Science.gov

Sample records for ceramic tile industry

  1. [Lead exposure in the ceramic tile industry: time trends and current exposure levels].

    PubMed

    Candela, S; Ferri, F; Olmi, M

    1998-01-01

    There is a high density of industries for the production of ceramic tiles in the District of Scandiano (province of Reggio Emilia, Emilia Romagna region). In this area, since the beginning of 1970s, the time trend of Pb exposure in ceramic tile plants has been evaluated by means of biological monitoring (BM) data collected at the Service of Prevention and Safety in the Work Environment and its associated Toxicology Laboratory. From these data, a clear decreasing time trend of exposure levels is documented, the reduction being more evident during the seventies and in 1985-88. During the seventies BM was introduced systematically in all ceramic tile plants with the determination of delta-aminolevulinic acid in urine (ALA-U). As a consequence of the BM programme, hygienic measures for the abatement of pollution inside the plants were implemented, and a reduction, from 20.6% to 2%, of ALA-U values exceeding 10 mg/l, was observed. In 1985, the determination of lead in blood (PbB) replaced that of ALA-U in the BM programmes and highlighted the persistence of high level of exposure to Pb, which could not be outlined by means of ALA-U because of its lower sensitivity. PbB levels were 36.1 micrograms/100 ml and 25.7 micrograms/100 ml in male and female workers, respectively. These results required the implementation, within the plants, of additional hygienic measures and a significant reduction of PbB was obtained in the following three years. In 1988 PbB levels were 26.0 +/- 10.7 and 21.6 +/- 10.3 micrograms/100 ml in male and female workers, respectively. In 1993-95 Pb levels were obtained from 1328 male and 771 female workers of 56 plants, accounting for about 40% of the total number of workers in the ceramic industry, in the zones of Sassuolo and Scandiano. Exposure levels are not different from those observed in the preceding years, with PbB levels of 25.3 +/- 11.1 and 19.1 +/- 9.2 micrograms/100 ml in male and female workers, respectively.

  2. Ceramic tile expansion engine housing

    DOEpatents

    Myers, B.

    1995-04-11

    An expandable ceramic tile housing for a high temperature engine is disclosed wherein each tile is independently supported in place in an interlocking matrix by retention mechanisms which mechanically couple the individual ceramic tiles to an outer metal support housing while maintaining thermal isolation of the metal housing from the ceramic tiles. The ceramic tiles are formed with either an octagonal front face portion and a square shank portion or a square front face portion with an octagonal shank portion. The length of the sides of the octagonal front face portion on one tile is equal to the length of the sides of the square front face portion of adjoining tiles to permit formation of an interlocking matrix. Fibrous ceramic sealing material may be placed between radial and tangential facing surfaces of adjacent tiles to limit radial gas flow there between. Labyrinth-sealed pressure-controlled compartments may be established between the tile housing and the outer metal support housing to control radial gas flow. 8 figures.

  3. Ceramic tile expansion engine housing

    SciTech Connect

    Myers, Blake

    1995-01-01

    An expandable ceramic tile housing for a high temperature engine is disclosed wherein each tile is independently supported in place in an interlocking matrix by retention mechanisms which mechanically couple the individual ceramic tiles to an outer metal support housing while maintaining thermal isolation of the metal housing from the ceramic tiles. The ceramic tiles are formed with either an octagonal front face portion and a square shank portion or a square front face portion with an octagonal shank portion. The length of the sides of the octagonal front face portion on one tile is equal to the length of the sides of the square front face portion of adjoining tiles to permit formation of an interlocking matrix. Fibrous ceramic sealing material may be placed between radial and tangential facing surfaces of adjacent tiles to limit radial gas flow therebetween. Labyrinth-sealed pressure-controlled compartments may be established between the tile housing and the outer metal support housing to control radial gas flow.

  4. Interlocking wettable ceramic tiles

    SciTech Connect

    Tabereaux, Jr., Alton T.; Fredrickson, Guy L.; Groat, Eric; Mroz, Thomas; Ulicny, Alan; Walker, Mark F.

    2005-03-08

    An electrolytic cell for the reduction of aluminum having a layer of interlocking cathode tiles positioned on a cathode block. Each tile includes a main body and a vertical restraining member to prevent movement of the tiles away from the cathode block during operation of the cell. The anode of the electrolytic cell may be positioned about 1 inch from the interlocking cathode tiles.

  5. Repairing ceramic insulating tiles

    NASA Technical Reports Server (NTRS)

    Dunn, B. R.; Laymance, E. L.

    1980-01-01

    Fused-silica tiles containing large voids or gauges are repaired without adhesives by plug insertion method. Tiles are useful in conduits for high-temperature gases, in furnaces, and in other applications involving heat insulation.

  6. Production Process for Strong, Light Ceramic Tiles

    NASA Technical Reports Server (NTRS)

    Holmquist, G. R.; Cordia, E. R.; Tomer, R. S.

    1985-01-01

    Proportions of ingredients and sintering time/temperature schedule changed. Production process for lightweight, high-strength ceramic insulating tiles for Space Shuttle more than just scaled-up version of laboratory process for making small tiles. Boron in aluminum borosilicate fibers allows fusion at points where fibers contact each other during sintering, thereby greatly strengthening tiles structure.

  7. Production Process for Strong, Light Ceramic Tiles

    NASA Technical Reports Server (NTRS)

    Holmquist, G. R.; Cordia, E. R.; Tomer, R. S.

    1985-01-01

    Proportions of ingredients and sintering time/temperature schedule changed. Production process for lightweight, high-strength ceramic insulating tiles for Space Shuttle more than just scaled-up version of laboratory process for making small tiles. Boron in aluminum borosilicate fibers allows fusion at points where fibers contact each other during sintering, thereby greatly strengthening tiles structure.

  8. Composite treatment of ceramic tile armor

    DOEpatents

    Hansen, James G. R. [Oak Ridge, TN; Frame, Barbara J [Oak Ridge, TN

    2010-12-14

    An improved ceramic tile armor has a core of boron nitride and a polymer matrix composite (PMC) facing of carbon fibers fused directly to the impact face of the tile. A polyethylene fiber composite backing and spall cover are preferred. The carbon fiber layers are cured directly onto the tile, not adhered using a separate adhesive so that they are integral with the tile, not a separate layer.

  9. Composite treatment of ceramic tile armor

    DOEpatents

    Hansen, James G. R. [Oak Ridge, TN; Frame, Barbara J [Oak Ridge, TN

    2012-01-02

    An improved ceramic tile armor has a core of boron nitride and a polymer matrix composite (PMC) facing of carbon fibers fused directly to the impact face of the tile. A polyethylene fiber composite backing and spall cover are preferred. The carbon fiber layers are cured directly onto the tile, not adhered using a separate adhesive so that they are integral with the tile, not a separate layer.

  10. Fibrous-Ceramic/Aerogel Composite Insulating Tiles

    NASA Technical Reports Server (NTRS)

    White, Susan M.; Rasky, Daniel J.

    2004-01-01

    Fibrous-ceramic/aerogel composite tiles have been invented to afford combinations of thermal-insulation and mechanical properties superior to those attainable by making tiles of fibrous ceramics alone or aerogels alone. These lightweight tiles can be tailored to a variety of applications that range from insulating cryogenic tanks to protecting spacecraft against re-entry heating. The advantages and disadvantages of fibrous ceramics and aerogels can be summarized as follows: Tiles made of ceramic fibers are known for mechanical strength, toughness, and machinability. Fibrous ceramic tiles are highly effective as thermal insulators in a vacuum. However, undesirably, the porosity of these materials makes them permeable by gases, so that in the presence of air or other gases, convection and gas-phase conduction contribute to the effective thermal conductivity of the tiles. Other disadvantages of the porosity and permeability of fibrous ceramic tiles arise because gases (e.g., water vapor or cryogenic gases) can condense in pores. This condensation contributes to weight, and in the case of cryogenic systems, the heat of condensation undesirably adds to the heat flowing to the objects that one seeks to keep cold. Moreover, there is a risk of explosion associated with vaporization of previously condensed gas upon reheating. Aerogels offer low permeability, low density, and low thermal conductivity, but are mechanically fragile. The basic idea of the present invention is to exploit the best features of fibrous ceramic tiles and aerogels. In a composite tile according to the invention, the fibrous ceramic serves as a matrix that mechanically supports the aerogel, while the aerogel serves as a low-conductivity, low-permeability filling that closes what would otherwise be the open pores of the fibrous ceramic. Because the aerogel eliminates or at least suppresses permeation by gas, gas-phase conduction, and convection, the thermal conductivity of such a composite even at

  11. Manufacture of ceramic tiles from fly ash

    DOEpatents

    Hnat, James G.; Mathur, Akshay; Simpson, James C.

    1999-01-01

    The present invention relates to a process for forming glass-ceramic tiles. Fly ash containing organic material, metal contaminants, and glass forming materials is oxidized under conditions effective to combust the organic material and partially oxidize the metallic contaminants and the glass forming materials. The oxidized glass forming materials are vitrified to form a glass melt. This glass melt is then formed into tiles containing metallic contaminants.

  12. Manufacture of ceramic tiles from fly ash

    DOEpatents

    Hnat, J.G.; Mathur, A.; Simpson, J.C.

    1999-08-10

    The present invention relates to a process for forming glass-ceramic tiles. Fly ash containing organic material, metal contaminants, and glass forming materials is oxidized under conditions effective to combust the organic material and partially oxidize the metallic contaminants and the glass forming materials. The oxidized glass forming materials are vitrified to form a glass melt. This glass melt is then formed into tiles containing metallic contaminants. 6 figs.

  13. Cutting Symmetrical Recesses In Soft Ceramic Tiles

    NASA Technical Reports Server (NTRS)

    Nesotas, Tony C.; Tyler, Brent

    1989-01-01

    Simple tool cuts hemispherical recesses in soft ceramic tiles. Designed to expose wires of thermocouples embedded in tiles without damaging leads. Creates neat, precise holes around wires. End mill includes axial hole to accommodate thermocouple wires embedded in material to be cut. Wires pass into hole without being bent or broken. Dimensions in inches. Used in place of such tools as dental picks, tweezers, spatulas, and putty knives.

  14. Cutting Symmetrical Recesses In Soft Ceramic Tiles

    NASA Technical Reports Server (NTRS)

    Nesotas, Tony C.; Tyler, Brent

    1989-01-01

    Simple tool cuts hemispherical recesses in soft ceramic tiles. Designed to expose wires of thermocouples embedded in tiles without damaging leads. Creates neat, precise holes around wires. End mill includes axial hole to accommodate thermocouple wires embedded in material to be cut. Wires pass into hole without being bent or broken. Dimensions in inches. Used in place of such tools as dental picks, tweezers, spatulas, and putty knives.

  15. Solar-energy treatment of ceramic tiles

    NASA Astrophysics Data System (ADS)

    Harris, J. N.; Clayton, M. E.

    1981-12-01

    The 400 kW Advanced Components Test Facility was used to provide a concentrated source of solar energy for firing ceramic wall tile. A domed top cylindrical cavity with a white refractory fiber lining provided diffuse reflection of the concentrated solar beam directly onto the upper surface of the unfired wall tile. The tile were placed directly on the cavity floor in a circular pattern, centered at 450 intervals so that eight tile could be fired at one time. The tile and cavity walls were instrumented with thermocouples, and pyrometric cones were used to determine temperature distribution within the cavity. The glazed and unglazed solar fired titles were tested for flatness, modulus of rupture, water absorption, porosity, bulk density, apparent specific gravity, percent linear thermal expansion and crystalline phases present in the fired bodies. The major problems encountered are: cracking by thermal shock, and uneven shrinkage and glaze maturity across individual tile. The cavity failed to provide even heating at all eight tile positions.

  16. Radioactivity level in Chinese building ceramic tile.

    PubMed

    Xinwei, L

    2004-01-01

    The activity concentrations of (226)Ra, (232)Th and (40)K have been determined by gamma ray spectrometry. The concentrations of (226)Ra, (232)Th and (40)K range from 158.3 to 1087.6, 91.7 to 1218.4, and 473.8 to 1031.3 Bq kg(-1) for glaze, and from 63.5 to 131.4, 55.4 to 106.5, and 386.7 to 866.8 Bq kg(-1) for ceramic tile, respectively. The measured activity concentrations for these radionuclides were compared with the reported data of other countries and with the typical world values. The radium equivalent activities (Ra(eq)), external hazard index (H(ex)) and internal hazard index (H(in)) associated with the radionuclides were calculated. The Ra(eq) values of all ceramic tiles are lower than the limit of 370 Bq kg(-1). The values of H(ex) and H(in) calculated according to the Chinese criterion for ceramic tiles are less than unity. The Ra(eq) value for the glaze of glazed tile collected from some areas are >370 Bq kg(-1).

  17. Wedge edge ceramic combustor tile

    DOEpatents

    Shaffer, J.E.; Holsapple, A.C.

    1997-06-10

    A multipiece combustor has a portion thereof being made of a plurality of ceramic segments. Each of the plurality of ceramic segments have an outer surface and an inner surface. Each of the plurality of ceramic segments have a generally cylindrical configuration and including a plurality of joints. The joints define joint portions, a first portion defining a surface being skewed to the outer surface and the inner surface. The joint portions have a second portion defining a surface being skewed to the outer surface and the inner surface. The joint portions further include a shoulder formed intermediate the first portion and the second portion. The joints provide a sealing interlocking joint between corresponding ones of the plurality of ceramic segments. Thus, the multipiece combustor having the plurality of ceramic segment with the plurality of joints reduces the physical size of the individual components and the degradation of the surface of the ceramic components in a tensile stress zone is generally eliminated reducing the possibility of catastrophic failures. 7 figs.

  18. Wedge edge ceramic combustor tile

    DOEpatents

    Shaffer, James E.; Holsapple, Allan C.

    1997-01-01

    A multipiece combustor has a portion thereof being made of a plurality of ceramic segments. Each of the plurality of ceramic segments have an outer surface and an inner surface. Each of the plurality of ceramic segments have a generally cylindrical configuration and including a plurality of joints. The joints define joint portions, a first portion defining a surface being skewed to the outer surface and the inner surface. The joint portions have a second portion defining a surface being skewed to the outer surface and the inner surface. The joint portions further include a shoulder formed intermediate the first portion and the second portion. The joints provide a sealing interlocking joint between corresponding ones of the plurality of ceramic segments. Thus, the multipiece combustor having the plurality of ceramic segment with the plurality of joints reduces the physical size of the individual components and the degradation of the surface of the ceramic components in a tensile stress zone is generally eliminated reducing the possibility of catastrophic failures.

  19. Chemical Composition of Ceramic Tile Glazes

    NASA Astrophysics Data System (ADS)

    Anufrik, S. S.; Kurian, N. N.; Zhukova, I. I.; Znosko, K. F.; Belkov, M. V.

    2016-11-01

    We have carried out laser emission and x-ray fluorescence spectral analysis of glaze before and after its application to ceramic tile produced by Keramin JSC (Belarus). We have studied the internal microstructure of the ceramic samples. It was established that on the surface and within the bulk interior of all the samples, there are micropores of sizes ranging from a few micrometers to tens of micrometers and microcracks as long as several hundred micrometers. The presence of micropores on the surface of the ceramic tile leads to an increase in the water absorption level and a decrease in frost resistance. It was found that a decrease in the surface tension of ceramic tile coatings is promoted by substitution of sodium by potassium, silica by boric anhydride, magnesium and barium by calcium, CaO by sodium oxide, and SiO2 by chromium oxide. We carried out a comparative analysis of the chemical composition of glaze samples using S4 Pioneer and ElvaX x-ray fluorescence spectrometers and also an LIBS laser emission analyzer.

  20. Air quality comparison between two European ceramic tile clusters

    NASA Astrophysics Data System (ADS)

    Minguillón, M. C.; Monfort, E.; Escrig, A.; Celades, I.; Guerra, L.; Busani, G.; Sterni, A.; Querol, X.

    2013-08-01

    The European ceramic tile industry is mostly concentrated in two clusters, one in Castelló (Spain) and another one in Modena (Italy). Industrial clusters may have problems to accomplish the EU air quality regulations because of the concentration of some specific pollutants and, hence, the feasibility of the industrial clusters can be jeopardised. The present work assesses the air quality in these ceramic clusters in 2008, when the new EU emission regulations where put into force. PM10 samples were collected at two sampling sites in the Modena ceramic cluster and one sampling site in the Castelló ceramic cluster. PM10 annual average concentrations were 12-14 μg m-3 higher in Modena than in Castelló, and were close to or exceeded the European limit. Air quality in Modena was mainly influenced by road traffic and, in a lower degree, the metalmechanical industry, as evidenced by the high concentrations of Mn, Cu, Zn, Sn and Sb registered. The stagnant weather conditions from Modena hindering dispersion of pollutants also contributed to the relatively high pollution levels. In Castelló, the influence of the ceramic industry is evidenced by the high concentrations of Ti, Se, Tl and Pb, whereas this influence is not seen in Modena. The difference in the impact of the ceramic industry on the air quality in the two areas was attributed to: better abatement systems in the spray-drier facilities in Modena, higher coverage of the areas for storage and handling of dusty raw materials in Modena, presence of two open air quarries in the Castelló region, low degree of abatement systems in the ceramic tile kilns in Castelló, and abundance of ceramic frit, glaze and pigment manufacture in Castelló as opposed to scarce manufacture of these products in Modena. The necessity of additional measures to fulfil the EU air quality requirements in the Modena region is evidenced, despite the high degree of environmental measures implemented in the ceramic industry. The Principal

  1. Characterization of ceramic roof tile wastes as pozzolanic admixture.

    PubMed

    Lavat, Araceli E; Trezza, Monica A; Poggi, Mónica

    2009-05-01

    The aim of this work is to study the recycling of tile wastes in the manufacture of blended cements. Cracked or broken ceramic bodies are not accepted as commercial products and, therefore, the unsold waste of the ceramic industry becomes an environment problem. The use of powdered roof tile in cement production, as pozzolanic addition, is reported. The wastes were classified as nonglazed, natural and black glazed tiles. The mineralogy of the powders was controlled by SEM-EDX microscopy, XRD analysis and FTIR spectroscopy. Particle size was checked by laser granulometry. Once the materials were fully characterized, pozzolanic lime consumption tests and Fratini tests were carried out. Different formulations of cement-tile blends were prepared by incorporation of up to 30% weight ratios of recycled waste. The compressive strength of the resulting specimens was measured. The evolution of hydration of the cement-tile blends was analyzed by XRD and FTIR techniques. Vibrational spectroscopy presented accurate evidence of pozzolanic activity. The results of the investigation confirmed the potential use of these waste materials to produce pozzolanic cement.

  2. Firing ceramic tiles in solar energy equipment

    SciTech Connect

    Pasichnyi, V.V.; Berezhetskaya, V.Ya.; Chop, Yu.I.; Kashket, G.I.

    1987-03-01

    In the interest of satisfying the growing demand for glazed ceramic tiles and conserving the natural gas ordinarily used to fire them, the authors assess the feasibility of using a solar kiln for the process. Their design incorporates a parabolic reflector and a tracking system to continuously focus radiant solar energy on the tile. Their energy analysis includes such factors as solar thermal input, radiant heat transfer, and heat flow, the relationship between the firing time and the heat flow density, and the surface quality of the glaze and colorizer. Their results indicate that when the heat flow density rises above a level at which the specific expenditure of heat is no longer dependent on the color of the pigment, this expenditure or input comes to a quarter of what is currently needed using existing technologies and fuels.

  3. Two Views of Islam: Ceramic Tile Design and Miniatures.

    ERIC Educational Resources Information Center

    Macaulay, Sara Grove

    2001-01-01

    Describes an art project focusing on Islamic art that consists of two parts: (1) ceramic tile design; and (2) Islamic miniatures. Provides background information on Islamic art and step-by-step instructions for designing the Islamic tile and miniature. Includes learning objectives and resources on Islamic tile miniatures. (CMK)

  4. Two Views of Islam: Ceramic Tile Design and Miniatures.

    ERIC Educational Resources Information Center

    Macaulay, Sara Grove

    2001-01-01

    Describes an art project focusing on Islamic art that consists of two parts: (1) ceramic tile design; and (2) Islamic miniatures. Provides background information on Islamic art and step-by-step instructions for designing the Islamic tile and miniature. Includes learning objectives and resources on Islamic tile miniatures. (CMK)

  5. Solar-energy treatment of ceramic tile. Final report

    SciTech Connect

    Harris, J.N.; Clayton, M.E.

    1981-12-01

    The 400 kW Advanced Components Test Facility was used to provide a concentrated source of solar energy for firing ceramic wall tile. A domed top cylindrical cavity with a white refractory fiber lining provided diffuse reflection of the concentrated solar beam directly onto the upper surface of the unfired wall tile. The tile were placed directly on the cavity floor in a circular pattern, centered at 45/sup 0/ intervals so that eight tile could be fired at one time. The tile and cavity walls were instrumented with thermocouples, and pyrometric cones were used to determine temperature distribution within the cavity. The glazed and unglazed solar fired tiles were subjected to standard ceramic testing procedures to determine: flatness, modulus of rupture, water absorption, porosity, bulk density, apparent specific gravity, percent linear thermal expansion and crystalline phases present in the fired bodies. These data were compared with the same data for commercial fired tiles from the same batch of raw materials. The glazed tile surfaces were compared with commercially fired tile for reflectance and color match. The major problems encountered were: cracking by thermal shock, and uneven shrinkage and glaze maturity across individual tile. The cavity also failed to provide even heating at all eight tile positions. An alternate air heat exchanger system is recommended to fire the tile by convection rather than direct radiation.

  6. Ceramic-ceramic shell tile thermal protection system and method thereof

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R. (Inventor); Smith, Marnell (Inventor); Goldstein, Howard E. (Inventor); Zimmerman, Norman B. (Inventor)

    1986-01-01

    A ceramic reusable, externally applied composite thermal protection system (TPS) is proposed. The system functions by utilizing a ceramic/ceramic upper shell structure which effectively separates its primary functions as a thermal insulator and as a load carrier to transmit loads to the cold structure. The composite tile system also prevents impact damage to the atmospheric entry vehicle thermal protection system. The composite tile comprises a structurally strong upper ceramic/ceramic shell manufactured from ceramic fibers and ceramic matrix meeting the thermal and structural requirements of a tile used on a re-entry aerospace vehicle. In addition, a lightweight high temperature ceramic lower temperature base tile is used. The upper shell and lower tile are attached by means effective to withstand the extreme temperatures (3000 to 3200F) and stress conditions. The composite tile may include one or more layers of variable density rigid or flexible thermal insulation. The assembly of the overall tile is facilitated by two or more locking mechanisms on opposing sides of the overall tile assembly. The assembly may occur subsequent to the installation of the lower shell tile on the spacecraft structural skin.

  7. Effect of Workplace Noise on Hearing Ability in Tile and Ceramic Industry Workers in Iran: A 2-Year Follow-Up Study

    PubMed Central

    Mirmohammadi, Seyyed Jalil; Mehrparvar, Amir Houshang; Mollasadeghi, Abolfazl

    2013-01-01

    Introduction. Noise as a common physical hazard may lead to noise-induced hearing loss, an irreversible but preventable disorder. Annual audiometric evaluations help detect changes in hearing status before clinically significant hearing loss develops. This study was designed to track hearing threshold changes during 2-year follow-up among tile and ceramic workers. Methods. This follow-up study was conducted on 555 workers (totally 1110 ears). Subjects were divided into four groups according to the level of noise exposure. Hearing threshold in conventional audiometric frequencies was measured and standard threshold shift was calculated for each ear. Results. Hearing threshold was increased during 2 years of follow-up. Increased hearing threshold was most frequently observed at 4000, 6000, and 3000 Hz. Standard threshold shift was observed in 13 (2.34%), 49 (8.83%), 22 (3.96%), and 63 (11.35%) subjects in the first and second years of follow-up in the right and left ears, respectively. Conclusions. This study has documented a high incidence of noise-induced hearing loss in tile and ceramic workers that would put stress on the importance of using hearing protection devices. PMID:24453922

  8. Recycling of Malaysia's electric arc furnace (EAF) slag waste into heavy-duty green ceramic tile.

    PubMed

    Teo, Pao-Ter; Anasyida, Abu Seman; Basu, Projjal; Nurulakmal, Mohd Sharif

    2014-12-01

    Recently, various solid wastes from industry such as glass waste, fly ash, sewage sludge and slag have been recycled into various value-added products such as ceramic tile. The conventional solutions of dumping the wastes in landfills or incineration, including in Malaysia are getting obsolete as the annual huge amount of the solid wastes would boost-up disposal cost and may cause permanent damage to the flora and fauna. This recent waste recycling approach is much better and greener as it can resolve problems associated with over-limit storage of industrial wastes and reduce exploration of natural resources for ceramic tile to continuously sustain the nature. Therefore, in this project, an attempt was made to recycle electric arc furnace (EAF) slag waste, obtained from Malaysia's steel making industry, into ceramic tile via conventional powder compaction method. The research work was divided into two stages. The first stage was to evaluate the suitability of EAF slag in ceramic tile by varying weight percentage of EAF slag (40 wt.%, 50 wt.% and 60 wt.%) and ball clay (40 wt.%, 50 wt.% and 60 wt.%), with no addition of silica and potash feldspar. In the second stage, the weight percentage of EAF slag was fixed at 40 wt.% and the percentage of ball clay (30 wt.% and 40 wt.%), feldspar (10 wt.% and 20 wt.%) and silica (10 wt.% and 20 wt.%) added was varied accordingly. Results obtained show that as weight percentage of EAF slag increased up to 60 wt.%, the percentage of apparent porosity and water absorption also rose, with a reduction in tile flexural strength and increased porosity. On the other hand, limiting the weight percentage of EAF slag to 40 wt.% while increasing the weight percentage of ball clay led to a higher total percentage of anorthite and wollastonite minerals, resulting in higher flexural strength. It was found that introduction of silica and feldspar further improved the flexural strength due to optimization of densification process. The highest

  9. Contact pressure distribution during the polishing process of ceramic tiles: A laboratory investigation

    NASA Astrophysics Data System (ADS)

    Sani, A. S. A.; Sousa, F. J. P.; Hamedon, Z.; Azhari, A.

    2016-02-01

    During the polishing process of porcelain tiles the difference in scratching speed between innermost and peripheral abrasives leads to pressure gradients linearly distributed along the radial direction of the abrasive tool. The aim of this paper is to investigate such pressure gradient in laboratory scale. For this purpose polishing tests were performed on ceramic tiles according to the industrial practices using a custom-made CNC tribometer. Gradual wear on both abrasives and machined surface of the floor tile were measured. The experimental results suggested that the pressure gradient tends to cause an inclination of the abraded surfaces, which becomes stable after a given polishing period. In addition to the wear depth of the machined surface, the highest value of gloss and finest surface finish were observed at the lowest point of the worn out surface of the ceramic floor tile corresponding to the point of highest pressure and lowest scratching speed.

  10. Ceramic tile grout removal & sealing using high power lasers

    SciTech Connect

    Lawrence, J.; Li, L.; Spencer, J.T.

    1996-12-31

    Work has been conducted using a Nd:YAG laser, a CO{sub 2} laser and a high power diode laser (HPDL) in order to determine the feasibility of removing contaminated tile grout from the void between adjoining vitrified ceramic tiles, and to seal the void permanently with a material having an impermeable surface glaze. Reported on in the paper are; the basic process phenomena, the process effectiveness, suitable vitrifiable material development, a heat affect study and a morphological and compositional analysis.

  11. Fly ash of mineral coal as ceramic tiles raw material.

    PubMed

    Zimmer, A; Bergmann, C P

    2007-01-01

    The aim of this work was to evaluate the use of mineral coal fly ash as a raw material in the production of ceramic tiles. The samples of fly ash came from Capivari de Baixo, a city situated in the Brazilian Federal State of Santa Catarina. The fly ash and the raw materials were characterized regarding their physical chemical properties, and, based on these results; batches containing fly ash and typical raw materials for ceramic tiles were prepared. The fly ash content in the batches varied between 20 and 80 wt%. Specimens were molded using a uniaxial hydraulic press and were fired. All batches containing ash up to 60 wt% present adequate properties to be classified as several kinds of products in the ISO 13006 standard () regarding its different absorption groups (pressed). The results obtained indicate that fly ash, when mixed with traditional raw materials, has the necessary requirements to be used as a raw material for production of ceramic tiles.

  12. Modelling the viscoelasticity of ceramic tiles by finite element

    NASA Astrophysics Data System (ADS)

    Pavlovic, Ana; Fragassa, Cristiano

    2016-05-01

    This research details a numerical method aiming at investigating the viscoelastic behaviour of a specific family of ceramic material, the Grès Porcelain, during an uncommon transformation, known as pyroplasticity, which occurs when a ceramic tile bends under a combination of thermal stress and own weight. In general, the theory of viscoelasticity can be considered extremely large and precise, but its application on real cases is particularly delicate. A time-depending problem, as viscoelasticity naturally is, has to be merged with a temperature-depending situation. This paper investigates how the viscoelastic response of bending ceramic materials can be modelled by commercial Finite Elements codes.

  13. Industrial Ceramics: Secondary Schools.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Bureau of Curriculum Development.

    The expanding use of ceramic products in today's world can be seen in the areas of communications, construction, aerospace, textiles, metallurgy, atomic energy, and electronics. The demands of science have brought ceramics from an art to an industry using mass production and automated processes which requires the services of great numbers as the…

  14. Analysis of Thick Sandwich Shells with Embedded Ceramic Tiles

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Smith, C.; Lumban-Tobing, F.

    1996-01-01

    The Composite Armored Vehicle (CAV) is an advanced technology demonstrator of an all-composite ground combat vehicle. The CAV upper hull is made of a tough light-weight S2-glass/epoxy laminate with embedded ceramic tiles that serve as armor. The tiles are bonded to a rubber mat with a carefully selected, highly viscoelastic adhesive. The integration of armor and structure offers an efficient combination of ballistic protection and structural performance. The analysis of this anisotropic construction, with its inherent discontinuous and periodic nature, however, poses several challenges. The present paper describes a shell-based 'element-layering' technique that properly accounts for these effects and for the concentrated transverse shear flexibility in the rubber mat. One of the most important advantages of the element-layering technique over advanced higher-order elements is that it is based on conventional elements. This advantage allows the models to be portable to other structural analysis codes, a prerequisite in a program that involves the computational facilities of several manufacturers and government laboratories. The element-layering technique was implemented into an auto-layering program that automatically transforms a conventional shell model into a multi-layered model. The effects of tile layer homogenization, tile placement patterns, and tile gap size on the analysis results are described.

  15. Kaolin processing waste applied in the manufacturing of ceramic tiles and mullite bodies.

    PubMed

    Menezes, Romualdo R; Farias, Felipe F; Oliveira, Maurício F; Santana, Lisiane N L; Neves, Gelmires A; Lira, Helio L; Ferreira, Heber C

    2009-02-01

    In the last few years, mineral extraction and processing industries have been identified as sources of environmental contamination and pollution. The kaolin processing industry around the world generates large amounts of waste materials. The present study evaluated the suitability of kaolin processing waste as an alternative source of ceramic raw material for the production of ceramic tiles and dense mullite bodies. Several formulations were prepared and sintered at different temperatures. The sintered samples were characterized to determine their porosity, water absorption, firing shrinkage and mechanical strength. The fired samples were microstructurally analysed by X-ray diffraction. The results indicated that ceramic tile formulations containing up to 60% of waste could be used for the production of tiles with low water absorption (approximately 0.5%) and low sintering temperature (1150 degrees C). Mullite formulations with more than 40% of kaolin waste could be used in the production of bodies with high strength, of about 75 MPa, which can be used as refractory materials.

  16. Effects of body formulation and firing temperature to properties of ceramic tile incorporated with electric arc furnace (EAF) slag waste

    NASA Astrophysics Data System (ADS)

    Sharif, Nurulakmal Mohd; Lim, Chi Yang; Teo, Pao Ter; Seman, Anasyida Abu

    2017-07-01

    Significant quantities of sludge and slag are generated as waste materials or by-products from steel industries. One of the by-products is Electric Arc Furnace (EAF) steel slag which consists of oxides such as CaO, Al2O3 and FeO. This makes it possible for slag to partially replace the raw materials in ceramic tile production. In our preliminary assessment of incorporating the EAF slag into ceramic tile, it was revealed that at fixed firing temperature of 1150°C, the tile of composition 40 wt.% EAF slag - 60 wt.% ball clay has comparable properties with commercial ceramic tile. Thus, this current study would focus on effects of body formulation (different weight percentages of K-feldspar and silica) and different firing temperatures to properties of EAF slag added ceramic tile. EAF slag from Southern Steel Berhad (SSB) was crushed into micron size (EAF slag content was 40 wt.%) and milled with ball clay, K-feldspar and silica before compacted and fired at 1125°C and 1150°C. The EAF slag added tile was characterized in terms of water absorption, apparent porosity, bulk density, modulus of rupture (MOR) and phase analysis via X-ray diffraction (XRD). The composition of 40 wt.% EAF slag - 30 wt.% ball clay - 10 wt.% K-feldspar - 20 wt.% silica (10F_20S), fired at 1150°C showed the lowest water absorption, apparent porosity and highest bulk density due to enhancement of densification process during firing. However, the same composition of ceramic tile (10F_20S) had the highest MOR at lower firing temperature of 1125°C, contributed by presence of the highest total amount of anorthite and wollastonite reinforcement crystalline phases (78.40 wt.%) in the tile. Overall, both the water absorption and MOR of all ceramic tiles surpassed the requirement regulated by MS ISO 13006:2014 Standard (Annex G: Dry-pressed ceramic tile with low water absorption, Eb ≤ 0.50 % and minimum MOR of 35 MPa).

  17. Laser ultrasonics for bulk-density distribution measurement on green ceramic tiles

    NASA Astrophysics Data System (ADS)

    Revel, G. M.; Cavuto, A.; Pandarese, G.

    2016-10-01

    In this paper a Laser Ultrasonics (LUT) system is developed and applied to measure bulk density distribution of green ceramic tiles, which are porous materials with low heat conductivity. Bulk density of green ceramic bodies is a fundamental parameter to be kept under control in the industrial production of ceramic tiles. The LUT system proposed is based on a Nd:YAG pulsed laser for excitation and an air-coupled electro-capacitive transducer for detection. The paper reports experimental apparent bulk-density measurements on white ceramic bodies after a calibration procedures. The performances observed are better than those previously achieved by authors using air-coupled ultrasonic probes for both emission and detection, allowing to reduce average uncertainty down to about ±6 kg/m3 (±0.3%), thanks to the increase in excitation efficiency and lateral resolution, while maintaining potential flexibility for on-line application. The laser ultrasonic procedure proposed is available for both on-line and off-line application. In this last case it is possible to obtain bulk density maps with high spatial resolution by a 2D scan without interrupting the production process.

  18. Laser ultrasonics for bulk-density distribution measurement on green ceramic tiles.

    PubMed

    Revel, G M; Cavuto, A; Pandarese, G

    2016-10-01

    In this paper a Laser Ultrasonics (LUT) system is developed and applied to measure bulk density distribution of green ceramic tiles, which are porous materials with low heat conductivity. Bulk density of green ceramic bodies is a fundamental parameter to be kept under control in the industrial production of ceramic tiles. The LUT system proposed is based on a Nd:YAG pulsed laser for excitation and an air-coupled electro-capacitive transducer for detection. The paper reports experimental apparent bulk-density measurements on white ceramic bodies after a calibration procedures. The performances observed are better than those previously achieved by authors using air-coupled ultrasonic probes for both emission and detection, allowing to reduce average uncertainty down to about ±6 kg/m(3) (±0.3%), thanks to the increase in excitation efficiency and lateral resolution, while maintaining potential flexibility for on-line application. The laser ultrasonic procedure proposed is available for both on-line and off-line application. In this last case it is possible to obtain bulk density maps with high spatial resolution by a 2D scan without interrupting the production process.

  19. Study on use of MSWI fly ash in ceramic tile.

    PubMed

    Haiying, Zhang; Youcai, Zhao; Jingyu, Qi

    2007-03-06

    In this work, MSWI (municipal solid waste incineration) fly ash is used as a blending in production of ceramic tile by taking advantage of its high contents of SiO(2), Al(2)O(3) and CaO. Besides, macro-performance and microstructure of the product as well as its leaching toxicity in practical application were studied by means of XRD, IR and SEM analysis, and leaching toxicity and sequential chemical extraction analysis of the product. It is found that when 20% fly ash is added, the product registers a high compressive strength of 18.6MPa/cm(2) and a low water absorption of 7.4% after being sintered at 960 degrees C. It is found that the glazed tile shows excellent resistance against leaching, in accordance with HVEP stand, of heavy metals with Cd<0.0002ppm, Pb<0.0113ppm and Zn<0.0749ppm, and Hg below the low detection limit. These results show that heavy metals are cemented among the solid lattice in the product and can hardly be extracted. Leaching toxicity of heavy metals in the product, especially Hg, Pb, Zn and Cd, is substantially reduced to less than one-tenth of that in fly ash. In addition, specifications of Hg, Pb, Zn and Cd are largely changed and only a small portion of these heavy metals exists in soluble phases. These results as a whole suggest that the use of MSWI fly ash in ceramic tile constitutes a potential means of adding value.

  20. Process-generated nanoparticles from ceramic tile sintering: Emissions, exposure and environmental release.

    PubMed

    Fonseca, A S; Maragkidou, A; Viana, M; Querol, X; Hämeri, K; de Francisco, I; Estepa, C; Borrell, C; Lennikov, V; de la Fuente, G F

    2016-09-15

    The ceramic industry is an industrial sector in need of significant process changes, which may benefit from innovative technologies such as laser sintering of ceramic tiles. Such innovations result in a considerable research gap within exposure assessment studies for process-generated ultrafine and nanoparticles. This study addresses this issue aiming to characterise particle formation, release mechanisms and their impact on personal exposure during a tile sintering activity in an industrial-scale pilot plant, as a follow-up of a previous study in a laboratory-scale plant. In addition, possible particle transformations in the exhaust system, the potential for particle release to the outdoor environment, and the effectiveness of the filtration system were also assessed. For this purpose, a tiered measurement strategy was conducted. The main findings evidence that nanoparticle emission patterns were strongly linked to temperature and tile chemical composition, and mainly independent of the laser treatment. Also, new particle formation (from gaseous precursors) events were detected, with nanoparticles <30nm in diameter being formed during the thermal treatment. In addition, ultrafine and nano-sized airborne particles were generated and emitted into workplace air during sintering process on a statistically significant level. These results evidence the risk of occupational exposure to ultrafine and nanoparticles during tile sintering activity since workers would be exposed to concentrations above the nano reference value (NRV; 4×10(4)cm(-3)), with 8-hour time weighted average concentrations in the range of 1.4×10(5)cm(-3) and 5.3×10(5)cm(-3). A potential risk for nanoparticle and ultrafine particle release to the environment was also identified, despite the fact that the efficiency of the filtration system was successfully tested and evidenced a >87% efficiency in particle number concentrations removal. Copyright © 2016 The Authors. Published by Elsevier B.V. All

  1. Parametric Weight Comparison of Advanced Metallic, Ceramic Tile, and Ceramic Blanket Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Myers, David E.; Martin, Carl J.; Blosser, Max L.

    2000-01-01

    A parametric weight assessment of advanced metallic panel, ceramic blanket, and ceramic tile thermal protection systems (TPS) was conducted using an implicit, one-dimensional (I-D) finite element sizing code. This sizing code contained models to account for coatings fasteners, adhesives, and strain isolation pads. Atmospheric entry heating profiles for two vehicles, the Access to Space (ATS) vehicle and a proposed Reusable Launch Vehicle (RLV), were used to ensure that the trends were not unique to a certain trajectory. Ten TPS concepts were compared for a range of applied heat loads and substructural heat capacities to identify general trends. This study found the blanket TPS concepts have the lightest weights over the majority of their applicable ranges, and current technology ceramic tiles and metallic TPS concepts have similar weights. A proposed, state-of-the-art metallic system which uses a higher temperature alloy and efficient multilayer insulation was predicted to be significantly lighter than the ceramic tile stems and approaches blanket TPS weights for higher integrated heat loads.

  2. Computational modeling of thin ceramic tiles backed by thin substrates

    SciTech Connect

    Walker, J.D.; Anderson, C.E. Jr.; Cox, P.A.

    1995-12-31

    Building on the work of Wilkins, Eulerian hydrocode calculations were performed with ceramic models to examine the behavior of thin ceramic tiles backed by a thin substrate. In order to match ballistic limit data it was necessary to include a pressure dependent flow stress for failed ceramic. Reasonable agreement is found between the modified model and ballistic limit data for a simulated armor piercing round impacting an AD-85 alumina/6061T6 aluminum laminate. Based upon this success, the modified model was used to examine the performance of a SiC/6061T6 aluminum laminate when impacted by an M80 ball round (7.62 mm) at muzzle velocity. The projectile undergoes large deformation, as does the aluminum backing sheet. The computational results indicate, for the M80 projectile impacting at muzzle velocity, that the ballistic limit thickness for the SiC/aluminum laminate should weigh 10% less than the ballistic limit thickness for steel. The talk will include a video tape of calculations.

  3. Effect of biological treatment of the ceramic mass on the drying and firing of facing tiles

    SciTech Connect

    Baranov, V.V.; Sidorova, V.A.; Skripnik, V.P.; Solnyshkina, T.N.; Vainberg, S.N.; Vlasov, A.S.; Yashchenko, O.I.

    1985-12-01

    The authors studied the ceramic masses of the Minsk Building Materials Production complex (MZSM) and the Kishinev FinishingMaterials Plant (KZOM) having the following compositions: MZSM--48% Vesejovsk VGP clay, 22% nepheline concentrate, 17% quartz sand, 8% dolomite, 5% title scrap, and above 100% 3% bentonite, 0.1% soda ash, and 0.28% liquid glass; KZOM-48% Veselovsk VGP clay, 28% nepheline-syenite, 8% limestone filings (scrap), 16% title scrap, and, above 100%, 1% bentonite and 3% sodium tripolyphosphate. Improving the quality of ceramic tiles and reducing the mineral and fuel-energy consumption in their production are among the practical industrial problems. This paper discusses a method of solving them by improving the drying and firing processes of the products.

  4. Porosity detection in ceramic armor tiles via ultrasonic time-of-flight

    SciTech Connect

    Margetan, Frank J.; Richter, Nathaniel; Jensen, Terrence

    2011-06-23

    Some multilayer armor panels contain ceramic tiles as one constituent, and porosity in the tiles can affect armor performance. It is well known that porosity in ceramic materials leads to a decrease in ultrasonic velocity. We report on a feasibility study exploring the use of ultrasonic time-of-flight (TOF) to locate and characterize porous regions in armor tiles. The tiles in question typically have well-controlled thickness, thus simplifying the translation of TOF data into velocity data. By combining UT velocity measurements and X-ray absorption measurements on selected specimens, one can construct a calibration curve relating velocity to porosity. That relationship can then be used to translate typical ultrasonic C-scans of TOF-versus-position into C-scans of porosity-versus-position. This procedure is demonstrated for pulse/echo, focused-transducer inspections of silicon carbide (SiC) ceramic tiles.

  5. High-Strength, Low-Shrinkage Ceramic Tiles

    NASA Technical Reports Server (NTRS)

    Wheeler, W. H.; Creedon, J. F.

    1986-01-01

    Addition of refractory fibers and whiskers to insulating tiles composed primarily of fibrous silica, such as those used on the skin of Space Shuttle orbiter, greatly improves properties. New composition suitable for lightweight, thermally-stable mirror blanks and as furnace and kiln insulation. Improved tiles made with current tile-fabrication processes. For given density, tiles containing silicon carbide and boron additives stronger in flexure than tiles made from silica alone. In addition, tiles with additives nearly immune to heat distortion, whereas pure-silica tiles shrink and become severely distorted.

  6. Baseline Industry Analysis, Advance Ceramics Industry

    DTIC Science & Technology

    1993-04-01

    Commerce , Department of Defense, and the National Critical Technologies Panel. Advanced Ceramics, which include ceramic matrix composites, are found in...ceramics and materials industry being identified as a National Critical Technology, Commerce Emerging Technology, and Defense Critical Technology.’ There is...total procurement cost in advanced systems, and as much as ten percent of the electronics portion of those weapons. Ceramic capacitors are almost as

  7. Optimal Non-Invasive Fault Classification Model for Packaged Ceramic Tile Quality Monitoring Using MMW Imaging

    NASA Astrophysics Data System (ADS)

    Agarwal, Smriti; Singh, Dharmendra

    2016-04-01

    Millimeter wave (MMW) frequency has emerged as an efficient tool for different stand-off imaging applications. In this paper, we have dealt with a novel MMW imaging application, i.e., non-invasive packaged goods quality estimation for industrial quality monitoring applications. An active MMW imaging radar operating at 60 GHz has been ingeniously designed for concealed fault estimation. Ceramic tiles covered with commonly used packaging cardboard were used as concealed targets for undercover fault classification. A comparison of computer vision-based state-of-the-art feature extraction techniques, viz, discrete Fourier transform (DFT), wavelet transform (WT), principal component analysis (PCA), gray level co-occurrence texture (GLCM), and histogram of oriented gradient (HOG) has been done with respect to their efficient and differentiable feature vector generation capability for undercover target fault classification. An extensive number of experiments were performed with different ceramic tile fault configurations, viz., vertical crack, horizontal crack, random crack, diagonal crack along with the non-faulty tiles. Further, an independent algorithm validation was done demonstrating classification accuracy: 80, 86.67, 73.33, and 93.33 % for DFT, WT, PCA, GLCM, and HOG feature-based artificial neural network (ANN) classifier models, respectively. Classification results show good capability for HOG feature extraction technique towards non-destructive quality inspection with appreciably low false alarm as compared to other techniques. Thereby, a robust and optimal image feature-based neural network classification model has been proposed for non-invasive, automatic fault monitoring for a financially and commercially competent industrial growth.

  8. Thermal insulation attaching means. [adhesive bonding of felt vibration insulators under ceramic tiles

    NASA Technical Reports Server (NTRS)

    Leger, L. J. (Inventor)

    1978-01-01

    An improved isolation system is provided for attaching ceramic tiles of insulating material to the surface of a structure to be protected against extreme temperatures of the nature expected to be encountered by the space shuttle orbiter. This system isolates the fragile ceramic tiles from thermally and mechanically induced vehicle structural strains. The insulating tiles are affixed to a felt isolation pad formed of closely arranged and randomly oriented fibers by means of a flexible adhesive and in turn the felt pad is affixed to the metallic vehicle structure by an additional layer of flexible adhesive.

  9. Microwave energy versus convected hot air for rapidly drying ceramic tile

    SciTech Connect

    Earl, D.A.

    1995-12-31

    The purpose of this study was to determine if microwave energy could provide advantages over the conventional hot air method currently used for rapidly drying ceramic tile. Tiles consisting of a typical fast-fire body formula were dried to 0.5% moisture using a 2.45 GHz, 950W microwave oven and a natural gas-fired roller dryer. Statistical methods were employed to develop equations for predicting microwave energy consumption, tile % moisture and surface temperature given drying time, tile volume and % relative humidity. Microwave drying was found to require 36% less energy than hot air drying. Moisture was removed and surface temperature elevated at faster rates using microwave energy.

  10. Sewage sludge ash characteristics and potential for use in bricks, tiles and glass ceramics.

    PubMed

    Lynn, Ciarán J; Dhir, Ravindra K; Ghataora, Gurmel S

    2016-01-01

    The characteristics of sewage sludge ash (SSA) and its use in ceramic applications pertaining to bricks, tiles and glass ceramics have been assessed using the globally published literature in the English medium. It is shown that SSA possesses similar chemical characteristics to established ceramic materials and under heat treatment achieves the targeted densification, strength increases and absorption reductions. In brick and tile applications, technical requirements relating to strength, absorption and durability are achievable, with merely manageable performance reductions with SSA as a partial clay replacement. Fluxing properties of SSA facilitate lower firing temperatures during ceramics production, although reductions in mix plasticity leads to higher forming water requirements. SSA glass ceramics attained strengths in excess of natural materials such as granite and marble and displayed strong durability properties. The thermal treatment and nature of ceramic products also effectively restricted heavy metal leaching to low levels. Case studies, predominantly in bricks applications, reinforce confidence in the material with suitable technical performances achieved in practical conditions.

  11. Ceramic tiles with black pigment made from stainless steel plant dust: Physical properties and long-term leaching behavior of heavy metals.

    PubMed

    Zhu, Renbo; Ma, Guojun; Cai, Yongsheng; Chen, Yuxiang; Yang, Tong; Duan, Boyu; Xue, Zhengliang

    2016-04-01

    Stainless steel plant dust is a hazardous by-product of the stainless steelmaking industry. It contains large amounts of Fe, Cr, and Ni, and can be potentially recycled as a raw material of inorganic black pigment in the ceramic industry to reduce environmental contamination and produce value-added products. In this paper, ceramic tiles prepared with black pigment through recycling of stainless steel plant dust were characterized in terms of physical properties, such as bulk density, water absorption, apparent porosity, and volume shrinkage ratio, as well as the long-term leaching behavior of heavy metals (Cr, Ni, Pb, Cd, and Zn). The results show that good physical properties of ceramic tiles can be obtained with 8% pigments addition, sample preparation pressure of 25 MPa, and sintering at 1200 ºC for 30 min. The major controlling leaching mechanism for Cr and Pb from the ceramic tiles is initial surface wash-off, while the leaching behavior of Cd, Ni, and Zn from the stabilized product is mainly controlled by matrix diffusion. The reutilization process is safe and effective to immobilize the heavy metals in the stainless steel plant dust. Stainless steel plant dust is considered as a hazardous material, and it can be potentially recycled for black pigment preparation in the ceramic industry. This paper provides the characteristics of the ceramic tiles with black pigment through recycling stainless steel plant dust, and the long-term leaching behavior and controlling leaching mechanisms of heavy metals from the ceramic tile. The effectiveness of the treatment process is also evaluated.

  12. Electrospun SiO2 "necklaces" on unglazed ceramic tiles: a planarizing strategy

    NASA Astrophysics Data System (ADS)

    Di Mauro, Alessandro; Fragalà, Maria Elena

    2015-05-01

    Silica based nanofibres have been deposited on unglazed ceramic tiles by combining electrospinning and sol-gel processes. Poly(vinyl pyrrolidone) (PVP) alcoholic solutions and commercial spin on glass (Accuglass) mixtures have been used to obtain composite fibrous non-woven mats totally converted, after thermal annealing at 600 °C, to SiO2 microsphere "necklaces". The possibility to get an uniform fibres coverage onto the tile surface confirms the validity of electrospinning (easily scalable to large surface samples) as coating strategy to cover the macroscopic defects typical of the polished unglazed tile surface and improve surface planarization.

  13. Hydrothermally prepared inorganic siliceous wastes: Hydrothermal reaction of calcareous and steatite ceramic tile wastes

    SciTech Connect

    Maenami, Hiroki; Yamamoto, Takeyuki; Ishida, Hideki

    1996-12-31

    Possibility of solidification of various ceramic wastes by hydrothermal processing was investigated. The starting materials were feldspathic porcelain tile waste, steatite ceramic tile waste, and calcareous ceramic tile waste. These were mixed with CaO so as to obtain a Ca/Si molar ratio of 0.5. After forming, they were cured for 2 to 20 h under the saturated steam pressure at 200{degrees}C. Although the SiO{sub 2} content of these ceramic wastes was about 70 mass% and they contain various alkaline ions and alkaline earth ions, solidified specimens with flexural strength up to 35MPa were obtained. This is within the range of strengths when quartz or fused silica is used as pure SiO{sub 2} sources. Formation of tobermorite, which was detected in all systems after 2 h of curing, was considered to affect the increase of the strength. It was found that there is a possibility of aluminum and alkali ions being included in the structure of the formed tobermorite. In the case of using steatite ceramic tile waste containing Mg, magnesium silicate hydrates were also formed. The modal pore diameter shifted to 0.01 {mu} m with the formation of these hydrates and there was correlation between the flexural strength and the pore size distribution.

  14. Thermo Physical Characteristics of Vitrified Tile Polishing Waste for Use in Traditional Ceramics-An Initiative of Cgcri, Naroda Centre

    NASA Astrophysics Data System (ADS)

    Misra, S. N.; Machhoya, B. B.; Savsani, R. M.

    This paper reports the thermo physical characteristics of Vitrified tile polishing waste materials. As such growing production of vitrified tiles in the country generate large volume of this waste obtained during processing, polishing and cutting of the vitrified tiles to the tune of nearly 10-15 tonnes per day from each plant. The characteristic features of these materials are being studied and investigated to develop suitable technology for finding its gainful use especially in the traditional ceramics. It is known that ceramic as such building materials industry could be a large raw materials consumer and being heterogeneous and thus could utilize this vast quantity as the raw materials. However, the main problem would be it's firing nature as it showed thermal deformation after a particular temperature. Interestingly, the production process of most of the traditional ceramics follows a similar pattern starting from the raw materials processing up to a level of firing. Hence, to suggest suitable utility in the traditional ceramics as raw materials, it was the prime requisite that these waste must be thoroughly studied w. r. t various thermo physical characteristics to make use in this sectors. Hence, the present paper interestingly gone up to various study such as raw materials nature, particle size distribution, chemistry, XRD and DTA study for understanding typical physico chemical properties, and finally thermal properties to make it suitable for use in traditional ceramic industries. The higher fineness of the waste materials indicates its usefulness without extra grinding. The chemistry of typical sludge shows contamination from abrasive particles, sorrel cement bonding materials etc. originated from the polishing wheel and needs special precaution while suggesting use in the ceramic sectors. The firing characteristics of the sludge materials produces a foamy and spongy shapes and this could be the main guiding parameters in selecting the end use of the

  15. Water reservoir as resource of raw material for ceramic industry

    NASA Astrophysics Data System (ADS)

    Irie, M.; Tarhouni, J.

    2015-04-01

    The industries related to the ceramics such as construction bricks, pottery and tile are the important sectors that cover the large part of the working population in Tunisia. The raw materials, clay or silt are excavated from opencast site of limestone clay stratum. The opencast site give the negative impact on landscape and environment, risks of landslide, soil erosion etc. On the other hand, a most serious problem in water resource management, especially in arid land such as Tunisia, is sedimentation in reservoirs. Sediment accumulation in the reservoirs reduces the water storage capacity. The authors proposed the exploitation of the sediment as raw material for the ceramics industries in the previous studies because the sediment in Tunisia is fine silt. In this study, the potential of the water reservoirs in Tunisia as the resource of the raw material for the ceramics industries is estimated from the sedimentation ratio in the water reservoirs.

  16. Characterization of low-temperature cofired ceramic tiles as platforms for gas chromatographic separations.

    PubMed

    Darko, Ernest; Thurbide, Kevin B; Gerhardt, Geoff C; Michienzi, Joseph

    2013-06-04

    A gas chromatography (GC) column is fabricated within a low-temperature cofired ceramic (LTCC) tile, and its analytical properties are characterized. By using a dual-spiral design, a 100 μm wide square channel up to 15 m in length is produced within an 11 cm × 5.5 cm LTCC tile. The channel is dynamically coated with an OV-101 stationary phase that is cross-linked with dicumyl peroxide. While the uncoated LTCC tiles were able to separate a mixture of n-alkanes, the peak shapes were broad (base width of ~2 min) and tailing. In contrast to this, the coated LTCC tiles produced sharp (base width of ~8-10 s), symmetrical, well-resolved peaks for the same analytes. By using a 7.5 m long channel, about 15,000 plates were obtained for a dodecane test analyte. Further, the coated LTCC tiles were found to produce plate heights that were about 3-fold smaller than those obtained from a conventional capillary GC column of similar length, dimension, and coating operated under the same conditions. As a result, test analyte separations were slightly improved in the LTCC tiles, and their overall performance fared well. In terms of temperature programming, it was found that a series of n-alkanes separated on the LTCC tile provided a cumulative peak capacity of around 54 peaks when using C₈ to C₁₃ as analyte markers. Results indicate that LTCC tiles provide a viable and useful alternative platform for performing good quality GC separations.

  17. Program-technical complex for sorting ceramic tiles with the method of artificial intellect

    NASA Astrophysics Data System (ADS)

    Aliyev, Namik; Aliyev, Elchin

    2001-08-01

    Development of areas of automated systems of management of technological processes and systems of local automation requires the resolving of a set of questions on identification of production operations, working out industrial methods of measuring and control. Program-technical complex containing the systems of artificial vision, integrating device and dynamic expert systems of ready-product quality control in the example of decorative tile are examined at this work. The problem of identification of image can not be fully formalized and solved with the usage of strict algorithmic procedures and mathematical methods. Due to the mentioned fact, the development of intellectual programming methods- expert systems of image identification should provide effectiveness of mathematical methods of processing and heuristic programming with the expert knowledge of characteristics in analyzed systems. Implementation of the proposed complex, spares the specialist from routine job, allows timely spotting of technological process, solves the problem of sorting of ceramic materials in real time frame. In the meantime, the implementation of the system in dialog mode gives suggestions and recommendations.

  18. Laser Treatment of Nanoparticulated Metal Thin Films for Ceramic Tile Decoration.

    PubMed

    Rico, V J; Lahoz, R; Rey-García, F; Yubero, F; Espinós, J P; de la Fuente, G F; González-Elipe, A R

    2016-09-21

    This paper presents a new method for the fabrication of metal-like decorative layers on glazed ceramic tiles. It consists of the laser treatment of Cu thin films prepared by electron-beam evaporation at glancing angles. A thin film of discontinuous Cu nanoparticles was electron-beam-evaporated in an oblique angle configuration onto ceramic tiles and an ample palette of colors obtained by laser treatment both in air and in vacuum. Scanning electron microscopy along with UV-vis-near-IR spectroscopy and time-of-flight secondary ion mass spectrometry analysis were used to characterize the differently colored layers. On the basis of these analyses, color development has been accounted for by a simple model considering surface melting phenomena and different microstructural and chemical transformations of the outmost surface layers of the samples.

  19. Detection of ionizing radiations by studying ceramic tiles materials using thermoluminescence technique

    NASA Astrophysics Data System (ADS)

    Mandavia, H. C.; Murthy, K. V. R.; Purohit, R. U.

    2017-05-01

    Natural background radiation comes from two primary sources: cosmic radiation and terrestrial sources. Our natural environment has both livings and non-livings like - Sun, Moon, Sky, Air, Water, Soil, Rivers, Mountains, Forests, besides plants and animals. The worldwide average background dose for a human being is about 2.4 millisievert (mSv) per year. This exposure is mostly from cosmic radiation and natural radionuclides in the environment. The Earth, and all living things on it, are constantly bombarded by radiation from outer space. This radiation primarily consists of positively charged ions from protons to iron and larger nuclei derived sources outside our solar system. This radiation interacts with atoms in the atmosphere to create secondary radiation, including X-rays, muons, protons, alpha particles, pions, electrons, and neutrons. The present study discusses the utility of ceramic tiles as radiation dosimeters in case of nuclear fallout. Many flooring materials most of them are in natural form are used to manufacture floor tiles for household flooring purpose. Many natural minerals are used as the raw materials required for the manufacturing ceramic ware. The following minerals are used to manufacturing the ceramic tiles i.e. Quartz, Feldspar, Zircon, Talc, Grog, Alumina oxide, etc. Most of the minerals are from Indian mines of Gujarat and Rajasthan states, some of are imported from Russian subcontinent. The present paper reports the thermoluminescence dosimetry Study of Feldspar and Quartz minerals collected from the ceramic tiles manufacturing unit, Morbi. The main basis in the Thermoluminescence Dosimetry (TLD) is that TL output is directly proportional to the radiation dose received by the phosphor and hence provides the means of estimating unknown radiations from environment.

  20. Relationship between meanings, emotions, product preferences and personal values. Application to ceramic tile floorings.

    PubMed

    Agost, María-Jesús; Vergara, Margarita

    2014-07-01

    This work aims to validate a conceptual framework which establishes the main relationships between subjective elements in human-product interaction, such as meanings, emotions, product preferences, and personal values. The study analyzes the relationships between meanings and emotions, and between these and preferences, as well as the influence of personal values on such relationships. The study was applied to ceramic tile floorings. A questionnaire with images of a neutral room with different ceramic tile floorings was designed and distributed via the web. Results from the study suggest that both meanings and emotions must be taken into account in the generation of product preferences. The meanings given to the product can cause the generation of emotions, and both types of subjective impressions give rise to product preferences. Personal reference values influence these relationships between subjective impressions and product preferences. As a consequence, not only target customers' demographic data but specifically their values and criteria must be taken into account from the beginning of the development process. The specific results of this paper can be used directly by ceramic tile designers, who can better adjust product design (and the subjective impressions elicited) to the target market. Consequently, the chance of product success is reinforced.

  1. Radon exhalation rates and gamma doses from ceramic tiles.

    PubMed

    O'Brien, R S; Aral, H; Peggie, J R

    1998-12-01

    This study was carried out to assess the possible radiological hazard resulting from the use of zircon in glaze applied to tiles used in buildings. The 226Ra content of various stains and glazing compounds was measured using gamma spectroscopy and the 222Rn exhalation rates for these materials were measured using adsorption on activated charcoal. The radon exhalation rates were found to be close to or less than the minimum detectable values for the equipment used. This limit was much lower than the estimated exhalation rates, which were calculated assuming that the parameters controlling the emanation and diffusion of 222Rn in the materials studied were similar to those of soil. This implied that the 222Rn emanation coefficients and/or diffusion coefficients for most of the materials studied were very much lower than expected. Measurements on zircon powders showed that the 222Rn emanation coefficient for zircon was much lower than that for soil, indicating that only a small fraction of the 222Rn produced by the decay of 226Ra was able to escape from the zircon grains. The estimated increase in radon concentration in room air and the estimated external gamma radiation dose resulting from the use of zircon glaze are both much lower than the relevant action level and dose limit.

  2. Surface defect detection in tiling Industries using digital image processing methods: analysis and evaluation.

    PubMed

    Karimi, Mohammad H; Asemani, Davud

    2014-05-01

    Ceramic and tile industries should indispensably include a grading stage to quantify the quality of products. Actually, human control systems are often used for grading purposes. An automatic grading system is essential to enhance the quality control and marketing of the products. Since there generally exist six different types of defects originating from various stages of tile manufacturing lines with distinct textures and morphologies, many image processing techniques have been proposed for defect detection. In this paper, a survey has been made on the pattern recognition and image processing algorithms which have been used to detect surface defects. Each method appears to be limited for detecting some subgroup of defects. The detection techniques may be divided into three main groups: statistical pattern recognition, feature vector extraction and texture/image classification. The methods such as wavelet transform, filtering, morphology and contourlet transform are more effective for pre-processing tasks. Others including statistical methods, neural networks and model-based algorithms can be applied to extract the surface defects. Although, statistical methods are often appropriate for identification of large defects such as Spots, but techniques such as wavelet processing provide an acceptable response for detection of small defects such as Pinhole. A thorough survey is made in this paper on the existing algorithms in each subgroup. Also, the evaluation parameters are discussed including supervised and unsupervised parameters. Using various performance parameters, different defect detection algorithms are compared and evaluated. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Wind-Resistant Filler for Tile Gaps

    NASA Technical Reports Server (NTRS)

    Bellavia, J.; Quigley, I. A.; Callahan, T. S.

    1982-01-01

    Filler developed for gaps between insulating tiles on Space Shuttle finds application in industries that use tiles for thermal or environmental protection. Filler consists of tight-fitting ceramic tubes and fibrous alumina. Combination resists high wind loads while providing requisite heat protection. Quartz-thread stitching holds envelope together.

  4. Ceramics, Project Ideas for Industrial Arts.

    ERIC Educational Resources Information Center

    Hastings, James R., Ed.

    This book of ceramic project ideas is for teacher or student use in secondary industrial arts courses. It was developed in a workshop by teachers. The content objectives are to provide useful projects and units of instruction and to give direction to ceramics instruction which is in keeping with a changing technology. Forty-one project plans are…

  5. Study of dynamic structure and heat and mass transfer of a vertical ceramic tiles dryer using CFD simulations

    NASA Astrophysics Data System (ADS)

    Kriaa, Wassim; Bejaoui, Salma; Mhiri, Hatem; Le Palec, Georges; Bournot, Philippe

    2014-02-01

    In this study, we developed a two-dimensional Computational Fluid Dynamics (CFD) model to simulate dynamic structure and heat and mass transfer of a vertical ceramic tiles dryer (EVA 702). The carrier's motion imposed the choice of a dynamic mesh based on two methods: "spring based smoothing" and "local remeshing". The dryer airflow is considered as turbulent ( Re = 1.09 × 105 at the dryer inlet), therefore the Re-Normalization Group model with Enhanced Wall Treatment was used as a turbulence model. The resolution of the governing equation was performed with Fluent 6.3 whose capacities do not allow the direct resolution of drying problems. Thus, a user defined scalar equation was inserted in the CFD code to model moisture content diffusion into tiles. User-defined functions were implemented to define carriers' motion, thermo-physical properties… etc. We adopted also a "two-step" simulation method: in the first step, we follow the heat transfer coefficient evolution (Hc). In the second step, we determine the mass transfer coefficient (Hm) and the features fields of drying air and ceramic tiles. The found results in mixed convection mode (Fr = 5.39 at the dryer inlet) were used to describe dynamic and thermal fields of airflow and heat and mass transfer close to the ceramic tiles. The response of ceramic tiles to heat and mass transfer was studied based on Biot numbers. The evolutions of averages temperature and moisture content of ceramic tiles were analyzed. Lastly, comparison between experimental and numerical results showed a good agreement.

  6. Survival of Staphylococcus aureus exposed to UV radiation on the surface of ceramic tiles coated with TiO2.

    PubMed

    Szczawiński, J; Tomaszewski, H; Jackowska-Tracz, A; Szczawińska, M E

    2011-01-01

    The aim of this study was to determine and compare the antimicrobial activity of UV radiation of wavelength 253.7 nm (used in typical germicidal lamps) against Staphylococcus aureus on the surfaces of conventionally produced white ceramic wall tiles (matt and shiny) and the same tiles coated with TiO2 using three different methods: RF diode sputtering, atmospheric pressure chemical vapour deposition (APCVD) and spray pyrolysis deposition (SPD). Results clearly indicate that the bactericidal action of UV radiation is much stronger on the surfaces of tiles coated with TiO2 than on the tiles uncovered. The strongest bactericidal effect of UV radiation was found for film prepared by APCVD. Results of experiments for shiny and matt tiles did not differ statistically. The use of ceramic wall tiles coated with TiO2 films in hospitals, veterinary clinics, laboratories, food processing plants and other places where UV radiation is applied for disinfection should greatly improve the efficiency of this treatment.

  7. Comparison of slime-producing coagulase-negative Staphylococcus colonization rates on vinyl and ceramic tile flooring materials.

    PubMed

    Yazgi, H; Uyanik, M H; Ayyildiz, A

    2009-01-01

    This study investigated the colonization of slime-producing coagulase-negative Staphylococcus (CoNS) in 80 patient wards in Turkey (40 vinyl and 40 ceramic tile floors). A total of 480 samples that included 557 CoNS isolates were obtained. Slime production was investigated with the Christensen method and methicillin-susceptibility was tested by the disk-diffusion method. There was a significant difference in the percentage of slime-producing CoNS isolates on vinyl (12.4%) versus ceramic tile flooring (4.4%). From vinyl flooring, the percentage of slime producing methicillin-resistant CoNS (MRCoNS) (8.9%) was significantly higher than for methicillin-sensitive CoNS (MSCoNS) (3.6%), whereas there was no difference from ceramic tile flooring (2.5% MRCoNS versus 1.8% MSCoNS). The most commonly isolated slime-producing CoNS species was S. epidermidis on both types of flooring. It is concluded that vinyl flooring seems to be a more suitable colonization surface for slime-producing CoNS than ceramic tile floors. Further studies are needed to investigate bacterial strains colonized on flooring materials, which are potential pathogens for nosocomial infections.

  8. Micro-XRF for characterization of Moroccan glazed ceramics and Portuguese tiles

    NASA Astrophysics Data System (ADS)

    Guilherme, A.; Manso, M.; Pessanha, S.; Zegzouti, A.; Elaatmani, M.; Bendaoud, R.; Coroado, J.; dos Santos, J. M. F.; Carvalho, M. L.

    2013-02-01

    A set of enamelled terracotta samples (Zellij) collected from five different monuments in Morocco were object of study. With the aim of characterizing these typically Moroccan artistic objects, X-ray spectroscopic techniques were used as analytical tool to provide elemental and compound information. A lack of information about these types of artistic ceramics is found by the research through international scientific journals, so this investigation is an opportunity to fulfill this gap. For this purpose, micro-Energy Dispersive X-ray Fluorescence (μ-EDXRF), and wavelength dispersive X-ray Fluorescence (WDXRF) and X-ray Diffraction (XRD) were the chosen methods. As complementary information, a comparison with other sort of artistic pottery objects is given, more precisely with Portuguese glazed wall tiles (Azulejos), based in the Islamic pottery traditions. Differences between these two types of decorative pottery were found and presented in this manuscript.

  9. Modelling runoff on ceramic tile roofs using the kinematic wave equations

    NASA Astrophysics Data System (ADS)

    Silveira, Alexandre; Abrantes, João; de Lima, João; Lira, Lincoln

    2016-04-01

    Rainwater harvesting is a water saving alternative strategy that presents many advantages and can provide solutions to address major water resources problems, such as fresh water scarcity, urban stream degradation and flooding. In recent years, these problems have become global challenges, due to climatic change, population growth and increasing urbanisation. Generally, roofs are the first to come into contact with rainwater; thus, they are the best candidates for rainwater harvesting. In this context, the correct evaluation of roof runoff quantity and quality is essential to effectively design rainwater harvesting systems. Despite this, many studies usually focus on the qualitative aspects in detriment of the quantitative aspects. Laboratory studies using rainfall simulators have been widely used to investigate rainfall-runoff processes. These studies enabled a detailed exploration and systematic replication of a large range of hydrologic conditions, such as rainfall spatial and temporal characteristics, providing for a fast way to obtain precise and consistent data that can be used to calibrate and validate numerical models. This study aims to evaluate the performance of a kinematic wave based numerical model in simulating runoff on sloping roofs, by comparing the numerical results with the ones obtained from laboratory rainfall simulations on a real-scale ceramic tile roof (Lusa tiles). For all studied slopes, simulated discharge hydrographs had a good adjust to observed ones. Coefficient of determination and Nash-Sutcliffe efficiency values were close to 1.0. Particularly, peak discharges, times to peak and peak durations were very well simulated.

  10. Use of thin film transistor liquid crystal display (TFT-LCD) waste glass in the production of ceramic tiles.

    PubMed

    Lin, Kae-Long

    2007-09-05

    In this study, we employ the following operating conditions: varied pressure (25 kgf/cm(2)), sintering temperature (900-1200 degrees C), sintering time (6h), percentage of thin film transistor liquid crystal display (TFT-LCD) waste glass by weight (0-50%) and temperature rising at a rate of 5 degrees C/min, to fabricate clay tiles. The sintering characteristics of the clay blended with TFT-LCD waste glass tiles are examined to evaluate the feasibility of the reuse of TFT-LCD waste glass. TFT-LCD waste glass contains large amounts of glass. The TCLP leaching concentrations all met the ROC EPAs current regulatory thresholds. The addition of TFT-LCD waste glass to the mixture, increased the apparent weight loss. The incorporation of 50% TFT-LCD waste glass resulted in a significant increase in the porosity ratio of the specimens compared to the porosity ratio of the ceramic tile containing TFT-LCD waste glass. The main constituent in both the clay tile and the clay with TFT-LCD waste glass samples is quartz. Increasing the temperature resulted in an increase in the flexural strength and resistance to abrasion in the tiles. The porosity ratio decreases as shrinkage increases. The relation between the porosity ratio and the hardness of the tiles used in the study is also shown.

  11. Investigation by laser induced breakdown spectroscopy, X-ray fluorescence and X-ray powder diffraction of the chemical composition of white clay ceramic tiles from Veliki Preslav

    NASA Astrophysics Data System (ADS)

    Blagoev, K.; Grozeva, M.; Malcheva, G.; Neykova, S.

    2013-01-01

    The paper presents the results of the application of laser induced breakdown spectroscopy, X-ray fluorescence spectrometry, and X-ray powder diffraction in assessing the chemical and phase composition of white clay decorative ceramic tiles from the medieval archaeological site of Veliki Preslav, a Bulgarian capital in the period 893-972 AC, well-known for its original ceramic production. Numerous white clay ceramic tiles with highly varied decoration, produced for wall decoration of city's churches and palaces, were found during the archaeological excavations in the old capital. The examination of fourteen ceramic tiles discovered in one of the city's monasteries is aimed at characterization of the chemical profile of the white-clay decorative ceramics produced in Veliki Preslav. Combining different methods and comparing the obtained results provides complementary information regarding the white-clay ceramic production in Veliki Preslav and complete chemical characterization of the examined artefacts.

  12. Possible production of ceramic tiles from marine dredging spoils alone and mixed with other waste materials.

    PubMed

    Baruzzo, Daniela; Minichelli, Dino; Bruckner, Sergio; Fedrizzi, Lorenzo; Bachiorrini, Alessandro; Maschio, Stefano

    2006-06-30

    Dredging spoils, due to their composition could be considered a new potential source for the production of monolithic ceramics. Nevertheless, abundance of coloured oxides in these materials preclude the possibility of obtaining white products, but not that of producing ceramics with a good mechanical behaviour. As goal of the present research we have produced and studied samples using not only dredging spoils alone, but also mixtures with other waste materials such as bottom ashes from an incinerator of municipal solid waste, incinerated seawage sludge from a municipal seawage treatment plant and steelworks slag. Blending of different components was done by attrition milling. Powders were pressed into specimens which were air sintered in a muffle furnace and their shrinkage on firing was determined. Water absorption, density, strength, hardness, fracture toughness, thermal expansion coefficient of the fired bodies were measured; XRD and SEM images were also examined. The fired samples were finally tested in acidic environment in order to evaluate their elution behaviour and consequently their environmental compatibility. It is observed that, although the shrinkage on firing is too high for the production of tiles, in all the compositions studied the sintering procedure leads to fine microstructures, good mechanical properties and to a limitation of the release of many of the most hazardous metals contained in the starting powders.

  13. [Modeling of carbon dioxide measurement and optimization on building ceramic industry].

    PubMed

    Peng, Jun-Xi; Zhao, Yu-Bo; Jiao, Li-Hua; Zeng, Lu; Zheng, Wei-Min

    2012-02-01

    Input-output model and low carbon programming model on building ceramic industry were established. Carbon dioxide emissions of key steps and carbon footprint of products were calculated and predicted using the input-output model. While products planning was optimized using the low carbon programming model. The results showed that CO2 emission in the enterprise reached 182 543.9 t a year and CO2 emission per unit product was 10% more than advanced level in the world. 80% of the total CO2 was emitted during the processes of firing and drying. As a result, we should focus on these two steps in order to reduce carbon dioxide emission of building ceramic industry. Carbon footprint of blank tile, polished tile, and glazed tile were 150.2 t, 168.0 t, 159.6 t respectively. Optimized by the low carbon model, The ceramic enterprise could reduce carbon dioxide emission by 5.4% while not sacrificing any profit, and also could obtain profit 5.6% higher than before while unrise the carbon dioxide emission.

  14. Compressive Strength and Water Absorption of Pervious Concrete that Using the Fragments of Ceramics and Roof Tiles

    NASA Astrophysics Data System (ADS)

    Prahara, E.; Meilani

    2014-03-01

    Pervious concrete was introduced in America in 2003, popularized by Dan Brown and used as a rigid pavement in the open parking lot. Rigid pavement using pervious concrete can absorb water in the surface to go straight through the concrete to the ground below.This water flow is one of the benefit of using the pervious concrete. Using of wastes such as broken roof and ceramics tiles are not commonly used in Indonesia. Utilization these kind of wastes is predicted lower the compressive strength of pervious concrete as they are used as a substitute for coarse aggregate.In this research, pervious concrete is made using a mixture of the fragment of ceramics and roof tiles.This research using broken ceramics and roof tiles with a grain size that loose from 38 mm sieve, retained on 19 mm sieve and the coarse aggregate from crushed stone that loose 12.5 mm sieve, retained on 9.5 mm sieve. The water cement ratio is 0.3 and to assist the mixing process, the addition of addictive in pervious concrete is used.The size of coarse aggregate used in the mixture affects the strength of pervious concrete. The larger the size of aggregate, the obtained compressive strength becomes smaller. It also affects the density of pervious concrete. The using of mixture of ceramics and roof tiles only reduce 2 MPa of pervious concrete compressive strength so this mixture can be used as a substitute for coarse aggregate with a maximum portion of 30 %. The high porosity of the specimens causes the reduction of pervious concrete density that affect the compressive strength. This high level of porosity can be seen from the high level of water absorption that exceed the required limit of water infiltration.

  15. Floor tile glass-ceramic glaze for improvement of the resistance to surface abrasion

    NASA Astrophysics Data System (ADS)

    Gajek, M.; Lis, J.; Partyka, J.; Wójczyk, M.

    2011-10-01

    The results of research aimed at the study on frits and glass-ceramic glazes for floor tiles, based on compositions located in the primary field of cordierite crystallization within the system MgO-Al2O3-SiO2, have been presented. The results comprise investigations on the frits crystallization abilities, stability of the crystallizing phase under conditions of single-stage a fast firing cycle (time below 60 minutes) depending on their chemical composition and the influence of the nucleation agents. The influence of the nucleating agents namely TiO2, ZrO2, V2O5 on phase composition of obtained crystalline glazes, mechanical parameters and microstructure, has been examined. The strength tests proved increased mechanical resistance of crystalline glazes. Obtained glazes are characterized by high microhardness in range 6~8 GPa, as well as the increased wear resistance measured by the loss of weight below 100 mg / 55 cm2 (PN-EN ISO 10545-7). Significant increase of these parameters as compared with non-crystalline glazes, where micro-hardness values range between 5~6 GPa and the wear resistance values range from 120 to 200 mg, has been proved. Starting glasses (frits) and glazes of the ternary system MgO-SiO2-Al2O3, were examined with use of DTA, XRD and SEM methods.

  16. Maintenance of Vinyl Asbestos and Asphalt Tile Floors in Institutional, Industrial and Commercial Buildings.

    ERIC Educational Resources Information Center

    Asphalt and Vinyl Asbestos Tile Inst., New York, NY.

    The claim is made that proper planning and modest outlays of time, labor, and material costs can provide and maintain a high appearance level for floors in institutional, commercial, and industrial buildings. Instructions for four basic steps in maintaining the good looks of vinyl asbestos and asphalt tile floors are treated in the booklet--(1)…

  17. Ceramic heat recuperators for industrial heat recovery

    SciTech Connect

    Not Available

    1980-05-01

    Results are presented from a continuing program whose purpose is to demonstrate the technical and economic feasibility of using ceramic heat recuperators for industrial heat recovery. The information presented can be used by engineers in industry to evaluate their specific furnace applications and to estimate the technical requirements and economic benefits from the use of ceramic heat recuperators. Chapter 2 presents methods that can be used to estimate the amount of energy savings by recuperation. Chapter 3 gives a brief background in heat exchanger design theory so that the reader can understand the procedures involved in designing and sizing heat exchangers for a given application. The specific GTE core design and the recuperator fabrication, housing and installation are discussed in Chapter 4. The demonstration project results are presented in Chapter 5. Each demonstration is described and the results, economics and problem areas discussed. The Appendices provide details that will allow the engineer in industry to select a core, size a heat exchanger, calculate the performance, determine energy saved and estimate the economics of using a ceramic recuperator for a specific industrial application. (LCL)

  18. A two-stage ceramic tile grout sealing process using a high power diode laser—II. Mechanical, chemical and physical properties

    NASA Astrophysics Data System (ADS)

    Lawrence, J.; Li, L.; Spencer, J. T.

    1998-04-01

    Ceramic tiles sealed using a portable 60 Wcw high power diode laser (HPDL) and a specially developed grout material having an impermeable enamel surface glaze have been tested in order to determine the mechanical, chemical and physical characteristics of the seals. The work showed that the generation of the enamel surface glaze resulted in a seal with improved mechanical and chemical properties over conventional epoxy tile grouts. Both epoxy tile grout and laser generated enamel seals were tested for compressive strength, surface roughness, wear, water permeability and acid/alkali resistance. The enamel seal showed clear improvements in strength, roughness and wear, whilst being impermeable to water, and resistant (up to 80% concentration) to nitric acid, sodium hydroxide and detergent acids. The bond strength and the rupture strength of the enamel seal were also investigated, revealing that the enamel adhered to the new grout and the ceramic tiles with an average bond strength of 45-60 MPa, whilst the rupture strength was comparable with the ceramic tiles themselves. The average surface roughness of the seals and the tiles was 0.36 and 0.06 μm, respectively, whilst for the conventional epoxy grout the average surface roughness when polished was 3.83 μm and in excess of 30 μm without polishing. Life assessment testing revealed that the enamel seals had an increase in actual wear life of 2.9 to 30.4 times over conventional epoxy tile grout, depending upon the corrosive environment.

  19. Preparation and characterization of novel glass-ceramic tile with microwave absorption properties from iron ore tailings

    NASA Astrophysics Data System (ADS)

    Yao, Rui; Liao, SongYi; Dai, ChangLu; Liu, YuChen; Chen, XiaoYu; Zheng, Feng

    2015-03-01

    A novel glass-ceramic tile consisting of one glass-ceramic layer (GC) attaining microwave absorption properties atop ceramic substrate was prepared through quench-heat treatment route derived from iron ore tailings (IOTs) and commercial raw materials (purity range 73-99%). X-ray diffraction (XRD), SEM, Energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), Physical property measurement system (PPMS) and Vector network analyzer (VNA) measurements were carried out to investigate phase, microstructure, magnetic and microwave absorption aspects of the glass-ceramic layer. Roughly 80.6±1.7 wt% borosilicate glass and 19.4±1.7 wt% spinel ferrite with chemical formula of (Zn2+0.17Fe3+0.83)[Fe3+1.17Fe2+0.06Ni2+0.77]O4 were found among the tested samples. Absorption of Electromagnetic wave by 3 mm thick glass-ceramic layer at frequency of 2-18 GHz reached peak reflection loss (RL) of -17.61 dB (98.27% microwave absorption) at 10.31 GHz. Altering the thickness of the glass-ceramic layer can meet the requirements of different level of microwave absorption.

  20. Mechanical and tribological behavior of red clay ceramic tiles coated with fly ash powders by thermal spraying technique.

    NASA Astrophysics Data System (ADS)

    Peña-Rodríguez, G.; Dulce-Moreno, H.; Daza-Ramírez, J.; Orozco-Hernández, S.; Vargas-Galvis, F.

    2017-01-01

    The mechanical and tribological performance of red clay ceramic tiles uncoated and coated by oxy-fuel thermal spraying process from fly ash powders was evaluated. The ceramic tile substrates were manufactured by uniaxial pressing at 26.17 bar pressure, and sintered at 1100 °C. The coating thickness was determined based on the number of projection-cycles oxyacetylene flame over substrate. Coal fly ash coatings were deposited, with average thickness of 56.18±12.18 μm, 180.42±20.32 μm, and 258.26±25.88μm. The mechanical resistance to bending and wear by abrasion deep, were studied using ISO 10545-4 standards and ISO 10545-6 respectively; adhesion was measured using Elcometer equipment Type III according to ASTM D-4541-02 and the average roughness (Ra) was found according to ASTM standard D7127-13, using the profilometer Mitutoyo SJ 201. The surface morphology presented the heterogeneous molten or semi molten splats with average size of 35.262±3.48 micrometers with good adhesion, justifying increased mechanical resistance to bending by 5%, as well as wear by abrasion deep. These results contribute to the development of ceramic products with added value, to be used in various technological applications.

  1. Aerogel: Tile Composites Toughen a Brittle Superinsulation

    NASA Technical Reports Server (NTRS)

    White, Susan; Rasky, Daniel; Arnold, James O. (Technical Monitor)

    1998-01-01

    Pure aerogels, though familiar in the laboratory for decades as exotic lightweight insulators with unusual physical properties, have had limited industrial applications due to their low strength and high brittleness. Composites formed of aerogels and the ceramic fiber matrices like those used as space shuttle tiles bypass the fragility of pure aerogels and can enhance the performance of space shuttle tiles in their harsh operating environment. Using a layer of aerogel embedded in a tile may open up a wide range of applications where thermal insulation, gas convection control and mechanical strength matter.

  2. Quality and seasonal variation of rainwater harvested from concrete, asphalt, ceramic tile and green roofs in Chongqing, China.

    PubMed

    Zhang, Qianqian; Wang, Xiaoke; Hou, Peiqiang; Wan, Wuxing; Li, Ruida; Ren, Yufen; Ouyang, Zhiyun

    2014-01-01

    There is an urgent requirement to examine the quality of harvested rainwater for potable and non-potable purposes, based on the type of roofing material. In this study, we examined the effect on the quality of harvested rainwater of conventional roofing materials (concrete, asphalt and ceramic tile roofs) compared with alternative roofing materials (green roof). The results showed that the ceramic tile roof was the most suitable for rainwater-harvesting applications because of the lower concentrations of leachable pollutants. However, in this study, the green roof was not suitable for rainwater harvesting applications. In addition, seasonal trends in water quality parameters showed that pollutants in roof runoff in summer and autumn were lower than those in winter and spring. This study revealed that the quality of harvested rainwater was significantly affected by the roofing material; therefore, local government and urban planners should develop stricter testing programs and produce more weathering resistant roofing materials to allow the harvesting of rainwater for domestic and public uses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Effect of ceramic industrial particulate emission control on key components of ambient PM10.

    PubMed

    Minguillón, María Cruz; Monfort, Eliseo; Querol, Xavier; Alastuey, Andrés; Celades, Irina; Miró, José Vicente

    2009-06-01

    The relationship between specific particulate emission control and ambient levels of some PM(10) components (Zn, As, Pb, Cs, Tl) was evaluated. To this end, the industrial area of Castellón (Eastern Spain) was selected, where around 40% of the EU glazed ceramic tiles and a high proportion of EU ceramic frits are produced. The PM(10) emissions from the ceramic processes were calculated over the period 2000-2006, taking into account the degree of implementation of corrective measures throughout the study period. Abatement systems were implemented in the majority of the fusion kilns for frit manufacture in the area as a result of the application of the Directive 1996/61/EC, leading to a marked decrease in PM(10) emissions. By contrast, emissions from tile manufacture remained relatively constant because of the few changes in the implementation of corrective measures. On the other hand, ambient PM(10) levels and composition measurements were carried out from 2002 to 2006. A high correlation between PM(10) emissions from frit manufacture and ambient levels of Zn, As, Pb and Cs (R(2) from 0.61 to 0.98) was observed. On the basis of these results, the potential impact of the implementation of corrective measures to reduce emissions from tile manufacture was quantified, resulting in a possible decrease of 3-5 microg/m(3) and 2 microg/m(3) in ambient mineral PM(10) (on an annual basis) in urban and suburban areas, respectively. This relatively simple methodology allows us to estimate the direct effect of a reduction in primary particulate emissions on ambient levels of key particulate components, and to make a preliminary quantification of the possibilities of air quality improvement by means of further emission reduction. Therefore, it is a useful tool for developing future air quality plans in the study area and in other industrialised areas.

  4. Radiometric analysis of raw materials and end products in the Turkish ceramics industry

    NASA Astrophysics Data System (ADS)

    Turhan, Ş.; Arıkan, İ. H.; Demirel, H.; Güngör, N.

    2011-05-01

    This study presents the findings of radiometric analysis carried out to determine the activity concentrations of natural radionuclides in raw materials (clay, kaolin, quartz, feldspar, dolomite, alumina, bauxite, zirconium minerals, red mud and frit) and end products (glazed ceramic wall and floor tiles) in the Turkish ceramics industry. Hundred forty-six samples were obtained from various manufacturers and suppliers throughout the country and analyzed using gamma-ray spectrometer with HPGe detectors. Radiological parameters such as radium equivalent activity, activity concentration index and alpha index were calculated to assess the radiological aspects of the use of the ceramic end products as decorative or covering materials in construction sector. Results obtained were examined in the light of the relevant national and international legislation and guidance and compared with the results of similar studies reported in different countries. The results suggest that the use of ceramic end product samples examined in the construction of dwellings, workplaces and industrial buildings in Turkey is unlikely to give rise to any significant radiation exposure to the occupants.

  5. Large Area Active Brazing of Multi-tile Ceramic-Metal Structures

    DTIC Science & Technology

    2012-05-01

    fabricating a combination of lightweight ceramics and metals is complicated by the need to bond these very dissimilar materials together. For severe... steels ) and form strong, metallurgical bonds. However, the high processing temperatures result in large strain (stress) build-up from the inherent... dissimilar materials together. For severe applications, a strong bond between the ceramic and metal is required. One option for achieving this strong

  6. Characterization of the Ain Khemouda halloysite (western Tunisia) for ceramic industry

    NASA Astrophysics Data System (ADS)

    Ben M'barek Jemaï, Moufida; Sdiri, Ali; Errais, Emna; Duplay, Joelle; Ben Saleh, Imed; Zagrarni, Mohamed Faouzi; Bouaziz, Samir

    2015-11-01

    White clays of Ain Khemouda (Western Tunisia), filling the post-Miocene palaeokarsts cavities dug in the intermediate limestones bed of the Douleb formation (Senonian system), were used as raw materials for the preparation of ceramic bodies. Natural clay samples, collected from the Ain Khemouda palaekarsts to the North of Jebel Semmama (Kasserine, Tunisia), were characterized by different techniques. Chemical and mineralogical analyses were carried out by atomic absorption spectroscopy (AAS) and X-ray diffraction (XRD), respectively. Thermal analysis was also performed by thermogravimetry (TG-DTA), dilatometry and Bigot's curve. Chemical analysis indicated that the studied clay was composed of silica and alumina as major elements with the ratio SiO2/(Al2O3 + Fe2O3) close to 2. Significant amounts of zinc and iron oxides subordinated the main alumino-silicates minerals. Mineralogical analysis showed that Ain Khemouda white clay consisted of halloysite and meta-halloysite mixture. Characteristic peaks of halloysite occurred near 10 Å and 7 Å. Transmission electron microscopy (TEM) images showed rolled wafers, characterizing the tubular shape of halloysite. From these results, it could be concluded that Ain Khemouda clay was Zn-aluminous hydrated halloysite (10 Å). In addition, cation exchange capacity (CEC) was relatively low (18 mEq/100 g), indicating insufficient edge valences. Industrial ceramic tests performed at the laboratory scale indicated that the Ain Khemouda clays have the required technical specifications to be used as raw materials for ceramic tiles and refractory ceramic manufacturing.

  7. Low-vacuum SEM analyses of ceramic tiles with emphasis on glaze defects characterisation

    SciTech Connect

    Kopar, Tinkara Ducman, Vilma

    2007-11-15

    The behaviour of glazed building ceramics exposed to different environment (weathering, chemicals, etc.) is determined by microstructural features; in many cases structural and surface defects at the micro- or nanometre scale are crucial for the functional properties of products. Many testing methods for materials characterization of a variety of ceramic products, physical and chemical methods, are time-consuming, large quantities of samples are needed, and are usually destructive. This paper illustrates the use of low-vacuum scanning electron microscopy (LV-SEM) as fast and almost non-destructive, as only a small amount of sample is needed. Examples are given of various surface and structural properties of building ceramics, for the identification of the material deterioration process as a result of environmental impact.

  8. Foundry waste recycling in moulding operations and in the ceramic industry.

    PubMed

    Zanetti, Maria Chiara; Fiore, Silvia

    2003-06-01

    An industrial treatment was performed by the Sasil plant of Brusnengo (Biella, Northern Italy), which is part of the Gruppo Minerali S.p.A. (Novara, Northern Italy), to consider the reclamation of bentonite bonded moulding sands obtained from the Teksid Italia S.p.A. cast iron foundry plant in Crescentino (Vercelli, Northern Italy). An evaluation of the fine particles produced by the wet-mechanical regeneration treatment was made with the purpose of proposing their recycling as binding agents in moulding operations in the cast iron foundry and for the production of tiles in the ceramic industry. The pre-mixed product sold by bentonite suppliers (35% coal dust and 65% bentonite, 0.15 Euro/kg) could be made from the recovered fine fraction below 0.025 mm with the addition of active clay and coal dust, thus obtaining a product that will have physico-chemical properties similar to those of calcic bentonite. The improvements due to the addition of the fine particles to the usually employed clay for tile production were also underlined from the results of several baking tests. The recovery and recycling of sands and fine particles obtained from the reclamation of bentonite moulding sands will lead to a saving of raw materials and landfill space, with economic and environmental advantages.

  9. The Ceramic Manufacturability Center: A new partnership with US industry

    SciTech Connect

    Tennery, V.J.; Morris, T.O.

    1993-12-01

    The Ceramic Manufacturability Center (CMC) is a new facility at the Oak Ridge National Laboratory (ORNL) established as a direct response to current US industry needs. It was created as part of a highly integrated program jointly funded by the US Department of Energy Defense Programs, Energy Efficiency and Renewable Energy, and Energy Research divisions. The CMC is staffed by personnel from ORNL and the Y-12 Plant, both managed by Martin Marietta Energy Systems, Inc. (Energy Systems). Its mission is to improve the technology needed to manufacture high-precision ceramic components inexpensively and reliably. This mission can be accomplished by strengthening the US machine tool industry and by joining with ceramic material suppliers and end users to provide a path to commercialization of these ceramic components.

  10. Ergonomics intervention in a tile industry- case of manual material handling.

    PubMed

    Dormohammadi, Ali; Amjad Sardrudi, Hosein; Motamedzade, Majid; Dormohammadi, Reza; Musavi, Saeed

    2012-12-13

    Manual material handling is one of the major health and safety hazards in industry. This study aims to assess the lifting tasks, before and after intervention using NIOSH lifting equation and Manual Handling Assessment Charts (MAC). This interventional study was performed in 2011 in a tile manufacturing industry in Hamadan, located in the West of Iran. The prevalence of musculoskeletal discomfort was determined using Nordic musculoskeletal questionnaire. In order to assess the risk factors related to lifting and identify the high-risk activities, MAC and NIOSH lifting equation were used. In intervention phase, we designed a load-carrying cart with shelves capable of moving vertically up and down, similar to scissor lifts. After intervention, the reassessment of risk factors was conducted to determine the success of the intervention and to compare risk levels before and after intervention using t-test. The outputs of MAC and NIOSH lifting equation assessments before intervention revealed that all activities were at high-risk level. After intervention, the risk level decreased to average level. In conclusion, the results of intervention revealed a considerable decrease in risk level. It may be concluded that the given intervention was acceptable and favorably effective in preventing musculoskeletal disorders especially low back pain.

  11. Studies on Various Functional Properties of Titania Thin Film Developed on Glazed Ceramic Wall Tiles

    NASA Astrophysics Data System (ADS)

    Anil, Asha; Darshana R, Bangoria; Misra, S. N.

    A sol-gel based TiO2 thin film was applied on glazed wall tiles for studying its various functional properties. Thin film was deposited by spin coating on the substrate and subjected to curing at different temperatures such as 600°C, 650, 700°C, 750°C and 800°C with 10 minutes soaking. The gel powder was characterized by FTIR, DTA/TG and XRD. Microstructure of thin film was analyzed by FESEM and EDX. Surface properties of the coatings such as gloss, colour difference, stain resistance, mineral hardness and wettability were extensively studied. The antibacterial activity of the surface of coated substrate against E. coli was also examined. The durability of the coated substrate in comparison to the uncoated was tested against alkali in accordance with ISO: 10545 (Part 13):1995 standard. FESEM images showed that thin films are dense and homogeneous. Coated substrates after firing results in lustre with high gloss, which increased from 330 to 420 GU as the curing temperature increases compared to that of uncoated one (72 GU). Coated substrate cured at 800°C shows higher mineral hardness (5 Mohs’) compared to uncoated one (4 Mohs’) and films cured at all temperatures showed stain resistance. The experimental results showed that the resistance towards alkali attack increase with increase in curing temperature and alkali resistance of sample cured at 800 °C was found to be superior compared to uncoated substrate. Contact angle of water on coated surface of substrates decreased with increase in temperature. Bacterial reduction percentages of the coated surface was 97% for sample cured at 700°C and it decreased from 97% to 87% as the curing temperature increased to 800 °C when treated with E. coli bacteria.

  12. A two-stage ceramic tile grout sealing process using a high power diode laser—Grout development and materials characteristics

    NASA Astrophysics Data System (ADS)

    Lawrence, J.; Li, L.; Spencer, J. T.

    1998-04-01

    Work has been conducted using a 60 Wcw high power diode laser (HPDL) in order to determine the feasibility and characteristics of sealing the void between adjoining ceramic tiles with a specially developed grout material having an impermeable enamel surface glaze. A two-stage process has been developed using a new grout material which consists of two distinct components: an amalgamated compound substrate and a glazed enamel surface; the amalgamated compound seal providing a tough, heat resistant bulk substrate, whilst the enamel provides an impervious surface. HPDL processing has resulted in crack free seals produced in normal atmospheric conditions. The basic process phenomena are investigated and the laser effects in terms of seal morphology, composition and microstructure are presented. Also, the resultant heat affects are analysed and described, as well as the effects of the shield gases, O 2 and Ar, during laser processing. Tiles were successfully sealed with power densities as low as 500 W/cm 2 and at rates up to 600 mm/min. Contact angle measurements revealed that due to the wettability characteristics of the amalgamated oxide compound grout (AOCG), laser surface treatment was necessary in order to alter the surface from a polycrystalline to a semi-amorphous structure, thus allowing the enamel to adhere. Bonding of the enamel to the AOCG and the ceramic tiles was identified as being principally due to van der Waals forces, and on a very small scale, some of the base AOCG material dissolving into the glaze.

  13. RADIOLOGICAL IMPACTS ASSESSMENT FOR WORKERS IN CERAMIC INDUSTRY IN SERBIA.

    PubMed

    Todorovic, Nataša; Mrda, Dušan; Hansman, Jan; Todorovic, Slavko; Nikolov, Jovana; Krmar, Miodrag

    2017-03-03

    Studies have been carried out to determine the natural radioactivity in some materials used in ceramic industry (zircon, zirkosil, Zircobit MO/S, zircon silicate, zirklonil frit, hematite, bentonite, wollastonite, raw kaolin, kaolinized granite, sileks ball, feldspar, pigment, white base serigraphic, engobe) and their associated radiation hazard. The external hazard index, Hex, values, radium equivalent activity, Raeq, total absorbed dose rates, D and annual effective dose, De were derived for all measured materials and compared with the recommended values to assess the external radiation hazards to workers who worked in ceramic industries in Serbia.

  14. Biomonitoring of the environmental genotoxic potential of emissions from a complex of ceramic industries in Monte Carmelo, Minas Gerais, Brazil, using Tradescantia pallida.

    PubMed

    Campos, Carlos Fernando; Júnior, Edimar Olegário de Campos; Souto, Henrique Nazareth; Sousa, Eduardo de Freitas; Pereira, Boscolli Barbosa

    2016-01-01

    The micronucleus (MN) test and analysis of heavy metal biological accumulation in Tradescantia pallida (T. pallida) were bioassays used to assess the genotoxic potential of emissions from a complex of ceramic industries into the atmosphere in a city in Brazil that is considered a national reference source for roof tile production. The ceramic industry emission-exposed T. pallida plants were biomonitored during the dry season, in June, July, and August 2013. In addition to the contaminated monitoring site, a reference site in a peri-urban area was utilized, for comparative purposes. Genotoxicity assessments were determined monthly, while heavy metal bioaccumulation was measured at the end of the total exposure period. The MN frequency was significantly greater in T. pallida plants exposed in the ceramic industry emission monitored area compared to the reference site, and highest MN rates were observed in July and August. With respect to heavy metal bioaccumulation in T. pallida leaves, cadmium (Cd) and chromium (Cr) concentrations were significantly higher in plants at the ceramic industry emission monitoring site. Thus, in relation to the parameters assessed, T. pallida was found to be sensitive to atmospheric contamination by heavy metals attributed to ceramic products emissions generated by the ceramic industry, confirming that this plant species may be employed as a reference organism in biomonitoring studies.

  15. The Role of Ceramics in a Resurgent Nuclear Industry

    SciTech Connect

    Marra, J

    2006-02-28

    With fuel oil and natural gas prices near record highs and worldwide energy demands increasing at an alarming rate, there is growing interest in revitalization of the nuclear power industry within the United States and across the globe. Ceramic materials have long played a very important part in the commercial nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced fuel cycles that minimize waste and increase proliferation resistance, ceramic materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, ceramic processes are also being applied to fuel reprocessing operations. Ceramic materials continue to provide a vital contribution in ''closing the fuel cycle'' by stabilization of associated low-level and high-level wastes in highly durable grout, ceramics, and glass. In the next five years, programs that are currently in the conceptual phase will begin laboratory- and engineering-scale demonstrations. This will require production-scale demonstrations of several ceramic technologies from fuel form development to advanced stabilization methods. Within the next five to ten years, these demonstrations will move to even larger scales and will also include radioactive demonstrations of these advanced technologies. These radioactive demonstrations are critical to program success and will require advances in ceramic materials associated with nuclear energy applications.

  16. Portfolio: Ceramics.

    ERIC Educational Resources Information Center

    Hardy, Jane; And Others

    1982-01-01

    Describes eight art activities using ceramics. Elementary students created ceramic tiles to depict ancient Egyptian and medieval European art, made ceramic cookie stamps, traced bisque plates on sketch paper, constructed clay room-tableaus, and designed clay relief masks. Secondary students pit-fired ceramic pots and designed ceramic Victorian…

  17. Portfolio: Ceramics.

    ERIC Educational Resources Information Center

    Hardy, Jane; And Others

    1982-01-01

    Describes eight art activities using ceramics. Elementary students created ceramic tiles to depict ancient Egyptian and medieval European art, made ceramic cookie stamps, traced bisque plates on sketch paper, constructed clay room-tableaus, and designed clay relief masks. Secondary students pit-fired ceramic pots and designed ceramic Victorian…

  18. FT-IR characterization of articulated ceramic bricks with wastes from ceramic industries.

    PubMed

    Nirmala, G; Viruthagiri, G

    2014-05-21

    The 30 ceramic test samples with the kaolinitic clay and ceramic rejects (in the as-received state and sintered at temperatures 900-1200°C) were investigated through spectral studies in order to elucidate the possibility of recycling the wastes from the government ceramic industry of Vriddhachalam, Tamilnadu state, South India. A detailed attribution of all the spectroscopic frequencies in the spectra recorded in the 4000-400cm(-1) region was attempted and their assignment to different minerals was accomplished. X-ray diffraction analysis was performed to demonstrate the reliability of IR attributions. The indication of well-ordered kaolinite is by the band at 1115cm(-1) in the raw samples which tends to shift towards 1095cm(-1) in all the fired samples. The peaks at 563cm(-1) and 795cm(-1) can be assigned to anorthite and dickite respectively. The presence of quartz and anorthite is confirmed both by XRD and FTIR. The microstructural observations were done through the SEM images which visualized the vitrification of the fired bricks at higher temperatures. The refractory properties of the samples found through the XRF analysis are also appreciable. The present work suggests that the incorporation of the rejects into the clay mixture will be a valid route for the ceramic industries to reduce the costs of the ceramic process. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. FT-IR characterization of articulated ceramic bricks with wastes from ceramic industries

    NASA Astrophysics Data System (ADS)

    Nirmala, G.; Viruthagiri, G.

    The 30 ceramic test samples with the kaolinitic clay and ceramic rejects (in the as-received state and sintered at temperatures 900-1200 °C) were investigated through spectral studies in order to elucidate the possibility of recycling the wastes from the government ceramic industry of Vriddhachalam, Tamilnadu state, South India. A detailed attribution of all the spectroscopic frequencies in the spectra recorded in the 4000-400 cm-1 region was attempted and their assignment to different minerals was accomplished. X-ray diffraction analysis was performed to demonstrate the reliability of IR attributions. The indication of well-ordered kaolinite is by the band at 1115 cm-1 in the raw samples which tends to shift towards 1095 cm-1 in all the fired samples. The peaks at 563 cm-1 and 795 cm-1 can be assigned to anorthite and dickite respectively. The presence of quartz and anorthite is confirmed both by XRD and FTIR. The microstructural observations were done through the SEM images which visualized the vitrification of the fired bricks at higher temperatures. The refractory properties of the samples found through the XRF analysis are also appreciable. The present work suggests that the incorporation of the rejects into the clay mixture will be a valid route for the ceramic industries to reduce the costs of the ceramic process.

  20. Usability of Malatya Pyrophyllite in the Traditional Ceramic Industry

    NASA Astrophysics Data System (ADS)

    Kizilkaya, Nilgun; Onal, Mehmet; Depci, Tolga; Yucel, Aysegul

    2016-10-01

    In the present study, the usability of the pyrophyllite in the traditional ceramic industry was investigated. The raw pyrophyllite was obtained in Malatya, Turkey. The characterization of the raw pyrophyllite and the prepared ceramics which were heated at the different temperatures in oven (800, 900, 1000 and 1100 °C) were done by XRF, XRD, FTIR, SEM and the main physical properties, like total shrinkage, water absorption capacity and compression strength were determined. As a result of experimental studies; the raw pyrophyllite had to be mixed with the feldspar and another clay (Unye clay) with having high plasticity in order to shape easily and a high water resistance. The optimum receipt was found as 70 wt % pyrophyllite, 20 wt % Unye clay and 10 wt % feldspar. The main properties of the obtained ceramics were specific white baking colour and high temperature resistance properties.

  1. Detecting Filler Spaces Under Tiles

    NASA Technical Reports Server (NTRS)

    Mende, Paul; Shinkevich, David; Scheuer, John

    1991-01-01

    Eddy-current probe nondestructively and indirectly indicates whether screed present under ceramic tile on aluminum substrate. Transducer coil excites eddy currents in aluminum substrate material. Response appears on oscilloscope or meter. Changes in response indicate spatially abrupt changes in substrate. Intended for use on insulating tiles on Space Shuttle, potential terrestrial applications in nondestructive testing.

  2. Industrial operating experience of the GTE ceramic recuperator

    SciTech Connect

    Gonzalez, J.M.; Ferri, J.L. ); Rebello, W.J. )

    1990-06-01

    GTE Products Corporation, under a jointly funded program with the US Department of Energy (DOE), developed a compact ceramic high temperature recuperator that could recover heat from a relatively clean exhaust gases at temperatures up to of 2500{degree}F. The DOE program was very successful in that it allowed GTE to improve the technical and economic characteristics of the recuperator and stimulate industrial acceptance of the recuperator as an energy- saving technology. The success of the DOE Program was measured by the fact that from January 1981 to December 1984, 561 recuperators were installed by GTE on new or retrofitted furnaces. One objective of this contract was to conduct a telephone survey of the industrial plants that use the recuperator to determine their operating experience, present status, and common problems, and thus to complete the historical picture. Additionally, recuperators were returned to GTE after operating on industrial furnaces, and a post mortem'' analysis was undertaken with a goal of identifying the potential reason(s) for premature failure of the ceramic matrix. When contamination of the matrix was evident, historical data and spectrographic analysis were used to identify the type of contaminant, and its source. This effort has shown the type of degradation that occurs and has identified system design techniques that can be used to maximize the ceramic recuperator life cycle. 12 refs., 14 figs., 13 tabs.

  3. Geological and technological characterization of the Late Jurassic-Early Cretaceous clay deposits (Jebel Ammar, northeastern Tunisia) for ceramic industry

    NASA Astrophysics Data System (ADS)

    Ben M'barek-Jemaï, Moufida; Sdiri, Ali; Ben Salah, Imed; Ben Aissa, Lassaad; Bouaziz, Samir; Duplay, Joelle

    2017-05-01

    Late Jurassic-Lower Cretaceous clays of the Jebel Ammar study site were used as raw materials for potential applications in ceramic industry. Physico-chemical characterization of the collected samples was performed using atomic absorption spectroscopy, X-ray diffraction, thermogravimetry and dilatometry (Bugot's curve). Geotechnical study was also undertaken by the assessment of plasticity and liquidity limits. It was found that high concentrations of silica, alumina with SiO2/Al2O3 ratio characterized the studied clays; its high amounts of CaO and Fe2O3 in the Late Jurassic clays indicated their calcareous nature. In addition, technological tests indicated moderate to low plasticity values for the Late Jurassic and Lower Cretaceous clays, respectively. Clay fraction (<2 μm) reached 50% of the natural clay in some cases. Mineralogical analysis showed that Jurassic clays were dominated by smectite, illite and kaolinite, as clay mineral species; calcite was the main associated mineral. Lower Cretaceous clays were mainly composed of abundant illite accompanied by well-crystallized smectite and kaolinite. Kaolinite gradually increased upwards, reaching 70% of the total clay fraction (i.e. <2 μm). Quartz, calcite and feldspar were the main non-clay minerals. Based on these analyses, the clays meet technological requirements that would allow their use in the ceramic industry and for the manufacturing of ceramic tiles.

  4. Ceramic heat recuperators for industrial heat recovery. Final report

    SciTech Connect

    Cleveland, J.J.; Gonzalez, J.M.; Kohnken, K.H.

    1980-08-01

    Development of a GTE ceramic recuperator, designed for relatively small furnaces with firing rates of 0.3 to 0.6 MM Btu/h and with exhaust gas temperatures of 1500 to 2600 F, is described. The ceramic selected as the material of construction is cordierite, a magnesium aluminum silicate. Details of the ceramic recuperator design are presented in Chapter 2. Also results of tests and measurements, system economics, and cost performance analyses are presented. Five demonstration programs were performed to determine the heat transfer performance of the recuperator, establish the energy savings by recuperation, demonstrate minimum maintenance requirements in typical furnace operation, determine the durability of the ceramic core, determine the operating requirements of the burners and controls with recuperation, and establish the overall system costs and payback period. Demonstration programs and results of the Bliss Mill Furnace, Tungsten Reduction Furnace, Glass Tank, Pilot Plant US Smelting Furnace, and Rotary Calciner Furnace are given in Chapter 3. Chapter 4 develops the methodology and shows how an impact analysis may be performed. Industrial applications are implied and a process flow diagram for smelting and refining primary copper is shown. Concluding chapters present conclusions and recommendations, a bibliography, and additional information in appendices. (MCW)

  5. Contribution of the atmospheric emissions of Spanish ceramics industries

    NASA Astrophysics Data System (ADS)

    Sanfeliu, T.; Jordán, M.; Gómez, E.; Alvarez, C.; Montero, M.

    2002-01-01

    Contaminating industrial emissions produced by the ceramics industries (including frit and enamel production) can be divided into dust emissions and emissions produced in high temperature activities. Processes of accumulation and precipitation on the substratum, of compounds enriched in certain elements used in this type of industry can occur. The objective of the present work was to identify the contribution of the emissions of the ceramics industries to the atmospheric particulate that is susceptible to depositing on vegetation and accumulating in the substratum. Samples obtained from high volume collectors were studied. Two zones were considered: zone A, a high volume collector located in the municipalities adjacent to the companies that were the object of the study; and zone B, a high volume collector further away from the said companies and adjacent to a power station and a refinery. The analysis techniques were X-ray diffraction, scanning electron microscopy (SEM), and ICP-MS. The results obtained by means of the X-ray diffraction technique showed a high percentage of clays in the samples, minerals used as raw materials (K-Ba feldspar, zircon silicate), indications of high temperature phases, as well as a background noise characteristic of material of low crystallinity. The SEM analysis confirmed the presence of vitreous particles, which are crystalline phases at high temperature typical of the production of a large variety of frits. The results obtained in the chemical analysis demonstrate that (a) the influence of the frits and enamel production on the high concentrations of Zr, Cu and Ce obtained in zone type A compared with zone B; (b) the affect of clays used as raw materials in the ceramics industry can be demonstrated by the high concentrations of Fe, Al and Mg. The weekly evolution showed two series of elements, a characteristic group of dust emissions and another group of tracers from high temperature processes.

  6. Characterization of color texture: color texture based sorting of tiles

    NASA Astrophysics Data System (ADS)

    Bourada, Y.; Lafon, Dominique; Eterradossi, O.

    1998-09-01

    Many materials used by the building industry show a color texture which affects the product commercial value. This texture can be seen as the spatial arrangement of regions of acceptable color differences. This work describes an appearance based automated sorting via color texture analysis, using ceramic tiles as example. Textural analysis of the tiles digital images expressed in CIEL*a*b* color system is performed through the analysis of intrinsic features of each region and relationships between regions. Results obtained through the automated process are compared to a visual sorting which leads to calculation of application dependant color and texture tolerances.

  7. Measuring Fracture Times Of Ceramics

    NASA Technical Reports Server (NTRS)

    Shlichta, Paul J.; Bister, Leo; Bickler, Donald G.

    1989-01-01

    Electrical measurements complement or replace fast cinematography. Electronic system measures microsecond time intervals between impacts of projectiles on ceramic tiles and fracture tiles. Used in research on ceramics and ceramic-based composite materials such as armor. Hardness and low density of ceramics enable them to disintegrate projectiles more efficiently than metals. Projectile approaches ceramic tile specimen. Penetrating foil squares of triggering device activate display and recording instruments. As ceramic and resistive film break oscilloscope plots increase in electrical resistance of film.

  8. Measuring Fracture Times Of Ceramics

    NASA Technical Reports Server (NTRS)

    Shlichta, Paul J.; Bister, Leo; Bickler, Donald G.

    1989-01-01

    Electrical measurements complement or replace fast cinematography. Electronic system measures microsecond time intervals between impacts of projectiles on ceramic tiles and fracture tiles. Used in research on ceramics and ceramic-based composite materials such as armor. Hardness and low density of ceramics enable them to disintegrate projectiles more efficiently than metals. Projectile approaches ceramic tile specimen. Penetrating foil squares of triggering device activate display and recording instruments. As ceramic and resistive film break oscilloscope plots increase in electrical resistance of film.

  9. Treatment of drainage water with industrial by-products to prevent phosphorus loss from tile-drained land.

    PubMed

    McDowell, R W; Sharpley, A N; Bourke, W

    2008-01-01

    Tile drained land with phosphorus (P)-rich topsoil is prone to P loss, which can impair surface water quality via eutrophication. We used by-products from steel and energy industries to mitigate P loss from tile drains. For each by-product, P sorption maximum (P(max)) and strength (k) were determined, while a fluvarium trial assessed P uptake with flow rate. Although two ash materials (fly ash and bottom ash) had high P(max) and k values, heavy metal concentrations negated their use in the field. The fluvarium experiment determined that P uptake with by-products was best at low flow, but decreased at higher flow in proportion to k. A mixture of melter slag (<10 mm) and basic slag (high P(max), 7250 mg kg(-1); and k, 0.508 L mg P(-1)) was installed as backfill in eight drains on a dairy farm. Four drains with greywacke as backfill were constructed for controls. The site (10 ha) had P-rich topsoil (Olsen P of 64 mg kg(-1)) and yielded a mean dissolved reactive P (DRP) and total P (TP) concentration from greywacke backfilled drains of 0.33 and 1.20 mg L(-1), respectively. In contrast, slag backfilled drains had DRP and TP concentrations of 0.09 and 0.36 mg L(-1), respectively. Loads of DRP and TP in greywacke drains (0.45 and 1.92, respectively) were significantly greater (P < 0.05) than those from slag drains (0.18 and 0.85, respectively). Data from a farm where melter slag was used as a backfill suggested that slag would have a life expectancy of about 25 yr. Thus, backfilling tile drains with melter slag and a small proportion of basic slag is recommended as an effective means of decreasing P loss from high P soils.

  10. Micro-sized TiO2 as photoactive catalyst coated on industrial porcelain grès tiles to photodegrade drugs in water.

    PubMed

    Bianchi, Claudia L; Sacchi, Benedetta; Capelli, Sofia; Pirola, Carlo; Cerrato, Giuseppina; Morandi, Sara; Capucci, Valentino

    2017-04-27

    Pharmaceutical compounds and their metabolites raise worrying questions because of their continuous release and lack of efficient removal by conventional wastewater treatments; therefore, they are being detected in groundwater, surface water and drinking water in increasing concentrations. Paracetamol and aspirin are two of the most commonly used drugs employed as fever reducer, analgesic and anti-inflammatory. They and their metabolites are very often found in river water, so their degradation is necessary in order to render water suitable for human consumption. The present work is focused on the comparison of the photocatalytic performance of industrial active grés porcelain tiles covered with a commercial micro-sized TiO2 by industrial process using either conventional spray deposition or innovative digital printing methods. The photodegradation of two commonly used drugs, namely aspirin and paracetamol, was investigated both individually and as a mixture, in both deionized and tap water. The results reveal the full conversion of the drugs and the significant role of the photocatalytic tiles in the mineralization processes leading to harmless inorganic species. In particular, the digitally printed tiles exhibited better photodegradation performance for both drugs compared to the spray deposited tiles. No deactivation was observed on both photocatalytic tiles.

  11. Oxidative toxic stress in workers occupationally exposed to ceramic dust: A study in a ceramic manufacturing industry.

    PubMed

    Shad, Mehri Keshvari; Barkhordari, Abolfaz; Mehrparvar, Amir Houshang; Dehghani, Ali; Ranjbar, Akram; Moghadam, Rashid Heidari

    2016-09-27

    Exposure to compounds used in ceramic industries appears to be associated with induction of oxidative toxic stress. This cross sectional study was undertaken to assess the oxidative toxic stress parameters associated with occupational exposure to ceramic dust. Forty ceramic-exposed workers from a ceramic manufacturing industry and 40 unexposed referent subjects were studied. A questionnaire containing information regarding demographic variables, occupational history, history of any chronic disease, antioxidant consumption, and use of therapeutic drugs was administrated to them. Oxidative toxic stress biomarkers including lipid peroxidation (LPO), total antioxidant power (TAP), levels of total Thiol groups (TTG) and catalase (CAT) activity were measured. Significant increments in blood LPO levels, CAT activity and concomitant lower TAP were observed in ceramic exposed workers in comparison to referent group. No statistically significant difference was noted between the means of TTG levels between the groups. Findings of the study indicate that occupational exposure to ceramic dust induces oxidative toxic stress. Supplementation of workers with antioxidants may have beneficial effects on oxidative damages in ceramic industries.

  12. INTERIOR VIEW OF BATHROOM 1. SHOWING ORIGINAL MOSAIC PATTERN TILE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF BATHROOM 1. SHOWING ORIGINAL MOSAIC PATTERN TILE FLOOR, TILE WAINSCOT AND SHOWER SURROUND, AND CERAMIC ACCESSORIES. VIEW FACING EAST. - Hickam Field, Officers' Housing Type J, 701 Beard Street, Honolulu, Honolulu County, HI

  13. Exposure to refractory ceramic fibres in the metal industry.

    PubMed

    Linnainmaa, Markku; Kangas, Juhani; Mäkinen, Milja; Metsärinne, Sirpa; Tossavainen, Antti; Säntti, Jaakko; Veteli, Marika; Savolainen, Heikki; Kalliokoski, Pentti

    2007-08-01

    Refractory ceramic fibres (RCF) are used in thermal isolation in the metal industry where high temperatures are regularly employed. Asbestos materials were earlier commonly used for these purposes. In this work, two Finnish steel plants, three foundries and a repair shop were studied for the ceramic fibre exposure of their workers under normal production and during the replacement of oven insulation. Personal and stationary sampling was used together with a novel nasal lavage sampling for the evaluation of personal exposure. Fibres were counted with optical and electron microscopy and they were identified using an energy-dispersive X-ray analyser. Ceramic fibres were found in most production phases [range <0.01-0.29 fibres per cubic centimetre (f cm(-3))]. Considerably higher fibre counts were obtained during the maintenance work (range <0.01-14.2 f cm(-3)). Nasal sampling was found to correlate with the airborne fibre concentrations at the group level. The mean fibre concentrations varied from 34 to 6680 f ml(-1) of lavage liquid. Use of personal respiratory protectors diminished the exposure on the average as analysed in the lavage specimens, but the effect of respirator use did not appear clearly in the results. Because of the heat conditions, the workers used the respirators for a strict minimum period. A considerable exposure to RCF occurs in the studied plants. Its risk should be evaluated and managed more closely in view that the material is carcinogenic. Use of personal respiratory protectors should be encouraged. Their effective use could be verified by the nasal sampling for fibres after the work shift.

  14. High Temperature Filler for Tile Gaps

    NASA Technical Reports Server (NTRS)

    Holt, J. W.; Wang, D. S.

    1983-01-01

    Gaps between ceramic tiles filled with ceramic-coated fabric that withstands temperatures as high as 2,000 degrees F (1,300 degrees C). Reusable high-temperature gap filler is made of fabric coated with ceramic slurry and bonded in place with room-temperature-vulcanized adhesive. Procedure used in kilns and furnaces.

  15. The Sad Case of the Columbine Tiles.

    ERIC Educational Resources Information Center

    Dowling-Sendor, Benjamin

    2003-01-01

    Analyzes free-speech challenge to school district's guidelines for acceptable expressions on ceramic tiles painted by Columbine High School students to express their feelings about the massacre. Tenth Circuit found that tile painting constituted school-sponsored speech and thus district had the constitutional authority under "Hazelwood School…

  16. The Sad Case of the Columbine Tiles.

    ERIC Educational Resources Information Center

    Dowling-Sendor, Benjamin

    2003-01-01

    Analyzes free-speech challenge to school district's guidelines for acceptable expressions on ceramic tiles painted by Columbine High School students to express their feelings about the massacre. Tenth Circuit found that tile painting constituted school-sponsored speech and thus district had the constitutional authority under "Hazelwood School…

  17. Further industrial tests of ceramic thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Levine, S. R.

    1982-01-01

    The NASA Lewis Research Center made technical assistance arrangements (contracts) with several commercial organizations under which Lewis designed plasma-sprayed thermal-barrier coatings (TBC) for their products. Lewis was then furnished with the test conditions and evaluations of coating usefulness. The coating systems were developed and sprayed at Lewis. All of the systems incorporated a two-layer, ceramic-bond coating concept. Coating thickness and chemical composition were varied to fit three applications: the leading edges of first-stage turbine vanes for an advanced gas turbine engine; the flame impingement surfaces of a combustor transition section; and diesel engine valves and head surfaces. The TBC incorporated yytria-stabilized zirconia, which lowered metal temperatures, protected metal parts, and increased metal part life. In some cases metal burning, melting, and warping were eliminated. Additional benefits were realized from these endeavors: hands-on experience with thermal-barrier coatings was provided to industry; the success of these endeavors encourages these and other organizations to accelerate the implementation of TBC technology.

  18. Incorporation of Waste Ceramic Blocks in Structural Ceramics

    NASA Astrophysics Data System (ADS)

    de Oliveira, Orley Magalhães; das Graças da Silva-Valenzuela, Maria; Andrade, Christiano Gianesi Bastos; Junior, Antonio Hortêncio Munhoz; Valenzuela-Díaz, Francisco Rolando

    In Brazil, Ceramics Industries produce bricks and ceramic tiles in practically all the country. In the southwestern region of Bahia are located some of these industries. A considerable proportion of the material produced do not pass the quality control for not having a uniform visual appearance or have cracks. These burned pieces are generally discarded, resulting in a big quantity of waste. The objective of this work is the characterization of this industrial waste and thus consign them to other industrial applications. Our results demonstrate that the burned waste have potential to be used for incorporation in common clay for structural ceramics, thereby avoiding its disposal in nature and reducing this environmental liability. Experimental bodies were tested with different quantities of waste. The common clay and the burned waste were characterized by XRD, TG/DTA, and SEM. The burned specimens were tested for mechanical strength, water absorption, bulk density, and apparent porosity. An incorporation of 10% of waste furnished the best results.

  19. Effects of waste glass and waste foundry sand additions on reclaimed tiles containing sewage sludge ash.

    PubMed

    Lin, Deng-Fong; Luo, Huan-Lin; Lin, Kuo-Liang; Liu, Zhe-Kun

    2017-07-01

    Applying sewage sludge ash (SSA) to produce reclaimed tiles is a promising recycling technology in resolving the increasing sludge wastes from wastewater treatment. However, performance of such reclaimed tiles is inferior to that of original ceramic tiles. Many researchers have therefore tried adding various industrial by-products to improve reclaimed tile properties. In this study, multiple materials including waste glass and waste foundry sand (WFS) were added in an attempt to improve physical and mechanical properties of reclaimed tiles with SSA. Samples with various combinations of clay, WFS, waste glass and SSA were made with three kiln temperatures of 1000°C, 1050°C, and 1100°C. A series of tests on the samples were next conducted. Test results showed that waste glass had positive effects on bending strength, water absorption and weight loss on ignition, while WFS contributed the most in reducing shrinkage, but could decrease the tile bending strength when large amount was added at a high kiln temperature. This study suggested that a combination of WFS from 10% to 15%, waste glass from 15% to 20%, SSA at 10% at a kiln temperature between 1000°C and 1050°C could result in quality reclaimed tiles with a balanced performance.

  20. Association of soil cadmium contamination with ceramic industry: a case study in a Chinese town.

    PubMed

    Liao, Q Lin; Liu, Cong; Wu, H Yun; Jin, Yang; Hua, Ming; Zhu, B Wan; Chen, Kai; Huang, Lei

    2015-05-01

    Soil cadmium (Cd) contamination is attributable to many sources, among which the ceramic industry is probably an important contributor whose relationship will be explored in this study. Upon studying a town in southeastern China that is quite famous for its ceramics, we observed that the soil Cd distribution agreed with the local ceramic industry's distribution in space and time from 2004 to 2014. Ceramic and pigment samples from a typical factory were selected in a case study, and a sediment core from a nearby river was collected. First, an application of the geo-accumulation index suggested that the sediment was very strongly polluted by Cd (mean 1874 mg/kg). Second, sediment dating indicated that the Cd concentration surge and the establishment of the factory were proximate in time (2002-2004). Third, principal component analysis showed high loading of Cd (0.947) solely, suggesting that the factory was most likely responsible for the Cd pollution found in the sediments of a nearby river. Finally, we infer that the soil cadmium pollution in the whole area may be related to the region's prosperous ceramic industry. Local government should reinforce controls of the ceramic industry and implement effective countermeasures.

  1. Respiratory hazard from removal of ceramic fiber insulation from high temperature industrial furnaces.

    PubMed

    Gantner, B A

    1986-09-01

    Ceramic fiber insulation is being used increasingly as a refractory lining for heat treating and preheating furnaces in the iron and steel industry. This is largely due to its superior thermal resistance per unit thickness when compared to insulating fire brick, which was the previous mainstay of refractory linings. Although toxicity data to date have found these ceramic fibers to be innocuous, recent studies have shown the fibers to devitrify and undergo partial conversion to cristobalite when exposed to elevated temperatures. This paper presents the exposure hazards to cristobalite found during the removal of various brands of ceramic fiber insulation from heat treat furnaces and the extent of fiber transformation to cristobalite.

  2. Ceramic colorant from untreated iron ore residue.

    PubMed

    Pereira, Oscar Costa; Bernardin, Adriano Michael

    2012-09-30

    This work deals with the development of a ceramic colorant for glazes from an untreated iron ore residue. 6 mass% of the residue was added in suspensions (1.80 g/cm(3) density and 30s viscosity) of white, transparent and matte glazes, which were applied as thin layers (0.5mm) on engobeb and not fired ceramic tiles. The tiles were fired in laboratory roller kiln in a cycle of 35 min and maximum temperatures between 1050 and 1180°C. The residue and glazes were characterized by chemical (XRF) and thermal (DTA and optical dilatometry) analyses, and the glazed tiles by colorimetric and XRD analyses. The results showed that the colorant embedded in the transparent glaze results in a reddish glaze (like pine nut) suitable for the ceramic roof tile industry. For the matte and white glazes, the residue has changed the color of the tiles with temperature. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. CO2 laser photoacoustic detection of ammonia emitted by ceramic industries.

    PubMed

    Sthel, M S; Schramm, D U; Lima, G R; Carneiro, L; Faria, R T; Castro, M P P; Alexandre, J; Toledo, R; Silva, M G; Vargas, H

    2011-01-01

    A homemade photoacoustic spectrometer has been constructed for monitoring gas emission from several sources. Numerous air pollutant gases are emitted exhaust of industries, vehicles and power plants. The photoacoustic technique is extremely sensitive and selective in detecting various gases. This work focuses on the gas emitted by the ceramic industry in northern Rio de Janeiro State in Brazil, the ceramic industry plays a remarkable role in the economy activity of this region, in recent years, this region developed into a significant red ceramic complex. The potential impact on the atmospheric environment of the region due to gaseous pollutant emissions from these anthropogenic sources needs to be evaluated. In this work we identified NH3 present in the samples collected in the kiln of a ceramic plant, in the concentration range of 33-52 ppmV. The ammonia gas present in our collected samples might come from the excess nitrogen in the manure soil from where the ceramic material was extracted. This soil was used for the sugarcane culture which is another important economic activity of this region. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Integrated pollution prevention and control for heavy ceramic industry in Galicia (NW Spain).

    PubMed

    Barros, M C; Bello, P; Roca, E; Casares, J J

    2007-03-22

    The heavy ceramic industry (building materials and refractory products manufacture) is an important source of pollutants to the environment. For this reason these industrial sub-sectors are included in prevention and control pollution policies, specifically those of the European Union. The IPPC Directive pays particular attention to the mineral industries, not least to the ceramic industry (epigraph 3.5, Annex I). In this paper, a methodology which is being applied to support IPPC installations and the competent administrative authority in Galicia (NW Spain) is presented. For that, the Galician heavy ceramic industry is analysed, as also are the ways to study the Best Available Techniques (BAT) with a view to establishing the emission limit values (ELV) for each specific case. Hence, a technological state of the art has been carried out for both sub-sectors, from the point of view of implementation of the IPPC in Galicia. Following this, the processes are described briefly and an analysis of the consumption and emission levels of the main pollutants is made. An inventory that includes the best environmental practices and the preventive and abatement candidate techniques as BAT was elaborated for both considered sub-sectors. An information data sheet for each candidate BAT is presented as a method to help both the industries and the competent authority to identify a candidate technique of the inventory as BAT. Three illustrative examples of the application of this procedure are presented for different emissions to environmental media for Galician installations.

  5. Removal of boron from ceramic industry wastewater by adsorption-flocculation mechanism using palm oil mill boiler (POMB) bottom ash and polymer.

    PubMed

    Chong, Mei Fong; Lee, Kah Peng; Chieng, Hui Jiun; Syazwani Binti Ramli, Ili Izyan

    2009-07-01

    Boron is extensively used in the ceramic industry for enhancing mechanical strength of the tiles. The discharge of boron containing wastewater to the environment causes severe pollution problems. Boron is also dangerous for human consumption and causes organisms' reproductive impediments if the safe intake level is exceeded. Current methods to remove boron include ion-exchange, membrane filtration, precipitation-coagulation, biological and chemical treatment. These methods are costly to remove boron from the wastewater and hence infeasible for industrial wastewater treatment. In the present research, adsorption-flocculation mechanism is proposed for boron removal from ceramic wastewater by using Palm Oil Mill Boiler (POMB) bottom ash and long chain polymer or flocculant. Ceramic wastewater is turbid and milky in color which contains 15 mg/L of boron and 2000 mg/L of suspended solids. The optimum operating conditions for boron adsorption on POMB bottom ash and flocculation using polymer were investigated in the present research. Adsorption isotherm of boron on bottom ash was also investigated to evaluate the adsorption capacity. Adsorption isotherm modeling was conducted based on Langmuir and Freundlich isotherms. The results show that coarse POMB bottom ash with particle size larger than 2 mm is a suitable adsorbent where boron is removed up to 80% under the optimum conditions (pH=8.0, dosage=40 g bottom ash/300 ml wastewater, residence time=1h). The results also show that KP 1200 B cationic polymer is effective in flocculating the suspended solids while AP 120 C anionic polymer is effective in flocculating the bottom ash. The combined cationic and anionic polymers are able to clarify the ceramic wastewater under the optimum conditions (dosage of KP 1200 B cationic polymer=100 mg/L, dosage of AP 120 C anionic polymer=50 mg/L, mixing speed=200 rpm). Under the optimum operating conditions, the boron and suspended solids concentration of the treated wastewater were

  6. Design of self-cleaning TiO2 coating on clay roofing tiles

    NASA Astrophysics Data System (ADS)

    Hadnadjev, Milica; Ranogajec, Jonjaua; Petrovic, Snezana; Markov, Sinisa; Ducman, Vilma; Marinkovic-Neducin, Radmila

    2010-07-01

    The phenomenon of heterogeneous photocatalysis takes place in the degradation process of many organic contaminants on solid surfaces. Photocatalysis is based on the excitation of the semiconductor by irradiation with supraband gap photons and the migration of electron-hole pairs to the surface of the photocatalysts, leading to the reaction of the holes with adsorbed H2O and OH- to form hydroxyl radicals. Due to the stability and photosensitivity of TiO2 semiconductors, this system is well studied and is of great interest from an ecological and industrial point of view for use in the field of building materials. Clay roofing tiles, due to their long-term exploitation, are subject to physical, chemical and biological degradation that leads to deterioration. Ceramic systems have a high percentage of total porosity and considering their non-tolerance of organic coating, the use of surface active materials (SAM) that induce porosity in TiO2 coatings is of vital significance. Photocatalytic coatings applied on clay roofing tiles under industrial conditions were designed by varying the quantity of TiO2 (mass/cm2) on the tile surface (thin and thick TiO2 layer). The positive changes in specific surface area and mesopore structure of the designed coatings were made by the addition of PEG 600 as a surface active material. It was shown that a thin photocatalytic layer (0.399 mg suspension/cm2 tile surface), applied onto ceramic tiles under industrial conditions, had better photocatalytic activity in methylene blue decomposition, hydrophilicity and antimicrobial activity than a thick photocatalytic coating (0.885 mg suspension/cm2).

  7. Evaluation of Occupational Exposure of Glazers of a Ceramic Industry to Cobalt Blue Dye.

    PubMed

    Kargar, Fatemeh; Shahtaheri, Seyed Jamaleddin; Golbabaei, Farideh; Barkhordari, Abolfazl; Rahimi-Froushani, Abbas; Khadem, Monireh

    2013-08-01

    Cobalt is one of the most important constituent present in ceramic industries. Glazers are the relevant workers when they are producing blue colored ceramic, causing occupational exposure to such metal. Through this study, urinary cobalt was determined in glazers in a ceramic industry when they were producing blue-colored ceramic glazes. In this case-control study, spot urine samples were collected from 49 glazers at the start and end of work shifts (totally 98 samples) in 2011. Control group were well matched for age, height, and weight. A solid phase extraction system was used for separation and preconcentration of samples followed by analysis by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). All participants filled out a self administered questionnaire comprises questions about duration of exposure, work shift, use of mask, skin dermatitis, kind of job, ventilation system, overtime work, age, weight, and height. The lung function tests were performed on each control and cobalt exposed subjects. Analysis of covariance (ANCOVA) was used to evaluate the obtained results. Urinary levels of cobalt were significantly higher in the glazers compared to the control group. There were significant differences at urinary concentration of cobalt at the start and end of the work shift in glazers. Spirometric parameters were significantly lower in the glazers compared to the control group. Among the variables used in questionnaire the significant variables were dermatitis skin, mask, ventilation, and overtime work. This study verified existence of cobalt in the urine glazers, showing lower amount than the ACGIH standard.

  8. Advanced ceramic coating development for industrial/utility gas turbines

    NASA Technical Reports Server (NTRS)

    Vogan, J. W.; Stetson, A. R.

    1982-01-01

    A program was conducted with the objective of developing advanced thermal barrier coating (TBC) systems. Coating application was by plasma spray. Duplex, triplex and graded coatings were tested. Coating systems incorporated both NiCrAly and CoCrAly bond coats. Four ceramic overlays were tested: ZrO2.82O3; CaO.TiO2; 2CaO.SiO2; and MgO.Al2O3. The best overall results were obtained with a CaO.TiO2 coating applied to a NiCrAly bond coat. This coating was less sensitive than the ZrO2.8Y2O3 coating to process variables and part geometry. Testing with fuels contaminated with compounds containing sulfur, phosphorus and alkali metals showed the zirconia coatings were destabilized. The calcium titanate coatings were not affected by these contaminants. However, when fuels were used containing 50 ppm of vanadium and 150 ppm of magnesium, heavy deposits were formed on the test specimens and combustor components that required frequent cleaning of the test rig. During the program Mars engine first-stage turbine blades were coated and installed for an engine cyclic endurance run with the zirconia, calcium titanate, and calcium silicate coatings. Heavy spalling developed with the calcium silicate system. The zirconia and calcium titanate systems survived the full test duration. It was concluded that these two TBC's showed potential for application in gas turbines.

  9. Preassembly Of Insulating Tiles

    NASA Technical Reports Server (NTRS)

    Izu, Y. D.; Yoshioka, E. N.; Rosario, T.

    1988-01-01

    Concept for preassembling high-temperature insulating tiles speeds and simplifies installation and repair and reduces damage from handling. Preassembly concept facilitates placement of tiles on gently contoured surfaces as well as on flat ones. Tiles bonded to nylon mesh with room-temperature-vulcanizing silicon rubber. Spacing between tiles is 0.03 in. Applications include boilers, kilns, and furnaces.

  10. Current status and future aspects of R&D activities on electro- ceramic components in Japanese industry

    NASA Astrophysics Data System (ADS)

    Takagi, Hiroshi

    2011-05-01

    The oldest pottery in Japan was made 16,500 years ago in Jomon period. On the background of a long history of Japanese ceramics, Murata and other Japanese manufacturers have been developing electro-ceramic materials and manufacturing many kinds of electronic components using them. In 1937, TDK manufactured ferrite cores first in the world. Then, Japanese electro-ceramic industry has led the world on electro-ceramic materials and components until now, especially in the fields of BaTiO3, PZT, PTC thermistor, ZnO varistor and insulating ceramics. From the analysis of the papers reported lately, R&D activities of Japanese manufacturers are understood to cover not only improving properties of electro-ceramics, but also appropriate technologies and basic technologies.

  11. Tantalum-Based Ceramics for Refractory Composites

    NASA Technical Reports Server (NTRS)

    Stewart, David A.; Leiser, Daniel; DiFiore, Robert; Kalvala, Victor

    2006-01-01

    A family of tantalum-based ceramics has been invented as ingredients of high-temperature composite insulating tiles. These materials are suitable for coating and/or permeating the outer layers of rigid porous (foam-like or fibrous) ceramic substrates to (1) render the resulting composite ceramic tiles impervious to hot gases and (2) enable the tiles to survive high heat fluxes at temperatures that can exceed 3,000 F ( 1,600 C).

  12. Fibrous ceramic insulation

    SciTech Connect

    Goldstein, H.E.

    1982-11-01

    Some of the reusable heat shielding materials used to protect the Space Shuttles, their manufacturing processes, properties, and applications are discussed. Emphasis is upon ceramic materials. Space Shuttle Orbiter tiles are discussed.

  13. Hot corrosion of ceramic-coating materials for industrial/utility gas turbines

    SciTech Connect

    Barkalow, R.H.

    1981-01-01

    Furnace hot corrosion tests of yttria-stabilized zirconia (YSZ) and other candidate ceramic coating materials were run under combinations of temperature, salt deposits, and gaseous environments know to cause severe hot corrosion of state-of-the-art metallic coatings for industrial/utility gas turbines. Specimens were free-standing ceramic coupons and ceramic-coated IN 792. X-ray fluorescence and diffraction data on free-standing YSZ coupons showed surface yttrium loss and cubic-to-monoclinic transformation as a result of exposure to liquid salt and SO/sub 3/. Greater destabilization was observed at the lower of two test temperatures (704 and 982/sup 0/C), and destabilization increased with increasing SO/sub 3/ pressure and V-containing salt deposits. The data suggest that hot corrosion of YSZ can occur by a type of acidic dissolution of Y/sub 2/O/sub 3/ from the ZrO/sub 2/ solid solution. In spite of the greater surface destabilization at 704/sup 0/C, the bond coat and substrate of YSZ-coated IN 792 were not attacked at 704/sup 0/C but severely corroded at 982/sup 0/C. These results show that degradation of ceramic-coated metallic components can be more strongly influenced by the porosity of the microstructure and fluidity of the liquid salt than by the chemical stability of the ceramic coating material in the reactive environment. Other ceramic materials (SiO/sub 2/, Si/sub 3/N/sub 4/, ZrSiO/sub 2/, and mullite), concurrently exposed to the same conditions which produced significant destabilization of YSZ, showed no evidence of reaction at 704/sup 0/C but noticeable corrosion at 982/sup 0/C. Also, the high temperature corrosion was greater in air than in SO/sub 3/-containing gases. These trends suggest that hot corrosion of the silicon-containing ceramics was basic in nature, and such materials have potential for good resistance to chemical decomposition under the acidic conditions characteristics of industrial/utility gas turbines.

  14. Investigation on emission characteristics of metal-ceramic cathode applied to industrial X-ray diode.

    PubMed

    Xun, Ma; Jianqiang, Yuan; Hongwei, Liu; Hongtao, Li; Lingyun, Wang; Ping, Jiang

    2016-06-01

    The industrial x-ray diode with high impedance configuration is usually adopted to generate repetitive x-ray, but its performance would be worsened due to lower electric field on the cathode of diode when a voltage of several hundreds of kV is applied. To improve its performance, a novel metal-ceramic cathode is proposed in this paper. Key factors (width, relative permittivity of ceramic, and so on) affecting electric field distribution on triple points are analyzed by electrostatic field calculation program, so as to optimize the design of this novel cathode. Experiments are done to study the characteristics including emission current of cathode, diode voltage duration, diode mean dynamic impedance, and diode impedance drop velocity within diode power duration. The results show that metal-ceramic cathode could improve diode performance by enhancing emission current and stabling impedance; the impedance drop velocity of diode with spoke-shaped metal-ceramic cathode was reduced to -5 Ω ns(-1) within diode power duration, comparing to -15 Ω ns(-1) with metal foil cathode.

  15. Ceramic Processing

    SciTech Connect

    EWSUK,KEVIN G.

    1999-11-24

    Ceramics represent a unique class of materials that are distinguished from common metals and plastics by their: (1) high hardness, stiffness, and good wear properties (i.e., abrasion resistance); (2) ability to withstand high temperatures (i.e., refractoriness); (3) chemical durability; and (4) electrical properties that allow them to be electrical insulators, semiconductors, or ionic conductors. Ceramics can be broken down into two general categories, traditional and advanced ceramics. Traditional ceramics include common household products such as clay pots, tiles, pipe, and bricks, porcelain china, sinks, and electrical insulators, and thermally insulating refractory bricks for ovens and fireplaces. Advanced ceramics, also referred to as ''high-tech'' ceramics, include products such as spark plug bodies, piston rings, catalyst supports, and water pump seals for automobiles, thermally insulating tiles for the space shuttle, sodium vapor lamp tubes in streetlights, and the capacitors, resistors, transducers, and varistors in the solid-state electronics we use daily. The major differences between traditional and advanced ceramics are in the processing tolerances and cost. Traditional ceramics are manufactured with inexpensive raw materials, are relatively tolerant of minor process deviations, and are relatively inexpensive. Advanced ceramics are typically made with more refined raw materials and processing to optimize a given property or combination of properties (e.g., mechanical, electrical, dielectric, optical, thermal, physical, and/or magnetic) for a given application. Advanced ceramics generally have improved performance and reliability over traditional ceramics, but are typically more expensive. Additionally, advanced ceramics are typically more sensitive to the chemical and physical defects present in the starting raw materials, or those that are introduced during manufacturing.

  16. Exploring high-strength glass-ceramic materials for upcycling of industrial wastes

    NASA Astrophysics Data System (ADS)

    Back, Gu-Seul; Park, Hyun Seo; Seo, Sung Mo; Jung, Woo-Gwang

    2015-11-01

    To promote the recycling of industrial waste and to develop value-added products using these resources, the possibility of manufacturing glass-ceramic materials of SiO2-CaO-Al2O3 system has been investigated by various heat treatment processes. Glass-ceramic materials with six different chemical compositions were prepared using steel industry slags and power plant waste by melting, casting and heat treatment. The X-ray diffraction results indicated that diopside and anorthite were the primary phases in the samples. The anorthite phase was formed in SiO2-rich material (at least 43 wt%). In CaO-rich material, the gehlenite phase was formed. By the differential scanning calorimetry analyses, it was found that the glass transition point was in the range of 973-1023 K, and the crystallization temperature was in the range of 1123-1223 K. The crystallization temperature increased as the content of Fe2O3 decreased. By the multi-step heat treatment process, the formation of the anorthite phase was enhanced. Using FactSage, the ratio of various phases was calculated as a function of temperature. The viscosities and the latent heats for the samples with various compositions were also calculated by FactSage. The optimal compositions for glass-ceramics materials were discussed in terms of their compressive strength, and micro-hardness.

  17. Assessment of thermal environments: Working conditions in the Portuguese ceramic industry in 1994 and 2012.

    PubMed

    Oliveira, A Virgílio M; Gaspar, Adélio R; Raimundo, António M; Quintela, Divo A

    2015-01-01

    The assessment of heat stress in the ceramic industry is a matter of great concern for safety and health of workers. For this purpose working conditions in the last two decades are analysed. To study occupational hot thermal environments in the Portuguese ceramic activity sector in 8 industrial units and 21 workplaces. In order to characterise the level of heat exposure, the method proposed by ISO 7243 (1989) based on the Wet-Bulb Globe Temperature (WBGT) index was adopted. Two field surveys, one carried out in 1994 and the other in 2012 are considered. The WBGT mean values varied between 23.7 and 37.8°C in the 1994 survey while in 2012 those values ranged from 21.5 to 30.5°C. In the 1994 evaluations 5 out of 8 (62.5%) of the workplaces present heat stress conditions whereas in the 2012 assessments the corresponding value is 46.2% (6 out of 13 workplaces). Despite two decades between the two surveys, the results highlight that the overall thermal conditions of the workplaces in the ceramic sector are still quite similar, suggesting that the working conditions have not changed enough, a conclusion that asks for further analysis and improvements.

  18. Industry tests of NASA ceramic thermal barrier coating. [for gas turbine engine applications

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Stepka, F. S.

    1979-01-01

    Ceramic thermal barrier coating (TBC) system was tested by industrial and governmental organizations for a variety of aeronautical, marine, and ground-based gas turbine engine applications. This TBC is a two-layer system with a bond coating of nickel-chromium-aluminum-yttrium (Ni-16Cr-6Al-0.6Y, in wt. percent) and a ceramic coating of yttria-stabilized zirconia (ZrO2-12Y2O3, in wt. percent). Seven tests evaluated the system's thermal protection and durability. Five other tests determined thermal conductivity, vibratory fatigue characteristics, and corrosion resistance of the system. The information presented includes test results and photographs of the coated parts. Recommendations are made for improving the coating procedures.

  19. Evaluation of Occupational Exposure of Glazers of a Ceramic Industry to Cobalt Blue Dye

    PubMed Central

    KARGAR, Fatemeh; SHAHTAHERI, Seyed Jamaleddin; GOLBABAEI, Farideh; BARKHORDARI, Abolfazl; RAHIMI-FROUSHANI, Abbas; KHADEM, Monireh

    2013-01-01

    Background: Cobalt is one of the most important constituent present in ceramic industries. Glazers are the relevant workers when they are producing blue colored ceramic, causing occupational exposure to such metal. Through this study, urinary cobalt was determined in glazers in a ceramic industry when they were producing blue-colored ceramic glazes. Methods: In this case-control study, spot urine samples were collected from 49 glazers at the start and end of work shifts (totally 98 samples) in 2011. Control group were well matched for age, height, and weight. A solid phase extraction system was used for separation and preconcentration of samples followed by analysis by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). All participants filled out a self administered questionnaire comprises questions about duration of exposure, work shift, use of mask, skin dermatitis, kind of job, ventilation system, overtime work, age, weight, and height. The lung function tests were performed on each control and cobalt exposed subjects. Analysis of covariance (ANCOVA) was used to evaluate the obtained results. Results: Urinary levels of cobalt were significantly higher in the glazers compared to the control group. There were significant differences at urinary concentration of cobalt at the start and end of the work shift in glazers. Spirometric parameters were significantly lower in the glazers compared to the control group. Among the variables used in questionnaire the significant variables were dermatitis skin, mask, ventilation, and overtime work. Conclusion: This study verified existence of cobalt in the urine glazers, showing lower amount than the ACGIH standard. PMID:26056641

  20. Geopolymers as potential repair material in tiles conservation

    NASA Astrophysics Data System (ADS)

    Geraldes, Catarina F. M.; Lima, Augusta M.; Delgado-Rodrigues, José; Mimoso, João Manuel; Pereira, Sílvia R. M.

    2016-03-01

    The restoration materials currently used to fill gaps in historical architectural tiles (e.g. lime or organic resin pastes) usually show serious drawbacks in terms of compatibility, effectiveness or durability. The existing solutions do not fully protect Portuguese faïence tiles ( azulejos) in outdoor conditions and frequently result in further deterioration. Geopolymers can be a potential solution for tile lacunae infill, given the chemical-mineralogical similitude to the ceramic body, and also the durability and versatile range of physical properties that can be obtained through the manipulation of their formulation and curing conditions. This work presents and discusses the viability of the use of geopolymeric pastes to fill lacunae in tiles or to act as "cold" cast ceramic tile surrogates reproducing missing tile fragments. The formulation of geopolymers, namely the type of activators, the alumino-silicate source, the quantity of water required for adequate workability and curing conditions, was studied. The need for post-curing desalination was also considered envisaging their application in the restoration of outdoor historical architectural tiles frequently exposed to adverse environmental conditions. The possible advantages and disadvantages of the use of geopolymers in the conservation of tiles are also discussed. The results obtained reveal that geopolymers pastes are a promising material for the restoration of tiles, when compared to other solutions currently in use.

  1. Structural ceramics

    SciTech Connect

    Wachtman, J.B. Jr.

    1989-01-01

    The present work discusses opportunities for application of structural ceramics in heat engines, industrial-wear parts, prosthetics and bearings; conceptual and detailed design principles for structural ceramics; the processing, consolidation, and properties of members of the SiC family of structural ceramics; and the silicon nitride and sialon families of hot-pressed, sintered, and reaction-bonded, structural ceramics. Also discussed are partially-stabilized zirconia and zirconia-toughened ceramics for structural applications, the processing methods and mechanisms of fiber-reinforcement in ceramic-matrix fiber-reinforced composites, and the tribological properties of structural ceramics.

  2. Thermal Characterization of TPS Tiles

    SciTech Connect

    Kacmar, C. J.; LaCivita, K. J.; Jata, K. V.; Sathish, S.

    2006-03-06

    The Thermal Protection System (TPS) used on space shuttles protects the metallic structure from the large amounts of heat created during travel through the atmosphere, both on takeoff and reentry. The shuttle experiences high thermo-acoustic loading and impact damage from micro-meteorites, which can cause disbonds, delaminations, chips, cracks, and other defects to the TPS system. To enhance durability and damage tolerance, new TPS tiles with an added protective ceramic-matrix-composite layer are being developed. This paper explores the use of pulsed thermography as a quick, diverse, non-destructive technique, to characterize the TPS system. The pulsed thermography images obtained are presented and analyzed.

  3. Task 4 supporting technology. Part 1: Detailed test plan for leading edge tile development. Leading edge material development and testing

    NASA Technical Reports Server (NTRS)

    Hogenson, P. A.; Staszak, Paul; Hinkle, Karrie

    1995-01-01

    This task develops two alternative candidate tile materials for leading edge applications: coated alumina enhanced thermal barrier (AETB) tile and silicone impregnated reusable ceramic ablator (SIRCA) tile. Upon reentry of the X-33/RLV space vehicle, the leading edges experience the highest heating rates and temperatures. The wing leading edge and nose cap experience peak temperatures in the range 2000 to 2700 F. Replacing reinforced carbon-carbon (RCC) with tile-based thermal protection system (TPS) materials is the primary objective. Weight, complexity, coating impact damage, and repairability are among the problems that this tile technology development addresses. The following subtasks will be performed in this development effort: tile coating development; SIRCA tile development; robustness testing of tiles; tile repair development; tile operations/processing; tile leading edge configuration; and life cycle testing.

  4. Receptor models application to multi-year ambient PM 10 measurements in an industrialized ceramic area: Comparison of source apportionment results

    NASA Astrophysics Data System (ADS)

    Pandolfi, M.; Viana, M.; Minguillón, M. C.; Querol, X.; Alastuey, A.; Amato, F.; Celades, I.; Escrig, A.; Monfort, E.

    Ambient PM 10 data collected in one of the largest industrialized ceramic areas of Europe were used to study similarities and differences in the source apportionment results from three widespread receptor models: chemical mass balance (CMB), positive matrix factorization (PMF) and principal component analysis (PCA). Particulate emissions were collected from a variety of sources including soil dust and different mixed raw materials used for the manufacture of ceramic tiles in the area. The chemical profiles of these emission sources are presented in this work. The analysis of the PMF scaled residuals was used as a diagnostic tool for adjusting species uncertainties and to assess the PMF model fit by comparison with the robust CMB results. The Q robust value, the degree of correlation between the predicted and measured species concentrations, the sample-by-sample correlation of the PMF source contributions compared with the CMB improved after the new error structure was used within the PMF model. The robustness of the CMB analysis used for the comparison with the PMF analysis was inspected by means of the CMB performances parameters as well as by comparing the results with a previous CMB analysis performed on the same database but with different speciated source profiles. Moreover, the results showed that PMF and PCA models were not able to distinguish between the two most important sources of crustal material in the selected area (one natural and one anthropogenic). With the CMB model a contribution from both sources was calculated without observing collinearity between the profiles. However, high correlation was found by adding the two crustal contributions from CMB and comparing the results with the single crustal factor from PCA and PMF. Low correlation was observed between the contribution values of the vehicular source for each model pairs. The lack of a local vehicular experimental profile for the CMB analysis and the non-specific chemical speciation performed

  5. Light-weight ceramic insulation

    NASA Technical Reports Server (NTRS)

    Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    2002-01-01

    Ultra-high temperature, light-weight, ceramic insulation such as ceramic tile is obtained by pyrolyzing a siloxane gel derived from the reaction of at least one organo dialkoxy silane and at least one tetralkoxy silane in an acid or base liquid medium. The reaction mixture of the tetra- and dialkoxy silanes may contain also an effective amount of a mono- or trialkoxy silane to obtain the siloxane gel. The siloxane gel is dried at ambient pressures to form a siloxane ceramic precursor without significant shrinkage. The siloxane ceramic precursor is subsequently pyrolyzed, in an inert atmosphere, to form the black ceramic insulation comprising atoms of silicon, carbon and oxygen. The ceramic insulation, can be characterized as a porous, uniform ceramic tile resistant to oxidation at temperatures ranging as high as 1700.degree. C. and is particularly useful as lightweight tiles for spacecraft and other high-temperature insulation applications.

  6. New ceramics incorporated with industrial by-products as pore formers for sorption of toxic chromium from aqueous media

    NASA Astrophysics Data System (ADS)

    Domopoulou, Asimina; Spiliotis, Xenofon; Baklavaridis, Apostolos; Papapolymerou, George; Karayannis, Vayos

    2015-04-01

    The incorporation of secondary resources including various industrial wastes as pore-forming agents into clayey raw material mixtures for the development of tailored porous ceramic microstructures is currently of increasing interest. In the present research, sintered ceramic compacts were developed incorporated with industrial solid by-products as pore formers, and then used as new sorbents for chromium removal from aqueous media. The microstructures obtained were characterized through X-ray diffraction (XRD) analysis as well as scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectrometry (EDX). Sorption potential of chromium from synthetic solutions on the porous ceramics was studied by static adsorption experiments as a function of the pore-former percentage in the ceramic matrix as well as the initial heavy metal (chromium) concentration, solution pH and temperature. Kinetic studies were conducted and adsorption isotherms of chromium were determined using the Langmuir equation. Preliminary experimental results concerning the adsorption characteristics of chromium on the ceramic materials produced appear encouraging for their possible beneficial use as new sorbents for the removal of toxic chromium from aqueous media. Keywords: sorbents, ceramics, industrial solid by-products, pore former, chromium. Acknowledgements: This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program ARCHIMEDES III: Investing in knowledge society through the European Social Fund.

  7. New ceramics incorporated with industrial by-products as pore formers for sorption of toxic chromium from aqueous media

    NASA Astrophysics Data System (ADS)

    Domopoulou, Artemi

    2015-04-01

    The incorporation of secondary resources including various industrial wastes as pore-forming agents into clayey raw material mixtures for the development of tailored porous ceramic microstructures is currently of increasing interest. In the present research, sintered ceramic compacts were developed incorporated with industrial solid by-products as pore formers, and then used as new sorbents for chromium removal from aqueous media. The microstructures obtained were characterized through X-ray diffraction (XRD) analysis as well as scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectrometry (EDX). Sorption potential of chromium from synthetic solutions on the porous ceramics was studied by static adsorption experiments as a function of the pore-former percentage in the ceramic matrix as well as the initial heavy metal (chromium) concentration, solution pH and temperature. Kinetic studies were conducted and adsorption isotherms of chromium were determined using the Langmuir equation. Preliminary experimental results concerning the adsorption characteristics of chromium on the ceramic materials produced appear encouraging for their possible beneficial use as new sorbents for the removal of toxic chromium from aqueous media. Keywords: sorbents, ceramics, industrial solid by-products, pore-former, chromium. Acknowledgements: This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program ARCHIMEDES III: Investing in knowledge society through the European Social Fund.

  8. Handmade Tile Mosaics

    ERIC Educational Resources Information Center

    Keeler, Rusty

    2007-01-01

    Just like the classroom, children's outdoor environments should be filled with artistic creations that add sparkle and imagination to the space. One of the author's favorite ways to add art to the outdoors is by installing a mosaic mural of child-made tiles. The process of making the tiles is fun for all; each tile is a charming work of art in…

  9. Thermoplastic Extrusion for Ceramic Bodies

    NASA Astrophysics Data System (ADS)

    Clemens, Frank

    Originally for the extrusion of ceramic bricks and tiles, clay and water were used to endow ceramic particle mixtures with sufficient plastic behaviour to permit practical shaping of the ceramic bodies. High-performance ceramics, however, often require the elimination of clay from extrusion formulations because the chemistry of the clay is incompatible with that of the desired ceramic materials. Therefore organic materials are frequently used in ceramic extrusion to provide plastic flow. Not only plastic behaviour is important for the extrusion of ceramic bodies. There are many other characteristics that can be tailored by the suitable addition of organics in a ceramic extrusion paste, or feedstock.

  10. Development of Ceramic Coating on Metal Substrate using Industrial Waste and Ore Minerals

    NASA Astrophysics Data System (ADS)

    Bhuyan, S. K.; Thiyagarajan, T. K.; Mishra, S. C.

    2017-02-01

    The technological advancement in modern era has a boon for enlightening human life; but also is a bane to produce a huge amount of (industrial) wastes, which is of great concern for utilization and not to create environmental threats viz. polution etc. In the present piece of research work, attempts have been made to utilize fly ash (wastes of thermal power plants) and along with alumina bearing ore i.e. bauxite, for developing plasma spray ceramic coatings on metals. Fly ash and with 10 and 20% bauxite addition is used to deposit plasma spray coatings on a metal substrate. The surface morphology of the coatings deposited at different power levels of plasma spraying investigated through SEM and EDS analysis. The coating thickness is measured. The porosity levels of the coatings are evaluated. The coating hardness isalso measured. This piece of research work will be beneficial for future development and use of industrial waste and ore minerals for high-valued applications.

  11. Energy Saving Method of Manufacturing Ceramic Products from Fiber Glass Waste

    SciTech Connect

    Michael J. Haun

    2005-07-15

    The U.S. fiber glass industry disposes of more than 260,000 tons of industrial fiber glass waste in landfills annually. New technology is needed to reprocess this industrial waste into useful products. A low-cost energy-saving method of manufacturing ceramic tile from fiber glass waste was developed. The technology is based on sintering fiber glass waste at 700-900 degrees C to produce products which traditionally require firing temperatures of >1200 degrees C, or glass-melting temperatures >1500 degrees C. The process also eliminates other energy intensive processing steps, including mining and transportation of raw materials, spray-drying to produce granulated powder, drying pressed tile, and glazing. The technology completely transforms fiber glass waste into a dense ceramic product, so that all future environmental problems in the handling and disposal of the fibers is eliminated. The processing steps were developed and optimized to produce glossy and matte surface finishes for wall and floor tile applications. High-quality prototype tile samples were processed for demonstration and tile standards testing. A Market Assessment confirmed the market potential for tile products produced by the technology. Manufacturing equipment trials were successfully conducted for each step of the process. An industrial demonstration plant was designed, including equipment and operating cost analysis. A fiber glass manufacturer was selected as an industrial partner to commercialize the technology. A technology development and licensing agreement was completed with the industrial partner. Haun labs will continue working to transfer the technology and assist the industrial partner with commercialization beyond the DOE project.

  12. Utilization of inorganic industrial wastes in producing construction ceramics. Review of Russian experience for the years 2000-2015.

    PubMed

    Boltakova, N V; Faseeva, G R; Kabirov, R R; Nafikov, R M; Zakharov, Yu A

    2017-02-01

    This paper analyzes the significant scientific publications worldwide for the last 15years concerning construction ceramics (predominantly brick) made with various inorganic industrial wastes added to the ceramic raw material for the improvement of properties and for eco-friendly disposal. The information gap resulting from the lack of mentions of the Russian publications on this subject in English-language reviews is filled. The paper includes brief summaries of 34 dissertations and 29 patents issued in Russia since 2000. The waste additives described in these summaries are grouped by origin type (mining industry waste, ore enrichment waste, metallurgical waste, sludge, ashes, cullet, large-capacity building wastes and waste from various chemical production processes) with the ceramic mixture compositions, molding and firing conditions, final strength, water absorption and other parameters of the final ceramic samples reported. Russian scientists have expanded the nomenclature of each group of wastes significantly upon addition to the list described in English-language reviews for 2000-2015. References to the recent Russian developments in the field of ecological management in ceramic industry are provided. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Development of value-added products from alumina industry mineral wastes using low-temperature-setting phosphate ceramics

    SciTech Connect

    Wagh, A.S.; Jeong, Seung-Young; Singh, D.

    1996-01-01

    A room-temperature process for stabilizing mineral waste streams has been developed, based on acid-base reaction between MgO and H3PO4 or acid phosphate solution. The resulting waste form sets into a hard ceramic in a few hours. In this way, various alumina industry wastes, such as red mud and treated potliner waste, can be solidified into ceramics which can be used as structural materials in waste management and construction industry. Red mud ceramics made by this process were low-porosity materials ({approx}2 vol%) with a compression strength equal to portland cement concrete (4944 psi). Bonding mechanism appears to be result of reactions of boehmite, goethite, and bayerite with the acid solution, and also encapsulation of red mud particles in Mg phosphate matrix. Possible applications include liners for ponds and thickned tailings disposal, dikes for waste ponds, and grouts. Compatability problems arising at the interface of the liner and the waste are avoided.

  14. Recycling of porcelain tile polishing residue in portland cement: hydration efficiency.

    PubMed

    Pelisser, Fernando; Steiner, Luiz Renato; Bernardin, Adriano Michael

    2012-02-21

    Ceramic tiles are widely used by the construction industry, and the manufacturing process of ceramic tiles generates as a major residue mud derived from the polishing step. This residue is too impure to be reused in the ceramic process and is usually discarded as waste in landfills. But the analysis of the particle size and concentration of silica of this residue shows a potential use in the manufacture of building materials based on portland cement. Tests were conducted on cement pastes and mortars using the addition of 10% and 20% (mass) of the residue. The results of compressive strength in mortars made up to 56 days showed a significant increase in compressive strength greater than 50%. The result of thermogravimetry shows that portlandite is consumed by the cement formed by the silica present in the residue in order to form calcium silicate hydrate and featuring a pozzolanic reaction. This effect improves the performance of cement, contributes to research and application of supplementary cementitious materials, and optimizes the use of portland cement, reducing the environmental impacts of carbon dioxide emissions from its production.

  15. Melt Infiltrated Ceramic Matrix Composites for Shrouds and Combustor Liners of Advanced Industrial Gas Turbines

    SciTech Connect

    Gregory Corman; Krishan Luthra; Jill Jonkowski; Joseph Mavec; Paul Bakke; Debbie Haught; Merrill Smith

    2011-01-07

    This report covers work performed under the Advanced Materials for Advanced Industrial Gas Turbines (AMAIGT) program by GE Global Research and its collaborators from 2000 through 2010. A first stage shroud for a 7FA-class gas turbine engine utilizing HiPerComp{reg_sign}* ceramic matrix composite (CMC) material was developed. The design, fabrication, rig testing and engine testing of this shroud system are described. Through two field engine tests, the latter of which is still in progress at a Jacksonville Electric Authority generating station, the robustness of the CMC material and the shroud system in general were demonstrated, with shrouds having accumulated nearly 7,000 hours of field engine testing at the conclusion of the program. During the latter test the engine performance benefits from utilizing CMC shrouds were verified. Similar development of a CMC combustor liner design for a 7FA-class engine is also described. The feasibility of using the HiPerComp{reg_sign} CMC material for combustor liner applications was demonstrated in a Solar Turbines Ceramic Stationary Gas Turbine (CSGT) engine test where the liner performed without incident for 12,822 hours. The deposition processes for applying environmental barrier coatings to the CMC components were also developed, and the performance of the coatings in the rig and engine tests is described.

  16. Mullite ceramic membranes for industrial oily wastewater treatment: experimental and neural network modeling.

    PubMed

    Shokrkar, H; Salahi, A; Kasiri, N; Mohammadi, T

    2011-01-01

    In this paper, results of an experimental and modeling of separation of oil from industrial oily wastewaters (desalter unit effluent of Seraje, Ghom gas wells, Iran) with mullite ceramic membranes are presented. Mullite microfiltration symmetric membranes were synthesized from kaolin clay and alpha-alumina powder. The results show that the mullite ceramic membrane has a high total organic carbon and chemical oxygen demand rejection (94 and 89%, respectively), a low fouling resistance (30%) and a high final permeation flux (75 L/m2 h). Also, an artificial neural network, a predictive tool for tracking the inputs and outputs of a non-linear problem, is used to model the permeation flux decline during microfiltration of oily wastewater. The aim was to predict the permeation flux as a function of feed temperature, trans-membrane pressure, cross-flow velocity, oil concentration and filtration time, using a feed-forward neural network. Finally the structure of hidden layers and nodes in each layer with minimum error were reported leading to a 4-15 structure which demonstrated good agreement with the experimental measurements with an average error of less than 2%.

  17. Generalized quasiperiodic Rauzy tilings

    NASA Astrophysics Data System (ADS)

    Vidal, Julien; Mosseri, Rémy

    2001-05-01

    We present a geometrical description of new canonical d-dimensional codimension one quasiperiodic tilings based on generalized Fibonacci sequences. These tilings are made up of rhombi in 2d and rhombohedra in 3d as the usual Penrose and icosahedral tilings. Thanks to a natural indexing of the sites according to their local environment, we easily write down, for any approximant, the sites coordinates, the connectivity matrix and we compute the structure factor.

  18. Ceramics: Automobile industry. January 1980-March 1992 (Citations from the NTIS Data Base). Rept. for Jan 80-Mar 92

    SciTech Connect

    Not Available

    1992-02-01

    The bibliography contains citations concerning manufacturing processes, testing, design, and stress analysis of ceramics used in the automobile industry. Manufacturing processes discussed include slip casting, reaction sintering, hot isostatic pressing and plasma spraying. (Contains 153 citations with title list and subject index.)

  19. 39. West tile gauge on south pier. Each square tile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. West tile gauge on south pier. Each square tile is 4' in size. Bottom left hand corner of west tile - Duluth Ship Canal, South Pier, North end of Minnesota Point & Canal Park, Duluth, St. Louis County, MN

  20. 40. West tile gauge on south pier. Each square tile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. West tile gauge on south pier. Each square tile is 4' in size. Bottom right hand corner of west tile - Duluth Ship Canal, South Pier, North end of Minnesota Point & Canal Park, Duluth, St. Louis County, MN

  1. Possible Use of Fly Ash in Ceramic Industries: AN Innovative Method to Reduce Environmental Pollution

    NASA Astrophysics Data System (ADS)

    Sharma, Gayatri; Mehla, S. K.; Bhatnagar, Tarun; Bajaj, Annu

    The process of coal combustion results in coal ash, 80% of which is very fine in nature & is thus known as fly ash. Presently, in India, about 120 coal based thermal power plants are producing about 90-120 million tons of fly ash every year. With increase in demand of power energy, more and more thermal power plants are expected to commission in near future and it is expected that fly ash generation will be 225 million tons by 2017. Disposal of fly ash requires large quantity of land, water and energy and its fine particles, if not disposed properly, by virtue of their weightless, can become air born and adversely affect the entire Environment. These earth elements primarily consist of silica, alumina & iron etc. and its physicochemical parameters are closely resembles with volcanic ash, natural soil etc. These properties, therefore, makes it suitable for use in ceramic industries and helps in saving the environment and resources.

  2. Biological monitoring of glazers exposed to lead in the ceramics industry in Iran.

    PubMed

    Shouroki, Fatemeh Kargar; Shahtaheri, Seyed Jamaleddin; Golbabaei, Farideh; Barkhordari, Abolfazle; Rahimi-Froushani, Abbas

    2015-01-01

    Exposure to heavy metals, particularly lead, takes place in the ceramics industry. Lead is used in glaze to produce smooth and brilliant surfaces; thus, there is a likelihood of occupational adverse effects on humans. Urine samples were collected from 49 glazers at the start and end of the work shifts (98 samples). Solid phase extraction was used for separation and pre-concentration of the analyte. Samples were analysed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Lung function tests were performed on both control and lead exposed subjects. Statistical analysis of covariance (ANCOVA) was used to evaluate the data obtained. The concentration of lead in glazers was 6.37 times higher than in the control group. Lung functions were significantly lower in the glazers compared to the control group (p < 0.001). Results showed that poor ventilation systems, overtime work and work history are effective determinants of high exposure levels.

  3. [Investigation about prevention behavior for dust workers in machinery, ceramic, and metallurgy industry].

    PubMed

    Shen, Fu-hai; Ma, Qing-kun; Xiao, Shu-yu; Cui, Feng-tao; Meng, Qing-di; Yang, Xiu-qing; Qi, Hui-sheng; Fan, Xue-yun; Yao, San-qiao

    2011-01-01

    The purposes of this thesis were to study the behavior about workers exposed to dust and provide scientific basis for health promotion. We designed a questionnaire and carry it on the 746 dust workers in the 3 representative corporations of Machinery, Ceramic, and Metallurgy Industry. All data were input into computer. And a database was established with Excel. SPSS11.5 statistical analysis software was used to analyze the influence on protecting behavioral between the application of qualifications, different jobs, training or protection, and other aspects etc. The rates were 94.4% and 75.3% about the regular physical examination and requirements for protective equipment. The rate of choosing an effective way of protection was generally low (15.4%). There was significant difference for among different educational background workers (P < 0.01). The rates of choosing an effective way of protection (20.3%), the regular physical examination (98.3%) and requirements for protective equipment (86.4%) in the dust workers who participated in the training of dust protection were superior than those who did not participated in the training. There was the significant difference (P < 0.05, P < 0.01). There was the significant difference for the rate of effective way of protection, regular physical examination, and requirements for protective equipment among the different corporations (P < 0.05). Dust workers' using rate about the choosing an effective way of protection was generally low in Machinery, Ceramic, and Metallurgy Industry. Those who were not educated had a lower using rate about the protection behavior, regular physical examination, and requirements for protective equipment than those educated.

  4. Evaluation of occupational exposure to naturally occurring radioactive materials in the Iranian ceramics industry.

    PubMed

    Fathabadi, N; Farahani, M V; Amani, S; Moradi, M; Haddadi, B

    2011-06-01

    Zircon contains small amounts of uranium, thorium and radium in its crystalline structure. The ceramic industry is one of the major consumers of zirconium compounds that are used as an ingredient at ∼10-20 % by weight in glaze. In this study, seven different ceramic factories have been investigated regarding the presence of radioactive elements with focus on natural radioactivity. The overall objective of this investigation is to provide information regarding the radiation exposure to workers in the ceramic industry due to naturally occurring radioactive materials. This objective is met by collecting existing radiological data specific to glaze production and generating new data from sampling activities. The sampling effort involves the whole process of glaze production. External exposures are monitored using a portable gamma-ray spectrometer and environmental thermoluminescence dosimeters, by placing them for 6 months in some workplaces. Internal routes of exposure (mainly inhalation) are studied using air sampling, and gross alpha and beta counting. Measurement of radon gas and its progeny is performed by continuous radon gas monitors that use pulse ionisation chambers. Natural radioactivity due to the presence of ²³⁸U, ²³²Th and ⁴⁰K in zirconium compounds, glazes and other samples is measured by a gamma-ray spectrometry system with a high-purity germanium detector. The average concentrations of ²³⁸U and ²³²Th observed in the zirconium compounds are >3300 and >550 Bq kg⁻¹, respectively. The specific activities of other samples are much lower than in zirconium compounds. The annual effective dose from external radiation had a mean value of ∼0.13 mSv y⁻¹. Dust sampling revealed the greatest values in the process at the powdering site and hand weighing places. In these plants, the annual average effective dose from inhalation of long-lived airborne radionuclides was 0.226 mSv. ²²²Rn gas concentrations in the glaze production plant and

  5. Rewaterproofing Silica Tiles

    NASA Technical Reports Server (NTRS)

    Lleger, L. J.; Wade, D. C.

    1983-01-01

    Waterproofing agent, vaporized in bubbler transported by gas flowing in system and deposits in pores of tiles. Vapor carried through hole of approximately 1/16 inch (1.6.mm) diameter made in tile coating. Technique used to waterproof buildups (concrete and brick) and possibly fabrics.

  6. Rewaterproofing Silica Tiles

    NASA Technical Reports Server (NTRS)

    Lleger, L. J.; Wade, D. C.

    1983-01-01

    Waterproofing agent, vaporized in bubbler transported by gas flowing in system and deposits in pores of tiles. Vapor carried through hole of approximately 1/16 inch (1.6.mm) diameter made in tile coating. Technique used to waterproof buildups (concrete and brick) and possibly fabrics.

  7. Reduction of CO2 diffuse emissions from the traditional ceramic industry by the addition of Si-Al raw material.

    PubMed

    González, I; Barba-Brioso, C; Campos, P; Romero, A; Galán, E

    2016-09-15

    The fabrication of ceramics can produce the emission of several gases, denominated exhaust gases, and also vapours resulting from firing processes, which usually contain metals and toxic substances affecting the environment and the health of workers. Especially harmful are the diffuse emissions of CO2, fluorine, chlorine and sulphur from the ceramics industry, which, in highly industrialized areas, can suppose an important emission focus of dangerous effects. Concerning CO2, factories that use carbonate-rich raw materials (>30% carbonates) can emit high concentrations of CO2 to the atmosphere. Thus, carbonate reduction or substitution with other raw materials would reduce the emissions. In this contribution, we propose the addition of Al-shales to the carbonated ceramic materials (marls) for CO2 emission reduction, also improving the quality of the products. The employed shales are inexpensive materials of large reserves in SW-Spain. The ceramic bodies prepared with the addition of selected Al-shale to marls in variable proportions resulted in a 40%-65% CO2 emission reduction. In addition, this research underlines at the same time that the use of a low-price raw material can also contribute to obtaining products with higher added value. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Contribution to the sustainable management of resources by novel combination of industrial solid residues into red ceramics.

    PubMed

    Karayannis, V; Spiliotis, X; Papastergiadis, E; Ntampegliotis, K; Papapolymerou, G; Samaras, P

    2015-03-01

    Limited amounts of industrial residues are recycled while the remaining huge quantities are stockpiled or disposed of, thus frequently leading to soil contamination. The utilization of industrial residues as valuable secondary resources into ceramics can contribute to efficient waste management and substitution for massive amounts of natural resources (clayey minerals) demanded for ceramic production. The low cost of these residues and even possible energy savings during mixture firing may also be beneficial. In the present study, the innovative combination of lignite fly ash with steel-making dust into clay-based red ceramics is undertaken, to contribute both to sustainable use of resources and prevention of soil contamination. Brick specimens were shaped by extrusion and fired, their microstructure was examined and the effect of the mixture composition and firing temperature on physico-mechanical properties was determined. Ceramic microstructures were successfully obtained by a suitable combination of fly ash with steel dust (5 + 5 wt%) into clays. Properties can be predicted and tailored to meet the needs for specific applications by appropriately adjusting the mixture composition and sintering temperature.

  9. Workplace exposure and release of ultrafine particles during atmospheric plasma spraying in the ceramic industry.

    PubMed

    Viana, M; Fonseca, A S; Querol, X; López-Lilao, A; Carpio, P; Salmatonidis, A; Monfort, E

    2017-12-01

    Atmospheric plasma spraying (APS) is a frequently used technique to produce enhanced-property coatings for different materials in the ceramic industry. This work aimed to characterise and quantify the impact of APS on workplace exposure to airborne particles, with a focus on ultrafine particles (UFPs, <100nm) and nanoparticles (<50nm). Particle number, mass concentrations, alveolar lung deposited surface area concentration, and size distributions, in the range 10nm-20μm were simultaneously monitored at the emission source, in the potential worker breathing zone, and in outdoor air. Different input materials (known as feedstock) were tested: (a) micron-sized powders, and (b) suspensions containing submicron- or nano-sized particles. Results evidenced significantly high UFP concentrations (up to 3.3×10(6)/cm(3)) inside the spraying chamber, which impacted exposure concentrations in the worker area outside the spraying chamber (up to 8.3×10(5)/cm(3)). Environmental release of UFPs was also detected (3.9×10(5)/cm(3), outside the exhaust tube). Engineered nanoparticle (ENP) release to workplace air was also evidenced by TEM microscopy. UFP emissions were detected during the application of both micron-sized powder and suspensions containing submicron- or nano-sized particles, thus suggesting that emissions were process- (and not material-) dependent. An effective risk prevention protocol was implemented, which resulted in a reduction of UFP exposure in the worker area. These findings demonstrate the potential risk of occupational exposure to UFPs during atmospheric plasma spraying, and raise the need for further research on UFP formation mechanisms in high-energy industrial processes. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Ceramic Powders

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In developing its product line of specialty ceramic powders and related products for government and industrial customers, including companies in the oil, automotive, electronics and nuclear industries, Advanced Refractory Technologies sought technical assistance from NERAC, Inc. in specific areas of ceramic materials and silicon technology, and for assistance in identifying possible applications of these materials in government programs and in the automotive and electronics industry. NERAC conducted a computerized search of several data bases and provided extensive information in the subject areas requested. NERAC's assistance resulted in transfer of technologies that helped ART staff develop a unique method for manufacture of ceramic materials to precise customer specifications.

  11. Increasing the frost resistance of facade glazed tiles

    SciTech Connect

    Egerev, V.M.; Zotov, S.N.; Romanova, G.P.

    1986-09-01

    The authors investigate the protective properties of a coating of boron oxides and zirconium oxides applied as a glaze to ceramic tiles by conducting a series of tests to determine the frost resistance, the propensity to absorb water, the moisture expansion coefficient, the fracture behavior, and the effect of thermal cycling on the oxides. Results are graphed and tabulated.

  12. Tiled Multicore Processors

    NASA Astrophysics Data System (ADS)

    Taylor, Michael B.; Lee, Walter; Miller, Jason E.; Wentzlaff, David; Bratt, Ian; Greenwald, Ben; Hoffmann, Henry; Johnson, Paul R.; Kim, Jason S.; Psota, James; Saraf, Arvind; Shnidman, Nathan; Strumpen, Volker; Frank, Matthew I.; Amarasinghe, Saman; Agarwal, Anant

    For the last few decades Moore’s Law has continually provided exponential growth in the number of transistors on a single chip. This chapter describes a class of architectures, called tiled multicore architectures, that are designed to exploit massive quantities of on-chip resources in an efficient, scalable manner. Tiled multicore architectures combine each processor core with a switch to create a modular element called a tile. Tiles are replicated on a chip as needed to create multicores with any number of tiles. The Raw processor, a pioneering example of a tiled multicore processor, is examined in detail to explain the philosophy, design, and strengths of such architectures. Raw addresses the challenge of building a general-purpose architecture that performs well on a larger class of stream and embedded computing applications than existing microprocessors, while still running existing ILP-based sequential programs with reasonable performance. Central to achieving this goal is Raw’s ability to exploit all forms of parallelism, including ILP, DLP, TLP, and Stream parallelism. Raw approaches this challenge by implementing plenty of on-chip resources - including logic, wires, and pins - in a tiled arrangement, and exposing them through a new ISA, so that the software can take advantage of these resources for parallel applications. Compared to a traditional superscalar processor, Raw performs within a factor of 2x for sequential applications with a very low degree of ILP, about 2x-9x better for higher levels of ILP, and 10x-100x better when highly parallel applications are coded in a stream language or optimized by hand.

  13. Abrasive wear of ceramic wear protection at ambient and high temperatures

    NASA Astrophysics Data System (ADS)

    Varga, M.; Adam, K.; Tumma, M.; Alessio, K. O.

    2017-05-01

    Ceramic wear protection is often applied in abrasive conditions due to their excellent wear resistance. This is especially necessary in heavy industries conveying large amounts of raw materials, e.g. in steel industry. Some plants also require material transport at high temperatures and velocities, making the need of temperature stable and abrasion resistant wear protection necessary. Various types and wear behaviour of ceramic protection are known. Hence, the goal of this study is to identify the best suitable ceramic materials for abrasive conditions in harsh environments at temperatures up to 950°C and severe thermal gradients. Chamottes, known for their excellent thermal shock resistance are compared to high abrasion resistant ceramic wear tiles and a cost efficient cement-bounded hard compound. Testing was done under high-stress three-body abrasion regime with a modified ASTM G65 apparatus enabling for investigations up to ~950°C. Thereto heated abrasive is introduced into the wear track and also preheated ceramic samples were used and compared to ambient temperature experiments. Results indicate a significant temperature influence on chamottes and the hard compound. While the chamottes benefit from temperature increase, the cement-bounded hard compound showed its limitation at abrasive temperatures of 950°C. The high abrasion resistant wear tiles represented the materials with the best wear resistance and less temperature influence in the investigated range.

  14. The research of ceramic materials for applications in the glass industry including microwave heating techniques

    NASA Astrophysics Data System (ADS)

    Kogut, K.; Kasprzyk, K.; Zboromirska-Wnukiewicz, B.; Ruziewicz, T.

    2016-02-01

    The melting of a glass is a very energy-intensive process. Selection of energy sources, the heating technique and the method of heating recovery are a fundamental issue from the furnace design point of view of and economic effectiveness of the process. In these processes the problem constitutes the lack of the appropriate ceramic materials that would meet the requirements. In this work the standard ceramic materials were examined and verified. The possibilities of application of microwave techniques were evaluated. In addition the requirements regarding the parameters of new ceramic materials applied for microwave technologies were determined.

  15. Tiling motion patches.

    PubMed

    Hyun, Kyunglyul; Kim, Manmyung; Hwang, Youngseok; Lee, Jehee

    2013-11-01

    Simulating multiple character interaction is challenging because character actions must be carefully coordinated to align their spatial locations and synchronized with each other. We present an algorithm to create a dense crowd of virtual characters interacting with each other. The interaction may involve physical contacts, such as hand shaking, hugging, and carrying a heavy object collaboratively. We address the problem by collecting deformable motion patches, each of which describes an episode of multiple interacting characters, and tiling them spatially and temporally. The tiling of motion patches generates a seamless simulation of virtual characters interacting with each other in a nontrivial manner. Our tiling algorithm uses a combination of stochastic sampling and deterministic search to address the discrete and continuous aspects of the tiling problem. Our tiling algorithm made it possible to automatically generate highly complex animation of multiple interacting characters. We achieve the level of interaction complexity far beyond the current state of the art that animation techniques could generate, in terms of the diversity of human behaviors and the spatial/temporal density of interpersonal interactions.

  16. Tiling Motion Patches.

    PubMed

    Hyun, Kyunglyul; Kim, Manmyung; Hwang, Youngseok; Lee, Jehee

    2013-05-08

    Simulating multiple character interaction is challenging because character actions must be carefully coordinated to align their spatial locations and synchronized with each other. We present an algorithm to create a dense crowd of virtual characters interacting with each other. The interaction may involve physical contacts, such as hand shaking, hugging, and carrying a heavy object collaboratively. We address the problem by collecting deformable motion patches, each of which describes an episode of multiple interacting characters, and tiling them spatially and temporally. The tiling of motion patches generates a seamless simulation of virtual characters interacting with each other in a non-trivial manner. Our tiling algorithm uses a combination of stochastic sampling and deterministic search to address the discrete and continuous aspects of the tiling problem. Our tiling algorithm made it possible to automatically generate highly-complex animation of multiple interacting characters. We achieved the level of complexity far beyond the current state-of-the-art animation techniques could generate, in terms of the diversity of human behaviors and the spatial/temporal density of interpersonal interactions.

  17. Seamless tiled display system

    NASA Technical Reports Server (NTRS)

    Dubin, Matthew B. (Inventor); Larson, Brent D. (Inventor); Kolosowsky, Aleksandra (Inventor)

    2006-01-01

    A modular and scalable seamless tiled display apparatus includes multiple display devices, a screen, and multiple lens assemblies. Each display device is subdivided into multiple sections, and each section is configured to display a sectional image. One of the lens assemblies is optically coupled to each of the sections of each of the display devices to project the sectional image displayed on that section onto the screen. The multiple lens assemblies are configured to merge the projected sectional images to form a single tiled image. The projected sectional images may be merged on the screen by magnifying and shifting the images in an appropriate manner. The magnification and shifting of these images eliminates any visual effect on the tiled display that may result from dead-band regions defined between each pair of adjacent sections on each display device, and due to gaps between multiple display devices.

  18. The ATLAS Tile Calorimeter

    SciTech Connect

    Henriques, A.

    2015-07-01

    TileCal is the Hadronic calorimeter covering the most central region of the ATLAS experiment at the LHC. It uses iron plates as absorber and plastic scintillating tiles as the active material. Scintillation light produced in the tiles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). The resulting electronic signals from the approximately 10000 PMTs are measured and digitised every 25 ns before being transferred to off-detector data-acquisition systems. This contribution will review in a first part the performances of the calorimeter during run 1, obtained from calibration data, and from studies of the response of particles from collisions. In a second part it will present the solutions being investigated for the ongoing and future upgrades of the calorimeter electronics. (authors)

  19. Filler bar heating due to stepped tiles in the shuttle orbiter thermal protection system

    NASA Technical Reports Server (NTRS)

    Petley, D. H.; Smith, D. M.; Edwards, C. L. W.; Patten, A. B.; Hamilton, H. H., II

    1983-01-01

    An analytical study was performed to investigate the excessive heating in the tile to tile gaps of the Shuttle Orbiter Thermal Protection System due to stepped tiles. The excessive heating was evidence by visible discoloration and charring of the filler bar and strain isolation pad that is used in the attachment of tiles to the aluminum substrate. Two tile locations on the Shuttle orbiter were considered, one on the lower surface of the fuselage and one on the lower surface of the wing. The gap heating analysis involved the calculation of external and internal gas pressures and temperatures, internal mass flow rates, and the transient thermal response of the thermal protection system. The results of the analysis are presented for the fuselage and wing location for several step heights. The results of a study to determine the effectiveness of a half height ceramic fiber gap filler in preventing hot gas flow in the tile gaps are also presented.

  20. Photovoltaic roofing tile systems

    NASA Astrophysics Data System (ADS)

    Melchior, B.

    The integration of photovoltaic (PV) systems in architecture is discussed. A PV-solar roofing tile system with polymer concrete base; PV-roofing tile with elastomer frame profiles and aluminum profile frames; contact technique; and solar cell modules measuring technique are described. Field tests at several places were conducted on the solar generator, electric current behavior, battery station, electric installation, power conditioner, solar measuring system with magnetic bubble memory technique, data transmission via telephone modems, and data processing system. The very favorable response to the PV-compact system proves the commercial possibilities of photovoltaic integration in architecture.

  1. Refractory Oxidative-Resistant Ceramic Carbon Insulation

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel B. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    2001-01-01

    High-temperature, lightweight, ceramic carbon insulation is prepared by coating or impregnating a porous carbon substrate with a siloxane gel derived from the reaction of an organodialkoxy silane and an organotrialkoxy silane in an acid or base medium in the presence of the carbon substrate. The siloxane gel is subsequently dried on the carbon substrate to form a ceramic carbon precursor. The carbon precursor is pyrolyzed, in an inert atmosphere, to form the ceramic insulation containing carbon, silicon, and oxygen. The carbon insulation is characterized as a porous, fibrous, carbon ceramic tile which is particularly useful as lightweight tiles for spacecraft.

  2. ESEEM of industrial silica-bearing powders: reactivity of defects during wet processing in the ceramics production

    NASA Astrophysics Data System (ADS)

    Romanelli, Maurizio; Di Benedetto, Francesco; Fornaciai, Gabriele; Innocenti, Massimo; Montegrossi, Giordano; Pardi, Luca A.; Zoleo, Alfonso; Capacci, Fabio

    2015-05-01

    A study is undertaken to ascertain whether changes in the speciation of inorganic radicals are occurring during the ceramic industrial production that involves abundant silica powders as raw material. Industrial dusts were sampled in two ceramic firms, immediately after the wet mixing stage, performed with the aid of a relevant pressure. The dusts were then characterised by means of X-ray diffraction, analysis of the trace elements through chemical methods, granulometry, continuous-wave electron paramagnetic resonance (EPR) and pulsed electron spin echo envelope modulation (ESEEM) spectroscopies. The results of the characterisation point to a relevant change in the speciation of the two samples; namely, a prevailing contribution due to an inorganic radical different from that pertaining to pure quartz is pointed out. The combined interpretation of EPR and ESEEM data suggests the attribution of the main paramagnetic contribution to the A-centre in kaolinite, a constituent that is added to pure quartz at the initial stage of the ceramic production. In one of the two samples, a second weak EPR signal is attributed to the quartz's hAl species. By taking into account the relative quantities of quartz and kaolinite mixed in the two samples, and the relative abundances of the two radical species, we propose that the partial or complete suppression of the hAl species in favour of the A-centre of kaolinite has occurred. Although this change is apparently fostered by the mixture between quartz and another radical-bearing raw material, kaolinite, the suppression of the hAl centre of quartz is ascribed to the role played by the pressure and the wet environment during the industrial mixing procedure. This suppression provides a net change of radical speciation associated with quartz, when this phase is in contact with workers' respiratory system.

  3. [Low exposure to lead and reproductive health: a cohort study of female workers in the ceramic industry of Emilia-Romagna (Northern Italy)].

    PubMed

    Paredes Alpaca, Rudy Ivan; Forastiere, Francesco; Pirani, Monica

    2013-01-01

    to assess the effects of low levels of lead exposure on reproductive health (miscarriage, fertility, multiple births, sex ratio at birth, incidence of some diseases during pregnancy), following a cohort of female workers exposed to lead in the ceramic tile industry in the Municipalities of Scandiano (RE) and Sassuolo (MO), Northern Italy. a cohort of 2,067 female workers was considered. These workers repeatedly underwent blood lead levels testing at the Toxicology Laboratory of Scandiano (RE) in the period 1998-2004. Follow-up was performed for each subject for the 12 months following any blood lead testing. Data on miscarriages and live births were obtained through a linkage with hospital discharge records. Results were compared with the frequency of events in the general female population in the Emilia-Romagna Region (Northern Italy). The frequency of multiple births was also examined, as well as the ratio of male-to-female infants and maternal diseases during pregnancy. An internal analysis within the cohort was conducted to evaluate the associations with increasing lead levels. the women under study accumulated 5,722 person-years of observation. The age distribution of study subjects was not different from the one observed in the Region. Thirty-one miscarriages and 212 live births were recorded. The miscarriage rate (5.42‰) among the study subjects was not different from the regional reference, while the fertility rate (37.05‰) was lower (RR: 0.72; 95%CI 0.63-0.83). The frequency of multiple births (1.9%) was similar to the regional rate (1.2%). Eighty-six females (40.57%) and 126 males (59.43%) were born, compared to regional percentages of 49% females and 51% males. Of all the indicators examined, only miscarriage showed a positive trend among women exposed to lead. In addition, women exposed to lead had a higher frequency of hypertension during pregnancy (RR: 1.34; 95%CI 1.07-1.68), problems with the amniotic cavity (RR: 1.16; 95%CI 1.02-1.33), and

  4. Microwave thermal inertisation of asbestos containing waste and its recycling in traditional ceramics.

    PubMed

    Leonelli, C; Veronesi, P; Boccaccini, D N; Rivasi, M R; Barbieri, L; Andreola, F; Lancellotti, I; Rabitti, D; Pellacani, G C

    2006-07-31

    Asbestos was widely used as a building material prior to the 1970's. It is well known that asbestos is a health hazard and its progressive elimination is a priority for pollution prevention. Asbestos can be transformed to non-hazardous silicate phases by microwave thermal treatment. The aim of this investigation is to describe the microwave inertization process of asbestos containing waste (ACW) and its recycling in porcelain stoneware tiles, porous single-fired wall tiles and ceramic bricks following industrial manufacture procedure. Inertised asbestos powder was added in the percentages of 1, 3, and 5 wt.% to commercially available compositions and then fired following industrial thermal cycles. Water absorption and linear shrinkage of the obtained industrial products do not present significant variations with additions up to 5 wt.% of microwave inertised ACW.

  5. Preparation of ceramic-corrosion-cell fillers and application for cyclohexanone industry wastewater treatment in electrobath reactor.

    PubMed

    Wu, Suqing; Qi, Yuanfeng; Gao, Yue; Xu, Yunyun; Gao, Fan; Yu, Huan; Lu, Yue; Yue, Qinyan; Li, Jinze

    2011-11-30

    As new media, ceramic-corrosion-cell fillers (Cathode Ceramic-corrosion-cell Fillers - CCF, and Anode Ceramic-corrosion-cell Fillers - ACF) employed in electrobath were investigated for cyclohexanone industry wastewater treatment. 60.0 wt% of dried sewage sludge and 40.0 wt% of clay, 40.0 wt% of scrap iron and 60.0 wt% of clay were utilized as raw materials for the preparation of raw CCF and ACF, respectively. The raw CCF and ACF were respectively sintered at 400°C for 20 min in anoxic conditions. The physical properties (bulk density, grain density and water absorption), structural and morphological characters and toxic metal leaching contents were tested. The influences of pH, hydraulic retention time (HRT) and the media height on removal of COD(Cr) and cyclohexanone were studied. The results showed that the bulk density and grain density of CCF and ACF were 869.0 kg m(-3) and 936.3 kg m(-3), 1245.0 kg m(-3) and 1420.0 kg m(-3), respectively. The contents of toxic metal (Cu, Zn, Cd, Pb, Cr, Ba, Ni and As) were all below the detection limit. When pH of 3-4, HRT of 6h and the media height of 60 cm were applied, about 90% of COD(cr) and cyclohexanone were removed.

  6. The effect of manufacturing variables on radiation doses from porcelain tiles.

    PubMed

    Selby, J H; Strydom, R

    2008-06-01

    Previous studies have focused on the radiological properties of glazed ceramic tiles. This study was conducted to describe the radiological properties of porcelain tiles and how they were affected by variations in the manufacturing parameters. The data showed that the majority of the uranium in the tiles was attributable to the addition of zircon while less than half of the thorium in the tile was attributable to the added zircon, and the remainder came from other minerals in the formulation. The effects of firing temperatures and compressive strengths of the tiles are presented and show that higher firing temperatures increase radon emanation, while higher compressive strengths reduce radon emanation. The study also described how the addition of zircon to the tile formulation affected the radiological exposures that could be received by a member of the public from the use of such porcelain tiles. A dose assessment was conducted based on 23 different types of tile formulation. Screening procedures for building materials have been described in European Commission documents, and these limit the addition of zircon in a porcelain tile to approximately 9% by mass. The dose assessment reported in this study showed that 20% zircon could be added to a porcelain tile without exceeding the prescribed dose limits.

  7. Phase change material in floor tiles for thermal energy storage

    NASA Astrophysics Data System (ADS)

    Lee, Amy Sarah

    Traditional passive solar systems have relied on sensible heat storage for energy savings. Recent research has investigated taking advantage of latent heat storage for additional energy savings. This is accomplished by the incorporation of phase change material into building materials used in traditional passive applications. Trombe walls, ceilings and floors can all be enhanced with phase change materials. This research introduces a new flooring material that incorporates a phase change material ready for commercial manufacture. An agglomerate floor tile containing 20% by mass of encapsulated octadecane has been manufactured. Flexural and compressive strength of 7.4 MPa and 24.5 MPa respectively, were measured for the tile. Peak melting transition temperature was determined to be 27.2°C with a latent heat of 33.9 J/g of tile. Structural and thermal performance of the tile surpassed that of a typical ceramic tile. Each tile was composed of quartz, resin and phase change material. Statistical modeling was performed to analyze the response of flexural and compressive strength on varying amounts of quartz, resin and phase change material. Resulting polynomials described the effect of adding phase change material into the tile. With as little as 10% by mass of phase change material, the strength was reduced to less than 50% of tile without phase change material. It was determined that the maximum phase change material content to attain structural integrity greater than ceramic tile was 20% by mass. The statistical analysis used for this research was based on mixture experiments. A procedure was developed to simplify the selection of data points used in the fit of the polynomials to describe the response of flexural and compressive strengths. Analysis of energy savings using this floor tile containing 20% by mass of phase change material was performed as an addendum to this research. A known static simulation method, SLR (solar load ratio), was adapted to include

  8. Mapping Signal Processing Kernels to Tiled Architectures

    DTIC Science & Technology

    2007-11-02

    attractive alternatives to monolithic computer architecture designs because they allow a larger design to be built from smaller modules and limit the...Computer Architectures. ACM Transactions on Computer Systems, 2(4):289–308, November 1984. [12] Steven Swanson, Ken Michelson , Andrew Schwerin, and...Program MIT Lincoln LaboratoryHPEC 2004-3 JML 28 Sep 2004 Tiled Architectures • Monolithic single-chip architectures are becoming rare in the industry

  9. Planar tilings by polyominoes, polyhexes, and polyiamonds

    NASA Astrophysics Data System (ADS)

    Rhoads, Glenn C.

    2005-02-01

    Using computer programs, we enumerate and classify the tiling behavior of small polyominoes (n[less-than-or-equals, slant]9), polyhexes (n[less-than-or-equals, slant]7), and polyiamonds (n[less-than-or-equals, slant]10). For tiles that tile the Euclidean plane, we give diagrams illustrating how they tile. We also show several larger tiles whose minimal fundamental domain in any admitted (periodic) tiling is significantly larger than for any previously known tile.

  10. Producing superhydrophobic roof tiles.

    PubMed

    Carrascosa, Luis A M; Facio, Dario S; Mosquera, Maria J

    2016-03-04

    Superhydrophobic materials can find promising applications in the field of building. However, their application has been very limited because the synthesis routes involve tedious processes, preventing large-scale application. A second drawback is related to their short-term life under outdoor conditions. A simple and low-cost synthesis route for producing superhydrophobic surfaces on building materials is developed and their effectiveness and their durability on clay roof tiles are evaluated. Specifically, an organic-inorganic hybrid gel containing silica nanoparticles is produced. The nanoparticles create a densely packed coating on the roof tile surface in which air is trapped. This roughness produces a Cassie-Baxter regime, promoting superhydrophobicity. A surfactant, n-octylamine, was also added to the starting sol to catalyze the sol-gel process and to coarsen the pore structure of the gel network, preventing cracking. The application of ultrasound obviates the need to use volatile organic compounds in the synthesis, thereby making a 'green' product. It was also demonstrated that a co-condensation process effective between the organic and inorganic species is crucial to obtain durable and effective coatings. After an aging test, high hydrophobicity was maintained and water absorption was completely prevented for the roof tile samples under study. However, a transition from a Cassie-Baxter to a Wenzel state regime was observed as a consequence of the increase in the distance between the roughness pitches produced by the aging of the coating.

  11. Producing superhydrophobic roof tiles

    NASA Astrophysics Data System (ADS)

    Carrascosa, Luis A. M.; Facio, Dario S.; Mosquera, Maria J.

    2016-03-01

    Superhydrophobic materials can find promising applications in the field of building. However, their application has been very limited because the synthesis routes involve tedious processes, preventing large-scale application. A second drawback is related to their short-term life under outdoor conditions. A simple and low-cost synthesis route for producing superhydrophobic surfaces on building materials is developed and their effectiveness and their durability on clay roof tiles are evaluated. Specifically, an organic-inorganic hybrid gel containing silica nanoparticles is produced. The nanoparticles create a densely packed coating on the roof tile surface in which air is trapped. This roughness produces a Cassie-Baxter regime, promoting superhydrophobicity. A surfactant, n-octylamine, was also added to the starting sol to catalyze the sol-gel process and to coarsen the pore structure of the gel network, preventing cracking. The application of ultrasound obviates the need to use volatile organic compounds in the synthesis, thereby making a ‘green’ product. It was also demonstrated that a co-condensation process effective between the organic and inorganic species is crucial to obtain durable and effective coatings. After an aging test, high hydrophobicity was maintained and water absorption was completely prevented for the roof tile samples under study. However, a transition from a Cassie-Baxter to a Wenzel state regime was observed as a consequence of the increase in the distance between the roughness pitches produced by the aging of the coating.

  12. Characterization of clay from northern of Morocco for their industrial application

    NASA Astrophysics Data System (ADS)

    El Ouahabi, Meriam; Fagel, Nathalie

    2010-05-01

    Clays are a natural resource used for millennia. Currently applications such as industrial minerals are diversified. In this context, our goal is to estimate the potential of the many clay deposits in northern of Morocco. The choice of this region is justified by the particular abundance of clay deposits used to manufacture building materials (brick, ceramic and refractories) and pottery. This study focuses on the mineralogical, chemical and geotechnical characterization tests carried out on Tangier-Tetouan and Meknes clays from northern of Morocco. The suitability of raw clay material from those regions in order to produce ceramic and brick has not been tested yet. The results revealed that the studied samples are diversified, kaolinite and illite (Tetouan clay) and kaolinite and illite and smectite and vermiculite (Tangier and Meknes clay) based materials. There were no major differences in grain-size distribution, whereas Meknes clay was more plastic than Tetouan-Tangier clay. The cation exchange capacity show that Meknes and Tangier clay were more important than Tetouan clay. Specific surface area and thermal analaysis complete this caracterization. It was found that almost all technological properties of the Meknes clay deposit are led to the manufacture of ceramic floor tile, and Tetouan-Tangier clay provide opportunities to making brick and ceramic floor. The Tetouan-Tangier and Meknes clay are a potential ceramic raw material for growing Morrocan ceramic tile and brick industries.

  13. Use of municipal incinerator bottom ash as sintering promoter in industrial ceramics.

    PubMed

    Barbieri, L; Corradi, A; Lancellotti, I; Manfredini, T

    2002-01-01

    The use of glassy frits obtained from municipal incinerator bottom ash and glass cullet, as sintering promoters in the production process of porcelainized stoneware, was investigated. The emphasis was on studying the similarities and differences with respect to the standard body. The characterization involved the application of several techniques: chemical analysis, X-ray powder diffraction, linear shrinkage during firing, water absorption, bending strength and spot resistance test. The results show that, the addition of these glassy frits in the body improve the characteristics of water absorption and spot resistance which is related to the absence of surface porosity originated by the glassy phase. Moreover, addition of glassy frits to the porcelanized stoneware body does not change significantly its bending strength. In the firing conditions used there is a slight worsening in the tiles planarity, while there is a significant modification of the color, which becomes darker with respect to the base body.

  14. Perspectives of mid-infrared optical coherence tomography for inspection and micrometrology of industrial ceramics

    PubMed Central

    Su, Rong; Kirillin, Mikhail; Chang, Ernest W.; Sergeeva, Ekaterina; Yun, Seok H.; Mattsson, Lars

    2014-01-01

    Optical coherence tomography (OCT) is a promising tool for detecting micro channels, metal prints, defects and delaminations embedded in alumina and zirconia ceramic layers at hundreds of micrometers beneath surfaces. The effect of surface roughness and scattering of probing radiation within sample on OCT inspection is analyzed from the experimental and simulated OCT images of the ceramic samples with varying surface roughnesses and operating wavelengths. By Monte Carlo simulations of the OCT images in the mid-IR the optimal operating wavelength is found to be 4 µm for the alumina samples and 2 µm for the zirconia samples for achieving sufficient probing depth of about 1 mm. The effects of rough surfaces and dispersion on the detection of the embedded boundaries are discussed. Two types of image artefacts are found in OCT images due to multiple reflections between neighboring boundaries and inhomogeneity of refractive index. PMID:24977838

  15. JPRS Report, Science & Technology, Japan, Fine Ceramics Industry Basic Issues Forum

    DTIC Science & Technology

    2007-11-02

    food drying--such as coffee roasting and the baking of rice cakes--not only can the food be dried efficiently and at lower temperatures than with... plan in the future to use--fine ceramics components (cf Table 2-4). According to the results of this survey, some 250 components are now being used...transfer 12. Commissioned manufacture 13. OEM production 14. Commissioned sales 15. Mergers 16. Acquisitions additional 124 items planned to be used

  16. Alumina polymorphs affect the metal immobilization effect when beneficially using copper-bearing industrial sludge for ceramics.

    PubMed

    Tang, Yuanyuan; Lu, Xiuqing; Shih, Kaimin

    2014-12-01

    The feasibility of recycling copper-bearing industrial sludge as a part of ceramic raw materials was evaluated through thermal interaction of sludge with aluminum-rich precursors. To observe copper incorporation mechanism, mixtures of copper-bearing sludge with alumina polymorphs (γ-Al2O3 and α-Al2O3) were fired between 750 and 1250°C. Different copper-hosting phases were identified by X-ray diffraction, and CuAl2O4 was found to be the predominant phase throughout the reactions. The experimental results indicate different CuAl2O4 initiating temperatures for two alumina materials, and the optimal temperature for CuAl2O4 formation is around 1100°C. To monitor the stabilization effect, prolonged leaching tests were carried out to leach sintered products for up to 20d. The results clearly demonstrate a substantial decrease in copper leachability for products with higher CuAl2O4 content formed from both alumina precursors despite their different sintering behavior. Meanwhile, the leachability of aluminum was much lower than that of copper, and it decreased by more than fourfold through the formation of CuAl2O4 spinel in γ-Al2O3 system. This study clearly indicates spinel formation as the most crucial metal stabilization mechanism when sintering multiphase copper-bearing industrial sludge with aluminum-rich ceramic raw materials, and suggests a promising and reliable technique for reusing industrial sludge. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Advanced ceramic coating development for industrial/utility gas turbine applications

    NASA Technical Reports Server (NTRS)

    Andersson, C. A.; Lau, S. K.; Bratton, R. J.; Lee, S. Y.; Rieke, K. L.; Allen, J.; Munson, K. E.

    1982-01-01

    The effects of ceramic coatings on the lifetimes of metal turbine components and on the performance of a utility turbine, as well as of the turbine operational cycle on the ceramic coatings were determined. When operating the turbine under conditions of constant cooling flow, the first row blades run 55K cooler, and as a result, have 10 times the creep rupture life, 10 times the low cycle fatigue life and twice the corrosion life with only slight decreases in both specific power and efficiency. When operating the turbine at constant metal temperature and reduced cooling flow, both specific power and efficiency increases, with no change in component lifetime. The most severe thermal transient of the turbine causes the coating bond stresses to approach 60% of the bond strengths. Ceramic coating failures was studied. Analytic models based on fracture mechanics theories, combined with measured properties quantitatively assessed both single and multiple thermal cycle failures which allowed the prediction of coating lifetime. Qualitative models for corrosion failures are also presented.

  18. Applications in the Nuclear Industry for Thermal Spray Amorphous Metal and Ceramic Coatings

    SciTech Connect

    Blink, J; Choi, J; Farmer, J

    2007-07-09

    Amorphous metal and ceramic thermal spray coatings have been developed that can be used to enhance the corrosion resistance of containers for the transportation, aging and disposal of spent nuclear fuel and high-level radioactive wastes. Iron-based amorphous metal formulations with chromium, molybdenum and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials, and their stability at high neutron doses, enable them to serve as high efficiency neutron absorbers for criticality control. Ceramic coatings may provide even greater corrosion resistance for container applications, though the boron-containing amorphous metals are still favored for criticality control applications. These amorphous metal and ceramic materials have been produced as gas atomized powders and applied as near full density, non-porous coatings with the high-velocity oxy-fuel process. This paper summarizes the performance of these coatings as corrosion-resistant barriers, and as neutron absorbers. Relevant corrosion models are also discussed, as well as a cost model to quantify the economic benefits possible with these new materials.

  19. Applications in the Nuclear Industry for Thermal Spray Amorphous Metal and Ceramic Coatings

    NASA Astrophysics Data System (ADS)

    Blink, J.; Farmer, J.; Choi, J.; Saw, C.

    2009-06-01

    Amorphous metal and ceramic thermal spray coatings have been developed with excellent corrosion resistance and neutron absorption. These coatings, with further development, could be cost-effective options to enhance the corrosion resistance of drip shields and waste packages, and limit nuclear criticality in canisters for the transportation, aging, and disposal of spent nuclear fuel. Iron-based amorphous metal formulations with chromium, molybdenum, and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials and their stability at high neutron doses enable them to serve as high efficiency neutron absorbers for criticality control. Ceramic coatings may provide even greater corrosion resistance for waste package and drip shield applications, although the boron-containing amorphous metals are still favored for criticality control applications. These amorphous metal and ceramic materials have been produced as gas-atomized powders and applied as near full density, nonporous coatings with the high-velocity oxy-fuel process. This article summarizes the performance of these coatings as corrosion-resistant barriers and as neutron absorbers. This article also presents a simple cost model to quantify the economic benefits possible with these new materials.

  20. Ceramic MEMS designed for wireless pressure monitoring in the industrial environment.

    PubMed

    Pavlin, Marko; Belavic, Darko; Novak, Franc

    2012-01-01

    This paper presents the design of a wireless pressure-monitoring system for harsh-environment applications. Two types of ceramic pressure sensors made with a low-temperature cofired ceramic (LTCC) were considered. The first type is a piezoresistive strain gauge pressure sensor. The second type is a capacitive pressure sensor, which is based on changes of the capacitance values between two electrodes: one electrode is fixed and the other is movable under an applied pressure. The design was primarily focused on low power consumption. Reliable operation in the presence of disturbances, like electromagnetic interference, parasitic capacitances, etc., proved to be contradictory constraints. A piezoresistive ceramic pressure sensor with a high bridge impedance was chosen for use in a wireless pressure-monitoring system and an acceptable solution using energy-harvesting techniques has been achieved. The described solution allows for the integration of a sensor element with an energy harvester that has a printed thick-film battery and complete electronics in a single substrate packaged inside a compact housing.

  1. Geochemical and technological characterization of clays of Corumbataí Formation, Paraná Basin, in the state of São Paulo, Brazil for the application in the ceramic industry.

    NASA Astrophysics Data System (ADS)

    Christofoletti, Sergio Ricardo; Torres Moreno, Maria Margarita; Batezelli, Alessandro; Zanardo, Antenor

    2014-05-01

    The Corumbataí Formation is a geological unit of the Paraná Basin comprises a range of predominantly argillaceous facies. These clays are important from an economic point of view, because they represent important mineral deposits suppliers of raw materials for the ceramic industry in the production of ceramic tiles.The study presents preliminary results of a research that aims to study the clays municipalities Tambaú, Ferreira and Santa Rosa of Viterbo in the State of São Paulo for their application and diversification of ceramic products. The methodology used was based on a detailed description of facies using the methodology in principles of analysis of Basin Miall (1984), followed by mineralogical identification by X-ray Diffraction, chemical analysis of major elements by X-ray Fluorescence and technological tests ceramic. According to the geological surveys of mines studied through columnar sections were identified the following lithofacies from base to top: Massive, Laminated, Intercalated and Altered. The mineralogy present on these lithofacies is composed by minerals: quartz, microclineo, albite, calcite, dolomite and hematite and by clay minerals illite, kaolinite and montmorillonite. The quartz represents the mineral more present in diffraction and occurs with d001 of 3.33Å in all lithofacies studied. The illite clay mineral represents the most frequent in studied samples presenting d 001 10Å in three conditions (natural, heated and treated with ethylene glycol) in which the blade was subjected to the analysis of X-ray diffraction, the presence of kaolinite or montmorillonite occurs or not in samples. It was observed a increased frequency of some minerals in the lithofacies studied, carbonates (calcite and dolomite), hematite and feldspar occurring in the intermediate portions of the profile with a predominance in lithofacies Intercalated. The illita clay mineral occurs throughout the profile, but with greater frequency in the lithofacies Massive and

  2. Arithmetic theory of brick tilings

    SciTech Connect

    Egorov, A V; Prikhod'ko, A A

    1998-12-31

    A new, 'arithmetic', approach to the algebraic theory of brick tilings is developed. This approach enables one to construct a simple classification of brick tilings in Z{sup d} and to find new proofs of several classical results on brick packing and tilings in Z{sup d}. In addition, possible generalizations of results on integer brick packing to the Euclidean plane R{sup 2} are investigated.

  3. Microwave versus conventional sintering of silicon carbide tiles

    SciTech Connect

    Kass, M.D.; Caughman, J.B.O.; Forrester, S.C.; Akerman, A.

    1997-05-07

    Silicon carbide is being evaluated as an armor material because of its lightweight, high-hardness, and excellent armor efficiency. However, one of the problems associated with silicon carbide is the high cost associated with achieving fully dense tiles. Full density requires either hot pressing and sintering or reaction bonding. Past efforts have shown that hot pressed tiles have a higher armor efficiency than those produced by reaction bonded sintering. An earlier stuy showed that the acoustic properties of fully-dense silicon carbide tiles were enhanced through the use of post-sintered microwave heat treatments. One of the least expensive forming techniques is to isostatically press-and-sinter. In this study, the authors have used microwave energy to densify silicon carbide green bodies. Microwave sintering has been demonstrated to be a very quick way to sinter ceramics such as alumina to exceptionally high densities. Previous work has shown that microwave post treatment of fully-dense reaction bonded silicon carbide tiles significantly improves the acoustic properties of the tiles. These properties include Poisson`s ratio, Young`s modulus, shear modulus, and bulk modulus.

  4. Excimer-laser-induced surface treatments on metal and ceramic materials: applications to automotive, aerospace, and microelectronic industries

    NASA Astrophysics Data System (ADS)

    Autric, Michel L.

    1999-09-01

    Surface treatments by laser irradiation can improve materials properties in terms of mechanical and physico- chemical behaviors, these improvements being related to the topography, the hardness, the microstructure, the chemical composition. Up to now, the use of excimer lasers for industrial applications remained marginal in spite of the interest related to the short wavelength (high photon energy and better energetic coupling with materials and reduced thermal effects in the bulk material). Up to now, the main limitations concerned the beam quality, the beam delivery, the gas handling and the relatively high investment cost. At this time, the cost of laser devices is going down and the ultraviolet radiation can be conducted through optical fibers. These two elements give new interest in using excimer laser for industrial applications. The main objective of this research program which we are involved in, is to underline some materials processing applications for automotive, aerospace or microelectronic industries for which it could be more interesting to use excimer lasers (minimized thermal effects). This paper concerns the modifications of the roughness, porosity, hardness, structure, phase, residual stresses, chemical composition of the surface of materials such as metallic alloys (aluminum, steel, cast iron, titanium, and ceramics (oxide, nitride, carbide,...) irradiated by KrF and XeCl excimer lasers.

  5. Covering the Plane with Rep-Tiles.

    ERIC Educational Resources Information Center

    Fosnaugh, Linda S.; Harrell, Marvin E.

    1996-01-01

    Presents an activity in which students use geometric figures, rep-tiles, to design a tile floor. Rep-tiles are geometric figures of which copies can fit together to form a larger similar figure. Includes reproducible student worksheet. (MKR)

  6. Synthesis and characterization of black ceramic pigments by recycling of two hazardous wastes

    NASA Astrophysics Data System (ADS)

    Du, Minxing; Du, Yi; Chen, Zhongtao; Li, Zhongfu; Yang, Kai; Lv, Xingjie; Feng, Yibing

    2017-09-01

    In this study, two different industrial wastes, namely vanadium tailing and leather sludge, were used as less expensive alternative raw materials for the synthesis of black ceramic pigments to be used in commercial glazes. The pigments were based on hematite structure (FexCr1-x)2O3 and prepared by the common solid-state reaction method, under optimal formulation and processing conditions. The synthesized pigments were characterized in typical ceramic glazes and ceramic tile bodies. Optimal color development was achieved when the Fe/Cr mole ratios were 2.0 with 40 wt% content of vanadium tailing at 1200 °C. The coloring properties were similar to those imparted by a commercial black pigment.

  7. Sludge valorization from wastewater treatment plant to its application on the ceramic industry.

    PubMed

    Martínez-García, C; Eliche-Quesada, D; Pérez-Villarejo, L; Iglesias-Godino, F J; Corpas-Iglesias, F A

    2012-03-01

    The main aim of this study is to assess the effect of incorporating waste sludge on the properties and microstructure of clay used for bricks manufacturing. Wastewater treatment plants produce annually a great volume of sludge. Replacing clay in a ceramic body with different proportions of sludge can reduce the cost due to the utilization of waste and, at the same time, it can help to solve an environmental problem. Compositions were prepared with additions of 1%, 2.5%, 5%, 7.5%, 10% and 15% wt% waste sludge in body clay. In order to determine the technological properties, such as bulk density, linear shrinkage, water suction, water absorption and compressive strength, press-moulded bodies were fired at 950 °C for coherently bonding particles in order to enhance the strength and the other engineering properties of the compacted particles. Thermal heating destroys organic remainder and stabilizes inorganic materials and metals by incorporating oxides from the elemental constituent into a ceramic-like material. Results have shown that incorporating up to 5 wt% of sludge is beneficial for clay bricks. By contrast, the incorporation of sludge amounts over 5 wt% causes deterioration on the mechanical properties, therefore producing low-quality bricks.

  8. Treatment of copper industry waste and production of sintered glass-ceramic.

    PubMed

    Coruh, Semra; Ergun, Osman Nuri; Cheng, Ta-Wui

    2006-06-01

    Copper waste is iron-rich hazardous waste containing heavy metals such as Cu, Zn, Co, Pb. The results of leaching tests show that the concentration of these elements exceeds the Turkish and EPA regulatory limits. Consequently, this waste cannot be disposed of in its present form and therefore requires treatment to stabilize it or make it inert prior to disposal. Vitrification was selected as the technology for the treatment of the toxic waste under investigation. During the vitrification process significant amounts of the toxic organic and inorganic chemical compounds could be destroyed, and at the same time, the metal species are immobilized as they become an integral part of the glass matrix. The copper flotation waste samples used in this research were obtained from the Black Sea Copper Works of Samsun, Turkey. The samples were vitrified after being mixed with other inorganic waste and materials. The copper flotation waste and their glass-ceramic products were characterized by X-ray analysis (XRD), scanning electron microscopy and by the toxicity characteristic leaching procedure test. The products showed very good chemical durability. The glass-ceramics fabricated at 850 degrees C/2 h have a large application potential especially as construction and building materials.

  9. Kinetics of DNA tile dimerization.

    PubMed

    Jiang, Shuoxing; Yan, Hao; Liu, Yan

    2014-06-24

    Investigating how individual molecular components interact with one another within DNA nanoarchitectures, both in terms of their spatial and temporal interactions, is fundamentally important for a better understanding of their physical behaviors. This will provide researchers with valuable insight for designing more complex higher-order structures that can be assembled more efficiently. In this report, we examined several spatial factors that affect the kinetics of bivalent, double-helical (DH) tile dimerization, including the orientation and number of sticky ends (SEs), the flexibility of the double helical domains, and the size of the tiles. The rate constants we obtained confirm our hypothesis that increased nucleation opportunities and well-aligned SEs accelerate tile-tile dimerization. Increased flexibility in the tiles causes slower dimerization rates, an effect that can be reversed by introducing restrictions to the tile flexibility. The higher dimerization rates of more rigid tiles results from the opposing effects of higher activation energies and higher pre-exponential factors from the Arrhenius equation, where the pre-exponential factor dominates. We believe that the results presented here will assist in improved implementation of DNA tile based algorithmic self-assembly, DNA based molecular robotics, and other specific nucleic acid systems, and will provide guidance to design and assembly processes to improve overall yield and efficiency.

  10. Reuse of sugarcane bagasse ash (SCBA) to produce ceramic materials.

    PubMed

    Souza, A E; Teixeira, S R; Santos, G T A; Costa, F B; Longo, E

    2011-10-01

    Sugarcane bagasse ash (SCBA) is a residue resulting from the burning of bagasse in boilers in the sugarcane/alcohol industry. SCBA has a very high silica concentration and contains aluminum, iron, alkalis and alkaline earth oxides in smaller amounts. In this work, the properties of sintered ceramic bodies were evaluated based on the concentration of SCBA, which replaced non-plastic material. The ash was mixed (up to 60 wt%) with a clayed raw material that is used to produce roof tiles. Prismatic probes were pressed and sintered at different temperatures (up to 1200 °C). Technological tests of ceramic probes showed that the addition of ash has little influence on the ceramic properties up to 1000 °C. X-ray diffraction and thermal analysis data showed that, above this temperature the ash participates in the sintering process and in the formation of new important phases. The results reported show that the reuse of SCBA in the ceramic industry is feasible.

  11. A new Energy Saving method of manufacturing ceramic products from waste glass

    SciTech Connect

    Haun Labs

    2002-07-05

    This final report summarizes the activities of the DOE Inventions and Innovations sponsored project, ''A New Energy Saving Method of Manufacturing Ceramic Products from Waste Glass.'' The project involved an innovative method of lowering energy costs of manufacturing ceramic products by substituting traditional raw materials with waste glass. The processing method is based on sintering of glass powder at {approx}750 C to produce products which traditionally require firing temperatures of >1200 C, or glass-melting temperatures >1500 C. The key to the new method is the elimination of previous processing problems, which have greatly limited the use of recycled glass as a ceramic raw material. The technology is aligned with the DOE-OIT Glass Industry Vision and Roadmap, and offers significant energy savings and environmental benefits compared to current technologies. A U.S. patent (No. 6,340,650) covering the technology was issued on January 22, 2002. An international PCT Patent Application is pending with designations made for all PCT regions and countries. The goal of the project was to provide the basis for the design and construction of an energy-efficient manufacturing plant that can convert large volumes of waste glass into high-quality ceramic tile. The main objectives of the project were to complete process development and optimization; construct and test prototype samples; and conduct market analysis and commercialization planning. Two types of ceramic tile products were targeted by the project. The first type was developed during the first year (Phase I) to have a glazed-like finish for applications where slip resistance is not critical, such as wall tile. The processing method optimized in Phase I produces a glossy surface with a translucent appearance, without the extra glazing steps required in traditional tile manufacturing. The second type of product was developed during the second year (Phase II). This product was designed to have an unglazed appearance

  12. How We Used NASA Lunar Set in Planetary Material Science Analog Studies on Lunar Basalts and Breccias with Industrial Materials of Steels and Ceramics

    NASA Technical Reports Server (NTRS)

    Berczi, S.; Cech, V.; Jozsa, S.; Szakmany, G.; Fabriczy, A.; Foldi, T.; Varga, T.

    2005-01-01

    Analog studies play important role in space materials education. Various aspects of analogies are used in our courses. In this year two main rock types of NASA Lunar Set were used in analog studies in respect of processes and textures with selected industrial material samples. For breccias and basalts on the lunar side, ceramics and steels were found as analogs on the industrial side. Their processing steps were identified on the basis of their textures both in lunar and in industrial groups of materials.

  13. Kinetics of DNA Tile Dimerization

    PubMed Central

    2015-01-01

    Investigating how individual molecular components interact with one another within DNA nanoarchitectures, both in terms of their spatial and temporal interactions, is fundamentally important for a better understanding of their physical behaviors. This will provide researchers with valuable insight for designing more complex higher-order structures that can be assembled more efficiently. In this report, we examined several spatial factors that affect the kinetics of bivalent, double-helical (DH) tile dimerization, including the orientation and number of sticky ends (SEs), the flexibility of the double helical domains, and the size of the tiles. The rate constants we obtained confirm our hypothesis that increased nucleation opportunities and well-aligned SEs accelerate tile–tile dimerization. Increased flexibility in the tiles causes slower dimerization rates, an effect that can be reversed by introducing restrictions to the tile flexibility. The higher dimerization rates of more rigid tiles results from the opposing effects of higher activation energies and higher pre-exponential factors from the Arrhenius equation, where the pre-exponential factor dominates. We believe that the results presented here will assist in improved implementation of DNA tile based algorithmic self-assembly, DNA based molecular robotics, and other specific nucleic acid systems, and will provide guidance to design and assembly processes to improve overall yield and efficiency. PMID:24794259

  14. An epidemiological study of the respiratory health of workers in the European refractory ceramic fibre industry

    PubMed Central

    Cowie, H; Wild, P; Beck, J; Auburtin, G; Piekarski, C; Massin, N; Cherrie, J; Hurley, J; Miller, B; Groat, S; Soutar, C

    2001-01-01

    OBJECTIVES—To investigate possible relations between respiratory health and past airborne exposure to refractory ceramic fibres (RCFs) and respirable dust in workers at six European factories, studied previously in 1987.
METHODS—The target population comprised all current workers associated with RCF production, plus others who had participated in 1987 "leavers". Information was collected on personal characteristics, chest radiographs, lung function, respiratory symptoms, smoking, and full occupational history. Regression analysis was used to study relations between indices of health of individual workers and of cumulative exposure to airborne dust and fibres, and likely past exposure to asbestos. 
RESULTS AND DISCUSSION—774 workers participated (90% of current workers, 37% of leavers). Profusion of small opacities in exposed workers (51% 0/1+; 8% 1/0+) was similar to that among an unexposed control group but higher than in new readings of the 1987 study films (11% 0/1+, 2% 1/0+). The large difference between 1987 and recent films may be, at least in part, a reading artefact associated with film appearance. Small opacities of International Labour Organisation (ILO) category 1/0+ were not associated with exposure. An association of borderline significance overall between 0/1+ opacities and exposure to respirable fibres was found for some exposure periods only, the time related pattern being biologically implausible. Pleural changes were related to age and exposure to asbestos, and findings were consistent with an effect of time since first exposure to RCFs. Among men, forced expired volume in 1 second (FEV1) and forced vital capacity (FVC) were inversely related to exposure to fibres, in current smokers only. FEV1/ FVC ratio and transfer factor (TLCO) were not related to exposures. The estimated restrictive effect was on average mild. Prevalence of respiratory symptoms was low. Chronic bronchitis and its associated symptoms (cough, phlegm) showed some

  15. Criticality-Control Applications in the Nuclear Industry for Thermal Spray Amorphous Metal and Ceramic Coatings

    SciTech Connect

    Farmer, J; Choi, J

    2007-07-18

    Amorphous metal and ceramic thermal spray coatings have been developed that can be used to enhance the corrosion resistance of containers for the transportation, aging and disposal of spent nuclear fuel and high-level radioactive wastes. Iron-based amorphous metal formulations with chromium, molybdenum and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials, and their stability at high neutron doses, enable them to serve as high efficiency neutron absorbers for criticality control. The high boron content of Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4} (SAM2X5) makes it an effective neutron absorber, and suitable for criticality control applications. Average measured values of the neutron absorption cross section in transmission ({Sigma}{sub t}) for Type 316L stainless steel, Alloy C-22, borated stainless steel, a Ni-Cr-Mo-Gd alloy, and SAM2X5 have been determined to be approximately 1.1, 1.3, 2.3, 3.8 and 7.1 cm{sup -1}, respectively.

  16. Secondary polymer layered impregnated tile

    NASA Technical Reports Server (NTRS)

    Tran, Huy K. (Inventor); Rasky, Daniel J. (Inventor); Szalai, Christine E. (Inventor); Carroll, Joseph A. (Inventor); Hsu, Ming-ta S. (Inventor)

    2005-01-01

    A low density organic polymer impregnated preformed fibrous ceramic article includes a plurality of layers. A front layer includes ceramic fibers or carbon fibers or combinations of ceramic fibers and carbon fibers, and is impregnated with an effective amount of at least one organic polymer. A middle layer includes polymer impregnated ceramic fibers. A back layer includes ceramic fibers or carbon fibers or combinations of ceramic fibers and carbon fibers, and is impregnated with an effective amount of at least one low temperature pyrolyzing organic polymer capable of decomposing without depositing residues.

  17. Secondary polymer layered impregnated tile

    NASA Technical Reports Server (NTRS)

    Tran, Huy K. (Inventor); Rasky, Daniel J. (Inventor); Szalai, Christine E. (Inventor); Carroll, Joseph A. (Inventor); Hsu, Ming-ta S. (Inventor)

    2005-01-01

    A low density organic polymer impregnated preformed fibrous ceramic article includes a plurality of layers. A front layer includes ceramic fibers or carbon fibers or combinations of ceramic fibers and carbon fibers, and is impregnated with an effective amount of at least one organic polymer. A middle layer includes polymer impregnated ceramic fibers. A back layer includes ceramic fibers or carbon fibers or combinations of ceramic fibers and carbon fibers, and is impregnated with an effective amount of at least one low temperature pyrolyzing organic polymer capable of decomposing without depositing residues.

  18. Use of glazed ceramic waste as additive in mortar and the mathematical modelling of its strength.

    PubMed

    Altin, Zehra Gulten; Erturan, Seyfettin; Tepecik, Abdulkadir

    2008-04-01

    This study investigated the reusability of waste material from the tile manufacturing industry as an alternative material to natural pozzolan trass. Yield strength values of mortar made from Portland cement (CEM 142.5), were measured by adding glazed ceramic waste and trass at various weight ratios (5 to 40%). The test results proved that the strength values at 2, 7, and 28 days gave good results for concentrations of waste materials less than 5-10% in the cement. A decrease in strength was observed at higher concentrations. Mathematical modelling results showed a logarithmic correlation between the mortar strength and weight fraction of cement.

  19. A hadronic tile calorimeter report

    NASA Astrophysics Data System (ADS)

    Boca, Gianluigi; Gourlay, S.; Chung, Yeon Sei; Lee, Kyoung-Beom; Malvezzi, S.; Sala, A.; Arena, V.; Bonomi, G.; Gianini, G.; Merlo, M.; Ratti, S.; Riccardi, C.; Viola, L.; Vitulo, P.

    1998-02-01

    The design and first performances of a new hadronic calorimeter for the experiment Focus (E831) at Fermilab are presented. It is a sampling calorimeter, with 28 iron (passive) and scintillator (active) planes. The active planes are composed of tiles read out by WaveLength Shifter fibers spliced to clear fibers. This is the first tile calorimeter actually used (1997)in a running experiment.

  20. Radioactivity Measurements on Glazed Ceramic Surfaces.

    PubMed

    Hobbs, T G

    2000-01-01

    A variety of commonly available household and industrial ceramic items and some specialty glass materials were assayed by alpha pulse counting and ion chamber voltage measurements for radioactivity concentrations. Identification of radionuclides in some of the items was performed by gamma spectroscopy. The samples included tableware, construction tiles and decorative tiles, figurines, and other products with a clay based composition. The concentrations of radioactivity ranged from near background to about four orders of magnitude higher. Almost every nuclide identification test demonstrated some radioactivity content from one or more of the naturally occurring radionuclide series of thorium or uranium. The glazes seemed to contribute most of the activity, although a sample of unglazed pottery greenware showed some activity. Samples of glazing paints and samples of deliberately doped glass from the World War II era were included in the test, as was a section of foam filled poster board. A glass disc with known (232)Th radioactivity concentration was cast for use as a calibration source. The results from the two assay methods are compared, and a projection of sensitivity from larger electret ion chamber devices is presented.

  1. Orion Tile Fitting

    NASA Image and Video Library

    2016-10-24

    Tile blocks have been prefitted around the heat shield for the Orion crew module inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida. The heat shield is one of the most critical elements of Orion and protects it and the future astronauts inside from searing temperatures experienced during reentry through Earth’s atmosphere when they return home. For Exploration Mission-1, the top layer of Orion’s heat shield that is primarily responsible for helping the crew module endure reentry heat will be composed of approximately 180 blocks, which are made of an ablative material called Avcoat designed to wear away as it heats up. Orion is being prepared for its flight on the agency’s Space Launch System for Exploration Mission-1 in late 2018. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA’s Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. For more information, visit http://www.nasa.gov/orion.

  2. Demonstration of a full-scale plant using an UASB followed by a ceramic MBR for the reclamation of industrial wastewater.

    PubMed

    Niwa, Terutake; Hatamoto, Masashi; Yamashita, Takuya; Noguchi, Hiroshi; Takase, Osamu; Kekre, Kiran A; Ang, Wui Seng; Tao, Guihe; Seah, Harry; Yamaguchi, Takashi

    2016-10-01

    This study comprehensively evaluated the performance of a full-scale plant (4550m(3)d(-1)) using a UASB reactor followed by a ceramic MBR for the reclamation and reuse of mixed industrial wastewater containing many inorganics, chemical, oil and greases. This plant was demonstrated as the first full-scale system to reclaim the mixed industrial wastewater in the world. During 395days of operation, influent chemical oxygen demand (COD) fluctuated widely, but this system achieved COD removal rate of 91% and the ceramic MBR have operated flux of 21-25LMH stably. This means that this system adsorbed the feed water fluctuation and properly treated the water. Energy consumption of this plant was achieved 0.76kWhmm(-3) and this value is same range of domestic sewage MBR system. The combination of an UASB reactor and ceramic MBR is the most economical and feasible solution for water reclamation of mixed industrial wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Optical Characteristics of Phosphorescent Materials with Water-Based Ceramics

    NASA Astrophysics Data System (ADS)

    Fujita, Akihiro; Kagami, Shinya; Jones, Mark I.

    A composite coating approach has been employed to produce phosphorescent materials for emergency exit signs. The coating consists of a reflecting undercoat, a middle coating comprising phosphorescent pigments in a water based ceramic, and a final transparent silica topcoat. The effects of size and amount of pigments in the ceramic based coating on the luminance of the materials was assessed and compared with the Japanese Industrial Standard for safety signboards (JIS Z9107). The luminance increased with the amount of pigment in the coating, and samples with more than 20% exceeded the standard. Luminance 10 times higher than the JIS standard was obtained with 50% phosphorescent pigments. The luminance increased initially with the number of applications of the ceramic based coating but there was no further increase for more than 4 applications. The water-based phosphorescent ceramics developed here are superior in optical characteristics and made entirely of inorganic materials. It is considered that these are excellent materials for phosphorescent emergency exit signs. In addition, the materials can be applied at room temperature for example to metal substrates or by silkscreen printing on tiles, and then calcined at low temperature. This type of processing makes them suitable for a whole range of applications.

  4. Silica dust and lung cancer in the German stone, quarrying, and ceramics industries: results of a case-control study.

    PubMed

    Ulm, K; Waschulzik, B; Ehnes, H; Guldner, K; Thomasson, B; Schwebig, A; Nuss, H

    1999-04-01

    A work force based case-control study of lung cancer was performed in non-silicotic subjects exposed to crystalline silica to investigate the association between silica dust and lung cancer excluding the influence of silicosis. Two hundred and forty seven patients with lung cancer and 795 control subjects were enrolled, all of whom had been employed in the German stone, quarrying, or ceramics industries. Smoking was used as a matching criterion. Exposure to silica was quantified by measurements, if available, or otherwise by industrial hygienists. Several indices (peak, average and cumulative exposure) were used to analyse the relationship between the level of exposure and risk of lung cancer as odds ratios (OR). The risk of lung cancer is associated with the year of and age at first exposure to silica, duration of exposure, and latency. All odds ratios were adjusted for these factors. Considering the peak exposure, the OR for workers exposed to high levels (>/=0.15 mg/m3 respirable silica dust which is the current occupational threshold value for Germany) compared with those exposed to low levels (<0.15 mg/m3) was 0.85 (95% CI 0.58 to 1. 25). For the time weighted average exposure the OR was 0.91 (95% CI 0.57 to 1.46). The OR for the cumulative exposure was 1.02 (95% CI 0. 67 to 1.55). No increase in risk was evident with increasing exposure. This study shows no association between exposure to crystalline silica and lung cancer. The exclusion of subjects with silicosis may have led to dilution with respect to the level of exposure and therefore reduced the power to detect a small risk. Alternatively, the risk of getting lung cancer may be restricted to subjects with silicosis and is not directly linked to silica dust.

  5. Silica dust and lung cancer in the German stone, quarrying, and ceramics industries: results of a case-control study

    PubMed Central

    Ulm, K; Waschulzik, B; Ehnes, H; Guldner, K; Thomasson, B; Schwebig, A; Nuss, H

    1999-01-01

    BACKGROUND—A work force based case-control study of lung cancer was performed in non-silicotic subjects exposed to crystalline silica to investigate the association between silica dust and lung cancer excluding the influence of silicosis.
METHODS—Two hundred and forty seven patients with lung cancer and 795 control subjects were enrolled, all of whom had been employed in the German stone, quarrying, or ceramics industries. Smoking was used as a matching criterion. Exposure to silica was quantified by measurements, if available, or otherwise by industrial hygienists. Several indices (peak, average and cumulative exposure) were used to analyse the relationship between the level of exposure and risk of lung cancer as odds ratios (OR).
RESULTS—The risk of lung cancer is associated with the year of and age at first exposure to silica, duration of exposure, and latency. All odds ratios were adjusted for these factors. Considering the peak exposure, the OR for workers exposed to high levels (⩾0.15 mg/m3 respirable silica dust which is the current occupational threshold value for Germany) compared with those exposed to low levels (<0.15 mg/m3) was 0.85 (95% CI 0.58 to 1.25). For the time weighted average exposure the OR was 0.91 (95% CI 0.57 to 1.46). The OR for the cumulative exposure was 1.02 (95% CI 0.67 to 1.55). No increase in risk was evident with increasing exposure.
CONCLUSIONS—This study shows no association between exposure to crystalline silica and lung cancer. The exclusion of subjects with silicosis may have led to dilution with respect to the level of exposure and therefore reduced the power to detect a small risk. Alternatively, the risk of getting lung cancer may be restricted to subjects with silicosis and is not directly linked to silica dust.

 PMID:10092697

  6. Fluorescence of ceramic color standards

    SciTech Connect

    Koo, Annette; Clare, John F.; Nield, Kathryn M.; Deadman, Andrew; Usadi, Eric

    2010-04-20

    Fluorescence has been found in color standards available for use in calibration and verification of color measuring instruments. The fluorescence is excited at wavelengths below about 600 nm and emitted above 700 nm, within the response range of silicon photodiodes, but at the edge of the response of most photomultipliers and outside the range commonly scanned in commercial colorimeters. The degree of fluorescence on two of a set of 12 glossy ceramic tiles is enough to introduce significant error when those tiles have been calibrated in one mode of measurement and are used in another. We report the nature of the fluorescence and the implications for color measurement.

  7. Fluorescence of ceramic color standards.

    PubMed

    Koo, Annette; Clare, John F; Nield, Kathryn M; Deadman, Andrew; Usadi, Eric

    2010-04-20

    Fluorescence has been found in color standards available for use in calibration and verification of color measuring instruments. The fluorescence is excited at wavelengths below about 600?nm and emitted above 700?nm, within the response range of silicon photodiodes, but at the edge of the response of most photomultipliers and outside the range commonly scanned in commercial colorimeters. The degree of fluorescence on two of a set of 12 glossy ceramic tiles is enough to introduce significant error when those tiles have been calibrated in one mode of measurement and are used in another. We report the nature of the fluorescence and the implications for color measurement.

  8. TileMap: create chromosomal map of tiling array hybridizations.

    PubMed

    Ji, Hongkai; Wong, Wing Hung

    2005-09-15

    Tiling array is a new type of microarray that can be used to survey genomic transcriptional activities and transcription factor binding sites at high resolution. The goal of this paper is to develop effective statistical tools to identify genomic loci that show transcriptional or protein binding patterns of interest. A two-step approach is proposed and is implemented in TileMap. In the first step, a test-statistic is computed for each probe based on a hierarchical empirical Bayes model. In the second step, the test-statistics of probes within a genomic region are used to infer whether the region is of interest or not. Hierarchical empirical Bayes model shrinks variance estimates and increases sensitivity of the analysis. It allows complex multiple sample comparisons that are essential for the study of temporal and spatial patterns of hybridization across different experimental conditions. Neighboring probes are combined through a moving average method (MA) or a hidden Markov model (HMM). Unbalanced mixture subtraction is proposed to provide approximate estimates of false discovery rate for MA and model parameters for HMM. TileMap is freely available at http://biogibbs.stanford.edu/~jihk/TileMap/index.htm. http://biogibbs.stanford.edu/~jihk/TileMap/index.htm (includes coloured versions of all figures).

  9. Refractory ceramic fiber composites and high emissivity materials for energy savings in the industry: A state-of-the-art review

    SciTech Connect

    Palco, S.; Rigaud, M.

    1995-10-01

    Due to a series of continuous improvements in the manufacturing know-how of ceramic fiber, effective composition compounds, use of protective and high emissivity coatings, and innovative anchoring methods for lining, utilization of ceramic fiber products is nowadays extremely diversified. The advantages of all-fiber linings for industrial furnaces can be briefly summarized as: short heating-up and cooling-down periods, low energy consumption, high production capacity, optimum temperature balance, and more uniform quality of finished products. The major disadvantage is that the use of fiber is questionable with the production of aggressive fuel gases and/or glaze vapors. This is because the fibrous materials are less resistant to the attack of aggressive environment than the other insulating products, and thus quickly lose their properties. The application of high emissivity ceramic coatings on the working surface of fibrous insulating lining can improve the resistance of these materials against the aggressive environment. And as a result of increasing the radiating efficiency of the refractory lining, more energy is directed to the work load, thus requiring less fuel to be fired. Ceramic fiber products is a perfect example of what composite materials are.

  10. Ceramic Technology Project

    SciTech Connect

    Not Available

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  11. Light-weight black ceramic insulation

    NASA Technical Reports Server (NTRS)

    Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    2003-01-01

    Ultra-high temperature, light-weight, black ceramic insulation having a density ranging from about 0.12 g/cc. to 0.6 g/cc. such as ceramic tile is obtained by pyrolyzing siloxane gels derived from the reaction of at least one organo dialkoxy silane and at least one tetralkoxy silane in an acid or base liquid medium. The reaction mixture of the tetra- and dialkoxy silanes also may contain an effective amount of a mono- or trialkoxy silane to obtain the siloxane gels. The siloxane gels are dried at ambient temperatures and pressures to form siloxane ceramic precursors without significant shrinkage. The siloxane ceramic precursors are subsequently pyrolyzed, in an inert atmosphere, to form the black ceramic insulation comprising atoms of silicon, carbon and oxygen. The ceramic insulation can be characterized as a porous, uniform ceramic tile resistant to oxidation at temperatures ranging as high as 1700.degree. C., and particularly useful as lightweight tiles for spacecraft and other high-temperature insulation applications.

  12. Ceramic materials for solar collectors. Final report

    SciTech Connect

    Ankeny, A.E.

    1982-09-29

    The purpose of this project was to identify ceramic materials which exhibit solar absorption properties which are appropriate for flat plate solar collectors. To accomplish this, various glaze formulations and clay combinations were produced and evaluated for their potential as solar absorbers. For purposes of comparison a black coated copper sheet was also tested concurrently with the ceramic materials. Thirty-five different coatings were prepared on fifty-six tiles. Two different clays, a porcelain and a stoneware clay, were used to make the tiles. From the tiles prepared, thirty of the most promising coatings were chosen for evaluation. The test apparatus consisted of a wooden frame which enclosed four mini-collectors. Each mini-collector was a rectangular ceramic heat exchanger on which a test tile could be mounted. The working fluid, water, was circulated into the collector, passed under the test tile where it gained heat, and then was discharged out of the collector. Thermometers were installed in the inlet and discharge areas to indicate the temperature increase of the water. The quantity of heat absorbed was determined by measuring the water flow (pounds per minute) and multiplying it by the temperature increase (/sup 0/F). The control sample, a copper wheet painted flat black, provided a base by which to compare the performance of the test tiles installed in the other three mini-collectors. Testing was conducted on various days during August and September, 1982. The test results indicate that coatings with very satisfactory solar absorbing properties can be made with ceramic materials. The results suggest that an economically viable ceramic solar collector could be constructed if engineered to minimize the effects of relatively low thermal conductivity of clay.

  13. Tiling spaces are inverse limits

    NASA Astrophysics Data System (ADS)

    Sadun, Lorenzo

    2003-11-01

    Let M be an arbitrary Riemannian homogeneous space, and let Ω be a space of tilings of M, with finite local complexity (relative to some symmetry group Γ) and closed in the natural topology. Then Ω is the inverse limit of a sequence of compact finite-dimensional branched manifolds. The branched manifolds are (finite) unions of cells, constructed from the tiles themselves and the group Γ. This result extends previous results of Anderson and Putnam, of Ormes, Radin, and Sadun, of Bellissard, Benedetti, and Gambaudo, and of Gähler. In particular, the construction in this paper is a natural generalization of Gähler's.

  14. Reusable Surface Insulation Tile Thermal Protection Materials: Past, Present and the Future

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel B.; Stewart, David A.; Venkatapathy, Ethiras (Technical Monitor)

    2002-01-01

    Silica (LI-900) Reusable Surface Insulation (RSI) tile have been used on the majority of the Shuttle since its initial flight. Its overall performance with Reaction Cured Glass (RCG) coating applied will be reviewed. Improvements in insulations, Fibrous Refractory Composite Insulation (FRCI-12) and Alumina Enhanced Thermal Barrier (AETB-8) and coatings/surface treatments such as Toughened Uni-Piece Fibrous Insulation (TUFI) have been developed and successfully applied. The performance of these enhancements on the Shuttle Orbiters over the past few years along with the next version of tile materials, High Efficiency Tantalum-based Ceramic (HETC) with even broader applicability will also be discussed.

  15. Structural clay tile component behavior

    SciTech Connect

    Columber, Christopher Eugene

    1994-12-18

    The basic properties of structural clay tile walls were determined through component and composite testing of structural clay tile and mortar. The fundamental material parameters and strengths of clay tile coupons were determined through compression, tension, modulus of rupture and absorption tests. Mortar cylinders were tested in both compression and split cylinder fashion. Stress-strain curves for mortar under compression were determined. Four miniature prisms were tested in compression. These prisms were made from two 8 inches x 12 inches x 12 inches structural clay tiles, using a stack bond with a 3/4 inches mortar joint. Stress strain curves as well as material property values were obtained. These results were compared with previous tests on larger (2 feet x 4 feet) prisms. Twenty five bond wrench samples were tested. Two series of bond wrench samples were run. The first series (six tests) were fitted with LVDTs so that load deflection curves as well as flexural strengths could be obtained. A shifting of the neutral axis towards the compression face was observed. The second series were made with different mortar types: type N masonry cement mortar, type S masonry cement mortar, type N portland cement lime (PCL) mortar, and type S PCL mortar. Type S mortar and portland cement lime mortar were found to improve the bond strength.

  16. PHASE CHANGE MATERIALS IN FLOOR TILES FOR THERMAL ENERGY STORAGE

    SciTech Connect

    Douglas C. Hittle

    2002-10-01

    Passive solar systems integrated into residential structures significantly reduce heating energy consumption. Taking advantage of latent heat storage has further increased energy savings. This is accomplished by the incorporation of phase change materials into building materials used in passive applications. Trombe walls, ceilings and floors can all be enhanced with phase change materials. Increasing the thermal storage of floor tile by the addition of encapsulated paraffin wax is the proposed topic of research. Latent heat storage of a phase change material (PCM) is obtained during a change in phase. Typical materials use the latent heat released when the material changes from a liquid to a solid. Paraffin wax and salt hydrates are examples of such materials. Other PCMs that have been recently investigated undergo a phase transition from one solid form to another. During this process they will release heat. These are known as solid-state phase change materials. All have large latent heats, which makes them ideal for passive solar applications. Easy incorporation into various building materials is must for these materials. This proposal will address the advantages and disadvantages of using these materials in floor tile. Prototype tile will be made from a mixture of quartz, binder and phase change material. The thermal and structural properties of the prototype tiles will be tested fully. It is expected that with the addition of the phase change material the structural properties will be compromised to some extent. The ratio of phase change material in the tile will have to be varied to determine the best mixture to provide significant thermal storage, while maintaining structural properties that meet the industry standards for floor tile.

  17. Ceramic Solar Receiver

    NASA Technical Reports Server (NTRS)

    Robertson, C., Jr.

    1984-01-01

    Solar receiver uses ceramic honeycomb matrix to absorb heat from Sun and transfer it to working fluid at temperatures of 1,095 degrees and 1,650 degrees C. Drives gas turbine engine or provides heat for industrial processes.

  18. Organosilane-Based Coating of Quartz Species from the Traditional Ceramics Industry: Evidence of Hazard Reduction Using In Vitro and In Vivo Tests.

    PubMed

    Ziemann, Christina; Escrig, Alberto; Bonvicini, Giuliana; Ibáñez, Maria Jesús; Monfort, Eliseo; Salomoni, Arturo; Creutzenberg, Otto

    2017-05-01

    The exposure to respirable crystalline silica (RCS), e.g. quartz, in industrial settings can induce silicosis and may cause tumours in chronic periods. Consequently, RCS in the form of quartz and cristobalite has been classified as human lung carcinogen category 1 by the International Agency for Research on Cancer in 1997, acknowledging differences in hazardous potential depending on source as well as chemical, thermal, and mechanical history. The physico-chemical determinants of quartz toxicity are well understood and are linked to density and abundance of surface silanol groups/radicals. Hence, poly-2-vinylpyridine-N-oxide and aluminium lactate, which effectively block highly reactive silanol groups at the quartz surface, have formerly been introduced as therapeutic approaches in the occupational field. In the traditional ceramics industry, quartz-containing raw materials are indispensable for the manufacturing process, and workers are potentially at risk of developing quartz-related lung diseases. Therefore, in the present study, two organosilanes, i.e. Dynasylan® PTMO and Dynasylan® SIVO 160, were tested as preventive, covalent quartz-coating agents to render ceramics production safer without loss in product quality. Coating effectiveness and coating stability (up to 1 week) in artificial alveolar and lysosomal fluids were first analysed in vitro, using the industrially relevant quartz Q1 as RCS model, quartz DQ12 as a positive control, primary rat alveolar macrophages as cellular model system (75 µg cm-2; 4 h of incubation ± aluminium lactate to verify quartz-related effects), and lactate dehydrogenase release and DNA strand break induction (alkaline comet assay) as biological endpoints. In vitro results with coated quartz were confirmed in a 90-day intratracheal instillation study in rats with inflammatory parameters as most relevant readouts. The results of the present study indicate that in particular Dynasylan® SIVO 160 (0.2% w/w of quartz) was able

  19. Organosilane-Based Coating of Quartz Species from the Traditional Ceramics Industry: Evidence of Hazard Reduction Using In Vitro and In Vivo Tests

    PubMed Central

    Escrig, Alberto; Bonvicini, Giuliana; Ibáñez, Maria Jesús; Monfort, Eliseo; Salomoni, Arturo; Creutzenberg, Otto

    2017-01-01

    Abstract The exposure to respirable crystalline silica (RCS), e.g. quartz, in industrial settings can induce silicosis and may cause tumours in chronic periods. Consequently, RCS in the form of quartz and cristobalite has been classified as human lung carcinogen category 1 by the International Agency for Research on Cancer in 1997, acknowledging differences in hazardous potential depending on source as well as chemical, thermal, and mechanical history. The physico-chemical determinants of quartz toxicity are well understood and are linked to density and abundance of surface silanol groups/radicals. Hence, poly-2-vinylpyridine-N-oxide and aluminium lactate, which effectively block highly reactive silanol groups at the quartz surface, have formerly been introduced as therapeutic approaches in the occupational field. In the traditional ceramics industry, quartz-containing raw materials are indispensable for the manufacturing process, and workers are potentially at risk of developing quartz-related lung diseases. Therefore, in the present study, two organosilanes, i.e. Dynasylan® PTMO and Dynasylan® SIVO 160, were tested as preventive, covalent quartz-coating agents to render ceramics production safer without loss in product quality. Coating effectiveness and coating stability (up to 1 week) in artificial alveolar and lysosomal fluids were first analysed in vitro, using the industrially relevant quartz Q1 as RCS model, quartz DQ12 as a positive control, primary rat alveolar macrophages as cellular model system (75 µg cm−2; 4 h of incubation ± aluminium lactate to verify quartz-related effects), and lactate dehydrogenase release and DNA strand break induction (alkaline comet assay) as biological endpoints. In vitro results with coated quartz were confirmed in a 90-day intratracheal instillation study in rats with inflammatory parameters as most relevant readouts. The results of the present study indicate that in particular Dynasylan® SIVO 160 (0.2% w/w of quartz

  20. A comparison between ceramic membrane filters and conventional fabric filters for fine particulate removal from a coal-fired industrial boiler

    SciTech Connect

    Miller, B.G.; Wincek, R.T.; Glick, D.C.; Scaroni, A.W.; Drury, K.; Makris; Stubblefield, D.J.

    1998-12-31

    Penn State is developing technologies for ultralow emissions when firing coal-based fuels, i.e., micronized coal and coal-water slurry fuel (CWSF) in industrial boilers. Emissions being addressed are SO{sub 2}, NOx, fine particulate matter (PM{sub 10} and PM{sub 2.5}), and air toxics (trace elements and volatile organic compounds). Results from trace element and polynuclear aromatic hydrocarbon emissions testing, when firing coal-based fuels, are reported elsewhere in these proceedings. This paper discusses the evaluation of ceramic membrane filters for fine particulate removal in a package boiler when firing micronized coal and CWSF.

  1. Ceramic Fabric Coated With Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Riccitiello, S. R.; Smith, M.; Goldstein, H.; Zimmerman, N.

    1988-01-01

    Material used as high-temperature shell. Ceramic fabric coated with silicon carbide (SiC) serves as tough, heat-resistant covering for other refractory materials. Developed to protect reusable insulating tiles on advanced space transportation systems. New covering makes protective glaze unnecessary. Used on furnace bricks or on insulation for engines.

  2. Nondestructive evaluation of Shuttle Columbia tiles

    NASA Technical Reports Server (NTRS)

    Davis, Richard M.; Moslehy, Faissal A.; Clarke, Margaret M.; Mauceri, A. J.

    1992-01-01

    The NDE of Orbiter Vehicle-102 tile bonds, performed in August 1991, is described. The evaluation was carried out in order to help NASA develop fast, reliable methods to diagnose problems in tile bonding other than the present 'pull' and 'wiggle' tests. The NDE did not find any indication of bond problems, and all bonds were classified as 'nominal'. The feasibility of using NDE techniques in a dynamic, real-world environment without interfering with Shuttle rework schedules is shown. The data will be useful in verifying analytical models of tile behavior developed at the University of Central Florida. The need for a tile test bed containing known tile misbonds is suggested.

  3. Reinventing ceramic production

    SciTech Connect

    Krause, C.

    1993-01-01

    Ceramic materials can take the heat, but repeated stresses will do them in because they are inherently brittle. When subjected to one too many stresses, ceramics will crack or even shatter, like Humpty Dumpty falling off the wall. The problem lies in tiny flaws that undermine the strength of ceramics. Voids or particles of the wrong size or shape that don't quite fit together can be the Achilles' heel of a ceramic, setting it up of eventual failure. The solution lies in the close packing of the particles that make up the material. Controlling the sizes and shapes of the particles that become the building blocks of ceramics is an essential first step toward developing highly reliable ceramics for energy applications. Three ORNL engineers have developed a device that may help industry reinvent ceramic production. Called the electric dispersion reactor, the device produces ultrafine precursor ceramic particles of desired shapes and distribution of sizes. Such control could eliminate the tiny flaws that eventually grow into cracks in normally brittle ceramics, especially those containing multiple components. In addition, such control could eliminate the problem of misaligned grains, which limits the amount of electrical current that bulk superconducting ceramics can carry. Thus, this approach could improve the electrical current-carrying capacity of high-temperature superconducting materials.

  4. Characterisation of the sintering behaviour of Waelz slag from electric arc furnace (EAF) dust recycling for use in the clay ceramics industry.

    PubMed

    Quijorna, N; de Pedro, M; Romero, M; Andrés, A

    2014-01-01

    Waelz slag is an industrial by-product from the recovery of electric arc furnace (EAF) dust which is mainly sent to landfills. Despite the different chemical and mineralogical compositions of Waelz slag compared to traditional clays, previous experiments have demonstrated its potential use as a clay substitute in ceramic processes. Indeed, clayey products containing Waelz slag could improve mechanical and environmental performance, fixing most of the metallic species and moreover decreasing the release of some potential pollutants during firing. However, a deeper understanding of the complex phase transformations during its thermal treatment and the connection of this behaviour with the end properties is desirable in order to explain the role that is played by the Waelz slag and its potential contribution to the ceramic process. For this purpose, in the present study, the chemical, mineralogical, thermal and environmental behaviour of both (i) unfired powdered samples, and (ii) pressed specimen of Waelz slag fired up to different temperatures within the typical range of clay based ceramic production, has been studied. The effect of the heating temperature on the end properties of the fired samples has been assessed. In general, an increase of the firing temperature promotes sintering and densification of the products and decreases the open porosity and water absorption which also contributes to the fixation of heavy metals. On the contrary, an increase in the leaching of Pb, Cr and Mo from the fired specimens is observed. This can be attributed to the creation of Fe and Ca molybdates and chromates that are weakly retained in the alkali matrix. On the other side, at temperature above 950 °C a weight gain related to the emission of evolved gases is observed. In conclusion, the firing temperature of the ceramic process is a key parameter that affects not only the technical properties but also strongly affects the leaching behaviour and the process emissions.

  5. Impacts of Space Shuttle thermal protection system tile on F-15 aircraft vertical tile

    NASA Technical Reports Server (NTRS)

    Ko, W. L.

    1985-01-01

    Impacts of the space shuttle thermal protection system (TPS) tile on the leading edge and the side of the vertical tail of the F-15 aircraft were analyzed under different TPS tile orientations. The TPS tile-breaking tests were conducted to simulate the TPS tile impacts. It was found that the predicted tile impact forces compare fairly well with the tile-breaking forces, and the impact forces exerted on the F-15 aircraft vertical tail were relatively low because a very small fraction of the tile kinetic energy was dissipated in the impact, penetration, and fracture of the tile. It was also found that the oblique impact of the tile on the side of the F-15 aircraft vertical tail was unlikely to dent the tail surface.

  6. The Level-1 Tile-Muon Trigger in the Tile Calorimeter upgrade program

    NASA Astrophysics Data System (ADS)

    Ryzhov, A.

    2016-12-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC). TileCal provides highly-segmented energy measurements for incident particles. Information from TileCal's outermost radial layer can assist in muon tagging in the Level-1 Muon Trigger by rejecting fake muon triggers due to slow charged particles (typically protons) without degrading the efficiency of the trigger. The main activity of the Tile-Muon Trigger in the ATLAS Phase-0 upgrade program was to install and to activate the TileCal signal processor module for providing trigger inputs to the Level-1 Muon Trigger. This report describes the Tile-Muon Trigger, focusing on the new detector electronics such as the Tile Muon Digitizer Board (TMDB) that receives, digitizes and then provides the signal from eight TileCal modules to three Level-1 muon endcap Sector-Logic Boards.

  7. Recycling and reuse of industrial wastes in Taiwan.

    PubMed

    Wei, M S; Huang, K H

    2001-01-01

    Eighteen million metric tons of industrial wastes are produced every year in Taiwan. In order to properly handle the industrial wastes, the Taiwan Environmental Protection Administration (Taiwan EPA) has set up strategic programs that include establishment of storage, treatment, and final disposal systems, establishment of a management center for industrial wastes, and promotion of recycling and reuse of industrial wastes. The Taiwan EPA has been actively promoting the recycling and reuse of industrial wastes over the years. In July 1995 the Taiwan EPA amended and promulgated the Criteria for the Industrial Waste Storage, Collection and Processing Facility, July, 1995 that added articles related to general industrial waste recycling and reuse. In June 1996 the Taiwan EPA promulgated the Non-listed General Industrial Waste Reuse Application Procedures, June, 1996, followed by the Regulations Governing the Permitting of Hazardous Industrial Waste Reuse, June 1996, setting up a full regulatory framework for governing industrial waste reuse. To broaden the recycling and reuse of general industrial wastes, the Taiwan EPA has listed 14 industrial waste items for recycling and reuse, including waste paper, waste iron, coal ash, tempered high furnace bricks (cinder), high furnace bricks (cinder), furnace transfer bricks (cinder), sweetening dregs, wood (whole/part), glass (whole/part), bleaching earth, ceramics (pottery, brick, tile and cast sand), individual metal scraps (copper, zinc, aluminum and tin), distillery grain (dregs) and plastics. As of June 1999, 99 applications for reuse of industrial wastes had been approved with 1.97 million metric tons of industrial wastes being reused.

  8. Programmable DNA tile self-assembly using a hierarchical sub-tile strategy.

    PubMed

    Shi, Xiaolong; Lu, Wei; Wang, Zhiyu; Pan, Linqiang; Cui, Guangzhao; Xu, Jin; LaBean, Thomas H

    2014-02-21

    DNA tile based self-assembly provides a bottom-up approach to construct desired nanostructures. DNA tiles have been directly constructed from ssDNA and readily self-assembled into 2D lattices and 3D superstructures. However, for more complex lattice designs including algorithmic assemblies requiring larger tile sets, a more modular approach could prove useful. This paper reports a new DNA 'sub-tile' strategy to easily create whole families of programmable tiles. Here, we demonstrate the stability and flexibility of our sub-tile structures by constructing 3-, 4- and 6-arm DNA tiles that are subsequently assembled into 2D lattices and 3D nanotubes according to a hierarchical design. Assembly of sub-tiles, tiles, and superstructures was analyzed using polyacrylamide gel electrophoresis and atomic force microscopy. DNA tile self-assembly methods provide a bottom-up approach to create desired nanostructures; the sub-tile strategy adds a useful new layer to this technique. Complex units can be made from simple parts. The sub-tile approach enables the rapid redesign and prototyping of complex DNA tile sets and tiles with asymmetric designs.

  9. Developing tiled projection display systems

    SciTech Connect

    Hereld, M.; Judson, I. R.; Paris, J.; Stevens, R. L.

    2000-06-08

    Tiled displays are an emerging technology for constructing high-resolution semi-immersive visualization environments capable of presenting high-resolution images from scientific simulation [EVL, PowerWall]. In this way, they complement other technologies such as the CAVE [Cruz-Niera92] or ImmersaDesk, [Czernuszenko97], which by design give up pure resolution in favor of width of view and stereo. However, the largest impact may well be in using large-format tiled displays as one of possibly multiple displays in building ''information'' or ''active'' spaces that surround the user with diverse ways of interacting with data and multimedia information flows [IPSI, Childers00, Raskar98, ROME, Stanford, UNC]. These environments may prove to be the ultimate successor of the desktop metaphor for information technology work.

  10. Shuttle Upgrade Program: Tile TPS

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel B.; Stewart, David A.; DiFiore, Robert; Irby, Ed; Arnold, James (Technical Monitor)

    2001-01-01

    One of the areas where the thermal protection system on the Space Shuttle Orbiter could be improved is the RSI (Reusable Surface Insulation) tile. The improvement would be in damage resistance that would reduce the resultant maintenance and inspection required. It has performed very well in every other aspect. Improving the system's damage resistance has been the subject of much research over the past several years. One of the results of that research was a new system developed for damage prone areas on the orbiter (i.e., base heat shield). That system, designated as TUFI, Toughened Uni-Piece Fibrous Insulation, was successfully demonstrated as an experiment on the Orbiter and is now baselined for the base heat shield. This paper describes the results of a current research program to further improve the TUFI tile system, thus making it applicable to more areas on the orbiter. The way to remove the current limitations of the TUFI system (i.e., weight or thermal conductivity differences between it and the baseline tile (LI-900)) is to improve the characteristics of LI-900 or AETB-8. Specifically this paper describes the results of two efforts. The first shows performance data of an improved LI-900 system involving the application of TUFI and the second describes data that shows a reduced difference in thermal conductivity between the advanced TUFI substrate (AETB-8) now used on the orbiter and LI-900.

  11. Shuttle Upgrade Program: Tile TPS

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel B.; Stewart, David A.; DiFiore, Robert; Irby, Ed; Arnold, James (Technical Monitor)

    2001-01-01

    One of the areas where the thermal protection system on the Space Shuttle Orbiter could be improved is the RSI (Reusable Surface Insulation) tile. The improvement would be in damage resistance that would reduce the resultant maintenance and inspection required. It has performed very well in every other aspect. Improving the system's damage resistance has been the subject of much research over the past several years. One of the results of that research was a new system developed for damage prone areas on the orbiter (i.e., base heat shield). That system, designated as TUFI, Toughened Uni-Piece Fibrous Insulation, was successfully demonstrated as an experiment on the Orbiter and is now baselined for the base heat shield. This paper describes the results of a current research program to further improve the TUFI tile system, thus making it applicable to more areas on the orbiter. The way to remove the current limitations of the TUFI system (i.e., weight or thermal conductivity differences between it and the baseline tile (LI-900)) is to improve the characteristics of LI-900 or AETB-8. Specifically this paper describes the results of two efforts. The first shows performance data of an improved LI-900 system involving the application of TUFI and the second describes data that shows a reduced difference in thermal conductivity between the advanced TUFI substrate (AETB-8) now used on the orbiter and LI-900.

  12. Radioactivity and associated radiation hazards in ceramic raw materials and end products.

    PubMed

    Viruthagiri, G; Rajamannan, B; Suresh Jawahar, K

    2013-12-01

    Studies have been planned to obtain activity and associated radiation hazards in ceramic raw materials (quartz, feldspar, clay, zircon, kaolin, grog, alumina bauxite, baddeleyite, masse, dolomite and red mud) and end products (ceramic brick, glazed ceramic wall and floor tiles) as the activity concentrations of uranium, thorium and potassium vary from material to material. The primordial radionuclides in ceramic raw materials and end products are one of the sources of radiation hazard in dwellings made of these materials. By the determination of the activity level in these materials, the indoor radiological hazard to human health can be assessed. This is an important precautionary measure whenever the dose rate is found to be above the recommended limits. The aim of this work was to measure the activity concentration of (226)Ra, (232)Th and (40)K in ceramic raw materials and end products. The activity of these materials has been measured using a gamma-ray spectrometry, which contains an NaI(Tl) detector connected to multichannel analyser (MCA). Radium equivalent activity, alpha-gamma indices and radiation hazard indices associated with the natural radionuclides are calculated to assess the radiological aspects of the use of the ceramic end products as decorative or covering materials in construction sector. Results obtained were examined in the light of the relevant international legislation and guidance and compared with the results of similar studies reported in different countries. The results suggest that the use of ceramic end product samples examined in the construction of dwellings, workplace and industrial buildings is unlikely to give rise to any significant radiation exposure to the occupants.

  13. STS-114 Mission Support - Photograph EVA Tile Repair Procedures for Contingency

    NASA Image and Video Library

    2005-07-31

    JSC2005-E-30917 (31 July 2005) --- Astronaut Joe Tanner joins other astronauts and engineers at the Johnson Space Center to practice techniques to eliminate or trim protruding gap fillers that Astronauts Noguchi and Robinson will use during their spacewalk. The ceramic coated-fabric gap fillers are used to protect against hot gas from seeping into gaps between the Shuttle’s protective tiles. Photo Credit: NASA/James Blair

  14. STS-114 Mission Support - Photograph EVA Tile Repair Procedures for Contingency

    NASA Image and Video Library

    2005-07-31

    JSC2005-E-30915 (31 July 2005) --- NASA astronaut Joe Tanner (foreground) joins other astronauts and engineers at the Johnson Space Center to practice techniques to eliminate or trim protruding gap fillers that Astronauts Noguchi and Robinson will use during their spacewalk. The ceramic coated-fabric gap fillers are used to protect against hot gas from seeping into gaps between the Shuttle’s protective tiles. Photo credit: NASA/James Blair

  15. Analysis of gap heating due to stepped tiles in the shuttle thermal protection system

    NASA Technical Reports Server (NTRS)

    Petley, D. H.; Smith, D. M.; Edwards, C. L. W.; Carlson, A. B.

    1983-01-01

    Analytical methods used to investigate entry gap heating in the Shuttle orbiter thermal protection system are described. Analytical results are given for a fuselage lower-surface location and a wing lower-surface location. These are locations where excessive gap heating occurred on the first flight of the Shuttle. The results of a study to determine the effectiveness of a half-height ceramic fiber gap filler in preventing hot-gas flow in the tile gaps are also given.

  16. Task 6.4 - the use of coal ash in ceramics. Topical report, July--December 1995

    SciTech Connect

    1996-03-01

    Previous empirical tests at the Energy & Environmental Research Center (EERC) have indicated that coal combustion by-products are a viable starting material for the production of a variety of ceramic products, including brick, tile, and high-flexural-strength ceramics. The EERC has focused on high-temperature properties of coal ashes and has provided valuable insight into ash transformations, fouling, and stagging for the utility industry. It is proposed to utilize the information generated in these past projects to develop material selection criteria and product manufacturing techniques based on scientific and engineering characteristics of the ash. Commercialization of the use of coal combustion by-products in ceramics is more likely to become viable if a quality-assured product can be made, and predictive materials selection is a key component of a quality-assured product. The objective of this work was to demonstrate the development and production of a ceramic material utilizing coal ash as a key component. Chemical and high-temperature properties of ash were carefully determined with the objective of identifying criteria for materials selection and manufacturing options for ceramic production.

  17. Global Swath and Gridded Data Tiling

    NASA Technical Reports Server (NTRS)

    Thompson, Charles K.

    2012-01-01

    This software generates cylindrically projected tiles of swath-based or gridded satellite data for the purpose of dynamically generating high-resolution global images covering various time periods, scaling ranges, and colors called "tiles." It reconstructs a global image given a set of tiles covering a particular time range, scaling values, and a color table. The program is configurable in terms of tile size, spatial resolution, format of input data, location of input data (local or distributed), number of processes run in parallel, and data conditioning.

  18. Tetromino tilings and the Tutte polynomial

    NASA Astrophysics Data System (ADS)

    Lykke Jacobsen, Jesper

    2007-02-01

    We consider tiling rectangles of size 4m × 4n by T-shaped tetrominoes. Each tile is assigned a weight that depends on its orientation and position on the lattice. For a particular choice of the weights, the generating function of tilings is shown to be the evaluation of the multivariate Tutte polynomial ZG(Q, v) (known also to physicists as the partition function of the Q-state Potts model) on an (m - 1) × (n - 1) rectangle G, where the parameter Q and the edge weights v can take arbitrary values depending on the tile weights.

  19. Multilayer Impregnated Fibrous Thermal Insulation Tiles

    NASA Technical Reports Server (NTRS)

    Tran, Huy K.; Rasky, Daniel J.; Szalai, Christine e.; Hsu, Ming-ta; Carroll, Joseph A.

    2007-01-01

    The term "secondary polymer layered impregnated tile" ("SPLIT") denotes a type of ablative composite-material thermal- insulation tiles having engineered, spatially non-uniform compositions. The term "secondary" refers to the fact that each tile contains at least two polymer layers wherein endothermic reactions absorb considerable amounts of heat, thereby helping to prevent overheating of an underlying structure. These tiles were invented to afford lighter-weight alternatives to the reusable thermal-insulation materials heretofore variously used or considered for use in protecting the space shuttles and other spacecraft from intense atmospheric-entry heating.

  20. Liquid scintillator tiles for calorimetry

    NASA Astrophysics Data System (ADS)

    Amouzegar, M.; Belloni, A.; Bilki, B.; Calderon, J.; De Barbaro, P.; Eno, S. C.; Hatakeyama, K.; Hirschauer, J.; Jeng, G. Y.; Pastika, N. J.; Pedro, K.; Rumerio, Paolo; Samuel, J.; Sharp, E.; Shin, Y. H.; Tiras, E.; Vishnevskiy, D.; Wetzel, J.; Yang, Z.; Yao, Y.; Youn, S. W.

    2016-11-01

    Future experiments in high energy and nuclear physics may require large, inexpensive calorimeters that can continue to operate after receiving doses of 50 Mrad or more. The light output of liquid scintillators suffers little degradation under irradiation. However, many challenges exist before liquids can be used in sampling calorimetry, especially regarding developing a packaging that has sufficient efficiency and uniformity of light collection, as well as suitable mechanical properties. We present the results of a study of a scintillator tile based on the EJ-309 liquid scintillator using cosmic rays and test beam on the light collection efficiency and uniformity, and some preliminary results on radiation hardness.

  1. Liquid scintillator tiles for calorimetry

    SciTech Connect

    Amouzegar, M.; Belloni, A.; Bilki, B.; Calderon, J.; Barbaro, P. De; Eno, S. C.; Hatakeyama, K.; Hirschauer, J.; Jeng, G. Y.; Pastika, N. J.; Pedro, K.; Rumerio, Paolo; Samuel, J.; Sharp, E.; Shin, Y. H.; Tiras, E.; Vishnevskiy, D.; Wetzel, J.; Yang, Z.; Yao, Y.; Youn, S. W.

    2016-11-28

    Future experiments in high energy and nuclear physics may require large, inexpensive calorimeters that can continue to operate after receiving doses of 50 Mrad or more. Also, the light output of liquid scintillators suffers little degradation under irradiation. However, many challenges exist before liquids can be used in sampling calorimetry, especially regarding developing a packaging that has sufficient efficiency and uniformity of light collection, as well as suitable mechanical properties. We present the results of a study of a scintillator tile based on the EJ-309 liquid scintillator using cosmic rays and test beam on the light collection efficiency and uniformity, and some preliminary results on radiation hardness.

  2. Parametric Multi-Level Tiling of Imperfectly Nested Loops

    SciTech Connect

    Hartono, Albert; Baskaran, Muthu M.; Bastoul, Cedric; Cohen, Albert; Krishnamoorthy, Sriram; Norris, Boyana; Ramanujam, J.; Sadayappan, Ponnuswamy

    2009-05-18

    Tiling is a critical loop transformation for generating high-performance code on modern architectures. Efficient generation of multilevel tiled code is essential to exploit several levels of parallelism and/or to maximize data reuse in deep memory hierarchies. Tiled loops with parameterized tile sizes (not compile time constants) facilitate runtime feedback and dynamic optimizations used in iterative compilation and automatic tuning. The existing parametric multilevel tiling approach has focused on transformation for perfectly nested loops, where all assignment statements are contained inside the innermost loop of a loop nest. Previous solutions to tiling for imperfect loop nests are limited to the case where tile sizes are fixed. In this paper, we present an approach to parameterized multilevel tiling for imperfectly nested loops. Our tiling algorithm generates loops that iterate over full rectangular tiles that are amenable for potential compiler optimizations such as register tiling. Experimental results using a number of computational benchmarks demonstrate the effectiveness of our tiling approach.

  3. TRANSFER EFFICIENCES OF PESTICIDES FROM HOUSEHOLD CERAMIC TILE TO FOODS

    EPA Science Inventory

    Traditional assessments of pesticide exposure through diet have focused on contamination during production (e.g., pesticides in agriculture). However, recent residential monitoring studies have demonstrated that a significant portion of total exposure to infants and children ...

  4. 61 FR 64192 - Crystallinity of Ceramic Floor and Wall Tile

    Federal Register 2010, 2011, 2012, 2013, 2014

    1996-12-03

    ... 69 the issue must be addressed for Customs purposes. Issue 2: X-ray diffraction (XRD) is currently... clearly discernable by x-ray diffraction or other analytical methodology that is generally accepted by...

  5. TRANSFER EFFICIENCES OF PESTICIDES FROM HOUSEHOLD CERAMIC TILE TO FOODS

    EPA Science Inventory

    Traditional assessments of pesticide exposure through diet have focused on contamination during production (e.g., pesticides in agriculture). However, recent residential monitoring studies have demonstrated that a significant portion of total exposure to infants and children ...

  6. Ceramic applications in the advanced Stirling automotive engine

    NASA Technical Reports Server (NTRS)

    Tomazic, W. A.; Cairelli, J. E.

    1978-01-01

    The requirements of the ideal Stirling cycle, as well as basic types of practical engines are described. Advantages, disadvantages, and problem areas of these Stirling engines are discussed. The potential for ceramic components is also considered. Currently ceramics are used in only two areas, the air preheater and insulating tiles between the burner and the heater head. For the advanced Stirling engine to achieve high efficiency and low cost, the principal components are expected to be made from ceramic materials, including the heater head, air preheater, regenerator, the burner and the power piston. Supporting research and technology programs for ceramic component development are briefly described.

  7. Fibonacci words, hyperbolic tilings and grossone

    NASA Astrophysics Data System (ADS)

    Margenstern, Maurice

    2015-04-01

    In this paper, we study the contribution of the theory of grossone to the study of infinite Fibonacci words, combining this tool with the help of a particular tiling of the hyperbolic plane: the tiling { 7, 3 } , called the heptagrid. With the help of the numeral system based on grossone, we obtain a richer family of infinite Fibonacci words compared with the traditional approach.

  8. Bonding Heat-Resistant Fabric to Tile

    NASA Technical Reports Server (NTRS)

    Holt, J. W.; Smiser, L. W.

    1985-01-01

    Acid etching, densification, and silica cement ensure strong bond. Key step in preparation for bonding to glazed tile is etching quartz fabric and tile with acid. This increases adhesion of silica cement used to form bond. Procedures use high-temperature materials exclusively and therefore suitable for securing flexible seals and heat barriers around doors and viewing ports in furnaces and kilns.

  9. Fast linear transformation for tiled images.

    PubMed

    Rao, A; Perens, B

    1996-01-01

    This work describes an efficient algorithm for linear coordinate transformation developed specifically for a tiled image processing system. A detailed description of the algorithm is presented, and its performance is compared with that of other techniques. The effect of image size on relative performance is analyzed and correlated with the tile-based storage technique.

  10. Performance of the Tile PreProcessor Demonstrator for the ATLAS Tile Calorimeter Phase II Upgrade

    NASA Astrophysics Data System (ADS)

    Carrió, F.; Moreno, P.; Valero, A.

    2016-03-01

    The Tile Calorimeter PreProcessor demonstrator is a high performance double AMC board based on FPGA resources and QSFP modules. This board has been designed in the framework of the ATLAS Tile Calorimeter Demonstrator project for the Phase II Upgrade as the first stage of the back-end electronics. The TilePPr demonstrator has been conceived to receive and process the data coming from the front-end electronics of the TileCal Demonstrator module, as well as to configure it. Moreover, the TilePPr demonstrator handles the communication with the Detector Control System to monitor and control the front-end electronics. The TilePPr demonstrator represents 1/8 of the final TilePPr that will be designed and installed into the detector for the ATLAS Phase II Upgrade.

  11. [First results of an epidemiological survey on abortion in the "Ceramic District" and in other areas of Emilia (Italy)].

    PubMed

    Paltrinieri, R

    1981-01-01

    This research sought to determine whether a connection exists between atmospheric pollution and abortion frequency in a particular situation created in the Ceramic District. Industries specializing in the production of ceramic tiles have proliferated since 1950 in an area comprising 15 urban areas in northeast Italy. The use of pollutant raw materials (clay, lead, and dusts transported by smoke) as well as the heavy concentration of industry have caused an intense and harmful atmospheric pollution inside and outside the factories. In particular, the longstanding and widespread use of lead, which gives the tiles the technical and aesthetic properties which render them highly competitive in international markets, has been suspected of causing chromosomal alterations and abortion; this despite contradictions present in the literature. The epidemiological survey includes all women entering hospital for abortion and delivery with stillbirths and livebirths in the Ceramic District from October 24, 1968-October 24, 1975. The survey has been extended to other areas subject to normal pollutants with similar or different socioeconomic structures with respect to the Ceramic District; this 2nd survey considers all hospitalizations for abortion and a systematic sample of delivery in the 3 communal hospitals. A total of 20,925 cases were examined. The issue of each pregnancy was classified according to the woman's area of residence. 4 groups corresponding to the areas taken into consideration were examined: the 1st comprises the Ceramic District; the 2nd, 3rd, and 4th comprise the areas of Carpi, Vignola, and Pavullo. The following assumptions were made: 1) that women opt for local hospital care, 2) that hospital care may have been sought in the case of induced abortion, and 3) that the frequency of induced abortion corresponded with the condition of proportional parity in each group. A comparison of the abortion rate (i.e., the number of abortions/100 pregnancies) in the 4

  12. Lightweight Ceramic Composition of Carbon Silicon Oxygen and Boron

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel B. (Inventor); Hsu, Ming-Ta (Inventor); Chen, Timothy S. (Inventor)

    1997-01-01

    Lightweight, monolithic ceramics resistant to oxidation in air at high temperatures are made by impregnating a porous carbon preform with a sol which contains a mixture of tetraethoxysilane, dimethyldiethoxysilane and trimethyl borate. The sol is gelled and dried on the carbon preform to form a ceramic precursor. The precursor is pyrolyzed in an inert atmosphere to form the ceramic which is made of carbon, silicon, oxygen and boron. The carbon of the preform reacts with the dried gel during the pyrolysis to form a component of the resulting ceramic. The ceramic is of the same size, shape and form as the carbon precursor. Thus, using a porous, fibrous carbon precursor, such as a carbon felt, results in a porous, fibrous ceramic. Ceramics of the invention are useful as lightweight tiles for a reentry spacecraft.

  13. Robotic end-effector for rewaterproofing shuttle tiles

    NASA Astrophysics Data System (ADS)

    Manouchehri, Davoud; Hansen, Joseph M.; Wu, Cheng M.; Yamamoto, Brian S.; Graham, Todd

    1992-11-01

    This paper summarizes work by Rockwell International's Space Systems Division's Robotics Group at Downey, California. The work is part of a NASA-led team effort to automate Space Shuttle rewaterproofing in the Orbiter Processing Facility at the Kennedy Space Center and the ferry facility at the Ames-Dryden Flight Research Facility. Rockwell's effort focuses on the rewaterproofing end-effector, whose function is to inject hazardous dimethylethyloxysilane into thousands of ceramic tiles on the underside of the orbiter after each flight. The paper has five sections. First, it presents background on the present manual process. Second, end-effector requirements are presented, including safety and interface control. Third, a design is presented for the five end-effector systems: positioning, delivery, containment, data management, and command and control. Fourth, end-effector testing and integrating to the total system are described. Lastly, future applications for this technology are discussed.

  14. Robotic end-effector for rewaterproofing shuttle tiles

    NASA Technical Reports Server (NTRS)

    Manouchehri, Davoud; Hansen, Joseph M.; Wu, Cheng M.; Yamamoto, Brian S.; Graham, Todd

    1992-01-01

    This paper summarizes work by Rockwell International's Space Systems Division's Robotics Group at Downey, California. The work is part of a NASA-led team effort to automate Space Shuttle rewaterproofing in the Orbiter Processing Facility at the Kennedy Space Center and the ferry facility at the Ames-Dryden Flight Research Facility. Rockwell's effort focuses on the rewaterproofing end-effector, whose function is to inject hazardous dimethylethyloxysilane into thousands of ceramic tiles on the underside of the orbiter after each flight. The paper has five sections. First, it presents background on the present manual process. Second, end-effector requirements are presented, including safety and interface control. Third, a design is presented for the five end-effector systems: positioning, delivery, containment, data management, and command and control. Fourth, end-effector testing and integrating to the total system are described. Lastly, future applications for this technology are discussed.

  15. Recycling and utilisation of industrial solid waste: an explorative study on gold deposit tailings of ductile shear zone type in China.

    PubMed

    Liu, Rui; Huang, Fei; Du, Runxiang; Zhao, Chunming; Li, Yongli; Yu, Haoran

    2015-06-01

    Tailings are solid waste arising from mineral processing. This type of waste can cause severe damage to the environment during stockpiling as a result of the leaching of something harmful into the ecosystem. Gold deposit of ductile shear zone type is an important type of gold deposit, and the recycling of its tailings has been challenging researchers for a long time. In this article, the characteristics of this type of tailings were systematically studied by using modern technical means. Considering the characteristics of the tailings, clay was selected to make up for the shortcomings of the tailings and improve their performance. Water and raw materials were mixed to produce green bodies, which are subsequently sintered into ceramic bodies at 980 °C~1020 °C (sintering temperature). The results showed that some new kinds of mineral phases, such as mullite, anorthite and orthoclase, appear in ceramic bodies. Furthermore, the ceramic bodies have a surface hardness of 5 to 6 (Mohs scale), and their water absorption and modulus of rupture can meet some technical requirements of ceramic materials described in ISO 13006-2012 and GB 5001-1985. These gold mine tailings can be made into ceramic tiles, domestic ceramic bodies, and other kinds of ceramic bodies for commercial and industrial purposes after further improvements. © The Author(s) 2015.

  16. Microbial deterioration of artistic tiles from the façade of the Grande Albergo Ausonia & Hungaria (Venice, Italy).

    PubMed

    Giacomucci, Lucia; Bertoncello, Renzo; Salvadori, Ornella; Martini, Ilaria; Favaro, Monica; Villa, Federica; Sorlini, Claudia; Cappitelli, Francesca

    2011-08-01

    The Grande Albergo Ausonia & Hungaria (Venice Lido, Italy) has an Art Nouveau polychrome ceramic coating on its façade, which was restored in 2007. Soon after the conservation treatment, many tiles of the façade decoration showed coloured alterations putatively attributed to the presence of microbial communities. To confirm the presence of the biological deposit and the stratigraphy of the Hungaria tiles, stereomicroscope, optical and environmental scanning electron microscope observations were made. The characterisation of the microbial community was performed using a PCR-DGGE approach. This study reported the first use of a culture-independent approach to identify the total community present in biodeteriorated artistic tiles. The case study examined here reveals that the coloured alterations on the tiles were mainly due to the presence of cryptoendolithic cyanobacteria. In addition, we proved that the microflora present on the tiles was generally greatly influenced by the environment of the Hungaria hotel. We found several microorganisms related to the alkaline environment, which is in the range of the tile pH, and related to the aquatic environment, the presence of the acrylic resin Paraloid B72® used during the 2007 treatment and the pollutants of the Venice lagoon.

  17. Fundamental ultrasonic wave propagation studies in a model thermal protection system (porous tiles bonded to aluminum bulkhead)

    NASA Astrophysics Data System (ADS)

    Kundu, Tribikram; Reibel, Richard; Jata, Kumar V.

    2006-03-01

    A model thermal protection system (TPS) was designed by bonding ceramic porous tiles to 2.2 and 3.5 mm thick 2124-T351 aluminum alloy plates. One of the goals of the present work was to investigate the potential of detecting simulated defects using guided waves. Simulated defects consisted of cracks, voids and delaminations at the tile-substrate interface. Cracks and voids were introduced into the porous tiles during the fabrication of the TPS. Delamination was created by cutting the gluing tape between the tile and the aluminum substrate. Guided wave propagation studies were conducted using the pitch-catch approach, while changing the angle of strike and the frequency of the transducer excitation to generate the appropriate guided wave mode. The receiver was placed at a distance so that only the guided waves were received during the immersion experiment. The delamination defect could be conclusively detected, however the presence of the imperfect bond between the tiles and the substrate interfered with the detection of the simulated cracks and voids in the porous tiles.

  18. Transport pathways of nitrogen and phosphorus in tile-drained cranberry farms

    NASA Astrophysics Data System (ADS)

    Kennedy, C. D.; Alversion, N.; Jeranyama, P.; DeMoranville, C.; Sandler, H.; Caruso, F.

    2013-12-01

    Rapid, controlled drainage of cranberry farms is critical to optimizing production in Massachusetts, where approximately 1/3 of the industry's crop is produced. Relatively new to cranberry farming, tile drainage has been billed as a low-cost drainage management option for reducing crop disease and weed infestations. Despite its well documented agronomic benefits, tile drainage may exacerbate nutrient loss and promote eutrophication in nearby ponds receiving cranberry drainage waters. In this study, a monitoring program was established on a Massachusetts cranberry bed to quantify (1) mass loss of nitrogen and phosphorous via tile drainage to a perimeter ditch surrounding the cranberry bed, (2) the attenuation of N and P in the ditch prior to discharge from the cranberry bed, and (3) and the component contributions of preferential vs. matrix transport of N and P in tile drainage. A combination of compound weirs, acoustic-velocity meters, propeller-driven flow meters, and rain gauges were installed to quantify drainage management characteristics of the cranberry bed. Automatic samplers were also installed to collect water samples at each monitoring site (i.e., four tile drains, an irrigation pond, and a flume used to control ditch height) for analysis of N and P concentrations and hydrogen and oxygen stable isotope ratios to estimate nutrient loss and transport pathways. These data will be used to develop a mechanistic synthesis of nutrient cycling in tile-drained cranberry beds.

  19. Liquid scintillator tiles for calorimetry

    DOE PAGES

    Amouzegar, M.; Belloni, A.; Bilki, B.; ...

    2016-11-28

    Future experiments in high energy and nuclear physics may require large, inexpensive calorimeters that can continue to operate after receiving doses of 50 Mrad or more. Also, the light output of liquid scintillators suffers little degradation under irradiation. However, many challenges exist before liquids can be used in sampling calorimetry, especially regarding developing a packaging that has sufficient efficiency and uniformity of light collection, as well as suitable mechanical properties. We present the results of a study of a scintillator tile based on the EJ-309 liquid scintillator using cosmic rays and test beam on the light collection efficiency and uniformity,more » and some preliminary results on radiation hardness.« less

  20. Damage to JET beryllium tiles

    NASA Astrophysics Data System (ADS)

    Deksnis, E.; Cheetham, A.; Hwang, A.; Lomas, P.; Pick, M.; Summers, D. D. R.

    1990-12-01

    JET has operated with beryllium limiters such that up to 180 MJ could be coupled to the plasma. Approximately 2-4% of the surface of the limiter has been melted near the plasma contact point. Another 10-15% of the surface shows evidence of edge heating. Some 5% of tiles have been subjected to abnormal loads at points distant from the contact area. Damage shows strong correlation of localised heating of the limiter with toroidal field ripple. Edge heating rates of 260 Mw/m 2 have not caused gross mechanical failure of the limiter. The mechanical damage comprises fatigue cracks analogous to those due to sustained loading at low power levels.

  1. Evaluation of Ceramic Honeycomb Core Compression Behavior at Room Temperature

    NASA Technical Reports Server (NTRS)

    Bird, Richard K.; Lapointe, Thomas S.

    2013-01-01

    Room temperature flatwise compression tests were conducted on two varieties of ceramic honeycomb core specimens that have potential for high-temperature structural applications. One set of specimens was fabricated using strips of a commercially-available thin-gage "ceramic paper" sheet molded into a hexagonal core configuration. The other set was fabricated by machining honeycomb core directly from a commercially available rigid insulation tile material. This paper summarizes the results from these tests.

  2. Reprocessing of metallurgical slag into materials for the building industry

    SciTech Connect

    Pioro, L.S.; Pioro, I.L

    2004-07-01

    Several methods of reprocessing metallurgical (blast furnace) slag into materials for the building industry, based on melting aggregates with submerged combustion, were developed and tested. The first method involves melting hot slag with some additives directly in a slag ladle with a submerged gas-air burner, with the objective of producing stabilized slag or glass-ceramic. The second method involves direct draining of melted slag from a ladle into the slag receiver, with subsequent control of the slag draining into the converter where special charging materials are added to the melt, with the objective of producing glass-ceramic. A third method involves melting cold slag with some additives inside a melting converter with submerged gas-air burners, with the objective of producing glass-ceramic fillers for use in road construction. Specific to the melting process is the use of a gas-air mixture with direct combustion inside the melt. This feature provides melt bubbling to help achieve maximum heat transfer from combustion products to the melt, improve mixing (and therefore homogeneity of the melt), and increases the rate of chemical reactions. The experimental data for different aspects of the proposed methods are presented. The reprocessed blast-furnace slag in the form of granules can be used as fillers for concretes, asphalts, and as additives in the production of cement, bricks and other building materials. As well, reprocessed blast-furnace slag can be poured into forms for the production of glass-ceramic tiles.

  3. Fabrication of facing tiles for floors from kaolin ash composites

    SciTech Connect

    Sirazhiddinov, N.A.; Irkakhodzhaeva, A.P.; Kasimova, G.A.

    1994-09-01

    Many enterprises in the ceramics industry are increasingly widely using different production wastes, fuel slag in particular, due to the limited ability to ensure standardized raw materials. We attempted to investigate the use of ash slag from the Angrensk Thermoelectric Power Plant (TEPP) in composites with kaolin - waste from coal concentration for the Angrensk coal pit.

  4. Distributed graph visualization on tiled displays

    NASA Astrophysics Data System (ADS)

    Chae, Sangwon

    2013-03-01

    In this paper, we propose a distributed force-directed layout algorithm in order to handle large graph data on tiled display that consists of multiple computing machines and multiple displays connected to each computing machine through Ethernet. The distributed tiled display makes one big screen using multiple displays in order to discern data obviously. Besides, multiple computing devices on tiled displays share the parts of an entire dataset. Therefore, it can dramatically reduce the processing time to visualize data on screen compared with the processing time on a single machine.

  5. The TileCal Laser Calibration System

    NASA Astrophysics Data System (ADS)

    Giangiobbe, Vincent; ATLAS Tile Calorimeter Group

    TileCal is the central hadronic calorimeter of the ATLAS detector operating at LHC. It is a sampling calorimeter whose active material is made of scintillating plastic tiles. Scintillation light is read by photomultipliers. A Laser system is used to monitor their gain stability. During dedicated calibration runs the Laser system sends via long optical fibers, a monitored amount of light simultaneously to all the ≈10000 photomultipliers of TileCal. This note describes two complementary methods to measure the stability of the photomultipliers gain using the Laser calibration runs. The results of validation tests are presented for both methods and theirrespective performances and limitations are discussed.

  6. Remotely replaceable tokamak plasma limiter tiles

    DOEpatents

    Gallix, R.

    1987-12-09

    U-shaped tiles placed end-to-end over a pair of parallel runners have two rods which engage L-shaped slots. A sliding bar between the runners has grooves with clips to retain the rods pressed into receiving legs of the L-shaped slots in the runners. Sliding the bar in the direction of retaining legs of the L-shaped slots latches the tiles in place over the wall. Resilient contact strips under the parallel sides of the U-shaped tile assure thermal and electrical contact with the wall. 6 figs.

  7. Triangulations (tilings) and certain block triangular matrices

    SciTech Connect

    Dantzig, G.B.; Hoffman, A.J.; Hu, T.C.

    1983-09-01

    The problem is to find a tiling (triangularization) of a convex n polytope (or combinatorially an n-gon) such that the partition uses the minimum number of tiles. We show that a certain linear program can be formulated whose optimal solution is always in integers and corresponds to a tiling. Moreover the system is in the form of a block-triangular Leontief-Substitution System that is readily solved by a O(n/sup 3/) algorithm consisting of a single forward and backward pass through data.

  8. The challenging scales of the bird: Shuttle tile structural integrity

    NASA Technical Reports Server (NTRS)

    Schneider, W. C.; Miller, G. J.

    1985-01-01

    The principal design issues, tests, and analyses required to solve the tile integrity problem on the space shuttle orbiters are addressed. Proof testing of installed tiles is discussed along with an airflow test of special tiles. Orbiter windshield tiles are considered in terms of changes necessary to ensure acceptable margins of safety for flight.

  9. Gneiss wastes as secondary raw material for the ceramic industry: an example from the Verbano Cusio Ossola district (Piedmont, north-western Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Cavallo, Alessandro

    2015-04-01

    The Verbano Cusio Ossola province (VCO, Piedmont, north-western Italy) is one of the most important Italian quarrying districts, due to the peculiarity and variety of its exploited rock types, mainly orthogneisses such as Serizzo and Beola, and subordinately granites, marbles and other rocks. The most important and extensively exploited ornamental stone from the VCO province is surely the Serizzo, commercialized in four main varieties, and representing about 70% of all the stone production from the VCO area. The protholith of the Serizzo is a Permian granite - granodiorite metamorphosed during the alpine events, and the rock-forming minerals are mainly quartz, K-feldspar, plagioclase (andesine), biotite, with variable amounts of muscovite and epidote (allanite). The other important ornamental stone of the VCO province is the Beola, a series of heterogeneous materials (mainly orthogneisses) with marked (mylonitic) foliation and strong mineralogical lineation, occurring in the median Ossola Valley; its production (15% of the whole stones of the VCO) is subordinated with respect to that of Serizzo. The mineralogical composition of the Beola varieties is similar to Serizzo, consisting of quite homogeneous quartz, K-feldspar (orthoclase or microcline), plagioclase, biotite and muscovite. The main differences relate to the grain size, the rock fabric (generally mylonitic) and to the presence of accessory/secondary minerals. Recent regulatory developments and the growing environmental awareness, require an increasing reuse of wastes deriving from the extraction and processing of dimension stones (up to 50 % of the extracted gross volume). Granite wastes from the VCO (Baveno pink granite and Montorfano white granite), after specific industrial treatments (crushing, sieving, drying, magnetic separation of biotite and hornblende), are used successfully as quartz-feldspars mix in the ceramic industry, with very low FeOtot content. On the other hand, other quartzose

  10. Structural tests on a tile/strain isolation pad thermal protection system. [space shuttles

    NASA Technical Reports Server (NTRS)

    Williams, J. G.

    1980-01-01

    The aluminum skin of the space shuttle is covered by a thermal protection system (TPS) consisting of a low density ceramic tile bonded to a matted-felt material called strain insulation pad (SIP). The structural characteristics of the TPS were studied experimentally under selected extreme load conditions. Three basic types of loads were imposed: tension, eccentrically applied tension, and combined in-plane force and transverse pressure. For some tests, transverse pressure was applied rapidly to simulate a transient shock wave passing over the tile. The failure mode for all specimens involved separation of the tile from the SIP at the silicone rubber bond interface. An eccentrically applied tension load caused the tile to separate from the SIP at loads lower than experienced at failure for pure tension loading. Moderate in-plane as well as shock loading did not cause a measurable reduction in the TPS ultimate failure strength. A strong coupling, however, was exhibited between in-plane and transverse loads and displacements.

  11. Relevance of magnetic properties for the characterisation of burnt clays and archaeological tiles

    NASA Astrophysics Data System (ADS)

    Beatrice, C.; Coïsson, M.; Ferrara, E.; Olivetti, E. S.

    The archaeomagnetism of pottery, bricks and tiles is typically employed for dating inferences, yet the magnetic properties of ancient ceramics can also be convenient for their characterisation, to evaluate the technological conditions applied for their production (temperature, atmosphere, and duration of firing), as well as to distinguish groups of sherds having different provenance. In this work, the measurement of hysteresis loops has been applied and combined with colour survey to characterise the magnetic properties of burnt clays and archaeological tiles. Four calcareous and non-calcareous clays, along with seventeen tile fragments excavated from the sites of the ancient Roman towns of Pompeii and Gravina di Puglia, in Southern Italy, are examined. The ferrimagnetic character of the clays, in general, enhances with increasing firing temperatures until vitrification processes occur (900-1000 °C) dissolving iron oxides and dispersing the colour and magnetic properties they provide. High values of saturation magnetization are observed in clays with relevant calcareous content after firing above 900 °C, which results in the formation of Ca-silicates able to delay the onset of the vitrification processes. Magnetic properties of the tiles have been evaluated in terms of the high coercivity (i.e. mainly ferrimagnetic) or low coercivity behaviour (i.e. including relevant paramagnetic and superparamagnetic contributions). Enhanced ferrimagnetic character, mostly depending on the growth in number and volume of iron oxide particles, is associated with the development of an intense reddish hue.

  12. [Raman spectroscopic study of Ming Dynasty bar-tile from Heijing of Lufeng].

    PubMed

    Yi-lin, Wang; Qun, Yang; Li, Chao-zhen

    2004-07-01

    Ming dynasty bar-tile from the archaeological site of Heijing (Lufeng of Yunnan Province, China) was analyzed by Raman microscopy, X-ray diffraction and electron probe microscopy (EPMA). It was found that the major components of the tile are SiO2, besides moonstone(KAlSi3O8 var. of K-orthoclase), Na-orthoclase(NaAlSi3 O8 )and an unknown mineral (Al, Fe)3(PO4,VO4)2(OH)3.8H2O etc. The studies revealed that the agglomerant temperature of the bar-tile reached up to 1500 degrees C, indicating that the agglomerant technology of ceramics of Yunnan in the Ming dynasty (before 17 century) already attained a high level. Raman microscopyproves especially excellent in studing antiques. The results show that the facility and reliability of Raman spectroscopy, as anon-destructive unique technique, are suitable for the discrimination between moonstone and K-orthoclase within tile. No other technique tried was successful in its identification. This research demonstrates that only by combining several complementary techniques is possible to conduct comprehensive research on antiques.

  13. A comprehensive survey of brane tilings

    NASA Astrophysics Data System (ADS)

    Franco, Sebastián; He, Yang-Hui; Sun, Chuang; Xiao, Yan

    2017-08-01

    An infinite class of 4d 𝒩 = 1 gauge theories can be engineered on the worldvolume of D3-branes probing toric Calabi-Yau 3-folds. This kind of setup has multiple applications, ranging from the gauge/gravity correspondence to local model building in string phenomenology. Brane tilings fully encode the gauge theories on the D3-branes and have substantially simplified their connection to the probed geometries. The purpose of this paper is to push the boundaries of computation and to produce as comprehensive a database of brane tilings as possible. We develop efficient implementations of brane tiling tools particularly suited for this search. We present the first complete classification of toric Calabi-Yau 3-folds with toric diagrams up to area 8 and the corresponding brane tilings. This classification is of interest to both physicists and mathematicians alike.

  14. Notch sensitivity of space shuttle tile materials

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1980-01-01

    Tests were conducted at room temperature to determine the notch sensitivity of the thermal protection tile for the space shuttle. Two types of RSI tile were studied: LI-900 and LI-2200. Three point bend specimens were cut from discarded tiles in the in-plane (ip) and through-the-thickness (ttt) directions. They were tested with or without a sharp notch. The LI-900 (ip and ttt) specimens were not very notch sensitive, but the LI-2200 (ip and ttt) specimens were. The LI-2200 material showed about a 35 percent reduction in strength due to the presence of the notch. This reduction in strength should be considered in the design of mechanically fastened tile concepts.

  15. VB Platinum Tile & Carpet, Inc. Information Sheet

    EPA Pesticide Factsheets

    VB Platinum Tile & Carpet, Inc. (the Company) is located in Bristow, Virginia. The settlement involves renovation activities conducted at a property constructed prior to 1978, located in Washington, DC.

  16. On Ceramics.

    ERIC Educational Resources Information Center

    School Arts, 1982

    1982-01-01

    Presents four ceramics activities for secondary-level art classes. Included are directions for primitive kiln construction and glaze making. Two ceramics design activities are described in which students make bizarrely-shaped lidded jars, feet, and footwear. (AM)

  17. On Ceramics.

    ERIC Educational Resources Information Center

    School Arts, 1982

    1982-01-01

    Presents four ceramics activities for secondary-level art classes. Included are directions for primitive kiln construction and glaze making. Two ceramics design activities are described in which students make bizarrely-shaped lidded jars, feet, and footwear. (AM)

  18. 2. Peavey Duluth Terminal Elevator, 1908 Duluth main workhouse, ceramic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Peavey Duluth Terminal Elevator, 1908 Duluth main workhouse, ceramic tile and brick dryer building between workhouse and annex, south wall shipping side. - Peavey Duluth Terminal Elevator, Workhouse, South side of first slip, north from outer end of Rice's Point, east of Garfield Avenue, Duluth, St. Louis County, MN

  19. Radioactivity in zircon and building tiles

    SciTech Connect

    Wen Deng; Kaizhen Tian; Daifu Chen; Yiyun Zhang

    1997-08-01

    Zircon (ZrSiO{sub 4}) is commonly used in The manufacture of glazed tiles. In this study we found high concentrations of the radionuclides {sup 226}Ra, {sup 232}tH, {sup 40}k in zircon sand. The average radium equivalent (A{sub Ra} + 1.26 A{sub Th} + 0.086 A{sub k}) in zircon sand is 17,500 Bq kg{sup -1}, which is 106 times as much as that in ordinary building materials. The external radiation ({gamma} + {beta}) dose rates from 1.1 to 4.9 x 10{sup -2} mGy h{sup -1} with an average of 2.1 x 10{sup -2} mGy h{sup -1}. Although no elevated {gamma}-ray radiation or radon exhalation rate was detected in rooms decorated with glazed tiles, which is characteristic of combined {alpha}, {beta} and {gamma} emitting thin materials, the average {gamma} radiation dose rate at the surface of the tile stacks in shops is 1.5 times as much as the indoor background level. The average area density of total {beta} emitting radionuclides in glazed floor tiles and glazed wall tiles is 0.30 Bq cm{sup -2} and 0.28 Bq cm{sup -2}, respectively. It was estimated that the average {beta} dose rates in tissue at a depth 7 mg cm{sup -2} with a distance 20-100 cm from the floor tiles were 3.2 to 0.9 x 10{sup -7} Gy h{sup -1}. The study indicates that the {beta}-rays from glazed tiles might be one of the main factors leading to an increase in ionizing radiation received by the general public. Workers in glazed tile manufacturing factories and in tile shops or stores may be exposed to elevated levels of both {beta}-rays and {gamma}-rays from zircon sand or glazed tile stacks. No elevated radiation from unglazed tiles was detected. 10 refs., 1 fig., 3 tabs.

  20. Radioactivity in zircon and building tiles.

    PubMed

    Deng, W; Tian, K; Zhang, Y; Chen, D

    1997-08-01

    Zircon (ZrSiO4) is commonly used in the manufacture of glazed tiles. In this study we found high concentrations of the radionuclides 226Ra, 232Th, 40K in zircon sand. The average radium equivalent (A(Ra) + 1.26 A(Th) + 0.086 A(k)) in zircon sand is 17,500 Bq kg(-1), which is 106 times as much as that in ordinary building materials. The external radiation (gamma + beta) dose rates in air at 5 cm from the surface of piles of zircon sand sacks range from 1.1 to 4.9 x 10(-2) mGy h(-1) with an average of 2.1 x 10(-2) mGy h(-1). Although no elevated gamma-ray radiation or radon exhalation rate was detected in rooms decorated with glazed tiles, which is characteristic of combined alpha, beta and gamma emitting thin materials, the average gamma-ray radiation dose rate at the surface of the tile stacks in shops is 1.5 times as much as the indoor background level. The average area density of total beta emitting radionuclides in glazed floor tiles and glazed wall tiles is 0.30 Bq cm(-2) and 0.28 Bq cm(-2), respectively. It was estimated that the average beta dose rates in tissue at a depth 7 mg cm(-2) with a distance 20-100 cm from the floor tiles were 3.2 to 0.9 x 10(-7) Gy h(-1). The study indicates that the beta-rays from glazed tiles might be one of the main factors leading to an increase in ionizing radiation received by the general public. Workers in glazed tile manufacturing factories and in tile shops or stores may be exposed to elevated levels of both beta-rays and gamma-rays from zircon sand or glazed tile stacks. No elevated radiation from unglazed tiles was detected.

  1. Laser Scanner for Tile-Cavity Measurement

    NASA Technical Reports Server (NTRS)

    Yoshino, Stanley Y.; Wykes, Donald H.; Hagen, George R.; Lotgering, Gene E.; Gaynor, Michael B.; Westerlund, Paul G.; Baal, Thomas A.

    1987-01-01

    Irregular surfaces mapped and digitized for numerical-control machinery. Fast, accurate laser scanning system measures size and shape of cavity without making any physical contact with cavity and walls. Measurements processed into control signals for numerically controlled machining of tile or block to fit cavity. System generates map of grid points representing cavity and portion of outer surface surrounding cavity. Map data used to control milling machine, which cuts tile or block to fit in cavity.

  2. Laser Scanner for Tile-Cavity Measurement

    NASA Technical Reports Server (NTRS)

    Yoshino, Stanley Y.; Wykes, Donald H.; Hagen, George R.; Lotgering, Gene E.; Gaynor, Michael B.; Westerlund, Paul G.; Baal, Thomas A.

    1987-01-01

    Irregular surfaces mapped and digitized for numerical-control machinery. Fast, accurate laser scanning system measures size and shape of cavity without making any physical contact with cavity and walls. Measurements processed into control signals for numerically controlled machining of tile or block to fit cavity. System generates map of grid points representing cavity and portion of outer surface surrounding cavity. Map data used to control milling machine, which cuts tile or block to fit in cavity.

  3. Ceramic Material.

    DTIC Science & Technology

    1990-05-02

    A ceramic material which is (1) ceramics based on monoclinic BaO.Al2O3.2SiO2; (2) ceramics based on monoclinic SrO.Al2O3.2SiO2; or (3) ceramics based on monoclinic solid solution of BaO.Al2O3.2SiO2 and SrO.Al2O3.2SiO2.

  4. Lessons learned from the development and manufacture of ceramic reusable surface insulation materials for the space shuttle orbiters

    NASA Technical Reports Server (NTRS)

    Banas, R. P.; Elgin, D. R.; Cordia, E. R.; Nickel, K. N.; Gzowski, E. R.; Aguiler, L.

    1983-01-01

    Three ceramic, reusable surface insulation materials and two borosilicate glass coatings were used in the fabrication of tiles for the Space Shuttle orbiters. Approximately 77,000 tiles were made from these materials for the first three orbiters, Columbia, Challenger, and Discovery. Lessons learned in the development, scale up to production and manufacturing phases of these materials will benefit future production of ceramic reusable surface insulation materials. Processing of raw materials into tile blanks and coating slurries; programming and machining of tiles using numerical controlled milling machines; preparing and spraying tiles with the two coatings; and controlling material shrinkage during the high temperature (2100-2275 F) coating glazing cycles are among the topics discussed.

  5. Performance of the TFTR moveable limiter tiles

    NASA Astrophysics Data System (ADS)

    Ulrickson, M.; Cecchi, J. L.; Doyle, B. L.; Dylla, H. F.; Medley, S. S.; Owens, D. K.; Trester, P.

    1985-08-01

    The movable limiter for the Tokamak Fusion Test Reactor (TFTR) is composed of an Inconel X-750 backing plate covered with titanium carbide coated graphite tiles. It has been used for ohmic heating discharges at input powers up to about 2 MW for durations up to 3 s. Even though these levels were well within the design requirements, discharges showed high levels (up to 1%) of titanium contamination. It was observed that certain tiles were showing substantial coating removal which became progressively worse as more discharges were made. After about 800 discharges the tiles were removed. A few of the tiles were examined in the Sandia external beam facility. This analysis showed that the TiC coating was completely removed over large areas. There was also evidence of plasma deposited material on the tiles. The thickness of the remaining coating from this beam analysis agreed with the thickness determined from sectioning control coupons from the production runs. There was a weak correlation between damage and coating thickness. The correlation was such that there was a higher probability of coating failure as the coating thickness increased from 15 μm to 40 μm. Test were done using the ASTM-C-633 procedure for measuring coating bond strength. The adhesion strength agreed well with the behavior observed in TFTR. The coating has been removed, and the tiles reinstalled.

  6. Quasicrystalline tilings with nematic colloidal platelets.

    PubMed

    Dontabhaktuni, Jayasri; Ravnik, Miha; Žumer, Slobodan

    2014-02-18

    Complex nematic fluids have the remarkable capability for self-assembling regular colloidal structures of various symmetries and dimensionality according to their micromolecular orientational order. Colloidal chains, clusters, and crystals were demonstrated recently, exhibiting soft-matter functionalities of robust binding, spontaneous chiral symmetry breaking, entanglement, shape-driven and topological driven assembly, and even memory imprinting. However, no quasicrystalline structures were found. Here, we show with numerical modeling that quasicrystalline colloidal lattices can be achieved in the form of original Penrose P1 tiling by using pentagonal colloidal platelets in layers of nematic liquid crystals. The tilings are energetically stabilized with binding energies up to 2500 kBT for micrometer-sized platelets and further allow for hierarchical substitution tiling, i.e., hierarchical pentagulation. Quasicrystalline structures are constructed bottom-up by assembling the boat, rhombus, and star maximum density clusters, thus avoiding other (nonquasicrystalline) stable or metastable configurations of platelets. Central to our design of the quasicrystalline tilings is the symmetry breaking imposed by the platelet shape and the surface anchoring conditions at the colloidal platelets, which are misaligning and asymmetric over two perpendicular mirror planes. Finally, the design of the quasicrystalline tilings as platelets in nematic liquid crystals is inherently capable of a continuous variety of length scales of the tiling, ranging over three orders of magnitude in the typical length (from ~ 10 nm to ~ 10 μm), which could allow for the design of quasicrystalline photonics at multiple frequency ranges.

  7. Quasicrystalline tilings with nematic colloidal platelets

    PubMed Central

    Dontabhaktuni, Jayasri; Ravnik, Miha; Žumer, Slobodan

    2014-01-01

    Complex nematic fluids have the remarkable capability for self-assembling regular colloidal structures of various symmetries and dimensionality according to their micromolecular orientational order. Colloidal chains, clusters, and crystals were demonstrated recently, exhibiting soft-matter functionalities of robust binding, spontaneous chiral symmetry breaking, entanglement, shape-driven and topological driven assembly, and even memory imprinting. However, no quasicrystalline structures were found. Here, we show with numerical modeling that quasicrystalline colloidal lattices can be achieved in the form of original Penrose P1 tiling by using pentagonal colloidal platelets in layers of nematic liquid crystals. The tilings are energetically stabilized with binding energies up to 2500 kBT for micrometer-sized platelets and further allow for hierarchical substitution tiling, i.e., hierarchical pentagulation. Quasicrystalline structures are constructed bottom-up by assembling the boat, rhombus, and star maximum density clusters, thus avoiding other (nonquasicrystalline) stable or metastable configurations of platelets. Central to our design of the quasicrystalline tilings is the symmetry breaking imposed by the platelet shape and the surface anchoring conditions at the colloidal platelets, which are misaligning and asymmetric over two perpendicular mirror planes. Finally, the design of the quasicrystalline tilings as platelets in nematic liquid crystals is inherently capable of a continuous variety of length scales of the tiling, ranging over three orders of magnitude in the typical length (from to ), which could allow for the design of quasicrystalline photonics at multiple frequency ranges. PMID:24550269

  8. Structural Ceramics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This publication is a compilation of abstracts and slides of papers presented at the NASA Lewis Structural Ceramics Workshop. Collectively, these papers depict the scope of NASA Lewis' structural ceramics program. The technical areas include monolithic SiC and Si3N4 development, ceramic matrix composites, tribology, design methodology, nondestructive evaluation (NDE), fracture mechanics, and corrosion.

  9. Numerical analysis of an entire ceramic kiln under actual operating conditions for the energy efficiency improvement.

    PubMed

    Milani, Massimo; Montorsi, Luca; Stefani, Matteo; Saponelli, Roberto; Lizzano, Maurizio

    2017-04-05

    The paper focuses on the analysis of an industrial ceramic kiln in order to improve the energy efficiency and thus the fuel consumption and the corresponding carbon dioxide emissions. A lumped and distributed parameter model of the entire system is constructed to simulate the performance of the kiln under actual operating conditions. The model is able to predict accurately the temperature distribution along the different modules of the kiln and the operation of the many natural gas burners employed to provide the required thermal power. Furthermore, the temperature of the tiles is also simulated so that the quality of the final product can be addressed by the modelling. Numerical results are validated against experimental measurements carried out on a real ceramic kiln during regular production operations. The developed numerical model demonstrates to be an efficient tool for the investigation of different design solutions for the kiln's components. In addition, a number of control strategies for the system working conditions can be simulated and compared in order to define the best trade off in terms of fuel consumption and product quality. In particular, the paper analyzes the effect of a new burner type characterized by internal heat recovery capability aimed at improving the energy efficiency of the ceramic kiln. The fuel saving and the relating reduction of carbon dioxide emissions resulted in the order of 10% when compared to the standard burner. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Properties of ceramics prepared using dry discharged waste to energy bottom ash dust.

    PubMed

    Bourtsalas, Athanasios; Vandeperre, Luc; Grimes, Sue; Themelis, Nicolas; Koralewska, Ralf; Cheeseman, Chris

    2015-09-01

    The fine dust of incinerator bottom ash generated from dry discharge systems can be transformed into an inert material suitable for the production of hard, dense ceramics. Processing involves the addition of glass, ball milling and calcining to remove volatile components from the incinerator bottom ash. This transforms the major crystalline phases present in fine incinerator bottom ash dust from quartz (SiO(2)), calcite (CaCO(3)), gehlenite (Ca(2)Al(2)SiO(7)) and hematite (Fe(2)O(3)), to the pyroxene group minerals diopside (CaMgSi(2)O(6)), clinoenstatite (MgSi(2)O(6)), wollastonite (CaSiO(3)) together with some albite (NaAlSi(3)O(8)) and andradite (Ca(3)Fe(2)Si(3)O(12)). Processed powders show minimal leaching and can be pressed and sintered to form dense (>2.5 g cm(-3)), hard ceramics that exhibit low firing shrinkage (<7%) and zero water absorption. The research demonstrates the potential to beneficially up-cycle the fine incinerator bottom ash dust from dry discharge technology into a raw material suitable for the production of ceramic tiles that have potential for use in a range of industrial applications. © The Author(s) 2015.

  11. Using mixture design of experiments to assess the environmental impact of clay-based structural ceramics containing foundry wastes.

    PubMed

    Coronado, M; Segadães, A M; Andrés, A

    2015-12-15

    This work describes the leaching behavior of potentially hazardous metals from three different clay-based industrial ceramic products (wall bricks, roof tiles, and face bricks) containing foundry sand dust and Waelz slag as alternative raw materials. For each product, ten mixtures were defined by mixture design of experiments and the leaching of As, Ba, Cd, Cr, Cu, Mo, Ni, Pb, and Zn was evaluated in pressed specimens fired simulating the three industrial ceramic processes. The results showed that, despite the chemical, mineralogical and processing differences, only chrome and molybdenum were not fully immobilized during ceramic processing. Their leaching was modeled as polynomial equations, functions of the raw materials contents, and plotted as response surfaces. This brought to evidence that Cr and Mo leaching from the fired products is not only dependent on the corresponding contents and the basicity of the initial mixtures, but is also clearly related with the mineralogical composition of the fired products, namely the amount of the glassy phase, which depends on both the major oxides contents and the firing temperature.

  12. Ceramic technology for Advanced Heat Engines Project

    SciTech Connect

    Johnson, D.R.

    1991-07-01

    Significant accomplishments in fabricating ceramic components for advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and database and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. This project is managed by ORNL for the Office of Transportation Technologies, Office of Transportation Materials, and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DOD, and industry.

  13. Tile drainage as karst: Conduit flow and diffuse flow in a tile-drained watershed

    USGS Publications Warehouse

    Schilling, K.E.; Helmers, M.

    2008-01-01

    The similarity of tiled-drained watersheds to karst drainage basins can be used to improve understanding of watershed-scale nutrient losses from subsurface tile drainage networks. In this study, short-term variations in discharge and chemistry were examined from a tile outlet collecting subsurface tile flow from a 963 ha agricultural watershed. Study objectives were to apply analytical techniques from karst springs to tile discharge to evaluate water sources and estimate the loads of agricultural pollutants discharged from the tile with conduit, intermediate and diffuse flow regimes. A two-member mixing model using nitrate, chloride and specific conductance was used to distinguish rainwater versus groundwater inputs. Results indicated that groundwater comprised 75% of the discharge for a three-day storm period and rainwater was primarily concentrated during the hydrograph peak. A contrasting pattern of solute concentrations and export loads was observed in tile flow. During base flow periods, tile flow consisted of diffuse flow from groundwater sources and contained elevated levels of nitrate, chloride and specific conductance. During storm events, suspended solids and pollutants adhered to soil surfaces (phosphorus, ammonium and organic nitrogen) were concentrated and discharged during the rapid, conduit flow portion of the hydrograph. During a three-day period, conduit flow occurred for 5.6% of the time but accounted for 16.5% of the total flow. Nitrate and chloride were delivered primarily with diffuse flow (more than 70%), whereas 80-94% of total suspended sediment, phosphorus and ammonium were exported with conduit and intermediate flow regimes. Understanding the water sources contributing to tile drainage and the manner by which pollutant discharge occurs from these systems (conduit, intermediate or diffuse flow) may be useful for designing, implementing and evaluating non-point source reduction strategies in tile-drained landscapes. ?? 2007 Elsevier B.V. All

  14. In-flight investigation of shuttle tile pressure orifice installations

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.; Meyer, Robert R., Jr.

    1990-01-01

    To determine shuttle orbiter wing loads during ascent, wing load instrumentation was added to Columbia (OV-102). This instrumentation included strain gages and pressure orifices on the wing. The loads derived from wing pressure measurements taken during STS 61-C did not agree with those derived from strain gage measurements or with the loads predicted from the aerodynamic database. Anomalies in the surface immediately surrounding the pressure orifices in the thermal protection system (TPS) tiles were one possible cause of errors in the loads derived from wing pressure measurements. These surface anomalies were caused by a ceramic filler material which was installed around the pressure tubing. The filler material allowed slight movement of the TPS tile and pressure tube as the airframe flexed and bent under aerodynamic loads during ascent and descent. Postflight inspection revealed that this filler material had protruded from or receeded beneath the surface, causing the orifice to lose its flushness. Flight tests were conducted at NASA Ames Research Center Dryden Flight Research Facility to determine the effects of any anomaly in surface flushness of the orifice installation on the measured pressures at Mach numbers between 0.6 and 1.4. An F-104 aircraft with a flight test fixture mounted beneath the fuselage was used for these flights. Surface flushness anomalies typical of those on the orbiter after flight (STA 61-C) were tested. Also, cases with excessive protrusion and recession of the filler material were tested. This report shows that the anomalies in STS 61-C orifice installations adversely affected the pressure measurements. But the magnitude of the affect was not great enough to account for the discrepancies with the strain gage measurements and the aerodynamic predictions.

  15. Symmetry groups associated with tilings on a flat torus.

    PubMed

    Loyola, Mark L; De Las Peñas, Ma Louise Antonette N; Estrada, Grace M; Santoso, Eko Budi

    2015-01-01

    This work investigates symmetry and color symmetry properties of Kepler, Heesch and Laves tilings embedded on a flat torus and their geometric realizations as tilings on a round torus in Euclidean 3-space. The symmetry group of the tiling on the round torus is determined by analyzing relevant symmetries of the planar tiling that are transformed to axial symmetries of the three-dimensional tiling. The focus on studying tilings on a round torus is motivated by applications in the geometric modeling of nanotori and the determination of their symmetry groups.

  16. Dynamic Moire methods for detection of loosened space shuttle tiles

    NASA Astrophysics Data System (ADS)

    Snow, W. L.; Burner, A. W.; Goad, W. K.

    1981-09-01

    Moire fringe methods for detecting loose space shuttle tiles were investigated with a test panel consisting of a loose tile surrounded by four securely bonded tiles. The test panel was excited from 20 to 150 Hz with in-plane sinusoidal acceleration of 2 g (peak). If the shuttle orbiter can be subjected to periodic excitation of 1 to 2 g (peak) and rigid-body periodic displacements do not mask the change in the Moire pattern due to tile looseness, then the use of projected Moire fringes to detect out-of-plane rockin appears to be the most viable indicator of tile looseness since no modifications to the tiles are required.

  17. Advanced ceramics for environmental protection

    SciTech Connect

    Chambers, J.A.

    1994-12-31

    Advanced ceramic materials offer significant thermodynamic efficiency advantages over metals and alloys because of their higher use temperatures. Using ceramic components results in higher temperature industrial processes which convert fuels to energy more efficiently, reducing environmental emissions. Ceramics have always offered high temperature strength and superior corrosion and erosion resistance. However, brittleness, poor thermal stock resistance and catastrophic failure have slowed industrial adoptions of ceramics in environmental applications. This paper will focus on environmental applications of three new advanced ceramic materials that are overcoming these barriers to industrial utilization through improved toughness, reliability, and thermal shock performance. PRD-66, a layered oxide ceramic with outstanding thermal shock resistance and high use temperature with utility in catalyst support, insulation, and hot gas filtration applications, is discussed. Tough silicon carbide fiber reinforced silicon carbide (SiC/SiC) and carbon fiber reinforced silicon carbide (C/SiC) ceramic composites made by chemical vapor infiltration, and silicon carbide particulate reinforced alumina (SiC{sub p}/Al{sub 2}O{sub 3}) composites made through Lanxide Corporation`s DIMOX{trademark} directed metal oxidation process are described. Applications of these materials to pollution reduction and energy efficiency in medical and municipal waste incineration, heat management, aluminum remelting, pyrolysis, coal combustion and gasification, catalytic pollution control, and hot gas filtration, will be discussed.

  18. Tiled WMS/KML Server V2

    NASA Technical Reports Server (NTRS)

    Plesea, Lucian

    2012-01-01

    This software is a higher-performance implementation of tiled WMS, with integral support for KML and time-varying data. This software is compliant with the Open Geospatial WMS standard, and supports KML natively as a WMS return type, including support for the time attribute. Regionated KML wrappers are generated that match the existing tiled WMS dataset. Ping and JPG formats are supported, and the software is implemented as an Apache 2.0 module that supports a threading execution model that is capable of supporting very high request rates. The module intercepts and responds to WMS requests that match certain patterns and returns the existing tiles. If a KML format that matches an existing pyramid and tile dataset is requested, regionated KML is generated and returned to the requesting application. In addition, KML requests that do not match the existing tile datasets generate a KML response that includes the corresponding JPG WMS request, effectively adding KML support to a backing WMS server.

  19. Performance of the ATLAS Tile Calorimeter

    NASA Astrophysics Data System (ADS)

    Hrynevich, A.

    2017-06-01

    The Tile Calorimeter (TileCal) is the central scintillator-steel sampling hadronic calorimeter of the ATLAS experiment at the LHC . Jointly with other calorimeters it is designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV . Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter has been established with cosmic ray muons and the large sample of the proton-proton collisions. The response of high momentum isolated muons is used to study the energy response at the electromagnetic scale, isolated hadrons are used as a probe of the hadronic response and its modelling by the Monte Carlo simulations. The calorimeter time resolution is studied with multijet events. Results on the calorimeter operation and performance are presented, including the calibration, stability, absolute energy scale, uniformity and time resolution. These results show that the TileCal performance is within the design requirements and has given essential contribution to reconstructed objects and physics results.

  20. Crosslinking in viral capsids via tiling theory.

    PubMed

    Twarock, R; Hendrix, R W

    2006-06-07

    A vital part of a virus is its protein shell, called the viral capsid, that encapsulates and hence protects the viral genome. It has been shown in Twarock [2004. A tiling approach to vius capsids assembly explaining a structural puzzle in virology. J. Theor. Biol. 226, 477-482] that the surface structures of viruses with icosahedrally symmetric capsids can be modelled in terms of tilings that encode the locations of the protein subunits. This theory is extended here to multi-level tilings in order to model crosslinking structures. The new framework is demonstrated for the case of bacteriophage HK97, and it is shown, how the theory can be used in general to decide if crosslinking, and what type of crosslinking, is compatible from a mathematical point of view with the geometrical surface structure of a virus.

  1. Remotely replaceable tokamak plasma limiter tiles

    DOEpatents

    Tsuo, Simon , Langford, Alison A.

    1989-01-01

    U-shaped limiter tiles placed end-to-end over a pair of parallel runners secured to a wall have two rods which engage L-shaped slots in the runners. The short receiving legs of the L-shaped slots are perpendicular to the wall and open away from the wall, while long retaining legs are parallel to and adjacent the wall. A sliding bar between the runners has grooves with clips to retain the rods pressed into receiving legs of the L-shaped slots in the runners. Sliding the bar in the direction of retaining legs of the L-shaped slots latches the tiles in place over the runners. Resilient contact strips between the parallel arms of the U-shaped tiles and the wall assure thermal and electrical contact with the wall.

  2. Ceramic joining

    SciTech Connect

    Loehman, R.E.

    1996-04-01

    This paper describes the relation between reactions at ceramic-metal interfaces and the development of strong interfacial bonds in ceramic joining. Studies on a number of systems are described, including silicon nitrides, aluminium nitrides, mullite, and aluminium oxides. Joints can be weakened by stresses such as thermal expansion mismatch. Ceramic joining is used in a variety of applications such as solid oxide fuel cells.

  3. Ceramic membrane development in NGK

    NASA Astrophysics Data System (ADS)

    Araki, Kiyoshi; Sakai, Hitoshi

    2011-05-01

    NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R&D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.

  4. Ceramic filters

    SciTech Connect

    Holmes, B.L.; Janney, M.A.

    1995-12-31

    Filters were formed from ceramic fibers, organic fibers, and a ceramic bond phase using a papermaking technique. The distribution of particulate ceramic bond phase was determined using a model silicon carbide system. As the ceramic fiber increased in length and diameter the distance between particles decreased. The calculated number of particles per area showed good agreement with the observed value. After firing, the papers were characterized using a biaxial load test. The strength of papers was proportional to the amount of bond phase included in the paper. All samples exhibited strain-tolerant behavior.

  5. Industry

    SciTech Connect

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  6. Degenerate polygonal tilings in simple animal tissues

    NASA Astrophysics Data System (ADS)

    Ziherl, Primoz; Hocevar, Ana

    2009-03-01

    We study 2D polygonal tilings as models of the en-face structure of single-layer biological tissues. Using numerical simulations, we explore the phase diagram of equilibrium tilings of equal-area, equal-perimeter convex polygons whose energy is independent of their shape. We identify 3 distinct phases, which are all observed in simple epithelial tissues: The disordered phase of polygons with 4-9 sides, the hexatic phase, and the hexagonal phase with perfect 6-fold coordination. We quantify their structure using Edwards' statistical mechanics of cellular systems.

  7. Improvement of PVC floor tiles by gamma radiation

    NASA Astrophysics Data System (ADS)

    du Plessis, T. A.; Badenhorst, F.

    Gamma radiation presents a unique method of transforming highly plasticized PVC floor tiles, manufactured at high speed through injection moulding, into a high quality floor covering at a cost at least 30% less than similarly rated rubber tiles. A specially formulated PVC compound was developed in collaboration with a leading manufacturer of floor tiles. These tiles are gamma crosslinked in its shipping cartons to form a dimensionally stable product which is highly fire resistant and inert to most chemicals and solvents. The crosslinked tiles are more flexible than the highly filled conventional PVC floor tiles, scratch resistant and have a longer lifespan and increased colour fastness. These tiles are also less expensive to install than conventional rubber tiles.

  8. 2. MORAVIAN POTTERY AND TILE WORKS, VIEW FROM THE SOUTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. MORAVIAN POTTERY AND TILE WORKS, VIEW FROM THE SOUTHWEST. INDIAN HOUSE WING AT THE LEFT. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  9. 37. PRESSING TILES FROM PLASTER MOLDS, USING A HAND PRESS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. PRESSING TILES FROM PLASTER MOLDS, USING A HAND PRESS CONSTRUCTED IN 1986. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  10. Nondestructive characterization of as-fabricated composite ceramic panels

    SciTech Connect

    Green, W. H.; Brennan, R. E.

    2011-06-23

    Decreasing the weight of protective systems, while minimizing the decrease in ballistic performance, is an ongoing goal of the Army. Ceramic materials are currently combined with other materials in these types of structures in order to decrease weight without losing ballistic performance. This includes structures in which the ceramic material is confined in some way and in which the ceramic material is completely encapsulated. Confinement or encapsulation of ceramic material within a structure generally adds complexity and cost. Relatively simple panel specimens fabricated with ceramic tiles on aluminum backings and side confinement using steel were evaluated using nondestructive methods, including x-ray computed tomography and ultrasonic testing. The nondestructive evaluation results will be discussed and compared, including the detectability and mapping of fabrication features.

  11. Glass-ceramic frits from fly ash in terracotta production.

    PubMed

    Karamanova, Emilia; Karamanov, Alexander

    2009-02-01

    Preliminary results of an investigation into the possible use of glass-ceramic frits from fly ash and glass cullet in terracotta (stoneware) tile manufacture are reported. Two new ceramics were studied and compared with a plant composition, containing 45 wt.% sodium feldspar. In the first ceramic batch 20% of the feldspar was substituted by frits and in the second the whole amount of feldspar was eliminated and replaced by 35% frits and 10% refractory waste. It was found that the addition of low viscous glass-ceramic frits decreased the sintering temperature by 50-100 degrees C. At the same time, due to formation of an additional crystal phase (i.e. pyroxene or anorthite) the new ceramics showed an improvement of 25-50% in bending strength.

  12. Nondestructive Characterization of As-Fabricated Composite Ceramic Panels

    NASA Astrophysics Data System (ADS)

    Green, W. H.; Brennan, R. E.

    2011-06-01

    Decreasing the weight of protective systems, while minimizing the decrease in ballistic performance, is an ongoing goal of the Army. Ceramic materials are currently combined with other materials in these types of structures in order to decrease weight without losing ballistic performance. This includes structures in which the ceramic material is confined in some way and in which the ceramic material is completely encapsulated. Confinement or encapsulation of ceramic material within a structure generally adds complexity and cost. Relatively simple panel specimens fabricated with ceramic tiles on aluminum backings and side confinement using steel were evaluated using nondestructive methods, including x-ray computed tomography and ultrasonic testing. The nondestructive evaluation results will be discussed and compared, including the detectability and mapping of fabrication features.

  13. Ceramic Technology for Advanced Heat Engines Project

    SciTech Connect

    Not Available

    1990-08-01

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  14. Ceramic regenerator systems development program

    NASA Technical Reports Server (NTRS)

    Fucinari, C. A.; Rahnke, C. J.; Rao, V. D. N.; Vallance, J. K.

    1980-01-01

    The DOE/NASA Ceramic Regenerator Design and Reliability Program aims to develop ceramic regenerator cores that can be used in passenger car and industrial/truck gas turbine engines. The major cause of failure of early gas turbine regenerators was found to be chemical attack of the ceramic material. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability test in Ford 707 industrial gas turbine engines late in 1974. Results of 53,065 hours of turbine engine durability testing are described. Two materials, aluminum silicate and magnesium aluminum silicate, show promise. Five aluminum silicate cores attained the durability objective of 10,000 hours at 800 C (1472 F). Another aluminum silicate core shows minimal evidence of chemical attack after 8071 hours at 982 C (1800 F). Results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are included.

  15. 90. TILES OF THE NEW WORLD PANEL, NORTH WALL OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    90. TILES OF THE NEW WORLD PANEL, NORTH WALL OF THE INDIAN HOUSE. THE RELIEF BROCADE TILES ILLUSTRATE SCENES OF NATIVE AMERICAN HISTORY AND CULTURE, AND THE EARLY EUROPEAN EXPLORATION OF THE NEW WORLD. SAME VIEW AS PA-107-21. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  16. 21. TILES OF THE NEW WORLD PANEL, NORTH WALL OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. TILES OF THE NEW WORLD PANEL, NORTH WALL OF THE INDIAN HOUSE. THE RELIEF BROCADE TILES ILLUSTRATE SCENES OF NATIVE AMERICAN HISTORY AND CULTURE, AND THE EARLY EUROPEAN EXPLORATION OF THE NEW WORLD. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  17. On the Penrose and Taylor–Socolar hexagonal tilings

    PubMed Central

    Lee, Jeong-Yup; Moody, Robert V.

    2017-01-01

    The intimate relationship between the Penrose and the Taylor–Socolar tilings is studied, within both the context of double hexagon tiles and the algebraic context of hierarchical inverse sequences of triangular lattices. This unified approach produces both types of tilings together, clarifies their relationship and offers straightforward proofs of their basic properties. PMID:28447596

  18. Production and characterization of glazed tiles containing incinerated sewage sludge.

    PubMed

    Lin, D F; Chang, W C; Yuan, C; Luo, H L

    2008-01-01

    In this article, glaze with different colorants was applied to tile specimens manufactured by incinerated sewage sludge ash (ISSA) and clay. Improvements using different amounts of colorants, and glaze components and concentrations on tile bodies were investigated. Four different proportions of clay (by weight ratio) were replaced by ISSA. Tiles of size 12 cm x 6 cm x 1 cm were made and left in an electric furnace to make biscuit tiles at 800 degrees C. Afterwards, four colorants, Fe2O3 (red), V2O5 (yellow), CoCO3 (blue), and MnO2 (purple), and four different glaze concentrations were applied on biscuit tile specimens. These specimens were later sintered into glazed tiles at 1050 degrees C. The study shows that replacement of clay by sludge ash had adverse effects on properties of tiles. Water absorption increased and bending strength reduced with increased amounts of ash. However, both water absorption and bending strength improved for glazed ash tiles. Abrasion of grazed tiles reduced noticeably from 0.001 to 0.002 g. This implies glaze can enhance abrasion resistance of tiles. Effects like lightfastness and acid-alkali resistance improved as different glazes were applied on tiles. In general, red glazed tiles showed the most stable performance, followed by blue, yellow, and purple.

  19. CFD-Predicted Tile Heating Bump Factors Due to Tile Overlay Repairs

    NASA Technical Reports Server (NTRS)

    Lessard, Victor R.

    2006-01-01

    A Computational Fluid Dynamics investigation of the Orbiter's Tile Overlay Repair (TOR) is performed to assess the aeroheating Damage Assessment Team's (DAT) existing heating correlation method for protuberance interference heating on the surrounding thermal protection system. Aerothermodynamic heating analyses are performed for TORs at the design reference damage locations body points 1800 and 1075 for a Mach 17.9 and a=39deg STS-107 flight trajectory point with laminar flow. Six different cases are considered. The computed peak heating bump factor on the surrounding tiles are below the DAT's heating bump factor values for smooth tile cases. However, for the uneven tiles cases the peak interference heating is shown to be considerably higher than the existing correlation prediction.

  20. Jagged Tiling for Intra-tile Parallelism and Fine-Grain Multithreading

    SciTech Connect

    Shrestha, Sunil; Manzano Franco, Joseph B.; Marquez, Andres; Feo, John T.; Gao, Guang R.

    2015-05-01

    In this paper, we have developed a novel methodology that takes into consideration multithreaded many-core designs to better utilize memory/processing resources and improve memory residence on tileable applications. It takes advantage of polyhedral analysis and transformation in the form of PLUTO, combined with a highly optimized finegrain tile runtime to exploit parallelism at all levels. The main contributions of this paper include the introduction of multi-hierarchical tiling techniques that increases intra tile parallelism; and a data-flow inspired runtime library that allows the expression of parallel tiles with an efficient synchronization registry. Our current implementation shows performance improvements on an Intel Xeon Phi board up to 32.25% against instances produced by state-of-the-art compiler frameworks for selected stencil applications.

  1. [Ceramic posts].

    PubMed

    Mainjot, Amélie; Legros, Caroline; Vanheusden, Alain

    2006-01-01

    As a result of ceramics and all-ceram technologies development esthetic inlay core and abutments flooded the market. Their tooth-colored appearance enhances restoration biomimetism principally on the marginal gingiva area. This article reviews indications and types of cores designed for natural teeth and implants.

  2. Performance of the ATLAS Tile Calorimeter

    NASA Astrophysics Data System (ADS)

    Heelan, Louise; ATLAS Collaboration

    2015-06-01

    The ATLAS Tile hadronic calorimeter (TileCal) provides highly-segmented energy measurements of incoming particles. It is a key detector for the measurement of hadrons, jets, tau leptons and missing transverse energy. It is also useful for identification and reconstruction of muons due to good signal to noise ratio. The calorimeter consists of thin steel plates and 460,000 scintillating tiles configured into 5000 cells, each viewed by two photomultipliers. The calorimeter response and its readout electronics is monitored to better than 1% using radioactive source, laser and charge injection systems. The calibration and performance of the calorimeter have been established through test beam measurements, cosmic ray muons and the large sample of proton-proton collisions acquired in 2011 and 2012. Results on the calorimeter performance are presented, including the absolute energy scale, timing, noise and associated stabilities. The results demonstrate that the Tile Calorimeter has performed well within the design requirements and it has given essential contribution to reconstructed objects and physics results. In addition, the data quality procedures used during the LHC data-taking are described and the outcome of the detector consolidation in the maintenance period is also presented.

  3. The ATLAS Tile Calorimeter performance at LHC

    NASA Astrophysics Data System (ADS)

    Molander, Simon

    2014-05-01

    This paper gives an overview of the performance of the Tile Calorimeter of the ATLAS detector at the Large Hadron Collider. Detector performances with respect to electronic noise and cell response are presented. In addition, an overview of the partially overlapping calibration systems is given.

  4. L-Tromino Tiling of Multilated Chessboards

    ERIC Educational Resources Information Center

    Gardner, Martin

    2009-01-01

    An "n" x "n" chessboard is called deficient if one square is missing from any spot on the board. Can all deficient boards with a number of cells divisible by 3 be tiled by bent (or L-shaped) trominoes? The answer is yes, with exception of the order-5 board. This paper deals with the general problem plus numerous related puzzles and proofs…

  5. Tile survey seen during EVA 3

    NASA Image and Video Library

    2005-08-03

    S114-E-6396 (3 August 2005) --- Space Shuttle Discovery’s underside thermal protection tiles are featured in this image photographed by astronaut Stephen K. Robinson, STS-114 mission specialist, during the mission’s third session of extravehicular activities (EVA). Lake Nasser along the Nile River, Egypt is visible near Discovery’s starboard wing.

  6. L-Tromino Tiling of Multilated Chessboards

    ERIC Educational Resources Information Center

    Gardner, Martin

    2009-01-01

    An "n" x "n" chessboard is called deficient if one square is missing from any spot on the board. Can all deficient boards with a number of cells divisible by 3 be tiled by bent (or L-shaped) trominoes? The answer is yes, with exception of the order-5 board. This paper deals with the general problem plus numerous related puzzles and proofs…

  7. TILE at Iowa: Adoption and Adaptation

    ERIC Educational Resources Information Center

    Florman, Jean C.

    2014-01-01

    This chapter introduces a University of Iowa effort to enhance and support active learning pedagogies in technology-enhanced (TILE) classrooms and three elements that proved essential to the campus-wide adoption of those pedagogies. It then describes the impact of those professional development efforts on the curricula and cultures of three…

  8. Lozenge Tilings, Glauber Dynamics and Macroscopic Shape

    NASA Astrophysics Data System (ADS)

    Laslier, Benoît; Toninelli, Fabio Lucio

    2015-09-01

    We study the Glauber dynamics on the set of tilings of a finite domain of the plane with lozenges of side 1/ L. Under the invariant measure of the process (the uniform measure over all tilings), it is well known (Cohn et al. J Am Math Soc 14:297-346, 2001) that the random height function associated to the tiling converges in probability, in the scaling limit , to a non-trivial macroscopic shape minimizing a certain surface tension functional. According to the boundary conditions, the macroscopic shape can be either analytic or contain "frozen regions" (Arctic Circle phenomenon Cohn et al. N Y J Math 4:137-165, 1998; Jockusch et al. Random domino tilings and the arctic circle theorem, arXiv:math/9801068, 1998). It is widely conjectured, on the basis of theoretical considerations (Henley J Statist Phys 89:483-507, 1997; Spohn J Stat Phys 71:1081-1132, 1993), partial mathematical results (Caputo et al. Commun Math Phys 311:157-189, 2012; Wilson Ann Appl Probab 14:274-325, 2004) and numerical simulations for similar models (Destainville Phys Rev Lett 88:030601, 2002; cf. also the bibliography in Henley (J Statist Phys 89:483-507, 1997) and Wilson (Ann Appl Probab 14:274-325, 2004), that the Glauber dynamics approaches the equilibrium macroscopic shape in a time of order L 2+ o(1). In this work we prove this conjecture, under the assumption that the macroscopic equilibrium shape contains no "frozen region".

  9. Lacunae infills for in situ treatment of historic glazed tiles

    NASA Astrophysics Data System (ADS)

    Mendes, Marta T.; Esteves, Lurdes; Ferreira, Teresa A.; Candeias, António; Tennent, Norman H.; Rodrigues, José Delgado; Pereira, Sílvia R. M.

    2016-05-01

    Knowledge of current conservation materials and methods together with those adopted in the past is essential to aid research and improve or develop better conservation options. The infill and painting of tile lacunae are subjected to special requirements mainly when used in outdoor settings. A selection of the most commonly used materials was undertaken and performed based on inquiries to practitioners working in the field. The infill pastes comprised organic (epoxy, polyester), inorganic (slaked lime, hydraulic lime and zinc hydroxychloride) and mixed organic-inorganic (slaked lime mixed with a vinylic resin) binders. The selected aggregates were those most commonly used or those already present in the commercially formulated products. The infill pastes were characterised by SEM, MIP, open porosity, water absorption by capillarity, water vapour permeability, thermal and hydric expansibilities and adhesion to the ceramic body. Their performance was assessed after curing, artificial ageing (salt ageing and UV-Temp-RH cycles) and natural ageing. The results were interpreted in terms of their significance as indicators of effectiveness, compatibility and durability.

  10. Comparative study for the nondestructive testing of advanced ceramic materials by infrared thermography and holographic interferometry

    NASA Astrophysics Data System (ADS)

    Sfarra, S.; Ibarra-Castanedo, C.; Bendada, A.; Maldague, X.; Ambrosini, D.; Paoletti, D.

    2010-05-01

    Advanced ceramic materials are increasingly employed in varied and new applications where improved electrical, mechanical and/or thermal properties are sought. For instance, in a manner similar to carbon or glass fiber reinforced plastics, ceramic matrix composites (CMCs) are designed to improve the naturally brittle characteristics of monolithic ceramics thanks to the inclusion of fibers. Among the main interests for advanced ceramics are the increase in the operation temperature of components, the elimination of the use of cooling fluids, and weight savings. In this paper, the capabilities of infrared thermography and holographic interferometry are investigated and compared for the nondestructive assessment of advanced ceramic materials using three experimental specimens: (1) a monolithic green ceramic tile with fabricated defects, (2) a CMC specimen (from production reject) with a porous alumina matrix reinforced with glass fibers, and (3) a sandwich structure consisting on a carbon fiber honeycomb core with a ceramic plate bonded in one side.

  11. Tile-based Level of Detail for the Parallel Age

    SciTech Connect

    Niski, K; Cohen, J D

    2007-08-15

    Today's PCs incorporate multiple CPUs and GPUs and are easily arranged in clusters for high-performance, interactive graphics. We present an approach based on hierarchical, screen-space tiles to parallelizing rendering with level of detail. Adapt tiles, render tiles, and machine tiles are associated with CPUs, GPUs, and PCs, respectively, to efficiently parallelize the workload with good resource utilization. Adaptive tile sizes provide load balancing while our level of detail system allows total and independent management of the load on CPUs and GPUs. We demonstrate our approach on parallel configurations consisting of both single PCs and a cluster of PCs.

  12. Potentialité d'utilisation d'argiles marocaines de Jbel Kharrou dans l'industrie céramique

    NASA Astrophysics Data System (ADS)

    El Yakoubi, Nadia; Aberkan, M'hamed; Ouadia, Mohamed

    2006-08-01

    The Ordovician clays of Jbel Kharrou (Rehamna, Morocco) have been studied for their use in ceramic industry. The realised studies were carried out on two samples B1 and B2, the most representative, taken from a clay dominated formation that outcrops 25 km east of the Skhour Rehamna city. The chemical analyses, mineralogical studies and advanced technological tests undertaken on the two samples indicate that these clays can be considered as non-refractory material, so they can be used to the manufacturing of ceramic products: soil and wall tiles, sanitary, pottery, etc. The tested briquettes, cooked at 1040 °C, remain flat, without deformation or defects; they are of cream white dye. These briquettes show a high mechanical resistance to the flexion, the loss in weight remains tolerable with cooking, lightly elevated (12% ); it can be corrected by the addition of a grease-remover. To cite this article: N. El Yakoubi et al., C. R. Geoscience 338 (2006).

  13. Direct molding of pavement tiles made of ground tire rubber

    NASA Astrophysics Data System (ADS)

    Quadrini, Fabrizio; Gagliardi, Donatella; Tedde, Giovanni Matteo; Santo, Loredana; Musacchi, Ettore

    2016-10-01

    Large rubber products can be molded by using only ground tire rubber (GTR) without any additive or binder due to a new technology called "direct molding". Rubber granules and powders from tire recycling are compression molded at elevated temperatures and pressures. The feasibility of this process was clearly shown in laboratory but the step to the industrial scale was missing. Thanks to an European Project (SMART "Sustainable Molding of Articles from Recycled Tires") this step has been made and some results are reported in this study. The press used for compression molding is described. Some tests were made to measure the energy consumption so as to evaluate costs for production in comparison with conventional technologies for GTR molding (by using binders). Results show that 1 m2 tiles can be easily molded with several thicknesses in a reasonable low time. Energy consumption is higher than conventional technologies but it is lower than the cost for binders.

  14. Automation Of Shuttle Tile Inspection: Engineering Methodology For Space Station

    NASA Astrophysics Data System (ADS)

    Wiskerchen, M. J.; Mollakarimi, C.

    1987-10-01

    The Space Systems Integration and Operations Research Applications (SIORA) Program was initiated in late 1986 as a cooperative applications research effort between Stanford University, NASA Kennedy Space Center (KSC), and Lockheed Space Operations Company (LSOC). One of the major initial SIORA tasks was the application of automation and robotics technology to all aspects of the Shuttle tile processing and inspection system. This effort has adobted a systems engineering approach consisting of an integrated set of rapid prototyping testbeds in which a government/university/industry team of users, technologists, and engineers test and evaluate new concepts and technologies within the operational world of Shuttle. These integrated testbeds include speech recognition and synthesis, laser imaging inspection systems, distributed Ada programming environments, distributed relational database architectures, distributed computer network architectures, multi-media workbenches, and human factors considerations.

  15. Beautiful Math, Part 5: Colorful Archimedean Tilings from Dynamical Systems.

    PubMed

    Ouyang, Peichang; Zhao, Weiguo; Huang, Xuan

    2015-01-01

    The art of tiling originated very early in the history of civilization. Almost every known human society has made use of tilings in some form or another. In particular, tilings using only regular polygons have great visual appeal. Decorated regular tilings with continuous and symmetrical patterns were widely used in decoration field, such as mosaics, pavements, and brick walls. In science, these tilings provide inspiration for synthetic organic chemistry. Building on previous CG&A “Beautiful Math” articles, the authors propose an invariant mapping method to create colorful patterns on Archimedean tilings (1-uniform tilings). The resulting patterns simultaneously have global crystallographic symmetry and local cyclic or dihedral symmetry.

  16. An efficient pseudomedian filter for tiling microrrays

    PubMed Central

    Royce, Thomas E; Carriero, Nicholas J; Gerstein, Mark B

    2007-01-01

    Background Tiling microarrays are becoming an essential technology in the functional genomics toolbox. They have been applied to the tasks of novel transcript identification, elucidation of transcription factor binding sites, detection of methylated DNA and several other applications in several model organisms. These experiments are being conducted at increasingly finer resolutions as the microarray technology enjoys increasingly greater feature densities. The increased densities naturally lead to increased data analysis requirements. Specifically, the most widely employed algorithm for tiling array analysis involves smoothing observed signals by computing pseudomedians within sliding windows, a O(n2logn) calculation in each window. This poor time complexity is an issue for tiling array analysis and could prove to be a real bottleneck as tiling microarray experiments become grander in scope and finer in resolution. Results We therefore implemented Monahan's HLQEST algorithm that reduces the runtime complexity for computing the pseudomedian of n numbers to O(nlogn) from O(n2logn). For a representative tiling microarray dataset, this modification reduced the smoothing procedure's runtime by nearly 90%. We then leveraged the fact that elements within sliding windows remain largely unchanged in overlapping windows (as one slides across genomic space) to further reduce computation by an additional 43%. This was achieved by the application of skip lists to maintaining a sorted list of values from window to window. This sorted list could be maintained with simple O(log n) inserts and deletes. We illustrate the favorable scaling properties of our algorithms with both time complexity analysis and benchmarking on synthetic datasets. Conclusion Tiling microarray analyses that rely upon a sliding window pseudomedian calculation can require many hours of computation. We have eased this requirement significantly by implementing efficient algorithms that scale well with genomic

  17. Zeta potential in ceramic industry

    NASA Technical Reports Server (NTRS)

    Lecuit, M.

    1984-01-01

    Deflocculation, electrical conductivity and zeta potential (ZP) are studied for the addition of 0 to 10000 ppm Na2SiO3 deflocculator to slips obtained from three argillaceous materials (kaolin d'Arvor, ball clay Hyplas 64, and/or Granger Clay No. 10). The quantity of Na2SO3 required to deflocculate a slip is independent of the density but differes for each clay. The ZP is directly related to the density of the slip. The higher the ZP the more stable a slip is; the value of the ZP of a mixture does not follow a simple law but the electrical resistance of a mixture does follow a simple additive law. The ZP appears to have linear relation with the specific surface of the argillaceous material.

  18. Processing ceramics

    NASA Technical Reports Server (NTRS)

    Moritoki, M.; Fujikawa, T.; Miyanaga, J.

    1984-01-01

    A method of hot hydrostatic pressing of ceramics is described. A detailed description of the invention is given. The invention is explained through an example, and a figure illustrates the temperature and pressure during the hot hydrostatic pressing treatment.

  19. Nano-sized ceramic inks for drop-on-demand ink-jet printing in quadrichromy.

    PubMed

    Gardini, Davide; Dondi, Michele; Costa, Anna Luisa; Matteucci, Francesco; Blosi, Magda; Galassi, Carmen; Baldi, Giovanni; Cinotti, Elenia

    2008-04-01

    Nano-sized ceramic inks suitable for ink-jet printing have been developed for the four-colours CMYK (cyan, magenta, yellow, black) process. Nano-inks of different pigment composition (Co(1-x)O, Au(0), Ti(1-x-y)Sb(x)Cr(y)O2, CoFe2O4) have been prepared with various solid loadings and their chemicophysical properties (particle size, viscosity, surface tension, zeta-potential) were tailored for the ink-jet application. The pigment particle size is in the 20-80 nm range. All these nano-suspensions are stable for long time (i.e., several months) due to either electrostatic (high zeta-potential values) or steric stabilization mechanisms. Both nanometric size and high stability avoid problems of nozzle clogging from particles agglomeration and settling. Nano-inks have a Newtonian behaviour with relatively low viscosities at room temperature. More concentrated inks fulfil the viscosity requirement of ink-jet applications (i.e., < 35 mPa x s) for printing temperatures in between 30 and 70 degrees C. Surface tension constraints for ink-jet printing are fulfilled by nano-inks, being in the 35-45 mN x m(-1) range. The nano-sized inks investigated behave satisfactorily in preliminary printing tests on several unfired industrial ceramic tiles, developing saturated colours in a wide range of firing temperatures (1000-1200 degrees C).

  20. Ceramic regenerator systems development program

    NASA Technical Reports Server (NTRS)

    Cook, J. A.; Fucinari, C. A.; Lingscheit, J. N.; Rahnke, C. J.; Rao, V. D.

    1978-01-01

    Ceramic regenerator cores are considered that can be used in passenger car gas turbine engines, Stirling engines, and industrial/truck gas turbine engines. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability tests/in industrial gas turbine engines. A regenerator core made from aluminum silicate shows minimal evidence of chemical attack damage after 7804 hours of engine test at 800 C and another showed little distress after 4983 hours at 982 C. The results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are also included.

  1. Boeing's High Voltage Solar Tile Test Results

    NASA Technical Reports Server (NTRS)

    Reed, Brian J.; Harden, David E.; Ferguson, Dale C.; Snyder, David B.

    2002-01-01

    Real concerns of spacecraft charging and experience with solar array augmented electrostatic discharge arcs on spacecraft have minimized the use of high voltages on large solar arrays despite numerous vehicle system mass and efficiency advantages. Boeing's solar tile (patent pending) allows high voltage to be generated at the array without the mass and efficiency losses of electronic conversion. Direct drive electric propulsion and higher power payloads (lower spacecraft weight) will benefit from this design. As future power demand grows, spacecraft designers must use higher voltage to minimize transmission loss and power cable mass for very large area arrays. This paper will describe the design and discuss the successful test of Boeing's 500-Volt Solar Tile in NASA Glenn's Tenney chamber in the Space Plasma Interaction Facility. The work was sponsored by NASA's Space Solar Power Exploratory Research and Technology (SERT) Program and will result in updated high voltage solar array design guidelines being published.

  2. Anosov Diffeomorphisms and {γ}-Tilings

    NASA Astrophysics Data System (ADS)

    Almeida, João P.; Pinto, Alberto A.

    2016-07-01

    We consider a toral Anosov automorphism {G_γ:{mathbb{T}}_γto{mathbb{T}}_γ} given by {G_γ(x,y)=(ax+y,x)} in the { < v,w > } base, where {ainmathbb{N} backslash\\{1\\}}, {γ=1/(a+1/(a+1/ldots))}, {v=(γ,1)} and {w=(-1,γ)} in the canonical base of {{mathbb{R}}^2} and {{mathbb{T}}_γ={mathbb{R}}^2/(v{mathbb{Z}} × w{mathbb{Z}})}. We introduce the notion of {γ}-tilings to prove the existence of a one-to-one correspondence between (i) marked smooth conjugacy classes of Anosov diffeomorphisms, with invariant measures absolutely continuous with respect to the Lebesgue measure, that are in the isotopy class of {G_γ}; (ii) affine classes of {γ}-tilings; and (iii) {γ}-solenoid functions. Solenoid functions provide a parametrization of the infinite dimensional space of the mathematical objects described in these equivalences.

  3. Degenerate polygonal tilings in simple animal tissues

    NASA Astrophysics Data System (ADS)

    Hočevar, A.; Ziherl, P.

    2009-07-01

    The salient feature of one-cell-thick epithelia is their en face view, which reveals the polygonal cross section of the close-packed prismatic cells. The physical mechanisms that shape these tissues were hitherto explored using theories based on cell proliferation, which were either entirely topological or included certain morphogenetic forces. But mitosis itself may not be instrumental in molding the tissue. We show that the structure of simple epithelia can be explained by an equilibrium model where energy-degenerate polygons in an entropy-maximizing tiling are described by a single geometric parameter encoding their inflatedness. The two types of tilings found numerically—ordered and disordered—closely reproduce the patterns observed in Drosophila, Hydra, and Xenopus and they generalize earlier theoretical results. Free of a specific cell self-energy, cell-cell interaction, and cell division kinetics, our model provides an insight into the universality of living and inanimate two-dimensional cellular structures.

  4. Structural ceramics

    NASA Technical Reports Server (NTRS)

    Craig, Douglas F.

    1992-01-01

    This presentation gives a brief history of the field of materials sciences and goes on to expound the advantages of the fastest growing area in that field, namely ceramics. Since ceramics are moving to fill the demand for lighter, stronger, more corrosion resistant materials, advancements will rely more on processing and modeling from the atomic scale up which is made possible by advanced analytical, computer, and processing techniques. All information is presented in viewgraph format.

  5. NASA TileWorld Simulator Program

    NASA Technical Reports Server (NTRS)

    Philips, Andrew; Bresina, John; Drummond, Mark

    1993-01-01

    NASA TileWorld (NTW) computer program formulated to further research on planning, scheduling, and control problems. Designed to focus on three particular attributes of real-world problems: exogenous events, uncertain outcomes of actions, and metric time. Written specifically for use by NASA, NTW modified easily to act as software base for other simulated environments. Written in Allegro Common Lisp for Sun-3-(TM) and Sun-4-series(TM) computers running SunOS(TM).

  6. Upgrade of the ATLAS Tile Calorimeter Electronics

    NASA Astrophysics Data System (ADS)

    Carrió, F.; Tile Calorimeter System, ATLAS

    2015-02-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The bulk of its upgrade will occur for the High Luminosity LHC phase (Phase-II) where the peak luminosity will increase 5 times compared to the design luminosity (1034 cm-2s-1) but with maintained energy (i.e. 7+7 TeV). An additional increase of the average luminosity with a factor of 2 can be achieved by luminosity levelling. This upgrade is expected to happen around 2024. The TileCal upgrade aims at replacing the majority of the on- and off- detector electronics to the extent that all calorimeter signals will be digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. 10 Gbps optical links are used to read out all digitized data to the counting room while 5 Gbps down-links are used for synchronization, configuration and detector control. For the off-detector electronics a pre-processor (sROD) is being developed, which takes care of the initial trigger processing while temporarily storing the main data flow in pipeline and derandomizer memories. One demonstrator prototype module with the new calorimeter module electronics, but still compatible with the present system, is planned to be inserted in ATLAS this year.

  7. Laser printing of enamels on tiles

    NASA Astrophysics Data System (ADS)

    Fernández-Pradas, J. M.; Restrepo, J. W.; Gómez, M. A.; Serra, P.; Morenza, J. L.

    2007-07-01

    A Nd:YAG laser beam is used as a tool to print patterns of coloured enamels on tile substrates. For this, the laser beam is scanned over a layer of raw enamel previously sprayed on the tile surface. The possibility to focus the laser energy to heat a small zone without affecting the rest of the piece presents some advantages in front of traditional furnace techniques in which the whole piece has to be heated; among them, energy saving and the possibility to apply enamels with higher melting temperatures than those of the substrate. In this work, we study the effects of laser irradiation of a green enamel, based in chromium oxide pigment and lead frit, deposited on a white tile substrate. Lines obtained with different combinations of laser beam power and scan speeds were investigated with the aim to optimize the process from the point of view of the quality of the patterns. For this purpose, the morphology of the lines and their cross-sections is studied. The results show that lines with good visual properties can be printed with the laser. The characteristics of the marked lines were found to be directly related with the accumulated energy density delivered. Moreover, there is a linear relationship between the accumulated energy density and the volume of melted material. A minimum accumulated energy density is required to melt a shallow zone of the glazed substrate to allow the adhesion of the enamelled lines.

  8. Foam-on-Tile Damage Model

    NASA Technical Reports Server (NTRS)

    Koharchik, Michael; Murphy, Lindsay; Parker, Paul

    2012-01-01

    An impact model was developed to predict how three specific foam types would damage the Space Shuttle Orbiter insulating tiles. The inputs needed for the model are the foam type, the foam mass, the foam impact velocity, the foam impact incident angle, the type being impacted, and whether the tile is new or aged (has flown at least one mission). The model will determine if the foam impact will cause damage to the tile. If it can cause damage, the model will output the damage cavity dimensions (length, depth, entry angle, exit angle, and sidewall angles). It makes the calculations as soon as the inputs are entered (less than 1 second). The model allows for the rapid calculation of numerous scenarios in a short time. The model was developed from engineering principles coupled with significant impact testing (over 800 foam impact tests). This model is applicable to masses ranging from 0.0002 up to 0.4 pound (0.09 up to 181 g). A prior tool performed a similar function, but was limited to the assessment of a small range of masses and did not have the large test database for verification. In addition, the prior model did not provide outputs of the cavity damage length, entry angle, exit angle, or sidewall angles.

  9. Performance of the ATLAS Tile Calorimeter

    NASA Astrophysics Data System (ADS)

    Cole, Stephe

    2013-04-01

    The Tile Calorimeter is the central section (0 < |η| < 1.7) of the ATLAS hadronic calorimeter. It is a key detector for the measurement of hadrons, jets, tau leptons decaying hadronically, and missing transverse energy. Because of its very good signal to noise ratio it is also useful for the identification and reconstruction of muons. The calorimeter consists of thin steel plates and 460,000 scintillating tiles configured into 4900 cells, each viewed by two photomultipliers. The calorimeter response is monitored to better than 1% using radioactive source, laser, and electronic charge injection systems. The calibration and performance of the calorimeter have been established through test beam measurements, cosmic ray muons and the large sample of pp collisions acquired during 2011 and 2012. Results on the calorimeter performance will be presented, including the absolute energy scale, time resolution, and associated stabilities. These results demonstrate that the Tile Calorimeter is performing well within the design requirements and is giving essential input to the physics results.

  10. Masking properties of ceramics for veneer restorations.

    PubMed

    Skyllouriotis, Andreas L; Yamamoto, Hideo L; Nathanson, Dan

    2017-10-01

    The translucency and opacity of ceramics play a significant role in emulating the natural color of teeth, but studies of the masking properties and limitations of dental ceramics when used as monolayer restorations are lacking. The purpose of this in vitro study was to determine the translucency of 6 materials used for veneer restorations by assessing their translucency parameters (TPs), contrast ratios (CRs), and potential to mask dark tooth colors. Ten square- or disk-shaped specimens (0.5-mm thickness, shade A2) were fabricated from Vitablocks Mark II (VMII; Vita Zahnfabrik), IPS e.max CAD LT (EMXC LT; Ivoclar Vivadent AG), IPS e.max CAD HT (EMXC HT; Ivoclar Vivadent AG), IPS Empress CAD LT (EMP LT; Ivoclar Vivadent AG), IPS e.max Press LT (EMXP LT; Ivoclar Vivadent AG), and CZR (CZR; Kuraray Noritake Dental Inc). Their luminance (Y) values over black and over white tiles were measured, followed by their color (CIELab) over black tiles and white tiles and shaded A2 (control group), A3.5, A4, and B4 acrylic resin blocks. All measurements were performed using a spectrophotometer in 2 different areas on each specimen. Then CRs, TPs, and color differences (over shaded backgrounds) were determined. Data were subjected to 1-way and 2-way ANOVA (α=.05) for analysis. Mean CR values of EMXP LT were significantly higher than those of the other tested materials, whereas VMII and EMXC HT had the lowest values (P<.001). Mean TP values over black and over white backgrounds of VMII and EMXC HT were significantly higher than those of the other tested materials, while EMXP LT and EMXC LT revealed the lowest values (P<.001). Background shade A4 displayed the highest mean effect (expressed in ΔE* values) on the color of the ceramic materials, whereas shade B4 demonstrated the lowest mean background effect (P<.001). Significant differences in translucency among the tested ceramics were revealed (P<.001). The EMXC LT and EMXP LT groups were the least translucent under the

  11. Nondestructive characterization of micromachined ceramics

    NASA Astrophysics Data System (ADS)

    Cooney, Adam; Hix, Kenneth E.; Yaney, Perry; Zhan, Qiwen; Dosser, Larry R.; Blackshire, James L.

    2005-05-01

    The aerospace, automotive, and electronic industries are finding increasing need for components made from silicon carbide (SiC) and silicon nitride (Si3N4). The development and use of miniaturized ceramic parts, in particular, is of significant interest in a variety of critical applications. As these application areas grow, manufacturers are being asked to find new and better solutions for machining and forming ceramic materials with microscopic precision. Recent advances in laser machining technologies are making precision micromachining of ceramics a reality. Questions regarding micromachining accuracy, residual melt region effects, and laser-induced microcracking are of critical concern during the machining process. In this activity, a variety of nondestructive inspection methods have been used to investigate the microscopic features of laser-machined ceramic components. The primary goal was to assess the micromachined areas for machining accuracy and microcracking using laser ultrasound, scanning electron microscopy, and white-light interference microscopic imaging of the machined regions.

  12. Structural Ceramics Database

    National Institute of Standards and Technology Data Gateway

    SRD 30 NIST Structural Ceramics Database (Web, free access)   The NIST Structural Ceramics Database (WebSCD) provides evaluated materials property data for a wide range of advanced ceramics known variously as structural ceramics, engineering ceramics, and fine ceramics.

  13. Microstructural Effects on the Machining Performance of Dental Ceramics

    DTIC Science & Technology

    1997-01-01

    TECHNICAL RESEARCH REPORT Microstructural Effects on the Machining Performance of Dental Ceramics by D.T. Le, L. Qi, G. Zhang, S.]. Ng T.R. 97-36...on the Machining Performance of Dental Ceramics 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER...ceramics the material choice for industrial and dental applications. The quality of a machined surface of ceramics is fundamentally dependent on the

  14. Interference Lattice-based Loop Nest Tilings for Stencil Computations

    NASA Technical Reports Server (NTRS)

    VanderWijngaart, Rob F.; Frumkin, Michael

    2000-01-01

    A common method for improving performance of stencil operations on structured multi-dimensional discretization grids is loop tiling. Tile shapes and sizes are usually determined heuristically, based on the size of the primary data cache. We provide a lower bound on the numbers of cache misses that must be incurred by any tiling, and a close achievable bound using a particular tiling based on the grid interference lattice. The latter tiling is used to derive highly efficient loop orderings. The total number of cache misses of a code is the sum of (necessary) cold misses and misses caused by elements being dropped from the cache between successive loads (replacement misses). Maximizing temporal locality is equivalent to minimizing replacement misses. Temporal locality of loop nests implementing stencil operations is optimized by tilings that avoid data conflicts. We divide the loop nest iteration space into conflict-free tiles, derived from the cache miss equation. The tiling involves the definition of the grid interference lattice an equivalence class of grid points whose images in main memory map to the same location in the cache-and the construction of a special basis for the lattice. Conflicts only occur on the boundaries of the tiles, unless the tiles are too thin. We show that the surface area of the tiles is bounded for grids of any dimensionality, and for caches of any associativity, provided the eccentricity of the fundamental parallelepiped (the tile spanned by the basis) of the lattice is bounded. Eccentricity is determined by two factors, aspect ratio and skewness. The aspect ratio of the parallelepiped can be bounded by appropriate array padding. The skewness can be bounded by the choice of a proper basis. Combining these two strategies ensures that pathologically thin tiles are avoided. They do not, however, minimize replacement misses per se. The reason is that tile visitation order influences the number of data conflicts on the tile boundaries. If two

  15. Modeling and Simulation of Ceramic Arrays to Improve Ballaistic Performance

    DTIC Science & Technology

    2013-05-01

    DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; distribution is Unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT 2D AutoDyn ...4340 is used for the projectile and AutoDyn SiC material properties are used for the ceramic tile Mesh sensitivity analysis is performed using four...used to study the fracture behavior with 0.20-mm mesh size We will develop 3D FEMs for further AutoDyn analyses An undergraduate student is working

  16. Modeling and Simulation of Ceramic Arrays to Improve Ballistic Performance

    DTIC Science & Technology

    2014-01-17

    30cal AP M2 Projectile, 762x39 PS Projectile, SPH, Aluminum 5083, SiC, DoP Expeminets, AutoDyn Simulations, Tile Gap 16. SECURITY CLASSIFICATION...configurations. 1. Establish a baseline of materials properties and projectile characteristics for modeling. a. Models are developed in AUTODYN and...model. Modeling and simulation of ceramic composite systems will be performed using explicit dynamic hydrocode LS-DYNA and AUTODYN . Computational

  17. Ceramic stationary gas turbine

    SciTech Connect

    Roode, M. van

    1995-10-01

    The performance of current industrial gas turbines is limited by the temperature and strength capabilities of the metallic structural materials in the engine hot section. Because of their superior high-temperature strength and durability, ceramics can be used as structural materials for hot section components (blades, nozzles, combustor liners) in innovative designs at increased turbine firing temperatures. The benefits include the ability to increase the turbine inlet temperature (TIT) to about 1200{degrees}C ({approx}2200{degrees}F) or more with uncooled ceramics. It has been projected that fully optimized stationary gas turbines would have a {approx}20 percent gain in thermal efficiency and {approx}40 percent gain in output power in simple cycle compared to all metal-engines with air-cooled components. Annual fuel savings in cogeneration in the U.S. would be on the order of 0.2 Quad by 2010. Emissions reductions to under 10 ppmv NO{sub x} are also forecast. This paper describes the progress on a three-phase, 6-year program sponsored by the U.S. Department of Energy, Office of Industrial Technologies, to achieve significant performance improvements and emissions reductions in stationary gas turbines by replacing metallic hot section components with ceramic parts. Progress is being reported for the period September 1, 1994, through September 30, 1995.

  18. Ceramic stationary gas turbine

    SciTech Connect

    Roode, M. van

    1995-12-31

    The performance of current industrial gas turbines is limited by the temperature and strength capabilities of the metallic structural materials in the engine hot section. Because of their superior high-temperature strength and durability, ceramics can be used as structural materials for hot section components (blades, nozzles, combustor liners) in innovative designs at increased turbine firing temperatures. The benefits include the ability to increase the turbine inlet temperature (TIT) to about 1200{degrees}C ({approx}2200{degrees}F) or more with uncooled ceramics. It has been projected that fully optimized stationary gas turbines would have a {approx}20 percent gain in thermal efficiency and {approx}40 percent gain in output power in simple cycle compared to all metal-engines with air-cooled components. Annual fuel savings in cogeneration in the U.S. would be on the order of 0.2 Quad by 2010. Emissions reductions to under 10 ppmv NO{sub x} are also forecast. This paper describes the progress on a three-phase, 6-year program sponsored by the U.S. Department of Energy, Office of Industrial Technologies, to achieve significant performance improvements and emissions reductions in stationary gas turbines by replacing metallic hot section components with ceramic parts. Progress is being reported for the period September 1, 1994, through September 30, 1995.

  19. 55. QUARRY TILE CUTTERS, SECOND FLOOR, NORTH WING. WORKERS PRESSED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    55. QUARRY TILE CUTTERS, SECOND FLOOR, NORTH WING. WORKERS PRESSED THE CUTTERS INTO SLABS OF CLAY, LIFTED THEM ONTO DRYING BOARDS AND PRESSED THE PLUNGERS TO RELEASE THE CUT TILES. REPRODUCTIONS CUTTERS ARE NOT USED IN PRODUCTION. WOODEN FORMS FOR PRODUCING CLAY SLABS WITH ROLLING PINS REST AGAINST THE WALL. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  20. Design optimization methods for genomic DNA tiling arrays

    PubMed Central

    Bertone, Paul; Trifonov, Valery; Rozowsky, Joel S.; Schubert, Falk; Emanuelsson, Olof; Karro, John; Kao, Ming-Yang; Snyder, Michael; Gerstein, Mark

    2006-01-01

    A recent development in microarray research entails the unbiased coverage, or tiling, of genomic DNA for the large-scale identification of transcribed sequences and regulatory elements. A central issue in designing tiling arrays is that of arriving at a single-copy tile path, as significant sequence cross-hybridization can result from the presence of non-unique probes on the array. Due to the fragmentation of genomic DNA caused by the widespread distribution of repetitive elements, the problem of obtaining adequate sequence coverage increases with the sizes of subsequence tiles that are to be included in the design. This becomes increasingly problematic when considering complex eukaryotic genomes that contain many thousands of interspersed repeats. The general problem of sequence tiling can be framed as finding an optimal partitioning of non-repetitive subsequences over a prescribed range of tile sizes, on a DNA sequence comprising repetitive and non-repetitive regions. Exact solutions to the tiling problem become computationally infeasible when applied to large genomes, but successive optimizations are developed that allow their practical implementation. These include an efficient method for determining the degree of similarity of many oligonucleotide sequences over large genomes, and two algorithms for finding an optimal tile path composed of longer sequence tiles. The first algorithm, a dynamic programming approach, finds an optimal tiling in linear time and space; the second applies a heuristic search to reduce the space complexity to a constant requirement. A Web resource has also been developed, accessible at http://tiling.gersteinlab.org, to generate optimal tile paths from user-provided DNA sequences. PMID:16365382

  1. Process for making ceramic insulation

    DOEpatents

    Akash, Akash; Balakrishnan, G. Nair

    2009-12-08

    A method is provided for producing insulation materials and insulation for high temperature applications using novel castable and powder-based ceramics. The ceramic components produced using the proposed process offers (i) a fine porosity (from nano-to micro scale); (ii) a superior strength-to-weight ratio; and (iii) flexibility in designing multilayered features offering multifunctionality which will increase the service lifetime of insulation and refractory components used in the solid oxide fuel cell, direct carbon fuel cell, furnace, metal melting, glass, chemical, paper/pulp, automobile, industrial heating, coal, and power generation industries. Further, the ceramic components made using this method may have net-shape and/or net-size advantages with minimum post machining requirements.

  2. Ceramic tubesheet design analysis

    SciTech Connect

    Mallett, R.H.; Swindeman, R.W.

    1996-06-01

    A transport combustor is being commissioned at the Southern Services facility in Wilsonville, Alabama to provide a gaseous product for the assessment of hot-gas filtering systems. One of the barrier filters incorporates a ceramic tubesheet to support candle filters. The ceramic tubesheet, designed and manufactured by Industrial Filter and Pump Manufacturing Company (EF&PM), is unique and offers distinct advantages over metallic systems in terms of density, resistance to corrosion, and resistance to creep at operating temperatures above 815{degrees}C (1500{degrees}F). Nevertheless, the operational requirements of the ceramic tubesheet are severe. The tubesheet is almost 1.5 m in (55 in.) in diameter, has many penetrations, and must support the weight of the ceramic filters, coal ash accumulation, and a pressure drop (one atmosphere). Further, thermal stresses related to steady state and transient conditions will occur. To gain a better understanding of the structural performance limitations, a contract was placed with Mallett Technology, Inc. to perform a thermal and structural analysis of the tubesheet design. The design analysis specification and a preliminary design analysis were completed in the early part of 1995. The analyses indicated that modifications to the design were necessary to reduce thermal stress, and it was necessary to complete the redesign before the final thermal/mechanical analysis could be undertaken. The preliminary analysis identified the need to confirm that the physical and mechanical properties data used in the design were representative of the material in the tubesheet. Subsequently, few exploratory tests were performed at ORNL to evaluate the ceramic structural material.

  3. The influence of clay fineness upon sludge recycling in a ceramic matrix

    NASA Astrophysics Data System (ADS)

    Szőke, A. M.; Muntean, M.; Sándor, M.; Brotea, L.

    2016-04-01

    The feasibility of sludge recycling in the ceramic manufacture was evaluated through laboratory testing. Such residues have similar chemical and mineralogical composition with the raw mixture of the green ceramic body used in construction. Several ceramic masses with clay and various proportion of sludge have been synthesized and then characterized by their physical-mechanical properties. The fineness of the clay, the main component of the green ceramic body, has been considered for every raw mixture. The proportion of the sludge waste addition depends on the clay fineness and the sintering capacity also, increases with the clay fineness. The ceramic properties, particularly, the open porosity, and mechanical properties, in presence of small sludge proportion (7, 20%) shows small modification. The introduction of such waste into building ceramic matrix (bricks, tiles, and plates) has a very good perspective.

  4. NASA TileWorld manual (system version 2.2)

    NASA Technical Reports Server (NTRS)

    Philips, Andrew B.; Bresina, John L.

    1991-01-01

    The commands are documented of the NASA TileWorld simulator, as well as providing information about how to run it and extend it. The simulator, implemented in Common Lisp with Common Windows, encodes a particular range in a spectrum of domains, for controllable research experiments. TileWorld consists of a two dimensional grid of cells, a set of polygonal tiles, and a single agent which can grasp and move tiles. In addition to agent executable actions, there is an external event over which the agent has not control; this event correspond to a 'gust of wind'.

  5. View of Chapel mosaic tile ceiling featuring "doves of heaven" ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Chapel mosaic tile ceiling featuring "doves of heaven" motifs on a stepped concrete shell. - Flanders Field American Cemetery & Memorial, Chapel, Wortegemseweg 117, Waregem, West Flanders (Belgium)

  6. FOREWORD: Focus on Advanced Ceramics Focus on Advanced Ceramics

    NASA Astrophysics Data System (ADS)

    Ohashi, Naoki

    2011-06-01

    Much research has been devoted recently to developing technologies for renewable energy and improving the efficiency of the processes and devices used in industry and everyday life. Efficient solutions have been found using novel materials such as platinum and palladium-based catalysts for car exhaust systems, samarium-cobalt and neodymium-iron-boron permanent magnets for electrical motors, and so on. However, their realization has resulted in an increasing demand for rare elements and in their deficit, the development of new materials based on more abundant elements and new functionalities of traditional materials. Moreover, increasing environmental and health concerns demand substitution of toxic or hazardous substances with nature-friendly alternatives. In this context, this focus issue on advanced ceramics aims to review current trends in ceramics science and technology. It is related to the International Conference on Science and Technology of Advanced Ceramics (STAC) held annually to discuss the emerging issues in the field of ceramics. An important direction of ceramic science is the collaboration between experimental and theoretical sciences. Recent developments in density functional theory and computer technology have enabled the prediction of physical and chemical properties of ceramics, thereby assisting the design of new materials. Therefore, this focus issue includes articles devoted to theory and advanced characterization techniques. As mentioned above, the potential shortage of rare elements is becoming critical to the industry and has resulted in a Japanese government initiative called the 'Ubiquitous Element Strategy'. This focus issue also includes articles related to this strategy and to the associated topics of energy conversion, such as phosphors for high-efficiency lighting and photocatalysts for solar-energy harvesting. We hope that this focus issue will provide a timely overview of current trends and problems in ceramics science and

  7. Complex tiling patterns in liquid crystals

    PubMed Central

    Tschierske, C.; Nürnberger, C.; Ebert, H.; Glettner, B.; Prehm, M.; Liu, F.; Zeng, X.-B.; Ungar, G.

    2012-01-01

    In this account recent progress in enhancing the complexity of liquid crystal self-assembly is highlighted. The discussed superstructures are formed mainly by polyphilic T-shaped and X-shaped molecules composed of a rod-like core, tethered with glycerol units at both ends and flexible non-polar chain(s) in lateral position, but also related inverted molecular structures are considered. A series of honeycomb phases composed of polygonal cylinders ranging from triangular to hexagonal, followed by giant cylinder honeycombs is observed for ternary T-shaped polyphiles on increasing the size of the lateral chain(s). Increasing the chain size further leads to new modes of lamellar organization followed by three-dimensional and two-dimensional structures incorporating branched and non-branched axial rod-bundles. Grafting incompatible chains to opposite sides of the rod-like core leads to quaternary X-shaped polyphiles. These form liquid crystalline honeycombs where different cells are filled with different material. Projected on an Euclidian plane, all honeycomb phases can be described either by uniformly coloured Archimedean and Laves tiling patterns (T-shaped polyphiles) or as multi-colour tiling patterns (X-shaped polyphiles). It is shown that geometric frustration, combined with the tendency to segregate incompatible chains into different compartments and the need to find a periodic tiling pattern, leads to a significant increase in the complexity of soft self-assembly. Mixing of different chains greatly enhances the number of possible ‘colours’ and in this way, periodic structures comprising up to seven distinct compartments can be generated. Relations to biological self-assembly are discussed shortly. PMID:24098852

  8. Direct AFM observation of individual micelles, tile decorations and tiling rules of a dodecagonal liquid quasicrystal

    NASA Astrophysics Data System (ADS)

    Zhang, Ruibin; Zeng, Xiangbing; Ungar, Goran

    2017-10-01

    We performed an atomic force microscopy study of the dendron-based dodecagonal quasicrystal, the material that had been reported in 2004 as the first soft quasicrystal. We succeeded in orienting the 12-fold axis perpendicular to the substrate, which allowed the imaging of the quasiperiodic xy plane. Thus for the first time we have been able to obtain direct real-space information not only on the arrangement of the tiles, but also on their ‘decorations’ by the individual spherical micelles or ‘nanoatoms’. The high-resolution patterns recorded confirm the square-triangle tiling, but the abundance of different nodes corresponds closely to random tiling rather than to any inflation rule. The previously proposed model of three types of decorated tiles, two triangular and one square, has been confirmed; the basic Frank–Kasper mode of alternating dense-sparse-dense-sparse layer stacking along z is confirmed too, each of the four sublayers being 2 nm thick. The consecutive dense layers are seen to be rotated by 90°, as expected. The 2 nm steps on the surface correspond to one layer of spheres, nonetheless with a dense layer always remaining on top, which implies a layer slip underneath and possibly the existence of screw dislocations.

  9. Advances in Natural Quasicrystals and Quasicrystal Tilings

    NASA Astrophysics Data System (ADS)

    Lin, Chaney C.

    The first part of this dissertation reports recent progress on natural quasicrystals. We present new evidence from a fragment of the quasicrystal-bearing CV3 carbonaceous chondritic meteorite Khatyrka that shows cross-cutting relationships and redox reaction between Al-Cu-bearing alloys and silicate phases. The new evidence establishes that the Al-Cu-bearing alloys (including quasicrystals) formed in outer space during a complex, multi-stage process. Some Al-bearing grains (including some quasicrystals) formed as a direct result of an impact in space a few 100 Ma. Most other Al-bearing grains (including quasicrystals) existed prior to the impact and thus formed in space at an earlier time. We also present the discovery of two new quasicrystals, including a second distinct Al-Cu-Fe icosahedral phase in Khatyrka--the first quasicrystal found in nature prior to discovery in the lab--and a synthetic Al-Fe-Cu-Cr-Ni icosahedral phase--the first quasicrystal to be synthesized in a laboratory shock experiment. In the second part of this dissertation, we explore how different local isomorphism (LI) classes of quasicrystals vary in their structural and physical properties. We examine the continuum of LI classes of pentagonal quasicrystal tilings obtained by direct projection from a five-dimensional hypercubic lattice. Our initial focus is on hyperuniformity, the suppression of long-wavelength density fluctuations relative to typical structurally disordered systems. We study how the degree of hyperuniformity depends on LI class. The results show that the degree of hyperuniformity is dominantly determined by the local distribution of vertex environments, and also exhibits a non-negligible dependence on the restorability. Among the pentagonal quasicrystal tilings, the Penrose tiling is the most hyperuniform. The difference in the degree of hyperuniformity is expected to affect physical characteristics, such as transport properties. We then turn to a study of photonic

  10. ALT-II armor tile design for upgraded TEXTOR operation

    SciTech Connect

    Newberry, B.L.; McGrath, R.T.; Watson, R.D.; Kohlhaas, W.; Finken, K.H.; Noda, N.

    1994-08-01

    The upgrade of the TEXTOR tokamak at KFA Juelich was recently completed. This upgrade extended the TEXTOR pulse length from 5 seconds to 10 seconds. The auxiliary heating was increased to a total of 8.0 MW through a combination of neutral beam injection and radio frequency heating. Originally, the inertially cooled armor tiles of the full toroidal belt Advanced Limiter Test -- II (ALT-II) were designed for a 5-second operation with total heating of 6.0 MW. The upgrade of TEXTOR will increase the energy deposited per pulse onto the ALT-II by about 300%. Consequently, the graphite armor tiles for the ALT-II had to be redesigned to avoid excessively high graphite armor surface temperatures that would lead to unacceptable contamination of the plasma. This redesign took the form of two major changes in the ALT-II armor tile geometry. The first design change was an increase of the armor tile thermal mass, primarily by increasing the radial thickness of each tile from 17 mm to 20 mm. This increase in the radial tile dimension reduces the overall pumping efficiency of the ALT-II pump limiter by about 30%. The reduction in exhaust efficiency is unfortunate, but could be avoided only by active cooling of the ALT-II armor tiles. The active cooling option was too complicated and expensive to be considered at this time. The second design change involved redefining the plasma facing surface of each armor tile in order to fully utilize the entire surface area. The incident charged particle heat flux was distributed uniformly over the armor tile surfaces by carefully matching the radial, poloidal and toroidal curvature of each tile to the plasma flow in the TEXTOR boundary layer. This geometry redefinition complicates the manufacturing of the armor tiles, but results in significant thermal performance gains. In addition to these geometry upgrades, several material options were analyzed and evaluated.

  11. Ceramic Seal.

    SciTech Connect

    Smartt, Heidi A.; Romero, Juan A.; Custer, Joyce Olsen; Hymel, Ross W.; Krementz, Dan; Gobin, Derek; Harpring, Larry; Martinez-Rodriguez, Michael; Varble, Don; DiMaio, Jeff; Hudson, Stephen

    2016-11-01

    Containment/Surveillance (C/S) measures are critical to any verification regime in order to maintain Continuity of Knowledge (CoK). The Ceramic Seal project is research into the next generation technologies to advance C/S, in particular improving security and efficiency. The Ceramic Seal is a small form factor loop seal with improved tamper-indication including a frangible seal body, tamper planes, external coatings, and electronic monitoring of the seal body integrity. It improves efficiency through a self-securing wire and in-situ verification with a handheld reader. Sandia National Laboratories (SNL) and Savannah River National Laboratory (SRNL), under sponsorship from the U.S. National Nuclear Security Administration (NNSA) Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), have previously designed and have now fabricated and tested Ceramic Seals. Tests have occurred at both SNL and SRNL, with different types of tests occurring at each facility. This interim report will describe the Ceramic Seal prototype, the design and development of a handheld standalone reader and an interface to a data acquisition system, fabrication of the seals, and results of initial testing.

  12. Synthesis of crystalline ceramics for actinide immobilisation

    SciTech Connect

    Burakov, B.; Gribova, V.; Kitsay, A.; Ojovan, M.; Hyatt, N.C.; Stennett, M.C.

    2007-07-01

    Methods for the synthesis of ceramic wasteforms for the immobilization of actinides are common to those for non-radioactive ceramics: hot uniaxial pressing (HUP); hot isostatic pressing (HIP); cold pressing followed by sintering; melting (for some specific ceramics, such as garnet/perovskite composites). Synthesis of ceramics doped with radionuclides is characterized with some important considerations: all the radionuclides should be incorporated into crystalline structure of durable host-phases in the form of solid solutions and no separate phases of radionuclides should be present in the matrix of final ceramic wasteform; all procedures of starting precursor preparation and ceramic synthesis should follow safety requirements of nuclear industry. Synthesis methods that avoid the use of very high temperatures and pressures and are easily accomplished within the environment of a glove-box or hot cell are preferable. Knowledge transfer between the V. G. Khlopin Radium Institute (KRI, Russia) and Immobilisation Science Laboratory (ISL, UK) was facilitated in the framework of a joint project supported by UK Royal Society. In order to introduce methods of precursor preparation and ceramic synthesis we selected well-known procedures readily deployable in radiochemical processing plants. We accounted that training should include main types of ceramic wasteforms which are currently discussed for industrial applications. (authors)

  13. Joining NZP ceramics. Final report

    SciTech Connect

    Nicklas, K.D.; Richey, M.W.; Holcombe, C.E. Jr.; Santella, M.L.

    1995-09-26

    Objective was to assess techniques for joining NZP ceramics, a new family of ceramic materials that have low coefficient of thermal expansion, low thermal conductivity, and excellent thermal-shock resistance. Initially, the authors evaluated laser-beam welding over volatile fluxing agents (ferric oxide, copper oxide, boric acid, and boron nitride). They also examined other laser, arc-welding, brazing, and cold joining techniques. The NZP materials were capable of sustaining the thermal stresses associated with these joining processes without substantial cracking. Of the volatile fluxes, only the copper oxide promoted weld fusion. Efforts to accomplish fusion by laser-beam welding over copper, titanium, stainless steel, yttrium barium copper oxide, fused silica glass, and mullite/alumina were unsuccessful. Gas-tungsten arc welding accompanied by porosity, irregularities, and cracking was achieved on copper sheet sandwiched between NZP tiles. Attempts at conventional oxy-acetylene welding and torch brazing were unproductive. Silica-based oxide mixtures and copper oxide-based materials show potential for development into filler materials for furnace brazing, and phosphate-based cements show promise as a means of cold joining.

  14. Photographing Shuttle Thermal Tiles in Space

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. The mission's third and final Extra Vehicular Activity (EVA) included taking a close-up look and the repair of the damaged heat shield. Gap fillers were removed from between the orbiter's heat-shielding tiles located on the craft's underbelly. Never before had any repairs been done to an orbiter while still in space. This particular photo was taken by astronaut Stephen K. Robinson, STS-114 mission specialist, whose shadow is visible on the thermal protection tiles.

  15. Ceramic Waveguides

    NASA Astrophysics Data System (ADS)

    Yeh, C.; Shimabukuro, F.; Stanton, P.; Jamnejad, V.; Imbriale, W.; Manshadi, F.

    2000-01-01

    This article is an expanded version of an original article published in Nature (April 6, 2000) entitled, "Millimeter/Submillimeter Wave Communications via Ceramic Ribbon." Finding a very low-loss waveguide in the millimeter-/submillimeter-wave range has been a problem of considerable interest for many years. Researching the fundamentals, we have found a new way to design a waveguide structure that is capable of providing an attenuation coefficient of less than 10 dB/km for the guided dominant mode. This structure is a ceramic (Coors' 998 alumina) ribbon with an aspect ratio of 10:1. This attenuation figure is more than one hundred times smaller than that for a typical ceramic or other dielectric circular-rod waveguide. It appears that the dominant transverse magnetic (TM)-like mode is capable of "gliding" along the surface of the ribbon with exceedingly low attenuation and with a power pattern having a dip in the core of the ribbon guide. This feature makes the ceramic ribbon a true "surface" waveguide structure wherein the wave is guided along, adhering to a large surface with only a small fraction of the power being carried within the core region of the structure. Here, through theoretical analysis as well as experimental measurements, the existence of this low-loss ceramic ribbon structure is proven. Practical considerations, such as an efficient launcher as well as supports for a long open ribbon structure, also have been tested experimentally. The availability of such a low-loss waveguide may now pave the way for new development in this millimeter-/submillimeter-wave range.

  16. Drainage water management effects on tile discharge and water quality

    USDA-ARS?s Scientific Manuscript database

    Nitrogen (N) fluxes from tile drained watersheds have been implicated in water quality studies of the Mississippi River Basin, but the contribution of tile drains to N export in headwater watersheds is not well understood. The objective of this study was to ascertain seasonal and annual contribution...

  17. Future Armor Tiles MIL-STD-166O Tests.

    DTIC Science & Technology

    1997-02-01

    The U.S. Army Defense Ammunition Center (DAC), Validation Engineering Division, was tasked by DAC to conduct MIL- STD -1660 tests on armor tile...containers on a wooden pallet. This report contains test results with the armor tile containers on a wooden pallet meeting MIL- STD -1660, Design Criteria for Ammunition Unit Loads, requirements.

  18. Creative Tiling: A Story of 1000-and-1 Curves

    ERIC Educational Resources Information Center

    Al-Darwish, Nasir

    2012-01-01

    We describe a procedure that utilizes symmetric curves for building artistic tiles. One particular curve was found to mesh nicely with hundreds other curves, resulting in eye-catching tiling designs. The results of our work serve as a good example of using ideas from 2-D graphics and algorithms in a practical web-based application.

  19. Low-Density, Aerogel-Filled Thermal-Insulation Tiles

    NASA Technical Reports Server (NTRS)

    Santos, Maryann; Heng, Vann; Barney, Andrea; Oka, Kris; Droege, Michael

    2005-01-01

    Aerogel fillings have been investigated in a continuing effort to develop low-density thermal-insulation tiles that, relative to prior such tiles, have greater dimensional stability (especially less shrinkage), equal or lower thermal conductivity, and greater strength and durability. In preparation for laboratory tests of dimensional and thermal stability, prototypes of aerogel-filled versions of recently developed low-density tiles have been fabricated by impregnating such tiles to various depths with aerogel formations ranging in density from 1.5 to 5.6 lb/ft3 (about 53 to 200 kg/cu m). Results available at the time of reporting the information for this article showed that the thermal-insulation properties of the partially or fully aerogel- impregnated tiles were equivalent or superior to those of the corresponding non-impregnated tiles and that the partially impregnated tiles exhibited minimal (<1.5 percent) shrinkage after multiple exposures at a temperature of 2,300 F (1,260 C). Latest developments have shown that tiles containing aerogels at the higher end of the density range are stable after multiple exposures at the said temperature.

  20. New SWAT tile drain equations: Modifications, Calibration, Validation, and Application

    USDA-ARS?s Scientific Manuscript database

    Subsurface tile drainage is a commonly used agricultural practice to enhance crop yield in poorly drained but highly productive soils in many other regions of the world. However, the presence of subsurface tile drainage systems also expedites the transport of nitrate-nitrogen (NO3-N) and other chemi...

  1. Highly Symmetric and Congruently Tiled Meshes for Shells and Domes

    PubMed Central

    Rasheed, Muhibur; Bajaj, Chandrajit

    2016-01-01

    We describe the generation of all possible shell and dome shapes that can be uniquely meshed (tiled) using a single type of mesh face (tile), and following a single meshing (tiling) rule that governs the mesh (tile) arrangement with maximal vertex, edge and face symmetries. Such tiling arrangements or congruently tiled meshed shapes, are frequently found in chemical forms (fullerenes or Bucky balls, crystals, quasi-crystals, virus nano shells or capsids), and synthetic shapes (cages, sports domes, modern architectural facades). Congruently tiled meshes are both aesthetic and complete, as they support maximal mesh symmetries with minimal complexity and possess simple generation rules. Here, we generate congruent tilings and meshed shape layouts that satisfy these optimality conditions. Further, the congruent meshes are uniquely mappable to an almost regular 3D polyhedron (or its dual polyhedron) and which exhibits face-transitive (and edge-transitive) congruency with at most two types of vertices (each type transitive to the other). The family of all such congruently meshed polyhedra create a new class of meshed shapes, beyond the well-studied regular, semi-regular and quasi-regular classes, and their duals (platonic, Catalan and Johnson). While our new mesh class is infinite, we prove that there exists a unique mesh parametrization, where each member of the class can be represented by two integer lattice variables, and moreover efficiently constructable. PMID:27563368

  2. 81. MORAVIAN POTTERY AND TILE WORKS, VIEW FROM THE SOUTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    81. MORAVIAN POTTERY AND TILE WORKS, VIEW FROM THE SOUTHWEST. INDIAN HOUSE WING AT THE LEFT. SAME VIEW AS PA-107-2. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  3. 69. TILE WORKS UNDER CONSTRUCTION, 1912. SOURCE: FONTHILL MANUSCRIPT COLLECTION, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. TILE WORKS UNDER CONSTRUCTION, 1912. SOURCE: FONTHILL MANUSCRIPT COLLECTION, SPRUANCE LIBRARY, BUCKS COUNTY HISTORICAL SOCIETY (HEREAFTER SL/BCHS), UNCATALOGED GLASS PLATE NEGATIVE. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  4. Computerized Machine for Cutting Space Shuttle Thermal Tiles

    NASA Technical Reports Server (NTRS)

    Ramirez, Luis E.; Reuter, Lisa A.

    2009-01-01

    A report presents the concept of a machine aboard the space shuttle that would cut oversized thermal-tile blanks to precise sizes and shapes needed to replace tiles that were damaged or lost during ascent to orbit. The machine would include a computer-controlled jigsaw enclosed in a clear acrylic shell that would prevent escape of cutting debris. A vacuum motor would collect the debris into a reservoir and would hold a tile blank securely in place. A database stored in the computer would contain the unique shape and dimensions of every tile. Once a broken or missing tile was identified, its identification number would be entered into the computer, wherein the cutting pattern associated with that number would be retrieved from the database. A tile blank would be locked into a crib in the machine, the shell would be closed (proximity sensors would prevent activation of the machine while the shell was open), and a "cut" command would be sent from the computer. A blade would be moved around the crib like a plotter, cutting the tile to the required size and shape. Once the tile was cut, an astronaut would take a space walk for installation.

  5. METHOD FOR EVALUATING MOLD GROWTH ON CEILING TILE

    EPA Science Inventory

    A method to extract mold spores from porous ceiling tiles was developed using a masticator blender. Ceiling tiles were inoculated and analyzed using four species of mold. Statistical analysis comparing results obtained by masticator extraction and the swab method was performed. T...

  6. Ballistic Performance of Porous-Ceramic, Thermal Protection Systems to 9 km/s

    NASA Technical Reports Server (NTRS)

    Miller, Joshua E.; Bohl, William E.; Foreman, Cory D.; Christiansen, Eric C.; Davis, Bruce A.

    2010-01-01

    Porous-ceramic, thermal protection systems are used heavily in current reentry vehicles like the Orbiter, and they are currently being proposed for the next generation of US manned spacecraft, Orion. These materials insulate the structural components and sensitive components of a spacecraft against the intense thermal environments of atmospheric reentry. These materials are also highly exposed to solid particle space environment hazards. This paper discusses recent impact testing up to 9.65 km/s on ceramic tiles similar to those used on the Orbiter. These tiles are a porous-ceramic insulator of nominally 8 lb/ft(exp 3) alumina-fiber-enhanced-thermal-barrier (AETB8) coated with a damage-resistant, toughened-unipiece-fibrous-insulation/reaction-cured-glass layer (TUFI/RCG).

  7. Laser contouring of Space Shuttle tiles

    NASA Astrophysics Data System (ADS)

    Bishop, P. J.; Minardi, A.; He, Mingli; Shelton, Bret

    Straight through and partial cuts were made in fibrous silicon-based ceramic insulation materials (used on the Space Shuttle) to determine the feasibility of laser machining. Experimental results were accumulated from over 800 exposures to determine the belt conditions for cutting. Laser intensity, feedrate, and other parameters were varied to determine conditions for cutting and are discussed in the paper.

  8. Development of anti-slip sustainable tiles from agricultural waste

    NASA Astrophysics Data System (ADS)

    Zulkefli, Zainordin Firdaus; Zainol, Mohd Remy Rozainy Mohd Arif; Osman, Norhayati

    2017-04-01

    In general of 80% the human activities is located in the building. Buildings constructed should be in line with full functions and optimum safety features. Aspects to be emphasized is the slip on the floor of the building. The selection of tiles must have anti-slip characteristics and achieve standard strength stress. This study is conducted to develop anti-slip tiles modification using agricultural waste. The material used is agricultural waste such rice husks, palm fibre and saw dusk mixed into the clay and then baked at a temperature of 900-1185 C °. Agricultural waste mixture ratio is 5%, 10% and 15%. The samples of tiles are produced for experiments. The results of agricultural waste tiles show that the strength is higher than standard strength, the water absorption less than standard tiles and pendulum value test is exceeds 36.

  9. Edge exposure of poloidal divertor target plate tiles

    SciTech Connect

    Mohanti, R.B.; Gilligan, J.G.; Bourham, M.A.

    1996-12-01

    Exposure to near normal surfaces of poloidal divertor target plate tiles is a limiting feature of the power handling capability of the tiles. The problems associated with the design of poloidal divertor tiles, with beryllium chosen as the tile material, and possible methods of solving the problem are discussed. Thermal two- and three-dimensional analyses are carried out for the assessment of relative merits in performance due to modifications to the surface. The power handling capability (time to reach melting temperature of beryllium) of the target plate tiles is presented for unswept and swept plasma cases. Results have shown that sweeping the plasma improves the power handling capability by a factor of up to 10. 20 refs., 7 figs., 3 tabs.

  10. Geological study of sedimentary clayey materials of the Bomkoul area in the Douala region (Douala sub-basin, Cameroon) for the ceramic industry

    NASA Astrophysics Data System (ADS)

    Ngon Ngon, Gilbert François; Etame, Jacques; Ntamak-Nida, Marie Joseph; Mbog, Michel Bertrand; Mpondo, Anne Maureen Maliengoue; Gérard, Martine; Yongue-Fouateu, Rose; Bilong, Paul

    2012-06-01

    A geological study carried out in the Bomkoul area (Douala sub-basin, Cameroon) has revealed the presence of heterogeneous clayey materials on hills (80-120 m altitude). The clay deposits are thick at the upper slope where sandstones and sandy-clay overlying clay layers, and thin at the middle and lower slopes where weathered clays overlying clay layers. Clayey materials identified are grey, dark-grey and mottled in color, with sandy-clay, clayey-silt, silty-clay and clay textures. Raw materials are mostly made up of fine particles ranging from 52 to 82% clay and silt in the mottled clayey material, 50 to 82% clay and silt in the dark-grey clayey material and 70 to 85% in the grey clayey material. Their chemical composition is characterized by silica (< 70% SiO2), alumina (< 32% Al2O3) and iron (1 to 16% Fe2O3). The main clay minerals are disorganized and poorly crystallized kaolinite and few smectite. The physical, mineralogical and geochemical properties of these materials presented and discussed in this work show that the clayey raw materials of the Bomkoul area have a good potential for pottery as well as brick, tile and soil sandstone manufacture.

  11. Milestone 5 test report. Task 5, subtask 5.2: Tile to foam strength tests

    NASA Technical Reports Server (NTRS)

    Greenberg, H. S.

    1994-01-01

    This report summarizes work that has been performed to date on the strength of a cryotank insulation system using Rohacell foam and TUFI-coated AETB-12 ceramic tiles directly bonded to a simulated graphite-epoxy tank wall. Testing utilized a custom specimen design which consists of a long tensile specimen with eccentric loading to induce curvature similar to the curvature expected due to 'pillowing' of the tank when pressurized. A finite element model was constructed to predict the specific element strains in the test article, and to assist with design of the test specimen to meet the specific goals of curvature and laminate strain. The results indicate that the heat treated 3.25-pcf density Rohacell foam does not provide sufficient strength for the induced stresses due to curvature and stress concentration at the RTV bondline to the TUFI tile. The test was repeated using higher density non-heat treated Rohacell foam (6.9 pcf) without foam failure. The finite element model was shown to predict specimen behavior, and validation of the model was successful. It is pertinent to mention that the analyses described herein accurately predicted the failure of the heat treated foams and based on this analysis method it is expected that the untreated 3.25 pcf Rohacell foam will be successful.

  12. Initial Examination of Low Velocity Sphere Impact of Glass Ceramics

    SciTech Connect

    Morrissey, Timothy G; Fox, Ethan E; Wereszczak, Andrew A; Ferber, Mattison K

    2012-06-01

    This report summarizes US Army TARDEC sponsored work at Oak Ridge National Laboratory (ORNL) involving low velocity (< 30 m/s or < 65 mph) sphere impact testing of two materials from the lithium aluminosilicate family reinforced with different amounts of ceramic particulate, i.e., glass-ceramic materials, SCHOTT Resistan{trademark}-G1 and SCHOTT Resistan{trademark}-L. Both materials are provided by SCHOTT Glass (Duryea, PA). This work is a follow-up to similar sphere impact studies completed by the authors on PPG's Starphire{reg_sign} soda-lime silicate glass and SCHOTT BOROFLOAT{reg_sign} borosilicate glass. A gas gun or a sphere-drop test setup was used to produce controlled velocity delivery of silicon nitride (Si{sub 3}N{sub 4}) spheres against the glass ceramic tile targets. Minimum impact velocities to initiate fracture in the glass-ceramics were measured and interpreted in context to the kinetic energy of impact and the elastic property mismatch between sphere and target material. Quasistatic spherical indentation was also performed on both glass ceramics and their contact damage responses were compared to those of soda-lime silicate and borosilicate glasses. Lastly, variability of contact damage response was assessed by performing spherical indentation testing across the area of an entire glass ceramic tile. The primary observations from this low velocity (< 30 m/s or < 65 mph) testing were: (1) Resistan{trademark}-L glass ceramic required the highest velocity of sphere impact for damage to initiate. Starphire{reg_sign} soda-lime silicate glass was second best, then Resistan{trademark}-G1 glass ceramic, and then BOROFLOAT{reg_sign} borosilicate glass. (2) Glass-ceramic Resistan{trademark}-L also required the largest force to initiate ring crack from quasi-static indentation. That ranking was followed, in descending order, by Starphire{reg_sign} soda-lime silicate glass, Resistan{trademark}-G1 glass ceramic, and BOROFLOAT{reg_sign} borosilicate glass. (3

  13. Metal-ceramic junctions - Mechanical and physicochemical interactive joining techniques

    NASA Astrophysics Data System (ADS)

    Lascar, Guy

    Reactive brazing and thermocompression are discussed in terms of their use as joining techniques for metal-ceramic structures. Theoretical consideration is given to brazing under vacuum conditions to examine the relationships between contact surface and volume, interfacial energy, surface energy, and adhesion energy. Brazing is shown to permit metal-ceramic junctions without metallization of the ceramic substrate, although several reactions and metallic materials can affect joint strength. Thermocompression is distinguished from brazing and shown to limit the alteration of the ceramic material. The protection of the mechanical properties of the ceramic and metal components of the materials is a critical aspect of industrial applications of brazing and thermocompression.

  14. Microwave processing of ceramics

    SciTech Connect

    Katz, J.D.

    1989-01-01

    This paper discusses the following topics on microwave processing of ceramics: Microwave-material interactions; anticipated advantage of microwave sintering; ceramic sintering; and ceramic joining. 24 refs., 4 figs. (LSP)

  15. Optical design and studies of a tiled single grating pulse compressor for enhanced parametric space and compensation of tiling errors

    NASA Astrophysics Data System (ADS)

    Daiya, D.; Patidar, R. K.; Sharma, J.; Joshi, A. S.; Naik, P. A.; Gupta, P. D.

    2017-04-01

    A new optical design of tiled single grating pulse compressor has been proposed, set-up and studied. The parametric space, i.e. the laser beam diameters that can be accommodated in the pulse compressor for the given range of compression lengths, has been calculated and shown to have up to two fold enhancement in comparison to our earlier proposed optical designs. The new optical design of the tiled single grating pulse compressor has an additional advantage of self compensation of various tiling errors like longitudinal and lateral piston, tip and groove density mismatch, compared to the earlier designs. Experiments have been carried out for temporal compression of 650 ps positively chirped laser pulses, at central wavelength 1054 nm, down to 235 fs in the tiled grating pulse compressor set up with the proposed design. Further, far field studies have been performed to show the desired compensation of the tiling errors takes place in the new compressor.

  16. Improve load balancing and coding efficiency of tiles in high efficiency video coding by adaptive tile boundary

    NASA Astrophysics Data System (ADS)

    Chan, Chia-Hsin; Tu, Chun-Chuan; Tsai, Wen-Jiin

    2017-01-01

    High efficiency video coding (HEVC) not only improves the coding efficiency drastically compared to the well-known H.264/AVC but also introduces coding tools for parallel processing, one of which is tiles. Tile partitioning is allowed to be arbitrary in HEVC, but how to decide tile boundaries remains an open issue. An adaptive tile boundary (ATB) method is proposed to select a better tile partitioning to improve load balancing (ATB-LoadB) and coding efficiency (ATB-Gain) with a unified scheme. Experimental results show that, compared to ordinary uniform-space partitioning, the proposed ATB can save up to 17.65% of encoding times in parallel encoding scenarios and can reduce up to 0.8% of total bit rates for coding efficiency.

  17. Development of BEM for ceramic composites

    NASA Technical Reports Server (NTRS)

    Henry, D. P.; Banerjee, P. K.; Dargush, G. F.

    1991-01-01

    It is evident that for proper micromechanical analysis of ceramic composites, one needs to use a numerical method that is capable of idealizing the individual fibers or individual bundles of fibers embedded within a three-dimensional ceramic matrix. The analysis must be able to account for high stress or temperature gradients from diffusion of stress or temperature from the fiber to the ceramic matrix and allow for interaction between the fibers through the ceramic matrix. The analysis must be sophisticated enough to deal with the failure of fibers described by a series of increasingly sophisticated constitutive models. Finally, the analysis must deal with micromechanical modeling of the composite under nonlinear thermal and dynamic loading. This report details progress made towards the development of a boundary element code designed for the micromechanical studies of an advanced ceramic composite. Additional effort has been made in generalizing the implementation to allow the program to be applicable to real problems in the aerospace industry.

  18. Tile-in-ONE: A web platform which integrates Tile Calorimeter data quality and calibration assessment

    NASA Astrophysics Data System (ADS)

    Sivolella, A.; Ferreira, F.; Maidantchik, C.; Solans, C.; Solodkov, A.; Burghgrave, B.; Smirnov, Y.

    2015-12-01

    The ATLAS Tile Calorimeter collaboration assesses the quality of calibration data in order to ensure its proper operation. A number of tasks is then performed by executing several tools and accessing web systems, which were independently developed to meet distinct collaboration's requirements and do not necessarily are connected with each other. Thus, to attend the collaboration needs, several programs are usually implemented without a global perspective of the detector, requiring basic software features. In addition, functionalities may overlap in their objectives and frequently replicate resources retrieval mechanisms. Tile-in-ONE is a designed and implemented platform that assembles various web systems used by the calorimeter community through a single framework and a standard technology. It provides an infrastructure to support the code implementation, avoiding duplication of work while integrating with an overall view of the detector status. Database connectors smooth the process of information access since developers do not need to be aware of where records are placed and how to extract them. Within the environment, a dashboard stands for a particular Tile operation aspect and gets together plug-ins, i.e. software components that add specific features to an existing application. A server contains the platform core, which represents the basic environment to deal with the configuration, manage user settings and load plug-ins at runtime. A web middleware assists users to develop their own plug-ins, perform tests and integrate them into the platform as a whole. Backends are employed to allow that any type of application is interpreted and displayed in a uniform way. This paper describes Tile-in-ONE web platform.

  19. Floor tile and mastic removal project report

    SciTech Connect

    Not Available

    1992-11-01

    A test program was developed and coordinated with State and Federal Regulators and carried out at Fort Sill, Oklahoma. This program was carefully designed to create the worst conditions in order to evaluate whether asbestos fibers are released when asbestos containing floor tile and mastic are removed. There were over 1,000 samples taken and analyzed during the execution of the program. The conclusions reached were based upon analysis of the critical samples using the Transmission Electron Microscope (TEM) technology. Additionally, the TEM procedures were used to evaluate personnel samples to determine whether those fibers found were asbestos or other materials. Most of the (TEM) samples were analyzed by the US Environmental Protection Agency (EPA) Risk Reduction Engineering Laboratory in Cincinnati, Ohio.

  20. Condensate oscillations in a Penrose tiling lattice

    NASA Astrophysics Data System (ADS)

    Akdeniz, Z.; Vignolo, P.

    2017-07-01

    We study the dynamics of a Bose-Einstein condensate subject to a particular Penrose tiling lattice. In such a lattice, the potential energy at each site depends on the neighbour sites, accordingly to the model introduced by Sutherland [16]. The Bose-Einstein wavepacket, initially at rest at the lattice symmetry center, is released. We observe a very complex time-evolution that strongly depends on the symmetry center (two choices are possible), on the potential energy landscape dispersion, and on the interaction strength. The condensate-width oscillates at different frequencies and we can identify large-frequency reshaping oscillations and low-frequency rescaling oscillations. We discuss in which conditions these oscillations are spatially bounded, denoting a self-trapping dynamics.

  1. Tile-Compressed FITS Kernel for IRAF

    NASA Astrophysics Data System (ADS)

    Seaman, R.

    2011-07-01

    The Flexible Image Transport System (FITS) is a ubiquitously supported standard of the astronomical community. Similarly, the Image Reduction and Analysis Facility (IRAF), developed by the National Optical Astronomy Observatory, is a widely used astronomical data reduction package. IRAF supplies compatibility with FITS format data through numerous tools and interfaces. The most integrated of these is IRAF's FITS image kernel that provides access to FITS from any IRAF task that uses the basic IMIO interface. The original FITS kernel is a complex interface of purpose-built procedures that presents growing maintenance issues and lacks recent FITS innovations. A new FITS kernel is being developed at NOAO that is layered on the CFITSIO library from the NASA Goddard Space Flight Center. The simplified interface will minimize maintenance headaches as well as add important new features such as support for the FITS tile-compressed (fpack) format.

  2. Use of x-ray fluorescence and diffraction techniques in studying ancient ceramics of Sri Lanka

    NASA Astrophysics Data System (ADS)

    Karunaratne, B. S. B.

    2012-07-01

    Ceramics were produced for centuries in Sri Lanka for various purposes. Ancient ceramic articles such as pottery, bricks, tiles, sewer pipes, etc, were made from naturally occurring raw materials. Use of X-ray fluorescence (XRF), X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) in characterizing of two ancient ceramic samples from two different archaeological sites in Sri Lanka is presented. The information obtained in this manner is used to figure out the ancient ceramic technology, particularly to learn about the raw materials used, the source of raw materials, processing parameters such as firing temperature or binders used in ceramic production. This information then can be used to explore the archaeometric background such as the nature and extent of cultural and technological interaction between different periods of history in Sri Lanka.

  3. Spectral response data for development of cool coloured tile coverings

    NASA Astrophysics Data System (ADS)

    Libbra, Antonio; Tarozzi, Luca; Muscio, Alberto; Corticelli, Mauro A.

    2011-03-01

    Most ancient or traditional buildings in Italy show steep-slope roofs covered by red clay tiles. As the rooms immediately below the roof are often inhabited in historical or densely urbanized centres, the combination of low solar reflectance of tile coverings and low thermal inertia of either wooden roof structures or sub-tile insulation panels makes summer overheating a major problem. The problem can be mitigated by using tiles coated with cool colours, that is colours with the same spectral response of clay tiles in the visible, but highly reflecting in the near infrared range, which includes more than half of solar radiation. Cool colours can yield the same visible aspect of common building surfaces, but higher solar reflectance. Studies aimed at developing cool colour tile coverings for traditional Italian buildings have been started. A few coating solutions with the typical red terracotta colour have been produced and tested in the laboratory, using easily available materials. The spectral response and the solar reflectance have been measured and compared with that of standard tiles.

  4. THz imaging of majolica tiles and biological attached marble fragments

    NASA Astrophysics Data System (ADS)

    Catapano, Ilaria; Soldovieri, Francesco

    2016-04-01

    Devices exploiting waves in the frequency range from 0.1 THz to 10 THz (corresponding to a free-space wavelength ranging from 30 μm to 3 mm) deserve attention as diagnostic technologies for cultural heritage. THz waves are, indeed, non-ionizing radiations capable of penetrating into non-metallic materials, which are opaque to both visible and infrared waves, without implying long term risks to the molecular stability of the exposed objects and humans. Moreover, THz surveys involve low poewr probing waves, are performed without contact with the object and, thanks to the recent developments, which have allowed the commercialization of compact, flexible and portable systems, maybe performed in loco (i.e. in the place where the artworks are usually located). On the other hand, THz devices can be considered as the youngest among the sensing and imaging electromagnetic techniques and their actual potentialities in terms of characterization of artworks is an ongoing research activity. As a contribution within this context, we have performed time of flight THz imaging [1,2] on ceramic and marble objects. In particular, we surveyed majolica tiles produced by Neapolitan ceramists in the 18th and 19th centuries with the aim to gather information on their structure, constructive technique and conservation state. Moreover, we investigated a Marmo di Candoglia fragment in order to characterize the biological attach affecting it. All the surveys were carried out by using the Fiber-Coupled Terahertz Time Domain System (FICO) developed by Z-Omega and available at the Institute of Electromagnetic Sensing of the Environment (IREA). This system is equipped with fiber optic coupled transmitting and receiving probes and with an automatic positioning system enabling to scan a 150 mm x 150 mm area under a reflection measurement configuration. Based on the obtained results we can state that the use of THz waves allows: - the reconstruction of the object topography; - the geometrical

  5. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2000-01-01

    The state of the global industrial garnet industry in 1999 is discussed. Industrial garnet mined in the U.S., which accounts for approximately one-third of the world's total, is usually a solid-solution of almandine and pyrope. The U.S. is the largest consumer of industrial garnet, using an estimated 47,800 st in 1999 as an abrasive and as a filtration medium in the petroleum industry, filtration plants, aircraft and motor vehicle manufacture, shipbuilding, wood furniture finishing operations, electronic component manufacture, ceramics manufacture, and glass production. Prices for crude concentrates ranged from approximately $50 to $110/st and refined garnet from $50 to $215/st in 1999, depending on type, source, quantity purchased, quality, and application.

  6. Penetration of tungsten-alloy rods into composite ceramic targets: Experiments and 2-D simulations

    NASA Astrophysics Data System (ADS)

    Rosenberg, Z.; Dekel, E.; Hohler, V.; Stilp, A. J.; Weber, K.

    1998-07-01

    A series of terminal ballistics experiments, with scaled tungsten-alloy penetrators, was performed on composite targets consisting of ceramic tiles glued to thick steel backing plates. Tiles of silicon-carbide, aluminum nitride, titanium-dibroide and boron-carbide were 20-80 mm thick, and impact velocity was 1.7 km/s. 2-D numerical simulations, using the PISCES code, were performed in order to simulate these shots. It is shown that a simplified version of the Johnson-Holmquist failure model can account for the penetration depths of the rods but is not enough to capture the effect of lateral release waves on these penetrations.

  7. Detecting transcriptionally active regions using genomic tiling arrays

    PubMed Central

    Halasz, Gabor; van Batenburg, Marinus F; Perusse, Joelle; Hua, Sujun; Lu, Xiang-Jun; White, Kevin P; Bussemaker, Harmen J

    2006-01-01

    We have developed a method for interpreting genomic tiling array data, implemented as the program TranscriptionDetector. Probed loci expressed above background are identified by combining replicates in a way that makes minimal assumptions about the data. We performed medium-resolution Anopheles gambiae tiling array experiments and found extensive transcription of both coding and non-coding regions. Our method also showed improved detection of transcriptional units when applied to high-density tiling array data for ten human chromosomes. PMID:16859498

  8. DNA tile based self-assembly: building complex nanoarchitectures.

    PubMed

    Lin, Chenxiang; Liu, Yan; Rinker, Sherri; Yan, Hao

    2006-08-11

    DNA tile based self-assembly provides an attractive route to create nanoarchitectures of programmable patterns. It also offers excellent scaffolds for directed self-assembly of nanometer-scale materials, ranging from nanoparticles to proteins, with potential applications in constructing nanoelectronic/nanophotonic devices and protein/ligand nanoarrays. This Review first summarizes the currently available DNA tile toolboxes and further emphasizes recent developments toward self-assembling DNA nanostructures with increasing complexity. Exciting progress using DNA tiles for directed self-assembly of other nanometer scale components is also discussed.

  9. 57. ORIGINAL TILE PRESS AND EXPERIMENTAL DENTAL KILN, SECOND FLOOR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    57. ORIGINAL TILE PRESS AND EXPERIMENTAL DENTAL KILN, SECOND FLOOR, NORTH WING, HENRY MERCER USED THE KILN FOR HIS EARLIEST GLAZE TESTS. THE PRESS WAS DESIGNED TO BE USED WITH METAL CASED MOLDS. SINCE ONLY THE EARLIEST TILE DESIGNS ARE IN METAL CASES. THIS TECHNIQUE WAS PROBABLY DISCONTINUED. THIS PRESS WAS, THEREFORE, PROBABLY NOT USED EXTENSIVELY AT THIS SITE. THE UPPER PART OF GLAZE KILN No. 2 IS AT THE LEFT REAR. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  10. Affine reflection groups for tiling applications: Knot theory and DNA

    NASA Astrophysics Data System (ADS)

    Bodner, M.; Patera, J.; Peterson, M.

    2012-01-01

    We present in this paper some non-conventional applications of affine Weyl groups Waff of rank 2, the symmetry group of the tiling/lattice. We first develop and present the tools for applications requiring tilings of a real Euclidean plane {R}^2. We then elucidate the equivalence of these tilings with 2D projections of knots. The resulting mathematical structure provides a framework within which is encompassed recent work utilizing knot theory for modeling the structure and function of genetic molecules, specifically the action of particular enzymes in altering the topology of DNA in site-specific recombination.

  11. Ceramic HEPA Filter Program

    SciTech Connect

    Mitchell, M A; Bergman, W; Haslam, J; Brown, E P; Sawyer, S; Beaulieu, R; Althouse, P; Meike, A

    2012-04-30

    Potential benefits of ceramic filters in nuclear facilities: (1) Short term benefit for DOE, NRC, and industry - (a) CalPoly HTTU provides unique testing capability to answer questions for DOE - High temperature testing of materials, components, filter, (b) Several DNFSB correspondences and presentations by DNFSB members have highlighted the need for HEPA filter R and D - DNFSB Recommendation 2009-2 highlighted a nuclear facility response to an evaluation basis earthquake followed by a fire (aka shake-n-bake) and CalPoly has capability for a shake-n-bake test; (2) Intermediate term benefit for DOE and industry - (a) Filtration for specialty applications, e.g., explosive applications at Nevada, (b) Spin-off technologies applicable to other commercial industries; and (3) Long term benefit for DOE, NRC, and industry - (a) Across industry, strong desire for better performance filter, (b) Engineering solution to safety problem will improve facility safety and decrease dependence on associated support systems, (c) Large potential life-cycle cost savings, and (d) Facilitates development and deployment of LLNL process innovations to allow continuous ventilation system operation during a fire.

  12. Photoacoustic microscopy of ceramic turbine blades

    NASA Technical Reports Server (NTRS)

    Khandelwal, P. K.; Kinnick, R. R.; Heitman, P. W.

    1985-01-01

    Scanning photoacoustic microscopy (SPAM) is evaluated as a nondestructive technique for the detection of both surface and subsurface flaws in polycrystalline ceramics, such as those currently under consideration for the high temperature components of small vehicular and industrial gas turbine engines; the fracture strength of these brittle materials is controlled by small, 25-200 micron flaws. Attention is given to the correlation of SPAM-detected flaws with actual, fracture-controlling flaws in ceramic turbine blades.

  13. Crack resistance of a constructional ceramic

    SciTech Connect

    Pisarenko, G.S.; Gogotsi, G.A.; Zavada, V.P.

    1985-04-01

    The purpose of this article is the development and substantiation of methods of determination of crack resistance and the investigation of features of fracture of a machine building ceramic intended for use at high temperatures. Studied were a silicon nitride base reaction-sintered ceramic, designated NKKKM, and self-bonded silicon carbide produced by industry. Electrical porcelain and sodium glass were used as model materials in the development and testing of the methods.

  14. Extensive lead exposure in children living in an area with production of lead-glazed tiles in the Ecuadorian Andes.

    PubMed

    Vahter, M; Counter, S A; Laurell, G; Buchanan, L H; Ortega, F; Schütz, A; Skerfving, S

    1997-01-01

    We have determined the concentrations of lead (Pb), cadmium (Cd), and mercury (Hg) in the blood of children living in two Andean villages in Ecuador with many family-owned cottage-type industries using Pb from discarded car batteries and occasionally, utility batteries containing Cd and Hg for the production of glazed tiles. The battery metals are ground together with water to a suspension, which is applied manually onto the tiles and then fused at about 1,200 degrees C in sawdust-fired kilns. Children aged 4-15 years were recruited from the schools with the assistance of the school-teachers. Children from homes with and without tile-glazing activities were to be included. Blood metal concentrations were determined by inductively coupled plasma mass spectrometry (ICP-MS). The children had extremely high blood lead concentrations (B-Pb), which ranged between 100 and 1,100 micrograms/l (median 510 micrograms/l, n = 82). Children from families engaged in tile-glazing production had significantly higher B-Pb (median 600 micrograms/l) than those living in homes with no such activity (median 210 micrograms/l), although the B-Pb of the latter were nonetheless clearly elevated. B-Cd and B-Hg were low (medians 0.25 microgram Cd/l and 1.6 micrograms Hg/l, respectively), indicating that the exposure from utility batteries containing Cd and Hg was low. The blood hemoglobin concentrations decreased significantly with rising B-Pb, indicating an effect on the heme synthesis. This was supported by a marked increase in the blood concentration of protoporphyrins with increasing B-Pb. It can be concluded that children from families with cottage industries producing glazed tiles are at risk for severe health effects due to high lead exposure.

  15. Ceramic Technology Project. Semiannual progress report, April 1991--September 1991

    SciTech Connect

    Not Available

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS`s Materials Development Program, was developed to meet the ceramic technology requirements of the OTS`s automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  16. Ceramic Technology Project semiannual progress report, April 1992--September 1992

    SciTech Connect

    Johnson, D.R.

    1993-07-01

    This project was developed to meet the ceramic technology requirements of the DOE Office of Transportation Systems` automotive technology programs. Significant progress in fabricating ceramic components for DOE, NASA, and DOE advanced heat engine programs show that operation of ceramic parts in high-temperature engines is feasible; however, addition research is needed in materials and processing, design, and data base and life prediction before industry will have a sufficient technology base for producing reliable cost-effective ceramic engine components commercially. A 5-yr project plan was developed, with focus on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  17. Affordable, Robust Ceramic Joining Technology (ARCJoint) Developed

    NASA Technical Reports Server (NTRS)

    Steele, Gynelle C.

    2001-01-01

    Affordable, Robust Ceramic Joining Technology (ARCJoint) is a method for joining high temperature- resistant ceramic pieces together, establishing joints that are strong, and allowing joining to be done in the field. This new way of joining allows complex shapes to be formed by joining together geometrically simple shapes. The joining technology at NASA is one of the enabling technologies for the application of silicon-carbide-based ceramic and composite components in demanding and high-temperature applications. The technology is being developed and tested for high-temperature propulsion parts for aerospace use. Commercially, it can be used for joining ceramic pieces used for high temperature applications in the power-generating and chemical industries, as well as in the microelectronics industry. This innovation could yield big payoffs for not only the power-generating industry but also the Silicon Valley chipmakers. This technology, which was developed at the NASA Glenn Research Center by Dr. Mrityunjay Singh, is a two-step process involving first using a paste to join together ceramic pieces and bonding them by heating the joint to 110 to 120 C for between 10 and 20 min. This makes the joint strong enough to be handled for the final joining. Then, a silicon-based substance is applied to the joint and heated to 1400 C for 10 to 15 min. The resulting joint is as strong as the original ceramic material and can withstand the same high temperatures.

  18. Affordable, Robust Ceramic Joining Technology (ARCJoint) Developed

    NASA Technical Reports Server (NTRS)

    Steele, Gynelle C.

    2001-01-01

    Affordable, Robust Ceramic Joining Technology (ARCJoint) is a method for joining high temperature- resistant ceramic pieces together, establishing joints that are strong, and allowing joining to be done in the field. This new way of joining allows complex shapes to be formed by joining together geometrically simple shapes. The joining technology at NASA is one of the enabling technologies for the application of silicon-carbide-based ceramic and composite components in demanding and high-temperature applications. The technology is being developed and tested for high-temperature propulsion parts for aerospace use. Commercially, it can be used for joining ceramic pieces used for high temperature applications in the power-generating and chemical industries, as well as in the microelectronics industry. This innovation could yield big payoffs for not only the power-generating industry but also the Silicon Valley chipmakers. This technology, which was developed at the NASA Glenn Research Center by Dr. Mrityunjay Singh, is a two-step process involving first using a paste to join together ceramic pieces and bonding them by heating the joint to 110 to 120 C for between 10 and 20 min. This makes the joint strong enough to be handled for the final joining. Then, a silicon-based substance is applied to the joint and heated to 1400 C for 10 to 15 min. The resulting joint is as strong as the original ceramic material and can withstand the same high temperatures.

  19. South front, west part, showing wrought iron gates and tiling ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South front, west part, showing wrought iron gates and tiling at the former main entrance. - San Bernardino Valley College, Life Science Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  20. 24. DETAIL VIEW OF TILE GAUGE IN INTERMEDIATE LOCK WALL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. DETAIL VIEW OF TILE GAUGE IN INTERMEDIATE LOCK WALL, LOOKING NORTHEAST. NOTE STEEL WALL ARMOR EMBEDDED IN CONCRETE. - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 26, Alton, Madison County, IL

  1. 25. CAFETERIA Note remains of tile floor in foreground. Food ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. CAFETERIA Note remains of tile floor in foreground. Food cooked on the stove was served to workers in the eating area to the left of the counter (off picture). - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA

  2. Integrator Based Readout in Tile Calorimeter of the ATLAS Experiment

    NASA Astrophysics Data System (ADS)

    González Parra, Garoé; ATLAS Collaboration

    TileCal is the Barrel hadronic calorimeter of the ATLAS experiment at LHC/CERN. To equalize the response of individual TileCal cells with a precision better than 1% and to monitor the response of each cell over time, a calibration and monitoring system based on a Cs137 radioactive source driven through the calorimeter volume by liquid flow has been implemented. This calibration system relies on a dedicated readout chain based on slow integrators that read currents from the TileCal photomultipliers integrating over milliseconds during the calibration runs. Moreover, during the LHC collisions the TileCal integrator based readout provides the signal coming from inelastic proton-proton collisions at low momentum transfer. This is used to monitor in ATLAS the instantaneous luminosity as well as the response of all calorimeter cells during data-taking.

  3. VIEW OF COMPASS ROSE TILE INLAY IN FLOOR OF LOBBY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF COMPASS ROSE TILE INLAY IN FLOOR OF LOBBY, BUILDING 1, LOOKING SOUTHEAST - Roosevelt Base, Administration & Brig Building, Bounded by Nevada & Colorado Streets, Reeves & Richardson Avenues, Long Beach, Los Angeles County, CA

  4. Interference Heating to Cavities Between Simulated RSI Tiles

    NASA Technical Reports Server (NTRS)

    Johnson, C. B.

    1973-01-01

    Test results for full scale simulated surface insulation tiles on both the tunnel wall and in the free stream, for in-line and staggered tile orientations, are summarized as follows: (1) The staggered tile orientation has heating on the forward face which is a factor of 4.5 times higher than the heating to the forward face of the in-line tile orientation; (2) the longitudinal gap heating was the highest for the 0.3175 cm gap and the lowest for the 0.1587 cm gap; and (3) there was an order of magnitude decrease in the heating on the forward face of a spanwise gap when the gap size was decreased from 0.3175 cm to 0.1587 cm.

  5. 45. Everett, Weinreb, photographer DETAIL, CEMENT TILE PATTERN FROM RECEPTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. Everett, Weinreb, photographer DETAIL, CEMENT TILE PATTERN FROM RECEPTION HALL LOOKING EAST ACROSS ARRIVAL LOBBY FLOOR - Los Angeles Union Passenger Terminal, Tracks & Shed, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  6. 44. Everett Weinreb, photographer DETAIL, CEMENT TILE PATTERN, FROM LOGGIA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. Everett Weinreb, photographer DETAIL, CEMENT TILE PATTERN, FROM LOGGIA LOOKING EAST ACROSS RECEPTION HALL - Los Angeles Union Passenger Terminal, Tracks & Shed, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  7. Measurement of Tritium Surface Distribution on TFTR Bumper Limiter Tiles

    SciTech Connect

    K. Sugiyama; T. Tanabe; C.H. Skinner; C.A. Gentile

    2004-06-28

    The tritium surface distribution on graphite tiles used in the Tokamak Fusion Test Reactor (TFTR) bumper limiter and exposed to TFTR deuterium-tritium (D-T) discharges from 1993 to 1997 was measured by the Tritium Imaging Plate Technique (TIPT). The TFTR bumper limiter shows both re-/co-deposition and erosion. The tritium images for all tiles measured are strongly correlated with erosion and deposition patterns, and long-term tritium retention was found in the re-/co-depositions and flakes. The CFC tiles located at erosion dominated areas clearly showed their woven structure in their tritium images owing to different erosion yields between fibers and matrix. Significantly high tritium retention was observed on all sides of the erosion tiles, indicating carbon transport via repetition of local erosion/deposition cycles.

  8. Remote handling system development of armor tile replacement for FER

    SciTech Connect

    Adachi, J.; Yoshizawa, S.; Nakano, Y.

    1994-12-31

    A number of armor tiles are attached to the first wall of the Fusion Experimental Reactor (FER) in order to protect the first wall against severe heat/particle loads from plasma during its operation. Although the armor tiles are made of heat-resisting materials such as graphite, they are eroded and damaged due to the loads and thus they are categorized into scheduled maintenance component. A remote handling system is required to replace a large number of tiles rapidly in the highly activated circumstance and has to be capable for adjusting a manipulator`s motion taking into account a thermal deformation of the first wall and/or a positioning error of a manipulator for the remote handling system. For this purpose, a remote handling system of the armor tile replacement with a visual feedback control has been fabricated and this paper describes an experimental system and the performance test results.

  9. Aerodynamic heat transfer to RSI tile surfaces and gap intersections. [Reusable Surface Insulation

    NASA Technical Reports Server (NTRS)

    Dunavant, J. C.; Throckmorton, D. A.

    1974-01-01

    Review of the results of aerothermal heating tests of a simulated reusable surface insulation (RSI) tile array, performed on the sidewall of a Mach-10 hypersonic tunnel. In particular, the heating characteristics of the tile array, such as they result from heating inside the tile-expansion-space providing gaps between individual tiles, are investigated. The results include the finding that heating on the upstream face of a tile is strongly affected by the interacting longitudinal gap flow.

  10. ATLAS Tile Calorimeter performance with Run 1 data

    NASA Astrophysics Data System (ADS)

    Cerdá Alberich, L.

    2016-07-01

    The performance of the central hadronic calorimeter, TileCal, in the ATLAS Experiment at the Large Hadron Collider is studied using cosmic-ray muons and the large sample of proton-proton collisions acquired during the Run 1 of LHC (2010-2012). Results are presented for the precision of the absolute energy scale and timing, noise characterization, and time-stability of the detector. The results show that the Tile Calorimeter performance is within the design requirements of the detector.

  11. On the Minimum Weight Steiner Triangular Tiling problem

    SciTech Connect

    Doddi, S.; Zhu, B.

    1995-04-01

    In this paper, we introduce the Minimum Weight Steiner Triangular Tiling problem, which is a generalization of the Minimum Weight Steiner Triangulation. Contrary to the conjecture of Eppstein that the Minimum Weight Steiner Triangulation of a convex polygon has the property that the Steiner points all lie on the boundary of the polygon [Epp94], we show that the Steiner points of a Minimum Weight Steiner Triangular Tiling could lie in the interior of a convex polygon.

  12. 56. ORIGINAL MOLDS. THE MORAVIAN POTTERY AND TILE WORKS HAS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. ORIGINAL MOLDS. THE MORAVIAN POTTERY AND TILE WORKS HAS APPROXIMATELY 6,000 PLASTER MOLDS OF VARIOUS TYPES, INCLUDING THE DEEP CAVITY MOLDS IN THE CENTER OF THE PHOTOGRAPH. THESE MOLDS PRODUCED ALLEGORICAL FIGURES TO BE INSTALLED AROUND THE CORNICES OF PUBLIC SCHOOLS. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  13. No inherent glassiness in a Penrose tiling quasicrystal

    SciTech Connect

    Strandburg, K.J.; Dressel, P.R.

    1988-11-01

    Consideration of the structure of the Penrose pattern has led to speculation that a system with a Penrose tiling ground state might be subject to inherent glassy behavior. Monte Carol simulations show, using a simple model of the energetics, that there is no inherent glassiness in the Penrose tiling. Thermodynamic quantities measured are completely reversible, displaying no observable hysterisis, and the system may be easily cooled from a highly disordered configuration into its lowest energy state. 11 refs., 7 figs.

  14. Ceramic fiber ceramic matrix filter development

    SciTech Connect

    Judkins, R.R.; Stinton, D.P.; Smith, R.G.; Fischer, E.M.

    1994-09-01

    The objectives of this project were to develop a novel type of candle filter based on a ceramic fiber-ceramic matrix composite material, and to extend the development to full-size, 60-mm OD by 1-meter-long candle filters. The goal is to develop a ceramic filter suitable for use in a variety of fossil energy system environments such as integrated coal gasification combined cycles (IGCC), pressurized fluidized-bed combustion (PFBC), and other advanced coal combustion environments. Further, the ceramic fiber ceramic matrix composite filter, hereinafter referred to as the ceramic composite filter, was to be inherently crack resistant, a property not found in conventional monolithic ceramic candle filters, such as those fabricated from clay-bonded silicon carbide. Finally, the adequacy of the filters in the fossil energy system environments is to be proven through simulated and in-plant tests.

  15. Dynamic and Static High Temperature Resistant Ceramic Seals for X- 38 re-Entry Vehicle

    NASA Astrophysics Data System (ADS)

    Handrick, Karin E.; Curry, Donald M.

    2002-01-01

    In a highly successful partnership, NAS A, ESA, DLR (German Space Agency) and European industry are building the X-38, V201 re-entry spacecraft, the prototype of the International Space Station's Crew Return Vehicle (CRV). This vehicle would serve both as an ambulance for medical emergencies and as an evacuation vehicle for the Space Station. The development of essential systems and technologies for a reusable re-entry vehicle is a first for Europe, and sharing the development of an advanced re-entry spacecraft with foreign partners is a first for NASA. NASA, in addition to its subsystem responsibilities, is performing overall X-38 vehicle system engineering and integration, will launch V201 on the Space Shuttle, deliver flight data for post-flight analysis and assessment and is responsible for development and manufacture of structural vehicle components and thermal protection (TPS) tiles. The major European objective for cooperation with NASA on X-38 was to establish a clear path through which key technologies needed for future space transportation systems could be developed and validated at affordable cost and with controlled risk. Europe has taken the responsibility to design and manufacture hot control surfaces like metallic rudders and ceramic matrix composites (CMC) body flaps, thermal protection systems such as CMC leading edges, the CMC nose cap and -skirt, insulation, landing gears and elements of the V201 primary structure. Especially hot control surfaces require extremely high temperature resistant seals to limit hot gas ingestion and transfer of heat to underlying low-temperature structures to prevent overheating of these structures and possible loss of the vehicle. Complex seal interfaces, which have to fulfill various, tight mission- and vehicle-related requirements exist between the moveable ceramic body flaps and the bottom surface of the vehicle, between the rudder and fin structure and the ceramic leading edge panel and TPS tiles. While NASA

  16. DNAzyme-Controlled Cleavage of Dimer and Trimer Origami Tiles.

    PubMed

    Wu, Na; Willner, Itamar

    2016-04-13

    Dimers of origami tiles are bridged by the Pb(2+)-dependent DNAzyme sequence and its substrate or by the histidine-dependent DNAzyme sequence and its substrate to yield the dimers T1-T2 and T3-T4, respectively. The dimers are cleaved to monomer tiles in the presence of Pb(2+)-ions or histidine as triggers. Similarly, trimers of origami tiles are constructed by bridging the tiles with the Pb(2+)-ion-dependent DNAzyme sequence and the histidine-dependent DNAzyme sequence and their substrates yielding the trimer T1-T5-T4. In the presence of Pb(2+)-ions and/or histidine as triggers, the programmed cleavage of trimer proceeds. Using Pb(2+) or histidine as trigger cleaves the trimer to yield T5-T4 and T1 or the dimer T1-T5 and T4, respectively. In the presence of Pb(2+)-ions and histidine as triggers, the cleavage products are the monomer tiles T1, T5, and T4. The different cleavage products are identified by labeling the tiles with 0, 1, or 2 streptavidin labels and AFM imaging.

  17. Recycling of the product of thermal inertization of cement-asbestos for various industrial applications

    SciTech Connect

    Gualtieri, Alessandro F.; Giacobbe, Carlotta; Sardisco, Lorenza; Saraceno, Michele; Lassinantti Gualtieri, Magdalena; Cavenati, Cinzia; Zanatto, Ivano

    2011-01-15

    Recycling of secondary raw materials is a priority of waste handling in the countries of the European community. A potentially important secondary raw material is the product of the thermal transformation of cement-asbestos, produced by prolonged annealing at 1200-1300 {sup o}C. The product is chemically comparable to a Mg-rich clinker. Previous work has assured the reliability of the transformation process. The current challenge is to find potential applications as secondary raw material. Recycling of thermally treated asbestos-containing material (named KRY.AS) in traditional ceramics has already been studied with successful results. The results presented here are the outcome of a long termed project started in 2005 and devoted to the recycling of this secondary raw materials in various industrial applications. KRY.AS can be added in medium-high percentages (10-40 wt%) to commercial mixtures for the production of clay bricks, rock-wool glasses for insulation as well as Ca-based frits and glass-ceramics for the production of ceramic tiles. The secondary raw material was also used for the synthesis of two ceramic pigments; a green uvarovite-based pigment [Ca{sub 3}Cr{sub 2}(SiO{sub 4}){sub 3}] and a pink malayaite-based pigment [Ca(Sn,Cr)SiO{sub 5}]. The latter is especially interesting as a substitute for cadmium-based pigments. This work also shows that KRY.AS can replace standard fillers in polypropylene plastics without altering the properties of the final product. For each application, a description and relevant results are presented and discussed.

  18. Recycling of the product of thermal inertization of cement-asbestos for various industrial applications.

    PubMed

    Gualtieri, Alessandro F; Giacobbe, Carlotta; Sardisco, Lorenza; Saraceno, Michele; Gualtieri, Magdalena Lassinantti; Lusvardi, Gigliola; Cavenati, Cinzia; Zanatto, Ivano

    2011-01-01

    Recycling of secondary raw materials is a priority of waste handling in the countries of the European community. A potentially important secondary raw material is the product of the thermal transformation of cement-asbestos, produced by prolonged annealing at 1200-1300 °C. The product is chemically comparable to a Mg-rich clinker. Previous work has assured the reliability of the transformation process. The current challenge is to find potential applications as secondary raw material. Recycling of thermally treated asbestos-containing material (named KRY·AS) in traditional ceramics has already been studied with successful results. The results presented here are the outcome of a long termed project started in 2005 and devoted to the recycling of this secondary raw materials in various industrial applications. KRY·AS can be added in medium-high percentages (10-40 wt%) to commercial mixtures for the production of clay bricks, rock-wool glasses for insulation as well as Ca-based frits and glass-ceramics for the production of ceramic tiles. The secondary raw material was also used for the synthesis of two ceramic pigments; a green uvarovite-based pigment [Ca(3)Cr(2)(SiO(4))(3)] and a pink malayaite-based pigment [Ca(Sn,Cr)SiO(5)]. The latter is especially interesting as a substitute for cadmium-based pigments. This work also shows that KRY·AS can replace standard fillers in polypropylene plastics without altering the properties of the final product. For each application, a description and relevant results are presented and discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Programmable disorder in random DNA tilings

    NASA Astrophysics Data System (ADS)

    Tikhomirov, Grigory; Petersen, Philip; Qian, Lulu

    2016-11-01

    Scaling up the complexity and diversity of synthetic molecular structures will require strategies that exploit the inherent stochasticity of molecular systems in a controlled fashion. Here we demonstrate a framework for programming random DNA tilings and show how to control the properties of global patterns through simple, local rules. We constructed three general forms of planar network—random loops, mazes and trees—on the surface of self-assembled DNA origami arrays on the micrometre scale with nanometre resolution. Using simple molecular building blocks and robust experimental conditions, we demonstrate control of a wide range of properties of the random networks, including the branching rules, the growth directions, the proximity between adjacent networks and the size distribution. Much as combinatorial approaches for generating random one-dimensional chains of polymers have been used to revolutionize chemical synthesis and the selection of functional nucleic acids, our strategy extends these principles to random two-dimensional networks of molecules and creates new opportunities for fabricating more complex molecular devices that are organized by DNA nanostructures.

  20. Programmable disorder in random DNA tilings

    NASA Astrophysics Data System (ADS)

    Tikhomirov, Grigory; Petersen, Philip; Qian, Lulu

    2017-03-01

    Scaling up the complexity and diversity of synthetic molecular structures will require strategies that exploit the inherent stochasticity of molecular systems in a controlled fashion. Here we demonstrate a framework for programming random DNA tilings and show how to control the properties of global patterns through simple, local rules. We constructed three general forms of planar network—random loops, mazes and trees—on the surface of self-assembled DNA origami arrays on the micrometre scale with nanometre resolution. Using simple molecular building blocks and robust experimental conditions, we demonstrate control of a wide range of properties of the random networks, including the branching rules, the growth directions, the proximity between adjacent networks and the size distribution. Much as combinatorial approaches for generating random one-dimensional chains of polymers have been used to revolutionize chemical synthesis and the selection of functional nucleic acids, our strategy extends these principles to random two-dimensional networks of molecules and creates new opportunities for fabricating more complex molecular devices that are organized by DNA nanostructures.

  1. Tiling solutions for optimal biological sensing

    NASA Astrophysics Data System (ADS)

    Walczak, Aleksandra M.

    2015-10-01

    Biological systems, from cells to organisms, must respond to the ever-changing environment in order to survive and function. This is not a simple task given the often random nature of the signals they receive, as well as the intrinsically stochastic, many-body and often self-organized nature of the processes that control their sensing and response and limited resources. Despite a wide range of scales and functions that can be observed in the living world, some common principles that govern the behavior of biological systems emerge. Here I review two examples of very different biological problems: information transmission in gene regulatory networks and diversity of adaptive immune receptor repertoires that protect us from pathogens. I discuss the trade-offs that physical laws impose on these systems and show that the optimal designs of both immune repertoires and gene regulatory networks display similar discrete tiling structures. These solutions rely on locally non-overlapping placements of the responding elements (genes and receptors) that, overall, cover space nearly uniformly.

  2. Chemical durability of glaze on Zsolnay architectural ceramics (Budapest, Hungary) in acid solutions

    NASA Astrophysics Data System (ADS)

    Baricza, Ágnes; Bajnóczi, Bernadett; May, Zoltán; Tóth, Mária; Szabó, Csaba

    2015-04-01

    Zsolnay glazed architectural ceramics are among the most famous Hungarian ceramics, however, there is no profound knowledge about the deterioration of these building materials. The present study aims to reveal the influence of acidic solutions in the deterioration of Zsolnay ceramics. The studied ceramics are glazed roof tiles, which originate from two buildings in Budapest: one is located in the densely built-up city centre with high traffic rate and another one is in a city quarter with moderate traffic and more open space. The roof tiles represent the construction and the renovation periods of the buildings. The ceramics were mainly covered by lead glazes in the construction period and mainly alkali glazes in the renovation periods. The glaze of the tiles were coloured with iron (for yellow glaze) or chromium/copper/iron (for green glazes) in the case of the building located in the city centre, whereas cobalt was used as colorant and tin oxide as opacifier for the blue glaze of the ceramics of the other building. Six tiles were selected from each building. Sulphuric acid (H2SO4) solutions of pH2 and pH4 were used to measure the durability of the glazes up to 14 days at room temperature. The surfaces of the glazed ceramics after the treatment were measured by X-ray diffraction, Raman spectroscopy and SEM-EDS techniques to determine the precipitated phases on the surface of the glaze. Electron microprobe analysis was used to quantitatively characterise phases found and to determine the chemical composition of the treated glaze. The recovered sulphuric acid solutions were measured with ICP-OES technique in order to quantify the extent of the ion exchange between the glaze and the solutions. There is a significant difference in the dissolution rates in the treatments with sulphuric acid solutions of pH2 and pH4, respectively. The solution of pH2 induced greater ion exchange (approx. 7-10 times) from the glaze compared to the solution of pH4. Alkali and alkali earth

  3. Orbiter thermal pressure drop characteristics for shuttle orbiter thermal protection system components: High density tile, low density tile, densified low density tile, and strain isolation pad

    NASA Technical Reports Server (NTRS)

    Lawing, P. L.; Nystrom, D. M.

    1980-01-01

    Pressure drop tests were conducted on available samples of low and high density tile, densified low density tile, and strain isolation pads. The results are presented in terms of pressure drop, material thickness and volume flow rate. Although the test apparatus was only capable of a small part of the range of conditions to be encountered in a Shuttle Orbiter flight, the data serve to determine the type of flow characteristics to be expected for each material type tested; the measured quantities also should serve as input for initial venting and flow through analysis.

  4. Numerical Study on Anti-Penetration Process of Alumina Ceramic (AD95) to Tungsten Long Rod Projectiles

    NASA Astrophysics Data System (ADS)

    Zhang, Xianfeng; Zhang, Niansong; Li, Yongchi

    Numerical studies were conducted on the ballistic performance of alumina ceramic (AD95) tiles based on depth of penetration method, when subjected to normal impact of tungsten long rod projectiles at velocities ranging from 1100 to 2000 ms-1. The residual depth on after-effect target was derived in each case, and the ballistic efficiency factor was determined using the corresponding penetration depth on medium carbon steel. Anti-penetration experiment study of the AD95 ceramic tiles to tungsten long rod projectiles has been carried out to verify the accuracy of numerical simulation model. The result shows that numerical simulation results agree well with the corresponding experiment results and AD95 ceramic has excellent ballistic performance than medium carbon steel. The ballistic efficiency factor increases with velocity increasing when impact velocity lower than 1300 ms-1, and when it was higher than 1300 ms-1 the ballistic efficiency factor has almost no difference.

  5. Utilization of by-products from western (US) coal combustion in the manufacture of mineral wool and other ceramic materials

    SciTech Connect

    Manz, O.E.

    1984-07-01

    The ash by-products from combustion or gasification of western US coals have chemical and mineralogical characteristics that lend themselves to utilisation in ceramic materials. Laboratory and pilot-scale fabrication of four such materials has been studied. Cyclone slag from four lignite-fired power plants and a dry scrubber ash has been fabricated into mineral wool insulation in a pilot-scale cupola. Extended and fired mixtures of fly ash, clay and ground glass have produced ceramics with very high flexural strength. Ceramic glazed wall tiles utilising fly ash in place of clay have been prepared and shown to meet most specifications for fired clay tile. Both fired and unfired dry-pressed brick containing 100% western fly ash have met ASTM specifications for fired clay brick.

  6. Ultrasonic sensor based defect detection and characterisation of ceramics.

    PubMed

    Kesharaju, Manasa; Nagarajah, Romesh; Zhang, Tonzhua; Crouch, Ian

    2014-01-01

    Ceramic tiles, used in body armour systems, are currently inspected visually offline using an X-ray technique that is both time consuming and very expensive. The aim of this research is to develop a methodology to detect, locate and classify various manufacturing defects in Reaction Sintered Silicon Carbide (RSSC) ceramic tiles, using an ultrasonic sensing technique. Defects such as free silicon, un-sintered silicon carbide material and conventional porosity are often difficult to detect using conventional X-radiography. An alternative inspection system was developed to detect defects in ceramic components using an Artificial Neural Network (ANN) based signal processing technique. The inspection methodology proposed focuses on pre-processing of signals, de-noising, wavelet decomposition, feature extraction and post-processing of the signals for classification purposes. This research contributes to developing an on-line inspection system that would be far more cost effective than present methods and, moreover, assist manufacturers in checking the location of high density areas, defects and enable real time quality control, including the implementation of accept/reject criteria. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Foam on Tile Impact Modeling for the STS-107 Investigation

    NASA Technical Reports Server (NTRS)

    Stellingwerf, R. F.; Robinson, J. H.; Richardson, S.; Evans, S. W.; Stallworth, R.; Hovater, M.

    2004-01-01

    Following the breakup of the Space Shuttle Columbia during reentry a NASA/Contractor investigation team was formed to examine the probable damage inflicted on Orbiter Thermal Protection System elements by impact of External Tank insulating foam projectiles. The authors formed a working subgroup within the larger team to apply the Smooth Particle Hydrodynamics code SPHC to the damage estimation problem. Numerical models of the Orbiter's tiles and of the Tank's foam were constructed and used as inputs into the code. Material properties needed to properly model the tiles and foam were obtained from other working subgroups who performed tests on these items for this purpose. Two- and three-dimensional models of the tiles were constructed, including the glass outer layer, the main body of LI-900 insulation, the densified lower layer of LI-900, the Nomex felt mounting layer, and the Aluminum 2024 vehicle skin. A model for the BX-250 foam including porous compression, elastic rebound, and surface erosion was developed. Code results for the tile damage and foam behavior were extensively validated through comparison with Southwest Research Institute foam-on-tile impact experiments carried out in 1999. These tests involved small projectiles striking individual tiles and small tile arrays. Following code and model validation we simulated impacts of larger foam projectiles on the examples of tile systems used on the Orbiter. Results for impacts on the main landing gear door are presented in this paper, including effects of impacts at several angles, and of rapidly rotating projectiles. General results suggest that foam impacts on tiles at about 500 mph could cause appreciable damage if the impact angle is greater than about 20 degrees. Some variations of the foam properties, such as increased brittleness or increased density could increase damage in some cases. Rotation up to 17 rps failed to increase the damage for the two cases considered. This does not rule out other cases

  8. polycrystalline ceramics

    NASA Astrophysics Data System (ADS)

    Cai, Yunqi; Ma, Ji; Cui, Qi; Wang, Wenzhang; Zhang, Hui; Chen, Qingming

    2014-12-01

    La2/3Ca1/3MnO3 polycrystalline ceramics were synthesized by sol-gel method. Sharp temperature coefficient of resistance (TCR) variation (with peak value up to 22 %) has been observed near the metal-insulator transition temperature T MI (273 K) for the sample sintered at 1,450 °C. This TCR value is much higher than the previously reported values for the undoped and Ag-doped La0.67Ca0.33MnO3 samples and is comparable to the optimized thin films. It was concluded that the improved physical properties of the La0.67Ca0.33MnO3 material are due to its improved microstructure and homogeneity.

  9. ALT-II armor tile design for upgraded TEXTOR operation

    SciTech Connect

    Newberry, B.L.; McGrath, R.T.; Watson, R.D.

    1994-12-31

    The upgrade of the TEXTOR tokamak at KFA Julich will be completed in the spring of 1994. The upgrade will extend the TEXTOR pulse length from 5 seconds to 10 seconds. The auxiliary heating systems are also scheduled to be upgraded so that eventually a total of 8.0 MW auxiliary heating will be available through a combination of neutral beam injection and radio frequency heating. Originally, the inertially cooled armor tiles on the full toroidal belt Advanced Limiter Test - II (ALT-II) were designed for 5-second operation with a total heating power of 6.0 MW. The upgrade of TEXTOR will increase the energy deposited per pulse onto ALT-II by more than 300%. Consequently, the graphite armor tiles for ALT-II had to be redesigned in order to increase their thermal inertia and, thereby, avoid excessively high graphite armor surface temperatures that would lead to unacceptable contamination of the plasma. The armor tile thermal inertia had been increase primarily by expanding the radial thickness of the tiles from 17 mm to 20 mm. This increase in radial tile dimension will reduce the overall pumping efficiency of the ALT-II pump limiter by about 30%. The final armor tile design was a compromise between increasing the power handling capability and reducing the particle exhaust efficiency of ALT-II. The reduction in exhaust efficiency is unfortunate, but could only be avoided by active cooling of the ALT-II armor tiles. The active cooling option was too complicated and expensive to be considered at this time.

  10. Evaluation of toxic and genotoxic potential of a wet gas scrubber effluent obtained from wooden-based biomass furnaces: A case study in the red ceramic industry in southern Brazil.

    PubMed

    Bortolotto, Tiago; da Silva, Jaqueline; Sant'Ana, Alex Célio; Tomazi, Kamila Osowski; Geremias, Reginaldo; Angioletto, Elídio; Pich, Claus Tröger

    2017-09-01

    Red ceramic industry in southern Brazil commonly uses wood biomass as furnace fuel generating great amounts of gas emissions and ash. To avoid their impact on atmospheric environment, wet scrubbing is currently being applied in several plants. However, the water leachate formed could be potentially toxic and not managed as a common water-based effluent, since the resulting wastewater could carry many toxic compounds derived from wood pyrolysis. There is a lack of studies regarding this kind of effluent obtained specifically and strictly from wooden-based biomass furnaces. Therefore, we conducted an evaluation of toxic and genotoxic potentials of this particular type of wet gas scrubber effluent. Physical-chemical analysis showed high contents of several contaminants, including phenols, sulphates and ammoniacal nitrogen, as well as the total and suspended solids. The effluent cause significant toxicity towards microcrustacean Artemia sp. (LC50 = 34.4%) and Daphnia magna (Toxicity Factor = 6 on average) and to higher plants (Lactuca sativa L. and Allium cepa L.) with acute and sub-acute effects in several parameters. Besides, using plasmid DNA, significant damage was observed in concentrations 12.5% and higher. In cellular DNA, concentrations starting from 12.5% and 6.25% showed significant increase in Damage Index (DI) and Damage Frequency (DF), respectively. The results altogether suggest that the effluent components, such phenols, produced by wood combustion can be volatilized, water scrubbed, resulting in a toxic and genotoxic effluent which could contaminate the environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Hollow clay tile wall program summary report

    SciTech Connect

    Henderson, R.C.; Jones, W.D.

    1995-07-30

    Many of the Y-12 Plant buildings, constructed during the 1940s and 1950s, consist of steel ed concrete framing infilled with hollow clay tile (HCT). The infill was intended to provide for building enclosure and was not designed to have vertical or lateral load-carrying capacity. During the late 1970s and early 1980s, seismic and wind evaluations were performed on many of these buildings in conjunction with the preparation of a site-wide safety analysis report. This analytical work, based on the best available methodology, considered lateral load-carrying capacity of the HCT infill on the basis of building code allowable shear values. In parallel with the analysis effort, DOE initiated a program to develop natural phenomena capacity and performance criteria for existing buildings, but these criteria did not specify guidelines for determining the lateral force capacity of frames infilled with HCT. The evaluation of infills was, therefore, based on the provisions for the design of unreinforced masonry as outlined in standard masonry codes. When the results of the seismic and wind evaluations were compared with the new criteria, the projected building capacities fell short of the requirements. Apparently, if the buildings were to meet the new criteria, many millions of dollars would be required for building upgrades. Because the upgrade costs were significant, the assumptions and approaches used in the analyses were reevaluated. Four issues were identified: (1) Once the infilled walls cracked, what capacity (nonlinear response), if any, would the walls have to resist earthquake or wind loads applied in the plane of the infill (in-plane)? (2) Would the infilled walls remain within the steel or reinforced concrete framing when subjected to earthquake or high wind loads applied perpendicular to the infill (out-of-plane)? (3) What was the actual shear capacity of the HCT infill? (4) Was modeling the HCT infill as a shear wall the best approach?

  12. Gas Separations using Ceramic Membranes

    SciTech Connect

    Paul KT Liu

    2005-01-13

    This project has been oriented toward the development of a commercially viable ceramic membrane for high temperature gas separations. A technically and commercially viable high temperature gas separation membrane and process has been developed under this project. The lab and field tests have demonstrated the operational stability, both performance and material, of the gas separation thin film, deposited upon the ceramic membrane developed. This performance reliability is built upon the ceramic membrane developed under this project as a substrate for elevated temperature operation. A comprehensive product development approach has been taken to produce an economically viable ceramic substrate, gas selective thin film and the module required to house the innovative membranes for the elevated temperature operation. Field tests have been performed to demonstrate the technical and commercial viability for (i) energy and water recovery from boiler flue gases, and (ii) hydrogen recovery from refinery waste streams using the membrane/module product developed under this project. Active commercializations effort teaming with key industrial OEMs and end users is currently underway for these applications. In addition, the gas separation membrane developed under this project has demonstrated its economical viability for the CO2 removal from subquality natural gas and landfill gas, although performance stability at the elevated temperature remains to be confirmed in the field.

  13. Ceramic inspection system

    DOEpatents

    Werve, Michael E.

    2006-05-16

    A system for inspecting a ceramic component. The ceramic component is positioned on a first rotary table. The first rotary table rotates the ceramic component. Light is directed toward the first rotary table and the rotating ceramic component. A detector is located on a second rotary table. The second rotary table is operably connected to the first rotary table and the rotating ceramic component. The second rotary table is used to move the detector at an angle to the first rotary table and the rotating ceramic component.

  14. Dental ceramics: An update

    PubMed Central

    Shenoy, Arvind; Shenoy, Nina

    2010-01-01

    In the last few decades, there have been tremendous advances in the mechanical properties and methods of fabrication of ceramic materials. While porcelain-based materials are still a major component of the market, there have been moves to replace metal ceramics systems with all ceramic systems. Advances in bonding techniques have increased the range and scope for use of ceramics in dentistry. In this brief review, we will discuss advances in ceramic materials and fabrication techniques. Examples of the microstructure property relationships for these ceramic materials will also be addressed. PMID:21217946

  15. Ballistic Performance of Porous Ceramic Thermal Protection Systems at 9 km/s

    NASA Technical Reports Server (NTRS)

    Miller, Joshua E.; Bohl, W. E.; Foreman, C. D.; Christiansen, Eric L.; Davis, B. A.

    2009-01-01

    Porous-ceramic, thermal-protection-systems are used heavily in current reentry vehicles like the Orbiter, and they are currently being proposed for the next generation of manned spacecraft, Orion. These materials insulate the structural components and sensitive electronic components of a spacecraft against the intense thermal environments of atmospheric reentry. Furthermore, these materials are also highly exposed to space environmental hazards like meteoroid and orbital debris impacts. This paper discusses recent impact testing up to 9 km/s on ceramic tiles similar to those used on the Orbiter. These tiles have a porous-batting of nominally 8 lb/cubic ft alumina-fiber-enhanced-thermal-barrier (AETB8) insulating material coated with a damage-resistant, toughened-unipiece-fibrous-insulation (TUFI) layer.

  16. Construction of 2D quasi-periodic Rauzy tiling by similarity transformation

    SciTech Connect

    Zhuravlev, V. G.; Maleev, A. V.

    2009-05-15

    A new approach to constructing self-similar fractal tilings is proposed based on the construction of semigroups generated by a finite set of similarity transformations. The Rauzy tiling-a 2D analog of 1D Fibonacci tiling generated by the golden mean-is used as an example to illustrate this approach. It is shown that the Rauzy torus development and the elementary fractal boundary of Rauzy tiling can be constructed in the form of a set of centers of similarity semigroups generated by two and three similarity transformations, respectively. A centrosymmetric tiling, locally dual to the Rauzy tiling, is constructed for the first time and its parameterization is developed.

  17. Calibration of the Tile Hadronic Calorimeter of ATLAS at LHC

    NASA Astrophysics Data System (ADS)

    Boumediene, Djamel; ATLAS Collaboration

    2015-02-01

    The Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment. The TileCal provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses iron plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by means of wavelength shifting fibers to photomultiplier tubes (PMTs). The TileCal readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read by two PMTs. A brief description of the individual calibration systems (Cs radioactive source, laser, charge injection, minimum bias) is provided. Their combination allows to calibrate each part of the data acquisition chain (optical part, photomultiplier, readout electronics) and to monitor its stability to better than 1%. The procedure for setting and preserving the electromagnetic energy scale during Run 1 data taking is discussed. The issues of linearity and stability of the response, as well as the timing adjustment are also shown.

  18. Thermodynamically optimal whole-genome tiling microarray design and validation.

    PubMed

    Cho, Hyejin; Chou, Hui-Hsien

    2016-06-13

    Microarray is an efficient apparatus to interrogate the whole transcriptome of species. Microarray can be designed according to annotated gene sets, but the resulted microarrays cannot be used to identify novel transcripts and this design method is not applicable to unannotated species. Alternatively, a whole-genome tiling microarray can be designed using only genomic sequences without gene annotations, and it can be used to detect novel RNA transcripts as well as known genes. The difficulty with tiling microarray design lies in the tradeoff between probe-specificity and coverage of the genome. Sequence comparison methods based on BLAST or similar software are commonly employed in microarray design, but they cannot precisely determine the subtle thermodynamic competition between probe targets and partially matched probe nontargets during hybridizations. Using the whole-genome thermodynamic analysis software PICKY to design tiling microarrays, we can achieve maximum whole-genome coverage allowable under the thermodynamic constraints of each target genome. The resulted tiling microarrays are thermodynamically optimal in the sense that all selected probes share the same melting temperature separation range between their targets and closest nontargets, and no additional probes can be added without violating the specificity of the microarray to the target genome. This new design method was used to create two whole-genome tiling microarrays for Escherichia coli MG1655 and Agrobacterium tumefaciens C58 and the experiment results validated the design.

  19. Investigation of registration algorithms for the automatic tile processing system

    NASA Technical Reports Server (NTRS)

    Tamir, Dan E.

    1995-01-01

    The Robotic Tile Inspection System (RTPS), under development in NASA-KSC, is expected to automate the processes of post-flight re-water-proofing and the process of inspection of the Shuttle heat absorbing tiles. An important task of the robot vision sub-system is to register the 'real-world' coordinates with the coordinates of the robot model of the Shuttle tiles. The model coordinates relate to a tile data-base and pre-flight tile-images. In the registration process, current (post-flight) images are aligned with pre-flight images to detect the rotation and translation displacement required for the coordinate systems rectification. The research activities performed this summer included study and evaluation of the registration algorithm that is currently implemented by the RTPS, as well as, investigation of the utility of other registration algorithms. It has been found that the current algorithm is not robust enough. This algorithm has a success rate of less than 80% and is, therefore, not suitable for complying with the requirements of the RTPS. Modifications to the current algorithm has been developed and tested. These modifications can improve the performance of the registration algorithm in a significant way. However, this improvement is not sufficient to satisfy system requirements. A new algorithm for registration has been developed and tested. This algorithm presented very high degree of robustness with success rate of 96%.

  20. Thermal desorption analysis of beryllium tile pieces from JET

    NASA Astrophysics Data System (ADS)

    Macaulay-Newcombe, R. G.; Thompson, D. A.; Coad, J. P.

    1998-10-01

    Pieces of beryllium tile exposed to a D-D plasma in JET have been studied by thermal desorption spectroscopy. These tiles have a thick layer of redeposited Be-C-O with considerable hydrogen and deuterium present. The samples were heated at a constant rate of 2°C/min, from 100°C to 900°C. Desorption peaks occurred in the range of 140-480°C. There was no significant desorption at temperatures above 600°C. The amount of deuterium detected varied from a low of 8 × 10 21/m 2 to a high of 2.1 × 10 23/m 2. In one case, the amount of deuterium in a tile piece was seven times greater than the amount in a neighboring tile piece. Some of the tile pieces in the plasma-exposed region showed surface melting. Despite this, the deuterium yield from one of these pieces is >10 23/m 2.

  1. Interlaced Particle Systems and Tilings of the Aztec Diamond

    NASA Astrophysics Data System (ADS)

    Fleming, Benjamin J.; Forrester, Peter J.

    2011-02-01

    Motivated by the problem of domino tilings of the Aztec diamond, a weighted particle system is defined on N lines, with line j containing j particles. The particles are restricted to lattice points from 0 to N, and particles on successive lines are subject to an interlacing constraint. It is shown that this particle system is exactly solvable, to the extent that not only can the partition function be computed exactly, but so too can the marginal distributions. These results in turn are used to give new derivations within the particle picture of a number of known fundamental properties of the tiling problem, for example that the number of distinct configurations is 2 N( N+1)/2, and that there is a limit to the GUE minor process, which we show at the level of the joint PDFs. It is shown too that the study of tilings of the half Aztec diamond—not known from earlier literature—also leads to an interlaced particle system, now with successive lines 2 n-1 and 2 n ( n=1,…, N/2-1) having n particles. Its exact solution allows for an analysis of the half Aztec diamond tilings analogous to that given for the Aztec diamond tilings.

  2. Ceramic fiber insulation impregnated with an infra-red retardant coating and method for production thereof

    NASA Technical Reports Server (NTRS)

    Zinn, Alfred A. (Inventor); Tarkanian, Ryan Jeffrey (Inventor)

    2007-01-01

    The invented insulation is a ceramic fiber insulation wherein the ceramic fibers are treated with a coating which contains transition metal oxides. The invented process for coating the insulation is a process of applying the transition metal oxide coating to the fibers of the insulation after the fibers have been formed into a tile or other porous body. The coating of transition metal oxide lowers the transmittance of radiation through the insulation thereby lowering the temperature of the backface of the insulation and better protecting the structure that underlies the insulation.

  3. Ceramic Laser Materials

    PubMed Central

    Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar

    2012-01-01

    Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044

  4. Joining Ceramics By Brazing

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis P.; Sudsina, Michael W.

    1992-01-01

    Certain ceramic materials tightly bond together by brazing with suitable alloys. Enables fabrication of parts of wide variety of shapes from smaller initial pieces of ceramics produced directly in only limited variety of shapes.

  5. NASA/CARES dual-use ceramic technology spinoff applications

    NASA Technical Reports Server (NTRS)

    Powers, Lynn M.; Janosik, Lesley A.; Gyekenyesi, John P.; Nemeth, Noel N.

    1994-01-01

    NASA has developed software that enables American industry to establish the reliability and life of ceramic structures in a wide variety of 21st Century applications. Designing ceramic components to survive at higher temperatures than the capability of most metals and in severe loading environments involves the disciplines of statistics and fracture mechanics. Successful application of advanced ceramics material properties and the use of a probabilistic brittle material design methodology. The NASA program, known as CARES (Ceramics Analysis and Reliability Evaluation of Structures), is a comprehensive general purpose design tool that predicts the probability of failure of a ceramic component as a function of its time in service. The latest version of this software, CARESALIFE, is coupled to several commercially available finite element analysis programs (ANSYS, MSC/NASTRAN, ABAQUS, COSMOS/N4, MARC), resulting in an advanced integrated design tool which is adapted to the computing environment of the user. The NASA-developed CARES software has been successfully used by industrial, government, and academic organizations to design and optimize ceramic components for many demanding applications. Industrial sectors impacted by this program include aerospace, automotive, electronic, medical, and energy applications. Dual-use applications include engine components, graphite and ceramic high temperature valves, TV picture tubes, ceramic bearings, electronic chips, glass building panels, infrared windows, radiant heater tubes, heat exchangers, and artificial hips, knee caps, and teeth.

  6. Ceramic electrolyte coating methods

    DOEpatents

    Seabaugh, Matthew M.; Swartz, Scott L.; Dawson, William J.; McCormick, Buddy E.

    2004-10-12

    Processes for preparing aqueous suspensions of a nanoscale ceramic electrolyte material such as yttrium-stabilized zirconia. The invention also includes a process for preparing an aqueous coating slurry of a nanoscale ceramic electrolyte material. The invention further includes a process for depositing an aqueous spray coating slurry including a ceramic electrolyte material on pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.

  7. New class tiling design for dot-diffused halftoning.

    PubMed

    Liu, Yun-Fu; Guo, Jing-Ming

    2013-03-01

    In this paper, a new class tiling designed dot diffusion along with the optimized class matrix and diffused matrix are proposed. The result of this method presents a nearly periodic-free halftone when compared to the former schemes. Formerly, the class matrix of the dot diffusion is duplicated and orthogonally tiled to fulfill the entire image for further thresholding and quantized-error diffusion, which accompanies subsequent periodic artifacts. In our observation, this artifact can be solved by manipulating the class tiling with comprising rotation, transpose, and alternatively shifting of the class matrices. As documented in the experimental results, the proposed dot diffusion has been compared with the former halftoning methods with parallelism in terms of image quality, processing efficiency, periodicity, and memory consumption; the proposed dot diffusion exhibits as a very competitive candidate in the printing/display market.

  8. Solare Cell Roof Tile And Method Of Forming Same

    DOEpatents

    Hanoka, Jack I.; Real, Markus

    1999-11-16

    A solar cell roof tile includes a front support layer, a transparent encapsulant layer, a plurality of interconnected solar cells and a backskin layer. The front support layer is formed of light transmitting material and has first and second surfaces. The transparent encapsulant layer is disposed adjacent the second surface of the front support layer. The interconnected solar cells has a first surface disposed adjacent the transparent encapsulant layer. The backskin layer has a first surface disposed adjacent a second surface of the interconnected solar cells, wherein a portion of the backskin layer wraps around and contacts the first surface of the front support layer to form the border region. A portion of the border region has an extended width. The solar cell roof tile may have stand-offs disposed on the extended width border region for providing vertical spacing with respect to an adjacent solar cell roof tile.

  9. Summer Thermal Performance of Ventilated Roofs with Tiled Coverings

    NASA Astrophysics Data System (ADS)

    Bortoloni, M.; Bottarelli, M.; Piva, S.

    2017-01-01

    The thermal performance of a ventilated pitched roof with tiled coverings is analysed and compared with unventilated roofs. The analysis is carried out by means of a finite element numerical code, by solving both the fluid and thermal problems in steady-state. A whole one-floor building with a pitched roof is schematized as a 2D computational domain including the air-permeability of tiled covering. Realistic data sets for wind, temperature and solar radiation are used to simulate summer conditions at different times of the day. The results demonstrate that the batten space in pitched roofs is an effective solution for reducing the solar heat gain in summer and thus for achieving better indoor comfort conditions. The efficiency of the ventilation is strictly linked to the external wind conditions and to buoyancy forces occurring due to the heating of the tiles.

  10. Flutter Analysis of the Shuttle Tile Overlay Repair Concept

    NASA Technical Reports Server (NTRS)

    Bey, Kim S.; Scott, Robert C.; Bartels, Robert E.; Waters, William A.; Chen, Roger

    2007-01-01

    The Space Shuttle tile overlay repair concept, developed at the NASA Johnson Space Center, is designed for on-orbit installation over an area of damaged tile to permit safe re-entry. The thin flexible plate is placed over the damaged area and secured to tile at discreet points around its perimeter. A series of flutter analyses were performed to determine if the onset of flutter met the required safety margins. Normal vibration modes of the panel, obtained from a simplified structural analysis of the installed concept, were combined with a series of aerodynamic analyses of increasing levels of fidelity in terms of modeling the flow physics to determine the onset of flutter. Results from these analyses indicate that it is unlikely that the overlay installed at body point 1800 will flutter during re-entry.

  11. Complex Archimedean tiling self-assembled from DNA nanostructures.

    PubMed

    Zhang, Fei; Liu, Yan; Yan, Hao

    2013-05-22

    Archimedean tilings are periodic polygonal tessellations that are created by placing regular polygons edge-to-edge around a vertex to fill the plane. Here we show that three- and four-arm DNA junction tiles with specifically designed arm lengths and intertile sticky-end interactions can be used to form sophisticated two-dimensional (2D) and three-dimensional (3D) tessellation patterns. We demonstrate two different complex Archimedean patterns, (3(3).4(2)) and (3(2).4.3.4), and the formation of 2D lattices, 3D tubes, and sealed polygon-shaped pockets from the tessellations. The successful growth of hybrid DNA tile motif arrays suggests that it maybe possible to generate 2D quasi-crystals from DNA building blocks.

  12. Monte Carlo estimation of the number of tatami tilings

    NASA Astrophysics Data System (ADS)

    Kimura, Kenji; Higuchi, Saburo

    2016-04-01

    Motivated by the way Japanese tatami mats are placed on the floor, we consider domino tilings with a constraint and estimate the number of such tilings of plane regions. We map the system onto a monomer-dimer model with a novel local interaction on the dual lattice. We make use of a variant of the Hamiltonian replica exchange Monte Carlo method where data for ferromagnetic and anti-ferromagnetic models are combined to make a single family of histograms. The properties of the density of states is studied beyond exact enumeration and combinatorial methods. The logarithm of the number of the tilings is linear in the boundary length of the region for all the regions studied.

  13. Advanced Ceramic Armor Materials

    DTIC Science & Technology

    1990-05-11

    materials, toughened alumina, fiber -reinforced glass matrix composites, and multilayer-gradient materials for ballistic testing. Fabrication and...material systems: Multilayer advanced armor materials consisting of a hard ceramic faceplate bonded to a graphite fiber -reinforced glass matrix...toughened alumina, and fiber - applied studies of advanced reinforced ceramic matrix glass and glass -ceramic composites for ballistic testing. technologies

  14. Brittleness of ceramics

    NASA Technical Reports Server (NTRS)

    Kroupa, F.

    1984-01-01

    The main characteristics of mechanical properties of ceramics are summarized and the causes of their brittleness, especially the limited mobility of dislocations, are discussed. The possibility of improving the fracture toughness of ceramics and the basic research needs relating to technology, structure and mechanical properties of ceramics are stressed in connection with their possible applications in engineering at high temperature.

  15. Ceramic to metal seal

    DOEpatents

    Snow, Gary S.; Wilcox, Paul D.

    1976-01-01

    Providing a high strength, hermetic ceramic to metal seal by essentially heating a wire-like metal gasket and a ceramic member, which have been chemically cleaned, while simultaneously deforming from about 50 to 95 percent the metal gasket against the ceramic member at a temperature of about 30 to 75 percent of the melting temperature of the metal gasket.

  16. Tribological Properties Of Ceramics

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1990-01-01

    Report reviews adhesion, friction, and micromechanical properties of ceramics - properties increasingly important as more ceramic materials used in bearings, seals, and gears in advanced engines and in cutting tools and extrusion dies. Report considers effects of contaminating surface films, temperature, and chemical interactions. Examines ceramics, in both monolithic and coating form, in contact with themselves, with other harder materials, and with metals.

  17. Creation of a ceramics handbook

    NASA Technical Reports Server (NTRS)

    Craft, W. J.

    1976-01-01

    A group of common ceramic materials (alumina, magnesium oxide, silicon nitride, and silicon carbide) were characterized through literature searches according to their physical properties. The files used were the NASA file, DDC/GRA File, Engineering Index File and standard library searches. The results of these searches are arranged by material properties including mechanical, electrical, electromagnetic, where applicable, and fracture; and the entries are arranged in chronological order by candidate. A list, by author, follows where tabular information including charts and figures of results is given along with a brief statement of the results and conclusions. In both cases, information on the independent variables along with their range is given. The results of an extensive industry survey asking for names of other candidates on which information is lacking and also what type of service, if any, is desired in keeping a current information file on general ceramic materials.

  18. Implications of tiling for performance and design flow

    NASA Astrophysics Data System (ADS)

    Demircan, Ertugrul; Tian, Ruiqi; Grobman, Warren D.

    2002-07-01

    In this paper, we discuss rule-based and model-based tiling methodologies for interconnect layers and their implications for design flows and performance. The addition of these 'dummy' tiling metal features modifies the final physical design and reduces the variation of back-end process parameters. This is a newly developing area of design flow and its importance is increasing with each succeeding semiconductor generation. Along with this development new methodologies and tools need to be introduced to handle time placement post-physical design, as well as efficient methods for representing the resulting large amount of dat. Additionally, the inclusion of tiles may introduce performance-degrading parasitic effects. The situation is complicated by the order of the elements of the design flow: parasitics characterization requires knowledge about the placement of dummy metal times, which takes place after physical design. In this study, we co pare the advantages of having uniform interconnect characteristics to the performance degradation caused by the additional layout parasitics. We also discuss several possible scenarios for the modification of design flows to account for these effects the thereby recover timing and power targets closure. These scenarios depend for their success on the very different length scales of polish and electromagnetic effects. Finally, an analysis of correlations in the parameters that define design corners leads to the new conclusion that the negative effect of increased parasitic loading due to tiling is not as sever as a simple analysis would suggest. This result is due to the fact that the tiling parasitic loading is somewhat compensated for by the improved planarity resulting from tiling, which tightens the process variation-induced spread of metal electrical parameters.

  19. High-Performance Tiled WMS and KML Web Server

    NASA Technical Reports Server (NTRS)

    Plesea, Lucian

    2007-01-01

    This software is an Apache 2.0 module implementing a high-performance map server to support interactive map viewers and virtual planet client software. It can be used in applications that require access to very-high-resolution geolocated images, such as GIS, virtual planet applications, and flight simulators. It serves Web Map Service (WMS) requests that comply with a given request grid from an existing tile dataset. It also generates the KML super-overlay configuration files required to access the WMS image tiles.

  20. Tony Rollins fashions a new tile for the Space Shuttle orbiter

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Tile Fabrication Shop, Tony Rollins, with United Space Alliance, holds down a curtain while making a test sample of tile on a block 5-axis computerized numerical control milling machine. About 70 percent of a Space Shuttle orbiter's external surface is shielded from heat by a network of more than 24,000 tiles formed from a silica fiber compound. They are known as High-Temperature Reusable Surface Insulation (HRSI) tiles and Low-Temperature Reusable Surface Insulation (LRSI) tiles. Most HRSI tiles are 6 inches square, but may be as large as 12 inches in some areas, and 1 to 5 inches thick. LRSI tiles are generally 8 inches square, ranging from 0.2- to 1-inch thick. More advanced materials such as Flexible Insulation Blankets have replaced tiles on some upper surfaces of the orbiter.