine components
Subramanian, Ramesh
2001-01-01
A turbine component (10), such as a turbine blade, is provided which is made of a metal alloy (22) and a base, planar-grained thermal barrier layer (28) applied by air plasma spraying on the alloy surface, where a heat resistant ceramic oxide overlay material (32') covers the bottom thermal barrier coating (28), and the overlay material is the reaction product of the precursor ceramic oxide overlay material (32) and the base thermal barrier coating material (28).
Morgan, Chester S.
1978-01-01
Cermets are produced by the process of forming a physical mixture of a ceramic powder material with an elemental metal precursor compound and by decomposing the elemental metal precursor compound within the mixture. The decomposition step may be carried out either prior to or during a forming and densification step.
Method for fabrication of ceramic dielectric films on copper foils
Ma, Beihai; Narayanan, Manoj; Dorris, Stephen E.; Balachandran, Uthamalingam
2015-03-10
The present invention provides a method for fabricating a ceramic film on a copper foil. The method comprises applying a layer of a sol-gel composition onto a copper foil. The sol-gel composition comprises a precursor of a ceramic material suspended in 2-methoxyethanol. The layer of sol-gel is then dried at a temperature up to about 250.degree. C. The dried layer is then pyrolyzed at a temperature in the range of about 300 to about 450.degree. C. to form a ceramic film from the ceramic precursor. The ceramic film is then crystallized at a temperature in the range of about 600 to about 750.degree. C. The drying, pyrolyzing and crystallizing are performed under a flowing stream of an inert gas. In some embodiments an additional layer of the sol-gel composition is applied onto the ceramic film and the drying, pyrolyzing and crystallizing steps are repeated for the additional layer to build up a thicker ceramic layer on the copper foil. The process can be repeated one or more times if desired.
Low temperature joining of ceramic composites
Barton, Thomas J.; Anderson, Iver E.; Ijadi-Maghsoodi, Sina; Nosrati, Mohammad; Unal, Ozer
1999-01-12
A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or cermaic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix.
Low temperature joining of ceramic composites
Barton, Thomas J.; Anderson, Iver E.; Ijadi-Maghsoodi, Sina; Nosrati, Mohammad; Unal, Ozer
2001-04-10
A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or cermaic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix.
New polymeric precursors to SiNCB, BN, and La(3)Ni(2)B(2)N(3) materials
NASA Astrophysics Data System (ADS)
Wideman, Thomas W.
Boron-containing non-oxide ceramics demonstrate a number of important structural, electronic and physical properties. However, the lack of general synthetic routes to generate these materials with controlled composition, under moderate conditions, and in processed forms, has hampered both scientific studies and practical applications. The goal of the work described in this dissertation was to develop efficient new polymeric precursor routes to boron-containing materials including SiNCB ceramics composites, boron nitride fibers, and quaternary metal boro-nitride superconductors. Two types of polyborosilazane precursors to SiNCB ceramics were developed. Borazine-co-silazane copolymers were prepared through the thermal copolymerization of borazine with two silazanes, tris(trimethylsilylamino)silane, and 1,1,3,3,5,5 -hexamethylcyclotrisilazane. Polyborosilazanes with pendent boron-containing species were obtained by the modification of preformed hydridopolysilazane polymers with three monofunctional boranes: pinacolborane, 2,4-diethylborazine and 1,3-dimethyl-1,3-diaza-2-boracyclopentane. Pyrolyses of both types of polyborosilazanes produced SiNCB ceramics with controllable boron contents, enhanced thermal stabilities, and reduced crystallinity. Processible polymeric precursors to BN were also achieved by the chemical modification of polyborazylene, (Bsb3Nsb3Hsb{˜ 4}rbrack sb{x}, with diethylamine, dipentylamine, and hexamethyldisilazane. The modified polymers, unlike the parent polyborazylene, do not crosslink at low temperatures, and therefore proved to be ideal melt-spinnable precursors to BN ceramic fibers. A new polymeric precursor route to the recently discovered Lasb3Nisb2Bsb2Nsb3 superconductor (Tc = 12K) was developed by reacting lanthanum and nickel powders dispersed in the polyborazylene, to produce the intermetallic in excellent yields. The use of the polymer as a "reagent" provided a controllable, solid state source of nitrogen, and allows for the large scale syntheses of Lasb3Nisb2Bsb2Nsb3 and other quaternary metal boro-nitrides. Two new preparations of borazine, Bsb3Nsb3Hsb6, a key molecular unit in many of the polymers described above, have also been developed. Chemical investigations and practical applications of borazine-based preceramic polymers have been limited by the inefficient syntheses and high cost of borazine, which may now be prepared in 55-65% yields by the convenient, inexpensive the reaction of ammonium and borohydride salts, and the decomposition of ammonia borane, in high-boiling ether solutions.
Yb3+-Er3+-Tm3+ co-doped nano-glass-ceramics tuneable up-conversion phosphor
NASA Astrophysics Data System (ADS)
Méndez-Ramos, J.; Rodriguez, V. D.; Tikhomirov, V. K.; Del-Castillo, J.; Yanes, A. C.
2008-08-01
Transparent Yb3+-Er3+-Tm3+ co-doped nano-glass-ceramics have been prepared, 32(SiO{2}) 9(AlO{1.5}) 31.5(CdF{2}) 18.5(PbF{2}) 5.5(ZnF{2}): 3.5(Yb-Er-TmF{3}) mol%, where the co-dopants partition mostly to the fluoride PbF{2}-based nano-crystals. A comparative study of the up-conversion luminescence in nano-glass-ceramics and its precursor glass indicates that these materials can be used as blue/green/red tuneable up-conversion phosphor, in particular for white light generation. A ratio between blue, green and red emission bands of the Tm3+ and Er3+ can be widely varied with nano-ceramming of the precursor glass and with changing a pump power of luminescence. The change in the ratio between the blue, green and red emission bands is explained to be due to substantial lowering phonon energy and shortening of inter-dopant distances with nano-ceramming of the precursor glass and due to change in the ratio of 2- and 3-photon up-conversion processes with pump power.
NASA Astrophysics Data System (ADS)
Liu, Qiang; Chen, Cong; Dai, Jiawei; Hu, Zewang; Chen, Haohong; Li, Jiang
2018-06-01
Using the nanopowders synthesized by a reverse co-precipitation method, neodymium doped yttrium aluminum garnet (Nd:YAG) transparent ceramics were fabricated by vacuum sintering method. The influence of ammonium carbonate to metal ions (NH4HCO3/M3+) molar ratio (R value) on the properties of Nd:YAG precursors and powders, as well as the densification, microstructure, and transmittance of the resultant ceramics was systematically investigated. The results show that the precursors have similar compositions and the calcined powders have pure Y3Al5O12 (YAG) phase. However, the R value is closely related to the morphologies of the precursors and powders. It is found that the powder with R = 3.0 has strongest agglomeration and the powders with R = 3.2-4.0 show better dispersity. Using these powders as starting materials, the corresponding ceramics were sintered at 1720 °C for 20 h in vacuum. As a result, the ceramic with R = 3.2 obtains the best transmittance of about 72% at the wavelength of 1064 nm. The grain growth exponent and activation energy of the Nd:YAG ceramics fabricated from the powder with R = 3.2 were also studied.
Method of fabricating metal- and ceramic- matrix composites and functionalized textiles
Maxwell, James L [Jemez Springs, NM; Chavez, Craig A [Los Alamos, NM; Black, Marcie R [Lincoln, MA
2012-04-17
A method of manufacturing an article comprises providing a first sheet, wetting the first sheet with a liquid precursor to provide a first wet sheet, and irradiating the first wet sheet in a pattern corresponding to a first cross section of the article such that the liquid precursor is at least partially converted to a solid in the first cross section. A second sheet is disposed adjacent to the first sheet. The method further comprises wetting the second sheet with the liquid precursor to provide a second wet sheet, and irradiating the second wet sheet in a pattern corresponding to a second cross section of the article such that the liquid precursor is at least partially converted to a solid in the second cross section. In particular the liquid precursor may be converted to a metal, ceramic, semiconductor, semimetal, or a combination of these materials.
Sol-Gel Precursors for Ceramics from Minerals Simulating Soils from the Moon and Mars
NASA Technical Reports Server (NTRS)
Sibille, Laurent; Gavira-Gallardo, Jose-Antonio; Hourlier-Bahloul, Djamila
2003-01-01
Recent NASA mission plans for the human exploration of our Solar System has set new priorities for research and development of technologies necessary to enable a long-term human presence on the Moon and Mars. The recovery and processing of metals and oxides from mineral sources on other planets is under study to enable use of ceramics, glasses and metals by explorer outposts. We report some preliminary results on the production of sol-gel precursors for ceramic products using mineral resources available in Martian or Lunar soil. The presence of SiO2, TiO2, and A12O3 in both Martian (44 wt.% SiO2, 1 wt.% TiO2, 7 wt.% Al2O3) and Lunar (48 wt.% SiO2, 1.5 wt.% TiO2, 16 wt.% Al2O3) soils and the recent developments in chemical processes to solubilize silicates using organic reagents and relatively little energy indicate that such an endeavor is possible. In order to eliminate the risks involved in the use of hydrofluoric acid to dissolve silicates, two distinct chemical routes are investigated to obtain soluble silicon oxide precursors from Lunar and Martian simulant soils. Clear sol-gel precursors have been obtained by dissolution of silica from Lunar simulant soil in basic ethylene glycol (C2H4(OH)2) solutions to form silicon glycolates. Thermogravimetric Analysis and X-ray Photoelectron Spectroscopy were used to characterize the elemental composition and structure of the precursor molecules. Further concentration and hydrolysis of the products was performed to obtain gel materials for evaluation as ceramic precursors. In the second set of experiments, we used the same starting materials to synthesize silicate esters in acidified alcohol mixtures. Preliminary results indicate the presence of silicon alkoxides in the product of distillation.
Pockels effect of silicate glass-ceramics: Observation of optical modulation in Mach–Zehnder system
Yamaoka, Kazuki; Takahashi, Yoshihiro; Yamazaki, Yoshiki; Terakado, Nobuaki; Miyazaki, Takamichi; Fujiwara, Takumi
2015-01-01
Silicate glass has been used for long time because of its advantages from material’s viewpoint. In this paper, we report the observation of Pockels effect by Mach–Zehnder interferometer in polycrystalline ceramics made from a ternary silicate glass via crystallization due to heat-treatment, i.e., glass-ceramics. Since the silicate system is employed as the precursor, merits of glass material are fully utilized to fabricate the optical device component, in addition to that of functional crystalline material, leading us to provide an electro-optic device, which is introducible into glass-fiber network. PMID:26184722
Hybrid aerogel rigid ceramic fiber insulation and method of producing same
NASA Technical Reports Server (NTRS)
Barney, Andrea O. (Inventor); Heng, Vann (Inventor); Oka, Kris Shigeko (Inventor); Santos, Maryann (Inventor); Zinn, Alfred A. (Inventor); Droege, Michael (Inventor)
2004-01-01
A hybrid insulation material comprises of porous ceramic substrate material impregnated with nanoporous material and method of making the same is the topic of this invention. The porous substrate material has bulk density ranging from 6 to 20 lb/ft.sup.3 and is composed of about 60 to 80 wt % silica (SiO.sub.2) 20 to 40 wt % alumina (Al.sub.2 O.sub.3) fibers, and with about 0.1 to 1.0 wt % boron-containing constituent as the sintering agent. The nanoporous material has density ranging from 1.0 to 10 lb/ft.sup.3 and is either fully or partially impregnated into the substrate to block the pores, resulting in substantial reduction in conduction via radiation and convention. The nanoporous material used to impregnate the fiber substrate is preferably formed from a precursor of alkoxysilane, alcohol, water, and an acid or base catalyst for silica aerogels, and from a precursor of aluminum alkoxide, alcohol, water, and an acid or base catalyst for alumina aerogels.
NASA Astrophysics Data System (ADS)
Moure, A.; Pardo, L.
2005-04-01
Ceramics of composition Bi3TiNbO9 (BTN) and perovskite-layered structure (Aurivillius type) [B. Aurivillius, Ark. Kemi 1, 463 (1949)] were processed by natural sintering and hot pressing from amorphous precursors. Precursors were obtained by mechanochemical activation of stoichiometric mixtures of oxides. These materials are in general interesting for their use as high-temperature piezoelectrics. Among them, BTN possesses the highest ferroparaelectric phase-transition temperature (>900°C). The transition temperature establishes the working limit of the ceramic and the electric properties, especially the dc conductivity, affect on its polarizability. In this work, dielectric studies of BTN ceramics with controlled texture and microstructure have been made at 1, 100KHz, and 1MHZ and in the temperature range from 200°C up to the ferroparaelectric transition temperature. Values of ɛ'˜250 at 200°C are achieved in ceramics hot pressed at temperatures as low as 700°C for 1h.
Supersonic laser spray of aluminium alloy on a ceramic substrate
NASA Astrophysics Data System (ADS)
Riveiro, A.; Lusquiños, F.; Comesaña, R.; Quintero, F.; Pou, J.
2007-12-01
Applying a ceramic coating onto a metallic substrate to improve its wear resistance or corrosion resistance has attracted the interest of many researchers during decades. However, only few works explore the possibility to apply a metallic layer onto a ceramic material. This work presents a novel technique to coat ceramic materials with metals: the supersonic laser spraying. In this technique a laser beam is focused on the surface of the precursor metal in such a way that the metal is transformed to the liquid state in the beam-metal interaction zone. A supersonic jet expels the molten material and propels it to the surface of the ceramic substrate. In this study, we present the preliminary results obtained using the supersonic laser spray to coat a commercial cordierite ceramic plate with an Al-Cu alloy using a 3.5 kW CO 2 laser and a supersonic jet of Argon. Coatings were characterized by scanning electron microscopy (SEM) and interferometric profilometry.
A promising tritium breeding material: Nanostructured 2Li2TiO3-Li4SiO4 biphasic ceramic pebbles
NASA Astrophysics Data System (ADS)
Dang, Chen; Yang, Mao; Gong, Yichao; Feng, Lan; Wang, Hailiang; Shi, Yanli; Shi, Qiwu; Qi, Jianqi; Lu, Tiecheng
2018-03-01
As an advanced tritium breeder material for the fusion reactor blanket of the International Thermonuclear Experimental Reactor (ITER), Li2TiO3-Li4SiO4 biphasic ceramic has attracted widely attention due to its merits. In this paper, the uniform precursor powders were prepared by hydrothermal method, and nanostructured 2Li2TiO3-Li4SiO4 biphasic ceramic pebbles were fabricated by an indirect wet method at the first time. In addition, the composition dependence (x/y) of their microstructure characteristics and mechanical properties were investigated. The results indicated that the crush load of biphasic ceramic pebbles was better than that of single phase ceramic pebbles under identical conditions. The 2Li2TiO3-Li4SiO4 ceramic pebbles have good morphology, small grain size (90 nm), satisfactory crush load (37.8 N) and relative density (81.8 %T.D.), which could be a promising breeding material in the future fusion reactor.
Siqueira, Renato Luiz; Zanotto, Edgar Dutra
2013-02-01
Bioactive glasses and glass-ceramics of the SiO(2)-CaO-P(2)O(5) system were synthesised by means of a sol-gel method using different phosphorus precursors according to their respective rates of hydrolysis-triethylphosphate (OP(OC(2)H(5))(3)), phosphoric acid (H(3)PO(4)) and a solution prepared by dissolving phosphorus oxide (P(2)O(5)) in ethanol. The resulting materials were characterised by differential scanning calorimetry and thermogravimetry, X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy and by in vitro bioactivity tests in acellular simulated body fluid. The different precursors significantly affected the main steps of the synthesis, beginning with the time required for gel formation. The most striking influence of these precursors was observed during the thermal treatments at 700-1,200 °C that were used to convert the gels into glasses and glass-ceramics. The samples exhibited very different mineralisation behaviours; especially those prepared using the phosphoric acid, which had a reduced onset temperature of crystallisation and an increased resistance to devitrification. However, all resulting materials were bioactive. The in vitro bioactivity of these materials was strongly affected by the heat treatment temperature. In general, their bioactivity decreased with increasing treatment temperature. For crystallised samples obtained above 900 °C, the bioactivity was favoured by the presence of two crystalline phases: wollastonite (CaSiO(3)) and tricalcium phosphate (α-Ca(3)(PO(4))(2)).
Surface or internal nucleation and crystallization of glass-ceramics
NASA Astrophysics Data System (ADS)
Höland, W.; Rheinberger, V. M.; Ritzberger, C.; Apel, E.
2013-07-01
Fluoroapatite (Ca5(PO4)3F) was precipitated in glass-ceramics via internal crystallization of base glasses. The crystals grew with a needle-like morphology in the direction of the crystallographic c-axis. Two different reaction mechanisms were analyzed: precipitation via a disordered primary apatite crystals and a solid state parallel reaction to rhenanite (NaCaPO4) precipitation. In contrast to the internal nucleation used in the formation of fluoroapatite, surface crystallization was induced to precipitate a phosphate-free oxyapatite of NaY9(SiO4)6O2-type. Internal nucleation and crystallization have been shown to be a very useful tool for developing high-strength lithium disilicate (Li2Si2O5) glass-ceramics. A very controlled process was conducted to transform the lithium metasilicate glass-ceramic precursor material into the final product of the lithium disilicate glass-ceramic without the major phase of the precursor material. The combination of all these methods allowed the driving forces of the internal nucleation and crystallization mechanisms to be explained. An amorphous phosphate primary phase was discovered in the process. Nucleation started at the interface between the amorphous phosphate phase and the glass matrix. The final products of all these glass-ceramics are biomaterials for dental restoration showing special optical properties, e.g. translucence and color close to dental teeth.
Lightweight Ceramic Composition of Carbon Silicon Oxygen and Boron
NASA Technical Reports Server (NTRS)
Leiser, Daniel B. (Inventor); Hsu, Ming-Ta (Inventor); Chen, Timothy S. (Inventor)
1997-01-01
Lightweight, monolithic ceramics resistant to oxidation in air at high temperatures are made by impregnating a porous carbon preform with a sol which contains a mixture of tetraethoxysilane, dimethyldiethoxysilane and trimethyl borate. The sol is gelled and dried on the carbon preform to form a ceramic precursor. The precursor is pyrolyzed in an inert atmosphere to form the ceramic which is made of carbon, silicon, oxygen and boron. The carbon of the preform reacts with the dried gel during the pyrolysis to form a component of the resulting ceramic. The ceramic is of the same size, shape and form as the carbon precursor. Thus, using a porous, fibrous carbon precursor, such as a carbon felt, results in a porous, fibrous ceramic. Ceramics of the invention are useful as lightweight tiles for a reentry spacecraft.
Counterflow diffusion flame synthesis of ceramic oxide powders
Katz, J.L.; Miquel, P.F.
1997-07-22
Ceramic oxide powders and methods for their preparation are revealed. Ceramic oxide powders are obtained using a flame process whereby one or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein the precursors are converted into ceramic oxide powders. The nature of the ceramic oxide powder produced is determined by process conditions. The morphology, particle size, and crystalline form of the ceramic oxide powders may be varied by the temperature of the flame, the precursor concentration ratio, the gas stream and the gas velocity. 24 figs.
Counterflow diffusion flame synthesis of ceramic oxide powders
Katz, Joseph L.; Miquel, Philippe F.
1997-01-01
Ceramic oxide powders and methods for their preparation are revealed. Ceramic oxide powders are obtained using a flame process whereby one or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein the precursors are converted into ceramic oxide powders. The nature of the ceramic oxide powder produced is determined by process conditions. The morphology, particle size, and crystalline form of the ceramic oxide powders may be varied by the temperature of the flame, the precursor concentration ratio, the gas stream and the gas velocity.
QCM gas phase detection with ceramic materials--VOCs and oil vapors.
Latif, Usman; Rohrer, Andreas; Lieberzeit, Peter A; Dickert, Franz L
2011-06-01
Titanate sol-gel layers imprinted with carbonic acids were used as sensitive layers on quartz crystal microbalance. These functionalized ceramics enable us detection of volatile organic compounds such as ethanol, n-propanol, n-butanol, n-hexane, n-heptane, n-/iso-octane, and n-decane. Variation of the precursors (i.e., tetrabutoxy titanium, tetrapropoxy titanium, tetraethoxy titanium) allows us to tune the sensitivity of the material by a factor of 7. Sensitivity as a function of precursors leads to selective inclusion of n-butanol vapors down to 1 ppm. The selectivity of materials is optimized to differentiate between isomers, e.g., n- and iso-octane. The results can be rationalized by correlating the sensor effects of hydrocarbons with the Wiener index. A mass-sensitive sensor based on titanate layer was also developed for monitoring emanation of degraded engine oil. Heating the sensor by a meander avoids vapor condensation. Thus, a continuously working oil quality sensor was designed.
Method of making nanopatterns and nanostructures and nanopatterned functional oxide materials
Dravid, Vinayak P; Donthu, Suresh K; Pan, Zixiao
2014-02-11
Method for nanopatterning of inorganic materials, such as ceramic (e.g. metal oxide) materials, and organic materials, such as polymer materials, on a variety of substrates to form nanopatterns and/or nanostructures with control of dimensions and location, all without the need for etching the materials and without the need for re-alignment between multiple patterning steps in forming nanostructures, such as heterostructures comprising multiple materials. The method involves patterning a resist-coated substrate using electron beam lithography, removing a portion of the resist to provide a patterned resist-coated substrate, and spin coating the patterned resist-coated substrate with a liquid precursor, such as a sol precursor, of the inorganic or organic material. The remaining resist is removed and the spin coated substrate is heated at an elevated temperature to crystallize the deposited precursor material.
Waterproof Silicone Coatings of Thermal Insulation and Vaporization Method
NASA Technical Reports Server (NTRS)
Cagliostro, Domenick E. (Inventor)
1999-01-01
Thermal insulation composed of porous ceramic material can be waterproofed by producing a thin silicone film on the surface of the insulation by exposing it to volatile silicone precursors at ambient conditions. When the silicone precursor reactants are multi-functional siloxanes or silanes containing alkenes or alkynes carbon groups higher molecular weight films can be produced. Catalyst are usually required for the silicone precursors to react at room temperature to form the films. The catalyst are particularly useful in the single component system e.g. dimethylethoxysilane (DNMS) to accelerate the reaction and decrease the time to waterproof and protect the insulation. In comparison to other methods, the chemical vapor technique assures better control over the quantity and location of the film being deposited on the ceramic insulation to improve the waterproof coating.
Synthesis of Sol-Gel Precursors for Ceramics from Lunar and Martian Soil Simulars
NASA Technical Reports Server (NTRS)
Sibille, L.; Gavira-Gallardo, J. A.; Hourlier-Bahloul, D.
2004-01-01
Recent NASA mission plans for the human exploration of our Solar System has set new priorities for research and development of technologies necessary to enable a long-term human presence on the Moon and Mars. The recovery and processing of metals and oxides from mineral sources on other planets is under study to enable use of ceramics, glasses and metals by explorer outposts. We report initial results on the production of sol-gel precursors for ceramic products using mineral resources available in martian or lunar soil. The presence of SO2, TiO2, and Al2O3 in both martian (44 wt.% SiO2, 1 wt.% TiO2, 7 wt.% Al2O3) and lunar (48 wt.% SiO2, 1.5 wt.% TiO2, 16 wt.% Al2O3) soils and the recent developments in chemical processes to solubilize silicates using organic reagents and relatively little energy indicate that such an endeavor is possible. In order to eliminate the risks involved in the use of hydrofluoric acid to dissolve silicates, two distinct chemical routes are investigated to obtain soluble silicon oxide precursors from lunar and martian soil simulars. Clear solutions of sol-gel precursors have been obtained by dissolution of silica from lunar soil similar JSC-1 in basic ethylene glycol (C2H4(OH)2) solutions to form silicon glycolates. Similarly, sol-gel solutions produced from martian soil simulars reveal higher contents of iron oxides. Characterization of the precursor molecules and efforts to further concentrate and hydrolyze the products to obtain gel materials will be presented for evaluation as ceramic precursors.
Synthesis of Sol-Gel Precursors for Ceramics from Lunar and Martian Soil Simulars
NASA Technical Reports Server (NTRS)
Sibille, L.; Gavira-Gallardo, J. A.; Hourlier-Bahloul, D.
2003-01-01
Recent NASA mission plans for the human exploration of our Solar System has set new priorities for research and development of technologies necessary to enable a long-term human presence on the Moon and Mars. The recovery and processing of metals and oxides from mineral sources on other planets is under study to enable use of ceramics, glasses and metals by explorer outposts. We report initial results on the production of sol-gel precursors for ceramic products using mineral resources available in martian or lunar soil. The presence of SiO2, TiO2, and Al2O3 in both martian (44 wt.% SiO2, 1 wt.% TiO2,7 wt.% Al2O3) and lunar (48 wt.% SiO2, 1.5 wt.% TiO2, 16 wt.% Al2O3) soils and the recent developments in chemical processes to solubilize silicates using organic reagents and relatively little energy indicate that such an endeavor is possible. In order to eliminate the risks involved in the use of hydrofluoric acid to dissolve silicates, two distinct chemical routes are investigated to obtain soluble silicon oxide precursors from lunar and martian soil simulars. Clear solutions of sol-gel precursors have been obtained by dissolution of silica from lunar soil simular in basic ethylene glycol (C2H4(OH)2) solutions to form silicon glycolates. Similarly, sol-gel solutions produced from martian soil simulars reveal higher contents of iron oxides. The elemental composition and structure of the precursor molecules were characterized. Further concentration and hydrolysis of the products was performed to obtain gel materials for evaluation as ceramic precursors.
Ceramic oxide powders and the formation thereof
Katz, Joseph L.; Hung, Cheng-Hung
1993-01-01
Ceramic oxide powders and a method for their preparation. Ceramic oxide powders are obtained using a flame process whereby two or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein said precursors are converted into ceramic oxide powders. The morphology, particle size, and crystalline form of the ceramic oxide powders are determined by process conditions.
Novel Precursor Approached for CMC Derived by Polymer Pyrolysis
1994-02-15
to remove signals from probe polymer materials. C. Pyrolysis Methods The conversion of polymeric PMVS to SiC -containing ceramic was studied by... Composite Fabrication Methods Ceramic matrix composites with different matrix compositions were fabricated using the Polymer Impregnation- Pyrolysis (PIP...Pyrolyzed composites were re- infiltrated with the appropriate polymer matrix source under vacuum, and cured in an autoclave under 100 psi overpressure of N2
NASA Astrophysics Data System (ADS)
Agilandeswari, K.; Ruban Kumar, A.
2014-04-01
Sr2Co2O5 ceramic synthesized by the coprecipitation of strontium cobalt carbonate method. XRD analysis shows the single phase strontianite precursor and decomposed oxide product as orthorhombic structure of Sr2Co2O5. Thermal analysis proves the Sr2Co2O5 phase formation temperature of 800 °C. SEM image indicates crystalline rod shaped carbonate precursor transformed to oxide as porous diffused sphere shape particles. Optical band gap it reveals the strontium cobalt carbonate precursor as insulating material and the Sr2Co2O5 as semiconducting nature. The room temperature magnetic study indicates the carbonate precursor as paramagnetic but its oxide Sr2Co2O5 as superparamagnetic behavior.
Molecular-Level Processing of Si-(B)-C Materials with Tailored Nano/Microstructures.
Schmidt, Marion; Durif, Charlotte; Acosta, Emanoelle Diz; Salameh, Chrystelle; Plaisantin, Hervé; Miele, Philippe; Backov, Rénal; Machado, Ricardo; Gervais, Christel; Alauzun, Johan G; Chollon, Georges; Bernard, Samuel
2017-12-01
The design of Si-(B)-C materials is investigated, with detailed insight into the precursor chemistry and processing, the precursor-to-ceramic transformation, and the ceramic microstructural evolution at high temperatures. In the early stage of the process, the reaction between allylhydridopolycarbosilane (AHPCS) and borane dimethyl sulfide is achieved. This is investigated in detail through solid-state NMR and FTIR spectroscopy and elemental analyses for Si/B ratios ranging from 200 to 30. Boron-based bridges linking AHPCS monomeric fragments act as crosslinking units, extending the processability range of AHPCS and suppressing the distillation of oligomeric fragments during the low-temperature pyrolysis regime. Polymers with low boron contents display appropriate requirements for facile processing in solution, leading to the design of monoliths with hierarchical porosity, significant pore volume, and high specific surface area after pyrolysis. Polymers with high boron contents are more appropriate for the preparation of dense ceramics through direct solid shaping and pyrolysis. We provide a comprehensive study of the thermal decomposition mechanisms, and a subsequent detailed study of the high-temperature behavior of the ceramics produced at 1000 °C. The nanostructure and microstructure of the final SiC-based ceramics are intimately linked to the boron content of the polymers. B 4 C/C/SiC nanocomposites can be obtained from the polymer with the highest boron content. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ceramic oxide powders and the formation thereof
Katz, J.L.; Chenghung Hung.
1993-12-07
Ceramic oxide powders and a method for their preparation. Ceramic oxide powders are obtained using a flame process whereby two or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein said precursors are converted into ceramic oxide powders. The morphology, particle size, and crystalline form of the ceramic oxide powders are determined by process conditions. 14 figures.
Precursor Selection for Property Optimization in Biomorphic SiC Ceramics
NASA Technical Reports Server (NTRS)
Varela-Feria, F. M.; Lopez-Robledo, M. J.; Martinez-Fernandez, J.; deArellano-Lopez, A. R.; Singh, M.; Gray, Hugh R. (Technical Monitor)
2002-01-01
Biomorphic SiC ceramics have been fabricated using different wood precursors. The evolution of volume, density and microstructure of the woods, carbon performs, and final SiC products are systematically studied in order to establish experimental guidelines that allow materials selection. The wood density is a critical characteristic, which results in a particular final SiC density, and the level of anisotropy in mechanical properties in directions parallel (axial) and perpendicular (radial) to the growth of the wood. The purpose of this work is to explore experimental laws that can help choose a type of wood as precursor for a final SiC product, with a given microstructure, density and level of anisotropy. Preliminary studies of physical properties suggest that not only mechanical properties are strongly anisotropic, but also electrical conductivity and gas permeability, which have great technological importance.
Oxidation and Corrosion of Ceramics and Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.; Opila, Elizabeth J.; Lee, Kang N.
2000-01-01
Ceramics and ceramic matrix composites are candidates for numerous applications in high temperature environments with aggressive gases and possible corrosive deposits. There is a growing realization that high temperature oxidation and corrosion issues must be considered. There are many facets to these studies, which have been extensively covered in some recent reviews. The focus of this paper is on current research, over the past two years. In the authors' view, the most important oxidation and corrosion studies have focused on four major areas during this time frame. These are; (I) Oxidation of precursor-based ceramics; (II) Studies of the interphase material in ceramic matrix composites; (III) Water vapor interactions with ceramics, particularly in combustion environments; and (IV) Development of refractory oxide coatings for silicon-based ceramics. In this paper, we shall explore the most current work in each of these areas.
Superhydrophobic Ceramic Coatings by Solution Precursor Plasma Spray
Cai, Yuxuan; Coyle, Thomas W.; Azimi, Gisele; Mostaghimi, Javad
2016-01-01
This work presents a novel coating technique to manufacture ceramic superhydrophobic coatings rapidly and economically. A rare earth oxide (REO) was selected as the coating material due to its hydrophobic nature, chemical inertness, high temperature stability, and good mechanical properties, and deposited on stainless steel substrates by solution precursor plasma spray (SPPS). The effects of various spraying conditions including standoff distance, torch power, number of torch passes, types of solvent and plasma velocity were investigated. The as-sprayed coating demonstrated a hierarchically structured surface topography, which closely resembles superhydrophobic surfaces found in nature. The water contact angle on the SPPS superhydrophobic coating was up to 65% higher than on smooth REO surfaces. PMID:27091306
Synthesis of alumina ceramic encapsulation for self-healing materials on thermal barrier coating
NASA Astrophysics Data System (ADS)
Golim, O. P.; Prastomo, N.; Izzudin, H.; Hastuty, S.; Sundawa, R.; Sugiarti, E.; Thosin, K. A. Z.
2018-03-01
Durability of Thermal Barrier Coating or TBC can be optimized by inducing Self-Healing capabilities with intermetallic materials MoSi2. Nevertheless, high temperature operation causes the self-healing materials to become oxidized and lose its healing capabilities. Therefore, a method to introduce ceramic encapsulation for MoSi2 is needed to protect it from early oxidation. The encapsulation process is synthesized through a simple precipitation method with colloidal aluminum hydroxide as precursor and variations on calcination process. Semi-quantitative analysis on the synthesized sample is done by using X-ray diffraction (XRD) method. Meanwhile, qualitative analysis on the morphology of the encapsulation was carried out by using Scanning Electron Microscope (SEM) and Field Emission Scanning Electron Microscope (FESEM) equipped with dual Focus Ion Beam (FIB). The result of the experiment shows that calcination process significantly affects the final characteristic of encapsulation. The optimum encapsulation process was synthesized by colloidal aluminum hydroxide as a precursor, with a double step calcination process in low pressure until 900 °C.
The precursors effects on biomimetic hydroxyapatite ceramic powders.
Yoruç, Afife Binnaz Hazar; Aydınoğlu, Aysu
2017-06-01
In this study, effects of the starting material on chemical, physical, and biological properties of biomimetic hydroxyapatite ceramic powders (BHA) were investigated. Characterization and chemical analysis of BHA powders were performed by using XRD, FT-IR, and ICP-AES. Microstructural features such as size and morphology of the resulting BHA powders were characterized by using BET, nano particle sizer, pycnometer, and SEM. Additionally, biological properties of the BHA ceramic powders were also investigated by using water-soluble tetrazolium salts test (WST-1). According to the chemical analysis of BHA ceramic powders, chemical structures of ceramics which are prepared under different conditions and by using different starting materials show differences. Ceramic powders which are produced at 80°C are mainly composed of hydroxyapatite, dental hydroxyapatite (contain Na and Mg elements in addition to Ca), and calcium phosphate sulfide. However, these structures are altered at high temperatures such as 900°C depending on the features of starting materials and form various calcium phosphate ceramics and/or their mixtures such as Na-Mg-hydroxyapatite, hydroxyapatite, Mg-Whitlockit, and chloroapatite. In vitro cytotoxicity studies showed that amorphous ceramics produced at 80°C and ceramics containing chloroapatite structure as main or secondary phases were found to be extremely cytotoxic. Furthermore, cell culture studies showed that highly crystalline pure hydroxyapatite structures were extremely cytotoxic due to their high crystallinity values. Consequently, the current study indicates that the selection of starting materials which can be used in the production of calcium phosphate ceramics is very important. It is possible to produce calcium phosphate ceramics which have sufficient biocompatibility at physiological pH values and by using appropriate starting materials. Copyright © 2017 Elsevier B.V. All rights reserved.
Müller, B. R.; Cooper, R. C.; Lange, A.; ...
2017-11-01
In order to investigate their microcracking behaviour, the microstructures of several β-eucryptite ceramics, obtained from glass precursor and cerammed to yield different grain sizes and microcrack densities, were characterized by laboratory and synchrotron x-ray refraction and tomography. Here, results were compared with those obtained from scanning electron microscopy (SEM). In SEM images, the characterized materials appeared fully dense but computed tomography showed the presence of pore clusters. Uniaxial tensile testing was performed on specimens while strain maps were recorded and analyzed by Digital Image Correlation (DIC). X-ray refraction techniques were applied on specimens before and after tensile testing to measuremore » the amount of the internal specific surface (i.e., area per unit volume). X-ray refraction revealed that (a) the small grain size (SGS) material contained a large specific surface, originating from the grain boundaries and the interfaces of TiO 2 precipitates; (b) the medium (MGS) and large grain size (LGS) materials possessed higher amounts of specific surface compared to SGS material due to microcracks, which decreased after tensile loading; (c) the precursor glass had negligible internal surface. The unexpected decrease in the internal surface of MGS and LGS after tensile testing is explained by the presence of compressive regions in the DIC strain maps and further by theoretical arguments. It is suggested that while some microcracks merge via propagation, more close mechanically, thereby explaining the observed X-ray refraction results. Lastly, the mechanisms proposed would allow the development of a strain hardening route in ceramics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Müller, B. R.; Cooper, R. C.; Lange, A.
In order to investigate their microcracking behaviour, the microstructures of several β-eucryptite ceramics, obtained from glass precursor and cerammed to yield different grain sizes and microcrack densities, were characterized by laboratory and synchrotron x-ray refraction and tomography. Here, results were compared with those obtained from scanning electron microscopy (SEM). In SEM images, the characterized materials appeared fully dense but computed tomography showed the presence of pore clusters. Uniaxial tensile testing was performed on specimens while strain maps were recorded and analyzed by Digital Image Correlation (DIC). X-ray refraction techniques were applied on specimens before and after tensile testing to measuremore » the amount of the internal specific surface (i.e., area per unit volume). X-ray refraction revealed that (a) the small grain size (SGS) material contained a large specific surface, originating from the grain boundaries and the interfaces of TiO 2 precipitates; (b) the medium (MGS) and large grain size (LGS) materials possessed higher amounts of specific surface compared to SGS material due to microcracks, which decreased after tensile loading; (c) the precursor glass had negligible internal surface. The unexpected decrease in the internal surface of MGS and LGS after tensile testing is explained by the presence of compressive regions in the DIC strain maps and further by theoretical arguments. It is suggested that while some microcracks merge via propagation, more close mechanically, thereby explaining the observed X-ray refraction results. Lastly, the mechanisms proposed would allow the development of a strain hardening route in ceramics.« less
NASA Astrophysics Data System (ADS)
Nicholas, James Robert
The current work is on the development of continuous fiber reinforced ceramic materials (CFCCs) for use in ultra high temperature applications. These applications subject materials to extremely high temperatures(> 2000°C). Monolithic ceramics are currently being used for these applications, but the tendency to fail catastrophically has driven the need for the next generation of material. Reinforcing with continuous fibers significantly improves the toughness of the monolithic materials; however, this is a manufacturing challenge. The development of commercial, low-viscosity preceramic polymers provides new opportunities to fabricate CFCCs. Preceramic polymers behave as polymers at low temperatures and are transformed into ceramics upon heating to high temperatures. The polymer precursors enable the adaptation of well-established polymer processing techniques to produce high quality materials at relatively low cost. In the present work, SMP-10 from Starfire Systems, and PURS from KiON Corp. were used to manufacture ZrB2-SiC/SiC CFCCs using low cost vacuum bagging process in conjunction with the polymer infiltration and pyrolysis process. The microstructure was investigated using scanning electron microscopy and it was determined that the initial greenbody cure produced porosity of both closed and open pores. The open pores were found to be more successfully re-infiltrated using neat resin compared to slurry reinfiltrate; however, the closed pores were found to be impenetrable during subsequent reinfiltrations. The mechanical performance of the manufactured samples was evaluated using flexure tests and found the fiber reinforcement prevented catastrophic failure behavior by increasing fracture toughness. Wedge sample were fabricated and evaluated to demonstrate the ability to produce CFCC of complex geometry.
Preparation of ceramic materials using liquid metal carboxylate precursors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, E.H.; Apblett, A.W.
We have recently discovered a novel class of metal carboxylates which are liquids at room temperature. These metal salts bear polyether organic residues and their physical properties make them highly conducive to the preparation of ceramic films and fibers. Furthermore, the liquid salts are excellent solvents for other metal salts such as nitrates. The resultant solutions are readily converted upon pyrolysis to multi-metallic oxide phases at fairly low temperatures due to the high homogeneity of the cation distribution in the liquid. The preparation of a variety of aluminum, titanium, and iron-containing ceramics in this manner will be reported.
Preceramic Polymers for Use as Fiber Coatings
NASA Technical Reports Server (NTRS)
Heimann, P. J.; Hurwitz, F. I.; Wheeler, D.; Eldridge, J.; Baranwal, R.; Dickerson, R.
1996-01-01
Polymeric precursors to Si-C-O, SI-B-N and Si-C were evaluated for use as ceramic interfaces in ceramic matrix composites. Use of the preceramic polymers allows for easy dip coating of fibers from dilute solutions of a polymer, which are then pyrolyzed to obtain the ceramic. SCS-0 fibers (Textron Specialty Materials, Lowell, MA) were coated with polymers from three systems: polysilsesquioxanes, polyborosilazanes and polycarbosilanes. The polysilsesquioxane systems were shown to produce either silicon oxycarbide or silicon oxynitride, depending on the pyrolysis conditions, and demonstrated some promise in an RBSN (reaction-bonded silicon nitride) matrix model system. Polyborosilazanes were shown, in studies of bulk polymers, to give rise to oxidation resistant Si-B-N ceramics which remain amorphous to temperatures of 1600 C, and should therefore provide a low modulus interface. Polycarbosilanes produce amorphous carbon-rich Si-C materials which have demonstrated oxidation resistance.
Ceramic porous material and method of making same
Liu, Jun; Kim, Anthony Y.; Virden, Jud W.
1997-01-01
The invention is a mesoporous ceramic membrane having substantially uniform pore size. Additionally, the invention includes aqueous and non-aqueous processing routes to making the mesoporous ceramic membranes. According to one aspect of the present invention, inserting a substrate into a reaction chamber at pressure results in reaction products collecting on the substrate and forming a membrane thereon. According to another aspect of the present invention, a second aqueous solution that is sufficiently immiscible in the aqueous solution provides an interface between the two solutions whereon the mesoporous membrane is formed. According to a further aspect of the present invention, a porous substrate is placed at the interface between the two solutions permitting formation of a membrane on the surface or within the pores of the porous substrate. According to yet another aspect of the present invention, mesoporous ceramic materials are formed using a non-aqueous solvent and water-sensitive precursors.
Ceramic porous material and method of making same
Liu, J.; Kim, A.Y.; Virden, J.W.
1997-07-08
The invention is a mesoporous ceramic membrane having substantially uniform pore size. Additionally, the invention includes aqueous and non-aqueous processing routes to making the mesoporous ceramic membranes. According to one aspect of the present invention, inserting a substrate into a reaction chamber at pressure results in reaction products collecting on the substrate and forming a membrane thereon. According to another aspect of the present invention, a second aqueous solution that is sufficiently immiscible in the aqueous solution provides an interface between the two solutions whereon the mesoporous membrane is formed. According to a further aspect of the present invention, a porous substrate is placed at the interface between the two solutions permitting formation of a membrane on the surface or within the pores of the porous substrate. According to yet another aspect of the present invention, mesoporous ceramic materials are formed using a non-aqueous solvent and water-sensitive precursors. 21 figs.
NASA Astrophysics Data System (ADS)
Manocha, Satish M.; Patel, Hemang; Manocha, L. M.
2013-02-01
Biomorphic SiC materials with tailor-made microstructure and properties similar to ceramic materials manufactured by conventional method are a new class of materials derived from natural biopolymeric cellulose templates (wood). Porous silicon carbide (SiC) ceramics with wood-like microstructure have been prepared by carbothermal reduction of charcoal/silica composites at 1300-1600 °C in inert Ar atmosphere. The C/SiO2 composites were fabricated by infiltrating silica sol into porous activated biocarbon template. Silica in the charcoal/silica composite, preferentially in the cellular pores, was found to get transformed in forms of fibers and rods due to shrinkage during drying. The changes in the morphology of resulting porous SiC ceramics after heat treatment to 1600 °C, as well as the conversion mechanism of wood to activated carbon and then to porous SiC ceramic have been investigated using scanning electron microscope, x-ray diffraction, thermogravimetric analysis, and differential scanning calorimetry. Activation of carbon prior to silica infiltration has been found to enhance conversion of charcoal to SiC. The pore structure is found to be uniform in these materials than in those made from as-such charcoal/silica composites. This provides a low-cost and eco-friendly route to advanced ceramic materials, with near-net shape potential.
Wen, Qingbo; Xu, Yeping; Xu, Binbin; Fasel, Claudia; Guillon, Olivier; Buntkowsky, Gerd; Yu, Zhaoju; Riedel, Ralf; Ionescu, Emanuel
2014-11-21
A novel single-source precursor was synthesized by the reaction of an allyl hydrido polycarbosilane (SMP10) and tetrakis(dimethylamido)hafnium(iv) (TDMAH) for the purpose of preparing dense monolithic SiC/HfC(x)N(1-x)-based ultrahigh temperature ceramic nanocomposites. The materials obtained at different stages of the synthesis process were characterized via Fourier transform infrared (FT-IR) as well as nuclear magnetic resonance (NMR) spectroscopy. The polymer-to-ceramic transformation was investigated by means of MAS NMR and FT-IR spectroscopy as well as thermogravimetric analysis (TGA) coupled with in situ mass spectrometry. Moreover, the microstructural evolution of the synthesized SiHfCN-based ceramics annealed at different temperatures ranging from 1300 °C to 1800 °C was characterized by elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). Based on its high temperature behavior, the amorphous SiHfCN-based ceramic powder was used to prepare monolithic SiC/HfC(x)N(1-x)-based nanocomposites using the spark plasma sintering (SPS) technique. The results showed that dense monolithic SiC/HfC(x)N(1-x)-based nanocomposites with low open porosity (0.74 vol%) can be prepared successfully from single-source precursors. The average grain size of both HfC0.83N0.17 and SiC phases was found to be less than 100 nm after SPS processing owing to a unique microstructure: HfC0.83N0.17 grains were embedded homogeneously in a β-SiC matrix and encapsulated by in situ formed carbon layers which acted as a diffusion barrier to suppress grain growth. The segregated Hf-carbonitride grains significantly influenced the electrical conductivity of the SPS processed monolithic samples. While Hf-free polymer-derived SiC showed an electrical conductivity of ca. 1.8 S cm(-1), the electrical conductivity of the Hf-containing material was analyzed to be ca. 136.2 S cm(-1).
Manganite perovskite ceramics, their precursors and methods for forming
Payne, David Alan; Clothier, Brent Allen
2015-03-10
Disclosed are a variety of ceramics having the formula Ln.sub.1-xM.sub.xMnO.sub.3, where 0.Itoreq.x.Itoreq.1 and where Ln is La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu or Y; M is Ca, Sr, Ba, Cd, or Pb; manganite precursors for preparing the ceramics; a method for preparing the precursors; and a method for transforming the precursors into uniform, defect-free ceramics having magnetoresistance properties. The manganite precursors contain a sol and are derived from the metal alkoxides: Ln(OR).sub.3, M(OR).sub.2 and Mn(OR).sub.2, where R is C.sub.2 to C.sub.6 alkyl or C.sub.3 to C.sub.9 alkoxyalkyl, or C.sub.6 to C.sub.9 aryl. The preferred ceramics are films prepared by a spin coating method and are particularly suited for incorporation into a device such as an integrated circuit device.
Development of Advanced Materials for Electro-Ceramic Application Final Report CRADA No. TC-1331-96
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caplan, M.; Olstad, R.; McMillan, L.
The goal of this project was to further develop and characterize the electrochemical methods originating in Russia for producing ultra high purity organometallic compounds utilized as precursors in the production of high quality electro-ceramic materials. Symetrix planned to use electro-ceramic materials with high dielectric constant for microelectronic memory circuit applications. General Atomics planned to use the barium titanate type ceramics with low loss tangent for producing a high power ferroelectric tuner used to match radio frequency power into their Dill-D fusion machine. Phase I of the project was scheduled to have a large number of organometallic (alkoxides) chemical samples producedmore » using various methods. These would be analyzed by LLNL, Soliton and Symetrix independently to determine the level of chemical impurities thus verifying each other's analysis. The goal was to demonstrate a cost-effective production method, which could be implemented in a large commercial facility to produce high purity organometallic compounds. In addition, various compositions of barium-strontium-titanate ceramics were to be produced and analyzed in order to develop an electroceramic capacitor material having the desired characteristics with respect to dielectric constant, loss tangent, temperature characteristics and non-linear behavior under applied voltage. Upon optimizing the barium titanate material, 50 capacitor preforms would be produced from this material demonstrating the ability to produce, in quantity, the pills ultimately required for the ferroelectric tuner (approx 2000-3000 ceramic pills).« less
Novel fabrication of silicon carbide based ceramics for nuclear applications
NASA Astrophysics Data System (ADS)
Singh, Abhishek Kumar
Advances in nuclear reactor technology and the use of gas-cooled fast reactors require the development of new materials that can operate at the higher temperatures expected in these systems. These materials include refractory alloys based on Nb, Zr, Ta, Mo, W, and Re; ceramics and composites such as SiC--SiCf; carbon--carbon composites; and advanced coatings. Besides the ability to handle higher expected temperatures, effective heat transfer between reactor components is necessary for improved efficiency. Improving thermal conductivity of the fuel can lower the center-line temperature and, thereby, enhance power production capabilities and reduce the risk of premature fuel pellet failure. Crystalline silicon carbide has superior characteristics as a structural material from the viewpoint of its thermal and mechanical properties, thermal shock resistance, chemical stability, and low radioactivation. Therefore, there have been many efforts to develop SiC based composites in various forms for use in advanced energy systems. In recent years, with the development of high yield preceramic precursors, the polymer infiltration and pyrolysis (PIP) method has aroused interest for the fabrication of ceramic based materials, for various applications ranging from disc brakes to nuclear reactor fuels. The pyrolysis of preceramic polymers allow new types of ceramic materials to be processed at relatively low temperatures. The raw materials are element-organic polymers whose composition and architecture can be tailored and varied. The primary focus of this study is to use a pyrolysis based process to fabricate a host of novel silicon carbide-metal carbide or oxide composites, and to synthesize new materials based on mixed-metal silicocarbides that cannot be processed using conventional techniques. Allylhydridopolycarbosilane (AHPCS), which is an organometal polymer, was used as the precursor for silicon carbide. Inert gas pyrolysis of AHPCS produces near-stoichiometric amorphous silicon carbide (a-SiC) at 900--1150 °C. Results indicated that this processing technique can be effectively used to fabricate various silicon carbide composites with UC or UO2 as the nuclear component.
Ceramic matrix and resin matrix composites: A comparison
NASA Technical Reports Server (NTRS)
Hurwitz, Frances I.
1987-01-01
The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.
Ceramic matrix and resin matrix composites - A comparison
NASA Technical Reports Server (NTRS)
Hurwitz, Frances I.
1987-01-01
The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.
Environment Conscious, Biomorphic Ceramics from Pine and Jelutong Wood Precursors
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay; Yee, Bo-Moon; Gray, Hugh R. (Technical Monitor)
2002-01-01
Environment conscious, biomorphic ceramics have been fabricated from pine and jelutong wood precursors. A carbonaceous preform is produced through wood pyrolysis and subsequent infiltration with oxides (ZrO2 sols) and liquid silicon to form ceramics. These biomorphic ceramics show a wide variety of microstructures, densities, and hardness behavior that are determined by the type of wood and infiltrants selected.
NASA Technical Reports Server (NTRS)
Cox, Sarah B.; Lui, Donovan; Gou, Jihua
2014-01-01
The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, which allows a shape to be formed prior to the cure, and is then pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Basalt fibers are used for the reinforcement in the composite system. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material.
Maya, Leon
1991-01-01
A process for making ammonolytic precursors to nitride and carbonitride ceramics. Extreme reaction conditions are not required and the precursor is a powder-like substance that produces ceramics of improved purity and morphology upon pyrolysis.
Commercialization of Ultra-Hard Ceramics for Cutting Tools Final Report CRADA No. TC0279.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landingham, R.; Neumann, T.
This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Greenleaf Corporation (Greenleaf) to develop the technology for forming unique precursor nano-powders process that can be consolidated into ceramic products for industry. LLNL researchers have developed a solgel process for forming nano-ceramic powders. The nano powders are highly tailorable, allowing the explicit design of desired properties that lead to ultra hard materials with fine grain size. The present CRADA would allow the two parties to continue the development of the sol-gel process and the consolidation process in ordermore » to develop an industrially sound process for the manufacture of these ultra-hard materials.« less
NASA Astrophysics Data System (ADS)
Guron, Marta
There is a need for new synthetic routes to high boron content materials for applications as polymeric precursors to ceramics, as well as in neutron shielding and potential medical applications. To this end, new ruthenium-catalyzed olefin metathesis routes have been devised to form new complex polyboranes and polymeric species. Metathesis of di-alkenyl substituted o-carboranes allowed the synthesis of ring-closed products fused to the carborane cage, many of which are new compounds and one that offers a superior synthetic method to one previously published. Acyclic diene metathesis of di-alkenyl substituted m-carboranes resulted in the formation of new main-chain carborane-containing polymers of modest molecular weights. Due to their extremely low char yields, and in order to explore other metathesis routes, ring opening metathesis polymerization (ROMP) was used to generate the first examples of poly(norbornenyl- o-carboranes). Monomer synthesis was achieved via a two-step process, incorporating Ti-catalyzed hydroboration to make 6-(5-norbornenyl)-decaborane, followed by alkyne insertion in ionic liquid media to achieve 1,2-R2 -3-norbornenyl o-carborane species. The monomers were then polymerized using ROMP to afford several examples of poly(norbornenyl- o-carboranes) with relatively high molecular weights. One such polymer, [1-Ph, 3-(=CH2-C5H7-CH2=)-1,2-C 2B10H10]n, had a char yield very close to the theoretical char yield of 44%. Upon random copolymerization with poly(6-(5-norbornenyl) decaborane), char yields significantly increased to 80%, but this number was well above the theoretical value implicating the formation of a boron-carbide/carbon ceramic. Finally, applications of polyboranes were explored via polymer blends toward the synthesis of ceramic composites and the use of polymer precursors as reagents for potential ultra high temperature ceramic applications. Upon pyrolysis, polymer blends of poly(6-(5-norbornenyl)-decaborane) and poly(methylcarbosilane) converted into boron-carbide/silicon-carbide ceramics with high char yields. These polymer blends were also shown to be useful as reagents for synthesis of hafnium-boride/hafnium-carbide/silicon carbide and zirconium-boride/zirconium-carbide/silicon carbide composites.
Metal/ceramic composites via infiltration of an interconnected wood-derived ceramic
NASA Astrophysics Data System (ADS)
Wilkes, Thomas E.
The use of composites is increasing as they afford scientists and engineers the ability to combine the advantageous properties of each constituent phase, e.g. metal ductility and ceramic stiffness. With respect to materials design, biomimetics is garnering increasing attention due to the complex, yet efficient, natural microstructures. One such biomimetic, or in this case 'bio-derived,' curiosity is wood-derived ceramic, which is made by either replicating or converting wood into a ceramic. The resulting porous and anisotropic material retains the precursor microstructure. The wide variety of precursors can yield materials with a range of pore sizes and distribution of pores. The purpose of this work was to study the processing, microstructure, and properties of aluminum/silicon carbide composites. The composites were made by infiltrating molten aluminum into porous wood-derived SIC, which was produced by the reactive melt-infiltration of silicon into pyrolyzed wood. The composite microstructure consisted of interconnected SiC surrounding Al-alloy 'fibers.' The strength, modulus, and toughness were measured in both longitudinal and transverse orientations. The Al → SiC load transfer was investigated with high-energy X-ray diffraction in combination with in-situ compressive loading. The properties in flexure were found to decrease with increasing temperature. Despite the complex microstructure, predictions of the composite flexural modulus and longitudinal fracture toughness were obtained using simple models: Halpin-Tsai bounds and the Ashby et al. model of the effect of ductile particle-reinforcements on the toughness of brittle materials (Ashby et al. 1989), respectively. In addition, the Al/SiC research inspired the investigation of carbon-reinforced copper composites. The goal was to explore the feasibility of making a high-thermal conductivity composite by infiltrating copper into wood-derived carbon. Results indicated that Cu/C composites could be made with pressurized infiltration, but the predicted thermal conductivity was low due to the amorphous wood-derived carbon.
Silva, R V; de Brito, J; Lynn, C J; Dhir, R K
2017-10-01
This paper presents a literature review on the incorporation of municipal solid waste incinerated bottom ash as raw material in several markets, other than those where it is conventionally used, such as geotechnical applications and road pavement construction. The main findings of an ample selection of experimental investigations on the use of the bottom ash as precursor of alkali-activated materials, as an adsorbent material for the removal of hazardous elements from wastewater and landfill gases, as soil replacement in agricultural activities, as partial or complete substitute of raw materials for the manufacture of ceramic-based products, as landfill cover and as biogas production enhancer, were gathered, collated and analysed. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Karlina, E.; Susra, S.; Fatmala, Y.; Hartoyo, H. M.; Takarini, V.; Usri, K.; Febrida, R.; Djustiana, N.; Panatarani, C.; Joni, I. M.
2018-02-01
Dental composite as restorative dental materials can be reinforced using ceramic fillers. Homogeneous distribution of filler particles shall improve its mechanical properties. This paper presents the results of the preliminary study on the ZrO2-Al2O3-SiO2 ceramic fillers made from Indonesian natural sand that can increase the mechanical properties of dental composite. The synthesis was done using zirconium silicate sand (ZrSiO4) and aluminium oxide (Al2O3) precursors, which dissolved together with 70:30 weight ratios. Two types of sand were used: (1) manufactured sand (mesh #80) and (2) natural sand (mesh #400). The samples then heated in the furnace at 1100 °C for 8 hours. The morphological characterization was then evaluated using JEOL Scanning Electron Microscope (SEM) for the surface structure that analyze particles size and distribution. Ceramic fillers made from natural sand is homogenous, well distributed with average particle size of 5-10 µm. Comparably, ceramic filler made from the manufactured sand is heterogeneous, poorly distributed and appear as agglomerates with average particle size are 30-50 µm. The results suggest that ceramic fillers made from natural sand demonstrate better character to represent as a functional restorative dental material.
Manufacturing Superconducting Cables
NASA Technical Reports Server (NTRS)
England, Christopher
1996-01-01
Process proposed for manufacture of cables containing ceramic high-temperature-superconductor YBa(2)Cu(3)O(7-a). For protection, superconducting ceramic encapsulated before activation. Cables carry electrical current with little or no loss of power when cooled to or below temperatures of about minus 200 degrees C. Process accommodates brittle nature of YBa(2)Cu(3)O(7-a) and economical and readily controllable. Also flexible in sense modified to accommodate variety of precursor materials to be processed into YBa(2)Cu(3)O(7-a).
Silsesquioxanes as precursors to ceramic composites
NASA Technical Reports Server (NTRS)
Hurwitz, Frances I.; Hyatt, Lizbeth H.; Gorecki, Joy; Damore, Lisa
1987-01-01
Silsesquioxanes having the general structure RSiO sub 1.5, where R = methyl, propyl, or phenyl, melt flow at 70 to 100 C. Above 100 C, free -OH groups condense. At 225 C further crosslinking occurs, and the materials form thermosets. Pyrolysis, with accompanying loss of volatiles, takes place at nominally 525 C. At higher temperatures, the R group serves as an internal carbon soruce for carbo-thermal reduction to SiC accompanied by the evolution of CO. By blending silsesquioxanes with varying R groups, both the melt rheology and composition of the fired ceramic can be controlled. Fibers can be spun from the melt which are stable in argon in 1400 C. The silsesquioxanes also were used as matrix precursors for Nicalon and alpha-SiC platelet reinforced composites.
NASA Astrophysics Data System (ADS)
Wen, Qingbo; Xu, Yeping; Xu, Binbin; Fasel, Claudia; Guillon, Olivier; Buntkowsky, Gerd; Yu, Zhaoju; Riedel, Ralf; Ionescu, Emanuel
2014-10-01
A novel single-source precursor was synthesized by the reaction of an allyl hydrido polycarbosilane (SMP10) and tetrakis(dimethylamido)hafnium(iv) (TDMAH) for the purpose of preparing dense monolithic SiC/HfCxN1-x-based ultrahigh temperature ceramic nanocomposites. The materials obtained at different stages of the synthesis process were characterized via Fourier transform infrared (FT-IR) as well as nuclear magnetic resonance (NMR) spectroscopy. The polymer-to-ceramic transformation was investigated by means of MAS NMR and FT-IR spectroscopy as well as thermogravimetric analysis (TGA) coupled with in situ mass spectrometry. Moreover, the microstructural evolution of the synthesized SiHfCN-based ceramics annealed at different temperatures ranging from 1300 °C to 1800 °C was characterized by elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). Based on its high temperature behavior, the amorphous SiHfCN-based ceramic powder was used to prepare monolithic SiC/HfCxN1-x-based nanocomposites using the spark plasma sintering (SPS) technique. The results showed that dense monolithic SiC/HfCxN1-x-based nanocomposites with low open porosity (0.74 vol%) can be prepared successfully from single-source precursors. The average grain size of both HfC0.83N0.17 and SiC phases was found to be less than 100 nm after SPS processing owing to a unique microstructure: HfC0.83N0.17 grains were embedded homogeneously in a β-SiC matrix and encapsulated by in situ formed carbon layers which acted as a diffusion barrier to suppress grain growth. The segregated Hf-carbonitride grains significantly influenced the electrical conductivity of the SPS processed monolithic samples. While Hf-free polymer-derived SiC showed an electrical conductivity of ca. 1.8 S cm-1, the electrical conductivity of the Hf-containing material was analyzed to be ca. 136.2 S cm-1.A novel single-source precursor was synthesized by the reaction of an allyl hydrido polycarbosilane (SMP10) and tetrakis(dimethylamido)hafnium(iv) (TDMAH) for the purpose of preparing dense monolithic SiC/HfCxN1-x-based ultrahigh temperature ceramic nanocomposites. The materials obtained at different stages of the synthesis process were characterized via Fourier transform infrared (FT-IR) as well as nuclear magnetic resonance (NMR) spectroscopy. The polymer-to-ceramic transformation was investigated by means of MAS NMR and FT-IR spectroscopy as well as thermogravimetric analysis (TGA) coupled with in situ mass spectrometry. Moreover, the microstructural evolution of the synthesized SiHfCN-based ceramics annealed at different temperatures ranging from 1300 °C to 1800 °C was characterized by elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). Based on its high temperature behavior, the amorphous SiHfCN-based ceramic powder was used to prepare monolithic SiC/HfCxN1-x-based nanocomposites using the spark plasma sintering (SPS) technique. The results showed that dense monolithic SiC/HfCxN1-x-based nanocomposites with low open porosity (0.74 vol%) can be prepared successfully from single-source precursors. The average grain size of both HfC0.83N0.17 and SiC phases was found to be less than 100 nm after SPS processing owing to a unique microstructure: HfC0.83N0.17 grains were embedded homogeneously in a β-SiC matrix and encapsulated by in situ formed carbon layers which acted as a diffusion barrier to suppress grain growth. The segregated Hf-carbonitride grains significantly influenced the electrical conductivity of the SPS processed monolithic samples. While Hf-free polymer-derived SiC showed an electrical conductivity of ca. 1.8 S cm-1, the electrical conductivity of the Hf-containing material was analyzed to be ca. 136.2 S cm-1. Electronic supplementary information (ESI) available: Raman spectroscopy characterization of the SiHfCN-based ceramics. See DOI: 10.1039/c4nr03376k
NASA Technical Reports Server (NTRS)
Dutta, Sunil
1999-01-01
The importance of high fracture toughness and reliability in Si3N4, and SiC-based structural ceramics and ceramic matrix composites is reviewed. The potential of these ceramics and ceramic matrix composites for high temperature applications in defense and aerospace applications such as gas turbine engines, radomes, and other energy conversion hardware have been well recognized. Numerous investigations were pursued to improve fracture toughness and reliability by incorporating various reinforcements such as particulate-, whisker-, and continuous fiber into Si3N4 and SiC matrices. All toughening mechanisms, e.g. crack deflection, crack branching, crack bridging, etc., essentially redistribute stresses at the crack tip and increase the energy needed to propagate a crack through the composite material, thereby resulting in improved fracture toughness and reliability. Because of flaw insensitivity, continuous fiber reinforced ceramic composite (CFCC) was found to have the highest potential for higher operating temperature and longer service conditions. However, the ceramic fibers should display sufficient high temperature strength and creep resistance at service temperatures above 1000 'C. The greatest challenge to date is the development of high quality ceramic fibers with associate coatings able to maintain their high strength in oxidizing environment at high temperature. In the area of processing, critical issues are, preparation of optimum matrix precursors, precursor infiltration into fiber array, and matrix densification at a temperature, where grain crystallization and fiber degradation do not occur. A broad scope of effort is required for improved processing and properties with a better understanding of all candidate composite systems.
NASA Astrophysics Data System (ADS)
Aykut, Yakup
The use of fossil fuels adversely effects the environment and hence increases global warming. On the other hand the lack of fuel reservoirs triggers people to find environmentally friendly new energy sources. Solar cell technology is one of the developing energy production technologies in green productions. Currently, many solar cells are made of highly purified silicon crystals. However silicon based solar cells have high energy conversion efficiency, they are highly brittle, expensive, and time consuming during the fabrication process. Organic and metal oxide based photovoltaic materials are a more cost-effective alternative to silicon based solar cells. In ceramic materials, Titanium dioxide (TiO2), zinc oxide (ZnO) and magnesium zinc oxide (MgxZn 1-xO) have intensive research interest owing to their optoelectronic and photocatalytic properties, and they have been used in dye sensitized solar cells as electron acceptor layer due to their high band gap properties and having low conduction band levels than electron donor dye molecules or quantum dots. On the other hand, energy band levels of the ceramic materials are considerable affected by their crystal microstructures, shapes and doping materials. Because of their high surface to volume ratio, nanofibers are suitable as active energy conversions layers in organic and dye sensitized solar cells. Using nanofibrous ceramic structure instead of film provides higher energy conversion efficiency since the high surface areas of the electrospun mats may accommodate a greater concentration of dye molecules or quantum dots, which could result in greater efficiency of electron transfer within the material, as compared to traditional film-based technologies. Also, the continuous structure of nanofibers may allow for effective electron transfer as a result of the direct conduction pathway of the photoelectrons along the fibers. Moreover, 3D structures of nanofibrous mat allow scattering and absorbing the photons multiple times. Sol-Gel electrospinning procedure has been widely used to obtain ceramic nanofibers. Briefly, at sol-gel electrospinning procedure, a carrier polymer and ceramic precursor is dissolved in an appropriate solvent, and polymer/ceramic precursor composite nanofibers are produced with a following electrospinning process. Then, as spun nanofibers are calcined at high temperatures to remove polymer and other organic residues from the fibers and convert ceramic precursor into ceramic nanofibers. We investigate temperature dependent crystal phase transformations of electrospun TiO2 nanofibers regardless of other parameters and observed their microstructures and optical properties due to different calcination temperatures. Quantum dots are semi conductive metallic nanocrystals with very wide light absorption range in UV, visible and even in near-infrared regions depending on the size of the quantum dots. On the other hand, TiO2 is a high band gap semiconductor material and absorbs the light in UV range that limits its photovoltaic applications. In order to extend its light absorption through visible region, we sensitized and incorporated low band gap CdSe quantum dot on electrospun TiO2 nanofibers. Zinc oxide (ZnO) is another high band gap ceramic materials with promising optical properties have been used for photonic applications. Intrinsic lattice defects in ZnO are one of the main limitation factors that affect the device performance tremendously and could be controlled due to fabrication process. We investigated the effect of different type of surfactants with different charge groups on fiber morphology, microstructure and optical properties of sol-gel electrospun ZnO nanofibers. Finally, in order to tune band gap energy level of ZnO nanofibers to higher values, we doped Mg2+ into ZnO nanofibers. Because Zn2+ and Mg2+ have similar atomic radii, some of Zn2+ ions are replaced with Mg 2+ ions in the structure to produce different "x" value of MgxZn1-xO due to amount of Mg content. We produced tuned band gap MgxZn1-xO nanofibers via sol-gel electrospinning.
Approaches to polymer-derived CMC matrices
NASA Technical Reports Server (NTRS)
Hurwitz, Frances I.
1992-01-01
The use of polymeric precursors to ceramics permits the fabrication of large, complex-shaped ceramic matrix composites (CMC's) at temperatures which do not degrade the fiber. Processing equipment and techniques readily available in the resin matrix composite industry can be adapted for CMC fabrication using this approach. Criteria which influence the choice of candidate precursor polymers, the use of fillers, and the role of fiber architecture and ply layup are discussed. Three polymer systems, polycarbosilanes, polysilazanes, and polysilsesquioxanes, are compared as candidate ceramic matrix precursors.
Synthesis of Er-doped Lu2O3 nanoparticles and transparent ceramics
NASA Astrophysics Data System (ADS)
Serivalsatit, K.; Wasanapiarnpong, T.; Kucera, C.; Ballato, J.
2013-05-01
Transparent rare earth-doped Lu2O3 ceramics have received much attention for use in solid-state scintillator and laser applications. The fabrication of these ceramics, however, requires ultrafine and uniform powders as precursors. Presented here is the synthesis of Er-doped Lu2O3 nanopowders by a solution precipitation method using Er-doped lutetium sulfate solution and hexamethylenetetramine as a precipitant and the fabrication of Er-doped Lu2O3 transparent ceramics from these nanopowders. The precipitated precursors were calcined at 1100 °C for 4 h in order to convert the precursors into Lu2O3 nanoparticles with an average particle size of 60 nm. Thermal decomposition and phase evolution of the precursors were studied by simultaneous thermal analysis (STA), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Er-doped Lu2O3 transparent ceramics were fabricated from these nanopowders using vacuum sintering followed by hot isostatic pressing at 1700 °C for 8 h. The transparent ceramics exhibit an optical transmittance of 78% at a wavelength of 1.55 μm.
Bernard, Samuel; Miele, Philippe
2014-01-01
Boron nitride (BN) is a III-V compound which is the focus of important research since its discovery in the early 19th century. BN is electronic to carbon and thus, in the same way that carbon exists as graphite, BN exists in the hexagonal phase. The latter offers an unusual combination of properties that cannot be found in any other ceramics. However, these properties closely depend on the synthesis processes. This review states the recent developments in the preparation of BN through the chemistry, shaping and ceramic conversion of borazine derivatives. This concept denoted as Polymer-Derived Ceramics (PDCs) route allows tailoring the chemistry of precursors to elaborate complex BN shapes which cannot be obtained by conventional process. The effect of the chemistry of the molecular precursors, i.e., borazine and trichloroborazine, and their polymeric derivatives i.e., polyborazylene and poly[tri(methylamino)borazine], in which the specific functional groups and structural motifs determine the shaping potential by conventional liquid-phase process and plastic-forming techniques is discussed. Nanotubes, nano-fibers, coatings, monoliths and fiber-reinforced matrix composites are especially described. This leads to materials which are of significant engineering interest. PMID:28788257
Bernard, Samuel; Miele, Philippe
2014-11-21
Boron nitride (BN) is a III-V compound which is the focus of important research since its discovery in the early 19th century. BN is electronic to carbon and thus, in the same way that carbon exists as graphite, BN exists in the hexagonal phase. The latter offers an unusual combination of properties that cannot be found in any other ceramics. However, these properties closely depend on the synthesis processes. This review states the recent developments in the preparation of BN through the chemistry, shaping and ceramic conversion of borazine derivatives. This concept denoted as Polymer-Derived Ceramics (PDCs) route allows tailoring the chemistry of precursors to elaborate complex BN shapes which cannot be obtained by conventional process. The effect of the chemistry of the molecular precursors, i.e. , borazine and trichloroborazine, and their polymeric derivatives i.e. , polyborazylene and poly[tri(methylamino)borazine], in which the specific functional groups and structural motifs determine the shaping potential by conventional liquid-phase process and plastic-forming techniques is discussed. Nanotubes, nano-fibers, coatings, monoliths and fiber-reinforced matrix composites are especially described. This leads to materials which are of significant engineering interest.
NASA Technical Reports Server (NTRS)
Cox, Sarah; Lui, Donovan; Gou, Jihua
2014-01-01
The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed, to be cured, and be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000degC. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200degC, -SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Testing for this included thermal and mechanical testing per ASTM standard tests.
Method of making sintered ductile intermetallic-bonded ceramic composites
Plucknett, Kevin; Tiegs, Terry N.; Becher, Paul F.
1999-01-01
A method of making an intermetallic-bonded ceramic composite involves combining a particulate brittle intermetallic precursor with a particulate reactant metal and a particulate ceramic to form a mixture and heating the mixture in a non-oxidizing atmosphere at a sufficient temperature and for a sufficient time to react the brittle intermetallic precursor and the reactant metal to form a ductile intermetallic and sinter the mixture to form a ductile intermetallic-bonded ceramic composite.
Macroporous ceramics by colloidal templating
NASA Astrophysics Data System (ADS)
Subramaniam, G.; Pine, David J.
2000-04-01
We describe a novel method of fabricating macroporous ceramics employing colloidal dispersion of ultrafine ceramic particles with latex particles as the templates. The colloidal particles form a particulate gel on drying and fill the voids of the ordered latex templates. Subsequent removal of the template by calcination results in the formation of an ordered macroporous ceramic. The process has significant advantages over the traditional sol-gel process employing alkoxide precursors. Most importantly, the much lower shrinkage compared to the sol-gel process enabled us to produce larger pieces of the sample. The larger shrinkage involved in the sol-gel process often results in small and fragile pieces of the macroporous material which has to be subsequently heat treated to induce crystallization. The ability to choose crystalline colloidal particles in our method obviates the need for heat treatment to achieve crystallinity. We have synthesized a variety of materials such as macroporous silica, titania, alumina and recently have also extended the approach to macroporous silicon which is not amenable to the sol-gel process.
Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers
NASA Technical Reports Server (NTRS)
Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)
1993-01-01
Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.
Low-loss binder for hot pressing boron nitride
Maya, Leon
1991-01-01
Borazine derivatives used as low-loss binders and precursors for making ceramic boron nitride structures. The derivative forms the same composition as the boron nitride starting material, thereby filling the voids with the same boron nitride material upon forming and hot pressing. The derivatives have a further advantage of being low in carbon thus resulting in less volatile byproduct that can result in bubble formation during pressing.
Printable Integrated Photonic Devices
2016-06-16
titanium dioxide ( TiO2 ), having n>2 and an excellent optical transmission (>90%) down to 400 nm wavelength. We developed a hybrid organic-inorganic...1) Figure 1: aBeam’s proprietary TiO2 (ceramic) based high-refractive index imprint material (a) refractive index vs. wavelength, and (b...nanocrystals were synthesized and incorporated into the sol-gel precursor. TiO2 based imprint materials typically require high annealing temperature at
Method of making sintered ductile intermetallic-bonded ceramic composites
Plucknett, K.; Tiegs, T.N.; Becher, P.F.
1999-05-18
A method of making an intermetallic-bonded ceramic composite involves combining a particulate brittle intermetallic precursor with a particulate reactant metal and a particulate ceramic to form a mixture and heating the mixture in a non-oxidizing atmosphere at a sufficient temperature and for a sufficient time to react the brittle intermetallic precursor and the reactant metal to form a ductile intermetallic and sinter the mixture to form a ductile intermetallic-bonded ceramic composite. 2 figs.
NASA Astrophysics Data System (ADS)
Yonezawa, Tetsu; Takeoka, Shinsuke; Kishi, Hiroshi; Ida, Kiyonobu; Tomonari, Masanori
2008-04-01
Well size-controlled copper fine particles (diameter: 100-300 nm) were used as the inner electrode material of multilayered ceramic capacitors (MLCCs). The particles were dispersed in terpineol to form a printing paste with 50 wt% copper particles. The MLCC precursor modules prepared by the layer-by-layer printing of copper and BaTiO3 particles were cosintered. Detailed observation of the particles, paste, and MLCCs before and after sintering was carried out by electron microscopy. The sintering temperature of Cu-MLCC was as low as 960 °C. The permittivity of these MLCCs was successfully measured with the copper inner layers.
Rapid oxidation/stabilization technique for carbon foams, carbon fibers and C/C composites
Tan, Seng; Tan, Cher-Dip
2004-05-11
An enhanced method for the post processing, i.e. oxidation or stabilization, of carbon materials including, but not limited to, carbon foams, carbon fibers, dense carbon-carbon composites, carbon/ceramic and carbon/metal composites, which method requires relatively very short and more effective such processing steps. The introduction of an "oxygen spill over catalyst" into the carbon precursor by blending with the carbon starting material or exposure of the carbon precursor to such a material supplies required oxygen at the atomic level and permits oxidation/stabilization of carbon materials in a fraction of the time and with a fraction of the energy normally required to accomplish such carbon processing steps. Carbon based foams, solids, composites and fiber products made utilizing this method are also described.
Method for smoothing the surface of a protective coating
Sangeeta, D.; Johnson, Curtis Alan; Nelson, Warren Arthur
2001-01-01
A method for smoothing the surface of a ceramic-based protective coating which exhibits roughness is disclosed. The method includes the steps of applying a ceramic-based slurry or gel coating to the protective coating surface; heating the slurry/gel coating to remove volatile material; and then further heating the slurry/gel coating to cure the coating and bond it to the underlying protective coating. The slurry/gel coating is often based on yttria-stabilized zirconia, and precursors of an oxide matrix. Related articles of manufacture are also described.
Tang, Yuanyuan; Lu, Xiuqing; Shih, Kaimin
2014-12-01
The feasibility of recycling copper-bearing industrial sludge as a part of ceramic raw materials was evaluated through thermal interaction of sludge with aluminum-rich precursors. To observe copper incorporation mechanism, mixtures of copper-bearing sludge with alumina polymorphs (γ-Al2O3 and α-Al2O3) were fired between 750 and 1250°C. Different copper-hosting phases were identified by X-ray diffraction, and CuAl2O4 was found to be the predominant phase throughout the reactions. The experimental results indicate different CuAl2O4 initiating temperatures for two alumina materials, and the optimal temperature for CuAl2O4 formation is around 1100°C. To monitor the stabilization effect, prolonged leaching tests were carried out to leach sintered products for up to 20d. The results clearly demonstrate a substantial decrease in copper leachability for products with higher CuAl2O4 content formed from both alumina precursors despite their different sintering behavior. Meanwhile, the leachability of aluminum was much lower than that of copper, and it decreased by more than fourfold through the formation of CuAl2O4 spinel in γ-Al2O3 system. This study clearly indicates spinel formation as the most crucial metal stabilization mechanism when sintering multiphase copper-bearing industrial sludge with aluminum-rich ceramic raw materials, and suggests a promising and reliable technique for reusing industrial sludge. Copyright © 2014 Elsevier Ltd. All rights reserved.
Thermal Protective Coating for High Temperature Polymer Composites
NASA Technical Reports Server (NTRS)
Barron, Andrew R.
1999-01-01
The central theme of this research is the application of carboxylate-alumoxane nanoparticles as precursors to thermally protective coatings for high temperature polymer composites. In addition, we will investigate the application of carboxylate-alumoxane nanoparticle as a component to polymer composites. The objective of this research was the high temperature protection of polymer composites via novel chemistry. The significance of this research is the development of a low cost and highly flexible synthetic methodology, with a compatible processing technique, for the fabrication of high temperature polymer composites. We proposed to accomplish this broad goal through the use of a class of ceramic precursor material, alumoxanes. Alumoxanes are nano-particles with a boehmite-like structure and an organic periphery. The technical goals of this program are to prepare and evaluate water soluble carboxylate-alumoxane for the preparation of ceramic coatings on polymer substrates. Our proposed approach is attractive since proof of concept has been demonstrated under the NRA 96-LeRC-1 Technology for Advanced High Temperature Gas Turbine Engines, HITEMP Program. For example, carbon and Kevlar(tm) fibers and matting have been successfully coated with ceramic thermally protective layers.
Refractory Oxidative-Resistant Ceramic Carbon Insulation
NASA Technical Reports Server (NTRS)
Leiser, Daniel B. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)
2001-01-01
High-temperature, lightweight, ceramic carbon insulation is prepared by coating or impregnating a porous carbon substrate with a siloxane gel derived from the reaction of an organodialkoxy silane and an organotrialkoxy silane in an acid or base medium in the presence of the carbon substrate. The siloxane gel is subsequently dried on the carbon substrate to form a ceramic carbon precursor. The carbon precursor is pyrolyzed, in an inert atmosphere, to form the ceramic insulation containing carbon, silicon, and oxygen. The carbon insulation is characterized as a porous, fibrous, carbon ceramic tile which is particularly useful as lightweight tiles for spacecraft.
New Polymeric Precursors of Silicon Carbide
NASA Technical Reports Server (NTRS)
Litt, M.; Kumar, K.
1987-01-01
Silicon carbide made by pyrolizing polymers. Method conceived for preparation of poly(decamethylcyclohexasilanes) as precursors for preparation of silicon carbide at high yield. Technical potential of polysilanes as precursors of SiC ceramics being explored. Potential limited by intractability of some polysilanes; formation of small, cyclic polycarbosilane fragments during pyrolysis; and overall low char yield and large shrinkage in conversion to ceramics.
Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review.
Bernardo, Enrico; Fiocco, Laura; Parcianello, Giulio; Storti, Enrico; Colombo, Paolo
2014-03-06
Preceramic polymers, i.e. , polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings) or functional (bioactive ceramics, luminescent materials), mainly relies on modifications of the polymers at the nano-scale, i.e. , on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs), or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix.
Maya, Leon
1988-05-24
A process for making ammonolytic precursors to nitride and carbonitride ceramics. Extreme reaction conditions are not required and the precursor is a powder-like substance that produces ceramics of improved purity and morphology upon pyrolysis.
NASA Astrophysics Data System (ADS)
Nagamine, Kenta; Honma, Tsuyoshi; Komatsu, Takayuki
A synthesis of Li 3V 2(PO 4) 3 being a potential cathode material for lithium ion batteries was attempted via a glass-ceramic processing. A glass with the composition of 37.5Li 2O-25V 2O 5-37.5P 2O 5 (mol%) was prepared by a melt-quenching method and precursor glass powders were crystallized with/without 10 wt% glucose in N 2 or 7%H 2/Ar atmosphere. It was found that heat treatments with glucose at 700 °C in 7%H 2/Ar can produce well-crystallized Li 3V 2(PO 4) 3 in the short time of 30 min. The battery performance measurements revealed that the precursor glass shows the discharge capacity of 14 mAh g -1 at the rate of 1 μA cm -2 and the glass-ceramics with Li 3V 2(PO 4) 3 prepared with glucose at 700 °C in 7%H 2/Ar show the capacities of 117-126 mAh g -1 (∼96% of the theoretical capacity) which are independent of heat treatment time. The present study proposes that the glass-ceramic processing is a fast synthesizing route for Li 3V 2(PO 4) 3 crystals.
NASA Technical Reports Server (NTRS)
Cox, Sarah B.; Lui, Donovan; Gou, Jihua
2014-01-01
The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000C. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200C, beta-SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Thermal and mechanical testing includes oxyacetylene torch testing and three point bend testing.
NASA Technical Reports Server (NTRS)
Cox, Sarah B.; Lui, Donovan; Wang, Xin; Gou, Jihua
2014-01-01
The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000 deg C. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200 deg C, Beta-SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Thermal and mechanical testing includes oxyacetylene torch testing and three point bend testing.
Spectroscopic properties of Eu3+/Nd3+ co-doped phosphate glasses and opaque glass-ceramics
NASA Astrophysics Data System (ADS)
Narro-García, R.; Desirena, H.; López-Luke, T.; Guerrero-Contreras, J.; Jayasankar, C. K.; Quintero-Torres, R.; De la Rosa, E.
2015-08-01
This paper reports the fabrication and characterization of Eu3+/Nd3+ co-doped phosphate (PNE) glasses and glass-ceramics as a function of Eu3+ concentration. The precursor glasses were prepared by the conventional melt quenching technique and the opaque glass-ceramics were obtained by heating the precursor glasses at 450 °C for 30 h. The structural and optical properties of the glass and glass-ceramics were analyzed by means of X-ray diffraction, Raman spectroscopy, UV-VIS-IR absorption spectroscopy, photoluminescence spectra and lifetimes. The amorphous and crystalline structures of the precursor glass and opaque glass-ceramic were confirmed by X-ray diffraction respectively. The Raman spectra showed that the maximum phonon energy decreased from 1317 cm-1 to 1277 cm-1 with the thermal treatment. The luminescence spectra of the glass and glass-ceramic samples were studied under 396 nm and 806 nm excitation. The emission intensity of the bands observed in opaque glass-ceramic is stronger than that of the precursor glass. The luminescence spectra show strong dependence on the Eu3+ ion concentration in the Nd3+ ion photoluminescence (PL) intensity, which suggest the presence of energy transfer (ET) and cross-relaxation (CR) processes. The lifetimes of the 4F3/2 state of Nd3+ ion in Eu3+/Nd3+ co-doped phosphate glasses and glass-ceramics under 806 nm excitation were measured. It was observed that the lifetimes of the 4F3/2 level of Nd3+ of both glasses and glass-ceramics decrease with the increasing Eu3+ concentration. However in the case of opaque glass-ceramics the lifetimes decrease only 16%.
Production of continuous mullite fiber via sol-gel processing
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.; Sparks, J. Scott; Esker, David C.
1990-01-01
The development of a continuous ceramic fiber which could be used in rocket engine and rocket boosters applications was investigated at the Marshall Space Flight Center. Methods of ceramic fiber production such as melt spinning, chemical vapor deposition, and precursor polymeric fiber decomposition are discussed and compared with sol-gel processing. The production of ceramics via the sol-gel method consists of two steps, hydrolysis and polycondensation, to form the preceramic, followed by consolidation into the glass or ceramic structure. The advantages of the sol-gel method include better homogeneity and purity, lower preparation temperature, and the ability to form unique compositions. The disadvantages are the high cost of raw materials, large shrinkage during drying and firing which can lead to cracks, and long processing times. Preparation procedures for aluminosilicate sol-gel and for continuous mullite fibers are described.
Synthesis of tritium breeder ceramics from metallic lithium
NASA Astrophysics Data System (ADS)
Knitter, R.; Kolb, M. H. H.; Odemer, C.
2012-01-01
For the fabrication of Li-6 enriched ceramic breeder materials for ITER, the availability of Li-6 enriched compounds is limited, and metallic Li-6 is the most widely available compound. As metallic lithium cannot be used directly in ceramic fabrication processes, we investigated different syntheses to obtain lithium orthosilicate or lithium metatitanate directly from molten lithium. In exothermic reactions of molten lithium with silicon, silica, or titania, several intermediate or precursor phases were observed under argon that could easily be transformed to the desired ceramic phases by a subsequent heat treatment under air. The reaction steps and the resulting phases were studied by differential scanning calorimetry and X-ray diffractometry. The synthesis from lithium and silicon seems to be especially suited for the production of larger quantities and has the advantage that silicon is available with a very high grade of purity.
Fluorinated precursors of superconducting ceramics, and methods of making the same
Wiesmann, Harold; Solovyov, Vyacheslav
2014-02-18
This invention provides a method of making a fluorinated precursor of a superconducting ceramic. The method comprises providing a solution comprising a rare earth salt, an alkaline earth metal salt and a copper salt; spraying the solution onto a substrate to provide a film-covered substrate; and heating the film-covered substrate in an atmosphere containing fluorinated gas to provide the fluorinated precursor.
Fluorinated precursors of superconducting ceramics, and methods of making the same
Wiesmann, Harold [Stony Brook, NY; Solovyov, Vyacheslav [Rocky Point, NY
2008-04-22
This invention provides a method of making a fluorinated precursor of a superconducting ceramic. The method comprises providing a solution comprising a rare earth salt, an alkaline earth metal salt and a copper salt; spraying the solution onto a substrate to provide a film-covered substrate; and heating the film-covered substrate in an atmosphere containing fluorinated gas to provide the fluorinated precursor.
Fluorinated precursors of superconducting ceramics, and methods of making the same
Wiesmann, Harold [Stony Brook, NY; Solovyov, Vyacheslav [Rocky Point, NY
2012-07-10
This invention provides a method of making a fluorinated precursor of a superconducting ceramic. The method comprises providing a solution comprising a rare earth salt, an alkaline earth metal salt and a copper salt; spraying the solution onto a substrate to provide a film-covered substrate; and heating the film-covered substrate in an atmosphere containing fluorinated gas to provide the fluorinated precursor.
Transparent Glass-Ceramics Produced by Sol-Gel: A Suitable Alternative for Photonic Materials.
Gorni, Giulio; Velázquez, Jose J; Mosa, Jadra; Balda, Rolindes; Fernández, Joaquin; Durán, Alicia; Castro, Yolanda
2018-01-30
Transparent glass-ceramics have shown interesting optical properties for several photonic applications. In particular, compositions based on oxide glass matrices with fluoride crystals embedded inside, known as oxyfluoride glass-ceramics, have gained increasing interest in the last few decades. Melt-quenching is still the most used method to prepare these materials but sol-gel has been indicated as a suitable alternative. Many papers have been published since the end of the 1990s, when these materials were prepared by sol-gel for the first time, thus a review of the achievements obtained so far is necessary. In the first part of this paper, a review of transparent sol-gel glass-ceramics is made focusing mainly on oxyfluoride compositions. Many interesting optical results have been obtained but very little innovation of synthesis and processing is found with respect to pioneering papers published 20 years ago. In the second part we describe the improvements in synthesis and processing obtained by the authors during the last five years. The main achievements are the preparation of oxyfluoride glass-ceramics with a much higher fluoride crystal fraction, at least double that reported up to now, and the first synthesis of NaGdF₄ glass-ceramics. Moreover, a new SiO₂ precursor was introduced in the synthesis, allowing for a reduction in the treatment temperature and favoring hydroxyl group removal. Interesting optical properties demonstrated the incorporation of dopant ions in the fluoride crystals, thus obtaining crystal-like spectra along with higher efficiencies with respect to xerogels, and hence demonstrating that these materials are a suitable alternative for photonic applications.
Process for making ultra-fine ceramic particles
Stangle, Gregory C.; Venkatachari, Koththavasal R.; Ostrander, Steven P.; Schulze, Walter A.
1995-01-01
A process for producing ultra-fine ceramic particles in which droplets are formed from a ceramic precursor mixture containing a metal cation, a nitrogen-containing fuel, a solvent, and an anion capable of participating in an anionic oxidation-reduction reaction with the nitrogen containing fuel. The nitrogen-containing fuel contains at least three nitrogen atoms, at least one oxygen atom, and at least one carbon atom. The ceramic precursor mixture is dried to remove at least 85 weight percent of the solvent, and the dried mixture is then ignited to form a combusted powder.
NASA Astrophysics Data System (ADS)
Konegger, T.; Schneider, P.; Bauer, V.; Amsüss, A.; Liersch, A.
2013-12-01
The effect of four distinct methods of incorporating fillers into a preceramic polymer matrix was investigated with respect to the structural and mechanical properties of the resulting materials. Investigations were conducted with a polysiloxane/Al2O3/ZrO2 model system used as a precursor for mullite/ZrO2 composites. A quantitative evaluation of the uniformity of filler distribution was obtained by employing a novel image analysis. While solvent-free mixing led to a heterogeneous distribution of constituents resulting in limited mechanical property values, a strong improvement of material homogeneity and properties was obtained by using solvent-assisted methods. The results demonstrate the importance of the processing route on final characteristics of polymer-derived ceramics.
NASA Astrophysics Data System (ADS)
Takano, Kazuya; Takahashi, Yoshihiro; Miyazaki, Takamichi; Terakado, Nobuaki; Fujiwara, Takumi
2018-01-01
We investigated the Pockels effect in polycrystalline materials consisting of highly oriented polar fresnoite-type Sr2TiSi2O8 fabricated using perfectly surface-crystallized glass-ceramics (PSC-GCs). The chemical composition of the precursor glass was shown to significantly affect the crystallized texture, e.g., the crystal orientation and appearance of amorphous nanoparasites in the domains, resulting in variations in the Pockels constants. Single crystals exhibiting spontaneous polarization possessed large structural anisotropy, leading to a strong dependence of the nonlinear-optical properties on the direction of polarized light. This study suggests that variations in the Pockels constants (r13 and r33) and tuning of the r13/r33 ratio can be realized in PSC-GC materials.
Nanoceramic -Metal Matrix Composites by In-Situ Pyrolysis of Organic Precursors in a Liquid Melt
NASA Astrophysics Data System (ADS)
Sudarshan; Surappa, M. K.; Ahn, Dongjoon; Raj, Rishi
2008-12-01
We show the feasibility of introducing a dispersion of a refractory ceramic phase into metals by stirring a powder of an organic polymer into a magnesium melt and having it convert into a ceramic within the melt by in-situ pyrolysis of the polymer. The pyrolysis is a highly reactive process, accompanied by the evolution of hydrogen, which disperses the ceramic phase into nanoscale constituents. In the present experiments, a polysilazane-based precursor, which is known to yield an amorphous ceramic constituted from silicon, carbon, and nitrogen, was used. Five weight percent of the precursor (which has a nominal ceramic yield of 75 to 85 wt pct) produced a twofold increase in the room-temperature yield strength and reduced the steady-state strain rate at 450 °C by one to two orders of magnitude, relative to pure magnesium. This polymer-based in-situ process (PIP) for processing metal-matrix composites (MMCs) is likely to have great generality, because many different kinds of organic precursors, for producing oxide, carbides, nitrides, and borides, are commercially available. Also, the process would permit the addition of large volume fractions of the ceramic, enabling the nanostructural design, and production of MMCs with a wide range of mechanical properties, meant especially for high-temperature applications. An important and noteworthy feature of the present process, which distinguishes it from other methods, is that all the constituents of the ceramic phase are built into the organic molecules of the precursor ( e.g., polysilazanes contain silicon, carbon, and nitrogen); therefore, a reaction between the polymer and the host metal is not required to produce the dispersion of the refractory phase.
Organometallic Precursor Routes to Si-C-Al-O-N Ceramics
1991-05-15
Pyrolysis Chemistry of Polymeric Precursors to SiC and Si3 N 4", Kluwer Academic Publishers, Dordrecht, NATO Workshop or Organometallic Polymers with Special...the polymer to a preceramic SiC . Thus the IR and H CRAMPS spectra confirm the decreasing concentration of hydrogen with increasing pyrolysis ...generality of this polymer pyrolysis route to nanocrystalline composites of refractory nitride and carbide ceramics. Investigation of AlN Precursors Our
NASA Astrophysics Data System (ADS)
Park, Jay Hoon; Joo, Yong Lak
2017-09-01
We report silver (Ag)/ceramic nanofibers with highly robust and sensitive optical sensory capabilities that can withstand harsh conditions. These nanofibers are fabricated by first electrospinning solutions of poly vinyl alcohol (PVA) and metal precursor polymers, followed by subsequent series of heat treatment. The reported fabrication method demonstrate the effects of (i) the location of Ag crystals, (ii) crystal size and shape, and (iii) constituents of the ceramic matrix as surface-enhanced Raman spectroscopy (SERS) templates with 10-6 M 4-mercaptobenzoic acid (4-MBA). Notably, these silver/ceramic nanofibers preserved most of their highly sensitive localized surface plasmon resonance (LSPR) even under high temperature of 400 °C, in contrast to preformed Ag nanoparticles (NPs) in PVA nanofibers which lost most of its optical property presumably due to (i) Ag oxidation and (ii) loss of the matrix material. Among the ceramic substrates of ZrO2, Al2O3, and ZnO with silver crystals, we discovered that the ZnO substrate showed the most consistent and the strongest signal strength owing to the synergistic chemical and optical properties of the ZnO substrate. Moreover, the pure Ag nanofiber proved to be the best heat-resistant SERS template, owing to its (i) anisotropic morphology and (ii) thicker diameter when compared with other conventional Ag nanomaterials. These results demonstrated simple yet highly controllable fabrication of robust SERS templates, with potential applications in a catalytic sensory which is often exposed to harsh conditions.
Effect of Silica Nanoparticles on the Photoluminescence Properties of BCNO Phosphor
NASA Astrophysics Data System (ADS)
Nuryadin, Bebeh W.; Faryuni, Irfana Diah; Iskandar, Ferry; Abdullah, Mikrajuddin; Khairurrijal, Khairurrijal
2011-12-01
Effect of additional silica nanoparticles on the photoluminescence (PL) performance of boron carbon oxy-nitride (BCNO) phosphor was investigated. As a precursor, boric acid and urea were used as boron and nitrogen sources, respectively. The carbon sources was polyethylene glycol (PEG) with average molecule weight 20000 g/mol.. Precursor solutions were prepared by mixing these raw materials in pure water, followed by stirring to achieve homogeneous solutions. In this precursor, silica nanoparticles were added at various mass ratio from 0 to 7 %wt in the solution. The precursors were then heated at 750 °C for 60 min in a ceramic crucible under atmospheric pressure. The photoluminescence (PL) spectrum that characterized by spectrophotometer showed a single, distinct, and broad emission band varied from blue to near red color, depend on the PEG, boric acid and urea ratio in the precursor. The addition of silica nanoparticles caused the increasing of PL intensity as well as the shifting of peak wavelength of PL spectrum. The peak shifting of PL was affected by the concentration of silica nanoparticles that added into the precursor. We believe that the BCNO-silica composite phosphor becomes a promising material for the phosphor conversion-based white light-emitting diodes.
Light-weight ceramic insulation
NASA Technical Reports Server (NTRS)
Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)
2002-01-01
Ultra-high temperature, light-weight, ceramic insulation such as ceramic tile is obtained by pyrolyzing a siloxane gel derived from the reaction of at least one organo dialkoxy silane and at least one tetralkoxy silane in an acid or base liquid medium. The reaction mixture of the tetra- and dialkoxy silanes may contain also an effective amount of a mono- or trialkoxy silane to obtain the siloxane gel. The siloxane gel is dried at ambient pressures to form a siloxane ceramic precursor without significant shrinkage. The siloxane ceramic precursor is subsequently pyrolyzed, in an inert atmosphere, to form the black ceramic insulation comprising atoms of silicon, carbon and oxygen. The ceramic insulation, can be characterized as a porous, uniform ceramic tile resistant to oxidation at temperatures ranging as high as 1700.degree. C. and is particularly useful as lightweight tiles for spacecraft and other high-temperature insulation applications.
NASA Astrophysics Data System (ADS)
Velázquez, J. J.; Rodríguez, V. D.; Yanes, A. C.; del-Castillo, J.; Méndez-Ramos, J.
2012-10-01
95SiO2-5LaF3 sol-gel derived nano-glass-ceramics single doped with Ce3+ or Tb3+ and co-doped with Ce3+-Tb3+ were synthesized by thermal treatment of precursor glasses. Precipitation of LaF3 nanocrystals during ceramming process was confirmed by X-ray diffraction with mean size ranging from 12 to 15 nm. An exhaustive spectroscopic analysis has been carried out. As a result, it was found that the green emission of Tb3+ ions was greatly enhanced through down shifting process, due to efficient energy transfer from Ce3+ to Tb3+ ions in the glass-ceramics, which is favored by the reduction of the interionic distances when the dopant ions are partitioned into LaF3 nanocrystals. These results suggest the use of these materials to improve the efficiency of solar cells.
Dynamic properties of ceramic materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grady, D.E.
1995-02-01
The present study offers new data and analysis on the transient shock strength and equation-of-state properties of ceramics. Various dynamic data on nine high strength ceramics are provided with wave profile measurements, through velocity interferometry techniques, the principal observable. Compressive failure in the shock wave front, with emphasis on brittle versus ductile mechanisms of deformation, is examined in some detail. Extensive spall strength data are provided and related to the theoretical spall strength, and to energy-based theories of the spall process. Failure waves, as a mechanism of deformation in the transient shock process, are examined. Strength and equation-of-state analysis ofmore » shock data on silicon carbide, boron carbide, tungsten carbide, silicon dioxide and aluminum nitride is presented with particular emphasis on phase transition properties for the latter two. Wave profile measurements on selected ceramics are investigated for evidence of rate sensitive elastic precursor decay in the shock front failure process.« less
Process for producing ceramic nitrides and carbonitrides and their precursors
Brown, Gilbert M.; Maya, Leon
1988-01-01
A process for preparing ceramic nitrides and carbonitrides in the form of very pure, fine particulate powder. Appropriate precursor is prepared by reacting a transition metal alkylamide with ammonia to produce a mixture of metal amide and metal imide in the form of an easily pyrolyzable precipitate.
Process for producing ceramic nitrides anc carbonitrides and their precursors
Brown, G.M.; Maya, L.
1987-02-25
A process for preparing ceramic nitrides and carbon nitrides in the form of very pure, fine particulate powder. Appropriate precursors is prepared by reaching a transition metal alkylamide with ammonia to produce a mixture of metal amide and metal imide in the form of an easily pyrolyzable precipitate.
Zhang, Ji-Yun; Luo, Zhao-Hua; Jiang, Hao-Chuan; Jiang, Jun; Chen, Chun-Hua; Zhang, Jing-Xian; Gui, Zhen-Zhen; Xiao, Na
2017-11-01
Cerium doped gadolinium gallium aluminum garnet (GGAG:Ce) ceramic precursors have been synthesized with an ultrasonic chemical co-precipitation method (UCC) and for comparison with a traditional chemical co-precipitation method (TCC). The effect of ultra-sonication on the morphology of powders and the transmittance of GGAG:Ce ceramics are studied. The results indicate that the UCC method can effectively improve the homogenization and sinterability of GGAG:Ce powders, which contribute to obtain high transparent GGAG ceramic with the highest transmittance of 81%. Copyright © 2017 Elsevier B.V. All rights reserved.
Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review
Bernardo, Enrico; Fiocco, Laura; Parcianello, Giulio; Storti, Enrico; Colombo, Paolo
2014-01-01
Preceramic polymers, i.e., polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings) or functional (bioactive ceramics, luminescent materials), mainly relies on modifications of the polymers at the nano-scale, i.e., on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs), or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix. PMID:28788548
Díaz-Rodríguez, P.; Pérez-Estévez, A.; Seoane, R.; González, P.; Serra, J.; Landin, M.
2013-01-01
The present work is aimed at getting a new insight into biomorphic silicon carbides (bioSiCs) as bone replacement materials. BioSiCs from a variety of precursors were produced, characterized, and loaded with a broad-spectrum antibiotic. The capacity of loaded bioSiCs for preventing and/or treating preformed S. aureus biofilms has been studied. The differences in precursor characteristics are maintained after the ceramic production process. All bioSiCs allow the loading process by capillarity, giving loaded materials with drug release profiles dependent on their microstructure. The amount of antibiotic released in liquid medium during the first six hours depends on bioSiC porosity, but it could exceed the minimum inhibitory concentration of Staphylococcus aureus, for all the materials studied, thus preventing the proliferation of bacteria. Differences in the external surface and the number and size of open external pores of bioSiCs contribute towards the variations in the effect against bacteria when experiments are carried out using solid media. The internal structure and surface properties of all the systems seem to facilitate the therapeutic activity of the antibiotic on the preformed biofilms, reducing the number of viable bacteria present in the biofilm compared to controls. PMID:23936680
Nanoelectric Materials Laboratory Development
NASA Technical Reports Server (NTRS)
Allen, Lee; Hill, Curtis
2015-01-01
The Ultracapacitor Research and Development project is a collaborative effort between the NASA Marshall Space Flight Center's (MSFC's) ES43 Parts, Packaging, and Fabrication Branch and the EM41 Nonmetallic Materials Branch. NASA's Ultracapacitor Research is an effort to develop solid-state energy storage devices through processing of ceramic materials into printable dielectric inks, which can be formed and treated to produce solid state ultracapacitor cells capable of exceeding lithium-ion battery energy density at a fraction of the weight. Research and development efforts into solid state ultracapacitors have highlighted a series of technical challenges such as understanding as-received nature of ceramic powders, treatment and optimization of ceramic powders, dielectric and conductor ink formulation, and firing of printed (green) ultracapacitor cells. Two facilities have been continually developed since project inception: the Additive Electronics Lab in Bldg. 4487 and the Nanoelectric Materials Lab in Bldg. 4602. The Nanoelectric Materials Lab has become a unique facility at MSFC, capable of custom processing a wide range of media for additive electronics. As research has progressed, it was discovered that additional in-house processing was necessary to achieve smaller, more uniform particle diameters. A vibratory mill was obtained that can agitate powder and media in three directions, which has shown to be much more effective than ball milling. However, in order to understand the effects of milling, a particle size analysis system has been installed to characterize as-received and milled materials Continued research into the ultracapacitor technology included advanced milling and optimization of ceramic nanoparticles, fluidized bed treatment of atomic-layer deposition- (ALD-) coated ceramic particles, custom development of dielectric and conductor inks, as well as custom ink precursors such as polyvinylidene diflouride- (PVDF-) loaded vehicles. Experiments with graphene-based inks were also conducted.
Transparent Glass-Ceramics Produced by Sol-Gel: A Suitable Alternative for Photonic Materials
Gorni, Giulio; Mosa, Jadra; Balda, Rolindes; Fernández, Joaquin; Durán, Alicia; Castro, Yolanda
2018-01-01
Transparent glass-ceramics have shown interesting optical properties for several photonic applications. In particular, compositions based on oxide glass matrices with fluoride crystals embedded inside, known as oxyfluoride glass-ceramics, have gained increasing interest in the last few decades. Melt-quenching is still the most used method to prepare these materials but sol-gel has been indicated as a suitable alternative. Many papers have been published since the end of the 1990s, when these materials were prepared by sol-gel for the first time, thus a review of the achievements obtained so far is necessary. In the first part of this paper, a review of transparent sol-gel glass-ceramics is made focusing mainly on oxyfluoride compositions. Many interesting optical results have been obtained but very little innovation of synthesis and processing is found with respect to pioneering papers published 20 years ago. In the second part we describe the improvements in synthesis and processing obtained by the authors during the last five years. The main achievements are the preparation of oxyfluoride glass-ceramics with a much higher fluoride crystal fraction, at least double that reported up to now, and the first synthesis of NaGdF4 glass-ceramics. Moreover, a new SiO2 precursor was introduced in the synthesis, allowing for a reduction in the treatment temperature and favoring hydroxyl group removal. Interesting optical properties demonstrated the incorporation of dopant ions in the fluoride crystals, thus obtaining crystal-like spectra along with higher efficiencies with respect to xerogels, and hence demonstrating that these materials are a suitable alternative for photonic applications. PMID:29385706
Shih, Kaimin; White, Tim; Leckie, James O
2006-08-15
The feasibility of stabilizing nickel-laden sludge from commonly available Al-rich ceramic precursors was investigated and accomplished with high nickel incorporation efficiency. To simulate the process, nickel oxide was mixed alternatively with gamma-alumina, corundum, kaolinite, and mullite and was sintered from 800 to 1480 degrees C. The nickel aluminate spinel (NiAl2O4) was confirmed as the stabilization phase for nickel and crystallized with efficiencies greater than 90% for all precursors above 1250 degrees C and 3-h sintering. The nickel-incorporation reaction pathways with these precursors were identified, and the microstructure and spinel yield were investigated as a function of sintering temperature with fixed sintering time. This study has demonstrated a promising process for forming nickel spinel to stabilize nickel-laden sludge from a wide range of inexpensive ceramic precursors, which may provide an avenue for economically blending waste metal sludges via the building industry processes to reduce the environmental hazards of toxic metals. The correlation of product textures and nickel incorporation efficiencies through selection of different precursors also provides the option of tailoring property-specific products.
Gryshkov, Oleksandr; Klyui, Nickolai I; Temchenko, Volodymyr P; Kyselov, Vitalii S; Chatterjee, Anamika; Belyaev, Alexander E; Lauterboeck, Lothar; Iarmolenko, Dmytro; Glasmacher, Birgit
2016-11-01
Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO2) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO2 using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO2 to the initial HA powder resulted in significant decomposition of the final HA/ZrO2 coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO2 coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application. Copyright © 2016 Elsevier B.V. All rights reserved.
Thermal shock resistance ceramic insulator
Morgan, Chester S.; Johnson, William R.
1980-01-01
Thermal shock resistant cermet insulators containing 0.1-20 volume % metal present as a dispersed phase. The insulators are prepared by a process comprising the steps of (a) providing a first solid phase mixture of a ceramic powder and a metal precursor; (b) heating the first solid phase mixture above the minimum decomposition temperature of the metal precursor for no longer than 30 minutes and to a temperature sufficiently above the decomposition temperature to cause the selective decomposition of the metal precursor to the metal to provide a second solid phase mixture comprising particles of ceramic having discrete metal particles adhering to their surfaces, said metal particles having a mean diameter no more than 1/2 the mean diameter of the ceramic particles, and (c) densifying the second solid phase mixture to provide a cermet insulator having 0.1-20 volume % metal present as a dispersed phase.
NASA Astrophysics Data System (ADS)
Jordan, Jennifer Lynn
The objectives of this study were to (a) investigate the effect of shock activation of precursor powders for solid-state reaction synthesis of Ti-based ternary ceramics and (b) to determine the high pressure phase stability and Hugoniot properties of Ti3SiC2. Dynamically densified compacts of Ti, SiC, and graphite precursor powders and Ti and AlN precursor powders were used to study the shock-activated formation of Ti 3SiC2 and Ti2AlN ternary compounds, respectively, which are considered to be novel ceramics having high stiffness but low hardness. Gas gun and explosive loading techniques were used to obtain a range of loading conditions resulting in densification and activation. Measurements of fraction reacted as a function of time and temperature and activation energies obtained from DTA experiments were used to determine the degree of activation caused by shock compression and its subsequent effect on the reaction mechanisms and kinetics. In both systems, shock activation led to an accelerated rate of reaction at temperatures less than 1600°C and, above that temperature, it promoted the formation of almost 100% of the ternary compound. A kinetics-based mathematical model based on mass and thermal transport was developed to predict the effect of shock activation and reaction synthesis conditions that ensure formation of the ternary compounds. Model predictions revealed a transition temperature above which the reaction is taken over by the "run-away" combustion-type mode. The high pressure phase stability of pre-alloyed Ti 3SiC2 compound was investigated by performing Hugoniot shock and particle velocity measurements using the facilities at the National Institute for Materials Science (Tsukuba, Japan). Experiments performed at pressures of 95--120 GPa showed that the compressibility of Ti3SiC 2 at these pressures deviates from the previously reported compressibility of the material under static high pressure loading. The deviation in compressibility behavior is indicative of the transformation of the Ti3 SiC2 ceramic to a high pressure, high density phase.
Ionic Conduction in Nanocrystalline Materials
2000-02-10
In the following, we review studies performed films prepared by a polymer precursor process on on stabilized zirconia ceramics with grain sizes alumina ... titania , is reviewed. While it remains too early to make firm conclusions, the following observations are made. Additives which contribute to ion blocking...Keywords: Ionic conductivity; Nanocrystalline; Zirconia; Ceria; Titania ; Defects 1. Introduction tivity by nearly two orders of magnitude [6]. Given the
Methods of repairing a substrate
NASA Technical Reports Server (NTRS)
Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)
2011-01-01
A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium boride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.
NASA Astrophysics Data System (ADS)
Lupinetti, Anthony J.; Fife, Julie; Garcia, Eduardo; Abney, Kent D.
2000-07-01
Information gaps exist in the knowledge base needed for choosing among the alternate processes to be used in the safe conversion of fissile materials to optimal forms for safe interim storage, long-term storage, and ultimate disposition. The current baseline storage technology for various wastes uses borosilicate glasses.1 The focus of this paper is the synthesis of actinide-containing ceramic materials at low and moderate temperatures (200 °C-1000 °C) using molecular and polymeric actinide borane and carborane complexes.
Metallocene Catalytic Insertion Polymerization of 1-Silene to Polycarbosilanes
NASA Astrophysics Data System (ADS)
Tian, Yuelong; Ge, Min; Zhang, Weigang; Lv, Xiaoxu; Yu, Shouquan
2015-11-01
Metallocene of zirconium were used as a catalyst for an insertion polymerization of 1-methylsilene directly into pre-ceramic precursor polyzirconocenecarbosilane (PZCS) during dechlorination of dichlorodimethylesilane by sodium, which exhibits high catalytic effectiveness with the maximum conversion ratio of polycarbosilane up to 91%. The average molecular weights of polymers synthesized are less than 1400, all with very narrow polymolecularities. The mechanism of catalytic polymerization was assumed to be similar to a coordination insertion polymerization of 1-olefins by metallocenes. The obtained PZCS show high ceramic yields with formation of composite ceramics of ZrC-SiC, which are novel polymeric precursors of ultra-high temperature ceramic (UHTC) fiber and composite.
Metallocene Catalytic Insertion Polymerization of 1-Silene to Polycarbosilanes.
Tian, Yuelong; Ge, Min; Zhang, Weigang; Lv, Xiaoxu; Yu, Shouquan
2015-11-06
Metallocene of zirconium were used as a catalyst for an insertion polymerization of 1-methylsilene directly into pre-ceramic precursor polyzirconocenecarbosilane (PZCS) during dechlorination of dichlorodimethylesilane by sodium, which exhibits high catalytic effectiveness with the maximum conversion ratio of polycarbosilane up to 91%. The average molecular weights of polymers synthesized are less than 1400, all with very narrow polymolecularities. The mechanism of catalytic polymerization was assumed to be similar to a coordination insertion polymerization of 1-olefins by metallocenes. The obtained PZCS show high ceramic yields with formation of composite ceramics of ZrC-SiC, which are novel polymeric precursors of ultra-high temperature ceramic (UHTC) fiber and composite.
Light-weight black ceramic insulation
NASA Technical Reports Server (NTRS)
Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)
2003-01-01
Ultra-high temperature, light-weight, black ceramic insulation having a density ranging from about 0.12 g/cc. to 0.6 g/cc. such as ceramic tile is obtained by pyrolyzing siloxane gels derived from the reaction of at least one organo dialkoxy silane and at least one tetralkoxy silane in an acid or base liquid medium. The reaction mixture of the tetra- and dialkoxy silanes also may contain an effective amount of a mono- or trialkoxy silane to obtain the siloxane gels. The siloxane gels are dried at ambient temperatures and pressures to form siloxane ceramic precursors without significant shrinkage. The siloxane ceramic precursors are subsequently pyrolyzed, in an inert atmosphere, to form the black ceramic insulation comprising atoms of silicon, carbon and oxygen. The ceramic insulation can be characterized as a porous, uniform ceramic tile resistant to oxidation at temperatures ranging as high as 1700.degree. C., and particularly useful as lightweight tiles for spacecraft and other high-temperature insulation applications.
Glass-ceramic route of BSCCO superconductors - Fabrication of amorphous precursor
NASA Astrophysics Data System (ADS)
Nilsson, Andreas; Gruner, Wolfgang; Acker, Jörg; Wetzig, Klaus
2007-09-01
It is well known that many Bi-Sr-Ca-Cu-O compositions are glass-forming and some Bi-based glasses such as Bi 2Sr 2CaCu 2O x and Bi 2Sr 2Ca 2Cu 3O x are converted into high critical temperature superconductors after proper annealing. In order to fabricate superconductors having high- Tc and high critical current density using the glass-ceramic route, it is necessary to clarify the total chemical composition of the quenched glasses prepared in most cases by rapid quenching of melts from around 1200 °C in air. The total oxygen content measured directly reflects a significant oxygen deficit due to the melting process. We have also investigated the cation content in quenched Bi 2Sr 2Ca 2Cu 3O x precursors and found that there are substantial differences from the nominal composition to the quenched materials especially for calcium. Such glasses also show some CaO crystalline reflexes in the XRD patterns.
Copper-containing ceramic precursor synthesis: Solid-state transformations and materials technology
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Eckles, William E.; Duraj, Stan A.; Andras, Maria T.; Fanwick, Phillip E.; Richman, Robert M.; Sabat, Michael L.; Power, Michael B.; Gordon, Edward M.; Barron, Andrew
1994-01-01
Three copper systems with relevance to materials technology are discussed. In the first, a CuS precursor, Cu4S1O (4-methylpyridine)(sub 4)- (4-MePy), was prepared by three routes: reaction of Cu2S, reaction of CuBr-SMe2, and oxidation of copper powder with excess sulfur in 4-methylpyridine by sulfur. In the second, copper powder was found to react with excess thiourea (H2NC(S)NH2) in 4-methylpyridine to produce thiocyanate (NCS(-)) complexes. Three isolated and characterized compounds are: Cu(NCS)(4-MePy)(sub 2), a polymer, (4-MePy-H)(Cu(NCS)(sub 3)(4-MePy)(sub 2)), a salt, and t-Cu(NCS)(sub 2)(4-MePy)(sub 4). Finally, an attempt to produce a mixed-metal sulfide precursor of Cu and Ga in N-methylimidazole (N-MeIm) resulted in the synthesis of a Cu-containing polymer, Cu(SO4)(N-MeIm). The structures are presented; the chemistry will be briefly discussed in the context of preparation and processing of copper-containing materials for aerospace applications.
Fabrication and properties of Eu:Lu2O3 transparent ceramics for X-ray radiation detectors
NASA Astrophysics Data System (ADS)
Xie, Weifeng; Wang, Jing; Cao, Maoqing; Hu, Zewang; Feng, Yagang; Chen, Xiaopu; Jiang, Nan; Dai, Jiawei; Shi, Yun; Babin, Vladimir; Mihóková, Eva; Nikl, Martin; Li, Jiang
2018-06-01
Europium-doped lutetium oxide (Eu:Lu2O3) nano-powders were synthesized by a co-precipitation method from europium and lutetium nitrates using ammonium hydrogen carbonate (AHC) as the precipitant. Fine and low-agglomerated powders with average particle size of 68 nm were obtained by calcining the precursor at 1100 °C for 4 h. Using this powder as starting material, Eu:Lu2O3 transparent ceramics with the average grain size of ∼46 μm were fabricated by vacuum sintering at 1650 °C for 30 h, whose in-line transmittance reaches 66.3% at 611 nm. The influences of air annealing on optical transmittance, decay time, spectroscopic properties, light output and thermally stimulated luminescence of Eu:Lu2O3 ceramics were investigated in detail. Based on radioluminescence spectra, the light output of the annealed Eu:Lu2O3 ceramics is 10 times higher than that of the commercially available BGO single crystal, and it indicates that transparent Eu:Lu2O3 scintillation ceramics is a promising candidate for X-ray radiation detectors.
Ceramic Inclusions In Powder Metallurgy Disk Alloys: Characterization and Modeling
NASA Technical Reports Server (NTRS)
Bonacuse, Pete; Kantzos, Pete; Telesman, Jack
2002-01-01
Powder metallurgy alloys are increasingly used in gas turbine engines, especially as the material chosen for turbine disks. Although powder metallurgy materials have many advantages over conventionally cast and wrought alloys (higher strength, higher temperature capability, etc.), they suffer from the rare occurrence of ceramic defects (inclusions) that arise from the powder atomization process. These inclusions can have potentially large detrimental effect on the durability of individual components. An inclusion in a high stress location can act as a site for premature crack initiation and thereby considerably reduce the fatigue life. Because these inclusions are exceedingly rare, they usually don't reveal themselves in the process of characterizing the material for a particular application (the cumulative volume of the test bars in a fatigue life characterization is typically on the order of a single actual component). Ceramic inclusions have, however, been found to be the root cause of a number of catastrophic engine failures. To investigate the effect of these inclusions in detail, we have undertaken a study where a known population of ceramic particles, whose composition and morphology are designed to mimic the 'natural' inclusions, are added to the precursor powder. Surface connected inclusions have been found to have a particularly large detrimental effect on fatigue life, therefore the volume of ceramic 'seeds' added is calculated to ensure that a minimum number will occur on the surface of the fatigue test bars. Because the ceramic inclusions are irregularly shaped and have a tendency to break up in the process of extrusion and forging, a method of calculating the probability of occurrence and expected intercepted surface and embedded cross-sectional areas were needed. We have developed a Monte Carlo simulation to determine the distributions of these parameters and have verified the simulated results with observations of ceramic inclusions found in macro slices from extrusions and forgings. The ultimate goal of this study will be to use probabilistic methods to determine the reliability detriment that can be attributed to these ceramic inclusions.
Incorporation of RANKL promotes osteoclast formation and osteoclast activity on β-TCP ceramics.
Choy, John; Albers, Christoph E; Siebenrock, Klaus A; Dolder, Silvia; Hofstetter, Wilhelm; Klenke, Frank M
2014-12-01
β-Tricalcium phosphate (β-TCP) ceramics are approved for the repair of osseous defects. In large defects, however, the substitution of the material by authentic bone is inadequate to provide sufficient long-term mechanical stability. We aimed to develop composites of β-TCP ceramics and receptor activator of nuclear factor κ-B ligand (RANKL) to enhance the formation of osteoclasts and promote cell mediated calcium phosphate resorption. RANKL was adsorbed superficially onto β-TCP ceramics or incorporated into a crystalline layer of calcium phosphate by the use of a co-precipitation technique. Murine osteoclast precursors were seeded onto the ceramics. After 15 days, the formation of osteoclasts was quantified cytologically and colorimetrically with tartrate-resistant acidic phosphatase (TRAP) staining and TRAP activity measurements, respectively. Additionally, the expression of transcripts encoding the osteoclast gene products cathepsin K, calcitonin receptor, and of the sodium/hydrogen exchanger NHA2 were quantified by real-time PCR. The activity of newly formed osteoclasts was evaluated by means of a calcium phosphate resorption assay. Superficially adsorbed RANKL did not induce the formation of osteoclasts on β-TCP ceramics. When co-precipitated onto β-TCP ceramics RANKL supported the formation of mature osteoclasts. The development of osteoclast lineage cells was further confirmed by the increased expression of cathepsin K, calcitonin receptor, and NHA2. Incorporated RANKL stimulated the cells to resorb crystalline calcium phosphate. Our in vitro study shows that RANKL incorporated into β-TCP ceramics induces the formation of active, resorbing osteoclasts on the material surface. Once formed, osteoclasts mediate the release of RANKL thereby perpetuating their differentiation and activation. In vivo, the stimulation of osteoclast-mediated resorption may contribute to a coordinated sequence of material resorption and bone formation. Further in vivo studies are needed to confirm the current in vitro findings. Copyright © 2014 Elsevier Inc. All rights reserved.
Molecular ways to nanoscale particles and films
NASA Astrophysics Data System (ADS)
Shen, H.; Mathur, S.
2002-06-01
Chemical routes for the synthesis of nanoparticles and films are proving to be highly efficient and versatile in tailoring the elemental combination and intrinsic properties of the target materials. The use of molecular compounds allows a controlled interaction of atoms or molecules, when compared to the solid-state methods, resulting in the formation of compositionally homogeneous deposits or uniform solid particles. Assembling all the elements forming the material in a single molecular compound, the so-called single-source approach augments the formation of nanocrystalline phases at low temperatures with atomically precise structures. To this end, we have shown that predefined reaction (decomposition) chemistry of precursors enforces a molecular level homogeneity in the obtained materials. Following the single-step conversions of appropriate molecular sources, we have obtained films and nanoparticles of oxides (Fe3O4, BaTiO3, ZnAl2O4, CoAl2O4), metal/oxide composites (Ge/GeO2) and ceramic-ceramic composites (LnAIO3/AI2O3; Ln = Pr, Nd). For a comparative evaluation, CoAl2O4 nanoparticles were prepared by both single- and multi-component routes; whereas the single-source approach yielded monophasic high purity spinels, phase contamination, due to monometal phases, was observed in the ceramic obtained from multicomponent mixture. An account of the size-controlled synthesis and characterisation of the new ceramics and composites is presented.
Heterocycles Based on Group III, IV, and V Elements, Precursors for Novel Glasses and Ceramics
1990-08-01
OF TABLES v LIST OF FIGURES vi 1. ABSTRACT 1 2. INTRODUCTION 3 3. RESULTS AND DISCUSSION 5 3.1 Synthesis and Thermolysis of Aluminum...Chloride.Hexamethyldisilazane Adduct 5 3.2 Synthesis and Reactions of Bis(trimethylsilyl)- aminoaluminum Compounds 11 3.3 Reactions of Tris[bis(trimethylsilyl)amino...Et3N.C12AIN(SiMe3 )B(NH2 )NHSiMe3 , a processible precursor to AlN.BN ceramic. Attempts at synthesis of other AlN.BN precursors and AINP systems were
NASA Astrophysics Data System (ADS)
Patel, Khushikumari
PbS/TiO2 nanocomposites were prepared by two methods using the sol-gel process: a one step process and a multi-step process. The incorporation of 3-mercaptopropionic acid, followed by the addition of Pb2+ generated covalently incorporated lead thiolate precursors which can then be converted to PbS/TiO2 nanocomposites by controlled thermal decomposition. Various ratios of bifunctional linker to matrix were used to monitor the incorporation of functional groups of the ceramic matrix, and the sol-gel process was used to produce a high yield ceramic materials. This allows solutions to chemically bind and form solid state ceramics, while allowing complex compounds to combine with a high degree of homogeneity. 3-mercaptoproprionic acid, was added to the titania gel, and as a source of sulfur component to bind to the titania. PbS/TiO2 nanocomposites were studied using FTIR spectroscopy. The covalent bonding between PbS and the titania ceramics was also confirmed with the signal intensity in the infrared spectra. The success of the covalent bond between the thiolate and ceramics led to possibility of nanocomposites. X-ray diffraction was used analyze the structure of the nanocomposites X-ray diffraction results showed lead sulfide nanocrystals in the ceramic matrix as well as the size of the particles. The presence of crystalline PbS and particle size was determined using powder X-ray diffraction.
NASA Astrophysics Data System (ADS)
Vereshchagina, Tatiana A.; Vereshchagin, Sergei N.; Shishkina, Nina N.; Vasilieva, Nataly G.; Solovyov, Leonid A.; Anshits, Alexander G.
2013-06-01
Hollow microsphere zeolite materials with a bilayered zeolite/glass crystalline shell bearing NaP1 zeolite were synthesized by the hydrothermal treatment of coal fly ash cenospheres (Si/Al = 2.7) in an alkaline medium. Cs+ and/or Sr2+ forms of zeolitized cenospheres with the different Cs+ and/or Sr2+ loading were prepared by the ion exchange from nitrate solutions. The resulted (Cs,Na)P1, (Sr,Na)P1 and (Cs,Sr,Na)P1 bearing microsphere zeolites were converted to glass ceramics by heating at 900-1000 °C. The differential scanning calorimetry and quantitative phase analysis were used to monitor the solid-phase transformation of the initial and ion exchanged zeolite materials. It was established that the final solidified forms of Cs+ and/or Sr2+ are glass-crystalline ceramic materials based on pollucite-nepheline, Sr-feldspar-nepheline and Sr-feldspar-pollucite composites including ˜60 wt.% of the major host phases (pollucite, Sr-feldspar) and 10-20 wt.% of glass. The 137Cs leaching rate of 4.1 × 10-7 g cm-2 day-1 was determined for the pollucite glass-ceramic according to Russian State Standard (GOST) No. 52126 P-2003 (7 day, 25 °C, distilled water).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartkowska, J. A., E-mail: joanna.bartkowska@us.edu.pl; Dercz, J.
2013-11-15
In the multiferroic materials, the dielectric and magnetic properties are closely correlated through the coupling interaction between the ferroelectric and magnetic order. We attempted to determine the magnetoelectric coupling coefficient from the temperature dependences of the dielectric permittivity for multiferroic Bi{sub 5}Ti{sub 3}FeO{sub 15}. Multiferroic ceramics Bi{sub 5}Ti{sub 3}FeO{sub 15} belong to materials of the Aurivillius-type structure. Multiferroic ceramics Bi{sub 5}Ti{sub 3}FeO{sub 15} was synthesized via sintering the Bi{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} mixture and TiO{sub 2} oxides. The precursor material was ground in a high-energy attritorial mill for 5 hours. This material was obtained by a solid-statemore » reaction process at T = 1313 K. We investigated the temperature dependences of the dielectric permittivity for the different frequencies. From the dielectric measurements, we determined the temperature of phase transition of the ferroelectric-to-paraelectric type at about 1013 K. Based on dielectric measurements and theoretical considerations, the values of the magnetoelectric coupling coefficient were specified.« less
Method of making metal oxide ceramic powders by using a combustible amino acid compound
Pederson, L.R.; Chick, L.A.; Exarhos, G.J.
1992-05-19
This invention is directed to the formation of homogeneous, aqueous precursor mixtures of at least one substantially soluble metal salt and a substantially soluble, combustible co-reactant compound, typically an amino acid. This produces, upon evaporation, a substantially homogeneous intermediate material having a total solids level which would support combustion. The homogeneous intermediate material essentially comprises highly dispersed or solvated metal constituents and the co-reactant compound. The intermediate material is quite flammable. A metal oxide powder results on ignition of the intermediate product which combusts same to produce the product powder.
Method of making metal oxide ceramic powders by using a combustible amino acid compound
Pederson, Larry R.; Chick, Lawrence A.; Exarhos, Gregory J.
1992-01-01
This invention is directed to the formation of homogeneous, aqueous precursor mixtures of at least one substantially soluble metal salt and a substantially soluble, combustible co-reactant compound, typically an amino acid. This produces, upon evaporation, a substantially homogeneous intermediate material having a total solids level which would support combustion. The homogeneous intermediate material essentially comprises highly dispersed or solvated metal constituents and the co-reactant compound. The intermediate material is quite flammable. A metal oxide powder results on ignition of the intermediate product which combusts same to produce the product powder.
NASA Astrophysics Data System (ADS)
Hung, L. S.; Zheng, L. R.
1992-05-01
Fine line structures of ceramic thin films were fabricated by patterning of metalorganic precursors using photolithography and ion beams. A trilevel structure was developed with an outer resist layer to transfer patterns, a silver delineated layer as an implantation mask, and a planar resist layer protecting the precursor film from chemical attacking and sputtering. Ion irradiation through the Ag stencil rendered metal carboxylates insoluble in 2-ethylhexanoic acid, permitting patterning of the precursor film with patterning features on micron scales. The potential of this technique was demonstrated in patterning of Bi2Sr2CaCu2O(8+x) and Pb(Zr(0.53)Ti(0.47) thin films.
NASA Astrophysics Data System (ADS)
Bhandavat, Romil
Molecular precursor derived ceramics (also known as polymer-derived ceramics or PDCs) are high temperature glasses that have been studied for applications involving operation at elevated temperatures. Prepared from controlled thermal degradation of liquid-phase organosilicon precursors, these ceramics offer remarkable engineering properties such as resistance to crystallization up to 1400 °C, semiconductor behavior at high temperatures and intense photoluminescence. These properties are a direct result of their covalent bonded amorphous network and free (-sp2) carbon along with mixed Si/B/C/N/O bonds, which otherwise can not be obtained through conventional ceramic processing techniques. This thesis demonstrates synthesis of a unique core/shell type nanowire structure involving either siliconboroncarbonitride (SiBCN) or siliconoxycarbide (SiOC) as the shell with carbon nanotube (CNT) acting as the core. This was made possible by liquid phase functionalization of CNT surfaces with respective polymeric precursor (e.g., home-made boron-modified polyureamethylvinylsilazane for SiBCN/CNT and commercially obtained polysiloxane for SiOC/CNT), followed by controlled pyrolysis in inert conditions. This unique architecture has several benefits such as high temperature oxidation resistance (provided by the ceramic shell), improved electrical conductivity and mechanical toughness (attributed to the CNT core) that allowed us to explore its use in energy conversion and storage devices. The first application involved use of SiBCN/CNT composite as a high temperature radiation absorbant material for laser thermal calorimeter. SiBCN/CNT spray coatings on copper substrate were exposed to high energy laser beams (continuous wave at 10.6 mum 2.5 kW CO2 laser, 10 seconds) and resulting change in its microstructure was studied ex-situ. With the aid of multiple techniques we ascertained the thermal damage resistance to be 15 kW/cm -2 with optical absorbance exceeding 97%. This represents one order of magnitude improvement over bare CNTs (1.4 kW/cm-2) coatings and two orders of magnitude over the conventional carbon paint (0.1 kW/cm -2) currently in use. The second application involved use of SiBCN/CNT and SiOC/CNT composite coatings as energy storage (anode) material in a Li-ion rechargeable battery. Anode coatings (~1mg/cm-2) prepared using SiBCN/CNT synthesized at 1100 °C exhibited high reversible (useable) capacity of 412 mAh/g -1 even after 30 cycles. Further improvement in reversible capacity was obtained for SiOC/CNT coatings with 686 mAh/g-1 at 40 cycles and approximately 99.6% cyclic efficiency. Further, post cycling imaging of dissembled cells indicated good mechanical stability of these anodes and formation of a stable passivating layer necessary for long term cycling of the cell. This improved performance was collectively attributed to the amorphous ceramic shell that offered Li storage sites and the CNT core that provided the required mechanical strength against volume changes associated with repeated Li-cycling. This novel approach for synthesis of PDC nanocomposites and its application based testing offers a starting point to carry out further research with a variety of PDC chemistries at both fundamental and applied levels.
Ceramics Derived from Organo-Metallic Precursors
1991-10-01
spraying, and roller-coating may also be used to good effect . The films deposited by any of these techniques are ready to be fired immediately...films. The wet chemical route offers great potential for highly cost- effective processing; and the critical issue for its wide-scale implementation is...glasses and subsequently to crystallize single phase HTSC materials. The fourth composition, 4223, was made in order to test the effect of Bi on glass
Sol-gel applications for ceramic membrane preparation
NASA Astrophysics Data System (ADS)
Erdem, I.
2017-02-01
Ceramic membranes possessing superior properties compared to polymeric membranes are more durable under severe working conditions and therefore their service life is longer. The ceramic membranes are composed of some layers. The support is the layer composed of coarser ceramic structure and responsible for mechanical durability under filtration pressure and it is prepared by consolidation of ceramic powders. The top layer is composed of a finer ceramic micro-structure mainly responsible for the separation of components present in the fluid to be filtered and sol-gel method is a versatile tool to prepare such a tailor-made ceramic filtration structure with finer pores. Depending on the type of filtration (e.g. micro-filtration, ultra-filtration, nano-filtration) aiming separation of components with different sizes, sols with different particulate sizes should be prepared and consolidated with varying precursors and preparation conditions. The coating of sol on the support layer and heat treatment application to have a stable ceramic micro-structure are also important steps determining the final properties of the top layer. Sol-gel method with various controllable parameters (e.g. precursor type, sol formation kinetics, heat treatment conditions) is a practical tool for the preparation of top layers of ceramic composite membranes with desired physicochemical properties.
A new large area scintillator screen for X-ray imaging
NASA Astrophysics Data System (ADS)
Nagarkar, V. V.; Miller, S. R.; Tipnis, S. V.; Lempicki, A.; Brecher, C.; Lingertat, H.
2004-01-01
We report on the development of a new, large area, powdered scintillator screen based on Lu 2O 3(Eu). As reported earlier, the transparent ceramic form of this material has a very high density of 9.4 g/cm 3, a high light output comparable to that of CsI(Tl), and emits in a narrow spectral band centered at about 610 nm. Research into fabrication of this ceramic scintillator in a large area format is currently underway, however the process is not yet practical for large scale production. Here we have explored fabrication of large area screens using precursor powders from which the ceramics are fabricated. To date we have produced up to 16 × 16 cm 2 area screens with thickness in the range of 18 mg/cm 2. This paper outlines the screen fabrication technique and presents its imaging performance in comparison with a commercial Gd 2O 2S:Tb (GOS) screen.
NASA Technical Reports Server (NTRS)
1998-01-01
As a result of this funded project high purity Zirconia-Toughened Alumina (ZTA) ceramic powders with and without yttria were produced using metal alkoxide precursors. ZTA ceramic powders with varying volume percents of zirconia were prepared (7, 15, and 22%). Aluminum tri-sec butoxide, zirconium propoxide, and yttrium isopropoxide were the reagents used. Synthesis conditions were varied to control the hydrolysis and the aging conditions for the sol to gel transition. FTIR analysis and rheological characterization were used to follow the structural evolution during the sol to gel transition. The greater extent of hydrolysis and the build-up of structure measured from viscoelastic properties were consistent. Heat treatment was conducted to produce submicron grain fully crystalline ZTA ceramic powders. This improved materials should have enhanced properties such strength, toughness, and wear resistance for advanced structural applications, for example engine components in high technology aerospace applications.
Depond, Philip J
2018-01-01
Boron-containing materials are increasingly drawing interest for the use in electronics, optics, laser targets, neutron absorbers, and high-temperature and chemically resistant ceramics. In this article, the first investigation into the deposition of boron-based material via electron beam-induced deposition (EBID) is reported. Thin films were deposited using a novel, large-area EBID system that is shown to deposit material at rates comparable to conventional techniques such as laser-induced chemical vapor deposition. The deposition rate and stoichiometry of boron oxide fabricated by EBID using trimethyl borate (TMB) as precursor is found to be critically dependent on the substrate temperature. By comparing the deposition mechanisms of TMB to the conventional, alkoxide-based precursor tetraethyl orthosilicate it is revealed that ligand chemistry does not precisely predict the pathways leading to deposition of material via EBID. The results demonstrate the first boron-containing material deposited by the EBID process and the potential for EBID as a scalable fabrication technique that could have a transformative effect on the athermal deposition of materials. PMID:29765806
Martin, Aiden A; Depond, Philip J
2018-01-01
Boron-containing materials are increasingly drawing interest for the use in electronics, optics, laser targets, neutron absorbers, and high-temperature and chemically resistant ceramics. In this article, the first investigation into the deposition of boron-based material via electron beam-induced deposition (EBID) is reported. Thin films were deposited using a novel, large-area EBID system that is shown to deposit material at rates comparable to conventional techniques such as laser-induced chemical vapor deposition. The deposition rate and stoichiometry of boron oxide fabricated by EBID using trimethyl borate (TMB) as precursor is found to be critically dependent on the substrate temperature. By comparing the deposition mechanisms of TMB to the conventional, alkoxide-based precursor tetraethyl orthosilicate it is revealed that ligand chemistry does not precisely predict the pathways leading to deposition of material via EBID. The results demonstrate the first boron-containing material deposited by the EBID process and the potential for EBID as a scalable fabrication technique that could have a transformative effect on the athermal deposition of materials.
Multi-Functional BN-BN Composite
NASA Technical Reports Server (NTRS)
Kang, Jin Ho (Inventor); Bryant, Robert G. (Inventor); Park, Cheol (Inventor); Sauti, Godfrey (Inventor); Gibbons, Luke (Inventor); Lowther, Sharon (Inventor); Thibeault, Sheila A. (Inventor); Fay, Catharine C. (Inventor)
2017-01-01
Multifunctional Boron Nitride nanotube-Boron Nitride (BN-BN) nanocomposites for energy transducers, thermal conductors, anti-penetrator/wear resistance coatings, and radiation hardened materials for harsh environments. An all boron-nitride structured BN-BN composite is synthesized. A boron nitride containing precursor is synthesized, then mixed with boron nitride nanotubes (BNNTs) to produce a composite solution which is used to make green bodies of different forms including, for example, fibers, mats, films, and plates. The green bodies are pyrolized to facilitate transformation into BN-BN composite ceramics. The pyrolysis temperature, pressure, atmosphere and time are controlled to produce a desired BN crystalline structure. The wholly BN structured materials exhibit excellent thermal stability, high thermal conductivity, piezoelectricity as well as enhanced toughness, hardness, and radiation shielding properties. By substituting with other elements into the original structure of the nanotubes and/or matrix, new nanocomposites (i.e., BCN, BCSiN ceramics) which possess excellent hardness, tailored photonic bandgap and photoluminescence, result.
NASA Astrophysics Data System (ADS)
Moure, A.; Castro, A.; Tartaj, J.; Moure, C.
Dense ceramics with La 0.80Sr 0.20Ga 0.85Mg 0.15O 2.825 and La 0.80Sr 0.15Ga 0.85Mg 0.20O 2.825 compositions have been prepared by sintering of mechanosynthesized precursors. The perovskite is synthesized after 85 h of milling in a planetary mill. Single phases have been obtained at conditions that are not possible if traditional solid-state reaction (SSR) method is used. The influence of milling time and composition in the reactivity of the precursors is studied. Highest purity is obtained in Sr = 0.15 and Mg = 0.20 composition, with relative density higher than 97%. The total elimination of typical secondary phases for these compositions, as SrLaGaO 4 and SrLaGa 3O 7, allows the total conductivity of the ceramics to be improved. The influence of the grain size and the nature of the grain boundaries on the electrical characteristic of the ceramics are also discussed.
NASA Astrophysics Data System (ADS)
Lian, Jingbao; Wang, Bingxin; Liang, Ping; Liu, Feng; Wang, Xuejiao
2014-04-01
La2O2S:Eu3+ translucent ceramic (LOS:Eu) was fabricated by pressureless reaction sintering method. It is found that the (La, Eu)2(OH)4SO4ṡ2H2O precursor is synthesized by co-precipitation using commercially available La(NO3)3, Eu(NO3)3, (NH4)2SO4 and NH3ṡH2O as the starting materials. And this precursor can be converted into pure La2O2SO4:Eu3+ phosphor by calcination at 800 °C for 1 h in air, which is composed of a few small needle agglomerated particles. Then the La2O2SO4:Eu3+ phosphor compact can be sintered into the LOS:Eu at 1500 °C for 2 h in the hybrid atmosphere of flowing hydrogen and argon. Under 387 nm UV light excitation, the LOS:Eu reveals a red light emission at 628 nm as the most prominent peak, which corresponds to the 5D0 → 7F2 transition of Eu3+ ions.
Novel Method for Loading Microporous Ceramics Bone Grafts by Using a Directional Flow
Seidenstuecker, Michael; Kissling, Steffen; Ruehe, Juergen; Suedkamp, Norbert P.; Mayr, Hermann O.; Bernstein, Anke
2015-01-01
The aim of this study was the development of a process for filling the pores of a β-tricalcium phosphate ceramic with interconnected porosity with an alginate hydrogel. For filling of the ceramics, solutions of alginate hydrogel precursors with suitable viscosity were chosen as determined by rheometry. For loading of the porous ceramics with the gel the samples were placed at the flow chamber and sealed with silicone seals. By using a vacuum induced directional flow, the samples were loaded with alginate solutions. The loading success was controlled by ESEM and fluorescence imaging using a fluorescent dye (FITC) for staining of the gel. After loading of the pores, the alginate is transformed into a hydrogel through crosslinking with CaCl2 solution. The biocompatibility of the obtained composite material was tested with a live dead cell staining by using MG-63 Cells. The loading procedure via vacuum assisted directional flow allowed complete filling of the pores of the ceramics within a few minutes (10 ± 3 min) while loading through simple immersion into the polymer solution or through a conventional vacuum method only gave incomplete filling. PMID:26703749
NASA Astrophysics Data System (ADS)
Thévenot, F.; Doche, C.; Mongeot, H.; Guilhon, F.; Miele, P.; Cornu, D.; Bonnetot, B.
1997-10-01
Aminoboranes, pure or partially converted into aminoborazines using thermal or aminolysis polymerization, have been used as boron nitride precursors. An amorphous BN preceramic is obtained when pyrolysed up to 1000°C that can be stabilized using further annealing up to 1400°C or crystallized into h-BN above 1700°C. These molecular precursors have been used to prepare carbon fiber/BN matrix microcomposites to get an efficient BN coating on graphite and as a BN source in Si3N4/BN composite ceramic. The properties of these new types of samples have been compared with those obtained by classical processes. The boron nitride obtained from these precursors is a good sintering agent during the hot-pressing of the samples. However, the crystallinity of BN, even sintered up to 1800°C, remains poor. In fact, most of the mechanical properties of the composite ceramic (density, porosity, hardness) are clearly improved and the aminoboranes can be considered as convenient boron nitride sources and helpful sintering agents in hot-pressing technology.
Porous media for catalytic renewable energy conversion
NASA Astrophysics Data System (ADS)
Hotz, Nico
2012-05-01
A novel flow-based method is presented to place catalytic nanoparticles into a reactor by sol-gelation of a porous ceramic consisting of copper-based nanoparticles, silica sand, ceramic binder, and a gelation agent. This method allows for the placement of a liquid precursor containing the catalyst into the final reactor geometry without the need of impregnating or coating of a substrate with the catalytic material. The so generated foam-like porous ceramic shows properties highly appropriate for use as catalytic reactor material, e.g., reasonable pressure drop due to its porosity, high thermal and catalytic stability, and excellent catalytic behavior. The catalytic activity of micro-reactors containing this foam-like ceramic is tested in terms of their ability to convert alcoholic biofuel (e.g. methanol) to a hydrogen-rich gas mixture with low concentrations of carbon monoxide (up to 75% hydrogen content and less than 0.2% CO, for the case of methanol). This gas mixture is subsequently used in a low-temperature fuel cell, converting the hydrogen directly to electricity. A low concentration of CO is crucial to avoid poisoning of the fuel cell catalyst. Since conventional Polymer Electrolyte Membrane (PEM) fuel cells require CO concentrations far below 100 ppm and since most methods to reduce the mole fraction of CO (such as Preferential Oxidation or PROX) have CO conversions of up to 99%, the alcohol fuel reformer has to achieve initial CO mole fractions significantly below 1%. The catalyst and the porous ceramic reactor of the present study can successfully fulfill this requirement.
Biomimetic routes to nanoscale-toughened oxide ceramics
NASA Astrophysics Data System (ADS)
Deschaume, Olivier
In this work, a novel anion exchange technique has been developed and optimised in order to prepare extra-pure, hydroxide-free solutions of aluminium polyoxocations (A113 and A130) as well as for the preparation of nanosized, highly monodisperse aluminium hydroxide particles in the particle size range 20-200nm. In order for the evolution and composition of the resulting systems to be monitored, an array of characterisation techniques including 27A1 NMR, dynamic light scattering, po-tentiometry, conductometry and UV-Vis spectroscopy, have been implemented and complemented with successful data treatment strategies. The quantitative data obtained indicates that the static anion exchange method is a soft, environmentally friendly, low-cost, energy-saving and convenient procedure for the preparation of Al- containing model systems. The A1 species obtained can be used for high-precision model studies on A1 speciation, and serve as nanosize precursors to a variety of Al-containing materials. The use of these pure A1 precursors has a clear advantage in materials synthesis arising from an improved understanding and better control of A1 speciation. In a second development of the project, the model systems have been used in a nanotectonic approach to biomimetic materials synthesis, with possible applications to the optimisation of Al-containing materials such as ceramics or composite films. Bearing this aim in mind, the interactions of the prepared aluminium species with the model protein BSA and a bioelastomer, elastin, were monitored and the resulting composite materials characterised. The methodology developed for the synthesis and characterisation of pure A1 species and A1 species/biomolecule systems is a robust base for further studies spanning research fields such as Chemistry, Biology or Environmental sciences, and possess a large potential for application to industrial products and processes.
NASA Astrophysics Data System (ADS)
Basu, Saptarshi; Jordan, Eric H.; Cetegen, Baki M.
2008-03-01
Thermo-physical processes in liquid ceramic precursor droplets in plasma were modeled. Models include aerodynamic droplet break-up, droplet transport, as well as heat and mass transfer within individual droplets. Droplet size, solute concentration, and plasma temperature effects are studied. Results are discussed with the perspective of selecting processing conditions and injection parameters to obtain certain types of coating microstructures. Small droplets (<5 microns) are found to undergo volumetric precipitation and coating deposition with small unpyrolized material. Droplets can be made to undergo shear break-up by reducing surface tension and small droplets promote volumetric precipitation. Small particles reach substrate as molten splats resulting in denser coatings. Model predicts that larger droplets (>5 microns) tend to surface precipitate-forming shells with liquid core. They may be subjected to internal pressurization leading to shattering of shells and secondary atomization of liquid within. They arrive at the substrate as broken shells and unpyrolized material.
Method for rapidly producing microporous and mesoporous materials
Coronado, Paul R.; Poco, John F.; Hrubesh, Lawrence W.; Hopper, Robert W.
1997-01-01
An improved, rapid process is provided for making microporous and mesoporous materials, including aerogels and pre-ceramics. A gel or gel precursor is confined in a sealed vessel to prevent structural expansion of the gel during the heating process. This confinement allows the gelation and drying processes to be greatly accelerated, and significantly reduces the time required to produce a dried aerogel compared to conventional methods. Drying may be performed either by subcritical drying with a pressurized fluid to expel the liquid from the gel pores or by supercritical drying. The rates of heating and decompression are significantly higher than for conventional methods.
Organosilicon Polymers as Precursors for Silicon-Containing Ceramics.
1987-02-23
preceramic polymer , shrinkage on pyrolysis could be considerable. Ceramic fibers of diverse chemical compositions are sought for...In the design of preceramic polymers , achievement of the desired elemental composition in the ceramic obtained from them ( SiC and Si3N4 in the...approximately one, pyrolysis of the product polymer gave a black ceramic solid in 84% yield which analysis showed to have a composition (1 SiC + 0.22
Innovative Processing of Composites for Ultra-High Temperature Applications. Book 1
1993-11-01
pyrolysis step (in which the polymer is converted at higher temperatures to a SiC -rich ceramic). However, curing in air also leads to the high oxygen...The fac’ that the ceramic the vinylic SiC precursor, i.e., a compound or polymer resulting from pyrolysis of the vinylic precursor re- having vinylic...12 %herein said atmosphere 1. A method of preparing preceramic SiC fibers hay- 65 utilized for pyrolysis ik a reactime atmosphere contain- ing a very
Martin, Aiden A.; Depond, Philip J.
2018-04-24
Boron-containing materials are increasingly drawing interest for the use in electronics, optics, laser targets, neutron absorbers, and high-temperature and chemically resistant ceramics. In this article, the first investigation into the deposition of boron-based material via electron beam-induced deposition (EBID) is reported. Thin films were deposited using a novel, large-area EBID system that is shown to deposit material at rates comparable to conventional techniques such as laser-induced chemical vapor deposition. The deposition rate and stoichiometry of boron oxide fabricated by EBID using trimethyl borate (TMB) as precursor is found to be critically dependent on the substrate temperature. By comparing the depositionmore » mechanisms of TMB to the conventional, alkoxide-based precursor tetraethyl orthosilicate it is revealed that ligand chemistry does not precisely predict the pathways leading to deposition of material via EBID. Lastly, the results demonstrate the first boron-containing material deposited by the EBID process and the potential for EBID as a scalable fabrication technique that could have a transformative effect on the athermal deposition of materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Aiden A.; Depond, Philip J.
Boron-containing materials are increasingly drawing interest for the use in electronics, optics, laser targets, neutron absorbers, and high-temperature and chemically resistant ceramics. In this article, the first investigation into the deposition of boron-based material via electron beam-induced deposition (EBID) is reported. Thin films were deposited using a novel, large-area EBID system that is shown to deposit material at rates comparable to conventional techniques such as laser-induced chemical vapor deposition. The deposition rate and stoichiometry of boron oxide fabricated by EBID using trimethyl borate (TMB) as precursor is found to be critically dependent on the substrate temperature. By comparing the depositionmore » mechanisms of TMB to the conventional, alkoxide-based precursor tetraethyl orthosilicate it is revealed that ligand chemistry does not precisely predict the pathways leading to deposition of material via EBID. Lastly, the results demonstrate the first boron-containing material deposited by the EBID process and the potential for EBID as a scalable fabrication technique that could have a transformative effect on the athermal deposition of materials.« less
Tungstate-based glass-ceramics for the immobilization of radio cesium
NASA Astrophysics Data System (ADS)
Drabarek, Elizabeth; McLeod, Terry I.; Hanna, John V.; Griffith, Christopher S.; Luca, Vittorio
2009-02-01
The preparation of tungstate-containing glass-ceramic composites (GCC) for the potential immobilization of radio cesium has been considered. The GCC materials were prepared by blending two oxide precursor compositions in various proportions. These included a preformed Cs-containing hexagonal tungsten bronze (HTB) phase (Cs 0.3Ti 0.2W 0.8O 3, P6 3/ mcm) and a blend of silica and other oxides. The use of the HTB phase was motivated on the assumption that a HTB-based adsorbent could be used to remove cesium directly from aqueous high level liquid waste feeds. In the absence of the HTB, glass-ceramics were relatively easily prepared from the Cs-containing glass-forming oxide blend. On melting the mixture a relative complex GCC phase assemblage formed. The principal components of this phase assemblage were determined using X-ray powder diffraction, 133Cs MAS-NMR, and cross-sectional SEM and included glass, various zeolites, scheelite (CaWO 4) and a range of other oxide phases and Cs-containing aluminosilicate. Importantly, under no circumstance was cesium partitioned into the glass phase irrespective of whether or not the composition included the preformed Cs-containing HTB compound. For compositions containing the HTB, cesium was partitioned into one of four major phases including zeolite; Cs-silica-tungstate bronze, pollucite (CsAlSi 2O 6), and an aluminosilicate with an Al/Si ratio close to one. The leach resistance of all materials was evaluated and related to the cesium distribution within the GCC phase assemblages. In general, the GCCs prepared from the HTB had superior durability compared with materials not containing tungsten. Indeed the compositions in many cases had leach resistances comparable to the best ceramics or glass materials.
Rare-earth doped transparent nano-glass-ceramics: a new generation of photonic integrated devices
NASA Astrophysics Data System (ADS)
Rodríguez-Armas, Vicente Daniel; Tikhomirov, Victor K.; Méndez-Ramos, Jorge; Yanes, Angel C.; Del-Castillo, Javier; Furniss, David; Seddon, Angela B.
2007-05-01
We report on optical properties and prospect applications on rare-earth doped oxyfluoride precursor glass and ensuing nano-glass-ceramics. We find out the spectral optical gain of the nano-glass-ceramics and show that its flatness and breadth are advantageous as compared to contemporary used erbium doped optical amplifiers. We present the possibility of flat gain cross-section erbium doped waveguide amplifiers as short 'chip', all-optical, devices capable of dense wavelength division multiplexing, including the potential for direct writing of these devices inside bulk glasses for three-dimensional photonic integration. We carried out a comparative study of the up-conversion luminescence in Er 3+-doped and Yb 3+-Er 3+-Tm 3+ co-doped samples, which indicates that these materials can be used as green/red tuneable up-conversion phosphors and white light simulation respectively. Observed changes in the spectra of the up-conversion luminescence provide a tool for tuning the colour opening the way for producing 3-dimensional optical recording.
Thirumalai, Sundararajan; Shanmugavel, Balasivanandha Prabu
2011-01-01
Barium titanate is a common ferroelectric electro-ceramic material having high dielectric constant, with photorefractive effect and piezoelectric properties. In this research work, nano-scale barium titanate powders were synthesized by microwave assisted mechano-chemical route. Suitable precursors were ball milled for 20 hours. TGA studies were performed to study the thermal stability of the powders. The powders were characterized by XRD, SEM and EDX Analysis. Microwave and Conventional heating were performed at 1000 degrees C. The overall heating schedule was reduced by 8 hours in microwave heating thereby reducing the energy and time requirement. The nano-scale, impurity-free and defect-free microstructure was clearly evident from the SEM micrograph and EDX patterns. LCR meter was used to measure the dielectric constant and dielectric loss values at various frequencies. Microwave heated powders showed superior dielectric constant value with low dielectric loss which is highly essential for the fabrication of Multi Layered Ceramic Capacitors.
Preparation of plutonium-bearing ceramics via mechanically activated precursor
NASA Astrophysics Data System (ADS)
Chizhevskaya, S. V.; Stefanovsky, S. V.
2000-07-01
The problem of excess weapons plutonium disposition is suggested to be solved by means of its incorporation in stable ceramics with high chemical durability and radiation resistivity. The most promising host phases for plutonium as well as uranium and neutron poisons (gadolinium, hafnium) are zirconolite, pyrochlore, zircon, zirconia [1,2], and murataite [3]. Their production requires high temperatures and a fine-grained homogeneous precursor to reach final waste form with high quality and low leachability. Currently various routes to homogeneous products preparation such as sol-gel technology, wet-milling, and grinding in a ball or planetary mill are used. The best result demonstrates sol-gel technology but this route is very complicated. An alternative technology for preparation of ceramic precursors is the treatment of the oxide batch with high mechanical energy [4]. Such a treatment produces combination of mechanical (fine milling with formation of various defects, homogenization) and chemical (split bonds with formation of active centers—free radicals, ion-radicals, etc.) effects resulting in higher reactivity of the activated batch.
NASA Astrophysics Data System (ADS)
Betancur Granados, Natalia; Yi, Eongyu; Laine, Richard M.; Restrepo Baena, Oscar Jaime
2016-01-01
Zn1- x Co x Al2O4 ( x = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0) spinel nanoparticles were synthesized by a liquid-feed flame spray pyrolysis (LF-FSP) method by combusting metallorganic precursor solutions to produce nanopowders with precise composition control. The precursor solutions were aerosolized into a methane/oxygen flame where it was combusted in an oxygen-rich environment to result in nanopowders at a single step. The nanopowders were analyzed by x-ray diffraction, Fourier transform infrared spectroscopy, colorimetry, field emission scanning electron microscopy, transmission electron microscopy, and BET (Brunauer-Emmett-Teller) N2 adsorption. Results show formation of spherical nanopowders with specific surface areas of 42 m2/g to 50 m2/g, which correspond to average particle sizes of 26 nm to 31 nm. Single-phase materials were obtained with a high control of composition, which indicates that LF-FSP is an excellent method to produce mixed-metal oxides for applications in which powder homogeneity is crucial. The products were evaluated for ceramic pigment application, where the ratio of Zn to Co was gradually changed to observe the color change in the structure with the increase of cobalt concentration. The resulting pigments were calcined at 1200°C, which aimed to identify the color stability after a high-temperature process, whereby the colors were measured using the color space CIE L*a*b* under standardized light, D65. Finally, the powders were tested for ceramic decoration using transparent glazes and ceramic bodies. The application was carried out at 1250°C to evaluate the color performance after a decoration process.
Modeling & processing of ceramic and polymer precursor ceramic matrix composite materials
NASA Astrophysics Data System (ADS)
Wang, Xiaolin
Synthesis and processing of novel materials with various advanced approaches have attracted much attention of engineers and scientists for the past thirty years. Many advanced materials display a number of exceptional properties and can be produced with different novel processing techniques. For example, AlN is a promising candidate for electronic, optical and opto-electronic applications due to its high thermal conductivity, high electrical resistivity, high acoustic wave velocity and large band gap. Large bulk AlN crystal can be produced by sublimation of AlN powder. Novel nonostructured multicomponent refractory metal-based ceramics (carbides, borides and nitrides) show a lot of exceptional mechanical, thermal and chemical properties, and can be easily produced by pyrolysis of suitable preceramic precursors mixed with metal particles. The objective of this work is to study sublimation and synthesis of AlN powder, and synthesis of SiC-based metal ceramics. For AlN sublimation crystal growth, we will focus on modeling the processes in the powder source that affect significantly the sublimation growth as a whole. To understand the powder porosity evolution and vapor transport during powder sublimation, the interplay between vapor transport and powder sublimation will be studied. A physics-based computational model will be developed considering powder sublimation and porosity evolution. Based on the proposed model, the effect of a central hole in the powder on the sublimation rate is studied and the result is compared to the case of powder without a hole. The effect of hole size on the sublimation rate will be studied. The effects of initial porosity, particle size and driving force on the sublimation rate are also studied. Moreover, the optimal growth condition for large diameter crystal quality and high growth rate will be determined. For synthesis of SiC-based metal ceramics, we will focus on developing a multi-scale process model to describe the dynamic behavior of filler particle reaction, microstructure evolution, at the microscale as well as transient fluid flow, heat transfer, and species transport at the macroscale. The model comprises of (i) a microscale model and (ii) a macroscale transport model, and aims to provide optimal conditions for the fabrication process of the ceramics. The porous media macroscale model for SiC-based metal-ceramic materials processing will be developed to understand the thermal polymer pyrolysis, chemical reaction of active fillers and transport phenomena in the porous media. The macroscale model will include heat and mass transfer, curing, pyrolysis, chemical reaction and crystallization in a mixture of preceramic polymers and submicron/nano-sized metal particles of uranium, zirconium, niobium, or hafnium. The effects of heating rate, sample size, size and volume ratio of the metal particles on the reaction rate and product uniformity will be studied. The microscale model will be developed for modeling the synthesis of SiC matrix and metal particles. The macroscale model provides thermal boundary conditions to the microscale model. The microscale model applies to repetitive units in the porous structure and describes mass transport, composition changes and motion of metal particles. The unit-cell is the representation unit of the source material, and it consists of several metal particles, SiC matrix and other components produced from the synthesis process. The reactions between different components, the microstructure evolution of the product will be considered. The effects of heating rate and metal particle size on species uniformity and microstructure are investigated.
Yuan, Jia; Hapis, Stefania; Breitzke, Hergen; Xu, Yeping; Fasel, Claudia; Kleebe, Hans-Joachim; Buntkowsky, Gerd; Riedel, Ralf; Ionescu, Emanuel
2014-10-06
Amorphous SiHfBCN ceramics were prepared from a commercial polysilazane (HTT 1800, AZ-EM), which was modified upon reactions with Hf(NEt2)4 and BH3·SMe2, and subsequently cross-linked and pyrolyzed. The prepared materials were investigated with respect to their chemical and phase composition, by means of spectroscopy techniques (Fourier transform infrared (FTIR), Raman, magic-angle spinning nuclear magnetic resonance (MAS NMR)), as well as X-ray diffraction (XRD) and transmission electron microscopy (TEM). Annealing experiments of the SiHfBCN samples in an inert gas atmosphere (Ar, N2) at temperatures in the range of 1300-1700 °C showed the conversion of the amorphous materials into nanostructured UHTC-NCs. Depending on the annealing atmosphere, HfC/HfB2/SiC (annealing in argon) and HfN/Si3N4/SiBCN (annealing in nitrogen) nanocomposites were obtained. The results emphasize that the conversion of the single-phase SiHfBCN into UHTC-NCs is thermodynamically controlled, thus allowing for a knowledge-based preparative path toward nanostructured ultrahigh-temperature stable materials with adjusted compositions.
A Process for Manufacturing Metal-Ceramic Cellular Materials with Designed Mesostructure
NASA Astrophysics Data System (ADS)
Snelling, Dean Andrew, Jr.
The goal of this work is to develop and characterize a manufacturing process that is able to create metal matrix composites with complex cellular geometries. The novel manufacturing method uses two distinct additive manufacturing processes: i) fabrication of patternless molds for cellular metal castings and ii) printing an advanced cellular ceramic for embedding in a metal matrix. However, while the use of AM greatly improves the freedom in the design of MMCs, it is important to identify the constraints imposed by the process and its process relationships. First, the author investigates potential differences in material properties (microstructure, porosity, mechanical strength) of A356 - T6 castings resulting from two different commercially available Binder Jetting media and traditional "no-bake" silica sand. It was determined that they yielded statistically equivalent results in four of the seven tests performed: dendrite arm spacing, porosity, surface roughness, and tensile strength. They differed in sand tensile strength, hardness, and density. Additionally, two critical sources of process constraints on part geometry are examined: (i) depowdering unbound material from intricate casting channels and (ii) metal flow and solidification distances through complex mold geometries. A Taguchi Design of Experiments is used to determine the relationships of important independent variables of each constraint. For depowdering, a minimum cleaning diameter of 3 mm was determined along with an equation relating cleaning distance as a function of channel diameter. Furthermore, for metal flow, choke diameter was found to be significantly significant variable. Finally, the author presents methods to process complex ceramic structure from precursor powders via Binder Jetting AM technology to incorporate into a bonded sand mold and the subsequently casted metal matrix. Through sintering experiments, a sintering temperature of 1375°C was established for the ceramic insert (78% cordierite). Upon printing and sintering the iii ceramic, three point bend tests showed the MMCs had less strength than the matrix material likely due to the relatively high porosity developed in the body. Additionally, it was found that the ceramic metal interface had minimal mechanical interlocking and chemical bonding limiting the strength of the final MMCs.
NASA Astrophysics Data System (ADS)
Mombrú, Dominique; Romero, Mariano; Faccio, Ricardo; Castiglioni, Jorge; Mombrú, Alvaro W.
2017-06-01
In situ preparation of polyaniline-ceramic nanocomposites has recently demonstrated that the electrical properties are highly improved with respect to the typical ex situ preparations. In this report, we present for the first time, to the best of our knowledge, the in situ growth of titanium oxide quantum dots in polyaniline host via water vapor flow diffusion as an easily adaptable route to prepare other ceramic-polymer nanocomposites. The main relevance of this method is the possibility to prepare ceramic quantum dots from alkoxide precursors using water vapor flow into any hydrophobic polymer host and to achieve good homogeneity and size-control. In addition, we perform full characterization by means of high-resolution transmission electron microscopy, X-ray powder diffraction, small angle X-ray scattering, thermogravimetric and calorimetric analyses, confocal Raman microscopy and impedance spectroscopy analyses. The presence of the polymer host and interparticle Coulomb repulsive interactions was evaluated as an influence for the formation of 3-8 nm equally-sized quantum dots independently of the concentration. The polyaniline polaron population showed an increase for the quantum dots diluted regime and the suppression at the concentrated regime, ascribed to the formation of chemical bonds at the interface, which was confirmed by theoretical simulations. In agreement with the previous observation, the in situ growth of ceramic quantum dots in polyaniline host via water vapor flow diffusion could be very useful as a novel approach to prepare electrode materials for energy conversion and storage applications.
Effect of synthesis methods on the Ca{sub 3}Co{sub 4}O{sub 9} thermoelectric ceramic performances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sotelo, A.; Rasekh, Sh.; Torres, M.A.
2015-01-15
Three different synthesis methods producing nanometric grain sizes, coprecipitation with ammonium carbonate, oxalic acid, and by attrition milling have been studied to produce Ca{sub 3}Co{sub 4}O{sub 9} ceramics and compared with the classical solid state route. These three processes have produced high reactive precursors and all the organic material and CaCO{sub 3}·have been decomposed in a single thermal treatment. Coprecipitation leads to pure Ca{sub 3}Co{sub 4}O{sub 9} phase, while attrition milling and classical solid state produce small amounts of Ca{sub 3}Co{sub 2}O{sub 6} secondary phase. Power factor values are similar for all three samples, being slightly lower for the onesmore » produced by attrition milling. These values are much higher than the obtained in samples prepared by the classical solid state method, used as reference. The maximum power factor values determined at 800 °C (∼0.43 mW/K{sup 2} m) are slightly higher than the best reported values obtained in textured ones which also show much higher density values. - Graphical abstract: Impressive raise of PF in Ca{sub 3}Co{sub 4}O{sub 9} thermoelectric materials obtained from nanometric grains. - Highlights: • Ca{sub 3}Co{sub 4}O{sub 9} has been produced by four different methods. • Precursors particle sizes influences on the final performances. • Coprecipitation methods produce single Ca{sub 3}Co{sub 4}O{sub 9} phase. • Power factor reaches values comparable to high density textured materials.« less
Silicon Nitride Ceramic Fibers from Preceramic Polymers.
1987-06-01
the preceramic fibers into high strength Si3 N and silicon carbide nitride (SiCN) fibers. In the past year, we have learned to prepare polysilazanes...INTHELOY, Given the Empirical Formula for a Material, It Should be Possible to Prepare a Chemical Analog CERAMC CHMIAL MONOMERIC UNIT MONOMERIC UNIT SI3 N4...e a d e nf u ible B y. POLYSILAZANE PRECURSORS TO Si3 Nj IN PRACTICE: It Is Difficult to Synthesize Even Simple, High Molecular Weight Preceramic
1993-02-01
CBu)4 j 80% solution In 1-butanol, titanium S mable PZT. and NuOW=a isopropoxide (Ti(OPf1 )4], niobium ethoxide (Nb(OC 2 H5) 5 i, ýand cadrrtni qa...fibers(5). We have chosen the sol-gel route to produce PZT fiber of less that 30Mm diameter by spin-drawing PZT solutions at proper viscosity. The first...dielectric constant and electromechanical coupling by controlling grain growth and grain boundary conditions. PZT precursor solutions in the form of viscous
Fabrication of Tb3Al5O12 transparent ceramics using co-precipitated nanopowders
NASA Astrophysics Data System (ADS)
Dai, Jiawei; Pan, Yubai; Wang, Wei; Luo, Wei; Xie, Tengfei; Kou, Huamin; Li, Jiang
2017-11-01
Terbium aluminum garnet (TAG) precursor was synthesized by a co-precipitation method from a mixed solution of terbium and aluminum nitrates using ammonium hydrogen carbonate (AHC) as the precipitant. The powders calcined at different temperatures were investigated by XRD, FTIR and FESEM in order to choose the optimal calcination temperature. Fine and low-agglomerated TAG powders with average particle size of 88 nm were obtained by calcining the precursor at 1100 °C for 4 h. Using this powder as starting material, TAG transparent ceramics were fabricated by vacuum sintering combined with hot isostatic pressing (HIP) sintering. For the sample pre-sintered at 1700 °C for 20 h with HIP post-treated at 1700 °C for 3 h, the average grain size is about 3.9 μm and the in-line transmittance is beyond 55% in the region of 500-1600 nm, reaching a maximum transmittance of 64.2% at the wavelength of 1450 nm. The Verdet constant at 633 nm is measured to be -178.9 rad T-1 m-1, which is 33% larger than that of the commercial TGG single crystal (-134 rad T-1 m-1).
Preparation and magnetic properties of the Sr-hexaferrite with foam structure
NASA Astrophysics Data System (ADS)
Guerrero, A. L.; Espericueta, D. L.; Palomares-Sánchez, S. A.; Elizalde-Galindo, J. T.; Watts, B. E.; Mirabal-García, M.
2016-12-01
This work reports an optimal way to fabricate strontium hexaferrite with porous-reticulated structure using a variation of the replication technique and taking two different precursors, one obtained from the coprecipitation and the other from the ceramic method. Changes made to the original replication technique include the addition of Arabic gum as binder, and the addition of ethylene glycol to form the ceramic sludge. In addition, some parameters such as the relation between solid material and liquid phase, the quantity of binder and the heat treatment were varied to obtain high quality magnetic foams. Two polymeric sponges were used as patterns, one with average pore size of 300 μm diameter and the other with 1100 μm. The characterization of the samples included the analysis of the structure and phase purity, the magnetic properties, the remanence properties, magnetic interactions and the microstructural characteristics. Results indicate that both, the powder precursors and the polymeric pattern play an important role in the configuration of the foam structure and this configuration has an important influence on the dipolar interactions which tend to demagnetize the samples. In addition, it was analyzed the behavior between the minimum value of the δM curves and the hysteresis properties.
Nickel stabilization efficiency of aluminate and ferrite spinels and their leaching behavior.
Shih, Kaimin; White, Tim; Leckie, James O
2006-09-01
Stabilization efficiencies of spinel-based construction ceramics incorporating simulated nickel-laden waste sludge were evaluated and the leaching behavior of products investigated. To simulate the process of immobilization, nickel oxide was mixed alternatively with gamma-alumina, kaolinite, and hematite. These tailoring precursors are commonly used to prepare construction ceramics in the building industry. After sintering from 600 to 1480 degrees C at 3 h, the nickel aluminate spinel (NiAl204) and the nickel ferrite spinel (NiFe204) crystallized with the ferrite spinel formation commencing about 200-300 degrees C lower than for the aluminate spinel. All the precursors showed high nickel incorporation efficiencies when sintered at temperatures greater than 1250 degrees C. Prolonged leach tests (up to 26 days) of product phases were carried out using a pH 2.9 acetic acid solution, and the spinel products were invariably superior to nickel oxide for immobilization over longer leaching periods. The leaching behavior of NiAl2O4 was consistent with congruent dissolution without significant reprecipitation, but for NiFe2O4, ferric hydroxide precipitation was evident. The major leaching reaction of sintered kaolinite-based products was the dissolution of cristobalite rather than NiAl2O4. This study demonstrated the feasibility of transforming nickel-laden sludge into spinel phases with the use of readily available and inexpensive ceramic raw materials, and the successful reduction of metal mobility under acidic environments.
NASA Astrophysics Data System (ADS)
Perdigon-Melon, José Antonio; Auroux, Aline; Guimon, Claude; Bonnetot, Bernard
2004-02-01
Thin powders and foams of boron nitride have been prepared from molecular precursors for use as noble metal supports in the catalytic conversion of methane. Different precursors originating from borazines have been tested. The best results were obtained using a precursor derived from trichloroborazine (TCB) which, after reacting with ammonia at room temperature and then thermolyzing up to 1800°C, led to BN powders with a specific area of more than 300 m 2 g -1 and a micrometric spherical texture. Comparable results were obtained using polyborazylene under similar conditions. Aminoborazine-derived precursors did not yield such high specific area ceramics but the BN microstructure resembled a foam with a crystallized skin and amorphous internal part. These differences were related to the chemical mechanism of the conversion of the precursor into BN. Polyhaloborazines and polyborazines yielded BN through gas-solid reactions whereas aminoborazine polymers could be kept waxy up to high temperatures, which favored the glassy foam. Catalysts composed of BN support and platinum have been prepared using two routes: from a mixture of precursor or by impregnation of a BN powder leading to very different catalysts.
Kong, Jie; Kong, Minmin; Zhang, Xiaofei; Chen, Lixin; An, Linan
2013-10-23
In this contribution, we report a novel strategy for the synthesis of nanocrystal-containing magnetoceramics with an ultralow hysteresis loss by the pyrolysis of commercial polysilazane cross-linked with a functional metallopolymer possessing hyperbranched topology. The usage of hyperbranched polyferrocenylcarbosilane offers either enhanced ceramic yield or magnetic functionality of pyrolyzed ceramics. The ceramic yield was enhanced accompanied by a decreased evolution of hydrocarbons and NH3 because of the cross-linking of precursors and the hyperbranched cross-linker. The nucleation of Fe5Si3 from the reaction of iron atoms with Si-C-N amorphous phase promoted the formation of α-Si3N4 and SiC crystals. After annealing at 1300 °C, stable Fe3Si crystals were generated from the transformation of the metastable Fe5Si3 phase. The nanocrystal-containing ceramics showed good ferromagnetism with an ultralow (close to 0) hysteresis loss. This method is convenient for the generation of tunable functional ceramics using a commercial polymeric precursor cross-linked by a metallopolymer with a designed topology.
NASA Astrophysics Data System (ADS)
Tian, Yongshang; Gong, Yansheng; Meng, Dawei; Li, Yuanjian; Kuang, Boya
2015-08-01
Lead-free ceramics 0.50Ba0.9Ca0.1TiO3-0.50BaTi1- x Zr x O3 (BCT-BZT) were prepared via sintering BCT and BZT nanoparticles, which were synthesized using a modified Pechini polymeric precursor method, at a low temperature of 1260°C. The relative densities of the ceramics prepared with different zirconium contents ( x) were all above 95.3%, reaching a maximum of 97% when x = 0.08. X-ray diffraction results confirmed the onset of phase transformation from orthorhombic to rhombohedral symmetry with increasing zirconium contents, and the polymorphic phase transition was observed at x = 0.10. The dielectric dispersion, diffuse phase transition (DPT), and relaxor-like ferroelectric characteristics as a function of zirconium content were thoroughly studied. Optimum physical properties, remnant polarization ( P r) = 16.4 μC/cm2, piezoelectric constant ( d 33) = ~240 pC/N, and electromechanical coupling factor ( k p) = 0.22, were obtained at x = 0.10. The findings of the current DPT behavior study of BCT-BZT ceramics are believed to be insightful to the development of ferroelectric materials.
Nano powders, components and coatings by plasma technique
McKechnie, Timothy N [Brownsboro, AL; Antony, Leo V. M. [Huntsville, AL; O'Dell, Scott [Arab, AL; Power, Chris [Guntersville, AL; Tabor, Terry [Huntsville, AL
2009-11-10
Ultra fine and nanometer powders and a method of producing same are provided, preferably refractory metal and ceramic nanopowders. When certain precursors are injected into the plasma flame in a reactor chamber, the materials are heated, melted and vaporized and the chemical reaction is induced in the vapor phase. The vapor phase is quenched rapidly to solid phase to yield the ultra pure, ultra fine and nano product. With this technique, powders have been made 20 nanometers in size in a system capable of a bulk production rate of more than 10 lbs/hr. The process is particularly applicable to tungsten, molybdenum, rhenium, tungsten carbide, molybdenum carbide and other related materials.
Method for rapidly producing microporous and mesoporous materials
Coronado, P.R.; Poco, J.F.; Hrubesh, L.W.; Hopper, R.W.
1997-11-11
An improved, rapid process is provided for making microporous and mesoporous materials, including aerogels and pre-ceramics. A gel or gel precursor is confined in a sealed vessel to prevent structural expansion of the gel during the heating process. This confinement allows the gelation and drying processes to be greatly accelerated, and significantly reduces the time required to produce a dried aerogel compared to conventional methods. Drying may be performed either by subcritical drying with a pressurized fluid to expel the liquid from the gel pores or by supercritical drying. The rates of heating and decompression are significantly higher than for conventional methods. 3 figs.
Nano powders, components and coatings by plasma technique
NASA Technical Reports Server (NTRS)
McKechnie, Timothy N. (Inventor); Antony, Leo V. M. (Inventor); O'Dell, Scott (Inventor); Power, Chris (Inventor); Tabor, Terry (Inventor)
2009-01-01
Ultra fine and nanometer powders and a method of producing same are provided, preferably refractory metal and ceramic nanopowders. When certain precursors are injected into the plasma flame in a reactor chamber, the materials are heated, melted and vaporized and the chemical reaction is induced in the vapor phase. The vapor phase is quenched rapidly to solid phase to yield the ultra pure, ultra fine and nano product. With this technique, powders have been made 20 nanometers in size in a system capable of a bulk production rate of more than 10 lbs/hr. The process is particularly applicable to tungsten, molybdenum, rhenium, tungsten carbide, molybdenum carbide and other related materials.
Processing and synthesis of multi-metallic nano oxide ceramics via liquid-feed flame spray pyrolysis
NASA Astrophysics Data System (ADS)
Azurdia, Jose Antonio
The liquid-feed flame spray pyrolysis (LF-FSP) process aerosolizes metal-carboxylate precursors dissolved in alcohol with oxygen and combusts them at >1500°C. The products are quenched rapidly (˜10s msec) to < 400°C. By selecting the appropriate precursor mixtures, the compositions of the resulting oxide nanopowders can be tailored easily, which lends itself to combinatorial studies of systems facilitating material property optimization. The resulting nanopowders typically consist of single crystal particles with average particle sizes (APS) < 35 nm, specific surface areas (SSA) of 20-60 m2/g and spherical morphology. LF-FSP provides access to novel single phase nanopowders, known phases at compositions outside their published phase diagrams, intimate mixing at nanometer length scales in multi metallic oxide nanopowders, and control of stoichiometry to ppm levels. The materials produced may exhibit unusual properties including structural, catalytic, and photonic ones and lower sintering temperatures. Prior studies used LF-FSP to produce MgAl2O4 spinel for applications in transparent armor and IR radomes. In these studies, a stable spinel structure with a (MgO)0.1(Al2O3)0.9 composition well outside the known phase field was observed. The work reported here extends this observation to two other spinel systems: Al2O3-NiO, Al2O3-CoOx; followed by three series of transition metal binary oxides, NiO-CoO, NiO-MoO3, NiO-CuO. The impetus to study spinels derives both from the fact that a number of them are known transparent ceramics, but also others offer high SSAs coupled with unusual phases that suggest potentially novel catalytic materials. Because LF-FSP provides access to any composition, comprehensive studies of the entire tie-lines were conducted rather than just compositions of value for catalytic applications. Initial efforts established baseline properties for the nano aluminate spinels, then three binary transition metal oxide sets (Ni-Co, Ni-Mo and Ni-Cu) known for their catalytic properties. These materials then serve as baseline studies for ternary systems, such as Al:(Ni-Co)O, or Al(Ni-Cu)O likely to offer superior catalytic properties because of the relatively high SSA Al2O3. The final chapter returns to photonic materials, in the MgO-Y2O 3 system targeting transparent ceramics through select compositions along the tie-line. The work presented here builds on the MgAl2O 4 spinel material and continues to develop the processing techniques required to achieve transparent nano-grained ceramic materials. Thus the overall goal of this dissertation was to systematically produce novel nano-oxide materials and characterized their material properties. The first chapters focus on solid solutions at low Ni or Co amounts that form phase pure spinels outside the expected composition range, at 21-22 mol % NiO and CoO. Additionally, (NiO)0.22(Al2O3) 0.78 was found to be very stable, as it did not convert to alpha-Al 2O3 plus cubic-NiO on heating to 1200°C for 10 h. The last chapter is a preliminary step toward identifying optimal Y 2O3-MgO powders that can be transparent ceramics. Ball milling led to much higher adsorption of surface species. Preliminary sintering studies of the this system showed that vacuum has the largest effect on lowering the temperature of maximum shrinkage rate by ≤ 80°C.
NASA Astrophysics Data System (ADS)
Wellons, Matthew S.
The design, synthesis, and characterization of magnetic alloy nanoparticles, supported formic acid oxidation catalysts, and superhard intermetallic composites are presented. Ferromagnetic equatomic alloy nanoparticles of FePt, FePd, and CoPt were synthesized utilizing single-source heteronuclear organometallic precursors supported on an inert water-soluble matrix. Direct conversion of the precursor-support composite to supported ferromagnetic nanoparticles occurs under elevated temperatures and reducing conditions with metal-ion reduction and minimal nanoparticle coalescence. Nanoparticles were easily extracted from the support by addition of water and characterized in structure and magnetic properties. Palladium and platinum based nanoparticles were synthesized with microwave-based and chemical metal-ion reduction strategies, respectively, and tested for catalytic performance in a direct formic acid fuel cell (DFAFC). A study of palladium carbide nanocomposites with various carbonaceous supports was conducted and demonstrated strong activity comparable to commercially available palladium black, but poor catalytic longevity. Platinum-lead alloy nanocomposites synthesized with chemical reduction and supported on Vulcan carbon demonstrated strong activity, excellent catalytic longevity, and were subsequently incorporated into a prototype DFAFC. A new method for the synthesis of superhard ceramics on polymer substrates called Confined Plasma Chemical Deposition (CPCD) was developed. The CPCD method utilizes a tuned Free Electron Laser to selectively decompose the single-source precursor, Re(CO)4(B3H8), in a plasma-like state resulting in the superhard intermetallic ReB2 deposited on polymer substrates. Extension of this method to the synthesis of other hard of superhard ceramics; WB4, RuB2, and B4C was demonstrated. These three areas of research show new synthetic methods and novel materials of technological importance, resulting in a substantial advance in their respective fields.
Characterization of the Sol-Gel Transition for Zirconia-Toughened Alumina Precursors
NASA Technical Reports Server (NTRS)
Moeti, I.; Karikari, E.; Chen, J.
1998-01-01
High purity ZTA ceramic powders with and without yttria were produced using metal alkoxide precursors. ZTA ceramic powders with varying volume percents of zirconia were prepared (7, 15, and 22%). Aluminum tri-sec butoxide, zirconium propoxide, and yttrium isopropoxide were the reagents used. Synthesis conditions were varied to control the hydrolysis and the aging conditions for the sol to gel transition. FTIR analysis and theological characterization were used to follow the structural evolution during the sol to gel transition. The greater extent of hydrolysis and the build-up of structure measured from viscoelastic properties were consistent. Heat treatment was conducted to produce submicron grain fully crystalline ZTA ceramic powders. In all experimental cases a-alumina and tetragonal zirconia phases were confirmed even in the absence of yttria.
Carbide-derived carbons - From porous networks to nanotubes and graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Presser, V.; Heon, M.; Gogotsi, Y.
2011-02-09
Carbide-derived carbons (CDCs) are a large family of carbon materials derived from carbide precursors that are transformed into pure carbon via physical (e.g., thermal decomposition) or chemical (e.g., halogenation) processes. Structurally, CDC ranges from amorphous carbon to graphite, carbon nanotubes or graphene. For halogenated carbides, a high level of control over the resulting amorphous porous carbon structure is possible by changing the synthesis conditions and carbide precursor. The large number of resulting carbon structures and their tunability enables a wide range of applications, from tribological coatings for ceramics, or selective sorbents, to gas and electrical energy storage. In particular, themore » application of CDC in supercapacitors has recently attracted much attention. This review paper summarizes key aspects of CDC synthesis, properties, and applications. It is shown that the CDC structure and properties are sensitive to changes of the synthesis parameters. Understanding of processing–structure–properties relationships facilitates tuning of the carbon material to the requirements of a certain application.« less
Preparation of Mesoporous Ceramics from Polymer Nanotubes
NASA Astrophysics Data System (ADS)
Chen, Dian; Park, Soojin; Chen, Jiun-Tai; Redston, Emily; Russell, Thomas
2009-03-01
Poly(styrene-b-4-vinylpyridine) (PS-b-P4VP) nanotubes were prepared by placing polymer solution into the cylindrical nanopores of an anodic aluminum oxide (AAO) membrane. The PS-b-P4VP nanotubes within the AAO membranes were exposed to tetrahydrofuran vapor to produce uniform spherical micelles along the tube. The tubes were removed from the membranes, then suspended in ethylene glycol, a preferential solvent for P4VP. At 95^ oC, near the glass transition temperature (Tg) of PS, nanotubes with uniform nanopores were obtained by a reconstruction of the nanotubes. As the temperature was increased, mesoporous polymer structures were obtained. Tetraethyl orthosilicate or titanium tetraethoxide, ceramic precursors, were introduced into the 4VP microdomains. After exposure to an oxygen plasma or high temperature, the copolymer was removed and the precursor converted to a mesoporous ceramic. This process offers a simple route for the fabrication of tunable mesoporous ceramic or metallic structures by changing molecular weight of copolymers.
A new classification system for all-ceramic and ceramic-like restorative materials.
Gracis, Stefano; Thompson, Van P; Ferencz, Jonathan L; Silva, Nelson R F A; Bonfante, Estevam A
2015-01-01
Classification systems for all-ceramic materials are useful for communication and educational purposes and warrant continuous revisions and updates to incorporate new materials. This article proposes a classification system for ceramic and ceramic-like restorative materials in an attempt to systematize and include a new class of materials. This new classification system categorizes ceramic restorative materials into three families: (1) glass-matrix ceramics, (2) polycrystalline ceramics, and (3) resin-matrix ceramics. Subfamilies are described in each group along with their composition, allowing for newly developed materials to be placed into the already existing main families. The criteria used to differentiate ceramic materials are based on the phase or phases present in their chemical composition. Thus, an all-ceramic material is classified according to whether a glass-matrix phase is present (glass-matrix ceramics) or absent (polycrystalline ceramics) or whether the material contains an organic matrix highly filled with ceramic particles (resin-matrix ceramics). Also presented are the manufacturers' clinical indications for the different materials and an overview of the different fabrication methods and whether they are used as framework materials or monolithic solutions. Current developments in ceramic materials not yet available to the dental market are discussed.
Acoustic levitation for high temperature containerless processing in space
NASA Technical Reports Server (NTRS)
Rey, C. A.; Sisler, R.; Merkley, D. R.; Danley, T. J.
1990-01-01
New facilities for high-temperature containerless processing in space are described, including the acoustic levitation furnace (ALF), the high-temperature acoustic levitator (HAL), and the high-pressure acoustic levitator (HPAL). In the current ALF development, the maximum temperature capabilities of the levitation furnaces are 1750 C, and in the HAL development with a cold wall furnace they will exceed 2000-2500 C. The HPAL demonstrated feasibility of precursor space flight experiments on the ground in a 1 g pressurized-gas environment. Testing of lower density materials up to 1300 C has also been accomplished. It is suggested that advances in acoustic levitation techniques will result in the production of new materials such as ceramics, alloys, and optical and electronic materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mombrú, Dominique; Romero, Mariano, E-mail: mromero@fq.edu.uy; Faccio, Ricardo, E-mail: rfaccio@fq.edu.uy
In situ preparation of polyaniline-ceramic nanocomposites has recently demonstrated that the electrical properties are highly improved with respect to the typical ex situ preparations. In this report, we present for the first time, to the best of our knowledge, the in situ growth of titanium oxide quantum dots in polyaniline host via water vapor flow diffusion as an easily adaptable route to prepare other ceramic-polymer nanocomposites. The main relevance of this method is the possibility to prepare ceramic quantum dots from alkoxide precursors using water vapor flow into any hydrophobic polymer host and to achieve good homogeneity and size-control. Inmore » addition, we perform full characterization by means of high-resolution transmission electron microscopy, X-ray powder diffraction, small angle X-ray scattering, thermogravimetric and calorimetric analyses, confocal Raman microscopy and impedance spectroscopy analyses. The presence of the polymer host and interparticle Coulomb repulsive interactions was evaluated as an influence for the formation of ~3–8 nm equally-sized quantum dots independently of the concentration. The polyaniline polaron population showed an increase for the quantum dots diluted regime and the suppression at the concentrated regime, ascribed to the formation of chemical bonds at the interface, which was confirmed by theoretical simulations. In agreement with the previous observation, the in situ growth of ceramic quantum dots in polyaniline host via water vapor flow diffusion could be very useful as a novel approach to prepare electrode materials for energy conversion and storage applications. - Highlights: • In situ growth of titanium oxide quantum dots in polyaniline host via water vapor flow diffusion. • Polyaniline charge carriers at the interface and charge interactions between quantum dots. • Easy extrapolation to sol-gel derived quantum dots into polymer host as potential electrode materials.« less
Fraczek-Szczypta, A; Rabiej, S; Szparaga, G; Pabjanczyk-Wlazlo, E; Krol, P; Brzezinska, M; Blazewicz, S; Bogun, M
2015-06-01
The paper presents the results of the manufacture of carbon fibers (CF) from polyacrylonitrile fiber precursor containing bioactive ceramic nanoparticles. In order to modify the precursor fibers two types of bio-glasses and wollastonite in the form of nanoparticles were used. The processing variables of the thermal conversion of polyacrylonitrile (PAN) precursor fibers into carbon fibers were determined using the FTIR method. The carbonization process of oxidized PAN fibers was carried out up to 1000°C. The carbon fibers were characterized by a low ordered crystalline structure. The bioactivity tests of carbon fibers modified with a ceramic nanocomponent carried out in the artificial serum (SBF) revealed the apatite precipitation on the fibers' surfaces. Copyright © 2015 Elsevier B.V. All rights reserved.
Development of new inorganic luminescent materials by organic-metal complex route
NASA Astrophysics Data System (ADS)
Manavbasi, Alp
The development of novel inorganic luminescent materials has provided important improvements in lighting, display, and other technologically-important optical devices. The optical characteristics of inorganic luminescent materials (phosphors) depend on their physicochemical characteristics, including the atomic structure, homogeneity in composition, microstructure, defects, and interfaces which are all controlled by thermodynamics and kinetics of synthesis from various raw materials. A large variety of technologically-important phosphors have been produced using conventional high-temperature solid-state methods. For the synthesis of functional ceramic materials with ionic dopants in a host lattice, (such as phosphors), synthesis using organic-metal complex methods and other wet chemistry routes have been found to be excellent techniques. These methods have inherent advantages such as good control of stoichiometry by molecular level of mixing, product homogeneity, simpler synthesis procedures, and use of relatively-low calcination temperatures. Supporting evidence for this claim is accomplished by a comparison of photoluminescence characteristics of a commercially available green phosphor, Zn2SiO4:Mn, with the same material system synthesized by organic-metal synthesis route. In this study, new inorganic luminescent materials were produced using rare-earth elements (Eu3+, Ce3+, Tb3+ ) and transition metals (Cu+, Pb2+) as dopants within the crystalline host lattices; SrZnO2, Ba2YAlO 5, M3Al2O6 (M=Ca,Sr,Ba). These novel phosphors were prepared using the organic-metal complex route. Polyvinyl alcohol, sucrose, and adipic acid were used as the organic component to prepare the ceramic precursors. Materials characterization of the synthesized precursor powders and calcined phosphor samples was performed usingX-Ray Diffraction, Scanning Electron Microscopy, Photon-Correlation spectroscopy, and Fourier Transform Infrared Spectroscopy techniques. In addition to the Fluorescence Spectrometer, and Diffuse Reflectance Spectroscopy, the Time Resolved Spectroscopy technique was also used to study the photoluminescence characteristics of the synthesized phosphors. Using these characterization techniques, and through careful comparisons with related studies in the literature, the mechanisms of luminescence for each of the new phosphor materials synthesized here was discussed in a detail.
NASA Astrophysics Data System (ADS)
Li, Pengyang; Wang, Shubin; Liu, Jianggao; Feng, Mengjie; Yang, Xinwang
2015-11-01
Borosilicate glass-ceramics precursors with varying compositional ratios in the CaO-SiO2-B2O3 (CBS) system were synthesized by sol-gel method. The precursors were calcined at 1200 °C for 2 h to form glass powders. The glass-ceramics were prepared by overlaying glass slurries on the substrates before sintering at different temperatures. The as-prepared glasses and glass-ceramics were characterized by differential scanning calorimetry and X-ray diffraction. The crystallization activation energies (Ec) were calculated using the Kissinger method from DSC results. The morphology and crystallization behavior of the glass-ceramics were monitored by scanning electron microscopy. Both glass transition and crystallization temperatures decreased, however, the metastable zone increased. The Ec values of CBS glasses and glass-ceramics were 254.1, 173.2 and 164.4 kJ/mol with increasing B2O3 content, whereas that of the calcined G3 glass was 104.9 kJ/mol. Finally, the coatings were prepared at a low temperature (700 °C). The crystals that grew on the surface of multilayer coatings demonstrated heterogeneous surface nucleation and crystallization after heat-treatment from 700 °C to 850 °C for 4 h.
Nearly full-dense and fine-grained AZO:Y ceramics sintered from the corresponding nanoparticles
2012-01-01
Aluminum-doped zinc oxide ceramics with yttria doping (AZO:Y) ranging from 0 to 0.2 wt.% were fabricated by pressureless sintering yttria-modified nanoparticles in air at 1,300°C. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction analysis, a physical property measurement system, and a densimeter were employed to characterize the precursor nanoparticles and the sintered AZO ceramics. It was shown that a small amount of yttria doping can remarkably retard the growth of the as-received precursor nanoparticles, further improve the microstructure, refine the grain size, and enhance the density for the sintered ceramic. Increasing the yttria doping to 0.2 wt.%, the AZO:Y nanoparticles synthetized by a coprecipitation process have a nearly sphere-shaped morphology and a mean particle diameter of 15.1 nm. Using the same amount of yttria, a fully dense AZO ceramic (99.98% of theoretical density) with a grain size of 2.2 μm and a bulk resistivity of 4.6 × 10−3 Ω·cm can be achieved. This kind of AZO:Y ceramic has a potential to be used as a high-quality sputtering target to deposit ZnO-based transparent conductive films with better optical and electrical properties. PMID:22929049
Ceramic Inclusions in Powder Metallurgy Disk Alloys: Characterization and Modeling
NASA Technical Reports Server (NTRS)
Bonacuse, Peter J.
2001-01-01
Powder metallurgy alloys are increasingly used in gas turbine engines, especially in turbine disk applications. Although powder metallurgy materials have many advantages over conventionally cast and wrought alloys (higher strength, higher temperature capability, etc.), they suffer from the rare occurrence of ceramic defects (inclusions) that are inherent to the powder atomization process. These inclusions can have a potentially large detrimental effect on the durability of individual components. An inclusion in a high stress location can act as a site for premature crack initiation and thereby considerably reduce the fatigue life. Because these inclusions are exceedingly rare, they typically do not reveal themselves in the process of characterizing the material for a particular application (the cumulative volume of the test bars in a fatigue life characterization is typically on the order of a single actual component). Ceramic inclusions have, however, been found to be the root cause of a number of catastrophic engine failures. To investigate the effect of these inclusions in detail, we have undertaken a study where known populations of ceramic particles, whose composition and morphology are designed to mimic the "natural" inclusions, are added to the precursor powder. Surface-connected inclusions have been found to have a particularly large detrimental effect on fatigue life; therefore, the quantity of ceramic "seeds" added is calculated to ensure that a minimum number will intersect the surface of the fatigue test bars. Because the ceramic inclusions are irregularly shaped and have a tendency to break up in the process of extrusion and forging, a method of calculating the probability of occurrence and expected intercepted surface area was needed. We have developed a Monte Carlo simulation to determine the distributions of these parameters and have verified the simulated results with observations of ceramic inclusions found in macroscopic slices from extrusions and forgings. Fatigue specimens have been machined from Udimet 720 (a powder metallurgy superalloy) forgings, to determine the effects of the inclusions on fatigue life. The ultimate goal of this study will be to use probabilistic methods to determine the reliability detriment that can be attributed to these ceramic inclusions. This work has been supported by the Ultra Safe and Ultra- Efficient Engine Technologies programs.
NASA Astrophysics Data System (ADS)
Hallopeau, Leopold; Bregiroux, Damien; Rousse, Gwenaëlle; Portehault, David; Stevens, Philippe; Toussaint, Gwenaëlle; Laberty-Robert, Christel
2018-02-01
Li1.3Al0.3Ti1.7(PO4)3 (LATP) materials are made of a three-dimensional framework of TiO6 octahedra and PO4 tetrahedra, which provides several positions for Li+ ions. The resulting high ionic conductivity is promising to yield electrolytes for all-solid-state Li-ion batteries. In order to elaborate dense ceramics, conventional sintering methods often use high temperature (≥1000 °C) with long dwelling times (several hours) to achieve high relative density (∼90%). In this work, an innovative synthesis and processing approach is proposed. A fast and easy processing technique called microwave-assisted reactive sintering is used to both synthesize and sinter LATP ceramics with suitable properties in one single step. Pure and crystalline LATP ceramics can be achieved in only 10 min at 890 °C starting from amorphous, compacted LATP's precursors powders. Despite a relative density of 88%, the ionic conductivity measured at ambient temperature (3.15 × 10-4 S cm-1) is among the best reported so far. The study of the activation energy for Li+ conduction confirms the high quality of the ceramic (purity and crystallinity) achieved by using this new approach, thus emphasizing its interest for making ion-conducting ceramics in a simple and fast way.
de Jongh, Petra E; Eggenhuisen, Tamara M
2013-12-10
The rapidly expanding toolbox for design and preparation is a major driving force for the advances in nanomaterials science and technology. Melt infiltration originates from the field of ceramic nanomaterials and is based on the infiltration of porous matrices with the melt of an active phase or precursor. In recent years, it has become a technique for the preparation of advanced materials: nanocomposites, pore-confined nanoparticles, ordered mesoporous and nanostructured materials. Although certain restrictions apply, mostly related to the melting behavior of the infiltrate and its interaction with the matrix, this review illustrates that it is applicable to a wide range of materials, including metals, polymers, ceramics, and metal hydrides and oxides. Melt infiltration provides an alternative to classical gas-phase and solution-based preparation methods, facilitating in several cases extended control over the nanostructure of the materials. This review starts with a concise discussion on the physical and chemical principles for melt infiltration, and the practical aspects. In the second part of this contribution, specific examples are discussed of nanostructured functional materials with applications in energy storage and conversion, catalysis, and as optical and structural materials and emerging materials with interesting new physical and chemical properties. Melt infiltration is a useful preparation route for material scientists from different fields, and we hope this review may inspire the search and discovery of novel nanostructured materials. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
1987-04-30
1.5 ZrO2 * 0.3 As203, 0.024 Cr203, melted under various conditions. Parallel measurements of X-ray diffraction, optical and EPR spectra reveal the...optical and EPR spectra reveal the different formation of gahnite from precursor glass or petalite-like phase. Introduction In a number of recent...conditions on optical and EPR spectra of Cr(III). Further on the parallel changes of spectra and x-ray diffraction patterns are indica- ted. The gahnite
A novel low cost non-aqueous chemical route for giant dielectric constant CaCu3Ti4O12 ceramic
NASA Astrophysics Data System (ADS)
Singh, Laxman; Kim, Ill Won; Woo, Won Seok; Sin, Byung Cheol; Lee, Hyung-il; Lee, Youngil
2015-05-01
This paper reports a simple, fast, low cost and environment-friendly route for preparing a highly crystalline giant dielectric material, CaCu3Ti4O12 (CCTO), through combustion of metal nitrates in non-aqueous precursor solution using inexpensive solid TiO2 powder. The route to producing pure phase CCTO ceramic using stable solid TiO2 is better than other several sol-gel routes reported earlier in which expensive alkoxides, oxynitrates, or chlorides of titanium are used as the titanium sources. X-ray diffraction revealed the formation of cubic perovskite CCTO. Scanning electron microscopy image showed the average grain sizes in the range of 1.5-5 μm. At 10 kHz and room temperature, the best CCTO ceramic exhibited a high dielectric constant, ε‧ ∼43325.24, with low dielectric loss, tan δ ∼0.088. The dielectric relaxation behavior was rationalized from impedance and modulus studies and the presence of a non-Debye type of relaxation was confirmed.
Optical properties of rare earth doped transparent oxyfluoride glass ceramics
NASA Astrophysics Data System (ADS)
Mendez-Ramos, J.; Lavin, V.; Martin, I. R.; Rodriguez-Mendoza, U. R.; Rodriguez, V. D.; Lozano-Gorrin, A. D.; Nunez, P.
2003-01-01
Optical properties of Eu3+ ions in oxyfluoride glasses and glass ceramics doped with low concentration (0.1 mol%) have been analysed and compared with previous results for high concentrated samples (2.5 mol%). The Eu3+ ions in the low dopant concentration glass ceramics are diluted into like crystalline environments with higher symmetry and lower coupled phonons energy than in the precursor glasses. Fluorescence line narrowing measurements indicate the presence of two main fluoride site distributions for the Eu3+ ions in these low concentrated glass ceramics.
Attrition resistant fluidizable reforming catalyst
Parent, Yves O [Golden, CO; Magrini, Kim [Golden, CO; Landin, Steven M [Conifer, CO; Ritland, Marcus A [Palm Beach Shores, FL
2011-03-29
A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and gasification reactions on feedstock in a fluidized bed reactor, comprising: fabricating the ceramic support particle, coating a ceramic support by adding an aqueous solution of a precursor salt of a metal selected from the group consisting of Ni, Pt, Pd, Ru, Rh, Cr, Co, Mn, Mg, K, La and Fe and mixtures thereof to the ceramic support and calcining the coated ceramic in air to convert the metal salts to metal oxides.
NASA Astrophysics Data System (ADS)
Krumdieck, Susan Pran
Several years ago, a method for depositing ceramic coatings called the Pulsed-MOCVD system was developed by the Raj group at Cornell University in association with Dr. Harvey Berger and Sono-Tek Corporation. The process was used to produce epitaxial thin films of TiO2 on sapphire substrates under conditions of low pressure, relatively high temperature, and very low growth rate. The system came to CU-Boulder when Professor Raj moved here in 1997. It is quite a simple technique and has several advantages over typical CVD systems. The purpose of this dissertation is two-fold; (1) understand the chemical processes, thermodynamics, and kinetics of the Pulsed-MOCVD technique, and (2) determine the possible applications by studying the film structure and morphology over the entire range of deposition conditions. Polycrystalline coatings of ceramic materials were deposited on nickel in the low-pressure, cold-wall reactor from metalorganic precursors, titanium isopropoxide, and a mixture of zirconium isopropoxide and yttria isopropoxide. The process utilized pulsed liquid injection of a dilute precursor solution with atomization by ultrasonic nozzle. Thin films (less than 1mum) with fine-grained microstructure and thick coatings (up to 1mum) with columnar-microstructure were deposited on heated metal substrates by thermal decomposition of a single liquid precursor. The influence of each of the primary deposition parameters, substrate temperature, total flow rate, and precursor concentration on growth rate, conversion efficiency and morphology were investigated. The operating conditions were determined for kinetic, mass transfer, and evaporation process control regimes. Kinetic controlled deposition was found to produce equiaxed morphology while mass transfer controlled deposition produced columnar morphology. A kinetic model of the deposition process was developed and compared to data for deposition of TiO2 from Ti(OC3H7) 4 precursor. The results demonstrate that growth rate and morphology over the range of process operating conditions would make the Pulsed-MOCVD system suitable for application of thermal barrier coatings, electrical insulating layers, corrosion protection coatings, and the electrolyte layers in solid oxide fuel cells.
Porous metal oxide microspheres from ion exchange resin
NASA Astrophysics Data System (ADS)
Picart, S.; Parant, P.; Caisso, M.; Remy, E.; Mokhtari, H.; Jobelin, I.; Bayle, J. P.; Martin, C. L.; Blanchart, P.; Ayral, A.; Delahaye, T.
2015-07-01
This study is devoted to the synthesis and the characterization of porous metal oxide microsphere from metal loaded ion exchange resin. Their application concerns the fabrication of uranium-americium oxide pellets using the powder-free process called Calcined Resin Microsphere Pelletization (CRMP). Those mixed oxide ceramics are one of the materials envisaged for americium transmutation in sodium fast neutron reactors. The advantage of such microsphere precursor compared to classical oxide powder is the diminution of the risk of fine dissemination which can be critical for the handling of highly radioactive powders such as americium based oxides and the improvement of flowability for the filling of compaction chamber. Those millimetric oxide microspheres incorporating uranium and americium were synthesized and characterizations showed a very porous microstructure very brittle in nature which occurred to be adapted to shaping by compaction. Studies allowed to determine an optimal heat treatment with calcination temperature comprised between 700-800 °C and temperature rate lower than 2 °C/min. Oxide Precursors were die-pressed into pellets and then sintered under air to form regular ceramic pellets of 95% of theoretical density (TD) and of homogeneous microstructure. This study validated thus the scientific feasibility of the CRMP process to prepare bearing americium target in a powder free manner.
Investigation of ionic mobility in NASICON-type solid electrolytes
NASA Astrophysics Data System (ADS)
Vyalikh, A.; Vizgalov, V.; Itkis, D. M.; Meyer, D. C.
2016-10-01
Impedance spectroscopy and 7Li NMR have been applied to characterize the lithium conducting glass-ceramics membranes of the Li1.5Al0.5Ge1.5(PO4)3 composition with the NASICON-type structure. The 7Li NMR spectra and T1 relaxation times have been compared for the precursor glass and two glass-ceramics annealed for 2 and 6 hours, and analysed with respect to the ionic conductivity in these materials. The 7Li static NMR spectra reveal two components in the glass-ceramics samples: A quadrupole pattern with CQ of 38.7 kHz and 32.5 kHz, and a narrow signal of the Lorentzian or Gaussian lineshape for the samples annealed for 2 and 6 hours, respectively. Variation of the lineshape and the deconvolution parameters point out to the modification of the NASICON framework in the former, which affects the conductivity channels towards improved movement of lithium ions. The NMR data correlate with the conductivity measurements demonstrating enhanced ionic mobility in the glass-ceramics annealed for 2 hours. The 7Li NMR relaxation data seem to be very sensitive to the species with different mobility and reveal the presence of an additional minor component, which can be responsible for decrease of conductivity at longer thermal treatment.
Yoon, Yeojoon; Jung, Youmi; Kwon, Minhwan; Cho, Eunha; Kang, Joon-Wun
2013-01-01
Abstract Effects of various electrodes and prefiltration to minimize disinfection byproducts (DBPs) in electrochemical water disinfection was evaluated. The target microorganism, Escherichia coli O157:H7, was effectively inactivated even applying a solar-charged storage battery for the electrolysis process. Extent of microbial inactivation decreased with lower water temperature and higher pH in the free chlorine disinfection system. The RuO2/Ti electrode was most efficient because it produced the lowest concentration of chlorate and the highest generation of free chlorine. Prefiltration using a ceramic filter inhibited formation of halogenated DBPs because it removed precursors of DBPs. For safe point-of-use water treatment, the use of a hybrid prefiltration stage with the electrolysis system is strongly recommended to reduce risks from DBPs. The system is particularly suited to use in developing regions. PMID:24381482
NASA Astrophysics Data System (ADS)
Salje, Ekhard K. H.; Carpenter, Michael A.; Nataf, Guillaume F.; Picht, Gunnar; Webber, Kyle; Weerasinghe, Jeevaka; Lisenkov, S.; Bellaiche, L.
2013-01-01
The dynamic properties of elastic domain walls in BaTiO3 were investigated using resonance ultrasonic spectroscopy (RUS). The sequence of phase transitions is characterized by minima in the temperature dependence of RUS resonance frequencies and changes in Q factors (resonance damping). Damping is related to the friction of mobile twin boundaries (90° ferroelectric walls) and distorted polar nanoregions (PNRs) in the cubic phase. Damping is largest in the tetragonal phase of ceramic materials but very low in single crystals. Damping is also small in the low-temperature phases of the ceramic sample and slightly increases with decreasing temperature in the single crystal. The phase angle between the real and imaginary part of the dynamic response function changes drastically in the cubic and tetragonal phases and remains constant in the orthorhombic phase. Other phases show a moderate dependence of the phase angle on temperature showing systematic changes of twin microstructures. Mobile twin boundaries (or sections of twin boundaries such as kinks inside twin walls) contribute strongly to the energy dissipation of the forced oscillation while the reduction in effective modulus due to relaxing twin domains is weak. Single crystals and ceramics show strong precursor softening in the cubic phase related to polar nanoregions (PNRs). The effective modulus decreases when the transition point of the cubic-tetragonal transformation is approached from above. The precursor softening follows temperature dependence very similar to recent results from Brillouin scattering. Between the Burns temperature (≈586 K) and Tc at 405 K, we found a good fit of the squared RUS frequency [˜Δ (C11-C12)] to a Vogel-Fulcher process with an activation energy of ˜0.2 eV. Finally, some first-principles-based effective Hamiltonian computations were carried out in BaTiO3 single domains to explain some of these observations in terms of the dynamics of the soft mode and central mode.
Role of alkali carbonate and salt in topochemical synthesis of K1/2Na1/2NbO3 and NaNbO3 templates
NASA Astrophysics Data System (ADS)
Lee, Jae-Seok; Jeon, Jae-Ho; Choi, Si-Young
2013-11-01
Since the properties of lead-free piezoelectric materials have thus far failed to meet those of lead-based materials, either chemical doping or morphological texturing should be employed to improve the piezoelectric properties of lead-free piezoelectric ceramics. The goal of this study was to synthesize plate-like K1/2Na1/2NbO3 and NaNbO3 particles, which are the most favorable templates for morphological texturing of K1/2Na1/2NbO3 ceramics. To achieve this goal, Bi2.5Na3.5Nb5O18 precursors in a plate-like shape were first synthesized and subsequently converted into K1/2Na1/2NbO3 or NaNbO3 particles that retain the morphology of Bi2.5Na3.5Nb5O18. In this study, we found that sodium or potassium carbonate does not play a major role in converting the Bi2.5Na3.5Nb5O18 precursor to K1/2Na1/2NbO3 or NaNbO3, on the contrary to previous reports; however, the salt contributes to the conversion reaction. All synthesis processes have been performed via a molten salt method, and scanning electron microscopy, scanning probe microscopy, and inductively coupled plasma mass spectroscopy were used to characterize the synthesized K1/2Na1/2NbO3 or NaNbO3 templates.
Wang, Meng; Wang, Ting; Song, Shenhua; Ravi, Muchakayala; Liu, Renchen; Ji, Shishan
2017-01-01
Based on precursor powders with a size of 200–300 nm prepared by the low-temperature solid-state reaction method, phase-pure YMnO3 ceramics are fabricated using spark plasma sintering (SPS). X-ray diffraction (XRD) and scanning electron microscopy (SEM) reveal that the high-purity YMnO3 ceramics can be prepared by SPS at 1000 °C for 5 minutes with annealing at 800 °C for 2 h. The relative density of the sample is as high as 97%, which is much higher than those of the samples sintered by other methods. The present dielectric and magnetic properties are much better than those of the samples fabricated by conventional methods and SPS with ball-milling precursors, and the ferroelectric loops at room temperature can be detected. These findings indicate that the YMnO3 ceramics prepared by the low temperature solid reaction method and SPS possess excellent dielectric lossy ferroelectric properties at room temperature, and magnetic properties at low temperature (10 K), making them suitable for potential multiferroic applications. PMID:28772832
Electrical conductivity and Hf 4+ ion substitution range in NaSICON system
NASA Astrophysics Data System (ADS)
Essoumhi, A.; Favotto, C.; Mansori, M.; Ouzaouit, K.; Satre, P.
2007-03-01
In this paper, we present the synthesis and characterizations of NaSICON-type ionic conducting ceramics of the general formula Na 1+ xM 1.775Si x-0.9P 3.9- xO 12 with 1.8 ≤ x ≤ 2.2 and M = Zr or Hf. The effect of the total substitution of zirconium by hafnium on electric properties has been studied. The various compositions were prepared by using the sol-gel method and the synthesized precursors were characterized by coupled DTA-TG. The oxides obtained after pyrolysis of the precursors were identified by X-ray diffraction. A sintering study by thermodilatometry permits to select the best thermal cycle adapted to our ceramics. Furthermore, the electric conductivity of the sintered ceramic samples was characterized by complex impedance spectroscopy. These results show that ceramics containing Zr synthesized by soft method, present a higher total conductivity than those obtained in literature (to be around 10 -4 S cm -1). The total substitution of Zr by Hf still improves this conductivity for some compositions.
Down- and up-conversion emissions in Er-doped transparent fluorotellurite glass-ceramics
NASA Astrophysics Data System (ADS)
Miguel, A.; Morea, R.; Gonzalo, J.; Fernandez, J.; Balda, R.
2015-03-01
In this work, we report the near infrared and upconversion emissions of Er3+-doped transparent fluorotellurite glassceramics obtained by heat treatment of the precursor Er-doped TeO2-ZnO-ZnF2 glass. Structural analysis shows that ErF3 nanocrystals nucleated in the glass-ceramic sample are homogeneously distributed in the glass matrix with a typical size of 45±10 nm. The comparison of the fluorescence properties of Er3+-doped precursor glass and glass-ceramic confirms the successful incorporation of the rare-earth into the nanocrystals. An enhancement of the red upconversion emission due to 4F9/2→4I15/2 transition together with weak emission bands due to transitions from 2H9/2, 4F3/2,5/2, and 4F7/2 levels to the ground state are observed under excitation at 801 nm in the glass-ceramic sample. The temporal evolution of the red emission together with the excitation upconversion spectrum suggest that energy transfer processes are responsible for the enhancement of the red emission.
NASA Astrophysics Data System (ADS)
Stygar, M.; Tejchman, W.; Dąbrowa, J.; Kruk, A.; Brylewski, T.
2018-05-01
In the present study, a calcium- and nickel-doped yttrium chromates (YCCN)-based, conductive-protective layers for metallic interconnects used in the intermediate-temperature solid oxide fuel cells (IT-SOFCs) were investigated. Synthesis of Y0.8Ca0.2Cr1-x Ni x O3 (x = 0; 0.15 and 0.3) powders was performed using a wet chemistry method with two different complexing agents: ethylenediaminetetraacetic acid and glycine. Based on the result of thermal analysis of obtained precursors, optimal conditions of the calcination process were determined. Powders were then milled, compacted and sintered at different temperatures using free sintering method, into series of dense, polycrystalline sinters. The use of glycine precursor allowed obtaining a single-phase material in all cases. Based on the electrical and sintering properties, the Y0.8Ca0.2Cr0.85Ni0.15O3 material was selected for further studies. It was deposited using cost-effective screen-printing method on the Crofer 22APU ferritic stainless steel. To investigate properties and suitability of the resulting layer/steel system for IT-SOFCs applications, the high-temperature, dual-atmosphere studies were carried out for the first time for ceramic/metallic system, in conditions as close as possible to actual working conditions of the fuel cell. The layer exhibited high stability and good protective properties. The area-specific resistance of the studied ceramic layer/metallic substrate composite was determined, with the obtained value of 0.0366 Ω cm2 being within the arbitrary limit set for these materials (0.1 Ω cm2). The results show that the investigated materials are suitable for the projected application.
NASA Astrophysics Data System (ADS)
Ichikawa, Hiroki; Sakamoto, Wataru; Akiyama, Yoshikazu; Maiwa, Hiroshi; Moriya, Makoto; Yogo, Toshinobu
2013-09-01
The preparation of reduction-resistant (Ba,Ca)TiO3 ceramics as lead-free piezoelectric materials was studied. To improve their electrical properties, (100),(001)-oriented (Ba0.85Ca0.15)TiO3 ceramics were fabricated by the reactive templated grain growth method using a mixture of platelike CaTiO3 and BaTiO3 particles. The platelike CaTiO3 and BaTiO3 particles were prepared through a topochemical microcrystal conversion process using CaBi4Ti4O15 and BaBi4Ti4O15 plate-like precursor crystals. The 100 orientation degree of the grain-oriented (Ba0.85Ca0.15)TiO3 ceramics was 92%, as estimated by Lotgering's equation. In addition, 1 mol % Ba excess and 1 mol % Mn-doped (Ba0.85Ca0.15)TiO3 sintered bodies, which were sintered at 1350 °C in an Ar flow containing H2 (0.3%), had sufficient resistivity to allow the characterization of electrical properties. The ferroelectric and field-induced strain properties of the (Ba0.85Ca0.15)TiO3 ceramics, sintered in the reducing atmosphere, were markedly improved as a result of fabricating grain-oriented samples. The field-induced strain coefficient (estimated from the slope of the unipolar strain loop) of the nonreducible (100),(001)-oriented (Ba0.85Ca0.15)TiO3 ceramics reached 570 pm/V, which was higher than that of polycrystals (260 pm/V) with no preferential orientation.
The removal of disinfection by-product precursors from water with ceramic membranes.
Harman, B I; Koseoglu, H; Yigit, N O; Sayilgan, E; Beyhan, M; Kitis, M
2010-01-01
The main objective of this work was to investigate the effectiveness of ceramic ultrafiltration (UF) membranes with different pore sizes in removing natural organic matter (NOM) from model solutions and drinking water sources. A lab-scale, cross-flow ceramic membrane test unit was used in all experiments. Two different single-channel tubular ceramic membrane modules were tested with average pore sizes of 4 and 10 nm. The impacts of membrane pore size and pressure on permeate flux and the removals of UV(280 nm) absorbance, specific UV absorbance (SUVA(280 nm)), and dissolved organic carbon (DOC) were determined. Prior to experiments with model solutions and raw waters, clean water flux tests were conducted. UV(280) absorbance reductions ranged between 63 and 83% for all pressures and membranes tested in the raw water. More than 90% of UV(280) absorbance reduction was consistently achieved with both membranes in the model NOM solutions. Such high UV absorbance reductions are advantageous due to the fact that UV absorbing sites of NOM are known to be one of the major precursors to disinfection by-products (DBP) such as trihalomethanes and haloacetic acids. For both UF membranes, the ranges of DOC removals in the raw water and model NOM solutions were 55-73% and 79-91%, respectively. SUVA(280) value of the raw water decreased from 2 to about 1.5 L/mg-m by both membranes. For the model solutions, SUVA(280) values were consistently reduced to < or =1 L/mg-m levels after membrane treatment. As the SUVA(280) value of the NOM source increased, the extent of SUVA(280) reduction and DOC removal by the tested ceramic UF membranes also increased. The results overall indicated that ceramic UF membranes, especially the one with 4 nm average pore size, appear to be effective in removing organic matter and DBP precursors from drinking water sources with relatively high and sustainable permeate flux values.
NASA Astrophysics Data System (ADS)
Morozov, M. I.; Kungl, H.; Hoffmann, M. J.
2011-03-01
Li-, Ta-, and Mn-modified (K,Na)NbO3 ceramics with various compositional homogeneity have been prepared by conventional and precursor methods. The homogeneous ceramic has demonstrated a sharper peak in temperature dependent piezoelectric response. The dielectric and piezoelectric properties of the homogeneous ceramics have been characterized at the experimental subcoercive electric fields near the temperature of the orthorhombic-tetragonal phase transition with respect to poling in both phases. Poling in the tetragonal phase is shown to enhance the low-signal dielectric and piezoelectric properties in the orthorhombic phase.
NASA Astrophysics Data System (ADS)
Zhang, Junjie; He, Dongbing; Duan, Zhongchao; Zhang, Liyan; Dai, Shixun; Hu, Lili
2005-04-01
The up-conversion properties of Tm3+/Yb3+ codoped oxyfluoride glass-ceramics under 980 nm excitation were investigated. Intense blue up-conversion luminescence due to the Tm3+: 1G4 → 3H6 transition was observed in the glass-ceramics. The intensity of the blue up-conversion luminescence in a 1 mol% YbF3-containing glass-ceramic was found to be about 40 times stronger than that in the precursor oxyfluoride glass. The up-conversion mechanism is proposed. The reason for the intense Tm3+ up-conversion luminescence in the oxyfluoride glass-ceramics and the concentrations dependence of upconversion luminescence are also discussed.
Fast, Dense Low Cost Scintillator for Nuclear Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woody, Craig
2009-07-31
We have studied the morphology, transparency, and optical properties of SrHfO{sub 3}:Ce ceramics. Ceramics can be made transparent by carefully controlling the stoichiometry of the precursor powders. When fully dense, transparent samples can be obtained. Ceramics with a composition close to stoichiometry (Sr:Hf ~ 1) appear to show good transparency and a reasonable light yield several times that of BGO. The contact and distance transparency of ceramics hot-pressed at about 1450ºC is very good, but deteriorates at increasingly higher hot-press temperatures. If these ceramics can be produced in large quantities and sizes, at low cost, they may be of considerablemore » interest for PET and CT.« less
An improved soft-chemistry approach to the preparation of spinel powders
NASA Astrophysics Data System (ADS)
Cook, Ronald
2007-04-01
Spinel powders for the production of transparent polycrystalline ceramic windows have been produced using a number of traditional ceramic and sol-gel methods. We have demonstrated that magnesium aluminate spinel powders produced from the reaction of organo-magnesium compounds with surface modified boehmite precursors can be used to produce high quality transparent spinel parts. In previous work, the spinel powders were prepared by the reaction of surface-modified boehmite nanoparticles with magnesium acetylacetonate. While the magnesium acetylacetonate can produce small quantities of high quality spinel powders, it use for large scale production of spinel powders is problematic. Through a thermodynamic analysis we have identified a new high-purity, low-cost, low-toxicity organomagnesium compound that reacts the with surface modified boehmite nanoparticles to produce a spinel precursor. The magnesium doped precursor readily transforms into pure phase spinel at temperature between 900°C and 1200°C.
NASA Astrophysics Data System (ADS)
Muoto, Chigozie Kenechukwu
This research aims to identify the key feedstock characteristics and processing conditions to produce Y2O3-MgO composite coatings with high density and hardness using solution precursor plasma spray (SPPS) and suspension plasma spray (SPS) processes, and also, to explore the phenomena involved in the production of homogenized nano-composite powders of this material system by thermal decomposition of solution precursor mixtures. The material system would find potential application in the fabrication of components for optical applications such as transparent windows. It was shown that a lack of major endothermic events during precursor decomposition and the resultant formation of highly dense particles upon pyrolysis are critical precursor characteristics for the deposition of dense and hard Y2O3-MgO coatings by SPPS. Using these principles, a new Y2O3-MgO precursor solution was developed, which yielded a coating with Vickers hardness of 560 Hv. This was a considerable improvement over the hardness of the coatings obtained using conventional solution precursors, which was as low as 110 Hv. In the thermal decomposition synthesis process, binary solution precursor mixtures of: yttrium nitrate (Y[n]) or yttrium acetate (Y[a]), with magnesium nitrate (Mg[n]) or magnesium acetate (Mg[a]) were used in order to study the effects of precursor chemistry on the structural characteristics of the resultant Y2O3-MgO powders. The phase domains were coarse and distributed rather inhomogeneously in the materials obtained from the Y[n]Mg[n] and Y[a]Mg[a] mixtures; finer and more homogeneously-distributed phase domains were obtained for ceramics produced from the Y[a]Mg[n] and Y[n]Mg[a] mixtures. It was established that these phenomena were related to the thermal characteristics for the decomposition of the precursors and their effect on phase separation during oxide crystallization. Addition of ammonium acetate to the Y[n[Mg[n] mixture changed the endothermic process to exothermic and improved the dispersion of the component phases. Two suspension types, made with powders synthesized from the Y[n]Mg[n] and Y[n]Mg[a] precursor mixtures were sprayed by SPS. The densities and hardnesses of the coatings deposited using the two powder types were similar. However, the microstructure of coatings deposited using the Y[n]Mg[a]-synthesized powder exhibited some eutectic configuration which was not observed in the coatings deposited using the Y[n]Mg[n]-synthesized powder.
Mono or polycrystalline alumina-modified hybrid ceramics.
Kaizer, Marina R; Gonçalves, Ana Paula R; Soares, Priscilla B F; Zhang, Yu; Cesar, Paulo F; Cava, Sergio S; Moraes, Rafael R
2016-03-01
This study evaluated the effect of addition of alumina particles (polycrystalline or monocrystalline), with or without silica coating, on the optical and mechanical properties of a porcelain. Groups tested were: control (C), polycrystalline alumina (PA), polycrystalline alumina-silica (PAS), monocrystalline alumina (MA), monocrystalline alumina-silica (MAS). Polycrystalline alumina powder was synthesized using a polymeric precursor method; a commercially available monocrystalline alumina powder (sapphire) was acquired. Silica coating was obtained by immersing alumina powders in a tetraethylorthosilicate solution, followed by heat-treatment. Electrostatic stable suspension method was used to ensure homogenous dispersion of the alumina particles within the porcelain powder. The ceramic specimens were obtained by heat-pressing. Microstructure, translucency parameter, contrast ratio, opalescence index, porosity, biaxial flexural strength, roughness, and elastic constants were characterized. A better interaction between glass matrix and silica coated crystalline particles is suggested in some analyses, yet further investigation is needed to confirm it. The materials did not present significant differences in biaxial flexural strength, due to the presence of higher porosity in the groups with alumina addition. Elastic modulus was higher for MA and MAS groups. Also, these were the groups with optical qualities and roughness closer to control. The PA and PAS groups were considerably more opaque as well as rougher. Porcelains with addition of monocrystalline particles presented superior esthetic qualities compared to those with polycrystalline particles. In order to eliminate the porosity in the ceramic materials investigated herein, processing parameters need to be optimized as well as different glass frites should be tested. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Verma, Vivek; Pandey, Vibhav; Singh, Sukhveer; Aloysius, R. P.; Annapoorni, S.; Kotanala, R. K.
2009-08-01
Lithium ferrite has been considered as one of the highly strategic magnetic material. Nano-crystalline Li 0.5Fe 2.5O 4 was prepared by four different techniques and characterized by X-ray diffraction, vibrating sample magnetometer (VSM), transmission electron microscope (TEM) and Fourier transform infrareds (FTIR). The effect of annealing temperature (700, 900 and 1050 °C) on microstructure has been correlated to the magnetic properties. From X-ray diffraction patterns, it is confirmed that the pure phase of lithium ferrite began to form at 900 °C annealing. The particle size of as-prepared lithium ferrite was observed around 40, 31, 22 and 93 nm prepared by flash combustion, sol-gel, citrate precursor and standard ceramic technique, respectively. Lithium ferrite prepared by citrate precursor method shows a maximum saturation magnetization 67.6 emu/g at 5 KOe.
NASA Astrophysics Data System (ADS)
Ueno, Shintaro; Sakamoto, Yasunao; Nakashima, Kouichi; Wada, Satoshi
2014-09-01
To develop ceramic capacitors with a high effective dielectric constant, we attempted to fabricate BaTiO3 (BT) complexes with embedded Ag nanoparticles by wet chemical processes. Ag nanoparticle-adsorbed dendritic BT particles, Ag-BT hybrid particles, were synthesized from the sol-gel-derived precursor gel powders containing Ag, Ba, and Ti by hydrothermal treatment. These particles were pressed with BT fillers and TiO2 precursor nanoparticles into green compacts, and then, the green compacts were chemically converted into the Ag/BT nanocomplex compacts in Ba(OH)2 aqueous solution under the hydrothermal condition at 160 °C. The effective dielectric constant of the resultant Ag/BT nanocomplexes increases with an increase in Ag content. The maximal effective dielectric constant of approximately 900 was recorded for the nanocomplex with the Ag content of 10.7 vol %.
Chemical processing of glasses
NASA Astrophysics Data System (ADS)
Laine, Richard M.
1990-11-01
The development of chemical processing methods for the fabrication of glass and ceramic shapes for photonic applications is frequently Edisonian in nature. In part, this is because the numerous variables that must be optimized to obtain a given material with a specific shape and particular properties cannot be readily defined based on fundamental principles. In part, the problems arise because the basic chemistry of common chemical processing systems has not been fully delineated. The prupose of this paper is to provide an overview of the basic chemical problems associated with chemical processing. The emphasis will be on sol-gel processing, a major subset pf chemical processing. Two alternate approaches to chemical processing of glasses are also briefly discussed. One approach concerns the use of bimetallic alkoxide oligomers and polymers as potential precursors to mulimetallic glasses. The second approach describes the utility of metal carboxylate precursors to multimetallic glasses.
NASA Astrophysics Data System (ADS)
Saritha Devi, H. V.; Swapna, M. S.; Ambadas, G.; Sankararaman, S.
2018-04-01
Boron carbide (B4C) is a prominent semiconducting material that finds applications in the field of science and technology. The excellent physical, thermal and electronic properties make it suitable as ceramic armor, wear-resistant, lens polisher and neutron absorber in the nuclear industry. The existing methods of synthesis of boron carbide involve the use of toxic chemicals that adversely affect the environment. In the present work, we report for the first time the use of the hydrothermal method, for converting the cellulose from Pandanus leaves as the carbon precursor for the synthesis of B4C. The carbon precursor is changed into porous functionalized carbon by treating with sodium borohydride (NaBH4), followed by treating with boric acid to obtain B4C. The samples are characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared, Raman, photoluminescent and Ultraviolet-Visible absorption spectroscopy. The formation of B4C from natural carbon source— Pandanus presents an eco-friendly, economic and non-toxic approach for the synthesis of refractory carbides.
Metal stabilization mechanism of incorporating lead-bearing sludge in kaolinite-based ceramics.
Lu, Xingwen; Shih, Kaimin
2012-02-01
The feasibility and mechanism of incorporating simulated lead-laden sludge into low-cost ceramic products was investigated by observing the reaction of lead with two kaolinite-based precursors under sintering conditions. To investigate the phase transformation process of lead, lead oxide (PbO) mixed with a kaolinite or mullite precursor were fired at 500-950°C for 3h. Detailed X-ray diffraction analysis of sintered products revealed that both precursors had crystallochemically incorporated lead into the lead feldspar (PbAl(2)Si(2)O(8)) crystalline structure. By mixing lead oxide with kaolinite, lead feldspar begins to crystallize at 700°C; maximum incorporation of lead into this structure occurred at 950°C. However, two intermediate phases, Pb(4)Al(4)Si(3)O(16) and a polymorph of lead feldspar, were detected at temperatures between 700 and 900°C. By sintering lead oxide with the mullite precursor, lead feldspar was detected at temperatures above 750°C, and an intermediate phase of Pb(4)Al(4)Si(3)O(16) was observed in the temperature range of 750-900°C. This study compared the lead leachabilities of PbO and lead feldspar using a prolonged leaching test (at pH 2.9 for 23d) modified from the toxicity characteristic leaching procedure. The results indicate the superiority of lead feldspar in stabilizing lead and suggest a promising and reliable strategy to stabilize lead in ceramic products. Copyright © 2011 Elsevier Ltd. All rights reserved.
1986-08-01
materials (2.2 w/o and 3.0 w/o MgO). The other two batches (2.8 w/o and 3.1 w/o MgO), of higher purity, were made using E-10 zirconia powder from...CID) powders Two methods have been used for the coprecipitation of doped zirconia powders from solutions of chemical precursors. (4) Method I, for...of powder, approximate sample size 3.2 Kg (6.4 Kg for zirconia powder ); 342 3. Random selection of sample; 4. Partial drying of sample to reduce caking
Formulating Precursors for Coating Metals and Ceramics
NASA Technical Reports Server (NTRS)
Morales, Wilfredo; Gatica, Jorge E.; Reye, John T.
2005-01-01
A protocol has been devised for formulating low-vapor-pressure precursors for protective and conversion coatings on metallic and ceramic substrates. The ingredients of a precursor to which the protocol applies include additives with phosphate esters, or aryl phosphate esters in solution. Additives can include iron, chromium, and/or other transition metals. Alternative or additional additives can include magnesium compounds to facilitate growth of films on substrates that do not contain magnesium. Formulation of a precursor begins with mixing of the ingredients into a high-vapor-pressure solvent to form a homogeneous solution. Then the solvent is extracted from the solution by evaporation - aided, if necessary, by vacuum and/or slight heating. The solvent is deemed to be completely extracted when the viscosity of the remaining solution closely resembles the viscosity of the phosphate ester or aryl phosphate ester. In addition, satisfactory removal of the solvent can be verified by means of a differential scanning calorimetry essay: the absence of endothermic processes for temperatures below 150 C would indicate that the residual solvent has been eliminated from the solution beyond a detectable dilution level.
Molybdenum nitride fibers or tubes via ammonolysis of polysulfide precursor
NASA Astrophysics Data System (ADS)
Wang, Shutao; Zhang, Zude; Zhang, Yange; Qian, Yitai
2004-08-01
Millimeter-sized molybdenum nitride (MoN), in the forms of fiber-like prisms or hollow tubes, has been successfully synthesized via thermal ammonolysis of molybdenum polysulfide precursor. The initial morphology of the precursor is well preserved in the final product. This method could be expanded to preparation of other fiber-like nonmetal ceramics without addition of template. The polysulfide precursor (abbreviated to PS), hydrothermally prepared at 30°C (PS1) or 150°C (PS2), was characterized by various methods for better comprehension of the sulfide-nitride topotactic conversion model.
A Novel Polymeric Organosilazane Precursor to Si3N4/SiC Ceramics.
1985-02-06
prepared by pyrolysis of the appropriately-shaped polymeric precursor. These polysilazanes also may prove to be useful as dispersants for SiC and Si3N4...I[AD-Ri58 748 A NOVEL POLYMERIC ORGANOSILAZANE PRECURSOR TO S13N4/ SIC i/I CERRMICS(U) MASSACHUSETTS INST OF TECH CAMBRIDGE DEPT OF CHEMISTRY D...Security C ificatlion" 0322 A Novel Polymeric Organosilazane Precursor to Si3N/ SiC C_ramics._I 12. PERSONAL AUTHOR(S) Dietmar Seyferth and Gary H. Wiseman 13
NASA Astrophysics Data System (ADS)
Loehman, Ronald E.
Methods for joining ceramics are outlined with attention given to their fundamental properties, and some examples of ceramic bonding in engineering ceramic systems are presented. Ceramic-ceramic bonds using no filler material include diffusion and electric-field bonding and ceramic welding, and bonds with filler materials can be provided by Mo-Mn brazing, microwave joining, and reactive nonmetallic liquid bonding. Ceramic-metal joints can be effected with filler material by means of the same ceramic-ceramic processes and without filler material by means of use of molten glass or diffusion bonding. Key properties of the bonding processes include: bonds with discontinuous material properties, energies that are positive relative to the bulk material, and unique chemical and mechanical properties. The processes and properties are outlined for ceramic-metal joints and for joining silicon nitride, and the factors that control wetting, adhesion, and reaction on the atomic scale are critical for establishing successful joints.
Magnetorheological materials, method for making, and applications thereof
Shen, Rui; Yang, Hong; Shafrir, Shai N.; Miao, Chunlin; Wang, Mimi; Mici, Joni; Lambropoulos, John C.; Jacobs, Stephen D.
2014-08-19
A magnetorheological material comprises a magnetic particle and a ceramic material, wherein the magnetorheological material is in a dried form and further wherein a portion of the ceramic material is in the form of a nanocrystalline coating over the entire exterior surface of the magnetic particle and another portion of the ceramic material is in the form of a free nanocrystal. A magnetorheological material comprises a magnetic particle having a ceramic material coating over an external surface thereof as a result of a coating process, and a free nanocrystal of the ceramic material in the form of a residual by-product of the coating process. A sol-gel process for making a magnetorheological product comprises providing a sol of a desired ceramic coating material; combining a desired quantity of carbonyl iron (CI) particles with the sol to coat the CI particles with the ceramic coating material; creating a resulting quantity of nanocrystalline ceramic material-coated CI particles and a quantity of free nanocrystals of the ceramic material; and, drying the resulting quantity of coated CI particles and free nanocrystals to a moisture content equal to or less than 2 wt %.
Method for producing textured substrates for thin-film photovoltaic cells
Lauf, R.J.
1996-04-02
The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the, solar energy conversion efficiency of thin-film photovoltaic cells. 4 figs.
Method for producing textured substrates for thin-film photovoltaic cells
Lauf, R.J.
1994-04-26
The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the solar energy conversion efficiency of thin-film photovoltaic cells. 4 figures.
Method for producing textured substrates for thin-film photovoltaic cells
Lauf, Robert J.
1994-01-01
The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the solar energy conversion efficiency of thin-film photovoltaic cells.
Method for producing textured substrates for thin-film photovoltaic cells
Lauf, Robert J.
1996-01-01
The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the, solar energy conversion efficiency of thin-film photovoltaic cells.
Lusvardi, Gigliola; Malavasi, Gianluca; Aina, Valentina; Bertinetti, Luca; Cerrato, Giuseppina; Magnacca, Giuliana; Morterra, Claudio; Menabue, Ledi
2010-06-15
Bioactive glasses containing gold nanoparticles (AuNPs) have been synthesized via the sol-gel route using HAuCl(4) x 3 H(2)O as gold precursor. The formation process of AuNPs was studied as a function of the thermal treatment, which induces nucleation of Au particles and influences their nature, optical properties, shape, size, and distribution. The physicochemical characterization indicates that the sample treated at 600 degrees C presents the best characteristics to be used as a bioactive material, namely high surface area, high amount of AuNPs located at the glass surface, presence of micropores, and abundant surface OH groups. In the case of samples either aged at 60 degrees C or calcined at 150 degrees C, AuNPs just begin their formation, and at this stage the gel is not completely polymerized and dried yet. A thermal treatment at higher temperatures (900 degrees C) causes the aggregation of AuNPs, forming "AuMPs" (i.e., Au microparticles) in a densified glass-ceramic material with low surface area, absence of pores, and low number of surface OH groups. These features induce in the glass-ceramic materials treated at high-temperatures a lower bioactivity (evidenced by SBF reaction), as compared with that exhibited by the glass samples treated at 600 degrees C.
Bioactive Wollastonite-Diopside Foams from Preceramic Polymers and Reactive Oxide Fillers
Fiocco, Laura; Elsayed, Hamada; Ferroni, Letizia; Gardin, Chiara; Zavan, Barbara; Bernardo, Enrico
2015-01-01
Wollastonite (CaSiO3) and diopside (CaMgSi2O6) silicate ceramics have been widely investigated as highly bioactive materials, suitable for bone tissue engineering applications. In the present paper, highly porous glass-ceramic foams, with both wollastonite and diopside as crystal phases, were developed from the thermal treatment of silicone polymers filled with CaO and MgO precursors, in the form of micro-sized particles. The foaming was due to water release, at low temperature, in the polymeric matrix before ceramic conversion, mainly operated by hydrated sodium phosphate, used as a secondary filler. This additive proved to be “multifunctional”, since it additionally favored the phase development, by the formation of a liquid phase upon firing, in turn promoting the ionic interdiffusion. The liquid phase was promoted also by the incorporation of powders of a glass crystallizing itself in wollastonite and diopside, with significant improvements in both structural integrity and crushing strength. The biological characterization of polymer-derived wollastonite-diopside foams, to assess the bioactivity of the samples, was performed by means of a cell culture test. The MTT assay and LDH activity tests gave positive results in terms of cell viability.
Surface Coating of Oxide Powders: A New Synthesis Method to Process Biomedical Grade Nano-Composites
Palmero, Paola; Montanaro, Laura; Reveron, Helen; Chevalier, Jérôme
2014-01-01
Composite and nanocomposite ceramics have achieved special interest in recent years when used for biomedical applications. They have demonstrated, in some cases, increased performance, reliability, and stability in vivo, with respect to pure monolithic ceramics. Current research aims at developing new compositions and architectures to further increase their properties. However, the ability to tailor the microstructure requires the careful control of all steps of manufacturing, from the synthesis of composite nanopowders, to their processing and sintering. This review aims at deepening understanding of the critical issues associated with the manufacturing of nanocomposite ceramics, focusing on the key role of the synthesis methods to develop homogeneous and tailored microstructures. In this frame, the authors have developed an innovative method, named “surface-coating process”, in which matrix oxide powders are coated with inorganic precursors of the second phase. The method is illustrated into two case studies; the former, on Zirconia Toughened Alumina (ZTA) materials for orthopedic applications, and the latter, on Zirconia-based composites for dental implants, discussing the advances and the potential of the method, which can become a valuable alternative to the current synthesis process already used at a clinical and industrial scale. PMID:28788117
Ceramic electrolyte coating and methods
Seabaugh, Matthew M [Columbus, OH; Swartz, Scott L [Columbus, OH; Dawson, William J [Dublin, OH; McCormick, Buddy E [Dublin, OH
2007-08-28
Aqueous coating slurries useful in depositing a dense coating of a ceramic electrolyte material (e.g., yttrium-stabilized zirconia) onto a porous substrate of a ceramic electrode material (e.g., lanthanum strontium manganite or nickel/zirconia) and processes for preparing an aqueous suspension of a ceramic electrolyte material and an aqueous spray coating slurry including a ceramic electrolyte material. The invention also includes processes for depositing an aqueous spray coating slurry including a ceramic electrolyte material onto pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.
Xu, Pengyun; Coyle, Thomas W; Pershin, Larry; Mostaghimi, Javad
2018-08-01
Superhydrophobic surfaces are often created by fabricating suitable surface structures from low-surface-energy organic materials using processes that are not suitable for large-scale fabrication. Rare earth oxides (REO) exhibit hydrophobic behavior that is unusual among oxides. Solution precursor plasma spray (SPPS) deposition is a rapid, one-step process that can produce ceramic coatings with fine scale columnar structures. Manipulation of the structure of REO coatings through variation in deposition conditions may allow the wetting behavior to be controlled. Yb 2 O 3 coatings were fabricated via SPPS. Coating structure was investigated by scanning electron microscopy, digital optical microscopy, and x-ray diffraction. The static water contact angle and roll-off angle were measured, and the dynamic impact of water droplets on the coating surface recorded. Superhydrophobic behavior was observed; the best coating exhibited a water contact angle of ∼163°, a roll-off angle of ∼6°, and complete droplet rebound behavior. All coatings were crystalline Yb 2 O 3 , with a nano-scale roughness superimposed on a micron-scale columnar structure. The wetting behaviors of coatings deposited at different standoff distances were correlated with the coating microstructures and surface topographies. The self-cleaning, water flushing and water jetting tests were conducted and further demonstrated the excellent and durable hydrophobicity of the coatings. Copyright © 2018 Elsevier Inc. All rights reserved.
Morphology control of anisotropic BaTiO 3 and BaTiOF 4 using organic-inorganic interaction
NASA Astrophysics Data System (ADS)
Masuda, Yoshitake; Tanaka, Yuki; Gao, Yanfeng; Koumoto, Kunihito
2009-01-01
We proposed a novel concept for morphology control of barium titanate precursor to fabricate platy particles. Organic molecules play an essential role in the crystallization of BaTiOF 4 to synthesize multi-needle particles, polyhedron particles or platy particles in an aqueous solution. Precursors were successfully transformed to barium titanate single phase by annealing. Platy barium titanate precursor particles are expected for future multilayer ceramic capacitors.
Zhang, Qi; Wang, Hua; Fan, Xinfei; Chen, Shuo; Yu, Hongtao; Quan, Xie
2016-01-01
In order to improve the permeate flux of photocatalytic membranes, we present an approach for coupling TiO2 with ceramic hollow fiber membranes. The ceramic hollow fiber membranes with high permeate flux were fabricated by a controlled wet-spinning process using polyethersulfone (PESf) and ceramic powder as precursors and 1-methyl-2-pyrrolidinone as solvent, and the subsequent TiO2 coating was performed by a dip-coating process using tetra-n-butyl titanate as precursor. It has been found that the PESf/ceramic powder ratio could influence the structure of the membranes. Here the as-prepared TiO2 hollow fiber membranes had a pure water flux of 4,450 L/(m(2)·h). The performance of the TiO2 hollow fiber membrane was evaluated using humic acid (HA) as a test substance. The results demonstrated that this membrane exhibited a higher permeate flux under UV irradiation than in the dark and the HA removal efficiency was enhanced. The approach described here provides an operable route to the development of high-permeable photocatalytic membranes for water treatment.
Rees, Kelly; Lorusso, Emanuela; Cosham, Samuel D; Kulak, Alexander N; Hyett, Geoffrey
2018-02-14
In this paper we report on a novel chemical vapour deposition approach to the formation and control of composition of mixed anion materials, as applied to titanium oxynitride thin films. The method used is the aerosol assisted chemical vapour deposition (AACVD) of a mixture of single source precursors. To explore the titanium-oxygen-nitrogen system the single source precursors selected were tetrakis(dimethylamido) titanium and titanium tetraisopropoxide which individually are precursors to thin films of titanium nitride and titanium dioxide respectively. However, by combining these precursors in specific ratios in a series of AACVD reactions at 400 °C, we are able to deposit thin films of titanium oxynitride with three different structure types and a wide range of compositions. Using this precursor system we can observe films of nitrogen doped anatase, with 25% anion doping of nitrogen; a new composition of pseudobrookite titanium oxynitride with a composition of Ti 3 O 3.5 N 1.5 , identified as being a UV photocatalyst; and rock-salt titanium oxynitride in the range TiO 0.41 N 0.59 to TiO 0.05 N 0.95 . The films were characterised using GIXRD, WDX and UV-vis spectroscopy, and in the case of the pseudobrookite films, assessed for photocatalytic activity. This work shows that a so-called dual single-source CVD approach is an effective method for the deposition of ternary mixed anion ceramic films through simple control of the ratio of the precursors, while keeping all other experimental parameters constant.
Superconductor precursor mixtures made by precipitation method
Bunker, Bruce C.; Lamppa, Diana L.; Voigt, James A.
1989-01-01
Method and apparatus for preparing highly pure homogeneous precursor powder mixtures for metal oxide superconductive ceramics. The mixes are prepared by instantaneous precipitation from stoichiometric solutions of metal salts such as nitrates at controlled pH's within the 9 to 12 range, by addition of solutions of non-complexing pyrolyzable cations, such as alkyammonium and carbonate ions.
Zou, Qi Ming; Deng, Lei Min; Li, Da Wei; Zhou, Yun Shen; Golgir, Hossein Rabiee; Keramatnejad, Kamran; Fan, Li Sha; Jiang, Lan; Silvain, Jean-Francois; Lu, Yong Feng
2017-10-25
Traditional ceramic-based, high-temperature electrode materials (e.g., lanthanum chromate) are severely limited due to their conditional electrical conductivity and poor stability under harsh circumstances. Advanced composite structures based on vertically aligned carbon nanotubes (VACNTs) and high-temperature ceramics are expected to address this grand challenge, in which ceramic serves as a shielding layer protecting the VACNTs from the oxidation and erosive environment, while the VACNTs work as a conductor. However, it is still a great challenge to fabricate VACNT/ceramic composite structures due to the limited diffusion of ceramics inside the VACNT arrays. In this work, we report on the controllable fabrication of infiltrated (and noninfiltrated) VACNT/silicon composite structures via thermal chemical vapor deposition (CVD) [and laser-assisted CVD]. In laser-assisted CVD, low-crystalline silicon (Si) was quickly deposited at the VACNT subsurfaces/surfaces followed by the formation of high-crystalline Si layers, thus resulting in noninfiltrated composite structures. Unlike laser-assisted CVD, thermal CVD activated the precursors inside and outside the VACNTs simultaneously, which realized uniform infiltrated VACNT/Si composite structures. The growth mechanisms for infiltrated and noninfiltrated VACNT/ceramic composites, which we attributed to the different temperature distributions and gas diffusion mechanism in VACNTs, were investigated. More importantly, the as-farbicated composite structures exhibited excellent multifunctional properties, such as excellent antioxidative ability (up to 1100 °C), high thermal stability (up to 1400 °C), good high velocity hot gas erosion resistance, and good electrical conductivity (∼8.95 Sm -1 at 823 K). The work presented here brings a simple, new approach to the fabrication of advanced composite structures for hot electrode applications.
Investigations of Li-containing SiCN(O) ceramics via 7Li MAS NMR.
Gumann, Sina; Nestle, Nikolaus; Liebau-Kunzmann, Verena; Riedel, Ralf
2007-04-01
Lithium-containing silicon (oxy)carbonitride ceramics (SiCN(O):Li) were synthesized via precursor-to-ceramic-transformation of Li-containing (poly)silazanes. The precursors were obtained by lithiation of 2,4,6-trimethyl-2,4,6-trivinylcyclotrisilazane with n-butyllithium and by reaction of a commercial poly(organosilazane) VL20 with metallic lithium. The annealing treatment was carried out at temperatures between 200 and 1400 degrees C in argon (DeltaT=200 degrees C) and yielded Li-containing silicon (oxy)carbonitride. X-ray powder diffraction revealed that the resulting SiCN(O):Li ceramics were basically amorphous up to temperatures of 1000 degrees C and formed LiSi(2)N(3), graphite and silicon carbide as crystalline phases at higher temperatures. (7)Li MAS NMR spectroscopy was carried out to investigate the structure of the Li-containing phases and to study the reaction path of metallic Li with polysilazane. Based on the NMR spectra, there is almost no difference found in the chemical shift of the SiCN(O):Li ceramics obtained at different temperatures. Accordingly, Li is assigned to be mainly coordinated to N and O present as contaminant element. Relaxation time measurements showed that the most mobile Li(+) species seems to be present in the product obtained in the pyrolysis temperature range between 600 and 1000 degrees C.
Templating Influence of Molecular Precursors on Pr(OH)3 Nanostructures.
Hemmer, Eva; Cavelius, Christian; Huch, Volker; Mathur, Sanjay
2015-07-06
Four new praseodymium alkoxo and amido compounds ([Pr3(μ3-OtBu)2(μ2-OtBu)3(OtBu)4(HOtBu)2] (1), [Pr{OC(tBu)3}3(THF)] (2), [PrCl{N(SiMe3)2}2(THF)]2 (3), and [PrCl{OC(tBu)3}2(THF)]2 (4)) were synthesized and structurally characterized by single-crystal X-ray diffraction analysis. Application of these compounds in solvothermal synthesis of praseodymium oxide/hydroxide nanostructures showed their templating influence on the morphology and phase composition of the resulting solid-state materials. Differential reactivity of the chosen alkoxide ligands toward water and the different arrangements of metal-oxygen units in the studied precursor compounds strongly influenced the kinetics of hydrolysis and cross-condensation reactions as manifested in the morphological changes and phase composition of the final products. Thermal decomposition studies of 1-4 confirmed their conversion into the corresponding oxide phases. Activation of compounds 1, 2, and 4 by either a base or a stoichiometric amount of water showed the distinct influence of their chemical configuration on the obtained nanopowders: whereas 1 solely produced nanorods of Pr(OH)3, 2 predominantly formed a mixture of rod-shaped and spherical particles. The solvothermal decomposition of 4 resulted in Pr(OH)2Cl or PrOCl due to the presence of Cl ligands in the molecular precursor. The resultant materials were thoroughly characterized to demonstrate the relationship between precursor chemistry and the processing parameters that are clearly manifested in the morphology and phase of the final ceramics.
Comparative characterization of a novel cad-cam polymer-infiltrated-ceramic-network
Pascual, Agustín; Camps, Isabel; Grau-Benitez, María
2015-01-01
Background The field of dental ceramics for CAD-CAM is enriched with a new innovative material composition having a porous three-dimensional structure of feldspathic ceramic infiltrated with acrylic resins.The aim of this study is to determine the mechanical properties of Polymer-Infiltrated-Ceramic-Network (PICN) and compare its performance with other ceramics and a nano-ceramic resin available for CAD-CAM systems. Material and Methods In this study a total of five different materials for CAD-CAM were investigated. A polymer-infiltrated ceramic (Vita Enamic), a nano-ceramic resin (Lava Ultimate), a feldspathic ceramic (Mark II), a lithium disilicate ceramic (IPS-e max CAD) and finally a Leucite based ceramic (Empress - CAD). From CAD-CAM blocks, 120 bars (30 for each material cited above) were cut to measure the flexural strength with a three-point-bending test. Strain at failure, fracture stress and Weibull modulus was calculated. Vickers hardness of each material was also measured. Results IPS-EMAX presents mechanical properties significantly better from the other materials studied. Its strain at failure, flexural strength and hardness exhibited significantly higher values in comparison with the others. VITA ENAMIC and LAVA ULTIMATE stand out as the next most resistant materials. Conclusions The flexural strength, elastic modulus similar to a tooth as well as having less hardness than ceramics make PICN materials an option to consider as a restorative material. Key words:Ceramic infiltrated with resin, CAD-CAM, Weibull modulus, flexural strength, micro hardness. PMID:26535096
Effects of SiO2 substitution on wettability of laser deposited Ca-P biocoating on Ti-6Al-4V.
Yang, Yuling; Paital, Sameer R; Dahotre, Narendra B
2010-09-01
Silicon (Si) substitution in the crystal structure of calcium phosphate (CaP) ceramics has proved to generate materials with improved bioactivity than their stoichiometric counterpart. In light of this, in the current work, 100 wt% hydroxyapatite (HA) precursor and 25 wt% SiO(2)-HA precursors were used to prepare bioactive coatings on Ti-6Al-4V substrates by a laser cladding technique. The effects of SiO(2) on phase constituents, crystallite size, surface roughness, and surface energy of the CaP coatings were studied. Furthermore, on the basis of these results, the effects and roles of SiO(2) substitution in HA were systematically discussed. X-ray diffraction analysis of the coated samples indicated the presence of various phases such as CaTiO(3), Ca(2)SiO(4), Ca(3)(PO(4))(2), TiO(2) (Anatase), and TiO(2) (Rutile). The addition of SiO(2) in the HA precursor resulted in the refinement of grain size. Confocal laser microscopy characterization of the surface morphology demonstrated an improved surface roughness for samples with 25 wt% SiO(2)-HA precursor compared to the samples with 100 wt% HA precursor processed at 125 cm/min laser speed. The addition of SiO(2) in the HA precursor resulted in the highest surface energy, increased hydrophilicity, and improved biomineralization as compared to the control (untreated Ti-6Al-4V) and the sample with 100 wt% HA as precursor. The microstructural evolution observed using a scanning electron microscopy indicated that the addition of SiO(2) in the HA precursor resulted in the presence of reduced cracking across the cross-section of the bioceramic coating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.R.; McClung, R.W.; Janney, M.A.
1987-08-01
A needs assessment was performed for nondestructive testing and materials characterization to achieve improved reliability in ceramic materials for heat engine applications. Raw materials, green state bodies, and sintered ceramics were considered. The overall approach taken to improve reliability of structural ceramics requires key inspections throughout the fabrication flowsheet, including raw materials, greed state, and dense parts. The applications of nondestructive inspection and characterization techniques to ceramic powders and other raw materials, green ceramics, and sintered ceramics are discussed. The current state of inspection technology is reviewed for all identified attributes and stages of a generalized flowsheet for advanced structuralmore » ceramics, and research and development requirements are identified and listed in priority order. 164 refs., 3 figs.« less
Sol-gel derived polymer composites for energy storage and conversion
NASA Astrophysics Data System (ADS)
Han, Kuo
Sol-gel process is a simple chemistry to convert the small precursor molecules into an inorganic polymer, which could be applied to synthesize inorganic materials, modify the interface of materials, bridge the organic and inorganic materials, etc. In this dissertation, novel sol-gel derived composites have been developed for high dielectric breakdown capacitors, low high frequency loss capacitors and flexible piezoelectrics. Numerous efforts have been made in the past decades to improve the energy storage capability of composite materials by incorporating nanometer scale ceramic addictives with high dielectric permittivity into dielectric polymers with high breakdown strength. However, most composites suffer from the low breakdown strength and make the potential gain in energy density small. Here, a new chemical strategy is proposed that, through sol-gel reactions between ceramic precursors and functional groups at the end of the functionalized Poly(vinylidene fluoride -co-chlorotrifluoroethylene) chains, amorphous low permittivity ceramics was in-situ generated in the polymer matrix and cross-linked the polymer chains simultaneously. By carefully tuning precursors, the polymer/precursors feeding ratios, a series of nanocomposites were systematically designed. All the samples are comprehensively characterized and the structure-property correlations are well investigated. The optimal samples exhibit higher breakdown strength than the pristine polymer. The enhanced breakdown strength ascribed to low contrast in permittivity, great dispersion and improved electrical and mechanical properties. This newly developed approach has shown great promise for new composite capacitors. The percolative polymer composites have recently exhibited great potential in energy storage due to their high dielectric permittivities at the neighborhood of the percolation threshold. Yet high energy dissipation and poor voltage endurance of the percolative composites resulted from electrical conduction are still open issues to be addressed before full potential can be realized. Herein we report the percolative composites based on ferroelectric poly(vinylidene fluoride-co-chlorotrifluoroethylene) as the matrix and sol-gel derived SiO2 coated reduced graphene oxide nanosheets as the filler. By capitalizing on the SiO2 surface layers which have high electrical resistivity and breakdown strength, the composites exhibit superior dielectric performance as compared to the respective composites containing bare reduced graphene oxide nanosheet fillers. In addition to greatly reduced dielectric loss, little change in dielectric loss has been observed within medium frequency range (ie. 300 KHz-3 MHz) in the prepared composites even with a filler concentration beyond the percolation threshold, indicating significantly suppressed energy dissipation and the feasibility of using the conductor-insulator composites beyond the percolation threshold. Moreover, remarkable breakdown strength of 80 MV/m at the percolation threshold has been achieved in the composite, which far exceeds those of conventional percolative composites (lower than 0.1 MV/m in most cases) and thus enables the applications of the percolative composites at high electric fields. This work offers a new avenue to the percolative polymer composites exhibiting high permittivity, reduced loss and excellent breakdown strength for electrical energy storage applications. Flexible piezoelectric materials have attracted extensive attention because they can provide a practical way to scavenge energy from the environment and motions. It also provides the possibility to fabricate wearable and self-powered energy generator for powering small electronic devices. In the dissertation a new composite including BTO 3D structure and PDMS has been successfully fabricated using the sol-gel process. The structure, flexibility, dielectric and piezoelectric properties have been well studied. The new material shows a high g33 value of more than 400 mV m/N. Moreover, the durability of this composite has been confirmed by cycle tests even though the BTO structure falls apart into small pieces in the PDMS matrix. The unique morphology of the composite allows the broken piece to connect with each other to generate power under stress. This work also opens a new route toward flexible piezoelectric composites.
Monolayer coated aerogels and method of making
Zemanian, Thomas Samuel [Richland, WA; Fryxell, Glen [Kennwick, WA; Ustyugov, Oleksiy A [Spokane, WA
2006-03-28
Aerogels having a monolayer coating are described. The aerogel and a monolayer forming precursor are provided in a supercritical fluid, whereupon the aerogel and the monolayer forming precursor are reacted in said supercritical fluid to form a covalent bond between the aerogel and the monolayer forming precursor. Suitable aerogels are ceramic oxides such as silica, alumina, aluminosilicate, and combinations thereof. Suitable monolayer forming precursors include alkyl silanes, chlorosilanes, boranes, chloroboranes, germanes, and combinations thereof. The method may also include providing a surface preparation agent such as water, or hydroetching an aerogel to enhance the coating of the monolayer.
NASA Astrophysics Data System (ADS)
Zheng, Hui; Weng, Wenjian; Han, Gaorong; Du, Piyi
2014-10-01
(1-x)BaTiO3/xNi0.5Zn0.5Fe2O4 (NZFO) ferroelectric/ferrimagnetic composite ceramics with restricted interfacial reaction were prepared by adopting fine NZFO precursors synthesized by combustion method. The dielectric dispersion, loss, and conductivity are significantly reduced at most compositions, particularly at concentrations below the percolation threshold. At x = 0.3, a frequency-stable permittivity of 2300 and a low loss of 0.04 at 1 kHz is realized. The recovery of the dielectric/electric properties is attributed to the interfacial amorphous phase introduced by the fine NZFO precursors, which can act as barrier for ionic inter-diffusion between the two phases and hopping conduction among ferrites.
NASA Astrophysics Data System (ADS)
Yanes, A. C.; Santana-Alonso, A.; Méndez-Ramos, J.; del-Castillo, J.
2013-12-01
Transparent nano-glass-ceramics containing KYF4 nanocrystals were successfully obtained by the sol-gel method, doped with Eu3+ and co-doped with Yb3+ and Tm3+ ions. Precipitation of cubic KYF4 nanocrystals was confirmed by X-ray diffraction and high-resolution transmission electron microscope images. Excitation and emission spectra let us to discern between ions into KYF4 nanocrystals and those remaining in a glassy environment, supplemented with time-resolved photoluminescence decays, that also clearly reveal differences between local environments. Unusual high-energy up-conversion emissions in the UV range were obtained in Yb3+-Tm3+ co-doped samples, and involved mechanisms were discussed. The intensity of these high-energy emissions was analyzed as a function of Yb3+ concentration, heat treatment temperature of precursor sol-gel glasses and pump power, determining the optimum values for potential optical applications as highly efficient UV up-conversion materials in UV solid-state lasers.
Bärsch, Niko; Jakobi, Jurij; Weiler, Sascha; Barcikowski, Stephan
2009-11-04
The generation of colloids by laser ablation of solids in a liquid offers a nearly unlimited material variety and a high purity as no chemical precursors are required. The use of novel high-power ultra-short-pulsed laser systems significantly increases the production rates even in inflammable organic solvents. By applying an average laser power of 50 W and pulse durations below 10 ps, up to 5 mg min(-1) of nanoparticles have been generated directly in acetone, marking a breakthrough in productivity of ultra-short-pulsed laser ablation in liquids. The produced colloids remain stable for more than six months. In the case of yttria-stabilized zirconia ceramic, the nanoparticles retain the tetragonal crystal structure of the ablated target. Laser beam self-focusing plays an important role, as a beam radius change of 2% on the liquid surface can lead to a decrease of nanoparticle production rates of 90% if the target position is not re-adjusted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Laijun; Fan Huiqing; Fang Pinyang
2008-07-01
The giant dielectric constant material CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) has been synthesized by sol-gel method, for the first time, using nitrate and alkoxide precursor. The electrical properties of CCTO ceramics, showing an enormously large dielectric constant {epsilon} {approx} 60,000 (100 Hz at RT), were investigated in the temperature range from 298 to 358 K at 0, 5, 10, 20, and 40 V dc. The phases, microstructures, and impedance properties of final samples were characterized by X-ray diffraction, scanning electron microscopy, and precision impedance analyzer. The dielectric permittivity of CCTO synthesized by sol-gel method is at least three times ofmore » magnitude larger than that synthesized by other low-temperature method and solid-state reaction method. Furthermore, the results support the internal barrier layer capacitor (IBLC) model of Schottky barriers at grain boundaries between semiconducting grains.« less
Processing of non-oxide ceramics from sol-gel methods
Landingham, Richard; Reibold, Robert A.; Satcher, Joe
2014-12-12
A general procedure applied to a variety of sol-gel precursors and solvent systems for preparing and controlling homogeneous dispersions of very small particles within each other. Fine homogenous dispersions processed at elevated temperatures and controlled atmospheres make a ceramic powder to be consolidated into a component by standard commercial means: sinter, hot press, hot isostatic pressing (HIP), hot/cold extrusion, spark plasma sinter (SPS), etc.
Testing of felt-ceramic materials for combustor applications
NASA Technical Reports Server (NTRS)
Venkat, R. S.; Roffe, G.
1983-01-01
The feasibility of using composite felt ceramic materials as combustor liners was experimentally studied. The material consists of a porous felt pad sandwiched between a layer of ceramic and one of solid metal. Flat, rectangular test panels, which encompassed several design variations of the basic composite material, were tested, two at a time, in a premixed gas turbine combustor as sections of the combustor wall. Tests were conducted at combustor inlet conditions of 0.5 MPa and 533 K with a reference velocity of 25 m/s. The panels were subjected to a hot gas temperature of 2170 K with 1% of the total airflow used to film cool the ceramic surface of the test panel. In general, thin ceramic layers yield low ceramic stress levels with high felt ceramic interface temperatures. On the other hand, thick ceramic layers result in low felt ceramic interface temperatures but high ceramic stress levels. Extensive thermal cycling appears to cause material degradation, but for a limited number of cycles, the survivability of felt ceramic materials, even under extremely severe combustor operating conditions, was conclusively demonstrated.
NASA Astrophysics Data System (ADS)
Zhang, Junjie; Duan, Zhongchao; He, Dongbing; Dai, Shixun; Zhang, Liyan; Hu, Lili
2005-12-01
Up-conversion luminescence properties of a Tm 3+/Yb 3+ codoped oxyfluoride glass-ceramics under 980 nm excitation are investigated. Intense blue emission centered at 476 nm, corresponding to 1G 4 → 3H 6 transitions of Tm 3+ was simultaneously observed in the transparent oxyfluoride glass ceramics at room temperature. The intensity of the blue up-conversion luminescence in a 1 mol% YbF 3-containing glass-ceramic was found to be about 40 times stronger than that in the precursor oxyfluoride glass. The reason for the intense Tm 3+ up-conversion luminescence in the oxyfluoride glass-ceramics is discussed. The dependence of up-conversion intensities on excitation power and possible up-conversion mechanism are also evaluated.
Zhang, Junjie; Duan, Zhongchao; He, Dongbing; Dai, Shixun; Zhang, Liyan; Hu, Lili
2005-12-01
Up-conversion luminescence properties of a Tm3+/Yb3+ codoped oxyfluoride glass-ceramics under 980 nm excitation are investigated. Intense blue emission centered at 476 nm, corresponding to 1G4-->3H6 transitions of Tm3+ was simultaneously observed in the transparent oxyfluoride glass ceramics at room temperature. The intensity of the blue up-conversion luminescence in a 1 mol% YbF3-containing glass-ceramic was found to be about 40 times stronger than that in the precursor oxyfluoride glass. The reason for the intense Tm3+ up-conversion luminescence in the oxyfluoride glass-ceramics is discussed. The dependence of up-conversion intensities on excitation power and possible up-conversion mechanism are also evaluated.
Boron-containing organosilane polymers and ceramic materials thereof
NASA Technical Reports Server (NTRS)
Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)
1989-01-01
The present invention relates to a polyorgano borosilane ceramic precursor polymer comprising a plurality of repeating units of the formula: (R(sup 1) single bond B)(sub p) being linked together at B by second units of the formula: single bond (R sup 2) single bond (Si single bond R sup 3) single bond (sub q), where R(sup 1) is a lower alkyl, cycloalkyl, phenyl, or (R(sup 2)R(sup 3) single bond Si single bond B single bond)(sub n) and R(sup 2) and R(sup 3) are each independently selected from hydrogen, lower alkyl, vinyl, cycloalkyl, or aryl, n is an integer between 1 and 100; p is an integer between 1 and 100; and q is an integer between 1 and 100. These materials are prepared by combining an organo borohalide of the formula R(sup 4) single bond B single bond (X sup 1) (sub 2) where R(sup 4) is selected from halogen, lower alkyl, cycloalkyl, or aryl, and an organo halosilane of the formula: R(sup 2)(R sup 3)Si(X sup 2)(sub 2) where R(sup 2) and R (sup 3) are each independently selected from lower alkyl, cycloalkyl, or aryl, and X(sup 1) and X(sup 2) are each independently selected from halogen, in an anhydrous aprotic solvent having a boiling point at ambient pressure of not greater than 160 C with in excess of four equivalents of an alkali metal, heating the reaction mixture and recovering the polyorgano borosilane. These silicon boron polymers are useful to generate high-temperature ceramic materials, such as SiC, SiB4, and B4C, upon thermal degradation above 600 C.
Holcomb, Matthew J.
1999-01-01
A composite superconducting material made of coated particles of ceramic superconducting material and a metal matrix material. The metal matrix material fills the regions between the coated particles. The coating material is a material that is chemically nonreactive with the ceramic. Preferably, it is silver. The coating serves to chemically insulate the ceramic from the metal matrix material. The metal matrix material is a metal that is susceptible to the superconducting proximity effect. Preferably, it is a NbTi alloy. The metal matrix material is induced to become superconducting by the superconducting proximity effect when the temperature of the material goes below the critical temperature of the ceramic. The material has the improved mechanical properties of the metal matrix material. Preferably, the material consists of approximately 10% NbTi, 90% coated ceramic particles (by volume). Certain aspects of the material and method will depend upon the particular ceramic superconductor employed. An alternative embodiment of the invention utilizes A15 compound superconducting particles in a metal matrix material which is preferably a NbTi alloy.
NASA Technical Reports Server (NTRS)
Zhu, Dongming
2018-01-01
Ceramic materials play increasingly important roles in aerospace applications because ceramics have unique properties, including high temperature capability, high stiffness and strengths, excellent oxidation and corrosion resistance. Ceramic materials also generally have lower densities as compared to metallic materials, making them excellent candidates for light-weight hot-section components of aircraft turbine engines, rocket exhaust nozzles, and thermal protection systems for space vehicles when they are being used for high-temperature and ultra-high temperature ceramics applications. Ceramic matrix composites (CMCs), including non-oxide and oxide CMCs, are also recently being incorporated in gas turbine engines for high pressure and high temperature section components and exhaust nozzles. However, the complexity and variability of aerospace ceramic processing methods, compositions and microstructures, the relatively low fracture toughness of the ceramic materials, still remain the challenging factors for ceramic component design, validation, life prediction, and thus broader applications. This ceramic material section paper presents an overview of aerospace ceramic materials and their characteristics. A particular emphasis has been placed on high technology level (TRL) enabling ceramic systems, that is, turbine engine thermal and environmental barrier coating systems and non-oxide type SiC/SiC CMCs. The current status and future trend of thermal and environmental barrier coatings and SiC/SiC CMC development and applications are described.
NASA Astrophysics Data System (ADS)
Xiao, Yanfeng; Song, Lei; Liu, Xiaoguang; Huang, Yi; Huang, Tao; Wu, Yao; Chen, Jiyong; Wu, Fang
2011-01-01
Bioactive glass-ceramic coatings have great potential in dental and orthopedic medical implant applications, due to its excellent bioactivity, biocompatibility and osteoinductivity. However, most of the coating preparation techniques either produce only thin thickness coatings or require tedious preparation steps. In this study, a new attempt was made to deposit bioactive glass-ceramic coatings on titanium substrates by the liquid precursor plasma spraying (LPPS) process. Tetraethyl orthosilicate, triethyl phosphate, calcium nitrate and sodium nitrate solutions were mixed together to form a suspension after hydrolysis, and the liquid suspension was used as the feedstock for plasma spraying of P 2O 5-Na 2O-CaO-SiO 2 bioactive glass-ceramic coatings. The in vitro bioactivities of the as-deposited coatings were evaluated by soaking the samples in simulated body fluid (SBF) for 4 h, 1, 2, 4, 7, 14, and 21 days, respectively. The as-deposited coating and its microstructure evolution behavior under SBF soaking were systematically analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), inductively coupled plasma (ICP), and Fourier transform infrared (FTIR) spectroscopy. The results showed that P 2O 5-Na 2O-CaO-SiO 2 bioactive glass-ceramic coatings with nanostructure had been successfully synthesized by the LPPS technique and the synthesized coatings showed quick formation of a nanostructured HCA layer after being soaked in SBF. Overall, our results indicate that the LPPS process is an effective and simple method to synthesize nanostructured bioactive glass-ceramic coatings with good in vitro bioactivity.
Er3+-doped transparent glass ceramics containing micron-sized SrF2 crystals for 2.7 μm emissions
Jiang, Yiguang; Fan, Jintai; Jiang, Benxue; Mao, Xiaojian; Tang, Junzhou; Xu, Yinsheng; Dai, Shixun; Zhang, Long
2016-01-01
Er3+-doped transparent glass ceramics containing micron-sized SrF2 crystals were obtained by direct liquid-phase sintering of a mixture of SrF2 powders and precursor glass powders at 820 °C for 15 min. The appearance and microstructural evolution of the SrF2 crystals in the resulting glass ceramics were investigated using X-ray diffraction, field-emission scanning electron microscopy and transmission microscopy. The SrF2 crystals are ~15 μm in size and are uniformly distributed throughout the fluorophosphate glass matrix. The glass ceramics achieve an average transmittance of 75% in the visible region and more than 85% in the near-IR region. The high transmittance of the glass ceramics results from matching the refractive index of the SrF2 with that of the precursor glass. Energy dispersive spectroscopy, photoluminescence spectra, and photoluminescence lifetimes verified the incorporation of Er3+ into the micron-sized SrF2 crystals. Intense 2.7 μm emissions due to the 4I11/2 → 4I13/2 transition were observed upon excitation at 980 nm using a laser diode. The maximum value of the emission cross section of Er3+ around 2.7 μm is more than 1.2 × 10−20 cm2, which indicates the potential of using transparent glass ceramics containing micron-sized SrF2 crystals for efficient 2.7 μm lasers and amplifiers. PMID:27430595
Er(3+)-doped transparent glass ceramics containing micron-sized SrF2 crystals for 2.7 μm emissions.
Jiang, Yiguang; Fan, Jintai; Jiang, Benxue; Mao, Xiaojian; Tang, Junzhou; Xu, Yinsheng; Dai, Shixun; Zhang, Long
2016-07-19
Er(3+)-doped transparent glass ceramics containing micron-sized SrF2 crystals were obtained by direct liquid-phase sintering of a mixture of SrF2 powders and precursor glass powders at 820 °C for 15 min. The appearance and microstructural evolution of the SrF2 crystals in the resulting glass ceramics were investigated using X-ray diffraction, field-emission scanning electron microscopy and transmission microscopy. The SrF2 crystals are ~15 μm in size and are uniformly distributed throughout the fluorophosphate glass matrix. The glass ceramics achieve an average transmittance of 75% in the visible region and more than 85% in the near-IR region. The high transmittance of the glass ceramics results from matching the refractive index of the SrF2 with that of the precursor glass. Energy dispersive spectroscopy, photoluminescence spectra, and photoluminescence lifetimes verified the incorporation of Er(3+) into the micron-sized SrF2 crystals. Intense 2.7 μm emissions due to the (4)I11/2 → (4)I13/2 transition were observed upon excitation at 980 nm using a laser diode. The maximum value of the emission cross section of Er(3+) around 2.7 μm is more than 1.2 × 10(-20) cm(2), which indicates the potential of using transparent glass ceramics containing micron-sized SrF2 crystals for efficient 2.7 μm lasers and amplifiers.
Advanced Ceramic Armor Materials
1990-05-11
materials, toughened alumina, fiber -reinforced glass matrix composites, and multilayer-gradient materials for ballistic testing. Fabrication and...material systems: Multilayer advanced armor materials consisting of a hard ceramic faceplate bonded to a graphite fiber -reinforced glass matrix...toughened alumina, and fiber - applied studies of advanced reinforced ceramic matrix glass and glass -ceramic composites for ballistic testing. technologies
Carbon nanotube-ceramic nanocomposites: Synthesis and characterization
NASA Astrophysics Data System (ADS)
Clark, Michael David
Ceramic materials are widely used in modern society for a variety of applications including fuel cell electrolytes, bio-medical implants, and jet turbines. However, ceramics are inherently brittle making them excellent candidates for mechanical reinforcement. In this work, the feasibility of dispersing multi-walled carbon nanotubes into a silicon carbide matrix for mechanical property enhancement is explored. Prior to dispersing, nanotubes were purified using an optimized, three step methodology that incorporates oxidative treatment, acid sonication, and thermal annealing rendering near-superhydrophobic behavior in synthesized thin films. Alkyl functionalized nanotube dispersability was characterized in various solvents. Dispersability was contingent on fostering polar interactions between the functionalized nanotubes and solvent despite the purely dispersive nature of the aliphatic chains. Interpretation of these results yielded values of 45.6 +/- 1.2, 0.78 +/- 0.04, and 2 4 +/- 0.9 mJ/m2 for the Lifshitz-van der Waals, electron acceptor and electron donor surface energy components respectively. Aqueous nanotube dispersions were prepared using a number of surfactants to examine surfactant concentration and pH effects on nanotube dispersability. Increasing surfactant concentrations resulted in a solubility plateau, which was independent of the surfactant's critical micelle concentration. Deviations from neutral pH demonstrated negligible influence on non-ionic surfactant adsorption while, ionic surfactants showed substantial pH dependent behavior. These results were explained in the context of nanotube surface ionization and Debye length variation. Successful MWNT dispersion into a silicon carbide based matrix is reported by in-situ ceramic formation using two routes; sol-gel chemistry and pre-ceramic polymeric precursor workup. For the former, nanotube dispersion was assisted by PluronicRTM surfactants. Pyrolytic treatment and consolidation of formed powders yielded ceramic silicon oxycarbide glasses (SiO1.1 C0.6) attributed to incomplete carbothermal reduction. Microhardness and dynamic moduli measurements were consistent with silicon oxycarbide glasses and unaffected by nanotube loading up to 0.11 wt. %. Pyrolysis and densification of poly(methylsilyne) yielded a high density ceramic material (2.45-2.63 g/cm 3). Nanotube introduction was achieved using two separate alkylation techniques; alkyllithium replacement and organic peroxide workup. Bulk mechanical testing was deemed unreliable as powder consolidation introduced chemical inhomogeneity with pellet edges being largely composed of polycrystalline silicon and silicon carbide, while the center contained substantial oxygen contamination.
Self-doped molecular composite battery electrolytes
Harrup, Mason K.; Wertsching, Alan K.; Stewart, Frederick F.
2003-04-08
This invention is in solid polymer-based electrolytes for battery applications. It uses molecular composite technology, coupled with unique preparation techniques to render a self-doped, stabilized electrolyte material suitable for inclusion in both primary and secondary batteries. In particular, a salt is incorporated in a nano-composite material formed by the in situ catalyzed condensation of a ceramic precursor in the presence of a solvated polymer material, utilizing a condensation agent comprised of at least one cation amenable to SPE applications. As such, the counterion in the condensation agent used in the formation of the molecular composite is already present as the electrolyte matrix develops. This procedure effectively decouples the cation loading levels required for maximum ionic conductivity from electrolyte physical properties associated with condensation agent loading levels by utilizing the inverse relationship discovered between condensation agent loading and the time domain of the aging step.
MacLennan, Donald A.; Turner, Brian P.; Gitsevich, Aleksandr; Bass, Gary K.; Dolan, James T.; Kipling, Kent; Kirkpatrick, Douglas A.; Leng, Yongzhang; Levin, Izrail; Roy, Robert J.; Shanks, Bruce; Smith, Malcolm; Trimble, William C.; Tsai, Peter
2001-01-01
A jacketed lamp bulb envelope includes a ceramic cup having an open end and a partially closed end, the partially closed end defining an aperture, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material at least partially covering a portion of the bulb not abutting the aperture. The reflective ceramic material may substantially fill an interior volume of the ceramic cup not occupied by the bulb. The ceramic cup may include a structural feature for aiding in alignment of the jacketed lamp bulb envelope in a lamp. The ceramic cup may include an external flange about a periphery thereof. One example of a jacketed lamp bulb envelope includes a ceramic cup having an open end and a closed end, a ceramic washer covering the open end of the ceramic cup, the washer defining an aperture therethrough, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material filling an interior volume of the ceramic cup not occupied by the bulb. A method of packing a jacketed lamp bulb envelope of the type comprising a ceramic cup with a lamp bulb disposed therein includes the steps of filling the ceramic cup with a flowable slurry of reflective material, and applying centrifugal force to the cup to pack the reflective material therein.
NASA Astrophysics Data System (ADS)
Maxwell, J. L.; Webb, N. D.; Espinoza, M.; Cook, S.; Houts, M.; Kim, T.
Nuclear Thermal Propulsion (NTP) is an indispensable technology for the manned exploration of the solar system. By using Hyperbaric Pressure Laser Chemical Vapor Deposition (HP-LCVD), the authors propose to design and build a promising next-generation fuel element composed of uranium carbide UC embedded in a latticed matrix of highly refractory Ta4HfC5 for an NTP rocket capable of sustaining temperatures up to 4000 K, enabling an Isp of up to 1250 s. Furthermore, HP-LCVD technology can also be harnessed to enable 3D rapid prototyping of a variety of materials including metals, ceramics and composites, opening up the possibility of in-space fabrication of components, replacement parts, difficult-to-launch solar sails and panels and a variety of other space structures. Additionally, rapid prototyping with HP-LCVD makes a feasible "live off the land" strategy of interplanetary and interstellar exploration  the precursors commonly used in the technology are found, often in abundance, on other solar system bodies either as readily harvestable gas (e.g. methane) or as a raw material that could be converted into a suitable precursor (e.g. iron oxide into ferrocene on Mars).
Evaluation of surface roughness and polishing techniques for new ceramic materials.
Campbell, S D
1989-05-01
The surface roughness of crown and bridge materials should be minimized to obtain optimal biocompatability. This study used scanning electron microscopy to evaluate the effect of polishing procedures on two all-ceramic crown materials (Dicor and Cerestore). The "as formed," unpolished specimens of both Dicor and Cerestore materials presented a rough surface. It was found that any attempt to polish the Cerestore coping material resulted in an extremely rough surface. Finishing of the Dicor ceramic resulted in a smoother but pitted surface. Polishing of both ceramic materials resulted in a surface that was rougher than the glazed metal ceramic controls. The smoothest finish was obtained when the glazed veneer (Cerestore) and shading porcelain (Dicor) were applied to the all-ceramic materials.
Solid-phase materials for chelating metal ions and methods of making and using same
Harrup, Mason K.; Wey, John E.; Peterson, Eric S.
2003-06-10
A solid material for recovering metal ions from aqueous streams, and methods of making and using the solid material, are disclosed. The solid material is made by covalently bonding a chelating agent to a silica-based solid, or in-situ condensing ceramic precursors along with the chelating agent to accomplish the covalent bonding. The chelating agent preferably comprises a oxime type chelating head, preferably a salicylaldoxime-type molecule, with an organic tail covalently bonded to the head. The hydrocarbon tail includes a carbon-carbon double bond, which is instrumental in the step of covalently bonding the tail to the silica-based solid or the in-situ condensation. The invented solid material may be contacted directly with aqueous streams containing metal ions, and is selective to ions such as copper (II) even in the presence of such ions as iron (III) and other materials that are present in earthen materials. The solid material with high selectivity to copper may be used to recover copper from mining and plating industry streams, to replace the costly and toxic solvent extraction steps of conventional copper processing.
Droplet size prediction in ultrasonic nebulization for non-oxide ceramic powder synthesis.
Muñoz, Mariana; Goutier, Simon; Foucaud, Sylvie; Mariaux, Gilles; Poirier, Thierry
2018-03-01
Spray pyrolysis process has been used for the synthesis of non-oxide ceramic powders from liquid precursors in the Si/C/N system. Particles with a high thermal stability and with variable composition and size distribution have been obtained. In this process, the mechanisms involved in precursor decomposition and gas phase recombination of species are still unknown. The final aim of this work consists in improving the whole process comprehension by an experimental/modelling approach that helps to connect the synthesized particles characteristics to the precursor properties and process operating parameters. It includes the following steps: aerosol formation by a piezoelectric nebulizer, its transport and the chemical-physical phenomena involved in the reaction processes. This paper focuses on the aerosol characterization to understand the relationship between the liquid precursor properties and the liquid droplet diameter distribution. Liquids with properties close to the precursor of interest (hexamethyldisilazane) have been used. Experiments have been performed using a shadowgraphy technique to determine the drop size distribution of the aerosol. For all operating parameters of the nebulizer device and liquids used, bimodal droplet size distributions have been obtained. Correlations proposed in the literature for the droplet size prediction by ultrasonic nebulization were used and adapted to the specific nebulizer device used in this study, showing rather good agreement with experimental values. Copyright © 2017 Elsevier B.V. All rights reserved.
A new powder production route for transparent spinel windows: powder synthesis and window properties
NASA Astrophysics Data System (ADS)
Cook, Ronald; Kochis, Michael; Reimanis, Ivar; Kleebe, Hans-Joachim
2005-05-01
Spinel powders for the production of transparent polycrystalline ceramic windows have been produced using a number of traditional ceramic and sol-gel methods. We have demonstrated that magnesium aluminate spinel powders produced from the reaction of organo-magnesium compounds with surface modified boehmite precursors can be used to produce high quality transparent spinel parts. The new powder production method allows fine control over the starting particle size, size distribution, purity and stoichiometry. The new process involves formation of a boehmite sol-gel from the hydrolysis of aluminum alkoxides followed by surface modification of the boehmite nanoparticles using carboxylic acids. The resulting surface modified boehmite nanoparticles can then be metal exchanged at room temperature with magnesium acetylacetonate to make a precursor powder that is readily transformed into pure phase spinel.
NASA Astrophysics Data System (ADS)
Zhang, Jun-Jie; Kawamoto, Yoji; Dai, Shi-Xun; Zhang, Li-Yan; Hu, Li-Li
2004-06-01
New oxyfluoride glasses and glass ceramic codoped with Nd3+, Yb3+ and Ho3+ were prepared. The x-ray diffraction analysis revealed that the heat treatments of the oxyfluoride glasses could cause the precipitation of (Nd3+, Yb3+, Ho3+)-doped fluorite-type crystals. Very strong green up-conversion luminescence due to the Ho3+: (5F4, 5S2)rightarrow5I8 transition under 800-nm excitation was observed in these transparent glass ceramics. The intensity of the green up-conversion luminescence in a 1-mol% YbF3-containing glass ceramic was found to be about 120 times stronger than that in the precursor oxyfluoride glass. The reason for the highly efficient Ho3+ up-conversion luminescence in the oxyfluoride glass ceramics is discussed.
Consumable core for manufacture of composite articles and related method
Taxacher, Glenn Curtis; de Diego, Peter; Gray, Paul Edward; Monaghan, Philip Harold
2017-09-05
Systems, methods and devices adapted to ease manufacture of composite articles (e.g., ceramic composite articles), particularly composite articles which include a hollow feature are disclosed. In one embodiment, a system includes: a consumable core formed to be disposed within an inner portion of a composite precursor, the consumable core adapted to convert into an infiltrant during a manufacturing process and infiltrate the composite precursor.
Acid emissions monitoring needs in ceramic tile industry: challenges derived from new policy trends
NASA Astrophysics Data System (ADS)
Celades, Irina; Gomar, Salvador; Romero, Fernando; Chauhan, Amisha; Delpech, Bertrand; Jouhara, Hussam
2017-11-01
The emission of acid compounds during the manufacture of ceramic tiles is strongly related to the presence of precursors in the raw materials and/or fuels used, with some exceptions such as the production of thermal NOX. The stages with the potential to produce significant emissions of these compounds have been identified as the suspension spray drying and tile firing stages. The monitoring of emission levels of acid pollutants in these stages has turned in a great importance issue from a regulatory and industrial aspect. The DREAM project (https://www.spire2030.eu/dream) will tackle the regulation of acidic emissions focusing in the firing stage. The initial stages of the project have made it possible to identify the design requirements for the monitoring system. This will allow the control of acid pollutants emissions and other key parameters such as pressure, flow, temperature and humidity. One of the tasks developed has been the review and compilation of current emissions monitoring systems detailing technical specifications such as: position (in situ or extractive), measurement principle and frequency. The future policy trends in air pollution are encouraging the continuous monitoring across the European industry. The present document assesses the advantages regarding environmental impact control, highlighting the main challenges for the ceramic tile industry.
Nie, Longhui; Zheng, Yingqiu; Yu, Jiaguo
2014-09-14
Pt/honeycomb ceramic (Pt/HC) catalysts with ultra-low Pt content (0.005-0.055 wt%) were for the first time prepared by an impregnation of honeycomb ceramics with Pt precursor and NaBH4-reduction combined method. The microstructures, morphologies and textural properties of the resulting samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The obtained Pt/HC catalysts were used for catalytic oxidative decomposition of formaldehyde (HCHO) at room temperature. It was found that the as-prepared Pt/HC catalysts can efficiently decompose HCHO in air into CO2 and H2O at room temperature. The catalytic activity of the Pt/HC catalysts increases with increasing the Pt loading in the range of 0.005-0.013 wt%, and the further increase of the Pt loading does not obviously improve catalytic activity. From the viewpoint of cost and catalytic performance, 0.013 wt% Pt loading is the optimal Pt loading amount, and the Pt/HC catalyst with 0.013 wt% Pt loading also exhibited good catalytic stability. Considering practical applications, this work will provide new insights into the low-cost and large-scale fabrication of advanced catalytic materials for indoor air purification.
Method for producing ceramic particles and agglomerates
Phillips, Jonathan; Gleiman, Seth S.; Chen, Chun-Ku
2001-01-01
A method for generating spherical and irregularly shaped dense particles of ceramic oxides having a controlled particle size and particle size distribution. An aerosol containing precursor particles of oxide ceramics is directed into a plasma. As the particles flow through the hot zone of the plasma, they melt, collide, and join to form larger particles. If these larger particles remain in the hot zone, they continue melting and acquire a spherical shape that is retained after they exit the hot zone, cool down, and solidify. If they exit the hot zone before melting completely, their irregular shape persists and agglomerates are produced. The size and size distribution of the dense product particles can be controlled by adjusting several parameters, the most important in the case of powder precursors appears to be the density of powder in the aerosol stream that enters the plasma hot zone. This suggests that particle collision rate is responsible for determining ultimate size of the resulting sphere or agglomerate. Other parameters, particularly the gas flow rates and the microwave power, are also adjusted to control the particle size distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niihara, Koichi; Ishizaki, Kozo; Isotani, Mitsuo
This volume contains selected papers presented at a workshop by the Japan Fine Ceramics Center, `Materials Processing and Design Through Better Control of Grain Boundaries: Emphasizing Fine Ceramics II,` which was held March 17-19, 1994, in Koda-cho, Aichi, Japan. The focus of the workshop was the application of grain boundary phenomena to materials processing and design. The topics covered included electronic materials, evaluation methods, structural materials, and interfaces. Also included is an illuminating overview of the current status of work on grain boundary assisted materials processing and design, particularly for fine ceramics. The volume`s chapter titles are: Electron Microscopy, Evaluation,more » Grain Boundary Control and Design, Functional Ceramics, Composite Materials, Synthesis and Sintering, and Mechanical Properties.« less
Ceramic electrolyte coating methods
Seabaugh, Matthew M.; Swartz, Scott L.; Dawson, William J.; McCormick, Buddy E.
2004-10-12
Processes for preparing aqueous suspensions of a nanoscale ceramic electrolyte material such as yttrium-stabilized zirconia. The invention also includes a process for preparing an aqueous coating slurry of a nanoscale ceramic electrolyte material. The invention further includes a process for depositing an aqueous spray coating slurry including a ceramic electrolyte material on pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.
Clinical application of bio ceramics
NASA Astrophysics Data System (ADS)
Anu, Sharma; Gayatri, Sharma
2016-05-01
Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.
Clinical application of bio ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anu, Sharma, E-mail: issaranu@gmail.com; Gayatri, Sharma, E-mail: sharmagayatri@gmail.com
Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.
[Research on the aging of all-ceramics restoration materials].
Zhang, Dongjiao; Chen, Xinmin
2011-10-01
All-ceramic crowns and bridges have been widely used for dental restorations owing to their excellent functionality, aesthetics and biocompatibility. However, the premature clinical failure of all-ceramic crowns and bridges may easily occur when they are subjected to the complex environment of oral cavity. In the oral environment, all-ceramic materials are prone to aging. Aging can lead all-ceramic materials to change color, to lower bending strength, and to reduce anti-fracture toughness. There are many factors affecting the aging of the all-ceramic materials, for example, the grain size, the type of stabilizer, the residual stress and the water environment. In order to analyze the aging behavior, to optimize the design of all-ceramic crowns and bridges, and to evaluate the reliability and durability, we review in this paper recent research progress of aging behavior for all-ceramics restoration materials.
Fabrication of ceramic layer-by-layer infrared wavelength photonic band gap crystals
NASA Astrophysics Data System (ADS)
Kang, Henry Hao-Chuan
Photonic band gap (PBG) crystals, also known as photonic crystals, are periodic dielectric structures which form a photonic band gap that prohibit the propagation of electromagnetic (EM) waves of certain frequencies at any incident angles. Photonic crystals have several potential applications including zero-threshold semiconductor lasers, the inhibiting spontaneous emission, dielectric mirrors, and wavelength filters. If defect states are introduced in the crystals, light can be guided from one location to another or even a sharp bending of light in submicron scale can be achieved. This generates the potential for optical waveguide and optical circuits, which will contribute to the improvement in the fiber-optic communications and the development of high-speed computers. The goal of this dissertation research is to explore techniques for fabricating 3D ceramic layer-by-layer (LBL) photonic crystals operating in the infrared frequency range, and to characterize the infilling materials properties that affect the fabrication process as well as the structural and optical properties of the crystals. While various approaches have been reported in literature for the fabrication of LBL structure, the uniqueness of this work ties with its cost-efficiency and relatively short process span. Besides, very few works have been reported on fabricating ceramic LBL crystals at mid-IR frequency range so far. The fabrication techniques reported here are mainly based on the concepts of microtransfer molding with the use of polydimethyl siloxane (PDMS) as molds/stamps. The infilling materials studied include titanium alkoxide precursors and aqueous suspensions of nanosize titania particles (slurries). Various infilling materials were synthesized to determine viscosities, effects on drying and firing shrinkages, effects on film surface roughness, and their moldability. Crystallization and phase transformation of the materials were also monitored using DTA, TGA and XRD. Mutilayer crystal structures of 2.5 and 1.0 mum periodicity have been successfully built. The structures of the fabricated crystals are inspected with scanning electron microscopy (SEM) and the optical characteristics are examined with optical microscopy and FtIR spectroscopy.
Tang, Yuanyuan; Chan, Siu-Wai; Shih, Kaimin
2014-06-01
A promising strategy for effectively incorporating metal-containing waste materials into a variety of ceramic products was devised in this study. Elemental analysis confirmed that copper was the predominant metal component in the collected electroplating sludge, and aluminum was the predominant constituent of waterworks sludge collected in Hong Kong. The use of waterworks sludge as an aluminum-rich precursor material to facilitate copper stabilization under thermal conditions provides a promising waste-to-resource strategy. When sintering the mixture of copper sludge and the 900 °C calcined waterworks sludge, the CuAl2O4 spinel phase was first detected at 650 °C and became the predominant product phase at temperatures higher than 850 °C. Quantification of the XRD pattern using the Rietveld refinement method revealed that the weight of the CuAl2O4 spinel phase reached over 50% at 850 °C. The strong signals of the CuAl2O4 phase continued until the temperature reached 1150 °C, and further sintering initiated the generation of the other copper-hosting phases (CuAlO2, Cu2O, and CuO). The copper stabilization effect was evaluated by the copper leachability of the CuAl2O4 and CuO via the prolonged leaching experiments at a pH value of 4.9. The leaching results showed that the CuAl2O4 phase was superior to the CuAlO2 and CuO phases for immobilizing hazardous copper over longer leaching periods. The findings clearly indicate that spinel formation is the most crucial metal stabilization mechanism when sintering multiphase copper sludge with aluminum-rich waterworks sludge, and suggest a promising and reliable technique for reusing both types of sludge waste for ceramic materials. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hunt, T.K.; Novak, R.F.
1991-05-07
An improved active metal braze filler material is provided in which the coefficient of thermal expansion of the braze filler is more closely matched with that of the ceramic and metal, or two ceramics, to provide ceramic to metal, or ceramic to ceramic, sealed joints and articles which can withstand both high temperatures and repeated thermal cycling without failing. The braze filler material comprises a mixture of a material, preferably in the form of a powder, selected from the group consisting of molybdenum, tungsten, silicon carbide and mixtures thereof, and an active metal filler material selected from the group consisting of alloys or mixtures of nickel and titanium, alloys or mixtures of nickel and zirconium, alloys or mixtures of nickel, titanium, and copper, alloys or mixtures of nickel, titanium, and zirconium, alloys or mixtures of niobium and nickel, alloys or mixtures of niobium and zirconium, alloys or mixtures of niobium and titanium, alloys or mixtures of niobium, titanium, and nickel, alloys or mixtures of niobium, zirconium, and nickel, and alloys or mixtures of niobium, titanium, zirconium, and nickel. The powder component is selected such that its coefficient of thermal expansion will effect the overall coefficient of thermal expansion of the braze material so that it more closely matches the coefficients of thermal expansion of the ceramic and metal parts to be joined. 3 figures.
Hunt, Thomas K.; Novak, Robert F.
1991-01-01
An improved active metal braze filler material is provided in which the coefficient of thermal expansion of the braze filler is more closely matched with that of the ceramic and metal, or two ceramics, to provide ceramic to metal, or ceramic to ceramic, sealed joints and articles which can withstand both high temperatures and repeated thermal cycling without failing. The braze filler material comprises a mixture of a material, preferably in the form of a powder, selected from the group consisting of molybdenum, tungsten, silicon carbide and mixtures thereof, and an active metal filler material selected from the group consisting of alloys or mixtures of nickel and titanium, alloys or mixtures of nickel and zirconium, alloys or mixtures of nickel, titanium, and copper, alloys or mixtures of nickel, titanium, and zirconium, alloys or mixtures of niobium and nickel, alloys or mixtures of niobium and zirconium, alloys or mixtures of niobium and titanium, alloys or mixtures of niobium, titanium, and nickel, alloys or mixtures of niobium, zirconium, and nickel, and alloys or mixtures of niobium, titanium, zirconium, and nickel. The powder component is selected such that its coefficient of thermal expansion will effect the overall coefficient of thermal expansion of the braze material so that it more closely matches the coefficients of thermal expansion of the ceramic and metal parts to be joined.
Updating Classifications of Ceramic Dental Materials: A Guide to Material Selection.
McLaren, Edward A; Figueira, Johan
2015-06-01
The indications for and composition of today's dental ceramic materials serve as the basis for determining the appropriate class of ceramics to use for a given case. By understanding the classifications, composition, and characteristics of the latest all-ceramic materials, which are presented in this article in order of most to least conservative, dentists and laboratory technicians can best determine the ideal material for a particular treatment.
Environment Conscious Ceramics (Ecoceramics): An Eco-Friendly Route to Advanced Ceramic Materials
NASA Technical Reports Server (NTRS)
Singh, M.
2001-01-01
Environment conscious ceramics (Ecoceramics) are a new class of materials, which can be produced with renewable natural resources (wood) or wood wastes (wood sawdust). This technology provides an eco-friendly route to advanced ceramic materials. Ecoceramics have tailorable properties and behave like ceramic materials manufactured by conventional approaches. Silicon carbide-based ecoceramics have been fabricated by reactive infiltration of carbonaceous preforms by molten silicon or silicon-refractory metal alloys. The fabrication approach, microstructure, and mechanical properties of SiC-based ecoceramics are presented.
Bakeman, E M; Rego, N; Chaiyabutr, Y; Kois, J C
2015-01-01
This study evaluated the influence of ceramic thickness and ceramic materials on fracture resistance of posterior partial coverage ceramic restorations. Forty extracted molars were allocated into four groups (n=10) to test for two variables: 1) the thickness of ceramic (1 mm or 2 mm) and 2) the ceramic materials (a lithium disilicate glass-ceramic [IPS e.max] or leucite-reinforced glass ceramic [IPS Empress]). All ceramic restorations were luted with resin cement (Variolink II) on the prepared teeth. These luted specimens were loaded to failure in a universal testing machine, in the compression mode, with a crosshead speed of 1.0 mm/min. The data were analyzed using two-way analysis of variance and the Tukey Honestly Significantly Different multiple comparison test (α =0.05). The fracture resistance revealed a significant effect for materials (p<0.001); however, the thickness of ceramic was not significant (p=0.074), and the interaction between the thickness of ceramic and the materials was not significant (p=0.406). Mean (standard deviation) fracture resistance values were as follows: a 2-mm thickness of a lithium disilicate bonded to tooth structure (2505 [401] N) revealed a significantly higher fracture resistance than did a 1-mm thickness of leucite-reinforced (1569 [452] N) and a 2-mm thickness of leucite-reinforced ceramic bonded to tooth structure (1716 [436] N) (p<0.05). There was no significant difference in fracture resistance values between a lithium disilicate ceramic at 1-mm thickness (2105 [567] N) and at 2-mm thickness. Using a lithium disilicate glass ceramic for partial coverage restoration significantly improved fracture resistance compared to using a leucite-reinforced glass ceramic. The thickness of ceramic had no significant effect on fracture resistance when the ceramics were bonded to the underlying tooth structure.
Free-standing oxide superconducting articles
Wu, X.D.; Muenchausen, R.E.
1993-12-14
A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template layer.
Template-assisted mineral formation via an amorphous liquid phase precursor route
NASA Astrophysics Data System (ADS)
Amos, Fairland F.
The search for alternative routes to synthesize inorganic materials has led to the biomimetic route of producing ceramics. In this method, materials are manufactured at ambient temperatures and in aqueous solutions with soluble additives and insoluble matrix, similar to the biological strategy for the formation of minerals by living organisms. Using this approach, an anionic polypeptide additive was used to induce an amorphous liquid-phase precursor to either calcium carbonate or calcium phosphate. This precursor was then templated on either organic or inorganic substrates. Non-equilibrium morphologies, such as two-dimensional calcium carbonate films, one-dimensional calcium carbonate mesostructures and "molten" calcium phosphate spherulites were produced, which are not typical of the traditional (additive-free) solution grown crystals in the laboratory. In the study of calcium carbonate, the amorphous calcium carbonate mineral formed via the liquid-phase precursor, either underwent a dissolution-recrystallization event or a pseudo-solid-state transformation to produce different morphologies and polymorphs of the mineral. Discrete or aggregate calcite crystals were formed via the dissolution of the amorphous phase to allow the reprecipitation of the stable crystal. Non-equilibrium morphologies, e.g., films, mesotubules and mesowires were templated using organic and inorganic substrates and compartments. These structures were generated via an amorphous solid to crystalline solid transformation. Single crystalline tablets and mesowires of aragonite, which are reported to be found only in nature as skeletal structures of marine organisms, such as mollusk nacre and echinoderm teeth, were successfully synthesized. These biomimetic structures were grown via the polymer-induced liquid-phase precursor route in the presence of magnesium. Only low magnesium-bearing calcite was formed in the absence of the polymer. A similar approach of using a polymeric additive was implemented in calcium phosphate. Spherulitic crystals and films, seemingly formed from a molten state, were produced. These structures served as nucleating surfaces for the radial formation of calcium oxalate minerals. The composite calcium phosphate-calcium oxalate assemblies are similar to the core-shell structures found in certain kidney stones.
Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar
2012-01-01
Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044
Functional Polymer Opals and Porous Materials by Shear-Induced Assembly of Tailor-Made Particles.
Gallei, Markus
2018-02-01
Photonic band-gap materials attract enormous attention as potential candidates for a steadily increasing variety of applications. Based on the preparation of easily scalable monodisperse colloids, such optically attractive photonic materials can be prepared by an inexpensive and convenient bottom-up process. Artificial polymer opals can be prepared by shear-induced assembly of core/shell particles, yielding reversibly stretch-tunable materials with intriguing structural colors. This feature article highlights recent developments of core/shell particle design and shear-induced opal formation with focus on the combination of hard and soft materials as well as crosslinking strategies. Structure formation of opal materials relies on both the tailored core/shell architecture and the parameters for polymer processing. The emphasis of this feature article is on elucidating the particle design and incorporation of addressable moieties, i.e., stimuli-responsive polymers as well as elaborated crosslinking strategies for the preparation of smart (inverse) opal films, inorganic/organic opals, and ceramic precursors by shear-induced ordering. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
SPS-RS technique for solid-phase “in situ” synthesis of biocompatible ZrO2 porous ceramics
NASA Astrophysics Data System (ADS)
Shichalin, O. O.; Medkov, M. A.; Grishchenko, D. N.; Mayorov, V. Yu; Fedorets, A. N.; Belov, A. A.; Golub, A. V.; Gridasova, E. A.; Papynov, E. K.
2018-02-01
The prospective method of spark plasma sintering-reaction synthesis (SPS-RS) for fabrication of ceramics based on ZrO2 and biocompatible with living tissue is presented. Nanostructured ceramics has high mechanical strength (more than 400 MPa) and controlled porosity depending on specified sintering conditions. Biocompatible phases Ca10(PO4)6(OH)2 are formed “in situ” during SPS sintering of ZrO2 powder due to chemical interaction of phosphate precursors preliminary introduced into the mixture. The effective method to improve (to develop) porous structure of bioceramics obtained by SPS or SPS-RS techniques using poreforming agent (carbon black) is proposed. Suggested original SPS-RS “in situ” technique provides fabrication of new ZrO2 ceramics containing biocompatible phosphate components and possessing unique structural and mechanical characteristics. Such ceramics is indispensable for bone-ceramic implants that are able to activate processes of osteogenesis during bone tissue recovery.
Asai, Tetsuya; Kazama, Ryunosuke; Fukushima, Masayoshi; Okiji, Takashi
2010-11-01
Controversy prevails over the effect of overglazing on the fracture strength of ceramic materials. Therefore, the effects of different surface finishes on the compressive fracture strength of machinable ceramic materials were investigated in this study. Plates prepared from four commercial brands of ceramic materials were either surface-polished or overglazed (n=10 per ceramic material for each surface finish), and bonded to flat surfaces of human dentin using a resin cement. Loads at failure were determined and statistically analyzed using two-way ANOVA and Bonferroni test. Although no statistical differences in load value were detected between polished and overglazed groups (p>0.05), the fracture load of Vita Mark II was significantly lower than those of ProCAD and IPS Empress CAD, whereas that of IPS e.max CAD was significantly higher than the latter two ceramic materials (p<0.05). It was concluded that overglazed and polished surfaces produced similar compressive fracture strengths irrespective of the machinable ceramic material tested, and that fracture strength was material-dependent.
A New Biocompatible and Antibacterial Phosphate Free Glass-Ceramic for Medical Applications
NASA Astrophysics Data System (ADS)
Cabal, Belén; Alou, Luís; Cafini, Fabio; Couceiro, Ramiro; Sevillano, David; Esteban-Tejeda, Leticia; Guitián, Francisco; Torrecillas, Ramón; Moya, José S.
2014-06-01
In the attempt to find valid alternatives to classic antibiotics and in view of current limitations in the efficacy of antimicrobial-coated or loaded biomaterials, this work is focused on the development of a new glass-ceramic with antibacterial performance together with safe biocompatibility. This bactericidal glass-ceramic composed of combeite and nepheline crystals in a residual glassy matrix has been obtained using an antimicrobial soda-lime glass as a precursor. Its inhibitory effects on bacterial growth and biofilm formation were proved against five biofilm-producing reference strains. The biocompatibility tests by using mesenchymal stem cells derived from human bone indicate an excellent biocompatibility.
A New Biocompatible and Antibacterial Phosphate Free Glass-Ceramic for Medical Applications
Cabal, Belén; Alou, Luís; Cafini, Fabio; Couceiro, Ramiro; Sevillano, David; Esteban-Tejeda, Leticia; Guitián, Francisco; Torrecillas, Ramón; Moya, José S.
2014-01-01
In the attempt to find valid alternatives to classic antibiotics and in view of current limitations in the efficacy of antimicrobial-coated or loaded biomaterials, this work is focused on the development of a new glass-ceramic with antibacterial performance together with safe biocompatibility. This bactericidal glass-ceramic composed of combeite and nepheline crystals in a residual glassy matrix has been obtained using an antimicrobial soda-lime glass as a precursor. Its inhibitory effects on bacterial growth and biofilm formation were proved against five biofilm-producing reference strains. The biocompatibility tests by using mesenchymal stem cells derived from human bone indicate an excellent biocompatibility. PMID:24961911
Stephens, Jr., John J.; Hosking, F. Michael; Yost, Frederick G.
2003-12-16
A binary allow braze composition has been prepared and used in a bonded article of ceramic-ceramic and ceramic-metal materials. The braze composition comprises greater than approximately 95 wt % silver, greater than approximately 2 wt % hafnium and less than approximately 4.1 wt % hafnium, and less than approximately 0.2 wt % trace elements. The binary braze alloy is used to join a ceramic material to another ceramic material or a ceramic material, such as alumina, quartz, aluminum nitride, silicon nitride, silicon carbide, and mullite, to a metal material, such as iron-based metals, cobalt-based metals, nickel-based metals, molybdenum-based metals, tungsten-based metals, niobium-based metals, and tantalum-based metals. A hermetic bonded article is obtained with a strength greater than 10,000 psi.
NASA Technical Reports Server (NTRS)
Levine, Stanley R. (Editor)
1992-01-01
The present volume discusses ceramics and ceramic-matrix composites in prospective aerospace systems, monolithic ceramics, transformation-toughened and whisker-reinforced ceramic composites, glass-ceramic matrix composites, reaction-bonded Si3N4 and SiC composites, and chemical vapor-infiltrated composites. Also discussed are the sol-gel-processing of ceramic composites, the fabrication and properties of fiber-reinforced ceramic composites with directed metal oxidation, the fracture behavior of ceramic-matrix composites (CMCs), the fatigue of fiber-reinforced CMCs, creep and rupture of CMCs, structural design methodologies for ceramic-based materials systems, the joining of ceramics and CMCs, and carbon-carbon composites.
Heintze, S D; Zellweger, G; Cavalleri, A; Ferracane, J
2006-02-01
The aim of the study was to evaluate two ceramic materials as possible substitutes for enamel using two wear simulation methods, and to compare both methods with regard to the wear results for different materials. Flat specimens (OHSU n=6, Ivoclar n=8) of one compomer and three composite materials (Dyract AP, Tetric Ceram, Z250, experimental composite) were fabricated and subjected to wear using two different wear testing methods and two pressable ceramic materials as stylus (Empress, experimental ceramic). For the OHSU method, enamel styli of the same dimensions as the ceramic stylus were fabricated additionally. Both wear testing methods differ with regard to loading force, lateral movement of stylus, stylus dimension, number of cycles, thermocycling and abrasive medium. In the OHSU method, the wear facets (mean vertical loss) were measured using a contact profilometer, while in the Ivoclar method (maximal vertical loss) a laser scanner was used for this purpose. Additionally, the vertical loss of the ceramic stylus was quantified for the Ivoclar method. The results obtained from each method were compared by ANOVA and Tukey's test (p<0.05). To compare both wear methods, the log-transformed data were used to establish relative ranks between material/stylus combinations and assessed by applying the Pearson correlation coefficient. The experimental ceramic material generated significantly less wear in Tetric Ceram and Z250 specimens compared to the Empress stylus in the Ivoclar method, whereas with the OHSU method, no difference between the two ceramic antagonists was found with regard to abrasion or attrition. The wear generated by the enamel stylus was not statistically different from that generated by the other two ceramic materials in the OHSU method. With the Ivoclar method, wear of the ceramic stylus was only statistically different when in contact with Tetric Ceram. There was a close correlation between the attrition wear of the OHSU and the wear of the Ivoclar method (Pearson coefficient 0.83, p=0.01). Pressable ceramic materials can be used as a substitute for enamel in wear testing machines. However, material ranking may be affected by the type of ceramic material chosen. The attrition wear of the OHSU method was comparable with the wear generated with the Ivoclar method.
Ceramic matrix composite article and process of fabricating a ceramic matrix composite article
Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert
2016-01-12
A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.
Wei, Dan; Chen, Lixin; Xu, Tingting; He, Weiqi; Wang, Yi
2016-06-21
A preceramic polymer of B,B',B''-(dimethyl)ethyl-acrylate-silyloxyethyl-borazine was synthesized by three steps from a molecular single-source precursor and characterized by Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectrometry. Six-member borazine rings and acrylate groups were effectively introduced into the preceramic polymer to activate UV photo-induced polymerization. Photo-Differential Scanning Calorimetry (Photo-DSC) and real-time FTIR techniques were adapted to investigate the photo-polymerization process. The results revealed that the borazine derivative exhibited dramatic activity by UV polymerization, the double-bond conversion of which reached a maximum in 40 s. Furthermore, the properties of the pyrogenetic products were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD), which proved the ceramic annealed at 1100 °C retained the amorphous phase.
NASA Technical Reports Server (NTRS)
Philipp, Warren H.
1990-01-01
Synthesis, properties, and potential applications in ceramic processing for two polysiloxane silica precursors derived from the controlled hydrolysis of tetraethoxysilane (TEOS) are presented. The higher molecular weight TEOS-A is a thick adhesive liquid of viscosity 8000 to 12,000 c.p. having a SiO2 char yield of about 55 percent. The lower molecular weight TEOS-B is a more fluid liquid of viscosity 150 to 200 c.p. having a SiO2 char yield of about 52 percent. The acid catalyzed hydrolysis of TEOS to hydrated silica gel goes through a series of polysiloxane intermediates. The rate of this transition increases with the quantity of water added to the TEOS; thus, for ease of polymer isolation, the amount of water added must be carefully determined so as to produce the desired polymer in a reasonable time. The water to TEOS mole ratio falls in the narrow range of 1.05 for TEOS-A and 0.99 for TEOS-B. Further polymerization or gelation is prevented by storing at -5 C in a freezer. Both polysiloxanes thermoset to a glassy solid at 115 C. The liquid polymers are organic in nature in that they are miscible with toluene and ethanol, slightly souble in heptane, but immiscible with water. For both polymers, results on viscosity versus time are given at several temperatures and water additions. Based on these results, some examples of practical utilization of the precursors for ceramic fabrication are given.
Noda, Yukari; Nakajima, Masatoshi; Takahashi, Masahiro; Mamanee, Teerapong; Hosaka, Keiichi; Takagaki, Tomohiro; Ikeda, Masaomi; Foxton, Richard M; Tagami, Junji
2017-11-29
This study evaluated the effects of ceramic surface treatment agents on shear bond strengths to ceramic materials with and without thermocycling. Ceramic plates were prepared from feldspathic ceramic; AAA, lithium disilicate ceramic material; IPS e.max Press, zirconia ceramic; Lava. Ceramic surfaces were pretreated with one of five surface treatment agents (Clearfil PhotoBond mixed with Porcelainbond activator (PB), Clearfil SE One mixed with Porcelainbond activator (SO), Ceramic Primer (CP), Universal Primer (UP), Scotchbond Universal (SU)), and then a resin cement (Clapearl DC) was filled. After 0, 5,000, and 10,000 thermocycles, micro-shear bond strengths between ceramic-cement interfaces were determined. SU exhibited significantly lower initial bond strength to AAA and e.max than PB, SO, CP, and UP. For Lava, PB, SO, CP and SU exhibited higher initial bond strengths than UP. Thermocycles reduced bond strengths to all the ceramic materials with any surface treatment.
Ceramic fibers for matrix composites in high-temperature engine applications
Baldus; Jansen; Sporn
1999-07-30
High-temperature engine applications have been limited by the performance of metal alloys and carbide fiber composites at elevated temperatures. Random inorganic networks composed of silicon, boron, nitrogen, and carbon represent a novel class of ceramics with outstanding durability at elevated temperatures. SiBN(3)C was synthesized by pyrolysis of a preceramic N-methylpolyborosilazane made from the single-source precursor Cl(3)Si-NH-BCl(2). The polymer can be processed to a green fiber by melt-spinning, which then undergoes an intermediate curing step and successive pyrolysis. The ceramic fibers, which are presently produced on a semitechnical scale, combine several desired properties relevant for an application in fiber-reinforced ceramic composites: thermal stability, mechanical strength, high-temperature creep resistivity, low density, and stability against oxidation or molten silicon.
Method for adhesion of metal films to ceramics
Lowndes, Douglas H.; Pedraza, Anthony J.; DeSilva, Melvin J.; Kumar, Rajagopalan A.
1997-01-01
Methods for making strongly bonded metal-ceramic materials. The methods include irradiating a portion of the surface of the ceramic material with a pulsed ultraviolet laser having an energy density sufficient to effect activation of the irradiated surface of the ceramic material so that adhesion of metals subsequently deposited onto the irradiated surface is substantially increased. Advantages of the invention include (i) the need for only a small number of laser pulses at relatively low focused energy density, (ii) a smoother substrate surface, (iii) activation of the laser-treated surface which provides a chemical bond between the surface and a metal deposited thereon, (iv) only low temperature annealing is required to produce the strong metal-ceramic bond; (v) the ability to obtain strong adhesion between ceramic materials and oxidation resistant metals; (vi) ability to store the laser treated ceramic materials for later deposition of metals thereon.
Method for adhesion of metal films to ceramics
Lowndes, D.H.; Pedraza, A.J.; DeSilva, M.J.; Kumar, R.A.
1997-12-30
Methods for making strongly bonded metal-ceramic materials are disclosed. The methods include irradiating a portion of the surface of the ceramic material with a pulsed ultraviolet laser having an energy density sufficient to effect activation of the irradiated surface of the ceramic material so that adhesion of metals subsequently deposited onto the irradiated surface is substantially increased. Advantages of the invention include (i) the need for only a small number of laser pulses at relatively low focused energy density, (ii) a smoother substrate surface, (iii) activation of the laser-treated surface which provides a chemical bond between the surface and a metal deposited thereon, (iv) only low temperature annealing is required to produce the strong metal-ceramic bond; (v) the ability to obtain strong adhesion between ceramic materials and oxidation resistant metals; (vi) ability to store the laser treated ceramic materials for later deposition of metals thereon. 7 figs.
Synthesis and Useful Reactions of Organosilicon Polymeric Precursors for Ceramics
1992-04-05
composites are hot pressing, chemical vapor infiltration , reaction bonding and polymer infiltration / pyrolysis . Thus the inorganic or organometallic...to prepare preceramic polymers whose D; pyrolysis gives -99% SiC , -99.5% Si 3 N4 , or any mixture of the two by appropriate manipulation of the...the standard furnace pyrolysis of the polymer gave a ceramic of composition 96.6% SiC , 1.7% ZrC and 1.7% Si in 71% yield. Finally, (71-C
NASA Technical Reports Server (NTRS)
Singh, M.; Levine, S. R. (Technical Monitor)
2001-01-01
Ceramic joining has been recognized as an enabling technology for successful utilization of advanced ceramics and composite materials. A number of joint design and testing issues have been discussed for ceramic joints in silicon carbide-based ceramics and fiber-reinforced composites. These joints have been fabricated using an affordable, robust ceramic joining technology (ARCJoinT). The microstructure and good high temperature mechanical capability (compressive and flexural strengths) of ceramic joints in silicon carbide-based ceramics and composite materials are reported.
Laser and gain parameters at 2.7 μm of Er 3+-doped oxyfluoride transparent glass-ceramics
NASA Astrophysics Data System (ADS)
Tikhomirov, V. K.; Méndez-Ramos, J.; Rodríguez, V. D.; Furniss, D.; Seddon, A. B.
2006-07-01
The room temperature emission spectrum at about 2.7 μm corresponding to the laser transition 4I 11/2 → 4I 13/2 in Er 3+-doped nano-scaled transparent oxyfluoride glass-ceramic has been measured and stimulated emission cross-section for the transition has been calculated. The intensity of the transition has been found to be 40 times stronger and lifetime 50 times longer in the glass-ceramics compared to the precursor glass, which we show to be due to a change of frequency of the phonon involved in non-radiative de-excitation of the 4I 11/2 level from 900 cm -1 in the precursor glass to 240 cm -1 in the ensuing glass-ceramics. The absorption cross-section for the excited state absorption 4I 13/2 → 4I 11/2 has been calculated based on the experimental reciprocal emission spectrum and wavelength dependence of the gain cross-section for the lasing transition 4I 11/2 → 4I 13/2 vs population inversion has been derived. The lasing/optical amplification gain parameters, such as population inversion, pump saturation intensity and product of emission cross-section and fluorescence lifetime have been obtained at the 2.7 μm wavelength. A noteworthy result is that laser action at 2.7 μm is possible in these Er 3+-doped glass-ceramics, already not taking into account energy transfer or up-conversion processes, related to the 4I 13/2 level, which favour the population inversion.
Mechanical fatigue degradation of ceramics versus resin composites for dental restorations.
Belli, Renan; Geinzer, Eva; Muschweck, Anna; Petschelt, Anselm; Lohbauer, Ulrich
2014-04-01
For posterior partial restorations an overlap of indication exists where either ceramic or resin-based composite materials can be successfully applied. The aim of this study was to compare the fatigue resistance of modern dental ceramic materials versus dental resin composites in order to address such conflicts. Bar specimens of five ceramic materials and resin composites were produced according to ISO 4049 and stored for 14 days in distilled water at 37°C. The following ceramic materials were selected for testing: a high-strength zirconium dioxide (e.max ZirCAD, Ivoclar), a machinable lithium disilicate (e.max CAD, Ivoclar), a pressable lithium disilicate ceramic (e-max Press, Ivoclar), a fluorapatite-based glass-ceramic (e.max Ceram, Ivoclar), and a machinable color-graded feldspathic porcelain (Trilux Forte, Vita). The composite materials selected were: an indirect machinable composite (Lava Ultimate, 3M ESPE) and four direct composites with varying filler nature (Clearfil Majesty Posterior, Kuraray; GrandioSO, Voco; Tetric EvoCeram, Ivoclar-Vivadent; and CeramX Duo, Dentsply). Fifteen specimens were tested in water for initial strength (σin) in 4-point bending. Using the same test set-up, the residual flexural fatigue strength (σff) was determined using the staircase approach after 10(4) cycles at 0.5 Hz (n=25). Weibull parameters σ0 and m were calculated for the σin specimens, whereas the σff and strength loss in percentage were obtained from the fatigue experiment. The zirconium oxide ceramic showed the highest σin and σff (768 and 440 MPa, respectively). Although both lithium disilicate ceramics were similar in the static test, the pressable version showed a significantly higher fatigue resistance after cyclic loading. Both the fluorapatite-based and the feldspathic porcelain showed equivalent initial and cyclic fatigue properties. From the composites, the highest filled direct material Clearfil Majesty Posterior showed superior fatigue performance. From all materials, e.max Press and Clearfil Majesty Posterior showed the lowest strength loss (29.6% and 32%, respectively), whereas the other materials lost between 41% and 62% of their flexural strength after cyclic loading. Dental ceramics and resin composite materials show equivalent fatigue strength degradation at loads around 0.5σin values. Apart from the zirconium oxide and the lithium disilicate ceramics, resin composites generally showed better σff after 10,000 cycles than the fluorapatite glass-ceramic and the feldspathic porcelain. Resin composite restorations may be used as an equivalent alternative to glass-rich-ceramic inlays regarding mechanical performance. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
New synthesis of nanopowders of proton conducting materials. A route to densified proton ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khani, Zohreh; Taillades-Jacquin, Melanie; Taillades, Gilles
2009-04-15
Low temperature routes have been developed for the preparation of BaCe{sub 0.9}Y{sub 0.1}O{sub 2.95} (BCY10) and BaZr{sub 0.9}Y{sub 0.1}O{sub 2.95} (BZY10) in the form of nanoparticulate powders for use after densification as ceramic membranes for a proton ceramic fuel cell. These methods make use on the one hand of the chelation of metal (II), (III) and (IV) ions by acrylates (hydrogelation route) and on the other of the destabilisation and precipitation of micro-emulsions. Both routes lead to single phase yttrium doped barium cerate or zirconate perovskites, as observed by X-ray diffraction, after thermal treatment at 900 deg. C for 4more » h for BCY10 and 800 deg. C for BZY10. These temperatures, lower than those usually used for preparation of barium cerate or zirconate, lead to oxide nanoparticles of size <40 nm. Dense ceramics (>=95%) are obtained by sintering BCY10 pellets at 1350 deg. C and BZY10 pellets at 1500 deg. C for 10 h. The water uptake of compacted samples at 500 deg. C is 0.14 wt% for BCY10 and 0.26 wt% for BZY10. Total conductivities in the range 300-600 deg. C were determined using impedance spectroscopy in a humidified nitrogen atmosphere. The total conductivity was 1.8x10{sup -2} S/cm for BCY10 and 2x10{sup -3} S/cm for BZY10 at 600 deg. C. The smallest perovskite nanoparticles and highest conductivities were obtained by hydrogelation of precursor barium, zirconium, cerium and yttrium acrylates. - Graphical Abstract: Low temperature hydrogelation and micro-emulsion routes have been developed for the preparation of rare earth doped barium and zirconium cerates in the form of nanoparticulate powders for use after densification as ceramic membranes for a proton ceramic fuel cell.« less
Superconductive articles including cerium oxide layer
Wu, X.D.; Muenchausen, R.E.
1993-11-16
A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure. 7 figures.
Superconductive articles including cerium oxide layer
Wu, Xin D.; Muenchausen, Ross E.
1993-01-01
A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure.
Synthesis and optical characterization of SrHfO 3:Ce and SrZrO 3:Ce nanoparticles
NASA Astrophysics Data System (ADS)
Rétot, H.; Bessière, A.; Kahn-Harari, A.; Viana, B.
2008-03-01
Nanoparticles have recently found application fields in various scopes, such as imaging (luminescent nanosensors), or for the production of laser or scintillating transparent ceramics. This work is related to this last field, with the target of medical imaging (positron emission tomography). Very dense rare earth doped mixed oxides were studied: SrZrO 3:Ce and SrHfO 3:Ce, which are particularly adapted to this application. The phase transformations and the very high melting points of these materials (respectively 2646 °C and 2730 °C) led us to study their synthesis as nanoparticles. Using the combustion method we have obtained, at temperatures less than 1000 °C, particles of very small dimensions (10-100 nm) without impurities. First characterization of the optical properties (under UV irradiation) of the cerium ion in these perovskite matrixes, realized on the nanopowders (absorption, emission and lifetime of the cerium ion), is presented here: for both compounds, an emission at 430 nm is observed under UV irradiation, with a short decay time; these particles prepared by combustion are thus interesting precursors for ceramic scintillators.
Development of Ceramic Solid-State Laser Host Material
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Trivedi, Sudhir; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra
2009-01-01
Polycrystalline ceramic laser materials are gaining importance in the development of novel diode-pumped solid-state lasers. Compared to single-crystals, ceramic laser materials offer advantages in terms of ease of fabrication, shape, size, and control of dopant concentrations. Recently, we have developed Neodymium doped Yttria (Nd:Y2O3) as a solid-state ceramic laser material. A scalable production method was utilized to make spherical non agglomerated and monodisperse metastable ceramic powders of compositions that were used to fabricate polycrystalline ceramic material components. This processing technique allowed for higher doping concentrations without the segregation problems that are normally encountered in single crystalline growth. We have successfully fabricated undoped and Neodymium doped Yttria material up to 2" in diameter, Ytterbium doped Yttria, and erbium doped Yttria. We are also in the process of developing other sesquioxides such as scandium Oxide (Sc2O3) and Lutesium Oxide (Lu2O3) doped with Ytterbium, erbium and thulium dopants. In this paper, we present our initial results on the material, optical, and spectroscopic properties of the doped and undoped sesquioxide materials. Polycrystalline ceramic lasers have enormous potential applications including remote sensing, chem.-bio detection, and space exploration research. It is also potentially much less expensive to produce ceramic laser materials compared to their single crystalline counterparts because of the shorter fabrication time and the potential for mass production in large sizes.
Failure modes and materials design for biomechanical layer structures
NASA Astrophysics Data System (ADS)
Deng, Yan
Ceramic materials are finding increasing usage in the area of biomechanical replacements---dental crowns, hip and bone implants, etc.---where strength, wear resistance, biocompatibility, chemical durability and even aesthetics are critical issues. Aesthetic ceramic crowns have been widely used in dentistry to replace damaged or missing teeth. However, the failure rates of ceramic crowns, especially all-ceramic crowns, can be 1%˜6% per year, which is not satisfactory to patients. The materials limitations and underlying fracture mechanisms of these prostheses are not well understood. In this thesis, fundamental fracture and damage mechanisms in model dental bilayer and trilayer structures are studied. Principle failure modes are identified from in situ experimentation and confirmed by fracture mechanics analysis. In bilayer structures of ceramic/polycarbonate (representative of ceramic crown/dentin structure), three major damage sources are identified: (i) top-surface cone cracks or (ii) quasiplasticity, dominating in thick ceramic bilayers; (iii) bottom-surface radial cracks, dominating in thin ceramic bilayers. Critical load P for each damage mode are measured in six dental ceramics: Y-TZP zirconia, glass-infiltrated zirconia and alumina (InCeram), glass-ceramic (Empress II), Porcelain (Mark II and Empress) bonded to polymer substrates, as a function of ceramic thickness d in the range of 100 mum to 10 mm. P is found independent of d for mode (i) and (ii), but has a d 2 relations for mode (iii)---bottom surface radial cracking. In trilayer structures of glass/core-ceramic/polycarbonate (representing veneer porcelain/core/dentin structures), three inner fracture origins are identified: radial cracks from the bottom surface in the (i) first and (ii) second layers; and (iii) quasiplasticity in core-ceramic layer. The role of relative veneer/core thickness, d1/d 2 and materials properties is investigated for three core materials with different modulus (114--270GPa) and strength (400--1400MPa): Y-TZP zirconia, InCeram alumina and Empress II glass-ceramic. Explicit relations for the critical loads P to produce these different damage modes in bilayer and trilayer structures are developed in terms of basic material properties (modulus E, strength, hardness H and toughness T) and geometrical variables (thickness d and contact sphere radius r). These experimentally validated relations are used to design of optimal material combinations for improved fracture resistance and to predict mechanical performance of current dental materials.
Goryainova, Kristina E; Morokov, Egor S; Retinskaja, Marina V; Rusanov, Fedor S; Apresyan, Samvel V; Lebedenko, Igor Yu
2018-01-01
The aim of the present work was to compare the elastic properties and internal structure of 4 different CAD/CAM chairside materials, by the method of Scanning Impulse Acoustic Microscopy (SIAM). Four chairside CAD/CAM materials with different structures from hybrid ceramic (VITA Enamic, VITA Zahnfabrik), feldspatic ceramic (VITABlocs Mark II, VITA Zahnfabrik), leucite glass-ceramic (IPS Empress CAD, Ivoclar Vivadent) and PMMA (Telio CAD, Ivoclar Vivadent) were examined by Scanning Impulse Acoustic Microscope (SIAM). The results of micromorphological research of CAD/CAM chairside materials using SIAM method showed differences between the internal structures of these materials. The internal structure of feldspatic and glass-ceramic samples revealed the presence of pores with different sizes, from 10 to 100 microns; the structure of polymer materials rendered some isolated defects, while in the structure of hybrid material, defects were not found. Based on the results obtained from the present study, in cases of chairside production of dental crowns, it would be advisable to give preference to the blocks of hybrid ceramics. Such ceramics devoid of quite large porosity, glazing for CAD/CAM crowns made from leucite glass-ceramic and feldspatic ceramic may be an option. For these purposes, commercially available special muffle furnace for clinical and laboratory individualization and glazing of ceramic prostheses were provided. Further studies are needed to confirm the evidence emerging from the present research.
Method of sintering ceramic materials
Holcombe, Cressie E.; Dykes, Norman L.
1992-01-01
A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density.
Translucency of dental ceramics with different thicknesses.
Wang, Fu; Takahashi, Hidekazu; Iwasaki, Naohiko
2013-07-01
The increased use of esthetic restorations requires an improved understanding of the translucent characteristics of ceramic materials. Ceramic translucency has been considered to be dependent on composition and thickness, but less information is available about the translucent characteristics of these materials, especially at different thicknesses. The purpose of this study was to investigate the relationship between translucency and the thickness of different dental ceramics. Six disk-shaped specimens of 8 glass ceramics (IPS e.max Press HO, MO, LT, HT, IPS e.max CAD LT, MO, AvanteZ Dentin, and Trans) and 5 specimens of 5 zirconia ceramics (Cercon Base, Zenotec Zr Bridge, Lava Standard, Lava Standard FS3, and Lava Plus High Translucency) were prepared following the manufacturers' instructions and ground to a predetermined thickness with a grinding machine. A spectrophotometer was used to measure the translucency parameters (TP) of the glass ceramics, which ranged from 2.0 to 0.6 mm, and of the zirconia ceramics, which ranged from 1.0 to 0.4 mm. The relationship between the thickness and TP of each material was evaluated using a regression analysis (α=.05). The TP values of the glass ceramics ranged from 2.2 to 25.3 and the zirconia ceramics from 5.5 to 15.1. There was an increase in the TP with a decrease in thickness, but the amount of change was material dependent. An exponential relationship with statistical significance (P<.05) between the TP and thickness was found for both glass ceramics and zirconia ceramics. The translucency of dental ceramics was significantly influenced by both material and thickness. The translucency of all materials increased exponentially as the thickness decreased. All of the zirconia ceramics evaluated in the present study showed some degree of translucency, which was less sensitive to thickness compared to that of the glass ceramics. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
New synthesis of nanopowders of proton conducting materials. A route to densified proton ceramics
NASA Astrophysics Data System (ADS)
Khani, Zohreh; Taillades-Jacquin, Mélanie; Taillades, Gilles; Marrony, Mathieu; Jones, Deborah J.; Rozière, Jacques
2009-04-01
Low temperature routes have been developed for the preparation of BaCe 0.9Y 0.1O 2.95 (BCY10) and BaZr 0.9Y 0.1O 2.95 (BZY10) in the form of nanoparticulate powders for use after densification as ceramic membranes for a proton ceramic fuel cell. These methods make use on the one hand of the chelation of metal (II), (III) and (IV) ions by acrylates (hydrogelation route) and on the other of the destabilisation and precipitation of micro-emulsions. Both routes lead to single phase yttrium doped barium cerate or zirconate perovskites, as observed by X-ray diffraction, after thermal treatment at 900 °C for 4 h for BCY10 and 800 °C for BZY10. These temperatures, lower than those usually used for preparation of barium cerate or zirconate, lead to oxide nanoparticles of size <40 nm. Dense ceramics (⩾95%) are obtained by sintering BCY10 pellets at 1350 °C and BZY10 pellets at 1500 °C for 10 h. The water uptake of compacted samples at 500 °C is 0.14 wt% for BCY10 and 0.26 wt% for BZY10. Total conductivities in the range 300-600 °C were determined using impedance spectroscopy in a humidified nitrogen atmosphere. The total conductivity was 1.8×10 -2 S/cm for BCY10 and 2×10 -3 S/cm for BZY10 at 600 °C. The smallest perovskite nanoparticles and highest conductivities were obtained by hydrogelation of precursor barium, zirconium, cerium and yttrium acrylates.
High Temperature Tolerant Ceramic Composites Having Porous Interphases
Kriven, Waltraud M.; Lee, Sang-Jin
2005-05-03
In general, this invention relates to a ceramic composite exhibiting enhanced toughness and decreased brittleness, and to a process of preparing the ceramic composite. The ceramic composite comprises a first matrix that includes a first ceramic material, preferably selected from the group including alumina (Al2O3), mullite (3Al2O3.2SiO2), yttrium aluminate garnet (YAG), yttria stabilized zirconia (YSZ), celsian (BaAl2Si2O8) and nickel aluminate (NiAl2O4). The ceramic composite also includes a porous interphase region that includes a substantially non-sinterable material. The non-sinterable material can be selected to include, for example, alumina platelets. The platelets lie in random 3-D orientation and provide a debonding mechanism, which is independent of temperature in chemically compatible matrices. The non-sinterable material induces constrained sintering of a ceramic powder resulting in permanent porosity in the interphase region. For high temperature properties, addition of a sinterable ceramic powder to the non-sinterable material provides sufficiently weak debonding interphases. The ceramic composite can be provided in a variety of forms including a laminate, a fibrous monolith, and a fiber-reinforced ceramic matrix. In the laminated systems, intimate mixing of strong versus tough microstructures were tailored by alternating various matrix-to-interphase thickness ratios to provide the bimodal laminate.
Free-standing oxide superconducting articles
Wu, Xin D.; Muenchausen, Ross E.
1993-01-01
A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template lay This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).
Acoustic emission as a screening tool for ceramic matrix composites
NASA Astrophysics Data System (ADS)
Ojard, Greg; Goberman, Dan; Holowczak, John
2017-02-01
Ceramic matrix composites are composite materials with ceramic fibers in a high temperature matrix of ceramic or glass-ceramic. This emerging class of materials is viewed as enabling for efficiency improvements in many energy conversion systems. The key controlling property of ceramic matrix composites is a relatively weak interface between the matrix and the fiber that aids crack deflection and fiber pullout resulting in greatly increased toughness over monolithic ceramics. United Technologies Research Center has been investigating glass-ceramic composite systems as a tool to understand processing effects on material performance related to the performance of the weak interface. Changes in the interface have been shown to affect the mechanical performance observed in flexural testing and subsequent microstructural investigations have confirmed the performance (or lack thereof) of the interface coating. Recently, the addition of acoustic emission testing during flexural testing has aided the understanding of the characteristics of the interface and its performance. The acoustic emission onset stress changes with strength and toughness and this could be a quality tool in screening the material before further development and use. The results of testing and analysis will be shown and additional material from other ceramic matrix composite systems may be included to show trends.
Mörmann, Werner H; Stawarczyk, Bogna; Ender, Andreas; Sener, Beatrice; Attin, Thomas; Mehl, Albert
2013-04-01
This study determined the two-body wear and toothbrushing wear parameters, including gloss and roughness measurements and additionally Martens hardness, of nine aesthetic CAD/CAM materials, one direct resin-based nanocomposite plus that of human enamel as a control group. Two-body wear was investigated in a computer-controlled chewing simulator (1.2 million loadings, 49N at 1.7Hz; 3000 thermocycles 5/50°C). Each of the 11 groups consisted of 12 specimens and 12 enamel antagonists. Quantitative analysis of wear was carried out with a 3D-surface analyser. Gloss and roughness measurements were evaluated using a glossmeter and an inductive surface profilometer before and after abrasive toothbrushing of machine-polished specimens. Additionally Martens hardness was measured. Statistically significant differences were calculated with one-way ANOVA (analysis of variance). Statistically significant differences were found for two-body wear, gloss, surface roughness and hardness. Zirconium dioxide ceramics showed no material wear and low wear of the enamel antagonist. Two-body wear of CAD/CAM-silicate and -lithium disilicate ceramics, -hybrid ceramics and -nanocomposite as well as direct nanocomposite did not differ significantly from that of human enamel. Temporary polymers showed significantly higher material wear than permanent materials. Abrasive toothbrushing significantly reduced gloss and increased roughness of all materials except zirconium dioxide ceramics. Gloss retention was highest with zirconium dioxide ceramics, silicate ceramics, hybrid ceramics and nanocomposites. Temporary polymers showed least gloss retention. Martens hardness differed significantly among ceramics, between ceramics and composites, and between resin composites and acrylic block materials as well. All permanent aesthetic CAD/CAM block materials tested behave similarly or better with respect to two-body wear and toothbrushing wear than human enamel, which is not true for temporary polymer CAD/CAM block materials. Ceramics show the best gloss retention compared to hybrid ceramics, composites and acrylic polymers. Copyright © 2013 Elsevier Ltd. All rights reserved.
Preparation and flash sintering of MgTiO3 nanopowders obtained by the polyacrylamide gel method
NASA Astrophysics Data System (ADS)
Su, Xinghua; Bai, Ge; Zhang, Jing; Zhou, Jie; Jia, Yongjie
2018-06-01
Using a polyacrylamide gel method, phase pure and well-dispersed MgTiO3 nanopowders were prepared at 800 °C for 2 h. It was found that a high mole ratio of monomers to precursors resulted in low formation temperature of MgTiO3, due to the highly mixing homogeneity and smaller particle sizes of precursors. Sintering behaviors of MgTiO3 nanopowders under DC electric field from 500 to 800 V/cm were investigated. Nearly full dense MgTiO3 ceramics can be prepared in 30 s. An abrupt and simultaneous increase in current density and power dissipation were observed in sintering process, which are characteristics of flash sintering. The power dissipation for the flash sintering was found to be 82 mW/mm3. The densities and average grain sizes of samples increase with the increase of the electrical field strength. It was suggested that Joule heating was the main mechanism of flash sintering of MgTiO3 ceramics. Our work provides a useful route for the fabrication of dense MgTiO3 ceramics at low temperature in short time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sherman, Andrew J
A heterogeneous body having ceramic rich cermet regions in a more ductile metal matrix. The heterogeneous bodies are formed by thermal spray operations on metal substrates. The thermal spray operations apply heat to a cermet powder and project it onto a solid substrate. The cermet powder is composed of complex composite particles in which a complex ceramic-metallic core particle is coated with a matrix precursor. The cermet regions are generally comprised of complex ceramic-metallic composites that correspond approximately to the core particles. The cermet regions are approximately lenticular shaped with an average width that is at least approximately twice themore » average thickness. The cermet regions are imbedded within the matrix phase and generally isolated from one another. They have obverse and reverse surfaces. The matrix phase is formed from the matrix precursor coating on the core particles. The amount of heat applied during the formation of the heterogeneous body is controlled so that the core particles soften but do not become so fluid that they disperse throughout the matrix phase. The force of the impact on the surface of the substrate tends to flatten them. The flattened cermet regions tend to be approximately aligned with one another in the body.« less
NASA Astrophysics Data System (ADS)
Li, Shanshan; Zhu, Xingwen; Li, Jiang; Yavetskiy, Roman; Ivanov, Maxim; Liu, Binglong; Liu, Wenbin; Pan, Yubai
2017-09-01
Yttria (Y2O3) nanopowders were synthesized by a normal precipitation method using (NH4)2SO4 as dispersing agent. Pure Y2O3 powders without any other phase can be achieved by calcining the precursor at 600 °C for 4 h. The precursor and Y2O3 powders were characterized by TG-DTA, XRD, SEM and BET. In this work, 5 at.%Yb:(La0.1Y1.9)2O3 transparent ceramics were made by vacuum sintering at 1650 °C for 10 h. The in-line transmittance of the 5 at.%Yb:(La0.1Y0.9)2O3 ceramics is 81.3% at the wavelength of 1031 nm. The absorption cross-sections of the sample are calculated to be 1.20 × 10-20 cm2, 5.74 × 10-21 cm2 and 4.18 × 10-21 cm2 at 976, 951 and 906 nm, respectively. The emission cross-sections of the emission peak located at around 1031 and 1073 nm are 1.13 × 10-20 and 0.42 × 10-20 cm2, respectively.
Bioactive ceramic-based materials with designed reactivity for bone tissue regeneration
Ohtsuki, Chikara; Kamitakahara, Masanobu; Miyazaki, Toshiki
2009-01-01
Bioactive ceramics have been used clinically to repair bone defects owing to their biological affinity to living bone; i.e. the capability of direct bonding to living bone, their so-called bioactivity. However, currently available bioactive ceramics do not satisfy every clinical application. Therefore, the development of novel design of bioactive materials is necessary. Bioactive ceramics show osteoconduction by formation of biologically active bone-like apatite through chemical reaction of the ceramic surface with surrounding body fluid. Hence, the control of their chemical reactivity in body fluid is essential to developing novel bioactive materials as well as biodegradable materials. This paper reviews novel bioactive materials designed based on chemical reactivity in body fluid. PMID:19158015
Method of sintering ceramic materials
Holcombe, C.E.; Dykes, N.L.
1992-11-17
A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density. 2 figs.
Oxide glass used as inorganic template for fluorescent fluoride nanoparticles synthesis
NASA Astrophysics Data System (ADS)
Mortier, Michel; Patriarche, Gilles
2006-09-01
We report an original way to synthesise single-crystal PbF 2 nanoparticles by selective chemical attack of a bulk nanocomposite oxyfluoride glass-ceramic. Free of impurities and homogeneously doped with Er 3+ ions, the particles are of narrow size dispersion around 15 nm and weakly aggregated. The nanocrystallites emit a very intense green and blue up conversion fluorescence after infrared excitation. The doping level and the size of the particles is finely driven through the precursor glass-ceramic synthesis and composition.
1990-12-15
THE SYNTHESIS OF CERAMIC MATRIX COMPOSITES PE - 61102F FROM PRECERAMIC POLYMERS PR -9999 6. AUTHOR(S) TA - 99 J. R. Strife(l), J. P. Wesson(1 ), and H...stability at temperatures up to 15000 C. 14. SUBJECT TERMS 15. NUMBER OF PAGES 49 C- SiC composites vinylmethylsilane 16. PRICE CODE polymer precursor...vapor infiltration of fibrous preforms. More recently, the conversion of preceramic polymers as a matrix synthesis process is being considered. This
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.
1998-01-01
The development of modeling approaches for the failure analysis of ceramic-based material systems used in high temperature environments was the primary objective of this research effort. These materials have the potential to support many key engineering technologies related to the design of aeropropulsion systems. Monolithic ceramics exhibit a number of useful properties such as retention of strength at high temperatures, chemical inertness, and low density. However, the use of monolithic ceramics has been limited by their inherent brittleness and a large variation in strength. This behavior has motivated material scientists to reinforce the monolithic material with a ceramic fiber. The addition of a second ceramic phase with an optimized interface increases toughness and marginally increases strength. The primary purpose of the fiber is to arrest crack growth, not to increase strength. The material systems of interest in this research effort were laminated ceramic matrix composites, as well as two- and three- dimensional fabric reinforced ceramic composites. These emerging composite systems can compete with metals in many demanding applications. However, the ongoing metamorphosis of ceramic composite material systems, and the lack of standardized design data has in the past tended to minimize research efforts related to structural analysis. Many structural components fabricated from ceramic matrix composites (CMC) have been designed by "trial and error." The justification for this approach lies in the fact that during the initial developmental phases for a material system fabrication issues are paramount. Emphasis is placed on demonstrating feasibility rather than fully understanding the processes controlling mechanical behavior. This is understandable during periods of rapid improvements in material properties for any composite system. But to avoid the ad hoc approach, the analytical methods developed under this effort can be used to develop rational structural design protocols.
Electromechanical Materials for Cryogenic Use
NASA Technical Reports Server (NTRS)
Leidinger, Peter; Pilgrim, Steven M.
1996-01-01
Electromechanical materials can be used in smart sensor and actuator devices. Yet none performing at low temperatures are available. To meet this need, Pb((MgNi)(1/3)Ta(2/3))03 was synthesized as an electrostrictive ceramic for applications in cryogenic environments. Employing the columbite precursor route, samples with 0% to 100% Ni substitution for Mg were prepared, but only samples with Ni-substitutions less than or equal to 20% yielded primarily the desired perovskite phase. For these compositions the temperature of highest permittivity decreased linearly with increasing Ni content to yield a minimum value of -124 C for 20% Ni-substitution. This composition showed good relaxor dielectric behavior with a maximum relative permittivity of 5890 at 1 kHz. Additionally, in samples with excess MgO, the magnitude of permittivity doubled. In this effort, Pb((MgNi)(1/3)Ta(2/3))03 (PMNiTa) was fabricated to lower its transition temperature by substituting Ni for Mg successively.
Method for sealing an oxygen transport membrane assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, Javier E.; Grant, Arthur F.
An improved method of sealing a ceramic part to a solid part made of ceramic, metal, cermet or a ceramic coated metal is provided. The improved method includes placing a bond agent comprising an Al 2O 3 and SiO 2 based glass-ceramic material and organic binder material on adjoining surfaces of the ceramic part and the solid part. The assembly is heated to a first target temperature that removes or dissolves the organic binder material from the bond agent and the assembly is subjected to a second induction heating step at a temperature ramp rate of between about 100.degree. C.more » and 200.degree. C. per minute to temperatures where the glass-ceramic material flows and wets the interface between adjoining surfaces. The assembly is rapidly cooled at a cooling rate of about 140.degree. C. per minute or more to induce nucleation and re-crystallization of the glass-ceramic material to form a dense, durable and gas-tight seal.« less
Ceramic membranes having macroscopic channels
Anderson, Marc A.; Peterson, Reid A.
1996-01-01
Methods have been developed to make porous ceramic membranes having macroscopic channels therethrough. The novel membranes are formed by temporarily supporting the sol-gel membrane precursor on an organic support which is ultimately removed from the interior of the membrane, preferably by pyrolysis or by chemical destruction. The organic support may also include an inorganic metal portion that remains on destruction of the organic portion, providing structural support and/or chemical reactivity to the membrane. The channels formed when the organic support is destroyed provide the ability to withdraw small catalytic products or size-separated molecules from the metal oxide membrane. In addition, the channel-containing membranes retain all of the advantages of existing porous ceramic membranes.
Ceramic membranes having macroscopic channels
Anderson, M.A.; Peterson, R.A.
1996-09-03
Methods have been developed to make porous ceramic membranes having macroscopic channels therethrough. The novel membranes are formed by temporarily supporting the sol-gel membrane precursor on an organic support which is ultimately removed from the interior of the membrane, preferably by pyrolysis or by chemical destruction. The organic support may also include an inorganic metal portion that remains on destruction of the organic portion, providing structural support and/or chemical reactivity to the membrane. The channels formed when the organic support is destroyed provide the ability to withdraw small catalytic products or size-separated molecules from the metal oxide membrane. In addition, the channel-containing membranes retain all of the advantages of existing porous ceramic membranes. 1 fig.
Ceramic substrate including thin film multilayer surface conductor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Joseph Ambrose; Peterson, Kenneth A.
2017-05-09
A ceramic substrate comprises a plurality of ceramic sheets, a plurality of inner conductive layers, a plurality of vias, and an upper conductive layer. The ceramic sheets are stacked one on top of another and include a top ceramic sheet. The inner conductive layers include electrically conductive material that forms electrically conductive features on an upper surface of each ceramic sheet excluding the top ceramic sheet. The vias are formed in each of the ceramic sheets with each via being filled with electrically conductive material. The upper conductive layer includes electrically conductive material that forms electrically conductive features on anmore » upper surface of the top ceramic sheet. The upper conductive layer is constructed from a stack of four sublayers. A first sublayer is formed from titanium. A second sublayer is formed from copper. A third sublayer is formed from platinum. A fourth sublayer is formed from gold.« less
Cladding material, tube including such cladding material and methods of forming the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garnier, John E.; Griffith, George W.
A multi-layered cladding material including a ceramic matrix composite and a metallic material, and a tube formed from the cladding material. The metallic material forms an inner liner of the tube and enables hermetic sealing of thereof. The metallic material at ends of the tube may be exposed and have an increased thickness enabling end cap welding. The metallic material may, optionally, be formed to infiltrate voids in the ceramic matrix composite, the ceramic matrix composite encapsulated by the metallic material. The ceramic matrix composite includes a fiber reinforcement and provides increased mechanical strength, stiffness, thermal shock resistance and highmore » temperature load capacity to the metallic material of the inner liner. The tube may be used as a containment vessel for nuclear fuel used in a nuclear power plant or other reactor. Methods for forming the tube comprising the ceramic matrix composite and the metallic material are also disclosed.« less
Collagen/hydroxyapatite composite materials with desired ceramic properties.
Andronescu, Ecaterina; Voicu, Georgeta; Ficai, Maria; Mohora, Ioana Anita; Trusca, Roxana; Ficai, Anton
2011-01-01
Our purpose was to obtain and characterize some collagen/hydroxyapatite (COLL/HA) hybrid composite materials with desired ceramic properties. The ceramic properties of these materials were achieved by combining two drying methods: controlled air drying at 30°C followed by freeze-drying. Through the function of the air drying times, the materials morphology varies from porous materials (when the materials are freeze-dried) up to dense materials (when the materials are air-dried), while the combined drying allows us to obtain an intermediary morphology. The composite materials intended to be used as bone grafts and in a drug delivery system were characterized by XRD, FTIR, SEM, and also by determining the ceramic properties by using the Arthur method. The ceramic properties of these COLL/HA composite materials vary in large range, for instance the density of the materials varies from 0.06 up to 1.5 g/cm(3) while the porosity varies from 96.5% down to 27.5%.
Modeling the Mechanical Behavior of Ceramic Matrix Composite Materials
NASA Technical Reports Server (NTRS)
Jordan, William
1998-01-01
Ceramic matrix composites are ceramic materials, such as SiC, that have been reinforced by high strength fibers, such as carbon. Designers are interested in using ceramic matrix composites because they have the capability of withstanding significant loads while at relatively high temperatures (in excess of 1,000 C). Ceramic matrix composites retain the ceramic materials ability to withstand high temperatures, but also possess a much greater ductility and toughness. Their high strength and medium toughness is what makes them of so much interest to the aerospace community. This work concentrated on two different tasks. The first task was to do an extensive literature search into the mechanical behavior of ceramic matrix composite materials. This report contains the results of this task. The second task was to use this understanding to help interpret the ceramic matrix composite mechanical test results that had already been obtained by NASA. Since the specific details of these test results are subject to the International Traffic in Arms Regulations (ITAR), they are reported in a separate document (Jordan, 1997).
[Preparation and photoluminescence study of Er3+ : Y2O3 transparent ceramics].
Luo, Jun-ming; Li, Yong-xiu; Deng, Li-ping
2008-10-01
Y2O3 acted as the matrix material, which was doped with different concentrations of Er3+, Er3+ : Y2O3 nanocrystalline powder was prepared by co-precipitation method, and Er3+ : Y2O3 transparent ceramics was fabricated by vacuum sintering at 1700 degrees C, 1 x 10(-3) Pa for 8 h. By using the X-ray diffraction (D/MAX-RB), transmission electron microscopy(Philips EM420), automatic logging spectrophotometer(DMR-22), fluorescence analyzer (F-4500) and 980 nm diode laser, the structural, morphological and luminescence properties of the sample were investigated. The results show that Er3+ dissolved completely in the Y2O3 cubic phase, the precursor was amorphous, weak diffraction peaks appeared after calcination at 400 degrees C, and if calcined at 700 degrees C, the precursor turned to pure cubic phase. With increasing the calcining temperature, the diffraction peaks became sharp quickly, and when the calcining temperature reached 1100 degrees C, the diffraction peaks became very sharp, indicating that the grains were very large. The particles of Er+ : Y2O3 is homogeneous and nearly spherical, the average diameter of the particles is in the range of 40-60 nm after being calcined at 1000 degrees C for 2 h. The relative density of Er3+ : Y2O3 transparent ceramics is 99.8%, the transmittance of the Er2+ : Y2O3 transparent ceramics is markedly lower than the single crystal at the short wavelength, but the transmittance is improved noticeably with increasing the wavelength, and the transmittance exceeds 60% at the wavelength of 1200 nm. Excited under the 980 nm diode laser, there are two main up-conversion emission bands, green emission centers at 562 nm and red emission centers at 660 nm, which correspond to (4)S(3/2) / (2)H(11/2) - (4)I(15/2) and (4)F(9/2) - (4)I(15/2) radiative transitions respectively. By changing the doping concentrations of Er3+, the color of up-conversion luminescence can be tuned from green to red gradually. The luminescence intensity is not reinforce with the increase in the concentration, so the doping concentration of Er3+ should not exceed 2%. If the doping concentration of Er3+ exceeds the range, the concentration has very small effect on the improvement of luminescence intensity.
Goryainova, Kristina E.; Morokov, Egor S.; Retinskaja, Marina V.; Rusanov, Fedor S.; Apresyan, Samvel V.; Lebedenko, Igor Yu.
2018-01-01
Aim: The aim of the present work was to compare the elastic properties and internal structure of 4 different CAD/CAM chairside materials, by the method of Scanning Impulse Acoustic Microscopy (SIAM). Methods: Four chairside CAD/CAM materials with different structures from hybrid ceramic (VITA Enamic, VITA Zahnfabrik), feldspatic ceramic (VITABlocs Mark II, VITA Zahnfabrik), leucite glass-ceramic (IPS Empress CAD, Ivoclar Vivadent) and PMMA (Telio CAD, Ivoclar Vivadent) were examined by Scanning Impulse Acoustic Microscope (SIAM). Results: The results of micromorphological research of CAD/CAM chairside materials using SIAM method showed differences between the internal structures of these materials. The internal structure of feldspatic and glass-ceramic samples revealed the presence of pores with different sizes, from 10 to 100 microns; the structure of polymer materials rendered some isolated defects, while in the structure of hybrid material, defects were not found. Conclusion: Based on the results obtained from the present study, in cases of chairside production of dental crowns, it would be advisable to give preference to the blocks of hybrid ceramics. Such ceramics devoid of quite large porosity, glazing for CAD/CAM crowns made from leucite glass-ceramic and feldspatic ceramic may be an option. For these purposes, commercially available special muffle furnace for clinical and laboratory individualization and glazing of ceramic prostheses were provided. Further studies are needed to confirm the evidence emerging from the present research. PMID:29492178
Performance of Ceramics in Severe Environments
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.; Fox, Dennis S.; Smialek, James L.; Deliacorte, Christopher; Lee, Kang N.
2005-01-01
Ceramics are generally stable to higher temperatures than most metals and alloys. Thus the development of high temperature structural ceramics has been an area of active research for many years. While the dream of a ceramic heat engine still faces many challenges, niche markets are developing for these materials at high temperatures. In these applications, ceramics are exposed not only to high temperatures but also aggressive gases and deposits. In this chapter we review the response of ceramic materials to these environments. We discuss corrosion mechanisms, the relative importance of a particular corrodent, and, where available, corrosion rates. Most of the available corrosion information is on silicon carbide (SIC) and silicon nitride (Si3N4) monolithic ceramics. These materials form a stable film of silica (SO2) in an oxidizing environment. We begin with a discussion of oxidation of these materials and proceed to the effects of other corrodents such as water vapor and salt deposits. We also discuss oxidation and corrosion of other ceramics: precurser derived ceramics, ceramic matrix composites (CMCs), ceramics which form oxide scales other than silica, and oxide ceramics. Many of the corrosion issues discussed can be mitigated with refractory oxide coatings and we discuss the current status of this active area of research. Ultimately, the concern of corrosion is loss of load bearing capability. We discuss the effects of corrosive environments on the strength of ceramics, both monolithic and composite. We conclude with a discussion of high temperature wear of ceramics, another important form of degradation at high temperatures.
NASA Astrophysics Data System (ADS)
Sinescu, Cosmin; Negrutiu, Meda; Hughes, Michael; Bradu, Adrian; Todea, Carmen; Rominu, Mihai; Laissue, Philippe L.; Podoleanu, Adrian Gh.
2008-04-01
Metal ceramic and integral ceramic fixed partial prostheses are mainly used in the frontal part of the dental arch because for esthetics reasons. The masticatory stress may induce fractures of the bridges. There are several factors that are associated with the stress state created in ceramic restorations, including: thickness of ceramic layers, mechanical properties of the materials, elastic modulus of the supporting substrate material, direction, magnitude and frequency of applied load, size and location of occlusal contact areas, residual stresses induced by processing or pores, restoration-cement interfacial defects and environmental defects. The fractures of these bridges lead to functional, esthetic and phonetic disturbances which finally render the prosthetic treatment inefficient. The purpose of this study is to evaluate the capability of optical coherence tomography (OCT) in detection and analysis of possible material defects in metal-ceramic and integral ceramic fixed partial dentures.
Crystallization behaviors and seal application of basalt based glass-ceramics
NASA Astrophysics Data System (ADS)
Ateş, A.; Önen, U.; Ercenk, E.; Yılmaz, Ş.
2017-02-01
Basalt based glass-ceramics were prepared by conventional melt-quenching technique and subsequently converted to glass-ceramics by a controlled nucleation and crystallization process. Glass materials were obtained by melt at 1500°C and quenched in cold water. The powder materials were made by milling and spin coating. The powders were applied on the 430 stainless steel interconnector material, and heat treatment was carried out. The interface characteristics between the glass-ceramic layer and interconnector were investigated by using X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). The results showed that the basalt base glass-ceramic sealant material exhibited promising properties to use for SOFC.
National Institute of Standards and Technology Data Gateway
SRD 30 NIST Structural Ceramics Database (Web, free access) The NIST Structural Ceramics Database (WebSCD) provides evaluated materials property data for a wide range of advanced ceramics known variously as structural ceramics, engineering ceramics, and fine ceramics.
Li, Weiyan; Sun, Jian
2018-05-10
BACKGROUND Polymer-infiltrated ceramic-network (PICN) dental material is a new and practical development in orthodontics. Sintering is the process of forming a stable solid mass from a powder by heating without melting. The aim of this study was to evaluate the effects of sintering temperature on the mechanical properties of a PICN zirconia dental material. MATERIAL AND METHODS A dense zirconia ceramic and four PICN zirconia dental materials, with varying porosities, were sintered at three different temperatures; 12 PICN zirconia dental materials based on these porous ceramics were prepared, as well as a pure polymer. After the specimen preparation, flexural strength and elastic modulus values were measured using the three-point bending test, and fracture toughness were determined by the single-edge notched beam (SENB) method. The Vickers hardness test method was used with an indentation strength (IS) test. Scanning electron microscopy (SEM) was used to examine the microstructure of the ceramic surface and the fracture surface. RESULTS Mechanical properties of the PICN dental materials, including flexural strength, elastic modulus, fracture toughness, and hardness, were more similar to the properties of natural teeth when compared with traditional dental ceramic materials, and were affected by the density and sintering temperature. SEM showed that the porous ceramic network became cohesive and that the length of cracks in the PICN dental material was reduced. CONCLUSIONS PICN zirconia dental materials were characterized by similar mechanical properties to natural dental tissues, but further studies are required continue to improve the similarities with natural human enamel and dentin.
Li, Weiyan
2018-01-01
Background Polymer-infiltrated ceramic-network (PICN) dental material is a new and practical development in orthodontics. Sintering is the process of forming a stable solid mass from a powder by heating without melting. The aim of this study was to evaluate the effects of sintering temperature on the mechanical properties of a PICN zirconia dental material. Material/Methods A dense zirconia ceramic and four PICN zirconia dental materials, with varying porosities, were sintered at three different temperatures; 12 PICN zirconia dental materials based on these porous ceramics were prepared, as well as a pure polymer. After the specimen preparation, flexural strength and elastic modulus values were measured using the three-point bending test, and fracture toughness were determined by the single-edge notched beam (SENB) method. The Vickers hardness test method was used with an indentation strength (IS) test. Scanning electron microscopy (SEM) was used to examine the microstructure of the ceramic surface and the fracture surface. Results Mechanical properties of the PICN dental materials, including flexural strength, elastic modulus, fracture toughness, and hardness, were more similar to the properties of natural teeth when compared with traditional dental ceramic materials, and were affected by the density and sintering temperature. SEM showed that the porous ceramic network became cohesive and that the length of cracks in the PICN dental material was reduced. Conclusions PICN zirconia dental materials were characterized by similar mechanical properties to natural dental tissues, but further studies are required continue to improve the similarities with natural human enamel and dentin. PMID:29746449
NASA Astrophysics Data System (ADS)
Chakrabarty, Rohan; Song, Jun
2017-10-01
During the cold spraying of particle-reinforced metal matrix composite coatings (ceramic and metal particles mixture) on metal substrates, ceramic particles may either get embedded in the substrate/deposited coating or may rebound from the substrate surface. In this study, the dependence of the ceramic rebounding phenomenon on the spray angle and its effect on substrate erosion have been analyzed using finite-element analysis. From the numerical simulations, it was found that the ceramic particle density and substrate material strength played the major roles in determining the embedding and ceramic retention behavior. Substrate material erosion also influenced the ceramic retention, and the material loss increased as the impact angles decreased from normal. In general, the results concluded that decreasing the impact angle promoted the retention possibility of ceramics in the substrate. This study provides new theoretical insights into the effect of spray angles on the ceramic retention and suggests a new route toward optimizing the spraying process to increase the ceramic retention in composite coatings cold spray.
Tribology of ceramics: Report of the Committee on Tribology of Ceramics
NASA Technical Reports Server (NTRS)
1988-01-01
The current state of knowledge of ceramic surface structures, composition, and reactivity is reviewed. The tribological requirements of advanced mechanical systems now being deployed (in particular, heat engines) exceed the capabilities of traditional metallic-based materials because of the high temperatures encountered. Advanced ceramic materials for such applications are receiving intense scrutiny, but there is a lack of understanding of the properties and behavior of ceramic surfaces and the influence of processing on the properties of ceramics is described. The adequacy of models, ranging form atomic to macro, to describe and to predict ceramic friction and wear are discussed, as well as what is known about lubrication at elevated temperatures. From this analysis, recommendations are made for coordination, research, and development that will lead to better performance of ceramic materials in tribological systems.
Corrosion of Ceramic Materials
NASA Technical Reports Server (NTRS)
Opila, Elizabeth J.; Jacobson, Nathan S.
1999-01-01
Non-oxide ceramics are promising materials for a range of high temperature applications. Selected current and future applications are listed. In all such applications, the ceramics are exposed to high temperature gases. Therefore it is critical to understand the response of these materials to their environment. The variables to be considered here include both the type of ceramic and the environment to which it is exposed. Non-oxide ceramics include borides, nitrides, and carbides. Most high temperature corrosion environments contain oxygen and hence the emphasis of this chapter will be on oxidation processes.
Interphase for ceramic matrix composites reinforced by non-oxide ceramic fibers
NASA Technical Reports Server (NTRS)
DiCarlo, James A. (Inventor); Bhatt, Ramakrishna (Inventor); Morscher, Gregory N. (Inventor); Yun, Hee-Mann (Inventor)
2008-01-01
A ceramic matrix composite material is disclosed having non-oxide ceramic fibers, which are formed in a complex fiber architecture by conventional textile processes; a thin mechanically weak interphase material, which is coated on the fibers; and a non-oxide or oxide ceramic matrix, which is formed within the interstices of the interphase-coated fiber architecture. During composite fabrication or post treatment, the interphase is allowed to debond from the matrix while still adhering to the fibers, thereby providing enhanced oxidative durability and damage tolerance to the fibers and the composite material.
Segmented ceramic liner for induction furnaces
Gorin, Andrew H.; Holcombe, Cressie E.
1994-01-01
A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace.
Segmented ceramic liner for induction furnaces
Gorin, A.H.; Holcombe, C.E.
1994-07-26
A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace. 5 figs.
Influence of implant abutment material on the color of different ceramic crown systems.
Dede, Doğu Ömür; Armağanci, Arzu; Ceylan, Gözlem; Celik, Ersan; Cankaya, Soner; Yilmaz, Burak
2016-11-01
Ceramics are widely used for anterior restorations; however, clinical color reproduction still constitutes a challenge particularly when the ceramic crowns are used on titanium implant abutments. The purpose of this in vitro study was to investigate the effect of implant abutment material on the color of different ceramic material systems. Forty disks (11×1.5 mm, shade A2) were fabricated from medium-opacity (mo) and high-translucency (ht) lithium disilicate (IPS e.max) blocks, an aluminous ceramic (VITA In-Ceram Alumina), and a zirconia (Zirkonzahn) ceramic system. Disks were fabricated to represent 3 different implant abutments (zirconia, gold-palladium, and titanium) and dentin (composite resin, A2 shade) as background (11×2 mm). Disk-shaped composite resin specimens in A2 shade were fabricated to represent the cement layer. The color measurements of ceramic specimens were made on composite resin abutment materials using a spectrophotometer. CIELab color coordinates were recorded, and the color coordinates measured on composite resin background served as the control group. Color differences (ΔE 00 ) between the control and test groups were calculated. The data were analyzed with 2-way analysis of variance (ANOVA) and compared with the Tukey HSD test (α=.05). The ceramics system, abutment material, and their interaction were significant for ΔE 00 values (P<.001). Clinically unacceptable results (ΔE 00 >2.25) were observed for lithium disilicate ceramics on titanium abutments (2.46-2.50). The ΔE 00 values of lithium disilicate ceramics for gold-palladium and titanium abutments were significantly higher than for other groups (P<.05). The color results (ΔE 00 >2.25) of an implant-supported lithium disilicate ceramic restoration may be clinically unacceptable if it is fabricated over a titanium abutment. Zirconia may be a more suitable abutment material for implant-supported ceramic restorations. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Process for strengthening silicon based ceramics
Kim, Hyoun-Ee; Moorhead, A. J.
1993-01-01
A process for strengthening silicon based ceramic monolithic materials and omposite materials that contain silicon based ceramic reinforcing phases that requires that the ceramic be exposed to a wet hydrogen atmosphere at about 1400.degree. C. The process results in a dense, tightly adherent silicon containing oxide layer that heals, blunts , or otherwise negates the detrimental effect of strength limiting flaws on the surface of the ceramic body.
Process for strengthening silicon based ceramics
Kim, Hyoun-Ee; Moorhead, A. J.
1993-04-06
A process for strengthening silicon based ceramic monolithic materials and omposite materials that contain silicon based ceramic reinforcing phases that requires that the ceramic be exposed to a wet hydrogen atmosphere at about 1400.degree. C. The process results in a dense, tightly adherent silicon containing oxide layer that heals, blunts , or otherwise negates the detrimental effect of strength limiting flaws on the surface of the ceramic body.
Saiki, Osamu; Koizumi, Hiroyasu; Akazawa, Nobutaka; Kodaira, Akihisa; Okamura, Kentaro; Matsumura, Hideo
2016-01-01
This study compared the wear characteristics of a heat-pressed lithium disilicate ceramic material opposed to feldspathic porcelain, a lithium disilicate glass ceramic, and zirconia materials. Ceramic plate specimens were prepared from feldspathic porcelain (EX-3 nA1B), lithium disilicate glass ceramics (e.max CAD MO1/C14), and zirconia (Katana KT 10) and then ground or polished. Rounded rod specimens were fabricated from heat-pressed lithium disilicate glass ceramic (e.max press LT A3) and then glazed or polished. A sliding wear testing apparatus was used for wear testing. Wear of glazed rods was greater than that of polished rods when they were abraded with ground zirconia, ground porcelain, polished porcelain, or polished lithium disilicate ceramics. For both glazed and polished rods, wear was greater when the rods were abraded with ground plates. The findings indicate that application of a polished surface rather than a glazed surface is recommended for single restorations made of heat-pressed lithium disilicate material. In addition, care must be taken when polishing opposing materials, especially those used in occlusal contact areas. (J Oral Sci 58, 117-123, 2016).
David, Lamuel; Asok, Deepu; Singh, Gurpreet
2014-09-24
Silicon-based precursor derived glass-ceramics or PDCs have proven to be an attractive alternative anode material for Li ion batteries. Main challenges associated with PDC anodes are their low electrical conductivity, first cycle loss, and meager C-rate performance. Here, we show that thermal conversion of single source aluminum-modified polysilazane on the surfaces of carbon nanotubes (CNTs) results in a robust Si-Al-C-N/CNT shell/core composite that offers extreme C-rate capability as battery electrode. Addition of Al to the molecular network of Si-C-N improved electrical conductivity of Si-C-N by 4 orders of magnitude, while interfacing with CNTs showed 7-fold enhancement. Further, we present a convenient spray-coating technique for PDC composite electrode preparation that eliminates polymeric binder and conductive agent there-by reducing processing steps and eradicating foreign material in the electrode. The Si-Al-C-N/CNT electrode showed stable charge capacity of 577 mAh g(-1) at 100 mA g(-1) and a remarkable 400 mAh g(-1) at 10,000 mA g(-1), which is the highest reported value for a silazane derived glass-ceramic or nanocomposite electrode. Under symmetric cycling conditions, a high charge capacity of ∼350 mA g(-1) at 1600 mA g(-1) was continuously observed for over 1000 cycles.
NASA Astrophysics Data System (ADS)
Geantă, V.; Cherecheș, T.; Lixandru, P.; Voiculescu, I.; Ștefănoiu, R.; Dragnea, D.; Zecheru, T.; Matache, L.
2017-06-01
Due to excellent mechanical properties, high entropy alloys from the system AlxCrFeCoNi can be used successfully to create composite structures containing both metallic and ceramic plates, which resists at dynamic load during high speeds impact (like projectiles, explosion). The paper presents four different composite structures made from a combination of metallic materials and ceramics plates: duralumin-ceramics, duralumin-ceramics-HEA, HEA-ceramics-HEA, HEA-ceramics-duralumin. Numerical simulation of impact behavior of the composite structures was performed by virtual methods, taking into account the mechanical properties of both materials. The best results were obtained using composite structures HEA-ceramics-HEA, HEA-ceramics-duralumin.
Pressurized heat treatment of glass ceramic
Kramer, D.P.
1984-04-19
A method of producing a glass-ceramic having a specified thermal expansion value is disclosed. The method includes the step of pressurizing the parent glass material to a predetermined pressure during heat treatment so that the glass-ceramic produced has a specified thermal expansion value. Preferably, the glass-ceramic material is isostatically pressed. A method for forming a strong glass-ceramic to metal seal is also disclosed in which the glass-ceramic is fabricated to have a thermal expansion value equal to that of the metal. The determination of the thermal expansion value of a parent glass material placed in a high-temperature environment is also used to determine the pressure in the environment.
Pressurized heat treatment of glass-ceramic to control thermal expansion
Kramer, Daniel P.
1985-01-01
A method of producing a glass-ceramic having a specified thermal expansion value is disclosed. The method includes the step of pressurizing the parent glass material to a predetermined pressure during heat treatment so that the glass-ceramic produced has a specified thermal expansion value. Preferably, the glass-ceramic material is isostatically pressed. A method for forming a strong glass-ceramic to metal seal is also disclosed in which the glass-ceramic is fabricated to have a thermal expansion value equal to that of the metal. The determination of the thermal expansion value of a parent glass material placed in a high-temperature environment is also used to determine the pressure in the environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-09-01
A five-year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applicationsmore » in these engines.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-03-01
An assessment of needs was completed, and a five-year project plan was developed with extensive input from private industry. Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barriermore » and wear applications in these engines.« less
NASA Astrophysics Data System (ADS)
Goodman, William A.
2017-09-01
This paper provides a review of advances in 3D printing and additive manufacturing of ceramic and ceramic matrix composites for optical applications. Dr. Goodman has been pioneering additive manufacturing of ceramic matrix composites since 2008. He is the inventor of HoneySiC material, a zero-CTE additively manufactured carbon fiber reinforced silicon carbide ceramic matrix composite, briefly mentioned here. More recently Dr. Goodman has turned his attention to the direct printing of ceramics for optical applications via various techniques including slurry and laser sintering of silicon carbide and other ceramic materials.
Ceramic fiber-reinforced monoclinic celsian phase glass-ceramic matrix composite material
NASA Technical Reports Server (NTRS)
Bansal, Narottam P. (Inventor); Dicarlo, James A. (Inventor)
1994-01-01
A hyridopolysilazane-derived ceramic fiber reinforced monoclinic celsian phase barium aluminum silicate glass-ceramic matrix composite material is prepared by ball-milling an aqueous slurry of BAS glass powder and fine monoclinic celsian seeds. The fibers improve the mechanical strength and fracture toughness and with the matrix provide superior dielectric properties.
Controlled removal of ceramic surfaces with combination of ions implantation and ultrasonic energy
Boatner, Lynn A.; Rankin, Janet; Thevenard, Paul; Romana, Laurence J.
1995-01-01
A method for tailoring or patterning the surface of ceramic articles is provided by implanting ions to predetermined depth into the ceramic material at a selected surface location with the ions being implanted at a fluence and energy adequate to damage the lattice structure of the ceramic material for bi-axially straining near-surface regions of the ceramic material to the predetermined depth. The resulting metastable near-surface regions of the ceramic material are then contacted with energy pulses from collapsing, ultrasonically-generated cavitation bubbles in a liquid medium for removing to a selected depth the ion-damaged near-surface regions containing the bi-axially strained lattice structure from the ceramic body. Additional patterning of the selected surface location on the ceramic body is provided by implanting a high fluence of high-energy, relatively-light ions at selected surface sites for relaxing the bi-axial strain in the near-surface regions defined by these sites and thereby preventing the removal of such ion-implanted sites by the energy pulses from the collapsing ultrasonic cavitation bubbles.
Modified PZT ceramics as a material that can be used in micromechatronics
NASA Astrophysics Data System (ADS)
Zachariasz, Radosław; Bochenek, Dariusz
2015-11-01
Results on investigations of the PZT type ceramics with the following chemical composition: Pb0.94Sr0.06(Zr0.50 Ti0.50)0.99 Cr0.01O3 (PSZTC) which belongs to a group of multicomponent ceramic materials obtained on basis of the PZT type solid solution, are presented in this work. Ceramics PSZTC was obtained by a free sintering method under the following conditions: Tsint = 1250 °C and tsint = 2 h. Ceramic compacts of specimens for the sintering process were made from the ceramic mass consisting of a mixture of the synthesized PSZTC powder and 3% polyvinyl alcohol while wet. The PSZTC ceramic specimens were subjected to poling by two methods: low temperature and high temperature. On the basis of the examinations made it has been found that the ceramics obtained belongs to ferroelectric-hard materials and that is why it may be used to build resonators, filters and ultrasonic transducers. Contribution to the Topical Issue "Materials for Dielectric Applications" edited by Maciej Jaroszewski and Sabu Thomas.
Manufacture of a ceramic paper for art applications
NASA Astrophysics Data System (ADS)
Dölle, K.; Honig, A.; Piatkowski, J.; Kuempel, C.
2018-01-01
Ceramic paper products are mostly used as high temperature ceramic insulation products. They offer an effective solution for most demanding heat management and insulation applications. The objective for this research project was to create a ceramic paper like product that combines the advantages of paper fibers, ceramic filler, and a clay product into one product, which can be produced on a continuous base with a paper machine. The produced ceramic paper product had a ceramic filler level between 59.68% and 78.8% with a basis weight between 322.9 g/m² and 693.7 g/m², and a final moisture content of 58.6% to 44.7% respectively. The wooden fiber served as a support medium for the ceramic filler material during production on the paper machine and during the conversion process into art pieces. During firing in a kiln, the fiber material combusted and the ceramic filler material mixture acts as common pottery clay, holding the desired shape of the art pieces produced.
In vivo biofilm formation on different dental ceramics.
Bremer, Felicia; Grade, Sebastian; Kohorst, Philipp; Stiesch, Meike
2011-01-01
To investigate the formation of oral biofilm on various dental ceramics in vivo. Five different ceramic materials were included: a veneering glass- ceramic, a lithium disilicate glass-ceramic, a yttrium-stabilized zirconia (Y-TZP), a hot isostatically pressed (HIP) Y-TZP ceramic, and an HIP Y-TZP ceramic with 25% alumina. Test specimens were attached to individually designed acrylic appliances; five volunteers wore these appliances for 24 hours in the maxillary arch. After intraoral exposure, the samples were removed from the appliances and the adhering biofilms vitally stained. Then, the two-dimensional surface coating and thickness of the adhering biofilm were determined by confocal laser scanning microscopy. Statistical analysis was performed using one-way ANOVA with the level of significance set at .05. Significant differences (P < .001) in the bacterial surface coating and in the thickness of the biofilm were found between the various ceramic materials. The lowest surface coating (19.0%) and biofilm thickness (1.9 Μm) were determined on the HIP Y-TZP ceramic; the highest mean values were identified with the lithium disilicate glass-ceramic (46.8%, 12.6 Μm). Biofilm formation on various types of dental ceramics differed significantly; in particular, zirconia exhibited low plaque accumulation. In addition to its high strength, low plaque accumulation makes zirconia a promising material for various indications (including implant abutments and telescopic crowns) that previously were met only with metal-based materials.
Microwave sintering of ceramic materials
NASA Astrophysics Data System (ADS)
Karayannis, V. G.
2016-11-01
In the present study, the potential of microwave irradiation as an innovative energy- efficient alternative to conventional heating technologies in ceramic manufacturing is reviewed, addressing the advantages/disadvantages, while also commenting on future applications of possible commercial interest. Ceramic materials have been extensively studied and used due to several advantages they exhibit. Sintering ceramics using microwave radiation, a novel technology widely employed in various fields, can be an efficient, economic and environmentally-friendlier approach, to improve the consolidation efficiency and reduce the processing cycle-time, in order to attain substantial energy and cost savings. Microwave sintering provides efficient internal heating, as energy is supplied directly and penetrates the material. Since energy transfer occurs at a molecular level, heat is generated throughout the material, thus avoiding significant temperature gradients between the surface and the interior, which are frequently encountered at high heating rates upon conventional sintering. Thus, rapid, volumetric and uniform heating of various raw materials and secondary resources for ceramic production is possible, with limited grain coarsening, leading to accelerated densification, and uniform and fine-grained microstructures, with enhanced mechanical performance. This is particularly important for manufacturing large-size ceramic products of quality, and also for specialty ceramic materials such as bioceramics and electroceramics. Critical parameters for the process optimization, including the electromagnetic field distribution, microwave-material interaction, heat transfer mechanisms and material transformations, should be taken into consideration.
Guazzato, Massimiliano; Albakry, Mohammad; Ringer, Simon P; Swain, Michael V
2004-06-01
The present study, divided into two parts, aimed to compare the strength, fracture toughness and microstructure of a range of all-ceramic materials. In part I, three hot-pressed glass-ceramics (IPS-Empress, Empress 2 and a new experimental ceramic) and alumina glass-infiltrated ceramics (In-Ceram Alumina), processed by both slip casting and dry pressing, were compared. Tensile strength was appraised on 10 bar-shaped specimens (20 x 4 x 1.2 mm3) for each material with the three-point bending method; the fracture toughness was measured from 20 specimens (20 x 4 x 2 mm3), by using the indentation strength technique. Data were compared with ANOVA and the Sheffé post hoc test (p = 0.05). The volume fraction of each phase, the dimensions and shapes of the grains, porosity and the crack patterns were investigated using SEM. The average and standard deviation in strength (MPa) and fracture toughness (MPa m(1/2)) were: IPS-Empress 106(17)1, 1.2(0.14)1; Empress 2 306(29)2, 2.9(0.51)2, new experimental ceramic 303(49)2, 3.0(0.65)2, In-Ceram Alumina dry-pressed 440(50)2, 3.6(0.26)2, In-Ceram Alumina slip 594(52)3, 4.4(0.48)3. Values with the same superscript number showed no significant statistical difference. Microscopy revealed the relationship between the glass matrix and the crystalline phase and the characteristics of the latter were correlated to the strengthening and toughening mechanisms of these glass-ceramics. The mechanical properties and microstructure of core materials have been advocated as crucial to the clinical long-term performance of all-ceramic dental restorations. This investigation provides the clinician with data regarding strength, fracture toughness and microstructure of a broad range of current materials. Copyright 2003 Academy of Dental Materials
NASA Astrophysics Data System (ADS)
Lee, Ki-Ju; Tang, Dongxu; Park, K.; Cho, Won-Seung
2010-02-01
Porous Y-doped (Ba,Sr)TiO3 ceramics were prepared by the spark plasma sintering of (Ba,Sr)TiO3 powders with different amounts of carbon black, and by subsequently burning out the carbon black acting as a pore precursor. The microstructure, PTCR and gas-sensing characteristics for porous Y-doped (Ba,Sr)TiO3 ceramics were investigated. Spark plasma sintered (Ba,Sr)TiO3 ceramics revealed a very fine microstructure containing submicron-sized grains with a cubic phase and revealed an increased porosity after the carbon black was burned out. As a result of reoxidation treatment, the grain size of the (Ba,Sr)TiO3 ceramics increased to a few μm and the cubic phase transformed into a tetragonal phase. The phase transformation of (Ba,Sr)TiO3 ceramics was affected by grain size. The PTCR jump in the (Ba,Sr)TiO3 ceramics prepared by adding 40 vol.% carbon black showed an excellent value of 4.72 × 106, which was ten times higher than the PTCR jump in (Ba,Sr)TiO3 ceramics. The electrical resistivity of the porous (Ba,Sr)TiO3 ceramics was recovered as the atmosphere changed from a reducing gas (N2) to an oxidizing gas (O2) under consecutive heating and cooling cycles.
Interdisciplinary research concerning the nature and properties of ceramic materials
NASA Technical Reports Server (NTRS)
1975-01-01
The nature and properties of ceramic materials as they relate to solid state physics and metallurgy are studied. Special attention was given to the applications of ceramics to NASA programs and national needs.
Ebert, Thomas; Elsner, Laura; Hirschfelder, Ursula; Hanke, Sebastian
2016-03-01
The purpose of this work was to analyze surfaces consisting of different restorative materials for shear bond strength (SBS) and failure patterns of metal and ceramic brackets. Bonding involved the use of a universal primer (Monobond® Plus, Ivoclar Vivadent). Six restorative materials were tested, including one composite resin (Clearfil Majesty™ Posterior, Kuraray Noritake Dental), one glass-ceramic material (IPS Empress® Esthetic, Ivoclar Vivadent), one oxide-ceramic material (CORiTEC Zr transpa Disc, imes-icore), two base-metal alloys (remanium® star, Dentaurum; Colado® CC, Ivoclar Vivadent), and one palladium-based alloy (Callisto® 75 Pd, Ivoclar Vivadent). Bovine incisors served as controls. Both metal and ceramic brackets (discovery®/discovery® pearl; Dentaurum) were bonded to the restorative surfaces after sandblasting and pretreatment with Monobond® Plus. A setup modified from DIN 13990-2 was used for SBS testing and adhesive remnant index (ARI)-based analysis of failure patterns. The metal brackets showed the highest mean SBS values on the glass-ceramic material (68.61 N/mm(2)) and the composite resin (67.58 N/mm(2)) and the lowest mean SBS on one of the base-metal alloys (Colado® CC; 14.01 N/mm(2)). The ceramic brackets showed the highest mean SBS on the glass-ceramic material (63.36 N/mm(2)) and the lowest mean SBS on the palladium-based alloy (38.48 N/mm(2)). Significant differences between the metal and ceramic brackets were observed in terms of both SBS values and ARI scores (p < 0.05). Under both bracket types, fractures of the composite-resin and the glass-ceramic samples were observed upon debonding. Opaque restorative materials under metal brackets were found to involve undercuring of the adhesive. Monobond® Plus succeeded in generating high bond strengths of both bracket types on all restorative surfaces. Given our observations of cohesive fracture (including cases of surface avulsion) of the composite-resin and the glass-ceramic samples, we recommend against using these material combinations in clinical practice.
Composite metal foil and ceramic fabric materials
Webb, B.J.; Antoniak, Z.I.; Prater, J.T.; DeSteese, J.G.
1992-03-24
The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed. 11 figs.
NASA Technical Reports Server (NTRS)
1978-01-01
An educational development and supportive research program on ceramic materials established to advance design methodology, improve materials, and develop engineers knowledgable in design with and use of high performance ceramic materials is described. Emphasis is on the structures and related materials problems in a ceramic turbine engine, but applications in coal gasification, solar conversion, and magnetohydrodynamic technologies are considered. Progress of various research projects in the areas of new materials, processing, characterization, and nondestructive testing is reported. Fracture toughness determination, extended X-ray absorption fine structure measurements, and grain boundary effects in beta-alumina are among the topics covered.
Novel Attrition-Resistant Fischer Tropsch Catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weast, Logan, E.; Staats, William, R.
2009-05-01
There is a strong national interest in the Fischer-Tropsch synthesis process because it offers the possibility of making liquid hydrocarbon fuels from reformed natural gas or coal and biomass gasification products. This project explored a new approach that had been developed to produce active, attrition-resistant Fischer-Tropsch catalysts that are based on glass-ceramic materials and technology. This novel approach represented a promising solution to the problem of reducing or eliminating catalyst attrition and maximizing catalytic activity, thus reducing costs. The technical objective of the Phase I work was to demonstrate that glass-ceramic based catalytic materials for Fischer-Tropsch synthesis have resistance tomore » catalytic deactivation and reduction of particle size superior to traditional supported Fischer-Tropsch catalyst materials. Additionally, these novel glass-ceramic-based materials were expected to exhibit catalytic activity similar to the traditional materials. If successfully developed, the attrition-resistant Fischer-Tropsch catalyst materials would be expected to result in significant technical, economic, and social benefits for both producers and public consumers of Fischer-Tropsch products such as liquid fuels from coal or biomass gasification. This program demonstrated the anticipated high attrition resistance of the glass-ceramic materials. However, the observed catalytic activity of the materials was not sufficient to justify further development at this time. Additional testing documented that a lack of pore volume in the glass-ceramic materials limited the amount of surface area available for catalysis and consequently limited catalytic activity. However, previous work on glass-ceramic catalysts to promote other reactions demonstrated that commercial levels of activity can be achieved, at least for those reactions. Therefore, we recommend that glass-ceramic materials be considered again as potential Fischer-Tropsch catalysts if it can be demonstrated that materials with adequate pore volume can be produced. During the attrition resistance tests, it was learned that the glass-ceramic materials are very abrasive. Attention should be paid in any further developmental efforts to the potential for these hard, abrasive materials to damage reactors.« less
Infrared-to-visible conversion luminescence of Er 3+ ions in lead borate transparent glass-ceramics
NASA Astrophysics Data System (ADS)
Pisarski, Wojciech A.; Pisarska, Joanna; Lisiecki, Radosław; Grobelny, Łukasz; Dominiak-Dzik, Grażyna; Ryba-Romanowski, Witold
2009-10-01
Transparent glass-ceramics were successfully prepared during controlled heat treatment of lead borate glasses. The PbF 2 particles were dispersed into a borate glass matrix which was evidenced by X-ray diffraction analysis. The phase identification revealed that crystalline peaks can be related to the orthorhombic PbF 2 phase. Green up-conversion luminescence due to the 4S 3/2- 4I 15/2 transition of Er 3+ ions was registered. In comparison to the precursor glass the luminescence intensity was considerably higher, whereas the luminescence linewidth slightly decreased in the studied oxyfluoride transparent glass-ceramics. It indicated that a part of the trivalent erbium was incorporated into the PbF 2 crystalline phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
EWSUK,KEVIN G.
1999-11-24
Ceramics represent a unique class of materials that are distinguished from common metals and plastics by their: (1) high hardness, stiffness, and good wear properties (i.e., abrasion resistance); (2) ability to withstand high temperatures (i.e., refractoriness); (3) chemical durability; and (4) electrical properties that allow them to be electrical insulators, semiconductors, or ionic conductors. Ceramics can be broken down into two general categories, traditional and advanced ceramics. Traditional ceramics include common household products such as clay pots, tiles, pipe, and bricks, porcelain china, sinks, and electrical insulators, and thermally insulating refractory bricks for ovens and fireplaces. Advanced ceramics, also referredmore » to as ''high-tech'' ceramics, include products such as spark plug bodies, piston rings, catalyst supports, and water pump seals for automobiles, thermally insulating tiles for the space shuttle, sodium vapor lamp tubes in streetlights, and the capacitors, resistors, transducers, and varistors in the solid-state electronics we use daily. The major differences between traditional and advanced ceramics are in the processing tolerances and cost. Traditional ceramics are manufactured with inexpensive raw materials, are relatively tolerant of minor process deviations, and are relatively inexpensive. Advanced ceramics are typically made with more refined raw materials and processing to optimize a given property or combination of properties (e.g., mechanical, electrical, dielectric, optical, thermal, physical, and/or magnetic) for a given application. Advanced ceramics generally have improved performance and reliability over traditional ceramics, but are typically more expensive. Additionally, advanced ceramics are typically more sensitive to the chemical and physical defects present in the starting raw materials, or those that are introduced during manufacturing.« less
Non-thermal plasma conversion of hydrocarbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strohm, James J.; Skoptsov, George L.; Musselman, Evan T.
A non-thermal plasma is generated to selectively convert a precursor to a product. More specifically, plasma forming material and a precursor material are provided to a reaction zone of a vessel. The reaction zone is exposed to microwave radiation, including exposing the plasma forming material and the precursor material to the microwave radiation. The exposure of the plasma forming material to the microwave radiation selectively converts the plasma forming material to a non-thermal plasma including formation of one or more streamers. The precursor material is mixed with the plasma forming material and the precursor material is exposed to the non-thermalmore » plasma including exposing the precursor material to the one or more streamers. The exposure of the precursor material to the streamers and the microwave radiation selectively converts the precursor material to a product.« less
NASA Glenn Research Center UEET (Ultra-Efficient Engine Technology) Program: Agenda and Abstracts
NASA Technical Reports Server (NTRS)
Manthey, Lri
2001-01-01
Topics discussed include: UEET Overview; Technology Benefits; Emissions Overview; P&W Low Emissions Combustor Development; GE Low Emissions Combustor Development; Rolls-Royce Low Emissions Combustor Development; Honeywell Low Emissions Combustor Development; NASA Multipoint LDI Development; Stanford Activities In Concepts for Advanced Gas Turbine Combustors; Large Eddy Simulation (LES) of Gas Turbine Combustion; NASA National Combustion Code Simulations; Materials Overview; Thermal Barrier Coatings for Airfoil Applications; Disk Alloy Development; Turbine Blade Alloy; Ceramic Matrix Composite (CMC) Materials Development; Ceramic Matrix Composite (CMC) Materials Characterization; Environmental Barrier Coatings (EBC) for Ceramic Matrix Composite (CMC) Materials; Ceramic Matrix Composite Vane Rig Testing and Design; Ultra-High Temperature Ceramic (UHTC) Development; Lightweight Structures; NPARC Alliance; Technology Transfer and Commercialization; and Turbomachinery Overview; etc.
LaHaye, Paul G.; Rahman, Faress H.; Lebeau, Thomas P. E.; Severin, Barbara K.
1998-01-01
A tube containment system. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture.
LaHaye, P.G.; Rahman, F.H.; Lebeau, T.P.; Severin, B.K.
1998-06-16
A tube containment system is disclosed. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture. 6 figs.
Protective coating for ceramic materials
NASA Technical Reports Server (NTRS)
Kourtides, Demetrius A. (Inventor); Churchward, Rex A. (Inventor); Lowe, David M. (Inventor)
1994-01-01
A protective coating for ceramic materials such as those made of silicon carbide, aluminum oxide, zirconium oxide, aluminoborosilicate and silicon dioxide, and a thermal control structure comprising a ceramic material having coated thereon the protective coating. The protective coating contains, in admixture, silicon dioxide powder, colloidal silicon dioxide, water, and one or more emittance agents selected from silicon tetraboride, silicon hexaboride, silicon carbide, molybdenum disilicide, tungsten disilicide and zirconium diboride. In another aspect, the protective coating is coated on a flexible ceramic fabric which is the outer cover of a composite insulation. In yet another aspect, a metallic foil is bonded to the outer surface of a ceramic fabric outer cover of a composite insulation via the protective coating. A primary application of this invention is as a protective coating for ceramic materials used in a heat shield for space vehicles subjected to very high aero-convective heating environments.
Pyrolysis chemistry of polycarbosilane polymer precursors to ceramics
NASA Astrophysics Data System (ADS)
Liu, Qi
The main theme of this research work was investigation of the precursor-ceramic conversion process for some polycarbosilane polymers, (-RRsp' SiCHsb2-)sb{n}, known as the poly(silylenemethylene)s (PSMs), where R and Rsp' are either hydrogen or bridging oxygen. The pyrolysis chemistry was characterized by elemental analysis, thermogravimetric analysis, liquid and solid state NMR spectroscopy, FTIR, and mass spectrometric analysis of the gaseous pyrolysis products. The strategy included three steps: First, linear poly(silaethylene), (SiHsb2CHsb2), PSE, was synthesized by ROP and examined as potential precursor to silicon carbide. This was one of the limiting cases where in (-RRsp' SiCHsb2-)sb{n}, R=Rsp'=H. The conversion process was studied by the examination of the gaseous species evolved during pyrolysis using a mass spectrometer. The results suggested that molecular H-transfer and elimination reactions involving silylene intermediates occurred initially and caused the crosslinking of the polymer between 300 and 420sp'C. Free radical reactions became operative and were the main mechanisms occurring above 420sp'C. The unusually high ceramic yield of linear PSE (ca. 80%) suggested that the SiHsb{x} groups in this polymer provided a latent reactivity that could be "turned on" by heating, thereby allowing the formation of a network structure that resists fragmentation. Second, polycarbosilane/siloxane hybrid polymers, (Si(O)CHsb2rbracksb{n}, were synthesized by sol-gel processing and were pyrolyzed to silicon oxycarbide ceramics. This was the other limiting case where in (-RRsp' SiCHsb2-)sb{n}, R=Rsp'=bridging or terminal oxygens. The gels were converted into silicon oxycarbides that contain a statistical distribution of the five possible SiCsb{4-x}Osb{x} environments between 600 and 1000sp'C. This rearrangement of the Si environments was attributed to the redistribution reactions involving the exchange of Si-O and Si-C bonds during the latter stages of the pyrolysis, likely facilitated by the Si-OH-induced attack on the Si-CHsb2-Si linkages. In addition, the microstructure of the gels and their pyrolytic products was investigated by Nsb2 adsorption-desorption test (the BET test). The results suggested that the investigated samples are microporous solids with relatively high surface areas even at 1000sp°C, indicating the potential interest of these samples as microporous materials. Finally, a mixture system was synthesized by introducing oxygen into the (SiHsb2CHsb2), polymer purposely to obtain a model (SiHsb2CHsb2rbracksb{n}rbrack Si(O)CHsb2rbracksb{m} system which has a variable and controllable amount of oxygen. This was the intermediate case between the two extremes. In this system, the pyrolysis mechanisms which worked in the two extreme cases also operated here along with a new mechanism resulting the formation of part of the total Hsb2 between Si-OH and Si-H groups.
Tang, Yuanyuan; Lee, Po-Heng; Shih, Kaimin
2013-08-06
The fast development of electronic industries and stringent requirement of recycling waste electronics have produced a large amount of metal-containing waste sludge. This study developed a waste-to-resource strategy to beneficially use such metal-containing sludge from the production and recycling processes of printed circuit board (PCBs). To observe the metal incorporation mechanisms and phase transformation processes, mixtures of copper industrial waste sludge and kaolinite-based materials (kaolinite and mullite) were fired between 650 and 1250 °C for 3 h. The different copper-hosting phases were identified by powder X-ray diffraction (XRD) in the sintered products, and CuAl2O4 was found to be the predominant hosting phase throughout the reactions, regardless of the strong reduction potential of copper expected at high temperatures. The experimental results indicated that CuAl2O4 was generated more easily and in larger quantities at low-temperature processing when using the kaolinite precursor. Maximum copper transformations reached 86% and 97% for kaolinite and mullite systems, respectively, when sintering at 1000 °C. To monitor the stabilization effect after thermal process, prolonged leaching tests were carried out using acetic acid with an initial pH value of 2.9 to leach the sintered products for 20 days. The results demonstrated the decrease of copper leachability with the formation of CuAl2O4, despite different sintering behavior in kaolinite and mullite systems. This study clearly indicates spinel formation as the most crucial metal stabilization mechanism when sintering copper sludge with aluminosilicate materials, and suggests a promising and reliable technique for reusing metal-containing sludge as ceramic materials.
A Viscoplastic Constitutive Theory for Monolithic Ceramic Materials. Series 1
NASA Technical Reports Server (NTRS)
Janosik, Lesley A.; Duffy, Stephen F.
1997-01-01
With increasing use of ceramic materials in high temperature structural applications such as advanced heat engine components, the need arises to accurately predict thermomechanical behavior. This paper, which is the first of two in a series, will focus on inelastic deformation behavior associated with these service conditions by providing an overview of a viscoplastic constitutive model that accounts for time-dependent hereditary material deformation (e.g., creep, stress relaxation, etc.) in monolithic structural ceramics. Early work in the field of metal plasticity indicated that inelastic deformations are essentially unaffected by hydrostatic stress. This is not the case, however, for ceramic-based material systems, unless the ceramic is fully dense. The theory presented here allows for fully dense material behavior as a limiting case. In addition, ceramic materials exhibit different time-dependent behavior in tension and compression. Thus, inelastic deformation models for ceramics must be constructed in a fashion that admits both sensitivity to hydrostatic stress and differing behavior in tension and compression. A number of constitutive theories for materials that exhibit sensitivity to the hydrostatic component of stress have been proposed that characterize deformation using time-independent classical plasticity as a foundation. However, none of these theories allow different behavior in tension and compression. In addition, these theories are somewhat lacking in that they are unable to capture creep, relaxation, and rate-sensitive phenomena exhibited by ceramic materials at high temperature. When subjected to elevated service temperatures, ceramic materials exhibit complex thermomechanical behavior that is inherently time-dependent, and hereditary in the sense that current behavior depends not only on current conditions, but also on thermo-mechanical history. The objective of this work is to present the formulation of a macroscopic continuum theory that captures these time-dependent phenomena. Specifically, the overview contained in this paper focuses on the multiaxial derivation of the constitutive model, and examines the scalar threshold function and its attending geometrical implications.
Porous ceramic scaffolds with complex architectures
NASA Astrophysics Data System (ADS)
Munch, E.; Franco, J.; Deville, S.; Hunger, P.; Saiz, E.; Tomsia, A. P.
2008-06-01
This work compares two novel techniques for the fabrication of ceramic scaffolds for bone tissue engineering with complex porosity: robocasting and freeze casting. Both techniques are based on the preparation of concentrated ceramic suspensions with suitable properties for the process. In robocasting, the computer-guided deposition of the suspensions is used to build porous materials with designed three dimensional geometries and microstructures. Freeze casting uses ice crystals as a template to form porous lamellar ceramic materials. Preliminary results on the compressive strengths of the materials are also reported.
Microwave sintering of sol-gel derived abrasive grain
Plovnick, Ross; Celikkaya, Ahmet; Blake, Rodger D.
1997-01-01
A method is provided for making microwave-sintered, free flowing alpha alumina-based ceramic abrasive grain, under conditions effective to couple microwaves with calcined alpha alumina-based abrasive gain precursor and sinter it at a temperature of at least about 1150.degree. C.
Advanced Ceramics for NASA's Current and Future Needs
NASA Technical Reports Server (NTRS)
Jaskowiak, Martha H.
2006-01-01
Ceramic composites and monolithics are widely recognized by NASA as enabling materials for a variety of aerospace applications. Compared to traditional materials, ceramic materials offer higher specific strength which can enable lighter weight vehicle and engine concepts, increased payloads, and increased operational margins. Additionally, the higher temperature capabilities of these materials allows for increased operating temperatures within the engine and on the vehicle surfaces which can lead to improved engine efficiency and vehicle performance. To meet the requirements of the next generation of both rocket and air-breathing engines, NASA is actively pursuing the development and maturation of a variety of ceramic materials. Anticipated applications for carbide, nitride and oxide-based ceramics will be presented. The current status of these materials and needs for future goals will be outlined. NASA also understands the importance of teaming with other government agencies and industry to optimize these materials and advance them to the level of maturation needed for eventual vehicle and engine demonstrations. A number of successful partnering efforts with NASA and industry will be highlighted.
Rajamannan, B; Viruthagiri, G; Suresh Jawahar, K
2013-10-01
The activity concentrations of radium, thorium and potassium can vary from material to material and they should be measured as the radiation is hazardous for human health. Thus, studies have been planned to obtain the radioactivity of ceramic building materials used in Cuddalore District, Tamilnadu, India. The radioactivity of some ceramic materials used in this region has been measured using a gamma-ray spectrometry, which contains an NaI(Tl) detector connected to multichannel analyzer. The specific activities of (226)Ra, (232)Th and (40)K, from the selected ceramic building materials, were in the range of 9.89-30.75, 24.68-70.4, 117.19-415.83 Bq kg(-1), respectively. The radium equivalent activity, absorbed gamma dose rate (D) and annual effective dose rate associated with the natural radionuclides are calculated to assess the radiation hazards of the natural radioactivity in the ceramic building materials. It was found that none of the results exceeds the recommended limit value.
Laser Surface Treatment of Sintered Alumina
NASA Astrophysics Data System (ADS)
Hagemann, R.; Noelke, C.; Kaierle, S.; Wesling, V.
Sintered alumina ceramics are used as refractory materials for industrial aluminum furnaces. In this environment the ceramic surface is in permanent contact with molten aluminum resulting in deposition of oxidic material on its surface. Consequently, a lower volume capacity as well as thermal efficiency of the furnaces follows. To reduce oxidic adherence of the ceramic material, two laser-based surface treatment processes were investigated: a powder- based single-step laser cladding and a laser surface remelting. Main objective is to achieve an improved surface quality of the ceramic material considering the industrial requirements as a high process speed.
Trends of microwave dielectric materials for antenna application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sulong, T. A. T., E-mail: tuanamirahtuansulong@gmail.com; Osman, R. A. M., E-mail: rozana@unimap.edu.my; Idris, M. S., E-mail: sobri@unimap.edu.my
Rapid development of a modern microwave communication system requires a high quality microwave dielectric ceramic material to be used as mobile and satellite communication. High permittivity of dielectric ceramics leads to fabrication of compact device for electronic components. Dielectric ceramics which used for microwave applications required three important parameters such as high or appropriate permittivity (ε{sub r}), high quality factor (Q {sub f} ≥ 5000 GH z) and good temperature coefficient of resonant frequency (τ{sub f}). This paper review of various dielectric ceramic materials used as microwave dielectric materials and related parameters for antenna applications.
Biaxial flexural strength of Turkom-Cera core compared to two other all-ceramic systems.
Al-Makramani, Bandar Mohammed Abdullah; Razak, Abdul Aziz Abdul; Abu-Hassan, Mohamed Ibrahim
2010-12-01
Advances in all-ceramic systems have established predictable means of providing metal-free aesthetic and biocompatible materials. These materials must have sufficient strength to be a practical treatment alternative for the fabrication of crowns and fixed partial dentures. The aim of this study was to compare the biaxial flexural strength of three core ceramic materials. Three groups of 10 disc-shaped specimens (16 mm diameter x 1.2 mm thickness - in accordance with ISO-6872, 1995) were made from the following ceramic materials: Turkom-Cera Fused Alumina [(Turkom-Ceramic (M) Sdn Bhd, Puchong, Selangor, Malaysia)], In-Ceram (Vita Zahnfabrik, Bad Säckingen, Baden-Württemberg, Germany) and Vitadur-N (Vita Zahnfabrik, Bad Säckingen, Baden-Württemberg, Germany), which were sintered according to the manufacturer's recommendations. The specimens were subjected to biaxial flexural strength test in an universal testing machine at a crosshead speed of 0.5 mm/min. The definitive fracture load was recorded for each specimen and the biaxial flexural strength was calculated from an equation in accordance with ISO-6872. The mean biaxial flexural strength values were: Turkom-Cera: 506.8 ± 87.01 MPa, In-Ceram: 347.4 ± 28.83 MPa and Vitadur-N: 128.7 ± 12.72 MPa. The results were analyzed by the Levene's test and Dunnett's T3 post-hoc test (SPSS software V11.5.0 for Windows, SPSS, Chicago, IL, USA ) at a preset significance level of 5% because of unequal group variances (P<0.001). There was statistically significant difference between the three core ceramics (P<0.05). Turkom-Cera showed the highest biaxial flexural strength, followed by In-Ceram and Vitadur-N. Turkom-Cera core had significantly higher flexural strength than In-Ceram and Vitadur-N ceramic core materials.
Method of manufacturing ceramic shaped articles
NASA Technical Reports Server (NTRS)
Inoue, K.
1983-01-01
A method of manufacturing ceramic shaped articles, wherein tapes of ceramic powder material in mixture with a binder material and special additives are shaped and then articles are stamped out from said tapes and sintered in a sintering furnace is described.
Sagsoz, O; Yildiz, M; Hojjat Ghahramanzadeh, A S L; Alsaran, A
2018-03-01
The purpose of this study was to examine the fracture strength and surface microhardness of computer-aided design/computer-aided manufacturing (CAD/CAM) materials in vitro. Mesial-occlusal-distal inlays were made from five different CAD/CAM materials (feldspathic ceramic, CEREC blocs; leucite-reinforced ceramic, IPS Empress CAD; resin nano ceramic, 3M ESPE Lava Ultimate; hybrid ceramic, VITA Enamic; and lithium disilicate ceramic, IPS e.max CAD) using CEREC 4 CAD/CAM system. Samples were adhesively cemented to metal analogs with a resin cement (3M ESPE, U200). The fracture tests were carried out with a universal testing machine. Furthermore, five samples were prepared from each CAD/CAM material for micro-Vickers hardness test. Data were analyzed with statistics software SPSS 20 (IBM Corp., New York, USA). Fracture strength of lithium disilicate inlays (3949 N) was found to be higher than other ceramic inlays (P < 0.05). There was no difference between other inlays statistically (P > 0.05). The highest micro-Vickers hardness was measured in lithium disilicate samples, and the lowest was in resin nano ceramic samples. Fracture strength results demonstrate that inlays can withstand the forces in the mouth. Statistical results showed that fracture strength and micro-Vickers hardness of feldspathic ceramic, leucite-reinforced ceramic, and lithium disilicate ceramic materials had a positive correlation.
Dental ceramics: a review of new materials and processing methods.
Silva, Lucas Hian da; Lima, Erick de; Miranda, Ranulfo Benedito de Paula; Favero, Stéphanie Soares; Lohbauer, Ulrich; Cesar, Paulo Francisco
2017-08-28
The evolution of computerized systems for the production of dental restorations associated to the development of novel microstructures for ceramic materials has caused an important change in the clinical workflow for dentists and technicians, as well as in the treatment options offered to patients. New microstructures have also been developed by the industry in order to offer ceramic and composite materials with optimized properties, i.e., good mechanical properties, appropriate wear behavior and acceptable aesthetic characteristics. The objective of this literature review is to discuss the main advantages and disadvantages of the new ceramic systems and processing methods. The manuscript is divided in five parts: I) monolithic zirconia restorations; II) multilayered dental prostheses; III) new glass-ceramics; IV) polymer infiltrated ceramics; and V) novel processing technologies. Dental ceramics and processing technologies have evolved significantly in the past ten years, with most of the evolution being related to new microstructures and CAD-CAM methods. In addition, a trend towards the use of monolithic restorations has changed the way clinicians produce all-ceramic dental prostheses, since the more aesthetic multilayered restorations unfortunately are more prone to chipping or delamination. Composite materials processed via CAD-CAM have become an interesting option, as they have intermediate properties between ceramics and polymers and are more easily milled and polished.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1992-01-01
ATTAP activities during the past year included test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Significant technical challenges remain, but all areas exhibited progress. Test-bed engine design and development included engine mechanical design, combustion system design, alternate aerodynamic designs of gasifier scrolls, and engine system integration aimed at upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1372 C (2500 F) structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities completed include the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, ceramic combustors, the ceramic regenerator disk, the ceramic power turbine rotors, and the ceramic/metal power turbine static structure. The material and component characterization efforts included the testing and evaluation of seven candidate materials and three development components. Ceramic component process development and fabrication proceeded for the gasifier turbine rotor, gasifier turbine scroll, gasifier turbine vanes and vane platform, extruded regenerator disks, and thermal insulation. Component rig activities included the development of both rigs and the necessary test procedures, and conduct of rig testing of the ceramic components and assemblies. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology that permit the achievement of both program performance and durability goals. Total test time in 1991 amounted to 847 hours, of which 128 hours were engine testing, and 719 were hot rig testing.
NASA Technical Reports Server (NTRS)
Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Curran, Jerome P.; Kolody, Mark; Perusich, Stephen; Whitten, Mary C.; Trejo, David; Zidek, Jason; Sampson, Jeffrey W.;
2009-01-01
Ceramics can be defmed as a material consisting of hard brittle properties produced from inorganic and nonmetallic minerals made by firing at high temperatures. These materials are compounds between metallic and nonmetallic elements and are either totally ionic, or predominately ionic but having some covalent character. This definition allows for a large range of materials, not all applicable to refractory applications. As this report is focused on potential ceramic materials for high temperature, aggressive exposure applications, the ceramics reviewed as part of this report will focus on refractory ceramics specifically designed and used for these applications. Ceramic materials consist of a wide variety of products. Callister (2000) 1 characterized ceramic materials into six classifications: glasses, clay products, refractories, cements, abrasives, and advanced ceramics. Figure 1 shows this classification system. This review will focus mainly on refractory ceramics and cements as in general, the other classifications are neither applicable nor economical for use in large structures such as the flame trench. Although much work has been done in advanced ceramics over the past decade or so, these materials are likely cost prohibitive and would have to be fabricated off-site, transported to the NASA facilities, and installed, which make these even less feasible. Although the authors reviewed the literature on advanced ceramic refractories 2 center dot 3 center dot 4 center dot 5 center dot 6 center dot 7 center dot 8 center dot 9 center dot 10 center dot 11 center dot 12 after the review it was concluded that these materials should not be ' the focus of this report. A review is in progress on materials and systems for prefabricated refractory ceramic panels, but this review is focusing more on typical refractory materials for prefabricated systems, which could make the system more economically feasible. Refractory ceramics are used for a wide variety of applications. Figure 2 shows many ofthese applications, their life expectancy or requirement, and the exposure temperature for the refractory ceramic. Note that the exposure temperatures for refractory ceramics are very similar to the exposure conditions for specialty ceramics (rocket nozzles, space vehicle re-entry fields, etc.) and yet the life expectancy or requirement is relatively low. Currently NASA is repairing the refractory lining in the flame trench after every launch - although this is not a direct indication of low life expectancy, it does indicate that the current system may not be sufficiently durable to maximize economy. Better performing refractory ceramics are needed to improve the performance, economy, and safety during and after launches at the flame trenches at Kennedy Space Center (KSC). To achieve this goal a current study is underway to assess different refractory systems for possible use in the flame trenches at KSC. This report will target the potential applicability of refractory ceramics for use in the flame trenches. An overview of the different refractory ceramics will be provided (see Figure I). This will be followed with a brief description of the structure of refractory products, the properties and characteristics of different systems, the methodology for selecting refractories, and then a general design methodology. Based on these sections, future challenges and opportunities will be identified with the objective of improving the durability, performance, economy, and safety of the launch complex. Refractory ceramics are used for a wide variety of applications. Figure 2 shows many ofthese applications, their life expectancy or requirement, and the exposure temperature for the refractory ceramic. Note that the exposure temperatures for refractory ceramics are very similar to the exposure conditions for specialty ceramics (rocket nozzles, space vehicle re-entry fields, etc.) and yet the life expectancy or requirement is relatively low. Currently NASA is repairing the refractory lining in the flame trench after every launch - although this is not a direct indication of low life expectancy, it does indicate that the current system may not be sufficiently durable to maximize economy. Better performing refractory ceramics are needed to improve the performance, economy, and safety during and after launches at the flame trenches at Kennedy Space Center (KSC). To achieve this goal a current study is underway to assess different refractory systems for possible use in the flame trenches at KSC. This report will target the potential applicability of refractory ceramics for use in the flame trenches. An overview of the different refractory ceramics will be provided (see Figure I). This will be followed with a brief description of the structure of refractory products, the properties and characteristics of different systems, the methodology for selecting refractories, and then a general design methodology. Based on these sections, future challenges and opportunities will be identified with the objective of improving the durability, performance, economy, and safety of the launch complex.
Turbine repair process, repaired coating, and repaired turbine component
Das, Rupak; Delvaux, John McConnell; Garcia-Crespo, Andres Jose
2015-11-03
A turbine repair process, a repaired coating, and a repaired turbine component are disclosed. The turbine repair process includes providing a turbine component having a higher-pressure region and a lower-pressure region, introducing particles into the higher-pressure region, and at least partially repairing an opening between the higher-pressure region and the lower-pressure region with at least one of the particles to form a repaired turbine component. The repaired coating includes a silicon material, a ceramic matrix composite material, and a repaired region having the silicon material deposited on and surrounded by the ceramic matrix composite material. The repaired turbine component a ceramic matrix composite layer and a repaired region having silicon material deposited on and surrounded by the ceramic matrix composite material.
Thermal insulating conformal blanket
NASA Technical Reports Server (NTRS)
Barney, Andrea (Inventor); Whittington, Charles A (Inventor); Eilertson, Bryan (Inventor); Siminski, Zenon (Inventor)
2003-01-01
The conformal thermal insulating blanket may have generally rigid batting material covered by an outer insulating layer formed of a high temperature resistant woven ceramic material and an inner insulating layer formed of a woven ceramic fiber material. The batting and insulating layers may be fastened together by sewing or stitching using an outer mold layer thread fabricated of a high temperature resistant material and an inner mold layer thread of a ceramic fiber material. The batting may be formed to a composite structure that may have a firmness factor sufficient to inhibit a pillowing effect after the stitching to not more than 0.03 inch. The outer insulating layer and an upper portion of the batting adjacent the outer insulating layer may be impregnated with a ceramic coating material.
USDA-ARS?s Scientific Manuscript database
Clay and plant materials such as wood are the raw materials used in manufacture of ceramic water filtration devices around the world. A step by step manufacturing procedure which includes initial mixing, molding and sintering is used. The manufactured ceramic filters have numerous pores which help i...
Bilandžić, Marin Dean; Wollgarten, Susanne; Stollenwerk, Jochen; Poprawe, Reinhart; Esteves-Oliveira, Marcella; Fischer, Horst
2017-09-01
The established method of fissure-sealing using polymeric coating materials exhibits limitations on the long-term. Here, we present a novel technique with the potential to protect susceptible teeth against caries and erosion. We hypothesized that a tailored glass-ceramic material could be sprayed onto enamel-like substrates to create superior adhesion properties after sintering by a CO 2 laser beam. A powdered dental glass-ceramic material from the system SiO 2 -Na 2 O-K 2 O-CaO-Al 2 O 3 -MgO was adjusted with individual properties suitable for a spray coating process. The material was characterized using X-ray fluorescence analysis (XRF), heating microscopy, dilatometry, scanning electron microscopy (SEM), grain size analysis, biaxial flexural strength measurements, fourier transform infrared spectroscopy (FTIR), and gas pycnometry. Three different groups of samples (each n=10) where prepared: Group A, powder pressed glass-ceramic coating material; Group B, sintered hydroxyapatite specimens; and Group C, enamel specimens (prepared from bovine teeth). Group B and C where spray coated with glass-ceramic powder. All specimens were heat treated using a CO 2 laser beam process. Cross-sections of the laser-sintered specimens were analyzed using laser scanning microscopy (LSM), energy dispersive X-ray analysis (EDX), and SEM. The developed glass-ceramic material (grain size d50=13.1mm, coefficient of thermal expansion (CTE)=13.310 -6 /K) could be spray coated on all tested substrates (mean thickness=160μm). FTIR analysis confirmed an absorption of the laser energy up to 95%. The powdered glass-ceramic material was successfully densely sintered in all sample groups. The coating interface investigation by SEM and EDX proved atomic diffusion and adhesion of the glass-ceramic material to hydroxyapatite and to dental enamel. A glass-ceramic material with suitable absorption properties was successfully sprayed and laser-sintered in thin films on hydroxyapatite as well as on bovine enamel. The presented novel technique of tooth coating with a dental glass-ceramic using a CO 2 -laser holds a great potential as a possible method to protect susceptible teeth against caries and erosion. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Biaxial flexural strength of Turkom-Cera core compared to two other all-ceramic systems
AL-MAKRAMANI, Bandar Mohammed Abdullah; RAZAK, Abdul Aziz Abdul; ABU-HASSAN, Mohamed Ibrahim
2010-01-01
Advances in all-ceramic systems have established predictable means of providing metal-free aesthetic and biocompatible materials. These materials must have sufficient strength to be a practical treatment alternative for the fabrication of crowns and fixed partial dentures. Objectives The aim of this study was to compare the biaxial flexural strength of three core ceramic materials. Material and methods Three groups of 10 disc-shaped specimens (16 mm diameter x 1.2 mm thickness - in accordance with ISO-6872, 1995) were made from the following ceramic materials: Turkom-Cera Fused Alumina [(Turkom-Ceramic (M) Sdn Bhd, Puchong, Selangor, Malaysia)], In-Ceram (Vita Zahnfabrik, Bad Säckingen, Baden-Württemberg, Germany) and Vitadur-N (Vita Zahnfabrik, Bad Säckingen, Baden-Württemberg, Germany), which were sintered according to the manufacturer's recommendations. The specimens were subjected to biaxial flexural strength test in a universal testing machine at a crosshead speed of 0.5 mm/min. The definitive fracture load was recorded for each specimen and the biaxial flexural strength was calculated from an equation in accordance with ISO-6872. Results The mean biaxial flexural strength values were: Turkom-Cera: 506.8±87.01 MPa, In-Ceram: 347.4±28.83 MPa and Vitadur-N: 128.7±12.72 MPa. The results were analyzed by the Levene's test and Dunnett's T3 post-hoc test (SPSS software V11.5.0 for Windows, SPSS, Chicago, IL, USA ) at a preset significance level of 5% because of unequal group variances (P<0.001). There was statistically significant difference between the three core ceramics (P<0.05). Turkom-Cera showed the highest biaxial flexural strength, followed by In-Ceram and Vitadur-N. Conclusions Turkom-Cera core had significantly higher flexural strength than In-Ceram and Vitadur-N ceramic core materials. PMID:21308292
Process for making ceramic hot gas filter
Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam
2001-01-01
A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.
Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam
1999-01-01
A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.
Connolly, E.S.; Forsythe, G.D.; Domanski, D.M.; Chambers, J.A.; Rajendran, G.P.
1999-05-11
A ceramic hot-gas candle filter is described having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during back pulse cleaning and is resistant to chemical degradation at high temperatures.
Monteiro, Jaiane Bandoli; Riquieri, Hilton; Prochnow, Catina; Guilardi, Luís Felipe; Pereira, Gabriel Kalil Rocha; Borges, Alexandre Luiz Souto; de Melo, Renata Marques; Valandro, Luiz Felipe
2018-06-01
To evaluate the effect of ceramic thickness on the fatigue failure load of two zirconia-reinforced lithium silicate (ZLS) glass-ceramics, adhesively cemented to a dentin analogue material. Disc-shaped specimens were allocated into 8 groups (n=25) considering two study factors: ZLS ceramic type (Vita Suprinity - VS; and Celtra Duo - CD), and ceramic thickness (1.0; 1.5; 2.0; and 2.5mm). A trilayer assembly (ϕ=10mm; thickness=3.5mm) was designed to mimic a bonded monolithic restoration. The ceramic discs were etched, silanized and luted (Variolink N) into a dentin analogue material. Fatigue failure load was determined using the Staircase method (100,000 cycles at 20Hz; initial fatigue load ∼60% of the mean monotonic load-to-failure; step size ∼5% of the initial fatigue load). A stainless-steel piston (ϕ=40mm) applied the load into the center of the specimens submerged in water. Fractographic analysis and Finite Element Analysis (FEA) were also performed. The ceramic thickness influenced the fatigue failure load for both ZLS materials: Suprinity (716N up to 1119N); Celtra (404N up to 1126N). FEA showed that decreasing ceramic thickness led to higher stress concentration on the cementing interface. Different ZLS glass-ceramic thicknesses influenced the fatigue failure load of the bonded system (i.e. the thicker the glass ceramic is, the higher the fatigue failure load will be). Different microstructures of the ZLS glass-ceramics might affect the fatigue behavior. FEA showed that the thicker the glass ceramic is, the lower the stress concentration at the tensile surface will be. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.
Integration Science and Technology of Advanced Ceramics for Energy and Environmental Applications
NASA Technical Reports Server (NTRS)
Singh, M.
2012-01-01
The discovery of new and innovative materials has been known to culminate in major turning points in human history. The transformative impact and functional manifestation of new materials have been demonstrated in every historical era by their integration into new products, systems, assemblies, and devices. In modern times, the integration of new materials into usable products has a special relevance for the technological development and economic competitiveness of industrial societies. Advanced ceramic technologies dramatically impact the energy and environmental landscape due to potential wide scale applications in all aspects of energy production, storage, distribution, conservation, and efficiency. Examples include gas turbine propulsion systems, fuel cells, thermoelectrics, photovoltaics, distribution and transmission systems based on superconductors, nuclear power generation, and waste disposal. Robust ceramic integration technologies enable hierarchical design and manufacturing of intricate ceramic components starting with geometrically simpler units that are subsequently joined to themselves and/or to metals to create components with progressively higher levels of complexity and functionality. However, for the development of robust and reliable integrated systems with optimum performance under different operating conditions, the detailed understanding of various thermochemical and thermomechanical factors is critical. Different approaches are required for the integration of ceramic-metal and ceramic-ceramic systems across length scales (macro to nano). In this presentation, a few examples of integration of ceramic to metals and ceramic to ceramic systems will be presented. Various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Potential opportunities and need for the development of innovative design philosophies, approaches, and integrated system testing under simulated application conditions will also be presented.
Interdisciplinary research on the nature and properties of ceramic materials
NASA Technical Reports Server (NTRS)
1980-01-01
The advancement of material performance and design methodology as related to brittle materials was investigated. The processing and properties of ceramic materials as related to design requirements was also studied.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1993-01-01
The Advanced Turbine Technologies Application Project (ATTAP) is in the fifth year of a multiyear development program to bring the automotive gas turbine engine to a state at which industry can make commercialization decisions. Activities during the past year included reference powertrain design updates, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Engine design and development included mechanical design, combustion system development, alternate aerodynamic flow testing, and controls development. Design activities included development of the ceramic gasifier turbine static structure, the ceramic gasifier rotor, and the ceramic power turbine rotor. Material characterization efforts included the testing and evaluation of five candidate high temperature ceramic materials. Ceramic component process development and fabrication, with the objective of approaching automotive volumes and costs, continued for the gasifier turbine rotor, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Engine and rig fabrication, testing, and development supported improvements in ceramic component technology. Total test time in 1992 amounted to 599 hours, of which 147 hours were engine testing and 452 were hot rig testing.
Ceramics for Molten Materials Containment, Transfer and Handling on the Lunar Surface
NASA Technical Reports Server (NTRS)
Standish, Evan; Stefanescu, Doru M.; Curreri, Peter A.
2009-01-01
As part of a project on Molten Materials Transfer and Handling on the Lunar Surface, molten materials containment samples of various ceramics were tested to determine their performance in contact with a melt of lunar regolith simulant. The test temperature was 1600 C with contact times ranging from 0 to 12 hours. Regolith simulant was pressed into cylinders with the approximate dimensions of 1.25 dia x 1.25cm height and then melted on ceramic substrates. The regolith-ceramic interface was examined after processing to determine the melt/ceramic interaction. It was found that the molten regolith wetted all oxide ceramics tested extremely well which resulted in chemical reaction between the materials in each case. Alumina substrates were identified which withstood contact at the operating temperature of a molten regolith electrolysis cell (1600 C) for eight hours with little interaction or deformation. This represents an improvement over alumina grades currently in use and will provide a lifetime adequate for electrolysis experiments lasting 24 hours or more. Two types of non-oxide ceramics were also tested. It was found that they interacted to a limited degree with the melt resulting in little corrosion. These ceramics, Sic and BN, were not wetted as well as the oxides by the melt, and so remain possible materials for molten regolith handling. Tests wing longer holding periods and larger volumes of regolith are necessary to determine the ultimate performance of the tested ceramics.
Ceramic Technology For Advanced Heat Engines Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-12-01
Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. The objective of the project is to develop the industrial technology base required for reliable ceramicsmore » for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. This advanced materials technology is being developed in parallel and close coordination with the ongoing DOE and industry proof of concept engine development programs. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. Abstracts prepared for appropriate papers.« less
Planar ceramic membrane assembly and oxidation reactor system
Carolan, Michael Francis; Dyer, legal representative, Kathryn Beverly; Wilson, Merrill Anderson; Ohm, Ted R.; Kneidel, Kurt E.; Peterson, David; Chen, Christopher M.; Rackers, Keith Gerard; Dyer, deceased, Paul Nigel
2007-10-09
Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.
Planar ceramic membrane assembly and oxidation reactor system
Carolan, Michael Francis; Dyer, legal representative, Kathryn Beverly; Wilson, Merrill Anderson; Ohrn, Ted R.; Kneidel, Kurt E.; Peterson, David; Chen, Christopher M.; Rackers, Keith Gerard; Dyer, Paul Nigel
2009-04-07
Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.
Chen, Jack C.; Stawisuck, Valerie M.; Prasad, Ravi
2003-01-01
A cold isopressing method in which two or more layers of material are formed within an isopressing mold. One of the layers consists of a tape-cast film. The layers are isopressed within the isopressing mold, thereby to laminate the layers and to compact the tape-cast film. The isopressing mold can be of cylindrical configuration with the layers being coaxial cylindrical layers. The materials used in forming the layers can contain green ceramic materials and the resultant structure can be fired and sintered as necessary and in accordance with known methods to produce a finished composite, ceramic structure. Further, such green ceramic materials can be of the type that are capable of conducting hydrogen or oxygen ions at high temperature with the object of utilizing the finished composite ceramic structure as a ceramic membrane element.
NASA Astrophysics Data System (ADS)
Lipinska-Kalita, Kristina E.; Krol, Denise M.; Hemley, Russell J.; Kalita, Patricia E.; Gobin, Cedric L.; Ohki, Yoshimichi
2005-09-01
We have investigated the optical properties of Cr3+ ions in an alkali gallium silicate glass system and in two glass-based nanocomposites with nucleated β-Ga2O3 nanocrystals. The nucleation and growth of the nanocrystalline phase in the host glass matrix were monitored by Raman scattering spectroscopy and angle-dispersive x-ray diffraction. A broadband luminescence, associated with the 4T2-4A2 transition from the weak crystal field of octahedral Cr3+ sites, dominated the emission of the precursor as-quenched glass. The luminescence spectra of the synthesized glass-ceramic nanocomposites revealed a crystal-like 2E-4A2 strong emission and indicated that the major fraction of Cr3+ ions was located within the nanocrystalline environment. The variable-temperature studies of the nanocomposites demonstrated that the fluorescence of Cr3+ ions can be transformed from sharp R lines of the 2E-4A2 transition to a combination of R lines and of the broad band of the 4T2-4A2 transition. We propose a simple distribution model where the major part of Cr3+ ions is located in the nanocrystalline phase of the glass-ceramic composites in the octahedral environment, substituting the gallium atoms in the β-Ga2O3 crystal structure. The developed nanocrystalline glass-ceramics are a promising class of Cr3+-doped oxide glass-based optically active composite materials.
Ceramic regenerator systems development program
NASA Technical Reports Server (NTRS)
Fucinari, C. A.; Rahnke, C. J.; Rao, V. D. N.; Vallance, J. K.
1980-01-01
The DOE/NASA Ceramic Regenerator Design and Reliability Program aims to develop ceramic regenerator cores that can be used in passenger car and industrial/truck gas turbine engines. The major cause of failure of early gas turbine regenerators was found to be chemical attack of the ceramic material. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability test in Ford 707 industrial gas turbine engines late in 1974. Results of 53,065 hours of turbine engine durability testing are described. Two materials, aluminum silicate and magnesium aluminum silicate, show promise. Five aluminum silicate cores attained the durability objective of 10,000 hours at 800 C (1472 F). Another aluminum silicate core shows minimal evidence of chemical attack after 8071 hours at 982 C (1800 F). Results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are included.
Catalytic thermal barrier coatings
Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh
2009-06-02
A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.
NASA Astrophysics Data System (ADS)
Tailor, H. N.; Ye, Z.-G.
2010-05-01
A solution chemical method utilizing ethylene glycol as solvent has been developed to prepare the ceramics of (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3[(1-x)PMN-xPT] from a precursor powder that can be pressed and fired in one step to produce high quality ceramics with excellent piezoelectric properties. The ceramics reach a relative density of up to 97% of the theoretical value after direct calcinations. This high density is achieved without the need of additional sintering after calcination which is usually required in conventional solid state syntheses to produce ceramics. The ceramics exhibit a unipolar piezoelectric coefficient d33 of 848 pC/N, which is one of the highest values for any unmodified/untextured binary systems reported to date. Since the piezoelectric properties depend on composition and electric field, the effect of poling conditions was investigated. A critical temperature limit has been found, above which poling can dramatically impair the piezoelectric properties due to a field-induced increase in the monoclinic phase component around the morphotropic phase boundary.
Enhanced electrical properties of textured NBBT ceramics derived from the screen printing technique.
Wu, Mengjia; Wang, Youliang; Wang, Dong; Li, Yongxiang
2011-10-01
(001)(pc)-oriented (Na(0.5)Bi(0.5))(0.94)Ba(0.06)TiO(3) (NBBT) lead-free piezoelectric ceramics were fabricated by the screen printing technique using Na(0.5)Bi(0.5)TiO(3) (NBT) templates. The plate-like NBT template particles were synthesized from bismuth layer-structured ferroelectric Bi(4)Ti(3)O(12) (BiT) precursors by the topochemical method. The screen printed NBBT ceramics with 20 wt% NBT templates contained a large fraction of grains aligned with their c-axis normal to the sample surface, giving a Lotgering factor of 0.486. The dielectric and ferroelectric properties of textured NBBT ceramics were anisotropic. Compared with the non-textured NBBT ceramics, the dielectric, ferroelectric, and piezoelectric properties of the textured NBBT ceramics were improved, giving a dielectric constant ϵ(T)(33)/ϵ(0) of 910, a remnant polarization P(r) of 29.2 μC/cm(2), a coercive field E(c) of 23.5 kV/cm, a piezoelectric coefficient d(33) of 180 pC/N, and a thickness-mode electromechanical coupling coefficient k(t) of 0.485.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-08-01
Significant accomplishments in fabricating cermaic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, additional research is needed in materials and processing development, design methodology, and data base and life prediction. An assessment of needs was completed, and a five-year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotivemore » heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.« less
NASA Astrophysics Data System (ADS)
Saito, Yasuyoshi; Takao, Hisaaki
2006-09-01
Platelike SrTiO3 particles with a cubic perovskite structure were synthesized by topochemical microcrystal conversion (TMC) from platelike precursor particles of layer-structured SrBi4Ti4O15 at 950 °C. SrTiO3 particles preserved the shape of precursor particles, and had a thickness of approximately 0.5 μm and a width of 5-10 μm. X-ray diffraction analysis revealed that in the TMC reaction, the crystallographic {001} plane of SrBi4Ti4O15 is converted into the {100} plane of SrTiO3. Using the platelike SrTiO3 particles as a template in templated grain growth method, dense {100} grain-oriented SrTiO3 ceramics having a {100} orientation degree (Lotgering’s factor) higher than 91% could be fabricated at sintering temperatures between 1350 and 1550 °C. The maximum orientation factor reached 99.3%.
NASA Astrophysics Data System (ADS)
Shan, Yanguang; Coyle, Thomas W.; Mostaghimi, Javad
2007-12-01
Solution precursor plasma spraying has been used to produce finely structured ceramic coatings with nano- and sub-micrometric features. This process involves the injection of a solution spray of ceramic salts into a DC plasma jet under atmospheric condition. During the process, the solvent vaporizes as the droplet travel downstream. Solid particles are finally formed due to the precipitation of the solute, and the particle are heated up and accelerated to the substrate to generate the coating. This article describes a 3D model to simulate the transport phenomena and the trajectory and heating of the solution spray in the process. The jet-spray two-way interactions are considered. A simplified model is employed to simulate the evolution process and the formation of the solid particle from the solution droplet in the plasma jet. The temperature and velocity fields of the jet are obtained and validated. The particle size, velocity, temperature, and position distribution on the substrate are predicted.
New Oxide Ceramic Developed for Superior High-Temperature Wear Resistance
NASA Technical Reports Server (NTRS)
Sayir, Ali; Miyoshi, Kazuhisa; Farmer, Serene C.
2003-01-01
Ceramics, for the most part, do not have inherently good tribological properties. For example friction coefficients in excess of 0.7 have been reported for silicon nitride sliding on silicon nitride or on bearing steel (ref. 1). High friction is always accompanied by considerable wear. Despite their inherently poor tribological properties, the high strength and high toughness of silicon nitride (Si3N4) ceramics has led to their successful use in tribological applications (refs. 1 to 4). The upper temperature limit for the application of Si3N4 as wear-resistant material is limited by reaction with the tribological environment (ref. 3). Silicon nitride is known to produce a thin silicon dioxide film with easy shear capability that results in low friction and low wear in a moist environment (ref. 5). At elevated temperatures, the removal of the reaction product that acts as lubricant causes the friction coefficient to increase and, consequently, the wear performance to become poor. New materials are sought that will have wear resistance superior to that of Si3N4 at elevated temperatures and in harsh environments. A new class of oxide ceramic materials has been developed with potential for excellent high-temperature wear resistance. The new material consists of a multicomponent oxide with a two-phase microstructure, in which the wear resistance of the mixed oxide is significantly higher than that of the individual constituents. This is attributed to the strong constraining effects provided by the interlocking microstructures at different length scales, to the large aspect ratio of the phases, to the strong interphase bonding, and to the residual stresses. Fretting wear tests were conducted by rubbing the new ceramic material against boron carbide (B4C). The new ceramic material produced a wear track groove on B4C, suggesting significantly higher wear resistance for the oxide ceramic. The new material did not suffer from any microstructural degradation after the wear test. The wear rate of the new ceramic material at 600 C was determined to be on the order of 10-10 mm3/N-m, which is 3 to 5 orders of magnitude lower than that for the current state-of-theart wear-resistant materials (Si3N4and B4C). The friction coefficient of the new ceramic materials is on the order of 0.4, which is significantly lower than that of silicon nitride. This new class of oxide materials has shown considerable potential for applications requiring high wear resistance at high temperatures and in harsh environments. New understanding of the wear behavior of ceramic materials is emerging as a result of the surprisingly high wear resistance of two-phase oxide ceramics. There is excellent potential for further improvements in the wear resistance of oxide ceramics through optimizing the microstructure and altering the crystallographic properties of specific oxide materials as a second phase to reduce the coefficient of friction at elevated temperatures.
PREFACE: Symposium 1: Advanced Structure Analysis and Characterization of Ceramic Materials
NASA Astrophysics Data System (ADS)
Yashima, Masatomo
2011-05-01
Preface to Symposium 1 (Advanced Structure Analysis and Characterization of Ceramic Materials) of the International Congress of Ceramics III, held 14-18 November 2010 in Osaka, Japan Remarkable developments have been made recently in the structural analysis and characterization of inorganic crystalline and amorphous materials, such as x-ray, neutron, synchrotron and electron diffraction, x-ray/neutron scattering, IR/Raman scattering, NMR, XAFS, first-principle calculations, computer simulations, Rietveld analysis, the maximum-entropy method, in situ measurements at high temperatures/pressures and electron/nuclear density analysis. These techniques enable scientists to study not only static and long-range periodic structures but also dynamic and short-/intermediate-range structures. Multi-scale characterization from the electron to micrometer levels is becoming increasingly important as a means of understanding phenomena at the interfaces, grain boundaries and surfaces of ceramic materials. This symposium has discussed the structures and structure/property relationships of various ceramic materials (electro, magnetic and optical ceramics; energy and environment related ceramics; bio-ceramics; ceramics for reliability secure society; traditional ceramics) through 38 oral presentations including 8 invited lectures and 49 posters. Best poster awards were given to six excellent poster presentations (Y-C Chen, Tokyo Institute of Technology; C-Y Chung, Tohoku University; T Stawski, University of Twente; Y Hirano, Nagoya Institute of Technology; B Bittova, Charles University Prague; Y Onodera, Kyoto University). I have enjoyed working with my friends in the ICC3 conference. I would like to express special thanks to other organizers: Professor Scott T Misture, Alfred University, USA, Professor Xiaolong Chen, Institute of Physics, CAS, China, Professor Takashi Ida, Nagoya Institute of Technology, Japan, Professor Isao Tanaka, Kyoto University, Japan. I also acknowledge the invited speakers, all the participants and organizing committee of the ICC3. I am pleased to publish the Proceedings of the Symposium 1 of ICC3. I hope that the papers contained in these Proceedings will prove helpful to Professors, researchers and students in improving the fields of Structure Analysis and Characterization of Ceramic Materials. Masatomo Yashima April 2011 Department of Chemistry and Materials Science, Graduate School of Science and Engineering, Tokyo Institute of Technology, Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teixeira, Silvio R., E-mail: rainho@fct.unesp.br; Souza, Agda E.; Carvalho, Claudio L.
Glass-ceramic material prepared with sugar cane bagasse ash as one of the raw materials was characterized to determine some important properties for its application as a coating material. X-ray diffraction patterns showed that wollastonite-2M (CaSiO{sub 3}) was the major glass-ceramic phase. The Rietveld method was used to quantify the crystalline (60 wt.%) and vitreous (40 wt.%) phases in the glass-ceramic. The microstructure (determined by scanning electron microscopy) of this material had a marble appearance, showing a microporous network of elongated crystals with some areas with dendritic, feather-like ordering. Microhardness data gave a mean hardness value of 564.4 HV (Vickers-hardness), andmore » light microscopy disclosed a greenish brown colored material with a vitreous luster. - Highlights: • We studied the properties of a glass-ceramic material obtained from sugarcane ash. • This material has the appearance and hardness of natural stones. • A refining method gave information about its amorphous and crystalline phases. • This material has potential to be used as coating plates for buildings.« less
Influence of abutment materials on the resultant color of heat-pressed lithium disilicate ceramics.
Shimada, Kazuki; Nakazawa, Motoko; Kakehashi, Yoshiyuki; Matsumura, Hideo
2006-03-01
The purpose of this study was to evaluate the influence of abutment materials on the color of IPS Empress 2 ceramic coping with different thicknesses. Ceramic coping specimens (12.0x12.0x0.8-2.0 mm) were fabricated from IPS Empress 2 material (Ingot-100, n=5/group). Abutment specimens were fabricated from a build-up composite, a gold alloy, or a silver-palladium alloy. Color was evaluated using a colorimeter according to the CIE L*a*b* system. The L*a*b* values of the ceramic coping specimens of different thicknesses on each abutment specimen were measured. Following which, the color difference (deltaE*ab) values between the ceramic coping specimens on various abutment specimens were calculated. Significant differences in deltaE*ab value were observed among different abutment specimens at certain ceramic coping thicknesses (P<0.05). Thus, it was concluded that the color of IPS Empress 2 coping material was influenced significantly by both the thickness of the coping and the color of the abutment material.
NASA Astrophysics Data System (ADS)
Amonpattaratkit, P.; Jantaratana, P.; Ananta, S.
2015-09-01
In this work, the investigation of phase formation, crystal structure, microstructure, microchemical composition and magnetic properties of perovskite (1-x)PFN-xPZT (x=0.1-0.5) multiferroic ceramics derived from a combination of perovskite stabilizer PZT and a wolframite-type FeNbO4 B-site precursor was carried out by using a combination of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analyzer and vibrating sample magnetometer (VSM) techniques. The addition of PZT phase and its concentration have been found to have pronounced effects on the perovskite phase formation, densification, grain growth and magnetic properties of the sintered ceramics. XRD spectra from these ceramics reveal transformation of the (pseudo) cubic into the tetragonal perovskite structure. When increasing PZT content, the degree of perovskite phase formation and the tetragonality value of the ceramics increase gradually accompanied with the variation of cell volume, the M-H hysteresis loops, however, become narrower accompanied by the decrease of maximum magnetization (Mmax), remanent polarization (Mr), and coercive field (HC).
Process of making porous ceramic materials with controlled porosity
Anderson, Marc A.; Ku, Qunyin
1993-01-01
A method of making metal oxide ceramic material is disclosed by which the porosity of the resulting material can be selectively controlled by manipulating the sol used to make the material. The method can be used to make a variety of metal oxide ceramic bodies, including membranes, but also pellets, plugs or other bodies. It has also been found that viscous sol materials can readily be shaped by extrusion into shapes typical of catalytic or adsorbent bodies used in industry, to facilitate the application of such materials for catalytic and adsorbent applications.
The Role of Ceramics in a Resurgent Nuclear Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marra, J
2006-02-28
With fuel oil and natural gas prices near record highs and worldwide energy demands increasing at an alarming rate, there is growing interest in revitalization of the nuclear power industry within the United States and across the globe. Ceramic materials have long played a very important part in the commercial nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced fuel cycles that minimize waste and increase proliferation resistance, ceramic materials will play an even larger role. Many of the advanced reactor concepts being evaluated operatemore » at high-temperature requiring the use of durable, heat-resistant materials. Ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, ceramic processes are also being applied to fuel reprocessing operations. Ceramic materials continue to provide a vital contribution in ''closing the fuel cycle'' by stabilization of associated low-level and high-level wastes in highly durable grout, ceramics, and glass. In the next five years, programs that are currently in the conceptual phase will begin laboratory- and engineering-scale demonstrations. This will require production-scale demonstrations of several ceramic technologies from fuel form development to advanced stabilization methods. Within the next five to ten years, these demonstrations will move to even larger scales and will also include radioactive demonstrations of these advanced technologies. These radioactive demonstrations are critical to program success and will require advances in ceramic materials associated with nuclear energy applications.« less
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1989-01-01
ATTAP activities during the past year were highlighted by an extensive materials assessment, execution of a reference powertrain design, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, component rig design and fabrication, test-bed engine fabrication, and hot gasifier rig and engine testing. Materials assessment activities entailed engine environment evaluation of domestically supplied radial gasifier turbine rotors that were available at the conclusion of the Advanced Gas Turbine (AGT) Technology Development Project as well as an extensive survey of both domestic and foreign ceramic suppliers and Government laboratories performing ceramic materials research applicable to advanced heat engines. A reference powertrain design was executed to reflect the selection of the AGT-5 as the ceramic component test-bed engine for the ATTAP. Test-bed engine development activity focused on upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1371 C (2500 F) structural ceramic component test-bed engine. Ceramic component design activities included the combustor, gasifier turbine static structure, and gasifier turbine rotor. The materials and component characterization efforts have included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities were initiated for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig development activities included combustor, hot gasifier, and regenerator rigs. Test-bed engine fabrication activities consisted of the fabrication of an all-new AGT-5 durability test-bed engine and support of all engine test activities through instrumentation/build/repair. Hot gasifier rig and test-bed engine testing activities were performed.
A hybrid phenomenological model for ferroelectroelastic ceramics. Part II: Morphotropic PZT ceramics
NASA Astrophysics Data System (ADS)
Stark, S.; Neumeister, P.; Balke, H.
2016-10-01
In this part II of a two part series, the rate-independent hybrid phenomenological constitutive model introduced in part I is modified to account for the material behavior of morphotropic lead zirconate titanate ceramics (PZT ceramics). The modifications are based on a discussion of the available literature results regarding the micro-structure of these materials. In particular, a monoclinic phase and a highly simplified representation of the hierarchical structure of micro-domains and nano-domains observed experimentally are incorporated into the model. It is shown that experimental data for the commercially available morphotropic PZT material PIC151 (PI Ceramic GmbH, Lederhose, Germany) can be reproduced and predicted based on the modified hybrid model.
NASA Astrophysics Data System (ADS)
Lei, Chao; Chen, Kepi; Zhang, Xiaowen; Wang, Jun
2002-08-01
Relaxor-type ferroelectric ceramics, (1- x)Pb(Ni 1/3Nb 2/3)O 3- xPbTiO 3 ( x=0.28-0.42) were synthesized by the columbite precursor method. The phase structure and dielectric properties were investigated. X-ray diffraction results demonstrate that a region with both pseudocubic and tetragonal phase in existence lies in the composition range x=0.34-0.38, which is the morphotropic phase boundary (MPB). Examination of the dielectric behavior indicates that the ceramics exhibit abnormal high dielectric constant near the MPB composition. In addition, the transformation of (1- x)PNN- xPT from relaxor to normal ferroelectric behavior with the PT content increasing is successive.
Silsesquioxane-derived ceramic fibres
NASA Technical Reports Server (NTRS)
Hurwitz, F. I.; Farmer, S. C.; Terepka, F. M.; Leonhardt, T. A.
1991-01-01
Fibers formed from blends of silsesquioxane polymers were characterized to study the pyrolytic conversion of these precursors to ceramics. The morphology of fibers pyrolyzed to 1400 C revealed primarily amorphous glasses whose conversion to beta-SiC is a function of both blend composition and pyrolysis conditions. Formation of beta-SiC crystallites within the glassy phase is favored by higher than stoichiometric C/Si ratios, while carbothermal reduction of Si-O bonds to form SiC with loss of SiO and CO occurs at higher methyl/phenylpropyl silsesquioxane (lower C/Si) ratios. As the carbothermal reduction is assumed to be diffusion controlled, the fibers can serve as model systems to gain understanding of the silsesquioxane pyrolysis behavior, and therefore are useful in the development of polysilsesquioxane-derived ceramic matrices and coatings as well.
Resin-composite blocks for dental CAD/CAM applications.
Ruse, N D; Sadoun, M J
2014-12-01
Advances in digital impression technology and manufacturing processes have led to a dramatic paradigm shift in dentistry and to the widespread use of computer-aided design/computer-aided manufacturing (CAD/CAM) in the fabrication of indirect dental restorations. Research and development in materials suitable for CAD/CAM applications are currently the most active field in dental materials. Two classes of materials are used in the production of CAD/CAM restorations: glass-ceramics/ceramics and resin composites. While glass-ceramics/ceramics have overall superior mechanical and esthetic properties, resin-composite materials may offer significant advantages related to their machinability and intra-oral reparability. This review summarizes recent developments in resin-composite materials for CAD/CAM applications, focusing on both commercial and experimental materials. © International & American Associations for Dental Research.
Encapsulation of thermal energy storage media
Goswami, Dharendra Yogi; Stefanakos, Elias K.; Jotshi, Chand K.; Dhau, Jaspreet
2018-01-30
In one embodiment, a method for fabricating a ceramic phase change material capsule includes forming a hollow ceramic capsule body having a filling hole, filling the ceramic capsule body with one or more phase change materials via the filling hole, and closing and sealing the filling hole.
Ceramic susceptor for induction bonding of metals, ceramics, and plastics
NASA Technical Reports Server (NTRS)
Fox, Robert L.; Buckley, John D.
1991-01-01
A thin (.005) flexible ceramic susceptor (carbon) was discovered. It was developed to join ceramics, plastics, metals, and combinations of these materials using a unique induction heating process. Bonding times for laboratory specimens comparing state of the art technology to induction bonding were cut by a factor of 10 to 100 times. This novel type of carbon susceptor allows for applying heat directly and only to the bondline without heating the entire structure, supports, and fixtures of a bonding assembly. The ceramic (carbon film) susceptor produces molten adhesive or matrix material at the bond interface. This molten material flows through the perforated susceptor producing a fusion between the two parts to be joined, which in many instances has proven to be stronger than the parent material. Bonding can be accomplished in 2 minutes on areas submitted to the inductive heating. Because a carbon susceptor is used in bonding carbon fiber reinforced plastics and ceramics, there is no radar signature or return making it an ideal process for joining advanced aerospace composite structures.
Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects.
Zhitomirsky, I
2002-03-29
Electrodeposition of ceramic materials can be performed by electrophoretic (EPD) or electrolytic (ELD) deposition. Electrophoretic deposition is achieved via motion of charged particles towards an electrode under an applied electric field. Electrolytic deposition produces colloidal particles in cathodic reactions for subsequent deposition. Various electrochemical strategies and deposition mechanisms have been developed for electrodeposition of ceramic and organoceramic films, and are discussed in the present article. Electrode-position of ceramic and organoceramic materials includes mass transport, accumulation of particles near the electrode and their coagulation to form a cathodic deposit. Various types of interparticle forces that govern colloidal stability in the absence and presence of processing additives are discussed. Novel theoretical contributions towards an interpretation of particle coagulation near the electrode surface are reviewed. Background information is given on the methods of particle charging, stabilization of colloids in aqueous and non-aqueous media, electrophoretic mobility of ceramic particles and polyelectrolytes, and electrode reactions. This review also covers recent developments in the electrodeposition of ceramic and organoceramic materials.
All-alkoxide synthesis of strontium-containing metal oxides
Boyle, Timothy J.
2001-01-01
A method for making strontium-containing metal-oxide ceramic thin films from a precursor liquid by mixing a strontium neo-pentoxide dissolved in an amine solvent and at least one metal alkoxide dissolved in a solvent, said at least one metal alkoxide selected from the group consisting of alkoxides of calcium, barium, bismuth, cadmium, lead, titanium, tantalum, hafnium, tungsten, niobium, zirconium, yttrium, lanthanum, antimony, chromium and thallium, depositing a thin film of the precursor liquid on a substrate, and heating the thin film in the presence of oxygen at between 550 and 700.degree. C.
NASA Astrophysics Data System (ADS)
Fossile, Lauren Michelle
Due to the inherently intermittent nature of solar energy caused by cloud cover among other sources, thermal storage systems are needed to make solar energy more consistent. This same technology could be used to prolong the daily number of useful hours of solar energy power plants. Salt-ceramic materials are a relatively new prospect for heat storage, but have been researched mostly with magnesium oxide and several different carbonate salts. Salt ceramics are a phase change material where the salt changes phase inside the ceramic structure allowing for the system to use the sensible heat of both materials and the latent heat of the salt to store thermal energy. Capillary forces within the ceramic structure hold in the salt when the salt melts. The focus here is on the possibility of creating a low-cost salt-ceramic storage material for high temperature solar energy applications. A theoretical analysis of the resulting materials is performed. While most of the existing salt ceramics have been made from magnesium oxide, aluminum oxide is more readily available from various companies in the area. Magnesium oxide is often considered a custom ceramic, so it is more expensive. A cost and material property comparison has been completed between these two materials to determine which is better suited for solar storage. Many of the existing salt-ceramics use carbonate salts, but nitrate salts are commonly used in graphite/salt composites. Therefore, a cost and theoretical performance comparison is between these materials also. For comparisons' sake, zirconia and graphite have also been analyzed as the filler in the composite. Each combination of salt and ceramic or graphite has been analyzed. In order to make the use of salt-ceramics more cost-effective and available to Nevada's energy providers, research has been done into which ceramics have high availability in Nevada, low cost, and the best material properties for this application. The thermal properties and cost of these materials have been compared to the price that Nevada's energy utilities are willing to pay per unit of stored energy, which was approximated through a survey conducted by the National Science Foundation (NSF) - Experimental Project to Stimulate Competitive Research (EPSCoR) at the University of Nevada, Las Vegas. The surveys were completed on Nevadan energy purveyors concerning climate change attitudes, but included questions regarding the usefulness and cost of solar storage. The cost per unit of energy has also been calculated and whether the utilities would be willing to pay for each combination will be determined using information obtained from the surveys mentioned above. This information will dictate which combination will be best for use in the state of Nevada at solar energy power plants.
Principles of gas phase processing of ceramics during combustion
NASA Technical Reports Server (NTRS)
Zachariah, Michael R.
1993-01-01
In recent years, ceramic materials have found applications in an increasingly wider range of industrial processes, where their unique mechanical, electrical and optical properties are exploited. Ceramics are especially useful for applications in high temperature, corrosive environments, which impose particularly stringent requirements on mechanical reliability. One approach to provide such materials is the manufacture of submicron (and more recently nanometer scale) particles, which may subsequently be sintered to produce a material with extremely high mechanical integrity. However, high quality ceramic materials can only be obtained if particles of known size, polydispersity, shape and chemical purity can be produced consistently, under well controlled conditions. These requirements are the fundamental driving force for the renewed interest in studying particle formation and growth of such materials.
High impact resistant ceramic composite
Derkacy, J.A.
1991-07-16
A ceramic material and a method of forming a ceramic material which possesses a high impact resistance are disclosed. The material comprises: (a) a first continuous phase of [beta]-SiC; and (b) a second phase of about 25-40 vol % TiB[sub 2]. Al[sub 2]O[sub 3] is preferably used as a densification aid. The material is formed by hot-pressing the mixture at a temperature from greater than about 1800 C to less than the transition temperature of [beta]-SiC to [alpha]-SiC. The hot-pressing is performed at a pressure of about 2000 psi to about 4000 psi in an inert atmosphere for several hours and results in the formation of a two phase sintered ceramic composite material. 6 figures.
High impact resistant ceramic composite
Derkacy, James A.
1991-07-16
A ceramic material and a method of forming a ceramic material which possesses a high impact resistance. The material comprises: (a) a first continuous phase of .beta.-SiC; and (b) a second phase of about 25-40 vol % TiB.sub.2. Al.sub.2 O.sub.3 is preferably used as a densification aid. The material is formed by hot-pressing the mixture at a temperature from greater than about 1800.degree. C. to less than the transition temperature of .beta.-SiC to .alpha.-SiC. The hot-pressing is performed at a pressure of about 2000 psi to about 4000 psi in an inert atmosphere for several hours and results in the formation of a two phase sintered ceramic composite material.
NASA Technical Reports Server (NTRS)
Salem, Jonathan A.; Jenkins, Michael G.
2003-01-01
Advanced aerospace systems occasionally require the use of very brittle materials such as sapphire and ultra-high temperature ceramics. Although great progress has been made in the development of methods and standards for machining, testing and design of component from these materials, additional development and dissemination of standard practices is needed. ASTM Committee C28 on Advanced Ceramics and ISO TC 206 have taken a lead role in the standardization of testing for ceramics, and recent efforts and needs in standards development by Committee C28 on Advanced Ceramics will be summarized. In some cases, the engineers, etc. involved are unaware of the latest developments, and traditional approaches applicable to other material systems are applied. Two examples of flight hardware failures that might have been prevented via education and standardization will be presented.
NASA Astrophysics Data System (ADS)
Hameed, Amer; Appleby-Thomas, Gareth; Wood, David; Jaansalu, Kevin
2015-06-01
Recent studies have shown evidence that the ballistic-resistance of fragmented (comminuted) ceramics is independent of the original strength of the material. In particular, experimental investigations into the ballistic behaviour of such fragmented ceramics have indicated that this response is correlated to shattered ceramic morphology. This suggests that careful control of ceramic microstructure - and therefore failure paths - might provide a route to optimise post-impact ballistic performance, thereby enhancing multi-hit capability. In this study, building on previous in-house work, ballistic tests were conducted using pre-formed `fragmented-ceramic' analogues based around three morphologically differing (but chemically identical) alumina feedstock materials compacted into target `pucks. In an evolution of previous work, variation of target thickness provided additional insight into an apparent morphology-based contribution to ballistic response.
Integrated Design Software Predicts the Creep Life of Monolithic Ceramic Components
NASA Technical Reports Server (NTRS)
1996-01-01
Significant improvements in propulsion and power generation for the next century will require revolutionary advances in high-temperature materials and structural design. Advanced ceramics are candidate materials for these elevated-temperature applications. As design protocols emerge for these material systems, designers must be aware of several innate features, including the degrading ability of ceramics to carry sustained load. Usually, time-dependent failure in ceramics occurs because of two different, delayedfailure mechanisms: slow crack growth and creep rupture. Slow crack growth initiates at a preexisting flaw and continues until a critical crack length is reached, causing catastrophic failure. Creep rupture, on the other hand, occurs because of bulk damage in the material: void nucleation and coalescence that eventually leads to macrocracks which then propagate to failure. Successful application of advanced ceramics depends on proper characterization of material behavior and the use of an appropriate design methodology. The life of a ceramic component can be predicted with the NASA Lewis Research Center's Ceramics Analysis and Reliability Evaluation of Structures (CARES) integrated design programs. CARES/CREEP determines the expected life of a component under creep conditions, and CARES/LIFE predicts the component life due to fast fracture and subcritical crack growth. The previously developed CARES/LIFE program has been used in numerous industrial and Government applications.
NASA Astrophysics Data System (ADS)
Clegg, Richard A.; Hayhurst, Colin J.
1999-06-01
Ceramic materials, including glass, are commonly used as ballistic protection materials. The response of a ceramic to impact, perforation and penetration is complex and difficult and/or expensive to instrument for obtaining detailed physical data. This paper demonstrates how a hydrocode, such as AUTODYN, can be used to aid in the understanding of the response of brittle materials to high pressure impact loading and thus promote an efficient and cost effective design process. Hydrocode simulations cannot be made without appropriate characterisation of the material. Because of the complexitiy of the response of ceramic materials this often requires a number of complex material tests. Here we present a methodology for using the results of flyer plate tests, in conjunction with numerical simulations, to derive input to the Johnson-Holmquist material model for ceramics. Most of the research effort in relation to the development of hydrocode material models for ceramics has concentrated on the material behaviour under compression and shear. While the penetration process is dominated by these aspects of the material response, the final damaged state of the material can be significantly influenced by the tensile behaviour. Modelling of the final damage state is important since this is often the only physical information which is available. In this paper we present a unique implementation, in a hydrocode, for improved modelling of brittle materials in the tensile regime. Tensile failure initiation is based on any combination of principal stress or strain while the post-failure tensile response of the material is controlled through a Rankine plasticity damaging failure surface. The tensile failure surface can be combined with any of the traditional plasticity and/or compressive damage models. Finally, the models and data are applied in both traditional grid based Lagrangian and Eulerian solution techniques and the relativley new SPH (Smooth Particle Hydrodynamics) meshless technique. Simulations of long rod impacts onto ceramic faced armour and hypervelocity impacts on glass solar array space structures are presented and compared with experiments.
Adler, Thomas A.
1996-01-01
The invention pertains a method of determining elastic and plastic mechanical properties of ceramics, intermetallics, metals, plastics and other hard, brittle materials which fracture prior to plastically deforming when loads are applied. Elastic and plastic mechanical properties of ceramic materials are determined using spherical indenters. The method is most useful for measuring and calculating the plastic and elastic deformation of hard, brittle materials with low values of elastic modulus to hardness.
Testing Ceramics for Diesel Engines
NASA Technical Reports Server (NTRS)
Schneider, H. W.
1985-01-01
Adaptation of diesel engine allows prestressed ceramic materials evaluated under realistic pressure, temperature, and stress without introducing extraneous stress. Ceramic specimen part of prechamber of research engine. Specimen held in place by clamp, introduces required axial compressive stress. Specimen -- cylindrical shell -- surrounded by chamber vented or pressurized to introduce requisite radial stress in ceramic. Pressure chamber also serves as safety shield in case speimen disintegrates. Materials under consideration as cylinder liners for diesel engines.
Ceramic and non-ceramic hydroxyapatite as a bone graft material: a brief review.
Dutta, S R; Passi, D; Singh, P; Bhuibhar, A
2015-03-01
Treatment of dental, craniofacial and orthopedic defects with bone graft substitutes has shown promising result achieving almost complete bone regeneration depending on product resorption similar to human bone's physicochemical and crystallographic characteristics. Among these, non-ceramic and ceramic hydroxyapatite being the main inorganic salt of bone is the most studied calcium phosphate material in clinical practices ever since 1970s and non-ceramic since 1985. Its "chemical similarity" with the mineralized phase of biologic bone makes it unique. Hydroxyapatite as an excellent carrier of osteoinductive growth factors and osteogenic cell populations is also useful as drug delivery vehicle regardless of its density. Porous ceramic and non-ceramic hydroxyapatite is osteoconductive, biocompatible and very inert. The need for bone graft material keeps on increasing with increased age of the population and the increased conditions of trauma. Recent advances in genetic engineering and doping techniques have made it possible to use non-ceramic hydroxyapatite in larger non-ceramic crystals and cluster forms as a successful bone graft substitute to treat various types of bone defects. In this paper we have mentioned some recently studied properties of hydroxyapatite and its various uses through a brief review of the literatures available to date.
Material Science Smart Coatings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubinstein, A. I.; Sabirianov, R. F.; Namavar, Fereydoon
2014-07-01
The contribution of electrostatic interactions to the free energy of binding between model protein and a ceramic implant surface in the aqueous solvent, considered in the framework of the nonlocal electrostatic model, is calculated as a function of the implant low-frequency dielectric constant. We show that the existence of a dynamically ordered (low-dielectric) interfacial solvent layer at the protein-solvent and ceramic-solvent interface markedly increases charging energy of the protein and ceramic implant, and consequently makes the electrostatic contribution to the protein-ceramic binding energy more favorable (attractive). Our analysis shows that the corresponding electrostatic energy between protein and oxide ceramics dependsmore » nonmonotonically on the dielectric constant of ceramic, ε C. Obtained results indicate that protein can attract electrostatically to the surface if ceramic material has a moderate ε C below or about 35 (in particularly ZrO 2 or Ta 2O 5). This is in contrast to classical (local) consideration of the solvent, which demonstrates an unfavorable electrostatic interaction of protein with typical metal oxide ceramic materials (ε C>10). Thus, a solid implant coated by combining oxide ceramic with a reduced dielectric constant can be beneficial to strengthen the electrostatic binding of the protein-implant complex.« less
Ceramic-glass-ceramic seal by microwave heating
Meek, T.T.; Blake, R.D.
1983-10-04
A method for producing a ceramic-glass-ceramic seal by microwaving, mixes a slurry of glass sealing material and coupling agent and applies same to ceramic workpieces. The slurry and workpieces are placed together, insulated and then microwaved at a power, time and frequency sufficient to cause a liquid phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by a diffusion rather than by wetting of the reactants.
Ceramic-glass-ceramic seal by microwave heating
Meek, Thomas T.; Blake, Rodger D.
1985-01-01
A method for producing a ceramic-glass-ceramic seal by microwaving, mixes a slurry of glass sealing material and coupling agent and applies same to ceramic workpieces. The slurry and workpieces are placed together, insulated and then microwaved at a power, time and frequency sufficient to cause a liquid phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by a diffusion rather than by wetting of the reactants.