DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.R.; McClung, R.W.; Janney, M.A.
1987-08-01
A needs assessment was performed for nondestructive testing and materials characterization to achieve improved reliability in ceramic materials for heat engine applications. Raw materials, green state bodies, and sintered ceramics were considered. The overall approach taken to improve reliability of structural ceramics requires key inspections throughout the fabrication flowsheet, including raw materials, greed state, and dense parts. The applications of nondestructive inspection and characterization techniques to ceramic powders and other raw materials, green ceramics, and sintered ceramics are discussed. The current state of inspection technology is reviewed for all identified attributes and stages of a generalized flowsheet for advanced structuralmore » ceramics, and research and development requirements are identified and listed in priority order. 164 refs., 3 figs.« less
González, I; Barba-Brioso, C; Campos, P; Romero, A; Galán, E
2016-09-15
The fabrication of ceramics can produce the emission of several gases, denominated exhaust gases, and also vapours resulting from firing processes, which usually contain metals and toxic substances affecting the environment and the health of workers. Especially harmful are the diffuse emissions of CO2, fluorine, chlorine and sulphur from the ceramics industry, which, in highly industrialized areas, can suppose an important emission focus of dangerous effects. Concerning CO2, factories that use carbonate-rich raw materials (>30% carbonates) can emit high concentrations of CO2 to the atmosphere. Thus, carbonate reduction or substitution with other raw materials would reduce the emissions. In this contribution, we propose the addition of Al-shales to the carbonated ceramic materials (marls) for CO2 emission reduction, also improving the quality of the products. The employed shales are inexpensive materials of large reserves in SW-Spain. The ceramic bodies prepared with the addition of selected Al-shale to marls in variable proportions resulted in a 40%-65% CO2 emission reduction. In addition, this research underlines at the same time that the use of a low-price raw material can also contribute to obtaining products with higher added value. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
EWSUK,KEVIN G.
1999-11-24
Ceramics represent a unique class of materials that are distinguished from common metals and plastics by their: (1) high hardness, stiffness, and good wear properties (i.e., abrasion resistance); (2) ability to withstand high temperatures (i.e., refractoriness); (3) chemical durability; and (4) electrical properties that allow them to be electrical insulators, semiconductors, or ionic conductors. Ceramics can be broken down into two general categories, traditional and advanced ceramics. Traditional ceramics include common household products such as clay pots, tiles, pipe, and bricks, porcelain china, sinks, and electrical insulators, and thermally insulating refractory bricks for ovens and fireplaces. Advanced ceramics, also referredmore » to as ''high-tech'' ceramics, include products such as spark plug bodies, piston rings, catalyst supports, and water pump seals for automobiles, thermally insulating tiles for the space shuttle, sodium vapor lamp tubes in streetlights, and the capacitors, resistors, transducers, and varistors in the solid-state electronics we use daily. The major differences between traditional and advanced ceramics are in the processing tolerances and cost. Traditional ceramics are manufactured with inexpensive raw materials, are relatively tolerant of minor process deviations, and are relatively inexpensive. Advanced ceramics are typically made with more refined raw materials and processing to optimize a given property or combination of properties (e.g., mechanical, electrical, dielectric, optical, thermal, physical, and/or magnetic) for a given application. Advanced ceramics generally have improved performance and reliability over traditional ceramics, but are typically more expensive. Additionally, advanced ceramics are typically more sensitive to the chemical and physical defects present in the starting raw materials, or those that are introduced during manufacturing.« less
NASA Astrophysics Data System (ADS)
Moreira, Bernardino; Miller, Ana Z.; Santos, Ricardo; Monteiro, Sílvia; Dias, Diamantino; Neves, Orquídia; Dionísio, Amélia; Saiz-Jimenez, Cesareo
2014-05-01
Several bacterial and fungal species naturally occurring in ceramic raw materials used in construction, such as Aspergillus, Penicillium and Aureobasidium, are known to produce exopolysaccharides (EPS). These polymers excreted by the cells are of widespread occurrence and may confer unique and potentially interesting properties with potential industrial uses, such as viscosity control, gelation, and flocculation, during ceramic manufacturing. In this study, the microbial communities present in clay raw materials were identified by both cultural methods and DNA-based molecular techniques in order to appraise their potential contribution to enhance the performance of technical ceramics through the use of EPS. Mineralogical identification by X- Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy of the clay raw materials, as well as characterization of rheological properties of ceramic slips were also performed. Microbial EPS production and its introduction into ceramic slips will be then carried out in order to evaluate their effects on the rheological properties of the ceramic slips, powders and conformed bodies. Some positive aspects related to the use of EPS are: reduction of the environmental impact caused by synthetic organic additives, reduction of production costs, as well as the costs related with operator protection systems, gaseous effluent treatments, complex landfill, among others.
NASA Astrophysics Data System (ADS)
Stolboushkin, A. Yu; Akst, D. V.; Fomina, O. A.; Ivanov, A. I.; Syromyasov, V. A.
2017-09-01
The analysis of waste coal from mining enterprises of Kemerovo region as raw materials for production of building ceramics is given. The results of studies of material, chemical and mineralogical compositions of waste coal from Abashevskaya processing plant (Novokuznetsk) are presented. It was established that the chemical composition of waste coal refers to aluminosilicate raw materials with a high content of alumina and coloring oxides, the residual carbon content in the wastes is 12-25 %. According to the granulometric composition the waste coal is basically a sandy-dusty fraction with a small amount of clay particles (1-3 %). Additional grinding of coal waste and the introduction of a clay additive in an amount of up to 30 % are recommended. The results of the study of the mineral composition of waste coal are presented. Clay minerals are represented in the descending order by hydromuscovite, montmorillonite and kaolinite, minerals-impurities consist of quartz, feldspar fine-dispersed carbonates. The results of the investigation of ceramic-technological properties of waste coal, which belong to the group of moderately plastic low-melting raw materials, are given. As a result of a comprehensive study it was been established that with chemical, granulometric and mineralogical compositions waste coal with the reduced residual carbon can be used in the production of ceramic bricks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gualtieri, Alessandro F., E-mail: alessandro.gualtieri@unimore.it; Giacobbe, Carlotta; Sardisco, Lorenza
Recycling of secondary raw materials is a priority of waste handling in the countries of the European community. A potentially important secondary raw material is the product of the thermal transformation of cement-asbestos, produced by prolonged annealing at 1200-1300 {sup o}C. The product is chemically comparable to a Mg-rich clinker. Previous work has assured the reliability of the transformation process. The current challenge is to find potential applications as secondary raw material. Recycling of thermally treated asbestos-containing material (named KRY.AS) in traditional ceramics has already been studied with successful results. The results presented here are the outcome of a longmore » termed project started in 2005 and devoted to the recycling of this secondary raw materials in various industrial applications. KRY.AS can be added in medium-high percentages (10-40 wt%) to commercial mixtures for the production of clay bricks, rock-wool glasses for insulation as well as Ca-based frits and glass-ceramics for the production of ceramic tiles. The secondary raw material was also used for the synthesis of two ceramic pigments; a green uvarovite-based pigment [Ca{sub 3}Cr{sub 2}(SiO{sub 4}){sub 3}] and a pink malayaite-based pigment [Ca(Sn,Cr)SiO{sub 5}]. The latter is especially interesting as a substitute for cadmium-based pigments. This work also shows that KRY.AS can replace standard fillers in polypropylene plastics without altering the properties of the final product. For each application, a description and relevant results are presented and discussed.« less
USDA-ARS?s Scientific Manuscript database
Clay and plant materials such as wood are the raw materials used in manufacture of ceramic water filtration devices around the world. A step by step manufacturing procedure which includes initial mixing, molding and sintering is used. The manufactured ceramic filters have numerous pores which help i...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teixeira, Silvio R., E-mail: rainho@fct.unesp.br; Souza, Agda E.; Carvalho, Claudio L.
Glass-ceramic material prepared with sugar cane bagasse ash as one of the raw materials was characterized to determine some important properties for its application as a coating material. X-ray diffraction patterns showed that wollastonite-2M (CaSiO{sub 3}) was the major glass-ceramic phase. The Rietveld method was used to quantify the crystalline (60 wt.%) and vitreous (40 wt.%) phases in the glass-ceramic. The microstructure (determined by scanning electron microscopy) of this material had a marble appearance, showing a microporous network of elongated crystals with some areas with dendritic, feather-like ordering. Microhardness data gave a mean hardness value of 564.4 HV (Vickers-hardness), andmore » light microscopy disclosed a greenish brown colored material with a vitreous luster. - Highlights: • We studied the properties of a glass-ceramic material obtained from sugarcane ash. • This material has the appearance and hardness of natural stones. • A refining method gave information about its amorphous and crystalline phases. • This material has potential to be used as coating plates for buildings.« less
NASA Astrophysics Data System (ADS)
Stolboushkin, A. Yu; Ivanov, A. I.; Temlyantsev, M. V.; Fomina, O. A.
2016-10-01
Rational preparation of the mixture containing technogenic raw material - waste coal for the production of wall ceramics is developed. It was established that the technology of high-quality ceramic bricks requires: grinding of raw materials to class 0.3 + 0 mm, its aggregation in the intensive mixers into granules 1-3 mm, compression molding of adobe to plastic deformation of granules, drying and firing.
Effect of sintering process and additives on the properties of cordierite based ceramics
NASA Astrophysics Data System (ADS)
Rundans, M.; Sperberga, I.; Sedmale, G.; Stinkulis, G.
2013-12-01
It is possible to obtain cordierite ceramics with high temperature synthesis using both synthetic and raw natural materials. This paper discusses the possibilities to obtain cordierite ceramics, replacing part of required oxides with raw materials from various Latvian deposits of dolomite and clay. The obtained raw cordierite powders were ground in two modes (3 and 12 hours) and fired at 1200 °C. Ceramic samples were characterized by hydrostatic weighting method; crystalline phase composition was studied by XRD. Obtained samples were evaluated by their mechanical (compressive) strength and linear coefficient of thermal expansion (CTE). Thermal shock resistance was tested using water quenching method and afterwards evaluated by using ultrasonic method to test changes in Young's modulus of elasticity. Results show that increase in grinding time causes samples to densify and promote formation of cordierite crystalline phase which corresponds to increase in total compressive strength and decrease of CTE values. CTE values of samples ground for 12 hours conform to that of obtained in other researches.
NASA Astrophysics Data System (ADS)
Ravisankar, R.; Naseerutheen, A.; Rajalakshmi, A.; Raja Annamalai, G.; Chandrasekaran, A.
2014-08-01
The characterization of archeological ceramic and pottery can be studied for the determination of firing temperature and the presence of raw materials by thermal analysis. Clay minerals are the main material for the production of ceramic and pottery and show some characteristic reactions such as dehydration, dehydroxylation and transformation. This is key point of criteria for the elucidation of firing temperature and raw material analysis. In the present work, DTA-TG, XRD and EDXRF technique are applied on representative potsherds from Vellore dist., Tamilnadu, India to derive the information about the production technology, raw materials and firing temperature. From the analysis, all the samples were considered to be fired from 800 °C to 900 °C and organic material might be added intestinally as a binder in the preparation of pottery.
NASA Astrophysics Data System (ADS)
Szilágyi, V.; Gyarmati, J.; Tóth, M.; Taubald, H.; Balla, M.; Kasztovszky, Zs.; Szakmány, Gy.
2012-07-01
This paper summarized the results of comprehensive petro-mineralogical and geochemical (archeometrical) investigation of Inka Period ceramics excavated from Inka (A.D. 1438-1535) and Late Intermediate Period (A.D. 1000/1200-1438) sites of the Paria Basin (Dept. Oruro, Bolivia). Applying geological analytical techniques we observed a complex and important archaeological subject of the region and the era, the cultural-economic influence of the conquering Inkas in the provincial region of Paria appearing in the ceramic material. According to our results, continuity and changes of raw material utilization and pottery manufacturing techniques from the Late Intermediate to the Inka Period are characterized by analytical methods. The geological field survey provided efficient basis for the identification of utilized raw material sources. On the one hand, ceramic supply of both eras proved to be based almost entirely on local and near raw material sources. So, imperial handicraft applied local materials but with sophisticated imperial techniques in Paria. On the other hand, Inka Imperial and local-style vessels also show clear differences in their material which suggests that sources and techniques functioned already in the Late Intermediate Period subsisted even after the Inka conquest of the Paria Basin. Based on our geological investigations, pottery supply system of the Paria region proved to be rather complex during the Inka Period.
Characterization of Low Firing Temperature Ceramic Glaze Using Phuket MSW and Soda Lime Cullet
NASA Astrophysics Data System (ADS)
Ketboonruang, P.; Jinawat, S.; Kashima, D. P.; Wasanapiarnpong, T.; Sujaridworakun, P.; Buggakuptav, W.; Traipol, N.; Jiemsirilers, S.
2011-10-01
The normal firing temperature of ceramic products is around 1200 °C. In order to reduce firing temperature, industrial wastes were utilized in ceramic glaze. Phuket municipal solid waste (MSW), soda lime cullet, and borax were used as raw materials for low firing temperature glazes. The glaze compositions were designed using a triaxial diagram. Stoneware ceramic body was glazed then fired at 1000 and 1150 °C for 15 minutes. Morphology and phase composition of glazes were analyzed by Scanning electron microscopy (SEM-EDS) and X-ray diffraction (XRD). Thermal expansion compatibility of Stoneware body and glazes were investigated using a dilatometer. Melting behaviour of selected glaze was analyzed by heating stage microscopy. Phuket MSW and Soda lime glass cullet can be used in high percentage as major raw materials for low firing temperature ceramic glaze that show good texture and vitrified at lower firing temperature without using any commercial ceramic frits. The firing temperature can be reduced up to 150 °C in this study.
Archaeometric study of black-coated pottery from Pompeii by different analytical techniques.
Scarpelli, Roberta; Clark, Robin J H; De Francesco, Anna Maria
2014-01-01
Complementary spectroscopic methods were used to characterize ceramic body and black coating of fine pottery found at Pompeii (Italy). This has enabled us to investigate local productions and to clarify the technological changes over the 4th-1st centuries BC. Two different groups of ceramics were originally distinguished on the basis of macroscopic observations. Optical microscopy (OM), X-ray diffraction (XRD) and X-ray fluorescence (XRF) seem to indicate the usage of the same raw materials for the production of black-coated ceramics at Pompeii for about three centuries. Raman microscopy (RM) and micro-analysis (SEM/EDS) suggest different production treatments for both raw material processing and firing practice (duration of the reducing step and the cooling rate). Copyright © 2013 Elsevier B.V. All rights reserved.
Silva, R V; de Brito, J; Lynn, C J; Dhir, R K
2017-10-01
This paper presents a literature review on the incorporation of municipal solid waste incinerated bottom ash as raw material in several markets, other than those where it is conventionally used, such as geotechnical applications and road pavement construction. The main findings of an ample selection of experimental investigations on the use of the bottom ash as precursor of alkali-activated materials, as an adsorbent material for the removal of hazardous elements from wastewater and landfill gases, as soil replacement in agricultural activities, as partial or complete substitute of raw materials for the manufacture of ceramic-based products, as landfill cover and as biogas production enhancer, were gathered, collated and analysed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Recycling of spent adsorbents for oxyanions and heavy metal ions in the production of ceramics.
Verbinnen, Bram; Block, Chantal; Van Caneghem, Jo; Vandecasteele, Carlo
2015-11-01
Spent adsorbents for oxyanion forming elements and heavy metals are classified as hazardous materials and they are typically treated by stabilization/solidification before landfilling. The use of lime or cement for stabilization/solidification entails a high environmental impact and landfilling costs are high. This paper shows that mixing spent adsorbents in the raw material for the production of ceramic materials is a valuable alternative to stabilize oxyanion forming elements and heavy metals. The produced ceramics can be used as construction material, avoiding the high economic and environmental impact of stabilization/solidification followed by landfilling. To study the stabilization of oxyanion forming elements and heavy metals during the production process, two series of experiments were performed. In the first series of experiments, the main pollutant, Mo was adsorbed onto iron-based adsorbents, which were then mixed with industrial sludge (3 w/w%) and heated at 1100°C for 30 min. Mo was chosen, as this element is easily adsorbed onto iron-based adsorbents and it is the element that is the most difficult to stabilize (i.e. the highest temperatures need to be reached before the concentrations in the leachate are reduced). Leaching concentration from the 97/3 sludge/adsorbent mixture before heating ranged between 85 and 154 mg/kg; after the heating process they were reduced to 0.42-1.48 mg/kg. Mo was actually stabilized, as the total Mo concentration after addition was not affected by the heat treatment. In the second series of experiments, the sludge was spiked with other heavy metals and oxyanion forming elements (Cr, Ni, Cu, Zn, As, Cd and Pb) in concentrations 5 times higher than the initial concentrations; after heat treatment the leachate concentrations were below the regulatory limit values. The incorporation of spent adsorbents in ceramic materials is a valuable and sustainable alternative to the existing treatment methods, saving raw materials in the ceramics production process and avoiding the use of stabilizing agents. Besides, spent adsorbents added to the raw material for ceramic products, may improve their aesthetic and structural properties. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of rare earth Ce on the far infrared radiation property of iron ore tailings ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jie; Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin 300130; Meng, Junping, E-mail: srlj158@sina.com
2015-06-15
Highlights: • Detailed process proposed for preparation of iron ore tailings ceramics. • Replace natural minerals with iron ore tailings as raw materials for preparing functional ceramics. • Impact mechanism of Ce on far infrared ceramics, as well as its optimum addition amounts can be obtained. • Propose a new perspective on considering the mechanism of far infrared radiation. - Abstract: A kind of far infrared radiation ceramics was prepared by using iron ore tailings, CaCO{sub 3} and SiO{sub 2} as main raw materials, and Ce as additive. The result of Fourier transform infrared spectroscopy showed that the sample exhibitsmore » excellent radiation value of 0.914 when doping 7 wt.% Ce. Ce{sup 4+} dissolved into iron diopside and formed interstitial solid solution with it sintered at 1150 °C. The oxidation of Fe{sup 2+} to Fe{sup 3+} caused by Ce{sup 4+} led to a decrease of crystallite sizes and enhancement of Mg–O and Fe–O vibration in iron diopside, which consequently improved the far infrared radiation properties of iron ore tailings ceramics.« less
NASA Astrophysics Data System (ADS)
Giannossa, Lorena Carla; Acquaviva, Marianna; Laganara, Caterina; Laviano, Rocco; Mangone, Annarosa
2014-09-01
Glazed pottery with "negative decoration" samples, dating back to the twelfth to thirteenth century ad and coming from three sites along the Adriatic coast, Siponto, Egnatia and Trani (Southern Italy) were characterized from physical-chemical, mineralogical and morphological points of view. Optical microscopy, scanning electron microscopy with energy dispersive X-ray spectroscopy, inductively coupled plasma-mass spectroscopy, X-ray diffraction and micro-Raman spectroscopy investigations were carried out on ceramic bodies, pigments and glazes of the fragments. We aimed to outline the technological features, define the nature of decorations and coatings—glazes and engobes—and look for clues to hypothesize provenance. Results obtained show clear differences in raw materials and production technology between the impressed ceramic of Islamic tradition and the incised one of Byzantine tradition. Regarding the latter, evidences of a non-local origin can be found in the compositional diversity of raw materials used for the ceramic bodies of fragments decorated with spiral and pseudo-kufic motifs, which stressed the use of clays so far not recorded in Apulia. At the same time, at least in the case of Siponto, the compositional similarity of both ceramic bodies and materials used under the glaze for impressed ceramic and painted polychrome ceramics (RMR and protomaiolica), more likely local production, could suggest that both were produced in the same workshops.
NASA Technical Reports Server (NTRS)
Banas, R. P.; Elgin, D. R.; Cordia, E. R.; Nickel, K. N.; Gzowski, E. R.; Aguiler, L.
1983-01-01
Three ceramic, reusable surface insulation materials and two borosilicate glass coatings were used in the fabrication of tiles for the Space Shuttle orbiters. Approximately 77,000 tiles were made from these materials for the first three orbiters, Columbia, Challenger, and Discovery. Lessons learned in the development, scale up to production and manufacturing phases of these materials will benefit future production of ceramic reusable surface insulation materials. Processing of raw materials into tile blanks and coating slurries; programming and machining of tiles using numerical controlled milling machines; preparing and spraying tiles with the two coatings; and controlling material shrinkage during the high temperature (2100-2275 F) coating glazing cycles are among the topics discussed.
Method for producing a compressed body of mix-powder for ceramic
NASA Technical Reports Server (NTRS)
Okawa, K.
1983-01-01
Under the invented method, a compressed body of mix powder for ceramic is produced by mixing and stirring several raw powder materials with mixing liquid such as water, and, in the process of sending the resulted viscous material pressurized at 5 kg/cm to 7 kg/cm, using 1.5 to 2 times the pressure to filter and dehydrate, adjusting the water content to 10 to 20%.
Letters from China: A History of the Origins of the Chemical Analysis of Ceramics.
Pollard, A M
2015-02-01
This paper is an attempt to document the early history of the quantitative chemical analysis of ceramic materials in Europe, with a specific interest in the analysis of archaeological ceramics. This inevitably leads to a study of the attempts made in Europe to imitate the miraculous material--porcelain--imported from China from the fourteenth century onwards. It is clear that before the end of the eighteenth century progress was made in this endeavor by systematic but essentially trial-and-error firing of various raw materials, culminating in the successful production of European porcelain by Böttger and von Tschirnhaus in 1709. Shortly after this, letters describing the Chinese manufacture of porcelain, and, more importantly, samples of raw and fired material, began to arrive in Europe from French Jesuit missionaries, which were subjected to intense study. Following the perfection of gravimetric methods of chemical analysis in the late eighteenth century, these Chinese samples, and samples of porcelain from various European factories, were regularly analysed, particularly by Brongniart at Sèvres. Similar work was carried out on English porcelain by Simeon Shaw and Sir Arthur Church. The origins of the chemical analysis of archaeological ceramics are still somewhat obscure, but must date to the late eighteenth or early nineteenth centuries, by the likes of Vauquelin and Chaptal.
NASA Astrophysics Data System (ADS)
Pavia, S.; Caro, S.
2007-07-01
Polarised-light (or petrographic) microscopy has been widely applied to heritage materials to assess composition and diagnose damage. However, instead, this paper focuses on the petrographic investigation of brick and mortar technologies for the production of quality repair materials compatible with their adjacent fabrics. Furthermore, the paper relates production technologies to the physical properties of the materials fabricated, and thus their final quality and durability. According to Cesare Brandi´s theory of compatibility (the 20th century architect on whose work modern conservation theory and practice are largely based) existing historic materials should be replaced with their equivalent. This paper demonstrates that polarised-light microscopy provides data on the origin and nature of raw materials, and processing parameters such as blending, mixing, firing, calcination and slaking, and how these relate to the quality of the final product. In addition, this paper highlights the importance of production technologies as these directly impact the physical properties of the materials fabricated and thus determine their final quality and durability. In this context, the paper investigates mortar calcination and slaking, two important operations in the manufacture of building limes that govern the reactivity, shrinkage and water retention of a lime binder which will impact mortar's properties such as workability, plasticity and carbonation speed, and these in turn will determine the ease of execution, durability and strength of a lime mortar. Petrographic analysis also provides evidence of ceramic technology including identification of local or foreign production and processing parameters such as sieving, blending, mixing and firing. A petrographic study of the ceramic matrix coupled to the diagnosis of mineral phases formed during firing allows to quantify sintering and vitrification and thus determine firing temperatures. Finally, certain features of the raw clay such as the grading and the amount and nature of the non-plastic material inform, not only on the raw material's origin, but also impact the physical properties of the ceramic ware.
Bibliography of ceramic extrusion and plasticity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janney, M.A.; Vance, M.C.; Jordan, A.C.
A comprehensive bibliography of ceramic extrusion and plasticity has been compiled. Over 670 abstracts are included covering the period 1932 to 1984. Citations cover a wide range of interests from basic science investigations to engineering ''tips'' and include references to brick and tile, whitewares, technical ceramics, theoretical models, engineering analyses, forming, drying, and raw materials. In addition to the citations, there are numerous indices to make the bibliography easy to use.
Environmental durability of ceramics and ceramic composites
NASA Technical Reports Server (NTRS)
Fox, Dennis S.
1992-01-01
An account is given of the current understanding of the environmental durability of both monolithic ceramics and ceramic-matrix composites, with a view to the prospective development of methods for the characterization, prediction, and improvement of ceramics' environmental durability. Attention is given to the environmental degradation behaviors of SiC, Si3N4, Al2O3, and glass-ceramic matrix compositions. The focus of corrosion prevention in Si-based ceramics such as SiC and Si3N4 is on the high and low sulfur fuel combustion-product effects encountered in heat engine applications of these ceramics; sintering additives and raw material impurities are noted to play a decisive role in ceramics' high temperature environmental response.
NASA Astrophysics Data System (ADS)
Dwi Yanti, Evi; Pratiwi, I.
2018-02-01
Clay's abundance has been widely used as industrial raw materials, especially ceramic and tile industries. Utilization of these minerals needs a thermal process for producing ceramic products. Two studies conducted by Septawander et al. and Chin C et al., showed the relationship between thermal behavior of clays and their chemical and mineralogical composition. Clays are characterized by XRD analysis and thermal analysis, ranging from 1100°C to 1200°C room temperature. Specimen of raw materials of clay which is used for the thermal treatment is taken from different geological conditions and formation. In raw material, Quartz is almost present in all samples. Halloysite, montmorillonite, and feldspar are present in Tanjung Morawa raw clay. KC and MC similar kaolinite and illite are present in the samples. The research illustrates the interrelationships of clay minerals and chemical composition with their heat behavior. As the temperature of combustion increases, the sample reduces a significant weight. The minerals which have undergone a transformation phase became mullite, cristobalite or illite and quartz. Under SEM analysis, the microstructures of the samples showed irregularity in shape; changes occurred due the increase of heat.
Liu, Chao; Gu, Jinwei
2014-01-01
Classifying raw, unpainted materials--metal, plastic, ceramic, fabric, and so on--is an important yet challenging task for computer vision. Previous works measure subsets of surface spectral reflectance as features for classification. However, acquiring the full spectral reflectance is time consuming and error-prone. In this paper, we propose to use coded illumination to directly measure discriminative features for material classification. Optimal illumination patterns--which we call "discriminative illumination"--are learned from training samples, after projecting to which the spectral reflectance of different materials are maximally separated. This projection is automatically realized by the integration of incident light for surface reflection. While a single discriminative illumination is capable of linear, two-class classification, we show that multiple discriminative illuminations can be used for nonlinear and multiclass classification. We also show theoretically that the proposed method has higher signal-to-noise ratio than previous methods due to light multiplexing. Finally, we construct an LED-based multispectral dome and use the discriminative illumination method for classifying a variety of raw materials, including metal (aluminum, alloy, steel, stainless steel, brass, and copper), plastic, ceramic, fabric, and wood. Experimental results demonstrate its effectiveness.
NASA Technical Reports Server (NTRS)
Probst, H. B.
1978-01-01
The high temperature capability of ceramics such as silicon nitride and silicon carbide can result in turbine engines of improved efficiency. Other advantages when compared to the nickel and cobalt alloys in current use are raw material availability, lower weight, erosion/corrosion resistance, and potentially lower cost. The use of ceramics in three different sizes of gas turbine is considered; these are the large utility turbines, advanced aircraft turbines, and small automotive turbines. Special consideration, unique to each of these applications, arise when one considers substituting ceramics for high temperature alloys. The effects of material substitutions are reviewed in terms of engine performance, operating economy, and secondary effects.
NASA Astrophysics Data System (ADS)
Beckert, M. Brooke; Gallego, Sabrina; Elder, Eric; Nadler, Jason
2016-10-01
This study sought to mitigate risk in transitioning newly developed glass-ceramic scintillator technology from a laboratory concept to commercial product by identifying the most significant hurdles to increased scale. These included selection of cost effective raw material sources, investigation of process parameters with the most significant impact on performance, and synthesis steps that could see the greatest benefit from participation of an industry partner that specializes in glass or optical component manufacturing. Efforts focused on enhancing the performance of glass-ceramic nanocomposite scintillators developed specifically for medical imaging via composition and process modifications that ensured efficient capture of incident X-ray energy and emission of scintillation light. The use of cost effective raw materials and existing manufacturing methods demonstrated proof-of-concept for economical viable alternatives to existing benchmark materials, as well as possible disruptive applications afforded by novel geometries and comparatively lower cost per volume. The authors now seek the expertise of industry to effectively navigate the transition from laboratory demonstrations to pilot scale production and testing to evince the industry of the viability and usefulness of composite-based scintillators.
Research on self-propagating high temperature synthesis prepared ZrC-ZrB2 composite ceramic
NASA Astrophysics Data System (ADS)
Yong, Cheng; Xunjia, Su; Genliang, Hou; YaKun, Xing
2013-03-01
ZrC-ZrB2 composite ceramic material is prepared by self-propagating high temperature synthesis, using Zr powders, CrO2 powders and Al powders as raw materials. Samples are studied by XRD and SEM, the results show that: ZrC-ZrB2 composite ceramic is attained after self-propagating high-temperature reaction, with Zr+ B4C as the main reactive system, and which is added respectively different content (CrO3 + Al) system. The study finds that the ceramic composite products are mainly composed of ZrC and ZrB2 phase, and other subphase. Compared to the main reactive system composite ceramic, composite ceramic grains grow up obviously, after introduction of the highly exothermic system (CrO3 + Al) in the main reactive system, and with the gradual increase of the content (CrO3 + Al).
Coronado, M; Segadães, A M; Andrés, A
2015-12-15
This work describes the leaching behavior of potentially hazardous metals from three different clay-based industrial ceramic products (wall bricks, roof tiles, and face bricks) containing foundry sand dust and Waelz slag as alternative raw materials. For each product, ten mixtures were defined by mixture design of experiments and the leaching of As, Ba, Cd, Cr, Cu, Mo, Ni, Pb, and Zn was evaluated in pressed specimens fired simulating the three industrial ceramic processes. The results showed that, despite the chemical, mineralogical and processing differences, only chrome and molybdenum were not fully immobilized during ceramic processing. Their leaching was modeled as polynomial equations, functions of the raw materials contents, and plotted as response surfaces. This brought to evidence that Cr and Mo leaching from the fired products is not only dependent on the corresponding contents and the basicity of the initial mixtures, but is also clearly related with the mineralogical composition of the fired products, namely the amount of the glassy phase, which depends on both the major oxides contents and the firing temperature. Copyright © 2015 Elsevier B.V. All rights reserved.
Microwave sintering of ceramic materials
NASA Astrophysics Data System (ADS)
Karayannis, V. G.
2016-11-01
In the present study, the potential of microwave irradiation as an innovative energy- efficient alternative to conventional heating technologies in ceramic manufacturing is reviewed, addressing the advantages/disadvantages, while also commenting on future applications of possible commercial interest. Ceramic materials have been extensively studied and used due to several advantages they exhibit. Sintering ceramics using microwave radiation, a novel technology widely employed in various fields, can be an efficient, economic and environmentally-friendlier approach, to improve the consolidation efficiency and reduce the processing cycle-time, in order to attain substantial energy and cost savings. Microwave sintering provides efficient internal heating, as energy is supplied directly and penetrates the material. Since energy transfer occurs at a molecular level, heat is generated throughout the material, thus avoiding significant temperature gradients between the surface and the interior, which are frequently encountered at high heating rates upon conventional sintering. Thus, rapid, volumetric and uniform heating of various raw materials and secondary resources for ceramic production is possible, with limited grain coarsening, leading to accelerated densification, and uniform and fine-grained microstructures, with enhanced mechanical performance. This is particularly important for manufacturing large-size ceramic products of quality, and also for specialty ceramic materials such as bioceramics and electroceramics. Critical parameters for the process optimization, including the electromagnetic field distribution, microwave-material interaction, heat transfer mechanisms and material transformations, should be taken into consideration.
Agricultural wastes as a resource of raw materials for developing low-dielectric glass-ceramics
Danewalia, Satwinder Singh; Sharma, Gaurav; Thakur, Samita; Singh, K.
2016-01-01
Agricultural waste ashes are used as resource materials to synthesize new glass and glass-ceramics. The as-prepared materials are characterized using various techniques for their structural and dielectric properties to check their suitability in microelectronic applications. Sugarcane leaves ash exhibits higher content of alkali metal oxides than rice husk ash, which reduces the melting point of the components due to eutectic reactions. The addition of sugarcane leaves ash in rice husk ash promotes the glass formation. Additionally, it prevents the cristobalite phase formation. These materials are inherently porous, which is responsible for low dielectric permittivity i.e. 9 to 40. The presence of less ordered augite phase enhances the dielectric permittivity as compared to cristobalite and tridymite phases. The present glass-ceramics exhibit lower losses than similar materials synthesized using conventional minerals. The dielectric permittivity is independent to a wide range of temperature and frequency. The glass-ceramics developed with adequately devitrified phases can be used in microelectronic devices and other dielectric applications. PMID:27087123
Improved C/SiC Ceramic Composites Made Using PIP
NASA Technical Reports Server (NTRS)
Easler, Timothy
2007-01-01
Improved carbon-fiber-reinforced SiC ceramic-matrix composite (C/SiC CMC) materials, suitable for fabrication of thick-section structural components, are producible by use of a combination of raw materials and processing conditions different from such combinations used in the prior art. In comparison with prior C/SiC CMC materials, these materials have more nearly uniform density, less porosity, and greater strength. The majority of raw-material/processing-condition combinations used in the prior art involve the use of chemical vapor infiltration (CVI) for densifying the matrix. In contrast, in synthesizing a material of the present type, one uses a combination of infiltration with, and pyrolysis of, a preceramic polymer [polymer infiltration followed by pyrolysis (PIP)]. PIP processing is performed in repeated, tailored cycles of infiltration followed by pyrolysis. Densification by PIP processing takes less time and costs less than does densification by CVI. When one of these improved materials was tested by exposure to a high-temperature, inert-gas environment that caused prior C/SiC CMCs to lose strength, this material did not lose strength. (Information on the temperature and exposure time was not available at the time of writing this article.) A material of the present improved type consists, more specifically, of (1) carbon fibers coated with an engineered fiber/matrix interface material and (2) a ceramic matrix, containing SiC, derived from a pre-ceramic polymer with ceramic powder additions. The enhancements of properties of these materials relative to those of prior C/SiC CMC materials are attributable largely to engineering of the fiber/ matrix interfacial material and the densification process. The synthesis of a material of this type includes processing at an elevated temperature to a low level of open porosity. The approach followed in this processing allows one to fabricate not only simple plates but also more complexly shaped parts. The carbon fiber reinforcement in a material of this type can be in any of several alternative forms, including tow, fabric, or complex preforms containing fibers oriented in multiple directions.
RADIOLOGICAL IMPACTS ASSESSMENT FOR WORKERS IN CERAMIC INDUSTRY IN SERBIA.
Todorovic, Nataša; Mrda, Dušan; Hansman, Jan; Todorovic, Slavko; Nikolov, Jovana; Krmar, Miodrag
2017-11-01
Studies have been carried out to determine the natural radioactivity in some materials used in ceramic industry (zircon, zirkosil, Zircobit MO/S, zircon silicate, zirklonil frit, hematite, bentonite, wollastonite, raw kaolin, kaolinized granite, sileks ball, feldspar, pigment, white base serigraphic, engobe) and their associated radiation hazard. The external hazard index, Hex, values, radium equivalent activity, Raeq, total absorbed dose rates, D and annual effective dose, De were derived for all measured materials and compared with the recommended values to assess the external radiation hazards to workers who worked in ceramic industries in Serbia. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
2016-01-01
Purpose The increasing demand for esthetically pleasing results has contributed to the use of ceramics for dental implant abutments. The aim of this study was to compare the biological response of epithelial tissue cultivated on lithium disilicate (LS2) and zirconium oxide (ZrO2) ceramics. Understanding the relevant physicochemical and mechanical properties of these ceramics will help identify the optimal material for facilitating gingival wound closure. Methods Both biomaterials were prepared with 2 different surface treatments: raw and polished. Their physicochemical characteristics were analyzed by contact angle measurements, scanning white-light interferometry, and scanning electron microscopy. An organotypic culture was then performed using a chicken epithelium model to simulate peri-implant soft tissue. We measured the contact angle, hydrophobicity, and roughness of the materials as well as the tissue behavior at their surfaces (cell migration and cell adhesion). Results The best cell migration was observed on ZrO2 ceramic. Cell adhesion was also drastically lower on the polished ZrO2 ceramic than on both the raw and polished LS2. Evaluating various surface topographies of LS2 showed that increasing surface roughness improved cell adhesion, leading to an increase of up to 13%. Conclusions Our results demonstrate that a biomaterial, here LS2, can be modified using simple surface changes in order to finely modulate soft tissue adhesion. Strong adhesion at the abutment associated with weak migration assists in gingival wound healing. On the same material, polishing can reduce cell adhesion without drastically modifying cell migration. A comparison of LS2 and ZrO2 ceramic showed that LS2 was more conducive to creating varying tissue reactions. Our results can help dental surgeons to choose, especially for esthetic implant abutments, the most appropriate biomaterial as well as the most appropriate surface treatment to use in accordance with specific clinical dental applications. PMID:28050314
NASA Technical Reports Server (NTRS)
Sullivan, Thomas A.; Mckay, David S.
1991-01-01
The topics covered include the following: reducing the cost of space exploration; the high cost of shipping; lunar raw materials; some useful space products; energy from the moon; ceramic, glass, and concrete construction materials; mars atmosphere resources; relationship to the Space Exploration Initiative (SEI); an evolutionary approach to using space resources; technology development; and oxygen and metal coproduction.
Chemical Principles Revisited: The Chemistry of Glass.
ERIC Educational Resources Information Center
Kolb, Doris; Kolb, Kenneth E.
1979-01-01
Presents a detailed discussion on the chemistry of glass. Topics discussed include: natural glass, early history, modern glass composition, raw materials for glass melting, chemically modified glasses, modern glass forming, glass ceramics, and new developments in glass research. (BT)
1975-08-11
Desulfurization of flue gases from electric power plants Arthur J. Coyle Walter E. Chapin John B. Day John T. Herridge Victor Levin James...45 High-Temperature Gas -Turbine Engines for Automotive Applications 60 Fuel Cel13 76 Lasers for Communications and Materials Processing 97...Relationship for a Regenerative Gas -Turbine Engine 61 Relative Raw Materials Cost 61 Proposed Milestone Chart ERDA/AAPS Ceramic Mate- rials and
Metal-Matrix/Hollow-Ceramic-Sphere Composites
NASA Technical Reports Server (NTRS)
Baker, Dean M.
2011-01-01
A family of metal/ceramic composite materials has been developed that are relatively inexpensive, lightweight alternatives to structural materials that are typified by beryllium, aluminum, and graphite/epoxy composites. These metal/ceramic composites were originally intended to replace beryllium (which is toxic and expensive) as a structural material for lightweight mirrors for aerospace applications. These materials also have potential utility in automotive and many other terrestrial applications in which there are requirements for lightweight materials that have high strengths and other tailorable properties as described below. The ceramic component of a material in this family consists of hollow ceramic spheres that have been formulated to be lightweight (0.5 g/cm3) and have high crush strength [40.80 ksi (.276.552 MPa)]. The hollow spheres are coated with a metal to enhance a specific performance . such as shielding against radiation (cosmic rays or x rays) or against electromagnetic interference at radio and lower frequencies, or a material to reduce the coefficient of thermal expansion (CTE) of the final composite material, and/or materials to mitigate any mismatch between the spheres and the matrix metal. Because of the high crush strength of the spheres, the initial composite workpiece can be forged or extruded into a high-strength part. The total time taken in processing from the raw ingredients to a finished part is typically 10 to 14 days depending on machining required.
Synthesis and characterization of black ceramic pigments by recycling of two hazardous wastes
NASA Astrophysics Data System (ADS)
Du, Minxing; Du, Yi; Chen, Zhongtao; Li, Zhongfu; Yang, Kai; Lv, Xingjie; Feng, Yibing
2017-09-01
In this study, two different industrial wastes, namely vanadium tailing and leather sludge, were used as less expensive alternative raw materials for the synthesis of black ceramic pigments to be used in commercial glazes. The pigments were based on hematite structure (FexCr1-x)2O3 and prepared by the common solid-state reaction method, under optimal formulation and processing conditions. The synthesized pigments were characterized in typical ceramic glazes and ceramic tile bodies. Optimal color development was achieved when the Fe/Cr mole ratios were 2.0 with 40 wt% content of vanadium tailing at 1200 °C. The coloring properties were similar to those imparted by a commercial black pigment.
NASA Astrophysics Data System (ADS)
Ajenifuja, E.; Ajao, J. A.; Ajayi, E. O. B.
2017-11-01
Photocatalytically modified ceramic adsorbents were synthesized for the removal of high concentration Cu (II) and Co (II) ions from their aqueous solutions. The raw material, diatomaceous aluminosilicate mineral was modified using silver and anatase titanium oxide nanoparticles. Batch adsorption experiment was carried out on the targeted metal ions and the results were analyzed by the Langmuir and Freundlich equation at different concentrations (100-1000 mg/l) and the characteristic parameters for each adsorption isotherm were determined. As-received raw materials do not exhibit any sorption capacity for high concentration Cu2+ and Co2+ adsorbates. However, the adsorption isotherms for modified diatomaceous ceramic adsorbents could be fitted well by the Langmuir model for both Cu2+ and Co2+ with correlation coefficient ( R) of up to 0.99953. The highest and lowest monolayer coverage ( q max) were 121.803 and 31.289 mg/g for Cu2+ and Co2+, respectively. The separation factor ( R L) in the experiment was less than one (<1), indicating that the adsorption of metal ions on the Ag-TiO2-modified ceramic adsorbent is favorable. The highest adsorption capacity ( K f) and intensity ( n) constants obtained from Freundlich model are 38.832 (Cu2+ on ZEO-T) and 5.801 (Co2+ on STOX-Z).
Study on Microstructures and Properties of Porous TiC Ceramics Fabricated by Powder Metallurgy
NASA Astrophysics Data System (ADS)
Ma, Yana; Bao, Chonggao; Han, Longhao; Chen, Jie
2017-02-01
Powder metallurgy process was used to fabricate porous titanium carbide (TiC) ceramics, in which TiC powders were taken as the raw materials, nickel was used as the metallic binder and urea was the space-holder. Microstructure, composition and phase of porous TiC ceramics were characterized by scanning electron microscopy (SEM) and x-ray diffraction (XRD). Flexure strength of the porous TiC ceramics was tested by a three-point bending method. The results show that macropores and micropores coexist in the prepared porous TiC ceramics. Moreover, the pore number, size and distribution in porous TiC ceramics can be controlled on demand. Particularly, the factors such as the number or size of space-holder, compacting pressure and Ni content have significant effect on the porosity and flexure strength.
Utilisation of drinking water treatment sludge for the manufacturing of ceramic products
NASA Astrophysics Data System (ADS)
Kizinievič, O.; Kizinievič, V.
2017-10-01
The influence of the additive of drinking water treatment sludge on the physical and mechanical properties, structural parameters, microstructure of the ceramic products is analysed in the research. Drinking water treatment sludge is renewable, environmentally-friendly, economical additive saving expensive natural raw materials when introduced into the ceramic products. The main drinking water treatment sludge component is amorphous Fe2O3 (70%). Formation masses are prepared by incorporating from 5 % to 60 % of drinking water treatment additive and by burning out at the temperature 1000 °C. Investigation showed that the physical and mechanical properties, microstructure of the ceramic bodies vary depending on the amount of drinking water treatment additive incorporated. In addition, drinking water treatment additive affects the ceramic body as a pigment that dyes the ceramic body in darker red colour.
Ceramic automotive Stirling engine study
NASA Technical Reports Server (NTRS)
Musikant, S.; Chiu, W.; Darooka, D.; Mullings, D. M.; Johnson, C. A.
1985-01-01
A conceptual design study for a Ceramic Automotive Stirling Engine (CASE) is performed. Year 1990 structural ceramic technology is assumed. Structural and performance analyses of the conceptual design are performed as well as a manufacturing and cost analysis. The general conclusions from this study are that such an engine would be 10-26% more efficient over its performance map than the current metal Automotive Stirling Reference Engine (ASRE). Cost of such a ceramic engine is likely to be somewhat higher than that of the ASRE but engine cost is very sensitive to the ultimate cost of the high purity, ceramic powder raw materials required to fabricate high performance parts. When the design study is projected to the year 2000 technology, substantinal net efficiency improvements, on the order of 25 to 46% over the ASRE, are computed.
Luminescence properties of lustre decorated majolica
NASA Astrophysics Data System (ADS)
Galli, A.; Martini, M.; Sibilia, E.; Padeletti, G.; Fermo, P.
Luminescence measurements have been performed on several Italian Renaissance ceramic shards produced in central Italy, as well as on some others from Hispano-Moresque and Fatimid periods. The aim of this study was the characterisation of the raw materials used to manufacture lustre decorated majolica. At first, the thermoluminescence (TL) dating of all ceramic bodies was performed, because the shards lacked sure chronological attribution, having been provided by private collectors, or found during emergency restoration works or archaeological surveys. To characterise the defects and the recombination centers of the different components of the ceramics (ceramic body, glaze, glaze, and lustre), radioluminescence (RL) measurements have been performed on samples representative of each historical period. The dating results are reported, as well as the preliminary RL results.
Abrasive wear of ceramic wear protection at ambient and high temperatures
NASA Astrophysics Data System (ADS)
Varga, M.; Adam, K.; Tumma, M.; Alessio, K. O.
2017-05-01
Ceramic wear protection is often applied in abrasive conditions due to their excellent wear resistance. This is especially necessary in heavy industries conveying large amounts of raw materials, e.g. in steel industry. Some plants also require material transport at high temperatures and velocities, making the need of temperature stable and abrasion resistant wear protection necessary. Various types and wear behaviour of ceramic protection are known. Hence, the goal of this study is to identify the best suitable ceramic materials for abrasive conditions in harsh environments at temperatures up to 950°C and severe thermal gradients. Chamottes, known for their excellent thermal shock resistance are compared to high abrasion resistant ceramic wear tiles and a cost efficient cement-bounded hard compound. Testing was done under high-stress three-body abrasion regime with a modified ASTM G65 apparatus enabling for investigations up to ~950°C. Thereto heated abrasive is introduced into the wear track and also preheated ceramic samples were used and compared to ambient temperature experiments. Results indicate a significant temperature influence on chamottes and the hard compound. While the chamottes benefit from temperature increase, the cement-bounded hard compound showed its limitation at abrasive temperatures of 950°C. The high abrasion resistant wear tiles represented the materials with the best wear resistance and less temperature influence in the investigated range.
Ceramic membranes with mixed conductivity and their application
NASA Astrophysics Data System (ADS)
Kozhevnikov, V. L.; Leonidov, I. A.; Patrakeev, M. V.
2013-08-01
Data on the catalytic reactors with ceramic membranes possessing mixed oxygen ion and electronic conductivity that make it possible to integrate the processes of oxygen separation and oxidation are analyzed and generalized. The development of this approach is of interest for the design of energy efficient and environmentally friendly processes for processing natural gas and other raw materials. The general issues concerning the primary processing of light alkanes in reactors with oxygen separating membranes are expounded and general demands to the membrane materials are discussed. Particular attention is paid to the process of oxidative conversion of methane to synthesis gas. The bibliography includes 110 references.
Development ceramic composites based on Al2O3, SiO2 and IG-017 additive
NASA Astrophysics Data System (ADS)
Kurovics, E.; Shmakova, A.; Kanev, B.; Gömze, L. A.
2017-02-01
Based on high purity alumina and quartz powders and IG-017 bio-original additives the authors have developed new ceramic composite materials for different industrial purposes. The main goal was to fine a material and morphological structures of high performance ceramic composites as frames for development complex materials for extreme consumptions in the future. For this the mixed powders of Al2O3 , SiO2 and IG-017 bio-original additive were uniaxially pressed at different compaction pressures into disc shapes and were sintered in electric kiln under air (1) and nitrogrn (2) atmosphere. The grain size distributions of the raw materials were determined by laser granulometry. There thermo-physical properties were also determined by derivatography. The prepared and sintered specimens were tested on geometrical sizes, microstructure and morphology by scanning electron microscopy, porosity and water absorption. In this work the authors present the results of their research and investigation.
Lee, Gyuhyon; Struebing, Christian; Wagner, Brent; Summers, Christopher; Ding, Yong; Bryant, Alex; Thadhani, Naresh; Shedlock, Daniel; Star-Lack, Josh; Kang, Zhitao
2016-05-20
Transparent glass ceramics with embedded light-emitting nanocrystals show great potential as low-cost nanocomposite scintillators in comparison to single crystal and transparent ceramic scintillators. In this study, cubic structure BaGdF5:Tb nanocrystals embedded in an aluminosilicate glass matrix are reported for potential high performance MeV imaging applications. Scintillator samples with systematically varied compositions were prepared by a simple conventional melt-quenching method followed by annealing. Optical, structural and scintillation properties were characterized to guide the design and optimization of selected material systems, aiming at the development of a system with higher crystal volume and larger crystal size for improved luminosity. It is observed that enhanced scintillation performance was achieved by tuning the glass matrix composition and using GdF3 in the raw materials, which served as a nucleation agent. A 26% improvement in light output was observed from a BaGdF5:Tb glass ceramic with addition of GdF3.
Tang, Yuanyuan; Lu, Xiuqing; Shih, Kaimin
2014-12-01
The feasibility of recycling copper-bearing industrial sludge as a part of ceramic raw materials was evaluated through thermal interaction of sludge with aluminum-rich precursors. To observe copper incorporation mechanism, mixtures of copper-bearing sludge with alumina polymorphs (γ-Al2O3 and α-Al2O3) were fired between 750 and 1250°C. Different copper-hosting phases were identified by X-ray diffraction, and CuAl2O4 was found to be the predominant phase throughout the reactions. The experimental results indicate different CuAl2O4 initiating temperatures for two alumina materials, and the optimal temperature for CuAl2O4 formation is around 1100°C. To monitor the stabilization effect, prolonged leaching tests were carried out to leach sintered products for up to 20d. The results clearly demonstrate a substantial decrease in copper leachability for products with higher CuAl2O4 content formed from both alumina precursors despite their different sintering behavior. Meanwhile, the leachability of aluminum was much lower than that of copper, and it decreased by more than fourfold through the formation of CuAl2O4 spinel in γ-Al2O3 system. This study clearly indicates spinel formation as the most crucial metal stabilization mechanism when sintering multiphase copper-bearing industrial sludge with aluminum-rich ceramic raw materials, and suggests a promising and reliable technique for reusing industrial sludge. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cerqueira, N. A.; Choe, D.; Alexandre, J.; Azevedo, A. R. G.; Xavier, C. G.; Souza, V. B.
Building work requires optimization of materials and labor, so that the execution of its subsystems contribute to the quality, reduce costs, decrease waste in buildings, productivity, practicality and especially agility. Thus, the fitting blocks can contribute in this direction. This work therefore consists of physical characterization (determination of fitness levels, grain size and bulk density), chemical (EDX) and thermal (DTA and TGA) sample clay Campos dos Goytacazes-RJ and waste rock ornamental Cachoeiro de Itapemirim-ES, to verify potential for producing red ceramic blocks, pressed and burned, male and female type. The output of block will be with different pe rcentages of incorporation of residues of ornamental rocks (0%, 5% and 10%). With the results obtained, it was found that the raw materials under consideration has the potential for application in the production of ceramic articles.
Continuous fiber ceramic matrix composites for heat engine components
NASA Technical Reports Server (NTRS)
Tripp, David E.
1988-01-01
High strength at elevated temperatures, low density, resistance to wear, and abundance of nonstrategic raw materials make structural ceramics attractive for advanced heat engine applications. Unfortunately, ceramics have a low fracture toughness and fail catastrophically because of overload, impact, and contact stresses. Ceramic matrix composites provide the means to achieve improved fracture toughness while retaining desirable characteristics, such as high strength and low density. Materials scientists and engineers are trying to develop the ideal fibers and matrices to achieve the optimum ceramic matrix composite properties. A need exists for the development of failure models for the design of ceramic matrix composite heat engine components. Phenomenological failure models are currently the most frequently used in industry, but they are deterministic and do not adequately describe ceramic matrix composite behavior. Semi-empirical models were proposed, which relate the failure of notched composite laminates to the stress a characteristic distance away from the notch. Shear lag models describe composite failure modes at the micromechanics level. The enhanced matrix cracking stress occurs at the same applied stress level predicted by the two models of steady state cracking. Finally, statistical models take into consideration the distribution in composite failure strength. The intent is to develop these models into computer algorithms for the failure analysis of ceramic matrix composites under monotonically increasing loads. The algorithms will be included in a postprocessor to general purpose finite element programs.
Acoustic barriers obtained from industrial wastes.
Garcia-Valles, M; Avila, G; Martinez, S; Terradas, R; Nogués, J M
2008-07-01
Acoustic pollution is an environmental problem that is becoming increasingly more important in our society. Likewise, the accumulation of generated waste and the need for waste management are also becoming more and more pressing. In this study we describe a new material--called PROUSO--obtained from industrial wastes. PROUSO has a variety of commercial and engineering, as well as building, applications. The main raw materials used for this environmentally friendly material come from slag from the aluminium recycling process, dust from the marble industry, foundry sands, and recycled expanded polystyrene from recycled packaging. Some natural materials, such as plastic clays, are also used. To obtain PROUSO we used a conventional ceramic process, forming new mineral phases and incorporating polluted elements into the structure. Its physical properties make PROUSO an excellent acoustic and thermal insulation material. It absorbs 95% of the sound in the frequency band of the 500 Hz. Its compressive strength makes it ideal for use in ceramic wall building.
Reuse of hazardous calcium fluoride sludge from the integrated circuit industry.
Zhu, Ping; Cao, Zhenbang; Ye, YiLi; Qian, Guangren; Lu, Bo; Zhou, Ming; Zhou, Jin
2013-11-01
The Chinese integrated circuit industry has been transformed from a small state-owned sector into a global competitor, but chip manufacturing produces large amounts of calcium fluoride sludges (CFS). In China, landfill is a current option for treating CFS. In order to solve the problem of unavailable landfill sites and prevent fluorine from dissolved CFS polluting water sources, CFS was tested as a component for a ceramic product made with sodium borate, sodium phosphate and waste alumina using a low-temperature sintering technology, and the effects of various factors on characteristics of the ceramic were investigated to optimize the process. The best sintering temperature was controlled at 700°C, and the optimal raw material ratio of the ceramic was 11% sodium borate, 54% sodium phosphate, 30% CFS and 5% waste alumina. The CFS ceramic was characterized by a morphological structure and X-ray diffraction. The results indicated that CFS was transformed into Na2Ca(PO4)F as an inert and a main crystalline phase in the ceramic, which was enclosed by the borophosphate glass. Toxicity characteristic leaching procedure, corrosion resistance and compressive strength tests verified CFS ceramic as a qualified construction ceramic material, and the fluorine from CFS was solidified in the inert crystalline phase, which would not be released to cause secondary pollution. This novel technology not only avoids the CFS hydrolyzing reaction forming harmful hydrofluoric acid gas at 800°C and above, but also produces high-performance ceramics as a construction material, in accordance with the concept of sustainable development.
NASA Astrophysics Data System (ADS)
Juoi, J. M.; Ayoob, N. F.; Rosli, Z. M.; Rosli, N. R.; Husain, K.
2016-07-01
Domestic waste glass is utilized as raw material for the production of glass ceramic material (GCM) via sinter crystallisation route. The glass ceramic material in a form of tiles is to be utilized for the deposition of Ag-TiO2 antimicrobial coating. Two types of soda lime glass (SLG) that are non-coloured and green SLG are utilised as main raw materials during the batch formulation in order to study the effect of colouring agent (Fe2O3) on the physical and mechanical properties of glass ceramic produced. Glass powder were prepared by crushing bottles using hammer milled with milling machine and sieved until they passed through 75 µm sieve. The process continues by mixing glass powder with ball clay with ratio of 95:5 wt. %, 90:10 wt. % and 85:15 wt. %. Each batch mixture was then uniaxial pressed and sintered at 800°C, 825 °C and 850 °C. The physical and mechanical properties were then determined and compared between those produced from non-coloured and green coloured SLG in order to evaluate the effect of colouring agent (Fe2O3) on the GCM produced. The optimum properties of non-coloured SLG is produced with smaller ball clay content (10 wt. %) compared to green SLG (15 wt. %). The physical properties (determined thru ASTM C373) of the optimized GCM produced from non-coloured SLG and green SLG are 0.69 % of porosity, 1.92 g/cm3 of bulk density, 0.36 % of water absorption; and 1.96 % of porosity, 2.69 g/cm3 of bulk density, 0.73 % of water absorption; respectively. Results also indicate that the most suitable temperature in producing GCM from both glasses with optimized physical and mechanical properties is at 850 °C.
Parametric identification of the process of preparing ceramic mixture as an object of control
NASA Astrophysics Data System (ADS)
Galitskov, Stanislav; Nazarov, Maxim; Galitskov, Konstantin
2017-10-01
Manufacture of ceramic materials and products largely depends on the preparation of clay raw materials. The main process here is the process of mixing, which in industrial production is mostly done in cross-compound clay mixers of continuous operation with steam humidification. The authors identified features of dynamics of this technological stage, which in itself is a non-linear control object with distributed parameters. When solving practical tasks for automation of a certain class of ceramic materials production it is important to make parametric identification of moving clay. In this paper the task is solved with the use of computational models, approximated to a particular section of a clay mixer along its length. The research introduces a methodology of computational experiments as applied to the designed computational model. Parametric identification of dynamic links was carried out according to transient characteristics. The experiments showed that the control object in question is to a great extent a non-stationary one. The obtained results are problematically oriented on synthesizing a multidimensional automatic control system for preparation of ceramic mixture with specified values of humidity and temperature exposed to the technological process of major disturbances.
Production of continuous mullite fiber via sol-gel processing
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.; Sparks, J. Scott; Esker, David C.
1990-01-01
The development of a continuous ceramic fiber which could be used in rocket engine and rocket boosters applications was investigated at the Marshall Space Flight Center. Methods of ceramic fiber production such as melt spinning, chemical vapor deposition, and precursor polymeric fiber decomposition are discussed and compared with sol-gel processing. The production of ceramics via the sol-gel method consists of two steps, hydrolysis and polycondensation, to form the preceramic, followed by consolidation into the glass or ceramic structure. The advantages of the sol-gel method include better homogeneity and purity, lower preparation temperature, and the ability to form unique compositions. The disadvantages are the high cost of raw materials, large shrinkage during drying and firing which can lead to cracks, and long processing times. Preparation procedures for aluminosilicate sol-gel and for continuous mullite fibers are described.
NASA Astrophysics Data System (ADS)
Bultrini, G.; Fragalà, I.; Ingo, G. M.; Lanza, G.
2006-06-01
This study presents the characterisation of prototypical yellow pigments used during the Renaissance period in Italy and the successful reproduction of homologous materials in accordance with the ancient recipes. Moreover, a large number of yellow decorative layers of Sicilian ceramic artefacts dated back from 13th to the 19th century have been selected and the main chemical, structural and minero-petrografic features have been studied by X-ray diffraction, optical microscopy and scanning electron microscopy-energy dispersive spectrometry. These results have been compared with literature data of some yellow decorations of Renaissance ceramics made in central Italy. Comparison has also been made with homologous materials that have been successfully reproduced in accordance with ancient recipes described by Cipriano Piccolpasso in the textbook: “I Tre Libri dell’Arte del Vasaio” using the same ingredients proposed by this artist. Such yellow materials reproduce the typical yellow colorants used by craftsmen of relevant sites for ceramic fabrication in central Italy, namely Città di Castello, Urbino and Castel Durante, during the 16th century. Comparative arguments have shown some intriguing differences that are indicators of both technological transfer processes between central and southern Italy as well as of some local implementations likely due to specific raw materials locally available.
NASA Astrophysics Data System (ADS)
Alaimo, R.; Bultrini, G.; Fragalà, I.; Giarrusso, R.; Montana, G.
A large number of ceramic samples (from the 10th to the 19th century), found during the excavation of Sicilian archaeological sites (Syracuse, Caltagirone, Sciacca and Piazza Armerina), have been studied by combining scanning electron microscopy, energy-dispersive X-ray spectrometry and optical microscopy. Attention has been focused on the microchemical and microstructural properties of the painted surfaces to investigate the nature of the enamels and pigments in the decorative layers. The general perspective has been the identification of consistent archeometric criteria, other than the standard stylistic considerations, which can be used for a reliable recognition of the production sites. The results collected for each ceramic typology were used to cluster the different ceramic reference groups in a wide database suitable for a reliable discrimination of the provenance of artefacts. Moreover, the same compositional and microstructural data allow the identification of the raw materials used for pigments. There is evidence of some differences with existing information found in the literature concerning the formulas used in ancient times. Finally, attention has also been devoted to identify the technological aspects of the manufacturing techniques and firing conditions adopted for each typology of glaze coating depending on different ceramic materials .
XRD investigation of the Effect of MgO Additives on ZTA-TiO2 Ceramic Composites
NASA Astrophysics Data System (ADS)
Azhar, Ahmad Zahirani Ahmad; Manshor, Hanisah; Ali, Afifah Mohd
2018-01-01
Alumina (Al2O3) based ceramics possess good mechanical properties and suitable for the application of cutting inserts. However, this monolithic ceramics suffer from lack of toughness. Hence, there are some modification were made such as the addition of yttria stabilized zirconia (YSZ) to the Al2O3 helps in increasing the toughness of the Al2O3 ceramics. Some additives such as MgO and TiO2 were used to further improve the mechanical properties of ZTA. In this study, high purity raw materials which consist of ZTA-TiO2 were mixed with different amount of MgO (0.0 - 1.0 wt %). The mixture of materials was going through wet mixing, compaction and pressureless sintering at 1600°C for one hour. The samples were characterized for phase analysis, microstructure, shrinkage rate, bulk density, Vickers hardness and fracture toughness. Based on the XRD analysis results, the secondary phase (MgAl2O4) was detected in the sample with 0.5 wt% of MgO onwards which leads to grains refinement, thus improve the density and hardness of ZTA-TiO2-MgO ceramics composites.
In vitro evaluation of the mutagenic and carcinogenic power of high purity zirconia ceramic.
Covacci, V; Bruzzese, N; Maccauro, G; Andreassi, C; Ricci, G A; Piconi, C; Marmo, E; Burger, W; Cittadini, A
1999-02-01
Tetragonal zirconia polycrystal (TZP) is a new interesting ceramic for the manufacture of medical devices. Its wide use in orthopedic and odontoiatric implants was limited till now by the high chemical and radiochemical impurities of the raw materials. Purification processes now available allow to obtain high purity ceramic grade powders suitable for TZP ceramics manufacture, even if their possible mutagenic and transforming effects are still unclear. The aim of this work is to study in vitro the mutagenic and oncogenic effects of a new zirconia ceramic stabilized by yttria (Y-TZP). This ceramic was sintered from high purity powders obtained by a process developed under a project carried out within the Brite EuRam programme. For comparison, ceramics made from unpurified zirconia powder were also tested. Fibroblasts irradiated by a linear accelerator were used as positive control. The results obtained show that Y-TZP ceramic does not elicit either mutagenic or transforming effect on C3H/10T(1/2) (10T(1/2)) cells and demonstrate that ceramic from high purity powders can be considered suitable for biomedical applications from the point of view of the effects of its radioactive impurity content.
Kizinievič, Olga; Balkevičius, Valdas; Pranckevičienė, Jolanta; Kizinievič, Viktor
2014-08-01
Large amounts of centrifuging waste of mineral wool melt (CMWW) are created during the production of mineral wool. CMWW is technogenic aluminum silicate raw material, formed from the particles of undefibred melt (60-70%) and mineral wool fibers (30-40%). 0.3-0.6% of organic binder with phenol and formaldehyde in its composition exists in this material. Objective of the research is to investigate the possibility to use CMWW as an additive for the production of ceramic products, by neutralising phenol and formaldehyde existing in CMWW. Formation masses were prepared by incorporating 10%, 20% and 30% of CMWW additive and burned at various temperatures. It was identified that the amount of 10-30% of CMWW additive influences the following physical and mechanical properties of the ceramic body: lowers drying and firing shrinkage, density, increases compressive strength and water absorption. Investigations carried out show that CMWW waste can be used for the production of ceramic products of various purposes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Liu, Rui; Huang, Fei; Du, Runxiang; Zhao, Chunming; Li, Yongli; Yu, Haoran
2015-06-01
Tailings are solid waste arising from mineral processing. This type of waste can cause severe damage to the environment during stockpiling as a result of the leaching of something harmful into the ecosystem. Gold deposit of ductile shear zone type is an important type of gold deposit, and the recycling of its tailings has been challenging researchers for a long time. In this article, the characteristics of this type of tailings were systematically studied by using modern technical means. Considering the characteristics of the tailings, clay was selected to make up for the shortcomings of the tailings and improve their performance. Water and raw materials were mixed to produce green bodies, which are subsequently sintered into ceramic bodies at 980 °C~1020 °C (sintering temperature). The results showed that some new kinds of mineral phases, such as mullite, anorthite and orthoclase, appear in ceramic bodies. Furthermore, the ceramic bodies have a surface hardness of 5 to 6 (Mohs scale), and their water absorption and modulus of rupture can meet some technical requirements of ceramic materials described in ISO 13006-2012 and GB 5001-1985. These gold mine tailings can be made into ceramic tiles, domestic ceramic bodies, and other kinds of ceramic bodies for commercial and industrial purposes after further improvements. © The Author(s) 2015.
Lunar fiberglass: Properties and process design
NASA Technical Reports Server (NTRS)
Dalton, Robert; Nichols, Todd
1987-01-01
A Clemson University ceramic engineering design for a lunar fiberglass plant is presented. The properties of glass fibers and metal-matrix composites are examined. Lunar geology is also discussed. A raw material and site are selected based on this information. A detailed plant design is presented, and summer experiments to be carried out at Johnson Space Center are reviewed.
The influence of clay fineness upon sludge recycling in a ceramic matrix
NASA Astrophysics Data System (ADS)
Szőke, A. M.; Muntean, M.; Sándor, M.; Brotea, L.
2016-04-01
The feasibility of sludge recycling in the ceramic manufacture was evaluated through laboratory testing. Such residues have similar chemical and mineralogical composition with the raw mixture of the green ceramic body used in construction. Several ceramic masses with clay and various proportion of sludge have been synthesized and then characterized by their physical-mechanical properties. The fineness of the clay, the main component of the green ceramic body, has been considered for every raw mixture. The proportion of the sludge waste addition depends on the clay fineness and the sintering capacity also, increases with the clay fineness. The ceramic properties, particularly, the open porosity, and mechanical properties, in presence of small sludge proportion (7, 20%) shows small modification. The introduction of such waste into building ceramic matrix (bricks, tiles, and plates) has a very good perspective.
Soft tissue adhesion of polished versus glazed lithium disilicate ceramic for dental applications.
Brunot-Gohin, C; Duval, J-L; Azogui, E-E; Jannetta, R; Pezron, I; Laurent-Maquin, D; Gangloff, S C; Egles, C
2013-09-01
Ceramics are widely used materials for prosthesis, especially in dental fields. Despite multiple biomedical applications, little is known about ceramic surface modifications and the resulting cell behavior at its contact. The aim of this study is to evaluate the biological response of polished versus glazed surface treatments on lithium disilicate dental ceramic. We studied a lithium disilicate ceramic (IPS e.max(®) Press, Ivoclar Vivadent) with 3 different surface treatments: raw surface treatment, hand polished surface treatment, and glazed surface treatment (control samples are Thermanox(®), Nunc). In order to evaluate the possible modulation of cell response at the surface of ceramic, we compared polished versus glazed ceramics using an organotypic culture model of chicken epithelium. Our results show that the surface roughness is not modified as demonstrated by equivalent Ra measurements. On the contrary, the contact angle θ in water is very different between polished (84°) and glazed (33°) samples. The culture of epithelial tissues allowed a very precise assessment of histocompatibility of these interfaces and showed that polished samples increased cell adhesion and proliferation as compared to glazed samples. Lithium disilicate polished ceramic provided better adhesion and proliferation than lithium disilicate glazed ceramic. Taken together, our results demonstrate for the first time, how it is possible to use simple surface modifications to finely modulate the adhesion of tissues. Our results will help dental surgeons to choose the most appropriate surface treatment for a specific clinical application, in particular for the ceramic implant collar. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Yoshimura, Humberto N; Chimanski, Afonso; Cesar, Paulo F
2015-10-01
Ceramic composites are promising materials for dental restorations. However, it is difficult to prepare highly translucent composites due to the light scattering that occurs in multiphase ceramics. The objective of this work was to verify the effectiveness of a systematic approach in designing specific glass compositions with target properties in order to prepare glass infiltrated ceramic composites with high translucency. First it was necessary to calculate from literature data the viscosity of glass at the infiltration temperature using the SciGlass software. Then, a glass composition was designed for targeted viscosity and refractive index. The glass of the system SiO2-B2O3-Al2O3-La2O3-TiO2 prepared by melting the oxide raw materials was spontaneously infiltrated into porous alumina preforms at 1200°C. The optical properties were evaluated using a refractometer and a spectrophotometer. The absorption and scattering coefficients were calculated using the Kubelka-Munk model. The light transmittance of prepared composite was significantly higher than a commercial ceramic-glass composite, due to the matching of glass and preform refractive indexes which decreased the scattering, and also to the decrease in absorption coefficient. The proposed systematic approach was efficient for development of glass infiltrated ceramic composites with high translucency, which benefits include the better aesthetic performance of the final prosthesis. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jadot, E.; Schiavon, N.; Manso, M.
2016-05-01
Tarascan ceramic sherds from two Postclassical archaeological sites (900-1450 AD) at the Malpaís of Zacapu, Michoacán, Mexico, were investigated by combining Back-Scattered Scanning Electron Microscopy and Energy Dispersive Spectroscopy (BSEM-EDS), μ-X-Ray Diffractometry (μ-XRD), μ-X-ray Fluorescence Spectroscopy (μ-XRF) and μ-Raman Spectroscopy. These sherds are famous for their forms and decorations although the composition of its raw materials remains so far unknown and focused only on the composition of the ceramic paste. For the purpose of surface decoration characterization, the pigments used in slips and paintings were identified as hematite, magnetite, amorphous carbon, graphite and lignite. Furthermore chemical and molecular structure determination allowed the identification of technological aspects such as the firing temperatures and atmospheres used in ceramics production.
NASA Astrophysics Data System (ADS)
Shi, Huan; Feng, Ke-qin; Wang, Hai-bo; Chen, Chang-hong; Zhou, Hong-ling
2016-05-01
To effectively reuse high-titanium blast furnace slag (TS), foam glass-ceramics were successfully prepared by powder sintering at 1000°C. TS and waste glass were used as the main raw materials, aluminium nitride (AlN) as the foaming agent, and borax as the fluxing agent. The influence of the amount of AlN added (1wt%-5wt%) on the crystalline phases, microstructure, and properties of the produced foam glass-ceramics was studied. The results showed that the main crystal phases were perovskite, diopside, and augite. With increasing AlN content, a transformation from diopside to augite occurred and the crystallinity of the pyroxene phases slightly decreased. Initially, the average pore size and porosity of the foam glass-ceramics increased and subsequently decreased; similarly, their bulk density and compressive strength decreased and subsequently increased. The optimal properties were obtained when the foam glass-ceramics were prepared by adding 4wt% AlN.
NASA Astrophysics Data System (ADS)
Romanelli, Maurizio; Di Benedetto, Francesco; Fornaciai, Gabriele; Innocenti, Massimo; Montegrossi, Giordano; Pardi, Luca A.; Zoleo, Alfonso; Capacci, Fabio
2015-05-01
A study is undertaken to ascertain whether changes in the speciation of inorganic radicals are occurring during the ceramic industrial production that involves abundant silica powders as raw material. Industrial dusts were sampled in two ceramic firms, immediately after the wet mixing stage, performed with the aid of a relevant pressure. The dusts were then characterised by means of X-ray diffraction, analysis of the trace elements through chemical methods, granulometry, continuous-wave electron paramagnetic resonance (EPR) and pulsed electron spin echo envelope modulation (ESEEM) spectroscopies. The results of the characterisation point to a relevant change in the speciation of the two samples; namely, a prevailing contribution due to an inorganic radical different from that pertaining to pure quartz is pointed out. The combined interpretation of EPR and ESEEM data suggests the attribution of the main paramagnetic contribution to the A-centre in kaolinite, a constituent that is added to pure quartz at the initial stage of the ceramic production. In one of the two samples, a second weak EPR signal is attributed to the quartz's hAl species. By taking into account the relative quantities of quartz and kaolinite mixed in the two samples, and the relative abundances of the two radical species, we propose that the partial or complete suppression of the hAl species in favour of the A-centre of kaolinite has occurred. Although this change is apparently fostered by the mixture between quartz and another radical-bearing raw material, kaolinite, the suppression of the hAl centre of quartz is ascribed to the role played by the pressure and the wet environment during the industrial mixing procedure. This suppression provides a net change of radical speciation associated with quartz, when this phase is in contact with workers' respiratory system.
Preparation and Characteristics of Porous Ceramics by a foaming Technology at Low Temperature
NASA Astrophysics Data System (ADS)
Zhang, H. Q.; Wang, S. P.; Wen, J.; Wu, N.; Xu, S. H.
2017-12-01
Recycling and converting coal gangue and red mud into porous ceramics with good performance is a feasible disposal route. In this present work, porous foam ceramics was prepared using coal gangue and red mud as main raw materials at low sintering temperature, The amount of coal gangue and red mud were up to 70 wt%. To regulate the forming and sintering performance of the product, quartz sands and clay material were added to the formula. The green body was formed by a foaming technology using aluminum powders as foaming agents at room temperature. After foamed, the specimens were dried at 60-80 °C, and then calcined at 1060°C. Effects of concentration of NaOH and amount of aluminum powders on the phase, mechanical properties and microstructure were investigated here. Such study is expected to provide a new utilization route of the coal gangue and red mud, and brings both intensive environmental and economic benefits.
NASA Astrophysics Data System (ADS)
Freitas, Renato P.; Coelho, Filipe A.; Felix, Valter S.; Pereira, Marcelo O.; de Souza, Marcos André Torres; Anjos, Marcelino J.
2018-03-01
This study used Raman, FT-IR and XRF spectroscopy and SEM to analyze ceramic fragments dating from the 19th century, excavated from an old farm in the municipality of Pirenópolis, Goiás, Brazil. The results show that the samples were produced in an open oven at a firing temperature below 500 °C, using raw materials including kaolinite, hematite, magnetite, quartz, microcline, albite, anhydrite, calcite, illite, orthoclase and MnO2. Although the analyses showed similarities in the manufacturing process and the presence of many minerals was common in all samples, multivariate statistical methods (PCA) allowed a more detailed assessment of similarities and differences in the mineral composition of the samples. The results of the PCA showed that the samples excavated in one of the slave quarters (senzalas) group with those excavated at the farmhouse, where the landowner lived, which indicates a paternalistic attitude towards captives, including the sharing of ceramic materials of everyday use.
NASA Astrophysics Data System (ADS)
Lindner, T.; Bonebeau, S.; Drehmann, R.; Grund, T.; Pawlowski, L.; Lampke, T.
2016-03-01
In wire arc spraying, the raw material needs to exhibit sufficient formability and ductility in order to be processed. By using an electrically conductive, metallic sheath, it is also possible to handle non-conductive and/or brittle materials such as ceramics. In comparison to massive wire, a cored wire has a heterogeneous material distribution. Due to this fact and the complex thermodynamic processes during wire arc spraying, it is very difficult to predict the resulting chemical composition in the coating with sufficient accuracy. An Inconel 625 cored wire was used to investigate this issue. In a comparative study, the analytical results of the raw material were compared to arc sprayed coatings and droplets, which were remelted in an arc furnace under argon atmosphere. Energy-dispersive X-ray spectroscopy (EDX) and X-ray fluorescence (XRF) analysis were used to determine the chemical composition. The phase determination was performed by X-ray diffraction (XRD). The results were related to the manufacturer specifications and evaluated in respect to differences in the chemical composition. The comparison between the feedstock powder, the remelted droplets and the thermally sprayed coatings allows to evaluate the influence of the processing methods on the resulting chemical and phase composition.
NASA Astrophysics Data System (ADS)
Marksteiner, Quinn R.; Treiman, Michael B.; Chen, Ching-Fong; Haynes, William B.; Reiten, M. T.; Dalmas, Dale; Pulliam, Elias
2017-06-01
A resonant cavity method is presented which can measure loss tangents and dielectric constants for materials with dielectric constant from 150 to 10 000 and above. This practical and accurate technique is demonstrated by measuring barium strontium zirconium titanate bulk ferroelectric ceramic blocks. Above the Curie temperature, in the paraelectric state, barium strontium zirconium titanate has a sufficiently low loss that a series of resonant modes are supported in the cavity. At each mode frequency, the dielectric constant and loss tangent are obtained. The results are consistent with low frequency measurements and computer simulations. A quick method of analyzing the raw data using the 2D static electromagnetic modeling code SuperFish and an estimate of uncertainties are presented.
NASA Astrophysics Data System (ADS)
Ikhmal Hanapi, Muhammad; Ahmad, Sufizar; Taib, Hariati; Ismail, Al Emran; Nasrull Abdol Rahman, Mohd; Salleh, Salihatun Md; Sadikin, Azmahani; Mahzan, Shahruddin
2017-10-01
The aim of this work is to determine the characteristics of porcelain ceramic with influence of milled Alkali Resistant (AR) fiberglass for manufacturing vitrified clay pipes. In this study, raw materials consist of porcelain clay and AR fiberglass were refined into powders less than 90μm. Subsequently, these samples were compacted into cylindrical pellet for chemical analysis using X-Ray Fluorescence (XRF). The ceramic sample was produced by mixing different weight percentage of AR glass to porcelain ceramic with 3 wt%, 6 wt%, 9 wt% and 12 wt%. Subsequently, the sample was compacted with 3 ton of pressure load and sintered at 900 °C, 1000 °C, 1100 °C and 1200 °C. The phase identification by using X-Ray Diffraction (XRD) and microstructural analysis were performed for the sintered sample. Chemical analysis revealed that the significant element for all raw material are SiO2, Al2O3, Na2O and K2O. Phase identification analysis shown that sample sintered at 1000 °C produces quartz (SiO2), berlinite (AlPO4), albite (NaAlSi3O8) and calcium-magnesium-aluminum-silicate (CaMgAlSiO). The formation of primary mullite was observed in sample sintered at 1100 °C. The image of microstructural morphology denoted that the formation of glassy phase with decreasing amount of void when sintering temperature and addition of AR glass were increased, which correspond well to phase identification analysis.
Evaluation of machinability and flexural strength of a novel dental machinable glass-ceramic.
Qin, Feng; Zheng, Shucan; Luo, Zufeng; Li, Yong; Guo, Ling; Zhao, Yunfeng; Fu, Qiang
2009-10-01
To evaluate the machinability and flexural strength of a novel dental machinable glass-ceramic (named PMC), and to compare the machinability property with that of Vita Mark II and human enamel. The raw batch materials were selected and mixed. Four groups of novel glass-ceramics were formed at different nucleation temperatures, and were assigned to Group 1, Group 2, Group 3 and Group 4. The machinability of the four groups of novel glass-ceramics, Vita Mark II ceramic and freshly extracted human premolars were compared by means of drilling depth measurement. A three-point bending test was used to measure the flexural strength of the novel glass-ceramics. The crystalline phases of the group with the best machinability were identified by X-ray diffraction. In terms of the drilling depth, Group 2 of the novel glass-ceramics proves to have the largest drilling depth. There was no statistical difference among Group 1, Group 4 and the natural teeth. The drilling depth of Vita MK II was statistically less than that of Group 1, Group 4 and the natural teeth. Group 3 had the least drilling depth. In respect of the flexural strength, Group 2 exhibited the maximum flexural strength; Group 1 was statistically weaker than Group 2; there was no statistical difference between Group 3 and Group 4, and they were the weakest materials. XRD of Group 2 ceramic showed that a new type of dental machinable glass-ceramic containing calcium-mica had been developed by the present study and was named PMC. PMC is promising for application as a dental machinable ceramic due to its good machinability and relatively high strength.
NASA Astrophysics Data System (ADS)
Domopoulou, Artemi
2015-04-01
The incorporation of secondary resources including various industrial wastes as pore-forming agents into clayey raw material mixtures for the development of tailored porous ceramic microstructures is currently of increasing interest. In the present research, sintered ceramic compacts were developed incorporated with industrial solid by-products as pore formers, and then used as new sorbents for chromium removal from aqueous media. The microstructures obtained were characterized through X-ray diffraction (XRD) analysis as well as scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectrometry (EDX). Sorption potential of chromium from synthetic solutions on the porous ceramics was studied by static adsorption experiments as a function of the pore-former percentage in the ceramic matrix as well as the initial heavy metal (chromium) concentration, solution pH and temperature. Kinetic studies were conducted and adsorption isotherms of chromium were determined using the Langmuir equation. Preliminary experimental results concerning the adsorption characteristics of chromium on the ceramic materials produced appear encouraging for their possible beneficial use as new sorbents for the removal of toxic chromium from aqueous media. Keywords: sorbents, ceramics, industrial solid by-products, pore-former, chromium. Acknowledgements: This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program ARCHIMEDES III: Investing in knowledge society through the European Social Fund.
NASA Astrophysics Data System (ADS)
Domopoulou, Asimina; Spiliotis, Xenofon; Baklavaridis, Apostolos; Papapolymerou, George; Karayannis, Vayos
2015-04-01
The incorporation of secondary resources including various industrial wastes as pore-forming agents into clayey raw material mixtures for the development of tailored porous ceramic microstructures is currently of increasing interest. In the present research, sintered ceramic compacts were developed incorporated with industrial solid by-products as pore formers, and then used as new sorbents for chromium removal from aqueous media. The microstructures obtained were characterized through X-ray diffraction (XRD) analysis as well as scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectrometry (EDX). Sorption potential of chromium from synthetic solutions on the porous ceramics was studied by static adsorption experiments as a function of the pore-former percentage in the ceramic matrix as well as the initial heavy metal (chromium) concentration, solution pH and temperature. Kinetic studies were conducted and adsorption isotherms of chromium were determined using the Langmuir equation. Preliminary experimental results concerning the adsorption characteristics of chromium on the ceramic materials produced appear encouraging for their possible beneficial use as new sorbents for the removal of toxic chromium from aqueous media. Keywords: sorbents, ceramics, industrial solid by-products, pore former, chromium. Acknowledgements: This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program ARCHIMEDES III: Investing in knowledge society through the European Social Fund.
Zhu, Renbo; Ma, Guojun; Cai, Yongsheng; Chen, Yuxiang; Yang, Tong; Duan, Boyu; Xue, Zhengliang
2016-04-01
Stainless steel plant dust is a hazardous by-product of the stainless steelmaking industry. It contains large amounts of Fe, Cr, and Ni, and can be potentially recycled as a raw material of inorganic black pigment in the ceramic industry to reduce environmental contamination and produce value-added products. In this paper, ceramic tiles prepared with black pigment through recycling of stainless steel plant dust were characterized in terms of physical properties, such as bulk density, water absorption, apparent porosity, and volume shrinkage ratio, as well as the long-term leaching behavior of heavy metals (Cr, Ni, Pb, Cd, and Zn). The results show that good physical properties of ceramic tiles can be obtained with 8% pigments addition, sample preparation pressure of 25 MPa, and sintering at 1200 ºC for 30 min. The major controlling leaching mechanism for Cr and Pb from the ceramic tiles is initial surface wash-off, while the leaching behavior of Cd, Ni, and Zn from the stabilized product is mainly controlled by matrix diffusion. The reutilization process is safe and effective to immobilize the heavy metals in the stainless steel plant dust. Stainless steel plant dust is considered as a hazardous material, and it can be potentially recycled for black pigment preparation in the ceramic industry. This paper provides the characteristics of the ceramic tiles with black pigment through recycling stainless steel plant dust, and the long-term leaching behavior and controlling leaching mechanisms of heavy metals from the ceramic tile. The effectiveness of the treatment process is also evaluated.
NASA Astrophysics Data System (ADS)
Szymanska, Joanna; Mizera, Jaroslaw
2017-04-01
Poland is one of few European countries undertaking innovative research towards effective exploration of hydrocarbons form shale deposits. With regard for strict geological conditions, which occur during hydraulic fracturing, it is required to apply ceramic proppants enhancing extraction of shale gas. Ceramic proppants are granules (16/30 - 70/120 Mesh) classified as propping agents. These granules located in the newly created fissures (due to injected high pressure fluid) in the shale rock, act as a prop, what enables gas flow up the well. It occurs if the proppants can resist high stress of the closing fractures. Commonly applied proppants are quartz sands used only for shallow reservoirs and fissile shales (in the USA). Whereas, the ceramic granules are proper for extraction of gas on the high depths at hard geomechanical conditions (in Europe) to increase output even by 30 - 50%. In comparison to other propping materials, this kind of proppants predominate with mechanical strength, smoother surface, lower solubility in acids and also high stability in water. Such parameters can be available through proper raw materials selection to further proppants production. The Polish ceramic proppants are produced from natural resources as kaolin, bauxite and white clay mixed with water and binders. Afterwards, the slurries are subjected to granulation in a mechanical granulator and sintered at high temperatures (1200 - 1550°C). Taking into consideration presence of geomechanical barriers, that prevent fracture propagation beyond shale formations, it is crucial to determine quality of applied natural deposits. Next step is to optimize the proppants production and select the best kind of granules, what was the aim of this research. Utility of the raw materials was estimated on basis of their particle size distribution, bulk density, specific surface area (BET) and thermal analysis (thermogravimetry). Morphology and shape were determined by Scanning Electron Microscopy (SEM). Energy Dispersive Spectroscopy (EDS) enabled analysis of their chemical composition, what was compared with X-ray fluorescence (XRF) results. Crystallinity of the raw compounds was established by X-ray diffraction (XRD). Characterization of loamy materials enabled evaluation of their impact on ceramic slurries preparation for further granulation and sintering. The proppants were analyzed with X-Ray Tomography to determine their shape and pore distribution. 3D models also enabled prediction of proppant settlement in the fracture. The crucial parameter as mechanical strength, that influences the integrity of created fractures (fines exceeding 1 % reduce fracture conductivity), was established during the crush tests. High roundness coefficient, uniformity and bulk density results informed about stability of the prop. Environmental proppants interaction was evaluated by turbidity and solubility in acid measurements, which reflect a threat of the proppants decay in the well. The obtained outcomes prove the utility of applied natural resources in the granules production. In consequence, the obtained proppants can be used for hydraulic fracturing in high pressure, temperature and low permeable shale formations. The granules fulfil the norms thus are prospective on a global proppants market.
Characterization and inventory of PCDD/F emissions from the ceramic industry in China.
Lu, Mang; Wang, Guoxiang; Zhang, Zhongzhi; Su, Youming
2012-04-03
The ceramic industry is considered to be a potential source of dioxins (polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), considering the widespread distribution of dioxins in kaolinitic clays. Nevertheless, studies on the emission of dioxins from the ceramic industry are still very scarce. In this study, raw clays and stack gases from six typical ceramic plants in China were collected and analyzed to estimate the emission of dioxins from the ceramic industry. Dioxin profiles in raw clays were characterized by the domination of the congener octachlorodibenzo-p-dioxin (OCDD), and the contents of other congeners declined with the decreasing degree of chlorination. During the ceramic firing process, a considerable amount (16.5-25.1 wt % of the initial quantity in raw clays) of the dioxins was not destroyed and was released to the atmosphere. Dechlorination of OCDD generated a broad distribution within the PCDD congeners including a variety of non-2,3,7,8-substituted ones with the mass abundance of 0.4-3.6%. Based on the mean concentrations measured in this study, the inventory of PCDD/Fs from the manufacturing of ceramics on the Chinese scale was estimated to be 7.94 kg/year; the corresponding value on the I-TEQ basis is 133.6 g I-TEQ/year. This accounts for about 1.34% (I-TEQ basis) of the total emission of dioxins to the environment in China. The results suggest that the ceramic industry is a significant source of dioxins in the environment.
NASA Astrophysics Data System (ADS)
Chen, Chang-hong; Feng, Ke-qin; Zhou, Yu; Zhou, Hong-ling
2017-08-01
Foamed glass-ceramics were prepared via a single-step sintering method using high-titanium blast furnace slag and waste glass as the main raw materials The influence of sintering temperature (900-1060°C) on the microstructure and properties of foamed glass-ceramics was studied. The results show that the crystal shape changed from grainy to rod-shaped and finally turned to multiple shapes as the sintering temperature was increased from 900 to 1060°C. With increasing sintering temperature, the average pore size of the foamed glass-ceramics increased and subsequently decreased. By contrast, the compressive strength and the bulk density decreased and subsequently increased. An excessively high temperature, however, induced the coalescence of pores and decreased the compressive strength. The optimal properties, including the highest compressive strength (16.64 MPa) among the investigated samples and a relatively low bulk density (0.83 g/cm3), were attained in the case of the foamed glass-ceramics sintered at 1000°C.
Fabrication and Characterization of Porous MgAl₂O₄ Ceramics via a Novel Aqueous Gel-Casting Process.
Yuan, Lei; Liu, Zongquan; Liu, Zhenli; He, Xiao; Ma, Beiyue; Zhu, Qiang; Yu, Jingkun
2017-11-30
A novel and aqueous gel-casting process has been successfully developed to fabricate porous MgAl₂O₄ ceramics by using hydratable alumina and MgO powders as raw materials and deionized water as hydration agent. The effects of different amounts of deionized water on the hydration properties, apparent porosity, bulk density, microstructure, pore size distribution and compressive strength of the samples were investigated. The results indicated that the porosity and the microstructure of porous MgAl₂O₄ ceramics were governed by the amounts of deionized water added. The porous structure was formed by the liberation of physisorbed water and the decomposition of hydration products such as bayerite, brucite and boehmite. After determining the addition amounts of deionized water, the fabricated porous MgAl₂O₄ ceramics had a high apparent porosity (52.5-65.8%), a small average pore size structure (around 1-3 μm) and a relatively high compressive strength (12-28 MPa). The novel aqueous gel-casting process with easy access is expected to be a promising candidate for the preparation of Al₂O₃-based porous ceramics.
Sikalidis, Constantine; Mitrakas, Manassis
2006-01-01
The up to 20 wt% addition of the Electric Arc Furnace Dust (EAFD) hazardous waste on the properties of extruded clay-based ceramic building products fired at various temperatures (850 to 1050 degrees C), as well as of dolomite-concrete products was investigated. Chemical, mineralogical and particle size distribution analyses were performed in order to characterize the used EAFD. The results showed that the ceramic specimens prepared had water absorption, firing shrinkage, apparent density, mechanical strength, colour and leaching behaviour within accepted limits. Addition of 7.5 to 15 wt% EAFD presented improved properties, while 20 wt% seems to be the upper limit. Dolomite-concrete specimens were prepared by vibration and press-forming of mixtures containing cement, sand, dolomite, EAFD and water. Modulus of rupture values were significantly increased by the addition of EAFD. The leaching tests showed stabilization of all toxic metals within the sintered ceramic structure, while the leaching behaviour of lead in dolomite-concrete products needs further detailed study.
NASA Astrophysics Data System (ADS)
Stanojev Pereira, Marco A.; Pugliesi, Reynaldo
2018-05-01
The neutron tomography technique was applied in studying the penetration of the consolidant Paraloid® B-72 in contemporary indigenous ceramic vessels. The study was carried out for two distinct and controlled air humidity conditions, 40% and 90%, in which the vessels were exposed, before the consolidant application. The obtained images have proved that the penetration of Paraloid® B-72 in the ceramic does not depend on the humidity condition in which it was applied, moreover allowed a macro-visualization of the consolidant penetration in the ceramic vessel. As the vessels used in the present work were manufactured by an indigenous artisan, Macuxi, according to the same procedures and raw materials used by the ancient artisans, the results obtained can be used as a guide to assist experts, both in the study of archeological objects of Macuxi origin, as well as other objects that had been made by other tribes that lived in the same Amazon region, in Brazil.
Boltakova, N V; Faseeva, G R; Kabirov, R R; Nafikov, R M; Zakharov, Yu A
2017-02-01
This paper analyzes the significant scientific publications worldwide for the last 15years concerning construction ceramics (predominantly brick) made with various inorganic industrial wastes added to the ceramic raw material for the improvement of properties and for eco-friendly disposal. The information gap resulting from the lack of mentions of the Russian publications on this subject in English-language reviews is filled. The paper includes brief summaries of 34 dissertations and 29 patents issued in Russia since 2000. The waste additives described in these summaries are grouped by origin type (mining industry waste, ore enrichment waste, metallurgical waste, sludge, ashes, cullet, large-capacity building wastes and waste from various chemical production processes) with the ceramic mixture compositions, molding and firing conditions, final strength, water absorption and other parameters of the final ceramic samples reported. Russian scientists have expanded the nomenclature of each group of wastes significantly upon addition to the list described in English-language reviews for 2000-2015. References to the recent Russian developments in the field of ecological management in ceramic industry are provided. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Zhikun; Zhang, Lei; Yin, Yulei; Liang, Xuanye; Li, Aimin
2015-01-01
In this paper, the recycling of incinerated sewage sludge ash (ISSA) into glass-ceramic materials by a two-stage sintering cycle of nucleation stage and crystallization stage without any pressure and binder is presented. The parent glasses were subjected to the following nucleation/crystallization temperature and time level: (A) 790°C, 1.0 h/870°C, 1.0-3.0 h; (B) 790°C, 1.0 h/945°C, 1.0-3.0 h and (C) 790°C, 1.0 h/1065°C, 1.0-3.0 h. X-ray power diffraction analysis results revealed that multiple crystalline phases coexisted in the glass-ceramic materials and the crystalline phase compositions were more affected by crystallization temperature than crystallization time. Scanning electron microscopy analysis showed an interlocking microstructure of glass phases and crystals with different sizes and spatial distribution. The glass-ceramics crystallized at 945°C for 2.0 h exhibited optimal properties of density of 2.88±0.08 g/cm3, compression strength of 247±12 MPa, bending strength of 118±14 MPa and water absorption of 0.42±0.04. The leaching concentrations of heavy metals were far lower than the limits required by the regulatory standard of EPA. This paper provides a feasible, low-cost and promising method to produce ISSA-based glass-ceramics and highlights the principal characteristics that must be taken into account to use ISSA correctly in glass-ceramics.
Molten Salt Synthesis and Structural Characterization of BaTiO3 Nanocrystal Ceramics
NASA Astrophysics Data System (ADS)
Ahda, S.; Misfadhila, S.; Parikin, P.; Putra, T. Y. S. P.
2017-02-01
A new synthesis route to obtain high-purity barium titanate powder, BaTiO3, using the molten salt method by reacting the raw materials (BaCO3 and TiO2) in an atmosphere of molten NaCl and KCl, has been developed. The synthesized BaTiO3 ceramic particles have been successfully carried out at the sintering temperature 950°C for 4 hours. The Rietveld refinement of the XRD diffraction patterns was employed to characterize the structural information of the nanocrystalline BaTiO3 ceramics. The lattice parameters (a=4.0043 Å, b=4.0308Å with space group P4mm) of tetragonal perovskite structure, as an indication of piezoelectric characteristics, have been successfully determined by the Rietveld refinement. While the crystallitte particle size and strains have been obtained for the values of 110.6 nm and 0.74 % respectively
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Junlang, E-mail: lijunlangx@163.com; Xu, Jian, E-mail: xu.jian.57z@st.kyoto-u.ac.jp; Graduate School of Human and Environmental Studies, Division of Materials Function, Kyoto University, Kyoto 606-8501
2014-07-01
Highlights: • We fabricate Ce doped lutetium aluminum garnet ceramics by solid-state method. • The raw materials include Lu{sub 2}O{sub 3} nanopowders synthesized by co-precipitation method. • The density of the transparent ceramics reach 99.7% of the theoretical value. • The optical transmittance of the bulk ceramic at 550 nm was 57.48%. • Some scattering centers decrease the optical characteristic of the ceramic. - Abstract: Polycrystalline Ce{sup 3+} doped lutetium aluminum garnet (Ce:LuAG) transparent ceramics fabricated by one step solid-state reaction method using synthetic nano-sized Lu{sub 2}O{sub 3}, commercial α-Al{sub 2}O{sub 3} and CeO{sub 2} powders were investigated in thismore » paper. The green compacts shaped by the mixed powders were successfully densified into Ce:LuAG transparent ceramics after vacuum sintering at 1750 °C for 10 h. The in-line optical transmittance of the Ce:LuAG ceramic made by home-made Lu{sub 2}O{sub 3} powders could reach 57.48% at 550 nm, which was higher than that of the ceramic made by commercial Lu{sub 2}O{sub 3} powders (22.96%). The microstructure observation showed that light scattering centers caused by micro-pores, aluminum segregation and refraction index inhomogeneities induced the decrease of optical transparency of the Ce:LuAG ceramics, which should be removed and optimized in the future work.« less
Properties of ceramics prepared using dry discharged waste to energy bottom ash dust.
Bourtsalas, Athanasios; Vandeperre, Luc; Grimes, Sue; Themelis, Nicolas; Koralewska, Ralf; Cheeseman, Chris
2015-09-01
The fine dust of incinerator bottom ash generated from dry discharge systems can be transformed into an inert material suitable for the production of hard, dense ceramics. Processing involves the addition of glass, ball milling and calcining to remove volatile components from the incinerator bottom ash. This transforms the major crystalline phases present in fine incinerator bottom ash dust from quartz (SiO(2)), calcite (CaCO(3)), gehlenite (Ca(2)Al(2)SiO(7)) and hematite (Fe(2)O(3)), to the pyroxene group minerals diopside (CaMgSi(2)O(6)), clinoenstatite (MgSi(2)O(6)), wollastonite (CaSiO(3)) together with some albite (NaAlSi(3)O(8)) and andradite (Ca(3)Fe(2)Si(3)O(12)). Processed powders show minimal leaching and can be pressed and sintered to form dense (>2.5 g cm(-3)), hard ceramics that exhibit low firing shrinkage (<7%) and zero water absorption. The research demonstrates the potential to beneficially up-cycle the fine incinerator bottom ash dust from dry discharge technology into a raw material suitable for the production of ceramic tiles that have potential for use in a range of industrial applications. © The Author(s) 2015.
Improvement of organics removal by bio-ceramic filtration of raw water with addition of phosphorus.
Sang, Junqiang; Zhang, Xihui; Li, Lingzhi; Wang, Zhansheng
2003-11-01
The purpose of this study was to investigate the effect of phosphorus addition on biological pretreatment of raw water. Experiments were conducted in pilot-scale bio-ceramic filters with raw water from a reservoir located in Beijing, China. The results demonstrated that phosphorus was the limiting nutrient for bacterial growth in the raw water investigated in this study. The measured values of bacterial regrowth potential (BRP) and biodegradable dissolved organic carbon (BDOC) of the raw water increased by 50-65% and 30-40% with addition of 50 microg of PO4(3-)-PL(-1), respectively. Addition of 25 microg of PO4(3-)-PL(-1) to the influent of bio-ceramic filter enhanced the percent removal of organics by 4.6, 5.7 and 15 percentage points in terms of COD(Mn), TOC and BDOC, respectively. Biomass in terms of phospholipid content increased by 13-22% and oxygen uptake rate (OUR) increased by 35-45%. The ratio of C:P for bacteria growth was 100:1.6 for the raw water used in this study. Since change of phosphorus concentrations can influence the performance of biological pretreatment and the biological stability of drinking water, this study is of substantial significance for waterworks in China. The role of phosphorus in biological processes of drinking water should deserve more attention.
NASA Astrophysics Data System (ADS)
Mathur, Ravi; Soni, Aditi
White wares produced worldwide represent the foundation of much of the ceramic industry; Porcelain bodies fabricated from triaxial mixtures of clay, quartz and feldspar with different size and amounts of nano particles were investigated. Although the purity of raw materials has a strong effect on the colour of the fired bodies, the particle size of raw materials also effect the whiteness The raw material mining minerals china Clay, Feldspar, quarts were prepared of various sized nano particles contains 10.60 -20.22%, 56.84- 70.80 % and 34.87-50.76 % of 100nm respectively. The fired bodies of raw mining minerals and triaxial bodies were subjected to colour measurement. The differences in whiteness were compared and discussed. The studies so far carried out is upto 400 mesh size while the present study has included up to 100nm particle size. A statistical correlation between whiteness of feldspar and triaxial body was also carried out. The correlation between china clay and triaxial body are 0.53, 0.57 and 0.66 for china clay similarly correlation for feldspar is 0.49, 0.73 and 0.83 for triaxial body it are 0.97, 0.84 and 0.75 for A1, A2 and A3 samples. Correlation between china clay and feldspar with triaxial body are 0.79 and 0.92 respectively.
NASA Astrophysics Data System (ADS)
Yu, Jiahong; Wang, Guixiang; Tang, Di; Qiu, Ya; Sun, Nali; Liu, Wenqiao
2018-01-01
The design of super thermal insulation and high-temperature resistant materials for high temperature furnaces is crucial due to the energy crisis and the huge wasting. Although it is told that numerous studies have been reported about various of thermal insulation materials prepared by different methods, the applications of yttria-stabilized zirconia (YSZ) ceramic foams fabricated through tert-butyl alcohol (TBA)-based gel-casting process in bulk thermal isolators were barely to seen. In this paper, highly porous yttria-stabilized zirconia (YSZ) ceramic foams were fabricated by a novel gel-casting method using tert-butyl alcohol (TBA) as solvent and pore-forming agent. Different raw material ratio, sintering temperature and soaking time were all investigated to achieve optimal thermal insulation and mechanical properties. We can conclude that porosity drops gradually while compressive strength increases significantly with the rising temperature from 1000-1500°C. With prolonged soaking time, there is no obvious change in porosity but compressive strength increases gradually. All specimens have uniformly distributed pores with average size of 0.5-2μm and show good structural stability at high temperature. The final obtained ceramic foams displayed an outstanding ultra-low thermal conductivity property with only 200.6 °C in cold surface while the hot side was 1000 °C (hold 60 min to keep thermal balance before testing) at the thickness of 10 mm.
Fabrication and Characterization of Porous MgAl2O4 Ceramics via a Novel Aqueous Gel-Casting Process
Yuan, Lei; Liu, Zongquan; Liu, Zhenli; He, Xiao; Ma, Beiyue; Zhu, Qiang; Yu, Jingkun
2017-01-01
A novel and aqueous gel-casting process has been successfully developed to fabricate porous MgAl2O4 ceramics by using hydratable alumina and MgO powders as raw materials and deionized water as hydration agent. The effects of different amounts of deionized water on the hydration properties, apparent porosity, bulk density, microstructure, pore size distribution and compressive strength of the samples were investigated. The results indicated that the porosity and the microstructure of porous MgAl2O4 ceramics were governed by the amounts of deionized water added. The porous structure was formed by the liberation of physisorbed water and the decomposition of hydration products such as bayerite, brucite and boehmite. After determining the addition amounts of deionized water, the fabricated porous MgAl2O4 ceramics had a high apparent porosity (52.5–65.8%), a small average pore size structure (around 1–3 μm) and a relatively high compressive strength (12–28 MPa). The novel aqueous gel-casting process with easy access is expected to be a promising candidate for the preparation of Al2O3-based porous ceramics. PMID:29189734
Pre-Hispanic ceramics analyzed using PIXE and radiographic techniques
NASA Astrophysics Data System (ADS)
Lima, S. C.; Rizzutto, M. A.; Added, N.; Barbosa, M. D. L.; Trindade, G. F.; Fleming, M. I. D. A.
2011-12-01
Ceramics objects are the most common artifacts found during excavation of archaeological sites and often depicts cultural habits and manufacturing technologies of the culture. The determination of macroscopic and microscopic characteristics of the ceramic objects such as the ceramic porosity, addition of tempers in the clay, main chemical components and the trace elements present in the ceramic can reveal many aspects about the manufacturing processes used by the culture, its degree of development, the provenance of the raw materials and the exchange networks. Also the radiography can help to investigate the manufactured processes, the size of the tempers used and the conservation status of the artifacts. In this present work two non-destructive techniques, radiography and PIXE (Particle Induced X-ray Emission) were used to characterize one set of thirty-six pre-Hispanic ceramic pieces from the Chimu Culture conserved in the Museu de Arqueologia e Etnologia (MAE/USP). The PIXE analyses performed in the external beam setup at LAMFI (Laboratório de Análise de Materiais por Feixes Iônicos) allowed measure the principal chemical elements such as Al, Si, K, Ti, Fe and Ca, present in this group of pieces. X-ray imagings allowed identify the manufacture processes, the granularity of the tempers used, as well as the similarity and the differences between the pieces studied.
Intermetallics as innovative CRM-free materials
NASA Astrophysics Data System (ADS)
Novák, Pavel; Jaworska, Lucyna; Cabibbo, Marcello
2018-03-01
Many of currently used technical materials cannot be imagined without the use of critical raw materials. They require chromium (e.g. in stainless and tool steels), tungsten and cobalt (tool materials, heat resistant alloys), niobium (steels and modern biomaterials). Therefore there is a need to find substitutes to help the European economy. A promising solution can be the application of intermetallics. These materials offer wide variety of interesting properties, such as high hardness and wear resistance or high chemical resistance. In this paper, the overview of possible substitute materials among intermetallics is presented. Intermetallics based on aluminides and silicides are shown as corrosion resistant materials, composites composed of ceramics in intermetallic matrix as possible tool materials. The manufacturing processes are being developed to minimize the disadvantages of these materials, mainly the room-temperature brittleness.
NASA Astrophysics Data System (ADS)
Mandavia, H. C.; Murthy, K. V. R.; Purohit, R. U.
2017-05-01
Natural background radiation comes from two primary sources: cosmic radiation and terrestrial sources. Our natural environment has both livings and non-livings like - Sun, Moon, Sky, Air, Water, Soil, Rivers, Mountains, Forests, besides plants and animals. The worldwide average background dose for a human being is about 2.4 millisievert (mSv) per year. This exposure is mostly from cosmic radiation and natural radionuclides in the environment. The Earth, and all living things on it, are constantly bombarded by radiation from outer space. This radiation primarily consists of positively charged ions from protons to iron and larger nuclei derived sources outside our solar system. This radiation interacts with atoms in the atmosphere to create secondary radiation, including X-rays, muons, protons, alpha particles, pions, electrons, and neutrons. The present study discusses the utility of ceramic tiles as radiation dosimeters in case of nuclear fallout. Many flooring materials most of them are in natural form are used to manufacture floor tiles for household flooring purpose. Many natural minerals are used as the raw materials required for the manufacturing ceramic ware. The following minerals are used to manufacturing the ceramic tiles i.e. Quartz, Feldspar, Zircon, Talc, Grog, Alumina oxide, etc. Most of the minerals are from Indian mines of Gujarat and Rajasthan states, some of are imported from Russian subcontinent. The present paper reports the thermoluminescence dosimetry Study of Feldspar and Quartz minerals collected from the ceramic tiles manufacturing unit, Morbi. The main basis in the Thermoluminescence Dosimetry (TLD) is that TL output is directly proportional to the radiation dose received by the phosphor and hence provides the means of estimating unknown radiations from environment.
The removal of disinfection by-product precursors from water with ceramic membranes.
Harman, B I; Koseoglu, H; Yigit, N O; Sayilgan, E; Beyhan, M; Kitis, M
2010-01-01
The main objective of this work was to investigate the effectiveness of ceramic ultrafiltration (UF) membranes with different pore sizes in removing natural organic matter (NOM) from model solutions and drinking water sources. A lab-scale, cross-flow ceramic membrane test unit was used in all experiments. Two different single-channel tubular ceramic membrane modules were tested with average pore sizes of 4 and 10 nm. The impacts of membrane pore size and pressure on permeate flux and the removals of UV(280 nm) absorbance, specific UV absorbance (SUVA(280 nm)), and dissolved organic carbon (DOC) were determined. Prior to experiments with model solutions and raw waters, clean water flux tests were conducted. UV(280) absorbance reductions ranged between 63 and 83% for all pressures and membranes tested in the raw water. More than 90% of UV(280) absorbance reduction was consistently achieved with both membranes in the model NOM solutions. Such high UV absorbance reductions are advantageous due to the fact that UV absorbing sites of NOM are known to be one of the major precursors to disinfection by-products (DBP) such as trihalomethanes and haloacetic acids. For both UF membranes, the ranges of DOC removals in the raw water and model NOM solutions were 55-73% and 79-91%, respectively. SUVA(280) value of the raw water decreased from 2 to about 1.5 L/mg-m by both membranes. For the model solutions, SUVA(280) values were consistently reduced to < or =1 L/mg-m levels after membrane treatment. As the SUVA(280) value of the NOM source increased, the extent of SUVA(280) reduction and DOC removal by the tested ceramic UF membranes also increased. The results overall indicated that ceramic UF membranes, especially the one with 4 nm average pore size, appear to be effective in removing organic matter and DBP precursors from drinking water sources with relatively high and sustainable permeate flux values.
Rakruam, Pharkphum; Wattanachira, Suraphong
2014-03-01
This research was aimed at investigating the reduction of DOM fractions and their trihalomethane formation potential (THMFP) by in-line coagulation with 0.1 μm ceramic membrane filtration. The combination of ceramic membrane filtration with a coagulation process is an alternative technology which can be applied to enhance conventional coagulation processes in the field of water treatment and drinking water production. The Ping River water (high turbidity water) was selected as the raw surface water because it is currently the main raw water source for water supply production in the urban and rural areas of Chiang Mai Province. From the investigation, the results showed that the highest percent reductions of DOC, UV-254, and THMFP (47.6%, 71.0%, and 67.4%, respectively) were achieved from in-line coagulation with ceramic membrane filtration at polyaluminum chloride dosage 40 mg/L. Resin adsorption techniques were employed to characterize the DOM in raw surface water and filtered water. The results showed that the use of a ceramic membrane with in-line coagulation was able to most efficiently reduce the hydrophobic fraction (HPOA) (68.5%), which was then followed by the hydrophilic fraction (HPIA) (49.3%). The greater mass DOC reduction of these two fractions provided the highest THMFP reductions (55.1% and 37.2%, respectively). Furthermore, the in-line coagulation with ceramic membrane filtration was able to reduce the hydrophobic (HPOB) fraction which is characterized by high reactivity toward THM formation. The percent reduction of mass DOC and THMFP of HPOB by in-line coagulation with ceramic membrane filtration was 45.9% and 48.0%, respectively. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Díaz-García, Almudena; Martínez-García, Carmen; Cotes-Palomino, Teresa
2017-01-01
Action on climate, the environment, and the efficient use of raw materials and resources are important challenges facing our society. Against this backdrop, the construction industry must adapt to new trends and environmentally sustainable construction systems, thus requiring lines of research aimed at keeping energy consumption in new buildings as low as possible. One of the main goals of this research is to efficiently contribute to reducing the amount of residue from olive oil extraction using a two-phase method. This can be achieved by producing alternative structural materials to be used in the construction industry by means of a circular economy. The technical feasibility of adding said residue to ceramic paste was proven by analyzing the changes produced in the physical properties of the paste, which were then compared to the properties of the reference materials manufactured with clay without residue. Results obtained show that the heating value of wet pomace can contribute to the thermal needs of the sintering process, contributing 30% of energy in pieces containing 3% of said material. Likewise, adding larger amounts of wet pomace to the clay body causes a significant decrease in bulk density values. PMID:28772461
Novel fabrication of silicon carbide based ceramics for nuclear applications
NASA Astrophysics Data System (ADS)
Singh, Abhishek Kumar
Advances in nuclear reactor technology and the use of gas-cooled fast reactors require the development of new materials that can operate at the higher temperatures expected in these systems. These materials include refractory alloys based on Nb, Zr, Ta, Mo, W, and Re; ceramics and composites such as SiC--SiCf; carbon--carbon composites; and advanced coatings. Besides the ability to handle higher expected temperatures, effective heat transfer between reactor components is necessary for improved efficiency. Improving thermal conductivity of the fuel can lower the center-line temperature and, thereby, enhance power production capabilities and reduce the risk of premature fuel pellet failure. Crystalline silicon carbide has superior characteristics as a structural material from the viewpoint of its thermal and mechanical properties, thermal shock resistance, chemical stability, and low radioactivation. Therefore, there have been many efforts to develop SiC based composites in various forms for use in advanced energy systems. In recent years, with the development of high yield preceramic precursors, the polymer infiltration and pyrolysis (PIP) method has aroused interest for the fabrication of ceramic based materials, for various applications ranging from disc brakes to nuclear reactor fuels. The pyrolysis of preceramic polymers allow new types of ceramic materials to be processed at relatively low temperatures. The raw materials are element-organic polymers whose composition and architecture can be tailored and varied. The primary focus of this study is to use a pyrolysis based process to fabricate a host of novel silicon carbide-metal carbide or oxide composites, and to synthesize new materials based on mixed-metal silicocarbides that cannot be processed using conventional techniques. Allylhydridopolycarbosilane (AHPCS), which is an organometal polymer, was used as the precursor for silicon carbide. Inert gas pyrolysis of AHPCS produces near-stoichiometric amorphous silicon carbide (a-SiC) at 900--1150 °C. Results indicated that this processing technique can be effectively used to fabricate various silicon carbide composites with UC or UO2 as the nuclear component.
Quina, Margarida J; Bontempi, Elza; Bogush, Anna; Schlumberger, Stefan; Weibel, Gisela; Braga, Roberto; Funari, Valerio; Hyks, Jiri; Rasmussen, Erik; Lederer, Jakob
2018-09-01
Environmental policies in the European Union focus on the prevention of hazardous waste and aim to mitigate its impact on human health and ecosystems. However, progress is promoting a shift in perspective from environmental impacts to resource recovery. Municipal solid waste incineration (MSWI) has been increasing in developed countries, thus the amount of air pollution control residues (APCr) and fly ashes (FA) have followed the same upward trend. APCr from MSWI is classified as hazardous waste in the List of Waste (LoW) and as an absolute entry (19 01 07*), but FA may be classified as a mirror entry (19 0 13*/19 01 14). These properties arise mainly from their content in soluble salts, potentially toxic metals, trace organic pollutants and high pH in contact with water. Since these residues have been mostly disposed of in underground and landfills, other possibilities must be investigated to recover secondary raw materials and products. According to the literature, four additional routes of recovery have been found: detoxification (e.g. washing), product manufacturing (e.g. ceramic products and cement), practical applications (e.g. CO 2 sequestration) and recovery of materials (e.g. Zn and salts). This work aims to identify the best available technologies for material recovery in order to avoid landfill solutions. Within this scope, six case studies are presented and discussed: recycling in lightweight aggregates, glass-ceramics, cement, recovery of zinc, rare metals and salts. Finally, future perspectives are provided to advance understanding of this anthropogenic waste as a source of resources, yet tied to safeguards for the environment. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Tang, Yuanyuan; Chui, Stephen Sin-Yin; Shih, Kaimin; Zhang, Lingru
2011-04-15
The feasibility of incorporating copper-laden sludge into low-cost ceramic products, such as construction ceramics, was investigated by sintering simulated copper-laden sludge with four aluminum-rich ceramic precursors. The results indicated that all of these precursors (γ-Al(2)O(3), corundum, kaolinite, mullite) could crystallochemically stabilize the hazardous copper in the more durable copper aluminate spinel (CuAl(2)O(4)) structure. To simulate the process of copper transformation into a spinel structure, CuO was mixed with the four aluminum-rich precursors, and fired at 650-1150 °C for 3 h. The products were examined using powder X-ray diffraction (XRD) and scanning electron microscopic techniques. The efficiency of copper transformation among crystalline phases was quantitatively determined through Rietveld refinement analysis of the XRD data. The sintering experiment revealed that the optimal sintering temperature for CuAl(2)O(4) formation was around 1000 °C and that the efficiency of copper incorporation into the crystalline CuAl(2)O(4) structure after 3 h of sintering ranged from 40 to 95%, depending on the type of aluminum precursor used. Prolonged leaching tests were carried out by using acetic acid with an initial pH value of 2.9 to leach CuO and CuAl(2)O(4) samples for 22 d. The sample leachability analysis revealed that the CuAl(2)O(4) spinel structure was more superior to stabilize copper, and suggested a promising and reliable technique for incorporating copper-laden sludge or its incineration ash into usable ceramic products. Such results also demonstrated the potential of a waste-to-resource strategy by using waste materials as part of the raw materials with the attainable temperature range used in the production of ceramics.
Pan, Liangjie; Jiang, Benxue; Fan, Jintai; Yang, Qiuhong; Zhou, Chunlin; Zhang, Pande; Mao, Xiaojian; Zhang, Long
2015-01-01
The synthesis of pure and well dispersed lutetium aluminum garnet (LuAG) powder is crucial and important for the preparation of LuAG transparent ceramics. In this paper, high purity and well dispersed LuAG powders have been synthesized via co-precipitation method with lutetium nitrate and aluminum nitrate as raw materials. Ammonium hydrogen carbonate (AHC) was used as the precipitant. The influence of aging time, pH value, and dripping speed on the prepared LuAG powders were investigated. It showed that long aging duration (>15 h) with high terminal pH value (>7.80) resulted in segregation of rhombus Lu precipitate and Al precipitate. By decreasing the initial pH value or accelerating the dripping speed, rhombus Lu precipitate was eliminated and pure LuAG nano powders were synthesized. High quality LuAG transparent ceramics with transmission >75% at 1064 nm were fabricated using these well dispersed nano LuAG powders. PMID:28793510
NASA Astrophysics Data System (ADS)
Bugoi, Roxana; Talmaţchi, Cristina; Haitǎ, Constantin; Ceccato, Daniele
2018-02-01
An assemblage of 58 ceramic shards discovered in archaeological excavations at Oltina, Romania, dated to the 10th-11th century CE, was subjected to archaeometric investigations in order to reveal the raw materials and manufacturing techniques employed by the potters from the Lower Danube zone during the Byzantine ruling. The initial grouping of the shards according to stylistic criteria was refined by the subsequent petrographic study. Optical Microscopy (OM) detailed the general mineralogy and the pottery fabric, i.e. the textural characteristics, porosity and microstructure, surface treatments and firing. The PIXE analyses of potteries performed at AN2000 accelerator of LNL, INFN, Italy led to the identification of the chemical composition of the ceramic shards. The Hierarchical Cluster Analysis of the PIXE data evidenced several categories of shards with distinct compositional signatures, the main division being the one separating the ceramic fragments made of kaolinitic clays from the rest of the Oltina potteries.
Pan, Liangjie; Jiang, Benxue; Fan, Jintai; Yang, Qiuhong; Zhou, Chunlin; Zhang, Pande; Mao, Xiaojian; Zhang, Long
2015-08-19
The synthesis of pure and well dispersed lutetium aluminum garnet (LuAG) powder is crucial and important for the preparation of LuAG transparent ceramics. In this paper, high purity and well dispersed LuAG powders have been synthesized via co-precipitation method with lutetium nitrate and aluminum nitrate as raw materials. Ammonium hydrogen carbonate (AHC) was used as the precipitant. The influence of aging time, pH value, and dripping speed on the prepared LuAG powders were investigated. It showed that long aging duration (>15 h) with high terminal pH value (>7.80) resulted in segregation of rhombus Lu precipitate and Al precipitate. By decreasing the initial pH value or accelerating the dripping speed, rhombus Lu precipitate was eliminated and pure LuAG nano powders were synthesized. High quality LuAG transparent ceramics with transmission >75% at 1064 nm were fabricated using these well dispersed nano LuAG powders.
Medical imaging scintillators from glass-ceramics using mixed rare-earth halides
NASA Astrophysics Data System (ADS)
Beckert, M. Brooke; Gallego, Sabrina; Ding, Yong; Elder, Eric; Nadler, Jason H.
2016-10-01
Recent years have seen greater interest in developing new luminescent materials to replace scintillator panels currently used in medical X-ray imaging systems. The primary areas targeted for improvement are cost and image resolution. Cost reduction is somewhat straightforward in that less expensive raw materials and processing methods will yield a less expensive product. The path to improving image resolution is more complex because it depends on several properties of the scintillator material including density, transparency, and composition, among others. The present study focused on improving image resolution using composite materials, known as glass-ceramics that contain nanoscale scintillating crystallites formed within a transparent host glass matrix. The small size of the particles and in-situ precipitation from the host glass are key to maintaining transparency of the composite scintillator, which ensures that a majority of the light produced from absorbed X-rays can actually be used to create an image of the patient. Because light output is the dominating property that determines the image resolution achievable with a given scintillator, it was used as the primary metric to evaluate performance of the glass-ceramics relative to current scintillators. Several glass compositions were formulated and then heat treated in a step known as "ceramization" to grow the scintillating nanocrystals, whose light output was measured in response to a 65 kV X-ray source. Performance was found to depend heavily on the thermal history of the glass and glass-ceramic, and so additional studies are required to more precisely determine optimal process temperatures. Of the compositions investigated, an alumino-borosilicate host glass containing 56mol% scintillating rare-earth halides (BaF2, GdF3, GdBr3, TbF3) produced the highest recorded light output at nearly 80% of the value recorded using a commercially-available GOS:Tb panel as a reference.
International manned lunar base - Beginning the 21st century in space
NASA Astrophysics Data System (ADS)
Smith, Harlan J.; Gurshtejn, Aleksandr A.; Mendell, Wendell
An evaluation is made of requirements for, and advantages in, the creation of a manned lunar base whose functions emphasize astronomical investigations. These astronomical studies would be able to capitalize on the lunar environment's ultrahigh vacuum, highly stable surface, dark and cold sky, low-G, absence of wind, isolation from terrestrial 'noise', locally usable ceramic raw materials, and large radiotelescope dish-supporting hemispherical craters. Large telescope structures would be nearly free of the gravity and wind loads that complicate their design on earth.
Synthesis of mullite (3Al2O32SiO2) from local kaolin for radiation shielding
NASA Astrophysics Data System (ADS)
Ripin, Azuhar; Mohamed, Faizal; Aman, Asyraf
2018-04-01
Raw kaolin from Kota Tinggi, Johor was used in this study to produce ceramic mullite (3Al2O22SiO2) for radiation shielding materials. In this work, an attempt was made to study the potential of local minerals to be used as a shielding barrier for diagnostic radiology radiation facilities in hospitals and medical centers throughout Malaysia. The conventional ceramic processing route was employed in the study using different pressing strength and sintering time. The obtained samples were characterized using X-ray diffractometer (XRD) for phase identification of each of the samples. The lead equivalent (LE) test was carried out using 15.05 mCi Cobalt-57 with gamma energy of 122 keV to compute the abilities of the mullite ceramic samples to attenuate the radiation. XRD patterns of prepared ceramics revealed the presence of orthorhombic mullite, hexagonal quartz and orthorhombic sillimanite structures. Furthermore, the radiation test displayed the ability of ceramics to shield of 70 % of gamma radiation at the distance of 60 cm from the radiation source. The highest lead equivalent thickness is 1.0 mm Pb and the lowest is about 0.06 mm Pb. From the result, it is shown that the ceramic has the potential to use as a shielding barrier in diagnostic radiology facilities due to the ability of reducing the radiation dose up to 70 % from its initial value.
NASA Astrophysics Data System (ADS)
Padeletti, G.; Fermo, P.
2010-09-01
Renaissance lustred majolica shards from Gubbio and Deruta (Central Italy) were investigated in order to point out differences in chemical and mineralogical composition between these two very similar Italian potteries and furthermore to find correlations with the local raw clay materials probably used for their production. Chemical and mineralogical analysis on the ceramic body were performed by ICP-OES (inductively coupled plasma optical emission spectroscopy) and XRD (X-ray diffraction), respectively. Investigation of the ceramic body revealed significant differences on calcium content indicating that it could be used as a marker for the two different productions. A separation of the ceramic shards in groups, on the base of their provenance, has been achieved applying to the data set formed by the chemical compositional data some multivariate techniques, such as PCA (principal component analysis) and HCA (hierarchical cluster analysis). Even the mineralogical composition of the groups shows very interesting features, differing Gubbio production from Deruta one for the presence of several mineralogical species. The investigations carried out on clays that were collected in the two geographical places have confirmed these differences. In fact, the clay materials have a chemical composition coherent with that one found in the shards. Firing tests performed by heating these clay in different conditions (temperature and soaking time) have shown a different behaviour as concerns the formation of the minerals and it is compatible with the shard composition found. From the comparison between the fired clay and the ceramic shards, some assumptions about the firing conditions applied by the ancient potters have been drawn.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chao, Xiaolian, E-mail: chaoxl@snnu.edu.cn; Wang, Juanjuan; Wang, Zhongming
2016-04-15
Graphical abstract: Titanium dioxide (TiO{sub 2}) with different phase structure had interesting influence on the crystal structure, microstructure, the sintering temperature and electrical properties. - Highlights: • BCZT ceramics were prepared using either anatase or rutile structures as Ti source. • Orthorhombic and tetragonal mixture structure was exhibited by adjusting Ti source. • The optimal properties were observed in BCZT ceramics with rutile titanium dioxide. - Abstract: To research effect of raw materials TiO{sub 2} with the phase structures on the crystal structure, microstructure and electrical properties of lead-free (Ba{sub 0.85}Ca{sub 0.15})(Ti{sub 0.90}Zr{sub 0.10})O{sub 3} (BCZT) ceramics, BCZT ceramics usingmore » either anatase or rutile as Ti source were synthesized by solid-state reaction. Titanium dioxide (TiO{sub 2}) with anatase/rutile phase structures had interesting influence on the crystal structure, microstructure and the sintering temperature by the X-ray diffraction and SEM, which also played an important role in improved electrical properties. The BCZT ceramics with rutile titanium dioxide demonstrated optimal piezoelectric and dielectric properties: d{sub 33} = 590 pC/N, k{sub p} = 0.46, ε{sub r} = 2810, tanδ = 0.014 and T{sub c} = 91 °C, which was obviously superior to BCZT ceramics with anatase titanium dioxide.« less
Recycling of residual IGCC slags and their benefits as degreasers in ceramics.
Iglesias Martín, I; Acosta Echeverría, A; García-Romero, E
2013-11-15
This work studies the evolution of IGCC slag grains within a ceramic matrix fired at different temperatures to investigate the effect of using IGCC slag as a degreaser. Pressed ceramic specimens from two clay mixtures are used in this study. The M1 mixture is composed of standard clays, whereas the M2 mixture is composed of the same clay mixture as M1 mixture but contains 15% by weight IGCC slag. The amount of IGCC slag added coincides with the amount of slag typically used as a degreaser in the ceramic industry. Specimens are fired at 950 °C, 1000 °C, 1050 °C, 1100 °C and 1150 °C. The mineralogical composition and the IGCC slag grain shape within the ceramic matrix are determined by X-ray diffraction, polarized light microscopy and scanning electron microscopy. The results reveal that the surface of the slag grains is welded to the ceramic matrix while the quartz grains are separated, which causes increased water absorption and reduces the mechanical strength. IGCC slag, however, reduces water absorption. This behaviour is due to the softening temperature of the slag. This property is quite important from an industrial viewpoint because IGCC slag can serve as an alternative to traditional degreasing agents in the ceramic building industry. Additionally, using IGCC slag allows for the transformation of waste into a secondary raw material, thereby avoiding disposal at landfills; moreover, these industrial wastes are made inert and improve the properties of ceramics. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Caneira, Inês; Machado-Moreira, Bernardino; Dionísio, Amélia; Godinho, Vasco; Neves, Orquídia; Dias, Diamantino; Saiz-Jimenez, Cesareo; Miller, Ana Z.
2015-04-01
Ceramic industry represents an important sector of economic activity in the European countries and involves complex and numerous manufacturing processes. The unidirectional dry pressing process includes milling and stirring of raw materials (mainly clay and talc minerals) in aqueous suspensions, followed by spray drying to remove excess water obtaining spray-dried powders further subjected to dry pressing process (conformation). However, spray-dried ceramic powders exhibit an important variability in their performance when subjected to the dry pressing process, particularly in the adhesion to the mold and mechanical strength, affecting the quality of the final conformed ceramic products. Therefore, several synthetic additives (deflocculants, antifoams, binders, lubricants and plasticizers) are introduced in the ceramic slips to achieve uniform and homogeneous pastes, conditioning their rheological properties. However, an important variability associated with the performance of the conformed products is still reported. Exopolysaccharides or Extracellular Polymeric Substances (EPS) are polymers excreted by living organisms, such as bacteria, fungi and algae, which may confer unique and potentially interesting properties with potential industrial uses, such as viscosity control, gelation, and flocculation. Polysaccharides, such as pullulan, gellan, carrageenan and xanthan have found a wide range of applications in food, pharmaceutical, petroleum, and in other industries. The aim of this study was the assessment of exopolysaccharides as natural additives to optimize the performance of spray-dried ceramic powders during the unidirectional dry pressing process, replacing the synthetic additives used in the ceramic production process. Six exopolysaccharides, namely pullulan, gellan, xanthan gum, κappa- and iota-carrageenan, and guar gum were tested in steatite-based spray-dried ceramic powders at different concentrations. Subsequently, these ceramic powders were submitted to unidirectional dry pressing process (conformation) and the green conformed bodies were tested on the following properties: mechanical flexural strength and adhesion/disaggregation of the conformed material. The binding state of polysaccharides and mineral grains was evaluated by field emission scanning electron microscopy (FESEM). Our data showed that xanthan gum and pullulan were the most effective polysaccharides in improving the performance of spray-dried ceramic powders during unidirectional dry pressing process, in comparison to the control steatite-based ceramic bodies containing synthetic additives. In addition, these polysaccharides yielded the best cost-benefit relationship, representing an eco-friendly and cost-effective alternative to synthetic additives used in technical ceramics industry. Hence, this study has contributed to define a new and sustainable strategy to improve the performance of ceramic materials during unidirectional dry pressing process, reduce production costs and minimize environmental impact. Acknowledgments: This study was financed by Portuguese funds through FCT- Fundação para a Ciência e a Tecnologia (project EXPL/CTM-CER/0637/2012) and supported by Rauschert Portuguesa, SA.
Heidebrecht, Hans-Jürgen; Toro-Sierra, José; Kulozik, Ulrich
2018-06-28
The use of bioactive bovine milk immunoglobulins (Ig) has been found to be an alternative treatment for certain human gastrointestinal diseases. Some methodologies have been developed with bovine colostrum. These are considered in laboratory scale and are bound to high cost and limited availability of the raw material. The main challenge remains in obtaining high amounts of active IgG from an available source as mature cow milk by the means of industrial processes. Microfiltration (MF) was chosen as a process variant, which enables a gentle and effective concentration of the Ig fractions (ca. 0.06% in raw milk) while reducing casein and lactose at the same time. Different microfiltration membranes (ceramic standard and gradient), pore sizes (0.14⁻0.8 µm), transmembrane pressures (0.5⁻2.5 bar), and temperatures (10, 50 °C) were investigated. The transmission of immunoglobulin G (IgG) and casein during the filtration of raw skim milk (<0.1% fat) was evaluated during batch filtration using a single channel pilot plant. The transmission levels of IgG (~160 kDa) were measured to be at the same level as the reference major whey protein β-Lg (~18 kDa) at all evaluated pore sizes and process parameters despite the large difference in molecular mass of both fractions. Ceramic gradient membranes with a pore sizes of 0.14 µm showed IgG-transmission rates between 45% to 65% while reducing the casein fraction below 1% in the permeates. Contrary to the expectations, a lower pore size of 0.14 µm yielded fluxes up to 35% higher than 0.2 µm MF membranes. It was found that low transmembrane pressures benefit the Ig transmission. Upscaling the presented results to a continuous MF membrane process offers new possibilities for the production of immunoglobulin enriched supplements with well-known processing equipment for large scale milk protein fractionation.
NASA Astrophysics Data System (ADS)
Alawneh, Firas Mohamad
This thesis investigates continuity and change of ceramics from Late Byzantine-Early Islamic transition period Jordan. The transition period has been characterized largely by an overlap of two ceramic traditions. The material culture of this period has been primarily viewed through formal and stylistic changes. However, ceramic technology and distribution have never been subjected to rigorous analytical study. In order to explain continuity and change in ceramic tradition the undertaken study has focused on the provenance and technology, using multifaceted analytical approach. This study of the transition period pottery has focused on the classification and technological features of potsherds from selected sites in Jordan (Amman, Aqaba, Beit Ras, Khirbet el-Nawafleh, Jarash, Jericho, Pella, Madaba, Gharndal, Humaimah, Um er-Rassas and Um el-Waleed). Samples were studied by particle-induced X-ray emission spectroscopy, X-ray powder diffraction, and optical microscopy to analyze their chemical, mineralogical and textural features in the aim of determining their possible provenance and production technology. Compositional data were statistically processed with multivariate analysis using SYSTAT II software 2006. To obtain further information about possible source areas of raw materials used in ceramic production, clays were also sampled in the studied areas. Firing experiments were conducted for clays with compositions comparable with those of ceramic sherds, to better understand the firing technology of the pottery. The multifaceted analytical approach has revealed important information on ceramic production in Transjordan. Khirbet el-Nawafleh and Aqaba in the south, Jarash and Pella in the north, Amman and Madaba in the middle are possibly just a few important production centers during this period. The study shows a multidirectional socio-cultural exchange and economic trade patterns within each region and between adjacent regions, as well. Also, importation from adjacent provinces cannot be excluded for certain samples. Despite the different archaeological levels to which these samples belong to, this study illustrates some similarity in technological features and chemical composition. This in turn suggests that continuity is rather the trend in ceramic tradition of the society during the transition period. However, further work on clays, kilns, and pottery from other sites discovered in Jordan is necessary to confirm this conclusion.
Bartolomé, José F.; Smirnov, Anton; Kurland, Heinz-Dieter; Grabow, Janet; Müller, Frank A.
2016-01-01
Alumina toughened zirconia (ATZ) and zirconia toughened alumina (ZTA) are currently the materials of choice to meet the need for tough, strong, and bioinert ceramics for medical devices. However, the mechanical properties of ZrO2/Al2O3 dispersion ceramics could be considerably increased by reducing the corresponding grain sizes and by improving the homogeneity of the phase dispersion. Here, we prepare nanoparticles with an intraparticular phase distribution of Zr(1−x)AlxO(2−x/2) and (γ-, δ-)Al2O3 by the simultaneous gas phase condensation of laser co-vaporized zirconia and alumina raw powders. During subsequent spark plasma sintering the zirconia defect structures and transition alumina phases transform to a homogeneously distributed dispersion of tetragonal ZrO2 (52.4 vol%) and α-Al2O3 (47.6 vol%). Ceramics sintered by spark plasma sintering are completely dense with average grain sizes in the range around 250 nm. Outstanding mechanical properties (flexural strength σf = 1500 MPa, fracture toughness KIc = 6.8 MPa m1/2) together with a high resistance against low temperature degradation make these materials promising candidates for next generation bioceramics in total hip replacements and for dental implants. PMID:26846310
NASA Astrophysics Data System (ADS)
Bartolomé, José F.; Smirnov, Anton; Kurland, Heinz-Dieter; Grabow, Janet; Müller, Frank A.
2016-02-01
Alumina toughened zirconia (ATZ) and zirconia toughened alumina (ZTA) are currently the materials of choice to meet the need for tough, strong, and bioinert ceramics for medical devices. However, the mechanical properties of ZrO2/Al2O3 dispersion ceramics could be considerably increased by reducing the corresponding grain sizes and by improving the homogeneity of the phase dispersion. Here, we prepare nanoparticles with an intraparticular phase distribution of Zr(1-x)AlxO(2-x/2) and (γ-, δ-)Al2O3 by the simultaneous gas phase condensation of laser co-vaporized zirconia and alumina raw powders. During subsequent spark plasma sintering the zirconia defect structures and transition alumina phases transform to a homogeneously distributed dispersion of tetragonal ZrO2 (52.4 vol%) and α-Al2O3 (47.6 vol%). Ceramics sintered by spark plasma sintering are completely dense with average grain sizes in the range around 250 nm. Outstanding mechanical properties (flexural strength σf = 1500 MPa, fracture toughness KIc = 6.8 MPa m1/2) together with a high resistance against low temperature degradation make these materials promising candidates for next generation bioceramics in total hip replacements and for dental implants.
New gelling systems to fabricate complex-shaped transparent ceramics
NASA Astrophysics Data System (ADS)
Yang, Yan; Wu, Yiquan
2013-06-01
The aim of this work was to prepare transparent ceramics with large size and complex-shapes by a new water-soluble gelling agent poly(isobutylene-alt-maleic anhydride). Alumina was used as an example of the application of the new gelling system. A stable suspension with 38vol% was prepared by ball milling. Trapped bubbles were removed before casting to obtain homogenous green bodies. The microstructure and particle distribution of alumina raw material were tested. The thermal behavior of the alumina green body was investigated, which exhibited low weight loss when compared with other gelling processes. The influence of solid loading and gelling agent addition were studied on the basis of rheological behavior of the suspension. The microstructures of alumina powders, green bodies before and after de-bindering process, were compared to understand the gelling condition between alumina particles and gelling agent.
Particle size distribution of typical ceramic raw materials by laser granulometry
NASA Technical Reports Server (NTRS)
Wojnarovitsne, I. H.; Lenkel, M.
1984-01-01
The principles of the method are explained and the working of the CILAS 715 laser granulometer is described. The particle size distributions of milled glazes, quartz, feldspar and china clay were determined by this instrument and by Andreasen sedimentation. The agreement was good for isometric particles, but the china clay appears finer by sedimentation, because the platelets arrange themselves horizontally during sedimentation, while in the laser granulometer preferred orientation is prevented by circulation between the sample holder and the vibrated and stirred reservoir of the slip.
NASA Astrophysics Data System (ADS)
Klesner, Catherine Elizabeth
Decorative, polychrome ceramics from Corinth, Greece, produced during the 8th-6th centuries B.C.E. are luxury goods that were widely traded throughout Greece and the Mediterranean. The decorated ceramics were produced in a variety of shapes, including aryballos, alabastron, and olpe. They were decorated with slip-glazes in distinctive white, black, red, yellow, and purple colors, and in a variety of surface finishes, matte, semi-matte and glossy. Artisans in Corinthian workshops experimented to change the colors of the slips by varying the type and amount of iron-rich raw materials. They also varied the composition of the clay used as a binder and the amount of flux used as a sintering aid to promote glass formation. This research reconstructs the technology used by the Corinthian craftsmen to produce the Archaic polychrome ceramics, and shows how these technologies differed from the production of better known, more prestigious Athenian black-figure and red-figure ceramics. Through microstructural examination of archaeological samples and replication experiments, this thesis proposes that the purple iron oxide pigment is the result of acid treatment and oxidation of iron metal. The firing temperature range of the Corinthian polychrome ceramics was determined experimentally to be 925-1025°C, which is higher than previously reported and similar to that reported for Corinthian transport amphoras. The firing range is higher by 50-150°C than the Athenian black-figure and red-figure ceramics. Samples of Corinthian polychrome and Athenian black-figure ceramics from the Marie Farnsworth collection at the University of Arizona were tested and compared to Corinthian clay collections. Analytical techniques included Fourier-transform infrared spectroscopy (FTIR), scanning-electron microscopy with energy-dispersive spectroscopy (SEM-EDS), micro-Raman spectroscopy, and wavelength-dispersive electron microprobe (EPMA with BSE-SEM).
NASA Astrophysics Data System (ADS)
Sharif, Nurulakmal Mohd; Lim, Chi Yang; Teo, Pao Ter; Seman, Anasyida Abu
2017-07-01
Significant quantities of sludge and slag are generated as waste materials or by-products from steel industries. One of the by-products is Electric Arc Furnace (EAF) steel slag which consists of oxides such as CaO, Al2O3 and FeO. This makes it possible for slag to partially replace the raw materials in ceramic tile production. In our preliminary assessment of incorporating the EAF slag into ceramic tile, it was revealed that at fixed firing temperature of 1150°C, the tile of composition 40 wt.% EAF slag - 60 wt.% ball clay has comparable properties with commercial ceramic tile. Thus, this current study would focus on effects of body formulation (different weight percentages of K-feldspar and silica) and different firing temperatures to properties of EAF slag added ceramic tile. EAF slag from Southern Steel Berhad (SSB) was crushed into micron size (EAF slag content was 40 wt.%) and milled with ball clay, K-feldspar and silica before compacted and fired at 1125°C and 1150°C. The EAF slag added tile was characterized in terms of water absorption, apparent porosity, bulk density, modulus of rupture (MOR) and phase analysis via X-ray diffraction (XRD). The composition of 40 wt.% EAF slag - 30 wt.% ball clay - 10 wt.% K-feldspar - 20 wt.% silica (10F_20S), fired at 1150°C showed the lowest water absorption, apparent porosity and highest bulk density due to enhancement of densification process during firing. However, the same composition of ceramic tile (10F_20S) had the highest MOR at lower firing temperature of 1125°C, contributed by presence of the highest total amount of anorthite and wollastonite reinforcement crystalline phases (78.40 wt.%) in the tile. Overall, both the water absorption and MOR of all ceramic tiles surpassed the requirement regulated by MS ISO 13006:2014 Standard (Annex G: Dry-pressed ceramic tile with low water absorption, Eb ≤ 0.50 % and minimum MOR of 35 MPa).
Polycrystalline scintillators for large area detectors in HEP experiments
NASA Astrophysics Data System (ADS)
Dosovitskiy, G.; Fedorov, A.; Karpyuk, P.; Kuznetsova, D.; Mikhlin, A.; Kozlov, D.; Dosovitskiy, A.; Korjik, M.
2017-06-01
After significant increase of the accelerator luminosity throughout the High Luminosity phase of LHC, charged hadrons and neutrons with fluences higher than 1014 p/cm2 per year in the largest pseudo-rapidity regions of the detectors will cause increased radiation damage of materials. Increasing activation of the experimental equipment will make periodical maintenance and replacement of detector components difficult. Therefore, the selected materials for new detectors should be tolerant to radiation damage. Y3Al5O12:Ce (YAG:Ce) crystal was found to be one of the most radiation hard scintillation materials. However, production of YAG:Ce in a single crystalline form is costly, because crystal growth is performed at temperature near 1900°C with a very low rate of transformation of a raw material into a crystal. We propose translucent YAG:Ce ceramics as an alternative cheaper solution. Ceramic samples were sintered up to density ~98% of the theoretical value and were translucent. The samples have demonstrated light yield of 2200 phot./MeV under 662 keV γ-quanta, which gives the expected response to minimum ionizing particle around 3000 phot. for 2 mm thick plate. Scintillation light yield, registered under surface layer excitation with α-particles, was 50-70% higher than for the reference single crystal YAG:Ce.
Evaluation of PCDD/Fs emissions during ceramic production: a laboratory study.
Lu, Mang; Luo, Yi-Jing; Zhang, Zhong-Zhi; Xiao, Meng; Zhang, Min
2012-08-30
Because of the ubiquity of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in kaolinitic clays, the ceramic industry is considered to be a potential source of PCDD/Fs. However, studies on the emission of PCDD/Fs from ceramic production are still very scarce. In this study, PCDD/Fs emissions during ceramic production were investigated in an electric laboratory batch kiln. The results showed that the PCDD/Fs were completely removed from the ceramic pieces after 30 min of firing at the peak temperature of 1200°C. Nevertheless, on the mass and international toxic equivalent basis, 27.5% and 46.2% of the total PCDD/Fs amount in the raw clay were released into the atmosphere during firing, respectively. These PCDD/Fs were emitted into the air before the temperature was elevated to a level high enough for their destruction. Dechlorination reactions generated a broad distribution within the PCDD/Fs congeners including a variety of non-2,3,7,8-substituted ones. The emission of PCDD/Fs was decreased to 16.3 wt.% of the total PCDD/Fs amount in the raw clay, when the initial kiln temperature was enhanced to 600°C. The emission of PCDD/Fs could be reduced significantly in the presence of a glaze coating on the ceramic test piece. These results indicated that ceramic production is an un-neglectable source of PCDD/Fs in the environment. Copyright © 2012 Elsevier B.V. All rights reserved.
A new classification system for all-ceramic and ceramic-like restorative materials.
Gracis, Stefano; Thompson, Van P; Ferencz, Jonathan L; Silva, Nelson R F A; Bonfante, Estevam A
2015-01-01
Classification systems for all-ceramic materials are useful for communication and educational purposes and warrant continuous revisions and updates to incorporate new materials. This article proposes a classification system for ceramic and ceramic-like restorative materials in an attempt to systematize and include a new class of materials. This new classification system categorizes ceramic restorative materials into three families: (1) glass-matrix ceramics, (2) polycrystalline ceramics, and (3) resin-matrix ceramics. Subfamilies are described in each group along with their composition, allowing for newly developed materials to be placed into the already existing main families. The criteria used to differentiate ceramic materials are based on the phase or phases present in their chemical composition. Thus, an all-ceramic material is classified according to whether a glass-matrix phase is present (glass-matrix ceramics) or absent (polycrystalline ceramics) or whether the material contains an organic matrix highly filled with ceramic particles (resin-matrix ceramics). Also presented are the manufacturers' clinical indications for the different materials and an overview of the different fabrication methods and whether they are used as framework materials or monolithic solutions. Current developments in ceramic materials not yet available to the dental market are discussed.
NASA Astrophysics Data System (ADS)
Bruni, Silvia; Guglielmi, Vittoria; Della Foglia, Elena; Castoldi, Marina; Bagnasco Gianni, Giovanna
2018-02-01
A study is presented based on the use of entirely non-destructive spectroscopic techniques to analyze the chemical composition of the painted surface layer of archaeological pottery. This study aims to define both the raw materials and the working technology of ancient potters. Energy-dispersive X-ray analysis, micro-Raman spectroscopy, visible and near infrared (NIR) diffuse reflection spectroscopy and external reflection Fourier-transform infrared (FTIR) spectroscopy were applied to matt-painted bichrome pottery sherds (VIII-VII century B.C.) from the site of Incoronata near Metaponto in southern Italy. Two different raw materials, ochre and iron-rich clay, were recognized for the red decoration, while the dark areas resulted to have been obtained by the so-called manganese black technique. In any case, it was demonstrated that the decoration was applied before firing, in spite of its sometimes grainy aspect that could suggest a post-firing application. For the samples with a more sophisticated decorative pattern a red/black/white polychromy was recognized, as the lighter areas correspond to an ;intentional white; obtained by the firing of a calcium-rich clay. Reflection spectroscopy in the visible-NIR and mid-IR as well as micro-Raman spectroscopy were then employed to characterize the decoration of an intact ceramic urn from the Etruscan town of Chiusi, evidencing a post-firing painting based on the use of red ochre, carbon black and lime, possibly imitating the ;fresco; technique used in wall paintings.
Sintering, properties and fabrication of Si3N4 + Y2O3 based ceramics
NASA Technical Reports Server (NTRS)
Quackenbush, C. L.; Smith, J. T.; Neil, J. T.; French, K. W.
1983-01-01
Pure silicon nitride shows a remarkable resistance to sintering without the use of densification additives. The present investigation is concerned with results which show the effect of chemical content on sinterability, taking into account the composition, raw material impurities, and processing contaminants. Aspects of sintering are discussed along with strength characteristics, and oxidation relations. Attention is given to phase field I and II materials, phase field III and IV materials, tungsten carbide and oxidation at 600 C, and studies involving shape fabrication by injection molding. It was found that in sintering Si3N4 + Y2O3 an increase in the amount of Y2O3 and, in particular, the addition of Al2O3 enhances the fluidity of the liquid phase.
Preparation of sintered foam materials by alkali-activated coal fly ash.
Zhao, Yelong; Ye, Junwei; Lu, Xiaobin; Liu, Mangang; Lin, Yuan; Gong, Weitao; Ning, Guiling
2010-02-15
Coal fly ash from coal fired power stations is a potential raw material for the production of ceramic tiles, bricks and blocks. Previous works have demonstrated that coal fly ash consists mainly of glassy spheres that are relatively resistant to reaction. An objective of this research was to investigate the effect of alkali on the preparation process of the foam material. Moreover, the influence of foam dosage on the water absorption, apparent density and compressive strength was evaluated. The experimental results showed that homogenous microstructures of interconnected pores could be obtained by adding 13 wt.% foaming agent at 1050 degrees C, leading to foams presenting water absorption, apparent density and compressive strength values of about 126.5%, 0.414 g/cm(3), 6.76 MPa, respectively.
Occupational exposure to natural radioactivity in a zircon sand milling plant.
Ballesteros, Luisa; Zarza, Isidoro; Ortiz, Josefina; Serradell, Vicente
2008-10-01
Raw zirconium sand is one of the substances (naturally occurring radioactive material, NORM) which is widely used in the ceramic industry. This sand contains varying concentrations of natural radionuclides: mostly U-238 but also Th-232 and U-235, together with their daughters, and therefore may need to be regulated by Directive 96/29/EURATOM. This paper describes the method used to perform the radiological study on a zircon sand milling plant and presents the results obtained. Internal and external doses were evaluated using radioactivity readings from sand, airborne dust, intermediate materials and end products. The results on total effective dose show the need for this type of industry to be carefully controlled, since values near to 1 mSv were obtained.
NASA Astrophysics Data System (ADS)
Luo, Wei; Ma, Peng; Xie, Tengfei; Dai, Jiawei; Pan, Yubai; Kou, Huamin; Li, Jiang
2017-07-01
Cobalt-doped magnesium aluminate spinel (Co:MgAl2O4) is one of the most important saturable absorbers for the passive Q-switching of solid-state lasers operating at eye-safe wavelength of 1.5 μm. In this work, highly transparent Co:MgAl2O4 ceramics were fabricated by vacuum sintering combined with hot isostatic pressing (HIP) post-treatment, using the mixture of the commercial spinel and the lab-made Co:MgAl2O4 powder as the raw materials. The densification mechanism of Co:MgAl2O4 transparent ceramics was discussed. The microstructure and optical properties of the samples were investigated. The ground state absorption cross section (σGSA) was calculated from the fitted curve of the absorption coefficient spectrum. The results show that Co:MgAl2O4 ceramics fabricated by vacuum sintering at 1500 °C for 5 h and then HIP post-treatment at 1650 °C for 3 h perform good transparency, whose in-line transmittance exceeds 80% at 2500 nm. Moreover, the ground state absorption cross section of 0.02 at.% Co:MgAl2O4 ceramics is calculated to be 3.35 × 10-19 cm2 at the wavelength of 1540 nm, which is promising for the application to the passive Q-switching of solid-state laser operating in the near infrared region (NIR).
Concentrations of polychlorinated dibenzo-p-dioxins in processed ball clay from the United States.
Ferrario, Joseph; Byrne, Christian; Schaum, John
2007-04-01
Processed ball clays commonly used by the ceramic art industry in the United States were collected from retail suppliers and analyzed for the presence and concentration of the 2,3,7,8-Cl substituted polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs/PCDFs). The average PCDD toxic equivalent (TEQ) concentrations of these processed ball clays was approximately 800 pg/g (TEQ-WHO) with characteristic congener profiles and isomer distributions similar to patterns of previously analyzed raw and processed ball clays. The PCDF concentrations were below the average limit of detection (LOD) of 0.5 pg/g. Correlation analyses reveal no significant relationship between total organic carbon (TOC) and either individual, homologues, and total tetra-through octa-chlorinated PCDD congeners, or TEQ concentrations of the processed ball clays. The results are consistent with earlier studies on levels of PCDDs in ball clays. Data from earlier studies indicated that dioxins may be released to the environment during the processing of raw clay or the firing process used in commercial ceramic facilities. The presence of dioxin in the clays also raises concerns about potential occupational exposure for individuals involved in the mining/processing of ball clay, ceramics manufacturing and ceramic artwork.
NASA Astrophysics Data System (ADS)
Liu, Hong-pan; Huang, Xiao-feng; Ma, Li-ping; Chen, Dan-li; Shang, Zhi-biao; Jiang, Ming
2017-03-01
CaO-Al2O3-SiO2 (CAS) glass-ceramics were prepared via a melting method using naturally cooled yellow phosphorus furnace slag as the main raw material. The effects of the addition of Fe2O3 on the crystallization behavior and properties of the prepared glass-ceramics were studied by differential thermal analysis, X-ray diffraction, and scanning electron microscopy. The crystallization activation energy was calculated using the modified Johnson-Mehl-Avrami equation. The results show that the intrinsic nucleating agent in the yellow phosphorus furnace slag could effectively promote the crystallization of CAS. The crystallization activation energy first increased and then decreased with increasing amount of added Fe2O3. At 4wt% of added Fe2O3, the crystallization activation energy reached a maximum of 676.374 kJ·mol-1. The type of the main crystalline phase did not change with the amount of added Fe2O3. The primary and secondary crystalline phases were identified as wollastonite (CaSiO3) and hedenbergite (CaFe(Si2O6)), respectively.
NASA Astrophysics Data System (ADS)
Ben M'barek-Jemaï, Moufida; Sdiri, Ali; Ben Salah, Imed; Ben Aissa, Lassaad; Bouaziz, Samir; Duplay, Joelle
2017-05-01
Late Jurassic-Lower Cretaceous clays of the Jebel Ammar study site were used as raw materials for potential applications in ceramic industry. Physico-chemical characterization of the collected samples was performed using atomic absorption spectroscopy, X-ray diffraction, thermogravimetry and dilatometry (Bugot's curve). Geotechnical study was also undertaken by the assessment of plasticity and liquidity limits. It was found that high concentrations of silica, alumina with SiO2/Al2O3 ratio characterized the studied clays; its high amounts of CaO and Fe2O3 in the Late Jurassic clays indicated their calcareous nature. In addition, technological tests indicated moderate to low plasticity values for the Late Jurassic and Lower Cretaceous clays, respectively. Clay fraction (<2 μm) reached 50% of the natural clay in some cases. Mineralogical analysis showed that Jurassic clays were dominated by smectite, illite and kaolinite, as clay mineral species; calcite was the main associated mineral. Lower Cretaceous clays were mainly composed of abundant illite accompanied by well-crystallized smectite and kaolinite. Kaolinite gradually increased upwards, reaching 70% of the total clay fraction (i.e. <2 μm). Quartz, calcite and feldspar were the main non-clay minerals. Based on these analyses, the clays meet technological requirements that would allow their use in the ceramic industry and for the manufacturing of ceramic tiles.
Examining the evolution of an ancient irrigation system: the Middle Gila River Canals
NASA Astrophysics Data System (ADS)
Zhu, Tianduowa; Ertsen, Maurits
2014-05-01
Studying ancient irrigation systems reinforces to understand the co-evolution process between the society and water systems. In the prehistoric Southwest of America, the irrigation has been a crucial feature of human adaptation to the dry environment. The influences of social arrangements on irrigation managements, and implications of the irrigation organization in social developments are main issues that researchers have been exploring for a long time. The analysis of ceramics pattern and distribution has assisted to the reconstruction of prehistoric social networks. The existing study shows that, a few pottery fragments specially produced by the materials of the middle Gila River valley, were found in the Salt River valley; however, very few specialized ceramics of the Salt River valley occurred in the middle Gila River valley. It might indicate that there were trades or exchanges of potteries or raw materials from the middle Gila River valley to the Salt River valley. The most popular hypothesis of trading for the potteries is crop production. Based on this hypothesis, the ceramics trade was highly tied to the irrigation system change. Therefore, examining the changing relationship among the ceramics distribution along the middle Gila River, canals flow capacity, and available streamflows, can provide an insight into the evolutionary path among the social economy, irrigation and water environment. In this study, we reconstruct the flow capacity of canals along the middle Gila River valley. In combination with available streamflow from the middle Gila River, we can simulate how much water could be delivered to the main canals and lateral canals. Based on the variation and chronology of potteries distribution, we may identify that, the drama of the middle Gila River receiving insufficient flows for crop irrigation caused the development of ceramics exchange; or the rising of potteries exchange triggers the decline of irrigation in the study area.
NASA Astrophysics Data System (ADS)
Liou, Y. S.; Yi-Chang, L.
2017-12-01
Numerous stone artifacts, ceramics, bone tools, metal objects, and etc., had been unearthed from the Huagangshan site of Hualien City, eastern Taiwan, during the excavations of 2008-2010 and 2012. Of particular importance is more than ten thousands of potsherds were discovered. A stratigraphic sequence spanning the late Early Neolithic (ca. 5000 BP) through to the prehistoric of Taiwan (300 BP) was excavated. This study focuses on potteries from the Late Neolithic (ca. 3500-2800 BP), owing to some ceramics exhibiting distinct stylistic motifs and morphological attributes were recognized to be not produced locally. Have these wares been brought to the area by exchange trade and/or by immigrants? Or had they been made by local potters through the imitation of exotic styles? It is still unclear and is one of the most important archaeological issues in eastern Taiwan. To clarify this subject, understanding the raw material compositions and sources, manufacturing techniques, and etc. are considered to be the best ways. Thus, 21 potsherds from excavations and 6 river sand samples near the site were studied by petrographic analysis. The results of petrographic study show that temper components in the potsherds are quartz, pyroxene, amphibole, plagioclase, sedimentary rock fragments (sandstone), igneous rock fragments (andesite), and metamorphic rock fragments (metasandstone, slate, schist), and the contents and proportions are different in these samples. Petrography shows that the ceramic have multiple origins. A ternary plot of rock fragments shows three compositional groups. This result discriminates two types of ceramics from the others and confirms those ceramics producing non-locally. However, one type of potsherds have local origins through they were recognized to be exotic ones.
Applications of additive manufacturing in dentistry: A review.
Bhargav, Aishwarya; Sanjairaj, Vijayavenkatraman; Rosa, Vinicius; Feng, Lu Wen; Fuh Yh, Jerry
2017-07-24
Additive manufacturing (AM) or 3D printing has been hailed as the third industrial revolution as it has caused a paradigm shift in the way objects have been manufactured. Conventionally, converting a raw material to a fully finished and assembled, usable product comprises several steps which can be eliminated by using this process as functional products can be created directly from the raw material at a fraction of the time originally consumed. Thus, AM has found applications in several sectors including automotive, aerospace, printed electronics, and healthcare. AM is increasingly being used in the healthcare sector, given its potential to fabricate patient-specific customized implants with required accuracy and precision. Implantable heart valves, rib cages, and bones are some of the examples where AM technologies are used. A vast variety of materials including ceramics, metals, polymers, and composites have been processed to fabricate intricate implants using 3D printing. The applications of AM in dentistry include maxillofacial implants, dentures, and other prosthetic aids. It may also be used in surgical training and planning, as anatomical models can be created at ease using AM. This article gives an overview of the AM process and reviews in detail the applications of 3D printing in dentistry. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Loehman, Ronald E.
Methods for joining ceramics are outlined with attention given to their fundamental properties, and some examples of ceramic bonding in engineering ceramic systems are presented. Ceramic-ceramic bonds using no filler material include diffusion and electric-field bonding and ceramic welding, and bonds with filler materials can be provided by Mo-Mn brazing, microwave joining, and reactive nonmetallic liquid bonding. Ceramic-metal joints can be effected with filler material by means of the same ceramic-ceramic processes and without filler material by means of use of molten glass or diffusion bonding. Key properties of the bonding processes include: bonds with discontinuous material properties, energies that are positive relative to the bulk material, and unique chemical and mechanical properties. The processes and properties are outlined for ceramic-metal joints and for joining silicon nitride, and the factors that control wetting, adhesion, and reaction on the atomic scale are critical for establishing successful joints.
Magnetorheological materials, method for making, and applications thereof
Shen, Rui; Yang, Hong; Shafrir, Shai N.; Miao, Chunlin; Wang, Mimi; Mici, Joni; Lambropoulos, John C.; Jacobs, Stephen D.
2014-08-19
A magnetorheological material comprises a magnetic particle and a ceramic material, wherein the magnetorheological material is in a dried form and further wherein a portion of the ceramic material is in the form of a nanocrystalline coating over the entire exterior surface of the magnetic particle and another portion of the ceramic material is in the form of a free nanocrystal. A magnetorheological material comprises a magnetic particle having a ceramic material coating over an external surface thereof as a result of a coating process, and a free nanocrystal of the ceramic material in the form of a residual by-product of the coating process. A sol-gel process for making a magnetorheological product comprises providing a sol of a desired ceramic coating material; combining a desired quantity of carbonyl iron (CI) particles with the sol to coat the CI particles with the ceramic coating material; creating a resulting quantity of nanocrystalline ceramic material-coated CI particles and a quantity of free nanocrystals of the ceramic material; and, drying the resulting quantity of coated CI particles and free nanocrystals to a moisture content equal to or less than 2 wt %.
Air quality comparison between two European ceramic tile clusters
NASA Astrophysics Data System (ADS)
Minguillón, M. C.; Monfort, E.; Escrig, A.; Celades, I.; Guerra, L.; Busani, G.; Sterni, A.; Querol, X.
2013-08-01
The European ceramic tile industry is mostly concentrated in two clusters, one in Castelló (Spain) and another one in Modena (Italy). Industrial clusters may have problems to accomplish the EU air quality regulations because of the concentration of some specific pollutants and, hence, the feasibility of the industrial clusters can be jeopardised. The present work assesses the air quality in these ceramic clusters in 2008, when the new EU emission regulations where put into force. PM10 samples were collected at two sampling sites in the Modena ceramic cluster and one sampling site in the Castelló ceramic cluster. PM10 annual average concentrations were 12-14 μg m-3 higher in Modena than in Castelló, and were close to or exceeded the European limit. Air quality in Modena was mainly influenced by road traffic and, in a lower degree, the metalmechanical industry, as evidenced by the high concentrations of Mn, Cu, Zn, Sn and Sb registered. The stagnant weather conditions from Modena hindering dispersion of pollutants also contributed to the relatively high pollution levels. In Castelló, the influence of the ceramic industry is evidenced by the high concentrations of Ti, Se, Tl and Pb, whereas this influence is not seen in Modena. The difference in the impact of the ceramic industry on the air quality in the two areas was attributed to: better abatement systems in the spray-drier facilities in Modena, higher coverage of the areas for storage and handling of dusty raw materials in Modena, presence of two open air quarries in the Castelló region, low degree of abatement systems in the ceramic tile kilns in Castelló, and abundance of ceramic frit, glaze and pigment manufacture in Castelló as opposed to scarce manufacture of these products in Modena. The necessity of additional measures to fulfil the EU air quality requirements in the Modena region is evidenced, despite the high degree of environmental measures implemented in the ceramic industry. The Principal Component Analysis (PCA) identified four factors in Modena, attributed to: road traffic + metalmechanical industry, mineral, ceramic, and background; and three factors in Castelló, attributed to: mineral, ceramic (with influence of road traffic) and regional background. The additional measures to improve the air quality should be focused mainly on road traffic in Modena, and on the ceramic industry in Castelló.
Preparation and characterization of highly transparent Nd:YAG/YAG composite ceramics
NASA Astrophysics Data System (ADS)
Ma, Benyuan; Zhang, Wei; Shen, Bizhou; Wang, Yuezhong; Song, Haizhi; Li, Feng; Xie, Xiumin; Zhang, Zhibin; Yang, Yongqiang; Guan, Zhouguo
2018-05-01
Using the co-precipitated Nd:YAG and YAG powders as raw materials, the Nd:YAG/YAG composite ceramics (Ф 50 mm × 5 mm) were prepared by vacuum sintering (1790 °C 50 h), followed by hot isostatic pressing (HIP) post treatment (1700 °C 2 h, 200 MPa Ar atmosphere) and air annealing (1250 °C 100 h). The optical properties of Nd:YAG/YAG samples were improved markedly by HIP post-treatment, mainly due to the elimination of residual pores in the samples. The composite sample showed a perfect bonding interface from Nd:YAG to YAG regions without obvious grain size difference, pores or other defects. This structure should be responsible for the thermal conductivity larger than that of non-composite sample. The composite sample revealed good optical properties with transmittance up to 83.9% at 1064 nm and 80.8% at 400 nm, and a maximum laser output power of 1.38 KW with the slope efficiency of 36.7% was obtained.
Spath, Sebastian; Drescher, Philipp; Seitz, Hermann
2015-01-01
3D printing is a promising method for the fabrication of scaffolds in the field of bone tissue engineering. To date, the mechanical strength of 3D printed ceramic scaffolds is not sufficient for a variety of applications in the reconstructive surgery. Mechanical strength is directly in relation with the porosity of the 3D printed scaffolds. The porosity is directly influenced by particle size and particle-size distribution of the raw material. To investigate this impact, a hydroxyapatite granule blend with a wide particle size distribution was fractioned by sieving. The specific fractions and bimodal mixtures of the sieved granule blend were used to 3D print specimens. It has been shown that an optimized arrangement of fractions with large and small particles can provide 3D printed specimens with good mechanical strength due to a higher packing density. An increase of mechanical strength can possibly expand the application area of 3D printed hydroxyapatite scaffolds. PMID:28793467
Wang, Ai-juan; Yuan, Zhi-long; Zhang, Jiao; Liu, Lin-tao; Li, Jun-ming; Liu, Zheng
2013-12-01
The compressive strength of magnesium potassium phosphate chemically bonded ceramics is important in biomedical field. In this work, the compressive strength of magnesium potassium phosphate chemically bonded ceramics was investigated with different liquid-to-solid and MgO-to-KH2PO4 ratios. X-ray diffractometer was applied to characterize its phase composition. The microstructure was imaged using a scanning electron microscope. The results showed that the compressive strength of the chemically bonded ceramics increased with the decrease of liquid-to-solid ratio due to the change of the packing density and the crystallinity of hydrated product. However, with the increase of MgO-to-KH2PO4 weight ratio, its compressive strength increased firstly and then decreased. The low compressive strength in lower MgO-to-KH2PO4 ratio might be explained by the existence of the weak phase KH2PO4. However, the low value of compressive strength with the higher MgO-to-KH2PO4 ratio might be caused by lack of the joined phase in the hydrated product. Besides, it has been found that the microstructures were different in these two cases by the scanning electron microscope. Colloidal structure appeared for the samples with lower liquid-to-solid and higher MgO-to-KH2PO4 ratios possibly because of the existence of amorphous hydrated products. The optimization of both liquid-to-solid and MgO-to-KH2PO4 ratios was important to improve the compressive strength of magnesium potassium phosphate chemically bonded ceramics. © 2013.
XRD and SEM study of alumina silicate porcelain insulator
NASA Astrophysics Data System (ADS)
Duddi, Dharmender; Singh, G. P.; Kalra, Swati; Shekhawat, M. S.; Tak, S. K.
2018-05-01
Higher strength electrical porcelain is a requirement of industry. This will be achieved by a specific composition of raw materials, which is consisted of clays and feldspars. Water absorption, particle size and insulating properties are of special interest now a day. China clay, Ball clay and Quartz are widely used by ceramic industries in Bikaner district of Rajasthan. Sample for present study were prepared by mixing of above clay, feldspar with MnO2, then shrinkage is observed. Bar shaped samples were prepared and heated up to a temperature of about 1185° C to observe shrinkage. For phase study of XRD and SEM are observed.
Ceramic electrolyte coating and methods
Seabaugh, Matthew M [Columbus, OH; Swartz, Scott L [Columbus, OH; Dawson, William J [Dublin, OH; McCormick, Buddy E [Dublin, OH
2007-08-28
Aqueous coating slurries useful in depositing a dense coating of a ceramic electrolyte material (e.g., yttrium-stabilized zirconia) onto a porous substrate of a ceramic electrode material (e.g., lanthanum strontium manganite or nickel/zirconia) and processes for preparing an aqueous suspension of a ceramic electrolyte material and an aqueous spray coating slurry including a ceramic electrolyte material. The invention also includes processes for depositing an aqueous spray coating slurry including a ceramic electrolyte material onto pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.
Study of Usage Areas of Clay Samples of Asphaltite Quarries in Sirnak, Turkey
NASA Astrophysics Data System (ADS)
Bilgin, Oyku
2017-12-01
The asphaltite of Sirnak, Turkey are in the form of 12 veins and their total reserves are anticipated to be approximately 200 million tons in a field of 25.000 hectares. The asphaltites at the Sirnak region are in the form of fault and crack fillings and take place together with clay minerals at their side rock. The main raw materials used in the production of cement are limestone, clay and marn known as sedimentary rocks. Limestone for CaO and clay minerals for SiO2, Al2O3, and Fe2O3, which are the main compounds of clinker production, are the main raw materials. Other materials containing these four oxides like marn are also used as cement raw material. Conformity levels of the raw materials to be used in cement production vary according to their chemical compounds. The rocks to be used as clay mineral are evaluated by taking the rate of silicate and alumina into consideration. The soils suitable for brick-tile productions are named as sandy clay. Their difference from the ceramic clays is that they are richer in terms of iron, silica and carbonate. These soils are also known under the names such as clay, arid, alluvium, silt, loam and argil. Inside these soils, minerals such as quartz, montmorillonite, kaolinite, calcite, limonite, hidromika, sericite, illite, and chlorite are available. Some parts of the soils consist of clays in amorphous structure. Limestone parts, gypsums, organic substances and bulky rock residuals spoil the quality. The soils suitable for brick production may not be suitable for tile production. In this case, their sandy soils should be mixed up with the clays with fine granule structure which is high in plasticity. During asphaltite mining in Sirnak region, clays forming side rock are gathered at dump sites. In this study; SQX analyses of the clay samples taken from Avgamasya, Seridahli and Segürük asphaltite veins run in Sirnak region are carried out and their usage areas are searched.
Real-time on-line ultrasonic monitoring for bubbles in ceramic 'slip' in pottery pipelines.
Yim, Geun Tae; Leighton, Timothy G
2010-01-01
When casting ceramic items in potteries, liquid 'slip' is passed from a settling tank, through overhead pipelines, before being pumped manually into the moulds. It is not uncommon for bubbles to be introduced into the slip as it passes through the complex piping network, and indeed the presence of bubbles is a major source of financial loss to the ceramics industry worldwide. This is because the bubbles almost always remain undetected until after the ceramic items have been fired in a kiln, during which process bubbles expand and create unwanted holes in the pottery. Since there it is usually an interval of several hours between the injection of the slip into the moulds, and the inspection of the items after firing, such bubble generation goes undetected on the production line during the manufacture of hundreds or even thousands of ceramic units. Not only does this mean hours of wasted staff time, power consumption and production line time: the raw material which makes up these faulty items cannot even be recycled, as fired ceramic cannot be converted back into slip. Currently, the state-of-the-art method for detecting bubbles in the opaque ceramic slip is slow and invasive, can only be used off-line, and requires expertise which is rarely available. This paper describes the invention, engineering and in-factory testing across Europe of an ultrasonic system for real-time monitoring for the presence of bubbles in casting slip. It interprets changes in the scattering statistics accompanying the presence of the bubbles, the latter being detected through perturbations in the received signal when a narrow-band ultrasonic probing wave is transmitted through the slip. The device can be bolted onto the outside of the pipeline, or used in-line. It is automated, and requires no special expertise. The acoustic problems which had to be solved were severe, and included making the system capable of monitoring the slip regardless of the material of pipe (plastic, steel, etc.) and nature of the slip (which can be very variable). It must also be capable of detecting bubbles amongst the myriad solid particles and other species present in the flowing slip. The completed prototype was tested around several factories in Europe, and proved not only to be more versatile, but also more sensitive, than the state-of-the-art method.
Comparative characterization of a novel cad-cam polymer-infiltrated-ceramic-network
Pascual, Agustín; Camps, Isabel; Grau-Benitez, María
2015-01-01
Background The field of dental ceramics for CAD-CAM is enriched with a new innovative material composition having a porous three-dimensional structure of feldspathic ceramic infiltrated with acrylic resins.The aim of this study is to determine the mechanical properties of Polymer-Infiltrated-Ceramic-Network (PICN) and compare its performance with other ceramics and a nano-ceramic resin available for CAD-CAM systems. Material and Methods In this study a total of five different materials for CAD-CAM were investigated. A polymer-infiltrated ceramic (Vita Enamic), a nano-ceramic resin (Lava Ultimate), a feldspathic ceramic (Mark II), a lithium disilicate ceramic (IPS-e max CAD) and finally a Leucite based ceramic (Empress - CAD). From CAD-CAM blocks, 120 bars (30 for each material cited above) were cut to measure the flexural strength with a three-point-bending test. Strain at failure, fracture stress and Weibull modulus was calculated. Vickers hardness of each material was also measured. Results IPS-EMAX presents mechanical properties significantly better from the other materials studied. Its strain at failure, flexural strength and hardness exhibited significantly higher values in comparison with the others. VITA ENAMIC and LAVA ULTIMATE stand out as the next most resistant materials. Conclusions The flexural strength, elastic modulus similar to a tooth as well as having less hardness than ceramics make PICN materials an option to consider as a restorative material. Key words:Ceramic infiltrated with resin, CAD-CAM, Weibull modulus, flexural strength, micro hardness. PMID:26535096
Testing of felt-ceramic materials for combustor applications
NASA Technical Reports Server (NTRS)
Venkat, R. S.; Roffe, G.
1983-01-01
The feasibility of using composite felt ceramic materials as combustor liners was experimentally studied. The material consists of a porous felt pad sandwiched between a layer of ceramic and one of solid metal. Flat, rectangular test panels, which encompassed several design variations of the basic composite material, were tested, two at a time, in a premixed gas turbine combustor as sections of the combustor wall. Tests were conducted at combustor inlet conditions of 0.5 MPa and 533 K with a reference velocity of 25 m/s. The panels were subjected to a hot gas temperature of 2170 K with 1% of the total airflow used to film cool the ceramic surface of the test panel. In general, thin ceramic layers yield low ceramic stress levels with high felt ceramic interface temperatures. On the other hand, thick ceramic layers result in low felt ceramic interface temperatures but high ceramic stress levels. Extensive thermal cycling appears to cause material degradation, but for a limited number of cycles, the survivability of felt ceramic materials, even under extremely severe combustor operating conditions, was conclusively demonstrated.
Acid emissions monitoring needs in ceramic tile industry: challenges derived from new policy trends
NASA Astrophysics Data System (ADS)
Celades, Irina; Gomar, Salvador; Romero, Fernando; Chauhan, Amisha; Delpech, Bertrand; Jouhara, Hussam
2017-11-01
The emission of acid compounds during the manufacture of ceramic tiles is strongly related to the presence of precursors in the raw materials and/or fuels used, with some exceptions such as the production of thermal NOX. The stages with the potential to produce significant emissions of these compounds have been identified as the suspension spray drying and tile firing stages. The monitoring of emission levels of acid pollutants in these stages has turned in a great importance issue from a regulatory and industrial aspect. The DREAM project (https://www.spire2030.eu/dream) will tackle the regulation of acidic emissions focusing in the firing stage. The initial stages of the project have made it possible to identify the design requirements for the monitoring system. This will allow the control of acid pollutants emissions and other key parameters such as pressure, flow, temperature and humidity. One of the tasks developed has been the review and compilation of current emissions monitoring systems detailing technical specifications such as: position (in situ or extractive), measurement principle and frequency. The future policy trends in air pollution are encouraging the continuous monitoring across the European industry. The present document assesses the advantages regarding environmental impact control, highlighting the main challenges for the ceramic tile industry.
Holcomb, Matthew J.
1999-01-01
A composite superconducting material made of coated particles of ceramic superconducting material and a metal matrix material. The metal matrix material fills the regions between the coated particles. The coating material is a material that is chemically nonreactive with the ceramic. Preferably, it is silver. The coating serves to chemically insulate the ceramic from the metal matrix material. The metal matrix material is a metal that is susceptible to the superconducting proximity effect. Preferably, it is a NbTi alloy. The metal matrix material is induced to become superconducting by the superconducting proximity effect when the temperature of the material goes below the critical temperature of the ceramic. The material has the improved mechanical properties of the metal matrix material. Preferably, the material consists of approximately 10% NbTi, 90% coated ceramic particles (by volume). Certain aspects of the material and method will depend upon the particular ceramic superconductor employed. An alternative embodiment of the invention utilizes A15 compound superconducting particles in a metal matrix material which is preferably a NbTi alloy.
NASA Technical Reports Server (NTRS)
Zhu, Dongming
2018-01-01
Ceramic materials play increasingly important roles in aerospace applications because ceramics have unique properties, including high temperature capability, high stiffness and strengths, excellent oxidation and corrosion resistance. Ceramic materials also generally have lower densities as compared to metallic materials, making them excellent candidates for light-weight hot-section components of aircraft turbine engines, rocket exhaust nozzles, and thermal protection systems for space vehicles when they are being used for high-temperature and ultra-high temperature ceramics applications. Ceramic matrix composites (CMCs), including non-oxide and oxide CMCs, are also recently being incorporated in gas turbine engines for high pressure and high temperature section components and exhaust nozzles. However, the complexity and variability of aerospace ceramic processing methods, compositions and microstructures, the relatively low fracture toughness of the ceramic materials, still remain the challenging factors for ceramic component design, validation, life prediction, and thus broader applications. This ceramic material section paper presents an overview of aerospace ceramic materials and their characteristics. A particular emphasis has been placed on high technology level (TRL) enabling ceramic systems, that is, turbine engine thermal and environmental barrier coating systems and non-oxide type SiC/SiC CMCs. The current status and future trend of thermal and environmental barrier coatings and SiC/SiC CMC development and applications are described.
Advanced Ceramic Armor Materials
1990-05-11
materials, toughened alumina, fiber -reinforced glass matrix composites, and multilayer-gradient materials for ballistic testing. Fabrication and...material systems: Multilayer advanced armor materials consisting of a hard ceramic faceplate bonded to a graphite fiber -reinforced glass matrix...toughened alumina, and fiber - applied studies of advanced reinforced ceramic matrix glass and glass -ceramic composites for ballistic testing. technologies
Studies on crosslinked hydroxyapatite-polyethylene composite as a bone-analogue material
NASA Astrophysics Data System (ADS)
Smolko, E.; Romero, G.
2007-08-01
The paper examines the use of different types of polymeric matrix composites in hard-tissue replacement applications. The composite samples were prepared with hydroxyapatite (HA) powder and polyethylenes of different densities. The raw material was first compounded in the extruder and the resulting composite pre-forms were compression molded into desired plates and irradiated with different doses. Modulus of elasticity in tension, tensile strength, tensile fracture strain, elongation at break and gel content were obtained for all composites. Ceramic filler distribution was investigated under scanning electron microscopy (SEM). With HA incorporated in the samples an increase in the values of Young's Modulus, (stiffness) was observed, while elongation at break decreased with the amount of filler, showing increase of brittleness. Tensile strengths at yield and at break decreased with the filler content for LD and MDPE and stayed constant for HDPE.
MacLennan, Donald A.; Turner, Brian P.; Gitsevich, Aleksandr; Bass, Gary K.; Dolan, James T.; Kipling, Kent; Kirkpatrick, Douglas A.; Leng, Yongzhang; Levin, Izrail; Roy, Robert J.; Shanks, Bruce; Smith, Malcolm; Trimble, William C.; Tsai, Peter
2001-01-01
A jacketed lamp bulb envelope includes a ceramic cup having an open end and a partially closed end, the partially closed end defining an aperture, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material at least partially covering a portion of the bulb not abutting the aperture. The reflective ceramic material may substantially fill an interior volume of the ceramic cup not occupied by the bulb. The ceramic cup may include a structural feature for aiding in alignment of the jacketed lamp bulb envelope in a lamp. The ceramic cup may include an external flange about a periphery thereof. One example of a jacketed lamp bulb envelope includes a ceramic cup having an open end and a closed end, a ceramic washer covering the open end of the ceramic cup, the washer defining an aperture therethrough, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material filling an interior volume of the ceramic cup not occupied by the bulb. A method of packing a jacketed lamp bulb envelope of the type comprising a ceramic cup with a lamp bulb disposed therein includes the steps of filling the ceramic cup with a flowable slurry of reflective material, and applying centrifugal force to the cup to pack the reflective material therein.
Glass ceramic obtained by tailings and tin mine waste reprocessing from Llallagua, Bolivia
NASA Astrophysics Data System (ADS)
Arancibia, Jony Roger Hans; Villarino, Cecilia; Alfonso, Pura; Garcia-Valles, Maite; Martinez, Salvador; Parcerisa, David
2014-05-01
In Bolivia Sn mining activity produces large tailings of SiO2-rich residues. These tailings contain potentially toxic elements that can be removed into the surface water and produce a high environmental pollution. This study determines the thermal behaviour and the viability of the manufacture of glass-ceramics from glass. The glass has been obtained from raw materials representative of the Sn mining activities from Llallagua (Bolivia). Temperatures of maximum nucleation rate (Tn) and crystallization (Tcr) were calculated from the differential thermal analyses. The final mineral phases were determined by X-ray diffraction and textures were observed by scanning electron microscopy. Crystalline phases are nefeline occurring with wollastonite or plagioclase. Tn for nepheline is between 680 ºC and 700 ºC, for wollastonite, 730 ºC and for plagioclase, 740 ºC. Tcr for nefeline is between 837 and 965 ºC; for wollastonite, 807 ºC and for plagioclase, 977 ºC. In order to establish the mechanical characteristics and efficiency of the vitrification process in the fixation of potentially toxic elements the resistance to leaching and micro-hardness were determined. The obtained contents of the elements leached from the glass ceramic are well below the limits established by the European legislation. So, these analyses confirm that potentially toxic elements remain fixed in the structure of mineral phases formed in the glass-ceramic process. Regarding the values of micro-hardness results show that they are above those of a commercial glass. The manufacture of glass-ceramics from mining waste reduces the volume of tailings produced for the mining industry and, in turn enhances the waste, transforming it into a product with industrial application. Acknowledgements: This work was partly financed by the project AECID: A3/042750/11, and the SGR 2009SGR-00444.
NASA Technical Reports Server (NTRS)
Hoyer, Jesse L.
1993-01-01
Turbomilling, an innovative grinding technology developed by the U.S. Bureau of Mines in the early 1960's for delaminating filler-grade kaolinitic clays, has been expanded into the areas of particle size reduction, material mixing, and process reaction kinetics. The turbomill, originally called an attrition grinder, has been used for particle size reduction of many minerals, including natural and synthetic mica, pyrophyllite, talc, and marble. In recent years, an all-polymer version of the turbomill has been used to produce ultrafine, high-purity, advanced ceramic powders such as SiC, Si3N4, TiB2, and ZrO2. In addition to particle size reduction, the turbomill has been used to produce intimate mixtures of high surface area powders and whiskers. Raw materials, TiN, AlN, and Al2O3, used to produce a titanium nitride/aluminum oxynitride (TiN/AlON) composite, were mixed in the turbomill, resulting in strength increases over samples prepared by dry ball milling. Using the turbomill as a leach vessel, it was found that 90.4 pct of the copper was extracted from the chalcopyrite during a 4-hour leach test in ferric sulfate versus conventional processing which involves either roasting of the ore for Cu recovery or leaching of the ore for several days.
Evaluation of surface roughness and polishing techniques for new ceramic materials.
Campbell, S D
1989-05-01
The surface roughness of crown and bridge materials should be minimized to obtain optimal biocompatability. This study used scanning electron microscopy to evaluate the effect of polishing procedures on two all-ceramic crown materials (Dicor and Cerestore). The "as formed," unpolished specimens of both Dicor and Cerestore materials presented a rough surface. It was found that any attempt to polish the Cerestore coping material resulted in an extremely rough surface. Finishing of the Dicor ceramic resulted in a smoother but pitted surface. Polishing of both ceramic materials resulted in a surface that was rougher than the glazed metal ceramic controls. The smoothest finish was obtained when the glazed veneer (Cerestore) and shading porcelain (Dicor) were applied to the all-ceramic materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niihara, Koichi; Ishizaki, Kozo; Isotani, Mitsuo
This volume contains selected papers presented at a workshop by the Japan Fine Ceramics Center, `Materials Processing and Design Through Better Control of Grain Boundaries: Emphasizing Fine Ceramics II,` which was held March 17-19, 1994, in Koda-cho, Aichi, Japan. The focus of the workshop was the application of grain boundary phenomena to materials processing and design. The topics covered included electronic materials, evaluation methods, structural materials, and interfaces. Also included is an illuminating overview of the current status of work on grain boundary assisted materials processing and design, particularly for fine ceramics. The volume`s chapter titles are: Electron Microscopy, Evaluation,more » Grain Boundary Control and Design, Functional Ceramics, Composite Materials, Synthesis and Sintering, and Mechanical Properties.« less
Ceramic electrolyte coating methods
Seabaugh, Matthew M.; Swartz, Scott L.; Dawson, William J.; McCormick, Buddy E.
2004-10-12
Processes for preparing aqueous suspensions of a nanoscale ceramic electrolyte material such as yttrium-stabilized zirconia. The invention also includes a process for preparing an aqueous coating slurry of a nanoscale ceramic electrolyte material. The invention further includes a process for depositing an aqueous spray coating slurry including a ceramic electrolyte material on pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.
Clinical application of bio ceramics
NASA Astrophysics Data System (ADS)
Anu, Sharma; Gayatri, Sharma
2016-05-01
Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.
Clinical application of bio ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anu, Sharma, E-mail: issaranu@gmail.com; Gayatri, Sharma, E-mail: sharmagayatri@gmail.com
Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.
[Research on the aging of all-ceramics restoration materials].
Zhang, Dongjiao; Chen, Xinmin
2011-10-01
All-ceramic crowns and bridges have been widely used for dental restorations owing to their excellent functionality, aesthetics and biocompatibility. However, the premature clinical failure of all-ceramic crowns and bridges may easily occur when they are subjected to the complex environment of oral cavity. In the oral environment, all-ceramic materials are prone to aging. Aging can lead all-ceramic materials to change color, to lower bending strength, and to reduce anti-fracture toughness. There are many factors affecting the aging of the all-ceramic materials, for example, the grain size, the type of stabilizer, the residual stress and the water environment. In order to analyze the aging behavior, to optimize the design of all-ceramic crowns and bridges, and to evaluate the reliability and durability, we review in this paper recent research progress of aging behavior for all-ceramics restoration materials.
Hunt, T.K.; Novak, R.F.
1991-05-07
An improved active metal braze filler material is provided in which the coefficient of thermal expansion of the braze filler is more closely matched with that of the ceramic and metal, or two ceramics, to provide ceramic to metal, or ceramic to ceramic, sealed joints and articles which can withstand both high temperatures and repeated thermal cycling without failing. The braze filler material comprises a mixture of a material, preferably in the form of a powder, selected from the group consisting of molybdenum, tungsten, silicon carbide and mixtures thereof, and an active metal filler material selected from the group consisting of alloys or mixtures of nickel and titanium, alloys or mixtures of nickel and zirconium, alloys or mixtures of nickel, titanium, and copper, alloys or mixtures of nickel, titanium, and zirconium, alloys or mixtures of niobium and nickel, alloys or mixtures of niobium and zirconium, alloys or mixtures of niobium and titanium, alloys or mixtures of niobium, titanium, and nickel, alloys or mixtures of niobium, zirconium, and nickel, and alloys or mixtures of niobium, titanium, zirconium, and nickel. The powder component is selected such that its coefficient of thermal expansion will effect the overall coefficient of thermal expansion of the braze material so that it more closely matches the coefficients of thermal expansion of the ceramic and metal parts to be joined. 3 figures.
Hunt, Thomas K.; Novak, Robert F.
1991-01-01
An improved active metal braze filler material is provided in which the coefficient of thermal expansion of the braze filler is more closely matched with that of the ceramic and metal, or two ceramics, to provide ceramic to metal, or ceramic to ceramic, sealed joints and articles which can withstand both high temperatures and repeated thermal cycling without failing. The braze filler material comprises a mixture of a material, preferably in the form of a powder, selected from the group consisting of molybdenum, tungsten, silicon carbide and mixtures thereof, and an active metal filler material selected from the group consisting of alloys or mixtures of nickel and titanium, alloys or mixtures of nickel and zirconium, alloys or mixtures of nickel, titanium, and copper, alloys or mixtures of nickel, titanium, and zirconium, alloys or mixtures of niobium and nickel, alloys or mixtures of niobium and zirconium, alloys or mixtures of niobium and titanium, alloys or mixtures of niobium, titanium, and nickel, alloys or mixtures of niobium, zirconium, and nickel, and alloys or mixtures of niobium, titanium, zirconium, and nickel. The powder component is selected such that its coefficient of thermal expansion will effect the overall coefficient of thermal expansion of the braze material so that it more closely matches the coefficients of thermal expansion of the ceramic and metal parts to be joined.
Structure and bioactivity studies of new polysiloxane-derived materials for orthopedic applications
NASA Astrophysics Data System (ADS)
Paluszkiewicz, Czesława; Gumuła, Teresa; Podporska, Joanna; Błażewicz, Marta
2006-07-01
The aim of this work was to examine the structure of new calcium silicate bioactive ceramic implant material for bone surgery applications. The bioceramic material was obtained by thermal treatment of active fillers-containing organosilicon polymer precursor. Different ceramic active fillers, namely Ca(OH) 2, CaCO 3, Na 2HPO 4 and SiO 2 powders were used. The phase composition of ceramic samples obtained by thermal transformation of active fillers containing polysiloxane was investigated. Morphology and structure of ceramic phases were characterized by means of scanning electron microscopy (SEM) with EDS point analysis, FTIR spectroscopy and XRD analysis. It was found that thermal treatment of active fillers-containing organosilicon precursor lead to the formation of wollastonite-containing ceramic material. This ceramic material showed bioactivity in 'in vitro' conditions studied by immersing the samples in simulated body fluid (SBF). The surface of wollastonite-containing ceramic before and after immersion in SBF was analysed. It can be concluded that this kind of ceramic material may be useful as bone substitute. FTIR spectroscopy is an adequate device for the determination of such derived materials structure.
Updating Classifications of Ceramic Dental Materials: A Guide to Material Selection.
McLaren, Edward A; Figueira, Johan
2015-06-01
The indications for and composition of today's dental ceramic materials serve as the basis for determining the appropriate class of ceramics to use for a given case. By understanding the classifications, composition, and characteristics of the latest all-ceramic materials, which are presented in this article in order of most to least conservative, dentists and laboratory technicians can best determine the ideal material for a particular treatment.
Hydridosiloxanes as precursors to ceramic products
Blum, Yigal D.; Johnson, Sylvia M.; Gusman, Michael I.
1997-01-01
A method is provided for preparing ceramic precursors from hydridosiloxane starting materials and then pyrolyzing these precursors to give rise to silicious ceramic materials. Si--H bonds present in the hydridosiloxane starting materials are catalytically activated, and the activated hydrogen atoms may then be replaced with nonhydrogen substituents. These preceramic materials are pyrolyzed in a selected atmosphere to give the desired ceramic product. Ceramic products which may be prepared by this technique include silica, silicon oxynitride, silicon carbide, metal silicates, and mullite.
Hydridosiloxanes as precursors to ceramic products
Blum, Y.D.; Johnson, S.M.; Gusman, M.I.
1997-06-03
A method is provided for preparing ceramic precursors from hydridosiloxane starting materials and then pyrolyzing these precursors to give rise to silicious ceramic materials. Si-H bonds present in the hydridosiloxane starting materials are catalytically activated, and the activated hydrogen atoms may then be replaced with nonhydrogen substituents. These preceramic materials are pyrolyzed in a selected atmosphere to give the desired ceramic product. Ceramic products which may be prepared by this technique include silica, silicon oxynitride, silicon carbide, metal silicates, and mullite.
Environment Conscious Ceramics (Ecoceramics): An Eco-Friendly Route to Advanced Ceramic Materials
NASA Technical Reports Server (NTRS)
Singh, M.
2001-01-01
Environment conscious ceramics (Ecoceramics) are a new class of materials, which can be produced with renewable natural resources (wood) or wood wastes (wood sawdust). This technology provides an eco-friendly route to advanced ceramic materials. Ecoceramics have tailorable properties and behave like ceramic materials manufactured by conventional approaches. Silicon carbide-based ecoceramics have been fabricated by reactive infiltration of carbonaceous preforms by molten silicon or silicon-refractory metal alloys. The fabrication approach, microstructure, and mechanical properties of SiC-based ecoceramics are presented.
Bakeman, E M; Rego, N; Chaiyabutr, Y; Kois, J C
2015-01-01
This study evaluated the influence of ceramic thickness and ceramic materials on fracture resistance of posterior partial coverage ceramic restorations. Forty extracted molars were allocated into four groups (n=10) to test for two variables: 1) the thickness of ceramic (1 mm or 2 mm) and 2) the ceramic materials (a lithium disilicate glass-ceramic [IPS e.max] or leucite-reinforced glass ceramic [IPS Empress]). All ceramic restorations were luted with resin cement (Variolink II) on the prepared teeth. These luted specimens were loaded to failure in a universal testing machine, in the compression mode, with a crosshead speed of 1.0 mm/min. The data were analyzed using two-way analysis of variance and the Tukey Honestly Significantly Different multiple comparison test (α =0.05). The fracture resistance revealed a significant effect for materials (p<0.001); however, the thickness of ceramic was not significant (p=0.074), and the interaction between the thickness of ceramic and the materials was not significant (p=0.406). Mean (standard deviation) fracture resistance values were as follows: a 2-mm thickness of a lithium disilicate bonded to tooth structure (2505 [401] N) revealed a significantly higher fracture resistance than did a 1-mm thickness of leucite-reinforced (1569 [452] N) and a 2-mm thickness of leucite-reinforced ceramic bonded to tooth structure (1716 [436] N) (p<0.05). There was no significant difference in fracture resistance values between a lithium disilicate ceramic at 1-mm thickness (2105 [567] N) and at 2-mm thickness. Using a lithium disilicate glass ceramic for partial coverage restoration significantly improved fracture resistance compared to using a leucite-reinforced glass ceramic. The thickness of ceramic had no significant effect on fracture resistance when the ceramics were bonded to the underlying tooth structure.
Free-standing oxide superconducting articles
Wu, X.D.; Muenchausen, R.E.
1993-12-14
A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template layer.
NASA Astrophysics Data System (ADS)
Gou, Junfeng; Zhang, Jian; Zhang, Qiwen; Wang, You; Wang, Chaohui
2017-04-01
In this paper, the effect of nano-Si3N4 additives and plasma treatment on the wear behavior of Al2O3-8YSZ ceramic coatings was studied. Nano-Al2O3, nano-8YSZ (8 wt.% Y2O3-stabilized ZrO2) and nano-Si3N4 powders were used as raw materials to fabricate four types of sprayable feedstocks. Plasma treatment was used to improve the properties of the feedstocks. The surface morphologies of the ceramic coatings were observed. The mechanical properties of the ceramic coatings were measured. The dry sliding wear behavior of the Al2O3-8YSZ coatings with and without Si3N4 additives was studied. Nano-Si3N4 additives and plasma treatment can improve the morphologies of the coatings by prohibiting the initiation of micro-cracks and reducing the unmelted particles. The hardness and bonding strength of AZSP (Al2O3-18 wt.% 8YSZ-10 wt.% Si3N4-plasma treatment) coating increased by 79.2 and 44% compared to those of AZ (Al2O3-20 wt.% 8YSZ) coating. The porosity of AZSP coating decreased by 85.4% compared to that of AZ coating. The wear test results showed that the addition of nano-Si3N4 and plasma treatment could improve the wear resistance of Al2O3-8YSZ coatings.
Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar
2012-01-01
Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044
Evaluation of olivine refractories for TES
NASA Astrophysics Data System (ADS)
Gay, B. M.; Cochrane, R. L.; Palmour, H., III; Paisley, M. J.
1982-02-01
The principal objectives of this program are to (1) experimentally determine the degree of improvement in thermal and mechanical performance that can be obtained with an olivine thermal storage brick made of domestic materials using advanced processing techniques compared with state-of-the-art as represented by commercial European bricks, (2) conduct an assessment of existing German ceramic process technology and determine its adaptability to domestic raw materials and manufacturing practices, and (3) investigate, on a limited basis, method for further improvement of domestic-olivine brick. To date, accomplishments include (1) installation of improved, computer-based instrumentation, (2) the use of this system to determine performance characteristics of a set of heat storage refractories under cyclic use conditions, (3) acquisition of the services of a knowledgeable European consultant, (4) continued lab-scale process/property optimization studies, and (5) comparative testing of olivine-based and magnesite-based heat storage refractories in the calorimetric test facility at Purdue University.
Asai, Tetsuya; Kazama, Ryunosuke; Fukushima, Masayoshi; Okiji, Takashi
2010-11-01
Controversy prevails over the effect of overglazing on the fracture strength of ceramic materials. Therefore, the effects of different surface finishes on the compressive fracture strength of machinable ceramic materials were investigated in this study. Plates prepared from four commercial brands of ceramic materials were either surface-polished or overglazed (n=10 per ceramic material for each surface finish), and bonded to flat surfaces of human dentin using a resin cement. Loads at failure were determined and statistically analyzed using two-way ANOVA and Bonferroni test. Although no statistical differences in load value were detected between polished and overglazed groups (p>0.05), the fracture load of Vita Mark II was significantly lower than those of ProCAD and IPS Empress CAD, whereas that of IPS e.max CAD was significantly higher than the latter two ceramic materials (p<0.05). It was concluded that overglazed and polished surfaces produced similar compressive fracture strengths irrespective of the machinable ceramic material tested, and that fracture strength was material-dependent.
Stephens, Jr., John J.; Hosking, F. Michael; Yost, Frederick G.
2003-12-16
A binary allow braze composition has been prepared and used in a bonded article of ceramic-ceramic and ceramic-metal materials. The braze composition comprises greater than approximately 95 wt % silver, greater than approximately 2 wt % hafnium and less than approximately 4.1 wt % hafnium, and less than approximately 0.2 wt % trace elements. The binary braze alloy is used to join a ceramic material to another ceramic material or a ceramic material, such as alumina, quartz, aluminum nitride, silicon nitride, silicon carbide, and mullite, to a metal material, such as iron-based metals, cobalt-based metals, nickel-based metals, molybdenum-based metals, tungsten-based metals, niobium-based metals, and tantalum-based metals. A hermetic bonded article is obtained with a strength greater than 10,000 psi.
NASA Technical Reports Server (NTRS)
Levine, Stanley R. (Editor)
1992-01-01
The present volume discusses ceramics and ceramic-matrix composites in prospective aerospace systems, monolithic ceramics, transformation-toughened and whisker-reinforced ceramic composites, glass-ceramic matrix composites, reaction-bonded Si3N4 and SiC composites, and chemical vapor-infiltrated composites. Also discussed are the sol-gel-processing of ceramic composites, the fabrication and properties of fiber-reinforced ceramic composites with directed metal oxidation, the fracture behavior of ceramic-matrix composites (CMCs), the fatigue of fiber-reinforced CMCs, creep and rupture of CMCs, structural design methodologies for ceramic-based materials systems, the joining of ceramics and CMCs, and carbon-carbon composites.
Heintze, S D; Zellweger, G; Cavalleri, A; Ferracane, J
2006-02-01
The aim of the study was to evaluate two ceramic materials as possible substitutes for enamel using two wear simulation methods, and to compare both methods with regard to the wear results for different materials. Flat specimens (OHSU n=6, Ivoclar n=8) of one compomer and three composite materials (Dyract AP, Tetric Ceram, Z250, experimental composite) were fabricated and subjected to wear using two different wear testing methods and two pressable ceramic materials as stylus (Empress, experimental ceramic). For the OHSU method, enamel styli of the same dimensions as the ceramic stylus were fabricated additionally. Both wear testing methods differ with regard to loading force, lateral movement of stylus, stylus dimension, number of cycles, thermocycling and abrasive medium. In the OHSU method, the wear facets (mean vertical loss) were measured using a contact profilometer, while in the Ivoclar method (maximal vertical loss) a laser scanner was used for this purpose. Additionally, the vertical loss of the ceramic stylus was quantified for the Ivoclar method. The results obtained from each method were compared by ANOVA and Tukey's test (p<0.05). To compare both wear methods, the log-transformed data were used to establish relative ranks between material/stylus combinations and assessed by applying the Pearson correlation coefficient. The experimental ceramic material generated significantly less wear in Tetric Ceram and Z250 specimens compared to the Empress stylus in the Ivoclar method, whereas with the OHSU method, no difference between the two ceramic antagonists was found with regard to abrasion or attrition. The wear generated by the enamel stylus was not statistically different from that generated by the other two ceramic materials in the OHSU method. With the Ivoclar method, wear of the ceramic stylus was only statistically different when in contact with Tetric Ceram. There was a close correlation between the attrition wear of the OHSU and the wear of the Ivoclar method (Pearson coefficient 0.83, p=0.01). Pressable ceramic materials can be used as a substitute for enamel in wear testing machines. However, material ranking may be affected by the type of ceramic material chosen. The attrition wear of the OHSU method was comparable with the wear generated with the Ivoclar method.
Ceramic matrix composite article and process of fabricating a ceramic matrix composite article
Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert
2016-01-12
A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.
Noda, Yukari; Nakajima, Masatoshi; Takahashi, Masahiro; Mamanee, Teerapong; Hosaka, Keiichi; Takagaki, Tomohiro; Ikeda, Masaomi; Foxton, Richard M; Tagami, Junji
2017-11-29
This study evaluated the effects of ceramic surface treatment agents on shear bond strengths to ceramic materials with and without thermocycling. Ceramic plates were prepared from feldspathic ceramic; AAA, lithium disilicate ceramic material; IPS e.max Press, zirconia ceramic; Lava. Ceramic surfaces were pretreated with one of five surface treatment agents (Clearfil PhotoBond mixed with Porcelainbond activator (PB), Clearfil SE One mixed with Porcelainbond activator (SO), Ceramic Primer (CP), Universal Primer (UP), Scotchbond Universal (SU)), and then a resin cement (Clapearl DC) was filled. After 0, 5,000, and 10,000 thermocycles, micro-shear bond strengths between ceramic-cement interfaces were determined. SU exhibited significantly lower initial bond strength to AAA and e.max than PB, SO, CP, and UP. For Lava, PB, SO, CP and SU exhibited higher initial bond strengths than UP. Thermocycles reduced bond strengths to all the ceramic materials with any surface treatment.
Method for adhesion of metal films to ceramics
Lowndes, Douglas H.; Pedraza, Anthony J.; DeSilva, Melvin J.; Kumar, Rajagopalan A.
1997-01-01
Methods for making strongly bonded metal-ceramic materials. The methods include irradiating a portion of the surface of the ceramic material with a pulsed ultraviolet laser having an energy density sufficient to effect activation of the irradiated surface of the ceramic material so that adhesion of metals subsequently deposited onto the irradiated surface is substantially increased. Advantages of the invention include (i) the need for only a small number of laser pulses at relatively low focused energy density, (ii) a smoother substrate surface, (iii) activation of the laser-treated surface which provides a chemical bond between the surface and a metal deposited thereon, (iv) only low temperature annealing is required to produce the strong metal-ceramic bond; (v) the ability to obtain strong adhesion between ceramic materials and oxidation resistant metals; (vi) ability to store the laser treated ceramic materials for later deposition of metals thereon.
Method for adhesion of metal films to ceramics
Lowndes, D.H.; Pedraza, A.J.; DeSilva, M.J.; Kumar, R.A.
1997-12-30
Methods for making strongly bonded metal-ceramic materials are disclosed. The methods include irradiating a portion of the surface of the ceramic material with a pulsed ultraviolet laser having an energy density sufficient to effect activation of the irradiated surface of the ceramic material so that adhesion of metals subsequently deposited onto the irradiated surface is substantially increased. Advantages of the invention include (i) the need for only a small number of laser pulses at relatively low focused energy density, (ii) a smoother substrate surface, (iii) activation of the laser-treated surface which provides a chemical bond between the surface and a metal deposited thereon, (iv) only low temperature annealing is required to produce the strong metal-ceramic bond; (v) the ability to obtain strong adhesion between ceramic materials and oxidation resistant metals; (vi) ability to store the laser treated ceramic materials for later deposition of metals thereon. 7 figs.
NASA Technical Reports Server (NTRS)
Singh, M.; Levine, S. R. (Technical Monitor)
2001-01-01
Ceramic joining has been recognized as an enabling technology for successful utilization of advanced ceramics and composite materials. A number of joint design and testing issues have been discussed for ceramic joints in silicon carbide-based ceramics and fiber-reinforced composites. These joints have been fabricated using an affordable, robust ceramic joining technology (ARCJoinT). The microstructure and good high temperature mechanical capability (compressive and flexural strengths) of ceramic joints in silicon carbide-based ceramics and composite materials are reported.
Mechanical fatigue degradation of ceramics versus resin composites for dental restorations.
Belli, Renan; Geinzer, Eva; Muschweck, Anna; Petschelt, Anselm; Lohbauer, Ulrich
2014-04-01
For posterior partial restorations an overlap of indication exists where either ceramic or resin-based composite materials can be successfully applied. The aim of this study was to compare the fatigue resistance of modern dental ceramic materials versus dental resin composites in order to address such conflicts. Bar specimens of five ceramic materials and resin composites were produced according to ISO 4049 and stored for 14 days in distilled water at 37°C. The following ceramic materials were selected for testing: a high-strength zirconium dioxide (e.max ZirCAD, Ivoclar), a machinable lithium disilicate (e.max CAD, Ivoclar), a pressable lithium disilicate ceramic (e-max Press, Ivoclar), a fluorapatite-based glass-ceramic (e.max Ceram, Ivoclar), and a machinable color-graded feldspathic porcelain (Trilux Forte, Vita). The composite materials selected were: an indirect machinable composite (Lava Ultimate, 3M ESPE) and four direct composites with varying filler nature (Clearfil Majesty Posterior, Kuraray; GrandioSO, Voco; Tetric EvoCeram, Ivoclar-Vivadent; and CeramX Duo, Dentsply). Fifteen specimens were tested in water for initial strength (σin) in 4-point bending. Using the same test set-up, the residual flexural fatigue strength (σff) was determined using the staircase approach after 10(4) cycles at 0.5 Hz (n=25). Weibull parameters σ0 and m were calculated for the σin specimens, whereas the σff and strength loss in percentage were obtained from the fatigue experiment. The zirconium oxide ceramic showed the highest σin and σff (768 and 440 MPa, respectively). Although both lithium disilicate ceramics were similar in the static test, the pressable version showed a significantly higher fatigue resistance after cyclic loading. Both the fluorapatite-based and the feldspathic porcelain showed equivalent initial and cyclic fatigue properties. From the composites, the highest filled direct material Clearfil Majesty Posterior showed superior fatigue performance. From all materials, e.max Press and Clearfil Majesty Posterior showed the lowest strength loss (29.6% and 32%, respectively), whereas the other materials lost between 41% and 62% of their flexural strength after cyclic loading. Dental ceramics and resin composite materials show equivalent fatigue strength degradation at loads around 0.5σin values. Apart from the zirconium oxide and the lithium disilicate ceramics, resin composites generally showed better σff after 10,000 cycles than the fluorapatite glass-ceramic and the feldspathic porcelain. Resin composite restorations may be used as an equivalent alternative to glass-rich-ceramic inlays regarding mechanical performance. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Carbon Nanotubes for Human Space Flight
NASA Technical Reports Server (NTRS)
Scott, Carl D.; Files, Brad; Yowell, Leonard
2003-01-01
Single-wall carbon nanotubes offer the promise of a new class of revolutionary materials for space applications. The Carbon Nanotube Project at NASA Johnson Space Center has been actively researching this new technology by investigating nanotube production methods (arc, laser, and HiPCO) and gaining a comprehensive understanding of raw and purified material using a wide range of characterization techniques. After production and purification, single wall carbon nanotubes are processed into composites for the enhancement of mechanical, electrical, and thermal properties. This "cradle-to-grave" approach to nanotube composites has given our team unique insights into the impact of post-production processing and dispersion on the resulting material properties. We are applying our experience and lessons-learned to developing new approaches toward nanotube material characterization, structural composite fabrication, and are also making advances in developing thermal management materials and electrically conductive materials in various polymer-nanotube systems. Some initial work has also been conducted with the goal of using carbon nanotubes in the creation of new ceramic materials for high temperature applications in thermal protection systems. Human space flight applications such as advanced life support and fuel cell technologies are also being investigated. This discussion will focus on the variety of applications under investigation.
Discharge cell for ozone generator
Nakatsuka, Suguru
2000-01-01
A discharge cell for use in an ozone generator is provided which can suppress a time-related reduction in ozone concentration without adding a catalytic gas such as nitrogen gas to oxygen gas as a raw material gas. The discharge cell includes a pair of electrodes disposed in an opposed spaced relation with a discharge space therebetween, and a dielectric layer of a three-layer structure consisting of three ceramic dielectric layers successively stacked on at least one of the electrodes, wherein a first dielectric layer of the dielectric layer contacting the one electrode contains no titanium dioxide, wherein a second dielectric layer of the dielectric layer exposed to the discharge space contains titanium dioxide in a metal element ratio of not lower than 10 wt %.
Superconductive articles including cerium oxide layer
Wu, X.D.; Muenchausen, R.E.
1993-11-16
A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure. 7 figures.
Superconductive articles including cerium oxide layer
Wu, Xin D.; Muenchausen, Ross E.
1993-01-01
A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure.
System simulation application for determining the size of daily raw material purchases at PT XY
NASA Astrophysics Data System (ADS)
Napitupulu, H. L.
2018-02-01
Every manufacturing company needs to implement green production, including PT XY as a marine catchment processing industry in Sumatera Utara Province. The company is engaged in the processing of squid for export purposes. The company’s problem relates to the absence of a decision on the daily purchase amount of the squid. The purchase of daily raw materials in varying quantities has caused companies to face the problem of excess raw materials or otherwise the lack of raw materials. The low purchase of raw materials will result in reduced productivity, while large purchases will lead to increased cooling costs for storage of excess raw materials, as well as possible loss of damage raw material. Therefore it is necessary to determine the optimal amount of raw material purchases every day. This can be determined by applying simulation. Application of system simulations can provide the expected optimal amount of raw material purchases.
Development of Ceramic Solid-State Laser Host Material
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Trivedi, Sudhir; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra
2009-01-01
Polycrystalline ceramic laser materials are gaining importance in the development of novel diode-pumped solid-state lasers. Compared to single-crystals, ceramic laser materials offer advantages in terms of ease of fabrication, shape, size, and control of dopant concentrations. Recently, we have developed Neodymium doped Yttria (Nd:Y2O3) as a solid-state ceramic laser material. A scalable production method was utilized to make spherical non agglomerated and monodisperse metastable ceramic powders of compositions that were used to fabricate polycrystalline ceramic material components. This processing technique allowed for higher doping concentrations without the segregation problems that are normally encountered in single crystalline growth. We have successfully fabricated undoped and Neodymium doped Yttria material up to 2" in diameter, Ytterbium doped Yttria, and erbium doped Yttria. We are also in the process of developing other sesquioxides such as scandium Oxide (Sc2O3) and Lutesium Oxide (Lu2O3) doped with Ytterbium, erbium and thulium dopants. In this paper, we present our initial results on the material, optical, and spectroscopic properties of the doped and undoped sesquioxide materials. Polycrystalline ceramic lasers have enormous potential applications including remote sensing, chem.-bio detection, and space exploration research. It is also potentially much less expensive to produce ceramic laser materials compared to their single crystalline counterparts because of the shorter fabrication time and the potential for mass production in large sizes.
Failure modes and materials design for biomechanical layer structures
NASA Astrophysics Data System (ADS)
Deng, Yan
Ceramic materials are finding increasing usage in the area of biomechanical replacements---dental crowns, hip and bone implants, etc.---where strength, wear resistance, biocompatibility, chemical durability and even aesthetics are critical issues. Aesthetic ceramic crowns have been widely used in dentistry to replace damaged or missing teeth. However, the failure rates of ceramic crowns, especially all-ceramic crowns, can be 1%˜6% per year, which is not satisfactory to patients. The materials limitations and underlying fracture mechanisms of these prostheses are not well understood. In this thesis, fundamental fracture and damage mechanisms in model dental bilayer and trilayer structures are studied. Principle failure modes are identified from in situ experimentation and confirmed by fracture mechanics analysis. In bilayer structures of ceramic/polycarbonate (representative of ceramic crown/dentin structure), three major damage sources are identified: (i) top-surface cone cracks or (ii) quasiplasticity, dominating in thick ceramic bilayers; (iii) bottom-surface radial cracks, dominating in thin ceramic bilayers. Critical load P for each damage mode are measured in six dental ceramics: Y-TZP zirconia, glass-infiltrated zirconia and alumina (InCeram), glass-ceramic (Empress II), Porcelain (Mark II and Empress) bonded to polymer substrates, as a function of ceramic thickness d in the range of 100 mum to 10 mm. P is found independent of d for mode (i) and (ii), but has a d 2 relations for mode (iii)---bottom surface radial cracking. In trilayer structures of glass/core-ceramic/polycarbonate (representing veneer porcelain/core/dentin structures), three inner fracture origins are identified: radial cracks from the bottom surface in the (i) first and (ii) second layers; and (iii) quasiplasticity in core-ceramic layer. The role of relative veneer/core thickness, d1/d 2 and materials properties is investigated for three core materials with different modulus (114--270GPa) and strength (400--1400MPa): Y-TZP zirconia, InCeram alumina and Empress II glass-ceramic. Explicit relations for the critical loads P to produce these different damage modes in bilayer and trilayer structures are developed in terms of basic material properties (modulus E, strength, hardness H and toughness T) and geometrical variables (thickness d and contact sphere radius r). These experimentally validated relations are used to design of optimal material combinations for improved fracture resistance and to predict mechanical performance of current dental materials.
Goryainova, Kristina E; Morokov, Egor S; Retinskaja, Marina V; Rusanov, Fedor S; Apresyan, Samvel V; Lebedenko, Igor Yu
2018-01-01
The aim of the present work was to compare the elastic properties and internal structure of 4 different CAD/CAM chairside materials, by the method of Scanning Impulse Acoustic Microscopy (SIAM). Four chairside CAD/CAM materials with different structures from hybrid ceramic (VITA Enamic, VITA Zahnfabrik), feldspatic ceramic (VITABlocs Mark II, VITA Zahnfabrik), leucite glass-ceramic (IPS Empress CAD, Ivoclar Vivadent) and PMMA (Telio CAD, Ivoclar Vivadent) were examined by Scanning Impulse Acoustic Microscope (SIAM). The results of micromorphological research of CAD/CAM chairside materials using SIAM method showed differences between the internal structures of these materials. The internal structure of feldspatic and glass-ceramic samples revealed the presence of pores with different sizes, from 10 to 100 microns; the structure of polymer materials rendered some isolated defects, while in the structure of hybrid material, defects were not found. Based on the results obtained from the present study, in cases of chairside production of dental crowns, it would be advisable to give preference to the blocks of hybrid ceramics. Such ceramics devoid of quite large porosity, glazing for CAD/CAM crowns made from leucite glass-ceramic and feldspatic ceramic may be an option. For these purposes, commercially available special muffle furnace for clinical and laboratory individualization and glazing of ceramic prostheses were provided. Further studies are needed to confirm the evidence emerging from the present research.
Method of sintering ceramic materials
Holcombe, Cressie E.; Dykes, Norman L.
1992-01-01
A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density.
De Michelis, Ida; Ferella, Francesco; Beolchini, Francesca; Olivieri, Agostino; Vegliò, Francesco
2009-03-15
The present work was focused on the acid leaching process for manganese extraction in reducing environment to low-grade manganiferous ore that comes from Central Italy. The aim of this study was to establish optimum leaching operating conditions to reduce treatment costs of waste or, even better, to allow a waste valorisation as raw materials for other applications. Consequently, the main focus of the work was the characterization and classification of the solid wastes coming from the process carried out at different operating conditions; at the same moment the effect of process parameters on Mn extraction was also analysed. The effect of particles size on the manganese extraction in reductive acid leaching process was investigated, by using lactose as reducing agent. Particle size did not show a large influence on the Mn extraction yields in the investigated process conditions. This aspect suggests the use of the leaching waste for civil and/or environmental application: use of leaching solid wastes like filling material is to be applied, for example, for environmental restoration. The classification of the solid wastes, according to the Italian Laws about Release Test (RT), has demonstrated that the solid waste produced by leaching can be classifiable as "hazardous special waste". An improvement of solid washing let to reduce the SO(4)(2-) and an appropriate treatment is necessary to reduce the dangerousness of these solids. Possible application of ore and waste as raw materials in the ceramic industry was demonstrated not to be feasible.
Translucency of dental ceramics with different thicknesses.
Wang, Fu; Takahashi, Hidekazu; Iwasaki, Naohiko
2013-07-01
The increased use of esthetic restorations requires an improved understanding of the translucent characteristics of ceramic materials. Ceramic translucency has been considered to be dependent on composition and thickness, but less information is available about the translucent characteristics of these materials, especially at different thicknesses. The purpose of this study was to investigate the relationship between translucency and the thickness of different dental ceramics. Six disk-shaped specimens of 8 glass ceramics (IPS e.max Press HO, MO, LT, HT, IPS e.max CAD LT, MO, AvanteZ Dentin, and Trans) and 5 specimens of 5 zirconia ceramics (Cercon Base, Zenotec Zr Bridge, Lava Standard, Lava Standard FS3, and Lava Plus High Translucency) were prepared following the manufacturers' instructions and ground to a predetermined thickness with a grinding machine. A spectrophotometer was used to measure the translucency parameters (TP) of the glass ceramics, which ranged from 2.0 to 0.6 mm, and of the zirconia ceramics, which ranged from 1.0 to 0.4 mm. The relationship between the thickness and TP of each material was evaluated using a regression analysis (α=.05). The TP values of the glass ceramics ranged from 2.2 to 25.3 and the zirconia ceramics from 5.5 to 15.1. There was an increase in the TP with a decrease in thickness, but the amount of change was material dependent. An exponential relationship with statistical significance (P<.05) between the TP and thickness was found for both glass ceramics and zirconia ceramics. The translucency of dental ceramics was significantly influenced by both material and thickness. The translucency of all materials increased exponentially as the thickness decreased. All of the zirconia ceramics evaluated in the present study showed some degree of translucency, which was less sensitive to thickness compared to that of the glass ceramics. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
High Temperature Tolerant Ceramic Composites Having Porous Interphases
Kriven, Waltraud M.; Lee, Sang-Jin
2005-05-03
In general, this invention relates to a ceramic composite exhibiting enhanced toughness and decreased brittleness, and to a process of preparing the ceramic composite. The ceramic composite comprises a first matrix that includes a first ceramic material, preferably selected from the group including alumina (Al2O3), mullite (3Al2O3.2SiO2), yttrium aluminate garnet (YAG), yttria stabilized zirconia (YSZ), celsian (BaAl2Si2O8) and nickel aluminate (NiAl2O4). The ceramic composite also includes a porous interphase region that includes a substantially non-sinterable material. The non-sinterable material can be selected to include, for example, alumina platelets. The platelets lie in random 3-D orientation and provide a debonding mechanism, which is independent of temperature in chemically compatible matrices. The non-sinterable material induces constrained sintering of a ceramic powder resulting in permanent porosity in the interphase region. For high temperature properties, addition of a sinterable ceramic powder to the non-sinterable material provides sufficiently weak debonding interphases. The ceramic composite can be provided in a variety of forms including a laminate, a fibrous monolith, and a fiber-reinforced ceramic matrix. In the laminated systems, intimate mixing of strong versus tough microstructures were tailored by alternating various matrix-to-interphase thickness ratios to provide the bimodal laminate.
Free-standing oxide superconducting articles
Wu, Xin D.; Muenchausen, Ross E.
1993-01-01
A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template lay This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).
Acoustic emission as a screening tool for ceramic matrix composites
NASA Astrophysics Data System (ADS)
Ojard, Greg; Goberman, Dan; Holowczak, John
2017-02-01
Ceramic matrix composites are composite materials with ceramic fibers in a high temperature matrix of ceramic or glass-ceramic. This emerging class of materials is viewed as enabling for efficiency improvements in many energy conversion systems. The key controlling property of ceramic matrix composites is a relatively weak interface between the matrix and the fiber that aids crack deflection and fiber pullout resulting in greatly increased toughness over monolithic ceramics. United Technologies Research Center has been investigating glass-ceramic composite systems as a tool to understand processing effects on material performance related to the performance of the weak interface. Changes in the interface have been shown to affect the mechanical performance observed in flexural testing and subsequent microstructural investigations have confirmed the performance (or lack thereof) of the interface coating. Recently, the addition of acoustic emission testing during flexural testing has aided the understanding of the characteristics of the interface and its performance. The acoustic emission onset stress changes with strength and toughness and this could be a quality tool in screening the material before further development and use. The results of testing and analysis will be shown and additional material from other ceramic matrix composite systems may be included to show trends.
Mörmann, Werner H; Stawarczyk, Bogna; Ender, Andreas; Sener, Beatrice; Attin, Thomas; Mehl, Albert
2013-04-01
This study determined the two-body wear and toothbrushing wear parameters, including gloss and roughness measurements and additionally Martens hardness, of nine aesthetic CAD/CAM materials, one direct resin-based nanocomposite plus that of human enamel as a control group. Two-body wear was investigated in a computer-controlled chewing simulator (1.2 million loadings, 49N at 1.7Hz; 3000 thermocycles 5/50°C). Each of the 11 groups consisted of 12 specimens and 12 enamel antagonists. Quantitative analysis of wear was carried out with a 3D-surface analyser. Gloss and roughness measurements were evaluated using a glossmeter and an inductive surface profilometer before and after abrasive toothbrushing of machine-polished specimens. Additionally Martens hardness was measured. Statistically significant differences were calculated with one-way ANOVA (analysis of variance). Statistically significant differences were found for two-body wear, gloss, surface roughness and hardness. Zirconium dioxide ceramics showed no material wear and low wear of the enamel antagonist. Two-body wear of CAD/CAM-silicate and -lithium disilicate ceramics, -hybrid ceramics and -nanocomposite as well as direct nanocomposite did not differ significantly from that of human enamel. Temporary polymers showed significantly higher material wear than permanent materials. Abrasive toothbrushing significantly reduced gloss and increased roughness of all materials except zirconium dioxide ceramics. Gloss retention was highest with zirconium dioxide ceramics, silicate ceramics, hybrid ceramics and nanocomposites. Temporary polymers showed least gloss retention. Martens hardness differed significantly among ceramics, between ceramics and composites, and between resin composites and acrylic block materials as well. All permanent aesthetic CAD/CAM block materials tested behave similarly or better with respect to two-body wear and toothbrushing wear than human enamel, which is not true for temporary polymer CAD/CAM block materials. Ceramics show the best gloss retention compared to hybrid ceramics, composites and acrylic polymers. Copyright © 2013 Elsevier Ltd. All rights reserved.
High speed infrared radiation thermometer, system, and method
Markham, James R.
2002-01-01
The high-speed radiation thermometer has an infrared measurement wavelength band that is matched to the infrared wavelength band of near-blackbody emittance of ceramic components and ceramic thermal barrier coatings used in turbine engines. It is comprised of a long wavelength infrared detector, a signal amplifier, an analog-to-digital converter, an optical system to collect radiation from the target, an optical filter, and an integral reference signal to maintain a calibrated response. A megahertz range electronic data acquisition system is connected to the radiation detector to operate on raw data obtained. Because the thermometer operates optimally at 8 to 12 .mu.m, where emittance is near-blackbody for ceramics, interferences to measurements performed in turbine engines are minimized. The method and apparatus are optimized to enable mapping of surface temperatures on fast moving ceramic elements, and the thermometer can provide microsecond response, with inherent self-diagnostic and calibration-correction features.
Code of Federal Regulations, 2010 CFR
2010-07-01
... than kilns; in-line kiln/raw mills; clinker coolers; new and reconstructed raw material dryers; and raw...; in-line kiln/raw mills; clinker coolers; new and reconstructed raw material dryers; and raw and finish mills. The owner or operator of each new or existing raw material, clinker, or finished product...
Bioactive ceramic-based materials with designed reactivity for bone tissue regeneration
Ohtsuki, Chikara; Kamitakahara, Masanobu; Miyazaki, Toshiki
2009-01-01
Bioactive ceramics have been used clinically to repair bone defects owing to their biological affinity to living bone; i.e. the capability of direct bonding to living bone, their so-called bioactivity. However, currently available bioactive ceramics do not satisfy every clinical application. Therefore, the development of novel design of bioactive materials is necessary. Bioactive ceramics show osteoconduction by formation of biologically active bone-like apatite through chemical reaction of the ceramic surface with surrounding body fluid. Hence, the control of their chemical reactivity in body fluid is essential to developing novel bioactive materials as well as biodegradable materials. This paper reviews novel bioactive materials designed based on chemical reactivity in body fluid. PMID:19158015
Method of sintering ceramic materials
Holcombe, C.E.; Dykes, N.L.
1992-11-17
A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density. 2 figs.
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.
1998-01-01
The development of modeling approaches for the failure analysis of ceramic-based material systems used in high temperature environments was the primary objective of this research effort. These materials have the potential to support many key engineering technologies related to the design of aeropropulsion systems. Monolithic ceramics exhibit a number of useful properties such as retention of strength at high temperatures, chemical inertness, and low density. However, the use of monolithic ceramics has been limited by their inherent brittleness and a large variation in strength. This behavior has motivated material scientists to reinforce the monolithic material with a ceramic fiber. The addition of a second ceramic phase with an optimized interface increases toughness and marginally increases strength. The primary purpose of the fiber is to arrest crack growth, not to increase strength. The material systems of interest in this research effort were laminated ceramic matrix composites, as well as two- and three- dimensional fabric reinforced ceramic composites. These emerging composite systems can compete with metals in many demanding applications. However, the ongoing metamorphosis of ceramic composite material systems, and the lack of standardized design data has in the past tended to minimize research efforts related to structural analysis. Many structural components fabricated from ceramic matrix composites (CMC) have been designed by "trial and error." The justification for this approach lies in the fact that during the initial developmental phases for a material system fabrication issues are paramount. Emphasis is placed on demonstrating feasibility rather than fully understanding the processes controlling mechanical behavior. This is understandable during periods of rapid improvements in material properties for any composite system. But to avoid the ad hoc approach, the analytical methods developed under this effort can be used to develop rational structural design protocols.
Method for sealing an oxygen transport membrane assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, Javier E.; Grant, Arthur F.
An improved method of sealing a ceramic part to a solid part made of ceramic, metal, cermet or a ceramic coated metal is provided. The improved method includes placing a bond agent comprising an Al 2O 3 and SiO 2 based glass-ceramic material and organic binder material on adjoining surfaces of the ceramic part and the solid part. The assembly is heated to a first target temperature that removes or dissolves the organic binder material from the bond agent and the assembly is subjected to a second induction heating step at a temperature ramp rate of between about 100.degree. C.more » and 200.degree. C. per minute to temperatures where the glass-ceramic material flows and wets the interface between adjoining surfaces. The assembly is rapidly cooled at a cooling rate of about 140.degree. C. per minute or more to induce nucleation and re-crystallization of the glass-ceramic material to form a dense, durable and gas-tight seal.« less
NASA Astrophysics Data System (ADS)
Tai, Cheuk Wai
Complex perovskite-structured relaxor ferroelectric ceramics of (x)Pb(In 1/2Nb1/2)O3:(1-x)Pb(Mg 1/3Nb2/3)O3 with x = 0.1 to 0.9 were studied extensively during the project. The ceramics were fabricated by conventional mixed oxide route of the two-step method. Measurements of their dielectric properties and ferroelectric hysteresis were performed to explore their potential for capacitor applications. The results show many features common to the relaxor behavior, including slim ferroelectric hysteresis loop and frequency dispersions in plots of relative permittivity. In addition, the ceramics with x = 0.3 to 0.7 show relative permittivity that is highly stable over the temperature range -30°C to 125°C. In order to explore structural alterations and their subsequent influence on dielectric properties, a variety of dopants were added to (0.3)Pb(In 1/2Nb1/2)O3:(0.7)Pb(Mg1/3Nb2/3 )O3 ceramics. The additives were Ba2+, Sr 2+, La3+, Na+, Ti4+ and Yb4+ obtained from different raw materials of oxides or carbonates. The modified ceramics were also fabricated by the two-step method. Fourteen ceramics samples doped with 2 or 5 mole % of the above elements, 5 mole % Na + 2 mole % Ti and 5 mole % Na + 5 mole % Ti doped were characterized in total. The measured dielectric properties of these ceramics were different to those of the parent ceramics and some of these meet the EIA-standard for industrial ceramic capacitor applications. An exploratory fabrication and study of thin films of the (0.4)Pb(In 1/2Nb1/2)O3:(0.6)Pb(Mg1/3Nb2/3 )O3 and two doped (0.3)Pb(In1/2Nb1/2)O 3: (0.7)Pb(Mg1/3Nb2/3)O3 compositions were carried out to demonstrate their potential for MEMS or other micro- or nano-scale systems. The epitaxial films were grown successfully by pulsed laser deposition (PLD). Prior to deposition of the films, La0.7Sr 0.3MnO3 (LSMO) bottom electrode was first grown on LaAlO 3 substrate. The orientation relationship between film, electrode and substrate was characterized by x-ray diffraction. The dielectric properties and the ferroelectric hysteresis loops of the films were measured. (Abstract shortened by UMI.)
Ceramic substrate including thin film multilayer surface conductor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Joseph Ambrose; Peterson, Kenneth A.
2017-05-09
A ceramic substrate comprises a plurality of ceramic sheets, a plurality of inner conductive layers, a plurality of vias, and an upper conductive layer. The ceramic sheets are stacked one on top of another and include a top ceramic sheet. The inner conductive layers include electrically conductive material that forms electrically conductive features on an upper surface of each ceramic sheet excluding the top ceramic sheet. The vias are formed in each of the ceramic sheets with each via being filled with electrically conductive material. The upper conductive layer includes electrically conductive material that forms electrically conductive features on anmore » upper surface of the top ceramic sheet. The upper conductive layer is constructed from a stack of four sublayers. A first sublayer is formed from titanium. A second sublayer is formed from copper. A third sublayer is formed from platinum. A fourth sublayer is formed from gold.« less
Cladding material, tube including such cladding material and methods of forming the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garnier, John E.; Griffith, George W.
A multi-layered cladding material including a ceramic matrix composite and a metallic material, and a tube formed from the cladding material. The metallic material forms an inner liner of the tube and enables hermetic sealing of thereof. The metallic material at ends of the tube may be exposed and have an increased thickness enabling end cap welding. The metallic material may, optionally, be formed to infiltrate voids in the ceramic matrix composite, the ceramic matrix composite encapsulated by the metallic material. The ceramic matrix composite includes a fiber reinforcement and provides increased mechanical strength, stiffness, thermal shock resistance and highmore » temperature load capacity to the metallic material of the inner liner. The tube may be used as a containment vessel for nuclear fuel used in a nuclear power plant or other reactor. Methods for forming the tube comprising the ceramic matrix composite and the metallic material are also disclosed.« less
Collagen/hydroxyapatite composite materials with desired ceramic properties.
Andronescu, Ecaterina; Voicu, Georgeta; Ficai, Maria; Mohora, Ioana Anita; Trusca, Roxana; Ficai, Anton
2011-01-01
Our purpose was to obtain and characterize some collagen/hydroxyapatite (COLL/HA) hybrid composite materials with desired ceramic properties. The ceramic properties of these materials were achieved by combining two drying methods: controlled air drying at 30°C followed by freeze-drying. Through the function of the air drying times, the materials morphology varies from porous materials (when the materials are freeze-dried) up to dense materials (when the materials are air-dried), while the combined drying allows us to obtain an intermediary morphology. The composite materials intended to be used as bone grafts and in a drug delivery system were characterized by XRD, FTIR, SEM, and also by determining the ceramic properties by using the Arthur method. The ceramic properties of these COLL/HA composite materials vary in large range, for instance the density of the materials varies from 0.06 up to 1.5 g/cm(3) while the porosity varies from 96.5% down to 27.5%.
Modeling the Mechanical Behavior of Ceramic Matrix Composite Materials
NASA Technical Reports Server (NTRS)
Jordan, William
1998-01-01
Ceramic matrix composites are ceramic materials, such as SiC, that have been reinforced by high strength fibers, such as carbon. Designers are interested in using ceramic matrix composites because they have the capability of withstanding significant loads while at relatively high temperatures (in excess of 1,000 C). Ceramic matrix composites retain the ceramic materials ability to withstand high temperatures, but also possess a much greater ductility and toughness. Their high strength and medium toughness is what makes them of so much interest to the aerospace community. This work concentrated on two different tasks. The first task was to do an extensive literature search into the mechanical behavior of ceramic matrix composite materials. This report contains the results of this task. The second task was to use this understanding to help interpret the ceramic matrix composite mechanical test results that had already been obtained by NASA. Since the specific details of these test results are subject to the International Traffic in Arms Regulations (ITAR), they are reported in a separate document (Jordan, 1997).
Goryainova, Kristina E.; Morokov, Egor S.; Retinskaja, Marina V.; Rusanov, Fedor S.; Apresyan, Samvel V.; Lebedenko, Igor Yu.
2018-01-01
Aim: The aim of the present work was to compare the elastic properties and internal structure of 4 different CAD/CAM chairside materials, by the method of Scanning Impulse Acoustic Microscopy (SIAM). Methods: Four chairside CAD/CAM materials with different structures from hybrid ceramic (VITA Enamic, VITA Zahnfabrik), feldspatic ceramic (VITABlocs Mark II, VITA Zahnfabrik), leucite glass-ceramic (IPS Empress CAD, Ivoclar Vivadent) and PMMA (Telio CAD, Ivoclar Vivadent) were examined by Scanning Impulse Acoustic Microscope (SIAM). Results: The results of micromorphological research of CAD/CAM chairside materials using SIAM method showed differences between the internal structures of these materials. The internal structure of feldspatic and glass-ceramic samples revealed the presence of pores with different sizes, from 10 to 100 microns; the structure of polymer materials rendered some isolated defects, while in the structure of hybrid material, defects were not found. Conclusion: Based on the results obtained from the present study, in cases of chairside production of dental crowns, it would be advisable to give preference to the blocks of hybrid ceramics. Such ceramics devoid of quite large porosity, glazing for CAD/CAM crowns made from leucite glass-ceramic and feldspatic ceramic may be an option. For these purposes, commercially available special muffle furnace for clinical and laboratory individualization and glazing of ceramic prostheses were provided. Further studies are needed to confirm the evidence emerging from the present research. PMID:29492178
Performance of Ceramics in Severe Environments
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.; Fox, Dennis S.; Smialek, James L.; Deliacorte, Christopher; Lee, Kang N.
2005-01-01
Ceramics are generally stable to higher temperatures than most metals and alloys. Thus the development of high temperature structural ceramics has been an area of active research for many years. While the dream of a ceramic heat engine still faces many challenges, niche markets are developing for these materials at high temperatures. In these applications, ceramics are exposed not only to high temperatures but also aggressive gases and deposits. In this chapter we review the response of ceramic materials to these environments. We discuss corrosion mechanisms, the relative importance of a particular corrodent, and, where available, corrosion rates. Most of the available corrosion information is on silicon carbide (SIC) and silicon nitride (Si3N4) monolithic ceramics. These materials form a stable film of silica (SO2) in an oxidizing environment. We begin with a discussion of oxidation of these materials and proceed to the effects of other corrodents such as water vapor and salt deposits. We also discuss oxidation and corrosion of other ceramics: precurser derived ceramics, ceramic matrix composites (CMCs), ceramics which form oxide scales other than silica, and oxide ceramics. Many of the corrosion issues discussed can be mitigated with refractory oxide coatings and we discuss the current status of this active area of research. Ultimately, the concern of corrosion is loss of load bearing capability. We discuss the effects of corrosive environments on the strength of ceramics, both monolithic and composite. We conclude with a discussion of high temperature wear of ceramics, another important form of degradation at high temperatures.
NASA Astrophysics Data System (ADS)
Sinescu, Cosmin; Negrutiu, Meda; Hughes, Michael; Bradu, Adrian; Todea, Carmen; Rominu, Mihai; Laissue, Philippe L.; Podoleanu, Adrian Gh.
2008-04-01
Metal ceramic and integral ceramic fixed partial prostheses are mainly used in the frontal part of the dental arch because for esthetics reasons. The masticatory stress may induce fractures of the bridges. There are several factors that are associated with the stress state created in ceramic restorations, including: thickness of ceramic layers, mechanical properties of the materials, elastic modulus of the supporting substrate material, direction, magnitude and frequency of applied load, size and location of occlusal contact areas, residual stresses induced by processing or pores, restoration-cement interfacial defects and environmental defects. The fractures of these bridges lead to functional, esthetic and phonetic disturbances which finally render the prosthetic treatment inefficient. The purpose of this study is to evaluate the capability of optical coherence tomography (OCT) in detection and analysis of possible material defects in metal-ceramic and integral ceramic fixed partial dentures.
Crystallization behaviors and seal application of basalt based glass-ceramics
NASA Astrophysics Data System (ADS)
Ateş, A.; Önen, U.; Ercenk, E.; Yılmaz, Ş.
2017-02-01
Basalt based glass-ceramics were prepared by conventional melt-quenching technique and subsequently converted to glass-ceramics by a controlled nucleation and crystallization process. Glass materials were obtained by melt at 1500°C and quenched in cold water. The powder materials were made by milling and spin coating. The powders were applied on the 430 stainless steel interconnector material, and heat treatment was carried out. The interface characteristics between the glass-ceramic layer and interconnector were investigated by using X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). The results showed that the basalt base glass-ceramic sealant material exhibited promising properties to use for SOFC.
Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating
Meek, T.T.; Blake, R.D.
1985-04-03
A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate.
Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating
Meek, Thomas T.; Blake, Rodger D.
1987-01-01
A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate.
National Institute of Standards and Technology Data Gateway
SRD 30 NIST Structural Ceramics Database (Web, free access) The NIST Structural Ceramics Database (WebSCD) provides evaluated materials property data for a wide range of advanced ceramics known variously as structural ceramics, engineering ceramics, and fine ceramics.
Ceramic Nanocomposites from Tailor-Made Preceramic Polymers
Mera, Gabriela; Gallei, Markus; Bernard, Samuel; Ionescu, Emanuel
2015-01-01
The present Review addresses current developments related to polymer-derived ceramic nanocomposites (PDC-NCs). Different classes of preceramic polymers are briefly introduced and their conversion into ceramic materials with adjustable phase compositions and microstructures is presented. Emphasis is set on discussing the intimate relationship between the chemistry and structural architecture of the precursor and the structural features and properties of the resulting ceramic nanocomposites. Various structural and functional properties of silicon-containing ceramic nanocomposites as well as different preparative strategies to achieve nano-scaled PDC-NC-based ordered structures are highlighted, based on selected ceramic nanocomposite systems. Furthermore, prospective applications of the PDC-NCs such as high-temperature stable materials for thermal protection systems, membranes for hot gas separation purposes, materials for heterogeneous catalysis, nano-confinement materials for hydrogen storage applications as well as anode materials for secondary ion batteries are introduced and discussed in detail. PMID:28347023
Li, Weiyan; Sun, Jian
2018-05-10
BACKGROUND Polymer-infiltrated ceramic-network (PICN) dental material is a new and practical development in orthodontics. Sintering is the process of forming a stable solid mass from a powder by heating without melting. The aim of this study was to evaluate the effects of sintering temperature on the mechanical properties of a PICN zirconia dental material. MATERIAL AND METHODS A dense zirconia ceramic and four PICN zirconia dental materials, with varying porosities, were sintered at three different temperatures; 12 PICN zirconia dental materials based on these porous ceramics were prepared, as well as a pure polymer. After the specimen preparation, flexural strength and elastic modulus values were measured using the three-point bending test, and fracture toughness were determined by the single-edge notched beam (SENB) method. The Vickers hardness test method was used with an indentation strength (IS) test. Scanning electron microscopy (SEM) was used to examine the microstructure of the ceramic surface and the fracture surface. RESULTS Mechanical properties of the PICN dental materials, including flexural strength, elastic modulus, fracture toughness, and hardness, were more similar to the properties of natural teeth when compared with traditional dental ceramic materials, and were affected by the density and sintering temperature. SEM showed that the porous ceramic network became cohesive and that the length of cracks in the PICN dental material was reduced. CONCLUSIONS PICN zirconia dental materials were characterized by similar mechanical properties to natural dental tissues, but further studies are required continue to improve the similarities with natural human enamel and dentin.
Li, Weiyan
2018-01-01
Background Polymer-infiltrated ceramic-network (PICN) dental material is a new and practical development in orthodontics. Sintering is the process of forming a stable solid mass from a powder by heating without melting. The aim of this study was to evaluate the effects of sintering temperature on the mechanical properties of a PICN zirconia dental material. Material/Methods A dense zirconia ceramic and four PICN zirconia dental materials, with varying porosities, were sintered at three different temperatures; 12 PICN zirconia dental materials based on these porous ceramics were prepared, as well as a pure polymer. After the specimen preparation, flexural strength and elastic modulus values were measured using the three-point bending test, and fracture toughness were determined by the single-edge notched beam (SENB) method. The Vickers hardness test method was used with an indentation strength (IS) test. Scanning electron microscopy (SEM) was used to examine the microstructure of the ceramic surface and the fracture surface. Results Mechanical properties of the PICN dental materials, including flexural strength, elastic modulus, fracture toughness, and hardness, were more similar to the properties of natural teeth when compared with traditional dental ceramic materials, and were affected by the density and sintering temperature. SEM showed that the porous ceramic network became cohesive and that the length of cracks in the PICN dental material was reduced. Conclusions PICN zirconia dental materials were characterized by similar mechanical properties to natural dental tissues, but further studies are required continue to improve the similarities with natural human enamel and dentin. PMID:29746449
NASA Astrophysics Data System (ADS)
Chakrabarty, Rohan; Song, Jun
2017-10-01
During the cold spraying of particle-reinforced metal matrix composite coatings (ceramic and metal particles mixture) on metal substrates, ceramic particles may either get embedded in the substrate/deposited coating or may rebound from the substrate surface. In this study, the dependence of the ceramic rebounding phenomenon on the spray angle and its effect on substrate erosion have been analyzed using finite-element analysis. From the numerical simulations, it was found that the ceramic particle density and substrate material strength played the major roles in determining the embedding and ceramic retention behavior. Substrate material erosion also influenced the ceramic retention, and the material loss increased as the impact angles decreased from normal. In general, the results concluded that decreasing the impact angle promoted the retention possibility of ceramics in the substrate. This study provides new theoretical insights into the effect of spray angles on the ceramic retention and suggests a new route toward optimizing the spraying process to increase the ceramic retention in composite coatings cold spray.
Tribology of ceramics: Report of the Committee on Tribology of Ceramics
NASA Technical Reports Server (NTRS)
1988-01-01
The current state of knowledge of ceramic surface structures, composition, and reactivity is reviewed. The tribological requirements of advanced mechanical systems now being deployed (in particular, heat engines) exceed the capabilities of traditional metallic-based materials because of the high temperatures encountered. Advanced ceramic materials for such applications are receiving intense scrutiny, but there is a lack of understanding of the properties and behavior of ceramic surfaces and the influence of processing on the properties of ceramics is described. The adequacy of models, ranging form atomic to macro, to describe and to predict ceramic friction and wear are discussed, as well as what is known about lubrication at elevated temperatures. From this analysis, recommendations are made for coordination, research, and development that will lead to better performance of ceramic materials in tribological systems.
Corrosion of Ceramic Materials
NASA Technical Reports Server (NTRS)
Opila, Elizabeth J.; Jacobson, Nathan S.
1999-01-01
Non-oxide ceramics are promising materials for a range of high temperature applications. Selected current and future applications are listed. In all such applications, the ceramics are exposed to high temperature gases. Therefore it is critical to understand the response of these materials to their environment. The variables to be considered here include both the type of ceramic and the environment to which it is exposed. Non-oxide ceramics include borides, nitrides, and carbides. Most high temperature corrosion environments contain oxygen and hence the emphasis of this chapter will be on oxidation processes.
Interphase for ceramic matrix composites reinforced by non-oxide ceramic fibers
NASA Technical Reports Server (NTRS)
DiCarlo, James A. (Inventor); Bhatt, Ramakrishna (Inventor); Morscher, Gregory N. (Inventor); Yun, Hee-Mann (Inventor)
2008-01-01
A ceramic matrix composite material is disclosed having non-oxide ceramic fibers, which are formed in a complex fiber architecture by conventional textile processes; a thin mechanically weak interphase material, which is coated on the fibers; and a non-oxide or oxide ceramic matrix, which is formed within the interstices of the interphase-coated fiber architecture. During composite fabrication or post treatment, the interphase is allowed to debond from the matrix while still adhering to the fibers, thereby providing enhanced oxidative durability and damage tolerance to the fibers and the composite material.
Segmented ceramic liner for induction furnaces
Gorin, Andrew H.; Holcombe, Cressie E.
1994-01-01
A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace.
Segmented ceramic liner for induction furnaces
Gorin, A.H.; Holcombe, C.E.
1994-07-26
A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace. 5 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Billah, Masum, E-mail: masum.buet09@gmail.com; Ahmed, A., E-mail: jhinukbuetmme@gmail.com; Rahman, Md. Miftaur, E-mail: miftaurrahman@mme.buet.ac.bd
2016-07-12
In the current work, we investigated the structural and dielectric properties of Lanthanum oxide (La{sub 2}O{sub 3}) doped Barium Titanate (BaTiO{sub 3}) ceramics and established a correlation between them. Solid state sintering method was used to dope BaTiO{sub 3} with 0.3, 0.5 and 0.7 mole% La{sub 2}O{sub 3} under different sintering parameters. The raw materials used were La{sub 2}O{sub 3} nano powder of ~80 nm grain size and 99.995% purity and BaTiO{sub 3} nano powder of 100 nm grain size and 99.99% purity. Grain size distribution and morphology of fracture surface of sintered pellets were examined by Field Emission Scanningmore » Electron Microscope and X-Ray Diffraction analysis was conducted to confirm the formation of desired crystal structure. The research result reveal that grain size and electrical properties of BaTiO{sub 3} ceramic significantly enhanced for small amount of doping (up to 0.5 mole% La{sub 2}O{sub 3}) and then decreased with increasing doping concentration. Desired grain growth (0.80-1.3 µm) and high densification (<90% theoretical density) were found by proper combination of temperature, sintering parameters and doping concentration. We found the resultant stable value of dielectric constant was 10000-12000 at 100-300 Hz in the temperature range of 30°-50° C for 0.5 mole% La{sub 2}O{sub 3} with corresponding shift of curie temperature around 30° C. So overall this research showed that proper La{sup 3+} concentration can control the grain size, increase density, lower curie temperature and hence significantly improve the electrical properties of BaTiO{sub 3} ceramics.« less
Preparation and Properties of (YCa)(TiMn)O3−δ Ceramics Interconnect of Solid Oxide Fuel Cells
Liou, Yi-Cheng; Tsai, Wen-Chou; Yen, Hao-Hsuan; Chang, Yung-Chia
2015-01-01
(YCa)(TiMn)O3–δ ceramics prepared using a reaction-sintering process were investigated. Without any calcination involved, the mixture of raw materials was pressed and sintered directly. Y2Ti2O7 instead of YTiO3 formed when a mixture of Y2O3 and TiO2 with Y/Ti ratio 1/1 were sintered in air. Y2Ti2O7, YTiO2.085 and some unknown phases were detected in Y0.6Ca0.4Ti0.6Mn0.4O3–δ. Monophasic Y0.6Ca0.4Ti0.4Mn0.6O3–δ ceramics were obtained after 1400–1500 °C sintering. Dense Y0.6Ca0.4Ti0.4Mn0.6O3–δ with a density 4.69 g/cm3 was observed after 1500 °C/4 h sintering. Log σ for Y0.6Ca0.4Ti0.6Mn0.4O3–δ increased from –3.73 Scm–1 at 350 °C to –2.14 Scm–1 at 700 °C. Log σ for Y0.6Ca0.4Ti0.4Mn0.6O3–δ increased from –2.1 Scm–1 at 350 °C to –1.36 Scm–1 at 700 °C. Increasing Mn content decreased activation energy Ea and increased electrical conductivity. Reaction-sintering process is proved to be a simple and effective method to obtain (YCa)(TiMn)O3–δ ceramics for interconnects in solid oxide fuel cells. PMID:28793436
Costa, Renata G; Bah, Homegnon A F; Bandeira, Matheus J; Oliveira, Sérgio S P; Menezes-Filho, José A
2017-09-01
Lead (Pb) and cadmium (Cd) were determined in mangrove root crab (Goniopsis cruentata) tissues (in natura) and in two culinary preparations by graphite furnace atomic absorption spectrometry. Mangrove root crab samples from three sampling sites along the Jaguaripe River, Bahia, Brazil, where lead-glazed ceramics are produced, and from two commercial preparations were collected or purchased in March and April 2016. Cd levels in raw and processed samples were below the methods' limits of detection (0.016 mg kg -1 ), while Pb levels in the raw tissues were determined only in the gills (0.67 mg kg -1 ) and in the hepatopancreas (0.14 mg kg -1 ). However, Pb levels increased from 0.05 to 2.84 mg kg -1 in boiled/sorted muscle and in the traditional stew (with a 57-fold increase), respectively. Pb levels augmented significantly in the processed food due to migration of Pb used in the glazing of cooking ceramic utensils, surpassing the Brazilian and international safety limits.
Influence of implant abutment material on the color of different ceramic crown systems.
Dede, Doğu Ömür; Armağanci, Arzu; Ceylan, Gözlem; Celik, Ersan; Cankaya, Soner; Yilmaz, Burak
2016-11-01
Ceramics are widely used for anterior restorations; however, clinical color reproduction still constitutes a challenge particularly when the ceramic crowns are used on titanium implant abutments. The purpose of this in vitro study was to investigate the effect of implant abutment material on the color of different ceramic material systems. Forty disks (11×1.5 mm, shade A2) were fabricated from medium-opacity (mo) and high-translucency (ht) lithium disilicate (IPS e.max) blocks, an aluminous ceramic (VITA In-Ceram Alumina), and a zirconia (Zirkonzahn) ceramic system. Disks were fabricated to represent 3 different implant abutments (zirconia, gold-palladium, and titanium) and dentin (composite resin, A2 shade) as background (11×2 mm). Disk-shaped composite resin specimens in A2 shade were fabricated to represent the cement layer. The color measurements of ceramic specimens were made on composite resin abutment materials using a spectrophotometer. CIELab color coordinates were recorded, and the color coordinates measured on composite resin background served as the control group. Color differences (ΔE 00 ) between the control and test groups were calculated. The data were analyzed with 2-way analysis of variance (ANOVA) and compared with the Tukey HSD test (α=.05). The ceramics system, abutment material, and their interaction were significant for ΔE 00 values (P<.001). Clinically unacceptable results (ΔE 00 >2.25) were observed for lithium disilicate ceramics on titanium abutments (2.46-2.50). The ΔE 00 values of lithium disilicate ceramics for gold-palladium and titanium abutments were significantly higher than for other groups (P<.05). The color results (ΔE 00 >2.25) of an implant-supported lithium disilicate ceramic restoration may be clinically unacceptable if it is fabricated over a titanium abutment. Zirconia may be a more suitable abutment material for implant-supported ceramic restorations. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Process for strengthening silicon based ceramics
Kim, Hyoun-Ee; Moorhead, A. J.
1993-01-01
A process for strengthening silicon based ceramic monolithic materials and omposite materials that contain silicon based ceramic reinforcing phases that requires that the ceramic be exposed to a wet hydrogen atmosphere at about 1400.degree. C. The process results in a dense, tightly adherent silicon containing oxide layer that heals, blunts , or otherwise negates the detrimental effect of strength limiting flaws on the surface of the ceramic body.
Process for strengthening silicon based ceramics
Kim, Hyoun-Ee; Moorhead, A. J.
1993-04-06
A process for strengthening silicon based ceramic monolithic materials and omposite materials that contain silicon based ceramic reinforcing phases that requires that the ceramic be exposed to a wet hydrogen atmosphere at about 1400.degree. C. The process results in a dense, tightly adherent silicon containing oxide layer that heals, blunts , or otherwise negates the detrimental effect of strength limiting flaws on the surface of the ceramic body.
[Cytocompatibility of two porous bioactive glass-ceramic in vitro].
Zhang, Yan; Jiang, Xinquan; Zhang, Xiuli; Wang, Deping; Zhen, Lei
2013-06-01
To compare the cytocompatibility of two kinds porous bioactive glass-ceramic made by same raw materials. Apatite/wollastonite bioactive glass-ceramic (4006) were prepared by sol-gel method, and bioactive glass (45S5) were prepared by melting method. Bone marrow stromal cells (BMSCs) were cultivated, differentiated and proliferated into osteoblasts, from a rabbit's marrow in the differentiatiofn culture medium with active function. The viability of BMSCs cultivated with extraction of these two kinds of biomaterial, which could represent the cytotoxicity effect of 4006 and 45S5 against BMSCs, was evaluated by the MTp assay. BMSCs were seeded and cocultivated with two kinds of biomaterial scaffolds respectively in vitro. The proliferation and biological properties of cells adhered to scaffolds were observed by inverted phase contrast microscope, scanning electron microscope (SEM), and environmental scanning electron microscope (ESEM), and a suitable cell amount for seeding on the scaffold was searched. There was no difference on the viability of BMSCs only cultured for one day by complete extract of 4006 and culture medium (P>0.05), but there was significant difference between them when the cells had been cultured for 3 days(P<0.01). The extract of 45S5 had significantly higher cytotoxicity than extract of culture medium (P<0.01). The BMSCs adhered, spread, and proliferated throughout the pores of the scaffold 4006, and the amount of cells adhered to 4006 was more than to 45S5. The adhered cells to 4006 increased with the rising amount of cells seeded. And 2 x 10(7) cells.mL-1 suspension resulted inthe highest cell adherence during the comparative cells adherence test. Apatite/woolastonite bioac tive glass-ceramic has good bioactivity and cytocompatibility. Therefore, it may have the potential to be a new cell vehicle for bone tissue engineering. And the suitable seeding cell amount of apatite/wollastonite bioactive glass-ceramic should be 2x10(7) cells.mL-1 or even more than that.
Ceramic production during changing environmental/climatic conditions
NASA Astrophysics Data System (ADS)
Oestreich, Daniela B.; Glasmacher, Ulrich A.
2015-04-01
Ceramics, with regard to their status as largely everlasting everyday object as well as on the basis of their chronological sensitivity, reflect despite their simplicity the technological level of a culture and therefore also, directly or indirectly, the adaptability of a culture with respect to environmental and/or climatic changes. For that reason the question arises, if it is possible to identify changes in production techniques and raw material sources for ceramic production, as a response to environmental change, e.g. climate change. This paper will present results of a research about Paracas Culture (800 - 200 BC), southern Peru. Through several investigations (e.g. Schittek et al., 2014; Eitel and Mächtle, 2009) it is well known that during Paracas period changes in climate and environmental conditions take place. As a consequence, settlement patterns shifted several times through the various stages of Paracas time. Ceramics from three different sites (Jauranga, Cutamalla, Collanco) and temporal phases of the Paracas period are detailed archaeometric, geochemical and mineralogical characterized, e.g. Raman spectroscopy, XRD, and ICP-MS analyses. The aim of this research is to resolve potential differences in the chemical composition of the Paracas ceramics in space and time and to compare the data with the data sets of pre-Columbian environmental conditions. Thus influences of changing environmental conditions on human societies and their cultural conditions will be discussed. References Eitel, B. and Mächtle, B. 2009. Man and Environment in the eastern Atacama Desert (Southern Peru): Holocene climate changes and their impact on pre-Columbian cultures. In: Reindel, M. & Wagner, G. A. (eds.) New Technologies for Archaeology. Berlin Heidelberg: Springer-Verlag. Schittek, K., Mächtle, B., Schäbitz, F., Forbriger, M., Wennrich, V., Reindel, M., and Eitel, B.. Holocene environmental changes in the highlands of the southern Peruvian Andes (14° S) and their impact on pre-Columbian cultures, Clim. Past Discuss., 10, 1707-1746.
Saiki, Osamu; Koizumi, Hiroyasu; Akazawa, Nobutaka; Kodaira, Akihisa; Okamura, Kentaro; Matsumura, Hideo
2016-01-01
This study compared the wear characteristics of a heat-pressed lithium disilicate ceramic material opposed to feldspathic porcelain, a lithium disilicate glass ceramic, and zirconia materials. Ceramic plate specimens were prepared from feldspathic porcelain (EX-3 nA1B), lithium disilicate glass ceramics (e.max CAD MO1/C14), and zirconia (Katana KT 10) and then ground or polished. Rounded rod specimens were fabricated from heat-pressed lithium disilicate glass ceramic (e.max press LT A3) and then glazed or polished. A sliding wear testing apparatus was used for wear testing. Wear of glazed rods was greater than that of polished rods when they were abraded with ground zirconia, ground porcelain, polished porcelain, or polished lithium disilicate ceramics. For both glazed and polished rods, wear was greater when the rods were abraded with ground plates. The findings indicate that application of a polished surface rather than a glazed surface is recommended for single restorations made of heat-pressed lithium disilicate material. In addition, care must be taken when polishing opposing materials, especially those used in occlusal contact areas. (J Oral Sci 58, 117-123, 2016).
Zhang, Feilong; Yue, Qinyan; Gao, Yuan; Gao, Baoyu; Xu, Xing; Ren, Zhongfei; Jin, Yang
2017-09-01
In this study, Fenton iron mud applied as main raw material of cathodic-anodic-electrolysis ceramic granular fillers (ICMF) in a continuous reactor, which were used to pretreat oxytetracycline (OTC) wastewater. The ICMF was characterized by Scanning Electron Microscope and Energy Dispersive Spectrometer analysis. The effects of pH value, hydraulic retention time, OTC concentrations and aeration on removal efficiency of total organic carbon (TOC) and OTC were studied. The degradation byproducts of OTC were analyzed by UV-2450, High Performance Liquid Chromatography and Liquid Chromatography-mass Spectrometry. The SEM images showed that the surface ICMF was porous. This system had a higher stability, and good removal efficiency of TOC of 80.5% and OTC of 98.5% under the optimal conditions, which were influent pH of 3, HRT of 4 h, and anaerobic condition. After running for 60 d, the removal efficiency of TOC was stable and the ICMF did not become hardened. The reactor was back washed by acid solution (pH: 1) in 20 d approximately. This paper provides useful information for approaching in wastewater pretreatment and recycling the Fenton iron mud. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Antonella Dino, Giovanna; Willy Danielsen, Svein; Chiappino, Claudia; Primavori, Piero; Engelsen, Christian John
2016-04-01
Resource preservation is one of the main challenges in Europe, together with waste management and recycling; recently several researchers are interested in the recovering of critical raw materials and secondary raw materials from landfill. Aggregate supply, even if it is not "critical" sensus stricto (s.s.), is one of the European priorities (low value but high volume needs). On the other side, the management of quarry waste , mainly from dimension stones, but also as fines from aggregate crushing, is still a matter of concern. Such materials are managed in different ways both locally and nationwide, and often they are landfilled, because of an unclear legislation and a general lack of data. Most of time the local authorities adopt the maximum precaution principle or the enterprises find it little profitable to recover them, so that the sustainable recycling of such material is not valued. Several studies have shown, depending on the material specific characteristics, the viability of recycling quarry waste into new raw materials used in glass and ceramic industries, precast concrete production, infrastructures etc. (Loudes et al. 2012, Dino&Marian 2015, Bozzola et al 2012, Dino et al. 2012, etc.). Thus, aggregate production may be one of the profitable ways to use quarry waste and is falling under the priority of EU (aggregate supply). Positive economic and environmental effects are likely to be achieved by systematic recycling of quarry waste planned by industries (industrial planning) and public authorities (national and local planning of aggregate exploitation). Today, the recycling level varies to a great extent and systematic recovery is not common among European Countries. In Italy and Norway no significant incentives on recycling or systematic approaches for local aggregate exploitation exist. The environmental consequences can be overexploitation of the natural resources, land take for the landfills, environmental contamination and landscape alteration by the quarry waste heaps. The environmentally sustainable management of quarry waste, which aims to recover and recycle both clean and contaminated materials, would therefore help to reduce the pressure on natural resources, reduce the land take and the environmental contamination. The present paper shows the main challenges connected to quarry waste management, focusing on several possibilities for quarry waste recovering, in order to produce recycled aggregates.
NASA Astrophysics Data System (ADS)
Geantă, V.; Cherecheș, T.; Lixandru, P.; Voiculescu, I.; Ștefănoiu, R.; Dragnea, D.; Zecheru, T.; Matache, L.
2017-06-01
Due to excellent mechanical properties, high entropy alloys from the system AlxCrFeCoNi can be used successfully to create composite structures containing both metallic and ceramic plates, which resists at dynamic load during high speeds impact (like projectiles, explosion). The paper presents four different composite structures made from a combination of metallic materials and ceramics plates: duralumin-ceramics, duralumin-ceramics-HEA, HEA-ceramics-HEA, HEA-ceramics-duralumin. Numerical simulation of impact behavior of the composite structures was performed by virtual methods, taking into account the mechanical properties of both materials. The best results were obtained using composite structures HEA-ceramics-HEA, HEA-ceramics-duralumin.
Sharaf, J M; Hamideen, M S
2013-10-01
This study is undertaken to determine the activity concentration of (226)Ra, (232)Th and (40)K in samples of commonly used building materials in Jordan. Samples of seven different materials were collected from construction sites and local agencies supplying raw construction materials and analyzed using a HPGe gamma-ray spectrometer, taking into account self-attenuation in bulk samples. The average specific activity concentrations of (226)Ra, (232)Th, and (40)K ranged from 2.84 to 41.52, 0.78 to 58.42. and 3.74 to 897 Bq/kg, respectively. All the samples had radium equivalent activities well below the limit of 370 Bq/kg set by the Organization for Economic Cooperation and Development (OECD, 1979). External and internal hazard indices, absorbed dose and annual effective dose rate associated with the radionuclides of interest were calculated and compared with the international legislation and guidance. In general, most of the activities did not exceed the recommended international limits, except for granite and ceramic samples which are usually used as secondary building materials in Jordan. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pressurized heat treatment of glass ceramic
Kramer, D.P.
1984-04-19
A method of producing a glass-ceramic having a specified thermal expansion value is disclosed. The method includes the step of pressurizing the parent glass material to a predetermined pressure during heat treatment so that the glass-ceramic produced has a specified thermal expansion value. Preferably, the glass-ceramic material is isostatically pressed. A method for forming a strong glass-ceramic to metal seal is also disclosed in which the glass-ceramic is fabricated to have a thermal expansion value equal to that of the metal. The determination of the thermal expansion value of a parent glass material placed in a high-temperature environment is also used to determine the pressure in the environment.
Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating
Meek, T.T.; Blake, R.D.
1987-09-22
A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate. 2 figs.
Pressurized heat treatment of glass-ceramic to control thermal expansion
Kramer, Daniel P.
1985-01-01
A method of producing a glass-ceramic having a specified thermal expansion value is disclosed. The method includes the step of pressurizing the parent glass material to a predetermined pressure during heat treatment so that the glass-ceramic produced has a specified thermal expansion value. Preferably, the glass-ceramic material is isostatically pressed. A method for forming a strong glass-ceramic to metal seal is also disclosed in which the glass-ceramic is fabricated to have a thermal expansion value equal to that of the metal. The determination of the thermal expansion value of a parent glass material placed in a high-temperature environment is also used to determine the pressure in the environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-09-01
A five-year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applicationsmore » in these engines.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-03-01
An assessment of needs was completed, and a five-year project plan was developed with extensive input from private industry. Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barriermore » and wear applications in these engines.« less
NASA Astrophysics Data System (ADS)
Goodman, William A.
2017-09-01
This paper provides a review of advances in 3D printing and additive manufacturing of ceramic and ceramic matrix composites for optical applications. Dr. Goodman has been pioneering additive manufacturing of ceramic matrix composites since 2008. He is the inventor of HoneySiC material, a zero-CTE additively manufactured carbon fiber reinforced silicon carbide ceramic matrix composite, briefly mentioned here. More recently Dr. Goodman has turned his attention to the direct printing of ceramics for optical applications via various techniques including slurry and laser sintering of silicon carbide and other ceramic materials.
Nickel stabilization efficiency of aluminate and ferrite spinels and their leaching behavior.
Shih, Kaimin; White, Tim; Leckie, James O
2006-09-01
Stabilization efficiencies of spinel-based construction ceramics incorporating simulated nickel-laden waste sludge were evaluated and the leaching behavior of products investigated. To simulate the process of immobilization, nickel oxide was mixed alternatively with gamma-alumina, kaolinite, and hematite. These tailoring precursors are commonly used to prepare construction ceramics in the building industry. After sintering from 600 to 1480 degrees C at 3 h, the nickel aluminate spinel (NiAl204) and the nickel ferrite spinel (NiFe204) crystallized with the ferrite spinel formation commencing about 200-300 degrees C lower than for the aluminate spinel. All the precursors showed high nickel incorporation efficiencies when sintered at temperatures greater than 1250 degrees C. Prolonged leach tests (up to 26 days) of product phases were carried out using a pH 2.9 acetic acid solution, and the spinel products were invariably superior to nickel oxide for immobilization over longer leaching periods. The leaching behavior of NiAl2O4 was consistent with congruent dissolution without significant reprecipitation, but for NiFe2O4, ferric hydroxide precipitation was evident. The major leaching reaction of sintered kaolinite-based products was the dissolution of cristobalite rather than NiAl2O4. This study demonstrated the feasibility of transforming nickel-laden sludge into spinel phases with the use of readily available and inexpensive ceramic raw materials, and the successful reduction of metal mobility under acidic environments.
Ceramic fiber-reinforced monoclinic celsian phase glass-ceramic matrix composite material
NASA Technical Reports Server (NTRS)
Bansal, Narottam P. (Inventor); Dicarlo, James A. (Inventor)
1994-01-01
A hyridopolysilazane-derived ceramic fiber reinforced monoclinic celsian phase barium aluminum silicate glass-ceramic matrix composite material is prepared by ball-milling an aqueous slurry of BAS glass powder and fine monoclinic celsian seeds. The fibers improve the mechanical strength and fracture toughness and with the matrix provide superior dielectric properties.
Controlled removal of ceramic surfaces with combination of ions implantation and ultrasonic energy
Boatner, Lynn A.; Rankin, Janet; Thevenard, Paul; Romana, Laurence J.
1995-01-01
A method for tailoring or patterning the surface of ceramic articles is provided by implanting ions to predetermined depth into the ceramic material at a selected surface location with the ions being implanted at a fluence and energy adequate to damage the lattice structure of the ceramic material for bi-axially straining near-surface regions of the ceramic material to the predetermined depth. The resulting metastable near-surface regions of the ceramic material are then contacted with energy pulses from collapsing, ultrasonically-generated cavitation bubbles in a liquid medium for removing to a selected depth the ion-damaged near-surface regions containing the bi-axially strained lattice structure from the ceramic body. Additional patterning of the selected surface location on the ceramic body is provided by implanting a high fluence of high-energy, relatively-light ions at selected surface sites for relaxing the bi-axial strain in the near-surface regions defined by these sites and thereby preventing the removal of such ion-implanted sites by the energy pulses from the collapsing ultrasonic cavitation bubbles.
Modified PZT ceramics as a material that can be used in micromechatronics
NASA Astrophysics Data System (ADS)
Zachariasz, Radosław; Bochenek, Dariusz
2015-11-01
Results on investigations of the PZT type ceramics with the following chemical composition: Pb0.94Sr0.06(Zr0.50 Ti0.50)0.99 Cr0.01O3 (PSZTC) which belongs to a group of multicomponent ceramic materials obtained on basis of the PZT type solid solution, are presented in this work. Ceramics PSZTC was obtained by a free sintering method under the following conditions: Tsint = 1250 °C and tsint = 2 h. Ceramic compacts of specimens for the sintering process were made from the ceramic mass consisting of a mixture of the synthesized PSZTC powder and 3% polyvinyl alcohol while wet. The PSZTC ceramic specimens were subjected to poling by two methods: low temperature and high temperature. On the basis of the examinations made it has been found that the ceramics obtained belongs to ferroelectric-hard materials and that is why it may be used to build resonators, filters and ultrasonic transducers. Contribution to the Topical Issue "Materials for Dielectric Applications" edited by Maciej Jaroszewski and Sabu Thomas.
Manufacture of a ceramic paper for art applications
NASA Astrophysics Data System (ADS)
Dölle, K.; Honig, A.; Piatkowski, J.; Kuempel, C.
2018-01-01
Ceramic paper products are mostly used as high temperature ceramic insulation products. They offer an effective solution for most demanding heat management and insulation applications. The objective for this research project was to create a ceramic paper like product that combines the advantages of paper fibers, ceramic filler, and a clay product into one product, which can be produced on a continuous base with a paper machine. The produced ceramic paper product had a ceramic filler level between 59.68% and 78.8% with a basis weight between 322.9 g/m² and 693.7 g/m², and a final moisture content of 58.6% to 44.7% respectively. The wooden fiber served as a support medium for the ceramic filler material during production on the paper machine and during the conversion process into art pieces. During firing in a kiln, the fiber material combusted and the ceramic filler material mixture acts as common pottery clay, holding the desired shape of the art pieces produced.
In vivo biofilm formation on different dental ceramics.
Bremer, Felicia; Grade, Sebastian; Kohorst, Philipp; Stiesch, Meike
2011-01-01
To investigate the formation of oral biofilm on various dental ceramics in vivo. Five different ceramic materials were included: a veneering glass- ceramic, a lithium disilicate glass-ceramic, a yttrium-stabilized zirconia (Y-TZP), a hot isostatically pressed (HIP) Y-TZP ceramic, and an HIP Y-TZP ceramic with 25% alumina. Test specimens were attached to individually designed acrylic appliances; five volunteers wore these appliances for 24 hours in the maxillary arch. After intraoral exposure, the samples were removed from the appliances and the adhering biofilms vitally stained. Then, the two-dimensional surface coating and thickness of the adhering biofilm were determined by confocal laser scanning microscopy. Statistical analysis was performed using one-way ANOVA with the level of significance set at .05. Significant differences (P < .001) in the bacterial surface coating and in the thickness of the biofilm were found between the various ceramic materials. The lowest surface coating (19.0%) and biofilm thickness (1.9 Μm) were determined on the HIP Y-TZP ceramic; the highest mean values were identified with the lithium disilicate glass-ceramic (46.8%, 12.6 Μm). Biofilm formation on various types of dental ceramics differed significantly; in particular, zirconia exhibited low plaque accumulation. In addition to its high strength, low plaque accumulation makes zirconia a promising material for various indications (including implant abutments and telescopic crowns) that previously were met only with metal-based materials.
Guazzato, Massimiliano; Albakry, Mohammad; Ringer, Simon P; Swain, Michael V
2004-06-01
The present study, divided into two parts, aimed to compare the strength, fracture toughness and microstructure of a range of all-ceramic materials. In part I, three hot-pressed glass-ceramics (IPS-Empress, Empress 2 and a new experimental ceramic) and alumina glass-infiltrated ceramics (In-Ceram Alumina), processed by both slip casting and dry pressing, were compared. Tensile strength was appraised on 10 bar-shaped specimens (20 x 4 x 1.2 mm3) for each material with the three-point bending method; the fracture toughness was measured from 20 specimens (20 x 4 x 2 mm3), by using the indentation strength technique. Data were compared with ANOVA and the Sheffé post hoc test (p = 0.05). The volume fraction of each phase, the dimensions and shapes of the grains, porosity and the crack patterns were investigated using SEM. The average and standard deviation in strength (MPa) and fracture toughness (MPa m(1/2)) were: IPS-Empress 106(17)1, 1.2(0.14)1; Empress 2 306(29)2, 2.9(0.51)2, new experimental ceramic 303(49)2, 3.0(0.65)2, In-Ceram Alumina dry-pressed 440(50)2, 3.6(0.26)2, In-Ceram Alumina slip 594(52)3, 4.4(0.48)3. Values with the same superscript number showed no significant statistical difference. Microscopy revealed the relationship between the glass matrix and the crystalline phase and the characteristics of the latter were correlated to the strengthening and toughening mechanisms of these glass-ceramics. The mechanical properties and microstructure of core materials have been advocated as crucial to the clinical long-term performance of all-ceramic dental restorations. This investigation provides the clinician with data regarding strength, fracture toughness and microstructure of a broad range of current materials. Copyright 2003 Academy of Dental Materials
Interdisciplinary research concerning the nature and properties of ceramic materials
NASA Technical Reports Server (NTRS)
1975-01-01
The nature and properties of ceramic materials as they relate to solid state physics and metallurgy are studied. Special attention was given to the applications of ceramics to NASA programs and national needs.
Ebert, Thomas; Elsner, Laura; Hirschfelder, Ursula; Hanke, Sebastian
2016-03-01
The purpose of this work was to analyze surfaces consisting of different restorative materials for shear bond strength (SBS) and failure patterns of metal and ceramic brackets. Bonding involved the use of a universal primer (Monobond® Plus, Ivoclar Vivadent). Six restorative materials were tested, including one composite resin (Clearfil Majesty™ Posterior, Kuraray Noritake Dental), one glass-ceramic material (IPS Empress® Esthetic, Ivoclar Vivadent), one oxide-ceramic material (CORiTEC Zr transpa Disc, imes-icore), two base-metal alloys (remanium® star, Dentaurum; Colado® CC, Ivoclar Vivadent), and one palladium-based alloy (Callisto® 75 Pd, Ivoclar Vivadent). Bovine incisors served as controls. Both metal and ceramic brackets (discovery®/discovery® pearl; Dentaurum) were bonded to the restorative surfaces after sandblasting and pretreatment with Monobond® Plus. A setup modified from DIN 13990-2 was used for SBS testing and adhesive remnant index (ARI)-based analysis of failure patterns. The metal brackets showed the highest mean SBS values on the glass-ceramic material (68.61 N/mm(2)) and the composite resin (67.58 N/mm(2)) and the lowest mean SBS on one of the base-metal alloys (Colado® CC; 14.01 N/mm(2)). The ceramic brackets showed the highest mean SBS on the glass-ceramic material (63.36 N/mm(2)) and the lowest mean SBS on the palladium-based alloy (38.48 N/mm(2)). Significant differences between the metal and ceramic brackets were observed in terms of both SBS values and ARI scores (p < 0.05). Under both bracket types, fractures of the composite-resin and the glass-ceramic samples were observed upon debonding. Opaque restorative materials under metal brackets were found to involve undercuring of the adhesive. Monobond® Plus succeeded in generating high bond strengths of both bracket types on all restorative surfaces. Given our observations of cohesive fracture (including cases of surface avulsion) of the composite-resin and the glass-ceramic samples, we recommend against using these material combinations in clinical practice.
Composite metal foil and ceramic fabric materials
Webb, B.J.; Antoniak, Z.I.; Prater, J.T.; DeSteese, J.G.
1992-03-24
The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed. 11 figs.
NASA Technical Reports Server (NTRS)
1978-01-01
An educational development and supportive research program on ceramic materials established to advance design methodology, improve materials, and develop engineers knowledgable in design with and use of high performance ceramic materials is described. Emphasis is on the structures and related materials problems in a ceramic turbine engine, but applications in coal gasification, solar conversion, and magnetohydrodynamic technologies are considered. Progress of various research projects in the areas of new materials, processing, characterization, and nondestructive testing is reported. Fracture toughness determination, extended X-ray absorption fine structure measurements, and grain boundary effects in beta-alumina are among the topics covered.
Novel Attrition-Resistant Fischer Tropsch Catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weast, Logan, E.; Staats, William, R.
2009-05-01
There is a strong national interest in the Fischer-Tropsch synthesis process because it offers the possibility of making liquid hydrocarbon fuels from reformed natural gas or coal and biomass gasification products. This project explored a new approach that had been developed to produce active, attrition-resistant Fischer-Tropsch catalysts that are based on glass-ceramic materials and technology. This novel approach represented a promising solution to the problem of reducing or eliminating catalyst attrition and maximizing catalytic activity, thus reducing costs. The technical objective of the Phase I work was to demonstrate that glass-ceramic based catalytic materials for Fischer-Tropsch synthesis have resistance tomore » catalytic deactivation and reduction of particle size superior to traditional supported Fischer-Tropsch catalyst materials. Additionally, these novel glass-ceramic-based materials were expected to exhibit catalytic activity similar to the traditional materials. If successfully developed, the attrition-resistant Fischer-Tropsch catalyst materials would be expected to result in significant technical, economic, and social benefits for both producers and public consumers of Fischer-Tropsch products such as liquid fuels from coal or biomass gasification. This program demonstrated the anticipated high attrition resistance of the glass-ceramic materials. However, the observed catalytic activity of the materials was not sufficient to justify further development at this time. Additional testing documented that a lack of pore volume in the glass-ceramic materials limited the amount of surface area available for catalysis and consequently limited catalytic activity. However, previous work on glass-ceramic catalysts to promote other reactions demonstrated that commercial levels of activity can be achieved, at least for those reactions. Therefore, we recommend that glass-ceramic materials be considered again as potential Fischer-Tropsch catalysts if it can be demonstrated that materials with adequate pore volume can be produced. During the attrition resistance tests, it was learned that the glass-ceramic materials are very abrasive. Attention should be paid in any further developmental efforts to the potential for these hard, abrasive materials to damage reactors.« less
Corundum ceramic materials modified with silica nanopowders: structure and mechanical properties
NASA Astrophysics Data System (ADS)
Kostytsyn, M. A.; Muratov, D. S.; Lysov, D. V.; Chuprunov, K. O.; Yudin, A. G.; Leybo, D. V.
2016-01-01
Filtering elements are often used in the metallurgy of rare earth metals. Corundum ceramic is one of the most suitable materials for this purpose. The process of formation and the properties of nanomodified ceramic materials, which are proposed as filtering materials with tunable effective porosity, are described. A silica nanopowder is used as a porosity-increasing agent. Vortex layer apparatus is used for mixing of precursor materials. The obtained results show that nanomodification with the vortex layer apparatus using 0.04 wt. % silica nanopowder as a modifying agent leads to an increase in the compression strength of corundum ceramic by the factor of 1.5.
31 CFR 560.407 - Transactions related to Iranian-origin goods.
Code of Federal Regulations, 2011 CFR
2011-07-01
... from third countries of goods containing Iranian-origin raw materials or components is not prohibited if those raw materials or components have been incorporated into manufactured products or... Iranian-origin raw materials or components are not prohibited if those raw materials or components have...
NASA Glenn Research Center UEET (Ultra-Efficient Engine Technology) Program: Agenda and Abstracts
NASA Technical Reports Server (NTRS)
Manthey, Lri
2001-01-01
Topics discussed include: UEET Overview; Technology Benefits; Emissions Overview; P&W Low Emissions Combustor Development; GE Low Emissions Combustor Development; Rolls-Royce Low Emissions Combustor Development; Honeywell Low Emissions Combustor Development; NASA Multipoint LDI Development; Stanford Activities In Concepts for Advanced Gas Turbine Combustors; Large Eddy Simulation (LES) of Gas Turbine Combustion; NASA National Combustion Code Simulations; Materials Overview; Thermal Barrier Coatings for Airfoil Applications; Disk Alloy Development; Turbine Blade Alloy; Ceramic Matrix Composite (CMC) Materials Development; Ceramic Matrix Composite (CMC) Materials Characterization; Environmental Barrier Coatings (EBC) for Ceramic Matrix Composite (CMC) Materials; Ceramic Matrix Composite Vane Rig Testing and Design; Ultra-High Temperature Ceramic (UHTC) Development; Lightweight Structures; NPARC Alliance; Technology Transfer and Commercialization; and Turbomachinery Overview; etc.
Process for making a ceramic composition for immobilization of actinides
Ebbinghaus, Bartley B.; Van Konynenburg, Richard A.; Vance, Eric R.; Stewart, Martin W.; Walls, Philip A.; Brummond, William Allen; Armantrout, Guy A.; Herman, Connie Cicero; Hobson, Beverly F.; Herman, David Thomas; Curtis, Paul G.; Farmer, Joseph
2001-01-01
Disclosed is a process for making a ceramic composition for the immobilization of actinides, particularly uranium and plutonium. The ceramic is a titanate material comprising pyrochlore, brannerite and rutile. The process comprises oxidizing the actinides, milling the oxides to a powder, blending them with ceramic precursors, cold pressing the blend and sintering the pressed material.
A novel biphasic calcium phosphate derived from fish otoliths
NASA Astrophysics Data System (ADS)
Montañez-Supelano, N. D.; Sandoval-Amador, A.; Estupiñan-Durán, H. A.; Y Peña-Ballesteros, D.
2017-12-01
Calcium phosphates are bioceramics that have been widely used as bone substitutes because they encourage the formation of bone on their surface and can improve the healing of the bone. Hydroxyapatite HA (calcium/phosphorus ratio of 1.67) and tricalcium phosphate TCP (calcium/phosphorus ratio of 1.50) are the most common calcium phosphates. Natural materials have begun to be tested to make HA or TCP such as shells of cardiidae (family of mollusks) and eggshells. The calcium phosphate obtained has a high ability to precipitate apatite. In this work, the mixed phase ceramic of beta-Tri-calcium phosphate / hydroxyapatite (β-TCP/HA) was synthesized by aqueous precipitation from fish otoliths, which are monomineralic species composed of aragonite. Otoliths of the specie Plagioscion squamosissimus, commonly called the river croaker, were used. Techniques such as DRX, Raman spectroscopy and SEM-EDS were used to characterize the raw material and the obtained material. X-ray diffraction analysis revealed the presence of two crystalline phases of calcium phosphates with 86.2% crystallinity. SEM micrographs showed agglomeration of particles with porous structure and submicron particle sizes.
LaHaye, Paul G.; Rahman, Faress H.; Lebeau, Thomas P. E.; Severin, Barbara K.
1998-01-01
A tube containment system. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture.
LaHaye, P.G.; Rahman, F.H.; Lebeau, T.P.; Severin, B.K.
1998-06-16
A tube containment system is disclosed. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture. 6 figs.
Protective coating for ceramic materials
NASA Technical Reports Server (NTRS)
Kourtides, Demetrius A. (Inventor); Churchward, Rex A. (Inventor); Lowe, David M. (Inventor)
1994-01-01
A protective coating for ceramic materials such as those made of silicon carbide, aluminum oxide, zirconium oxide, aluminoborosilicate and silicon dioxide, and a thermal control structure comprising a ceramic material having coated thereon the protective coating. The protective coating contains, in admixture, silicon dioxide powder, colloidal silicon dioxide, water, and one or more emittance agents selected from silicon tetraboride, silicon hexaboride, silicon carbide, molybdenum disilicide, tungsten disilicide and zirconium diboride. In another aspect, the protective coating is coated on a flexible ceramic fabric which is the outer cover of a composite insulation. In yet another aspect, a metallic foil is bonded to the outer surface of a ceramic fabric outer cover of a composite insulation via the protective coating. A primary application of this invention is as a protective coating for ceramic materials used in a heat shield for space vehicles subjected to very high aero-convective heating environments.
A Viscoplastic Constitutive Theory for Monolithic Ceramic Materials. Series 1
NASA Technical Reports Server (NTRS)
Janosik, Lesley A.; Duffy, Stephen F.
1997-01-01
With increasing use of ceramic materials in high temperature structural applications such as advanced heat engine components, the need arises to accurately predict thermomechanical behavior. This paper, which is the first of two in a series, will focus on inelastic deformation behavior associated with these service conditions by providing an overview of a viscoplastic constitutive model that accounts for time-dependent hereditary material deformation (e.g., creep, stress relaxation, etc.) in monolithic structural ceramics. Early work in the field of metal plasticity indicated that inelastic deformations are essentially unaffected by hydrostatic stress. This is not the case, however, for ceramic-based material systems, unless the ceramic is fully dense. The theory presented here allows for fully dense material behavior as a limiting case. In addition, ceramic materials exhibit different time-dependent behavior in tension and compression. Thus, inelastic deformation models for ceramics must be constructed in a fashion that admits both sensitivity to hydrostatic stress and differing behavior in tension and compression. A number of constitutive theories for materials that exhibit sensitivity to the hydrostatic component of stress have been proposed that characterize deformation using time-independent classical plasticity as a foundation. However, none of these theories allow different behavior in tension and compression. In addition, these theories are somewhat lacking in that they are unable to capture creep, relaxation, and rate-sensitive phenomena exhibited by ceramic materials at high temperature. When subjected to elevated service temperatures, ceramic materials exhibit complex thermomechanical behavior that is inherently time-dependent, and hereditary in the sense that current behavior depends not only on current conditions, but also on thermo-mechanical history. The objective of this work is to present the formulation of a macroscopic continuum theory that captures these time-dependent phenomena. Specifically, the overview contained in this paper focuses on the multiaxial derivation of the constitutive model, and examines the scalar threshold function and its attending geometrical implications.
31 CFR 560.407 - Transactions related to Iranian-origin goods.
Code of Federal Regulations, 2010 CFR
2010-07-01
... United States from third countries of goods containing Iranian-origin raw materials or components is not prohibited if those raw materials or components have been incorporated into manufactured products or... Iranian-origin raw materials or components are not prohibited if those raw materials or components have...
Porous ceramic scaffolds with complex architectures
NASA Astrophysics Data System (ADS)
Munch, E.; Franco, J.; Deville, S.; Hunger, P.; Saiz, E.; Tomsia, A. P.
2008-06-01
This work compares two novel techniques for the fabrication of ceramic scaffolds for bone tissue engineering with complex porosity: robocasting and freeze casting. Both techniques are based on the preparation of concentrated ceramic suspensions with suitable properties for the process. In robocasting, the computer-guided deposition of the suspensions is used to build porous materials with designed three dimensional geometries and microstructures. Freeze casting uses ice crystals as a template to form porous lamellar ceramic materials. Preliminary results on the compressive strengths of the materials are also reported.
Advanced Ceramics for NASA's Current and Future Needs
NASA Technical Reports Server (NTRS)
Jaskowiak, Martha H.
2006-01-01
Ceramic composites and monolithics are widely recognized by NASA as enabling materials for a variety of aerospace applications. Compared to traditional materials, ceramic materials offer higher specific strength which can enable lighter weight vehicle and engine concepts, increased payloads, and increased operational margins. Additionally, the higher temperature capabilities of these materials allows for increased operating temperatures within the engine and on the vehicle surfaces which can lead to improved engine efficiency and vehicle performance. To meet the requirements of the next generation of both rocket and air-breathing engines, NASA is actively pursuing the development and maturation of a variety of ceramic materials. Anticipated applications for carbide, nitride and oxide-based ceramics will be presented. The current status of these materials and needs for future goals will be outlined. NASA also understands the importance of teaming with other government agencies and industry to optimize these materials and advance them to the level of maturation needed for eventual vehicle and engine demonstrations. A number of successful partnering efforts with NASA and industry will be highlighted.
Rajamannan, B; Viruthagiri, G; Suresh Jawahar, K
2013-10-01
The activity concentrations of radium, thorium and potassium can vary from material to material and they should be measured as the radiation is hazardous for human health. Thus, studies have been planned to obtain the radioactivity of ceramic building materials used in Cuddalore District, Tamilnadu, India. The radioactivity of some ceramic materials used in this region has been measured using a gamma-ray spectrometry, which contains an NaI(Tl) detector connected to multichannel analyzer. The specific activities of (226)Ra, (232)Th and (40)K, from the selected ceramic building materials, were in the range of 9.89-30.75, 24.68-70.4, 117.19-415.83 Bq kg(-1), respectively. The radium equivalent activity, absorbed gamma dose rate (D) and annual effective dose rate associated with the natural radionuclides are calculated to assess the radiation hazards of the natural radioactivity in the ceramic building materials. It was found that none of the results exceeds the recommended limit value.
Laser Surface Treatment of Sintered Alumina
NASA Astrophysics Data System (ADS)
Hagemann, R.; Noelke, C.; Kaierle, S.; Wesling, V.
Sintered alumina ceramics are used as refractory materials for industrial aluminum furnaces. In this environment the ceramic surface is in permanent contact with molten aluminum resulting in deposition of oxidic material on its surface. Consequently, a lower volume capacity as well as thermal efficiency of the furnaces follows. To reduce oxidic adherence of the ceramic material, two laser-based surface treatment processes were investigated: a powder- based single-step laser cladding and a laser surface remelting. Main objective is to achieve an improved surface quality of the ceramic material considering the industrial requirements as a high process speed.
Trends of microwave dielectric materials for antenna application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sulong, T. A. T., E-mail: tuanamirahtuansulong@gmail.com; Osman, R. A. M., E-mail: rozana@unimap.edu.my; Idris, M. S., E-mail: sobri@unimap.edu.my
Rapid development of a modern microwave communication system requires a high quality microwave dielectric ceramic material to be used as mobile and satellite communication. High permittivity of dielectric ceramics leads to fabrication of compact device for electronic components. Dielectric ceramics which used for microwave applications required three important parameters such as high or appropriate permittivity (ε{sub r}), high quality factor (Q {sub f} ≥ 5000 GH z) and good temperature coefficient of resonant frequency (τ{sub f}). This paper review of various dielectric ceramic materials used as microwave dielectric materials and related parameters for antenna applications.
Resources for a lunar base: Rocks, minerals, and soil of the Moon
NASA Technical Reports Server (NTRS)
Taylor, Lawrence A.
1992-01-01
The rocks and minerals of the Moon will be included among the raw materials used to construct a lunar base. The lunar regolith, the fragmental material present on the surface of the Moon, is composed mostly of disaggregated rocks and minerals, but also includes glassy fragments fused together by meteorite impacts. The finer fraction of the regolith (i.e., less than 1 cm) is informally referred to as soil. The soil is probably the most important portion of the regolith for use at a lunar base. For example, soil can be used as insulation against cosmic rays, for lunar ceramics and abodes, or for growing plants. The soil contains abundant solar-wind-implanted elements as well as various minerals, particularly oxide phases, that are of potential economic importance. For example, these components of the soil are sources of oxygen and hydrogen for rocket fuel, helium for nuclear energy, and metals such as Fe, Al, Si, and Ti.
Effect of ozone on the performance of a hybrid ceramic membrane-biological activated carbon process.
Guo, Jianning; Hu, Jiangyong; Tao, Yi; Zhu, Jia; Zhang, Xihui
2014-04-01
Two hybrid processes including ozonation-ceramic membrane-biological activated carbon (BAC) (Process A) and ceramic membrane-BAC (Process B) were compared to treat polluted raw water. The performance of hybrid processes was evaluated with the removal efficiencies of turbidity, ammonia and organic matter. The results indicated that more than 99% of particle count was removed by both hybrid processes and ozonation had no significant effect on its removal. BAC filtration greatly improved the removal of ammonia. Increasing the dissolved oxygen to 30.0 mg/L could lead to a removal of ammonia with concentrations as high as 7.80 mg/L and 8.69 mg/L for Processes A and B, respectively. The average removal efficiencies of total organic carbon and ultraviolet absorbance at 254 nm (UV254, a parameter indicating organic matter with aromatic structure) were 49% and 52% for Process A, 51% and 48% for Process B, respectively. Some organic matter was oxidized by ozone and this resulted in reduced membrane fouling and increased membrane flux by 25%-30%. However, pre-ozonation altered the components of the raw water and affected the microorganisms in the BAC, which may impact the removals of organic matter and nitrite negatively. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
The precursors effects on biomimetic hydroxyapatite ceramic powders.
Yoruç, Afife Binnaz Hazar; Aydınoğlu, Aysu
2017-06-01
In this study, effects of the starting material on chemical, physical, and biological properties of biomimetic hydroxyapatite ceramic powders (BHA) were investigated. Characterization and chemical analysis of BHA powders were performed by using XRD, FT-IR, and ICP-AES. Microstructural features such as size and morphology of the resulting BHA powders were characterized by using BET, nano particle sizer, pycnometer, and SEM. Additionally, biological properties of the BHA ceramic powders were also investigated by using water-soluble tetrazolium salts test (WST-1). According to the chemical analysis of BHA ceramic powders, chemical structures of ceramics which are prepared under different conditions and by using different starting materials show differences. Ceramic powders which are produced at 80°C are mainly composed of hydroxyapatite, dental hydroxyapatite (contain Na and Mg elements in addition to Ca), and calcium phosphate sulfide. However, these structures are altered at high temperatures such as 900°C depending on the features of starting materials and form various calcium phosphate ceramics and/or their mixtures such as Na-Mg-hydroxyapatite, hydroxyapatite, Mg-Whitlockit, and chloroapatite. In vitro cytotoxicity studies showed that amorphous ceramics produced at 80°C and ceramics containing chloroapatite structure as main or secondary phases were found to be extremely cytotoxic. Furthermore, cell culture studies showed that highly crystalline pure hydroxyapatite structures were extremely cytotoxic due to their high crystallinity values. Consequently, the current study indicates that the selection of starting materials which can be used in the production of calcium phosphate ceramics is very important. It is possible to produce calcium phosphate ceramics which have sufficient biocompatibility at physiological pH values and by using appropriate starting materials. Copyright © 2017 Elsevier B.V. All rights reserved.
Biaxial flexural strength of Turkom-Cera core compared to two other all-ceramic systems.
Al-Makramani, Bandar Mohammed Abdullah; Razak, Abdul Aziz Abdul; Abu-Hassan, Mohamed Ibrahim
2010-12-01
Advances in all-ceramic systems have established predictable means of providing metal-free aesthetic and biocompatible materials. These materials must have sufficient strength to be a practical treatment alternative for the fabrication of crowns and fixed partial dentures. The aim of this study was to compare the biaxial flexural strength of three core ceramic materials. Three groups of 10 disc-shaped specimens (16 mm diameter x 1.2 mm thickness - in accordance with ISO-6872, 1995) were made from the following ceramic materials: Turkom-Cera Fused Alumina [(Turkom-Ceramic (M) Sdn Bhd, Puchong, Selangor, Malaysia)], In-Ceram (Vita Zahnfabrik, Bad Säckingen, Baden-Württemberg, Germany) and Vitadur-N (Vita Zahnfabrik, Bad Säckingen, Baden-Württemberg, Germany), which were sintered according to the manufacturer's recommendations. The specimens were subjected to biaxial flexural strength test in an universal testing machine at a crosshead speed of 0.5 mm/min. The definitive fracture load was recorded for each specimen and the biaxial flexural strength was calculated from an equation in accordance with ISO-6872. The mean biaxial flexural strength values were: Turkom-Cera: 506.8 ± 87.01 MPa, In-Ceram: 347.4 ± 28.83 MPa and Vitadur-N: 128.7 ± 12.72 MPa. The results were analyzed by the Levene's test and Dunnett's T3 post-hoc test (SPSS software V11.5.0 for Windows, SPSS, Chicago, IL, USA ) at a preset significance level of 5% because of unequal group variances (P<0.001). There was statistically significant difference between the three core ceramics (P<0.05). Turkom-Cera showed the highest biaxial flexural strength, followed by In-Ceram and Vitadur-N. Turkom-Cera core had significantly higher flexural strength than In-Ceram and Vitadur-N ceramic core materials.
Method of manufacturing ceramic shaped articles
NASA Technical Reports Server (NTRS)
Inoue, K.
1983-01-01
A method of manufacturing ceramic shaped articles, wherein tapes of ceramic powder material in mixture with a binder material and special additives are shaped and then articles are stamped out from said tapes and sintered in a sintering furnace is described.
Sagsoz, O; Yildiz, M; Hojjat Ghahramanzadeh, A S L; Alsaran, A
2018-03-01
The purpose of this study was to examine the fracture strength and surface microhardness of computer-aided design/computer-aided manufacturing (CAD/CAM) materials in vitro. Mesial-occlusal-distal inlays were made from five different CAD/CAM materials (feldspathic ceramic, CEREC blocs; leucite-reinforced ceramic, IPS Empress CAD; resin nano ceramic, 3M ESPE Lava Ultimate; hybrid ceramic, VITA Enamic; and lithium disilicate ceramic, IPS e.max CAD) using CEREC 4 CAD/CAM system. Samples were adhesively cemented to metal analogs with a resin cement (3M ESPE, U200). The fracture tests were carried out with a universal testing machine. Furthermore, five samples were prepared from each CAD/CAM material for micro-Vickers hardness test. Data were analyzed with statistics software SPSS 20 (IBM Corp., New York, USA). Fracture strength of lithium disilicate inlays (3949 N) was found to be higher than other ceramic inlays (P < 0.05). There was no difference between other inlays statistically (P > 0.05). The highest micro-Vickers hardness was measured in lithium disilicate samples, and the lowest was in resin nano ceramic samples. Fracture strength results demonstrate that inlays can withstand the forces in the mouth. Statistical results showed that fracture strength and micro-Vickers hardness of feldspathic ceramic, leucite-reinforced ceramic, and lithium disilicate ceramic materials had a positive correlation.
Solar synthesis of advanced materials: A solar industrial program initiative
NASA Astrophysics Data System (ADS)
Lewandowski, A.
1992-06-01
This is an initiative for accelerating the use of solar energy in the advanced materials manufacturing industry in the United States. The initiative will be based on government-industry collaborations that will develop the technology and help US industry compete in the rapidly expanding global advanced materials marketplace. Breakthroughs in solar technology over the last 5 years have created exceptional new tools for developing advanced materials. Concentrated sunlight from solar furnaces can produce intensities that approach those on the surface of the sun and can generate temperatures well over 2000 C. Very thin layers of illuminated surfaces can be driven to remarkably high temperatures in a fraction of a second. Concentrated solar energy can be delivered over large areas, allowing for rapid processing and high production rates. By using this technology, researchers are transforming low-cost raw materials into high-performance products. Solar synthesis of advanced materials uses bulk materials and energy more efficiently, lowers processing costs, and reduces the need for strategic materials -- all with a technology that does not harm the environment. The Solar Industrial Program has built a unique, world class solar furnace at NREL to help meet the growing need for applied research in advanced materials. Many new advanced materials processes have been successfully demonstrated in this facility, including metalorganic deposition, ceramic powders, diamond-like carbon materials, rapid heat treating, and cladding (hard coating).
Dental ceramics: a review of new materials and processing methods.
Silva, Lucas Hian da; Lima, Erick de; Miranda, Ranulfo Benedito de Paula; Favero, Stéphanie Soares; Lohbauer, Ulrich; Cesar, Paulo Francisco
2017-08-28
The evolution of computerized systems for the production of dental restorations associated to the development of novel microstructures for ceramic materials has caused an important change in the clinical workflow for dentists and technicians, as well as in the treatment options offered to patients. New microstructures have also been developed by the industry in order to offer ceramic and composite materials with optimized properties, i.e., good mechanical properties, appropriate wear behavior and acceptable aesthetic characteristics. The objective of this literature review is to discuss the main advantages and disadvantages of the new ceramic systems and processing methods. The manuscript is divided in five parts: I) monolithic zirconia restorations; II) multilayered dental prostheses; III) new glass-ceramics; IV) polymer infiltrated ceramics; and V) novel processing technologies. Dental ceramics and processing technologies have evolved significantly in the past ten years, with most of the evolution being related to new microstructures and CAD-CAM methods. In addition, a trend towards the use of monolithic restorations has changed the way clinicians produce all-ceramic dental prostheses, since the more aesthetic multilayered restorations unfortunately are more prone to chipping or delamination. Composite materials processed via CAD-CAM have become an interesting option, as they have intermediate properties between ceramics and polymers and are more easily milled and polished.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1992-01-01
ATTAP activities during the past year included test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Significant technical challenges remain, but all areas exhibited progress. Test-bed engine design and development included engine mechanical design, combustion system design, alternate aerodynamic designs of gasifier scrolls, and engine system integration aimed at upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1372 C (2500 F) structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities completed include the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, ceramic combustors, the ceramic regenerator disk, the ceramic power turbine rotors, and the ceramic/metal power turbine static structure. The material and component characterization efforts included the testing and evaluation of seven candidate materials and three development components. Ceramic component process development and fabrication proceeded for the gasifier turbine rotor, gasifier turbine scroll, gasifier turbine vanes and vane platform, extruded regenerator disks, and thermal insulation. Component rig activities included the development of both rigs and the necessary test procedures, and conduct of rig testing of the ceramic components and assemblies. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology that permit the achievement of both program performance and durability goals. Total test time in 1991 amounted to 847 hours, of which 128 hours were engine testing, and 719 were hot rig testing.
NASA Technical Reports Server (NTRS)
Ferrario, Joseph; Byrne, Christian
2002-01-01
Processed ball clay samples used in the production of ceramics and samples of the ceramic products were collected and analyzed for the presence and concentration of the 2,3,7,8-Cl substituted polychlorinated dibenzo-p-dioxins and -furans (PCDDs/PCDFs). The processed ball clay had average PCDD concentrations of 3.2 ng/g toxic equivalents, a congener profile, and isomer distribution consistent with those found previously in raw ball clay. The PCDF concentrations were below the average limit of detection (LOD) of 0.5 pg/g. The final fired ceramic products were found to be free of PCDDs/PCDFs at the LODs. A consideration of the conditions involved in the firing process suggests that the PCDDs, if not destroyed, may be released to the atmosphere and could represent an as yet unidentified source of dioxins to the environment. In addition, the PCDDs in clay dust generated during manufacturing operations may represent a potential occupational exposure.
Ferrario, Joseph; Byrne, Christian
2002-03-01
Processed ball clay samples used in the production of ceramics and samples of the ceramic products were collected and analyzed for the presence and concentration of the 2,3,7,8-Cl substituted polychlorinated dibenzo-p-dioxins and -furans (PCDDs/PCDFs). The processed ball clay had average PCDD concentrations of 3.2 ng/g toxic equivalents, a congener profile, and isomer distribution consistent with those found previously in raw ball clay. The PCDF concentrations were below the average limit of detection (LOD) of 0.5 pg/g. The final fired ceramic products were found to be free of PCDDs/PCDFs at the LODs. A consideration of the conditions involved in the firing process suggests that the PCDDs, if not destroyed, may be released to the atmosphere and could represent an as yet unidentified source of dioxins to the environment. In addition, the PCDDs in clay dust generated during manufacturing operations may represent a potential occupational exposure.
NASA Technical Reports Server (NTRS)
Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Curran, Jerome P.; Kolody, Mark; Perusich, Stephen; Whitten, Mary C.; Trejo, David; Zidek, Jason; Sampson, Jeffrey W.;
2009-01-01
Ceramics can be defmed as a material consisting of hard brittle properties produced from inorganic and nonmetallic minerals made by firing at high temperatures. These materials are compounds between metallic and nonmetallic elements and are either totally ionic, or predominately ionic but having some covalent character. This definition allows for a large range of materials, not all applicable to refractory applications. As this report is focused on potential ceramic materials for high temperature, aggressive exposure applications, the ceramics reviewed as part of this report will focus on refractory ceramics specifically designed and used for these applications. Ceramic materials consist of a wide variety of products. Callister (2000) 1 characterized ceramic materials into six classifications: glasses, clay products, refractories, cements, abrasives, and advanced ceramics. Figure 1 shows this classification system. This review will focus mainly on refractory ceramics and cements as in general, the other classifications are neither applicable nor economical for use in large structures such as the flame trench. Although much work has been done in advanced ceramics over the past decade or so, these materials are likely cost prohibitive and would have to be fabricated off-site, transported to the NASA facilities, and installed, which make these even less feasible. Although the authors reviewed the literature on advanced ceramic refractories 2 center dot 3 center dot 4 center dot 5 center dot 6 center dot 7 center dot 8 center dot 9 center dot 10 center dot 11 center dot 12 after the review it was concluded that these materials should not be ' the focus of this report. A review is in progress on materials and systems for prefabricated refractory ceramic panels, but this review is focusing more on typical refractory materials for prefabricated systems, which could make the system more economically feasible. Refractory ceramics are used for a wide variety of applications. Figure 2 shows many ofthese applications, their life expectancy or requirement, and the exposure temperature for the refractory ceramic. Note that the exposure temperatures for refractory ceramics are very similar to the exposure conditions for specialty ceramics (rocket nozzles, space vehicle re-entry fields, etc.) and yet the life expectancy or requirement is relatively low. Currently NASA is repairing the refractory lining in the flame trench after every launch - although this is not a direct indication of low life expectancy, it does indicate that the current system may not be sufficiently durable to maximize economy. Better performing refractory ceramics are needed to improve the performance, economy, and safety during and after launches at the flame trenches at Kennedy Space Center (KSC). To achieve this goal a current study is underway to assess different refractory systems for possible use in the flame trenches at KSC. This report will target the potential applicability of refractory ceramics for use in the flame trenches. An overview of the different refractory ceramics will be provided (see Figure I). This will be followed with a brief description of the structure of refractory products, the properties and characteristics of different systems, the methodology for selecting refractories, and then a general design methodology. Based on these sections, future challenges and opportunities will be identified with the objective of improving the durability, performance, economy, and safety of the launch complex. Refractory ceramics are used for a wide variety of applications. Figure 2 shows many ofthese applications, their life expectancy or requirement, and the exposure temperature for the refractory ceramic. Note that the exposure temperatures for refractory ceramics are very similar to the exposure conditions for specialty ceramics (rocket nozzles, space vehicle re-entry fields, etc.) and yet the life expectancy or requirement is relatively low. Currently NASA is repairing the refractory lining in the flame trench after every launch - although this is not a direct indication of low life expectancy, it does indicate that the current system may not be sufficiently durable to maximize economy. Better performing refractory ceramics are needed to improve the performance, economy, and safety during and after launches at the flame trenches at Kennedy Space Center (KSC). To achieve this goal a current study is underway to assess different refractory systems for possible use in the flame trenches at KSC. This report will target the potential applicability of refractory ceramics for use in the flame trenches. An overview of the different refractory ceramics will be provided (see Figure I). This will be followed with a brief description of the structure of refractory products, the properties and characteristics of different systems, the methodology for selecting refractories, and then a general design methodology. Based on these sections, future challenges and opportunities will be identified with the objective of improving the durability, performance, economy, and safety of the launch complex.
Process of producing a ceramic matrix composite article and article formed thereby
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corman, Gregory Scot; McGuigan, Henry Charles; Brun, Milivoj Konstantin
A CMC article and process for producing the article to have a layer on its surface that protects a reinforcement material within the article from damage. The method entails providing a body containing a ceramic reinforcement material in a matrix material that contains a precursor of a ceramic matrix material. A fraction of the reinforcement material is present and possibly exposed at a surface of the body. The body surface is then provided with a surface layer formed of a slurry containing a particulate material but lacking the reinforcement material of the body. The body and surface layer are heatedmore » to form the article by converting the precursor within the body to form the ceramic matrix material in which the reinforcement material is contained, and by converting the surface layer to form the protective layer that covers any fraction of the reinforcement material exposed at the body surface.« less
Process of producing a ceramic matrix composite article and article formed thereby
Corman, Gregory Scot [Ballston Lake, NY; McGuigan, Henry Charles [Duanesburg, NY; Brun, Milivoj Konstantin [Ballston Lake, NY
2011-10-25
A CMC article and process for producing the article to have a layer on its surface that protects a reinforcement material within the article from damage. The method entails providing a body containing a ceramic reinforcement material in a matrix material that contains a precursor of a ceramic matrix material. A fraction of the reinforcement material is present and possibly exposed at a surface of the body. The body surface is then provided with a surface layer formed of a slurry containing a particulate material but lacking the reinforcement material of the body. The body and surface layer are heated to form the article by converting the precursor within the body to form the ceramic matrix material in which the reinforcement material is contained, and by converting the surface layer to form the protective layer that covers any fraction of the reinforcement material exposed at the body surface.
Turbine repair process, repaired coating, and repaired turbine component
Das, Rupak; Delvaux, John McConnell; Garcia-Crespo, Andres Jose
2015-11-03
A turbine repair process, a repaired coating, and a repaired turbine component are disclosed. The turbine repair process includes providing a turbine component having a higher-pressure region and a lower-pressure region, introducing particles into the higher-pressure region, and at least partially repairing an opening between the higher-pressure region and the lower-pressure region with at least one of the particles to form a repaired turbine component. The repaired coating includes a silicon material, a ceramic matrix composite material, and a repaired region having the silicon material deposited on and surrounded by the ceramic matrix composite material. The repaired turbine component a ceramic matrix composite layer and a repaired region having silicon material deposited on and surrounded by the ceramic matrix composite material.
Thermal insulating conformal blanket
NASA Technical Reports Server (NTRS)
Barney, Andrea (Inventor); Whittington, Charles A (Inventor); Eilertson, Bryan (Inventor); Siminski, Zenon (Inventor)
2003-01-01
The conformal thermal insulating blanket may have generally rigid batting material covered by an outer insulating layer formed of a high temperature resistant woven ceramic material and an inner insulating layer formed of a woven ceramic fiber material. The batting and insulating layers may be fastened together by sewing or stitching using an outer mold layer thread fabricated of a high temperature resistant material and an inner mold layer thread of a ceramic fiber material. The batting may be formed to a composite structure that may have a firmness factor sufficient to inhibit a pillowing effect after the stitching to not more than 0.03 inch. The outer insulating layer and an upper portion of the batting adjacent the outer insulating layer may be impregnated with a ceramic coating material.
Bilandžić, Marin Dean; Wollgarten, Susanne; Stollenwerk, Jochen; Poprawe, Reinhart; Esteves-Oliveira, Marcella; Fischer, Horst
2017-09-01
The established method of fissure-sealing using polymeric coating materials exhibits limitations on the long-term. Here, we present a novel technique with the potential to protect susceptible teeth against caries and erosion. We hypothesized that a tailored glass-ceramic material could be sprayed onto enamel-like substrates to create superior adhesion properties after sintering by a CO 2 laser beam. A powdered dental glass-ceramic material from the system SiO 2 -Na 2 O-K 2 O-CaO-Al 2 O 3 -MgO was adjusted with individual properties suitable for a spray coating process. The material was characterized using X-ray fluorescence analysis (XRF), heating microscopy, dilatometry, scanning electron microscopy (SEM), grain size analysis, biaxial flexural strength measurements, fourier transform infrared spectroscopy (FTIR), and gas pycnometry. Three different groups of samples (each n=10) where prepared: Group A, powder pressed glass-ceramic coating material; Group B, sintered hydroxyapatite specimens; and Group C, enamel specimens (prepared from bovine teeth). Group B and C where spray coated with glass-ceramic powder. All specimens were heat treated using a CO 2 laser beam process. Cross-sections of the laser-sintered specimens were analyzed using laser scanning microscopy (LSM), energy dispersive X-ray analysis (EDX), and SEM. The developed glass-ceramic material (grain size d50=13.1mm, coefficient of thermal expansion (CTE)=13.310 -6 /K) could be spray coated on all tested substrates (mean thickness=160μm). FTIR analysis confirmed an absorption of the laser energy up to 95%. The powdered glass-ceramic material was successfully densely sintered in all sample groups. The coating interface investigation by SEM and EDX proved atomic diffusion and adhesion of the glass-ceramic material to hydroxyapatite and to dental enamel. A glass-ceramic material with suitable absorption properties was successfully sprayed and laser-sintered in thin films on hydroxyapatite as well as on bovine enamel. The presented novel technique of tooth coating with a dental glass-ceramic using a CO 2 -laser holds a great potential as a possible method to protect susceptible teeth against caries and erosion. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Biaxial flexural strength of Turkom-Cera core compared to two other all-ceramic systems
AL-MAKRAMANI, Bandar Mohammed Abdullah; RAZAK, Abdul Aziz Abdul; ABU-HASSAN, Mohamed Ibrahim
2010-01-01
Advances in all-ceramic systems have established predictable means of providing metal-free aesthetic and biocompatible materials. These materials must have sufficient strength to be a practical treatment alternative for the fabrication of crowns and fixed partial dentures. Objectives The aim of this study was to compare the biaxial flexural strength of three core ceramic materials. Material and methods Three groups of 10 disc-shaped specimens (16 mm diameter x 1.2 mm thickness - in accordance with ISO-6872, 1995) were made from the following ceramic materials: Turkom-Cera Fused Alumina [(Turkom-Ceramic (M) Sdn Bhd, Puchong, Selangor, Malaysia)], In-Ceram (Vita Zahnfabrik, Bad Säckingen, Baden-Württemberg, Germany) and Vitadur-N (Vita Zahnfabrik, Bad Säckingen, Baden-Württemberg, Germany), which were sintered according to the manufacturer's recommendations. The specimens were subjected to biaxial flexural strength test in a universal testing machine at a crosshead speed of 0.5 mm/min. The definitive fracture load was recorded for each specimen and the biaxial flexural strength was calculated from an equation in accordance with ISO-6872. Results The mean biaxial flexural strength values were: Turkom-Cera: 506.8±87.01 MPa, In-Ceram: 347.4±28.83 MPa and Vitadur-N: 128.7±12.72 MPa. The results were analyzed by the Levene's test and Dunnett's T3 post-hoc test (SPSS software V11.5.0 for Windows, SPSS, Chicago, IL, USA ) at a preset significance level of 5% because of unequal group variances (P<0.001). There was statistically significant difference between the three core ceramics (P<0.05). Turkom-Cera showed the highest biaxial flexural strength, followed by In-Ceram and Vitadur-N. Conclusions Turkom-Cera core had significantly higher flexural strength than In-Ceram and Vitadur-N ceramic core materials. PMID:21308292
Process for making ceramic hot gas filter
Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam
2001-01-01
A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.
Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam
1999-01-01
A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.
Low temperature joining of ceramic composites
Barton, Thomas J.; Anderson, Iver E.; Ijadi-Maghsoodi, Sina; Nosrati, Mohammad; Unal, Ozer
1999-07-13
A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix.
Low temperature joining of ceramic composites
Barton, T.J.; Anderson, I.E.; Ijadi-Maghsoodi, S.; Nosrati, M.; Unal, O.
1999-07-13
A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 C to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix. 3 figs.
Low temperature joining of ceramic composites
Barton, T.J.; Anderson, I.E.; Ijadi-Maghsoodi, S.; Nosrati, M.; Unal, O.
1999-01-12
A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix. 3 figs.
Connolly, E.S.; Forsythe, G.D.; Domanski, D.M.; Chambers, J.A.; Rajendran, G.P.
1999-05-11
A ceramic hot-gas candle filter is described having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during back pulse cleaning and is resistant to chemical degradation at high temperatures.
Monteiro, Jaiane Bandoli; Riquieri, Hilton; Prochnow, Catina; Guilardi, Luís Felipe; Pereira, Gabriel Kalil Rocha; Borges, Alexandre Luiz Souto; de Melo, Renata Marques; Valandro, Luiz Felipe
2018-06-01
To evaluate the effect of ceramic thickness on the fatigue failure load of two zirconia-reinforced lithium silicate (ZLS) glass-ceramics, adhesively cemented to a dentin analogue material. Disc-shaped specimens were allocated into 8 groups (n=25) considering two study factors: ZLS ceramic type (Vita Suprinity - VS; and Celtra Duo - CD), and ceramic thickness (1.0; 1.5; 2.0; and 2.5mm). A trilayer assembly (ϕ=10mm; thickness=3.5mm) was designed to mimic a bonded monolithic restoration. The ceramic discs were etched, silanized and luted (Variolink N) into a dentin analogue material. Fatigue failure load was determined using the Staircase method (100,000 cycles at 20Hz; initial fatigue load ∼60% of the mean monotonic load-to-failure; step size ∼5% of the initial fatigue load). A stainless-steel piston (ϕ=40mm) applied the load into the center of the specimens submerged in water. Fractographic analysis and Finite Element Analysis (FEA) were also performed. The ceramic thickness influenced the fatigue failure load for both ZLS materials: Suprinity (716N up to 1119N); Celtra (404N up to 1126N). FEA showed that decreasing ceramic thickness led to higher stress concentration on the cementing interface. Different ZLS glass-ceramic thicknesses influenced the fatigue failure load of the bonded system (i.e. the thicker the glass ceramic is, the higher the fatigue failure load will be). Different microstructures of the ZLS glass-ceramics might affect the fatigue behavior. FEA showed that the thicker the glass ceramic is, the lower the stress concentration at the tensile surface will be. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.
Integration Science and Technology of Advanced Ceramics for Energy and Environmental Applications
NASA Technical Reports Server (NTRS)
Singh, M.
2012-01-01
The discovery of new and innovative materials has been known to culminate in major turning points in human history. The transformative impact and functional manifestation of new materials have been demonstrated in every historical era by their integration into new products, systems, assemblies, and devices. In modern times, the integration of new materials into usable products has a special relevance for the technological development and economic competitiveness of industrial societies. Advanced ceramic technologies dramatically impact the energy and environmental landscape due to potential wide scale applications in all aspects of energy production, storage, distribution, conservation, and efficiency. Examples include gas turbine propulsion systems, fuel cells, thermoelectrics, photovoltaics, distribution and transmission systems based on superconductors, nuclear power generation, and waste disposal. Robust ceramic integration technologies enable hierarchical design and manufacturing of intricate ceramic components starting with geometrically simpler units that are subsequently joined to themselves and/or to metals to create components with progressively higher levels of complexity and functionality. However, for the development of robust and reliable integrated systems with optimum performance under different operating conditions, the detailed understanding of various thermochemical and thermomechanical factors is critical. Different approaches are required for the integration of ceramic-metal and ceramic-ceramic systems across length scales (macro to nano). In this presentation, a few examples of integration of ceramic to metals and ceramic to ceramic systems will be presented. Various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Potential opportunities and need for the development of innovative design philosophies, approaches, and integrated system testing under simulated application conditions will also be presented.
Interdisciplinary research on the nature and properties of ceramic materials
NASA Technical Reports Server (NTRS)
1980-01-01
The advancement of material performance and design methodology as related to brittle materials was investigated. The processing and properties of ceramic materials as related to design requirements was also studied.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1993-01-01
The Advanced Turbine Technologies Application Project (ATTAP) is in the fifth year of a multiyear development program to bring the automotive gas turbine engine to a state at which industry can make commercialization decisions. Activities during the past year included reference powertrain design updates, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Engine design and development included mechanical design, combustion system development, alternate aerodynamic flow testing, and controls development. Design activities included development of the ceramic gasifier turbine static structure, the ceramic gasifier rotor, and the ceramic power turbine rotor. Material characterization efforts included the testing and evaluation of five candidate high temperature ceramic materials. Ceramic component process development and fabrication, with the objective of approaching automotive volumes and costs, continued for the gasifier turbine rotor, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Engine and rig fabrication, testing, and development supported improvements in ceramic component technology. Total test time in 1992 amounted to 599 hours, of which 147 hours were engine testing and 452 were hot rig testing.
Ceramics for Molten Materials Containment, Transfer and Handling on the Lunar Surface
NASA Technical Reports Server (NTRS)
Standish, Evan; Stefanescu, Doru M.; Curreri, Peter A.
2009-01-01
As part of a project on Molten Materials Transfer and Handling on the Lunar Surface, molten materials containment samples of various ceramics were tested to determine their performance in contact with a melt of lunar regolith simulant. The test temperature was 1600 C with contact times ranging from 0 to 12 hours. Regolith simulant was pressed into cylinders with the approximate dimensions of 1.25 dia x 1.25cm height and then melted on ceramic substrates. The regolith-ceramic interface was examined after processing to determine the melt/ceramic interaction. It was found that the molten regolith wetted all oxide ceramics tested extremely well which resulted in chemical reaction between the materials in each case. Alumina substrates were identified which withstood contact at the operating temperature of a molten regolith electrolysis cell (1600 C) for eight hours with little interaction or deformation. This represents an improvement over alumina grades currently in use and will provide a lifetime adequate for electrolysis experiments lasting 24 hours or more. Two types of non-oxide ceramics were also tested. It was found that they interacted to a limited degree with the melt resulting in little corrosion. These ceramics, Sic and BN, were not wetted as well as the oxides by the melt, and so remain possible materials for molten regolith handling. Tests wing longer holding periods and larger volumes of regolith are necessary to determine the ultimate performance of the tested ceramics.
Ceramic Technology For Advanced Heat Engines Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-12-01
Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. The objective of the project is to develop the industrial technology base required for reliable ceramicsmore » for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. This advanced materials technology is being developed in parallel and close coordination with the ongoing DOE and industry proof of concept engine development programs. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. Abstracts prepared for appropriate papers.« less
Planar ceramic membrane assembly and oxidation reactor system
Carolan, Michael Francis; Dyer, legal representative, Kathryn Beverly; Wilson, Merrill Anderson; Ohm, Ted R.; Kneidel, Kurt E.; Peterson, David; Chen, Christopher M.; Rackers, Keith Gerard; Dyer, deceased, Paul Nigel
2007-10-09
Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.
Planar ceramic membrane assembly and oxidation reactor system
Carolan, Michael Francis; Dyer, legal representative, Kathryn Beverly; Wilson, Merrill Anderson; Ohrn, Ted R.; Kneidel, Kurt E.; Peterson, David; Chen, Christopher M.; Rackers, Keith Gerard; Dyer, Paul Nigel
2009-04-07
Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.
NASA Astrophysics Data System (ADS)
Stremtan, Ciprian; Ashkanani, Hasan; Tykot, Robert H.
2013-04-01
The study of bi-phase (i.e. matrix and clasts) geochemical composition of ceramic artifacts is a very powerful tool in fingerprinting the raw materials used by ancient manufacturers (clay sources, tempering materials, coloring agents, etc.), as well as in understanding the physical parameters of the manufacturing techniques. Reliable datasets often require the deployment of destructive techniques that will irremediably damage the artifact. Recent advances in portable X-ray fluorescence instrumentation (pXRF) allow for quick measurements of a range of chemical elements that not too long ago were available only through complicated and often destructive means of analytical chemistry (instrumental neutron activation analysis - INAA, inductively coupled plasma mass spectrometry - ICP-MS, direct coupled plasma-optical emission spectroscopy - DCP-OES etc.). In this contribution we present a comparison of datasets acquired by means of pXRF, DCP-OES, and ICP-MS on Bronze Age ceramics from Failaka Island (Kuwait) and Bahrain. The samples chosen for this study are fine grained, with very well sorted mineral components, and lack any visible organic material fragments. The sample preparation for ICP-MS and DCP-OES analyses was carried out on powdered samples, by using LiBO2 flux fusion and Ge (for the DCP-OES) and In (for ICP-MS) were used as internal standards. The measurements were calibrated against certified reference materials ranging from shales to rhyolites (SGR-1, SDo-1, JA-2, and JR-1) and performed at Univerity of South Florida's Center for Geochemical Analyses. The analytical errors for major elements was smaller than 5 %, while for selected trace elements the error was usually smaller than 3 %. The same set of elements was measured on the same samples at University of South Florida's Anthropology Department using a pXRF device equipped with obsidian filter. Each sample was measured three times and the values were averaged. Two certified reference materials (NIST-612 glass and MACS-3 pressed powder) were also measured to check for accuracy and precision. Our preliminary data shows that most of the major and trace elemental data acquired by both methods are consistent. Some transition metals (e.g. Y, Fe, and Mn) yielded overall lower values when measured with pXRF device (ranging from 27 to 60 % difference), while Ni and Ba showed systematically higher values (20 to 53 %). If samples are chosen properly for pXRF measurements (i.e. thoroughly cleaned, fine grained, well sorted) and the device is properly calibrated, the results are comparable with DCP-OES and ICP-MS data, thus being suitable to use for geochemical fingerprinting
Chen, Jack C.; Stawisuck, Valerie M.; Prasad, Ravi
2003-01-01
A cold isopressing method in which two or more layers of material are formed within an isopressing mold. One of the layers consists of a tape-cast film. The layers are isopressed within the isopressing mold, thereby to laminate the layers and to compact the tape-cast film. The isopressing mold can be of cylindrical configuration with the layers being coaxial cylindrical layers. The materials used in forming the layers can contain green ceramic materials and the resultant structure can be fired and sintered as necessary and in accordance with known methods to produce a finished composite, ceramic structure. Further, such green ceramic materials can be of the type that are capable of conducting hydrogen or oxygen ions at high temperature with the object of utilizing the finished composite ceramic structure as a ceramic membrane element.
Ceramic regenerator systems development program
NASA Technical Reports Server (NTRS)
Fucinari, C. A.; Rahnke, C. J.; Rao, V. D. N.; Vallance, J. K.
1980-01-01
The DOE/NASA Ceramic Regenerator Design and Reliability Program aims to develop ceramic regenerator cores that can be used in passenger car and industrial/truck gas turbine engines. The major cause of failure of early gas turbine regenerators was found to be chemical attack of the ceramic material. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability test in Ford 707 industrial gas turbine engines late in 1974. Results of 53,065 hours of turbine engine durability testing are described. Two materials, aluminum silicate and magnesium aluminum silicate, show promise. Five aluminum silicate cores attained the durability objective of 10,000 hours at 800 C (1472 F). Another aluminum silicate core shows minimal evidence of chemical attack after 8071 hours at 982 C (1800 F). Results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are included.
Catalytic thermal barrier coatings
Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh
2009-06-02
A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.
NASA Astrophysics Data System (ADS)
Cavallo, Alessandro
2015-04-01
The Verbano Cusio Ossola province (VCO, Piedmont, north-western Italy) is one of the most important Italian quarrying districts, due to the peculiarity and variety of its exploited rock types, mainly orthogneisses such as Serizzo and Beola, and subordinately granites, marbles and other rocks. The most important and extensively exploited ornamental stone from the VCO province is surely the Serizzo, commercialized in four main varieties, and representing about 70% of all the stone production from the VCO area. The protholith of the Serizzo is a Permian granite - granodiorite metamorphosed during the alpine events, and the rock-forming minerals are mainly quartz, K-feldspar, plagioclase (andesine), biotite, with variable amounts of muscovite and epidote (allanite). The other important ornamental stone of the VCO province is the Beola, a series of heterogeneous materials (mainly orthogneisses) with marked (mylonitic) foliation and strong mineralogical lineation, occurring in the median Ossola Valley; its production (15% of the whole stones of the VCO) is subordinated with respect to that of Serizzo. The mineralogical composition of the Beola varieties is similar to Serizzo, consisting of quite homogeneous quartz, K-feldspar (orthoclase or microcline), plagioclase, biotite and muscovite. The main differences relate to the grain size, the rock fabric (generally mylonitic) and to the presence of accessory/secondary minerals. Recent regulatory developments and the growing environmental awareness, require an increasing reuse of wastes deriving from the extraction and processing of dimension stones (up to 50 % of the extracted gross volume). Granite wastes from the VCO (Baveno pink granite and Montorfano white granite), after specific industrial treatments (crushing, sieving, drying, magnetic separation of biotite and hornblende), are used successfully as quartz-feldspars mix in the ceramic industry, with very low FeOtot content. On the other hand, other quartzose-feldspathic rocks (i.e. Serizzo and Beola), are potential sources of secondary raw materials for the ceramic industry. To assess the feasibility of a reuse of these waste materials, an extensive sampling was performed on the main quarry dumps. The waste rocks were characterized by polarized light optical microscopy (OM) on thin sections, scanning electron microscopy (SEM), quantitative X-ray powder diffraction (XRD-QPA with the Rietveld method), electron microprobe (WDS and EDS) and whole-rock geochemistry (ICP-AES, ICP-MS and LECO®). The performed analyzes show a marked mineralogical and chemical heterogeneity (e.g. highly variable content of phyllosilicates, FeOtot content between 0.39 and 6.99 wt.%), as well as important textural and granulometric differences. On the other hand, the composition of feldspars is quite homogeneous, with the plagioclase ranging from almost pure albite to oligoclase (An 25 - 30%). Some varieties of Serizzo and Beola (Serizzo Sempione, Serizzo Formazza and Beola Bianca) are preferable because of their relatively low FeOtot content, but granulometric and textural factors should never be overlooked, as they have an important feedback in the efficiency and feasibility of the industrial treatments (e.g. magnetic separation). Specifically, some Beola varieties with particularly fine grain size and mylonitic texture, are poorly-suited to industrial ore treatments. On the contrary, the Serizzo varieties, although with a generally higher FeOtot content, have a coarser and homogeneous (and therefore preferable) grain size. Waste materials with different composition could be mixed properly until reaching the desired "ideal" compositions for the following industrial treatments. In any case, an accurate characterization of the waste materials from each of quarry dump is of fundamental importance.
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay; Salem, J. A.; Gray, Hugh R. (Technical Monitor)
2002-01-01
Silicon carbide based, environment friendly, biomorphic ceramics have been fabricated by the pyrolysis and infiltration of natural wood (maple and mahogany) precursors. This technology provides an eco-friendly route to advanced ceramic materials. These biomorphic silicon carbide ceramics have tailorable properties and behave like silicon carbide based materials manufactured by conventional approaches. The elastic moduli and fracture toughness of biomorphic ceramics strongly depend on the properties of starting wood preforms and the degree of molten silicon infiltration. Mechanical properties of silicon carbide ceramics fabricated from maple wood precursors indicate the flexural strengths of 3441+/-58 MPa at room temperature and 230136 MPa at 1350C. Room temperature fracture toughness of the maple based material is 2.6 +/- 0.2 MPa(square root of)m while the mahogany precursor derived ceramics show a fracture toughness of 2.0 +/- 0.2 Mpa(square root of)m. The fracture toughness and the strength increase as the density of final material increases. Fractographic characterization indicates the failure origins to be pores and chipped pockets of silicon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-08-01
Significant accomplishments in fabricating cermaic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, additional research is needed in materials and processing development, design methodology, and data base and life prediction. An assessment of needs was completed, and a five-year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotivemore » heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.« less
New Oxide Ceramic Developed for Superior High-Temperature Wear Resistance
NASA Technical Reports Server (NTRS)
Sayir, Ali; Miyoshi, Kazuhisa; Farmer, Serene C.
2003-01-01
Ceramics, for the most part, do not have inherently good tribological properties. For example friction coefficients in excess of 0.7 have been reported for silicon nitride sliding on silicon nitride or on bearing steel (ref. 1). High friction is always accompanied by considerable wear. Despite their inherently poor tribological properties, the high strength and high toughness of silicon nitride (Si3N4) ceramics has led to their successful use in tribological applications (refs. 1 to 4). The upper temperature limit for the application of Si3N4 as wear-resistant material is limited by reaction with the tribological environment (ref. 3). Silicon nitride is known to produce a thin silicon dioxide film with easy shear capability that results in low friction and low wear in a moist environment (ref. 5). At elevated temperatures, the removal of the reaction product that acts as lubricant causes the friction coefficient to increase and, consequently, the wear performance to become poor. New materials are sought that will have wear resistance superior to that of Si3N4 at elevated temperatures and in harsh environments. A new class of oxide ceramic materials has been developed with potential for excellent high-temperature wear resistance. The new material consists of a multicomponent oxide with a two-phase microstructure, in which the wear resistance of the mixed oxide is significantly higher than that of the individual constituents. This is attributed to the strong constraining effects provided by the interlocking microstructures at different length scales, to the large aspect ratio of the phases, to the strong interphase bonding, and to the residual stresses. Fretting wear tests were conducted by rubbing the new ceramic material against boron carbide (B4C). The new ceramic material produced a wear track groove on B4C, suggesting significantly higher wear resistance for the oxide ceramic. The new material did not suffer from any microstructural degradation after the wear test. The wear rate of the new ceramic material at 600 C was determined to be on the order of 10-10 mm3/N-m, which is 3 to 5 orders of magnitude lower than that for the current state-of-theart wear-resistant materials (Si3N4and B4C). The friction coefficient of the new ceramic materials is on the order of 0.4, which is significantly lower than that of silicon nitride. This new class of oxide materials has shown considerable potential for applications requiring high wear resistance at high temperatures and in harsh environments. New understanding of the wear behavior of ceramic materials is emerging as a result of the surprisingly high wear resistance of two-phase oxide ceramics. There is excellent potential for further improvements in the wear resistance of oxide ceramics through optimizing the microstructure and altering the crystallographic properties of specific oxide materials as a second phase to reduce the coefficient of friction at elevated temperatures.
PREFACE: Symposium 1: Advanced Structure Analysis and Characterization of Ceramic Materials
NASA Astrophysics Data System (ADS)
Yashima, Masatomo
2011-05-01
Preface to Symposium 1 (Advanced Structure Analysis and Characterization of Ceramic Materials) of the International Congress of Ceramics III, held 14-18 November 2010 in Osaka, Japan Remarkable developments have been made recently in the structural analysis and characterization of inorganic crystalline and amorphous materials, such as x-ray, neutron, synchrotron and electron diffraction, x-ray/neutron scattering, IR/Raman scattering, NMR, XAFS, first-principle calculations, computer simulations, Rietveld analysis, the maximum-entropy method, in situ measurements at high temperatures/pressures and electron/nuclear density analysis. These techniques enable scientists to study not only static and long-range periodic structures but also dynamic and short-/intermediate-range structures. Multi-scale characterization from the electron to micrometer levels is becoming increasingly important as a means of understanding phenomena at the interfaces, grain boundaries and surfaces of ceramic materials. This symposium has discussed the structures and structure/property relationships of various ceramic materials (electro, magnetic and optical ceramics; energy and environment related ceramics; bio-ceramics; ceramics for reliability secure society; traditional ceramics) through 38 oral presentations including 8 invited lectures and 49 posters. Best poster awards were given to six excellent poster presentations (Y-C Chen, Tokyo Institute of Technology; C-Y Chung, Tohoku University; T Stawski, University of Twente; Y Hirano, Nagoya Institute of Technology; B Bittova, Charles University Prague; Y Onodera, Kyoto University). I have enjoyed working with my friends in the ICC3 conference. I would like to express special thanks to other organizers: Professor Scott T Misture, Alfred University, USA, Professor Xiaolong Chen, Institute of Physics, CAS, China, Professor Takashi Ida, Nagoya Institute of Technology, Japan, Professor Isao Tanaka, Kyoto University, Japan. I also acknowledge the invited speakers, all the participants and organizing committee of the ICC3. I am pleased to publish the Proceedings of the Symposium 1 of ICC3. I hope that the papers contained in these Proceedings will prove helpful to Professors, researchers and students in improving the fields of Structure Analysis and Characterization of Ceramic Materials. Masatomo Yashima April 2011 Department of Chemistry and Materials Science, Graduate School of Science and Engineering, Tokyo Institute of Technology, Japan
Influence of abutment materials on the resultant color of heat-pressed lithium disilicate ceramics.
Shimada, Kazuki; Nakazawa, Motoko; Kakehashi, Yoshiyuki; Matsumura, Hideo
2006-03-01
The purpose of this study was to evaluate the influence of abutment materials on the color of IPS Empress 2 ceramic coping with different thicknesses. Ceramic coping specimens (12.0x12.0x0.8-2.0 mm) were fabricated from IPS Empress 2 material (Ingot-100, n=5/group). Abutment specimens were fabricated from a build-up composite, a gold alloy, or a silver-palladium alloy. Color was evaluated using a colorimeter according to the CIE L*a*b* system. The L*a*b* values of the ceramic coping specimens of different thicknesses on each abutment specimen were measured. Following which, the color difference (deltaE*ab) values between the ceramic coping specimens on various abutment specimens were calculated. Significant differences in deltaE*ab value were observed among different abutment specimens at certain ceramic coping thicknesses (P<0.05). Thus, it was concluded that the color of IPS Empress 2 coping material was influenced significantly by both the thickness of the coping and the color of the abutment material.
Boron-containing organosilane polymers and ceramic materials thereof
NASA Technical Reports Server (NTRS)
Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)
1988-01-01
The present invention relates to organic silicon-boron polymers which upon pyrolysis produce high-temperature ceramic materials. More particularly, it relates to the polyorganoborosilanes containing -Si-B- bonds which generate high-temperature ceramic materials (e.g., SiC, SiB4, B4C) upon thermal degradation. The process for preparing these organic silicon-boron polymer precursors are also part of the invention.
Process of making porous ceramic materials with controlled porosity
Anderson, Marc A.; Ku, Qunyin
1993-01-01
A method of making metal oxide ceramic material is disclosed by which the porosity of the resulting material can be selectively controlled by manipulating the sol used to make the material. The method can be used to make a variety of metal oxide ceramic bodies, including membranes, but also pellets, plugs or other bodies. It has also been found that viscous sol materials can readily be shaped by extrusion into shapes typical of catalytic or adsorbent bodies used in industry, to facilitate the application of such materials for catalytic and adsorbent applications.
FT-IR characterization of articulated ceramic bricks with wastes from ceramic industries
NASA Astrophysics Data System (ADS)
Nirmala, G.; Viruthagiri, G.
The 30 ceramic test samples with the kaolinitic clay and ceramic rejects (in the as-received state and sintered at temperatures 900-1200 °C) were investigated through spectral studies in order to elucidate the possibility of recycling the wastes from the government ceramic industry of Vriddhachalam, Tamilnadu state, South India. A detailed attribution of all the spectroscopic frequencies in the spectra recorded in the 4000-400 cm-1 region was attempted and their assignment to different minerals was accomplished. X-ray diffraction analysis was performed to demonstrate the reliability of IR attributions. The indication of well-ordered kaolinite is by the band at 1115 cm-1 in the raw samples which tends to shift towards 1095 cm-1 in all the fired samples. The peaks at 563 cm-1 and 795 cm-1 can be assigned to anorthite and dickite respectively. The presence of quartz and anorthite is confirmed both by XRD and FTIR. The microstructural observations were done through the SEM images which visualized the vitrification of the fired bricks at higher temperatures. The refractory properties of the samples found through the XRF analysis are also appreciable. The present work suggests that the incorporation of the rejects into the clay mixture will be a valid route for the ceramic industries to reduce the costs of the ceramic process.
FT-IR characterization of articulated ceramic bricks with wastes from ceramic industries.
Nirmala, G; Viruthagiri, G
2014-05-21
The 30 ceramic test samples with the kaolinitic clay and ceramic rejects (in the as-received state and sintered at temperatures 900-1200°C) were investigated through spectral studies in order to elucidate the possibility of recycling the wastes from the government ceramic industry of Vriddhachalam, Tamilnadu state, South India. A detailed attribution of all the spectroscopic frequencies in the spectra recorded in the 4000-400cm(-1) region was attempted and their assignment to different minerals was accomplished. X-ray diffraction analysis was performed to demonstrate the reliability of IR attributions. The indication of well-ordered kaolinite is by the band at 1115cm(-1) in the raw samples which tends to shift towards 1095cm(-1) in all the fired samples. The peaks at 563cm(-1) and 795cm(-1) can be assigned to anorthite and dickite respectively. The presence of quartz and anorthite is confirmed both by XRD and FTIR. The microstructural observations were done through the SEM images which visualized the vitrification of the fired bricks at higher temperatures. The refractory properties of the samples found through the XRF analysis are also appreciable. The present work suggests that the incorporation of the rejects into the clay mixture will be a valid route for the ceramic industries to reduce the costs of the ceramic process. Copyright © 2014 Elsevier B.V. All rights reserved.
The Role of Ceramics in a Resurgent Nuclear Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marra, J
2006-02-28
With fuel oil and natural gas prices near record highs and worldwide energy demands increasing at an alarming rate, there is growing interest in revitalization of the nuclear power industry within the United States and across the globe. Ceramic materials have long played a very important part in the commercial nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced fuel cycles that minimize waste and increase proliferation resistance, ceramic materials will play an even larger role. Many of the advanced reactor concepts being evaluated operatemore » at high-temperature requiring the use of durable, heat-resistant materials. Ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, ceramic processes are also being applied to fuel reprocessing operations. Ceramic materials continue to provide a vital contribution in ''closing the fuel cycle'' by stabilization of associated low-level and high-level wastes in highly durable grout, ceramics, and glass. In the next five years, programs that are currently in the conceptual phase will begin laboratory- and engineering-scale demonstrations. This will require production-scale demonstrations of several ceramic technologies from fuel form development to advanced stabilization methods. Within the next five to ten years, these demonstrations will move to even larger scales and will also include radioactive demonstrations of these advanced technologies. These radioactive demonstrations are critical to program success and will require advances in ceramic materials associated with nuclear energy applications.« less
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1989-01-01
ATTAP activities during the past year were highlighted by an extensive materials assessment, execution of a reference powertrain design, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, component rig design and fabrication, test-bed engine fabrication, and hot gasifier rig and engine testing. Materials assessment activities entailed engine environment evaluation of domestically supplied radial gasifier turbine rotors that were available at the conclusion of the Advanced Gas Turbine (AGT) Technology Development Project as well as an extensive survey of both domestic and foreign ceramic suppliers and Government laboratories performing ceramic materials research applicable to advanced heat engines. A reference powertrain design was executed to reflect the selection of the AGT-5 as the ceramic component test-bed engine for the ATTAP. Test-bed engine development activity focused on upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1371 C (2500 F) structural ceramic component test-bed engine. Ceramic component design activities included the combustor, gasifier turbine static structure, and gasifier turbine rotor. The materials and component characterization efforts have included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities were initiated for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig development activities included combustor, hot gasifier, and regenerator rigs. Test-bed engine fabrication activities consisted of the fabrication of an all-new AGT-5 durability test-bed engine and support of all engine test activities through instrumentation/build/repair. Hot gasifier rig and test-bed engine testing activities were performed.
Development of new inorganic luminescent materials by organic-metal complex route
NASA Astrophysics Data System (ADS)
Manavbasi, Alp
The development of novel inorganic luminescent materials has provided important improvements in lighting, display, and other technologically-important optical devices. The optical characteristics of inorganic luminescent materials (phosphors) depend on their physicochemical characteristics, including the atomic structure, homogeneity in composition, microstructure, defects, and interfaces which are all controlled by thermodynamics and kinetics of synthesis from various raw materials. A large variety of technologically-important phosphors have been produced using conventional high-temperature solid-state methods. For the synthesis of functional ceramic materials with ionic dopants in a host lattice, (such as phosphors), synthesis using organic-metal complex methods and other wet chemistry routes have been found to be excellent techniques. These methods have inherent advantages such as good control of stoichiometry by molecular level of mixing, product homogeneity, simpler synthesis procedures, and use of relatively-low calcination temperatures. Supporting evidence for this claim is accomplished by a comparison of photoluminescence characteristics of a commercially available green phosphor, Zn2SiO4:Mn, with the same material system synthesized by organic-metal synthesis route. In this study, new inorganic luminescent materials were produced using rare-earth elements (Eu3+, Ce3+, Tb3+ ) and transition metals (Cu+, Pb2+) as dopants within the crystalline host lattices; SrZnO2, Ba2YAlO 5, M3Al2O6 (M=Ca,Sr,Ba). These novel phosphors were prepared using the organic-metal complex route. Polyvinyl alcohol, sucrose, and adipic acid were used as the organic component to prepare the ceramic precursors. Materials characterization of the synthesized precursor powders and calcined phosphor samples was performed usingX-Ray Diffraction, Scanning Electron Microscopy, Photon-Correlation spectroscopy, and Fourier Transform Infrared Spectroscopy techniques. In addition to the Fluorescence Spectrometer, and Diffuse Reflectance Spectroscopy, the Time Resolved Spectroscopy technique was also used to study the photoluminescence characteristics of the synthesized phosphors. Using these characterization techniques, and through careful comparisons with related studies in the literature, the mechanisms of luminescence for each of the new phosphor materials synthesized here was discussed in a detail.
A hybrid phenomenological model for ferroelectroelastic ceramics. Part II: Morphotropic PZT ceramics
NASA Astrophysics Data System (ADS)
Stark, S.; Neumeister, P.; Balke, H.
2016-10-01
In this part II of a two part series, the rate-independent hybrid phenomenological constitutive model introduced in part I is modified to account for the material behavior of morphotropic lead zirconate titanate ceramics (PZT ceramics). The modifications are based on a discussion of the available literature results regarding the micro-structure of these materials. In particular, a monoclinic phase and a highly simplified representation of the hierarchical structure of micro-domains and nano-domains observed experimentally are incorporated into the model. It is shown that experimental data for the commercially available morphotropic PZT material PIC151 (PI Ceramic GmbH, Lederhose, Germany) can be reproduced and predicted based on the modified hybrid model.
NASA Astrophysics Data System (ADS)
Wiendartun, Risdiana, Fitrilawati, Siregar, R. E.
2016-02-01
A study on the fabrication of Iron Titanium Oxide (Fe2TiO5) ceramics for negative temperature coefficient (NTC) thermistors has been carried out, in order to know the effect of sintering temperature on the electrical characteristic of 1.0 % mole Nb2O5 doped Fe2TiO5 ceramics.These ceramics were made by mixing commercial powders of Fe2O3, TiO2 and Nb2O5 with proportional composition to produce Fe2TiO5 based ceramic. The raw pellet was sintered at 1000 °C, 1100 °C and 1200 °C temperature for 2 hours in air. Analysis of the microstructure and crystal structure were performed by using a scanning electron microscope (SEM) and x-ray diffraction (XRD) respectively. XRD spectra showed that the crystal structure of all ceramics of Fe2TiO5 made at various sintering temperatures are orthorhombic. The SEM images showed that the grain size of pellet ceramics increase with increasing sintering temperatures. From electrical resistances data that was measured at temperature 30-300 °C, it is found that the value of thermistor constant (B), activation energy (Ea), thermistor sensitivity (α) and room temperature resistance (RRT) decreases with respect to the increasing of sintering temperature. The fabricated Fe2TiO5 ceramics have thermistor constants (B = 6394-6959 K). This can be applied as temperature sensor, and will fulfill the market requirement.
Resin-composite blocks for dental CAD/CAM applications.
Ruse, N D; Sadoun, M J
2014-12-01
Advances in digital impression technology and manufacturing processes have led to a dramatic paradigm shift in dentistry and to the widespread use of computer-aided design/computer-aided manufacturing (CAD/CAM) in the fabrication of indirect dental restorations. Research and development in materials suitable for CAD/CAM applications are currently the most active field in dental materials. Two classes of materials are used in the production of CAD/CAM restorations: glass-ceramics/ceramics and resin composites. While glass-ceramics/ceramics have overall superior mechanical and esthetic properties, resin-composite materials may offer significant advantages related to their machinability and intra-oral reparability. This review summarizes recent developments in resin-composite materials for CAD/CAM applications, focusing on both commercial and experimental materials. © International & American Associations for Dental Research.
Encapsulation of thermal energy storage media
Goswami, Dharendra Yogi; Stefanakos, Elias K.; Jotshi, Chand K.; Dhau, Jaspreet
2018-01-30
In one embodiment, a method for fabricating a ceramic phase change material capsule includes forming a hollow ceramic capsule body having a filling hole, filling the ceramic capsule body with one or more phase change materials via the filling hole, and closing and sealing the filling hole.
Ceramic susceptor for induction bonding of metals, ceramics, and plastics
NASA Technical Reports Server (NTRS)
Fox, Robert L.; Buckley, John D.
1991-01-01
A thin (.005) flexible ceramic susceptor (carbon) was discovered. It was developed to join ceramics, plastics, metals, and combinations of these materials using a unique induction heating process. Bonding times for laboratory specimens comparing state of the art technology to induction bonding were cut by a factor of 10 to 100 times. This novel type of carbon susceptor allows for applying heat directly and only to the bondline without heating the entire structure, supports, and fixtures of a bonding assembly. The ceramic (carbon film) susceptor produces molten adhesive or matrix material at the bond interface. This molten material flows through the perforated susceptor producing a fusion between the two parts to be joined, which in many instances has proven to be stronger than the parent material. Bonding can be accomplished in 2 minutes on areas submitted to the inductive heating. Because a carbon susceptor is used in bonding carbon fiber reinforced plastics and ceramics, there is no radar signature or return making it an ideal process for joining advanced aerospace composite structures.
Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects.
Zhitomirsky, I
2002-03-29
Electrodeposition of ceramic materials can be performed by electrophoretic (EPD) or electrolytic (ELD) deposition. Electrophoretic deposition is achieved via motion of charged particles towards an electrode under an applied electric field. Electrolytic deposition produces colloidal particles in cathodic reactions for subsequent deposition. Various electrochemical strategies and deposition mechanisms have been developed for electrodeposition of ceramic and organoceramic films, and are discussed in the present article. Electrode-position of ceramic and organoceramic materials includes mass transport, accumulation of particles near the electrode and their coagulation to form a cathodic deposit. Various types of interparticle forces that govern colloidal stability in the absence and presence of processing additives are discussed. Novel theoretical contributions towards an interpretation of particle coagulation near the electrode surface are reviewed. Background information is given on the methods of particle charging, stabilization of colloids in aqueous and non-aqueous media, electrophoretic mobility of ceramic particles and polyelectrolytes, and electrode reactions. This review also covers recent developments in the electrodeposition of ceramic and organoceramic materials.
NASA Astrophysics Data System (ADS)
Fossile, Lauren Michelle
Due to the inherently intermittent nature of solar energy caused by cloud cover among other sources, thermal storage systems are needed to make solar energy more consistent. This same technology could be used to prolong the daily number of useful hours of solar energy power plants. Salt-ceramic materials are a relatively new prospect for heat storage, but have been researched mostly with magnesium oxide and several different carbonate salts. Salt ceramics are a phase change material where the salt changes phase inside the ceramic structure allowing for the system to use the sensible heat of both materials and the latent heat of the salt to store thermal energy. Capillary forces within the ceramic structure hold in the salt when the salt melts. The focus here is on the possibility of creating a low-cost salt-ceramic storage material for high temperature solar energy applications. A theoretical analysis of the resulting materials is performed. While most of the existing salt ceramics have been made from magnesium oxide, aluminum oxide is more readily available from various companies in the area. Magnesium oxide is often considered a custom ceramic, so it is more expensive. A cost and material property comparison has been completed between these two materials to determine which is better suited for solar storage. Many of the existing salt-ceramics use carbonate salts, but nitrate salts are commonly used in graphite/salt composites. Therefore, a cost and theoretical performance comparison is between these materials also. For comparisons' sake, zirconia and graphite have also been analyzed as the filler in the composite. Each combination of salt and ceramic or graphite has been analyzed. In order to make the use of salt-ceramics more cost-effective and available to Nevada's energy providers, research has been done into which ceramics have high availability in Nevada, low cost, and the best material properties for this application. The thermal properties and cost of these materials have been compared to the price that Nevada's energy utilities are willing to pay per unit of stored energy, which was approximated through a survey conducted by the National Science Foundation (NSF) - Experimental Project to Stimulate Competitive Research (EPSCoR) at the University of Nevada, Las Vegas. The surveys were completed on Nevadan energy purveyors concerning climate change attitudes, but included questions regarding the usefulness and cost of solar storage. The cost per unit of energy has also been calculated and whether the utilities would be willing to pay for each combination will be determined using information obtained from the surveys mentioned above. This information will dictate which combination will be best for use in the state of Nevada at solar energy power plants.
NASA Technical Reports Server (NTRS)
Chen, Liangyu
2014-01-01
A very high purity (99.99+%) high temperature co-fired ceramic (HTCC) alumina has recently become commercially available. The raw material of this HTCC alumina is very different from conventional HTCC alumina, and more importantly there is no glass additive in this alumina material for co-firing processing. Previously, selected HTCC and LTCC (low temperature co-fired ceramic) alumina materials were evaluated at high temperatures as dielectric and compared to a regularly sintered 96% polycrystalline alumina (96% Al2O3), where 96% alumina was used as the benchmark. A prototype packaging system based on regular 96% alumina with Au thickfilm metallization successfully facilitated long term testing of high temperature silicon carbide (SiC) electronic devices for over 10,000 hours at 500 C. In order to evaluate this new high purity HTCC alumina for possible high temperature packaging applications, the dielectric properties of this HTCC alumina substrate were measured and compared with those of 96% alumina and a previously tested LTCC alumina from room temperature to 550 C at frequencies of 120 Hz, 1 KHz, 10 KHz, 100 KHz, and 1 MHz. A parallel-plate capacitive device with dielectric of the HTCC alumina and precious metal electrodes were used for measurements of the dielectric constant and dielectric loss of the co-fired alumina material in the temperature and frequency ranges. The capacitance and AC parallel conductance of the capacitive device were directly measured by an AC impedance meter, and the dielectric constant and parallel AC conductivity of the dielectric were calculated from the capacitance and conductance measurement results. The temperature and frequency dependent dielectric constant, AC conductivity, and dissipation factor of the HTCC alumina substrate are presented and compared to those of 96% alumina and a selected LTCC alumina. Other technical advantages of this new co-fired material for possible high packaging applications are also discussed.
Principles of gas phase processing of ceramics during combustion
NASA Technical Reports Server (NTRS)
Zachariah, Michael R.
1993-01-01
In recent years, ceramic materials have found applications in an increasingly wider range of industrial processes, where their unique mechanical, electrical and optical properties are exploited. Ceramics are especially useful for applications in high temperature, corrosive environments, which impose particularly stringent requirements on mechanical reliability. One approach to provide such materials is the manufacture of submicron (and more recently nanometer scale) particles, which may subsequently be sintered to produce a material with extremely high mechanical integrity. However, high quality ceramic materials can only be obtained if particles of known size, polydispersity, shape and chemical purity can be produced consistently, under well controlled conditions. These requirements are the fundamental driving force for the renewed interest in studying particle formation and growth of such materials.
High impact resistant ceramic composite
Derkacy, J.A.
1991-07-16
A ceramic material and a method of forming a ceramic material which possesses a high impact resistance are disclosed. The material comprises: (a) a first continuous phase of [beta]-SiC; and (b) a second phase of about 25-40 vol % TiB[sub 2]. Al[sub 2]O[sub 3] is preferably used as a densification aid. The material is formed by hot-pressing the mixture at a temperature from greater than about 1800 C to less than the transition temperature of [beta]-SiC to [alpha]-SiC. The hot-pressing is performed at a pressure of about 2000 psi to about 4000 psi in an inert atmosphere for several hours and results in the formation of a two phase sintered ceramic composite material. 6 figures.
High impact resistant ceramic composite
Derkacy, James A.
1991-07-16
A ceramic material and a method of forming a ceramic material which possesses a high impact resistance. The material comprises: (a) a first continuous phase of .beta.-SiC; and (b) a second phase of about 25-40 vol % TiB.sub.2. Al.sub.2 O.sub.3 is preferably used as a densification aid. The material is formed by hot-pressing the mixture at a temperature from greater than about 1800.degree. C. to less than the transition temperature of .beta.-SiC to .alpha.-SiC. The hot-pressing is performed at a pressure of about 2000 psi to about 4000 psi in an inert atmosphere for several hours and results in the formation of a two phase sintered ceramic composite material.
NASA Technical Reports Server (NTRS)
Salem, Jonathan A.; Jenkins, Michael G.
2003-01-01
Advanced aerospace systems occasionally require the use of very brittle materials such as sapphire and ultra-high temperature ceramics. Although great progress has been made in the development of methods and standards for machining, testing and design of component from these materials, additional development and dissemination of standard practices is needed. ASTM Committee C28 on Advanced Ceramics and ISO TC 206 have taken a lead role in the standardization of testing for ceramics, and recent efforts and needs in standards development by Committee C28 on Advanced Ceramics will be summarized. In some cases, the engineers, etc. involved are unaware of the latest developments, and traditional approaches applicable to other material systems are applied. Two examples of flight hardware failures that might have been prevented via education and standardization will be presented.
NASA Astrophysics Data System (ADS)
Hameed, Amer; Appleby-Thomas, Gareth; Wood, David; Jaansalu, Kevin
2015-06-01
Recent studies have shown evidence that the ballistic-resistance of fragmented (comminuted) ceramics is independent of the original strength of the material. In particular, experimental investigations into the ballistic behaviour of such fragmented ceramics have indicated that this response is correlated to shattered ceramic morphology. This suggests that careful control of ceramic microstructure - and therefore failure paths - might provide a route to optimise post-impact ballistic performance, thereby enhancing multi-hit capability. In this study, building on previous in-house work, ballistic tests were conducted using pre-formed `fragmented-ceramic' analogues based around three morphologically differing (but chemically identical) alumina feedstock materials compacted into target `pucks. In an evolution of previous work, variation of target thickness provided additional insight into an apparent morphology-based contribution to ballistic response.
Integrated Design Software Predicts the Creep Life of Monolithic Ceramic Components
NASA Technical Reports Server (NTRS)
1996-01-01
Significant improvements in propulsion and power generation for the next century will require revolutionary advances in high-temperature materials and structural design. Advanced ceramics are candidate materials for these elevated-temperature applications. As design protocols emerge for these material systems, designers must be aware of several innate features, including the degrading ability of ceramics to carry sustained load. Usually, time-dependent failure in ceramics occurs because of two different, delayedfailure mechanisms: slow crack growth and creep rupture. Slow crack growth initiates at a preexisting flaw and continues until a critical crack length is reached, causing catastrophic failure. Creep rupture, on the other hand, occurs because of bulk damage in the material: void nucleation and coalescence that eventually leads to macrocracks which then propagate to failure. Successful application of advanced ceramics depends on proper characterization of material behavior and the use of an appropriate design methodology. The life of a ceramic component can be predicted with the NASA Lewis Research Center's Ceramics Analysis and Reliability Evaluation of Structures (CARES) integrated design programs. CARES/CREEP determines the expected life of a component under creep conditions, and CARES/LIFE predicts the component life due to fast fracture and subcritical crack growth. The previously developed CARES/LIFE program has been used in numerous industrial and Government applications.
Trends in arsenic levels in PM10 and PM 2.5 aerosol fractions in an industrialized area.
García-Aleix, J R; Delgado-Saborit, J M; Verdú-Martín, G; Amigó-Descarrega, J M; Esteve-Cano, V
2014-01-01
Arsenic is a toxic element that affects human health and is widely distributed in the environment. In the area of study, the main Spanish and second largest European industrial ceramic cluster, the main source of arsenic aerosol is related to the impurities in some boracic minerals used in the ceramic process. Epidemiological studies on cancer occurrence in Spain points out the study region as one with the greater risk of cancer. Concentrations of particulate matter and arsenic content in PM10 and PM2.5 were measured and characterized by ICP-MS in the area of study during the years 2005-2010. Concentrations of PM10 and its arsenic content range from 27 to 46 μg/m(3) and from 0.7 to 6 ng/m(3) in the industrial area, respectively, and from 25 to 40 μg/m(3) and from 0.7 to 2.8 ng/m(3) in the urban area, respectively. Concentrations of PM2.5 and its arsenic content range from 12 to 14 μg/m(3) and from 0.5 to 1.4 ng/m(3) in the urban background area, respectively. Most of the arsenic content is present in the fine fraction, with ratios of PM2.5/PM10 in the range of 0.65-0.87. PM10, PM2.5, and its arsenic content show a sharp decrease in recent years associated with the economic downturn, which severely hit the production of ceramic materials in the area under study. The sharp production decrease due to the economic crisis combined with several technological improvements in recent years such as substitution of boron, which contains As impurities as raw material, have reduced the concentrations of PM10, PM2.5, and As in air to an extent that currently meets the existing European regulations.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., clinker coolers, raw material dryers, and open clinker piles? 63.1343 Section 63.1343 Protection of... What standards apply to my kilns, clinker coolers, raw material dryers, and open clinker piles? (a..., clinker cooler, and raw material dryer. All dioxin D/F, HCl, and total hydrocarbon (THC) emission limits...
26 CFR 1.472-1 - Last-in, first-out inventories.
Code of Federal Regulations, 2011 CFR
2011-04-01
... may elect to have such method apply to the raw materials only (including those included in goods in... adjustments are confined to costs of the raw material in the inventory and the cost of the raw material in... that the opening inventory had 10 units of raw material, 10 units of goods in process, and 10 units of...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., clinker coolers, raw material dryers, and open clinker storage piles? 63.1343 Section 63.1343 Protection... Limits § 63.1343 What standards apply to my kilns, clinker coolers, raw material dryers, and open clinker... associated with that kiln, clinker cooler, raw material dryer, and open clinker storage pile. All D/F, HCl...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., clinker coolers, raw material dryers, and open clinker storage piles? 63.1343 Section 63.1343 Protection... Limits § 63.1343 What standards apply to my kilns, clinker coolers, raw material dryers, and open clinker... associated with that kiln, clinker cooler, raw material dryer, and open clinker storage pile. All D/F, HCl...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., clinker coolers, raw material dryers, and open clinker piles? 63.1343 Section 63.1343 Protection of... What standards apply to my kilns, clinker coolers, raw material dryers, and open clinker piles? (a..., clinker cooler, and raw material dryer. All dioxin D/F, HCl, and total hydrocarbon (THC) emission limits...
26 CFR 1.472-1 - Last-in, first-out inventories.
Code of Federal Regulations, 2014 CFR
2014-04-01
... may elect to have such method apply to the raw materials only (including those included in goods in... adjustments are confined to costs of the raw material in the inventory and the cost of the raw material in... that the opening inventory had 10 units of raw material, 10 units of goods in process, and 10 units of...
26 CFR 1.472-1 - Last-in, first-out inventories.
Code of Federal Regulations, 2013 CFR
2013-04-01
... may elect to have such method apply to the raw materials only (including those included in goods in... adjustments are confined to costs of the raw material in the inventory and the cost of the raw material in... that the opening inventory had 10 units of raw material, 10 units of goods in process, and 10 units of...
26 CFR 1.472-1 - Last-in, first-out inventories.
Code of Federal Regulations, 2012 CFR
2012-04-01
... may elect to have such method apply to the raw materials only (including those included in goods in... adjustments are confined to costs of the raw material in the inventory and the cost of the raw material in... that the opening inventory had 10 units of raw material, 10 units of goods in process, and 10 units of...
Zhong, Wen; Chen, Sha; Zhang, Jun; Wang, Yu-Sheng; Liu, An
2016-03-01
To investigate the effect of Chinese medicine raw materials and production technology on quality consistency of Chinese patent medicines with Gegen Qinlian decoction as an example, and establish a suitable method for the quality consistency control of Chinese patent medicines. The results showed that the effect of production technology on the quality consistency was generally not more than 5%, while the effect of raw materials was even more than 30%, indicating that the effect of raw materials was much greater than that of the production technology. In this study, blend technology was used to improve the quality consistency of raw materials. As a result, the difference between the product produced by raw materials and reference groups was less than 5%, thus increasing the quality consistence of finished products. The results showed that under the current circumstances, the main factor affecting the quality consistency of Chinese patent medicines was raw materials, so we shall pay more attention to the quality of Chinese medicine's raw materials. Finally, a blend technology can improve the quality consistency of Chinese patent medicines. Copyright© by the Chinese Pharmaceutical Association.
NASA Astrophysics Data System (ADS)
Clegg, Richard A.; Hayhurst, Colin J.
1999-06-01
Ceramic materials, including glass, are commonly used as ballistic protection materials. The response of a ceramic to impact, perforation and penetration is complex and difficult and/or expensive to instrument for obtaining detailed physical data. This paper demonstrates how a hydrocode, such as AUTODYN, can be used to aid in the understanding of the response of brittle materials to high pressure impact loading and thus promote an efficient and cost effective design process. Hydrocode simulations cannot be made without appropriate characterisation of the material. Because of the complexitiy of the response of ceramic materials this often requires a number of complex material tests. Here we present a methodology for using the results of flyer plate tests, in conjunction with numerical simulations, to derive input to the Johnson-Holmquist material model for ceramics. Most of the research effort in relation to the development of hydrocode material models for ceramics has concentrated on the material behaviour under compression and shear. While the penetration process is dominated by these aspects of the material response, the final damaged state of the material can be significantly influenced by the tensile behaviour. Modelling of the final damage state is important since this is often the only physical information which is available. In this paper we present a unique implementation, in a hydrocode, for improved modelling of brittle materials in the tensile regime. Tensile failure initiation is based on any combination of principal stress or strain while the post-failure tensile response of the material is controlled through a Rankine plasticity damaging failure surface. The tensile failure surface can be combined with any of the traditional plasticity and/or compressive damage models. Finally, the models and data are applied in both traditional grid based Lagrangian and Eulerian solution techniques and the relativley new SPH (Smooth Particle Hydrodynamics) meshless technique. Simulations of long rod impacts onto ceramic faced armour and hypervelocity impacts on glass solar array space structures are presented and compared with experiments.
NASA Astrophysics Data System (ADS)
Di Benedetto, Francesco; D'Acapito, Francesco; Capacci, Fabio; Fornaciai, Gabriele; Innocenti, Massimo; Montegrossi, Giordano; Oberhauser, Werner; Pardi, Luca A.; Romanelli, Maurizio
2014-03-01
We investigated the speciation of Fe in bulk and in suspended respirable quartz dusts coming from ceramic and iron-casting industrial processes via X-ray absorption spectroscopy, with the aim of contributing to a better understanding of the variability of crystalline silica toxicity. Four different bulk industrial quartz powders, nominally pure quartz samples with Fe contents below 200 ppm, and three respirable dusts filters were selected. Fe speciation was determined in all samples through a coupled study of the X-ray absorption near-edge structure and extended X-ray absorption fine structure regions, operating at the Fe-K edge. Fe speciation revealed common features at the beginning of the different production processes, whereas significant differences were observed on both respirable dusts and bulk dusts exiting from the production process. Namely, a common pollution of the raw quartz dusts by elemental Fe was evidenced and attributed to residuals of the industrial production of quartz materials. Moreover, the respirable samples indicated that reactivity occurs after the suspension of the powders in air. The gravitational selection during the particle suspension consistently allowed us to clearly discriminate between suspended and bulk dusts. On the basis of the obtained results, we provide an apparent spectroscopic discrimination between the raw materials used in the considered industrial processes, and those that are effectively inhaled by workers. In particular, an amorphous FeIII oxide, with an unsaturated coordination sphere, can be related to silica reactivity (and health consequences).
NASA Astrophysics Data System (ADS)
Roisine, Gauthier; Capobianco, Natan; Caurant, Daniel; Wallez, Gilles; Bouquillon, Anne; Majérus, Odile; Cormier, Laurent; Gilette, Solène; Gerbier, Aurélie
2017-08-01
During the French Renaissance, a well-known ceramist, Bernard Palissy (1510-1590), succeeded to create amazing lead-glazed ceramics, the recipe of which he kept totally secret. The present study is a first step to try to understand the process of manufacture of Palissy's honey iron-coloured high-lead aluminosilicate glazes through examination of both ancient glazes—discovered in Palissy's workshop (Paris, garden of Tuileries), during archaeological excavations—and replicate glazes of similar composition prepared in the laboratory from raw materials mixtures under controlled conditions (different firing temperatures T_p and cooling rates). These replicate glazes were characterised by X-ray diffraction (XRD) and scanning electron microscopy coupled with energy-dispersive spectroscopy (SEM-EDS). According to laboratory experimentations, three iron-rich crystalline phases are likely to be formed in the glaze after firing (hematite {Fe2O3}, melanotekite {Pb2Fe2Si2O9} and magnetoplumbite PbFe_{12}O_{19}) and their nature, abundance and microstructure strongly depend on both temperature T_p and cooling rate. Comparing the microstructures of replicate glazes and authentic Palissy's glazes allowed to better understand the artist technique in terms of firing process: he would have probably fired most of his production around 1000°C, above liquidus temperature, and would have used a reasonably fast cooling rate (faster than 5° C/h), which enables both to melt all raw materials and to prevent crystallisation during cooling.
Adler, Thomas A.
1996-01-01
The invention pertains a method of determining elastic and plastic mechanical properties of ceramics, intermetallics, metals, plastics and other hard, brittle materials which fracture prior to plastically deforming when loads are applied. Elastic and plastic mechanical properties of ceramic materials are determined using spherical indenters. The method is most useful for measuring and calculating the plastic and elastic deformation of hard, brittle materials with low values of elastic modulus to hardness.
21 CFR 1304.31 - Reports from manufacturers importing narcotic raw material.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Reports from manufacturers importing narcotic raw... RECORDS AND REPORTS OF REGISTRANTS Reports § 1304.31 Reports from manufacturers importing narcotic raw material. (a) Every manufacturer which imports or manufactures from narcotic raw material (opium, poppy...
21 CFR 1304.31 - Reports from manufacturers importing narcotic raw material.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 9 2011-04-01 2011-04-01 false Reports from manufacturers importing narcotic raw... RECORDS AND REPORTS OF REGISTRANTS Reports § 1304.31 Reports from manufacturers importing narcotic raw material. (a) Every manufacturer which imports or manufactures from narcotic raw material (opium, poppy...
Testing Ceramics for Diesel Engines
NASA Technical Reports Server (NTRS)
Schneider, H. W.
1985-01-01
Adaptation of diesel engine allows prestressed ceramic materials evaluated under realistic pressure, temperature, and stress without introducing extraneous stress. Ceramic specimen part of prechamber of research engine. Specimen held in place by clamp, introduces required axial compressive stress. Specimen -- cylindrical shell -- surrounded by chamber vented or pressurized to introduce requisite radial stress in ceramic. Pressure chamber also serves as safety shield in case speimen disintegrates. Materials under consideration as cylinder liners for diesel engines.
Ceramic and non-ceramic hydroxyapatite as a bone graft material: a brief review.
Dutta, S R; Passi, D; Singh, P; Bhuibhar, A
2015-03-01
Treatment of dental, craniofacial and orthopedic defects with bone graft substitutes has shown promising result achieving almost complete bone regeneration depending on product resorption similar to human bone's physicochemical and crystallographic characteristics. Among these, non-ceramic and ceramic hydroxyapatite being the main inorganic salt of bone is the most studied calcium phosphate material in clinical practices ever since 1970s and non-ceramic since 1985. Its "chemical similarity" with the mineralized phase of biologic bone makes it unique. Hydroxyapatite as an excellent carrier of osteoinductive growth factors and osteogenic cell populations is also useful as drug delivery vehicle regardless of its density. Porous ceramic and non-ceramic hydroxyapatite is osteoconductive, biocompatible and very inert. The need for bone graft material keeps on increasing with increased age of the population and the increased conditions of trauma. Recent advances in genetic engineering and doping techniques have made it possible to use non-ceramic hydroxyapatite in larger non-ceramic crystals and cluster forms as a successful bone graft substitute to treat various types of bone defects. In this paper we have mentioned some recently studied properties of hydroxyapatite and its various uses through a brief review of the literatures available to date.
Material Science Smart Coatings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubinstein, A. I.; Sabirianov, R. F.; Namavar, Fereydoon
2014-07-01
The contribution of electrostatic interactions to the free energy of binding between model protein and a ceramic implant surface in the aqueous solvent, considered in the framework of the nonlocal electrostatic model, is calculated as a function of the implant low-frequency dielectric constant. We show that the existence of a dynamically ordered (low-dielectric) interfacial solvent layer at the protein-solvent and ceramic-solvent interface markedly increases charging energy of the protein and ceramic implant, and consequently makes the electrostatic contribution to the protein-ceramic binding energy more favorable (attractive). Our analysis shows that the corresponding electrostatic energy between protein and oxide ceramics dependsmore » nonmonotonically on the dielectric constant of ceramic, ε C. Obtained results indicate that protein can attract electrostatically to the surface if ceramic material has a moderate ε C below or about 35 (in particularly ZrO 2 or Ta 2O 5). This is in contrast to classical (local) consideration of the solvent, which demonstrates an unfavorable electrostatic interaction of protein with typical metal oxide ceramic materials (ε C>10). Thus, a solid implant coated by combining oxide ceramic with a reduced dielectric constant can be beneficial to strengthen the electrostatic binding of the protein-implant complex.« less
Ceramic-glass-ceramic seal by microwave heating
Meek, T.T.; Blake, R.D.
1983-10-04
A method for producing a ceramic-glass-ceramic seal by microwaving, mixes a slurry of glass sealing material and coupling agent and applies same to ceramic workpieces. The slurry and workpieces are placed together, insulated and then microwaved at a power, time and frequency sufficient to cause a liquid phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by a diffusion rather than by wetting of the reactants.
Ceramic-glass-ceramic seal by microwave heating
Meek, Thomas T.; Blake, Rodger D.
1985-01-01
A method for producing a ceramic-glass-ceramic seal by microwaving, mixes a slurry of glass sealing material and coupling agent and applies same to ceramic workpieces. The slurry and workpieces are placed together, insulated and then microwaved at a power, time and frequency sufficient to cause a liquid phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by a diffusion rather than by wetting of the reactants.
Method for Waterproofing Ceramic Materials
NASA Technical Reports Server (NTRS)
Cagliostro, Domenick E. (Inventor); Hsu, Ming-Ta S. (Inventor)
1998-01-01
Hygroscopic ceramic materials which are difficult to waterproof with a silane, substituted silane or silazane waterproofing agent, such as an alumina containing fibrous, flexible and porous, fibrous ceramic insulation used on a reentry space vehicle, are rendered easy to waterproof if the interior porous surface of the ceramic is first coated with a thin coating of silica. The silica coating is achieved by coating the interior surface of the ceramic with a silica precursor converting the precursor to silica either in-situ or by oxidative pyrolysis and then applying the waterproofing agent to the silica coated ceramic. The silica precursor comprises almost any suitable silicon containing material such as a silane, silicone, siloxane, silazane and the like applied by solution, vapor deposition and the like. If the waterproofing is removed by e.g., burning, the silica remains and the ceramic is easily rewaterproofed. An alumina containing TABI insulation which absorbs more that five times its weight of water, absorbs less than 10 wt. % water after being waterproofed according to the method of the invention.
Characterization of composite materials based on cement-ceramic powder blended binder
NASA Astrophysics Data System (ADS)
Kulovaná, Tereza; Pavlík, Zbyšek
2016-06-01
Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO2 emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzed by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.
Characterization of composite materials based on cement-ceramic powder blended binder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulovaná, Tereza; Pavlík, Zbyšek
Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO{sub 2} emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzedmore » by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.« less
Wang, Zheng; Wang, Shi-Wei; Qiu, De-Ren; Yang, Peng-Yuan
2009-10-01
Advanced ceramics have been applied to various important fields such as information science, aeronautics and astronautics, and life sciences. However, the optics and electric properties of ceramics are significantly affected by the micro and trace impurities existing in the material even at very low concentration level. Thus, the accurate determination of impurities is important for materials preparation and performance. Methodology of the analysis of advanced ceramic materials using ICP-AES/MS was reviewed in the present paper for the past decade. Various techniques of sample introduction, especially advances in the authors' recent work, are described in detail. The developing trend is also presented. Sixty references are cited.
Evaluation of ceramics for stator application: Gas turbine engine report
NASA Technical Reports Server (NTRS)
Trela, W.; Havstad, P. H.
1978-01-01
Current ceramic materials, component fabrication processes, and reliability prediction capability for ceramic stators in an automotive gas turbine engine environment are assessed. Simulated engine duty cycle testing of stators conducted at temperatures up to 1093 C is discussed. Materials evaluated are SiC and Si3N4 fabricated from two near-net-shape processes: slip casting and injection molding. Stators for durability cycle evaluation and test specimens for material property characterization, and reliability prediction model prepared to predict stator performance in the simulated engine environment are considered. The status and description of the work performed for the reliability prediction modeling, stator fabrication, material property characterization, and ceramic stator evaluation efforts are reported.
PREFACE: 3rd International Congress on Ceramics (ICC3)
NASA Astrophysics Data System (ADS)
Niihara, Koichi; Ohji, Tatsuki; Sakka, Yoshio
2011-10-01
Early in 2005, the American Ceramic Society, the European Ceramic Society and the Ceramic Society of Japan announced a collaborative effort to provide leadership for the global ceramics community that would facilitate the use of ceramic and glass materials. That effort resulted in an agreement to organize a new biennial series of the International Congress on Ceramics, convened by the International Ceramic Federation (ICF). In order to share ideas and visions of the future for ceramic and glass materials, the 1st International Congress on Ceramics (ICC1) was held in Canada, 2006, under the organization of the American Ceramic Society, and the 2nd Congress (ICC2) was held in Italy, 2008, hosted by the European Ceramic Society. Organized by the Ceramic Society of Japan, the 3rd Congress (ICC3) was held in Osaka, Japan, 14-18 November 2010. Incorporating the 23rd Fall Meeting of the Ceramic Society of Japan and the 20th Iketani Conference, ICC3 was also co-organized by the Iketani Science and Technology Foundation, and was endorsed and supported by ICF, Asia-Oceania Ceramic Federation (AOCF) as well as many other organizations. Following the style of the previous two successful Congresses, the program was designed to advance ceramic and glass technologies to the next generation through discussion of the most recent advances and future perspectives, and to engage the worldwide ceramics community in a collective effort to expand the use of these materials in both conventional as well as new and exciting applications. ICC3 consisted of 22 voluntarily organized symposia in the most topical and essential themes of ceramic and glass materials, including Characterization, design and processing technologies Electro, magnetic and optical ceramics and devices Energy and environment related ceramics and systems Bio-ceramics and bio-technologies Ceramics for advanced industry and safety society Innovation in traditional ceramics It also contained the Plenary Session and the Special Symposium 'Emerging Technologies and Future Aspects for Ceramics', which discussed the issues and challenges of various ceramic technologies for sustainable development of tomorrow's human society. More than 1850 research papers including invited talks, oral presentations, and posters were presented from 56 countries (according to the Program), with nearly 2000 registered participants. This ICC3 proceedings contains papers that were submitted to ICC3 and approved for publication on line in IOP Conference Series: Materials Science and Engineering (MSE). The organization of ICC3 and the publication of this proceedings were made possible thanks to the tireless dedication of many people and the valuable support of numerous bodies. Special thanks should go to the financial supporters for their generous patronage. We also would like to express our sincere thanks to the symposia organizers, session chairs, presenters, exhibitors and congress attendees for their efforts and enthusiastic participation in this vibrant and cutting-edge congress. July 2011 Koichi Niihara, ICC3 President Tatsuki Ohji, ICC3 Secretariat Yoshio Sakka, ICC3 Secretariat The PDF file contains a complete list of sponsors, committee members, board members and symposia organizers.
29 CFR 779.333 - Goods sold for use as raw materials in other products.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 3 2011-07-01 2011-07-01 false Goods sold for use as raw materials in other products. 779... Service Establishments Sales Not Made for Resale § 779.333 Goods sold for use as raw materials in other products. Goods are sold for resale where they are sold for use as a raw material in the production of a...
29 CFR 779.333 - Goods sold for use as raw materials in other products.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 3 2010-07-01 2010-07-01 false Goods sold for use as raw materials in other products. 779... Service Establishments Sales Not Made for Resale § 779.333 Goods sold for use as raw materials in other products. Goods are sold for resale where they are sold for use as a raw material in the production of a...
40 CFR Table N-1 to Subpart N of... - CO2 Emission Factors for Carbonate-Based Raw Materials
Code of Federal Regulations, 2011 CFR
2011-07-01
...-Based Raw Materials N Table N-1 to Subpart N of Part 98 Protection of Environment ENVIRONMENTAL... Raw Materials Carbonate-basedraw material—mineral CO2 emission factor a Limestone—CaCO3 0.440 Dolomite... in units of metric tons of CO2 emitted per metric ton of carbonate-based raw material charged to the...
Ji, Renjie; Liu, Yonghong; Diao, Ruiqiang; Xu, Chenchen; Li, Xiaopeng; Cai, Baoping; Zhang, Yanzhen
2014-01-01
Engineering ceramics have been widely used in modern industry for their excellent physical and mechanical properties, and they are difficult to machine owing to their high hardness and brittleness. Electrical discharge machining (EDM) is the appropriate process for machining engineering ceramics provided they are electrically conducting. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics. This paper investigates the effects of the electrical resistivity and EDM parameters such as tool polarity, pulse interval, and electrode material, on the ZnO/Al2O3 ceramic's EDM performance, in terms of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The results show that the electrical resistivity and the EDM parameters have the great influence on the EDM performance. The ZnO/Al2O3 ceramic with the electrical resistivity up to 3410 Ω·cm can be effectively machined by EDM with the copper electrode, the negative tool polarity, and the shorter pulse interval. Under most machining conditions, the MRR increases, and the SR decreases with the decrease of electrical resistivity. Moreover, the tool polarity, and pulse interval affect the EWR, respectively, and the electrical resistivity and electrode material have a combined effect on the EWR. Furthermore, the EDM performance of ZnO/Al2O3 ceramic with the electrical resistivity higher than 687 Ω·cm is obviously different from that with the electrical resistivity lower than 687 Ω·cm, when the electrode material changes. The microstructure character analysis of the machined ZnO/Al2O3 ceramic surface shows that the ZnO/Al2O3 ceramic is removed by melting, evaporation and thermal spalling, and the material from the working fluid and the graphite electrode can transfer to the workpiece surface during electrical discharge machining ZnO/Al2O3 ceramic.
High temperature, low expansion, corrosion resistant ceramic and gas turbine
Rauch, Sr., Harry W.
1981-01-01
The present invention relates to ZrO.sub.2 -MgO-Al.sub.2 O.sub.3 -SiO.sub.2 ceramic materials having improved thermal stability and corrosion resistant properties. The utilization of these ceramic materials as heat exchangers for gas turbine engines is also disclosed.
Experimental Techniques for Thermodynamic Measurements of Ceramics
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.; Putnam, Robert L.; Navrotsky, Alexandra
1999-01-01
Experimental techniques for thermodynamic measurements on ceramic materials are reviewed. For total molar quantities, calorimetry is used. Total enthalpies are determined with combustion calorimetry or solution calorimetry. Heat capacities and entropies are determined with drop calorimetry, differential thermal methods, and adiabatic calorimetry . Three major techniques for determining partial molar quantities are discussed. These are gas equilibration techniques, Knudsen cell methods, and electrochemical techniques. Throughout this report, issues unique to ceramics are emphasized. Ceramic materials encompass a wide range of stabilities and this must be considered. In general data at high temperatures is required and the need for inert container materials presents a particular challenge.
Extension of similarity test procedures to cooled engine components with insulating ceramic coatings
NASA Technical Reports Server (NTRS)
Gladden, H. J.
1980-01-01
Material thermal conductivity was analyzed for its effect on the thermal performance of air cooled gas turbine components, both with and without a ceramic thermal-barrier material, tested at reduced temperatures and pressures. The analysis shows that neglecting the material thermal conductivity can contribute significant errors when metal-wall-temperature test data taken on a turbine vane are extrapolated to engine conditions. This error in metal temperature for an uncoated vane is of opposite sign from that for a ceramic-coated vane. A correction technique is developed for both ceramic-coated and uncoated components.
40 CFR 63.1346 - Standards for new or reconstructed raw material dryers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Standards for new or reconstructed raw... Industry Emission Standards and Operating Limits § 63.1346 Standards for new or reconstructed raw material dryers. (a) New or reconstructed raw material dryers located at facilities that are major sources can not...
Leveraging “Raw Materials” as Building Blocks and Bioactive Signals in Regenerative Medicine
Renth, Amanda N.
2012-01-01
Components found within the extracellular matrix (ECM) have emerged as an essential subset of biomaterials for tissue engineering scaffolds. Collagen, glycosaminoglycans, bioceramics, and ECM-based matrices are the main categories of “raw materials” used in a wide variety of tissue engineering strategies. The advantages of raw materials include their inherent ability to create a microenvironment that contains physical, chemical, and mechanical cues similar to native tissue, which prove unmatched by synthetic biomaterials alone. Moreover, these raw materials provide a head start in the regeneration of tissues by providing building blocks to be bioresorbed and incorporated into the tissue as opposed to being biodegraded into waste products and removed. This article reviews the strategies and applications of employing raw materials as components of tissue engineering constructs. Utilizing raw materials holds the potential to provide both a scaffold and a signal, perhaps even without the addition of exogenous growth factors or cytokines. Raw materials contain endogenous proteins that may also help to improve the translational success of tissue engineering solutions to progress from laboratory bench to clinical therapies. Traditionally, the tissue engineering triad has included cells, signals, and materials. Whether raw materials represent their own new paradigm or are categorized as a bridge between signals and materials, it is clear that they have emerged as a leading strategy in regenerative medicine. The common use of raw materials in commercial products as well as their growing presence in the research community speak to their potential. However, there has heretofore not been a coordinated or organized effort to classify these approaches, and as such we recommend that the use of raw materials be introduced into the collective consciousness of our field as a recognized classification of regenerative medicine strategies. PMID:22462759
NASA Technical Reports Server (NTRS)
Singh, M.
2011-01-01
During the last decades, a number of fiber reinforced ceramic composites have been developed and tested for various aerospace and ground based applications. However, a number of challenges still remain slowing the wide scale implementation of these materials. In addition to continuous fiber reinforced composites, other innovative materials have been developed including the fibrous monoliths and sintered fiber bonded ceramics. The sintered silicon carbide fiber bonded ceramics have been fabricated by the hot pressing and sintering of silicon carbide fibers. However, in this system reliable property database as well as various issues related to thermomechanical performance, integration, and fabrication of large and complex shape components has yet to be addressed. In this presentation, thermomechanical properties of sintered silicon carbide fiber bonded ceramics (as fabricated and joined) will be presented. In addition, critical need for manufacturing and integration technologies in successful implementation of these materials will be discussed.
NASA Technical Reports Server (NTRS)
Davies, P. K.; Roth, R. S.
1991-01-01
The conference was held at Jackson Hole, Wyoming from August 17 to 22, 1990, and in an attempt to maximize the development of this rapidly moving, multidisciplinary field, this conference brought together major national and international researchers to bridge the gap between those primarily interested in the pure chemistry of inorganic solids and those interested in the physical and electronic properties of ceramics. With the many major discoveries that have occurred over the last decade, one of the goals of this meeting was to evaluate the current understanding of the chemistry of electronic ceramic materials, and to assess the state of a field that has become one of the most important areas of advanced materials research. The topics covered include: crystal chemistry; dielectric ceramics; low temperature synthesis and characterization; solid state synthesis and characterization; surface chemistry; superconductors; theory and modeling.
Strong, tough and stiff bioinspired ceramics from brittle constituents
NASA Astrophysics Data System (ADS)
Bouville, Florian; Maire, Eric; Meille, Sylvain; van de Moortèle, Bertrand; Stevenson, Adam J.; Deville, Sylvain
2014-05-01
High strength and high toughness are usually mutually exclusive in engineering materials. In ceramics, improving toughness usually relies on the introduction of a metallic or polymeric ductile phase, but this decreases the material’s strength and stiffness as well as its high-temperature stability. Although natural materials that are both strong and tough rely on a combination of mechanisms operating at different length scales, the relevant structures have been extremely difficult to replicate. Here, we report a bioinspired approach based on widespread ceramic processing techniques for the fabrication of bulk ceramics without a ductile phase and with a unique combination of high strength (470 MPa), high toughness (22 MPa m1/2), and high stiffness (290 GPa). Because only mineral constituents are needed, these ceramics retain their mechanical properties at high temperatures (600 °C). Our bioinspired, material-independent approach should find uses in the design and processing of materials for structural, transportation and energy-related applications.
Biodegradable ceramic-polymer composites for biomedical applications: A review.
Dziadek, Michal; Stodolak-Zych, Ewa; Cholewa-Kowalska, Katarzyna
2017-02-01
The present work focuses on the state-of-the-art of biodegradable ceramic-polymer composites with particular emphasis on influence of various types of ceramic fillers on properties of the composites. First, the general needs to create composite materials for medical applications are briefly introduced. Second, various types of polymeric materials used as matrices of ceramic-containing composites and their properties are reviewed. Third, silica nanocomposites and their material as well as biological characteristics are presented. Fourth, different types of glass fillers including silicate, borate and phosphate glasses and their effect on a number of properties of the composites are described. Fifth, wollastonite as a composite modifier and its effect on composite characteristics are discussed. Sixth, composites containing calcium phosphate ceramics, namely hydroxyapatite, tricalcium phosphate and biphasic calcium phosphate are presented. Finally, general possibilities for control of properties of composite materials are highlighted. Copyright © 2016 Elsevier B.V. All rights reserved.
Low temperature joining of ceramic composites
Barton, Thomas J.; Anderson, Iver E.; Ijadi-Maghsoodi, Sina; Nosrati, Mohammad; Unal, Ozer
1999-01-12
A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or cermaic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix.
Low temperature joining of ceramic composites
Barton, Thomas J.; Anderson, Iver E.; Ijadi-Maghsoodi, Sina; Nosrati, Mohammad; Unal, Ozer
2001-04-10
A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or cermaic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix.
NASA Astrophysics Data System (ADS)
Jamaludin, L.; Abdullah, M. M. A. B.; Hussin, K.; Kadir, A. Abdul
2018-06-01
The study focus on effect of pre-heated ceramic surface on the adhesion bond strength between geopolymer coating coating and ceramic substrates. Ceramic substrates was pre-heated at different temperature (400 °C, 600 °C, 800 °C and 1000 °C). Fly ash geopolymer coating material potential used to protect surface used in exposure conditions after sintering at high temperature. Fly ash and alkali activator (Al2O3/Na2SiO3) were mixed with 2.0 solids-to-liquid ratios to prepare geopolymer coating material at constant NaOH concentration of 12M. Adhesion test was conducted to determine the adhesion bond between ceramic substrates and fly ash coating material. The results showed the pre-heated ceramic substrates effect the adhesion bond of coating compared with untreated substrates with increasing of strength up to 20 % for temperature 600 °C.
NASA Astrophysics Data System (ADS)
Sinescu, Cosmin; Negrutiu, Meda Lavinia; Ionita, Ciprian; Marsavina, Liviu; Negru, Radu; Topala, Florin; Petrescu, Emanuela; Rominu, Roxana; Fabriky, Mihai; Bradu, Adrian; Rominu, Mihai; Podoleanu, Adrian Gh.
2011-10-01
Imagistic investigation of the metal-ceramic crowns and fixed partial prostheses represent a very important issue in nowadays dentistry. At this time, in dental office, it is difficult or even impossible to evaluate a metal ceramic crown or bridge before setting it in the oral cavity. The possibilities of ceramic fractures are due to small fracture lines or material defects inside the esthetic layers. Material and methods: In this study 25 metal ceramic crowns and fixed partial prostheses were investigated by radiographic method (Rx), micro computer tomography (MicroCT) and optical coherence tomography (OCT) working in Time Domain, at 1300 nm. The OCT system contains two interferometers and one scanner. For each incident analysis a stuck made of 100 slices was obtain. These slices were used in order to obtain a 3D model of the ceramic interface. After detecting the presence and the positions of the ceramic defects the numerical simulation method was used to estimate the biomechanical effect of the masticatory forces on fractures propagations in ceramic materials. Results: For all the dental ceramic defects numerical simulation analysis was performed. The simulation of crack propagation shows that the crack could initiate from the upper, lower or both parts of the defect and propagates through the ceramic material where tensile stress field is present. RX and MicroCT are very powerful instruments that provide a good characterization of the dental construct. It is important to observe the reflections due to the metal infrastructure that could affect the evaluation of the metal ceramic crowns and bridges. The OCT investigations could complete the imagistic evaluation of the dental construct by offering important information when it is need it.
Sealing ceramic material in low melting point glass
NASA Technical Reports Server (NTRS)
Moritoki, M.; Fujikawa, T.; Miyanaga, J.
1984-01-01
A structured device placed in an aerated crucible to pack ceramics molding substance that is to be processed was designed. The structure is wrapped by sealing material made of pyrex glass and graphite foil or sheet with a weight attached on top of it. The crucible is made of carbon; the ceramics material to be treated through heat intervenient press process is molding substance consisting mainly of silicon nitride.
Tagmatarchis, Alexander; Tripodakis, Aris-Petros; Filippatos, Gerasimos; Zinelis, Spiros; Eliades, George
2014-01-01
The aim of the study was to characterize the elemental distribution at the interface between all-ceramic core and veneering porcelain materials. Three groups of all-ceramic cores were selected: A) Glass-ceramics (Cergo, IPS Empress, IPS Empress 2, e-max Press, Finesse); B) Glass-infiltrated ceramics (Celay Alumina, Celay Zirconia) and C) Densely sintered ceramics (Cercon, Procera Alumina, ZirCAD, Noritake Zirconia). The cores were combined with compatible veneering porcelains and three flat square test specimens were produced for each system. The core-veneer interfaces were examined by scanning electron microscopy and energy dispersive x-ray microanalysis. The glass-ceramic systems showed interfacial zones reach in Si and O, with the presence of K, Ca, Al in core and Ca, Ce, Na, Mg or Al in veneer material, depending on the system tested. IPS Empress and IPS Empress 2 demonstrated distinct transitional phases at the core-veneer interface. In the glassinfiltrated systems, intermixing of core (Ce, La) with veneer (Na, Si) elements occurred, whereas an abrupt drop of the core-veneer elemental concentration was documented at the interfaces of all densely sintered ceramics. The results of the study provided no evidence of elemental interdiffusion at the core-veneer interfaces in densely sintered ceramics, which implies lack of primary chemical bonding. For the glass-containing systems (glassceramics and glass-infiltrated ceramics) interdiffusion of the glass-phase seems to play a critical role in establishing a primary bonding condition between ceramic core and veneering porcelain.
Determination of elemental composition of substance lost following wear of all-ceramic materials.
Dündar, Mine; Artunç, Celal; Toksavul, Suna; Ozmen, Dilek; Turgan, Nevbahar
2003-01-01
The aim of this study was to test the possible elemental release of four different all-ceramic materials in a wear machine to predict results about their long-term behavior in the oral environment. Four different all-ceramic materials with different chemical compositions were selected for the wear testing. A total of 20 cylindric samples, five for each ceramic group, were prepared according to the manufacturers' instructions. These were subjected to two-body wear testing in an artificial saliva medium under a covered unit with a computer-operated wear machine. The artificial saliva solutions for each material were analyzed for the determination of amounts of sodium, potassium, calcium, magnesium, and lithium elements released from the glass-ceramic materials. The differences between and within groups were statistically analyzed with a one-way ANOVA, followed by Duncan tests. The statistical analyses revealed no significant differences among Na, K, Ca, or Mg levels (P > .05) released from the leucite-reinforced groups, while there was a significant (P < .05) increase in Li release from the lithium disilicate group. Considerable element release to the artifical saliva medium was demonstrated in short-term wear testing. The lithia-based ceramic was more prone to Li release when compared with other elements and materials.
Advanced ceramic matrix composites for TPS
NASA Technical Reports Server (NTRS)
Rasky, Daniel J.
1992-01-01
Recent advances in ceramic matrix composite (CMC) technology provide considerable opportunity for application to future aircraft thermal protection system (TPS), providing materials with higher temperature capability, lower weight, and higher strength and stiffness than traditional materials. The Thermal Protection Material Branch at NASA Ames Research Center has been making significant progress in the development, characterization, and entry simulation (arc-jet) testing of new CMC's. This protection gives a general overview of the Ames Thermal Protection Materials Branch research activities, followed by more detailed descriptions of recent advances in very-high temperature Zr and Hf based ceramics, high temperature, high strength SiC matrix composites, and some activities in polymer precursors and ceramic coating processing. The presentation closes with a brief comparison of maximum heat flux capabilities of advanced TPS materials.
Scoping Future Policy Dynamics in Raw Materials Through Scenarios Testing
NASA Astrophysics Data System (ADS)
Correia, Vitor; Keane, Christopher; Sturm, Flavius; Schimpf, Sven; Bodo, Balazs
2017-04-01
The International Raw Materials Observatory (INTRAW) project is working towards a sustainable future for the European Union in access to raw materials, from an availability, economical, and environmental framework. One of the major exercises for the INTRAW project is the evaluation of potential future scenarios for 2050 to frame economic, research, and environmental policy towards a sustainable raw materials supply. The INTRAW consortium developed three possible future scenarios that encompass defined regimes of political, economic, and technological norms. The first scenario, "Unlimited Trade," reflects a world in which free trade continues to dominate the global political and economic environment, with expectations of a growing demand for raw materials from widely distributed global growth. The "National Walls" scenario reflects a world where nationalism and economic protectionism begins to dominate, leading to stagnating economic growth and uneven dynamics in raw materials supply and demand. The final scenario, "Sustainability Alliance," examines the dynamics of a global political and economic climate that is focused on environmental and economic sustainability, leading towards increasingly towards a circular raw materials economy. These scenarios were reviewed, tested, and provided simulations of impacts with members of the Consortium and a panel of global experts on international raw materials issues which led to expected end conditions for 2050. Given the current uncertainty in global politics, these scenarios are informative to identifying likely opportunities and crises. The details of these simulations and expected responses to the research demand, technology investments, and economic components of raw materials system will be discussed.
An Immunoassay for Quantification of Contamination by Raw Meat Juice on Food Contact Surfaces.
Chen, Fur-Chi; Godwin, Sandria; Chambers, Edgar
2016-11-01
Raw chicken products often are contaminated with Salmonella and Campylobacter , which can be transmitted from packages to contact surfaces. Raw meat juices from these packages also provide potential media for cross-contamination. There are limited quantitative data on the levels of consumer exposure to raw meat juice during shopping for and handling of chicken products. An exposure assessment is needed to quantify the levels of transmission and to assess the risk. An enzyme-linked immunosorbent assay (ELISA) was developed and validated for quantitative detection of raw meat juice on hands and various food contact surfaces. Analytical procedures were designed to maximize the recovery of raw meat juice from various surfaces: hands, plastic, wood, stainless steel, laminated countertops, glass, and ceramics. The ELISA was based on the detection of a soluble muscle protein, troponin I (TnI), in the raw meat juice. The assay can detect levels as low as 1.25 ng of TnI, which is equivalent to less than 1 μl of the raw meat juice. The concentrations of TnI in the raw meat juices from 10 retail chicken packages, as determined by ELISA, were between 0.46 and 3.56 ng/μl, with an average of 1.69 ng/μl. The analytical procedures, which include swabbing, extraction, and concentration, enable the detection of TnI from various surfaces. The recoveries of raw meat juice from surfaces of hands were 92%, and recoveries from other tested surfaces were from 55% on plastic cutting boards to 75% on laminated countertops. The ELISA developed has been used for monitoring the transfer of raw meat juice during shopping for and handling of raw chicken products in our studies. The assay also can be applied to other raw meat products, such as pork and beef.
40 CFR 428.75 - Standards of performance for new sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 0.26 0.093 TSS 0.50 0.25 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 0.26 0...— Metric units (kg/kkg of raw material) Lead 0.0017 0.0007 English units (lb/1,000 lb of raw material) Lead...
40 CFR 428.75 - Standards of performance for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 0.26 0.093 TSS 0.50 0.25 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 0.26 0...— Metric units (kg/kkg of raw material) Lead 0.0017 0.0007 English units (lb/1,000 lb of raw material) Lead...
Coated ceramic breeder materials
Tam, Shiu-Wing; Johnson, Carl E.
1987-01-01
A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.
Coated ceramic breeder materials
Tam, Shiu-Wing; Johnson, Carl E.
1987-04-07
A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.
Study on optimum length of raw material in stainless steel high-lock nuts forging
NASA Astrophysics Data System (ADS)
Cheng, Meiwen; Liu, Fenglei; Zhao, Qingyun; Wang, Lidong
2018-04-01
Taking 302 stainless steel (1Cr18Ni9) high-lock nuts for research objects, adjusting the length of raw material, then using DEFORM software to simulate the isothermal forging process of each station and conducting the corresponding field tests to study the effects of raw material size on the stainless steel high-lock nuts forming performance. The tests show that the samples of each raw material length is basically the same as the results of the DEFORM software. When the length of the raw material is 10mm, the appearance size of the parts can meet the design requirements.
Ouyang, Shao-bo; Wang, Jun; Zhang, Hong-bin; Liao, Lan; Zhu, Hong-shui
2014-04-01
To investigate the stress distributions under load in 3 types of all-ceramic continuous crowns of the lower anterior teeth with differential shoulder thickness. Cone-beam CT (CBCT) was used to scan the in vitro mandibular central incisors, and achieve three-dimensional finite element model of all-ceramic continuous crowns with different shoulder width by using Mimics, Abaqus software. Different load conditions were simulated based on this model to study the effect of shoulder width variation on finite element analysis of 3 kinds of different all-ceramic materials of incisors fixed continuous crowns of the mandibular. Using CBCT, Mimics10.01 software and Abaqus 6.11 software, three-dimensional finite element model of all-ceramic continuous crowns of the mandibular incisor, abutment, periodontal ligament and alveolar bone was established. Different ceramic materials and various shoulder width had minor no impact on the equivalent stress peak of periodontal membrane, as well as alveolar bone. With the same shoulder width and large area of vertical loading of 120 N, the tensile stress was the largest in In-Ceram Alumina, followed by In-Ceram Zirconia and the minimum was IPS.Empress II. Under large area loading of 120 N 45° labially, when the material was IPS.Empress II, with the shoulder width increased, the porcelain plate edge of the maximum tensile stress value increased, while the other 2 materials had no obvious change. Finite element model has good geometric similarity. In the setting range of this study, when the elastic modulus of ceramic materials is bigger, the tensile stress of the continuous crown is larger. Supported by Research Project of Department of Education, Jiangxi Province (GJJ09130).
Lazar, Dolores R R; Bottino, Marco C; Ozcan, Mutlu; Valandro, Luiz Felipe; Amaral, Regina; Ussui, Valter; Bressiani, Ana H A
2008-12-01
(1) To synthesize 3mol% yttria-stabilized zirconia (3Y-TZP) powders via coprecipitation route, (2) to obtain zirconia ceramic specimens, analyze surface characteristics, and mechanical properties, and (3) to compare the processed material with three reinforced dental ceramics. A coprecipitation route was used to synthesize a 3mol% yttria-stabilized zirconia ceramic processed by uniaxial compaction and pressureless sintering. Commercially available alumina or alumina/zirconia ceramics, namely Procera AllCeram (PA), In-Ceram Zirconia Block (CAZ) and In-Ceram Zirconia (IZ) were chosen for comparison. All specimens (6mmx5mmx5mm) were polished and ultrasonically cleaned. Qualitative phase analysis was performed by XRD and apparent densities were measured on the basis of Archimedes principle. Ceramics were also characterized using SEM, TEM and EDS. The hardness measurements were made employing Vickers hardness test. Fracture toughness (K(IC)) was calculated. Data were analyzed using one-way analysis of variance (ANOVA) and Tukey's test (alpha=0.05). ANOVA revealed that the Vickers hardness (p<0.0001) and fracture toughness (p<0.0001) were affected by the ceramic materials composition. It was confirmed that the PA ceramic was constituted of a rhombohedral alumina matrix, so-called alpha-alumina. Both CAZ and IZ ceramics presented tetragonal zirconia and alpha-alumina mixture of phases. The SEM/EDS analysis confirmed the presence of aluminum in PA ceramic. In the IZ and CAZ ceramics aluminum, zirconium and cerium in grains involved by a second phase containing aluminum, silicon and lanthanum were identified. PA showed significantly higher mean Vickers hardness values (H(V)) (18.4+/-0.5GPa) compared to vitreous CAZ (10.3+/-0.2GPa) and IZ (10.6+/-0.4GPa) ceramics. Experimental Y-TZP showed significantly lower results than that of the other monophased ceramic (PA) (p<0.05) but it showed significantly higher fracture toughness (6.0+/-0.2MPam(1/2)) values when compared to the other tested ceramics (p<0.05). The coprecipitation method used to synthesize zirconia powders and the adopted ceramic processing conditions led to ceramics with mechanical properties comparable to commercially available reinforced ceramic materials.
Della Bona, Alvaro
2005-03-01
The appeal of ceramics as structural dental materials is based on their light weight, high hardness values, chemical inertness, and anticipated unique tribological characteristics. A major goal of current ceramic research and development is to produce tough, strong ceramics that can provide reliable performance in dental applications. Quantifying microstructural parameters is important to develop structure/property relationships. Quantitative microstructural analysis provides an association among the constitution, physical properties, and structural characteristics of materials. Structural reliability of dental ceramics is a major factor in the clinical success of ceramic restorations. Complex stress distributions are present in most practical conditions and strength data alone cannot be directly extrapolated to predict structural performance.
Richardson, G Mark; Clemow, Scott R; Peters, Rachel E; James, Kyle J; Siciliano, Steven D
2016-01-01
Little has been published on the chemical exposures and risks of dental restorative materials other than from dental amalgam and composite resins. Here we provide the first exposure and risk assessment for gold (Au) alloy and ceramic restorative materials. Based on the 2001-2004 US National Health and Nutrition Examination Survey (NHANES), we assessed the exposure of US adults to the components of Au alloy and ceramic dental restorations owing to dental material wear. Silver (Ag) is the most problematic component of Au alloy restorations, owing to a combination of toxicity and proportional composition. It was estimated that adults could possess an average of four tooth surfaces restored with Au alloy before exceeding, on average, the reference exposure level (REL) for Ag. Lithium (Li) is the most problematic component of dental ceramics. It was estimated that adults could possess an average of 15 tooth surfaces restored with ceramics before exceeding the REL for Li. Relative risks of chemical exposures from dental materials decrease in the following order: Amalgam>Au alloys>ceramics>composite resins.
Influence of different materials on the thermal behavior of a CDIP-8 ceramic package
NASA Astrophysics Data System (ADS)
Weide, Kirsten; Keck, Christian
1999-08-01
The temperature distribution inside a package is determined by the heat transfer from the package to the ambient, depending on the heat conductivities of the different used materials. With the help of finite element simulations the thermal behavior of the package can be characterized. In precise simulations convection and radiation effects have to be taken into account. In this paper the influence of different materials like the ceramic, the pin and die attach material and adhesive material between the chip and the die attach on the thermal resistance of the ceramic package will be investigated. A finite element model of the ceramic package including a voltage regulator on the chip was created. The simulations were carried out with the finite element program ANSYS. An easy way to take the radiation effect into account, which normally is difficult to handle in the simulation, will be shown. The results of the simulations are verified by infrared measurements. A comparison of the thermal resistance between the best case and worst case for different package materials was done. The thermal conductivity of the ceramic material shows the strongest influence on the thermal resistance.
Evaluation and ranking of candidate ceramic wafer engine seal materials
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.
1991-01-01
Modern engineered ceramics offer high temperature capabilities not found in even the best superalloy metals. The high temperature properties of several selected ceramics including aluminum oxide, silicon carbide, and silicon nitride are reviewed as they apply to hypersonic engine seal design. A ranking procedure is employed to objectively differentiate among four different monolithic ceramic materials considered, including: a cold-pressed and sintered aluminum oxide; a sintered alpha-phase silicon carbide; a hot-isostatically pressed silicon nitride; and a cold-pressed and sintered silicon nitride. This procedure is used to narrow the wide range of potential ceramics considered to an acceptable number for future detailed and costly analyses and tests. The materials are numerically scored according to their high temperature flexural strength; high temperature thermal conductivity; resistance to crack growth; resistance to high heating rates; fracture toughness; Weibull modulus; and finally according to their resistance to leakage flow, where materials having coefficients of thermal expansion closely matching the engine panel material resist leakage flow best. The cold-pressed and sintered material (Kyocera SN-251) ranked the highest in the overall ranking especially when implemented in engine panels made of low expansion rate materials being considered for the engine, including Incoloy and titanium alloys.
Ceramic Technology Project semiannual progress report, October 1992--March 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.R.
1993-09-01
This project was developed to meet the ceramic technology requirements of the OTS`s automotive technology programs. Although progress has been made in developing reliable structural ceramics, further work is needed to reduce cost. The work described in this report is organized according to the following work breakdown structure project elements: Materials and processing (monolithics [Si nitride, carbide], ceramic composites, thermal and wear coatings, joining, cost effective ceramic machining), materials design methodology (contact interfaces, new concepts), data base and life prediction (structural qualification, time-dependent behavior, environmental effects, fracture mechanics, nondestructive evaluation development), and technology transfer.
Method and apparatus for radio frequency ceramic sintering
Hoffman, Daniel J.; Kimrey, Jr., Harold D.
1993-01-01
Radio frequency energy is used to sinter ceramic materials. A coaxial waveguide resonator produces a TEM mode wave which generates a high field capacitive region in which a sample of the ceramic material is located. Frequency of the power source is kept in the range of radio frequency, and preferably between 60-80 MHz. An alternative embodiment provides a tunable radio frequency circuit which includes a series input capacitor and a parallel capacitor, with the sintered ceramic connected by an inductive lead. This arrangement permits matching of impedance over a wide range of dielectric constants, ceramic volumes, and loss tangents.
Method and apparatus for radio frequency ceramic sintering
Hoffman, D.J.; Kimrey, H.D. Jr.
1993-11-30
Radio frequency energy is used to sinter ceramic materials. A coaxial waveguide resonator produces a TEM mode wave which generates a high field capacitive region in which a sample of the ceramic material is located. Frequency of the power source is kept in the range of radio frequency, and preferably between 60-80 MHz. An alternative embodiment provides a tunable radio frequency circuit which includes a series input capacitor and a parallel capacitor, with the sintered ceramic connected by an inductive lead. This arrangement permits matching of impedance over a wide range of dielectric constants, ceramic volumes, and loss tangents. 6 figures.
A fundamental review of the friction and wear behavior of ceramics
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1972-01-01
The basic concepts associated with the friction and wear of materials are discussed as they relate to ceramics. Properties of ceramics such as crystal structure, crystallographic orientation, mechanical deformation, and surface chemistry are reviewed as they influence friction and wear. Both adhesive and abrasive wear of ceramics are discussed. The friction and wear of ceramics are examined in contact with themselves and when in contact with metals. The influences of environmental constituents such as water and hydrocarbons on friction and wear are reviewed. Materials discussed, by way of example, include aluminum oxide, rutile, calcium fluoride, and lithium fluoride.
Improved Slip Casting Of Ceramic Models
NASA Technical Reports Server (NTRS)
Buck, Gregory M.; Vasquez, Peter; Hicks, Lana P.
1994-01-01
Improved technique of investment slip casting developed for making precise ceramic wind-tunnel models. Needed in wind-tunnel experiments to verify predictions of aerothermodynamical computer codes. Ceramic materials used because of their low heat conductivities and ability to survive high temperatures. Present improved slip-casting technique enables casting of highly detailed models from aqueous or nonaqueous solutions. Wet shell molds peeled off models to ensure precise and undamaged details. Used at NASA Langley Research Center to form superconducting ceramic components from nonaqueous slip solutions. Technique has many more applications when ceramic materials developed further for such high-strength/ temperature components as engine parts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Huidong; Deng, Zhiqun; Carlson, Thomas J.
Piezoelectric materials have been used in underwater acoustic transducers for nearly a century. In this paper, we reviewed four different types of piezoelectric materials: piezoelectric ceramics, single crystals, composites, and polymers, which are widely used in underwater acoustic transducers nowadays. Piezoelectric ceramics are the most dominant material type and are used as a single-phase material or one of the end members in composites. Piezoelectric single crystals offer outstanding electromechanical response but are limited by their manufacturing cost. Piezoelectric polymers provide excellent acoustic impedance matching and transducer fabrication flexibility although their piezoelectric properties are not as good as ceramics and singlemore » crystals. Composites combined the merits of ceramics and polymers and are receiving increased attention. The typical structure and electromechanical properties of each type of materials are introduced and discussed with respect to underwater acoustic transducer applications. Their advantages and disadvantages are summarized. Some of the critical design considerations when developing underwater acoustic transducers with these materials are also touched upon.« less
Escrig, Alberto; Bonvicini, Giuliana; Ibáñez, Maria Jesús; Monfort, Eliseo; Salomoni, Arturo; Creutzenberg, Otto
2017-01-01
Abstract The exposure to respirable crystalline silica (RCS), e.g. quartz, in industrial settings can induce silicosis and may cause tumours in chronic periods. Consequently, RCS in the form of quartz and cristobalite has been classified as human lung carcinogen category 1 by the International Agency for Research on Cancer in 1997, acknowledging differences in hazardous potential depending on source as well as chemical, thermal, and mechanical history. The physico-chemical determinants of quartz toxicity are well understood and are linked to density and abundance of surface silanol groups/radicals. Hence, poly-2-vinylpyridine-N-oxide and aluminium lactate, which effectively block highly reactive silanol groups at the quartz surface, have formerly been introduced as therapeutic approaches in the occupational field. In the traditional ceramics industry, quartz-containing raw materials are indispensable for the manufacturing process, and workers are potentially at risk of developing quartz-related lung diseases. Therefore, in the present study, two organosilanes, i.e. Dynasylan® PTMO and Dynasylan® SIVO 160, were tested as preventive, covalent quartz-coating agents to render ceramics production safer without loss in product quality. Coating effectiveness and coating stability (up to 1 week) in artificial alveolar and lysosomal fluids were first analysed in vitro, using the industrially relevant quartz Q1 as RCS model, quartz DQ12 as a positive control, primary rat alveolar macrophages as cellular model system (75 µg cm−2; 4 h of incubation ± aluminium lactate to verify quartz-related effects), and lactate dehydrogenase release and DNA strand break induction (alkaline comet assay) as biological endpoints. In vitro results with coated quartz were confirmed in a 90-day intratracheal instillation study in rats with inflammatory parameters as most relevant readouts. The results of the present study indicate that in particular Dynasylan® SIVO 160 (0.2% w/w of quartz) was able to effectively and stably block toxicity of biologically active quartz species without interfering with technical process quality of certain ceramic products. In conclusion, covalent organosilane coatings of quartz might represent a promising strategy to increase workers’ safety in the traditional ceramics industry. PMID:28355417
Visualization and Analysis of Impact Damage in Sapphire
2011-11-01
transparent armor materials like Starphire soda - lime and borosilicate glass [8], fused silica [9] and the transparent polycrystalline ceramic AlON...conventional glass -based armor when a transparent ceramic is used as strike face on a glass -polymer laminate [1, 2, 3]. Sapphire, i.e. single crystal aluminum...materials. Since part of transparent armor consists of brittle materials, the fragmentation of the ceramic and glass layers plays a key role in the
Method of forming a ceramic to ceramic joint
Cutler, Raymond Ashton; Hutchings, Kent Neal; Kleinlein, Brian Paul; Carolan, Michael Francis
2010-04-13
A method of joining at least two sintered bodies to form a composite structure, includes: providing a joint material between joining surfaces of first and second sintered bodies; applying pressure from 1 kP to less than 5 MPa to provide an assembly; heating the assembly to a conforming temperature sufficient to allow the joint material to conform to the joining surfaces; and further heating the assembly to a joining temperature below a minimum sintering temperature of the first and second sintered bodies. The joint material includes organic component(s) and ceramic particles. The ceramic particles constitute 40-75 vol. % of the joint material, and include at least one element of the first and/or second sintered bodies. Composite structures produced by the method are also disclosed.
NASA Astrophysics Data System (ADS)
Aleshin, V. I.; Raevskiĭ, I. P.; Sitalo, E. I.
2008-11-01
A complete set of dielectric, piezoelectric, and elastic parameters for the textured ceramic material 0.67PMN-0.33PT is calculated by the self-consistency method with due regard for the anisotropy and piezoelectric activity of the medium. It is shown that the best piezoelectric properties corresponding to those of a single crystal are observed for the ceramic material with a texture in which all crystallites are oriented parallel to the [001] direction of the parent perovskite cubic cell. The simplest models of the polarization of an untextured ceramic material with a random initial orientation of crystallites are considered. The results obtained are compared with experimental data.
40 CFR 428.55 - Standards of performance for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 0.70 0.25 TSS 1.28 0.64 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 0.70 0.25...— Metric units (kg/kkg of raw material) Lead 0.0017 0.0007 English units (lb/1,000 lb of raw material) Lead...
40 CFR 428.55 - Standards of performance for new sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 0.70 0.25 TSS 1.28 0.64 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 0.70 0.25...— Metric units (kg/kkg of raw material) Lead 0.0017 0.0007 English units (lb/1,000 lb of raw material) Lead...
40 CFR 428.65 - Standards of performance for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 0.42 0.15 TSS 0.80 0.40 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 0.42 0.0...— Metric units (kg/kkg of raw material) Lead 0.0017 0.0007 English units (lb/1,000 lb of raw material) Lead...
40 CFR 428.65 - Standards of performance for new sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 0.42 0.15 TSS 0.80 0.40 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 0.42 0.0...— Metric units (kg/kkg of raw material) Lead 0.0017 0.0007 English units (lb/1,000 lb of raw material) Lead...
CAD/CAM glass ceramics for single-tooth implant crowns: a finite element analysis.
Akça, Kvanç; Cavusoglu, Yeliz; Sagirkaya, Elcin; Aybar, Buket; Cehreli, Murat Cavit
2013-12-01
To evaluate the load distribution of CAD/CAM mono-ceramic crowns supported with single-tooth implants in functional area. A 3-dimensional numerical model of a soft tissue-level implant was constructed with cement-retained abutment to support glass ceramic machinable crown. Implant-abutment complex and the retained crown were embedded in a Ø 1.5 × 1.5 cm geometric matrix for evaluation of mechanical behavior of mono-ceramic CAD/CAM aluminosilicate and leucite glass crown materials. Laterally positioned axial load of 300 N was applied on the crowns. Resulting principal stresses in the mono-ceramic crowns were evaluated in relation to different glass ceramic materials. The highest compressive stresses were observed at the cervical region of the buccal aspect of the crowns and were 89.98 and 89.99 MPa, for aluminosilicate and leucite glass ceramics, respectively. The highest tensile stresses were observed at the collar of the lingual part of the crowns and were 24.54 and 25.39 MPa, respectively. Stresses induced upon 300 N static loading of CAD/CAM aluminosalicate and leucite glass ceramics are below the compressive strength of the materials. Impact loads may actuate the progress to end failure of mono-ceramic crowns supported by metallic implant abutments.
[Relative fracture toughness of differents dental ceramics].
Pagani, Clovis; Miranda, Carolina Baptista; Bottino, Marco Cícero
2003-03-01
Although ceramics present high compressive strength, they are brittle materials due to their low tensile strength so they have lower capacity to absorb shocks. This study evaluated the fracture toughness of different ceramic systems, which refers to the ability of a friable material to absorb defformation energy. Three ceramic systems were investigated. Ten cylindrical samples (5,0mm x 3,0mm), were obtained from each ceramic material as follows: G1- 10 samples of Vitadur Alpha (Vita-Zahnfabrik); G2- 10 samples of IPS Empress2 (Ivoclar-Vivadent); G3- 10 samples of In-Ceram Alumina (Vita-Zahnfabrik). Fracture toughness values were collected upon indentation tests that were performed under a heavy load. A microhardness tester (Digital Microhardness Tester FM) utilized a 500gf load cell during 10seconds to perform four impressions on each sample. Statistically significant results were observed (ANOVA and Kruskal-Wallis tests). In-Ceram Alumina presented the highest median toughness values (2,96N/m3/2), followed by Vitadur Alpha (2,08N/m3/2) and IPS Empress2 (1,05N/m3/2). It may be concluded that different ceramic systems present distinct fracture toughness values, thus In-Ceram is capable of absorbing superior stress when compared to Vitadur Alpha and IPS Empress2.
[All-ceramic peripheral restorations: crowns and bridges].
Legros, Caroline; Vanheusden, Alain
2006-01-01
Over the last years, current technologies in dental ceramics are strongly improved, constantly producing new materials for the restoration of the single or plural teeth. Feldspathic porcelains fused to a cast metal substructure, the so-called "metal-ceramic crown," has been long time the gold standard; this is primarily due to their predictable long-term strength characteristics. All-ceramic systems are a focus of interest, because they offer aesthetic results that may be difficult to achieve with metal-ceramic systems. Nowadays, the new ceramics associate aesthetic and good mechanical qualities, biocompatibility, accurate marginal fit and low invasive preparations. Thanks to the diversification of all-ceram processes, materials properties and clinical situations are now the prime criteria which determine the practitioner's choice. In this article, we try to summarize different clinical concepts for peripheric all-ceram restoration, such as crowns and bridges used in a daily dental practice.
Isgrò, Giuseppe; Kleverlaan, Cornelis J; Wang, Hang; Feilzer, Albert J
2005-06-01
During the production of layered all-ceramic restorations transient and/or residual thermal stresses may be formed which may affect a restoration's longevity. The aim of this study was to evaluate the influence of multiple firings on the thermal behavior of veneering porcelains and a ceramic core. The materials tested were: Empress 2 Core, Empress 2 Veneer and Eris glass-ceramics, Carrara Vincent and an experimental leucite-based veneering porcelain, Vitadur-Alpha aluminous porcelain, and two porcelains designed for titanium (i.e. Duceratin Dentine and Enamel). The thermal contraction coefficient of the materials was measured by means of dilatometery. The thermal contraction coefficient was measured during cooling and calculated over the temperature range of 450-20 degrees C by linear regression. One and two-way analysis of variance together with Tukey post-hoc tests were used as statistical analysis. Repeated firing affects the thermal contraction coefficients of Empress 2 Veneer, Carrara Vincent porcelain and the experimental porcelain. The thermal contraction coefficients of Empress 2 Core were significantly different from Vitadur-Alpha, Carrara Vincent, experimental porcelain, and Duceratin porcelains. The contraction coefficients of Empress 2 Veneer and Eris were closest to that of Empress 2 Core. The Empress 2 Core and Eris glass-ceramics, the aluminous porcelain and Duceratin porcelains showed better thermal stability after repeated firing than leucite porcelains. It can be concluded that due to the thermal stability of glass-ceramic materials, layered all-ceramic restorations of these materials may perform better.
NASA Astrophysics Data System (ADS)
Correia, Victor; Allington, Ruth; Keane, Christopher
2016-04-01
A secure supply of raw materials is a European priority that extends beyond country borders and national policies. Recent European initiatives have pioneered the development of an EU strategy on raw materials emphasizing the concept of the "added value chain", which continues to pursue the three pillar strategy to: (1) ensure the fair and sustainable supply of raw materials from international markets, promoting international cooperation with developed and developing countries; (2) foster sustainable supply of raw materials from European sources, and (3) reduce consumption of primary raw materials by increasing resource efficiency and promoting recycling. This contribution presents the Horizon 2020 funded project INTRAW, the objective of which is to establish the European Union's International Observatory for Raw Materials. The creation and maintenance of the European Union's International Observatory for Raw Materials is designed to have a strong impact in two dimensions: 1. To narrow the existing gap in aspects of the raw materials knowledge infrastructure in the EU by providing a link with the same knowledge infrastructure in technologically advanced reference countries. This should contribute to the harmonization of mineral policies all over the EU, by providing data that enables evidence-based policies and appropriate, cost-effective management, planning and adaptation decisions by the public sector. This will benefit businesses, industry and society. The Observatory will also provide to policy makers in the EU and its Member States the data they need to facilitate discussion in multilateral forums. 2. To enable a better alignment of the R&I activities among the individual EU members and international cooperation countries AND between the European Union and international cooperation countries by boosting synergies with international research and innovation programmes. This way the EU's role and scientific capabilities in the raw materials area will be reinforced in the mid-term, and the conditions for sustainable access and supply of raw materials in the EU will benefit from the international cooperation. The authors will describe the key stages of the INTRAW project and explain how it aims to establish (and promote the continuation of) international cooperation at every stage of the raw materials value chain and to build a repository of information and analysis to support the development and strengthening of EU raw materials strategies. Key elements of the value chain upon which the project focuses are: industry and trade; education and outreach; and research and innovation. The roles of geoscientists in delivering the aims and objectives of INTRAW will be emphasised.
Method of preparing thin porous sheets of ceramic material
Swarr, Thomas E.; Nickols, Richard C.; Krasij, Myron
1987-03-24
A method of forming thin porous sheets of ceramic material for use as electrodes or other components in a molten carbonate fuel cell is disclosed. The method involves spray drying a slurry of fine ceramic particles in liquid carrier to produce generally spherical agglomerates of high porosity and a rough surface texture. The ceramic particles may include the electrode catalyst and the agglomerates can be calcined to improve mechanical strength. After slurrying with suitable volatile material and binder tape casting is used to form sheets that are sufficiently strong for further processing and handling in the assembly of a high temperature fuel cell.
Method of preparing thin porous sheets of ceramic material
Swarr, T.E.; Nickols, R.C.; Krasij, M.
1984-05-23
A method of forming thin porous sheets of ceramic material for use as electrodes or other components in a molten carbonate fuel cell is disclosed. The method involves spray drying a slurry of fine ceramic particles in liquid carrier to produce generally spherical agglomerates of high porosity and a rough surface texture. The ceramic particles may include the electrode catalyst and the agglomerates can be calcined to improve mechanical strength. After slurrying with suitable volatile material and binder tape casting is used to form sheets that are sufficiently strong for further processing and handling in the assembly of a high temperature fuel cell.
Kocaağaoğlu, Hasan; Manav, Taha; Albayrak, Haydar
2017-04-01
When fracture of an all-ceramic restoration occurs, it can be necessary to repair without removing the restoration. Although there are many studies about the repair of metal-ceramic restorations, there are few about all-ceramic restorations. The aim of this study was to evaluate the shear bond strength between ceramic repair systems and esthetic core materials and to evaluate the wettability of all-ceramic core materials. Disk-like specimens (N = 90) made of three dental ceramic infrastructure materials (zirconia ceramic, alumina ceramic, glass ceramic) were polished with silicon carbide paper, prepared for bonding (abrasion with 30 μm diamond rotary cutting instrument). Thirty specimens of each infrastructure were obtained. Each infrastructure group was divided into three subgroups; they were bonded using 3 repair systems: Bisco Intraoral Repair Kit, Cimara & Cimara Zircon Repair System, and Clearfil Repair System. After 1200 thermocycles, shear bond strength was measured in a universal testing machine at a 0.5 mm/min crosshead speed. In addition, the contact angle values of the infrastructures after surface treatments were examined for wettability. Data were analyzed by using ANOVA and Tukey post hoc tests. Although there were no significant differences among the repair systems (p > 0.05) in the glass ceramic and zirconia groups, a significant difference was found among the repair systems in alumina infrastructure (p < 0.001). There were no statistically significant differences among the infrastructures (p > 0.05); however, a statistically significant difference was found among the repair systems (p < 0.05). No difference was found among the infrastructures and repair systems in terms of contact angle values. Cimara & Cimara Zircon Repair System had higher bond strength values than the other repair systems. Although no difference was found among the infrastructures and repair systems, contact wettability angle was decreased by surface treatments compared with polished surfaces. © 2015 by the American College of Prosthodontists.
Grinding damage assessment for CAD-CAM restorative materials.
Curran, Philippe; Cattani-Lorente, Maria; Anselm Wiskott, H W; Durual, Stéphane; Scherrer, Susanne S
2017-03-01
To assess surface/subsurface damage after grinding with diamond discs on five CAD-CAM restorative materials and to estimate potential losses in strength based on crack size measurements of the generated damage. The materials tested were: Lithium disilicate (LIT) glass-ceramic (e.max CAD), leucite glass-ceramic (LEU) (Empress CAD), feldspar ceramic (VM2) (Vita Mark II), feldspar ceramic-resin infiltrated (EN) (Enamic) and a composite reinforced with nano ceramics (LU) (Lava Ultimate). Specimens were cut from CAD-CAM blocs and pair-wise mirror polished for the bonded interface technique. Top surfaces were ground with diamond discs of respectively 75, 54 and 18μm. Chip damage was measured on the bonded interface using SEM. Fracture mechanics relationships were used to estimate fracture stresses based on average and maximum chip depths assuming these to represent strength limiting flaws subjected to tension and to calculate potential losses in strength compared to manufacturer's data. Grinding with a 75μm diamond disc induced on a bonded interface critical chips averaging 100μm with a potential strength loss estimated between 33% and 54% for all three glass-ceramics (LIT, LEU, VM2). The softer materials EN and LU were little damage susceptible with chips averaging respectively 26μm and 17μm with no loss in strength. Grinding with 18μm diamond discs was still quite detrimental for LIT with average chip sizes of 43μm and a potential strength loss of 42%. It is essential to understand that when grinding glass-ceramics or feldspar ceramics with diamond discs surface and subsurface damage are induced which have the potential of lowering the strength of the ceramic. Careful polishing steps should be carried out after grinding especially when dealing with glass-ceramics. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Methodology for Evaluating Raw Material Changes to RSRM Elastomeric Insulation Materials
NASA Technical Reports Server (NTRS)
Mildenhall, Scott D.; McCool, Alex (Technical Monitor)
2001-01-01
The Reusable Solid Rocket Motor (RSRM) uses asbestos and silicon dioxide filled acrylonitrile butadiene rubber (AS-NBR) as the primary internal insulation to protect the case from heat. During the course of the RSRM Program, several changes have been made to the raw materials and processing of the AS-NBR elastomeric insulation material. These changes have been primarily caused by raw materials becoming obsolete. In addition, some process changes have been implemented that were deemed necessary to improve the quality and consistency of the AS-NBR insulation material. Each change has been evaluated using unique test efforts customized to determine the potential impacts of the specific raw material or process change. Following the evaluations, the various raw material and process changes were successfully implemented with no detectable effect on the performance of the AS-NBR insulation. This paper will discuss some of the raw material and process changes evaluated, the methodology used in designing the unique test plans, and the general evaluation results. A summary of the change history of RSRM AS-NBR internal insulation is also presented.
Process to create simulated lunar agglutinate particles
NASA Technical Reports Server (NTRS)
Gustafson, Robert J. (Inventor); Gustafson, Marty A. (Inventor); White, Brant C. (Inventor)
2011-01-01
A method of creating simulated agglutinate particles by applying a heat source sufficient to partially melt a raw material is provided. The raw material is preferably any lunar soil simulant, crushed mineral, mixture of crushed minerals, or similar material, and the heat source creates localized heating of the raw material.
Nuclear fuel elements made from nanophase materials
Heubeck, Norman B.
1998-01-01
A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000.degree. F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics.
Nuclear fuel elements made from nanophase materials
Heubeck, N.B.
1998-09-08
A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000 F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics. 5 figs.
Application of ceramic membranes with pre-ozonation for treatment of secondary wastewater effluent.
Lehman, S Geno; Liu, Li
2009-04-01
Membrane fouling is an inevitable problem when microfiltration (MF) and ultrafiltraion (UF) are used to treat wastewater treatment plant (WWTP) effluent. While historically the use of MF/UF for water and wastewater treatment has been almost exclusively focused on polymeric membranes, new generation ceramic membranes were recently introduced in the market and they possess unique advantages over currently available polymeric membranes. Ceramic membranes are mechanically superior and are more resistant to severe chemical and thermal environments. Due to the robustness of ceramic membranes, strong oxidants such as ozone can be used as pretreatment to reduce the membrane fouling. This paper presents results of a pilot study designed to investigate the application of new generation ceramic membranes for WWTP effluent treatment. Ozonation and coagulation pretreatment were evaluated to optimize the membrane operation. The ceramic membrane demonstrated stable performance at a filtration flux of 100 gfd (170LMH) at 20 degrees C with pretreatment using PACl (1mg/L as Al) and ozone (4 mg/L). To understand the effects of ozone and coagulation pretreatment on organic foulants, natural organic matter (NOM) in four waters - raw, ozone treated, coagulation treated, and ozone followed by coagulation treated wastewaters - were characterized using high performance size exclusion chromatography (HPSEC). The HPSEC analysis demonstrated that ozone treatment is effective at degrading colloidal NOMs which are likely responsible for the majority of membrane fouling.
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Fralick, Gustave C.; Hunter, Gary W.
2006-01-01
The need to consider ceramic sensing elements is brought about by the temperature limits of metal thin film sensors in propulsion system applications. In order to have a more passive method of negating changes of resistance due to temperature, an effort is underway at NASA Glenn to develop high temperature thin film ceramic static strain gauges for application in turbine engines, specifically in the fan and compressor modules on blades. Other applications can be on aircraft hot section structures and on thermal protection systems. The near-term interim goal of the research effort was to identify candidate thin film ceramic sensor materials to test for viability and provide a list of possible thin film ceramic sensor materials and corresponding properties to test for viability. This goal was achieved by a thorough literature search for ceramics that have the potential for application as high temperature thin film strain gauges, reviewing potential candidate materials for chemical and physical compatibility with our microfabrication procedures and substrates.
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Fralick, Gustave C.; Hunter, Gary W.
2006-01-01
The need to consider ceramic sensing elements is brought about by the temperature limits of metal thin film sensors in propulsion system applications. In order to have a more passive method of negating changes of resistance due to temperature, an effort is underway at NASA GRC to develop high temperature thin film ceramic static strain gauges for application in turbine engines, specifically in the fan and compressor modules on blades. Other applications include on aircraft hot section structures and on thermal protection systems. The near-term interim goal of this research effort was to identify candidate thin film ceramic sensor materials to test for viability and provide a list of possible thin film ceramic sensor materials and corresponding properties to test for viability. This goal was achieved by a thorough literature search for ceramics that have the potential for application as high temperature thin film strain gauges, reviewing potential candidate materials for chemical & physical compatibility with NASA GRC's microfabrication procedures and substrates.
Celsian Glass-Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Dicarlo, James A.
1996-01-01
Glass-ceramic matrix reinforced fiber composite materials developed for use in low dielectric applications, such as radomes. Materials strong and tough, exhibit low dielectric properties, and endure high temperatures.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1990-01-01
Advanced Turbine Technology Application Project (ATTAP) activities during the past year were highlighted by test-bed engine design and development activities; ceramic component design; materials and component characterization; ceramic component process development and fabrication; component rig testing; and test-bed engine fabrication and testing. Although substantial technical challenges remain, all areas exhibited progress. Test-bed engine design and development activity included engine mechanical design, power turbine flow-path design and mechanical layout, and engine system integration aimed at upgrading the AGT-5 from a 1038 C metal engine to a durable 1371 C structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities include: the ceramic combustor body, the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, the ceramic/metal power turbine static structure, and the ceramic power turbine rotors. The materials and component characterization efforts included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities are being conducted for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig testing activities include the development of the necessary test procedures and conduction of rig testing of the ceramic components and assemblies. Four-hundred hours of hot gasifier rig test time were accumulated with turbine inlet temperatures exceeding 1204 C at 100 percent design gasifier speed. A total of 348.6 test hours were achieved on a single ceramic rotor without failure and a second ceramic rotor was retired in engine-ready condition at 364.9 test hours. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology that will permit the achievement of program performance and durability goals. The designated durability engine accumulated 359.3 hour of test time, 226.9 of which were on the General Motors gas turbine durability schedule.
Study and program plan for improved heavy duty gas turbine engine ceramic component development
NASA Technical Reports Server (NTRS)
Helms, H. E.
1977-01-01
Fuel economy in a commercially viable gas turbine engine was demonstrated through use of ceramic materials. Study results show that increased turbine inlet and generator inlet temperatures, through the use of ceramic materials, contribute the greatest amount to achieving fuel economy goals. Improved component efficiencies show significant additional gains in fuel economy.
ERIC Educational Resources Information Center
Johnson, Mark M.
2009-01-01
Clay is one of the oldest materials known to humanity and has been used for utilitarian purposes and creative expression since prehistoric times. As civilizations evolved, ceramic materials, techniques, purposes and design all became more sophisticated and expressive. With the addition of different minerals and firing methods, clay was used to…
Code of Federal Regulations, 2010 CFR
2010-07-01
... values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 0.26 0.093 TSS 0.50 0.25 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 0.26 0.../kkg of raw material) Lead 0.0017 0.0007 English units (lb/1,000 lb of raw material) Lead 0.0017 0.0007...
Code of Federal Regulations, 2010 CFR
2010-07-01
... values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 0.70 0.25 TSS 1.28 0.64 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 0.70 0.25... of raw material) Lead 0.0017 0.0007 English units (lb/1,000 lb of raw material) Lead 0.0017 0.0007 (c...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.
This chapter first describes tests to investigate the temporal evolution of the volume fraction of ceramic phases, the evolution of micro-damage, and the self-healing behavior of the glass ceramic sealant used in SOFCs, then a phenomenological model based on mechanical analogs is developed to describe the temperature dependent Young’s modulus of glass ceramic seal materials. It was found that after the initial sintering process, further crystallization of the glass ceramic sealant does not stop, but slows down and reduces the residual glass content while boosting the ceramic crystalline content. Under the long-term operating environment, distinct fibrous and needle-like crystals inmore » the amorphous phase disappeared, and smeared/diffused phase boundaries between the glass phase and ceramic phase were observed. Meanwhile, the micro-damage was induced by the cooling-down process from the operating temperature to the room temperature, which can potentially degrade the mechanical properties of the glass/ceramic sealant. The glass/ceramic sealant self-healed upon reheating to the SOFC operating temperature, which can restore the mechanical performance of the glass/ceramic sealant. The phenomenological model developed here includes the effects of continuing aging and devitrification on the ceramic phase volume fraction and the resulted mechanical properties of glass ceramic seal material are considered. The effects of micro-voids and self-healing are also considered using a continuum damage mechanics (CDM) model. The formulation is for glass/ceramic seal in general, and it can be further developed to account for effects of various processing parameters. This model was applied to G18, and the temperature-dependent experimental measurements were used to calibrate the modeling parameters and to validate the model prediction.« less
Glass and ceramics. [lunar resources
NASA Technical Reports Server (NTRS)
Haskin, Larry A.
1992-01-01
A variety of glasses and ceramics can be produced from bulk lunar materials or from separated components. Glassy products include sintered regolith, quenched molten basalt, and transparent glass formed from fused plagioclase. No research has been carried out on lunar material or close simulants, so properties are not known in detail; however, common glass technologies such as molding and spinning seem feasible. Possible methods for producing glass and ceramic materials are discussed along with some potential uses of the resulting products.
Opportunities for Fluorochlorozirconate and Other Glass-Ceramic Detectors in Medical Imaging Devices
Johnson, Jacqueline A.; Leonard, Russell L.; Lubinsky, AR; Schweizer, Stefan
2017-01-01
This article gives an overview of fluorochlorozirconate glass-ceramic scintillators and storage phosphor materials: how they are synthesized, what their properties are, and how they can be used in medical imaging. Such materials can enhance imaging in x-ray radiography, especially mammography and dental imaging, computed tomography, and positron emission tomography. Although focusing on fluorochlorozirconate materials, the reader will find the discussion is relevant to other luminescent glass and glass-ceramic systems. PMID:28890955
A Nonlinear Thermomechanical Model of Spinel Ceramics Applied to Aluminum Oxynitride (AlON)
2011-01-01
ceramics 9: C i = bD 19 where for most materials lies between 0.1 and 1.0 9. The area per unit volume of twin boundaries obtained from...Above a threshold pressure, pores may collapse irreversibly. This phenomenon, common in brittle ceram - ics, minerals, and geologic materials 18,22, is...appears to be the first documented study of AlON using arge deformation crystal plasticity theory. A number of physically elevant material properties
Grinding model and material removal mechanism of medical nanometer zirconia ceramics.
Zhang, Dongkun; Li, Changhe; Jia, Dongzhou; Wang, Sheng; Li, Runze; Qi, Xiaoxiao
2014-01-01
Many patents have been devoted to developing medical nanometer zirconia ceramic grinding techniques that can significantly improve both workpiece surface integrity and grinding quality. Among these patents is a process for preparing ceramic dental implants with a surface for improving osseo-integration by sand abrasive finishing under a jet pressure of 1.5 bar to 8.0 bar and with a grain size of 30 µm to 250 µm. Compared with other materials, nano-zirconia ceramics exhibit unmatched biomedical performance and excellent mechanical properties as medical bone tissue and dentures. The removal mechanism of nano-zirconia materials includes brittle fracture and plastic removal. Brittle fracture involves crack formation, extension, peeling, and chipping to completely remove debris. Plastic removal is similar to chip formation in metal grinding, including rubbing, ploughing, and the formation of grinding debris. The materials are removed in shearing and chipping. During brittle fracture, the grinding-led transverse and radial extension of cracks further generate local peeling of blocks of the material. In material peeling and removal, the mechanical strength and surface quality of the workpiece are also greatly reduced because of crack extension. When grinding occurs in the plastic region, plastic removal is performed, and surface grinding does not generate grinding fissures and surface fracture, producing clinically satisfactory grinding quality. With certain grinding conditions, medical nanometer zirconia ceramics can be removed through plastic flow in ductile regime. In this study, we analyzed the critical conditions for the transfer of brittle and plastic removal in nano-zirconia ceramic grinding as well as the high-quality surface grinding of medical nanometer zirconia ceramics by ELID grinding.
Al-Jawoosh, Sara; Ireland, Anthony; Su, Bo
2018-04-10
To fabricate and characterise a novel biomimetic composite material consisting of aligned porous ceramic preforms infiltrated with polymer. Freeze-casting was used to fabricate and control the microstructure and porosity of ceramic preforms, which were subsequently infiltrated with 40-50% by volume UDMA-TEGDMA polymer. The composite materials were then subjected to characterisation, namely density, compression, three-point bend, hardness and fracture toughness testing. Samples were also subjected to scanning electron microscopy and computerised tomography (Micro-CT). Three-dimensional aligned honeycomb-like ceramic structures were produced and full interpenetration of the polymer phase was observed using micro-CT. Depending on the volume fraction of the ceramic preform, the density of the final composite ranged from 2.92 to 3.36g/cm 3 , compressive strength ranged from 206.26 to 253.97MPa, flexural strength from 97.73 to 145.65MPa, hardness ranged from 1.46 to 1.62GPa, and fracture toughness from 3.91 to 4.86MPam 1/2 . Freeze-casting provides a novel method to engineer composite materials with a unique aligned honeycomb-like interpenetrating structure, consisting of two continuous phases, inorganic and organic. There was a correlation between the ceramic fraction and the subsequent, density, strength, hardness and fracture toughness of the composite material. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.
Processing FeB03 glass-ceramics in space
NASA Technical Reports Server (NTRS)
Li, C. T.
1976-01-01
The possibility of preparing FeBO3 glass-ceramic in space is explored. A transparent glass-ceramic of FeBO3, due to its unique properties could be an excellent material for magneto-optic applications which currently utilize high price materials such as single crystals of Ga-YIG. The unique magneto-optic properties of FeBO3 were found to come from glass-ceramic but not from the glass form. It was anticipated and later confirmed that the FeBO3 glass-ceramics could not be prepared on earth. Phase separation and iron valence reduction, were identified as the two terrestrial manufacturing obstacles. Since the phase separation problem could be overcome by space processing, the preparation of FeBO3 glass-ceramic in space appears attractive.
NASA Technical Reports Server (NTRS)
Holanda, R.
1992-01-01
Thin film thermocouples have been developed for use on metal parts in jet engines to 1000 c. However, advanced propulsion systems are being developed that will use ceramic materials and reach higher temperatures. The purpose of this work is to develop thin film thermocouples for use on ceramic materials. The new thin film thermocouples are Pt13Rh/Pt fabricated by the sputtering process. Lead wires are attached using the parallel-gap welding process. The ceramic materials tested are silicon nitride, silicon carbide, aluminum oxide, and mullite. Both steady state and thermal cycling furnace tests were performed in the temperature range to 1500 C. High-heating-rate tests were performed in an arc lamp heat-flux-calibration facility. The fabrication of the thin film thermocouples is described. The thin film thermocouple output was compared to a reference wire thermocouple. Drift of the thin film thermocouples was determined, and causes of drift are discussed. The results of high heating rate tests up to 2500 C/sec are presented. The stability of the ceramic materials is examined. It is concluded that Pt13Rh/Pt thin film thermocouples are capable of meeting lifetime goals of 50 hours or more up to temperature of 1500 C depending on the stability of the particular ceramic substrate.
3D-WOVEN FIBER-REINFORCED COMPOSITE FOR CAD/CAM DENTAL APPLICATION
Petersen, Richard; Liu, Perng-Ru
2016-01-01
Three-dimensional (3D)-woven noncrimp fiber-reinforced composite (FRC) was tested for mechanical properties in the two principal directions of the main XY plane and compared to different Computer-Aided-Design/Computer-Aided-Machining (CAD/CAM) Dental Materials. The Dental Materials included ceramic with Vitablock Mark II®, ProCAD®, InCeram® Spinel, InCeram® Alumina and InCeram® Zirconia in addition to a resin-based 3M Corp. Paradigm® particulate-filled composite. Alternate material controls included Coors 300 Alumina Ceramic and a tungsten carbide 22% cobalt cermet. The 3D-woven FRC was vacuum assisted resin transfer molding processed as a one-depth-thickness ~19-mm preform with a vinyl-ester resin and cut into blocks similar to the commercial CAD/CAM Dental Materials. Mechanical test samples prepared for a flexural three-point span length of 10.0 mm were sectioned for minimum-depth cuts to compare machinability and fracture resistance between groups. 3D-woven FRC improved mechanical properties with significant statistical differences over all CAD/CAM Dental Materials and Coors Alumina Ceramic for flexural strength (p<0.001), resilience (p<0.05), work of fracture (p<0.001), strain energy release (p<0.05), critical stress intensity factor (p<0.001) and strain (p<0.001). PMID:27642198
Thin film thermocouples for high temperature measurement on ceramic materials
NASA Technical Reports Server (NTRS)
Holanda, Raymond
1992-01-01
Thin film thermocouples have been developed for use on metal parts in jet engines to 1000 C. However, advanced propulsion systems are being developed that will use ceramic materials and reach higher temperatures. The purpose of this work is to develop thin film thermocouples for use on ceramic materials. The thin film thermocouples are Pt13Rh/Pt fabricated by the sputtering process. Lead wires are attached using the parallel-gap welding process. The ceramic materials are silicon nitride, silicon carbide, aluminum oxide, and mullite. Both steady state and thermal cycling furnace tests were performed in the temperature range to 1500 C. High-heating-rate tests were performed in an arc lamp heat-flux-calibration facility. The fabrication of the thin film thermocouples is described. The thin film thermocouple output was compared to a reference wire thermocouple. Drift of the thin film thermocouples was determined, and causes of drift are discussed. The results of high-heating-rate tests up to 2500 C/sec are presented. The stability of the ceramic materials is examined. It is concluded that Pt13Rh/Pt thin film thermocouples are capable of meeting lifetime goals of 50 hours or more up to temperatures of 1500 C depending on the stability of the particular ceramic substrate.
NASA Technical Reports Server (NTRS)
Holanda, Raymond
1993-01-01
Thin film thermocouples were developed for use on metal parts in jet engines to 1000 C. However, advanced propulsion systems are being developed that will use ceramic materials and reach higher temperatures. The purpose is to develop thin film thermocouples for use on ceramic materials. The new thin film thermocouples are Pt13Rh/Pt fabricated by the sputtering process. Lead wires are attached using the parallel-gap welding process. The ceramic materials tested are silicon nitride, silicon carbide, aluminum oxide, and mullite. Both steady state and thermal cycling furnace tests were performed in the temperature range to 1500 C. High-heating-rate tests were performed in an arc lamp heat-flux-calibration facility. The fabrication of the thin film thermocouples is described. The thin film thermocouple output was compared to a reference wire thermocouple. Drift of the thin film thermocouples was determined, and causes of drift are discussed. The results of high heating rate tests up to 2500 C/sec are presented. The stability of the ceramic materials is examined. It is concluded that Pt13Rh/Pt thin film thermocouples are capable of meeting lifetime goals of 50 hr or more up to temperatures of 1500 C depending on the stability of the particular ceramic substrate.
3D-WOVEN FIBER-REINFORCED COMPOSITE FOR CAD/CAM DENTAL APPLICATION.
Petersen, Richard; Liu, Perng-Ru
2016-05-01
Three-dimensional (3D)-woven noncrimp fiber-reinforced composite (FRC) was tested for mechanical properties in the two principal directions of the main XY plane and compared to different Computer-Aided-Design/Computer-Aided-Machining (CAD/CAM) Dental Materials. The Dental Materials included ceramic with Vitablock Mark II®, ProCAD®, InCeram® Spinel, InCeram® Alumina and InCeram® Zirconia in addition to a resin-based 3M Corp. Paradigm® particulate-filled composite. Alternate material controls included Coors 300 Alumina Ceramic and a tungsten carbide 22% cobalt cermet. The 3D-woven FRC was vacuum assisted resin transfer molding processed as a one-depth-thickness ~19-mm preform with a vinyl-ester resin and cut into blocks similar to the commercial CAD/CAM Dental Materials. Mechanical test samples prepared for a flexural three-point span length of 10.0 mm were sectioned for minimum-depth cuts to compare machinability and fracture resistance between groups. 3D-woven FRC improved mechanical properties with significant statistical differences over all CAD/CAM Dental Materials and Coors Alumina Ceramic for flexural strength (p<0.001), resilience (p<0.05), work of fracture (p<0.001), strain energy release (p<0.05), critical stress intensity factor (p<0.001) and strain (p<0.001).
Interdisciplinary research on the nature and properties of ceramic materials
NASA Technical Reports Server (NTRS)
1980-01-01
Several investigations concerning the properties and processing of brittle ceramic materials as related to design considerations are briefly described. Surface characterization techniques, fractography, high purity materials, creep properties, impact and thermal shock resistance, and reaction bonding are discussed.
ERIC Educational Resources Information Center
Ritz, John M.; And Others
This document--intended to help technology education teachers plan their classroom curriculum for secondary school and college students--contains units on satellite communication, the nature and properties of engineering materials, careers in technology, new developments in printing, composite materials, ceramics, ceramic materials, and personal…
VERAM - Vision and Roadmap for European Raw Materials
NASA Astrophysics Data System (ADS)
Baumgarten, Wibke; Vashev, Boris
2017-04-01
The overall objective of VERAM project is to produce a Vision and Roadmap for European Raw Materials in 2050 based on raw materials research and innovation (R&I) coordination. Two leading European Technology Platforms (ETPs): ETP SMR (Sustainable Minerals Resources) and FTP (Forest Technology Platform) are joining forces to develop a common vison and roadmap with the support of ECTP (European Construction Technology Platform), represented by UNIVPM, SusChem (ETP for Sustainable Chemistry), represented by Cefic, EuMaT (Advanced Materials ETP), represented by VITO, ERAMIN 2, represented by Research Centre JUELICH and WoodWisdom Network Plus represented by the Agency for Renewable Resources (FNR). This partnership provides VERAM with expertise from downstream applications and additional knowledge on non-biotic and biotic raw materials. The project encourages capacity building as well as transfer of knowledge. It expects to provide an innovation reference point for the European Institute of Innovation & Technology (EIT) Raw Materials (formerly the KIC Raw MatTERS), to coordinate the network involved in the European Innovation Partnership (EIP) on Raw Materials Commitments and relevant proposals funded under Horizon 2020. It provides a platform for identifying gaps and complementarities and enables their bridging. VERAM will be able to advise the European Commission and Member States on future research needs and policies to stimulate innovation and assist in overcoming fragmentation in the implementing the EIP Raw Materials Strategic Implementation Plan. VERAM looks for mutually beneficial information exchange, encourages cross-fertilization between actions undertaken by different raw material industries, and expects to accelerate exploitation of breakthrough innovations. One of the main outcomes of the project is the presentation of a common long term 2050 Vision and Roadmap for relevant raw materials including metals, industrial minerals and aggregates and wood. The Vision and Roadmap have the objective of highlighting the path to achieving the European Commission's ambitious target of 80% reduction in CO2 emissions by 2050.
Juntavee, Niwut; Juntavee, Apa; Saensutthawijit, Phuwiwat
2018-02-01
This study evaluated the effect of light-emitting diode (LED) illumination bleaching technique on the surface nanohardness of various computer-aided design and computer-aided manufacturing (CAD/CAM) ceramic materials. Twenty disk-shaped samples (width, length, and thickness = 10, 15, and 2 mm) were prepared from each of the ceramic materials for CAD/CAM, including Lava™ Ultimate (L V ), Vita Enamic® (E n ) IPS e.max® CAD (M e ), inCoris® TZI (I C ), and Prettau® zirconia (P r ). The samples from each type of ceramic were randomly divided into two groups based on the different bleaching techniques to be used on them, using 35% hydrogen peroxide with and without LED illumination. The ceramic disk samples were bleached according to the manufacturer's instruction. Surface hardness test was performed before and after bleaching using nanohardness tester with a Berkovich diamond indenter. The respective Vickers hardness number upon no bleaching and bleaching without or with LED illumination [mean ± standard deviation (SD)] for each type of ceramic were as follows: 102.52 ± 2.09, 101.04 ± 1.18, and 98.17 ± 1.15 for L V groups; 274.96 ± 5.41, 271.29 ± 5.94, and 268.20 ± 7.02 for E n groups; 640.74 ± 31.02, 631.70 ± 22.38, and 582.32 ± 33.88 for M e groups; 1,442.09 ± 35.07, 1,431.32 ± 28.80, and 1,336.51 ± 34.03 for I C groups; and 1,383.82 ± 33.87, 1,343.51 ± 38.75, and 1,295.96 ± 31.29 for P r groups. The results indicated surface hardness reduction following the bleaching procedure of varying degrees for different ceramic materials. Analysis of variance (ANOVA) revealed a significant reduction in surface hardness due to the effect of bleaching technique, ceramic material, and the interaction between bleaching technique and ceramic material (p < 0.05). Bleaching resulted in a diminution of the surface hardness of dental ceramic for CAD/CAM. Using 35% hydrogen peroxide bleaching agent with LED illumination exhibited more reduction in surface hardness of dental ceramic than what was observed without LED illumination. Clinicians should consider protection of the existing restoration while bleaching.
Ji, Renjie; Liu, Yonghong; Diao, Ruiqiang; Xu, Chenchen; Li, Xiaopeng; Cai, Baoping; Zhang, Yanzhen
2014-01-01
Engineering ceramics have been widely used in modern industry for their excellent physical and mechanical properties, and they are difficult to machine owing to their high hardness and brittleness. Electrical discharge machining (EDM) is the appropriate process for machining engineering ceramics provided they are electrically conducting. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics. This paper investigates the effects of the electrical resistivity and EDM parameters such as tool polarity, pulse interval, and electrode material, on the ZnO/Al2O3 ceramic's EDM performance, in terms of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The results show that the electrical resistivity and the EDM parameters have the great influence on the EDM performance. The ZnO/Al2O3 ceramic with the electrical resistivity up to 3410 Ω·cm can be effectively machined by EDM with the copper electrode, the negative tool polarity, and the shorter pulse interval. Under most machining conditions, the MRR increases, and the SR decreases with the decrease of electrical resistivity. Moreover, the tool polarity, and pulse interval affect the EWR, respectively, and the electrical resistivity and electrode material have a combined effect on the EWR. Furthermore, the EDM performance of ZnO/Al2O3 ceramic with the electrical resistivity higher than 687 Ω·cm is obviously different from that with the electrical resistivity lower than 687 Ω·cm, when the electrode material changes. The microstructure character analysis of the machined ZnO/Al2O3 ceramic surface shows that the ZnO/Al2O3 ceramic is removed by melting, evaporation and thermal spalling, and the material from the working fluid and the graphite electrode can transfer to the workpiece surface during electrical discharge machining ZnO/Al2O3 ceramic. PMID:25364912
Harkness, S.D.
A falling bed of ceramic particles receives neutron irradiation from a neutron-producing plasma and thereby transports energy as heat from the plasma to a heat exchange location where the ceramic particles are cooled by a gas flow. The cooled ceramic particles are elevated to a location from which they may again pass by gravity through the region where they are exposed to neutron radiation. Ceramic particles of alumina, magnesia, silica and combinations of these materials are contemplated as high-temperature materials that will accept energy from neutron irradiation. Separate containers of material incorporating lithium are exposed to the neutron flux for the breeding of tritium that may subsequently be used in neutron-producing reactions. The falling bed of ceramic particles includes velocity partitioning between compartments near to the neutron-producing plasma and compartments away from the plasma to moderate the maximum temperature in the bed.
Harkness, Samuel D.
1982-01-01
A falling bed of ceramic particles receives neutron irradiation from a neutron-producing plasma and thereby transports energy as heat from the plasma to a heat exchange location where the ceramic particles are cooled by a gas flow. The cooled ceramic particles are elevated to a location from which they may again pass by gravity through the region where they are exposed to neutron radiation. Ceramic particles of alumina, magnesia, silica and combinations of these materials are contemplated as high-temperature materials that will accept energy from neutron irradiation. Separate containers of material incorporating lithium are exposed to the neutron flux for the breeding of tritium that may subsequently be used in neutron-producing reactions. The falling bed of ceramic particles includes velocity partitioning between compartments near to the neutron-producing plasma and compartments away from the plasma to moderate the maximum temperature in the bed.
Supersonic laser spray of aluminium alloy on a ceramic substrate
NASA Astrophysics Data System (ADS)
Riveiro, A.; Lusquiños, F.; Comesaña, R.; Quintero, F.; Pou, J.
2007-12-01
Applying a ceramic coating onto a metallic substrate to improve its wear resistance or corrosion resistance has attracted the interest of many researchers during decades. However, only few works explore the possibility to apply a metallic layer onto a ceramic material. This work presents a novel technique to coat ceramic materials with metals: the supersonic laser spraying. In this technique a laser beam is focused on the surface of the precursor metal in such a way that the metal is transformed to the liquid state in the beam-metal interaction zone. A supersonic jet expels the molten material and propels it to the surface of the ceramic substrate. In this study, we present the preliminary results obtained using the supersonic laser spray to coat a commercial cordierite ceramic plate with an Al-Cu alloy using a 3.5 kW CO 2 laser and a supersonic jet of Argon. Coatings were characterized by scanning electron microscopy (SEM) and interferometric profilometry.
Microhardness evaluations of CAD/CAM ceramics irradiated with CO2 or Nd:YAP laser
Rocca, Jean Paul; Fornaini, Carlo; Medioni, Etienne; Brulat-Bouchard, Nathalie
2017-01-01
Background and aims The aim of this study was to measure the microhardness values of irradiated computer-aided design/computer-aided manufacturing (CAD/CAM) ceramics surfaces before and after thermal treatment. Materials and Methods Sixty CAD/CAM ceramic discs were prepared and grouped by material, i.e. lithium disilicate ceramic (Emax CAD) and zirconia ceramic (Emax ZirCAD). Laser irradiation at the material surface was performed with a carbon dioxide laser at 5 Watt (W) or 10 W power in continuous mode (CW mode), or with a neodymium:yttrium aluminum perovskite (Nd:YAP) laser at 10 W on graphite and non-graphite surfaces. Vickers hardness was tested at 0.3 kgf for lithium disilicate and 1 kgf for zirconia. Results Emax CAD irradiated with CO2 at 5 W increased microhardness by 6.32 GPa whereas Emax ZirCAD irradiated with Nd:YAP decreased microhardness by 17.46 GPa. Conclusion CO2 laser effectively increases the microhardness of lithium disilicate ceramics (Emax CAD). PMID:28740324
Ripley, Edward B [Knoxville, TN
2009-11-24
A thermocouple shield for use in radio frequency fields. In some embodiments the shield includes an electrically conductive tube that houses a standard thermocouple having a thermocouple junction. The electrically conductive tube protects the thermocouple from damage by an RF (including microwave) field and mitigates erroneous temperature readings due to the microwave or RF field. The thermocouple may be surrounded by a ceramic sheath to further protect the thermocouple. The ceramic sheath is generally formed from a material that is transparent to the wavelength of the microwave or RF energy. The microwave transparency property precludes heating of the ceramic sheath due to microwave coupling, which could affect the accuracy of temperature measurements. The ceramic sheath material is typically an electrically insulating material. The electrically insulative properties of the ceramic sheath help avert electrical arcing, which could damage the thermocouple junction. The electrically conductive tube is generally disposed around the thermocouple junction and disposed around at least a portion of the ceramic sheath. The concepts of the thermocouple shield may be incorporated into an integrated shielded thermocouple assembly.
A promising tritium breeding material: Nanostructured 2Li2TiO3-Li4SiO4 biphasic ceramic pebbles
NASA Astrophysics Data System (ADS)
Dang, Chen; Yang, Mao; Gong, Yichao; Feng, Lan; Wang, Hailiang; Shi, Yanli; Shi, Qiwu; Qi, Jianqi; Lu, Tiecheng
2018-03-01
As an advanced tritium breeder material for the fusion reactor blanket of the International Thermonuclear Experimental Reactor (ITER), Li2TiO3-Li4SiO4 biphasic ceramic has attracted widely attention due to its merits. In this paper, the uniform precursor powders were prepared by hydrothermal method, and nanostructured 2Li2TiO3-Li4SiO4 biphasic ceramic pebbles were fabricated by an indirect wet method at the first time. In addition, the composition dependence (x/y) of their microstructure characteristics and mechanical properties were investigated. The results indicated that the crush load of biphasic ceramic pebbles was better than that of single phase ceramic pebbles under identical conditions. The 2Li2TiO3-Li4SiO4 ceramic pebbles have good morphology, small grain size (90 nm), satisfactory crush load (37.8 N) and relative density (81.8 %T.D.), which could be a promising breeding material in the future fusion reactor.
An Introduction to the Mechanical Properties of Ceramics
NASA Astrophysics Data System (ADS)
Green, David J.
1998-09-01
Over the past twenty-five years ceramics have become key materials in the development of many new technologies as scientists have been able to design these materials with new structures and properties. An understanding of the factors that influence their mechanical behavior and reliability is essential. This book will introduce the reader to current concepts in the field. It contains problems and exercises to help readers develop their skills. This is a comprehensive introduction to the mechanical properties of ceramics, and is designed primarily as a textbook for advanced undergraduates in materials science and engineering. It will also be of value as a supplementary text for more general courses and to industrial scientists and engineers involved in the development of ceramic-based products, materials selection and mechanical design.
Flexible Ceramic-Metal Insulation Composite and Method of Making
NASA Technical Reports Server (NTRS)
Rasky, Daniel J. (Inventor); Sawko, Paul M. (Inventor); Kilodziej, Paul (Inventor); Kourtides, Demetrius A. (Inventor)
1998-01-01
A method for joining a woven flexible ceramic fabric and a thin metal sheet creating an integral metal surfaced flexible thermal protection article, which methods compress: placing multiple dots of high temperature metallic or fabric and the thin metal sheet in a random or organized pattern, with the proviso that the brazing material covers about 10% or less of the surface of one flat side of the metal sheet; heating the flexible ceramic fabric, brazing material and thin metal sheet for a predetermined period of time to integrally connect the same; and cooling the formed flexible article to ambient temperature. Preferably the flexible ceramic is selected from fibers comprising atoms of silicon, carbon, nitrogen, boron, oxygen or combinations thereof. The flexible thermal protection article produced is also part of the present invention. The thin metal sheet is comprised of titanium, aluminum, chromium, niobium or alloys or combinations thereof. The brazing material is selected from copper/silver or copper/gold or is a ceramic brazing or adhesive material.
Lightweight Ceramics for Aeroacoustic Applications
NASA Technical Reports Server (NTRS)
Kwan, H. W.; Spamer, G. T.; Yu, J.; Yasukawa, B.
1997-01-01
The use of a HTP (High Temperature Performance) ceramic foam for aeroacoustic applications is investigated. HTP ceramic foam is a composition of silica and alumina fibers developed by LMMS. This foam is a lightweight high-temperature fibrous bulk material with small pore size, ultra high porosity, and good strength. It can be used as a broadband noise absorber at both room and high temperature (up to 1800 F). The investigation included an acoustic assessment as well as material development, and environmental and structural evaluations. The results show that the HTP ceramic foam provides good broadband noise absorbing capability and adequate strength when incorporating the HTP ceramic foam system into a honeycomb sandwich structure. On the other hand, the material is sensitive to Skydrol and requires further improvements. Good progress has been made in the impedance model development. A relationship between HTP foam density, flow resistance, and tortuosity will be established in the near future. Additional effort is needed to investigate the coupling effects between face sheet and HTP foam material.
Light Weight Biomorphous Cellular Ceramics from Cellulose Templates
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay; Yee, Bo-Moon; Gray, Hugh R. (Technical Monitor)
2003-01-01
Bimorphous ceramics are a new class of materials that can be fabricated from the cellulose templates derived from natural biopolymers. These biopolymers are abundantly available in nature and are produced by the photosynthesis process. The wood cellulose derived carbon templates have three- dimensional interconnectivity. A wide variety of non-oxide and oxide based ceramics have been fabricated by template conversion using infiltration and reaction-based processes. The cellular anatomy of the cellulose templates plays a key role in determining the processing parameters (pyrolysis, infiltration conditions, etc.) and resulting ceramic materials. The processing approach, microstructure, and mechanical properties of the biomorphous cellular ceramics (silicon carbide and oxide based) have been discussed.
Glass-ceramic material and method of making
Meinhardt, Kerry D [Richland, WA; Vienna, John D [West Richland, WA; Armstrong, Timothy R [Pasco, WA; Pederson, Larry R [Kennewick, WA
2002-08-13
The present invention is a glass-ceramic material and method of making useful for joining at least two solid ceramic parts. The seal is a blend of M.sub.A O--M.sub.B O.sub.y --SiO.sub.2 that substantially matches a coefficient of thermal expansion of the solid electrolyte. According to the present invention, a series of glass ceramics in the M.sub.A O--M.sub.B O.sub.y --SiO.sub.2 system can be used to join or seal both tubular and planar ceramic solid oxide fuel cells, oxygen electrolyzers, and membrane reactors for the production of syngas, commodity chemicals and other products.
Lava ultimate resin nano ceramic for CAD/ CAM: customization case study.
Koller, M; Arnetzl, G V; Holly, L; Arnetzl, G
2012-01-01
Lava Ultimate Resin Nano Ceramic (RNC) blocks are innovative new CAD/CAM materials that make it possible to achieve superior esthetic results in easy steps. The blocks are made of nano ceramic particles embedded in a highly cured resin matrix. Therefore, composite materials can be used to characterize and adjust resin nano ceramic restorations after milling. The milled RNC restorations can be individualized intra-orally or extra-orally, either before or after insertion. Unlike conventional ceramic restorations, customization and glaze firing is neither necessary nor possible with RNC restorations. This opens up the opportunity for intraoral individualization and adaptation of the restorations.
Alumosilicate ceramic proppants based on natural refractory raw materials
NASA Astrophysics Data System (ADS)
Vakalova, T. V.; Devyashina, L. P.; Burihina, M. A.; Kisner, A. S.; Pashenko, N. V.
2017-12-01
The sintering-strengthening effect of the additions of the highly ferrous bauxite (with Fe2O3 content of 20-25 % in the calcined state) in the compositions with refractory clays was established. It was found that in the temperature range 1350-1500°C the additions of bauxite in amounts of 10-40% have a fluxing effect due to the iron oxide introduced with bauxite in compositions with clay. An increasing the bauxite additive in the amount of 50-70% ensures its strengthening effect by increasing the total content of the mullite of the prismatic habit in the firing products of composites with clay. Preliminary clay and bauxite calcination at 900 °C and an increase in the content of bauxite additive up to 50-70% in compositions with clay allow to produce aluminosilicate proppants with a bulk density of 1.62-1.65 g/cm3 and compressive strength up to 52 MPa.
Code of Federal Regulations, 2010 CFR
2010-07-01
... not exceed— Metric units (kg/kkg of raw material) Oil and grease 2.0 0.73 BOD5 3.72 2.20 TSS 6.96 2.90 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 2.0 0.73 BOD5 3.72 2.20 TSS 6... raw material) Chromium 0.0086 0.0036 English units (lb/1,000 lb of raw material) Chromium 0.0086 0...
Code of Federal Regulations, 2011 CFR
2011-07-01
... not exceed— Metric units (kg/kkg of raw material) Oil and grease 2.0 0.73 BOD5 3.72 2.20 TSS 6.96 2.90 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 2.0 0.73 BOD5 3.72 2.20 TSS 6... raw material) Chromium 0.0086 0.0036 English units (lb/1,000 lb of raw material) Chromium 0.0086 0...
Code of Federal Regulations, 2010 CFR
2010-07-01
... consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 2.0 0.73 BOD5 3.72 2.20 TSS 6.96 2.90 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 2.0 0.73 BOD5... units (kg/kkg of raw material) Chromium 0.0086 0.0036 English units (lb/1,000 lb of raw material...
NASA Technical Reports Server (NTRS)
Singh, M.
2002-01-01
Environment-conscious, biomorphic ceramics (Ecoceramics) are a new class of materials that can be produced with renewable resources (wood) and wood wastes (wood sawdust). These materials have tailorable properties with numerous potential applications. Silicon carbide-based ecoceramics have been fabricated by the infiltration of wood-derived carbonaceous preforms with oxide and silicon based materials. The wood-derived carbonaceous preforms have been shown to be quite useful in producing porous or dense materials with different microstructures and compositions. The microstructure and mechanical properties (flexural strength, fracture toughness, elastic modulus, and compressive strength) of a wide variety of Sic-based ecoceramics have been measured. Ecoceramics have tailorable properties and behave like ceramic materials manufactured by conventional approaches. In this presentation the fabrication approach, microstructure, and thermomechanical properties of a wide variety of Sic-based Ecoceramics will be reported.
NASA Astrophysics Data System (ADS)
Jamil, N. H.; Ibrahim, W. M. A. W.; Abdullah, M. M. A. B.; Sandu, A. V.; Tahir, M. F. M.
2017-06-01
Porous ceramic nowadays has been investigated for a variety of its application such as filters, lightweight structural component and others due to their specific properties such as high surface area, stability and permeability. Besides, it has the properties of low thermal conductivity. Various formation techniques making these porous ceramic properties can be tailored or further fine-tuned to obtain the optimum characteristic. Porous materials also one of the good candidate for absorption properties. Conventional construction materials are not design to have good water absorption and retention that lead to the poor performance on these criteria. Temperature is a major driving force for moisture movement and influences sorption characteristics of many constructions materials. The effect of elevated temperatures on the water absorption coefficient and retention remain as critical issue that need to be investigated. Therefore, this paper will review the process parameters in fabricating porous ceramic for absorption properties.
NASA Astrophysics Data System (ADS)
Lestariningsih, Titik; Ratri, Christin Rina; Wigayati, Etty Marty; Sabrina, Qolby
2016-02-01
Characterization of pore structure and crystal structure of the LiB(C2O4)2H2O or LIBOB compound has been performed in this study. These recent years, research regarding LiBOB electrolyte salt have been performed using analytical-grade raw materials, therefore this research was aimed to synthesized LiBOB electrolyte salt using the cheaper and abundant technical-grade raw materials. Lithium hydroxide (LiOH), oxalic acid dihydrate (H2C2O4.2H2O), and boric acid (H3BO3) both in technical-grade and analytical-grade quality were used as raw materials for the synthesis of LiBOB. Crystal structure characterization results of synthesized LiBOB from both technical-grade and analytical-grade raw materials have shown the existence of LiBOB and LiBOB hydrate phase with orthorombic structure. These results were also confirmed by FT-IR analysis, which showed the functional groups of LiBOB compounds. SEM analysis results showed that synthesized LiBOB has spherical structure, while commercial LiBOB has cylindrical structure. Synthesized LiBOB has a similar pore size of commercial LiBOB, i.e. 19 nm (mesoporous material). Surface area of synthesized LiBOB from analytical-grade raw materials and technical-grade materials as well as commercial LIBOB were 88.556 m2/g, 41.524 m2/g, and 108.776 m2/g, respectively. EIS analysis results showed that synthesized LiBOB from technical-grade raw materials has lower conductivity than synthesized LiBOB from analytical-grade raw materials.
NASA Astrophysics Data System (ADS)
Kumar, Nitin; Shukla, Alok
2018-03-01
In this study, we report a novel approach to synthesize the Bi(Ni0.30Ti0.30Fe0.40)O3 [arbitration BNTF30/40] nanoceramics by standard ceramic method at an ambient temperature of 1013 K. Carbonates and oxides powder were utilised as a raw materials in an appropriate stoichiometric amounts. X-ray diffraction pattern assigned that the BNTF30/40 sample presents a single phase of orthorhombic symmetry. The crystallite size obtain from X-ray data suggests the formation of BNTF30/40 nanoceramics in the range between 20 to 45 nm. Bulk density of the prepared pallets were measured and found to be more than 94 percent. The basic characterization tools have been used respectively with Field Emission Scanning Electron Microscope and Spectroscopy based techniques to obtain the correlation between surface morphology and electrical characteristic of specimen sample. Electrical characteristic of the as- synthesized material was studied in the experimental temperature range between RT to 623 K at different operated frequency (25 kHz - 500 kHz).
NASA Astrophysics Data System (ADS)
Maleki-Ghaleh, H.; Aghaie, E.; Nadernezhad, A.; Zargarzadeh, M.; Khakzad, A.; Shakeri, M. S.; Beygi Khosrowshahi, Y.; Siadati, M. H.
2016-06-01
Modern techniques for expanding stem cells play a substantial role in tissue engineering: the raw material that facilitates regeneration of damaged tissues and treats diseases. The environmental conditions and bioprocessing methods are the primary determinants of the rate of cultured stem cell proliferation. Bioceramic scaffolds made of calcium phosphate are effective substrates for optimal cell proliferation. The present study investigates the effects of two bioceramic scaffolds on proliferating cells in culture media. One scaffold was made of hydroxyapatite and the other was a mixture of hydroxyapatite and ferromagnetic material (Fe3O4 nanoparticles). Disk-shaped (10 mm × 2 mm) samples of the two scaffolds were prepared. Primary human fibroblast proliferation was 1.8- and 2.5-fold faster, respectively, when cultured in the presence of hydroxyapatite or ferrous nanoparticle/hydroxyapatite mixtures. Optical microscopy images revealed that the increased proliferation was due to enhanced cell-cell contact. The presence of magnetic Fe3O4 nanoparticles in the ceramic scaffolds significantly increased cell proliferation compared to hydroxyapatite scaffolds and tissue culture polystyrene.
Kuo, L.J.H.; Singh, P.; Ruka, R.J.; Vasilow, T.R.; Bratton, R.J.
1997-11-11
A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators. 4 figs.
Kuo, Lewis J. H.; Singh, Prabhakar; Ruka, Roswell J.; Vasilow, Theodore R.; Bratton, Raymond J.
1997-01-01
A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators.
Metals and Ceramics Division annual progress report, October 1, 1978-June 30, 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, S.
Research is reported concerning: (1) engineering materials including materials compatibility, mechanical properties, nondestructive testing, pressure vessel technology, and welding and brazing; (2) fuels and processes consisting of ceramic technology, fuel cycle technology, fuels evaluation, fuels fabrication and metals processing; and (3) materials science which includes, ceramic studies, physical metallurgy and properties, radiation effects and microstructural analysis, metastable and superconducting materials, structure and properties of surfaces, theoretical research, and x-ray research and applications. Highlights of the work of the metallographic group and the current status of the High-Temperature Materials Laboratory (HTML) and the Materials and Structures Technology Management Center (MSTMC) aremore » presented. (FS)« less
Advanced ceramic material for high temperature turbine tip seals
NASA Technical Reports Server (NTRS)
Vogan, J. W.; Solomon, N. G.; Stetson, A. R.
1980-01-01
Forty-one material systems were evaluated for potential use in turbine blade tip seal applications at 1370 C. Both ceramic blade tip inserts and abradable ceramic tip shoes were tested. Hot gas erosion, impact resistance, thermal stability, and dynamic rub performance were the criteria used in rating the various materials. Silicon carbide and silicon nitride were used, both as blade tips and abradables. The blade tip inserts were fabricated by hot pressing while low density and honeycomb abradables were sintered or reaction bonded.
Wear of ceramic and antagonist--a systematic evaluation of influencing factors in vitro.
Heintze, S D; Cavalleri, A; Forjanic, M; Zellweger, G; Rousson, V
2008-04-01
(1) To systematically review the existing literature on in vitro assessments of antagonist wear of ceramic materials; (2) To systematically evaluate possible influencing factors on material and antagonist wear of ceramic specimens. The database MEDLINE was searched with the terms "enamel," "wear" and "antagonist." The selected studies were analyzed with regard to wear parameters, type of antagonist and outcome. In the laboratory study, three ceramic materials were selected with different compositions and physical properties: IPS d.SIGN low-fusing metal ceramic, IPS Empress leucite ceramic, e.max Press lithium disilicate ceramic. These materials were subjected to the Ivoclar wear method (Willytec chewing simulator, 120,000cycles, 5kg weight) by systematically modifying the following variables which resulted in 36 tests with 8 specimens in each group: (1) configuration (flat, crown specimen), (2) surface treatment (polish, glaze), (3) type of antagonist (ceramic, two types of enamel stylus). Furthermore, the enamel styluses were cut to measure the enamel thickness and cusp width. Wear of both the material and the antagonist was quantified by scanning plaster replicas of the specimens with a laser scanner (etkon es1) and matching baseline and follow-up data with the Match 3D software (Willytec). The data were log-transformed to stabilize the variance and achieve near normality. To test the influence of specific test parameters, a four-way ANOVA with post hoc tests and Bonferroni correction was applied. The systematic review revealed 20 in vitro studies in which a material and the antagonist wear of the same material was examined. However, the results were inconsistent mainly due to the fact that the test parameters differed widely. Most studies used prepared enamel from extracted molars as the antagonist and flat polished ceramic specimens. The test chamber was filled with water and some sort of sliding movement was integrated in the wear generating process. However, there was a huge variation in relation to the applied force, the used force actuator, the number of cycles, and the frequency of cycles per time as well as the number of specimens. The results of the systematic laboratory tests revealed that the following factors strongly influence the wear: configuration (more material wear of flat versus crown specimens), surface treatment (more antagonist wear of glazed versus polished specimens), the antagonist system (more material wear and less antagonist wear for ceramic stylus versus enamel stylus), and enamel thickness (less wear for thicker enamel). Material wear was not very much different between the materials. However, e.max Press generally caused more antagonist wear than the other two materials, which were quite similar. However, the main influencing factors did not yield consistent results for all the subgroups and there was a huge variability of results within the subgroups especially in those groups that used enamel as antagonist. As far as consistency and correlation with clinical studies is concerned, the set-up that consists of unprepared enamel of molar cusps against glazed crowns seems to be the most appropriate method to evaluate a ceramic material with regard to antagonist wear. However, due to the high variability of results large sample sizes are necessary to differentiate between materials, which calls the whole in vitro approach into question.
2001-11-01
electronic properties, i.e. oxygen coordination and cation valence at grain boundaries of the fluorite structured Gdo]2Ceo.gO 2_x ceramic membrane material...required to obtain a detailed understanding of the atomic scale phenomena in ceramics, as the polycrystalline nature of Gdo.2Ceo.802- ceramic membrane material
Control of Silver Diffusion in Low-Temperature Co-Fired Diopside Glass-Ceramic Microwave Dielectrics
Chou, Chen-Chia; Chang, Chun-Yao; Chen, Guang-Yu; Feng, Kuei-Chih; Tsao, Chung-Ya
2017-01-01
Electrode material for low-temperature co-fired diopside glass-ceramic used for microwave dielectrics was investigated in the present work. Diffusion of silver from the electrode to diopside glass-ceramics degrades the performance of the microwave dielectrics. Two approaches were adopted to resolve the problem of silver diffusion. Firstly, silicon-oxide (SiO2) powder was employed and secondly crystalline phases were chosen to modify the sintering behavior and inhibit silver ions diffusion. Nanoscale amorphous SiO2 powder turns to the quartz phase uniformly in dielectric material during the sintering process, and prevents the silver from diffusion. The chosen crystalline phase mixing into the glass-ceramics enhances crystallinity of the material and inhibits silver diffusion as well. The result provides a method to decrease the diffusivity of silver ions by adding the appropriate amount of SiO2 and appropriate crystalline ceramics in diopside glass-ceramic dielectric materials. Finally, we used IEEE 802.11a 5.8 GHz as target specification to manufacture LTCC antenna and the results show that a good broadband antenna was made using CaMgSi2O6 with 4 wt % silicon oxide. PMID:29286330
Ceramic Composite Development for Gas Turbine Engine Hot Section Components
NASA Technical Reports Server (NTRS)
DiCarlo, James A.; VANrOODE, mARK
2006-01-01
The development of ceramic materials for incorporation into the hot section of gas turbine engines has been ongoing for about fifty years. Researchers have designed, developed, and tested ceramic gas turbine components in rigs and engines for automotive, aero-propulsion, industrial, and utility power applications. Today, primarily because of materials limitations and/or economic factors, major challenges still remain for the implementation of ceramic components in gas turbines. For example, because of low fracture toughness, monolithic ceramics continue to suffer from the risk of failure due to unknown extrinsic damage events during engine service. On the other hand, ceramic matrix composites (CMC) with their ability to display much higher damage tolerance appear to be the materials of choice for current and future engine components. The objective of this paper is to briefly review the design and property status of CMC materials for implementation within the combustor and turbine sections for gas turbine engine applications. It is shown that although CMC systems have advanced significantly in thermo-structural performance within recent years, certain challenges still exist in terms of producibility, design, and affordability for commercial CMC turbine components. Nevertheless, there exist some recent successful efforts for prototype CMC components within different engine types.
Proton conducting ceramic membranes for hydrogen separation
Elangovan, S [South Jordan, UT; Nair, Balakrishnan G [Sandy, UT; Small, Troy [Midvale, UT; Heck, Brian [Salt Lake City, UT
2011-09-06
A multi-phase proton conducting material comprising a proton-conducting ceramic phase and a stabilizing ceramic phase. Under the presence of a partial pressure gradient of hydrogen across the membrane or under the influence of an electrical potential, a membrane fabricated with this material selectively transports hydrogen ions through the proton conducting phase, which results in ultrahigh purity hydrogen permeation through the membrane. The stabilizing ceramic phase may be substantially structurally and chemically identical to at least one product of a reaction between the proton conducting phase and at least one expected gas under operating conditions of a membrane fabricated using the material. In a barium cerate-based proton conducting membrane, one stabilizing phase is ceria.
Porous zirconia ceramic as an alternative to dentin for in vitro dentin barriers cytotoxicity test.
Hu, Meng-Long; Lin, Hong; Jiang, Ruo-Dan; Dong, Li-Min; Huang, Lin; Zheng, Gang
2018-06-01
This study assessed the potential of porous zirconia ceramic as an alternative to dentin via an in vitro dentin barrier cytotoxicity test. The permeability of dentin and porous zirconia ceramic was measured using a hydraulic-conductance system, and their permeability was divided into two groups: high and low. Using an in vitro dentin barrier test, the cytotoxicity of dental materials by dentin and porous zirconia ceramic was compared within the same permeability group. The L-929 cell viability was assessed by MTT assay. The mean (SD) permeability of the high and low group for dentin was 0.334 (0.0873) and 0.147 (0.0377) μl min -1 cm -2 cm H 2 O -1 and for zirconia porous ceramic was 0.336 (0.0609) and 0.146 (0.0340) μl min -1 cm -2 cm H 2 O -1 . The cell viability of experimental groups which are the low permeability group was higher than that of the high permeability group for both dentin and porous zirconia ceramic as a barrier except for Maxcem Elite ™ by porous zirconia ceramic. There was no significant difference between dentin and porous zirconia ceramic in cell viability, within either the high or low permeability group for all materials. The SD for cell viability of the porous zirconia ceramic was less than that of the dentin, across all materials within each permeability group, except for Maxcem Elite ™ in the high permeability group. Porous zirconia ceramic, having similar permeability to dentin at the same thickness, can be used as an alternative to dentin for in vitro dentin barrier cytotoxicity tests. In vitro dentin barrier cytotoxicity tests when a standardized porous zirconia ceramic was used as a barrier could be useful for assessing the potential toxicity of new dental materials applied to dentin before applying in clinical and may resolve the issue of procuring human teeth when testing proceeds.
Crystallization of high-strength nano-scale leucite glass-ceramics.
Theocharopoulos, A; Chen, X; Wilson, R M; Hill, R; Cattell, M J
2013-11-01
Fine-grained, high strength, translucent leucite dental glass-ceramics are synthesized via controlled crystallization of finely milled glass powders. The objectives of this study were to utilize high speed planetary milling of an aluminosilicate glass for controlled surface crystallization of nano-scale leucite glass-ceramics and to test the biaxial flexural strength. An aluminosilicate glass was synthesized, attritor or planetary milled and heat-treated. Glasses and glass-ceramics were characterized using particle size analysis, X-ray diffraction and scanning electron microscopy. Experimental (fine and nanoscale) and commercial (Ceramco-3, IPS Empress Esthetic) leucite glass-ceramics were tested using the biaxial flexural strength (BFS) test. Gaussian and Weibull statistics were applied. Experimental planetary milled glass-ceramics showed an increased leucite crystal number and nano-scale median crystal sizes (0.048-0.055 μm(2)) as a result of glass particle size reduction and heat treatments. Experimental materials had significantly (p<0.05) higher mean BFS and characteristic strength values than the commercial materials. Attritor milled and planetary milled (2h) materials showed no significant (p>0.05) strength difference. All other groups' mean BFS and characteristic strengths were found to be significantly different (p<0.05) to each other. The mean (SD) MPa strengths measured were: Attritor milled: 252.4 (38.7), Planetary milled: 225.4 (41.8) [4h milling] 255.0 (35.0) [2h milling], Ceramco-3: 75.7 (6.8) and IPS Empress: 165.5 (30.6). Planetary milling enabled synthesis of nano-scale leucite glass-ceramics with high flexural strength. These materials may help to reduce problems associated with brittle fracture of all-ceramic restorations and give reduced enamel wear. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Flexural strength and failure modes of layered ceramic structures.
Borba, Márcia; de Araújo, Maico D; de Lima, Erick; Yoshimura, Humberto N; Cesar, Paulo F; Griggs, Jason A; Della Bona, Alvaro
2011-12-01
To evaluate the effect of the specimen design on the flexural strength (σ(f)) and failure mode of ceramic structures, testing the hypothesis that the ceramic material under tension controls the mechanical performance of the structure. Three ceramics used as framework materials for fixed partial dentures (YZ--Vita In-Ceram YZ; IZ--Vita In-Ceram Zirconia; AL--Vita In-Ceram AL) and two veneering porcelains (VM7 and VM9) were studied. Bar-shaped specimens were produced in three different designs (n=10): monolithic, two layers (porcelain-framework) and three layers (TRI) (porcelain-framework-porcelain). Specimens were tested for three-point flexural strength at 1MPa/s in 37°C artificial saliva. For bi-layered design, the specimens were tested in both conditions: with porcelain (PT) or framework ceramic (FT) layer under tension. Fracture surfaces were analyzed using stereomicroscope and scanning electron microscopy (SEM). Young's modulus (E) and Poisson's ratio (ν) were determined using ultrasonic pulse-echo method. Results were statistically analyzed by Kruskal-Wallis and Student-Newman-Keuls tests. Except for VM7 and VM9, significant differences were observed for E values among the materials. YZ showed the highest ν value followed by IZ and AL. YZ presented the highest σ(f). There was no statistical difference in the σ(f) value between IZ and IZ-FT and between AL and AL-FT. σ(f) values for YZ-PT, IZ-PT, IZ-TRI, AL-PT, AL-TRI were similar to the results obtained for VM7 and VM9. Two types of fracture mode were identified: total and partial failure. The mechanical performance of the specimens was determined by the material under tension during testing, confirming the study hypothesis. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Post-irradiation hardening of dual-cured and light-cured resin cements through machinable ceramics.
Yoshida, Keiichi; Atsuta, Mitsuru
2006-10-01
To evaluate the surface hardness (Knoop Hardness Number) of the thin layer in three light-cured and dual-cured resin cements irradiated through or not through 2.0 mm thick machinable ceramics. A piece of adhesive polyethylene tape with a circular hole was positioned on the surface of the ceramic plate to control the cement layer (approximately 50 microm). The cement paste was placed on the ceramic surface within the circle. The ceramic plate with resin cement paste was placed on a clear micro cover glass over a zirconia ceramic block to obtain a flat surface, and the material was polymerized using a visible-light-curing unit. The surface hardness was recorded at a series of time intervals up to 5 days, starting from the end of a light-irradiation period. The hardness steadily increased with post-irradiation time and tended towards a maximum, usually reached after 1 or 2 days. In all cases, the increase in hardness was relatively rapid over the first 30 minutes and continued at a lower rate thereafter. The dual-cured resin cement for each material showed a significantly higher hardness value than the light-cured resin cement irradiated either through or not through ceramics at all post-irradiation times. The resin cements cured through ceramic for each material were significantly less hard compared with those cured not through ceramics at all post-irradiation times.
Wojtowicz, Elżbieta; Zawirska-Wojtasiak, Renata; Przygoński, Krzysztof; Mildner-Szkudlarz, Sylwia
2015-05-15
The β-carboline compounds norharman and harman exhibit neuroactive activity in the human body. Chicory coffee has proved to be a source of β-carboline compounds. This study assessed the norharman and harman contents of traditional and novel raw materials for the production of chicory coffee, as well as in samples of chicory coffee with novel additives. The highest content of the β-carbolines among the traditional raw materials was recorded in roasted sugar beet (2.26 μg/g), while roasting the chicory caused a 25-fold increase in the content of norharman in this raw material (from 0.05 to 1.25 μg/g). In novel raw materials not subjected to the action of high temperature, β-carboline was not detected. Among the roasted novel raw materials, the highest contents of harman and norharman were found in artichokes. High harman levels were also recorded in roasted chokeberry. Copyright © 2014 Elsevier Ltd. All rights reserved.
Casterton, P L; Potts, L F; Klein, B D
1994-08-01
11 surfactant raw materials with potential applications in light-duty liquid cleaning products were evaluated in vitro using a human skin analogue (ATS SKIN(2) Model ZK1100) for predicting cytotoxicity (MTT reduction) and inflammation [prostaglandin E(2) (PGE(2)) release]. Two of the 11 raw materials, both in the same compound family, were selected to be individually combined with each of the other nine in a 90:10 (raw:selected raw) mixture. Selection criteria were based on desired performance characteristics and low irritation potential as suggested from the individual surfactant assay data. To determine whether irritation potential was mitigated, MTT and PGE(2) scores were again determined for each of the 18 combinations with the resulting data being compared with the untreated raw material data. A plot of the data indicated that one of two selected materials may have an 'anti-irritant' effect. For raw materials with intrinsic MTT scores of less than 50 mug/ml and with the original data corrected for possible dilution effects, a statistical comparison between individual raw materials and the two sets of combinations was done using a one-sample analysis. Both cytotoxicity (MTT) and inflammation (PGE(2)) were significantly decreased by the milder of the two selected raw materials. By factoring the data into future new product decisions, this methodology has become a useful and practical tool for Amway product development.
Measuring Fracture Times Of Ceramics
NASA Technical Reports Server (NTRS)
Shlichta, Paul J.; Bister, Leo; Bickler, Donald G.
1989-01-01
Electrical measurements complement or replace fast cinematography. Electronic system measures microsecond time intervals between impacts of projectiles on ceramic tiles and fracture tiles. Used in research on ceramics and ceramic-based composite materials such as armor. Hardness and low density of ceramics enable them to disintegrate projectiles more efficiently than metals. Projectile approaches ceramic tile specimen. Penetrating foil squares of triggering device activate display and recording instruments. As ceramic and resistive film break oscilloscope plots increase in electrical resistance of film.
Synopsis of utilization research on SRIC raw materials
John B. Crist
1983-01-01
The take-home message of this paper is this: Raw materials produced using SRIC are suitable for many reconstituted end products. Juvenility, rapid growth, and bark contents do not greatly hinder the usefulness of the raw materials. In the future, increased industrial acceptance of SRIC methods and materials should be a major thrust and is discussed.
Joining and Integration of Silicon Carbide for Turbine Engine Applications
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Singh, Mrityunjay; Coddington, Bryan; Asthana, Rajiv
2010-01-01
The critical need for ceramic joining and integration technologies is becoming better appreciated as the maturity level increases for turbine engine components fabricated from ceramic and ceramic matrix composite materials. Ceramic components offer higher operating temperatures and reduced cooling requirements. This translates into higher efficiencies and lower emissions. For fabricating complex shapes, diffusion bonding of silicon carbide (SiC) to SiC is being developed. For the integration of ceramic parts to the surrounding metallic engine system, brazing of SiC to metals is being developed. Overcoming the chemical, thermal, and mechanical incompatibilities between dissimilar materials is very challenging. This presentation will discuss the types of ceramic components being developed by researchers and industry and the benefits of using ceramic components. Also, the development of strong, crack-free, stable bonds will be discussed. The challenges and progress in developing joining and integration approaches for a specific application, i.e. a SiC injector, will be presented.
Mechanical properties of a new mica-based machinable glass ceramic for CAD/CAM restorations.
Thompson, J Y; Bayne, S C; Heymann, H O
1996-12-01
Machinable ceramics (Vita Mark II and Dicor MGC) exhibit good short-term clinical performance, but long-term in vivo fracture resistance is still being monitored. The relatively low fracture toughness of currently available machinable ceramics restricts their use to conservative inlays and onlays. A new machinable glass ceramic (MGC-F) has been developed (Corning Inc.) with enhanced fluorescence and machinability. The purpose of this study was to characterize and compare key mechanical properties of MGC-F to Dicor MGC-Light, Dicor MGC-Dark, and Vita Mark II glass ceramics. The mean fracture toughness and indented biaxial flexure strength of MGC-F were each significantly greater (p < or = 0.01) than that of Dicor MGC-Light, Dicor MGC-Dark, and Vita Mark II ceramic materials. The results of this study indicate the potential for better in vivo fracture resistance of MGC-F compared with existing machinable ceramic materials for CAD/CAM restorations.
Liquid-assisted laser ablation of advanced ceramics and glass-ceramic materials
NASA Astrophysics Data System (ADS)
Garcia-Giron, A.; Sola, D.; Peña, J. I.
2016-02-01
In this work, results obtained by laser ablation of advanced ceramics and glass-ceramic materials assisted by liquids are reported. A Q-switched Nd:YAG laser at its fundamental wavelength of 1064 nm with pulse-width in the nanosecond range was used to machine the materials, which were immersed in water and ethylene glycol. Variation in geometrical parameters, morphology, and ablation yields were studied by using the same laser working conditions. It was observed that machined depth and removed volume depended on the thermal, optical, and mechanical features of the processed materials as well as on the properties of the surrounding medium in which the laser processing was carried out. Variation in ablation yields was studied in function of the liquid used to assist the laser process and related to refractive index and viscosity. Material features and working conditions were also related to the obtained results in order to correlate ablation parameters with respect to the hardness of the processed materials.
Production of glass-ceramics from sewage sludge and waste glass
NASA Astrophysics Data System (ADS)
Rozenstrauha, I.; Sosins, G.; Petersone, L.; Krage, L.; Drille, M.; Filipenkov, V.
2011-12-01
In the present study for recycling of sewage sludge and waste glass from JSC "Valmieras stikla skiedra" treatment of them to the dense glass-ceramic composite material using powder technology is estimated. The physical-chemical properties of composite materials were identified - density 2.19 g/cm3, lowest water absorption of 2.5% and lowest porosity of 5% for the samples obtained in the temperature range of sintering 1120 - 1140 °C. Regarding mineralogical composition of glass-ceramics the following crystalline phases were identified by XRD analysis: quartz (SiO2), anorthite (CaAl2Si2O8) and hematite (Fe2O3), which could ensure the high density of materials and improve the mechanical properties of material - compressive strength up to 60.31±5.09 - 52.67±19.18 MPa. The physical-chemical properties of novel materials corresponds to dense glass-ceramics composite which eventually could be used as a building material, e.g. for floor covering, road pavement, exterior tiles etc.
Joining of dissimilar materials
Tucker, Michael C; Lau, Grace Y; Jacobson, Craig P
2012-10-16
A method of joining dissimilar materials having different ductility, involves two principal steps: Decoration of the more ductile material's surface with particles of a less ductile material to produce a composite; and, sinter-bonding the composite produced to a joining member of a less ductile material. The joining method is suitable for joining dissimilar materials that are chemically inert towards each other (e.g., metal and ceramic), while resulting in a strong bond with a sharp interface between the two materials. The joining materials may differ greatly in form or particle size. The method is applicable to various types of materials including ceramic, metal, glass, glass-ceramic, polymer, cermet, semiconductor, etc., and the materials can be in various geometrical forms, such as powders, fibers, or bulk bodies (foil, wire, plate, etc.). Composites and devices with a decorated/sintered interface are also provided.
NDE of ceramics and ceramic composites
NASA Technical Reports Server (NTRS)
Vary, Alex; Klima, Stanley J.
1991-01-01
Although nondestructive evaluation (NDE) techniques for ceramics are fairly well developed, they are difficult to apply in many cases for high probability detection of the minute flaws that can cause failure in monolithic ceramics. Conventional NDE techniques are available for monolithic and fiber reinforced ceramic matrix composites, but more exact quantitative techniques needed are still being investigated and developed. Needs range from flaw detection to below 100 micron levels in monolithic ceramics to global imaging of fiber architecture and matrix densification anomalies in ceramic composites. NDE techniques that will ultimately be applicable to production and quality control of ceramic structures are still emerging from the lab. Needs are different depending on the processing stage, fabrication method, and nature of the finished product. NDE techniques are being developed in concert with materials processing research where they can provide feedback information to processing development and quality improvement. NDE techniques also serve as research tools for materials characterization and for understanding failure processes, e.g., during thermomechanical testing.
7 CFR 58.735 - Quality specifications for raw materials.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 3 2011-01-01 2011-01-01 false Quality specifications for raw materials. 58.735 Section 58.735 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING... specifications for raw materials. (a) Cheddar colby, washed or soaked curd, granular or stirred curd cheese...
Future Sources of Organic Raw Materials.
ERIC Educational Resources Information Center
Shapiro, Irving S.
1978-01-01
Examines the need for industrial organization, academic institutions, and national governments to agree on cooperative roles in planning the future raw materials demands of the chemical industry. Political and social concerns, as well as technical and economic considerations, are important to the raw material future of the industry. (MA)
Separation membrane development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, M.W.
1998-08-01
A ceramic membrane has been developed to separate hydrogen from other gases. The method used is a sol-gel process. A thin layer of dense ceramic material is coated on a coarse ceramic filter substrate. The pore size distribution in the thin layer is controlled by a densification of the coating materials by heat treatment. The membrane has been tested by permeation measurement of the hydrogen and other gases. Selectivity of the membrane has been achieved to separate hydrogen from carbon monoxide. The permeation rate of hydrogen through the ceramic membrane was about 20 times larger than Pd-Ag membrane.
PROCESS OF FORMING POWDERED MATERIAL
Glatter, J.; Schaner, B.E.
1961-07-14
A process of forming high-density compacts of a powdered ceramic material is described by agglomerating the powdered ceramic material with a heat- decompossble binder, adding a heat-decompossble lubricant to the agglomerated material, placing a quantity of the material into a die cavity, pressing the material to form a compact, pretreating the compacts in a nonoxidizing atmosphere to remove the binder and lubricant, and sintering the compacts. When this process is used for making nuclear reactor fuel elements, the ceramic material is an oxide powder of a fissionsble material and after forming, the compacts are placed in a cladding tube which is closed at its ends by vapor tight end caps, so that the sintered compacts are held in close contact with each other and with the interior wall of the cladding tube.
Confocal examination of subsurface cracking in ceramic materials.
Etman, Maged K
2009-10-01
The original ceramic surface finish and its microstructure may have an effect on crack propagation. The purpose of this study was to investigate the relation between crack propagation and ceramic microstructure following cyclic fatigue loading, and to qualitatively evaluate and quantitatively measure the surface and subsurface crack depths of three types of ceramic restorations with different microstructures using a Confocal Laser Scanning Microscope (CLSM) and Scanning Electron Microscope (SEM). Twenty (8 x 4 x 2 mm(3)) blocks of AllCeram (AC), experimental ceramic (EC, IPS e.max Press), and Sensation SL (SSL) were prepared, ten glazed and ten polished of each material. Sixty antagonist enamel specimens were made from the labial surfaces of permanent incisors. The ceramic abraders were attached to a wear machine, so that each enamel specimen presented at 45 degrees to the vertical movement of the abraders, and immersed in artificial saliva. Wear was induced for 80K cycles at 60 cycles/min with a load of 40 N and 2-mm horizontal deflection. The specimens were examined for cracks at baseline, 5K, 10K, 20K, 40K, and 80K cycles. Twenty- to 30-microm deep subsurface cracking appeared in SSL, with 8 to 10 microm in AC, and 7 microm close to the margin of the wear facets in glazed EC after 5K cycles. The EC showed no cracks with increasing wear cycles. Seventy-microm deep subsurface cracks were detected in SSL and 45 microm in AC after 80K cycles. Statistically, there was significant difference among the three materials (p < 0.05). Bonferroni multiple comparison of means test confirmed the ANOVA test and showed that there was no statistical difference (p > 0.05) in crack depth within the same ceramic material with different surface finishes. The ceramic materials with different microstructures showed different patterns of subsurface cracking.
Looney, Mark; Shea, Helen O'; Gunn, Lynda; Crowley, Dolores; Boyd, Daniel
2013-05-01
The use of artificial bone grafts has increased in order to satisfy a growing demand for bone replacement materials. Initial mechanical stability of synthetic bone grafts is very advantageous for certain clinical applications. Coupled with the advantage of mechanical strength, a material with inherent antibacterial properties would be very beneficial. A series of strontium-doped zinc silicate (Ca-Sr-Na-Zn-Si) glass ceramics have been characterized in terms of their crystalline structure, biaxial flexural strength and antibacterial efficacy based on the identification of optimum sintering conditions. All three glass ceramics, namely, BT110, BT111, and BT112 were found to be fully crystalline, with BT111 and BT112 comprising of biocompatible crystalline phases. The biaxial flexural strengths of the three glass ceramics ranged from 70 to 149 MPa and were shown to be superior to those of clinically established ceramics in dry conditions and following incubation in simulated physiological conditions. The bacteriostatic effect for each glass ceramic was also established, where BT112 showed an inhibitory effect against three of the most common bacteria found at implantation sites, namely, Enterococcus faecalis, methicillin-resistant Staphylococcus aureus (MRSA), and Pseudomonas aeruginosa. The results of the evaluation suggest that the materials studied offer advantages over current clinical materials and indicate the potential suitability of the glass ceramics as therapeutic bone grafts.
Improved ceramic heat exchange material
NASA Technical Reports Server (NTRS)
Mccollister, H. L.
1977-01-01
Improved corrosion resistant ceramic materials that are suitable for use as regenerative heat exchangers for vehicular gas turbines is reported. Two glass-ceramic materials, C-144 and C-145, have superior durability towards sulfuric acid and sodium sulfate compared to lithium aluminosilicate (LAS) Corning heat exchange material 9455. Material C-144 is a leached LAS material whose major crystalline phase is silica keatite plus mullite, and C-145 is a LAS keatite solid solution (S.S.) material. In comparison to material 9455, material C-144 is two orders of magnitude better in dimensional stability to sulfuric acid at 300 C, and one order of magnitude better in stability to sodium sulfate at 1000 C. Material C-145 is initially two times better in stability to sulfuric acid, and about one order of magnitude better in stability to sodium sulfate. Both C-144 and C-145 have less than 300 ppm delta L/L thermal expansion from ambient to 1000 C, and good dimensional stability of less than approximately 100 ppm delta L/L after exposure to 1000 C for 100 hours. The glass-ceramic fabrication process produced a hexagonal honeycomb matrix having an 85% open frontal area, 50 micrometer wall thickness, and less than 5% porosity.
Guided bone augmentation using ceramic space-maintaining devices: the impact of chemistry
Anderud, Jonas; Abrahamsson, Peter; Jimbo, Ryo; Isaksson, Sten; Adolfsson, Erik; Malmström, Johan; Naito, Yoshihito; Wennerberg, Ann
2015-01-01
The purpose of the study was to evaluate histologically, whether vertical bone augmentation can be achieved using a hollow ceramic space maintaining device in a rabbit calvaria model. Furthermore, the chemistry of microporous hydroxyapatite and zirconia were tested to determine which of these two ceramics are most suitable for guided bone generation. 24 hollow domes in two different ceramic materials were placed subperiosteal on rabbit skull bone. The rabbits were sacrificed after 12 weeks and the histology results were analyzed regarding bone-to-material contact and volume of newly formed bone. The results suggest that the effect of the microporous structure of hydroxyapatite seems to facilitate for the bone cells to adhere to the material and that zirconia enhance a slightly larger volume of newly formed bone. In conclusion, the results of the current study demonstrated that ceramic space maintaining devices permits new bone formation and osteoconduction within the dome. PMID:25792855